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Preface

ICALP, the International Colloquium on Automata, Languages and Program-
ming, is arguably the most well-known series of scientific conferences on Theo-
retical Computer Science in Europe. The first ICALP was held in Paris, France,
during July 3–7, 1972, with 51 talks. The same year EATCS, the European As-
sociation for Theoretical Computer Science, was established. Since then ICALP
has been the flagship conference of EATCS.

ICALP 2013 was the 40th conference in this series (there was no ICALP
in 1973). For the first time, ICALP entered the territory of the former Soviet
Union. It was held in Riga, Latvia, during on July 8–12, 2013, in the University of
Latvia. This year the program of ICALP was organized in three tracks: Track A
(Algorithms, Complexity and Games), Track B (Logic, Semantics, Automata and
Theory of Programming), and Track C (Foundations of Networked Computation:
Models, Algorithms and Information Management).

In response to the Call for Papers, 436 papers were submitted; 14 papers were
later withdrawn. The three Program Committees worked hard to select 71 papers
for Track A (out of 249 papers submitted), 33 papers for Track B (out of 113
papers), and 20 papers for Track C (out of 60 papers). The average acceptance
rate was 29%. The selection was based on originality, quality, and relevance
to theoretical computer science. The quality of the submitted papers was very
high indeed. The Program Committees acknowledge that many rejected papers
deserved publication but regrettably it was impossible to extend the conference
beyond 5 days.

The best paper awards were given to Mark Bun and Justin Thaler for their
paper “Dual Lower Bounds for Approximate Degree and Markov-Bernstein In-
equalities” (in Track A), to John Fearnley and Marcin Jurdziński for the paper
“Reachability in Two-Clock Timed Automata is PSPACE-complete” (in Track
B), and to Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Paj ↪ak,
and Przemys�law Uznański for the paper “Fast Collaborative Graph Exploration”
(in Track C). The best student paper awards were given to Radu Curticapean
for the paper “Counting matchings of size k is #W[1]-hard” (in Track A) and to
Nicolas Basset for the paper “A maximal entropy stochastic process for a timed
automaton” (in Track B).

ICALP 2013 contained a special EATCS lecture on the occasion of the 40th
ICALP given by:

– Jon Kleinberg, Cornell University

Invited talks were delivered by:

– Susanne Albers, Humboldt University
– Orna Kupferman, Hebrew University
– Dániel Marx, Hungarian Academy of Sciences



VI Preface

– Paul Spirakis, University of Patras
– Peter Widmayer, ETH Zürich

The main conference was preceded by a series of workshops on Sunday July 7,
2013 (i.e., one day before ICALP 2013). The list of workshops consisted of:

– Workshop on Automata, Logic, Formal languages, and Algebra (ALFA 2013)
– International Workshop on Approximation, Parameterized and Exact Algo-

rithms (APEX 2013)
– Quantitative Models: Expressiveness and Analysis
– Foundations of Network Science (FONES)
– Learning Theory and Complexity
– 7th Workshop on Membrane Computing and Biologically Inspired Process

Calculi (MeCBIC 2013)
– Workshop on Quantum and Classical Complexity

We sincerely thank our sponsors, members of the committees, referees, and the
many colleagues who anonymously spent much time and effort to make ICALP
2013 happen.

May 2013 Fedor V. Fomin
Rūsiņš Freivalds

Marta Kwiatkowska
David Peleg
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Ölveczky, Peter
Onak, Krzysztof
Ono, Hirotaka
Ostrovsky, Rafail
Otachi, Yota
Ott, Sebastian
Oualhadj, Youssouf
Oveis Gharan, Shayan
Paes Leme, Renato
Pagh, Rasmus
Paluch, Katarzyna
Pandey, Omkant
Pandurangan, Gopal
Pandya, Paritosh
Panigrahi, Debmalya
Pankratov, Denis
Panolan, Fahad
Paparas, Dimitris
Pardubská, Dana
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On the Complexity of Verifying Regular Properties on Flat Counter
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
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Exact Weight Subgraphs and the k-Sum Conjecture

Amir Abboud� and Kevin Lewi

Computer Science Department, Stanford University
{abboud,klewi}@cs.stanford.edu

Abstract. We consider the EXACT-WEIGHT-H problem of finding a (not neces-
sarily induced) subgraph H of weight 0 in an edge-weighted graph G. We show
that for every H , the complexity of this problem is strongly related to that of the
infamous k-SUM problem. In particular, we show that under the k-SUM Conjec-
ture, we can achieve tight upper and lower bounds for the EXACT-WEIGHT-H
problem for various subgraphs H such as matching, star, path, and cycle.

One interesting consequence is that improving on the O(n3) upper bound
for EXACT-WEIGHT-4-PATH or EXACT-WEIGHT-5-PATH will imply improved
algorithms for 3-SUM, 5-SUM, ALL-PAIRS SHORTEST PATHS and other funda-
mental problems. This is in sharp contrast to the minimum-weight and (unweighted)
detection versions, which can be solved easily in time O(n2). We also show that
a faster algorithm for any of the following three problems would yield faster algo-
rithms for the others: 3-SUM, EXACT-WEIGHT-3-MATCHING, and
EXACT-WEIGHT-3-STAR.

1 Introduction

Two fundamental problems that have been extensively studied separately by different
research communities for many years are the k-SUM problem and the problem of finding
subgraphs of a certain form in a graph. We investigate the relationships between these
problems and show tight connections between k-SUM and the “exact-weight” version
of the subgraph finding problem.

The k-SUM problem is the parameterized version of the well known NP-complete
problem SUBSET-SUM, and it asks if in a set of n integers, there is a subset of size k
whose integers sum to 0. This problem can be solved easily in time O(n�k/2�), and
Baran, Demaine, and Pǎtraşcu [3] show how the 3-SUM problem can be solved in time
O(n2/ log2 n) using certain hashing techniques. However, it has been a longstanding
open problem to solve k-SUM for some k in time O(n�k/2�−ε) for some ε > 0. In cer-
tain restricted models of computation, an Ω(n�k/2�) lower bound has been established
initially by Erickson [7] and later generalized by Ailon and Chazelle [1], and recently,
Pǎtraşcu and Williams [16] show that no(k) time algorithms for all k would refute the
Exponential Time Hypothesis. The literature seems to suggest the following hypothesis,
which we call the k-SUM Conjecture:

� This work was done while the author was supported by NSF grant CCF-1212372.

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Abboud and K. Lewi

Conjecture 1 [The k-SUM Conjecture]. There does not exist a k ≥ 2, an ε > 0, and
a randomized algorithm that succeeds (with high probability) in solving k-SUM in time

O(n� k
2 �−ε).

The presumed difficulty of solving k-SUM in time O(n�k/2�−ε) for any ε > 0 has
been the basis of many conditional lower bounds for problems in computational geom-
etry. The k = 3 case has received even more attention, and proving 3-SUM-hardness
has become common practice in the computational geometry literature. In a recent line
of work, Pǎtraşcu [15], Vassilevska and Williams [17], and Jafargholi and Viola [11]
show conditional hardness based on 3-SUM for problems in data structures and triangle
problems in graphs.

The problem of determining whether a weighted or unweighted n-node graph has
a subgraph that is isomorphic to a fixed k node graph H with some properties has
been well-studied in the past [14,12,6]. There has been much work on detection and
counting copies of H in graphs, the problem of listing all such copies of H , finding
the minimum-weight copy ofH , etc. [17,13]. Considering these problems for restricted
types of subgraphsH has received further attention, such as for subgraphsH with large
indepedent sets, or with bounded treewidth, and various other structures [17,18,13,8].
In this work, we focus on the following subgraph finding problem.

Definition 1 (The EXACT-WEIGHT-H Problem). Given an edge-weighted graphG,
does there exist a (not necessarily induced) subgraph isomorphic to H such that the
sum of its edge weights equals a given target value t?1

No non-trivial algorithms were known for this problem. Theoretical evidence for
the hardness of this problem was given in [17], where the authors prove that for any
H of size k, an algorithm for the exact-weight problem can give an algorithm for
the minimum-weight problem with an overhead that is only O(2k · logM), when the
weights of the edges are integers in the range [−M,M ]. They also show that improving
on the trivial O(n3) upper bound for EXACT-WEIGHT-3-CLIQUE to O(n3−ε) for any
ε > 0 would not only imply an Õ(n3−ε) algorithm2 for the minimum-weight 3-CLIQUE

problem, which from [19] is in turn known to imply faster algorithms for the canoni-
cal ALL-PAIRS SHORTEST PATHS problem, but also an O(n2−ε′) upper bound for the
3-SUM problem, for some ε′ > 0. They give additional evidence for the hardness of the
exact-weight problem by proving that faster than trivial algorithms for the k-CLIQUE

problem will break certain cryptographic assumptions.
Aside from the aforementioned reduction from 3-SUMto EXACT-WEIGHT-3-CLIQUE,

few other connections between k-SUM and subgraph problems were known. The stan-
dard reduction from Downey and Fellows [5] gives a way to reduce the unweighted
k-CLIQUE detection problem to

(
k
2

)
-SUM on n2 numbers. Also, in [15] and [11], strong

connections were shown between the 3-SUM problem (or, the similar 3-XOR problem)
and listing triangles in unweighted graphs.

1 We can assume, without loss of generality, that the target value is always 0 and that H has no
isolated vertices.

2 In our bounds, k is treated as a constant. The notation Õ(f(n)) will hide polylog(n) factors.
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1.1 Our Results

In this work, we study the exact-weight subgraph problem and its connections to k-SUM.
We show three types of reductions: k-SUM to subgraph problems, subgraphs to other
subgraphs, and subgraphs to k-SUM. These results give conditional lower bounds that
can be viewed as showing hardness either for k-SUM or for the subgraph problems. We
focus on showing implications of the k-SUM Conjecture and therefore view the first
two kinds as a source for conditional lower bounds for EXACT-WEIGHT-H , while we
view the last kind as algorithms for solving the problem. Our results are summarized in
Table 1 and Figure 1, and are discussed below.

Hardness. By embedding the numbers of the k-SUM problem into the edge weights of
the exact-weight subgraph problem, using different encodings depending on the struc-
ture of the subgraph, we prove four reductions that are summarized in Theorem 1:

Theorem 1. Let k ≥ 3. If for all ε > 0, k-SUM cannot be solved in time O(n�k/2�−ε),
then none of the following problems3 can be solved in timeO(n�k/2�−δ), for any δ > 0:

– EXACT-WEIGHT-H on a graph on n nodes, for any subgraphH on k nodes.
– EXACT-WEIGHT-k-MATCHING on a graph on

√
n nodes.

– EXACT-WEIGHT-k-STAR on a graph on n(1−1/k) nodes.
– EXACT-WEIGHT-(k-1)-PATH on a graph on n nodes.

An immediate implication of Theorem 1 is that neither 3-STAR can be solved in time
O(n3−ε), nor can 3-MATCHING be solved in time O(n4−ε) for some ε > 0, unless
3-SUM can be solved in timeO(n2−ε′ ) for some ε′ > 0. We later show that anO(n2−ε)
algorithm for 3-SUM for some ε > 0 will imply both an Õ(n3−ε) algorithm for 3-STAR

and an Õ(n4−2ε) algorithm for 3-MATCHING. In other words, either all of the following
three statements are true, or none of them are:

– 3-SUM can be solved in time O(n2−ε) for some ε > 0.
– 3-STAR can be solved in time O(n3−ε) for some ε > 0.
– 3-MATCHING can be solved in time O(n4−ε) for some ε > 0.

From [17], we already know that solving 3-CLIQUE in time O(n3−ε) for some ε > 0
implies that 3-SUM can be solved in time O(n2−ε) for some ε > 0. By Theorem 1, this
would imply faster algorithms for 3-STAR and 3-MATCHING as well.

Another corollary of Theorem 1 is the fact that 4-PATH cannot be solved in time
O(n3−ε) for some ε > 0 unless 5-SUM can be solved in time O(n3−ε′ ) for some
ε′ > 0. This is in sharp contrast to the unweighted version (and the min-weight version)
of 4-PATH, which can both be solved easily in time O(n2).

Theorem 1 shows that the k-SUM problem can be reduced to the EXACT-WEIGHT-H
problem for various types of subgraphs H , and as we noted, this implies connections
between the exact-weight problem for different subgraphs. It is natural to ask if for
any other subgraphs the exact-weight problems can be related to one another. We will

3 k-MATCHING denotes the k-edge matching on 2k nodes. k-STAR denotes the k-edge star on
k + 1 nodes. k-PATH denotes the k-node path on k-1 edges.
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answer this question in the affirmative—in particular, we show a tight reduction from
3-CLIQUE to 4-PATH.

To get this result, we use the edge weights to encode information about the nodes in
order to prove a reduction from EXACT-WEIGHT-H1 to EXACT-WEIGHT-H2, where
H1 is what we refer to as a “vertex-minor” of H2. Informally, a vertex-minor of a
graph is one that is obtained by edge deletions and node identifications (contractions)
for arbitrary pairs of nodes of the original graph (see Section 4 for a formal definition).
For example, the triangle subgraph is a vertex-minor of the path on four nodes, which
is itself a vertex-minor of the cycle on four nodes.

Theorem 2. Let H1, H2 be subgraphs such that H1 is a vertex-minor of H2. For any
α ≥ 2, if EXACT-WEIGHT-H2 can be solved in time O(nα), then EXACT-WEIGHT-H1

can be solved in time Õ(nα).

Therefore, Theorem 2 allows us to conclude that 4-CYCLE cannot be solved in time
O(n3−ε) for some ε > 0 unless 4-PATH can be solved in time Õ(n3−ε), which cannot
happen unless 3-CLIQUE can be solved in time Õ(n3−ε).

To complete the picture of relations between 3-edge subgraphs, consider the sub-
graph composed of a 2-edge path along with another (disconnected) edge. We call this
the “VI” subgraph and we define the EXACT-WEIGHT-VI problem appropriately. Since
the path on four nodes is a vertex-minor of VI, we have that anO(n3−ε) for some ε > 0
algorithm for EXACT-WEIGHT-VI implies an Õ(n3−ε) algorithm for 4-PATH. In Fig-
ure 1, we show this web of connections between the exact-weight 3-edge subgraph prob-
lems and its connection to 3-SUM, 5-SUM, and ALL-PAIRS SHORTEST PATHS. In fact,
we will soon see that the conditional lower bounds we have established for these 3-edge
subgraph problems are all tight. Note that the detection and minimum-weight versions
of some of these 3-edge subgraph problems can all be solved much faster than O(n3)
(in particular, O(n2)), and yet such an algorithm for the exact-weight versions for any
of these problems will refute the 3-SUM Conjecture, the 5-SUM Conjecture, and lead to
breakthrough improvements in algorithms for solving ALL-PAIRS SHORTEST PATHS

and other important graph and matrix optimization problems (cf. [19])!
AnotherO(n3) solvable problem is the EXACT-WEIGHT-5-PATH, and by noting that

both 4-CYCLE and VI are vertex-minors of 5-PATH, we get that improved algorithms
for 5-PATH will yield faster algorithms for all of the above problems. Moreover, from
Theorem 1, 6-SUM reduces to 5-PATH. This established EXACT-WEIGHT-5-PATH as
the “hardest” of the O(n3) time problems that we consider.

We also note that Theorem 2 yields some interesting consequences under the as-
sumption that the k-CLIQUE problem cannot be solved in timeO(nk−ε) for some ε > 0.
Theoretical evidence for this assumption was provided in [17], where they show how an
O(nk−ε) for some ε > 0 time algorithm for EXACT-WEIGHT-k-CLIQUE yields a sub-
exponential time algorithm for the multivariate quadratic equations problem, a problem
whose hardness is assumed in post-quantum cryptography.

We note that the 4-clique is a vertex-minor of the 8-node path, and so by Theorem 2,
an O(n4−ε) for some ε > 0 algorithm for 8-PATH will yield a faster 4-CLIQUE algo-
rithm. Note that an O(n5−ε) algorithm for 8-PATH already refutes the 9-SUM
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Conjecture. However, this by itself is not known to imply faster clique algorithms4.
Also, there are other subgraphs for which one can only rule out O(n�k/2�−ε) for ε > 0
upper bounds from the k-SUM Conjecture, while assuming hardness for the k-CLIQUE

problem and using Theorem 2, much stronger lower bounds can be achieved.

EW-3-clique

EW-3-star

EW-3-matching

EW-VI

EW-4-path

All-Pairs Shortest Paths

3-sum

5-sum

(n3)

(n3)

(n3)

(n3)

(n3)

(n4)

(n2)

MW-3-clique

(n3)(n3)

EW-4-cycle

(n3)

EW-5-path

(n3)

6-sum

(n3)

Fig. 1. A diagram of the relationships between EXACT-WEIGHT-H (denoted EW , for small sub-
graphs H) and other important problems. The best known running times are given for each prob-
lem, and an arrow A→ B denotes that A can be tightly reduced to B, in the sense that improving
the stated running time for B will imply an improvement on the stated running time for A. The
reductions established in this work are displayed in bold, the others are due to [19], [17].

Algorithms. So far, our reductions only show one direction of the relationship between
k-SUM and the exact-weight subgraph problems. We now show how to use k-SUM to
solve EXACT-WEIGHT-H , which will imply that many of our previous reductions are
indeed tight. The technique for finding an H-subgraph is to enumerate over a set of d
smaller subgraphs that partitionH in a certain way. Then, in order to determine whether
the weights of these d smaller subgraphs sum up to the target weight, we use d-SUM. We
say that (S,H1, . . . , Hd) is a d-separator of H iff S,H1, . . . , Hd partition V (H) and
there are no edges between a vertex in Hi and a vertex in Hj for any distinct i, j ∈ [d].

Theorem 3. Let (S,H1, . . . , Hd) be a d-separator ofH . Then, EXACT-WEIGHT-H can
be reduced to Õ(n|S|) instances of d-SUM each on max{n|H1|, . . . , n|Hd|} numbers.

By using the known d-SUM algorithms, Theorem 3 gives a non-trivial algorithm for
exact-weight subgraph problems. The running time of the algorithm depends on the
choice of the separator used for the reduction. We observe that the optimal running

4 It is not known whether the assumption that k-CLIQUE cannot be solved in time O(nk−ε) for
any ε > 0 is stronger or weaker than the k-SUM Conjecture.
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time can be achieved even when d = 2, and can be identified (naively, in time O(3k))
using the following expression. Let

γ(H) = min
(S,H1,H2) is a 2-separator

{|S|+ max {|H1|, |H2|}} .

Corollary 1. EXACT-WEIGHT-H can be solved in time Õ(nγ(H)).

Corollary 1 yields the upper bounds that we claim in Figure 1 and Table 1. For example,
to achieve the O(n�(k+1)/2�) time complexity for k-PATH, observe that we can choose
the set containing just the “middle” node of the path to be S, so that the graphH \ S is
split into two disconnected halves H1 and H2, each of size at most �(k − 1)/2�. Note
that this is the optimal choice of a separator, and so γ(k-PATH) = 1 + �(k − 1)/2� =
�(k + 1)/2�. It is interesting to note that this simple algorithm achieves running times
that match many of our conditional lower bounds. This means that in many cases, im-
proving on this algorithm will refute the k-SUM Conjecture, and in fact, we are not
aware of any subgraph for which a better running time is known.

EXACT-WEIGHT-H is solved most efficiently by our algorithm when γ(H) is
small, that is, subgraphs with small “balanced” separators. Two such cases are when H
has a large independent set and when H has bounded treewidth. We show that

EXACT-WEIGHT-H can be solved in time O(nk−� s
2�), if α(H) = s, and in time

O(n
2
3 ·k+tw(H)). Also, we observe that our algorithm can be modified slightly to get

an algorithm for the minimization problem.

Theorem 4. Let H be a subgraph on k nodes, with independent set of size s. Given
a graph G on n nodes with node and edge weights, the minimum total weight of a
(not necessarily induced) subgraph of G that is isomorphic to H can be found in time
Õ(nk−s+1).

This algorithm improves on theO(nk−s+2) time algorithm of Vassilevska and Williams
[17] for the MIN-WEIGHT-H problem.

Organization. We give formal definitions in Section 2. In Section 3 we present re-
ductions from k-SUM to exact-weight subgraph problems that prove Theorem 1. In
Section 4 we define vertex-minors and outline the proof of Theorem 2. In Section 5, we
present the reduction of Theorem 3.

2 Preliminaries and Basic Constructions

For a graphG, we will use V (G) to represent the set of vertices and E(G) to represent
the set of edges. The notation N(v) will be used to represent the neighborhood of a
vertex v ∈ V (G).

2.1 Reducibility

We will use the following notion of reducibility between two problems. In weighted
graph problems where the weights are integers in [−M,M ], n will refer to the number
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Table 1. The results shown in this work for EXACT-WEIGHT-H for various H . The second
column has the upper bound achieved by our algorithm from Corollary 1. Improvements on the
lower bound in the third column will imply improvements on the best known algorithms for the
problems in the condition column. These lower bounds are obtained by our redctions, except
for the first row which was proved in [17]. For comparison, we give the running times for the
(unweighted) detection and minimum-weight versions of the subgraph problems. The last row
shows our conditional lower bounds for k-SUM. α(H) represents the independence number of
H , tw(H) is its treewidth. The results for the “Any” row hold for all subgraphs on k nodes. ETH
stands for the Exponential Time Hypothesis.

Subgraph Exact Lower Bound Condition Detection Min

3-CLIQUE n3 n3 3-SUM, APSP nω [10] n3

4-PATH n3 n3 3-CLIQUE, 5-SUM n2 n2

k-MATCHING n2·� k
2 � n2·� k

2 � k-SUM n2 n2

k-STAR n� k
2 �+1

n�
k+1
2 � (k+1)-SUM

n n2

n�
k
2 �· k

k−1 k-SUM

k-PATH n�
k+1
2 � n�

k+1
2 � k-SUM n2 n2

k-CYCLE n� k
2 �+1 n�

k+1
2 � k-PATH n2 n3

Any nk n�k/2� k-SUM
nωk/3 [12] nk

nεk (ETH)

α(H) = s nk−� s
2 � n� k

2 � k-SUM nk−s+1 [13] nk−s+1 [Thm. 4]

tw(H) = w n
2
3
k+w n� k

2 � k-SUM nw+1 [2] n2w [8]

k-SUM n� k
2 � n� k

2 � k-MATCHING, k-STAR - -

of nodes times logM . For k-SUM problems where the input integers are in [−M,M ],
n will refer to the number of integers times logM . In the full version of the paper
we formally define our notion of reducibility, which follows the definition of subcubic
reductions in [19]. Informally, for any two decision problems A and B, we say that
A ≤a b B if for any ε > 0, there exists a δ > 0 such that if B can be solved (w.h.p.)
in time nb−ε, then A can be solved (w.h.p.) in time O(na−δ), where n is the size of
the input. Note that polylog(n) factor improvements in solving B may not imply any
improvements in solving A. Also, we say that A ≡a b B if and only if A ≤a b B and
B ≤b a A.

2.2 The k-SUM Problem

Throughout the paper, it will be more convenient to work with a version of the k-SUM

problem that is more structured than the basic formulation. This version is usually re-
ferred to as either TABLE-k-SUM or k-SUM′, and is known to be equivalent to the basic
formulation, up to kk factors (by a simple extension of Theorem 3.1 in [9]). For con-
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venience, and since f(k) factors are ignored in our running times, we will refer to this
problem as k-SUM.

Definition 2 (k-SUM). Given k lists L1, . . . , Lk each with n numbers where Li =
{xi,j}j∈[n] ⊆ Z, do there exist k numbers x1,a1 , . . . , xk,ak

, one from each list, such

that
∑k

i=1 xi,ai = 0?

In our proofs, we always denote an instance of k-SUM by L1, . . . , Lk, where Li =
{xi,j}j∈[n] ⊆ Z, so that xi,j is the jth number of the ith list Li. We define a k-solution
to be a set of k numbers {xi,ai}i∈[k], one from each list. The sum of a k-solution

{xi,ai}i∈[k] will be defined naturally as
∑k

i=1 xi,ai .
In [15], Pǎtraşcu defines the CONVOLUTION-3-SUM problem. We consider a natural

extension of this problem.

Definition 3 (CONVOLUTION-k-SUM). Given k lists L1, . . . , Lk each with n num-
bers, where Li = {xi,j}j∈[n] ⊆ Z, does there exist a k-solution {xi,ai}i∈[k] such that

ak = a1 + · · ·+ ak−1 and
∑k

i=1 xi,ai = 0?

Theorem 10 in [15] shows that 3-SUM ≤2 2 CONVOLUTION-3-SUM. By generalizing
the proof, we show the following useful lemma (see proof in the full version of the
paper).

Lemma 1. For all k ≥ 2, k-SUM ≤�k/2� �k/2� CONVOLUTION-k-SUM.

2.3 H-Partite Graphs

Let H be a subgraph on k nodes with V (H) = {h1, . . . , hk}.

Definition 4 (H-partite graph). Let G be a graph such that V (G) can be partitioned
into k sets Ph1 , . . . , Phk

, each containing n vertices. We will refer to these k sets as
the super-nodes of G. A pair of super-nodes (Phi , Phj ) will be called a super-edge if
(hi, hj) ∈ E(H). Then, we say that G is H-partite if every edge in E(G) lies in some
super-edge of G.

We denote the set of vertices of an H-partite graph G by V (G) = {vi,j}i∈[k],j∈[n],
where vi,j is the jth vertex in super-node Phi . We will say that G is the complete H-
partite graph when (vi,a, vj,b) ∈ E(G) if and only if (Phi , Phj ) is a super-edge of G,
for all a, b ∈ [n].

An H-subgraph of an H-partite graph G, denoted by χ = {vi,ai}i∈[k] ⊆ V (G), is
a set of vertices for which there is exactly one vertex vi,ai from each super-node Phi ,
where ai is an index in [n]. Given a weight function w : (V (G) ∪ E(G)) → Z for the
nodes and edges of G, the total weight of the subgraph χ is defined naturally as

w(χ) =
∑

hi∈V (H)

w(vi,ai ) +
∑

(hi,hj)∈E(H)

w(vi,ai , vj,aj ).

Now, we define a more structured version of the EXACT-WEIGHT-H problem which is
easier to work with.
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Definition 5 (The EXACT-H Problem). Given a complete H-partite graph graph G
with a weight function w : (V (G) ∪ E(G)) → Z for the nodes and edges, does there
exist an H-subgraph of total weight 0?

In the full version of the paper, we prove the following lemma, showing that the two
versions of the EXACT-WEIGHT-H problem are reducible to one another in a tight
manner. All of our proofs will use the formulation of EXACT-H , yet the results will
also apply to EXACT-WEIGHT-H . Note that our definitions of H-partite graphs uses
ideas similar to color-coding [2].

Lemma 2. Let α > 1. EXACT-WEIGHT-H ≡α α EXACT-H .

3 Reductions from k-SUM to Subgraph Problems

In this section we prove Theorem 1 by proving four reductions, each of these reductions
uses a somewhat different way to encode k-SUM in the structure of the subgraph. First,
we give a generic reduction from k-SUM to EXACT-H for an arbitrary H on k nodes.
We set the node weights of the graph to be the numbers in the k-SUM instance, in a
certain way. See the full version of the paper for a detailed proof.

Lemma 3 (k-SUM ≤�k/2� �k/2� EXACT-H ). Let H be a subgraph with k nodes.
Then, k-SUM on n numbers can be reduced to a single instance of EXACT-H on kn
vertices.

We utilize the edge weights of the graph, rather than the node weights, to prove a tight
reduction to k-MATCHING. See the full version of the paper for a detailed proof.

Lemma 4 (k-SUM ≤�k/2� 2·�k/2�EXACT-k-MATCHING). LetH be the k-MATCHING

subgraph. Then, k-SUM on n numbers can be reduced to a single instance of EXACT-H
on k

√
n vertices.

Another special type of subgraph which can be shown to be tightly related to the k-SUM

problem is the k-edge star subgraph.

Lemma 5 (k-SUM ≤�k
2� �k

2�· k
k−1

EXACT-k-STAR). LetH be the k-STAR subgraph,

and let α > 2. If EXACT-H can be solved in O(nα) time, then k-SUM can be solved in
Õ(n(1−1/k)·α) time.

To prove the lemma we define the problem k-SUMn to be the following. Given a se-
quence of n k-SUM instances, each on n numbers, does there exist an instance in the
sequence that has a solution of sum 0? Then, we prove two claims. The first show-
ing that k-SUMn can be reduced to k-STAR, by associating a node in the graph with a
k-SUM instance, and setting the weights of the edges incident to it to the numbers of
that instance, such that each k-solution of that instance will be a k-STAR centered on
that node. The second claim shows that k-SUM can be reduced to k-SUMn by showing
a self reduction for k-SUM. We use a hashing scheme due to Dietzfelbinger [4], to hash
the numbers into O(n1/k) buckets with O(n1−1/k) numbers each, such that for every
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k − 1 numbers, the numbers that can complete a k-solution of sum 0 can only lie in
certain k buckets. We utilize this to generate O((n1/k)k−1) instances of k-SUM, each
with O(n1−1/k) numbers, such that one of them will have a solution iff the original
k-SUM instance had a solution. This is a k-SUMN instance, for N = O(n1−1/k). A
more detailed proof is given in the full version of the paper.

Our final reduction between k-SUM and EXACT-H for a class of subgraphs H is as
follows. First, define the k-PATH subgraph H to be such that V (H) = {h1, . . . , hk}
and E(H) = {(h1, h2), (h2, h3), . . . , (hk−1, hk)}.

Lemma 6 (k-SUM ≤�k
2� �k

2� EXACT-(k-1)-PATH). Let H be the k-PATH subgraph.

If EXACT-H can be solved in time O(n�k/2�−ε) for some ε > 0, then k+1-SUM can be
solved in time O(n�k/2�−ε

′
), for some ε′ > 0.

Proof. We prove that an instance of CONVOLUTION-(k+1)-SUM on n numbers can
be reduced to a single instance of EXACT-k-PATH, and by applying Lemma 1, this
completes the proof. Given k + 1 lists L1, . . . , Lk+1 each with n numbers as the input
to CONVOLUTION-(k+1)-SUM, we will construct a complete H-partite graph G on kn
nodes. For every r and s such that r − s ∈ [n], for all i ∈ [k], define the edge weights
of G in the following manner.

w(vi,r , vi+1,s) =

⎧⎪⎨⎪⎩
x1,r + x2,s−r, if i = 1

xi+1,s−r , if 1 < i < k

xk,s−r + xk+1,s, if i = k

Otherwise, if r − s �∈ [n], we set w(vi,r , vi+1,s) = −∞ for all i ∈ [k]. Now to see
the correctness of the reduction, take any H-subgraph {vi,ai}i∈[k] of G, and consider
the (k + 1)-solution {xi,bi}i∈[k+1], where b1 = a1, bk+1 = ak, and for 2 ≤ i ≤ k,
bi = ai − ai−1. First, note that the (k + 1)-solution satisfies the property that b1 +

. . .+ bk = bk+1. Now, note that its total weight is
∑k

i=1 w(vi,ai , vi+1,ai+1) = x1,a1 +

x2,a2−a1 + x3,a3−a2 + . . . + xk−1,ak−1−ak−2
+ xk,ak−ak−1

+ xk+1,ak
=

∑k+1
i=1 xi,bi

which is exactly the sum of the (k+1)-solution. For the other direction, consider the
(k+1)-solution {xi,bi}i∈[k+1] for which bk+1 = b1 + . . .+bk+1. Then, theH-subgraph

{vi,ai}i∈[k], where ai = b1 + . . .+ bi, has total weight
∑k+1

i=1 xi,bi . Therefore, there is
a k-solution of sum 0 iff there is an H-subgraph in G of total weight 0. ��

4 Relationships between Subgraphs

In this section we outline the proof of Theorem 2 showing that EXACT-H1 can be
reduced to EXACT-H2 if H1 is a vertex-minor of H2. The complete proof is in the full
version of the paper, along with an additional observation that gives a reverse reduction.
We start by defining vertex-minors.

Definition 6 (Vertex-Minor). A graph H1 is called a vertex-minor of graph H2, and
denoted H1 ≤vm H2 , if there exists a sequence of subgraphsH(1), . . . , H(�) such that
H1 = H(1), H2 = H(�), and for every i ∈ [
 − 1], H(i) can be obtained from H(i+1)

by either
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– Deleting a single edge e ∈ E(H(i+1)), or
– Contracting two nodes5 hj , hk ∈ V (H(i+1)) to one node hjk ∈ V (H(i)), such that
N(hjk) = N(hj) ∪N(hk).

To prove Theorem 2 it suffices to show how to reduce EXACT-H1 to EXACT-H2 when
H1 is obtained by either a single edge deletion or a single edge contraction. The edge
deletion reduction is easy, and the major part of the proof will be showing the con-
traction reduction. The main observation is that we can make two copies of nodes and
change their node weights in a way such that any H2-subgraph of total weight 0 that
contains one of the copies will have to contain the other. This will allow us to claim that
the subgraph obtained by replacing the two copies of a node with the original will be
an H1-subgraph of total weight 0.

5 Reductions to k-SUM (and Upper Bounds)

In this section we explain the reduction used to prove Theorem 3. The full version
of the paper has the proof of correctness, followed by a discussion of the algorithmic
implications of Theorem 3, including Corollary 1, and Theorem 4.

Recall the definition of a d-separator (S,H1, . . . , Hd) of graphH . To solve EXACT-H ,
we do the following. For each choice of an S-subgraphχS = {vj,aj}hj∈S ofG, we cre-
ate an instance of d-SUM where the lists L1, . . . , Ld are of size max{n|H1|, . . . , n|Hd|}.
We construct Li by iterating over each Hi-subgraph χHi = {vj,aj}hj∈Hi and adding
the total weight of the (Hi ∪ S)-subgraph χHi ∪ χS as an integer to Li. This process is
repeated for each Li, and the target of the d-SUM instance is set to be w(χS) · (d− 1).
Then, if the input graph has anH-subgraph of total weight 0, then for some choice of an
S-subgraph, the corresponding d-SUM instance will have a d-solution with sum equal
to the target value.

6 Conclusions

We conclude with two interesting open questions:

1. Perhaps the simplest subgraph for which we cannot give tight lower and upper
bounds is the 5-CYCLE subgraph. Can we achieveO(n4−ε) for some ε > 0 without
breaking the k-SUM Conjecture, or can we prove that it is not possible?

2. Can we prove that EXACT-WEIGHT-4-PATH ≤3 3 EXACT-WEIGHT-3-STAR? This
would show that breaking the 3-SUM Conjecture will imply an O(n3−ε) for some
ε > 0 algorithm for ALL-PAIRS SHORTEST PATHS.

Acknowledgements. The authors would like to thank Ryan and Virginia Williams
for many helpful discussions and for sharing their insights, and Hart Montgomery for
initiating the conversation that led up to this work. We would also like to thank the
anonymous reviewers for their comments and suggestions.

5 The difference between our definition of vertex-minor and the usual definition of a graph minor
is that we allow contracting two nodes that are not necessarily connected by an edge.
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Abstract. We initiate the study of job scheduling on related and unre-
lated machines so as to minimize the maximum flow time or the max-
imum weighted flow time (when each job has an associated weight).
Previous work for these metrics considered only the setting of parallel
machines, while previous work for scheduling on unrelated machines only
considered Lp, p <∞ norms. Our main results are:
1. We give an O(ε−3)-competitive algorithm to minimize maximum
weighted flow time on related machines where we assume that the
machines of the online algorithm can process 1 + ε units of a job in
1 time-unit (ε speed augmentation).

2. For the objective of minimizing maximum flow time on unrelated ma-
chines we give a simple 2/ε-competitive algorithm when we augment
the speed by ε. Formmachines we show a lower bound ofΩ(m) on the
competitive ratio if speed augmentation is not permitted. Our algo-
rithm does not assign jobs to machines as soon as they arrive. To jus-
tify this “drawback” we show a lower bound of Ω(logm) on the com-
petitive ratio of immediate dispatch algorithms. In both these lower
bound constructions we use jobs whose processing times are in {1,∞},
and hence they apply to the more restrictive subset parallel setting.

3. For the objective of minimizing maximum weighted flow time on
unrelated machines we establish a lower bound of Ω(logm)-on the
competitive ratio of any online algorithm which is permitted to use
s = O(1) speed machines. In our lower bound construction, job j
has a processing time of pj on a subset of machines and infinity on
others and has a weight 1/pj . Hence this lower bound applies to the
subset parallel setting for the special case of minimizing maximum
stretch.

1 Introduction

The problem of scheduling jobs so as to minimize the flow time (or response
time) has received much attention. In the online setting of this problem, jobs
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arrive over time and the flow time of a job is the difference between its release
time (or arrival time) and completion time (or finish time). We assume that the
jobs can be preempted. The task of the scheduler is to decide which machine to
schedule a job on and in what order to schedule the jobs assigned to a machine.

One way of combining the flow times of various jobs is to consider the sum of
the flow times. An obvious drawback of this measure is that it is not fair since
some job might have a very large flow time in the schedule that minimizes sum of
their flow times. A natural way to overcome this is to minimize the Lp norm of the
flow times of the jobs [2,5,10,11] which, for increasing values of p, would ensure
better fairness. Bansal and Pruhs [5], however, showed that even for a single
machine minimizing, the Lp-norm of flow times requires speed augmentation —
the online algorithm must have machines that are, say, ε-fraction faster (can
do 1 + ε unit of work in one time-unit) than those of the offline algorithm.
With a (1 + ε)-speed augmentation Bansal and Pruhs [5] showed that a simple
algorithm which schedules the shortest job first is O(ε−1)-competitive for any
Lp-norm on a single machine; we refer to this as an (1 + ε,O(1/ε))-competitive
algorithm. Golovin et al. [10] used a majorizing technique to obtain a similar
result for parallel machines. While both these results have a competitive ratio
that is independent of p, the results of Im and Moseley [11] and Anand et al. [2]
for unrelated machines have a competitive ratio that is linear in p and which
therefore implies an unbounded competitive ratio for the L∞-norm.

Our main contribution in this paper is to provide a comprehensive treatment
of the problem of minimizing maximum flow time for different machine models.
The two models that we consider are the related machines (each machine has
speed si and the time required to process job j on machine i is pj/si) and the
unrelated machines (job j has processing time pij on machine i). A special case
of the unrelated machine model is the subset-parallel setting where job j has a
processing time pj independent of the machines but can be assigned only to a
subset of the machines.

Besides maximum flow time, another metric of interest is the maximum
weighted flow time where we assume that job j has a weight wj and the ob-
jective is to minimize maxj wjFj where Fj is the flow time of j in the schedule
constructed. Besides the obvious use of job weights to model priority, if we choose
the weight of a job equal to the inverse of its processing time then minimizing
maximum weighted flow time is the same as minimizing maximum stretch where
stretch is defined as the ratio of the flow time to the processing time of a job.
Chekuri and Moseley [9] considered the problem of minimizing the maximum
delay factor where a job j has a deadline dj , a release date rj and the delay
factor of a job is defined as the ratio of its flow time to (dj − rj). This problem
is in fact equivalent to minimizing maximum weighted flow time and this can be
easily seen by defining wj = (dj − rj)−1.

The problem of minimizing maximum stretch was first considered by Bender
et al. [7] who showed a lower bound of Ω(P 1/3) on the competitive ratio for
a single machine where P is the ratio of the largest to the smallest processing
time. Bender et al. [7] also showed a O(P 1/2)-competitive algorithm for a single
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Table 1. Previous results and the results obtained in this paper for the different
machine models and metrics considered. The uncited results are from this paper.

Max-Flow-time Max-Stretch Max-Weighted-Flow-time

Single Machine polynomial time
(1, Ω(P 2/5)) [9] and

(1 + ε,O(ε−2)) [6]
(1, O(P 1/2)) [7,8]

Parallel Machines (1, 2) [1] (1 + ε,O(ε−1)) [9]

Related Machines (1 + ε,O(ε−3))

Subset Parallel (1, Ω(m)) (O(1), Ω(logm))

Unrelated Machines (1 + ε,O(ε−1))

machine which was improved by [8], while the lower bound was improved to
Ω(P 0.4) by [9].

For minimizing maximum weighted flow time, Bansal and Pruhs [6] showed
that the highest density first algorithm is (1 + ε,O(ε−2))-competitive for sin-
gle machines. For parallel machines, Chekuri and Moseley [9] obtained a
(1 + ε,O(ε−1))-competitive algorithm that is both non-migratory (jobs once
assigned to a machine are scheduled only on that machine) and immediate dis-
patch (a job is assigned to a machine as soon as the job arrives). Both these
qualities are desirable in any scheduling algorithm since they reduce/eliminate
communication overheads amongst the central server/machines.

Our main results and the previous work for these three metrics (Max-Flow-
time,Max-Stretch and Max-Weighted-Flow-time) on the various ma-
chine models (single, parallel, related, subset parallel and unrelated) are ex-
pressed in Table 1. Note that the Max-Flow-time metric is not a special case
of the Max-Stretch metric, and neither is the model of related machines a
special case of the subset-parallel setting. Nevertheless, a lower bound result
(respectively an upper bound result) for a machine-model/metric pair extends
to all model/metric pairs to the right and below (respectively to the left and
above) in the table. Our main results are:

1. We give an O(ε−3)-competitive non-migratory algorithm to minimize max-
imum weighted flow time on related machines with ε speed augmentation.
When compared to a migratory optimum our solution is O(ε−4)-competitive.

2. For the objective of minimizing maximum flow time on unrelated machines
we give a simple 2/ε-competitive algorithm when we augment the speed
by ε. For m machines we show a lower bound of Ω(m) on the competitive
ratio if speed augmentation is not permitted. Our algorithm does not assign
jobs to machines as soon as they arrive. However, [4] show a lower bound
of Ω(logm) on the competitive ratio of any immediate dispatch algorithm.
Both these lower bound constructions use jobs whose processing times are in
{1,∞}, and hence they apply to the more restrictive subset parallel setting.

3. For the objective of minimizing maximum weighted flow time on unrelated
machines, we establish a lower bound of Ω(logm)-on the competitive ratio of
any online algorithm which is permitted to use s = O(1) speed machines. In
our lower bound construction, job j has a processing time of pj on a subset
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of machines and infinity on others and has a weight 1/pj. Hence this lower
bound applies to the subset parallel setting for the special case of minimizing
maximum stretch.

The problem of minimizing maximum (weighted) flow time also has interesting
connections to deadline scheduling. In deadline scheduling besides its processing
time and release time, job j has an associated deadline dj and the objective is
to find a schedule which meets all deadlines. For single machine it is known that
the Earliest Deadline First (EDF) algorithm is optimum, in that it would find
a feasible schedule if one exists. This fact implies a polynomial time algorithm
for minimizing maximum flow time on a single machine. This is because, job j
released at time rj should complete by time rj + opt, where opt is the optimal
value of maximum flow time. Thus rj + opt can be viewed as the deadline of
job j. Hence EDF would schedule jobs in order of their release times and does
not need to know opt.

For parallel machines it is known that no online algorithm can compute a
schedule which meets all deadlines even when such a schedule exists. Phillips
et al. [12] showed that EDF can meet all deadlines if the machines of the on-
line algorithm have twice the speed of the offline algorithms. This bound was
improved to e

e−1 by Anand et al. [3] for a schedule derived from the Yardstick
bound. Our results imply that for related machines a constant speedup suffices
to ensure that all deadlines are met while for the subset parallel setting, no con-
stant (independent of number of machines) speedup can ensure that we meet
deadlines.

The paper is organized as follows. In Section 2 and Section 3 we consider the
problem of minimizing maximum weighted flow time on related machines and
unrelated machines, respectively. Section 4 considers the problem of minimizing
maximum flow time on unrelated machines. Section 5 presents a lower bound
for the Lp norm of the stretches.

2 Max-Weighted-Flow-time on Related Machines

In this section we consider the Max-Weighted-Flow-time on related ma-
chines where the on-line algorithm is given (1 + ε)-speed augmentation for some
arbitrary small constant ε > 0. In the related machines setting, each job j
has weight wj , release date rj and processing requirement pj . We are given m
machines with varying speed. Instead of working with speed, it will be more con-
venient to work with slowness of machines: the slowness of a machine i, denoted
by si, is the reciprocal of its speed. Assume that s1 ≤ . . . ≤ sm. For an instance
I, let opt(I) denote the value of the optimal off-line solution for I. We assume
that the on-line algorithm is given (1 + 4ε)-speed augmentation. We say that a
job j is valid for a machine i, if its processing time on i, i.e., pjsi, is at most T

wj
.

Observe that a (non-migratory) off-line optimum algorithm will process a job j
on a valid machine only.

We assume that all weights wj are of the form 2k, where k is a non-negative
integer (this affects the competitive ratio by a factor of 2 only). We say that a
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job is of class k if its weight is 2k. To begin with, we shall assume that the on-line
algorithm knows the value of opt(I) — call it T . In the next section, we describe
an algorithm, which requires a small amount of “look-ahead”. We describe it as
an off-line algorithm. Subsequently, we show that it can be modified to an on-line
algorithm with small loss of competitive ratio.

2.1 An Off-Line Algorithm

We now describe an off-line algorithm A for I. We allow machines speedup of
1 + 2ε. First we develop some notation. For a class k and integer l, let I(l, k)

denote the interval
[

lT
ε2k ,

(l+1)T
ε2k

)
. We say that a job j is of type (k, l) if it is

of class k and rj ∈ I(k, l). Note that the intervals I(k, l) form a nested set of
intervals.

The algorithm A is described below. It schedules jobs in a particular order:
it picks jobs in decreasing order of their class, and within each class, it goes by
the order of release dates. When considering a job j, it tries machines in order of
increasing speed, and schedules j in the first machine on which it can find enough
free slots (i.e., slots which are not occupied by the jobs scheduled before j). We
will show that it will always find some machine. Note that A may not respect
release dates of jobs.

Algorithm A(I, T ):

For k = K downto 1 (K is the highest class of a job)
For l = 1, 2, . . .
For each job j of type (k, l)
For i = mj downto 1 (mj is the slowest machine on which j is valid)
if there are at least pjsi free slots on machine i during I(k, l) then
schedule j on i during the first such free slots (without caring about rj)

Analysis. In this section, we prove that the algorithm A will always find a
suitable machine for every job. We prove this by contradiction: let j� be the first
job for which we are not able to find such a machine. Then we will show that
the opt(I) must be more than T , which will contradict our assumption.

In the discussion below, we only look at jobs which were considered before j�

by A. We build a set S of jobs recursively. Initially S just contains j�. We add
a job j′ of type (k′, l′) to S if there is a job j of type (k, l) in S satisfying the
following conditions:

– The class k of j is at most k′.
– The algorithm A processes j′ on a machine i which is valid for j as well.
– The algorithm A processes j′ during I(k, l), i.e., I(k′, l′) ⊆ I(k, l).

We use this rule to add jobs to S as long as possible. For a machine i and interval
I(k, l), define the machine-interval Ii(k, l) as the time interval I(k, l) on machine
i. We construct a set N of machine-intervals as follows. For every job j ∈ S of
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type (k, l), we add the intervals Ii(k, l) to N for all machines i such that j is
valid for i. We say that an interval Ii(k, l) ∈ N is maximal if there is no other
interval Ii(k

′, l′) ∈ N which contains Ii(k, l) (note that both of the intervals are
on the same machine). Observe that every job in S except j� gets processed in
one of the machine-intervals in N . Let N ′ denote the set of maximal intervals
in N . We now show that the jobs in S satisfy the following crucial property.

Lemma 1. For any maximal interval Ii(k, l) ∈ N , the algorithm A processes
jobs of S on all but ε

1+2ε -fraction of the slots in it.

Proof. We prove that this property holds whenever we add a new maximal in-
terval to N . Suppose this property holds at some point in time, and we add a
job j′ to S. Let j, k, l, k′, l′, i be as in the description of S. Since k ≤ k′, and j
is valid for i, N already contains the intervals Ii′ (k, l) for all i′ ≤ i. Hence, the
intervals Ii′ (k

′, l′), i′ ≤ i, cannot be maximal. Suppose an interval Ii′ (k
′, l′) is

maximal, where i′ > i, and j′ is valid for i′ (so this interval gets added to N ).
Now, our algorithm would have considered scheduling j′ on i′ before going to i
— so it must be the case that all but pj′si′ slots in Ii′(k

′, l′) are busy processing
jobs of class at least k′. Further, all the jobs being processed on these slots will
get added to S (by definition of S, and the fact that j′ ∈ S). The lemma now
follows because pj′si′ ≤ T

2k′ ≤ ε|I(k′, l′)|, and A can do (1 + 2ε)|I(k, l)| amount
of processing during I(k, l).

Corollary 1. The total volume of jobs in S is greater than
∑

I(k,l)∈N ′(1 +

ε)|I(k, l)|.

Proof. Lemma 1 shows that given any maximal interval Ii(k, l), A processes jobs
of S for at least 1+ε

1+2ε -fraction of the slots in it. The total volume that it can
process in I(k, l) is (1+2ε)|I(k, l)|. The result follows because maximal intervals
are disjoint (we have strict inequality because A could not complete j∗).

We now show that the total volume of jobs in S cannot be too large, which leads
to a contradiction.

Lemma 2. If opt(I) ≤ T , then the total volume of jobs in S is at most∑
I(k,l)∈N ′(1 + ε)|I(k, l)|.

Proof. Suppose opt(I) ≤ T . For an interval Ii(k, l), let Iεi (k, l) be the interval
of length (1 + ε)|Ii(k, l)| which starts at the same time as I(k, l). It is easy to
check that if I(k′, l′) ⊆ I(k, l), then Iε(k′, l′) ⊆ Iε(k, l).

Let j ∈ S be a job of type (k, l). The off-line optimal solution must schedule
it within T

2k of its release date. Since rj ∈ I(k, l), the optimal solution must
process a job j during Iε(k, l). So, the total volume of jobs in S can be at most∣∣∣∣∣ ⋃

I(k,l)∈N
Iε(k, l)

∣∣∣∣∣ =

∣∣∣∣∣ ⋃
I(k,l)∈N ′

Iε(k, l)

∣∣∣∣∣
≤

∑
I(k,l)∈N ′

|Iε(k, l)| =
∑

I(k,l)∈N ′
(1 + ε)|I(k, l)|.
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Clearly, Corollary 1 contradicts Lemma 2. So, algorithm A must be able to
process all the jobs.

2.2 Off-Line to On-Line

Now, we give an on-line algorithm for the instance I. Recall that A is an off-line
algorithm for I and may not even respect release dates. The on-line algorithm
B is a non-migratory algorithm which maintains a queue for each machine i and
time t. For each job j, it uses A to figure out which machine the job j gets
dispatched to.

Note that the algorithm A can be implemented in a manner such that for
any job j of type (k, l), the slots assigned by A to j are known by the end of
interval I(k, l) — jobs which get released after I(k, l) do not affect the schedule
of j. Also note that the release date of j falls in I(k, l). This is described more
formally as follows.

Algorithm A(I, T ):

For t = 0, 1, 2, . . .
For k = 1, 2, . . .
If t is the end-point of an interval I(k, l) for some l, then
For each job j of type (k, l)
For i = mj downto 1 (mj is the slowest machine on which j is valid)
If there are at least pjsi free slots on machine i during I(k, l) then
schedule j on i during the first such free slots (without caring about rj)

We now describe the algorithm B. It maintains a queue of jobs for each ma-
chine. For each job j of class k and releasing during I(k, l), if j gets processed
on machine i by A, then B adds j to the queue of i at end of I(k, l). Observe
that B respects release dates of jobs — a job j of type (k, l) has release date in
I(k, l), but it gets dispatched to a machine at the end of the interval I(k, l). For
each machine i, B prefers jobs of higher class, and within a particular class, it
follows the ordering given by A (or it could just go by release dates). Further,
we give machines in B (1 + 3ε)-speedup.

Analysis. We now analyze B. For a class k, let J≥k be the jobs of class at
least k. For a class k, integer l and machine i, let Q(i, k, l) denote the jobs of
J≥k which are in the queue of machine i at the beginning of I(k, l). First we
note some properties of B:

(i) A job j gets scheduled in B only in later slots than those it was scheduled
on by A: A job j of type (k, l) gets scheduled during I(k, l) in A. However,
it gets added to the queue of a machine by B only at the end of I(k, l).

(ii) For a class k, integer l and machine i, the total remaining processing time

(on the machine i) of jobs in Q(i, k, l) is at most (1+2ε)T
ε2k

: Suppose this is
true for some i, k, l. We want to show that this holds for i, k, l + 1 as well.
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The jobs in the queue Q(i, k, l + 1) could consist of either (i) the jobs in
Q(i, k, l), or (ii) the jobs of J≥k which get processed by A during Ii(k, l).
Indeed, jobs of J≥k which get released before the the interval Ii(k, l) finish
before this interval begins (in A). Hence, in B, any such job would either
finish before I(k, l) begins, or will be in the queue Q(i, k, l). The jobs of J≥k
which get released during I(k, l) will complete processing in this interval (in
A) and hence may get added to the queue Q(i, k, l+ 1).
Now, the total processing time of the jobs in (ii) above would be at most
(1 + 2ε)|I(k, l)| (recall that the machines in A have speedup of (1 + 2ε)).
Suppose in the schedule B, the machine i processes a job of class greater
than k during some time in Ii(k, l) — then it must have finished processing
all the jobs in Q(i, k, l), and so Q(i, k, l + 1) can only contain jobs from (ii)
above, and hence, their total processing time is at most (1 + 2ε)|I(k, l)| and
we are done. If the machine i is busy during Ii(k, l) processing jobs from J≥k
(in B), then it does at least (1 + 2ε)|I(k, l)| amount of processing , and so,
the property holds at the end of I(k, l) as well.

We are now ready to prove the main theorem.

Theorem 1. In the schedule B, a job j of class k has flow-time at most T (1+3ε)
ε22k .

Hence, for any instance, B is an
(

2(1+3ε)
ε2

)
-competitive algorithm with (1 + 3ε)-

speedup.

Proof. Consider a job j of class type (k, l). Suppose it gets processed on ma-
chine i. The algorithm B adds j to the queue Q(i, k, l). Property (ii) above
implies that the total remaining processing time of these jobs (on i) is at most
(1+2ε)|I(k, l)|. Consider an interval I which starts at the beginning of I(k, l) and

has length (1+2ε)|I(k,l)|
ε = (1+2ε)T

ε22k
. The jobs of J≥k that B can process on i during

I are either (i) jobs in Q(i, k, l), or (ii) jobs processed by A on machine i during I
(using property (i) above). The total processing time of the jobs in (ii) is at most
(1 + 2ε)|I|, whereas B can process (1 + 3ε)|I| volume during I (on machine i).

This still leaves us with ε|I| = (1+2ε)T
ε2k

— this is enough to process all the jobs in

Q(i, k, l). So the flow-time of j is at most |I|+ |I(k, l)| = T
2k

(
1
ε + 1+2ε

ε2

)
. Finally,

given any instance, we lose an extra factor of 2 in the competitive ratio because
we scale all weights to powers of 2.

Extensions. We mention some easy extensions of the result above.

Comparison with migratory off-line optimum: Here, we allow the off-line opti-
mum to migrate jobs across machines. To deal with this, we modify the defi-
nition of when a job is valid on a machine. We will say that a job j of class
k is valid for a machine i if its processing time on i is at most T

2k
· 1+ε

ε . Note
that even a migratory algorithm will process at most ε

1+ε -fraction of a job on
machines which are not valid for it. Further, we modify the definition of I(l, k)

to be
[
(1+ε)lT
ε22k

, (1+ε)(l+1)T
ε22k

)
. The rest of the analysis can be carried out as above.
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We can show that the on-line algorithm is O
(

(1+ε)2

ε3

)
-competitive with (1 + ε)-

speedup.

Deadline scheduling on related machines: In this setting, the input instance also
comes with deadline dj for each job j. The assumption is that there is a schedule
(off-line) which can schedule all jobs (with migration) such that each job finishes
before its deadline. The question is: is there a constant s and an on-line algorithm
S such that with speedup s, it can meet all the deadlines? Using the above result,
it is easy to show that our online algorithm has this property provided we give
it constant speedup. We give the proof in the full version of the paper.

Corollary 2. There is a constant s, and a non-migratory scheduling algorithm
which, given any instance of the deadline scheduling problem, completes all the
jobs within their deadline if we give speed-up of c to all the machines.

So far our on-line algorithm has assumed that we know the optimal value of
an instance. In the full version of this paper, we show how to get rid of this
assumption.

3 Max-Flow-time on Unrelated Machines

We consider the (unweighted) Max-Flow-time on unrelated machines. We first
show that a constant competitive algorithm cannot have the property of im-
mediate dispatch and it requires speed augmentation. Since our instances use
unit-sized jobs, the lower bound also holds for Max-Stretch. Recall that a
scheduling algorithm is called immediate dispatch if it decides, at the time of a
job’s arrival, which machine to schedule the job on.

The lower bound for an immediate dispatch algorithm follows from the lower
bound of Azar et al. [4] for minimizing total load in the subset parallel settings.
Here, we are given a set of machines, and jobs arrive in a sequence. Each job
specifies a subset of machines it can go to, and the on-line algorithm needs to
dispatch a job on its arrival to one such machine. The goal is to minimize the
maximum number of jobs which get dispatched to a machine. Azar et al. [4] prove
that any randomized on-line algorithm for this problem is Ω(logm)-competitive.
From this result, we can easily deduce the following lower bound for Max-Flow-
time in the subset parallel setting with unit size jobs (given an instance of the
load balancing problem, give each job size of 1 unit, and make them arrive at
time 0 in the same sequence as in this given instance).

Theorem 2. Any immediate dispatch randomized on-line algorithm for Max-
Flow-time in the subset parallel setting with unit job sizes must have competi-
tive ratio of Ω(logm).

Any randomized on-line algorithm with bounded competitive ratio needs speed
augmentation. We give the proof in the full version of the paper.
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Theorem 3. Any online algorithm for minimizing Max-Flow-time on subset-
parallel machines which allows non-immediate dispatch but does not allow speed
augmentation has a competitive ratio of Ω(m). This holds even for unit-sized
jobs.

3.1 A (1 + ε,O(1/ε))-Competitive Algorithm

We now describe an
(
2
ε

)
-competitive algorithm for Max-Flow-time on multiple

unrelated machines with (1 + ε)-speed augmentation. The algorithm proceeds in
several phases: denote these by Π1, Π2, . . ., where phase Πi begins at time ti−1
and ends at time ti. In phase Πi, we will schedule all jobs released during the
phase Πi−1.

In the initial phase, Π1, we consider the jobs released at time t0 = 0, and find
an optimal schedule which minimizes the makespan of jobs released at time t0.
This phase ends at the time we finish processing all these jobs. Now, suppose we
have defined Π1, . . . , Πl, and have scheduled jobs released during Π1, . . . , Πl−1.
We consider the jobs released during Πl, and starting from time tl, we find a
schedule which minimized their makespan (assuming all of these jobs are released
at time tl). Again, this phase ends at the time we finish processing all these jobs.
Note that this algorithm is a non-immediate dispatch algorithm and does not
require migration. We now prove that this algorithm has the desired properties.

Theorem 4. Assuming ε ≤ 1, The algorithm described above has competitive
ratio 2

ε with (1 + ε)-speed augmentation.

Proof. Consider an instance I and assume that the optimal off-line schedule has
maximum flow time of T . We will be done if we show that each of the phases Πi

has length at most T
ε . For Π1, this is true because all the jobs released at time

0 can be scheduled within T units of time. Suppose this is true for phase Πi.
Now, we know that the jobs released during Πi can be scheduled in an interval
of length Πi +T. Using (1+ε)-speed augmentation, the length of the next phase
is at most

|Πi|+ T

1 + ε
≤ T/ε+ T

1 + ε
=
T

ε
.

4 Max-Weighted-Flow-time on Unrelated Machines

In this section, given any constant speedup, any on-line algorithm for Max-
Weighted-Flow-time on unrelated machines is Ω(logm)-competitive. This
bound holds for the special case of subset parallel model, and even extends to
the Max-Stretch metric. We give the proof of the following theorem in the
full version of the paper.

Theorem 5. Given any large enough parameter c, integer s ≥ 1, and an on-line
algorithm A which is allowed speedup of (s+1)/2, there exists an instance I(s, c)
of Max-Weighted-Flow-time on subset parallel machines such that A is not
c-competitive on I(s, c). The instance I(s, c) has jobs with s different weights

only, and uses (O(s))O(cs2) machines.
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5 Lower Bound for Lp Norm of Stretch

We show a lower bound for the competitive ratio for the Lp-norm of the stretches,
with speed augmentation by a factor of 1 + ε. We assume that there is an online
algorithm with competitive ratio c = o( p

ε1−3/p ) and derive a contradiction.
The construction uses m = 2p machines. We start with the typical construc-

tion to get a large load on one machine. For this we consider 2 machines. At
time 0 we release two jobs of size 1 (and weight 1) - each can go on exactly one
machine. Then until time 1 we release tiny jobs, i.e., at each δ time step a job
of size δ (and weight 1/δ) is released that can go on any of the two machines.
Note that at time 1 at least one of the machines has load (of size 1 jobs) at least
1/2 − ε − cδ. This is because, the total volume of jobs is 3, the two machines
can process at most 2(1 + ε) units, and all tiny jobs except the last c have to be
processed. It makes sense to set δ = ε/c and hence cδ ≤ ε.

Now, we can use this as a gadget, starting with m/2 pairs of machines we
then take the m/2 machines with large load and pair them up arbitrarily and
recursively do the same construction. We end up with one machine with load
Ω(logm) (if ε is sufficiently smaller than 1/2). This concludes the first of two
phases.

Now that we have a machine with large load, we release tiny jobs for a time
interval of length log(m)/ε. Since the tiny jobs have to be processed first, the
initial load of Ω(logm) needs time Ω(log(m)/ε) to be fully processed, as it can be
processed only in the time that we have additional due to resource augmentation.
Hence, at least one size 1 job has stretch at least Ω(log(m)/ε). This concludes
the second phase.

Let us bound the number of jobs k that we release in these 2 phases. In the
first phase of the construction we release m+m/2 +m/4 + . . . = O(m) jobs of
size 1 and O(m/δ) tiny jobs. In the second phase we release O(log(m)/(εδ)) tiny
jobs. Thus, k = O(m/δ+ log(m)/(εδ)). Note that we can bound 1/δ ≤ p/ε2−3/p

and hence k = O(mp/ε3−3/p).
We want to repeat these two phases n/k times. After the first 2 phases have

been completed (by the optimal offline algorithm) we release again the 2 phases,
and we repeat this n/k times. Thus, for the optimal offline algorithm all repe-
titions will be independent. Then in total we released any desired number n of
jobs, where n ≥ k.

Note that the optimal offline algorithm would have a max-stretch of 2 and,

thus, also an Lp norm of the stretches of
(
1
n

∑
i v

p
i

)1/p ≤ 2.
We now lower bound the Lp norm of the stretches of the online algorithm.

We already have a lower bound on the maximal stretch of any job, Ω(log(m)/ε),
and we know that there are at least n/k jobs with such a large stretch, one for
each repetition of the 2 phases. Now, let vi be the stretch of the i-th job. Then
the Lp norm of the stretches is

c ≥ Ω

(
1

n

∑
i

vpi

)1/p
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Since we know that there are n/k jobs with vi = Ω(log(m)/ε) this is at least

c ≥ Ω

(
log(m)

ε

(
n/k

n

)1/p
)

= Ω

(
log(m)

εk1/p

)
.

Plugging in our bound on k = O(mp/ε3−3/p) this yields a bound of

c ≥ Ω

(
log(m)

ε(mp)1/p/ε3/p

)
.

Since m = 2p and noting that p1/p = O(1) this yields the desired contradiction
to c begin too small, c ≥ Ω

(
p

ε1−3/p

)
. The only condition for this was n ≥ k =

2Θ(p)

εΘ(1) , which implies that n just has to be sufficiently large.
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Abstract. The problem of estimating frequency moments of a data
stream has attracted a lot of attention since the onset of streaming algo-
rithms [AMS99]. While the space complexity for approximately comput-
ing the pth moment, for p ∈ (0, 2] has been settled [KNW10], for p > 2
the exact complexity remains open. For p > 2 the current best algorithm
uses O(n1−2/p log n) words of space [AKO11,BO10], whereas the lower
bound is of Ω(n1−2/p) [BJKS04].
In this paper, we show a tight lower bound of Ω(n1−2/p log n) words

for the class of algorithms based on linear sketches, which store only a
sketch Ax of input vector x and some (possibly randomized) matrix A.
We note that all known algorithms for this problem are linear sketches.

1 Introduction

One of the classical problems in the streaming literature is that of computing
the p-frequency moments (or p-norm) [AMS99]. In particular, the question is to
compute the norm ‖x‖p of a vector x ∈ Rn, up to 1 + ε approximation, in the
streaming model using low space. Here, we assume the most general model of
streaming, where one sees updates to x of the form (i, δi) which means to add
a quantity δi ∈ R to the coordinate i of x.1 In this setting, linear estimators,
which store Ax for a matrix A, are particularly useful as such an update can be
easily processed due to the equality A(x + δiei) = Ax+A(δiei).

The frequency moments problem is among the problems that received the
most attention in the streaming literature. For example, the space complexity for
p ≤ 2 has been fully understood. Specifically, for p = 2, the foundational paper of
[AMS99] showed that Oε(1) words (linear measurements) suffice to approximate

1 For simplicity of presentation, we assume that δi ∈ {−nO(1), . . . , nO(1)}, although
more refined bounds can be stated otherwise. Note that in this case, a “word” (or
measurement in the case of linear sketch — see definition below) is usually O(log n)
bits.

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 25–32, 2013.
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the Euclidean norm2. Later work showed how to achieve the same space for all
p ∈ (0, 2) norms [Ind06,Li08,KNW10]. This upper bound has a matching lower
bound [AMS99,IW03,Bar02,Woo04]. Further research focused on other aspects,
such as algorithms with improved update time (time to process an update (i, δi))
[NW10,KNW10,Li08,GC07,KNPW11].

In constrast, when p > 2, the exact space complexity still remains open.
After a line of research on both upper bounds [AMS99,IW05,BGKS06,MW10],
[AKO11,BO10,Gan11] and lower bounds [AMS99,CKS03,BJKS04,JST11,PW12],
we presently know that the best space upper bound is of O(n1−2/p logn) words,
and the lower bound is Ω(n1−2/p) bits (or linear measurements). (Very recently
also, in a restricted streaming model — when δi = 1 — [BO12] achieves an im-
proved upper bound of nearly O(n1−2/p) words.) In fact, since for p = ∞ the
right bound is O(n) (without the log factor), it may be tempting to assume that
there the right upper bound should be O(n1−2/p) in the general case as well.

In this work, we prove a tight lower bound of Ω(n1−2/p logn) for the case of
linear estimator. A linear estimator uses a distribution over m × n matrices A
such that with high probability over the choice of A, it is possible to calculate
the pth moment ‖x‖p from the sketch Ax. The parameter m, the number of
words used by the algorithm, is also called the number of measurements of
the algorithm. Our new lower bound is of Ω(n1−2/p logn) measurements/words,
which matches the upper bound from [AKO11,BO10]. We stress that essentially
all known algorithms in the general streaming model are in fact linear estimators.

Theorem 1. Fix p ∈ (2,∞). Any linear sketching algorithm for approximating
the pth moment of a vector x ∈ Rn up to a multiplicative factor 2 with probability
99/100 requires Ω(n1−2/p logn) measurements.

In other words, for any p ∈ (2,∞) there is a constant Cp such that for any
distribution on m × n matrices A with m < Cpn

1−2/p logn and any function
f : Rm×n × Rm → R+ we have

inf
x∈Rn

Pr

(
1

2
‖x‖p ≤ f(A,Ax) ≤ 2‖x‖p

)
≤ 99

100
. (1)

The proof uses similar hard distributions as in some of the previous work, namely
all coordinates of an input vector x have random small values except for possibly
one location. To succeed on these distributions, the algorithm has to distinguish
between a mixture of Gaussian distributions and a pure Gaussian distribution.
Analyzing the optimal probability of success directly seems too difficult. Instead,
we use the χ2-divergence to bound the success probability, which turns out to
be much more amenable to analysis.

From a statistical perspective, the problem of linear sketches of moments
can be recast as a minimax statistical estimation problem where one observes
the pair (Ax,A) and produces an estimate of ‖x‖p. More specifically, this is a
functional estimation problem, where the goal is to estimation some functional

2 The exact bound is O(1/ε2) words; since in this paper we concentrate on the case of
ε = Ω(1) only, we drop dependence on ε.



Tight Lower Bound for Linear Sketches of Moments 27

(in this case, the pth moment) of the parameter x instead of estimating x directly.
Under this decision-theoretic framework, our argument can be understood as Le
Cam’s two-point method for deriving minimax lower bounds [LC86]. The idea
is to use a binary hypotheses testing argument where two priors (distributions
of x) are constructed, such that 1) the pth moment of x differs by a constant
factor under the respective prior; 2) the resulting distributions of the sketches
Ax are indistinguishable. Consequently there exists no moment estimator which
can achieve constant relative error. This approach is also known as the method
of fuzzy hypotheses [Tsy09, Section 2.7.4]. See also [BL96,IS03,Low10,CL11] for
the method of using χ2-divergence in minimax lower bound.

We remark that our proof does not give a lower bound as a function of ε (but
[Woo13] independently reports progress on this front).

1.1 Preliminaries

We use the following definition of divergences.

Definition 1. Let P and Q be probability measures. The χ2-divergence from P
to Q is

χ2(P ||Q) �
∫ (

dP

dQ
− 1

)2

dQ

=

∫ (
dP

dQ

)2

dQ− 1

The total variation distance between P and Q is

V (P,Q) � sup
A
|P (A)−Q(A)| =

1

2

∫
|dP − dQ| (2)

The operational meaning of the total variation distance is as follows: Denote the
optimal sum of Type-I and Type-II error probabilities of the binary hypotheses
testing problem H0 : X ∼ P versus H1 : X ∼ Q by

E(P,Q) � inf
A
{P (A) +Q(Ac)}, (3)

where the infimum is over all measurable sets A and the corresponding test is
to declare H1 if and only if X ∈ A. Then

E(P,Q) = 1− V (P,Q). (4)

The total variation and the χ2-divergence are related by the following inequality
[Tsy09, Section 2.4.1]:

2V 2(P,Q) ≤ log(1 + χ2(P ||Q)) (5)

Therefore, in order to establish that two hypotheses cannot be distinguished
with vanishing error probability, it suffices to show that the χ2-divergence is
bounded.
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One additional fact about V and χ2 is the data-processing property [Csi67]:
If a measurable function f : A → B carries probability measure P on A to P ′

on B, and carries Q to Q′ then

V (P,Q) ≥ V (P ′, Q′) . (6)

2 Lower Bound Proof

In this section we prove Theorem 1 for arbitrary fixed measurement matrix A.
Indeed, by Yao’s minimax principle, we only need to demonstrate an input distri-
bution and show that any deterministic algorithm succeeding on this distribution
with probability 99/100 must use Ω(n1−2/p logn) measurements.

Fix p ∈ (2,∞). Let A ∈ Rm×n be a fixed matrix which is used to produce the
linear sketch, where m < Cpn

1−2/p log n is the number of measurements and Cp

is to be specified. Next, we construct distributions D1 and D2 for x to fulfill the
following properties:

1. ‖x‖p ≤ Cn1/p on the entire support of D1, and ‖x‖p ≥ 4Cn1/p on the entire
support of D2, for some appropriately chosen constant C.

2. Let E1 and E2 denote the distribution of Ax when x is drawn from D1 and
D2 respectively. Then V (E1, E2) ≤ 98/100.

The above claims immediately imply the desired (1) via the relationship between
statistical tests and estimators. To see this, note that any moment estimator f

induces a test for distinguishing E1 versus E2: declare D2 if and only if f(A,Ax)

2Cn1/p ≥
1. In other words,

Pr
x∼ 1

2 (D1+D2)

(
1

2
‖x‖p ≤ f(A,Ax) ≤ 2‖x‖p

)
≤ 1

2
Pr

x∼D2

(
f(A,Ax) > 2Cn1/p

)
+

1

2
Pr

x∼D1

(
f(A,Ax) ≤ 2Cn1/p

)
(7)

≤ 1

2
(1 + V (E1, E2)) ≤ 99

100
, (8)

where the last line follows from the characterization of the total variation in (2).
The idea for constructing the desired pair of distributions is to use the Gaus-

sian distribution and its sparse perturbation. Since the moment of a Gaussian
random vector takes values on the entire R+, we need to further truncate
by taking its conditioned version. To this end, let y ∼ N(0, In) be a stan-
dard normal random vector and t a random index uniformly distributed on
{1, . . . , n} and independently of y. Let {e1, . . . , en} denote the standard basis
of Rn. Let D̄1 and D̄2 be input distributions defined as follows: Under the dis-
tribution D̄1, we let the input vector x equal to y. Under the distribution D̄2,
we add a one-sparse perturbation by setting x = y + C1n

1/pet with an appro-
priately chosen constant C1. Now we set D1 to be D̄1 conditioned on the event
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E = {z : ‖z‖p ≤ Cn1/p}, i.e., D1(·) = D̄1(·∩E)
D̄1(E)

, and set D2 to be D̄2 conditioned

on the event F = {z : ‖z‖p ≥ 4Cn1/p}. By the triangle inequality,

V (E1, E2) ≤ V (Ē1, Ē2) + V (Ē1, E1) + V (Ē2, E2)

≤ V (Ē1, Ē2) + V (D̄1, D1) + V (D̄2, D2)

= V (Ē1, Ē2) + Pr
x∼D̄1

(‖x‖p ≥ Cn1/p) + Pr
x∼D̄2

(‖x‖p ≤ 4Cn1/p), (9)

where the second inequality follows from the data-processing inequality (6) (ap-
plied to the mapping x �→ Ax). It remains to bound the three terms in (9).

First observe that for any i, E[|yi|p] = tp where tp = 2p/2Γ (p+1
2 )π−1/2. Thus,

E[‖y‖pp] = ntp. By Markov inequality, ‖y‖pp ≥ 100ntp holds with probability at
most 1/100. Now, if we set

C1 = 4 · (100tp)1/p + 10, (10)

we have (yt + C1n
1/p)p > 4p · 100ntp with probability at least 99/100, and

hence the third term in (9) is also smaller than 1
100 . It remains to show that

V (Ē1, Ē2) ≤ 96/100.
Without loss of generality, we assume that the rows of A are orthonormal

since we can always change the basis of A after taking the measurements. Let
ε be a constant smaller than 1 − 2/p. Assume that m < ε

100C2
1
· n1−2/p logn.

Let Ai denote the ith column of A. Let S be the set of indices i such that
‖Ai‖2 ≤ 10

√
m/n ≤ n−1/p

√
ε logn/C1. Let S̄ be the complement of S. Since∑n

i=1 ‖Ai‖22 = m, we have |S̄| ≤ n/100. Let s be uniformly distributed on S and

Ẽ2 the distribution of y + C1n
1/pes. By the convexity of (P,Q) �→ V (P,Q) and

the fact that V (P,Q) ≤ 1, we have V (Ē1, Ē2) ≤ V (Ē1, Ẽ2) + |S̄|
n ≤ V (Ē1, Ẽ2) +

1/100. In view of (5), it suffices to show that

χ2(Ẽ2‖Ē1) ≤ c (11)

for some sufficiently small constant c. To this end, we first prove a useful fact
about the measurement matrix A.

Lemma 1. For any matrix A with m < ε
100C2

1
· n1−2/p log n orthonormal rows,

denote by S the set of column indices i such that ‖Ai‖2 ≤ 10
√
m/n. Then

|S|−2
∑
i,j∈S

eC
2
1n

2/p〈Ai,Aj〉 ≤ 1.03C4
1(n−2+4/p+εm+ n2/p−1√m) + 1

Proof. Because AAT = Im, we have

∑
i,j∈[n]

〈Ai, Aj〉2 =
∑

i,j∈[n]

(ATA)2ij = ‖ATA‖2F = tr(ATAATA) = tr(ATA) = ‖A‖2F = m.
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We consider the following relaxation: let x1, . . . , x|S|2 ≥ 0 where
∑

i x
2
i ≤ C4

1n
4/p·

m and xi ≤ ε logn. We now upper bound |S|−2
∑|S|2

i=1 e
xi. We have

|S|−2
|S|2∑
i=1

exi = |S|−2
|S|2∑
i=1

⎛⎝1 + xi +
∑
j≥2

xji
j!

⎞⎠
≤ 1 + |S|−2

|S|2∑
i=1

xi + |S|−2
|S|2∑
i=1

x2i
∑
j≥2

(maxi∈[n2] xi)
j−2

j!

≤ 1 + |S|−2
√
|S|2

∑
i

x2i + |S|−2(C4
1mn

4/p)

(
eε log n

(ε logn)2

)
≤ 1 + 1.03C2

1

√
mn2/p−1 + 1.03C4

1n
−2+4/p+εm.

The last inequality uses the fact that 99n/100 ≤ |S| ≤ n. Applying the above
upper bound to x(i−1)|S|+j = C2

1n
2/p|〈Ai, Aj〉| ≤ C2

1n
2/p‖Ai‖ · ‖Aj‖ ≤ ε logn,

we conclude the lemma.

We also need the following lemma [IS03, p. 97] which gives a formula for the
χ2-divergence from a Gaussian location mixture to a standard Gaussian distri-
bution:

Lemma 2. Let P be a distribution on Rm. Then

χ2(N(0, Im) ∗ P ||N(0, Im)) = E[exp(〈X,X ′〉)]− 1 ,

where X and X ′ are independently drawn from P .

We now proceed to proving an upper bound on the χ2-divergence between Ē1

and Ẽ2.

Lemma 3.

χ2(Ẽ2‖Ē1) ≤ 1.03C4
1(n−2+4/p+εm+ n2/p−1√m)

Proof. Let pi = 1/|S| ∀i ∈ S be the probability t = i. Recall that s is the
random index uniform on the set S = {i ∈ [n] : ‖Ai‖2 ≤ 10

√
m/n}. Note

that Ay ∼ N(0, AAT ). Since AAT = Im, we have Ē1 = N(0, Im). Therefore
A(y + C1n

1/p) ∼ Ẽ2 = 1
|S|

∑
i∈S N(Ai, Im), a Gaussian location mixture.

Applying Lemma 2 and then Lemma 1, we have

χ2(Ẽ2‖Ē1) =
∑
i,j∈S

pipje
C2

1n
2/p〈Ai,Aj〉 − 1

≤ 1.03C4
1(n−2+4/p+εm+ n2/p−1√m).

Finally, to finish the lower bound proof, since ε < 1−2/p we have n−2+4/p+εm+
n2/p−1√m = o(1), implying (11) for all sufficiently large n and completing the
proof of V (E1, E2) ≤ 98/100.
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3 Discussions

While Theorem 1 is stated only for constant p, the proof also gives lower bounds
for p depending on n. At one extreme, the proof recovers the known lower bound
for approximating the 
∞-norm of Ω(n). Notice that the ratio between the

(lnn)/ε-norm and the 
∞-norm of any vector is bounded by eε so it suffices
to consider p = (lnn)/ε with a sufficiently small constant ε. Applying the Stir-
ling approximation to the crude value of C1 in the proof, we get C1 = Θ(

√
p).

Thus, the lower bound we obtain is Ω(n1−2/p(logn)/C2
1 ) = Ω(n).

At the other extreme, when p→ 2, the proof also gives super constant lower
bounds up to p = 2 + Θ(log logn/ logn). Notice that ε can be set to 1 − 2/p−
Θ(log logn/ logn) instead of a positive constant strictly smaller than 1 − 2/p.
For this value of p, the proof gives a polylog(n) lower bound. We leave it as an
open question to obtain tight bounds for p = 2 + o(1).
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Abstract. Dual pivot quicksort refers to variants of classical quicksort
where in the partitioning step two pivots are used to split the input into
three segments. This can be done in different ways, giving rise to different
algorithms. Recently, a dual pivot algorithm due to Yaroslavskiy received
much attention, because it replaced the well-engineered quicksort algo-
rithm in Oracle’s Java 7 runtime library. Nebel and Wild (ESA 2012) an-
alyzed this algorithm and showed that on average it uses 1.9n lnn+O(n)
comparisons to sort an input of size n, beating standard quicksort, which
uses 2n lnn+O(n) comparisons. We introduce a model that captures all
dual pivot algorithms, give a unified analysis, and identify new dual pivot
algorithms that minimize the average number of key comparisons among
all possible algorithms up to lower order or linear terms. This minimum
is 1.8n lnn+O(n).

1 Introduction

Quicksort [4] is a thoroughly analyzed classical sorting algorithm, described in
standard textbooks such as [2,5,9] and with implementations in practically all
algorithm libraries. Following the divide-and-conquer paradigm, on an input con-
sisting of n elements quicksort uses a pivot element to partition its input elements
into two parts, those smaller than the pivot and those larger than the pivot, and
then uses recursion to sort these parts. It is well known that if the input consists
of n elements with distinct keys in random order and the pivot is picked by just
choosing an element then on average quicksort uses 2n lnn+O(n) comparisons.
In 2009, Yaroslavskiy announced1 that he had found an improved quicksort im-
plementation, the claim being backed by experiments. After extensive empirical
studies, in 2009 Yaroslavskiy’s algorithm became the new standard quicksort
algorithm in Oracle’s Java 7 runtime library. This algorithm employs two pivots
to split the elements. If two pivots p and q with p < q are used, the partitioning

� For a full version containing all proofs, a discussion of swap strategies, more experi-
ments, and pseudocode of the algorithms, see [1].

1 An archived version of the relevant discussion in a Java newsgroup can be found at
http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628.
Also see [10].

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 33–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Result of the partition step in dual pivot quicksort schemes using two pivots
p, q with p ≤ q. All elements ≤ p are moved to the left of p; all elements ≥ q are moved
to the right of q. All other elements lie between p and q.

step partitions the remaining n − 2 elements into 3 parts: those smaller than p
(small elements), those in between p and q (medium elements), and those larger
than q (large elements), see Fig. 1.2 Recursion is then applied to the three parts.
As remarked in [10], it came as a surprise that two pivots should help, since in
his thesis [6] Sedgewick had proposed and analyzed a dual pivot approach that
was inferior to classical quicksort. Later, Hennequin in his thesis [3] studied the
general approach of using k ≥ 1 pivot elements. According to [10], he found only
slight improvements that would not compensate for the more involved partition-
ing procedure. (See [10] for a short discussion.)

In [10], Nebel and Wild formulated and analyzed a simplified version of
Yaroslavskiy’s algorithm. They showed that it makes 1.9n lnn+ O(n) key com-
parisons on average, in contrast to the 2n lnn+O(n) of standard quicksort and
the 32

15n lnn + O(n) of Sedgewick’s dual pivot algorithm. On the other hand,
they showed that the number of swap operations in Yaroslavskiy’s algorithm is
0.6n lnn + O(n) on average, which is much higher than the 0.33n lnn + O(n)
swap operations in classical quicksort. In this paper, also following tradition, we
concentrate on the comparison count as cost measure and on asymptotic results.

The authors of [10] state that the reason for Yaroslavskiy’s algorithm being su-
perior were that his “partitioning method is able to take advantage of certain asym-
metries in the outcomes of key comparisons”. They also state that “[Sedgewick’s
dual pivot method] fails to utilize them, even though being based on the same ab-
stract algorithmic idea”. So the abstract algorithmic idea of using two pivots can
lead to different algorithms with different behavior. In this paper we describe the
design space from which all these algorithms originate. We fully explain which sim-
ple property makes some dual pivot algorithms perform better and some perform
worse w.r.t. the average comparison count and identify optimal members (up to
lower order or linear terms) of this design space. The best ones use 1.8n lnn+O(n)
comparisons on average—even less than Yaroslavskiy’s method.

The first observation is that everything depends on the cost, i.e., the com-
parison count, of the partitioning step. This is not new at all. Actually, in Hen-
nequin’s thesis [3] the connection between partitioning cost and overall cost for
quicksort variants with more than one pivot is analyzed in detail. The result
relevant for us is that if two pivots are used and the (average) partitioning cost
for n elements can be bounded by a ·n+O(1), for a constant a, then the average
cost for sorting n elements is

2 For ease of discussion we assume in this theoretical study that all elements have
different keys. Of course, in implementations equal keys are an important issue that
requires a lot of care [7].
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6

5
a · n lnn+O(n). (1)

Throughout the present paper all that interests us is the constant factor with the
leading term. (The reader should be warned that for real-life n the linear term,
which can even be negative, can have a big influence on the average number of
comparisons.)

The second observation is that the partitioning cost depends on certain details
of the partitioning procedure. This is in contrast to standard quicksort with one
pivot where partitioning always takes n− 1 comparisons. In [10] it is shown that
Yaroslavskiy’s partitioning procedure uses 19

12n + O(1) comparisons on average,
while Sedgewick’s uses 16

9 n+O(1) many. For understanding what is going on it
is helpful to forget about concrete implementations with loops in which pointers
sweep across arrays and entries are swapped, and look at partitioning with two
pivots in a more abstract way. For simplicity we shall always assume that the
input is a permutation of {1, . . . , n}. Now pivots p and q with p < q are chosen.
The task is to classify the remaining n − 2 elements into classes “small” (s =
p − 1 many), “medium” (m = q − p − 1 many), and “large” (
 = n − p many),
by comparing these elements one after the other with the smaller pivot or the
larger pivot, or both of them if necessary. Note that for symmetry reasons it is
inessential in which order the elements are treated. The only choice the algorithm
can make is whether to compare the current element with the smaller pivot or the
larger pivot first. (In Sedgewick’s and in Yaroslavskiy’s algorithm this decision is
based on the position of certain pointers and the state of control.) Let the random
variable S2 denote the number of small elements compared with the larger pivot
first, and let L2 denote the number of large elements compared with the smaller
pivot first. Then the total number of comparisons is n− 2 +m+ S2 + L2.

Averaging over all inputs and all possible choices of the pivots the term n−
2 +m will lead to 4

3n+O(1) key comparisons on average, independently of the
algorithm. Let W = S2 + L2, the number of elements that are compared with
the “wrong” pivot first. Then E(W ) is the only quantity that can be influenced
by using a clever partitioning procedure.

In the paper, we will first devise an easy method to calculate E(W ). The
result of this analysis will lead to an (asymptotically) optimal strategy. The
basic approach is the following. Assume a partitioning procedure is given, and
assume p, q and hence s = p−1 and 
 = n−q are fixed, and let ws,� = E(W | s, 
).
Denote the average number of elements compared to the smaller [larger] pivot
first by fp

s,� [fq
s,�]. If the elements to be classified were chosen to be small, medium,

and large independently with probabilities s/(n− 2), m/(n− 2), and 
/(n− 2),
resp., then the expected number of small elements compared with the large pivot
first would be fq

s,� ·s/(n−2), similarly for the large elements. Of course, the actual
input is a sequence with exactly s [m, 
] small [medium, large] elements, and
there is no independence. Still, we will show that the randomness in the order
is sufficient to guarantee that

ws,� = fq
s,� · s/n+ fp

s,� · 
/n+ o(n). (2)
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The details of the partitioning procedure will determine fp
s,� and fq

s,�, and hence
ws,� up to o(n). This seemingly simple insight has two consequences, one for the
analysis and one for the design of dual pivot algorithms:

(i) In order to analyze the average comparison count of a dual pivot algorithm
(given by its partitioning procedure) up to lower order terms determine fp

s,�

and fq
s,� for this partitioning procedure. This will give ws,� up to lower order

terms, which must then be averaged over all s, 
 to find the average number
of comparisons in partitioning. Then apply (1).

(ii) In order to design a good partitioning procedure w.r.t. the average compar-
ison count, try to make fq

s,� · s/n+ fp
s,� · 
/n small.

We shall demonstrate approach (i) in Section 4. An example: As explained in [10],
if s and 
 are fixed, in Yaroslavskiy’s algorithm we have fq

s,� ≈ 
 and fp
s,� ≈ s+m.

By (2) we get ws,� = (
s+ (s + m)
)/n+ o(n). This must be averaged over all
possible values of s and 
. The result is 1

4n+o(n), which together with 4
3n+O(1)

gives 19
12n+ o(n), close to the result from [10].

Principle (ii) will be used to identify an (asymptotically) optimal partitioning
procedure that makes 1.8n lnn+ o(n lnn) key comparisons on average. In brief,
such a strategy should achieve the following: If s > 
, compare (almost) all entries
with the smaller pivot first (fp

s,� ≈ n and fq
s,� ≈ 0), otherwise compare (almost)

all entries with the larger pivot first (fp
s,� ≈ 0 and fq

s,� ≈ n). Of course, some
details have to be worked out: How can the algorithm decide which case applies?
In which technical sense is this strategy optimal? We shall see in Section 5 how
a sampling technique resolves these issues.

At the end of this paper, in Section 6, we will consider the following simple and
intuitive strategy: Compare the current element to the smaller pivot first if more
small elements than large elements have been seen so far, otherwise compare it
to the larger pivot first. It can be shown [1] that this is optimal w.r.t. the average
comparison count with an error term of only O(n) instead of o(n lnn).

As noted by Wild et al. [11], considering only key comparisons and swap oper-
ations does not suffice for evaluating the practicability of sorting algorithms. In
Section 7, we will present preliminary experimental results that indicate the fol-
lowing: When sorting integers, the “optimal” method of Section 5 is slower than
Yaroslavskiy’s algorithm. When making key comparisons artificially expensive,
e.g., by sorting strings, we gain a small advantage.

We emphasize that the purpose of this paper is not to arrive at better and
better quicksort algorithms by using all kinds of variations, but rather to thor-
oughly analyze the situation with two pivots, showing the potential and the limi-
tations of this approach. For an analysis of other variations of classical quicksort,
notably those that use random sampling to find a good pivot, see, e.g., [8]. Fur-
thermore, we concentrate only on the average comparison count. The average
swap count can be analyzed independently of this. We mention here that there
exists a swapping strategy which beats the strategy employed by Yaroslavskiy’s
algorithm theoretically. Preliminary results for this analysis can be found in [1].
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2 Basic Approach to Analyzing Dual Pivot Quicksort

We assume the input sequence (a1, . . . , an) to be a random permutation of
{1, . . . , n}, each permutation occurring with probability (1/n!). If n ≤ 1, there
is nothing to do; if n = 2, sort by one comparison. Otherwise, choose the first
element a1 and the last element an as pivots, and set p = min(a1, an) and
q = max(a1, an). Partition the remaining elements into elements < p (“small”
elements), elements in between p and q (“medium” elements), and elements > q
(“large” elements), see Fig. 1. Then apply the procedure recursively to these
three groups. Clearly, each pair p, q with 1 ≤ p < q ≤ n appears as pivots with
probability 1/

(
n
2

)
. Our cost measure is the number of key comparisons needed

to sort the given input. Let Cn be the random variable counting this number.
Let Pn denote the partitioning cost to partition the n − 2 non-pivot elements
into the three groups. As explained by Wild and Nebel [10, Appendix A], the
average number of key comparisons obeys the following recurrence:

E(Cn) = E(Pn) +
1(
n
2

) · 3 n−2∑
k=0

(n− k − 1) · E(Ck).

If E(Pn) = a · n+O(1), for a constant a, this can be solved (cf. [3,10]) to give

E(Cn) =
6

5
a · n lnn+O(n). (3)

Abstracting from moving elements around in arrays, we arrive at the following
“classification problem”: Given a random permutation (a1, . . . , an) of {1, . . . , n}
as the input sequence and a1 and an as the two pivots p and q, with p < q,
classify each of the remaining n− 2 elements as being small, medium, or large.
Note that there are exactly s := p− 1 small elements, m := q − p − 1 medium
elements, and 
 := n − q large elements. Although this classification does not
yield an actual partition of the input sequence, a classification algorithm can be
turned into a partitioning algorithm using only swap operations but no additional
key comparisons. Since elements are only compared with the two pivots, the
randomness of subarrays is preserved. Thus, in the recursion we may always
assume that the input is arranged randomly.

We make the following observations (and fix notation) for all classification
algorithms. One key comparison is needed to decide which of the elements a1 and
an is the smaller pivot p and which is the larger pivot q. For classification, each
of the remaining n−2 elements has to be compared against p or q or both. Each
medium element has to be compared to p and q. We expect (n − 2)/3 medium
elements. Let S2 denote the number of small elements that are compared to the
larger pivot first, i.e., the number of small elements that need 2 comparisons for
classification. Analogously, let L2 denote the number of large elements compared
to the smaller pivot first. Conditioning on the pivot choices, and hence the values
of s and 
, we may calculate E(Pn) as follows:

E(Pn) = (n− 1) + (n− 2)/3 +
1(
n
2

) ∑
s+�≤n−2

E(S2 + L2 | s, 
). (4)
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We call the third summand the additional cost term (ACT), as it is the only
value that depends on the actual classification algorithm.

3 Analyzing the ACT

We will use the following formalization of a partitioning procedure: A classifica-
tion algorithm (or strategy) is a three-way decision tree T with a root and n− 2
levels of inner nodes as well as one leaf level. The root is on level 0. Each node v
is labeled with an index i ∈ {2, . . . , n− 1} and an element l(v) ∈ {p, q}. If l(v) is
p, then at node v element ai is compared with the smaller pivot first; otherwise,
i.e., l(v) = q, it is compared with the larger pivot first. The three edges out of a
node are labeled σ, μ, λ, resp., representing the outcome of the classification as
small, medium, large, respectively. The label of edge e is called c(e). On each of
the 3n−2 paths each index i occurs exactly once. Each input determines exactly
one path w from the root to a leaf in the obvious way; the classification of the
elements can then be read off from the node and edge labels along this path.

We now describe how we can calculate the ACT of a decision tree T . Fix s
and 
, and let the input excepting the pivots be arranged randomly. Let pvs,� be
the probability that node v is reached. The probability that at some node v the
algorithm classifies the element treated at v as small, medium, or large, resp.,
depends only on the number of small, medium, and large elements classified so
far, but not on which of the n− 2− level(v) still unclassified elements is chosen.
This follows from the assumption that the input sequence is in random order.

For a node v in T , we let Yv = 0 if l(v) = p, and Yv = 1 if l(v) = q. We
let sv, mv, and 
v, resp., denote the number of edges labeled σ, μ, and λ, resp.,
from the root to v. The probability that the element classified at v is “small”
is exactly (s − sv)/(n − 2 − level(v)). The probability that it is “medium” is
(m−mv)/(n− 2− level(v)), and that it is “large” is (
− 
v)/(n− 2− level(v)).
The probability that the edge labeled σ out of a node v is used by the algorithm
is then pvs,� · (s− sv)/(n− 2− level(v)). Similarly, the probability that the edge
labeled λ is used is pvs,� · (
 − 
v)/(n − 2 − level(v)). For a random input, we

let ST
2 [LT

2 ] denote the random variable that counts the number of small [large]
elements classified in nodes with label q [p]. Then

E(ST
2 +LT

2 | s, 
) =
∑
v∈T

pvs,�

(
Yv ·

s− sv
n−2−level(v)

+ (1−Yv) · 
− 
v
n−2−level(v)

)
. (5)

The setup developed so far makes it possible to describe the connection between
a decision tree T and its average comparison count in general. Let FT

p resp. FT
q be

two random variables that denote the number of elements that are compared with
the smaller resp. larger pivot first when using T . Then let fq

s,� = E
(
FT
q | s, 


)
resp. fp

s,� = E
(
FT
p | s, 


)
denote the average number of comparisons with the

larger resp. smaller pivot first, given s and 
. Now, if it was decided in each step
by independent random experiments with the correct expectations s/(n − 2),
m/(n− 2), and 
/(n− 2), resp., whether an element is small, medium, or large,
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it would be clear that for example fq
s,� · s/(n − 2) is the average number of

small elements that are compared with the larger pivot first. The next lemma
shows that one can indeed use this intuition in the calculation of the average
comparison count, excepting that one gets an additional o(n) term due to the
elements tested not being independent. The proof of this lemma uses (5) and
martingale tail estimates to show that most of the time the probability of seeing
small resp. large elements is close to s/(n− 2) resp. 
/(n− 2).

Lemma 1. Let T be a decision tree. Let E(PT
n ) be the average number of key

comparisons for classifying an input of n elements using T . Then

E(PT
n ) =

4

3
n+

1(
n
2

)
· (n− 2)

∑
s+�≤n−2

(
fq
s,� · s+ fp

s,� · 

)

+ o(n).

There are two technical complications when using this lemma in analyzing a
strategy that is turned into a dual pivot quicksort algorithm. The cost bound is
a · n+ o(n). Equation (3) cannot be applied directly to such partitioning costs.
Furthermore, the o(n) term in Lemma 1 will get out of control if the subarrays
appearing in the recursion become too small. However, the next theorem says
that the leading term of (3) applies to this situation as well, but we get an error
term of o(n lnn) instead of O(n).

Theorem 1. Let A be a dual pivot quicksort algorithm that gives rise to a de-
cision tree Tn for each subarray of length n. Assume E(PTn

n ) = a · n+ o(n) for
all n, for some constant a. Then E

(
CAn

)
= 6

5an lnn+ o(n lnn).

Roughly, the proof proceeds as follows. Fix an arbitrarily small number ε > 0.
Then there is some nε such that for all n′ ≥ nε the average partitioning cost
on a subarray of size n′ is smaller than (a + ε)n′. We only consider n so large
that n1/ ln lnn ≥ nε and that (lnn)/ ln lnn < ε lnn. We split the analysis of the
expected cost into two parts. For subarrays of length n′ ≥ n0 = n1/ ln lnn the
average partitioning cost is at most (a+ ε)n′; for a subarray of size n′ < n0 we
charge (a+ε)n′ to the first part of the analysis. Then (3) can be used to estimate
the contribution of the first part as 6

5 (a+ ε)n lnn+O(n) = 6
5an lnn+ 6

5εn lnn+
O(n). In the second part we collect the contributions from splitting subarrays of
size n′ not captured by the first part. Each such contribution is bounded by 2n′

(even in absolute value). The second part of the analysis consists in adding 2n′

for each subarray of size n′ < n0 and 0 for each larger subarray. For this, we wait
until the algorithm has created a subarray of size n′ < n0 and assess the total
contribution from the recursion starting from this subarray as not more than
12
5 n
′ lnn′+O(n′), by (3). This means we must sum 12

5 ni lnni +O(ni), 1 ≤ i ≤ k,
over a sequence of disjoint subarrays of length n1, . . . , nk. Since all ni are smaller
than n0, n1 + . . .+ nk ≤ n, and since x �→ x ln x is a convex function, this sums
up to no more than n

n0
· 65 ·2n0 lnn0 +O(n) = 12

5 n ln(n0)+O(n) < εn lnn+O(n)
for n large enough. Adding both parts, and choosing n so large that the two
O(n) terms can be bounded by εn lnn we get the bound 6

5an lnn + 16
5 εn lnn,

which is sufficient since ε was arbitrary.
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Lemma 1 and Theorem 1 tell us that for the analysis of the average comparison
count of a dual pivot quicksort algorithm we just have to find out what fp

s,� and

fq
s,� are for this algorithm. Moreover, to design a good algorithm (w.r.t. the

average comparison count), we should try to make fq
s,� · s+ fp

s,� · 
 small.

4 Analysis of Some Known Partitioning Methods

In this section, we will study three different partitioning methods in the light of
the formulas from Section 3.

Smaller Pivot First. We consider strategy P : Always compare with the smaller
pivot p first. This strategy makes sure that fp

s,� = n− 2 and fq
s,� = 0. Applying

Lemma 1 gives us E(Pn) = 5
3n+ o(n). Using Thm. 1 we get E(Cn) = 2n lnn+

o(n lnn)—the leading term being the same as in standard quicksort.3

Yaroslavskiy’s Algorithm. Following [10, Section 3.2], Yaroslavskiy’s algorithm
is an implementation of the following strategy Y: Compare 
 elements to q first,
and compare the other elements to p first. We get that fq

s,� = 
 and fp
s,� =

s+m. Applying Lemma 1, we calculate E(Pn) = 19
12n+o(n). Using Thm. 1 gives

E(Cn) = 1.9n lnn+ o(n lnn), as in [10].

Sedgewick’s Algorithm. Following [10, Section 3.2], Sedgewick’s algorithm amounts
to an implementation of the following strategy S: Compare (on average) a frac-
tion of s/(s + 
) of the keys with q first, and compare the other keys with p
first. We get fq

s,� = (n − 2) · s/(s + 
) and fp
s,� = (n − 2) · 
/(s + 
). Using

Lemma 1, we calculate E(Pn) = 16
9 n + o(n). Applying Thm. 1 gives E(Cn) =

2.133... · n lnn+ o(n lnn), as known from [10].

5 An (Asymptotically) Optimal Partitioning Method

Looking at the previous sections, all methods used the idea that we should
compare a certain fraction of elements to p first, and all other elements to q
first. In this section, we will study the following strategy D: If s > 
 then always
compare with p first, otherwise always compare with q first.

Of course, for an implementation of this strategy we have to deal with the
problem of finding out which case applies before all comparisons have been made.

5.1 Analysis of the Ideal Classification Strategy

Assume for a moment that for a given random input with pivots p, q the strategy
“magically” knows whether s > 
 or not and correctly determines the pivot that
should be used for all comparisons. For the average comparison count one obtains
by a standard calculation:

3 The same result is obtained if one picks the pivot to compare with by a coin flip.
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E(Pn) =
4

3
n+

1(
n
2

) ∑
s+�≤n−2

min(s, 
) + o(n) =
3

2
n+ o(n). (6)

Applying Thm. 1, we get E(Cn) = 1.8n lnn + o(n lnn), which is by 0.1n lnn
smaller than the average number of key comparisons in Yaroslavskiy’s algorithm.

To see that this method is (asymptotically) optimal, recall that according to
Lemma 1 the average comparison count is determined up to lower order terms
by the parameters fq

s,� and fp
s,� = n− 2 − fq

s,�. Strategy D chooses these values
such that each term of the sum in Lemma 1 is minimized—thus minimizing the
sum.

5.2 Guessing Whether s < � or Not

We explain how the ideal classification algorithm can be approximated by an
implementation. The idea simply is to make a few comparisons and use the
outcome as a basis for a guess.

After p and q are chosen, classify sz = o(n) many elements and calculate s′

and 
′, the number of small and large elements in the sample. If s′ < 
′, compare
with q first, otherwise compare with p first. We say that the guess was correct,
if the relation “s′ < 
′” correctly reflects whether s < 
 or not.

We incorporate guessing errors into (6) as follows:

E(Pn) =
4

3
n+ o(n) +

1(
n
2

) ∑
s+�≤n−2

(
Pr(guess correct) ·min(s, 
)+

Pr(guess wrong) ·max(s, 
)

)
=

4

3
n+ o(n) +

2(
n
2

) n/2∑
s=0

n−s∑
�=s+1

(
Pr(guess correct) · s+

Pr(guess wrong) · 

)
. (7)

The following lemma says that for a wide range of values s and 
, the probability
of a guessing error is exponentially small.

Lemma 2. Let s and 
 with s ≤ 
 − n3/4 and 
 ≥ n3/4 for n ∈ N be given. Let
sz = n2/3. Then Pr(s′ > 
′) ≤ exp

(
−2n1/6/9

)
.

Our classification algorithm will now work as follows. It starts by sampling sz =
n2/3 many elements and then decides which pivot to use for the first comparison.
Then it inspects the remaining elements according to this approach.

Theorem 2. Let sz = n2/3. Then the average comparison count of the algo-
rithm described above is 1.8n lnn+ o(n lnn).

The proof is based on (7) and uses that in the two cases that (i) there is only
a small number of small resp. large elements, and (ii) the difference between
the number of small and large elements is at most n2/3, the contribution of
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these terms to (7) is o(n). Otherwise, the contribution of wrong guesses is small
according to Lemma 2.

While being optimal, this strategy has an error term of o(n lnn). In the next
section, we will present a different strategy that will be optimal up to O(n).

6 An Optimal Partitioning Strategy with Small Error

We will consider two more strategies. One optimal (but not algorithmic) strategy,
and one algorithmic strategy that is optimal up to a very small error term.

We first study the (unrealistic!) setting where s and 
, i.e., the number of small
resp. large elements, are known to the algorithm after the pivots are chosen, and
the decision tree can have different node labels for each such pair of values. Recall
that sv and 
v, resp., denote the number of elements that have been classified
as small and large, resp., when at node v in the decision tree. We consider the
following strategy O: Given s and 
, the comparison at node v is with the smaller
pivot first if s− sv > 
− 
v, otherwise, it is with the larger pivot first.4

Theorem 3. Strategy O is optimal, i.e., its ACT is at most as large as ACTT

for every single tree T . When using O in a dual pivot quicksort algorithm, we
get E(COn ) = 1.8n lnn+O(n).

The proof of the first statement uses that for fixed pivots this strategy makes the
choice that minimizes each term in the sum of (5), and linearity of expectation.
Calculating the average comparison count is harder; a proof can be found in the
full paper [1]. It uses that one can bound the number of “wrong” comparisons
by the number of small [large] elements in the input, if s < 
 [s > 
]. However,
this is only an upper bound. For an exact calculation one must take into account
the average (over all inputs) number of positions i where we have the same
number of small and large elements in {a2, . . . , ai−1} or {a2, . . . , ai}, depending
on whether i is even or odd, since in these cases the algorithm errs only in half of
the cases. A somewhat involved calculation shows that this number is O(log n).
Additionally, one can also show that a (negative) term of O(log n) decreases
the total average number of key comparisons only by O(n) when we use such a
strategy to implement a dual pivot quicksort algorithm. For details see [1].

While being optimal w.r.t. minimizing the ACT, the assumption that the ex-
act number of small and large elements is known is of course not true for a real
algorithm or for a fixed tree. We can, however, identify a real, algorithmic parti-
tioning strategy whose ACT differs from the optimal one only by a logarithmic
term. We study the following strategy L: The comparison at node v is with the
smaller pivot first if sv > lv, otherwise it is with the larger pivot first.

While O looks into the future (“Are there more small elements or more large
elements left?”), strategy L looks into the past (“Have I seen more small or more
large elements so far?”). It is not hard to see that for a given input the number
of additional comparisons of strategy O and L can differ significantly. The next

4 This strategy was suggested to us by Thomas Hotz (personal communication).
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theorem shows that averaged over all possible inputs, however, there is only a
small difference.

Theorem 4. Let ACTO resp. ACTL be the ACT for classifying n elements
using strategy O resp. L. Then ACTL = ACTO +O(log n). When using L in a
dual pivot quicksort algorithm, we get E(CLn ) = 1.8n lnn+O(n).

The proof of this theorem uses the following key insight: Assume that strat-
egy O inspects the elements in the order an−1, . . . , a2, while L uses the or-
der a2, . . . , an−1. If the strategies compare the element ai to different pivots,
then there are exactly as many small elements as there are large elements in
{a2, . . . , ai−1} or {a2, . . . , ai}, depending on whether i is even or odd. A some-
what involved calculation shows that ACTL − ACTO is O(log n), which again
sums up to a total additive contribution of O(n) when used in a dual pivot quick-
sort algorithm. Thus, dual pivot quicksort with strategy L has average cost at
most O(n) larger than dual pivot quicksort using the (unrealistic) strategy O.

7 Experiments

We have implemented the methods presented in this paper in C++. These al-
gorithms have not been fine-tuned (in particular, in our method swapping was
carried out in a näıve way); this section is hence meant to provide only prelim-
inary results and does not replace a thorough experimental study. Our experi-
ments were carried out on an Intel Xeon E5645 at 2.4 GHz with 48 GB Ram
running Ubuntu 12.04 with kernel version 3.2.0. The source code was compiled
with gcc using the -O2 optimization flag. We have incorporated random sam-
pling into the partitioning step of our method (strategy D) by comparing the
first n′ = max(n/100, 7) elements with p first. We switched to comparing with
q first if the algorithm has seen more large than small elements after n′ steps.

With respect to running times, we see that Yaroslavskiy’s algorithm is supe-
rior to the other algorithms when sorting random permutations of {1, . . . , n}.
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Fig. 2. Left : Running time (in milliseconds) needed to sort a random permutation of
{1, . . . , n}. Right : Running time needed to sort a random set of n article headers of the
English Wikipedia. Running times were averaged over 1000 trials for each n. Clever
quicksort uses the median in a sample of three elements as the pivot. Strategy L and
strategy D behaved almost identically in the experiments.



44 M. Aumüller and M. Dietzfelbinger

Strategy D is about 5% slower. When sorting strings (making key comparisons
artificially more expensive), strategy D can actually beat Yaroslavskiy’s algo-
rithm, see Figure 2. However, the difference is only about 2%. Note that Java 7
does not use Yaroslavskiy’s algorithm when sorting strings.

As found in [11], it is a major enterprise to make an asymptotically good
algorithm also perform well in practice.

8 Conclusion and Open Questions

We have studied dual pivot quicksort algorithms in a unified way and found opti-
mal partitioning methods that minimize the average number of key comparisons
up to lower order terms and even up to O(n). From an engineering point of view,
one might look for a clever implementation of our classification idea that beats
Yaroslavskiy’s algorithm. To this end, studying different swap strategies might
be beneficial. In standard quicksort it helps to choose the pivot from a sample
[8]. Similary, as studied by Hennequin [3], one could choose two pivots from a
sample. It is a question how all these strategies compare. Preliminary results [1]
indicate that starting from a sample of size 7 classical quicksort beats dual pivot
quicksort using a sample of size 8 w.r.t. the average comparison count.
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Abstract. The technique of Schroeppel and Shamir (SICOMP, 1981) has long
been the most efficient way to trade space against time for the SUBSET SUM

problem. In the random-instance setting, however, improved tradeoffs exist. In
particular, the recently discovered dissection method of Dinur et al. (CRYPTO
2012) yields a significantly improved space–time tradeoff curve for instances
with strong randomness properties. Our main result is that these strong random-
ness assumptions can be removed, obtaining the same space–time tradeoffs in
the worst case. We also show that for small space usage the dissection algorithm
can be almost fully parallelized. Our strategy for dealing with arbitrary instances
is to instead inject the randomness into the dissection process itself by working
over a carefully selected but random composite modulus, and to introduce explicit
space–time controls into the algorithm by means of a “bailout mechanism”.

1 Introduction

The protagonist of this paper is the SUBSET SUM problem.

Definition 1. An instance (a, t) of SUBSET SUM consists of a vector a ∈ Zn
≥0 and a

target t ∈ Z≥0. A solution of (a, t) is a vector x ∈ {0, 1}n such that
∑n

i=1 aixi = t.

The problem is NP-hard (in essence, Karp’s formulation of the knapsack problem [6]),
and the fastest known algorithms take time and space that grow exponentially in n. We
will write T and S for the exponential factors and omit the possible polynomial factors.
The brute-force algorithm, with T = 2n and S = 1, was beaten four decades ago,
when Horowitz and Sahni [4] gave a simple yet powerful meet-in-the-middle algorithm
that achieves T = S = 2n/2 by halving the set arbitrarily, sorting the 2n/2 subsets of
each half, and then quickly scanning through the relevant pairs of subsets that could
sum to the target. Some years later, Schroeppel and Shamir [10] improved the space
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requirement of the algorithm to S = 2n/4 by designing a novel way to list the half-
sums in sorted order in small space. However, if allowing only polynomial space, no
better than the trivial time bound of T = 2n is known. Whether the constant bases of
the exponentials in these bounds can be improved is a major open problem in the area
of moderately exponential algorithms [12].

The difficulty of finding faster algorithms, whether in polynomial or exponential
space, motivates the study of space–time tradeoffs. From a practical point of view, large
space usage is often the bottleneck of computation, and savings in space usage can have
significant impact even if they come at the cost of increasing the time requirement.
This is because a smaller-space algorithm can make a better use of fast cache memo-
ries and, in particular, because a smaller-space algorithm often enables easier and more
efficient large-scale parallelization. Typically, one obtains a smooth space–time trade-
off by combining the fastest exponential time algorithm with the fastest polynomial
space algorithm into a hybrid scheme that interpolates between the two extremes. An
intriguing question is then whether one can beat the hybrid scheme at some point, that
is, to get a faster algorithm at some space budget—if one can break the hybrid bound
somewhere, maybe one can break it everywhere. For SUBSET SUM a hybrid scheme
is obtained by first guessing some g elements of the solution, and then running the al-
gorithm of Schroeppel and Shamir for the remaining instance on n− g elements. This
yields T = 2(n+g)/2 and S = 2(n−g)/4, for any 0 ≤ g ≤ n, and thereby the smooth
tradeoff curve S2T = 2n for 1 ≤ S ≤ 2n/4. We call this the Schroeppel–Shamir
tradeoff.

While the Schroeppel–Shamir tradeoff has remained unbeaten in the usual worst-
case sense, there has been remarkable recent progress in the random-instance setting.
In 2010 Howgrave-Graham and Joux [5] introduced new techniques based on modular
arithmetic to get a faster exponential-space algorithm. In 2011 Becker, Coron, and Joux
[1] extended the techniques and presented, not only yet a faster algorithm, but also a
tradeoff curve satisfying ST = 23n/4 in the range 2n/16 ≤ S ≤ 2n/4, so beating the
Schroeppel–Shamir tradeoff in this range. Very recently, Dinur, Dunkelman, Keller, and
Shamir [3] introduced a recursive approach and obtained a tradeoff curve that matches
the Schroeppel–Shamir tradeoff at the extreme points S = 1 and S = 2n/4 but is strictly
better in between. The tradeoff is achieved by a novel dissection method that recursively
decomposes the problem into smaller subproblems in two different “dimensions”, the
first dimension being the current subset of the n items, and the other dimension be-
ing (roughly speaking) the bits of information of each item. The algorithm of Dinur
et al. runs in space S = 2σn and time T = 2τ(σ)n on random instances (τ(σ) is de-
fined momentarily). See Figure 1 for an illustration and comparison to the Schroeppel–
Shamir tradeoff. The tradeoff curve τ(σ) is piecewise linear and determined by what
Dinur et al. call the “magic sequence” 2, 4, 7, 11, 16, 22, . . ., obtained as evaluations of
ρ� = 1 + 
(
+ 1)/2 at 
 = 1, 2, . . ..

Definition 2. Define τ : (0, 1] → [0, 1] as follows. For σ ∈ (0, 1/2], let 
 be the
solution to 1/ρ�+1 < σ ≤ 1/ρ�. Then

τ(σ) = 1− 1


+ 1
− ρ� − 2


+ 1
σ . (1)

If there is no such 
, that is, if σ > 1/2, define τ(σ) = 1/2.
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Fig. 1. Space–time tradeoff curves for the SUBSET SUM problem [10,3]. The space and time
requirements are S = 2σn and T = 2τn, omitting factors polynomial in the instance size n.

For example, at σ = 1/8, we have 
 = 3, and thereby τ(σ) = 19/32. Asymptotically,
when σ is small, 
 is essentially

√
2/σ and τ(σ) ≈ 1−

√
2σ.

In this paper, we show that this space–time tradeoff result by Dinur et al. [3] can be
made to hold also in the worst case:

Theorem 1. For each σ ∈ (0, 1] there exists a randomized algorithm that solves the
SUBSET SUM problem with high probability, and runs inO∗(2τ(σ)n) time andO∗(2σn)
space. The O∗ notation suppresses factors that are polynomial in n, and the polynomi-
als depend on σ.

To the best of our knowledge, Theorem 1 is the first improvement to the Schroeppel–
Shamir tradeoff in the worst-case setting. Independently of our work, however, Wang
[11] has very recently presented a different randomized hashing approach and estab-
lished a tradeoff curve that beats the Schroeppel–Shamir tradeoff but does not quite
achieve the bounds in Theorem 1. Here we should also remark that, in the random-
instance setting, there are results that improve on both the Schroeppel–Shamir and the
Dinur et al. tradeoffs for certain specific choices of the space budget S. In particular,
Becker et al. give a 20.72n time polynomial space algorithm and a 20.291n time expo-
nential space algorithm [1]. A natural question that remains is whether these two results
could be extended to the worst-case setting. Such an extension would be a significant
breakthrough (cf. [12]).

We also prove that the dissection algorithm lends itself to parallelization very well.
As mentioned before, a general guiding intuition is that algorithms that use less space
can be more efficiently parallelized. The following theorem shows that, at least in the
case of the dissection algorithm, this intuition can be made formal: the smaller the space
budget σ is, the closer we can get to full parallelization.
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Remark. For reasons of space, this conference abstract does not contain the detailed
proofs of all the claims; these are indicated with a “†” symbol and can be found in the
full version of this paper (see footnote on title page).

Theorem 2 (†). The algorithm of Theorem 1 can be implemented to run in
O∗(2τ(σ)n/P ) parallel time on P processors each using O∗(2σn) space, provided
P ≤ 2(2τ(σ)−1)n.

When σ is small, τ(σ) ≈ 1 −
√

2σ and the bound on P is roughly 2(τ(σ)−
√
2σ)n. In

other words we get a linear speedup almost all the way up to 2τ(σ)n processors, almost
full parallelization.

Our Contributions and Overview of the Proof. At a high level, our approach will
follow the Dinur et al. dissection framework, with essential differences in preprocessing
and low-level implementation to alleviate the assumptions on randomness. In particular,
while we split the instance analogously to Dinur et al. to recover the tradeoff curve, we
require more careful control of the sub-instances beyond just subdividing the bits of
the input integers and assuming that the input is random enough to guarantee sufficient
uniformity to yield the tradeoff curve. Accordingly we find it convenient to revisit the
derivation of the tradeoff curve and the analysis of the basic dissection framework to
enable a self-contained exposition.

In contrast with Dinur et al., our strategy for dealing with arbitrary instances is, es-
sentially, to instead inject the required randomness into the dissection process itself. We
achieve this by observing that dissection can be carried out over any algebraic struc-
ture that has a sufficiently rich family of homomorphisms to enable us to inject entropy
by selection of random homomorphisms, while maintaining an appropriate recursive
structure for the selected homomorphisms to facilitate dissection. For the SUBSET SUM

problem, in practice this means reduction from Z to ZM over a composite M with a
carefully selected (but random) lattice of divisors to make sure that we can still carry out
recursive dissections analogously to Dinur et al. This approach alone does not provide
sufficient control over an arbitrary problem instance, however.

The main obstacle is that, even with the randomness injected into the algorithm, it
is very hard to control the resource consumption of the algorithm. To overcome this,
we add explicit resource controls into the algorithm, by means of a somewhat cavalier
“bailout mechanism” which causes the algorithm to simply stop when too many partial
solutions have been generated. We set the threshold for such a bailout to be roughly the
number of partial solutions that we would have expected to see in a random instance.
This allows us to keep the running time and space usage of the algorithm in check,
perfectly recovering the Dinur et al. tradeoff curve. The remaining challenge is then
to prove correctness, i.e., that these thresholds for bailout are high enough so that no
hazardous bailouts take place and a solution is indeed found. To do this we perform a
localized analysis on the subtree of the recursion tree that contains a solution. Using
that the constructed modulus M contains a lot of randomness (a consequence of the
density of the primes), we can show that the probability of a bailout in any node of this
subtree is o(1), meaning that the algorithm finds a solution with high probability.

A somewhat curious effect is that in order for our analysis to go through, we require
the original SUBSET SUM instance to have few, say O(1), distinct solutions. In order to
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achieve this, we preprocess the instance by employing routine isolation techniques in
ZP but implemented over Z to control the number of solutions over Z. The reason why
we need to implement the preprocessing over Z rather than than work in the modular
setting is that the dissection algorithm itself needs to be able to choose a modulus M
very carefully to deliver the tradeoff, and that choice is incompatible with having an
extra prime P for isolation. This is somewhat curious because, intuitively, the more
solutions an instance has, the easier it should be to find one. The reason why that is
not the case in our setting is that, further down in the recursion tree, when operating
with a small modulusM , every original solution gives rise to many additional spurious
solutions, and if there are too many original solutions there will be too many spurious
solutions.

A further property needed to support the analysis is that the numbers in the SUBSET

SUM instance must not be too large, in particular we need log t = O(n). This we can
also achieve by a simple preprocessing step where we hash down modulo a random
prime, but again with implementation over the integers for the same reason as above.

Related Work. The SUBSET SUM problem has recently been approached from related
angles, with the interest in small space. Lokshtanov and Nederlof [9] show that the well-
known pseudo-polynomial-time dynamic programming algorithm can be implemented
in truly-polynomial space by algebraization. Kaski, Koivisto, and Nederlof [7] note
that the sparsity of the dynamic programming table can be exploited to speedup the
computations even if allowing only polynomial space.

Smooth space–time tradeoffs have been studied also for several other hard problems.
Björklund et al. [2] derive a hybrid scheme for the Tutte polynomial that is a host of
various counting problems on graphs. Koivisto and Parviainen [8] consider a class of
permutation problems (including, e.g., the traveling salesman problem and the feedback
arc set problem) and show that a natural hybrid scheme can be beaten by a partial
ordering technique.

2 The Main Dissection Algorithm

Before describing the main algorithm, we condense some routine preprocessing steps
into the following theorem.

Theorem 3 (†). There is a polynomial-time randomized algorithm for preprocessing
instances of SUBSET SUM which, given as input an instance (a, t) with n elements, out-
puts a collection of O(n3) instances (a′, t′), each with n elements and log t′ = O(n),
such that if (a, t) is a NO instance then so are all the new instances with probability
1 − o(1), and if (a, t) is a YES instance then with probability Ω(1) at least one of the
new instances is a YES instance with at most O(1) solutions.

By applying this preprocessing we may assume that the main algorithm receives an
input (a, t) that has O(1) solutions and log t = O(n). We then introduce a random
modulusM and transfer into a modular setting.
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Algorithm 1: GENERATESOLUTIONS(a, t,M, σ)

Data: (a, t,M) is an n-element MODULAR SUBSET SUM instance, σ ∈ (0, 1]
Result: Iterates over up to Θ∗(2n/M) solutions of (a, t,M) while using space O∗(2σn)

1 begin
2 if σ ≥ 1/4 then
3 Report up to Θ∗(2n/M) solutions using the Shroeppel-Shamir algorithm;
4 return;

5 Choose α ∈ (0, 1), β ∈ (0, 1) appropriately (according to Theorem 4) based on σ;
6 Let M ′ be a factor of M of magnitude Θ(2βn);
7 for s′ = 0, 1, . . . ,M ′ − 1 do
8 Allocate an empty lookup table;
9 Let l = (a1, a2, . . . , aαn) be the first αn items of a;

10 Let r = (aαn+1, aαn+2, . . . , an) be the remaining (1− α)n items of a;
11 for y ∈ GENERATESOLUTIONS(l, s′,M ′, σ

α
) do

12 Let s =
∑αn

i=1 aiyi mod M ;
13 Store [s→ y] in the lookup table;

14 for z ∈ GENERATESOLUTIONS(r, t− s′,M ′, σ
1−α

) do
15 Let s = t−

∑n
i=αn+1 aizi modM ;

16 foreach [s→ y] in the lookup table do
17 Report solution x = (y, z);
18 if at least Θ∗(2n/M) solutions reported then
19 Stop iteration and return;

20 Release the lookup table;

Definition 3. An instance (a, t,M) of MODULAR SUBSET SUM consists of a vector
a ∈ Zn

≥0, a target t ∈ Z≥0, and a modulus M ∈ Z≥1. A solution of (a, t,M) is a
vector x ∈ {0, 1}n such that

∑n
i=1 aixi ≡ t (mod M).

The reason why we transfer to the modular setting is that the recursive dissection
strategy extensively uses the fact that we have available a sufficiently rich family of
homomorphisms to split the search space. In particular, in the modular setting this cor-
responds to the modulusM being “sufficiently divisible” (in a sense to be made precise
later) to obtain control of the recursion.

Pseudocode for the main algorithm is given in Algorithm 1. In addition to the mod-
ular instance (a, t,M), the algorithm accepts as further input the space parameter
σ ∈ (0, 1].

The key high-level idea in the algorithm is to “meet in the middle” by splitting an
instance of n items to two sub-instances of αn items and (1−α)n items, guessing (over
a smaller modulusM ′ that dividesM ) what the sum should be after the first and before
the second sub-instance, and then recursively solving the two sub-instances subject to
the guess. Figure 2 illustrates the structure of the algorithm.

We continue with some further high-level remarks.
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Fig. 2. Illustration of the recursive dissections made by the algorithm

1. In the algorithm, two key parameters α and β are chosen, which control how the
MODULAR SUBSET SUM instance is subdivided for the recursive calls. The precise
choice of these parameters is given in Theorem 4 below, but at this point the reader
is encouraged to simply think of them as some parameters which should be chosen
appropriately so as to optimize running time.

2. The algorithm also chooses a factor M ′ of M such that M ′ = Θ(2βn). The exis-
tence of sufficient factors at all levels of recursion is established in Section 3.

3. The algorithm should be viewed as an iterator over solutions. In other words, the
algorithm has an internal state, and a next item functionality that we tacitly use by
writing a for-loop over all solutions generated by the algorithm, which should be
interpreted as a short-hand for repeatedly asking the iterator for the next item.

4. The algorithm uses a “bailout mechanism” to control the running time and space
usage. Namely, each recursive call will bail out after Θ∗(2n/M) solutions are re-
ported. (The precise bailout bound has a further multiplicative factor polynomial in
n that depends on the top-level value of σ.) A preliminary intuition for the bound is
that this is what one would expect to receive in a particular congruence class mod-
ulo M if the 2n possible sums are randomly placed into the congruence classes.

As a warmup to the analysis, let us first observe that, if we did not have the bailout
step in line 19, correctness of the algorithm would be more or less immediate: for any
solution x of (a, t,M), let s =

∑αn
i=1 aixi mod M . Then, when s′ = s mod M ′ in

the outer for-loop (line 7), by an inductive argument we will find y and z in the two
separate recursive branches and join the two partial solutions to form x.



52 P. Austrin et al.

The challenge, of course, is that without the bailout mechanism we lack control over
the resource consumption of the algorithm. Even though we have applied isolation to
guarantee that there are not too many solutions of the top-level instance (a, t), it may
be that some branches of the recursion generate a huge number of solutions, affecting
both running time and space (since we store partial solutions in a lookup table).

Let us then proceed to analyzing the algorithm with the bailout mechanism in place.
The two main claims are as follows.

Theorem 4 (†). Given a space budget σ ∈ (0, 1] andM ≥ 2n, if in each recursive step
of Algorithm 1 the parameters α and β are chosen as

α = 1− τ(σ) and β = 1− τ(σ) − σ , (2)

then the algorithm runs in O∗(2τ(σ)n) time and O∗(2σn) space.

Theorem 5. For every σ ∈ (0, 1] there is a randomized algorithm that runs in time
polynomial in n and chooses a top-level modulus M ≥ 2n so that Algorithm 1 reports
a solution of the non-modular instance (a, t) with high probability over the choices of
M , assuming that at least one and at most O(1) solutions exist and that log t = O(n).

We prove Theorem 5 in Section 3; the proof of Theorem 4 appears in the full version of
this conference abstract.

Let us however here briefly discuss the specific choice of α and β in Theorem 4.
We arrived at (2) by analyzing the recurrence relation describing the running time of
Algorithm 1. Unfortunately this recurrence in its full form is somewhat complicated,
and our process of coming up with (2) involved a certain amount of experimenting and
guesswork. We do have some guiding (non-formal) intuition which might be instructive:

1. One needs to make sure that α− β ≤ σ. This is because for a random instance, the
left subinstance is expected to have roughly 2(α−β)n solutions, and since we need
to store these there had better be at most 2σn of them.

2. Since β ≥ α − σ and β has a very direct impact on running time (due to the 2βn

time outer loop), one will typically want to set α relatively small. The tension here
is of course that the smaller α becomes, the larger 1 − α (that is, the size of the
right subinstance) becomes.

3. Given this tension, setting α− β = σ is natural.

So in an intuitive sense, the bottleneck for space comes from the left subinstance, or
rather the need to store all the solutions found for the left subinstance (this is not tech-
nically true since we give the right subinstance 2σn space allowance as well), whereas
the bottleneck for time comes from the right subinstance, which tends to be much larger
than the left one.

3 Choice of Modulus and Analysis of Correctness

In this section we prove Theorem 5, giving the correctness of the dissection algorithm.
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3.1 The Dissection Tree

Now that we have the choice of α and β in Algorithm 1, we can look more closely at
the recursive structure of the algorithm. To this end, we make the following definition.

Definition 4 (Dissection tree). For σ ∈ (0, 1], the dissection treeDT (σ) is the ordered
binary tree defined as follows. If σ ≥ 1/4 then DT (σ) is a single node. Otherwise, let
α = 1 − τ(σ). The left child of DT (σ) is DT (σ/α), and the right child of DT (σ) is
DT (σ/(1− α)).

σ = 0.0500 τ = 0.7167  

α = 0.2833 β = 0.2333 γ = 0.2333

σ = 0.1765 τ = 0.5490  

α = 0.4510 β = 0.2745 γ = 0.0778

σ = 0.0698 τ = 0.6744  

α = 0.3256 β = 0.2558 γ = 0.1833

σ = 0.3913 σ = 0.3214
σ = 0.2143 τ = 0.5238  

α = 0.4762 β = 0.2619 γ = 0.0611

σ = 0.1034 τ = 0.6207  

α = 0.3793 β = 0.2759 γ = 0.1333

σ = 0.4500 σ = 0.4091 σ = 0.2727
σ = 0.1667 τ = 0.5556  

α = 0.4444 β = 0.2778 γ = 0.0833

σ = 0.3750 σ = 0.3000

Fig. 3. The dissection tree DT (0.05). For each internal node v, we display the parameters
σv, τv = τ (σv), αv , βv, γv as defined in Section 3.

Figure 3 shows DT (0.05). The dissection tree captures the essence of the recursive
behaviour of the dissection algorithm when being run with parameter σ. The actual
recursion tree of the dissection algorithm is huge due to the for-loop over s′ in line 7,
but if we consider a fixed choice of s′ in every recursive step then the recursion tree of
the algorithm becomes identical to the corresponding dissection tree.

Lemma 1. The recursion depth of Algorithm 1 is the height of DT (σ). In particular,
the recursion depth is a constant that depends only on σ.

We now describe how to choose a priori a random M that is “sufficiently divisible”
for the algorithm’s desires, and to show correctness of the algorithm.

Fix a choice of the top-level value σ ∈ (0, 1]. Consider the corresponding dissection
tree DT (σ). For each node v of DT (σ), write σv for the associated σ value. For an
internal node v let us also define αv = 1 − τ(σv) and βv = 1 − σv − τ(σv). In
other words, if v1 and v2 are the two child nodes of v, then σv1 = σv/αv and σv2 =
σv/(1− αv). Finally, define γv = βv · σ/σv .
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Observe that each recursive call made by Algorithm 1 is associated with a unique
internal node v of the dissection tree DT (σ).

Lemma 2. Each recursive call associated with an internal node v requires a factorM ′

of magnitude Θ∗(2γvn).

Proof. Telescope a product of the ratio σp/σu for a node u and its parent p along the
path from v to the root node. Each such σp/σu is either αu or 1 − αu depending on
whether it is a left branch or right branch—precisely the factor by which n decreases.

3.2 Choosing the Modulus

The following lemma contains the algorithm that chooses the random modulus.

Lemma 3. For every σ ∈ (0, 1] there exists a randomized algorithm that, given integers
n and b = O(n) as input, runs in time polynomial in n and outputs for each internal
node v ∈ DT (σ) random moduli Mv, M ′v such that, for the root node r ∈ DT (σ),
Mr ≥ 2b, and furthermore for every internal node v:

1. M ′v is of magnitude Θ(2γvn),
2. Mv = M ′p, where p is the parent of v,
3. M ′v divides Mv, and
4. for any fixed integer 1 ≤ Z ≤ 2b, the probability thatM ′v divides Z is O∗(1/M ′v).

Proof. Let 0 < λ1 < λ2 < · · · < λk be the set of distinct values of γv ordered by
value, and let δi = λi − λi−1 be their successive differences (where we set λ0 = 0
so that δ1 = λ1). Since DT (σ) depends only σ and not on n, we have k = O(1). For
each 1 ≤ i ≤ k independently, let pi be a uniform random prime from the interval
[2δin, 2 · 2δin].

For a node v such that γv = λj , let M ′v =
∏j

i=1 pj . Condition 1 then holds by
construction. The values of Mv are determined for all nodes except the root through
condition 2; for the root node r we set Mr = p0M

′
r, where p0 is a random prime of

magnitude 2Θ(n) to make sure that Mr ≥ 2b.
To prove condition 3 note that for any node v with parent p, we need to prove that

M ′v dividesM ′p. Let jv be such that λjv = γv and jp such that λjp = γp. Noting that the
value of γv decreases as one goes down the dissection tree, it then holds that jv < jp,

from which it follows that M ′v =
∏jv

i=1 pi divides M ′p =
∏jp

i=1 pi.
Finally, for condition 4, again let j be such that λj = γv , and observe that in order

for Z to divide M ′v it must have all the factors p1, p2, . . . , pj . For each 1 ≤ i ≤ j, Z
can have at most log2 Z

δin
= O(1) different factors between 2δin and 2 · 2δin, so by the

Prime Number Theorem, the probability that pi dividesZ is at mostO(n2−δin). As the
pi’s are chosen independently the probability that Z divides all of p1, p2, . . . , pj (that
is, M ′v) is O(nj2−(δ1+δ2+...+δj)n) = O(nk2−γvn) = O∗(1/M ′v), as desired.
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3.3 Proof of Correctness

We are now ready to prove the correctness of the entire algorithm, assuming prepro-
cessing and isolation has been carried out.

Theorem 5 (restated). For every σ ∈ (0, 1] there is a randomized algorithm that runs
in time polynomial in n and chooses a top-level modulus M ≥ 2n so that Algorithm 1
reports a solution of the non-modular instance (a, t) with high probability over the
choices of M , assuming that at least one and at most O(1) solutions exist and that
log t = O(n).

Proof. The modulus M is chosen using Lemma 3, with b set to max{n, lognt} =
Θ(n). Specifically, it is chosen as Mr for the root node r of DT (σ).

Fix a solution x∗ of (a, t), that is,
∑n

i=1 aix
∗
i = t. (Note that this is an equality over

the integers and not a modular congruence.) By assumption such an x∗ exists and there
are at most O(1) choices.

If σ ≥ 1/4, the top level recursive call executes the Schroeppel–Shamir algorithm
and a solution will be discovered. So suppose that σ ∈ (0, 1/4).

For an internal node v ∈ DT (σ) consider a recursive call associated with v, and let
Lv ⊆ [n] (resp. Rv ⊆ [n]) be the set of αvnv (resp. (1 − αv)nv) indices of the items
that are passed to the left (resp. right) recursive subtree of v. Note that these indices are
with respect to the top-level instance, and that they do not depend on the choices of s′

made in the recursive calls. Let s′v ∈ {0, . . . ,M ′v−1} be the choice of s′ that could lead
to the discovery of x∗, in other words s′v =

∑
i∈Lv

aix
∗
i mod M ′v. Let Iv = Lv ∪Rv.

For a leaf node v ∈ DT (σ) and its parent p, define Iv = Lp if v is a left child of p,
and Iv = Rp if v is a right child of p.

We now restrict our attention to the part of the recursion tree associated with the
discovery of x∗, or in other words, the recursion tree obtained by fixing the value of s′

to s′v in each recursive step, rather than trying all possibilities. This restricted recursion
tree is simply DT (σ). Thus the set of items av = (ai)i∈Iv and the target tv associated
with v is well-defined for all v ∈ DT (σ).

Denote by B(v) the event that (av, tv,Mv) has more than O∗(2nv/Mv) solutions.
Clearly, ifB(v) does not happen then there can not be a bailout at node v.1 We will show
that ∪v∈DT (σ)B(v) happens with probability o(1) over the choices of {Mv,M

′
v} from

Lemma 3, which thus implies that x∗ is discovered with probability 1− o(1). Because
DT (σ) has O(1) nodes, by the union bound it suffices to show that Pr[B(v)] = o(1)
for every v ∈ DT (σ).

Consider an arbitrary node v ∈ DT (σ). There are two types of solutions xv of the
instance (av, tv,Mv) associated with v.

First, a vector xv ∈ {0, 1}nv is a solution if
∑nv

i=1 av,ixv,i =
∑

i∈Iv aix
∗
i . (Note

that this is an equality over the integers, not a modular congruence.) Because there are
at mostO(1) solutions to the top-level instance, there are at mostO(1) such vectors xv.
Indeed, otherwise we would have more than O(1) solutions of the top level instance, a
contradiction.

1 The converse is not true though: it can be that B(v) happens but a bailout happens in one (or
both) of the two subtrees of v, causing the recursive call associated with node v to not find all
the solutions to (av, tv,Mv) and thereby not bail out.
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Second, consider a vector xv ∈ {0, 1}nv such that
∑nv

i=1 av,ixv,i �=
∑

i∈Iv aix
∗
i

(over the integers). Let Z = |
∑nv

i=1 av,ixv,i −
∑

i∈Iv aix
∗
i | �= 0. Such a vector xv is a

solution of (av, tv,Mv) only if Mv divides Z . Since log t = O(n) and 1 ≤ Z ≤ nt, by
Lemma 3, item 4 we have that Z is divisible by Mv with probability O∗(1/Mv).

From the two cases it follows that the expected number of solutionsxv of (av, tv,Mv)
is E = O∗(2nv/Mv). (We remark that the degree in the suppressed polynomial de-
pends on σ but not on n.) Setting the precise bailout threshold to n · E, we then have
by Markov’s inequality that Pr[B(v)] = Pr[#solutions xv > nE] < 1/n = o(1), as
desired. Since v was arbitrary, we are done.
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Abstract. In this paper we extend recent results of Fiorini et al. on the
extension complexity of the cut polytope and related polyhedra. We first
describe a lifting argument to show exponential extension complexity
for a number of NP-complete problems including subset-sum and three
dimensional matching. We then obtain a relationship between the ex-
tension complexity of the cut polytope of a graph and that of its graph
minors. Using this we are able to show exponential extension complexity
for the cut polytope of a large number of graphs, including those used in
quantum information and suspensions of cubic planar graphs.

1 Introduction

In formulating optimization problems as linear programs (LP), adding extra
variables can greatly reduce the size of the LP [5]. However, it has been shown
recently that for some polytopes one cannot obtain polynomial size LPs by
adding extra variables [8, 12]. In a recent paper [8], Fiorini et.al. proved such
results for the cut polytope, the traveling salesman polytope, and the stable set
polytope for the complete graph Kn. In this paper, we extend the results of
Fiorini et. al. to several other interesting polytopes. We do not claim novelty of
our techniques, in that they have been used - in particular - by Fiorini et. al.
Our motivation arises from the fact that there is a strong indication that NP-
hard problems require superpolynomial sized linear programs. We make a step
in this direction by giving a simple technique that can be used to translate NP-
completeness reductions into lower bounds for a number of interesting polytopes.
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Cut polytope and related polytopes. The cut polytope arises in many applica-
tion areas and has been extensively studied. Formal definitions of this polytope
and its relatives are given in the next section. A comprehensive compilation of
facts about the cut polytope is contained in the book by Deza and Laurent [7].
Optimization over the cut polytope is known as the max cut problem, and was
included in Karp’s original list of problems that he proved to be NP-hard. For
the complete graph with n nodes, a complete list of the facets of the cut polytope
CUT�

n is known for n ≤ 7 (see Section 30.6 of [7]), as well as many classes of
facet producing valid inequalities. The hypermetric inequalities (see Chapter 28
of [7]) are examples of such a class, and it is known that an exponential number
of them are facet inducing. Less is known about classes of facets for the cut poly-
tope of an arbitrary graph, CUT�(G). Interest in such polytopes arises because
of their application to fundamental problems in physics.

In quantum information theory, the cut polytope arises in relation to Bell
inequalities. These inequalities, a generalization of Bell’s original inequality [4],
were introduced to better understand the nonlocality of quantum physics. Bell
inequalities for two parties are inequalities valid for the cut polytope of the
complete tripartite graph K1,n,n. Avis, Imai, Ito and Sasaki [2] proposed an op-
eration named triangular elimination, which is a combination of zero-lifting and
Fourier-Motzkin elimination (see e.g. [14]) using the triangle inequality. They
proved that triangular elimination maps facet inducing inequalities of the cut
polytope of the complete graph to facet inducing inequalities of the cut poly-
tope of K1,n,n. Therefore a standard description of such polyhedra contains an
exponential number of facets.

In [1] the method was extended to obtain facets of CUT�(G) for an arbitrary
graph G from facets of CUT�

n . For most, but not all classes of graphs, CUT�(G)
has an exponential number of facets. An interesting exception are the graphs with
no K5 minor. Results of Seymour for the cut cone, extended by Barahona and
Mahjoub to the cut polytope (see Section 27.3.2 of [7]), show that the facets
in this case are just projections of triangle inequalities. It follows that the max
cut problem for a graph G on n vertices with no K5 minor can be solved in
polynomial time by optimizing over the semi-metric polytope, which has O(n3)

facets. Another way of expressing this is to say that in this case CUT�(G) has
O(n3) extension complexity, a notion that will be discussed next.

Extended formulations and extensions Even for polynomially solvable problems,
the associated polytope may have an exponential number of facets. By work-
ing in a higher dimensional space it is often possible to decrease the number of
constraints. In some cases, a polynomial increase in dimension can yield an expo-
nential decrease in the number of constraints. The previous paragraph contained
an example of this.

For NP-hard problems the notion of extended formulations also comes into
play. Even though a natural LP formulation of such a problem has exponential
size, this does not rule out a polynomial size formulation in higher dimensions.

In a groundbreaking paper, Yannakakis [13] proved that every symmetric LP
for the Travelling Salesman Problem (TSP) has exponential size. Here, an LP
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is called symmetric if every permutation of the cities can be extended to a
permutation of all the variables of the LP that preserves the constraints of the
LP. This result refuted various claimed proofs of a polynomial time algorithm for
the TSP. In 2012 Fiorini et al. [8] proved that the max cut problem also requires
exponential size if it is to be solved as an LP. Using this result, they were able
to drop the symmetric condition, required by Yannakakis, to get a general super
polynomial bound for LP formulations of the TSP.

2 Preliminaries

We briefly review basic notions about the cut polytope and extension complexity
used in later sections. Definitions, theorems and other results for the cut poly-
tope stated in this section are from [7], which readers are referred to for more
information. We assume that readers are familiar with basic notions in convex
polytope theory such as convex polytope, facet, projection and Fourier-Motzkin
elimination. Readers are referred to a textbook [14] for details.

Throughout this paper, we use the following notation. For a graph G = (V,E)
we denote the edge between two vertices u and v by uv, and the neighbourhood
of a vertex v by NG(v). We let [n] denote the integers {1, 2, ..., n}.

2.1 Cut Polytope and Its Relatives

The cut polytope of a graph G = (V,E), denoted CUT�(G), is the convex hull
of the cut vectors δG(S) of G defined by all the subsets S ⊆ V in the |E|-
dimensional vector space RE . The cut vector δG(S) of G defined by S ⊆ V is
a vector in RE whose uv-coordinate is defined as follows: δuv(S) = 1 if |S ∩
{u, v}| = 1, and δuv(S) = 0 otherwise, for uv ∈ E. If G is the complete graph
Kn, we simply denote CUT�(Kn) by CUT�

n .
We now describe an important well known general class of valid inequalities

for CUT�
n (see, e.g. [7], Ch. 28).

Lemma 1. For any n ≥ 2, let b1, b2, ..., bn be any set of n integers. The following
inequality is valid for CUT�

n :∑
1≤i<j≤n

bibjxij ≤
⌊

(
∑n

i=1 bi)
2

4

⌋
(1)

The inequality (1) is called hypermetric (respectively, of negative type) if the
integers bi can be partitioned into two subsets whose sum differs by one (re-
spectively, zero). A simple example of hypermetric inequalities are the triangle
inequalities, obtained by setting three of the bi to be +/- 1 and the others to
be zero. The most basic negative type inequality is non-negativity, obtained by
setting one bi to 1, another one to -1, and the others to zero.

For any fixed n there are an infinite number of hypermetric inequalities, but
all but a finite number are redundant. This non-trivial fact was proved by Deza,
Grishukhin and Laurent (see [7] Section 14.2) and allows us to define the hyper-
metric polytope, which we will refer to again later.
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2.2 Extended Formulations and Extensions

An extended formulation (EF) of a polytope P ⊆ Rd is a linear system

Ex+ Fy = g, y � 0 (2)

in variables (x, y) ∈ Rd+r, where E,F are real matrices with d, r columns re-
spectively, and g is a column vector, such that x ∈ P if and only if there exists
y such that (2) holds. The size of an EF is defined as its number of inequalities
in the system.

An extension of the polytope P is another polytope Q ⊆ Re such that P is the
image of Q under a linear map. Define the size of an extension Q as the number
of facets of Q. Furthermore, define the extension complexity of P , denoted by
xc (P ), as the minimum size of any extension of P.

In this paper we make use of the machinery developed and described in Fiorini
et al. [8]. The reader is referred to the original paper for more details and proofs.
The main result of Fiorini et al. [8] that we are interested in is the following

Theorem 1 (Lower Bound Theorem). xc(CUT�
n ) � 2Ω(n).

2.3 Proving Lower Bounds for Extension Complexity

We now note two observations that are useful in translating results from one
polytope to another. Let P and Q be two polytopes. Then,

Proposition 1. If P is a projection of Q then xc (P ) � xc(Q).

Proposition 2. If P is a face of Q then xc (P ) � xc(Q).

Naturally there are many other cases where the conditions of neither of these
propositions apply and yet a lower bounding argument for one polytope can
be derived from another. However we would like to point out that these two
propositions already seem to be very powerful. In fact, out of the three lower
bounds proved by Fiorini et. al. [8] two (for TSP(n) and STAB(n)) use these
propositions, while the lower bound on the cut polytope is obtained by showing
a direct embedding of a matrix with high nonnegative rank in the slack matrix
of CUT�

n .
In the next section we will use these propositions to show superpolynomial

lower bounds on the extension complexities of polytopes associated with four
NP-hard problems.

3 Polytopes for Some NP-Hard Problems

In this section we use the method of Section 2.3 to show super polynomial
extension complexity for polytopes related to the following problems: subset sum,
3-dimensional matching and stable set for cubic planar graphs. These proofs are
derived by applying this method to standard reductions from 3SAT, which is
our starting point.
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3SAT. For any given 3SAT formula Φ with n variables in conjunctive normal
form define the polytope SAT(Φ) as the convex hull of all satisfying assignments.
That is, SAT(Φ) := conv({x ∈ [0, 1]n | Φ(x) = 1}). The following theorem and
its proof are implicit in [8], who make use of the correlation polytope.

Theorem 2. For every n there exists a 3SAT formula Φ with O(n) variables
and O(n) clauses such that xc(SAT(Φ)) � 2Ω(

√
n).

Subset Sum. The subset sum problem is a special case of the knapsack problem.
Given a set of n integers A = {a1, . . . , an} and another integer b, the subset sum
problems asks whether any subset of A sums exactly to b. Define the subset
sum polytope SUBSETSUM(A, b) as the convex hull of all characteristic vectors
of the subsets of A whose sum is exactly b. That is, SUBSETSUM(A, b) :=
conv ({x ∈ [0, 1]n |

∑n
i=1 aixi = b})

The subset sum problem then is asking whether SUBSETSUM(A, b) is empty
for a given set A and integer b. Note that this polytope is a face of the knapsack
polytope KNAPSACK(A, b) := conv ({x ∈ [0, 1]n |

∑n
i=1 aixi � b})

In this subsection we prove that the subset sum polytope (and hence the
knapsack polytope) can have superpolynomial extension complexity.

Theorem 3. For every 3SAT formula Φ with n variables and m clauses, there
exists a set of integers A(Φ) and integer b with |A| = 2n+ 2m such that SAT(Φ)
is the projection of SUBSETSUM(A, b).

Proof. Suppose formula Φ is defined in terms of variables x1, x2, ..., xn and
clauses C1, C2, ..., Cm. We use a standard reduction from 3SAT to subset sum
(e.g., [6], Section 34.5.5). We define A(Φ) and b as follows. Every integer in A(Φ)
as well as b is an (n + m)-digit number (in base 10). The first n bits corre-
spond to the variables and the last m bits correspond to each of the clauses.
bj = 1, if 1 � j � n and bj = 4, if n+ 1 � j � n+m.

Next we construct 2n integers vi, v′i for i ∈ {1, . . . , n}, and 2m integers si, s′i
for i ∈ {1, . . . ,m} as follows: vij = 1, if j = i or xi ∈ Cj−n and 0, otherwise,
v′ij = 1, if j = i or xi ∈ Cj−n and 0, otherwise. sij = 1, if j = n + i and 0
otherwise, s′ij = 2, if j = n+ i and 0 otherwise.

We define the set A(Φ) = {v1, . . . , vn, v′1, . . . , v′n, s1, . . . , sm, s′1, . . . , s′m}.
Consider the subset-sum instance with A(Φ), b as constructed above for any

3SAT instance Φ. Let S be any subset of A(Φ). If the elements of S sum exactly
to b then it is clear that for each i ∈ {1, . . . , n} exactly one of vi, v′i belong
to S. Furthermore, setting xi = 1 if vi ∈ S or xi = 0 if v′i ∈ S satisfies every
clause. Thus the characteristic vector of S restricted to {v1, . . . , vn} is a satisfying
assignment for the corresponding SAT formula.

Also, if Φ is satisfiable then the instance of subset sum thus created has a
solution corresponding to each satisfying assignment: Pick vi if xi = 1 or v′i
if xi = 0 in an assignment. Since the assignment is satisfying, every clause is
satisfied and so the sum of digits corresponding to each clause is at least 1.
Therefore, for a clause Cj either sj or s′j or both can be picked to ensure that
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the sum of the corresponding digits is exactly 4. Note that there is unique way
to do this.

This shows that every vertex of the subset sum polytope SUBSETSUM(A(Φ), b)
projects to a vertex of SAT(Φ) and every vertex of SAT(Φ) can be lifted to a ver-
tex of SUBSETSUM(A(Φ), b),. The projection is defined by dropping every coor-
dinate except those corresponding to the numbers vi in the reduction described
above. The lifting is defined by the procedure in the proceeding paragraph. Hence,
SAT(Φ) is a projection of SUBSETSUM(A(Φ), b). ��

Combining the preceding two theorems we obtain the following.

Corollary 1. For every natural number n � 1, there exists an instance A, b of
the subset-sum problem with O(n) integers in A such that xc(SUBSETSUM(A, b))
� 2Ω(

√
n).

3d-Matching. Consider a hypergraph G = ([n], E), where E contains triples
for some i, j, k ∈ [n] where i, j, k are distinct. A subset E′ ⊆ E is said to be a
3-dimensional matching if all the triples in E′ are disjoint. The 3d-matching poly-
tope 3DM(G) is defined as the convex hull of the characteristic vectors of every
3d-matching ofG. That is, 3DM(G) := conv({χ(E′) | E′ ⊆ E is a 3d-matching})

The 3d-matching problem asks: given a hypergraph G, does there exist a 3d-
matching that covers all vertices? This problem is known to be NP -complete
and was one of Karp’s 21 problems proved to be NP -complete [9, 11]. Note that
this problem can be solved by linear optimization over the polytope 3DM(G)
and therefore it is to be expected that 3DM(G) would not have a polynomial
size extended formulation.

Now we show that the 3d-matching polytope has superpolynomial extension
complexity in the worst case. We prove this using a standard reduction from
3SAT to 3d-Matching used in the NP-completeness proof for the later problem
(See [9]). The form of this reduction, which is very widely used, employs a gadget
for each variable along with a gadget for each clause. We omit the exact details
for the reduction here because we are only interested in the correctness of the
reduction and the variable gadget (See Figure 1).

� �
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� ��� � ���

� �� �

�� ���

�� ���

�� ���
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� ���
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	 ���

	 ���
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	 ���

Fig. 1. Gadget for a variable

In the reduction, any 3SAT formula
Φ is converted to an instance of a 3d-
matching by creating a set of hyper-
edges for every variable (See Figure
1) along with some other hyperedges
that does not concern us for our re-
sult. The crucial property that we re-
quire is the following: any satisfiable
assignment of Φ defines some (possi-
bly more than one) 3d-matching. Fur-
thermore, in any maximal matching
either only the light hyperedges or
only the dark hyperedges are picked,
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corresponding to setting the corresponding variable to, say, true or false respec-
tively. Using these facts we can prove the following:

Theorem 4. Let Φ be an instance of 3SAT and let H be the hypergraph obtained
by the reduction above. Then SAT(Φ) is the projection of a face of 3DM(H).

Proof. Let the number of hyperedges in the gadget corresponding to a vari-
able x be 2k(x). Then, the number of hyperedges picked among these hyper-
edges in any matching in H is at most k(x). Therefore, if y1, . . . , y2k(x) denote
the variables corresponding to these hyperedges in the polytope 3DM(H) then∑2k(x)

i=1 yi � k(x) is a valid inequality for 3DM(H). Consider the face F of
3DM(H) obtained by adding the equality

∑2k(x)
i=1 yi = k(x) corresponding to

each variable x appearing in Φ.
Any vertex of 3DM(H) lying in F selects either all light hyperedges or all

dark hyperedges. Therefore, projecting out all variables except one variable yi
corresponding to any fixed (arbitrarily chosen) light hyperedge for each variable
in Φ gives a valid satisfying assignment for Φ and thus a vertex of SAT(Φ).
Alternatively, any vertex of SAT(Φ) can be extended to a vertex of 3DM(H)
lying in F easily.

Therefore, SAT(Φ) is the projection of F. ��

The number of vertices in H is O(nm) where n is the number of variables
and m the number of clauses in Φ. Considering only the 3SAT formulae with
high extension complexity, we have m = O(n). Therefore, considering only the
hypergraphs arising from such 3SAT formulae and using propositions 1 and 2,
we have that

Corollary 2. For every natural number n � 1, there exists a hypergraph H with
O(n) vertices such that xc(3DM(H)) � 2Ω(n1/4).

Stable Set for Cubic Planar Graphs. Now we show that STAB(G) can have
superpolynomial extension complexity even when G is a cubic planar graph. Our
starting point is the following result proved by Fiorini et. al. [8].

Theorem 5 ([8]). For every natural number n � 1 there exists a graph G such
that G has O(n) vertices and O(n) edges, and xc(STAB(G)) � 2Ω(

√
n).

We start with this graph and convert it into a cubic planar graph G′ with O(n2)
vertices and extension complexity at least 2Ω(

√
n).

Making a Graph Planar. For making any graph G planar without reduc-
ing the extension complexity of the associated stable set polytope, we use the
same gadget used by Garey, Johnson and Stockmeyer [10] in the proof of NP-
completeness of finding maximum stable set in planar graph. Start with any
planar drawing of G and replace every crossing with the gadget H with 22 ver-
tices shown in Figure 2 to obtain a graph G′. The following theorem shows that
STAB(G) is the projection of a face of STAB(G′).
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u1 w1
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w2
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v1 v′1

v2

v′2

Fig. 2. Gadget to remove a crossing

Table 1. Values of sij

i\j 2 1 0
2 9 8 7
1 9 9 8
0 8 8 7

Using the face F := STAB(G′)
⋂k

i=1{x |
∑

j∈VHi
xj = 9}, where k denotes

the number of gadgets itroduced in G and a proof similar to that of Theorem 1,
we have the following:

Theorem 6. Let G be a graph and let G′ be obtained from a planar embedding
of G by replacing every edge intersection with a gadget shown in Figure 2. Then,
STAB(G) is the projection of a face of STAB(G′).

Since for any graph G with O(n) edges, the number of gadgets introduced
k � O(n2), we have that the graph G′ in the above theorem has at most O(n2)
vertices and edges. Therefore we have a planar graph G′ with at most O(n2)
vertices and O(n2) edges. This together with Theorem 5, Theorem 6 and propo-
sitions 1 and 2 yields the following corollary.

Corollary 3. For every n there exists a planar graph G with O(n2) vertices and
O(n2) edges such that xc(STAB(G)) � 2Ω(

√
n).

Making a Graph Cubic. Suppose we have a graph G and we transform it
into another graph G′ by performing one of the following operations:

ReduceDegree: Replace a vertex v of G of degree δ � 4 with a cycle
Cv = (v1, v

′
1, . . . , vδ, v

′
δ) of length 2δ and connect the neighbours of v to

alternating vertices (v1, v2, . . . , vδ) of the cycle.
RemoveBridge: Replace any degree two vertex v in G by a four cycle
v1, v2, v3, v4. Let u and w be the neighbours of v in G. Then, add the edges
(u, v1) and (v3, w). Also add the edge (v2, v4) in the graph.
RemoveTerminal: Replace any vertex with degree either two or three with
a triangle. In case of degree one, attach any one vertex of the triangle to the
erstwhile neighbour.

Theorem 7. Let G be any graph and let G′ be obtained by performing any num-
ber of operation ReduceDegree, RemoveBridge, or RemoveTerminal described
above on G. Then STAB(G) is the projection of a face of STAB(G′).

Proof. Omitted. ��

If G has n vertices and m edges then first applying operation ReduceDegree until
every vertex has degree at most 3, and then applying operation RemoveBridge
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and RemoveTerminal repeatedly until no vertex of degree 0, 1 or 2 is left, pro-
duces a graph that has O(n + m) vertices and O(n + m) edges. Furthermore,
any application of the three operations do not make a planar graph non-planar.
Combining this fact with Theorem 7, Corollary 3 and propositions 1 and 2, we
have

Corollary 4. For every natural number n � 1 there exists a cubic planar graph
G with O(n) vertices and edges such that xc(STAB(G)) � 2Ω(n1/4).

4 Extended Formulations for CUT�(G) and Its Relatives

We use the results described in the previous section to obtain bounds on the
extension complexity of the cut polytope of graphs. We begin by reviewing the
result in [8] for CUT�

n using a direct argument that avoids introducing correlation
polytopes. For any integer n ≥ 2 consider the integers b1 = ... = bn−1 = 1 and
bn = 3− n. Let b = (b1, b2, ..., bn) be the corresponding n-vector. Inequality (1)
for this b-vector is easily seen to be of negative type and can be written as

∑
1≤i<j≤n−1

xij ≤ 1 + (n− 3)

n−1∑
i=1

xin. (3)

Lemma 2. Let S be any cut in Kn not containing vertex n and let δ(S) be its
corresponding cut vector. Then the slack of δ(S) with respect to (3) is (|S|− 1)2.

Let us label a cut S by a binary n-vector a where ai = 1 if and only if i ∈ S. Under
the conditions of the lemma we observe that the slack (|S| − 1)2 = (aT b − 1)2

since we have an = 0 and b1 = ... = bn−1 = 1. Now consider consider any
subset T of {1, 2, ..., n − 1} and set bi = 1 for i ∈ T , bn = 3 − |T | and bi = 0
otherwise. We form a 2n−1 by 2n−1 matrix M as follows. Let the rows and
columns be indexed by subsets T and S of {1, 2, ..., n − 1}, labelled by the n-
vectors a and b as just described. A straight forward application of Lemma 2
shows that M = M∗(n− 1). Hence using the fact that the non-negative rank of
a matrix is at least as large as that of any of its submatrices, we have that every
extended formulation of CUT�

n has size 2Ω(n).
Recall the hypermetric polytope, defined in Section 2.1, is the intersection

of all hypermetric inequalities. As remarked, nonnegative type inequalities are
weaker than hypermetric inequalities and so valid for this polytope. In addition
all cut vertices satisfy all hypermetric inequalities. Therefore M = M∗(n− 1) is
also a submatrix of a slack matrix for the hypermetric polytope on n points. So
this polytope also has extension complexity at least 2Ω(n).

Finally let us consider the polytope, which we denote Pn, defined by the
inequalities used to define rows of the slack matrix M above. We will show that
membership testing for Pn is co-NP-complete.

Theorem 8. Let Pn be the polytope defined as above, and let x ∈ Rn(n−1)/2.
Then it is co-NP-complete to decide if x ∈ Pn.
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Proof. Clearly if x /∈ Pn then this can be witnessed by a violated inequality of
type (3), so the problem is in co-NP.

To see the hardness we do a reduction from the clique problem: given graph
G = (V,E) on n vertices and integer k, does G have a clique of size at least k?
Since a graph has a clique of size k if and only if its suspension has a clique of
size k + 1 we can assume wlog that G is a suspension with vertex vn connected
to every other vertex.

Form a vector x as follows: xij = 1/k, if j = n, xij = 2/k, if j �= n and ij ∈ E
and xij = −n2otherwise

Fix an integer t, 2 ≤ t ≤ n and consider a b-vector with bn = 3− t, and with
t− 1 other values of bi = 1. Without loss of generality we may assume these are
lablelled 1, 2, ..., t−1. Let T be the induced subgraph of G on these vertices. The
corresponding non-negative type inequality is:

∑
1≤i<j≤t−1

xij ≤ 1 + (t− 3)

t−1∑
i=1

xin. (4)

Suppose T is a complete subgraph. Then the left hand side minus the right hand
side of (4) is 2(t−1)(t−2)

2k − (1 + (t−3)(t−1)
k ) = t−k−1

k . This will be positive if and
only if t ≥ k + 1, in which case x violates (4). On the other hand if T is not a
complete subgraph then the left hand side of (4) is always negative and so the
inequality is satisfied. Therefore x satisfies all inequalities defining rows of M if
an only if G has no clique of size at least k. ��

Cut polytope for minors of a graph. A graph H is a minor of a graph G
if H can be obtained from G by contracting some edges, deleting some edges
and isolated vertices, and relabeling. In the introduction we noted that if an n
vertex graphG has noK5-minor then CUT�(G) has O(n3) extension complexity.
The following Lemma shows that the extension complexity of a graph G can be
bounded from below in terms of its largest clique minor.

Lemma 3. Let G be a graph and let H be obtained by deleting an edge of G,
or deleting a vertex of G, or contracting an edge of G, Then, xc(CUT�(G)) �
xc(CUT�(H)).

Proof. Omitted. ��

Therefore, we get the following theorem that can be proved by induction over a
sequence of minor-producing steps.

Theorem 9. Let G be a graph and H be a minor of G. Then, xc(CUT�(G)) �
xc(CUT�(H)).

Using the above theorem together with the result of [8] that the extension com-
plexity of CUT�(Kn) is at least 2Ω(n) we get the following result.

Corollary 5. The extension complexity of CUT�(G) for a graph G with a Kn

minor is at least 2Ω(n).
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Using Theorem 9 and the fact that Kn+1 is a minor ofK1,n,n we can immediately
prove that the Bell inequality polytopes mentioned in the introduction have
exponential complexity.

Corollary 6. The extension complexity of CUT�(K1,n,n) is at least 2Ω(n).

Cut Polytope for K6 minor-free graphs. Let G = (V,E) be any graph with
V = {1, . . . , n}. Consider the suspension G′ of G obtained by adding an extra
vertex labelled 0 with edges to all vertices V .

Theorem 10. Let G = (V,E) be a graph and let G′ be a suspension over G.
Then STAB(G) is the projection of a face of CUT�(G′).

Proof. The polytope STAB(G) is defined over variables xi corresponding to each
of the vertex i ∈ V whereas the polytope CUT�(G′) is defined over the variables
xij for i, j ∈ {0, . . . , n}.

Any cut vertex C of CUT�(G′) defines sets S, S such that xij = 1 if and only
if i ∈ S, j ∈ S. We may assume that 0 ∈ S by interchanging S and S if necessary.
For every edge e = (k, l) in G consider an inequality he := {x0k +x0l−xkl � 0}.
It is clear that he is a valid inequality for CUT�(G′) for all edges e in G.
Furthermore, he is tight for a cut vector in G′ if and only if either k, l do not lie
in the same cut set or k, l both lie in the cut set containing 0. Therefore consider
the face F := CUT�(G′)

⋂
(i,j)∈E{x0i + x0j − xij = 0}.

Each vertex in F can be projected to a valid stable set in G by projecting
onto the variables x01, x02, . . . , x0n. Furthermore, every stable set S in G can
be extended to a cut vector for G′ by taking the cut vector corresponding to
S, S ∪ {0}. Therefore, STAB(G) is the projection of a face of CUT�(G′). ��

Using this theorem it is easy to show the existence of graphs with a linear
number of edges that do not have K6 as a minor and yet have a high extension
complexity. In fact we get a slightly sharper result.

Theorem 11. For every n � 2 there exists a graph G which is a suspension of
a planar graph and for which xc(CUT�(G)) � 2Ω(n1/4).

Proof. Consider a planar graphG = (V,E) with n vertices for which xc(STAB(G))

� 2Ω(n1/4). Corollary 3 guarantees the existence of such a graph for every n. Then
the suspension overG has n+1 vertices and a linear number of edges. The theorem
then follows by applying Theorem 10 together with Propositions 1 and 2. ��

The above theorem provides a sharp contrast for the complexity of the cut
polytope for graphs in terms of their minors. As noted in the introduction, for
any K5 minor-free graph G with n vertices CUT�(G) has an extension of size
O(n3) whereas the above result shows that there are K6 minor free graphs whose
cut polytope has superpolynomial extension complexity.
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5 Concluding Remarks

We have a given a simple polyhedral procedure for proving lower bounds on the
extension complexity of a polytope. Using this procedure and some standard NP-
completeness reductions we were able to prove lower bounds on the extension
complexity of various well known combinatorial polytopes. For the cut polytope
in particular, we are able to draw a sharp line, in terms of minors, for when this
complexity becomes super polynomial.

Nevertheless the procedure is not completely ‘automatic’ in the sense that any
NP-completeness reduction of a certain type, say using gadgets, automatically
gives a result on the extension complexity of related polytopes. This would seem
to be a very promising line of future research.
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Abstract. Cohen et al. developed an O(log n)-approximation algorithm
for minimizing the total hub label size (�1 norm). We give O(log n)-
approximation algorithms for the problems of minimizing the maximum
label (�∞ norm) and minimizing �p and �q norms simultaneously.

1 Introduction

Modern applications, such as computing driving directions and other location-
based services, require very fast point-to-point shortest path algorithms. Al-
though Dijkstra’s algorithmsolves this problem in near-linear time [14] on di-
rected and in linear time on undirected graphs [16], some applications require
sublinear distance queries. This motivates preprocessing-based algorithms, which
yield sublinear queries on some graph classes (e.g., [10,13]). In particular, Gavoille
et al. [13] introduced distance labeling algorithms. These algorithms precompute
labels for each vertex such that the distance between any two vertices s and t
can be computed using only their labels.

A prominent case of this paradigm is hub labeling (HL): the label of v consists
of a collection of vertices (the hubs of v) with their distances from v. Hub labels
satisfy the cover property : for any two vertices s and t, there exists a vertex w
on the shortest s–t path that belongs to both the label of s and the label of t.
Given this information, distance queries are easy to implement: for two vertices
v and w, we compute the sums of the v-u and u-w distances over vertices u in
the intersection of the labels of v and w, and return the minimum value found.

Cohen at al. [9] gave an O(log n)-approximation algorithm for the smallest-
size labeling, where n denotes the number of vertices and the size of the labeling
is the sum of the number of hubs in the vertex labels. (This also minimizes the
average label size.) The algorithm uses an elegant reduction to the set-cover
problem [8]. At each step, the algorithm solves a maximum density subgraph
problem, which can be done exactly using parametric flows [12] or by a faster
approximation algorithm [15]. HL leads to the fastest implementation of the
point-to-point shortest path queries in road networks [1], and works well on
some other network types [2]. This motivates further theoretical study of HL.

In this paper we consider approximation algorithms for the optimization prob-
lem of producing small labels. Since minimizing the average label size may poten-
tially lead to imbalanced solutions where the label of some vertices are relatively
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large, a natural objective is to minimize the maximum HL size, which determines
the worst-case query time. We give a polynomial time algorithm that finds an
O(log n) approximation of the maximum label size, where n is the size of the
graph. Our algorithm is based on reducing the HL problem to a non-standard set
covering problem, where the objective is to cover all the elements using sets in
such a way that no element is covered too often. Our algorithm is combinatorial,
and is based on exponential cost functions, as in [4] and many other contexts.

If we consider a vector whose components correspond to the number of vertex
hubs, then the total label size is the 
1norm of this vector and the maximum
label size is the 
∞ norm. This brings a natural generalization of the above
problems, that of optimizing the 
p norm of this vector. Our second result is an
O(log n)-approximation algorithm for this more general problem. This is also a
combinatorial algorithm, where we naturally use degree-p polynomials instead
of exponential cost functions, as in [5].

In applications, there are multiple criteria that one would like to be good
for—one wants to simultaneously minimize the total label size (i.e., the space
needed to store the labels) and the maximum label size (i.e., the worst-case query
time). This is a bi-criteria optimization problem, with the optimal solutions on
the Pareto-optimal curve. E.g., suppose that there is a labeling with total label
size T1 and maximum label size T∞ (e.g., a labeling on the Pareto curve). Our
third result is a polynomial-time algorithm to find a labeling with the total
label size O(T1 logn) and the maximum label size O(T∞ logn). In fact, our
techniques easily extend to a more general result: a logarithmic approximation
to the problem of maintaining k moments of the label sizes. Specifically, given
any set P = {p1, p2, . . . , pk}, and values Ti such that there exists a labeling
whose 
pi norm is at most Ti for each pi ∈ P , we can find a labeling whose 
pi

norm is at most O(k logn) · Ti for all pi ∈ P .

1.1 Related Work

There is much work on minimizing multiple norms of a vector. For some prob-
lems, one can find a single solution that is simultaneously good against the
best solution for each 
p norm individually. E.g., Azar et al. [7] considered the
restricted-assignment machine scheduling problem, and gave a solution which 2-
approximates the best solution for each 
p norm; this was extended and improved
by [6,3]. In some settings, it is possible to get better bounds for 
p norm mini-
mization for different values of p: e.g., [5] show p-competitive online algorithms
for minimizing the 
p norms of machine loads. However, the low-load set covering
problem has a hardness of Ω(log n) for all p, which means new techniques would
be needed to get better approximations for HL.

2 Definitions and Notation

In the HL problem, we are given a graph G = (V,E) with a distinguished
shortest path Pij between each pair of vertices i, j ∈

(
V
2

)
. A hub labeling (HL) is
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an assignment of labels Li ⊆ V for each vertex i ∈ V such that for any i, j ∈ V ,
we have some vertex u ∈ Li ∩ Lj that lies on the path Pij . For the purposes
of this paper, the graph can be directed or undirected, and the path Pij can
be an arbitrary path—we will not use the fact that it is a shortest i-j path. If
we consider the vector L = (L1, L2, . . . , Ln), then we are interested in finding
labelings with small 
p norms: ‖L‖p := (

∑n
i=1 L

p
i )1/p and ‖L‖∞ := maxi∈V Li.

We assume p ∈ [1, logn], since 
logn approximates all higher 
p norms to within
constant factors.

We will reduce HL to a low-load set-covering problem (LSC), which is defined
as follows. As in the usual set cover problem, we are given a set system (U,F),
where F = {S1, S2, . . .} is a collection of subsets of the universe U with N
elements. A sub-collection C ⊆ F is a set cover if ∪S∈CS = U , every element of
U is contained in some set in C. The elements in U are either relevant (denoted
by R ⊆ U) or irrelevant (those in U \ R): for any relevant element e ∈ R,
let AC(e) = #{S ∈ C | e ∈ S} be the load of element e under this set cover
C, the number of sets in C that contain e. (Imagine the irrelevant elements to
always have load 0.) For any p ∈ [1,∞), the 
p norm of the loads is ‖AC‖p =
(
∑

e∈RAC(e)
p)1/p; the 
∞ norm is ‖AC‖∞ = maxe∈RAC(e). To reiterate: we

have to cover all the elements, relevant or otherwise, but we count the load only
for the relevant elements.

Our algorithms use approximate max-density oracles. A max-density oracle
takes costs ce for relevant elements e ∈ R and a set X ⊆ U of elements already

covered, and outputs a set S ∈ F that minimizes
∑

e∈S∩R ce
|S\X| . In Section 3.2 we

show how to implement the oracle for LSC instances arising from HL.

3 Application to Shortest Path Labels

Our motivating application is HL 
p norm optimization. We show a reduction
from the label optimization problem to LSC and an implementation of an ap-
proximate max-density oracle for the corresponding LSC problem.

3.1 From Labels to Set Covers

We model an instance I of HL as the following instance I ′ of LSC.

– The elements are all {i, j} pairs, and all vertices — i.e., U :=
(
V
2

)
∪ V . The

elements of V are relevant and the elements of
(
V
2

)
are irrelevant.

– For each vertex x ∈ V , let Qx be the set of pairs {i, j} ∈
(
V
2

)
such that

x ∈ Pij . For any set of pairs Q ⊆
(
V
2

)
, let V (Q) denote the vertices that

lie in at least one of these pairs—i.e., V (Q) = ∪{i,j}∈Q{i, j}. Now for each
x ∈ V , for each Q ⊆ Qx, add the set Q ∪ V (Q) to the collection F . Note
that this may give us exponentially many sets.

– The problem is to compute a set cover C ⊆ F minimizing the 
p norm ‖AC‖p
(which only involves the load on relevant elements, i.e. vertices).
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Lemma 1. Minimizing the 
p norm of an instance I of HL is equivalent to
minimizing the 
p norm of the corresponding instance I ′ of LSC.

Proof. Given a solution for I, construct a solution for I ′ as follows. For each
x ∈ V , take Sx ⊆

(
V
2

)
to be the pairs that x “covers” in this solution—i.e.,

pairs {i, j} such that x lies in Li ∩ Lj and also on the path Pij . Picking the
sets Sx ∪ V (Sx), one for each x, we get a cover C for I ′. If the label of i does
not contain x, then i �∈ V (Sx). Thus only the vertices x in the label of i can
contribute to AC(i), and therefore AC(i) ≤ |Li|.

Given a solution C to I ′, we construct a label L for I as follows. If I ′ contains
a set (Q ∪ V (Q)) for some Q ⊆ Qx, then add x to Li for all i ∈ V (Q). Since all
pairs in U are covered by C, for each pair {i, j}, the labels Li and Lj intersect
at some vertex of Pij . For every vertex i, we add x to Li only if there is a set
(Q∪V (Q)) ∈ C with Q ⊆ Qx that covers i (i.e. i ∈ V (Q)). Thus |Li| ≤ AC(i). ��

3.2 Max-Density Oracle

In this section we show how to construct approximate max-density oracles for
the LSC instances I ′ obtained via a reduction from HL. Recall that there are
costs ci ≥ 0 for all i ∈ V (relevant elements). Let us divide U into UP (the pairs
in V ), and UV (the vertices in V ); recall that UV are the relevant elements. For
any set S ⊆ U , we now use SP := S ∩ UP and SV := S ∩ UV .

Lemma 2. Solving minS∈F

∑
v∈SV

cv

|SP \XP | gives a 3-approximate max-density oracle.

Proof. For any T ⊆ U , we have T = TP ∪TV . By the structure of our sets, if some
pair {i, j} ∈ TP then it must be the case that {i, j} ⊆ TV . Hence, V (TP ) ⊆ TV .
Moreover, |TP ∪ V (TP )| ≤ 3|TP |, since each pair in TP can contribute at most
both its endpoints to V (TP ). Combining these facts, we get |TP | ≤ |T | ≤ 3|TP |.
This implies the lemma. ��

Recall that the Cohen et al. [9] algorithm approximates the 
1 norm of the labels.
Their algorithm uses a subroutine for the maximum density subgraph problem.
We use a subroutine for the weighted variant of the problem: given a non-negative

cost function c : V →R+, the density of a graph H is μ(H) = |E(H)|
c(V (H)) . Note that

μ(H) is undefined if c(V (H)) = 0. In this case if |E(H)| = 0 we define μ(H) = 0,
and otherwise μ(H) = ∞. The maximum density subgraph problem is to find a
vertex-induced subgraph of maximum density. This can be solved exactly using
network flow [12]. In the full version, we describe a generalization of the faster
2-approximation algorithm [15] for the unit-weight maximum density subgraph
to the weighted case.

Fix v ∈ V and a set X ⊆ U of covered elements. We define the v-center graph
Gv as follows. The vertex set of Gv is V . Two vertices i, j are connected in Gv

iff the pair {i, j} �∈ X and Pi,j � v, i.e., if v covers the pair.

Lemma 3. We can reduce minS∈F

∑
v∈SV

cv

|SP \XP | to n weighted maximum density

subgraph problems.
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Proof. Let S′ be some set of vertices. Suppose that we add a vertex v to the
labels of all vertices in S′. Then the edges in the subgraph of Gv induced by
S′ correspond to previously uncovered {i, j} pairs that become covered. So the
maximum density subgraph of Gv yields the set that minimizes the desired
expression over the sets that correspond to v. The result follows by minimizing
over all v (i.e., solving n weighted maximum density subgraph problems). ��

A ρ-approximate solution to the weighted maximum subgraph problem gives a
ρ-approximate minimum. Note that the results of this section extend to directed
graphs. In this case the center graphs will become bipartite, as in [9].

4 The �∞ Case: Minimizing the Maximum Load

In this section we investigate the problem of finding LSC C that approximately
minimizes the maximum load of any relevant element in U . Recall that we have
to cover the irrelevant elements (those in U \ R), even though we do not care
about the load on them. Suppose that we know the optimal load u = ‖AC∗‖∞;
we can enumerate over all the possible values of u. We show a combinatorial
greedy-like algorithm that achieves ρ = O(logN), where N = |U |.

Since the family F may consist of an exponential number of sets, and it may
not be possible to look over all sets to find the best one, we assume that we have
an α-approximate max-density oracle through which we access the set system.

Theorem 1. There exists a combinatorial algorithm that makes at most n calls
to an α-approximate max-density oracle, and finds a set cover C with element
loads AC(e) ≤ O(α logN) · ‖AC∗‖∞.

The algorithm is a multiplicative-weights algorithm. It proceeds in rounds, where
one set is added in each round. Let ε = 1/(8α). Let At(e) be the number of times
a relevant element e ∈ R has been covered at the beginning of round t; at the
very beginning of the process we have A1(e) = 0 for all e ∈ R. Define the round-t
cost of elements e ∈ R as ct(e) := (1 + ε)At(e)/u ·

(
(1 + ε)1/u − 1

)
; so the round-t

cost of set S is ct(S) :=
∑

e∈S∩R(1 + ε)At(e)/u ·
(
(1 + ε)1/u − 1

)
.

Note the sum is only over the relevant elements in S. The algorithm is simple:
consider the beginning of round t, when t − 1 sets have already been picked,
and let Xt be the elements already covered at this time. (Hence X1 = ∅.) If
all elements have not yet been covered (i.e., if Xt �= U), use the α-approximate
max-density oracle with costs ct(S) and the set Xt to obtain the next set.

For the analysis, define the potential at the beginning of round t to be Φ(t) :=∑
e∈R(1 + ε)At(e)/u. The potential at the beginning of round 1 is Φ(1) = N .

Lemma 4. If we pick set S in round t, then Φ(t+ 1)− Φ(t) = ct(S).

Proof. By the definition of the potential,

Φ(t+ 1) − Φ(t) =
∑
e∈R

(1 + ε)At+1(e)/u −
∑
e∈R

(1 + ε)At(e)/u
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=
∑

e∈S∩R

(1 + ε)(At(e)+1)/u − (1 + ε)At(e)/u =
∑

e∈S∩R

(1 + ε)At(e)/u
(
(1 + ε)1/u − 1

)
which is ct(S) by the definition of the round-t cost. ��

Lemma 5. At any round t, there exists a set S with cost-to-coverage ratio
ct(S)
|S\Xt| ≤

Φ(t)
|U\Xt| · 2ε.

Proof. The round-t cost of all the sets in the set cover C∗ is

∑
S∈C∗

ct(S) =
∑
S∈C∗

∑
e∈S∩R

(1 + ε)At(e)/u ·
(

(1 + ε)1/u − 1
)

(1)

=
∑
e∈R

[
(1 + ε)At(e)/u ·

(
(1 + ε)1/u − 1

)
·

∑
S∈C∗:e∈S

1

]
≤

∑
e∈R

(1 + ε)At(e)/u · 2ε/u · u ≤ Φ(t) · 2ε. (2)

(The equality in (1) uses the definition of ct(S), and (2) used u ≥ 1 and ε ≤ 1/4
and hence (1 + ε)1/u ≤ 1 + (ε/u)(1 + ε+ ε2 + · · · ) ≤ 1 + 2ε/u.) Since |U \Xt|
universe elements are not yet covered, and we could have chosen all the sets in
C∗ to cover these remaining elements at cost

∑
S∈C∗ ct(S), there exists some set

whose cost-to-coverage-ratio is at most Φ(t) · 2ε/(|U \Xt|). ��

Let us partition the rounds into phases: phase i begins in round t if the number
of uncovered elements is at most N/2i for the first time at the beginning of round
t. Hence phase 0 begins with round 1 (when the number of uncovered elements
is N/20 = N) and ends at the point we have covered half the elements, etc. Note
that some phases contain no rounds at all.

Lemma 6. If rounds a and b are the first and last rounds of some phase i, then
Φ(b + 1) ≤ 2 · Φ(a).

Proof. Consider the beginning of some round t ∈ {a, a+ 1, . . . , b} in phase i. By
Lemma 5 there exists a set with cost-to-coverage-ratio is at most Φ(t) · 2ε/(|U \
Xt|). Moreover, the α-approximate max-density oracle finds a set whose cost-

to-coverage ratio at most α times as much; i.e., at most 2αε Φ(t)
|U\Xt| ≤

1
4

Φ(t)
|U\Xt| ,

using the definition of ε = 1/(8α).
Since the potential Φ(t) is non-decreasing, and |U \ Xt| ≥ N/2i+1 in this

phase, this last expression is at most 1
4
Φ(b+1)
N/2i+1 . Moreover, we cover at most N/2i

elements in this phase, so the total cost incurred is at most 1
2Φ(b + 1). By

Lemma 4, the total cost incurred in the phase equals the change in potential, so
Φ(b + 1)− Φ(a) ≤ (1/2) · Φ(b + 1). This proves the lemma. ��

Proof of Theorem 1: We claim the potential at the end of the algorithm is at
most N2. Indeed, using Lemma 6, the potential at most doubles in each phase,
whereas the number of yet-covered elements at least halves. Hence, at the end
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of phase log2N , there are strictly less than N/2log2 N = 1 elements (i.e., zero
elements) remaining; the potential is at most 2log2 N · Φ(1) = N2.

Suppose the last round in which we pick a set is f−1. Then for the final poten-
tial to be at mostN2, it must be the case that for each e ∈ U , (1+ε)Af(e)/u ≤ N2.
This means that Af (e) ≤ u log1+ε(N

2) = O(logN)u/ε = O(α logN)u. ��

5 Simultaneous �1 and �∞ Norm Approximation

We can extend the results of Section 4 to find a set cover that simultaneously
has small maximum load and small average load. In this case, suppose we are
given non-negative values T and u such that there exists a set cover C∗ with∑

e∈RAC∗(e) ≤ T , and also AC∗(e) ≤ u for all relevant elements e ∈ R. We want
to find a cover C such that ‖AC‖1 ≤ T ·O(α logN), and ‖AC‖∞ ≤ u ·O(α logN).

For the algorithm, we use definitions of ct(e), ct(S), Φ(t), etc., from Section 4,
but redefine ε to be 1

24α . We define the d-cost as de = 1 for e ∈ R; so d(S) :=
|S ∩R| for any set S. The algorithm changes as follows: in round t, we now use
the α-approximate density oracle to pick a set S (approximately) minimizing
the “combined” ratio

ct(S) + ε(Φ(t)/T ) · d(S)

|S \Xt|
. (3)

For the analysis, consider the beginning of round t, and call a set S t-light if
d(S)
|S\Xt| ≤

2T
|U\Xt| , and t-heavy otherwise. Let C∗h denote the t-heavy sets in C∗,

and C∗l := C∗ \ C∗h the light sets.

Lemma 7. The number of elements from U \Xt covered by t-heavy sets in C∗
is at most 1

2 |U \Xt|.

Proof. The fraction of the remaining elements that any t-heavy set S covers is
|S\Xt|
|U\Xt| ≤

d(S)
2T . Hence, the total fraction of remaining elements that t-heavy sets

in C∗ cover is
∑

S∈C∗h
|S\Xt|
|U\Xt| ≤

∑
S∈C∗h

d(S)
2T ≤ 1/2. The last inequality is because∑

S∈C∗h
d(S) ≤

∑
S∈C∗ |S ∩R| ≤ T . ��

We can now modify Lemma 5 to say the following:

Lemma 8. At any round t, there exists a t-light set S with cost-to-coverage

ratio ct(S)
|S\Xt| ≤

Φ(t)
|U\Xt| · 4ε.

Proof. Let z := |U \Xt| denote the number of universe elements not yet covered.
Choosing all t-light sets in C∗ at cost

∑
S∈C∗l

ct(S), we would cover at least z/2

elements (by Lemma 7), hence there exists some set whose cost-to-coverage-ratio
is at most 2

z ·
∑

S∈C∗l
ct(S) ≤ 2

z ·
∑

S∈C∗ ct(S) ≤ 2
z ·Φ(t) ·2ε. using the calculations

as in Lemma 5. ��
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By Lemma 8, we infer there exists a set S whose combined cost-per-coverage
is

ct(S) + ε(Φ(t)/T ) · d(S)

|S \Xt|
≤ Φ(t) · 4ε+ ε(Φ(t)/T ) · 2T

|U \Xt|
=
Φ(t) · 6ε
|U \Xt|

.

Our α-approximate density oracle finds a set St with combined-cost-per-coverage
at most α · 6ε ·Φ(t)/|U \Xt| = 1

4Φ(t)/|U \Xt|. Since the combined cost is a sum
of non-negative quantities, we get

ct(St)

|St \Xt|
≤ 1

4

Φ(t)

|U \Xt|
and

d(St)

|St \Xt|
≤ 1

4ε

T

|U \Xt|
. (4)

The bound on ct(St)/|St \Xt| can be used in the same fashion as in Section 4 to
show that the potential function at most doubles during a phase, and there are at
most log2N phases, so the maximum load is at most O(α logN) · u. Moreover,
the d-cost incurred in any phase i is at most (N/2i) · 1

4ε ·
T

N/2i+1 = 1
2ε · T .

Summing over all log2N phases, and using ε = 1/(24α), we get the total d-cost
is
∑

S∈C |S ∩R| = ‖AC‖1 ≤ (12α log2N) · T .

Application to Shortest-Path Labelings. To use this result for shortest-path label-
ings, we would again use the same reduction and the same max-distance oracle
as in Section 3. We can try all the polynomially many guesses for u and T .

6 Minimizing �p Norms

We now turn to approximating 
p norms of the element loads for p ∈ [1, logN ].
Specifically, we want a set cover C with the 
p-norm of the loads ‖AC‖p only
logarithmically larger than ‖AC∗‖p for any other set cover C∗. (Recall that the
vectors AC and AC∗ are only defined on the relevant elements.) The round-t costs
are now cp,t(e) := (At(e) + 1)p −At(e)

p for e ∈ R; so

cp,t(S) :=
∑

e∈S∩R
((At(e) + 1)p −At(e)

p),

(the sum being only over the relevant items), and the algorithm picks a set that

(approximately) minimizes
cp,t(S)
|S\Xt| . Again, Xt is the set of elements covered prior

to round t. At(e) is the load of element e at the beginning of round t. To make the
analysis easier, we set A1(e) = p for all relevant elements e ∈ R. The potential
function is now a polynomial: Φp(t) :=

∑
e∈RAt(e)

p. It immediately follows that
if we pick set St in round t, Φp(t+1)−Φp(t) = cp,t(St). Initially Φp(1) = |R| ·pp;
we will have to deal with this issue.

Lemma 9. For b := (e − 1) and any t,
∑

S∈C∗ cp,t(S) ≤ b · p · Φp(t)(p−1)/p ·
‖AC∗‖p .

Proof. By the definition of cp,t(·), we know that∑
S∈C∗

cp,t(S) =
∑
S∈C∗

∑
e∈S∩R

((At(e) + 1)p −At(e)
p) ≤

∑
S∈C∗

∑
e∈S∩R

(e− 1) pAt(e)
p−1,
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(which follows from Fact 1 below and the observation that At(e) ≥ A1(e) ≥ p)

= (e− 1) p
∑
e∈R

[
At(e)

p−1
∑

S∈C∗:e∈S
1

]
= (e− 1) p

∑
e∈R

At(e)
p−1AC∗(e)

≤ (e− 1) p ‖At‖p−1p ‖AC∗‖p (by Hölder’s inequality)

≤ (e− 1) p · Φ(t)(p−1)/p · ‖AC∗‖p

Note that we used the fact that we initialized A1(e) ≥ p. ��

Fact 1 For any real r ≥ 1 and x ≥ r, (x+ 1)r − xr ≤ (e− 1) r xr−1.

Proof. Observe that (x+ 1)r − xr = xr((1 + x−1)r − 1), thus

xr
∞∑
j=1

(
r

j

)
x−j ≤ xr

∞∑
j=1

rj

j!
x−j ≤ xr r

x

∞∑
j=1

(r/x)j−1

j!
≤ r xr−1

∞∑
j=1

1

j!
≤ (e− 1) r xr−1,

where we used the inequality x ≥ r. ��

Corollary 1. At any time t, there exists a setSwith
cp,t(S)
|S\Xt| ≤

2b·p·Φp(t)
(p−1)/p·‖AC∗‖p
|U\Xt| .

Hence the max-density algorithm picks a set with cost-to-coverage ratio at most α
times that.

Proof. If there exists a set in C∗ that satisfies the above property, we are done.
Hence imagine that no set in C∗ satisfies it. Then∑

S∈C∗

|S \Xt|
|U \Xt|

≤
∑
S∈C∗

cp,t(S)

2b · p · Φp(t)(p−1)/p · ‖AC∗‖p
≤ 1

2
,

where the last inequality is from Lemma 9. But since all elements in U need to
be covered by C∗, this quantity is at least 1, a contradiction. ��

Lemma 10. For C produced by the algorithm, ‖AC‖p ≤ O(α logN) · ‖AC∗‖p.

Proof. We define phase i ∈ {0, 1, . . . , log2N} to consist of rounds t where |U \
Xt| ∈ ( N

2i+1 ,
N
2i ]. Let β := 2α b p. Let t∗ denote the last round where Φp(t∗)1/p ≤

4β‖AC∗‖p, and let i∗ denote the phase containing t∗. Note the starting potential
was Φp(1) = |R| · pp ≤ |R|βp ≤ βp‖AC∗‖pp; hence t∗ ≥ 1.

Consider any phase i ≥ i∗, and let I (resp., F ) denote the values of Φp at the
start (resp., end) of phase i. By our choice of t∗ and hence of i∗, it follows that
F 1/p ≥ Φp(t∗ + 1)1/p > 4β‖AC∗‖p. Moreover, the cost-to-coverage ratio of sets

picked in phase i is at most
β·F (p−1)/p·‖AC∗‖p

N/2i+1 (using Corollary 1), and at most

N/2i elements are covered in this phase. Consequently the total cost incurred
during phase i is at most 2β ·F (p−1)/p · ‖AC∗‖p; moreover, this total cost equals
the increase in potential, F − I. We can rewrite the resulting inequality as:

I
1
p ≥ F

1
p

(
1− 2β‖AC∗‖p

F
1
p

) 1
p

≥ F
1
p · e

−4β‖AC∗‖p

p·F
1
p ≥ F

1
p ·

(
1− 4β‖AC∗‖p

p · F 1
p

)
.
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The second inequality above uses 1 − x ≥ e−2x for 0 ≤ x ≤ 1/2; the final
inequality is by ey ≥ 1 + y for all y. This gives us that F 1/p− I1/p ≤ 4β

p · ‖AC∗‖p
for any phase i ≥ i∗. Now summing over all such phases i ≥ i∗ (there are at
most log2N of them), we obtain Φp(final)1/p − Φp(t∗)1/p ≤ 4β

p · log2N · ‖AC∗‖p.
This uses the fact that round t∗ lies in phase i∗ and Φp(·) is monotone non-
decreasing. Finally, using Φp(t∗) ≤ 4β‖AC∗‖p and that β = 2α b p, we have

Φp(final)1/p ≤ (4βp log2N + 4β) · ‖AC∗‖p = (4α b (log2N + p)) · ‖AC∗‖p. Since
p ≤ logN , this completes the proof. ��

Note that minimizing 
∞ is within constant factors of minimizing 
logN , so the
result subsumes that of Section 4. Moreover, this algorithm does not require us
to enumerate over guesses of the optimum load u.

7 Multiple Norms Simultaneously

The approach of the previous section naturally extends to give solutions that are
good with respect to multiple 
p norms; we now show how to handle two norms.
Specifically, given p, q ∈ [1, logN ], we want to find a cover C with ‖AC‖p ≤
O(α logN)‖AC∗‖p and ‖AC‖q ≤ O(α logN)‖AC∗‖q, where C∗ is some intended
“optimal” cover. We assume we know values P,Q such that ‖AC∗‖p ≈ P and
‖AC∗‖q ≈ Q.

We define the round-t costs cp,t and cq,t as in (6), and the potentials Φp(t)
and Φq(t) as in (6). We initialize the loads A1(e) to max{p, q} ≤ logN , and run
the algorithm where picking the set S minimizing the “combined” ratio:

1

|S \Xt|
·
(

cp,t(S)

p · Φp(t)(p−1)/p · P +
cq,t(S)

q · Φq(t)(q−1)/q ·Q

)
(5)

Lemma 11. At any time t, there exists a set S such that for both r ∈ {p, q},

cr,t(S)

|S \Xt|
≤ 3b · r · Φr(t)(r−1)/r · ‖AC∗‖r

|U \Xt|
.

Proof. Suppose each set S ∈ C∗ fails the inequality corresponding to either p or
q or both, and say C∗p , C∗q ⊆ C∗ denote the corresponding sets. Then

∑
r∈{p,q}

∑
S∈C∗r

|S \Xt|
|U \Xt|

≤
∑

r∈{p,q}

∑
S∈C∗r

cr,t(S)

3b · r · Φr(t)(r−1)/r · ‖AC∗‖r
≤ 1

3
+

1

3
,

where the last inequality uses Lemma 9. But since all elements in U are covered
by C∗, this should be at least 1, a contradiction. ��

Hence at each step t, there exists some set where the combined ratio objective
function (5) for the algorithm has value at most 6b

|U\Xt| . Thus the algorithm

will pick set St with objective function value at most α times greater, which

guarantees a set St with
cr,t(St)
|S\Xt| ≤ α · 6b·r·Φr(t)

(r−1)/r ·‖AC∗‖r
|U\Xt| for both r ∈ {p, q}.
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Finally, the analysis from Lemma 10 carries over virtually unchanged for both
p, q, the only difference being the definition β := 6bαr instead of 6.

The above algorithm extends to finding LSC that is within an O(αk logN)
factor of k different targets with respect to k different 
p norms p1, p2, . . . , pk.

7.1 Non-existence of Simultaneous Optimality

In this section we construct a family of graphs for which no labeling can be
simultaneously near-optimal for the total label size T ∗ and the maximum label
size A∗. For any labeling with the total size T and the maximum size M , either
T is polynomially bigger than T ∗ or M is polynomially bigger than M∗.

For a parameter k, the (undirected) graph has three sets of vertices, A =
{a1, a2, . . . , ak}, B = {b1, b2, . . . bk2}, and C = {cij | i ∈ [k2], j ∈ [k]}, of size
k, k2, and k3, respectively. Every vertex in A is connected to all vertices in
B. Vertices in C are partitioned into k2 groups of size k each. For every i, the
partition Ci = {cij | j ∈ [k]} corresponds to the vertex bi ∈ B. Each vertex in B
is connected to all k vertices in its group in C. There are no other edges in the
graph. All edges have length 1, except for the edges from a1 to B, which are of
length 1− ε. The total number of vertices of the graph is n = Θ(k3).

Observe that the shortest paths in the graph are as follows:

– For vertices a, a′ ∈ A, and every b ∈ B, the path a, b, a′ is a shortest a-a′

path. For any vertex a ∈ A, b ∈ B, the edge (a, b) is a shortest path. For any
a ∈ A and c ∈ Ci, the path a, bi, c is the unique shortest path.

– For vertices b, b′ ∈ B, the path b, a1, b
′ is the unique shortest path. For any

i, the unique shortest path between vertex bi ∈ B and any c ∈ Ci is the edge
(bi, c); for any c ∈ Ci′ �= Ci, the path bi, a1, bi′ , c is the unique shortest path.

– For vertices c, c′ in the same group Ci, the path c, bi, c
′ is the unique shortest

path. For c ∈ Ci and c′ ∈ Cj �= Ci, the path c, bi, a1, bj, c
′ is the unique

shortest path.

An O(k3)-size labeling is as follows. Each vertex is in its own label. In addition,
every vertex in A has all vertices in B in its label. Every vertex in B contains
a1 in its label. Every vertex c ∈ C has a1 in its label; moreover, if c belongs to
group Ci it has the corresponding vertex bi ∈ B its label. The total label size is
k · (k2 + 1) + 2 · k2 + 3 · k3 = O(k3). In this labeling, the vertices in A have labels
of size k2 + 1.

There is a different labeling with the maximum label size O(k). Each vertex
is in its own label. In addition, every vertex in the graph has all vertices of A
in its label. Moreover, if c belongs to group Ci it has the corresponding vertex
bi ∈ B its label. The total size of this labeling is Ω(k4).

Now consider a labeling L with the total size T and the maximum size M .
For a vertex a ∈ A, consider shortest paths to all vertices in C. The number of
vertices c ∈ C for which an a–c shortest path contains a vertex of L(a) different
from a is at most kM . Therefore labels of k3−kM vertices in C must contain a.
Thus T ≥ k(k3− kM), or T + k2M ≥ k4. Hence, if T = o(k4), then M = Ω(k2),
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and if M = o(k2), then T = Ω(k4). Therefore T or M is a factor Ω(n1/3) away
from the corresponding optima.
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13. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance Labeling in Graphs. Journal
of Algorithms 53, 85–112 (2004)

14. Goldberg, A.V.: A Practical Shortest Path Algorithm with Linear Expected Time.
SIAM Journal on Computing 37, 1637–1655 (2008)

15. Kortsarz, G., Peleg, D.: Generating Sparse 2-Spanners. J.Alg. 17, 222–236 (1994)
16. Thorup, M.: Undirected Single-Source Shortest Paths with Positive Integer Weights

in Linear Time. JACM 46, 362–394 (1999)



Improved Approximation Algorithms
for (Budgeted) Node-Weighted Steiner Problems
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Abstract. Moss and Rabani [13] study constrained node-weighted Steiner tree
problems with two independent weight values associated with each node, namely,
cost and prize (or penalty). They give an O(log n)-approximation algorithm for
the prize-collecting node-weighted Steiner tree problem (PCST)—where the goal
is to minimize the cost of a tree plus the penalty of vertices not covered by
the tree. They use the algorithm for PCST to obtain a bicriteria (2, O(log n))-
approximation algorithm for the Budgeted node-weighted Steiner tree problem—
where the goal is to maximize the prize of a tree with a given budget for its cost.
Their solution may cost up to twice the budget, but collects a factor Ω( 1

logn
) of

the optimal prize. We improve these results from at least two aspects.
Our first main result is a primal-dual O(log h)-approximation algorithm for

a more general problem, prize-collecting node-weighted Steiner forest (PCSF),
where we have h demands each requesting the connectivity of a pair of vertices.
Our algorithm can be seen as a greedy algorithm which reduces the number of
demands by choosing a structure with minimum cost-to-reduction ratio. This nat-
ural style of argument (also used by Klein and Ravi [11] and Guha et al. [9]) leads
to a much simpler algorithm than that of Moss and Rabani [13] for PCST.

Our second main contribution is for the Budgeted node-weighted Steiner tree
problem, which is also an improvement to Moss and Rabani [13] and Guha et
al. [9]. In the unrooted case, we improve upon an O(log2 n)-approximation of
[9], and present an O(log n)-approximation algorithm without any budget viola-
tion. For the rooted case, where a specified vertex has to appear in the solution
tree, we improve the bicriteria result of [13] to a bicriteria approximation ratio of
(1 + ε, O(log n)/ε2) for any positive (possibly subconstant) ε. That is, for any
permissible budget violation 1 + ε, we present an algorithm achieving a tradeoff
in the guarantee for prize. Indeed, we show that this is almost tight for the natural
linear-programming relaxation used by us as well as in [13].

1 Introduction

In the rapidly evolving world of telecommunications and internet, design of fast and
efficient networks is of utmost importance. It is not surprising, therefore, that the field
of network design has continued to be an active area of research since its inception

� Supported in part by NSF CAREER award 1053605, NSF grant CCF-1161626, ONR YIP
award N000141110662, DARPA/AFOSR grant FA9550-12-1-0423, and a University of Mary-
land Research and Scholarship Award (RASA).

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 81–92, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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several decades ago. These problems have applications not only in designing computer
and telecommunications networks, but are also essential for other areas such as VLSI
design and computational geometry [3]. Besides their appeals in these applications,
basic network design problems (such as Steiner Tree, TSP, and their variants) have been
the testbed for new ideas and have been instrumental in development of new techniques
in the field of approximation algorithms.

In parallel to the study by Moss and Rabani [13], this work focuses on graph-
theoretic problems in which two (independent) nonnegative weight functions are as-
sociated with the vertices, namely cost c(v) and prize (or penalty) π(v) for each vertex
v of the given graph G(V,E). The goal is to find a connected subgraph H of G that
optimizes a certain objective. We now summarize the four different problems, already
introduced in the literature. In the Net Worth problem (NW), the goal is to maximize
the prize ofH minus its cost1. It can be proved that this natural problem does not admit
any finite approximation algorithm (see the full version of this work). A similar, yet
better-known objective is that of minimizing the cost of the subgraph plus the penalty
of nodes outside of it (which is called Prize-Collecting Steiner Tree (PCST) in the liter-
ature). Two other problems arise if one restricts the range of either cost or prize in the
desired solution. In particular, the Quota problem tries to find the minimum-cost tree
among those with a total prize surpassing a given value, whereas the Budgeted problem
deals with maximizing the prize with a given maximum budget for the cost. The rooted
variants ask, in addition, that a certain root vertex be included in the solution. In the
k-MST problem, the goal is to find a minimum-cost tree with at least k vertices. In the
k-STEINER TREE problem, given a set of terminals, the goal is to find a minimum-cost
tree spanning at least k terminals. We show the following reductions missing from the
literature.

Theorem 1. Let α, 0 < α < 1, be a constant. The following statements are equivalent
(both for edge-weighted and node-weighted variants):

i There is an α-approximation algorithm for the rooted k-MST problem.
ii There is an α-approximation algorithm for the unrooted k-MST problem.

iii There is an α-approximation algorithm for the k-STEINER TREE problem.

Proof. Here we present the equivalence of (ii) and (iii) (see the full version of this work
for that of (i) and (ii)). We note that one way is clear by definition. To prove that (iii)
implies (ii), we give a cost-preserving reduction from k-STEINER TREE to k-MST. Let
< G = (V,E), T, k > be an instance of k-STEINER TREE with the set of terminals
T ⊆ V . Let n = |V |. For every terminal vt ∈ T , add n vertices at distance zero of vt.
Let k′ = kn + k and consider the solution to k′-MST on the new graph. Any subtree
with at most k−1 terminals have at most (k−1)n+n−1 = kn−1 vertices. Therefore
an optimal solution covers at least k terminals. Hence the reduction preserves the cost
of optimal solution.

These results improve the approximation ratio for k-Steiner tree. Previously, a
4-approximation algorithm was proved by [14] and a 5-approximation algorithm was
due to [4] who had also conjectured the presence of a 2 + ε-approximation algorithm.

1 The prize or cost of a subgraph is defined as the total prize or cost of its vertices, respectively
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The equivalence of k-Steiner tree and k-MST combined with the 2-approximation result
of Garg [7] leads to a 2-approximation algorithm for k-Steiner tree.

A more tractable version of the prize-collecting variant is the edge-weighted case in
which the costs (but not the prizes) are associated with edges rather than nodes. The
best known approximation ratio for the edge-weighted Steiner tree problem is 1.39 due
to Byrka et al. [5]. For the earlier work on edge-weighted variant we refer the reader to
the references of [5]. In this paper, unless otherwise specified all our graphs are node-
weighted and undirected.

1.1 Contributions and Techniques

Approximation Algorithm for PCSF. Klein and Ravi [11] were the first to give an
O(log h)-approximation algorithm for the SF problem. Later, Guha et al. [9] improved
the analysis of [11] by showing that the approximation ratio of the algorithm of [11] is
w.r.t. the fractional optimal solution for the ST problem. The ST problem is a special
case of SF where all demands share an endpoint. Very recently and independently of
our work, Chekuri et al. [2] give an algorithm with an approximation ratio of O(log n)
w.r.t. to the fractional solution for SF and higher connectivity problems. This immedi-
ately provides a reduction from PCSF to the SF problem: one can fractionally solve the
LP for PCSF and pay the penalty of every demand for which the fractional solution pays
at least half its penalty. Hence, the remaining demands can be (fractionally) satisfied by
paying at most twice the optimal solution. Therefore, one can make a new instance of
SF with only the remaining demands and get a solution within O(log n) factor of the
optimal solution using the SF algorithm.

We start off by presenting a simple primal-dual O(log h)-approximation algorithm
for the node-weighted prize-collecting Steiner forest (PCSF) problem where h is the
number of connectivity demands—see Theorem 2. Compared to the PCST algorithm
given by Moss and Rabani [13] and Konemann et al. [12], our algorithm for PCSF
solves a more general problem and it has a simpler analysis. A reader familiar with
the moat-growing framework2 may recall that algorithms in this framework (e.g., that
of Moss and Rabani [13] or Könemann et al. [12]) consist of a growth phase and a
pruning phase. A moat is a set of dual variables corresponding to a laminar set of
vertices containing terminals—vertices with a positive penalty. The algorithm grows the
moats by increasing the dual variables and adding other vertices gradually to guarantee
feasibility. In the edge-weighted Steiner tree problem, when two moats collide on an
edge, the algorithm buys the path connecting the moats and merges the moats. Roughly
speaking, the algorithm stops growing a moat when either it reaches the root, or its total
growth reaches the total prize of terminals inside it. This process is not quite enough to
obtain a good approximation ratio. At the end of the algorithm we may have paid too
much for connecting unnecessary terminals. Thus as a final step one needs to prune the
solution in a certain way to obtain the tight approximation ratio of 2− 1

n .
In the node-weighted problem, one obstacle is that (polynomially) many moats may

collide on a vertex. Handling the proper growth of the moats and the process to merge
them proves to be very sophisticated. This may have been the reason that for more than

2 Introduced by Agrawal, Klein, and Ravi (AKR) [1] and Goemans and Williamson (GW) [8].
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a decade no one noticed the flaw in the algorithm of Moss and Rabani [13]3. Indeed
the recently proposed algorithm by Könemann et al. [12] is even more sophisticated.
In our algorithm, not only do we completely discard the pruning phase, but we also
never merge the moats (thus intuitively, a moat forms a disk centered at a terminal). In
fact, our algorithm can be thought of as a simple greedy algorithm. Our algorithm runs
in iterations, and in each iteration several disks are grown simultaneously on different
endpoints of the demands. The growth stops at the largest possible radius where there
are no “overlaps” and no disk has run out of “penalty.” If the disks corresponding to
several endpoints hit each other, a set of paths connecting them is added to the solution
and all but one representative endpoint are removed for the next iteration. However, if a
disk is running out of penalty, the terminal at its center is removed for the next iteration.
The cost incurred at each iteration is a fraction of OPT, proportional to the fraction of
endpoints removed, hence the logarithmic term in the guarantee.

Although our primal-dual approach is different from the approach known for SF [11,9],
we indeed use the same style of argument to analyze our algorithm. The crux of these
algorithms is to reduce the number of components of the solution by using a structure
with minimum cost-to-reduction ratio. Besides the simplicity of this trend, it is im-
portant that by avoiding the pruning phase, these algorithms may lead to progress in
related settings such as streaming and online settings. The moat-growing approach of
Konemann et al. [12], however, allows a stronger lagrangian-preserving guarantee 4 for
PCST. This property is shown to be quite important for solving various problems such
as k-MST and k-Steiner tree (see e.g. [4,10]).

Approximation Algorithms for the Budgeted Problem. Using their algorithm for PCST,
Moss and Rabani developed a bicriteria5 approximation algorithm for the Budgeted
problem, one that achieves an approximation factor O(log n) on prize while violating
the budget constraint by no more than factor two [13]. We present in Theorem 3 a
modified pruning procedure that improves the bicriteria bound to (1 + ε, O(log n)/ε2);
in other words, if the algorithm is allowed to violate the budget constraint by only
a factor 1 + ε (for any positive ε), the approximation guarantee on the prize will be
O(log n)/ε2. In fact, we also show using the natural linear-programming relaxation
(used in [13] as well), that it is not possible to improve these bounds significantly—
see the full version. In particular, there are instances for which the fractional solution is
OPT/ε, however, no solution of cost at most 1 + ε times the budget has prize more than
O(OPT). Our integrality-gap construction fails if the instance is not rooted. Indeed, in
that case, we show how to obtain an O(log n)-approximation algorithm with no budget
violations—see Theorem 4. This improves the O(log2 n)-approximation algorithm of
Guha et al. [9].6 To get over the integrality gap of the LP formulation, we prove several

3 In private correspondence the authors of the original work have admitted that their algorithm
is flawed and that it cannot be fixed easily.

4 Let T denote the sets of vertices purchased by the algorithm of [12]. It is guaranteed that
c(T ) + log(n)π(V \T ) ≤ log(n)OPT.

5 An (α, β)-bicriteria approximation algorithm for the Budgeted problem finds a tree with total
prize at least 1

β
fraction of that of optimal solution and total cost at most α factor of the budget.

6 The O(log2 n)-approximation algorithm can be derived from the results in [9] with some
efforts, not as explicitly as cited by Moss and Rabani [13].
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structural properties for near-optimal solutions. By restricting the solution to one with
these properties, we use a bicriteria approximation algorithm as a black box to find a
near-optimal solution. Finally we use a generalization of the trimming method of [9] to
avoid violating the budget.

2 The Prize-Collecting Steiner Forest Problem

The starting point of the algorithm of Moss and Rabani [13] is a standard LP relaxation
for the rooted version. For the Quota and Budgeted problems they show that any (frac-
tional) feasible solution can be approximated by a convex combination of sets of nodes
connected (integrally) to the root. Given the support of such a convex combination, it
follows from an averaging argument that a proper set can be found. Thus the problem
comes down to finding the support of the convex combination. They show that given
a black-box algorithm which solves the PCST problem with the approximation factor
O(log n), one can obtain the support in polynomial time.

The main result of this section is a very simple, and maybe more elegant algorithm
for the classical problem of PCSF (and thus PCST). As mentioned before, using moats
and having a pruning phase lead to the main difficulty in the analysis of previous algo-
rithms. These seem to be a necessary evil for achieving a tight constant approximation
factor for the edge-weighted variant. Surprisingly, we show neither is needed in the
node-weighted variant. Instead of moats, we use dual disks which are centered on a
single terminal and we do not need a pruning phase.

2.1 Preliminaries

Consider a graph G = (V,E) with a node-weight function c : V → R≥0. For a subset
S ⊆ V , let c(S) :=

∑
v∈S c(v). In the Steiner Forest problem, given a set of demands

L = 〈(s1, t1), . . . , (sh, th)〉, the goal is to find a set of vertices X such that for every
demand i ∈ [h], si and ti are connected in G[X ]. The vertices si and ti are denoted as
the endpoints of the demand i. In PCSF a penalty (prize) πi ∈ R≥0 is associated with
every demand i ∈ [h]. If the endpoints of a demand are not connected in the solution,
we need to pay the penalty of the demand. The objective cost of a solution X ⊆ V is

PCSF(X) = c(X) +
∑

i∈[h]:i is not satisfied

πi.

A terminal is a vertex which is an endpoint of a demand. Let T denote the set of termi-
nals. We may assume that the cost of a terminal is zero. We also assume the endpoints
of all demands are different7 (thus |T | = 2h). For a pair of vertices u and v and a cost
function c, let dc(u, v) denote the length of the shortest path with respect to c connecting
u and v, including the cost of endpoints.

For a set of vertices S let δ(S) denote the set of vertices that are not in S but have
neighbors in S. A set S separates a demand i if exactly one of si and ti is in S. Let

7 Both assumptions are without loss of generality. For every demand (si, ti), attach a new vertex
si of cost zero to si and similarly attach a new vertex ti of cost zero to ti. Now interpret i as
the demand between si and ti. The optimal cost does not change.
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Si denote the collection of sets separating the demand i and let S =
⋃

i Si. For a set
S, define the penalty of S as half of the total penalty of demands separated by S, i.e.,
πL(S) = 1

2

∑
i:S∈Si πi. We may drop the index L when there is no ambiguity. The

PCSF problem can be formulated as the following standard integer program (IP):

Minimize
∑

v∈V \T
c(v)x(v) +

∑
S∈S

π(S)z(S)

∀i ∈ [h], S ∈ Si
∑

v∈δ(S)

x(v) +
∑

R|S⊆R∈Si

z(R) ≥ 1

x(v), z(S) ∈ {0, 1}

Given a solution X ⊆ V to the PCSF problem one can easily make a feasible solution
x to the IP with the same objective value as PCSF(X): since the cost of a terminal is
zero, we assume T ⊆ X . For every vertex v ∈ X set x(v) = 1 and for every connected
component CC of G[X ] set z(V \CC) = 1. It is also easy to verify since the cost of
a terminal is zero, any (integral) feasible solution x corresponds to a solution X ⊆ V
for the PCSF problem with (at most) the same cost. One may relax the IP by allowing
assignment of fractional values to the variables. Let OPT denote the objective value
of the optimal solution for the relaxed linear program (LP). The following is the dual
programD corresponding to the relaxed LP.

Maximize
∑
S∈S

y(S) (D)

∀v ∈ V
∑

S∈S:v∈δ(S)

y(S) ≤ c(v)

∀S ∈ S
∑
S′⊆S

∑
i:S,S′∈Si

yi(S
′) ≤ π(S)

yi(S) ≥ 0,y(S) =
∑

i:S∈Si

yi(S)

In the case of Steiner tree, the dual variables are defined w.r.t. a set S. However, in
Steiner forest, the dual variables are in the form yi(S), i.e., they are defined based on
a demand as well. This has been one source of the complexity of previous primal-dual
algorithms for Steiner forest problems. Interestingly, in our approach, we only need to
work with a simplified dual constructed as follows.

Cores and Simplified Duals Let c and L denote a node-weight function and a set of
demands, respectively. Let Zc denote the set of vertices with zero cost. We note that the
terminals are in Zc. A set C ⊆ V is a core if C is a connected component of G[Zc] and
contains a terminal (i.e., an endpoint of a demand in L). Let S(c,L) be the collection
of sets separating one core from the other cores, i.e., a set S is in S(c,L) if S contains a
core but has no intersection with other cores. For a set S ∈ S(c,L), let core(S) denote
the core inside S. Note that πL(S) = πL(core(S)). A simplified dual w.r.t. c and L is
the following programD(c,L).
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Maximize
∑
S∈S

y(S) (D(c,L))

∀v ∈ V
∑

S∈S(c,L):v∈δ(S)

y(S) ≤ c(v) (C1)

∀S ∈ S(c,L)
∑

S′:core(S)⊆S′⊆S
y(S′) ≤ πL(S) (C2)

y(S) ≥ 0

Observe that S(c,L) ⊆ S. Indeed D(c,L) is the same as D with only (much) fewer
variables. Thus the program D(c,L) is only more restricted than D. In the rest of the
paper, unless specified otherwise, by a dual we mean a simplified dual. When clear from
the context, we may omit the indices c and L.

Disks Consider a Dual Vector y Initialized to Zero. A disk of radius R centered at a
terminal t is the dual vector obtained from the following process: Initialize the set S to
the core containing t. Increase y(S) until for a vertex u the dual constraint C1 becomes
tight. Add u to S and repeat with the new S. Stop the process when the total growth (i.e.,
sum of the dual variables) reaches R. A disk is valid if y is feasible. In what follows,
by a disk we mean a valid disk unless specified otherwise.

A vertex v is inside the disk if dc(t, v) is strictly less than R. The continent of a disk
is the set of vertices inside the disk. Further, we say a vertex v is on the boundary of a
disk if it is not inside the disk but has a neighbor u such that dc(t, u) ≤ R. Note that u
is not necessary inside the disk. The following facts about a disk of radius R centered
at a terminal t can be derived from the definition:

Fact 1. The (dual) objective value of the disk is exactly R.

Fact 2. For every vertex inside the disk, the dual constraint C1 is tight.

Fact 3. If a set S does not include the center, then y(S) = 0. Further, if S is not a
subset of the continent, then y(S) = 0.

Let y1, . . . ,yk denote a set of disks. The union of the disks is simply a dual vector y
such that y(S) =

∑
i yi(S) for every set S ⊆ S. A set of disks are non-overlapping if

their union is a feasible dual solution (i.e., both set of constraints C1 and C2 hold). If
a vertex v is inside a disk, the corresponding dual constraint is tight. Thus for any set
S such that v ∈ δ(S), the dual variable y(S) cannot be increased. On the other hand
since the distance between v and the center is strictly less than the radius, there exists a
set containing v with positive dual value. This observation leads to the following.

Proposition 1. Let y be the union of a set of non-overlapping disks y1, . . . ,yk. A ver-
tex inside a disk cannot be on the boundary of another disk.

Proposition 1 implies that in the union of a set of non-overlapping disks, the continents
are pairwise far from each other. This intuition leads to the following .8

8 Due to the lack of space, we have omitted some of the proofs throughout the paper. We defer
the reader to the full version of this paper for the omitted proofs.
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Lemma 1. Suppose T ′ is a subset of terminals such that the distance between every
pair of them is non-zero. Let R denote the maximum radius such that the |T ′| disks of
radius R centered at terminals in T ′ are non-overlapping. Consider the union of such
disks. Either (i) the constraint C2 is tight for a continent; or (ii) the constraint C1 is
tight for a vertex on the boundary of multiple disks.

The final tool we need for the analysis of the algorithm states a precise relation between
the dual variables and the distance of a vertex on the boundary.

Lemma 2. Let v be a vertex on the boundary of a disk y of radius R centered at a
terminal t. We have

∑
S|v∈δ(S) y(S) = R− (dc(t, v)− c(v)).

2.2 An Algorithm for the PCSF Problem

The algorithm finds the solution X iteratively. Let Xi denote the set of vertices bought
after iteration i where X0 is the set of terminals. For every i, the modified cost function
ci is a copy of c induced by setting the cost of vertices in Xi−1 to zero, i.e., ci =
c[Xi−1 → 0]. At iteration i there is a set of active demands Li ⊆ L and the dual
program Di = D(ci,Li). The program Di is the simplified dual program w.r.t. the
modified cost function and the active demands. Note that Di is stricter than D, thus the
objective value of a feasible solution to Di is a lower bound for OPT. The algorithm
guarantees that for every i < j, Xi ⊆ Xj and Li is a superset of Lj .

The algorithm is as follows (see Algorithm 1). We initialize X0 = T , c1 = c, and
L1 = L. At iteration i, consider the cores formed w.r.t. ci and Li. Let Ti denote a set
which has exactly one terminal in each core (so the number of cores is |Ti|). The al-
gorithm finds the maximum radius Ri such that the |Ti| disks of radius Ri centered at
each terminal in Ti are non-overlapping w.r.t.Di. By Lemma 1 either the constraint C2
is tight for a continent S; or the constraint C1 is tight for a vertex v on the boundary
of multiple disks. In the former, deactivate every demand with exactly one endpoint in
core(S); pay the penalty of such demands and continue to the next iteration with the
remaining active demands. In the latter, let Lv denote the centers of the disks whose
boundaries contain v. For every terminal τ ∈ Lv buy the shortest path w.r.t. ci connect-
ing v to τ (and so to the core containing τ ). Deactivate a demand if its endpoints are now
connected in the solution and continue to the next iteration. The algorithm stops when
there is no active demand remaining; in which case it returns the final set of vertices
bought by the algorithm.

We bound the objective cost of the algorithm in each iteration separately. The follow-
ing theorem shows that the fraction of OPT we incur at each iteration is proportional to
the reduction in the number of cores after the iteration.

Theorem 2. The approximation ratio of Algorithm 1 is at most 2H2h where H2h is the
(2h)th harmonic number.

Proof. Observe that at each iteration, a core is a connected component of the solution
which contains an endpoint of at least one active demand. We distinguish between two
types of iterations: In Type I, Line 8 of Algorithm 1 is executed while in Type II, Line 15
is executed.
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Algorithm 1. The Prize-Collecting Steiner Forest Algorithm
Input: A graph G = (V,E), a set of demands L with penalties, and a cost function c.

1: Initialize X0 = T , L1 = L, c1 = c, and i = 1.
2: while |Li| > 0 do
3: Set ci = c[Xi−1 → 0] and construct the dual program Di with respect to ci and Li.
4: Construct Ti by choosing an arbitrary terminal from each core.
5: Let Ri be the maximum radius such that putting a disk of radius Ri centered at every

terminal in Ti is feasible w.r.t.Di.
6: if the constraint C2 is tight for a continent S then
7: Set Xi = Xi−1.
8: Set Li+1 = Li\ {j ∈ [h]| either sj ∈ core(S) or tj ∈ core(S)}.
9: else

10: Find a vertex v on the boundary of multiple disks for which constraint C1 is tight.
11: Let Lv denote the centers of the disks whose boundaries contain v.
12: Initialize Xi = Xi−1.
13: for all τ ∈ Lv do
14: Add the shortest path (w.r.t. ci) between τ and v to Xi.
15: Set Li+1 = Li\ {j ∈ [h]|dci+1(sj , tj) = 0}.
16: i = i+ 1.
17: Output Xi−1.

Observe that a demand is deactivated either at Line 8 or at Line 15. In the latter,
the endpoints of a demand are indeed connected in the solution. Thus we only need to
pay the penalty of a demand if it is deactivated in an iteration of Type I. Recall that at
Line 8, the penalty of core(S) is half the total penalty of demands cut by S. Thus the
total penalty we incur at that line is exactly 2πLi(S)

We now break the total objective cost of the algorithm into a payment Pi for each
iteration i as follows:

Pi =

{
2πLi(S) for Type I iterations executing Line 8 with the continent S;
c(Xi)− c(Xi−1) for Type II iterations.

Recall that |Ti| is the number of cores at iteration i. Observe that by Fact 1, at iteration
i the total dual vector has valueRi|Ti|. By the weak dualityRi ≤ OPT

|Ti| . For every i ≥ 1,
let hi = |Ti| − |Ti+1| denote the reduction in the number of cores after the iteration i.

Claim. Pi ≤ 2hiRi for every iteration i.

Proof. Fix an iteration i. Let y denote the union of disks of radius Ri centered at Ti.
We distinguish between the two types of the iteration:

– Type I. At Line 8, by deactivating all the demands crossing a core, we essen-
tially remove that core. Thus in such an iteration hi = 1. The objective cost of
the iteration is 2πLi(S). On the other hand, the constraint C1 is tight for S, i.e.,∑

S′⊆S y(S) = πLi(S). By Facts 1 and 3, the radius Ri equals
∑

S′⊆S y(S).
Therefore the objective cost is at most 2hiRi

– Type II. At line 15, we connect |Lv| cores to each other, thus reducing the number
of cores in the next iteration by at least hi ≥ |Lv| − 1. Recall that by Lemma 1,
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|Lv| ≥ 2 and hence hi ≥ 1. The total cost of connecting terminals in Lv to v is
bounded by ci(v) plus for every τ ∈ Lv, the cost of the path connecting τ to v
excluding ci(v). Thus Pi ≤ ci(v) +

∑
τ∈Lv

(dci(τ, v) − ci(v)). Now we write the
equation in Lemma 2 for every disk centered at a terminal in Lv:

|Lv|Ri =
∑
τ∈Lv

[dci(τ, v)− ci(v) +
∑

S|v∈δ(S),τ∈S
y(S)]

=
∑
τ∈Lv

[dci(τ, v)− ci(v)] + ci(v) ≥ Pi,

where the last equality follows since the constraint C1 is tight for v. Since the disks
are non-overlapping, by Fact 3, y(S) is positive only if it contains a single terminal
of Lv. This completes the proof since Pi ≤ |Lv|Ri ≤ (hi + 1)Ri ≤ 2hiRi.

Let X be the final solution of the algorithm. Note that |Ti+1| = |Ti| − hi and |T1| ≤
|T |. A simple calculation shows

PCSF(X) ≤
∑
i

Pi ≤
∑
i

2hiRi ≤ 2OPT
∑
i

hi
|Ti|

≤ 2OPT ·H|T |.

3 The Budgeted Steiner Tree Problem

In this section we consider the Budgeted problem in the node-weighted Steiner tree
setting. Recall that for a vertex v ∈ V , we denote the prize and the cost of the vertex by
π(v) and c(v), respectively. First we generalize the trimming process of Guha et al. [9]
which reduces the budget violation of a solution while preserving the prize-to-cost ratio.
We use this process to obtain a bicriteria approximation algorithm for the rooted version
in Section 3.1. Next, in Section 3.2 we consider the unrooted version. By providing a
structural property of near-optimal solutions, we propose an algorithm which achieves
a logarithmic approximation factor without violating the budget constraint; improving
on the previous result of Guha et al. [9] which obtains an O(log2 n)-approximation
algorithm without violation.

In what follows, for a rooted tree T we assume a subtree rooted at a vertex v consists
of all vertices whose path to the root of T passes through v. The set of strict subtrees of
T consists of all subtrees other than T itself. Further, the set of immediate subtrees of
T are the subtrees rooted at the children of the root of T .

3.1 The Rooted Budgeted Problem

For a budget value B and a vertex r, a graph is B-proper for the vertex r if the cost
of reaching any vertex from r is at most B. The following lemma shows a bicriteria
trimming method (proof in the full version).

Lemma 3. Let T be a subtree rooted at r with the prize-to-cost ratio γ. Suppose the
underlying graph is B-proper for r and for ε ∈ (0, 1] the cost of the tree is at least εB

2 .
One can find a tree T ∗ containing r with the prize-to-cost ratio at least ε

4γ such that
ε
2B ≤ c(T ∗) ≤ (1 + ε)B.
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Moss and Rabani [13] give an O(log n)-approximation algorithm for the Budgeted
problem which may violate the budget by a factor of two. Using Lemma 3 one can
trim such a solution to achieve a trade-off between the violation of budget and the ap-
proximation factor (proof in the full version) .

Theorem 3. For every ε ∈ (0, 1] one can find a subtree T ⊆ G in polynomial time such
that c(T ) ≤ (1 + ε)B and the total prize of T is Ω( ε2

log n ) fraction of OPT.

3.2 The Unrooted Budgeted Problem

We prove a stronger variant of Lemma 3 for the unrooted version. We show that if
no single vertex is too expensive, one does not need to violate the budget at all. The
analysis is similar to that of Lemma 3.

Lemma 4. Let T be a tree with the prize to cost ratio γ. Suppose c(T ) ≥ B
2 and the

cost of every vertex of the tree is at most B
2 for a real numberB. One can find a subtree

T ∗ ⊆ T with the prize to cost ratio at least γ
4 such that B

4 ≤ c(T ∗) ≤ B.

One may use arguments similar to that of Theorem 3 to derive anO(log n)-approximation
algorithm from Lemma 4 when the cost of a vertex is not too big. On the other hand
if the cost of a vertex is more than half the budget, we can guess that vertex and try to
solve the problem with the remaining budget. However, one obstacle is that this pro-
cess may need to be repeated, i.e., the cost of another vertex may be more than half
the remaining budget. Thus we may need to continue guessing many vertices in which
case connecting them in an optimal manner would not be an easy task. The following
theorem shows indeed guessing one vertex is sufficient if one is willing to lose an extra
factor of two in the approximation guarantee.

Theorem 4. The unrooted budgeted problem admits an O(log n)-approximation algo-
rithm which does not violate the budget constraint.

Proof. We define two classes of subtrees: the flat trees and the saddled trees. A tree is
flat if the cost of every vertex of the tree is at most B

2 . For a tree T , let x be the vertex
of T with the largest cost. The tree T is saddled if c(x) > B

2 and the cost of every other

vertex of the tree is at most B−c(x)
2 . Let T ∗f denote the optimal flat tree, i.e., a flat tree

with the maximum prize among all the flat trees with the total cost at mostB. Similarly,
let T ∗s denote the optimal saddled tree.

The proof is described in two parts. First we show the prize of the best solution
between T ∗f and T ∗s is indeed in a constant factor of OPT(see the following claim, proof
in the full version). Next, we show by restricting the optimum to any of the two classes,
an O(log(n))-approximation solution can be found in polynomial time. Therefore this
would give us the desired approximation algorithm.

Claim. Either π(T ∗f ) ≥ OPT
2 or π(T ∗s ) ≥ OPT

2 .

Now we only need to restrict the algorithm to flat trees and saddled trees. Indeed
we can reduce the case of saddled trees to flat trees. We simply guess the maximum-
cost vertex x (by iterating over all vertices). We form a new instance of the problem by
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reducing the budget toB−c(x) and the cost of x to zero. The cost of every other vertex
in T ∗s is at most half the remaining budget, thus we need to look for the best flat tree
in the new instance. Therefore it only remains to find an approximation solution when
restricted to flat trees.

We use Lemma 4 to find the desired solution for flat trees. A vertex with cost more
than half the budget cannot be in a flat tree, thus we remove all such vertices. We may
guess a vertex of the best solution and by using the algorithm of Moss and Rabani [13]
we can find an O(logn)-approximation solution which may use twice the budget. Let
T be the resulting tree with the total prize P . If c(T ) ≤ B we are done. Otherwise by
Lemma 4 we can trim T to obtain a tree with the cost at most B and the prize at least
P
32 which completes the proof.
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Abstract. Contraction hierarchies are a speed-up technique to improve
the performance of shortest-path computations, which works very well
in practice. Despite convincing practical results, there is still a lack of
theoretical explanation for this behavior.

In this paper, we develop a theoretical framework for studying search
space sizes in contraction hierarchies. We prove the first bounds on the
size of search spaces that depend solely on structural parameters of the
input graph, that is, they are independent of the edge lengths. To achieve
this, we establish a connection with the well-studied elimination game.
Our bounds apply to graphs with treewidth k, and to any minor-closed
class of graphs that admits small separators. For trees, we show that the
maximum search space size can be minimized efficiently, and the average
size can be approximated efficiently within a factor of 2.

We show that, under a worst-case assumption on the edge lengths,
our bounds are comparable to the recent results of Abraham et al. [1],
whose analysis depends also on the edge lengths. As a side result, we
link their notion of highway dimension (a parameter that is conjectured
to be small, but is unknown for all practical instances) with the notion
of pathwidth. This is the first relation of highway dimension with a well-
known graph parameter.

1 Introduction

Contraction hierarchies were introduced by Geisberger et al. [7], who evalu-
ated their performance experimentally. Given a directed graph G = (V,E)
and a vertex v ∈ V , contraction of v means (i) removing v, and (ii) insert-
ing a shortcut uw of length distG(u,w) for each unique shortest path (u, v, w)
in G. Given an order α : V → {1, . . . , n} of the vertices of G = (V,E), a
contraction hierarchy Ḡα = (Ḡ∧α, Ḡ

∨
α) of G is obtained by iteratively contract-

ing the vertices in the order specified by α. Let E′ denote the set of short-
cuts that is created in this process. Then Ḡ∧α = (V,E∧α ) and Ḡ∨α = (V,E∨α ),
where E∧α = {uv ∈ E∪E′ | α(u) < α(v)} and E∨α = {uv ∈ E∪E′ | α(v) < α(u)}.

The correctness of shortest path computation relies on the following proposi-
tion, which is due to Geisberger et al. [7]. It immediately implies that distance
queries can be performed by a bidirectional query, searching Ḡ∧α and Ḡ∨α.

Proposition 1. distG(s, t) = minv∈V dist∧Ḡ(s, v) + dist∨Ḡ(v, t) for all s, t ∈ V .

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 93–104, 2013.
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In the following, we refer to such a contraction hierarchy as an algorithmic con-
traction hierarchy. Obviously, the contraction hierarchy depends strongly on the
ordering α. Finding a good node ordering that allows fast shortest-path com-
putations thus is an important problem. Practical implementations, such as the
one by Geisberger et al. [7] employ heuristics for which no provable guarantees
are known. Previous theoretical expositions rather focus on minimizing the size
of the contraction hiearchy [4,11]. In particular, it is known that minimizing
the size of a contraction hierarchy is NP-complete. The only work providing
provable performance guarantees for shortest-path computations in contraction
hierarches, we are aware of, is the work of Abraham et al. [1,2]. They intro-
duce the notion of highway dimension, a parameter that is conjectured to be
small in real-world road networks, and prove sublinear query times under this
assumption. However, the highway dimension of real-world instances is unknown,
and may change as the length function changes. By contrast, we use separator
decompositions and focus on providing bounds that rely on purely structural
parameters of the graph, such as bounded treewidth or excluding a fixed minor.
Our algorithms thus apply to a larger class of graphs, and are not dependent on
the length function.

We note that theoretical results with better query times [17,6] exist, some of
them even using similar techniques. They are, however, far from being practical.
By contrast, our theoretical bounds apply to a widely used speed-up technique. It
is also worth noting that recursive graph separation has been used as a heuristic
in practical approaches [16], although, without providing theoretical guarantees.

Contribution and Outline. We develop a theoretical framework for studying
search-space sizes in contraction hierarchies. The iterative definition of an algo-
rithmic contraction hierarchy is difficult to work with. In Section 2 we derive a
global description of the contraction hierarchy associated with a node ordering.

Afterwards, in Section 3, we establish a connection between contraction
hiearchies and two classical problems that have been widely studied. Namely, so-
called filled graphs, which were introduced by Parter [12] in his analysis of Gaus-
sian elimination, and elimination trees, which were introduced by Schreiber [15]
for Gaussian elimination on sparse matrices. For trees, this implies an efficient
algorithm for minimizing the maximum search space and a 2-approximation for
the average search space. This contrasts hardness results for other speed-up tech-
niques, such as arcflags, where optimal preprocessing for trees is NP-complete [3].

In Section 4, we show that nested dissection, a technique for finding elimina-
tion trees of small height, can be applied to construct orders α with provable
bounds on the maximum search space size. For graphs of treewidth k and for
graphs that admit small separators and exclude a fixed minor, we obtain maxi-
mum search space size O(k logn) and O(

√
n), respectively.

Finally, we compare our results with the results of Abraham et al. [1,2] in
Section 5. If the length function is such that the highway dimension is maximal,
then our results are comparable to theirs. However, our approach neither requires
small maximum degree, nor does it depend on the diameter of the graph, and
thus applies to a larger class of graphs.
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2 A Formal Model of Contraction Hierarchies

In this section, we develop a theoretical model of contraction hierarchies that is
simpler to work with than algorithmic contraction hierarchies. Let G = (V,E)
be a directed graph and let α be an ordering of V . Let Pα(s, t) = {v ∈ V |
α(v) ≥ min{α(s), α(t)} and distG(s, v) + distG(v, t) = distG(s, t) < ∞}, i.e.,
Pα(s, t) contains the vertices that lie on a shortest path from s to t and lie above
at least one of s and t. The following theorem provides a global characterization
of the algorithmic contraction hierarchy.

Theorem 1. Let G = (V,A) be a weighted digraph and let α be an order of its
vertices. The arcs A∧α and A∨α of Ḡ∧α and Ḡ∨α are

A∧α = {uv ∈ A | α(u) < α(v)} ∪ {uv | α(u) < α(v) and Pα(u, v) = {u, v}}
A∨α = {uv ∈ A | α(u) > α(v)} ∪ {uv | α(u) > α(v) and Pα(u, v) = {u, v}}.

The length of a shortcut uv in Ḡ∧α or Ḡ∨α is distG(u, v).

Not only does this theorem shed some light on the structure of algorithmic
contraction hierarchies, but also suggests an alternative definition. Consider an
arc st of G that is no unique shortest path. Then, removing st from G does
not change any distances. If st is a unique shortest path, then Pα(s, t) = {s, t}
anyway. Thus the following definition works equally well. For a weighted di-
graph G = (V,E) and an order α of its vertices, we define Gα = (G∧α, G

∨
α),

where G∧α = (V,A∧α) and G∨α = (V,A∨α) by

A∧α = {uv | α(u) < α(v) and Pα(u, v) = {u, v}}
A∨α = {uv | α(u) > α(v) and Pα(u, v) = {u, v}} .

As in Theorem 1, we set lenα
G(uv) = distG(u, v). We call the pair Gα = (G∧α, G

∨
α)

a formal contraction hierarchy.
We remark that it immediately follows from this definition that if H is the

digraph obtained from G by reversing all arcs, H∧α = G∨α and H∨α = G∧α hold.
This allows us to prove statements about Gα by only considering G∧α since the
analogous statement for G∨α follows by reversing all arcs.

We now carry over several useful concepts from the algorithmic definition. A
shortcut is an arc uw of Gα that is not contained in G, or for which lenG(uw) >
distG(u,w). Note that the latter type of shortcuts are included only to model
the possible overwriting of arclengths in algorithmic contraction hierarchies.
Given a shortcut uw in A∧ or A∨, we are able to recover the vertex v that
would have caused the insertion of uw in the corresponding algorithmic contrac-
tion hierarchy. Namely, let S = {v ∈ V \ {u,w} | distG(u, v) + distG(v, w) =
distG(u,w)}. Note that S �= ∅, for otherwise uw would be no shortcut. Note
further that α(v) < α(u) and α(v) < α(w) for all v ∈ S since otherwise we
would have v ∈ Pα(u,w) = {u,w}. We call the vertex v ∈ S with α(v) maximal
the supporting vertex of uw. It is easy to show that exactly the contraction of v
causes the insertion of uw in the algorithmic contraction hierarchy Ḡα.
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Lemma 1. Let uw be a shortcut of Gα and let v be its supporting vertex.
Then Gα contains uv ∈ A∨α and vw ∈ A∧α.

We call the arcs, whose existence is guaranteed by Lemma 1, the supporting
arcs of uw, and write sup(uw) = (uv, vw). Observe that if uv is a support-
ing arc of uw, then α(v) < α(w), and thus chains of supporting arcs in G∧α
and G∨α are acyclic and do not descend indefinitely. This allows us to perform
induction on the depth of the nested shortcuts below a given arc uw. We define
the shortcut depth scd(uw) of an arc of Gα by scd(uw) = 1 if uw is no short-
cut, and by scd(uw) = scd(uv) + scd(vw) if uw is a shortcut with sup(uw) =
(uv, vw). It is readily seen that, for a shortcut uw with sup(uw) = (uv, vw),
we have lenα

G(uw) = lenα
G(uv) + lenα

G(vw). Hence Gα still possesses the most
essential properties of the algorithmic contraction hierarchy Ḡα.

A close look at the proof of Proposition 1 in Section 1 reveals that it merely
depends on the fact that each arc uw with Pα(u,w) = {u,w} is contained in
Ḡα and has length lenα

Ḡ(uw) = distG(u,w). Thus Proposition 1 also holds for
formal contraction hierarchies, implying that a bidirectional variant of Dijkstra’s
algorithm on the contraction hierarchyGα can be used to compute shortest paths
in G.

To measure the performance of such computations, we define the search space
of a query as S(s,G∧α) = {u ∈ V | dist∧G(s, u) < ∞} and R(t, G∨α) = {u ∈ V |
dist∨G(u, t) < ∞}. Clearly, the shortest-path query from s to t in Gα settles at
most the vertices in S(s,G∧α)∪R(t, G∨α). To maximize the performance of query
algorithms, one is interested in an ordering α that minimizes maxs,t∈V |S(s,G∧α)|+
|R(t, G∨α)|. To simplify the analysis, we rather concentrate on minimizing the
maximum search space size Smax(Gα) = max{|S(v,G∧α)|, |R(v,G∨α)|}. Note that 2·
Smax(Gα) is an upper bound on the number of vertices that is settled in any
query, and thus bounding Smax(Gα) gives a guarantee on the query performance
in terms of the number of settled nodes. We denote the minimum maximum
search space size by Smax(G) = minα Smax(Gα). Similarly, we define the average
search space size Savg(Gα) = 1/n2 ·

∑
s,t∈V |S(s,G∧α)|+ |R(t, G∨α)|.

There is still one downside of formal contraction hierarchies: Practical imple-
mentations of contraction hierarchies do not compute an actual formal (or even
algorithmic) contraction hierarchy. Instead of inserting a shortcut only when it
is strictly necessary, fast heuristics are used to quickly exclude the necessity of
a shortcut in many cases. In some cases, this results in the addition of shortcuts
that are not necessary. Thus bounding Smax(Gα) may not have any practical
implications since the additional shortcuts might increase the search space ar-
bitrarily. To overcome this downside, we introduce one final type of contraction
hierarchies, which also allows for additional shortcuts, yet preserve the properties
that have turned out to be key to contraction hierarchies.

A weak contraction hierarchy Hα of a weighted digraph G = (V,A) is a
pair (H∧α , H

∨
α ) of digraphs H∧α = (V,B∧α ) and H∨α = (V,B∨α ), such that the

following conditions are satisfied.
(w1) Gα ⊆ Hα

(w2) α(u) < α(v) for each uv ∈ B∧α and each vu ∈ B∨α
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(w3) If uw is an arc of Hα that is not contained in G, then there is at least one
pair of arcs uv ∈ B∨α and vw ∈ B∧α .

In the remainder of this section, we indicate how to extend our previous findings
for contraction hierarchies to weak contraction hierarchies and investigate the
relationship between different weak contraction hierarchies for the same order-
ing α. For this purpose, we fix a weighted digraph G and an ordering α of its
vertices. As usual, we denote its formal contraction hierarchy by Gα = (G∧α, G

∨
α).

Additionally, we fix a weak contraction hierarchy Hα = (H∧α , H
∨
α ), whose arcs

we denote by B∧α and B∨α , as above.
The notions of shortcuts and shortcut depth carry over literally to Hα. It

follows immediately from (w1) and (w3) that for each shortcut uw in Hα, there
is a pair of supporting arcs uv ∈ B∨α and vw ∈ B∧α . Although distances and
arc lengths are only of secondary importance in the remaining sections, we still
want to point out that it is not hard to give a “correct” definition of arc lengths
on H , such that the following lemma holds true.

Lemma 2. Let Hα be a weak contraction hierarchy.
(a) lenα

H(uw) ≥ distG(u,w) for all arcs uw of Hα.
(b) lenα

H(uw) = distG(u,w) for all arcs uw of Hα with Pα(u,w) = {u,w}.
As indicated above, the proof of Proposition 1 relies on exactly the containment
of Gα and the properties guaranteed by Lemma 2, and it thus holds also for
any weak contraction hierarchy. In particular, the same shortest-path algorithm
works for weak contraction hierarchies.

In view of property (w1) it is clear that Gα is the smallest weak contraction
hierarchy. Moreover, if Hα and Kα are weak contraction hierarchies, then (H∧α ∪
K∧α , H

∨
α ∪ K∨α ) is a weak contraction hierarchy. Thus, there exists a unique

maximal weak contraction hierarchy, which we denote by Mα. It is not difficult
to see that S(u,G∧α) ⊆ S(u,H∧α ) ⊆ S(u,M∧α ), and symmetrically R(u,G∨α) ⊆
R(u,H∨α ) ⊆ R(u,M∨α ) for all weak contraction hierarchies Hα. In particular,
this shows that Smax(Gα) ≤ Smax(Hα) ≤ Smax(Mα) for all weak contraction
hierarchiesHα. Thus, we will concentrate on bounding Smax(Mα) in the following
sections. Before we do so, we give a more explicit description of Mα.

Lemma 3. A weak contraction hierarchy Hα is maximal if and only if Hα sat-
isfies the following properties.

(i) Each arc of G is contained in Hα.
(ii) For any two arcs uv ∈ B∨α and vw ∈ B∧α , Hα also contains uw.

Note that this immediately implies an efficient way to construct the arcs of Mα

by inserting shortcuts between each pair of neighbors during the contraction. In
particular, the structure of Mα is independent of the weights on G.

Finally, we note that the query performance does not solely depend on the
number of vertices in the search space, but also on the number of arcs. For a
search space S(u,Mα), this number is certainly bounded by |S(u,Mα)|2. More-
over, the size |Mα| has a crude upper bound in terms of Smax(Mα).

Lemma 4. For any n-vertex directed graph with an ordering α of its vertices,
we have |Mα| ≤ 2n · Smax(Mα).
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3 Contraction Hierarchies and Filled Graphs

In this section, we establish a link between contraction hierarchies and the
more well-studied graph elimination game, which was introduced by Parter [12].
Let G = (V,E) be an undirected graph and let α be an ordering of its vertices.
We consider the so-called elimination game played on G. Beginning at G1 = G,
one removes in each step i = 1, . . . , n the vertex vi = α−1(i) and its incident
edges from Gi. Afterwards, the graph Gi+1 is obtained from Gi by inserting fill
edges, such that the neighbors of vi form a clique. Denote by F i the set of edges
inserted in step i, and let F =

⋃n
i=1 Fi. The filled graph Gα is now commonly de-

fined to be the undirected graph with edge set E∪F . For our purposes it is more
convenient to define the filled graph as the according directed graph with all arcs
pointing upwards with respect to α. That is, the filled graph Gα = (V,Aα) is
defined by Aα = {uv | {u, v} ∈ E ∪ F and α(u) < α(v)}. Note that the only
difference from the construction of Mα is that Mα is constructed from a digraph,
whereas the elimination game is played on an undirected graph. In what follows,
we denote for a digraph G by ∗G the underlying undirected graph. The following
theorem immediately follows from the construction of Mα and Gα.

Theorem 2. Let G be a directed graph with an ordering α of its vertices. Let

further
←−
M∨α denote M∨α with reversed arcs. Then M∧α ,

←−
M∨α ⊆ ∗Gα. Moreover,

if G contains for each arc uv also the opposite arc vu, then M∧α =
←−
M∨α = ∗Gα.

Theorem 2 has many far-reaching consequences, and we will only explore a few
of them in this paper. It turns out that the definition of Mα is nothing essentially
new, and has indeed already been defined and studied by Rose and Tarjan [13].
However, much of the work on filled graphs is primarily concerned with the prob-
lem of minimizing the number of arcs in Gα; see the survey by Heggernes [10].
Minimizing the fill-in corresponds to minimizing the number of shortcuts in a
contraction hierarchy, and hence its space requirements. We rather focus on the
implications of Theorem 2 regarding search spaces and their size.

Corollary 1. Let G = (V,A) be a weighted digraph with vertex ordering α.
Then S(u,M∧α ), R(u,M∨α ) ⊆ S(u, ∗Gα). In particular Smax(Gα) ≤ Smax(∗Gα).

An analogous statement holds for the average search space size Savg. Our next
goal is an alternative description of Smax(∗Gα) known as the height of the elim-
ination tree of ∗Gα. For this purpose consider again an undirected graph G and
a filled graph Gα. Associated with Gα is the so-called elimination tree T (Gα)
of G. The elimination tree T (Gα) has vertex set V but contains for each u ∈ V
only the arc uv of Gα with minimal α(v). Again the usual definition of T (Gα) is
undirected, but it is natural to choose α−1(n) as the root. With this choice the
usual definition coincides with our definition. The height of T (Gα) with respect
to this root is the elimination tree height, denoted by ht(Gα). The following
lemmas relate the search space size in Gα with ht(Gα).

Lemma 5. Let G be a connected graph, α an order of V and let T = T (Gα).
Then Smax(T ) = 1 + ht(Gα).
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Proof. Let r denote the root of T , and denote by p(u) the vertices lying on the
path from u to r. Then ht(Gα) = maxu∈V |p(u)| − 1 and it therefore suffices to
show S(u, T ) = p(u) for all u ∈ V . This is trivially satisfied, since due to the
connectivity of G, each vertex u ∈ V distinct from r is the source of precisely
one arc uv. ��
The crucial property of T (Gα) is that if u and v are two vertices connected by
a path in p in the filled graph Gα of G, then there is a path p′ from u to v
in T (Gα). It obviously suffices to prove this statement when p is an arc, as the
general case then follows by induction.

Lemma 6. If uv is an arc of the filled graph Gα, then there exists a path with
source u and target v in T (Gα).

Proof. Denote by p(u) the unique path in T (Gα) from u to the root r. We show
by descending induction on α(u) that we have p(v) ⊆ p(u) for all arcs uv of Gα.
Note that this implies our claim, for it then follows that p(u) = q · p(v), where q
is a path from u to v.

If α(u) = n− 1, then α(v) = n, and hence v = r. The claim holds trivially.
If α(u) < n − 1, let uw be the unique arc of T (Gα) with source u. By the

definition of T (Gα), we have α(w) ≤ α(v), and p(u) = uw ·p(w). If v = w, we are
done. Otherwise, Gα contains the arc wv as both v and w are neighbors of u at
the time of its removal during the elimination game. The induction hypothesis
therefore implies p(v) ⊆ p(w), and hence p(v) ⊆ p(u). ��
This allows us to finally relate search spaces in Gα and T (Gα).

Corollary 2. Let G = (V,E) be a graph, α an order on V and T = T (Gα) the
corresponding elimination tree. Then S(u, T ) = S(u,Gα) for all u ∈ V .

Corollary 1 and 2 immediately imply the following.

Corollary 3. For any connected weighted digraph G with vertex ordering α,

Smax(Mα) ≤ ht(∗Gα) + 1 .

Despite its innocent appearance, the above corollary is central to our analysis
of search spaces in contraction hierarchies, for it enables us to translate upper
bounds on ht(∗Gα) into upper bounds on Smax(G). Upper bounds from the lit-
erature are not seldomly accompanied by algorithms to determine orders α so
that ht(∗Gα) is at most the upper bound at hand. Without any further mod-
ifications these algorithms may be used to compute contraction orders α with
good upper bounds on Smax(Gα).

As a first application of the above result let us consider contraction hierar-
chies of undirected trees T . In this case, shortest paths are unique and each
possible shortcut is thus present in the contraction hierarchy Tα. Hence, Tα,
the maximal weak contraction hierarchy Mα and the filled graph Tα coincide.
Moreover, Schäffer [14] has given a linear-time algorithm to compute optimal
elimination orders for trees, and we may thus conclude that the problem of min-
imizing Smax(Tα) is solvable in linear time. The techniques of the next section
can also be used to obtain a 2-approximation for Savg(Tα); we omit the details.
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4 Contraction Orders from Nested Dissection

Next we show how to compute orders that yield small search spaces for several
classes of graphs. The main idea is to exploit Corollary 3, which relates search
space sizes and elimination tree heights. One way to construct orderings that
give guarantees on the elimination tree height is the use of nested dissection,
which goes back to George [8].

Let 0 < b < 1 and let f(n) be a monotonically increasing function. A (b,f)-
balanced separator decomposition of an undirected n-vertex graph G = (V,E) is
a rooted tree T = (X , E) whose nodes X ∈ X are disjoint subsets of V and that
is recursively defined as follows. If n ≤ n0 for some fixed constant n0, then T
consists of a single node X = V . If n > n0, then a (b, f)-balanced separator
decomposition of G consists of a root X ⊆ V of size at most f(n) whose removal
separatesG into at least two subgraphsG1, . . . , Gd with at most bn vertices, each.
The children of X in T are the roots of (b, f)-balanced separator decompositions
of G1, . . . , Gd. For clarity, we will always refer to the vertices of T as nodes. We
use TX to denote the subtree of T rooted at a node X , and by GX the connected
subgraph of G induced by the vertices contained in TX . For a vertex u ∈ V ,
we denote the unique node X of T with u ∈ X by Xu. A node X of T has
level level(X) = i if the unique simple path from X to the root of T has length i.

Remark 1. LetG be an undirected graph and let T be a (b, f)-balanced separator
decomposition of G. If {u, v} is an edge of G with level(Xu) ≥ level(Xv), then Xv

is an ancestor of Xu.

Proof. Consider the lowest common ancestor X of Xu and Xv in T . If X �= Xv,
then Xu and Xv lie in distinct subtrees of TX . However, by construction of T ,
this means that X separates Xu from Xv, contradicting the existence of the
edge {u, v}. ��

Given a (b, f)-balanced separator decomposition of G, we determine an asso-
ciated (b, f)-balanced nested dissection order α = α(T ) on the vertices of G
by performing a post-order traversal of T , where the vertices of each node are
visited in an arbitrary order. It follows immediately from Remark 1 and the
construction of α that for any edge {u, v} of G with α(u) < α(v) the node Xv is
an ancestor of Xu. This property remains valid also for the corresponding filled
graph Gα.

Lemma 7. Let G = (V,E) be an undirected graph and α = α(T ) a nested dis-
section order associated with a given (b, f)-balanced separator decomposition T =
(X , E) of G. Then Xv is an ancestor of Xu for any arc uv of the filled graph Gα

with α(u) < α(v).

Proof. It suffices to that that Xv is an ancestor of Xu for each edge {u, v}
with α(u) < α(v) of Gi, where Gi is the graph before the ith step in the elimina-
tion game. Observe that the above discussion establishes exactly this property
for G = G1. We show that Gi+1 satisfies the property if Gi does.



Search-Space Size in Contraction Hierarchies 101

Consider the vertex vi = α−1(i) that is removed in the ith step of the elimi-
nation game. Let {u, v} be a fill-edge with α(u) < α(v) that is inserted in this
step. Then Gi contains edges {vi, u} and {vi, v}. By the induction hypothesis,
we have that both Xu and Xv are ancestors of Xvi in T since α(vi) is minimal
among the vertices in Gi. Note that this implies that either Xu is an ancestor
of Xv or vice versa. Our assumption α(u) < α(v) and the construction of α
imply that Xu is an ancestor of Xv. This finishes the proof. ��

To simplify notation, we denote by T (u) the union of all nodes that lie on the
unique simple path from Xu to the root of T . The above lemma has immedi-
ate implications in terms of search spaces and elimination tree height. An easy
induction over the length of a path in Gα yields the following.

Corollary 4. Let G = (V,E) be an undirected graph, T = (X , E) an (b, f)-
balanced separator decomposition of G, and let α = α(T ) be an associated nested
dissection order. Then (i) S(u,Gα) ⊆ T (u), and (ii) ht(Gα) ≤ |T (u)|.

In particular, Corollary 1 and 4 together imply the following theorem.

Theorem 3. Let G = (V,E) be a weighted digraph and α = α(T ) a nested
dissection order of a (b, f)-balanced separator decomposition of ∗G. Then we
have |S(u,M∧α )|, |R(u,M∨α )| ≤ |T (u)|.

In order to find upper bounds on Smax(Mα), it remains to bound |T (u)|. This
issue cannot be handled simultaneously for all families of graphs, but needs
special treatment depending on the properties of G. We will first study a rather
general setting, and afterwards specialize to graphs that exclude a fixed minor.

It is not hard to see that |T (u)| ≤ n0 + h · f(n), where h is the height of T .
Further, it follows from the balance of the decomposition that h ≤ log1/b n. In
particular, for graphs with treewidth at most k, the (1/2, 1)-balanced separator
decomposition for trees facilitates a (1/2, k+1)-balanced separator decomposition
with n0 = k + 1. We have the following theorem.

Theorem 4. Let G be a weighted digraph of treewidth at most k. There exists an
order α, such that Smax(Mα) ≤ (k+1)(1+log n) and |Mα| ≤ 2n(k+1)(1+logn).

If the separator size is not fixed, but depends on the graph size, better bounds
can be achieved. For example for minor-closed graph classes that admit (b, a

√
n)-

balanced separators, we have ht(Gα) ≤ n0+
∑∞

i=0 a
√
bin = n0+a/(1−

√
b)
√
n =

O(
√
n). According to Lemma 4, this yields a contraction hierarchy of sizeO(n3/2).

However, a more sophisticated analysis due to Gilbert and Tarjan [9] proves that
the number of fill arcs is O(n log n). The next theorem summarizes this discus-
sion.

Theorem 5. Let C be a minor-closed graph class with balanced O(
√
n)-separators.

Any G ∈ C admits an order α with Smax(Mα) = O(
√
n) and |Mα| = O(n logn).
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5 Comparison with Highway Dimension

In this section, we compare our bounds with the ones obtained by Abraham et
al. [1,2]. Their results employ the highway dimension, a notion that, unlike the
graph parameters we use, also depends on the edge lengths. We show that their
bounds are comparable to ours if the edge lengths are sufficiently ill-behaved.

First, we briefly recall the definition of highway dimension. Let G = (V,E)
be a weighted undirected graph. Given a vertex u ∈ V , the set of vertices v of
distance at most ε from u is called the ball of radius ε around u, and is denoted
by Bε(u). We say that a vertex u covers a shortest path p if p contains u. The
highway dimension hd(G) of G is the smallest integer d, such that all the shortest
paths p in G of length ε < len(p) ≤ 2ε that intersect a given ball of radius 2ε can
be covered by at most d vertices. Abraham et al. [1] prove that for a n-vertex
weighted graph G with highway dimension d and diameter D and maximum
degree Δ, there exists an ordering α, such that the size of Gα is O(nd logD),
and such that distance queries can be answered in time O((Δ+d logD)·d logD).

In the remainder of this section, we proceed as follows. We consider the edge
lengths of G that maximize hd(G). For this particular choice of lengths, we con-
struct a (2/3, hd(k))-balanced separator decomposition of G, which then provides
the link to nested dissection orders. We note that the same proof can be adapted
to the slightly different definition of highway dimension in [2].

Lemma 8. Let G = (V,E) be a connected graph, let k be the maximum highway
dimension over all possible edge lengths on G, and let H ⊆ G be a connected
subgraph with |V (H)| ≥ 2k + 2. Then H can be separated into at least two
connected components of size at most �|V (H)|/2� by removing at most k vertices.

Proof. Let H be a connected subgraph of G with h vertices and let H1 ⊆ H be
a connected subgraph with �h/2� vertices. Denote the vertex sets of H and H1

by VH and V1, respectively. Define lengths len : E → R+ by setting the length
of an edge to 1 if it has exactly one endpoint in V1, and to ε = 3/h, otherwise.
Observe that the length of a simple path in H1 is at most hε/2 ≤ 3/2.

Consider a ball B with radius 3/2 around any vertex u of H1. Then V1 ⊆ B.
By our choice of k, and the definition of highway dimension, there exists a set S
of at most k vertices, such that each shortest path in G that intersects H1 and
has length between 3/4 and 3/2 contains at least one element of S. We claim that
the removal of S ∩VH separates H into at least two connected components with
at most �h/2� vertices, each.

Consider any path with source s ∈ V1 and target t ∈ V \ V1. This path
necessarily contains an edge {u, v} with u ∈ V1 and v ∈ V \ V1. By the choice of
edge lengths, this edge is a shortest path of length 1, and thus one of its endpoints
is in S. Hence S separatesH1 from H\V1. It remains to verify that the connected
components of H \ S contain at most �h/2� vertices, each, and that there are
at least two such components. The former claim follows immediately from our
choice of H1. For the latter claim, note that |V1| ≥ k + 1 and |VH \ V1| ≥ k + 1
imply |V1 \ S| ≥ |V1| − k ≥ 1 and |VH \ (V1 ∪ S)| ≥ |VH \ V1| − k ≥ 1. ��
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This lemma allows us to separate each subgraph of n′ ≥ 2k + 2 vertices into at
least two connected components with at most �n′/2� ≤ 2

3n
′ vertices by removing

at most k vertices. We have the following corollary.

Corollary 5. Let G = (V,E) be a connected undirected graph with maximum
highway dimension k. Then G admits a (2/3, k)-balanced separator decomposition,
whose leaves have size at most 2k + 1.

A simple calculation shows that ht(G) ≤ 2k+ 1 + k · log3/2 n. It is known for the
pathwidth pw(G) that pw(G) ≤ ht(G) [5].

Theorem 6. Let G be a weighted undirected graph. There exist edge lengths
on G, such that hd(G) ≥ (pw(G)− 1)/(log3/2 n+ 2).

To our knowledge, this is a novel and unanticipated relation between highway
dimension and more commonly used graph parameters. Moreover, Corollary 5
allows a comparison of our results with those of Abraham et al. [1].

Theorem 7. Let G be an undirected graph with diameter D and maximum de-
gree Δ. Let β denote the order constructed by Abraham et al. [1]. There exist
edge lengths on G and a nested dissection order α, such that
(a) |Mα| ≤ O(log n/ logD)|Gβ |, and
(b) the worst-case running time of distance queries in Mα is at most a factor

of O(log2(n)/ log2(D)) greater than that in Gβ.

Proof. Choose the edge lengths such that G attains its maximum highway di-
mension k. Recall from [1], that their optimal order β results in a contraction
hierarchy Gβ that has mβ = O(nk log(D)) arcs and on which a distance query
has worst-case running time T β

query = O((Δ+ k logD) · k logD).
By virtue of Theorem 4 and Corollary 5, there exists a nested-dissection order-

ing α, such that Smax(Mα) = O(2k+ 1 + k logn) = O(k logn). Using Lemma 4,
we have |Mα| = O(nk logn), which immediately implies (a). For (b), we use that
Dijkstra’s algorithm relaxes at most Smax(Mα)2 edges. ��
We note that, for graphs that bear some resemblance to road networks, it seems
quite likely that Θ(log n) = Θ(logD). It is remarkable that the results are so
close, given that Abraham et al. bound both the vertices and arcs in the search
space, while our crude bound on the number of arcs is simply the square of
the number of vertices in the search space. Any improvement on this bound
would immediately imply faster query times. It is moreover worth noting that
our machinery neither requires small maximum degree nor small diameter.

Conclusion. We have developed a theoretical framework for studying search
spaces in contraction hierarchies. Our main contributions are a global descrip-
tion of contraction hierarchies and the connection to elimination games. Us-
ing nested dissection, we are able to compute contraction orders with sublinear
search spaces for large classes of graphs. Under a worst-case assumption on
the highway dimension, our results, even though our constructions ignore edge
lengths, are comparable to those of Abraham et al. [1]. Our main open questions
are: (i) Are there stronger bounds on the number of arcs in search spaces? (ii) Is
there an efficient approximation for the maximum or average search space size?
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Abstract. We present two quantum walk algorithms for 3-Distinctness.
Both algorithms have time complexity Õ(n5/7), improving the previous
Õ(n3/4) and matching the best known upper bound for query complexity
(obtained via learning graphs) up to log factors. The first algorithm is
based on a connection between quantum walks and electric networks.
The second algorithm uses an extension of the quantum walk search
framework that facilitates quantum walks with nested updates.

1 Introduction

Element Distinctness is a basic computational problem. Given a sequence χ =
χ1, . . . , χn of n integers, the task is to decide if those elements are pairwise
distinct. This problem is closely related to Collision, a fundamental problem in
cryptanalysis. Given a 2-to-1 function f : [n] → [n], the aim is to find a �= b such
that f(a) = f(b). One of the best (classical and quantum) algorithms is to run
Element Distinctness on f restricted to a random subset of size

√
n.

In the quantum setting, Element Distinctness has received a lot of attention.
The first non-trivial algorithm used Õ(n3/4) time [1]. The optimal Õ(n2/3) al-
gorithm is due to Ambainis [2], who introduced an approach based on quantum
walks that has become a major tool for quantum query algorithms. The opti-
mality of this algorithm follows from a query lower bound for Collision [3]. In
the query model, access to the input χ is provided by an oracle whose answer to
query i ∈ [n] is χi. This model is the quantum analog of classical decision tree
complexity: the only resource measured is the number of queries to the input.

Quantum query complexity has been a very successful model for studying the
power of quantum computation. In particular, bounded-error quantum query
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complexity has been exactly characterized in terms of a semidefinite program,
the general adversary bound [4, 5]. To design quantum query algorithms, it
suffices to exhibit a solution to this semidefinite program. However, this turns
out to be difficult in general, as the minimization form of the general adversary
bound has exponentially many constraints. Belovs [6] recently introduced the
model of learning graphs, which can be viewed as the minimization form of the
general adversary bound with additional structure imposed on the form of the
solution. This additional structure makes learning graphs much easier to reason
about. The learning graph model has already been used to improve the query
complexity of many graph problems [6–9] as well as k-Distinctness [10].

One shortcoming of learning graphs is that these upper bounds do not lead
explicitly to efficient algorithms in terms of time complexity. Although the study
of query complexity is interesting on its own, it is relevant in practice only when
a query lower bound is close to the best known time complexity.

Recently, [11] reproduced several known learning graph upper bounds via
explicit algorithms in an extension of the quantum walk search framework of [12].
This work produced a new quantum algorithmic tool, quantum walks with nested
checking. Algorithms constructed in the framework of [11] can be interpreted as
quantum analogs of randomized algorithms, so they are simple to design and
analyze for any notion of cost, including time as well as query complexity. This
framework has interpreted all known learning graphs as quantum walks, except
the very recent adaptive learning graphs for k-Distinctness [10].

In k-Distinctness, the problem is to decide if there are k copies of the same ele-
ment in the input, with k = 2 being Element Distinctness. The best lower bound
for k-Distinctness is the Element Distinctness lower bound Ω(n2/3), whereas

the best query upper bound is O(n1−2k−2/(2k−1)) = o(n3/4) [10], achieved us-
ing learning graphs, improving the previous bound of O(nk/(k+1)) [2]. However,
the best known time complexity remained Õ(nk/(k+1)). We improve this upper
bound for the case with k = 3 using two distinct approaches.

For the first approach, described in Sections 2 and 3, we use a connection
between quantum walks and electric networks. Hitting and commute times of
random walks are closely connected to the effective resistance of associated net-
works of resistors. We develop a similar connection for the case of quantum walks.
For any initial distribution over the vertices of a graph, we prove that a quantum
walk can detect the presence of a marked element in O(

√
WR) steps, where W

is the total weight of the graph and R is the effective resistance. This generalizes
a result of Szegedy that only applies if the initial distribution is stationary.

The second approach, described in Sections 4 and 5, uses quantum walks
with nested updates. The basic idea is conceptually simple: we walk on sets of
2-collisions and look for a set containing a 2-collision that is part of a 3-collision.
We check if a set has this property by searching for an index that evaluates to
the same value as one of the 2-collisions in the set. However, to move to a new set
of 2-collisions, we need to use a quantum walk subroutine for finding 2-collisions
as part of our update step. This simple idea is surprisingly difficult to implement
and leads us to develop a new extension of the quantum walk search framework.
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2 Quantum Walks and Electric Networks

2.1 Random Walks and Electric Networks

Let G = (V,E) be a simple undirected graph with each edge assigned a weight
we ≥ 0. Let W =

∑
e∈E we be the total weight. Consider the following random

walk on G: If the walk is at a vertex u ∈ V , proceed to a vertex v with probability
proportional to wuv, i.e., wuv/(

∑
ux∈E wux). The random walk has a stationary

probability distribution π = (πu) given by πu =
∑

uv∈E wuv/(2W ).
Let σ = (σu) be an initial probability distribution on the vertices of the graph,

and let M ⊆ V be some set of marked vertices. We are interested in the hitting
time Hσ,M of the random walk: the expected number of steps of the random
walk required to reach a vertex in M when the initial vertex is sampled from
σ. If σ is concentrated in a vertex s ∈ V , or M consists of a single element
t ∈ V , we replace σ by s or M by t. The commute time between vertices s and
t is defined as Hs,t + Ht,s. We assume G and σ are known, and the task is to
determine whether M is non-empty.

Assume M is non-empty, and define a flow on G from σ to M as a real-
valued function pe on the (oriented) edges of the graph satisfying the following
conditions. First, puv = −pvu. Next, for each non-marked vertex u,

σu =
∑
uv∈E

puv. (1)

That is, σu units of the flow are injected into u, traverse through the graph, and
are removed from marked vertices. Define the energy of the flow as∑

e∈E

p2e
we
. (2)

Clearly, the value of (2) does not depend on the orientation of each e. The
effective resistance Rσ,M is the minimal energy of a flow from σ to M . For R, as
for H , we also replace σ and M by the corresponding singletons. The resistance
Rσ,M equals the energy dissipated by the electric flow where the edges have
conductance we and σu units of the current are injected into each u and collected
in M [13]. The following two results can be easily obtained from the results in
Ref. [14]:

Theorem 1. If G, w, W are as above, s, t are two vertices of G, M ⊆ V , and
π is the stationary distribution on G, then

(a) the commute time between s and t equals 2WRs,t and
(b) the hitting time Hπ,M equals 2WRπ,M .

We show a quadratic improvement in the quantum case: If G and σ are known in
advance and the superposition

∑
u∈V

√
σu|u〉 is given, the presence of a marked

vertex in G can be determined in O(
√
WR) steps of a quantum walk. By com-

bining this result with the second statement of Theorem 1, we obtain the main
result of the paper by Szegedy [15].
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2.2 Tools from Quantum Computing

Although we use the language of electric networks to state our results, we use
spectral properties of unitary operators in the algorithms.

Lemma 1 (Effective Spectral Gap Lemma [5]). Let ΠA and ΠB be two
orthogonal projectors in the same vector space, and RA = 2ΠA − I and RB =
2ΠB − I be the reflections about their images. Assume PΘ, where Θ ≥ 0, is the
orthogonal projector on the span of the eigenvectors of RBRA with eigenvalues
eiθ such that |θ| ≤ Θ. Then, for any vector w in the kernel of ΠA, we have

‖PΘΠBw‖ ≤
Θ

2
‖w‖.

Theorem 2 (Phase Estimation [16], [17]). Assume a unitary U is given as
a black box. There exists a quantum algorithm that, given an eigenvector of U
with eigenvalue eiφ, outputs a real number w such that |w−φ| ≤ δ with probability
at least 9/10. Moreover, the algorithm uses O(1/δ) controlled applications of U
and 1

δ polylog(1/δ) other elementary operations.

2.3 Szegedy-Type Quantum Walk

In this section, we construct a quantum counterpart of the random walk de-
scribed in Section 2.1. The quantum walk differs slightly from the quantum walk
of Szegedy. The framework of the algorithm goes back to [18], and Lemma 1 is
used to analyze its complexity. We assume the notations of Section 2.1 through-
out the section.

It is customary to consider quantum walks on bipartite graphs. Let G = (V,E)
be a bipartite graph with parts A and B. Also, we assume the support of σ is
contained in A. These are not very restrictive assumptions: If either of them
fails, consider the bipartite graph G′ with the vertex set V ′ = V × {0, 1}, the
edge set E′ = {(u, 0)(v, 1), (u, 1)(v, 0) : uv ∈ E}, edge weights w′(u,0)(v,1) =

w′(u,1)(v,0) = wuv, the initial distribution σ′(u,0) = σu, and the set of marked

vertices M ′ = M × {0, 1}.
We assume the quantum walk starts in the state |ς〉 =

∑
u∈V

√
σu |u〉 that is

known in advance. Also, we assume there is an upper bound R known on the
effective resistance from σ to M for all potential sets M of marked vertices.

Now we define the vector space of the quantum walk. Let S be the support of σ,
i.e., the set of vertices u such that σu �= 0. The vectors {|u〉 : u ∈ S}∪{|e〉 : e ∈ E}
form the computational basis of the vector space of the quantum walk. Let Hu

denote the local space of u, i.e., the space spanned by all |uv〉 for uv ∈ E and,
additionally, |u〉 if u ∈ S. We have that

⊕
u∈AHu equals the whole space of the

quantum walk, and
⊕

u∈BHu equals the subspace spanned by |e〉 for e ∈ E.
The step of the quantum walk is defined as RBRA where RA =

⊕
u∈ADu and

RB =
⊕

u∈B Du are the direct sums of the diffusion operations. Each Du is a
reflection operation in Hu. All Du in RA or RB commute, which makes them
easy to implement in parallel. They are as follows:



Time-Efficient Quantum Walks for 3-Distinctness 109

– If a vertex u is marked, then Du is the identity, i.e., the reflection about Hu;
– If u is not marked, thenDu is the reflection about the orthogonal complement

of |ψu〉 in Hu, where

|ψu〉 =

√
σu
C1R

|u〉+
∑
uv∈E

√
wuv |uv〉 (3)

for some large constant C1 > 0 we choose later. The vector |ψu〉 is not
necessarily normalized. This also holds for u /∈ S: then the first term in (3)
disappears.

Theorem 3. The presence of a marked vertex can be detected with bounded
error in O(

√
RW ) steps of the quantum walk.

Proof. Similarly to the Szegedy algorithm, we may assume S is disjoint from M .
We perform phase estimation onRBRA starting in |ς〉 with precision 1/(C

√
RW )

for some constant C. We accept iff the phase is 1. The complexity estimate
follows from Theorem 2. Let us prove the correctness. We start with the positive
case. Let pe be a flow from σ to M with energy at most R. First, using the
Cauchy-Schwarz inequality and the fact that S is disjoint from M , we get

RW ≥
(∑

e∈E

p2e
we

)(∑
e∈E

we

)
≥

∑
e∈E

|pe| ≥ 1. (4)

Now, we construct an eigenvalue-1 eigenvector

|φ〉 =
√
C1R

∑
u∈S

√
σu|u〉 −

∑
e∈E

pe√
we
|e〉

of RBRA having large overlap with |ς〉 (assume the orientation of each edge e
is from A to B.) Indeed, by (1), |φ〉 is orthogonal to all |ψu〉, so it is invariant
under the action of both RA and RB . Moreover, ‖|φ〉‖2 = C1R+

∑
e∈E p

2
e/we and

〈φ|ς〉 =
√
C1R. Since we assumed R ≥

∑
e∈E p

2
e/we, we get that the normalized

vector satisfies
〈φ|ς〉
‖|φ〉‖ ≥

√
C1

1 + C1
. (5)

Now consider the negative case. Define

|w〉 =
√
C1R

(∑
u∈S

√
σu
C1R

|u〉+
∑
e∈E

√
we |e〉

)
.

Let ΠA and ΠB be the projectors on the invariant subspaces of RA and RB,
respectively. Since S ⊆ A, we have ΠA|w〉 = 0 and ΠB|w〉 = |ς〉. Also

‖|w〉‖2 =
∑
u∈S

σu + C1R
∑
e∈E

we = 1 + C1RW,



110 A. Belovs et al.

hence, by Lemma 1, we have that, if

Θ =
1

C2

√
1 + C1RW

for some constant C2 > 0, then the overlap of |ς〉 with the eigenvectors of RBRA

with phase less than Θ is at most 1/(2C2). Comparing this with (5), we find
that it is sufficient to execute phase estimation with precision Θ if C1 and C2

are large enough. Also, assuming C1 ≥ 1, we get Θ = Ω(1/
√
RW ) by (4). ��

3 Application to 3-Distinctness

In this section, we describe a quantum algorithm for 3-distinctness having time
complexity Õ(n5/7). This is a different algorithm from Ref. [10], and is based on
ideas from Ref. [19].

Theorem 4. The 3-distinctness problem can be solved by a quantum algorithm
in time Õ(n5/7) using quantum random access quantum memory (QRAQM) of
size Õ(n5/7).

Recall that Ambainis’s algorithm consists of two phases: the setup phase that
prepares the uniform superposition, and the quantum walk itself. Our algorithm
also consists of these two phases. In our case, the analysis of the quantum walk
is quite simple, and can be easily generalized to any k. However, the setup phase
is hard to generalize. The case of k = 3 has a relatively simple ad hoc solution
(see the full version of the paper).

Technicalities. We start the section with some notations and algorithmic prim-
itives we need for our algorithm. For more detail on the implementation of these
primitives, refer to the paper by Ambainis [2]. Although this paper does not
exactly give the primitives we need, it is straightforward to apply the necessary
modifications; we omit the details here.

We are given a string χ ∈ [q]n. A subset J ⊆ [n] of size 
 is called an 
-collision
iff χi = χj for all i, j ∈ J . In the k-distinctness problem, the task is to determine
whether the given input contains a k-collision. Inputs with a k-collision are called
positive; the remaining inputs are called negative.

Without loss of generality, we may assume that any positive input contains
exactly one k-collision [2]. Also, we may assume there are Ω(n) (k−1)-collisions
by extending the input with dummy elements.

For a subset S ⊆ [n] and i ∈ [k], let Si denote the set of j ∈ S such that
|{j′ ∈ S : χj′ = χj}| = i. Denote ri = |Si|/i, and call τ = (r1, . . . , rk) the type
of S.

Our main technical tool is a dynamical quantum data structure that maintains
a subset S ⊆ [n] and the values χj for j ∈ S. We use notation |S〉D to denote a
register containing the data structure for a particular choice of S ⊆ [n].

The data structure can perform several operations in polylogarithmic time.
The initial state of the data structure is |∅〉D. The update operation adds or
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removes an element: |S〉D|j〉|χj〉 �→ |S�{j}〉D|j〉|0〉, where that� denotes for the
symmetric difference. The data structure can perform several query operations.
It can give the type τ of S. For integers i ∈ [k] and 
 ∈ [|Si|], it returns the 
th
element of Si according to some internal ordering. Given an element j ∈ [n], it
detects whether j is in S, and if it is, returns the pair (i, 
) such that j is the

th element of Si. Given a ∈ [q], it returns i ∈ [k] such that a is a value in Si or
says there is no such i.

The data structure is coherence-friendly, i.e., a subset S has the same repre-
sentation |S〉D independent of the sequence of update operations that results in
this subset. It has an exponentially small error probability of failing that can be
ignored. The data structure can be implemented using quantum random access
quantum memory (QRAQM) in the terminology of Ref. [20].

The quantum walk part of the algorithm is given in the following theorem. For
the k = 3, there exists a setup procedure that prepares the state |ς〉 defined in
the statement of the theorem with r1 = r2 = n4/7 in time Õ(n5/7). Together with
the theorem this gives an Õ(n5/7)-time quantum algorithm for 3-distinctness.

Theorem 5. Let r1, . . . , rk−1 = o(n) be positive integers, let χ ∈ [q]n be an
input for the k-distinctness problem, and let V0 be the set of all S ⊆ [n] having
type (r1, . . . , rk−1, 0). Given the uniform superposition |ς〉 = 1√

|V0|

∑
S∈V0

|S〉,

the k-distinctness problem can be solved in Õ(n/
√

min{r1, . . . , rk−1}) quantum
time.

Proof. We may assume that any input contains at most one k-collision and
Ω(n) (k − 1)-collisions. Define rk = 0, and the type τi as (r1, . . . , ri−1, ri +
1, ri+1, . . . , rk) for i ∈ {0, 1, . . . , k}. Let Vi be the set of all S ⊆ [n] having type
τi (consistent with our previous notation for V0). Denote V =

⋃
i Vi. Also, for

i ∈ [k], define the set Zi of dead-ends consisting of vertices of the form (S, j) for
S ∈ Vi−1 and j ∈ [n] such that S � {j} /∈ V . Again, Z =

⋃
i Zi.

The vertex set of G is V ∪ Z. Each S ∈ V \ Vk is connected to n vertices,
one for each j ∈ [n]: if S � {j} ∈ V , the vertex corresponding to j is S � {j};
otherwise, it is (S, j) ∈ Z. A vertex S ∈ Vk is connected to k vertices in Vk−1
differing from S in one element. Each (S, j) ∈ Z is only connected to S. The
weight of each edge is 1. A vertex is marked if and only if it is contained in Vk.

The algorithm of Theorem 3 is not applicable here because we do not know
the graph in advance (it depends on the input), nor do we know the amplitudes
in the initial state |ς〉. However, we know the graph locally, and our ignorance in
the amplitudes of |ς〉 conveniently cancels with our ignorance in the size of G.

Let us briefly describe the implementation of the quantum walk onG following
Section 2.3. Let G = (V ∪ Z,E) be the graph described above. It is bipartite:
the part A contains all Vi and Zi for i even, and B contains all Vi and Zi for i
odd. The support of |ς〉 is contained in A. The reflections RA and RB are the
direct sums of local reflections Du over all u in A and B, respectively. They are
as follows:

– If u ∈ Vk, then Du is the identity in Hu.
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– If u ∈ Zi, then Du negates the amplitude of the only edge incident to u.
– If u ∈ Vi for i < k, thenDu is the reflection about the orthogonal complement

of |ψu〉 in Hu. If u ∈ V0, or u ∈ Vi with i > 0, then |ψu〉 is defined as

|ψu〉 =
1√
C1

|u〉+
∑
uv∈E

|uv〉, or |ψu〉 =
∑
uv∈E

|uv〉,

respectively. Here, C1 is a constant.

The space of the algorithm consists of three registers: D, C and Z. The data
register D contains the data structure for S ⊆ [n]. The coin register C contains
an integer in {0, 1, . . . , n}, and the qubit Z indicates whether the vertex is an
element of Z. A combination |S〉D|0〉C|0〉Z with S ∈ V0 indicates a vertex in
V0 that is used in |ς〉. A combination |S〉D|j〉C|0〉Z with j > 0 indicates the
edge between S and S � {j} or (S, j) ∈ Z. Finally, a combination |S〉D|j〉C|1〉Z
indicates the edge between (S, j) ∈ Z and S ∈ V .

The reflections RA and RB are broken down into the diffuse and update op-
erations. The diffuse operations perform the local reflections in the list above.
For the first one, do nothing conditioned on |S〉D being marked. For the second
one, negate the phase conditioned on Z containing 1. The third reflection is the
Grover diffusion [21] with one special element if S ∈ V0.

The representation of the edges is asymmetric. One vertex is contained in the
D register, and the other is stored jointly by the D and C registers. The update
operation changes the representation of the edge to the opposite one.

The update operation can be performed using the primitives from Section 3.
Given |S〉D|j〉C|b〉Z, calculate whether S�{j} ∈ V in a fresh qubit Y. Conditioned
on Y, query the value of χj and perform the update operation for the data
structure. Conditioned on Y not being set, flip the value of Z. Finally, uncompute
the value in Y. In the last step, we use that |S〉D|j〉C represents an edge between
vertices in V if and only if |S � {j}〉D|j〉C does the same.

Having shown how to implement the step of the quantum walk efficiently, let
us estimate the required number of steps. The argument is very similar to the one
in Theorem 3. We start with the positive case. Assume {a1, . . . , ak} is the unique
k-collision. Let V ′0 denote the set of S ∈ V0 that are disjoint from {a1, . . . , ak},
and σ′ be the uniform probability distribution on V ′0 . Define the flow p from σ′

to Vk as follows. For each S ∈ Vi such that i < k and S ∩M = {a1, . . . , ai},
define flow pe = 1/|V ′0 | on the edge e from S to S ∪{ai+1} ∈ Vi+1. Define pe = 0
for all other edges e. Let

|φ〉 =
√
C1

∑
S∈V ′

0

1

|V ′0 |
|S〉 −

∑
e∈E

pe|e〉.

This vector is orthogonal to all ψu, so it is invariant under the action of RBRA.
Also, ‖|φ〉‖2 = (k + C1)/|V ′0 |, and 〈φ|ς〉 =

√
C1/|V0|. Hence,〈 φ

‖φ‖ , ς
〉

=

√
C1|V ′0 |

(k + C1)|V0|
∼

√
C1

k + C1

where ∼ denotes asymptotic equivalence as n→∞.
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In the negative case, define

|w〉 =

√
C1

|V0|

(∑
S∈V0

1√
C1

|S〉+
∑
e∈E

|e〉
)
.

Similarly to the proof of Theorem 3, we have ΠA|w〉 = 0 and ΠB|w〉 = |ς〉.
Let us estimate ‖|w〉‖. The number of edges in E is at most n times the number

of vertices in V0∪· · ·∪Vk−1. Thus, we have to estimate |Vi| for i ∈ [k−1]. Consider
the relation between V0 and Vi where S ∈ V0 and S′ ∈ Vi are in the relation iff
S′\S consists of i equal elements. Each element of V0 has at most n

(
k−1
i

)
= O(n)

images in Vi, where the constant behind the big-O depends exponentially on k.
This is because there are at most n maximal collisions in the input, and for each
of them, there are at most

(
k−1
i

)
variants to extend S with. On the other hand,

each element in Vi has exactly ri + 1 preimages in V0. Thus, |Vi| = O(n|V0|/ri),
so

‖|w〉‖ = O
(√

1 + n/r1 + n/r2 + · · ·+ n/rk−1

)
= O

(
n/

√
min{r1, . . . , rk−1}

)
.

By Lemma 1, we have that if Θ = Ω(1/‖|w〉‖), then the overlap of |ς〉 with the
eigenvectors of RBRA with phase less than Θ can be made at most 1/C2 for any
constant C2 > 0. Thus, it suffices to use phase estimation with precision Θ if C1

and C2 are large enough. By Theorem 2, this requires O(n/
√

min{r1, . . . , rk−1})
iterations of the quantum walk. ��

4 Quantum Walks with Nested Updates

4.1 Introduction

Given a Markov chain P with spectral gap δ and success probability ε in its
stationary distribution, one can construct a quantum search algorithm with cost
S+ 1√

ε
( 1√

δ
U+C) [12], where S, U, and C are respectively the setup, update, and

checking costs of the quantum analog of P . Using a quantum walk algorithm
with costs S′,U′,C′, ε′, δ′ (as in [12]) as a checking subroutine straightforwardly
gives complexity S + 1√

ε
( 1√

δ
U + S′ + 1√

ε′
( 1√

δ′
U′ + C′)). Using nested checking

[11], the cost can be reduced to S + S′ + 1√
ε
( 1√

δ
U + 1√

ε′
( 1√

δ′
U′ + C′)).

It is natural to ask if a quantum walk subroutine can be used for the update
step in a similar manner to obtain cost S + S′ + 1√

ε
( 1√

δ
1√
ε′

( 1√
δ′
U′ + C′) + C).

In most applications, the underlying walk is independent of the input, so the
update operation is simple, but for some applications a more complex up-
date may be useful (as in [22], where Grover search is used for the update).
In Section 4.3, we describe an example showing that it is not even clear how
to use a nested quantum walk for the update with the seemingly trivial cost
S+ 1√

ε
( 1√

δ
(S′+ 1√

ε′
( 1√

δ′
U′+C′)) +C). Nevertheless, despite the difficulties that

arise in implementing nested updates, we show in Section 4.4 how to achieve the
more desirable cost expression in certain cases, and a similar one in general.
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To accomplish this, we extend the quantum walk search framework by intro-
ducing the concept of coin-dependent data. This allows us to implement nested
updates, with a quantum walk subroutine carrying out the update procedure.
Superficially, our modification appears small. Indeed, the proof of the complex-
ity of our framework is nearly the same as that of [12]. However, there are some
subtle differences in the implementation of the walk.

As in [11], this concept is simple yet powerful. We demonstrate this by con-
structing a quantum walk version of the learning graph for 3-Distinctness with
matching query complexity (up to poly-logarithmic factors). Because quantum
walks are easy to analyze, the time complexity, which matches the query com-
plexity, follows easily.

4.2 Quantum Walk Search

In the rest of the paper, let P be a reversible, ergodic Markov chain on a con-
nected, undirected graph G = (X,E) with stationary distribution π and spectral
gap δ > 0. Let M ⊆ X be a set of marked vertices. The Markov chain can be
used to detect wether M = ∅ or Prx∼π(x ∈M) ≥ ε, for some given ε > 0.

Quantizing this algorithm leads to efficient quantum algorithms [12]. The

quantization considers P as a walk on directed edges of G. We write (x, y) ∈ �E
when we consider an edge {x, y} ∈ E with orientation. The notation (x, y) means
that the current vertex of the walk is x and the coin, indicating the next move,
is y. Swapping x and y changes the current vertex to y and the coin to x.

The quantum algorithm may carry some data structure while walking on G;
we formalize this as follows. Let 0 /∈ X . Define D : X∪{0} → D for some Hilbert
space D, with |D(0)〉 = |0〉. We associate a cost with each part of the algorithm.
The cost can be any measure of complexity such as queries or time.

Setup cost: Let S be the cost of constructing

|π〉 =
∑
x∈X

√
π(x) |x〉 |D(x)〉

∑
y∈X

√
P (x, y) |y〉 |D(y)〉 .

Update cost : Let U be the cost of the Local Diffusion operation, which is
controlled on the first two registers and acts as

|x〉 |D(x)〉 |0〉 |D(0)〉 �→ |x〉 |D(x)〉
∑
y∈X

√
P (x, y) |y〉 |D(y)〉 .

Checking cost : Let C be the cost of |x〉 |D(x)〉 �→
{
− |x〉 |D(x)〉 if x ∈M
|x〉 |D(x)〉 otherwise.

Theorem 6 ([12]). Let P be a reversible, ergodic Markov chain on G = (X,E)
with spectral gap δ > 0. Let M ⊆ X be such that Prx∼π(x ∈ M) ≥ ε, for
some ε > 0, whenever M �= ∅. Then there is a quantum algorithm that finds an
element of M , if M �= ∅, with bounded error and with cost O(S+ 1√

ε
( 1√

δ
U+C)).

Furthermore, we can approximately map |π〉 to |π(M)〉, the normalized projec-
tion of |π〉 onto span{|x〉 |D(x)〉 |y〉 |D(y)〉 : x ∈M, y ∈ X}, in cost 1√

ε
( 1√

δ
U+C).
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4.3 Motivating Example

3-Distinctness. Suppose the input is a sequence χ = χ1, . . . , χn of integers from
[q] := {1, . . . , q}. We model the input as an oracle whose answer to query i ∈ [n]
is χi. As in Section 3, we assume without loss of generality that there is at most
one 3-collision and that the number of 2-collisions is in Θ(n). Note that any two
2-collisions not both part of the 3-collision are disjoint.

Quantum Walk for Element Distinctness. In [2], a quantum walk for solving
Element Distinctness was presented. This walk takes place on a Johnson graph,
J(n, r), whose vertices are subsets of [n] of size r, denoted

(
[n]
r

)
. In J(n, r), two

vertices S, S′ are adjacent if |S ∩ S′| = r − 1. The data function is D(S) =
{(i, χi) : i ∈ S}. The diffusion step of this walk acts as

|S〉 |D(S)〉 |0〉 �→ |S〉 |D(S)〉 1√
r(n−r)

∑
i∈S,j∈[n]\S |(S \ i) ∪ j〉 |D((S \ i) ∪ j)〉 .

We can perform this diffusion in two queries by performing the transformation

|S〉 |D(S)〉 |0〉 �→ |S〉 |D(S)〉 1√
r

∑
i∈S |(i, χi)〉 1√

n−r
∑

j∈[n]\S |(j, χj)〉 .

We can reversibly map this to the desired state with no queries, and by using
an appropriate encoding of D, we can make this time efficient as well.

To complete the description of this algorithm, we describe the marked set and
checking procedure. We deviate slightly from the usual quantum walk algorithm
of [2] and instead describe a variation that is analogous to the learning graph
for Element Distinctness [6]. We say a vertex S is marked if it contains an index
i such that there exists j ∈ [n] \ {i} with χi = χj (in [2] both i and j must be
in S). To check if S is marked, we search [n] \ S for such a j, in cost O(

√
n).

Attempting a Quantum Walk for 3-Distinctness. We now attempt
to construct an analogous algorithm for 3-Distinctness. Let P de-
note the set of collision pairs in the input, and n2 := |P|. We walk
on J(n2, s2), with each vertex S2 corresponding to a set of s2 colli-
sion pairs. The diffusion for this walk is the map |S2, D(S2)〉 |0〉 �→
|S2, D(S2)〉 1√

r(n2−s2)

∑
(i,i′)∈S2

(j,j′)∈P\S2

|(S2 \ (i, i′)) ∪ (j, j′)〉 |D((S2 \ (i, i′)) ∪ (j, j′))〉 .

To accomplish this, we need to generate 1√
s2

∑
(i,i′)∈S2

|(i, i′, χi)〉 and
1√

n2−s2
∑

(j,j′)∈P\S2
|(j, j′, χj)〉. The first superposition is easy to generate

since we have S2; the second is more difficult since we must find new collisions.
The obvious approach is to use the quantum walk algorithm for Element

Distinctness as a subroutine. However, this algorithm does not return the desired
superposition over collisions; rather, it returns a superposition over sets that
contain a collision. That is, we have the state 1√

n2

∑
(i,i′)∈P |(i, i′, χi)〉 |ψ(i, i′)〉

for some garbage |ψ(i, i′)〉. The garbage may be only slightly entangled with
(i, i′), but even this small amount of error in the state is prohibitive. Since we
must call the update subroutine many times, we need the error to be very small.
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Unlike for nested checking, where bounded-error subroutines are sufficient, we
cannot amplify the success probability of an update operator. We cannot directly
use the state returned by the Element Distinctness algorithm for several reasons.
First, we cannot append garbage each time we update, as this would prevent
proper interference in the walk. Second, when we use a nested walk for the
update step, we would like to use the same trick as in nested checking: putting
a copy of the starting state for the nested walk in the data structure so that we
only need to perform the inner setup once. To do this here we would need to
preserve the inner walk starting state; in other words, the update would need to

output some state close to
(
n
s1

)−1/2∑
S1∈([n]

s1
) |S1〉. While we might try to recycle

the garbage to produce this state, it is unclear how to extract the part we need
for the update coherently, let alone without damaging the rest of the state.

This appears to be a problem for any approach that directly uses a quantum
walk for the update, since all known quantum walks use some variant of a John-
son graph. Our modified framework circumvents this issue by allowing us to do
the update with some garbage, which we then uncompute. This lets us use a
quantum walk subroutine, with setup performed only at the beginning of the
algorithm, to accomplish the update step. More generally, using our modified
framework, we can tolerate updates that have garbage for any reason, whether
the garbage is the result of the update being implemented by a quantum walk,
or by some other quantum subroutine.

4.4 Quantum Walks with Nested Updates

Coin-Dependent Data. A quantum analog of a discrete-time random walk on
a graph can be constructed as a unitary process on the directed edges. For an
edge {x, y}, we may have a state |x〉 |y〉, where |x〉 represents the current vertex
and |y〉 represents the coin or next vertex. In the framework of [12], some data
function on the vertices is employed to help implement the search algorithm. We
modify the quantum walk framework to allow this data to depend on both the
current vertex and the coin, so that it is a function of the directed edges, which
seems natural in hindsight. We show that this point of view has algorithmic
applications. In particular, this modification enables efficient nested updates.

Let 0 �∈ X . Let D : (X ×{0})∪ �E → D for some Hilbert space D. A quantum
analog of P with coin-dependent data structures can be implemented using three
operations, as in [12], but the update now has three parts. The first corresponds
to Local Diffusion from the framework of [12], as described in Section 4.2.
The others are needed because of the new coin-dependent data.

Update cost: Let U be the cost of implementing

– Local Diffusion: |x, 0〉 |D(x, 0)〉 �→
∑

y∈X
√
P (x, y) |x, y〉 |D(x, y)〉 ∀x ∈

X ;
– The (X, 0)-Phase Flip: |x, 0〉 |D(x, 0)〉 �→ − |x, 0〉 |D(x, 0)〉 ∀x ∈ X , and

the identity on the orthogonal subspace; and
– The Database Swap: |x, y〉 |D(x, y)〉 �→ |y, x〉 |D(y, x)〉 ∀ (x, y) ∈ �E.
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By cost, we mean any desired measure of complexity such as queries, time, or
space. We also naturally extend the setup and checking costs as follows, where
M ⊆ X is a set of marked vertices.

Setup cost: Let S be the cost of constructing

|π〉 :=
∑
x∈X

√
π(x)

∑
y∈X

√
P (x, y) |x, y〉 |D(x, y)〉 .

Checking cost: Let C be the cost of the reflection

|x, y〉 |D(x, y)〉 �→
{
− |x, y〉 |D(x, y)〉 if x ∈M,

|x, y〉 |D(x, y)〉 otherwise,
∀ (x, y) ∈ �E.

Observe that |π〉0 :=
∑

x∈X
√
π(x) |x, 0〉 |D(x, 0)〉 can be mapped to |π〉 by the

Local Diffusion, which has cost U < S, so we can also consider S to be the
cost of constructing |π〉0.

Theorem 7. Let P be a Markov chain on G = (X,E) with spectral gap δ >
0, and let D be a coin-dependent data structure for P . Let M ⊆ X satisfy
Prx∼π(x ∈ M) ≥ ε > 0 whenever M �= ∅. Then there is a quantum algorithm
that finds an element of M , if M �= ∅, with bounded error and with cost O(S +
1√
ε
( 1√

δ
U + C)).

Proof. Our quantum walk algorithm is nearly identical to that of [12],
so the proof of this theorem is also very similar. Just as in [12], we
define a walk operator, W (P ), and analyze its spectral properties. Let
A := span{

∑
y∈X

√
P (x, y) |x, y〉 |D(x, y)〉 : x ∈ X} and define W (P ) :=

((Database Swap) · refA)2, where refA denotes the reflection about A.

As in [12], we can define H := span{|x, y〉 : (x, y) ∈ (X × {0}) ∪ �E} and

HD := span{|x, y,D(x, y)〉 : (x, y) ∈ (X × {0}) ∪ �E}. Also as in [12], there is
a natural isomorphism |x, y〉 �→ |x, y〉D = |x, y,D(x, y)〉, and HD is invariant
under both W (P ) and the checking operation. Thus, the spectral analysis may
be done in H, on states without data, exactly as in [12]. However, there are some
slight differences in how we implement W (P ), which we now discuss.

The first difference is easy to see: in [12], the Database Swap can be ac-
complished trivially by a SWAP operation, mapping |x〉 |y〉 |D(x)〉 |D(y)〉 to
|y〉 |x〉 |D(y)〉 |D(x)〉, whereas in our case, there may be a nontrivial cost as-
sociated with the mapping |D(x, y)〉 �→ |D(y, x)〉, which we must include in the
calculation of the update cost.

The second difference is more subtle. In [12], refA is implemented by apply-

ing (Local Diffusion)†, reflecting about |0, D(0)〉 (since the data only refers
to a vertex) in the coin register, and then applying (Local Diffusion). It is
simple to reflect about |0, D(0)〉, since |D(0)〉 = |0〉 in the formalism of [12].
In [12], this reflection is sufficient, because the operation (Local Diffusion)†

fixes the vertex and its data, |x〉 |D(x)〉, so in particular, it is still in the
space span{|x〉 |D(x)〉 : x ∈ X}. The register containing the coin and its data,
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|y〉 |D(y)〉, may be moved out of this space by (Local Diffusion)†, so we must
reflect about |0〉 |D(0)〉, but this is straightforward.

With coin-dependent data, a single register |D(x, 0)〉 holds the data for both
the vertex and its coin, and the operation (Local Diffusion)† may take the
coin as well as the entire data register out of the space HD, so we need to
reflect about |0〉 |D(x, 0)〉, which is not necessarily defined to be |0〉 |0〉. This
explains why the cost of (X, 0)-Phase Flip is also part of the update cost. In
summary, we implement W (P ) by ((Database Swap) · (Local Diffusion) ·
((X, 0)-Phase Flip) · (Local Diffusion)

†
)2. ��

Nested Updates. We show how to implement efficient nested updates using the
coin-dependent data framework. Let C : X ∪{0} → C be some coin-independent
data structure (that will be a part of the final data structure) with |C(0)〉 = |0〉,
where we can reflect about span{|x〉 |C(x)〉 : x ∈M} in cost CC .

Fix x ∈ X . Let P x be a walk on a graph Gx = (V x, Ex) with stationary
distribution πx and marked set Mx ⊂ V x. We use this walk to perform Local
Diffusion over |x〉. Let dx be the data for this walk.

When there is ambiguity, we specify the data structure with a sub-
script. For instance, |π〉D =

∑
x,y∈X

√
π(x)P (x, y) |x, y〉 |D(x, y)〉 and |π〉0C =∑

x∈X
√
π(x) |x, 0〉 |C(x), 0〉. Similarly, SC is the cost to construct the state |π〉C .

Definition 1. The family (P x,Mx, dx)x∈X implements the Local Diffusion
and Database Swap of (P,C) with cost T if the following two maps can be
implemented with cost T:

Local Diffusion with Garbage: For some garbage states (|ψ(x, y)〉)(x,y)∈�E,

an operation controlled on the vertex x and C(x), acting as

|x, 0〉 |C(x), 0〉 |πx(Mx)〉dx �→
∑
y∈X

√
P (x, y) |x, y〉 |C(x), C(y)〉 |ψ(x, y)〉 ;

Garbage Swap: For any edge (x, y) ∈ �E,

|x, y〉 |C(x), C(y)〉 |ψ(x, y)〉 �→ |y, x〉 |C(y), C(x)〉 |ψ(y, x)〉 .

The data structure of the implementation is |D(x, 0)〉 = |C(x), 0〉 |πx(Mx)〉dx

for all x ∈ X and |D(x, y)〉 = |C(x), C(y)〉 |ψ(x, y)〉 for any edge (x, y) ∈ �E.

Theorem 8. Let P be a reversible, ergodic Markov chain on G = (X,E) with
spectral gap δ > 0, and let C be a data structure for P . Let M ⊆ X be such that
Prx∼π(x ∈ M) ≥ ε for some ε > 0 whenever M �= ∅. Let (P x,Mx, dx)x∈X be a
family implementing the Local Diffusion and Database Swap of (P,C) with
cost T, and let S′,U′,C′, 1/ε′, 1/δ′ be upper bounds on the costs and parameters
associated with each of the (P x,Mx, dx). Then there is a quantum algorithm that
finds an element of M , if M �= ∅, with bounded error and with cost

Õ
(
SC + S′ + 1√

ε

(
1√
δ

(
1√
ε′

(
1√
δ′
U′ + C′

)
+ T

)
+ CC

))
.
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Proof. We achieve this upper bound using the quantization of P with the data
structure of the implementation, D. We must compute the cost of the setup,
update, and checking operations associated with this walk.

Checking: The checking cost C = CD is the cost to reflect about
span{|x〉 |y〉 |D(x, y)〉 : x ∈ M} = span{|x〉 |y〉 |C(x), C(y)〉 |ψ(x, y)〉 : x ∈ M}.
We can implement this in HD by reflecting about span{|x〉 |C(x)〉 : x ∈ M},
which costs CC .

Setup: Recall that |C(0)〉 = |0〉. The setup cost S = SD is
the cost of constructing the state

∑
x∈X

√
π(x) |x〉 |0〉 |D(x, 0)〉 =∑

x∈X
√
π(x) |x〉 |0〉 |C(x), 0〉 |πx(Mx)〉 . We do this as follows. We first

construct
∑

x∈X
√
π(x) |x, 0〉 |C(x), 0〉 in cost SC . Next, we apply the mapping

|x〉 �→ |x〉 |πx〉 in cost S′. Finally, we use the quantization of P x to perform the
mapping |x〉 |πx〉 �→ |x〉 |πx(Mx)〉 in cost 1√

ε′
( 1√

δ′
U′ + C′). The full setup cost is

then S = SC + S′ + 1√
ε′

( 1√
δ′
U′ + C′).

Update: The update cost has three contributions. The first is the Local Dif-
fusion operation, which, by the definition of D, is exactly the Local Dif-
fusion with Garbage operation. Similarly, the Database Swap is exactly
the Garbage Swap, so these two operations have total cost T. The (X, 0)-
Phase Flip is simply a reflection about states of the form |x〉 |D(x, 0)〉 =
|x〉 |C(x)〉 |πx(Mx)〉. Given any x ∈ X , we can reflect about |πx(Mx)〉 using
the quantization of P x in cost 1√

ε′
( 1√

δ′
U′+C′) by running the algorithm of The-

orem 7. In particular, we can run the walk backward to prepare the state |πx〉,
perform phase estimation on the walk operator to implement the reflection about
this state, and then run the walk forward to recover |πx(Mx)〉. However, this
transformation is implemented approximately. To keep the overall error small,
we need an accuracy of O(1/

√
εδε′δ′), which leads to an overhead logarithmic in

the required accuracy. The reflection about |πx(Mx)〉, controlled on |x〉, is suf-
ficient because Local Diffusion with Garbage is controlled on |x〉 |C(x)〉,
and so it leaves these registers unchanged. Since we apply the (X, 0)-Phase Flip
just after applying (Local Diffusion)† (see proof of Theorem 7) to a state in
HD, we can guarantee that these registers contain |x〉 |C(x)〉 for some x ∈ X .
The total update cost (up to log factors) is U = T + 1√

ε′
( 1√

δ′
U′ + C′).

Finally, the full cost of the quantization of P (up to log factors) is

SC + S′ + 1√
ε′

(
1√
δ′
U′ + C′

)
+ 1√

ε

(
1√
δ

(
1√
ε′

(
1√
δ′
U′ + C′

)
+ T

)
+ CC

)
= Õ

(
SC + S′ + 1√

ε

(
1√
δ

(
1√
ε′

(
1√
δ′
U′ + C′

)
+ T

)
+ CC

))
. ��

If T = 0 (as when, e.g., the notion of cost is query complexity), then the expres-
sion is exactly what we would have liked for nested updates.
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5 Application to 3-Distinctness

In this section we sketch an alternate proof of Theorem 4, giving a high-level
description of the quantum walk algorithm, before summarizing the cost of each
required procedure. First we define some notation.

We partition the input space into three disjoint sets A1, A2, A3 of equal size,
and assume that if there is a 3-collision {i, j, k}, then we have i ∈ A1, j ∈ A2 and
k ∈ A3. This assumption holds with constant probability, so we need only repeat
the algorithm O(1) times with independent choices of the tripartition to find any
3-collision with high probability. Thus, we assume we have such a partition.

For any set S1 ⊆ A1∪A2, let P(S1) := {(i, j) ∈ A1×A2 : i, j ∈ S1, i �= j, χi =
χj} be the set of 2-collisions in S1 and for any set S2 ⊂ A1 × A2, let I(S2) :=⋃

(i,j)∈S2
{i, j} be the set of indices that are part of pairs in S2. In general, we

only consider 2-collisions in A1×A2; other 2-collisions in χ are ignored. For any
pair of sets A,B, let P(A,B) := {(i, j) ∈ A × B : i �= j, χi = χj} be the set
of 2-collisions between A and B. For convenience, we define P := P(A1, A2).
Let n2 := |P|. For any set S2 ⊆ P , we denote the set of queried values by
Q(S2) := {(i, j, χi) : (i, j) ∈ S2}. Similarly, for any set S1 ⊂ [n], we denote the
set of queried values by Q(S1) := {(i, χi) : i ∈ S1}.

The Walk. Our overall strategy is to find a 2-collision (i, j) ∈ A1×A2 such that
∃k ∈ A3 with {i, j, k} a 3-collision. Let s1, s2 < n be parameters to be optimized.
We walk on the vertices X =

(P
s2

)
, with each vertex corresponding to a set of

s2 2-collisions from A1 × A2. A vertex is considered marked if it contains (i, j)
such that ∃k ∈ A3 with {i, j, k} a 3-collision. Thus, if M �= ∅, the proportion of
marked vertices is ε = Ω( s2

n2
).

To perform an update, we use an Element Distinctness subroutine that walks
on s1-sized subsets of A1 ∪ A2. However, since n2 is large by assumption, the
expected number of collisions in a set of size s1 is large if s1 "

√
n, which we

suppose holds. It would be a waste to take only one and leave the rest, so we
replace multiple elements of S2 in each step. This motivates using a generalized

Johnson graph J(n2, s2,m) for the main walk, where we set m :=
s21n2

n2 = O(
s21
n ),

the expected number of 2-collisions in a set of size s1. In J(n2, s2,m), two vertices
S2 and S′2 are adjacent if |S2 ∩ S′2| = s2 −m, so we can move from S2 to S′2 by
replacing m elements of S2 by m distinct elements. Let Γ (S2) denote the set of
vertices adjacent to S2. The spectral gap of J(n2, s2,m) is δ = Ω(m

s2
).

The Update. To perform an update step on the vertex S2, we use the Ele-
ment Distinctness algorithm of [2] as a subroutine, with some difference in how
we define the marked set. Specifically, we use the subroutine to look for m 2-
collisions, with m " 1. Furthermore, we only want to find 2-collisions that are
not already in S2, so PS2 is a walk on J(2n/3 − 2s2, s1), with vertices corre-
sponding to sets of s1 indices from (A1 ∪ A2) \ I(S2), and we consider a ver-
tex marked if it contains at least m pairs of indices that are 2-collisions (i.e.,

MS2 = {S1 ∈
(
(A1∪A2)\I(S2)

s1

)
: |P(S1)| ≥ m}).
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The Data. We store the value χi with each (i, j) ∈ S2 and i ∈ S1, i.e., |C(S2)〉 =
|Q(S2)〉 and

∣∣dS2(S1, S
′
1)
〉

= |Q(S1), Q(S′1)〉. As in Section 3, we use the data
structure of [2]. Although technically this is part of the data, it is classical and
coin-independent, so it is straightforward. Furthermore, since S1 is encoded in
Q(S1) and S2 in Q(S2), we simply write |Q(S1)〉 instead of |S1, Q(S1)〉 and
|Q(S2)〉 instead of |S2, Q(S2)〉.

The rest of the data is what is actually interesting. We use the state∣∣πS2(MS2)
〉0
dS2

in the following instead of
∣∣πS2(MS2)

〉
dS2

since it is easy to map
between these two states. For every S2 ∈ X , let

|D(S2, 0)〉 := |Q(S2), 0〉
∣∣πS2(MS2)

〉0
dS2

= |Q(S2)〉 1√
|MS2 |

∑
S1∈MS2

|Q(S1)〉 ,

and for every edge (S2, S
′
2), let |D(S2, S

′
2)〉 := |Q(S2), Q(S′2)〉 |ψ(S2, S

′
2)〉 where

|ψ(S2, S
′
2)〉 :=

∑
S̃1∈((A1∪A2)\I(S2∪S′

2)

s1−2m )

√√√√ (
n2−s2

m

)(|P(S̃1)|+m
m

)
|MS2 |

∣∣∣Q(S̃1)
〉
. (6)

We define |ψ〉 in this way precisely because it is what naturally occurs when we
attempt to perform the diffusion.

Summary of Costs. Our setup is similar to that of Section 3. We create a uni-
form superposition of sets of s1 queried indices from A1 in cost Õ(s1), search

for s2 elements of A2 that collide with the queried indices in cost Õ
(
s2
√
n/s1

)
,

and measure those queried indices for which we did not find a collision. We add
the measured indices to A3. This leaves a uniform superposition of sets of s2 2-
collisions in A1×A2. We create a uniform superposition of sets of s1 queried in-

dices fromA1 in cost Õ(s1), for a total setup cost of SC+S′ = Õ
(
s1 + s2

√
n/s1

)
.

The update walk costs follow from the above discussion, with δ′ = Ω(m
s2

)
(the spectral gap of J(n2, s2,m)); ε′ = Ω(1) (the proportion of sets of size s1
containing ≥ m 2-collisions); U′ = Õ(1); and C′ = O(1), achievable by keeping
a count of the number of 2-collisions in the set.

It’s not difficult to see that our garbage is symmetric, so our garbage swap
is quite straightforward and requires simply moving O(m) already queried el-
ements between data structures. Similarly, the local diffusion with garbage is
accomplished by moving O(m) already queried 2-collisions between data struc-
tures, thus we have T = Õ(m). The checking is accomplished by searching A3

for an element in collision with one of the stored 2-collisions, giving C = Õ(
√
n).

Plugging these into the formula of Theorem 8 gives an upper bound of Õ(n5/7)
time complexity, using the optimal values of s1 = n5/7 and s2 = n4/7.
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Abstract. Given an instance I of a CSP, a tester for I distinguishes
assignments satisfying I from those which are far from any assignment
satisfying I. The efficiency of a tester is measured by its query complex-
ity, the number of variable assignments queried by the algorithm. In this
paper, we characterize the hardness of testing Boolean CSPs in terms of
the algebra generated by the relations used to form constraints. In terms
of computational complexity, we show that if a non-trivial Boolean CSP
is sublinear-query testable (resp., not sublinear-query testable), then the
CSP is in NL (resp., P-complete, ⊕L-complete or NP-complete) and that
if a sublinear-query testable Boolean CSP is constant-query testable
(resp., not constant-query testable), then counting the number of so-
lutions of the CSP is in P (resp., #P-complete).
Also, we conjecture that a CSP instance is testable in sublinear time

if its Gaifman graph has bounded treewidth. We confirm the conjecture
when a near-unanimity operation is a polymorphism of the CSP.

1 Introduction

In property testing, we want to decide whether an instance satisfies some par-
ticular property or is far from the property. More specifically, an algorithm is
called an ε-tester for a property if, given an instance, it accepts with probability
at least 2/3 if the instance satisfies the property, and it rejects with probability
at least 2/3 if the instance is ε-far from the property. Here, an instance is called
ε-far from a property if we must modify an ε-fraction of the instance to make it
satisfy the property. The concept of property testing was introduced in [1] and
extended to a combinatorial setting in [2]. Since then, many problems have been
revealed to be testable in constant time, that is, independent of input size.

In constraint satisfaction problems (CSPs), we are given a set of variables and
a set of constraints imposed on variables. The objective is to find an assignment
that satisfies all the constraints. Depending on the relations used to make con-
straints, CSPs coincide with many fundamental problems such as SAT, graph
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coloring and linear equation systems. For example, a graph G is 2-colorable ex-
actly when the CSP instance with variables {xu | u ∈ V (G)} and constraints
(xu �= xv) for every (u, v) ∈ E(G) has a satisfying assignment over {0, 1}.

In this paper, we are concerned with testing whether a given assignment
satisfies a particular CSP instance. That is, for a known instance I of a CSP,
we want to distinguish assignments which satisfy I from those which are ε-far
from satisfying I. In this context, an assignment f on n variables is said to be
ε-far from satisfying I if f differs on at least εn variables from any assignment
that satisfies I.

The efficiency of a tester for CSP assignments is measured by its query com-
plexity, that is, the number of variable assignments queried by the testing algo-
rithm. We investigate the following question:

Is the query complexity of testing assignments characterized by the types
of constraints used to form the CSP instance?

In what follows, instead of saying testing assignments for a CSP instance I, we
usually simply say testing I. By query complexity of a class C of CSPs, we mean
the worst case query complexity, over all instances I in C, of testing I.

The problem of testing Boolean CSPs has been well-studied. In [3], Ben-
Sasson, Harsha and Raskhodnikova showed that testing 3-LIN and 3-SAT require
Ω(n) queries, where n is the number of variables. (We use standard nomenclature
for CSP classes. For precise definitions, refer to Section 2.) Note that although
3-LIN is in P while 3-SAT is a classic NP-complete problem, they behave similarly
in terms of query complexity. In [4], Fischer et al. showed that 2-SAT instances
are testable with O(

√
n) queries. Yoshida in [5] initiated a unified theory for

testing CSPs by using techniques from universal algebra. Universal algebra is by
now a basic tool [6,7] to investigate the computational complexity of CSPs, and
Yoshida showed that many of the same ideas used for studying tractability could
also be used for testability. Although his main focus was the list homomorphism
problem for undirected graphs, one important consequence of [5] is that testing
any NP-complete Boolean1 CSP requires Ω(n) queries (if each variable is allowed
to contribute with a different weight to the distance measure2).

Due to the seminal work [8] of Schaefer, it is known that if a Boolean CSP is
not NP-complete, then, assuming P �= NP, it must be polynomial-time solvable
and, moreover, must belong to one of the following classes: 0-valid, 1-valid, 2-
SAT, Horn SAT, Dual Horn SAT, and system of linear equations. Therefore, given
the results of [3,4,5], characterization of sublinear-query testable CSPs requires
determining the query complexity of 0-valid, 1-valid, Horn SAT and Dual Horn
SAT CSPs. We complete this characterization here.

Among sublinear-query testable properties, there are properties that can be
tested with a constant number of queries, independent of the number of vari-
ables. Such strongly testable properties are of special interest in the area of

1 In fact, [5] also implies the same result for non-Boolean CSPs if the Dichotomy
Conjecture is true.

2 In this work, we can remove this technical condition and obtain the same result for
the standard Hamming distance.
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property testing. For example, the characterization of constant-query testable
graph [9,10,11] and algebraic [12,13] properties have been major research projects.
Here, we give an algebraic characterization of constant-query testable CSPs.

Finally, we ask if instead of restricting the relations that can be used to form
constraints of the instance, one can restrict the structure of the variable-clause
incidence relationship so as to get low query complexity. The analogy is with
Grohe’s result [14] that asserts that a CSP instance is solvable in polynomial time
if and only if it has bounded treewidth structure (under standard assumptions).
We conjecture that bounded treewidth structure also implies sublinear-query
testability and confirm this conjecture for a large class of CSPs.

1.1 Our Results

To describe our algebraic characterization of sublinear-query and constant-query
testable properties, we introduce some notions from universal algebra. A con-
straint language is a finite set of relations on a finite set, in this paper always
{0, 1}. Given a constraint language Γ , let CSP(Γ ) be the class of CSP instances
that can use relations in Γ to make constraints. For example, 2-colorability is
equivalent to CSP({�=}). An n-ary operation f : {0, 1}n → {0, 1} is said to pre-
serve Γ if for every relation R in Γ and for every set of n strings x1, . . . , xn ∈ R,
it is the case that f applied component-wise to x1, . . . , xn also produces a string
in R. For example, one can check that the 3-ary majority operation preserves
{�=}. Let the polymorphisms of Γ , denoted Pol(Γ ), be the set of all operations
that preserve Γ . It turns out that if Pol(Γ1) = Pol(Γ2), then the query com-
plexity of testing CSP(Γ1) and of testing CSP(Γ2) are roughly equal (precise
statement in Section 4). Hence, in order to classify CSP(Γ ) into whether it is
constant-query or sublinear-query testable, it is enough to study Pol(Γ ).

For every possible set of operations Pol(Γ ), our main result specifies whether it
is constant-query testable, sublinear-query testable or whether it requires linear
number of queries. The classification is shown in Figure 1. The figure shows
the lattice of Boolean clones (which contain all sets generated as Pol(Γ ) for
some constraint language Γ ) ordered according to containment, known as Post’s
Lattice [15]. The labels used for the clones are standard in the literature; see [16]
for definitions. As would be expected, Figure 1 shows that as Pol(Γ ) contains
less and less polymorphisms, and so as Γ gets more unrestricted, the problem
CSP(Γ ) gets harder and the query complexity increases. Here are a few sample
observations immediate from the figure and the definitions of the clones:

– Testing NAE-SAT, corresponding to the clone N2, requires Ω(n) queries.
– Testing Horn SAT, corresponding to the clone E2, requires Ω(n) queries.
– Testing monotonicity, corresponding to the clone M2, is sublinear-query

testable.
– Testing if a 2-coloring is proper, corresponding to the clone D2, is constant-

query testable.

We can summarize our classification by its connection to computational com-
plexity, using results from [16,17]. It seems that coincidentally, we can match
our classification with some of the complexity-theoretic CSP characterizations.
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Fig. 1. Post’s Lattice and our result. Here, δ is a constant determined by each clone
(see Section 4 for the definition). Clones consisting of idempotent operations are circled
in bold. Dashed clones cannot be generated as Pol(Γ ) for any constraint language Γ .

Theorem 1. Let CSP(Γ ) be a non-trivial Boolean CSP. If CSP(Γ ) is sublinear-
query testable (resp., not sublinear-query testable), then CSP(Γ ) is in NL (resp.,
P-complete, ⊕L-complete or NP-complete). If CSP(Γ ) is constant-query testable
(resp., not constant-query testable but sublinear-query testable), then counting
the number of solutions of CSP(Γ ) is in P (resp., #P-complete).

A trivial Boolean CSP is satisfied by the all-zero or all-one assignments.
The classification in Figure 1 is established through a web of reductions be-

tween different CSP(Γ ) problems. For the characterization of sublinear-query
properties, as we mentioned earlier, a central role is played by the query
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complexity of Horn k-SAT and Dual Horn k-SAT (corresponding to clones E2

and V2), where k � 3 is the arity of each constraint. We show that there exist
instances of Horn k-SAT and Dual Horn k-SAT requiring Ω(n) queries to test.
The proof is via an interesting reduction from testing 3-LIN, which uses the fact
that the hard instances of 3-LIN in [3] have expanders as their underlying graph.

Another contribution to Figure 1 comes from settling the query complexity
of trivial CSPs. We note that they can be hard in terms of testing. We show
that the query complexity of any such CSP(Γ ) approximately equals that of a
related non-trivial CSP obtained by adding constant relations to Γ . Combining
this result with bounds obtained in this and previous works allows us to complete
Figure 1.

One can think of restrictions on the constraint language Γ as a parameter that
controls the query complexity. We next ask if there are structural parameters of
CSP instances that also control query complexity. For example, it is easy to see
that if all constraints are of bounded arity and on disjoint sets of variables, then
one can test with a constant number of queries, no matter what the constraint
language is. We conjecture that the same is true if the constraints are structured
in a “tree-like” fashion. More precisely, given a CSP instance I, define the Gaif-
man graph GI to be the graph whose vertex set is the set of variables and whose
edge set consists of pairs (u, v) such that u and v appear in the same constraint
of I. Then, we conjecture:

Conjecture 1. Given CSP instance I whose Gaifman graph has treewidth � w,
there exists a tester for I with query complexity O(f(w)nc) for some function
f and c < 1.

Indeed, it even seems possible that bounded treewidth instances always have
polylogarithmic query complexity. We show logarithmic query complexity for a
class of CSPs that contain 2-SAT.

Theorem 2. Let Γ be a constraint language such that Pol(Γ ) contains a k-ary
near-unanimity operation, and let I = (V, C) be an instance of CSP(Γ ). If the
treewidth of GI is w, then we can test I with query complexity O(kw logn

ε ).

1.2 Previous Work

The work most relevant to this paper is [5], which studied the query complexity
to test List H-homomorphism. For two graphs G and H , a function f : V (G) →
V (H) is called a homomorphism from G to H if (f(u), f(v)) ∈ E(H) whenever
(u, v) ∈ E(G). Testing List H-homomorphism is a problem, in which given a
graph G, a list constraint L : V (G) → 2V (H), and a function f , we want to test
whether f is a homomorphism from G to H and f(v) ∈ L(v) for each v ∈ V (G).
Testing List H-homomorphism is a special case of testing CSPs. Similarly to
our classification, [5] showed the following. List H-homomorphism is sublinear-
query testable (resp., not testable) if it is in NL (resp., P-complete, ⊕L-complete,
or NP-complete). If sublinear-query testable List H-homomorphism is constant-
query testable (resp., not testable), then counting the number of solutions is in
P (resp., #P-complete).
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We note that the problem of testing CSP assignments belongs to the massively
parametrized model (see [18,19]), where the tester is given free access to part of
the input and oracle access to the rest. Here, a CSP instance I corresponds to
the former one and an assignment f corresponds to the latter one.

Organization. In Section 2, we introduce definitions used throughout the paper.
Section 3 is devoted to the linear lower bound for testing Horn k-SAT where
k � 3. In Section 4, we classify Boolean constraint language Γ with respect to
the query complexity to test CSP(Γ ). Omitted proofs are given in the full ver-
sion of the paper. For constraint languages whose clones contain near-unanimity
operations, we prove Theorem 2 also in the full version of the paper.

2 Preliminaries

For an integer k � 1, a k-ary relation on a domain A is a subset of Ak. A
constraint language on a domain A is a finite set of relations on A. A (finite)
relational structure, or simply a structure A = 〈A;Γ 〉 consists of a non-empty
set A, called the domain, and a constraint language Γ on A. For a structure
A = 〈A;Γ 〉, we define the problem CSP(A) as follows. An instance I = (V, C)
consists of a set of variables V and a set of constraints C. Here, each constraint
C ∈ C is of the form (v1, . . . , vk;R), where v1, . . . , vk ∈ V are variables, R is a
relation in A and k is the arity of R. Then, the objective is to find an assignment
f : V → A that satisfies all the constraints, that is (f(v1), . . . , f(vk)) ∈ R
for every constraint C = (v1, . . . , vk;R) ∈ C. Throughout this paper, we study
Boolean CSPs, and so, A is fixed to be {0, 1}. So, we often write CSP(Γ ) instead
of CSP(A).

Let us formally define the CSPs that most concern us here.

– k-LIN corresponds to CSP(ΓLIN) where ΓLIN = {R0, R1}, R0 = {(x1, . . . , xk) |∑k
i=1 xi = 0 (mod 2)} and R1 = {(x1, . . . , xk) |

∑k
i=1 xi = 1 (mod 2)}.

– k-SAT corresponds to CSP(ΓSAT) where ΓSAT = {Rφ | φ ∈ {0, 1}k}, Rφ =
{0, 1}k \ {φ}.

– Horn k-SAT corresponds to CSP(ΓHorn) where ΓHorn = {U,R1k , R1k−10}, U =
{1} andR1k , R1k−10 as above. Dual Horn k-SAT corresponds to CSP(ΓDualHorn)
where ΓDualHorn = {Z, R0k , R0k−11}, Z = {0}, and R0k , R0k−11 as above.

– A CSP is said to be 0-valid if for every instance I of the CSP, the all-zero
assignment satisfies I. Similarly, a CSP is said to be 1-valid if the all-ones
assignment satisfies every instance.

It is known that there is an explicitly known collection P of CSPs, such that
any Boolean CSP(Γ ) is log-space reducible to a CSP in P [16].

Let I = (V, C) be a CSP instance. For two assignments f, f ′ : V → {0, 1}, we
define dist(f, f ′) = Prv[f(v) �= f ′(v)], where v is chosen according to the uniform
distribution. We define distI(f) as the distance of f from satisfying assignments,
that is distI(f) = minf ′ dist(f, f ′), where f ′ is over satisfying assignments of I.
We say that f is ε-far from satisfying assignments if distI(f) � ε.
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An algorithm is called an (ε, η+, η−)-tester for a property P if it accepts an
input with probability at least 1− η+ when it satisfies P , and it rejects an input
with probability at least 1−η− when it is ε-far from P . An (ε, 1/3, 1/3)-tester is
simply referred to as an ε-tester. (As long as η+, η− <

1
2 , an (ε, η+, η−)-tester can

be converted into an ε-tester by repeating the original tester a constant number
of times and taking the majority decision.)

We always use the symbol n (resp., m) to denote the number of variables
(resp., constraints) in the instance we are concerned with. For a CSP instance I,
an algorithm is called an ε-tester for I if, given an assignment f for I, it ε-tests
whether f is a satisfying assignment of I, where farness is measured using the
distance function distI(·). Given a structure A, we say that CSP(A) is testable
with query complexity q(n,m, ε) if for every instance I in CSP(A), there is an
ε-tester for I making q(n,m, ε) queries.

3 Lower Bound for Horn k-SAT and Dual Horn k-SAT
In this section, we prove the following theorem.

Theorem 3. There exist constants ε, δ, η ∈ (0, 1) such that for all large enough
n, there is a Horn 3-SAT formula IHorn on n variables and O(n) constraints
such that any adaptive (ε, η+, η−)-test for IHorn makes at least δn queries if
η+ + η− < η.

Note that Theorem 3 also implies a linear lower bound for ε-testing Dual Horn
3-SAT. We can simply negate each literal in the hard Horn 3-SAT formula to
obtain the hard Dual Horn 3-SAT formula.

The proof of Theorem 3 is by a reduction from 3-LIN which is known to require
Ω(n) queries. We first revisit the construction of the hard 3-LIN instance ILIN.
Then, we show how to reduce to Horn 3-SAT using the structure of ILIN.

3.1 Construction of Hard 3-LIN Instance

In [3], Ben-Sasson, Harsha and Raskhodnikova constructed a 3-LIN instance
ILIN such that any two-sided adaptive tester for ILIN requires Ω(n) queries.
The construction proceeded in two steps.

The first step shows the existence of hard k-LIN formulae for sufficiently large
k. Call a bipartite multigraph G = (L,R,E) (c, k)-regular if the degree of every
left vertex u ∈ L is c and the degree of every right vertex v ∈ R is k. Every
(c, k)-regular graph G describes a k-LIN formula ψ(G): for every right vertex
v ∈ R, ψ(G) contains a constraint

∑
u∈N(v) xu = 0 (mod 2) where N(v) is the

set of neighbors of v. A random (c, k)-regular LDPC code of length n is obtained
by taking ψ(G) for a random (c, k)-regular graph G with n left vertices. The
following was shown in [3]:

Theorem 4 (Theorem 3.7 of [3]). For any odd integer c � 7 and for μ, ε, δ, k >

0 satisfying μ � 1
100c2 , δ < μc, k > 2μc2

(μc−δ)2 , ε � 1
100k2 , and for sufficiently large

n, it is the case that with high probability for a random (c, k)-regular LDPC
code ψ(G) of length n, every adaptive (ε, η+, η−)-test for ψ(G) makes at least δn
queries, if η+ + η− � 1− 2μ.
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An important fact about random (c, k)-regular graphs that was used in the proof
of Theorem 4 and will be useful to us is:

Lemma 1 (Lemma 6.3 of [3]). For all integers c � 7, k � 2, and sufficiently
large n, a random (c, k)-regular graph G = (L,R,E) with n left vertices has the
following property with high probability: for every nonempty subset S ⊆ L of left
vertices such that |S| � n

100k2 , there exists a right vertex v ∈ R such that v has
exactly one neighbor in S.

In the second step, testing satisfiability of k-LIN instances is reduced to testing
satisfiability of 3-LIN instances. This is done by repeating �log(k − 2)� times
a reduction R from k-LIN instances ψ to (�k/2�+ 1)-LIN instances R(ψ). If ψ
is a k-LIN instance with n variables and m linear constraints A1, . . . , Am, then
R(ψ) is a (�k/2�+1)-LIN instance with n+m variables and 2m linear constraints
A′1, A

′′
1 , . . . , A

′
m, A

′′
m, where if the constraint Ai is x1+x2+ · · ·+xk = 0 (mod 2),

then the constraints A′i and A′′i are, respectively:

x1 + · · ·+x�k/2�+zi = 0 (mod 2) and x�k/2�+1 + · · ·+xk +zi = 0 (mod 2)

with zi being a new variable.
The desired 3-LIN instance ILIN is constructed by applying the reduction R

�log(k−2)� many times on a random (c, k)-regular LDPC code ψ(G) with c = 7
and k = 16c2(100c2)2c−1. If G has n0 left vertices and m0 right vertices, then
ILIN has m � 2km0 constraints and n � n0 + 2km0 = (2c+ 1)n0 variables. The
instance ILIN also has the following property, which is implicit in the proof of
Lemma 3.8 in [3] but which will be convenient for us to make explicit.

Lemma 2 (Unique neighbor property). Suppose ILIN, an instance of 3-LIN
with n variables, is constructed as described above. Then, with high probability,
for every nonempty subset S of variables such that |S| � n

300ck2 , there exists a
constraint in ILIN which involves exactly one variable of S.

Proof. Suppose ψ is a linear formula with n′ variables x1, . . . , xn′ and m′ linear
constraints A1, . . . , Am′ such that for every subset S of variables such that |S| �
εn′, there exists a constraint in ψ involving exactly one variable of S. Then, we
claim that also for R(ψ), a linear formula on n′+m′ variables x1, . . . , xn′ , z1, . . . ,
zm′ , it holds that for every nonempty subset T of variables such that |T | � εn′,
there exists a constraint in R(ψ) involving exactly one variable of T .

This claim is enough to prove the lemma, because ILIN is formed by composing
R several times on a random (c, k)-regular LDPC code ψ(G). If ILIN is on n
variables, then ψ(G) is on at least n

2c+1 � n
3c variables. For ψ(G), Lemma 1

shows that with high probability, if S is a subset of variables of size at most
n/3c
100k2 = n

300ck2 , then there is a constraint in ψ(G) which involves exactly one
variable of S. The lemma immediately follows from the claim.

It remains to prove the claim. Let T be a subset of the n′ + m′ variables of
R(ψ) such that |T | � εn′. Let T0 = T ∩ {x1, . . . , xn′}, the subset of T which
corresponds to variables in the original formula ψ. Of course, |T0| � εn′, and
so, there must exist a constraint Ai in ψ containing exactly one variable from
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T0. In R(ψ), corresponding to Ai, there are two constraints A′i and A′′i . Call A′i
the constraint which contains exactly one variable from T0. Then A′′i does not
involve any variables from T0. Now, there are two cases. If T does not contain
zi, then A′i contains exactly one variable from T . Else, if T does contain zi, then
A′′i contains exactly one variable from T , zi itself. Therefore, in either case, our
claim is proved.

[3] further showed that the reduction R preserves the query complexity of the
instances. Without elaborating on their proof, we state their main result.

Theorem 5 (Theorem 3.1 of [3]). Suppose ILIN, an instance of 3-LIN with
n variables and Θ(n) constraints, is constructed as described above. Then, there
exist ε, δ, η ∈ (0, 1) such that with high probability over the construction of ILIN,
any adaptive (ε, η+, η−)-test for ILIN makes at least δn queries, if η+ + η− � η.
In particular, there exists a 3-LIN formula on n variables which requires Ω(n)
queries for testing satisfiability.

3.2 Reduction to Horn 3-SAT

Let ILIN on n variables be defined as above. We now construct an instance of
Horn 3-SAT, IHorn, in the following way. For each variable xi in ILIN, we have
two variables vi and v′i in ILIN. For each linear constraint xi + xj + xk = 0
(mod 2) in ILIN, we have 12 Horn constraints in IHorn:

vi ∧ vj → v′k vi ∧ vk → v′j vj ∧ vk → v′i v′i ∧ vj → vk

v′i ∧ vk → vj v′j ∧ vk → vi vi ∧ v′j → vk vi ∧ v′k → vj

vj ∧ v′k → vi v′i ∧ v′j → v′k v′i ∧ v′k → v′j v′j ∧ v′k → v′i

Given an assignment fLIN for ILIN, let the assignment fHorn for IHorn be defined
as: ∀i ∈ [n], fHorn(vi) = fLIN(xi), fHorn(v′i) = fLIN(xi)

Lemma 3. For every small enough ε > 0 and large enough n:

(a) If fLIN satisfies ILIN, then fHorn also satisfies IHorn.
(b) If fLIN is ε-far from satisfying ILIN, then fHorn is also ε-far from satisfying

IHorn.

Proof. The first part is immediate. It is easy to check that if fLIN satisfies a
constraint in ILIN, then fHorn also satisfies the corresponding constraints in
IHorn.

To see part (b), assume it is false so that fLIN is ε-far from satisfying ILIN
but fHorn is ε-close to a satisfying assignment gHorn for IHorn. Let S = {xi |
i ∈ [n] such that gHorn(vi) = gHorn(v′i)}. Clearly, |S| � 2εn, since fHorn(vi) �=
fHorn(v′i) for every i.

Also, we can prove S �= ∅. Suppose otherwise. Then, define an assignment
gLIN for ILIN as: gLIN(xi) = gHorn(vi) for every i ∈ [n]. Note that gLIN is ε-
close to fLIN. We now show that gLIN satisfies ILIN, and so fLIN is ε-close to
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ILIN, a contradiction. Consider a constraint xi + xj + xk = 0 (mod 2) in ILIN.
We know that gHorn(vi) = gLIN(xi) and, since |S| = 0, gHorn(v′i) = gLIN(xi).
Since gHorn satisfies IHorn, the following constraints must be true: gLIN(xi) ∧
gLIN(xj) → gLIN(xk), gLIN(xi) ∧ gLIN(xj) → gLIN(xk), gLIN(xi) ∧ gLIN(xj) →
gLIN(xk), gLIN(xi) ∧ gLIN(xj) → gLIN(xk). It is now easy to check that these
constraints hold iff gLIN(xi) + gLIN(xj) + gLIN(xk) = 0 (mod 2).

Therefore, 0 < |S| � 2εn. If ε is sufficiently small, Lemma 2 shows that there
must exist a constraint in ILIN that contains exactly one variable of S. On the
other hand, we now show that any constraint in ILIN containing one variable
in S must contain at least one other variable in S, thus causing a contradiction
and finishing the proof. Consider a constraint xi +xj +xk = 0 (mod 2) in ILIN,
and suppose xi ∈ S. There are two cases.

– Suppose gHorn(vi) = gHorn(v′i) = 1. Since gHorn is a satisfying assignment,
it must be: gHorn(vj) → gHorn(v′k), gHorn(vk) → gHorn(v′j), gHorn(vj) →
gHorn(vk), gHorn(vk) → gHorn(vj), gHorn(v′j) → gHorn(vk), gHorn(v′k) →
gHorn(vj), gHorn(v′j) → gHorn(v′k), gHorn(v′k) → gHorn(v′j). So, gHorn(vj) =
gHorn(v′j) = gHorn(vk) = gHorn(v′k), and therefore, xj , xk ∈ S.

– Suppose gHorn(vi) = gHorn(v′i) = 0. Then, the eight Horn constraints cor-
responding to xi + xj + xk = 0 (that have either vi or v′i on the LHS) are
vacuously satisfied. The remaining four are satisfied exactly when gHorn(vj)∧
gHorn(vk), gHorn(v′j)∧gHorn(vk), gHorn(vj)∧gHorn(v′k), gHorn(v′j)∧gHorn(v′k) are
all false. This can only hold when gHorn(vj) = gHorn(v′j) = 0 or gHorn(vk) =
gHorn(v′k) = 0. Thus, either xj or xk is in S.

4 Classification of Testable Constraint Languages

In this section, we classify (finite) Boolean structures A = 〈{0, 1};Γ 〉 into three
categories with respect to the query complexity for testing CSP(Γ ). Namely, we
give necessary and sufficient conditions for each of the following three cases: (i)
CSP(Γ ) is constant-query testable, (ii) CSP(Γ ) is sublinear-query testable but
not constant-query testable, and (iii) CSP(Γ ) is not sublinear-query testable.

4.1 Universal Algebra Preliminaries

An n-ary operation on a set A is a map from An to A. An n-ary operation f on
A preserves the k-ary relation R on A (equivalently, we say that R is invariant
under f) if the following holds: given any matrix M of size k×n whose columns
are in R, applying f to the rows of M will produce a k-tuple in R. Given a
constraint language Γ , let Pol(Γ ) denote the set of all operations that preserve
all relations in Γ . Now for any Γ , Pol(Γ ) forms a clone, i.e., a set of operations
closed under compositions and containing all the projections (operations of the
form f(x1, . . . , xk) = xi). We note that we may need a infinite set Γ of relations
to realize a clone as Pol(Γ ).

Remarkably, it turns out that there is an explicit description [15] of the
Boolean clones. When ordered by inclusion, they form a countable lattice known
as Post’s lattice, shown in Figure 1. In the rest of this section, we will settle the
query complexity for the CSPs corresponding to each clone in Post’s lattice.
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4.2 Reductions between Constraint Languages

Definition 1 ([5]). Given constraint languages Γ, Γ ′, a gap-preserving local
reduction from CSP(Γ ′) to CSP(Γ ) exists if there are functions t1(n,m), t2(n,m)
and constants c1, c2 satisfying the following: given an instance I ′ = (V ′, C′) of
CSP(Γ ′) and an assignment f ′ for I ′, there exist an instance I = (V, C) of
CSP(Γ ) and an assignment f for I such that: (i) |V | � t1(|V ′|, |C′|), (ii) |C| �
t2(|V ′|, |C′|), (iii) if f ′ satisfies I ′, then f also satisfies I, (iv) if distI′(f

′) � ε,
then distI(f) � c1ε, and (v) we can compute f(v) for any v ∈ V by querying f ′

at most c2 times.

It is known [7,20] in the context of computational complexity, that if Pol(Γ ′)
contains Pol(Γ ), then there is a log-space reduction from deciding CSP(Γ ′) to
deciding CSP(Γ ). The same is qualitatively true for query complexity also, where
the reduction is gap-preserving. We say that a k-ary relation R has a redundancy
if there exist i, j ∈ [k] such that for any x1, . . . , xk ∈ R, xi = xj . Then we have:

Lemma 4. Given constraint language Γ , suppose CSP(Γ ) is testable with
q(n,m, ε) queries. If Γ ′ is a constraint language such that no relation in Γ ′

contains redundancies and Pol(Γ ′) ⊇ Pol(Γ ), then CSP(Γ ′) is testable with
q(O(n+m), O(m), O(ε)) queries.

Thus, if Γ ′ is without redundancies, Lemma 4 shows that a lower bound for
CSP(Γ ′) implies a lower bound for CSP(Γ ). Next, we show that Γ ′ can be
assumed to have all polymorphisms idempotent without much loss of generality.

Given a constraint language Γ , define the singleton-expansion of Γ to be
Γ ′ = Γ ∪ {{0}, {1}}. Pol(Γ ′) consists of exactly the idempotent polymorphisms
of Γ , meaning polymorphisms f satisfying f(x, . . . , x) = x for x ∈ {0, 1}, since
any polymorphism that preserves the relations {0} and {1} must be idempotent.
We show there is a gap-preserving local reduction from CSP(Γ ′) to CSP(Γ ).

Lemma 5. Given a constraint language Γ , let Γ ′ be the singleton-expansion
of Γ . Assume that ε & 1/2. If CSP(Γ ) is testable with q(n,m, ε) queries, then
CSP(Γ ′) is testable with q(O(n), O(mn), O(ε)) queries.

4.3 Classification of Structures

The following Theorem classifies the clones circled in bold in Figure 1. The rest
are handled by applying Lemma 5.

Theorem 6. Let Γ be a constraint language with only idempotent polymor-
phisms.

– If Pol(Γ ) ∈ {D1, R2}, then CSP(Γ ) is testable with O(1) queries.
– If S00 ⊆ Pol(Γ ) ⊆ S2

02, S10 ⊆ Pol(Γ ) ⊆ S2
12 or Pol(Γ ) ∈ {D2,M2}, then test-

ing CSP(Γ ) requires Ω(log n/log logn) queries and is testable with o(n) queries.
The lower bound holds even when m = n1+O(1/log log n).

– If Pol(Γ ) ∈ {I2, E2, V2, L2}, then testing CSP(Γ ) requires Ω(n) queries. The
lower bound holds even when m = O(n).
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Abstract. The Joint Replenishment Problem (JRP) is a fundamental
optimization problem in supply-chain management, concerned with opti-
mizing the flow of goods over time from a supplier to retailers. Over time,
in response to demands at the retailers, the supplier sends shipments, via
a warehouse, to the retailers. The objective is to schedule shipments to
minimize the sum of shipping costs and retailers’ waiting costs.

We study the approximability of JRP with deadlines, where instead of
waiting costs the retailers impose strict deadlines. We study the integral-
ity gap of the standard linear-program (LP) relaxation, giving a lower
bound of 1.207, and an upper bound and approximation ratio of 1.574.
The best previous upper bound and approximation ratio was 1.667; no
lower bound was previously published. For the special case when all de-
mand periods are of equal length we give an upper bound of 1.5, a lower
bound of 1.2, and show APX-hardness.

Keywords: Joint replenishment problem with deadlines, inventory the-
ory, linear programming, integrality gap, randomized rounding, approx-
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1 Introduction

The Joint Replenishment Problem with Deadlines (JRP-D) is an optimization
problem in inventory theory concerned with optimizing a schedule of shipments
of a commodity from a supplier, via a warehouse, to satisfy demands at m
retailers (cf. Figure 1). An instance is specified by a tuple (C, c,D) where C ∈
Q is the warehouse ordering cost, each retailer ρ ∈ {1, 2, . . . ,m} has retailer
ordering cost cρ ∈ Q, and D is a set of n demands, where each demand is a triple
(ρ, r, d), where ρ is a retailer, r ∈ N is the demand’s release time and d ∈ N is
its deadline. The interval [r, d] is the demand period. Without loss of generality,
we assume r, d ∈ [2n], where [i] denotes {1, 2, . . . , i}.
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Fig. 1. An instance with four retailers, with ordering costs as distances. The cost of an
order is the weight of the subtree connecting the supplier and the involved retailers.

A solution (called a schedule) is a set of orders, each specified by a pair (t, R),
where t is the time of the order and R is a subset of the retailers. An order (t, R)
satisfies those demands (ρ, r, d) whose retailer is in R and whose demand period
contains t (that is, ρ ∈ R and t ∈ [r, d]). A schedule is feasible if all demands are
satisfied by some order in the schedule.

The cost of order (t, R) is the ordering cost of the warehouse plus the ordering
costs of respective retailers, i.e., C +

∑
ρ∈R cρ. It is convenient to think of this

order as consisting of a warehouse order of cost C, which is then joined by each
retailer ρ ∈ R at cost cρ. The cost of the schedule is the sum of the costs of its
orders. The objective is to find a feasible schedule of minimum cost.

Previous Results. The decision variant of JRP-D was shown to be strongly
NP-complete by Becchetti et al. [3]. (They considered an equivalent problem of
packet aggregation with deadlines on two-level trees.) Nonner and Souza [12]
then showed that JRP-D is APX-hard, even if each retailer issues only three
demands. Using the primal-dual method, Levi, Roundy and Shmoys [9] gave
a 2-approximation algorithm. Using randomized rounding, Levi et al. [10,11]
(building on [8]) improved the approximation ratio to 1.8; Nonner and Souza [12]
reduced it further to 5/3. These results use a natural linear-program (LP) relax-
ation, which we use too.

The randomized-rounding approach from [12] uses a natural rounding scheme
whose analysis can be reduced to a probabilistic game. For any probability dis-
tribution p on [0, 1], the integrality gap of the LP relaxation is at most 1/Z(p),
where Z(p) is a particular statistic of p (see Lemma 1). The challenge in this
approach is to find a distribution where 1/Z(p) is small. Nonner and Souza show
that there is a distribution p with 1/Z(p) ≤ 5/3 ≈ 1.67. As long as the distri-
bution can be sampled from efficiently, the approach yields a polynomial-time
(1/Z(p))-approximation algorithm.

Our Contributions. We show that there is a distribution p with 1/Z(p) ≤
1.574. We present this result in two steps: we show the bound e/(e − 1) ≈ 1.58
with a simple and elegant analysis, then improve it to 1.574 by refining the under-
lying distribution. We conjecture that this distribution minimizes 1/Z(p). This
shows that the integrality gap is at most 1.574 and gives a 1.574-approximation
algorithm. We also prove that the LP integrality gap is at least 1.207 and we
provide a computer-assisted proof that this gap is at least 1.245. (As far as we
know, no explicit lower bounds have been previously published.)
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For the special case when all demand periods have the same length (as occurs
in applications where time-to-delivery is globally standardized) we give an upper
bound of 1.5, a lower bound of 1.2, and show APX-hardness.

Related Work. JRP-D is a special case of the Joint Replenishment Problem
(JRP). In JRP, instead of having a deadline, each demand is associated with a
delay-cost function that specifies the cost for the delay between the times the
demand was released and satisfied by an order. JRP is NP-complete, even if the
delay cost is linear [2,12]. JRP is in turn a special case of the One-Warehouse
Multi-Retailer (OWMR) problem, where the commodities may be stored at the
warehouse for a given cost per time unit. The 1.8-approximation by Levi et
al. [11] holds also for OWMR. JRP was also studied in the online scenario: a
3-competitive algorithm was given by Buchbinder et al. [6] (see also [5]).

Another generalization of JRP involves a tree-like structure with the supplier
in the root and retailers at the leaves, modeling packet aggregation in converge-
casting trees. A 2-approximation is known for the variant with deadlines [3]; the
case of linear delay costs has also been studied [7].

The LP Relaxation. Here is the standard LP relaxation of the problem. Let
U = max{d | (ρ, r, d) ∈ D} be the maximum deadline, and assume that each
release time and deadline is in universe U = [U ].

minimize cost(x) =
∑U

t=1 (C xt +
∑m

ρ=1 cρ x
ρ
t )

subject to xt ≥ xρt for all t ∈ U , ρ ∈ {1, . . . ,m} (1)∑d
t=r x

ρ
t ≥ 1 for all (ρ, r, d) ∈ D (2)

xt, x
ρ
t ≥ 0 for all t ∈ U , ρ ∈ {1, . . . ,m}.

We use x to denote an optimal fractional solution to this LP relaxation.

2 Upper Bound of 1.574

The statistic Z(p). The approximation ratio of algorithm Roundp (defined be-
low) and the integrality gap of the LP are at most 1/Z(p), where Z(p) is defined
by the following so-called tally game (following [12]). To begin the game, fix any
threshold z ≥ 0, then draw a sequence of independent samples s1, s2, . . . , sh from
p, stopping when their sum exceeds z. Call z − (s1 + s2 + . . .+ sh−1) the waste.
Note that, since the waste is less than sh, it is in [0, 1). Let W(p, z) denote the
expectation of the waste. Abusing notation, let E[p] denote the expected value
of a single sample drawn from p. Then Z(p) is defined to be the minimum of
E[p] and 1− supz≥0W(p, z).

Note that the distribution p that chooses 1/2 with probability 1 has Z(p) =
1/2. The challenge is to increase E[p] and reduce the maximum expected waste.

A Generic Randomized-Rounding Algorithm. Next we define the randomized-
rounding algorithm Roundp. The algorithm is parameterized by any probability
distribution p on [0, 1].
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For the rest of this section, fix any instance (C, c,D) and fractional solution

x of the LP relaxation. Define Û =
∑U

t=1 xt. For each retailer ρ, let ωρ denote

the piecewise-linear continuous bijection from [0, Û ] to [0,
∑U

t=1 x
ρ
t ] such that

ωρ(0) = 0, and, for each T ∈ [U ],

ωρ(
∑T

t=1 xt) =
∑T

t=1 x
ρ
t .

The intuition is that ωρ(z) is the cumulative fractional number of orders joined
by retailer ρ by the time the fractional number of warehouse orders reaches z. The
equations above determine ωρ at its breakpoints; since ωρ is piecewise linear and
continuous, this determines the entire function. The LP inequalities (1) imply
that 0 ≤ ωρ(z′)−ωρ(z) ≤ z′− z when z′ ≥ z. That is, ωρ has derivative in [0, 1].

Here is the rounding algorithm. Recall that Û denotes
∑U

t=1 xt.

Algorithm Roundp(C, cρ,D,x)

1: Draw independent random samples s1, s2, . . . from p. Let gi =
∑

h≤i sh.

Set global cutoff sequence g = (g1, g2, . . . , gI), where I = min{i | gi ≥ Û−1}.
2: For each retailer ρ independently, choose ρ’s local cutoff sequence �ρ ⊆ g

greedily to touch all intervals [a, b] with ωρ(b)− ωρ(a) ≥ 1.
That is, �ρ = (
ρ1, 


ρ
2, . . . , 


ρ
Jρ) where 
ρj is max{g ∈ g | ωρ(g)−ωρ(
ρj−1) ≤ 1}

(interpret 
ρ0 as 0), and Jρ is min{j | ωρ(Û)− ωρ(
ρj ) ≤ 1}.
3: For each gi ∈ g, define time ti ∈ [U ] to be minimum such that

∑ti
t=1 xt ≥ gi.

Return the schedule
{(
ti, {ρ | gi ∈ �ρ}

)
| gi ∈ g

}
.

The idea of algorithm Roundp and its analysis are from [12]. The presentation
below highlights some important technical subtleties in the proof.

Lemma 1. For any distribution p and fractional solution x, the above algorithm,
Roundp(C, c,D,x), returns a schedule of expected cost at most cost(x)/Z(p).

Proof. Feasibility. Suppose for contradiction that the schedule does not satisfy
some demand (ρ, r, d) in D. Then (ignoring boundary cases) there are consecutive
local cutoffs 
ρj and 
ρj+1 equal to global cutoffs gi and gi′ whose times ti and ti′

(per Step 3) satisfy ti < r ≤ d < ti′ , and, hence, ti + 1 ≤ r ≤ d ≤ ti′ − 1. But,
then, by Step 2 of the algorithm,

1 ≥ ωρ(
ρj+1)− ωρ(
ρj ) = ωρ(gi′)− ωρ(gi) >

ti′−1∑
t=ti+1

xρt ≥
d∑

t=r

xρt ≥ 1,

where the last step follows from LP constraint (2), and the proper inequality
in the second-to-last step follows from the minimality of ti′ in Step 3 of the
algorithm. This gives 1 > 1, a contradiction. (The boundary cases, and the
proof that Step 2 is well-defined, are similar.)

To finish the proof, for each term in the cost C|g|+
∑

ρ cρ|�
ρ|, we bound the

term’s expectation by 1/Z(p) times its corresponding part in cost(x).
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Fig. 2. The proof of E
[
ω(�j+1) − ω(�j) | Sj

]
≥ Z(p). Dashed lines are for quantities

that are independent of the current state Sj , but determined by the next state Sj+1.

The global order cost C|g|. The expectation of each global cutoff gi+1, given gi,
is gi + E[p], which (by definition of Z(p)) is at least gi + Z(p). The final index
I is the first such that gI ≥ Û − 1, so gI < Û . By Wald’s equation (Lemma 5),
since I is a stopping time, the expected length of g is at most Û/Z(p). So,
E[C|g|] is at most CÛ/Z(p). In comparison the global order cost in cost(x) is

C
∑U

t=1 xt = C Û .

The retailer cost cρ|�ρ| for ρ. Fix a retailer ρ. Since ρ is fixed for the rest of the
proof, we may omit it as a subscript or superscript. Let � be ρ’s local cutoff
sequence (
1, 
2, . . . , 
J ). For each j = 1, 2, . . . , J , define the state Sj after step
j to be the first fj random samples, where fj is the number of random samples
needed to determine 
j . Generally, a given global cutoff gi will be chosen as the
jth local cutoff 
j iff ω(gi) − ω(
j−1) ≤ 1 < ω(gi+1) − ω(
j−1). So, fj equals
i + 1, where i is the index such that gi = 
j. That is, gfj follows 
j in the
global sequence. (The only exception is the last local cutoff 
J , which can be the
maximum global cutoff gI , in which case it is not followed by any cutoff and
fJ = I.)

For the analysis, define S0 = (s1) and 
0 = 0 so ω(
0) = 0.
We claim that, with each step j = 0, . . . , J − 1, given the state Sj after step j,

the expected increase in ω(·) during step j + 1, namely E[ω(
j+1)− ω(
j) | Sj ],
is at least Z(p). Before we prove the claim, note that this implies the desired
bound: by the stopping condition for �, the total increase in ω is at most ω(Û),
so by Wald’s equation (using that the last index J is a stopping time), the
expectation of J is at most ω(Û)/Z(p). So, E[ cρ|�| ], the expected cost for

retailer ρ, is at most cρ ω(Û)/Z(p). In comparison, the cost for retailer ρ in

cost(x) is cρ
∑U

t=1 x
ρ
t = cρ ω(Û).

To prove the claim, we describe how moving from state Sj to state Sj+1 is a
play of the tally game in the definition of Z(p). Fix any j and condition on the
state Sj . Fig. 2 shows the steps:

1© The current state Sj determines the j’th local cutoff 
j and the following
global cutoff gfj .

2© Given 
j and gfj , the next local cutoff for retailer ρ will be the maximum
global cutoff in the interval [gfj , 


′], where 
′ is chosen so that ω(
′)−ω(
j) equals

1. (Note that 
′ < Û because, since we haven’t stopped yet, ω(Û)− ω(
j) > 1.)
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3© The algorithm reaches the next state Sj+1 by drawing some more random
samples sfj+1, sfj+2, . . . , si from p, stopping with the first index i such that the
corresponding global cutoff gi exceeds 
′. (That is, such that gi = gfj + sfj+1 +
· · ·+ si > 
′.) The next local cutoff 
j+1 is gi−1 (the global cutoff just before gi,
so that gi−1 ≤ 
′ < gi) and this index i is fj+1; that is, the next state Sj+1 is
(s1, s2, . . . , si).

Step 3© is a play of the “tally game” in the definition of Z(p), with threshold
z = 
′ − gfj . The waste w equals the gap 
′ − 
j+1. By the definition of Z(p),
the expectation of w is W(p, z) ≤ 1−Z(p). Finally,

ω(
j+1)− ω(
j) = 1− (ω(
′)− ω(
j+1)) ≥ 1− (
′ − 
j+1) = 1− w.

The expectation of 1− w is at least Z(p), proving the claim.

The careful reader may notice that the above analysis is incorrect for the last
step J , because it may happen that there is no global cutoff after 
′. (Then

J = gI = maxi gi.) To analyze this case, imagine modifying the algorithm so
that, in choosing g = (g1, g2, . . . , gI), instead of stopping with I = i such that
gi ≥ Û − 1, it stops with I = i such that gi ≥ Û . Because the last global cutoff
is now at least Û , and 
′ < Û , there is always a global cutoff after 
′. So the
previous analysis is correct for the modified algorithm, and its expected local
order cost is bounded as claimed. To finish, observe that, since this modification
only extends g, it cannot decrease the number of local cutoffs selected from g,
so the modification does not decrease the local order cost. ��

2.1 Upper Bound of e/(e − 1) ≈ 1.582

The next utility lemma says that, in analyzing the expected waste in the tally
game, it is enough to consider thresholds z in [0, 1].

Lemma 2. For any distribution p on [0, 1], supz≥0W(p, z) = supz∈[0,1)W(p, z).

Proof. Play the tally game with any threshold z > 1. Consider the first prefix
sum s1+s2+· · ·+sh of the samples such that the “slack” z−(s1+s2+· · ·+sh) is at
most 1. Let random variable z′ be this slack. Note z′ ∈ [0, 1). Then, conditioned
on z′ = y, the expected waste is W(p, y), which is at most supY ∈[0,1]W(p, Y ).
Thus, for any threshold z ≥ 1, W(p, z) is at most supY ∈[0,1)W(p, Y ). ��

Now consider the specific probability distribution p on [0, 1] with probability
density function p(y) = 1/y for y ∈ [1/e, 1] and p(y) = 0 elsewhere.

Lemma 3. For this distribution p, Z(p) ≥ (e− 1)/e = 1− 1/e.

Proof. By Lemma 2, Z(p) is the minimum of E[p] and 1−maxz∈[0,1]W(p, z).

By direct calculation, E[p] =
∫ 1

1/e y p(y) dy =
∫ 1

1/e 1 dy = 1− 1/e.

Now consider playing the tally game with threshold z. If z ∈ [0, 1/e], then
(since the waste is at most z) trivially W(p, z) ≤ z ≤ 1/e.

So consider any z ∈ [1/e, 1]. Let s1 be just the first sample.
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The waste is z if s1 > z and otherwise is at most z − s1.
So, the expected waste is at most Pr[s1 > z]z + Pr[s1 ≤ z]E[z−s1 | s1 ≤ z].
This simplifies to z − Pr[s1 ≤ z]E[s1 | s1 ≤ z], which by calculation is

z −
∫ z

1/e y p(y) dy = z −
∫ z

1/e dy = z − (z − 1/e) = 1/e. ��

2.2 Upper Bound of 1.574

Next we define a probability distribution on [0, 1] that has a point mass at 1.
Fix θ = 0.36455 (slightly less than 1/e). Over the half-open interval [0, 1), the

probability density function p is p(y) =

⎧⎪⎨⎪⎩
0 for y ∈ [0, θ)

1/y for y ∈ [θ, 2θ)
1−ln((y−θ)/θ)

y for y ∈ [2θ, 1).

The probability of choosing 1 is 1−
∫ 1

0 p(y) dy ≈ 0.0821824.

Note that p(y) ≥ 0 for y ∈ [2θ, 1) since ln((1− θ)/θ) ≈ 0.55567.

Lemma 4. The statistic Z(p) for this p is at least 0.63533 > 1/1.574.

The proof is in the full paper [4]. Here is a sketch.

Proof (sketch). By Lemma 2,Z(p) is the minimum ofE[p] and 1−supz∈[0,1]W(p, z).
That E[p] ≥ 0.63533 follows from a direct calculation (about five lines; details

in the full proof).
It remains to show 1 − supz∈[0,1)W(p, z) ≥ 0.63533. To do this, we show

supz∈[0,1)W(p, z) = θ (≤ 1− 0.63533).
In the tally game defining W(p, z), let s1 be the first random sample drawn

from p. If s1 > z, then the waste equals z. Otherwise, the process continues
recursively with z replaced by z′ = z − s1. This gives the recurrence

W(p, z) = z Pr[s1 > z] +
∫ z

θ
W(p, z − y) p(y) dy.

We analyze the right-hand side of the recurrence in three cases.

Case (i) z ∈ [0, θ). The recurrence gives W(p, z) = z because Pr[s1 > z] = 1.

Case (ii) z ∈ [θ, 2θ). For y ∈ [θ, z], we have z−y < θ, so by Case (i)W(p, z−y) =
z − y. Substituting and calculating (about two lines) gives W(p, z) = θ.

Case (iii) z ∈ [2θ, 1). For y ∈ [θ, z], we have z−y < 2θ, so Case (i) or (ii) applies
to simplify W(p, z − y) (to z − y if z − y < θ or θ otherwise). The calculation
(about seven lines) gives W(p, z) = θ. ��

Theorem 1. JRP-D has a randomized polynomial-time 1.574-approximation al-
gorithm, and the integrality gap of the LP relaxation is at most 1.574.

Proof. By Lemma 4, for any fractional solution x, the algorithm Roundp (using
the probability distribution p from that lemma) returns a feasible schedule of
expected cost at most 1.574 times cost(x).

To see that the schedule can be computed in polynomial time, note first that
the (discrete-time) LP relaxation can be solved in polynomial time. The optimal
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solution x is minimal, so each xt is at most 1, so Û =
∑

t xt is at most the number
of demands, n. In the algorithm Roundp, each sample from the distribution p
from Lemma 4 can be drawn in polynomial time. Each sample is Ω(1), and the
sum of the samples is at most Û ≤ n, so the number of samples is O(n). Then,
for each retailer ρ, each integral μ(
ρj−1, g) in step 3 can be evaluated in constant
amortized time per evaluation, so the time per retailer is O(n). ��

For the record, here is the variant of Wald’s equation (also known as Wald’s
identity or Wald’s lemma, and a consequence of standard “optional stopping”
theorems) that we use above. Consider a random experiment that, starting from
a fixed start state S0, produces a random sequence of states S1, S2, S3, . . . Let
random index T ∈ {0, 1, 2, . . .} be a stopping time for the sequence, that is, for
any positive integer t, the event “T < t” is determined by state St. Let function
φ : {St} → R map the states to R.

Lemma 5 (Wald’s equation). Suppose that
(i) (∀t < T ) E[φ(St+1) | St] ≥ φ(St) + ξ for fixed ξ, and
(ii) either (∀t < T ) φ(St+1)− φ(St) ≥ F or (∀t < T ) φ(St+1)− φ(St) ≤ F , for
some fixed finite F , and T has finite expectation.

Then ξE[T ] ≤ E[φ(ST )− φ(S0)].

The proof is standard; it is in the full paper [4].
In the applications here, we always have ξ = Z(p) > 0 and φ(ST )−φ(S0) ≤ U

for some fixed U . In this case Wald’s equation implies E[T ] ≤ U/Z(p).

3 Upper Bound of 1.5 for Equal-Length Periods

In this section, we present a 1.5-approximation algorithm for the case where all
the demand periods are of equal length. For convenience, we allow here release
times and deadlines to be rational numbers and we assume that all demand
periods have length 1.

We denote the input instance by I. Let the width of an instance be the
difference between the deadline of the last demand and the release time of the
first one. The building block of our approach is an algorithm that creates an
optimal solution to an instance of width at most 3. Later, we divide I into
overlapping sub-instances of width 3, solve each of them optimally, and finally
show that by aggregating their solutions we obtain a 1.5-approximation for I.

Lemma 6. A solution to any instance J of width at most 3 consisting of unit-
length demand periods can be computed in polynomial time.

Proof. We shift all demands in time, so that J is entirely contained in inter-
val [0, 3]. Recall that C is the warehouse ordering cost and cρ is the ordering
cost of retailer ρ ∈ {1, 2, ...,m}. Without loss of generality, we can assume that
all retailers 1, ..,m have some demands.

Let dmin be the first deadline of a demand from J and rmax the last release
time. If rmax ≤ dmin, then placing one order at any time from [rmax, dmin] is
sufficient (and necessary). Its cost is then equal to C +

∑
ρ cρ.
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Thus, in the following we focus on the case dmin < rmax. Any feasible solution
has to place an order at or before dmin and at or after rmax. Furthermore, by
shifting these orders we may assume that the first and last orders occur exactly
at times dmin and rmax, respectively.

The problem is thus to choose a set T of warehouse ordering times that
contains dmin, rmax, and possibly other times from the interval (dmin, rmax),
and then to decide, for each retailer ρ, which warehouse orders it joins. Note
that rmax − dmin ≤ 1, and therefore each demand period contains dmin, rmax, or
both. Hence, all demands of a retailer ρ can be satisfied by joining the warehouse
orders at times dmin and rmax at additional cost of 2bρ. It is possible to reduce
the retailer ordering cost to cρ if (and only if) there is a warehouse order that
occurs within Dρ, where Dρ is the intersection of all demand periods of retailer
ρ. (To this end, Dρ has to be non-empty.)

Hence, the optimal cost for J can be expressed as the sum of four parts:

(i) the unavoidable ordering cost cρ for each retailer ρ,
(ii) the additional ordering cost cρ for each retailer ρ with empty Dρ,
(iii) the total warehouse ordering cost C · |T |, and
(iv) the additional ordering cost cρ for each retailer ρ whose Dρ is non-empty

and does not contain any ordering time from T .

As the first two parts of the cost are independent of T , we focus on minimizing
the sum of parts (iii) and (iv), which we call the adjusted cost. Let AC(t) be the
minimum possible adjusted cost associated with the interval [dmin, t] under the
assumption that there is an order at time t. Formally, AC(t) is the minimum, over
all choices of sets T ⊆ [dmin, t] that contain dmin and t, of C · |T |+

∑
ρ∈Q(T ) cρ,

where Q(T ) is the set of retailers ρ for which Dρ �= ∅ and Dρ ⊆ [0, t]− T . (Note
that the second term consists of expenditures that actually occur outside the
interval [dmin, t].)

As there are no Dρ’s strictly to the left of dmin, AC(dmin) = C. Furthermore,
to compute AC(t) for any t ∈ (dmin, rmax], we can express it recursively using
the value of AC(u) for u ∈ [dmin, t) being the warehouse order time immediately
preceding t in the set T that realizes AC(t). This gives us the formula

AC(t) = C + min
u∈[dmin,t)

(
AC(u) +

∑
ρ:∅�=Dρ⊂(u,t)

cρ

)
.

In the minimum above, we may restrict computation of AC(t) to t’s and u’s that
are ends of demand periods. Hence, the actual values of function AC(·) can be
computed by dynamic programming in polynomial time. Finally, the total ad-
justed cost is equal to AC(rmax). Once we computed the minimum adjusted cost,
recovering the actual orders can be performed by a straightforward extension of
the dynamic programming presented above. ��

Now, we construct an approximate solution for the original instance I consisting
of unit-length demand periods. For i ∈ N, let Ii be the sub-instance contain-
ing all demands entirely contained in [i, i + 3). By Lemma 6, an optimal solu-
tion for Ii, denoted A(Ii), can be computed in polynomial time. Let S0 be the



144 M. Bienkowski et al.

solution created by aggregating A(I0), A(I2), A(I4), . . . and S1 by aggregating
A(I1), A(I3), A(I5), . . .. Among solutions S0 and S1, we output the one with the
smaller cost.

Theorem 2. The above algorithm produces a feasible solution of cost at most
1.5 times the optimum cost.

Proof. Each unit-length demand of instance I is entirely contained in some I2k
for some k ∈ N. Hence, it is satisfied in A(I2k), and thus also in S0, which yields
the feasibility of S0. An analogous argument shows the feasibility of S1.

To estimate the approximation ratio, we fix an optimal solution Opt for
instance I and let opti be the cost of Opt’s orders in the interval [i, i+ 1). Note
that Opt’s orders in [i, i+ 3) satisfy all demands contained entirely in [i, i+ 3).
Since A(Ii) is an optimal solution for these demands, we have cost(A(Ii)) ≤
opti + opti+1 + opti+2 and, by taking the sum, we obtain cost(S0) + cost(S1) ≤∑

i cost(A(Ii)) ≤ 3 · cost(Opt). Therefore, either of the two solutions (S0 or S1)
has cost at most 1.5 · cost(Opt). ��

4 Two Lower Bounds

In this section we present two lower bounds on the integrality gap of the LP
relaxation from Section 1:

Theorem 3. (i) The integrality gap of the LP relaxation is at least 1
2 (1 +

√
2),

which is at least 1.207. (ii) The integrality gap is at least 1.2 for instances with
equal-length demand periods.

In the full paper [4], we sketch how the lower bound in Part (i) can be increased
to 1.245 via a computer-based proof; we also give the complete proof of Thm. 3
(about six pages altogether). Here is a sketch of that proof.

Proof (sketch). It is convenient to work with a continuous-time variant of the
LP, in which the universe U of allowable release times, deadlines and order times
is the entire interval [0, U ], where U is the maximum deadline. Time t now is a
real number ranging over interval [0, U ]. A fractional solution is now represented
by functions, x : [0, U ] → R≥0 and xρ : [0, U ] → R≥0, for each retailer ρ. To
retain consistency, we will write xt and xρt for the values of these functions.
For any fractional solution x, then, in the LP formulation each sum over t is
replaced by the appropriate integral. For example, the objective function will

now take form
∫ U

t=0
(C xt +

∑m
ρ=1 cρ x

ρ
t ). By a straightforward limit argument

(to be provided in the final version of the paper), the continuous-time LP has
the same integrality gap as the discrete-time LP.

(i) The instance used to prove Part (i) has C = 1 and two retailers numbered
(for convenience) 0 and 1, one with c0 = 0 and the other with c1 =

√
2. We use

infinitely many demand periods: for any t, the first retailer has demand periods
[t, t + 1] and the second retailer has demand periods [t, t +

√
2]. A fractional

solution where retailer 0 orders at rate 1 and retailer 1 orders at rate 1/
√

2



Approximation Algorithms for Joint Replenishment Problem with Deadlines 145

is feasible and its cost is 2 per time step. Now consider some integral solution.
Without loss of generality, retailer 0 orders any time a warehouse order is issued.
Retailer 0 must make at least one order per time unit, so his cost (counting the
warehouse order cost as his) is 1 per time unit. Retailer 1 must make at least one
order in any time interval of length

√
2, so the cost of his orders, not including

the warehouse cost, is at least 1 per time unit as well. This already gives us
cost 2 per time unit, the same as the optimal fractional cost. But in order to
synchronize the orders of retailer 1 with the warehouse orders, the schedule needs
to increase either the number of retailer 1’s orders or the number of warehouse
orders by a constant fraction, thus creating a gap.

(ii) The argument for Part (ii) is more involved. We only outline the general
idea. Take C = 1 and three retailers numbered 0, 1 and 2, each with order cost
cρ = 1

3 . The idea is to create an analogue of a 3-cycle, which has a fractional
vertex cover with all vertices assigned value 1

2 and total cost 5
6 , while any integral

cover requires two vertices. We implement this idea by starting with the following
fractional solution x: if t mod 3 = 0, then xt = x0t = x1t = 1

2 and x2t = 0;
if t mod 3 = 1, then xt = x1t = x2t = 1

2 and x0t = 0; if t mod 3 = 2, then
xt = x0t = x2t = 1

2 and x1t = 0. The cost is 5
6 per time unit. Then we choose

demand periods that x satisfies, but such that, in any (integral) schedule, each
retailer must have at least one order in every three time units {t, t + 1, t + 3},
and there has to be a warehouse order in every two time units {t, t+ 1}. These
costs independently add up to 5

6 per time unit, even ignoring the requirement
that retailers have orders only when the warehouse does. To synchronize the
orders to meet this additional requirement, any schedule must further increase
the order rate by a constant fraction, thus creating a gap. ��

5 APX Hardness for Unit Demand Periods

Theorem 4. JRP-D is APX-hard even if restricted to instances with unit de-
mand periods and with at most four demands per retailer.

The proof (about four pages) is in the full paper [4]. Here is the idea.

Proof (idea). We use the result by Alimonti and Kann [1] that Vertex Cover is
APX-hard even for cubic graphs. For any given cubic graph G = (V,E) with n
vertices (where n is even) and m = 1.5n edges, in polynomial time we construct
an instance JG of JRP-D, such that the existence of a vertex cover for G of
size at most K is equivalent to the existence of an order schedule for JG of cost
at most 10.5n + K + 6. In JG all demand periods have the same length and
each retailer has at most four demands. The construction consists of gadgets
that represent G’s vertices and edges. The main challenge, related to the equal-
length restriction, is in “transmitting information” along the time axis about the
vertices chosen for a vertex cover. We resolve it by having each vertex represented
twice and assuring consistency via an appropriate sub-gadget. ��
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6 Final Comments

The integrality gap for standard JRP-D LP relaxation is between 1.245 and
1.574. We conjecture that neither bound is tight, but that the refined distribution
for the tally game given here is essentially optimal, so that improving the upper
bound will require a different approach.

There is a simple algorithm for JRP-D that provides a (1, 2)-approximation,
in the following sense: its warehouse order cost is not larger than that in the
optimum, while its retailer order cost is at most twice that in the optimum [12].
One can then try to balance the two approaches by choosing each algorithm with
a certain probability. This simple approach does not improve the ratio. But it
may be possible to achieve a better ratio if, instead of using our algorithm as
presented, we appropriately adjust the probability distribution.

If we parametrize JRP-D by the maximum number p of demand periods of
each retailer, its complexity status is essentially resolved: for p ≥ 3 the problem
is APX-hard [12], while for p ≤ 2 it can be solved in polynomial time (by a greedy
algorithm for p = 1 and dynamic programming for p = 2). In case of equal-length
demand periods, we showed that the problem is APX-hard for p ≥ 4, but the
case p = 3 remains open, and it would be nice to settle this case as well. We
conjecture that in this case the problem is NP-complete.

Acknowledgements. We would like to thank �Lukasz Jeż, Jǐŕı Sgall, and Grze-
gorz Stachowiak for stimulating discussions and useful comments.
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Abstract. We consider the problem of constructing a sparse suffix tree
(or suffix array) for b suffixes of a given text T of length n, using only
O(b) words of space during construction. Attempts at breaking the naive
bound of Ω(nb) time for this problem can be traced back to the origins
of string indexing in 1968. First results were only obtained in 1996, but
only for the case where the suffixes were evenly spaced in T . In this paper
there is no constraint on the locations of the suffixes.
We show that the sparse suffix tree can be constructed in O(n log2 b)

time. To achieve this we develop a technique, which may be of indepen-
dent interest, that allows to efficiently answer b longest common prefix
queries on suffixes of T , using only O(b) space. We expect that this tech-
nique will prove useful in many other applications in which space usage is
a concern. Our first solution is Monte-Carlo and outputs the correct tree
with high probability. We then give a Las-Vegas algorithm which also uses
O(b) space and runs in the same time bounds with high probability when
b = O(

√
n). Furthermore, additional tradeoffs between the space usage

and the construction time for the Monte-Carlo algorithm are given.

1 Introduction

In the sparse text indexing problem we are given a string T = t1 . . . tn of length n,
and a list of b interesting positions in T . The goal is to construct an index for only
those b positions, while using only O(b) words of space during the construction
process (in addition to storing the text T ). Here, by index we mean a data
structure allowing for the quick location of all occurrences of patterns starting
at interesting positions only. A natural application comes from computational
biology, where the string would be a sequence of nucleotides or amino acids, and
additional biological knowledge rules out many positions where patterns could
potentially start. Another application is indexing far eastern languages, where
one might be interested in indexing only those positions where words start, but
natural word boundaries do not exist.
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Examples of suitable O(b) space indexes include suffix trees [18] or suffix arrays
[14] built on only those suffixes starting at interesting positions. Of course, one
can always first compute a full-text suffix tree or array in linear time, and then
postprocess it to include the interesting positions only. The problem of this
approach is that it needs O(n) words of intermediate working space, which may
be much more than the O(b) words needed for the final result, and also much
more than the space needed for storing T itself. In situations where the RAM is
large enough for the string itself, but not for an index on all positions, a more
space efficient solution is desirable. Another situation is where the text is held in
read-only memory and only a small amount of read-write memory is available.
Such situations often arise in embedded systems or in networks, where the text
may be held remotely.

A “straightforward” space-saving solution would be to sort the interesting
suffixes by an arbitrary string sorter, for example, by inserting them one after
the other into a compacted trie. However, such an approach is doomed to take
Ω(nb+ n logn) time [5], since it takes no advantage of the fact that the strings
are suffixes of one large text, so it cannot be faster than a general string sorter.

Breaking these naive bounds has been a problem that can be traced back
to—according to Kärkkäinen and Ukkonen [10]—the origins of string indexing
in 1968 [15]. First results were only obtained in 1996, where Andersson et al. [2,3]
and Kärkkäinen and Ukkonen [10] considered restricted variants of the problem:
the first [2,3] assumed that the interesting positions coincide with natural word
boundaries of the text, and the authors achieved expected linear running time
using O(b) space. The expectancy was later removed [9,7], and the result was
recently generalized to variable length codes such as Huffman code [17]. The
second restricted case [10] assumed that the text of interesting positions is evenly
spaced ; i.e., every kth position in the text. They achieved linear running time
and optimal O(b) space. It should be mentioned that the data structure by
Kärkkäinen and Ukkonen [10] was not necessarily meant for finding only pattern
occurrences starting at the evenly spaced indexed positions, as a large portion of
the paper is devoted to recovering all occurrences from the indexed ones. Their
technique has recently been refined by Kolpakov et al. [13]. Another restricted
case admitting anO(b) space solution is if the interesting positions have the same
period ρ (i.e., if position i is interesting then so is position i+ρ). In this case the
sparse suffix array can be constructed in O(bρ + b log b) time. This was shown
by Burkhardt and Kärkkäinen [6], who used it to sort difference cover samples
leading to a clever technique for constructing the full suffix array in sublinear
space. Interestingly, their technique also implies a time-space tradeoff for sorting
b arbitrary suffixes in O(v+n/

√
v) space and O(

√
vn+(n/

√
v) log(n/

√
v)+vb+

b log b) time for any v ∈ [2, n].

1.1 Our Results

We are the first to break the naive O(nb) time algorithm for general sparse
suffix trees, by showing how to construct a sparse suffix tree in O(n log2 b) time,
using only O(b) words of space. To achieve this, we develop a novel technique for
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performing efficient batched longest common prefix (LCP) queries, using little
space. In particular, in Section 3, we show that a batch of b LCP queries can be
answered using only O(b) words of space, in O(n log b) time. This technique may
be of independent interest, and we expect it to be helpful in other applications
in which space usage is a factor. Both algorithms are Monte-Carlo and output
correct answers with high probability, i.e., at least 1− 1/nc for any constant c.

In Section 5 we give a Las-Vegas version of our sparse suffix tree algorithm. This
is achieved by developing a deterministic verifier for the answers to a batch of b
longest common prefix queries. We show that this verifier can be used to obtain
the sparse suffix tree with certainty in O(n log2 b+ b2 log b) time with high prob-
ability using only O(b) space. For example for b = O(

√
n) we can construct the

sparse suffix tree correctly in O(n log2 b) time with high probability using O(b)
space in the worst case. This follows because, for verification, a single batch of b
LCP queries suffices to check the sparse suffix tree. The verifier we develop encodes
the relevant structure of the text in a graph withO(b) edges. We then exploit novel
properties of this graph to verify the answers to the LCP queries efficiently.

Finally, in Section 6, we show some tradeoffs of construction time and space
usage of our Monte-Carlo algorithm, which are based on time-space tradeoffs
of the batched LCP queries. In particular we show that using O(bα) space the

construction time is reduced to O
(
n log2 b

logα + αb log2 b
logα

)
. So, for example, the cost

for constructing the sparse suffix tree can be reduced to O(n log b) time, using
O(b1+ε) words of space where ε > 0 is any constant.

2 Preliminaries

For a string T = t1 · · · tn of length n, denote by Ti = ti · · · tn the ith suffix
of T . The LCP of two suffixes Ti and Tj is denoted by LCP (Ti, Tj), but we will
slightly abuse notation and write LCP (i, j) = LCP (Ti, Tj). We denote by Ti,j
the substring ti · · · tj . We say that Ti,j has period ρ > 0 iff Ti+ρ,j = Ti,j−ρ. Note
that ρ is a period of Ti,j and not necessarily the unique minimal period of Ti,j ,
commonly referred to as the period.

We assume the reader is familiar with both the suffix tree data structure [18]
as well as suffix and LCP arrays [14].

Fingerprinting. We make use of the fingerprinting techniques of Karp and Ra-
bin [11]. Our algorithms are in the word-RAM model with word size Θ(log n)
and we assume that each character in T fits in a constant number of words.
Hence each character can be interpreted as a positive integer, no larger than
nO(1). Let p be a prime between nc and 2nc (where c > 0 is a constant picked
below) and choose r ∈ Zp uniformly at random. A fingerprint for a substring

Ti,j , denoted by FP[i, j], is the number
∑j

k=i r
j−k · tk mod p. Two equal sub-

strings will always have the same fingerprint, however the converse is not true.
Fortunately, as each character fits in O(1) words, the probability of any two
different substrings having the same fingerprint is at most by n−Ω(1) [11]. By
making a suitable choice of c and applying the union bound we can ensure that
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with probability at least 1−n−Ω(1), all fingerprints of substring of T are collision
free. I.e. for every pair of substrings Ti1,j1 and Ti2,j2 we have that Ti1,j1 = Ti2,j2
iff FP[i1, j1] = FP[i2, j2]. The exponent in the probability can be amplified by
increasing the value of c. As c is a constant, any fingerprint fits into a constant
number of words.

We utilize two important properties of fingerprints. The first is that FP[i, j+1]
can be computed from FP[i, j] in constant time. This is done by the formula
FP[i, j+ 1] = FP[i, j] · r+ tj+1 mod p. The second is that the fingerprint of Tk,j
can be computed in O(1) time from the fingerprint of Ti,j and Ti,k, for i ≤ k ≤ j.
This is done by the formula FP[k, j] = FP[i, j] − FP[i, k] · rj−k mod p. Notice
however that in order to perform this computation, we must have stored rj−k

mod p as computing it on the fly may be costly.

3 Batched LCP Queries

3.1 The Algorithm

Given a string T of length n and a list of q pairs of indices P , we wish to compute
LCP (i, j) for all (i, j) ∈ P . To do this we perform log q rounds of computation,
where at the kth round the input is a set of q pairs denoted by Pk, where we
are guaranteed that for any (i, j) ∈ Pk, LCP (i, j) ≤ 2logn−(k−1). The goal of the
kth iteration is to decide for any (i, j) ∈ Pk if LCP (i, j) ≤ 2logn−k or not. In
addition, the kth round will prepare Pk+1, which is the input for the (k + 1)th

round. To begin the execution of the procedure we set P0 = P , as we are always
guaranteed that for any (i, j) ∈ P , LCP (i, j) ≤ n = 2logn. We will first provide
a description of what happens during each of the log q rounds, and after we will
explain how the algorithm uses Plog q to derive LCP (i, j) for all (i, j) ∈ P .

A Single Round. The kth round, for 1 ≤ k ≤ log q, is executed as follows. We
begin by constructing the set L =

⋃
(i,j)∈Pk

{i− 1, j− 1, i+ 2logn−k, j+ 2logn−k}
of size 4q, and construct a perfect hash table for the values in L, using a 2-wise
independent hash function into a world of size qc for some constant c (which with
high probability guarantees that there are no collisions). Notice if two elements
in L have the same value, then we store them in a list at their hashed value. In
addition, for every value in L we store which index created it, so for example,
for i− 1 and i+ 2logn−k we remember that they were created from i.

Next, we scan T from t1 till tn. When we reach t� we compute FP[1, 
] in con-
stant time from FP[1, 
− 1]. In addition, if 
 ∈ L then we store FP[1, 
] together
with 
 in the hash table. Once the scan of T is completed, for every (i, j) ∈ Pk

we compute FP[i, i+ 2logn−k] in constant time, as we stored FP[1, i− 1] and
FP[1, i+ 2logn−k]. Similarly we compute FP[j, j + 2logn−k]. Notice that to do

this we need to compute r2
log n−k

mod p = r
n

2k in O(log n− k) time, which can
be easily afforded within our bounds, as one computation suffices for all pairs.



152 P. Bille et al.

If FP[i, i+ 2logn−k] �= FP[j, j + 2logn−k] then LCP (i, j) < 2logn−k, and so
we add (i, j) to Pk+1. Otherwise, with high probability LCP (i, j) ≥ 2logn−k and
so we add (i+ 2logn+k, j + 2logn+k) to Pk+1. Notice there is a natural bijection
between pairs in Pk−1 and pairs in P following from the method of constructing
the pairs for the next round. For each pair in Pk+1 we will remember which pair
in P originated it, which can be easily transferred when Pk+1 is constructed
from Pk.

LCP on Small Strings. After the log q rounds have taken place, we know that for
every (i, j) ∈ Plog q, LCP (i, j) ≤ 2logn−log q = n

q . For each such pair, we spend

O(nq ) time in order to exactly compute LCP (i, j). Notice that this is performed

for q pairs, so the total cost is O(n) for this last phase. We then construct
Pfinal = {(i + LCP (i, j), j + LCP (i, j)) : (i, j) ∈ Plog q}. For each (i, j) ∈ Pfinal

denote by (i0, j0) ∈ P the pair which originated (i, j). We claim that for any
(i, j) ∈ Pfinal, LCP (i0, j0) = i − i0.

3.2 Runtime and Correctness

Each round takes O(n+q) time, and the number of rounds is O(log q) for a total
of O((n + q) log q) time for all rounds. The work executed for computing Pfinal

is an additional O(n).
The following lemma on LCPs, which follows directly from the definition, will

be helpful in proving the correctness of the batched LCP query.

Lemma 1. For any 1 ≤ i, j ≤ n, for any 0 ≤ m ≤ LCP (i, j), it holds that
LCP (i+m, j +m) +m = LCP (i, j).

We now proceed on to prove that for any (i, j) ∈ Pfinal, LCP (i0, j0) = i − i0.
Lemma 2 shows that the algorithm behaves as expected during the log q rounds,
and Lemma 3 proves that the work done in the final round suffices for computing
the LCPs.

Lemma 2. At round k, for any (ik, jk) ∈ Pk, ik − i0 ≤ LCP (i0, j0) ≤ ik − i0 +
2logn−k, assuming the fingerprints do not give a false positive.

Proof. The proof is by induction on k. For the base, k = 0 and so P0 = P
meaning that ik = i0. Therefore, ik−i0 = 0 ≤ LCP (i0, j0) ≤ 2logn = n, which is
always true. For the inductive step, we assume correctness for k−1 and we prove
for k as follows. By the induction hypothesis, for any (ik−1, jk−1) ∈ Pk−1, i−i0 ≤
LCP (i0, j0) ≤ i− i0 + 2logn−k+1. Let (ik, jk) be the pair in Pk corresponding to
(ik−1, jk−1) in Pk−1. If ik = ik−1 then LCP (ik−1, jk−1) < 2logn−k. Therefore,

ik − i0 = ik−1 − i0 ≤ LCP (i0, j0)

≤ ik−1 − i0 + LCP (ik−1, jk−1) ≤ ik − i0 + 2logn−k.
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If ik = ik−1+2logn−k then FP[i, i+ 2logn−k] = FP[j, j + 2logn−k], and because
we assume that the fingerprints do not produce false positives,LCP (ik−1, jk−1) ≥
2logn−k. Therefore,

ik − i0 = ik−1 + 2logn−k − i0 ≤ ik−1 − i0 + LCP (ik−1, jk−1)

≤ LCP (i0, j0) ≤ ik−1 − i0 + 2logn−k+1

≤ ik − i0 + 2logn−k,

where the third inequality holds from Lemma 1, and the fourth inequality holds
as LCP (i0, j0) = ik−1 − i0 + LCP (ik−1, jk−1) (which is the third inequality),
and LCP (ik−1, jk−1) ≤ 2logn−k+1 by the induction hypothesis. ��

Lemma 3. For any (i, j) ∈ Pfinal, LCP (i0, j0) = i− i0(= j − j0).

Proof. Using Lemma 2 with k = log q we have that for any (ilog q, jlog q) ∈
Plog q, ilog q − i0 ≤ LCP (i0, j0) ≤ ilog q − i0 + 2logn−log q = ilog q − i0 + n

q .

Because LCP (ilog q, jlog q) ≤ 2logn−log q it must be that LCP (i0, j0) = ilog q −
i0 + LCP (ilog q, jlog q). Notice that ifinal = ilog q + LCP (ilog q, jlog q). Therefore,
LCP (i0, j0) = ifinal − i0 as required. ��

Notice that the space used in each round is the set of pairs and the hash table
for L, both of which require only O(q) words of space. Thus, we have obtained
the following. We discuss several other time/space tradeoffs in Section 6.

Theorem 1. There exists a randomized Monte-Carlo algorithm that with high
probability correctly answers a batch of q LCP queries on suffixes from a string
of length n. The algorithm uses O((n+q) log q) time and O(q) space in the worst
case.

4 Constructing the Sparse Suffix Tree

We now describe a Monte-Carlo algorithm for constructing the sparse suffix tree
on any b suffixes of T in O(n log2 b) time and O(b) space. The main idea is to
use batched LCP queries in order to sort the b suffixes, as once the LCP of two
suffixes is known, deciding which is lexicographically smaller than the other takes
constant time by examining the first two characters that differ in said suffixes.

To arrive at the claimed complexity bounds, we are interested in grouping the
LCP queries into O(log b) batches each containing q = O(b) queries on pairs of
suffixes. One way to do this is to simulate a sorting network on the b suffixes of
depth log b [1]. Unfortunately, such known networks have very large constants
hidden in them, and are generally considered impractical [16]. There are some
practical networks with depth log2 b such as [4], however, we wish to do better.

Consequently, we choose to simulate the quick-sort algorithm by each time
picking a random suffix called the pivot, and lexicographically comparing all
of the other b − 1 suffixes to the pivot. Once a partition is made to the set of
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suffixes which are lexicographically smaller than the pivot, and the set of suffixes
which are lexicographically larger than the pivot, we recursively sort each set
in the partition with the following modification. Each level of the recursion tree
is performed concurrently using one single batch of q = O(b) LCP queries for
the entire level. Thus, by Theorem 1 a level can be computed in O(n log b) time
and O(b) space. Furthermore, with high probability, the number of levels in the
randomized quicksort is O(log b), so the total amount of time spent is O(n log2 b)
with high probability. The time bound can immediately be made worst-case by
aborting if the number of levels becomes too large, since the algorithm is still
guaranteed to return the correct answer with high probability.

Notice that once the suffixes have been sorted, then we have in fact computed
the sparse suffix array for the b suffixes. Moreover, the corresponding sparse
LCP array can be obtained as a by-product or computed subsequently by a
answering a single batch of q = O(b) LCP queries in O(n log b) time. Hence we
have obtained the following.

Theorem 2. There exists a randomized Monte-Carlo algorithm that with high
probability correctly constructs the sparse suffix array and the sparse LCP array
for any b suffixes from a string of length n. The algorithm uses O(n log2 b) time
and O(b) space in the worst case.

Having obtained the sparse suffix and LCP arrays, the sparse suffix tree can
be constructed deterministically in O(b) time and space using well-known tech-
niques, e.g. by simulating a bottom-up traversal of the tree [12].

Corollary 1. There exists a randomized Monte-Carlo algorithm that with high
probability correctly constructs the sparse suffix tree on b suffixes from a string of
length n. The algorithm uses O(n log2 b) time and O(b) space in the worst case.

5 Verifying the Sparse Suffix and LCP Arrays

In this section we give a deterministic algorithm which verifies the correctness of
the sparse suffix and LCP arrays constructed in Theorem 2. This immediately
gives a Las-Vegas algorithm for constructing either the sparse suffix array or
sparse suffix tree with certainty. For space reasons some proofs are omitted.

First observe that as lexicographical ordering is transitive it suffices to verify
the correct ordering of each pair of indices which are adjacent in the sparse suffix
array. The correct ordering of suffixes Ti and Tj can be decided deterministically
in constant time by comparing ti+LCP (i,j) to tj+LCP (i,j). Therefore the problem
reduces to checking the LCP of each pair of indices which are adjacent in the
sparse suffix array. These LCPs are computed as a by-product of our Monte-
Carlo algorithm, and there is a small probability that they are incorrect.

Therefore our focus in this section is on giving a deterministic algorithm which
verifies the correctness of the answers to a batch of b LCP queries. As before,
to do this we perform O(log b) rounds of computation. The rounds occur in
decreasing order. In the kth round the input is a set of (at most) b index pairs
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to be verified. Let {x, y} be such a pair of indices, corresponding to a pair of
substrings Tx,x+mk−1 and Ty,y+mk−1 wheremk = 2k. We say that {x, y}matches
iff Tx,x+mk−1 = Ty,y+mk−1. In round k we will replace each pair {x, y} with a new
pair {x′, y′} to be inserted into round (k− 1) such that Tx,x+mk−1 = Ty,y+mk−1
iff Tx′,x′+mk−1−1 = Ty′,y′+mk−1−1. Each new pair will in fact always correspond
to substrings of the old pair. In some cases we may choose to directly verify some
{x, y}, in which case no new pair is inserted into the next round. The initial,
largest value of k is the largest integer such that mk < n. We perform O(log b)
rounds, halting when n/b < mk < 2n/b after which point we can verify all pairs
by scanning T in O(mk · b) = O(n) time.

Of course an original query pair {x, y} may not have LCP (Tx, Ty) = mk for
any k. This is resolved by inserting two overlapping pairs into round k where
mk−1 < LCP (Tx, Ty) < mk. If the verifier succeeds, for each original pair we
have that Tx,x+LCP (Tx,Ty)−1 equals Ty,y+LCP (Tx,Ty)−1. We also need to check
that tx+LCP (Tx,Ty) does not equal tx+LCP(Tx,Ty) - otherwise the true LCP value
is larger than was claimed. Where it is clear from context, for simplicity, we
abuse notation by letting m = mk. We now focus on an arbitrary round k.

The Suffix Implication Graph. We now build a graph (V,E) which will encode
the structure in the text. We build the vertex set V greedily. Consider each text
index 1 ≤ x ≤ n in ascending order. We include index x as a vertex in V iff it
occurs in some pair {x, y} (or {y, x}) and the last index included in V was at least
m/(9 · log b) characters ago. Observe that |V | ≤ 9 · (n/m) log b and also varies
between 9 · log b ≤ |V | ≤ b as it contains at most one vertex per index pair.

Each pair of indices {x, y} corresponds to an edge between vertices v(x) and
v(y). Here v(x) is the unique vertex such that v(x) ≤ x < v(x)+m/(9·log b). The
vertex v(y) is defined analogously. This may create multiple edges between two
vertices v(x) and v(y). Any multi-edges imply a two-cycle and can be handled
first using a simplification of the main algorithm without increasing the overall
time or space complexity. For brevity we omit this case and continue under the
assumption that there are no multi-edges. It is simple to build the graph in
O(b log b) time by traversing the pairs. As |E| ≤ b we can store the graph in
O(b) space.

We now discuss the structure of the graph constructed and show how it can
be exploited to efficiently solve the problem. The following simple lemma will be
essential to our algorithm and underpins the main arguments below.

Lemma 4. Let (V ′, E′) be a connected component of an undirected graph in
which every vertex has degree at least three. There is a (simple) cycle in (V ′, E′)
of length at most 2 log |V ′|+ 1.

The graph we have constructed may have vertices with degree less than three,
preventing us from applying Lemma 4. For each vertex v(x) with degree less
than three, we verify every index pair {x, y} (which corresponds to an edge
(v(x), v(y))). By directly scanning the corresponding text portions this takes
O(|V |m) time. We can then safely remove all such vertices and the correspond-
ing edges. This may introduce new low degree vertices which are then verified
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iteratively in the same manner. As |V | ≤ 9 · (n/m) log b, this takes a total of
O(n log b) time. In the remainder we continue under the assumption that every
vertex has degree at least three.

Algorithm Summary. The algorithm for round k processes each connected com-
ponent separately. However the time complexity arguments will be amortized
over all components. Consider a connected component (V ′, E′). As every ver-
tex has degree at least three, any component has a short cycle of length at
most 2 log |V ′| + 1 ≤ 2 log b + 1 by Lemma 4. We begin by finding such a cy-
cle in O(b) time by performing a BFS of (V ′, E′) starting at any vertex (this
follows immediately from the proof of Lemma 4). Having located such a cycle,
we will distinguish two cases. The first case is when the cycle is lock-stepped
(defined below) and the other when it is unlocked. In both cases we will show
below that we can exploit the structure of the text to safely delete an edge from
the cycle, breaking the cycle. The index pair corresponding to the deleted edge
will be replaced by a new index pair to be inserted into the next round where
m ← mk−1 = mk/2. Observe that both cases reduce the number of edges in
the graph by one. Whenever we delete an edge we may reduce the degree of
some vertex to below three. In this case we immediately directly process this
vertex in O(m) time as discussed above (iterating if necessary). As we do this
at most once per vertex (and O(|V |m) = O(n log b)), this does not increase the
overall complexity. We then continue by finding and processing the next short
cycle. The algorithm therefore searches for a cycle at most |E| ≤ b times over
all components, contributing an O(b2) time additive term. In the remainder we
will explain the two cycle cases in more detail and prove that summed over all
components, the time complexity for round k is upper bounded by O(n log b)
(excluding finding the cycles). As there are O(log b) rounds the final time com-
plexity is O(n log2 b+ b2 log b) and the space is O(b).

Cycles. We now define a lock-stepped cycle. Let (v(xi), v(yi)) for i = 1 . . . 
 be
a cycle of length at most 2 log b + 1, i.e. v(yi) = v(xi+1) for 1 ≤ i < 
 and
v(y�) = v(x1). Here {xi, yi} for all i are the underlying text index pairs. Let

di = xi+1 − yi for 1 ≤ i < 
, d� = x1 − y� and let ρ =
∑�

i=1 di. We say that the
cycle is lock-stepped iff ρ = 0 (and unlocked otherwise). Intuitively, lock-stepped
cycles are ones where all the underlying pairs are in sync. Lemma 5 gives the
key property of lock-stepped cycles which we will use.

Lemma 5. Let (v(xi), v(yi)) for i = 1 . . . 
 be the edges in a lock-stepped cy-

cle. Further let j = arg max
∑j

i=1 dj. If {xi, yi} match for all i �= j then
Txj,xj+m/2−1 = Tyj,yj+m/2−1.

Case 1: Lock-stepped Cycles. The first, simpler case is when we find a lock-stepped
cycle in the connected component (V ′, E′). By Lemma 5, once we have found a
lock-stepped cycle we can safely remove some single edge, (v(xj), v(yj)) from the
cycle. When we remove a single edge, we still need to verify the right half of the
removed pair, {xj , yj}. This is achieved by inserting a new pair, {xj +m/2, yj +
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m/2} into the next round where m ← mk−1 = mk/2. We can determine which
edge can be deleted by traversing the cycle in O(log b) time. Processing all lock-
stepped cycles (over all components) takes O(b log b) time in total.

Case 2: Unlocked Cycles. The remaining case is when we find an unlocked cycle in
the connected component (V ′, E′). Lemma 6 tells us that in this case (if all pairs
match) then one of the pairs, {xj , yj} corresponding to an edge, (v(xj), v(yj)) in
the cycle must have a long, periodic prefix. We can again determine the suitable
pair {xj , yj} as well as ρ in O(log b) time by inspecting the cycle. This follows
immediately from the statement of the lemma and the definition of ρ.

Lemma 6. Assume that the connected component, (V ′, E′) contains an unlocked

cycle denoted, (v(xi), v(yi)) for i = 1 . . . 
. Further let j = arg max
∑j

i=1 dj. If
{xi, yi} match for all i = 1 . . . 
 then Txj,xj+3m/4−1 has a period |ρ| ≤ m/4.

Consider some pair {x, y} such that both Tx,x+3m/4−1 and Ty,y+3m/4−1 are
periodic with period at most m/4. We have that Tx,x+m−1 = Ty,y+m−1 iff
Tx+m/2,x+m−1 = Ty+m/2,y+m−1. This is because Tx+m/2,x+m−1 contains at least
a full period of characters from Tx,x+3m/4−1, and similarly with Ty+m/2,y+m−1 and
Ty,y+3m/4−1 analogously. So we have that if {xi, yi} match for all i �= j then the
chosen pair {xj , yj}matches iff both Txj,xj+3m/4−1 and Tyj ,yj+3m/4−1 have period
|ρ| ≤ m/4 and Txj+m/2,xj+m−1 = Tyj+m/2,yj+m−1. We can therefore delete the
pair {xj , yj} (and the corresponding edge, (v(xj), v(yj))) and insert a new pair,
{xj +m/2, yj +m/2} into the next round where m← mk−1 = m/2.

However, for this approach to work we still need to verify that both strings
Txj,xj+3m/4−1 and Tyj,yj+3m/4−1 have |ρ| as period. We do not immediately check
the periodicity, we instead delay computation until the end of round k, after all
cycles have been processed. At the current point in the algorithm, we simply add
the tuple ({x, y}, ρ) to a list, Π of text substrings to be checked later for periodic-
ity. This takesO(b) space over all components. Excluding checking for periodicity,
processing all unlocked cycles takes O(b log b) time in total.

Checking for Substring Periodicity. The final task in round k is to scan the text
and check that for each ({x, y}, ρ) ∈ Π , |ρ| is a period of both Tx,x+3m/4−1 and
Ty,y+3m/4−1. We process the tuples in left to right order. On the first pass we con-
sider Tx,x+3m/4−1 for each ({x, y}, ρ) ∈ Π . In the second pass we consider y. The
two passes are identical and we focus on the first.

We begin by splitting the tuples greedily into groups in left to right order. A
tuple ({x, y}, ρ) is in the same group as the previous tuple iff the previous tuple
({x′, y′}, ρ′) has x − x′ ≤ m/4. Let Tz,z+m′−1 be the substring of T which spans
every substring, Tx,x+3m/4−1 which appears in some ({x, y}, ρ) in a single group
of tuples. We now apply the classic periodicity lemma stated below.

Lemma 7 (see e.g. [8]). Let S be a string with periods ρ1 and ρ2 and with |S| >
ρ1 + ρ2. S has period gcd(ρ1, ρ2), the greatest common divisor of ρ1 and ρ2. Also,
if S has period ρ3 then S has period α · ρ3 ≤ |S| for any integer α > 0.
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First observe that consecutive tuples ({x, y}, ρ) and ({x′, y′}, ρ′) in the same group
have overlap least m/2 ≥ |ρ|+ |ρ′|. Therefore by Lemma 7, if Tx,x+3m/4−1 has pe-
riod |ρ| and Tx′,x′+3m/4−1 has period |ρ′| then their overlap also has gcd
(|ρ|, |ρ′|) as a period. However as their overlap is longer than a full period in each
string, both Tx,x+3m/4−1 and Tx′,x′+3m/4−1 also have period gcd(|ρ|, |ρ′|). By re-
peat application of this argument we have that if for every tuple ({x, y}, ρ), the
substring Tx,x+3m/4−1 has period |ρ| then Tz,z+m′−1 has a period equal to the
greatest common divisor of the periods of all tuples in the group, denoted g. To
process the entire group we can simply check whether Tz,z+m′−1 has period g in
O(m′) time. If Tz,z+m′−1 does not have period g, we can safely abort the veri-
fier. If Tz,z+m′−1 has period g then by Lemma 7, for each ({x, y}, ρ) in the group,
Tx,x+3m/4−1 has period |ρ| as g divides |ρ|. As every m′ ≥ 3m/4 and the groups
overlap by less than m/2 characters, this process takes O(n) total time.

Theorem 3. There exists a randomized Las-Vegas algorithm that correctly con-
structs the sparse suffix array and the sparse LCP array for any b suffixes from a
string of length n. The algorithm uses O(n log2 b + b2 log b) time with high proba-
bility and O(b) space in the worst case.

6 Time-Space Tradeoffs for Batched LCPQueries

We provide an overview of the techniques used to obtain the time-space tradeoff
for the batched LCP process, as it closely follows those of Section 3. In Section 3
the algorithm simulates concurrent binary searches in order to determine theLCP
of each input pair (with some extra work at the end). The idea for obtaining the
tradeoff is to generalize the binary search to an α-ary search. So in the kth round
the input is a set of q pairs denoted by Pk, where we are guaranteed that for any
(i, j) ∈ Pk, LCP (i, j) ≤ 2logn−(k−1) logα, and the goal of the kth iteration is to
decide for any (i, j) ∈ Pk if LCP (i, j) ≤ 2logn−k logα or not. From a space per-
spective, this means we need O(αq) space in order to compute α fingerprints for
each index in any (i, j) ∈ Pk. From a time perspective, we only need to perform
O(logα q) rounds before we may begin the final round. However, each round now
costs O(n + αq), so we have the following trade-off.

Theorem 4. Let 2 ≤ α ≤ n. There exists a randomized Monte-Carlo algorithm
that with high probability correctly answers a batch of q LCP queries on suffixes
from a string of length n. The algorithm uses O((n + αq) logα q) time and O(αq)
space in the worst case.

In particular, for α = 2, we obtain Theorem 1 as a corollary. Consequently, the
total time cost for constructing the sparse suffix tree in O(αb) space becomes

O

(
n

log2 b

logα
+
αb log2 b

logα

)
.

If, for example, α = bε for a small constant ε > 0, the cost for constructing
the sparse suffix tree becomes O(1ε (n log b + b1+ε log b)), using O(b1+ε) words of
space. Finally by minimizing with the standard O(n) time, O(n) space algorithm
we achieve the stated result of O(n log b) time, using O(b1+ε) space.
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Abstract. We introduce a new compression scheme for labeled trees
based on top trees [3]. Our compression scheme is the first to simul-
taneously take advantage of internal repeats in the tree (as opposed to
the classical DAG compression that only exploits rooted subtree repeats)
while also supporting fast navigational queries directly on the compressed
representation. We show that the new compression scheme achieves close
to optimal worst-case compression, can compress exponentially better
than DAG compression, is never much worse than DAG compression,
and supports navigational queries in logarithmic time.

1 Introduction

A labeled tree T is a rooted ordered tree with n nodes where each node has
a label from an alphabet Σ. Many classical applications of trees in computer
science (such as tries, dictionaries, parse trees, suffix trees, and XML databases)
generate navigational queries on labeled trees (e.g, returning the label of node
v, the parent of v, the depth of v, the size of v’s subtree, etc.). In this paper we
present new and simple compression scheme that support such queries directly
on the compressed representation.

While a huge literature exists on string compression, labeled tree compression
is much less studied. The simplest way to compress a tree is to serialize it using,
say, preorder traversal to get a string of labels to which string compression can be
applied. This approach is fast and is used in practice, but it does not support the
various navigational queries. Furthermore, it does not capture possible repeats
contained in the tree structure.

To get a sublinear space representation for trees with many repeated substruc-
tures (such as XML databases), one needs to define “repeated substructures” and
devise an algorithm that identifies such repeats and collapses them (like Lempel-
Ziv does to strings). There have been two main ways to define repeats: subtree
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Fig. 1. A tree T with a subtree repeat T ′ (left), and a tree pattern repeat T ′ (right)

repeats and the more general tree pattern repeats (see Fig. 1). A subtree repeat is
an identical (both in structure and in labels) occurrence of a rooted subtree in T .
A tree pattern repeat is an identical (both in structure and in labels) occurrence of
any connected subgraph of T . Subtree repeats are used in DAG compression [8,14]
and tree patterns repeats in tree grammars [9,10,17–19]. In this paper we intro-
duce top tree compression based top trees [3] that exploits tree pattern repeats.
Compared to the existing techniques our compression scheme has the following
advantages: Let T be a tree of size n with nodes labeled from an alphabet of
size σ. We support navigational queries in O(log n) time (a similar result is not
known for tree grammars), the compression ratio is in the worst case at least
log0.19σ n (no such result is known for neither DAG compression or tree gram-
mars), our scheme can compress exponentially better than DAG compression,
and is never worse than DAG compression by more than a logn factor.

Previous Work. Using subtree repeats, a node in the tree T that has a child
with subtree T ′ can instead point to any other occurrence of T ′. This way, it
is possible to represent T as a directed acyclic graph (DAG). Over all possible
DAGs that can represent T , the smallest one is unique and can be computed
in O(n) time [12]. Its size can be exponentially smaller than n. Using subtree
repeats for compression was studied in [8,14], and a Lempel-Ziv analog of subtree
repeats was suggested in [1]. It is also possible to support navigational queries [7]
and path queries [8] directly on the DAG representation in logarithmic time.

The problem with subtree repeats is that we can miss many internal repeats.
Consider for example the case where T is a single path of n nodes with the same
label. Even though T is highly compressible (we can represent it by just storing
the label and the length of the path) it does not contain a single subtree repeat
and its minimal DAG is of size n.

Alternatively, tree grammars are capable of exploiting tree pattern repeats.
Tree grammars generalize grammars from deriving strings to deriving trees and
were studied in [9,10,17–19]. Compared to DAG compression a tree grammar can
be exponentially smaller than the minimal DAG [17]. Unfortunately, computing
a minimal tree grammar is NP-Hard [11], and all known tree grammar based
compression schemes can only support navigational queries in time proportional
to the height of the grammar which can be Ω(n).

Our Results. We propose a new compression scheme for labeled trees, which
we call top tree compression. To the best of our knowledge, this is the first
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compression scheme for trees that (i) takes advantage of tree pattern repeats
(like tree grammars) but (ii) simultaneously supports navigational queries on
the compressed representation in logarithmic time (like DAG compression). In
the worst case, we show that (iii) the compression ratio of top tree compression
is always at least log0.19σ n (compared to the information-theoretic lower bound
of logσ n). This is in contrast to both tree grammars and DAG compression
that do not have good provable worst-case compression performance. Finally,
we compare the performance of top tree compression to DAG compression. We
show that top tree compression (iv) can compress exponentially better than
DAG compression, and (v) is never much worse than DAG compression.

With these features, top tree compression significantly improves the state-of-
the-art for tree compression. Specifically, it is the first scheme to simultaneously
achieve (i) and (ii) and the first scheme based on either subtree repeats or tree
pattern repeats with provable good compression performance compared to worst-
case (iii) or the DAG (iv).

The key idea in top tree compression is to transform the input tree T into
another tree T such that tree pattern repeats in T become subtree repeats in
T . The transformation is based on top trees [2–4] – a data structure originally
designed for dynamic (uncompressed) trees. After the transformation, we com-
press the new tree T using the classical DAG compression resulting in the top
DAG T D. The top DAG T D forms the basis for our compression scheme. We
obtain our bounds on compression (iii), (iv), and (v) by analyzing the size of
T D , and we obtain efficient navigational queries (ii) by augmenting T D with
additional data structures.

To state our bounds, let nG denote the total size (vertices plus edges) of the
graph G. We first show the following worst-case compression bound achieved by
the top DAG.

Theorem 1. Let T be any ordered tree with nodes labeled from an alphabet of
size σ and let T D be the corresponding top DAG. Then, nT D = O(nT / log0.19σ nT ).

This worst-case performance of the top DAG should be compared to the optimal
information-theoretic lower bound of Ω(nT / logσ nT ). Note that with standard
DAG compression the worst-case bound is O(nT ) since a single path is incom-
pressible using subtree repeats.

Secondly, we compare top DAG compression to standard DAG compression.

Theorem 2. Let T be any ordered tree and let D and T D be the corresponding
DAG and top DAG, respectively. For any tree T we have nT D = O(log nT ) · nD

and there exist families of trees T such that nD = Ω(nT / lognT ) · nT D.

Thus, top DAG compression can be exponentially better than DAG compression
and it is always within a logarithmic factor of DAG compression. To the best of
our knowledge this is the first non-trivial bound shown for any tree compression
scheme compared to the DAG.

Finally, we show how to represent the top DAG T D inO(nT D) space such that
we can quickly answer a wide range of queries about T without decompressing.
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Theorem 3. Let T be an ordered tree with top DAG T D. There is an O(nT D)
space representation of T that supports Access, Depth, Height, Size, Parent,
Firstchild, NextSibling, LevelAncestor, and NCA in O(log nT ) time. Furthermore,
we can Decompress a subtree T ′ of T in time O(log nT + |T ′|).

The Access, Depth, Height, Size, Parent, Firstchild, and NextSibling all take a node
v in T as input and return its label, its depth, its height, the size of its subtree, its
parent, its first child, and its immediate sibling, respectively. The LevelAncestor
returns an ancestor at a specified distance from v, and NCA returns the nearest
common ancestor to a given pair of nodes. Finally, the Decompress operation
decompresses and returns any rooted subtree.

Related Work (Succinct Data Structures). Jacobson [16] was the first to
observe that the naive pointer-based tree representation using Θ(n log n) bits is
wasteful. He showed that unlabeled trees can be represented using 2n+ o(n) bits
and support various queries by inspection of Θ(lg n) bits in the bit probe model.
This space bound is asymptotically optimal with the information-theoretic lower
bound averaged over all trees. Munro and Raman [20] showed how to achieve the
same bound in the RAM model while using only constant time for queries. Such
representations are called succinct data structures, and have been generalized to
trees with higher degrees [5] and to a richer set of queries such as subtree-size
queries [20] and level-ancestor queries [15]. For labeled trees, Ferragina et al. [13]
gave a representation using 2n logσ+O(n) bits that supports basic navigational
operations, such as find the parent of node v, the i’th child of v, and any child
of v with label α.

All the above bounds for space are averaged over all trees and do not take
advantage of the cases where the input tree contains many repeated substruc-
tures. The focus of this paper is achieving sublinear bounds in trees with many
repeated substructures (i.e., highly compressible trees).

2 Top Trees and Top DAGs

Top trees were introduced by Alstrup et al. [2–4] for maintaining an uncom-
pressed, unordered, and unlabeled tree under link and cut operations. We extend
them to ordered and labeled trees, and then introduce top DAGs for compression.
Our construction is related to well-known algorithms for top tree construction,
but modified for our purposes. In particular, we need to carefully order the steps
of the construction to guarantee efficient compression, and we disallow some
combination of cluster merges to ensure fast navigation.

Clusters. Let v be a node in T with children v1, . . . , vk in left-to-right order.
Define T (v) to be the subtree induced by v and all proper descendants of v. Define
F (v) to be the forest induced by all proper descendants of v. For 1 ≤ s ≤ r ≤ k
let T (v, vs, vr) be the tree pattern induced by the nodes {v}∪T (vs)∪T (vs+1)∪
· · · ∪ T (vr).
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(a) (b)

(c) (e)(d)

Fig. 2. Five ways of merging clusters. The • nodes are boundary nodes that remain
boundary nodes in the merged cluster. The ◦ nodes are boundary nodes that become
internal (non-boundary) nodes in the merged cluster.

A cluster with top boundary node v is a tree pattern of the form T (v, vs, vr),
1 ≤ s ≤ r ≤ k. A cluster with top boundary node v and bottom boundary node u
is a tree pattern of the form T (v, vs, vr)\F (u), 1 ≤ s ≤ r ≤ k, where u is a node
in T (vs) ∪ · · · ∪ T (vr). Clusters can therefore have either one or two boundary
nodes. For example, let p(v) denote the parent of v then a single edge (v, p(v))
of T is a cluster where p(v) is the top boundary node. If v is a leaf then there is
no bottom boundary node, otherwise v is a bottom boundary node.

Two edge disjoint clusters A and B whose vertices overlap on a single bound-
ary node can be merged if their union C = A ∪ B is also a cluster. There are
five ways of merging clusters, as illustrated by Fig. 2. The original paper on
top trees [2–4] contains more ways to merge clusters, but allowing these would
lead to a violation of our definition of clusters as a tree pattern of the form
T (v, vs, vr) \ F (u), which we need for navigational purposes.

Top Trees. A top tree T of T is a hierarchical decomposition of T into clusters.
It is an ordered, rooted, and binary tree and is defined as follows.

• The nodes of T correspond to clusters of T .
• The root of T is the cluster T itself.
• The leaves of T correspond to the edges of T . The label of each leaf is the

pair of labels of the endpoints of the edges in T .
• Each internal node of T is a merged cluster of its two children. The label of

each internal node is the type of merge it represents (out of the five merging
options). The children are ordered so that the left child is the child cluster
visited first in a preorder traversal of T .

Constructing the Top Tree. We now describe a greedy algorithm for con-
structing a top tree T of T that has height O(log nT ). The algorithm constructs
the top tree T bottom-up in O(log nT ) iterations starting with the edges of T

as the leaves of T . During the construction, we maintain an auxiliary tree T̃
initialized as T̃ := T . The edges of T̃ will correspond to the nodes of T and to
the clusters of T . In the beginning, these clusters represent actual edges (v, p(v))
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of T . In this case, if v is not a leaf in T then v is the bottom boundary node
of the cluster and p(v) is the top boundary node. If v is a leaf then there is no
bottom boundary node.

In each one of the O(log nT ) iterations, a constant fraction of T̃ ’s edges (i.e.,
clusters of T ) are merged. Each merge is performed on two overlapping edges

(u, v) and (v, w) of T̃ using one of the five types of merges from Fig. 2: If v is
the parent of u and the only child of w then a merge of type (a) or (b) contracts

these edges in T̃ into the edge (u,w). If v is the parent of both u and w, and
w or u are leaves, then a merge of type (c), (d), or (e) replaces these edges in

T̃ with either the edge (u, v) or (v, w). In all cases, we create a new node in T
whose two children are the clusters corresponding to (u, v) and to (v, w).

This way, we get that a single iteration shrinks the tree T̃ (and the number

of parentless nodes in T ) by a constant factor. The process ends when T̃ is a
single edge. Each iteration is performed as follows:

Step 1: Horizontal Merges. For each node v ∈ T̃ with k ≥ 2 children v1, . . . , vk,
for i = 1 to �k/2�, merge the edges (v, v2i−1) and (v, v2i) if v2i−1 or v2i is a leaf.
If k is odd and vk is a leaf and both vk−2 and vk−1 are non-leaves then also
merge (v, vk−1) and (v, vk).

Step 2: Vertical Merges. For each maximal path v1, . . . , vp of nodes in T̃ such that
vi+1 is the parent of vi and v2, . . . , vp−1 have a single child: If p is even merge the
following pairs of edges {(v1, v2), (v2, v3)}, {(v3, v4), (v4, v5)}, . . . , (vp−2, vp−1)}.
If p is odd merge t{(v1, v2), (v2, v3)}, {(v3, v4), (v4, v5)}, . . . , (vp−3, vp−2)}, and if
(vp−1, vp) was not merged in Step 1 then also merge {(vp−2, vp−1), (vp−1, vp)}.

Lemma 1. A single iteration shrinks T̃ by a factor of c ≥ 8/7.

Proof. Suppose that in the beginning of the iteration the tree T̃ has n nodes.
Any tree with n nodes has at least n/2 nodes with less than 2 children. Consider

the edges (vi, p(vi)) of T̃ where vi has one or no children. We show that at least
half of these n/2 edges are merged in this iteration. This will imply that n/4

edges of T̃ are replaced with n/8 edges and so the size of T̃ shrinks to 7n/8.
To prove it, we charge each edge (vi, p(vi)) that is not merged to a unique edge
f(vi, p(vi)) that is merged.

Case 1. Suppose that vi has no children (i.e., is a leaf). If vi has at least one
sibling and (vi, p(vi)) is not merged it is because vi has no right sibling and its left
sibling vi−1 has already been merged (i.e., we have just merged (vi−2, p(vi−2))
and (vi−1, p(vi−1)) in Step 1 where p(vi) = p(vi−1) = p(vi−2)). We also know that
at least one of vi−1 and vi−2 must be a leaf. We set f(vi, p(vi)) = (vi−1, p(vi−1))
if vi−1 is a leaf, otherwise we set f(vi, p(vi)) = (vi−2, p(vi−2)).
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Case 2. Suppose that vi has no children (i.e., is a leaf) and no siblings (i.e.,
p(vi) has only one child). The only reason for not merging (vi, p(vi)) with
(p(vi), p(p(vi))) in Step 2 is because (p(vi), p(p(vi))) was just merged in Step
1. In this case, we set f(vi, p(vi)) = (p(vi), p(p(vi))). Notice that we haven’t
already charged (p(vi), p(p(vi)) in Case 1 because p(vi) is not a leaf.

Case 3. Suppose that vi has exactly one child c(vi) and that (vi, p(vi)) was not
merged in Step 1. The only reason for not merging (vi, p(vi)) with (c(vi), vi)
in Step 2 is if c(vi) has only one child c(c(vi)) and we just merged (c(vi), vi)
with (c(c(vi)), c(vi)). In this case, we set f(vi, p(vi)) = (c(vi), vi). Notice that we
haven’t already charged (c(vi), vi) in Case 1 because c(vi) is not a leaf. We also
haven’t charged (c(vi), vi) in Case 2 because vi has only one child. ��

Corollary 1. Given a tree T , the greedy top tree construction creates a top tree
of size O(nT ) and height O(log nT ) in O(nT ) time.

The next lemma follows from the construction of the top tree and Lemma 1.

Lemma 2. For any node c in the top tree corresponding to a cluster C of T ,
the total size of all clusters corresponding to nodes in the subtree T (c) is O(|C|).

Top Dags. The top DAG of T , denoted T D, is the minimal DAG representation
of the top tree T . It can be computed in O(nT ) time from T using the algorithm
of [12]. The entire top DAG construction can thus be done in O(nT ) time.

3 Compression Analysis

Worst-Case Bounds for Top Dag Compression. We now prove Theorem 1.
Let T be the top tree for T . Identical clusters in T are represented by identical

complete subtrees in T . Since identical subtrees in T are shared in T D we have
the following lemma.

Lemma 3. For any tree T , all clusters in the corresponding top DAG T D are
distinct.

Lemma 4. Let T be any tree with nT nodes labeled from an alphabet of size σ
and let T be its top tree. The nodes of T correspond to at most O(nT / log0.19σ nT )
distinct clusters in T .

Proof. Consider the bottom-up construction of the top tree T starting with the
leaves of T (the clusters corresponding to the edges of T ). By Lemma 1 each
level in the top tree reduces the number of clusters by a factor c = 8/7, while
at most doubling the size of the current clusters. After round i we are therefore
left with at most O(nT /c

i) clusters, each of size at most 2i + 1.
To bound the total number of distinct cluster, we partition the clusters into

small clusters and large clusters. The small clusters are those created in rounds 1
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to j = log2(0.5 log4σ nT ) and the large clusters are those created in the remaining
rounds from j + 1 to h. The total number of large clusters is at most

h∑
i=j+1

O(nT /c
i) = O(nT /c

j+1) = O(nT /log0.19σ nT ).

In particular, there are at most O(nT / log0.19σ nT ) distinct clusters among these.
Next, we bound the total number of distinct small clusters. Each small cluster

corresponds to a connected subgraph (i.e., a tree pattern) of T that is of size
at most 2j + 1 and is an ordered and labeled tree. The total number of distinct
ordered and labeled trees of size at most x is given by

x∑
i=1

σiCi−1 =

x∑
i=1

σi

i

(
2i− 1

i− 1

)
=

x∑
i=1

O(4iσi) = O
(
(4σ)x+1

)
,

where Ci denotes the ith Catalan number. Hence, the total number of distinct

small clusters is bounded by O((4σ)2
j+2) = O(σ2√nT ) = O(n

3/4
T ). In the last

equality we used the fact that σ < n
1/8
T . If σ > n

1/8
T then the lemma trivially

holds because O(nT /(log0.19σ nT )) = O(nT ). We get that the total number of

distinct clusters is at most O(nT / log0.19σ nT + n
3/4
T ) = O(nT / log0.19σ nT ). ��

Combining Lemma 3 and 4 we obtain Theorem 1.

Comparison to Subtree Sharing. We now prove Theorem 2. To do so we
first show two useful properties of top trees and top dags.

Let T be a tree with top tree T . For any internal node z in T , we say that the
subtree T (z) is represented by a set of clusters {C1, . . . , C�} from T if T (z) =
C1 ∪ · · · ∪ C�. Since each edge in T is a cluster in T we can always trivially
represent T (z) by at most |T (z)| − 1 clusters. We prove that there always exists
a set of clusters, denoted Sz, of size O(log nT ) that represents T (z).

Let z be any internal node in T and let z1 be its leftmost child. Since z is
internal we have that z is the top boundary node of the leaf cluster L = (z, z1)
in T . Let U be the smallest cluster in T containing all nodes of T (z). We have
that L is a descendant leaf of U in T . Consider the path P of cluster in T from
U to L. An off-path cluster of P is a cluster C that is not on P , but whose parent
cluster is on P . We define

Sz = {C | C is off-path cluster of P and C ⊆ T (z)} ∪ {L}

Since the length of P is O(log nT ) the number of clusters in Sz is O(log nT ).
We need to prove that ∪C∈SzC = T (z). By definition we have that all nodes in
∪C∈SzC are in T (z). For the other direction, we first prove the following lemma.
Let E(C) denote the set of edges of a cluster C.

Lemma 5. Let C be an off-path cluster of P . Then either E(C) ⊆ E(T (z)) or
E(C) ∩ E(T (z)) = ∅.
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Proof. We will show that any cluster in T containing edges from both T (z) and
T \ T (z) contains both (p(z), z) and (z, z1), where z1 is the leftmost child of
z and p(z) is the parent of z. Let C be a cluster containing edges from both
T (z) and T \T (z). Consider the subtree T (C) and let C′ be the smallest cluster
containing edges from both T (z) and T \T (z). Then C′ must be a merge of type
(a) or (b), where the higher cluster A only contains edges from T \T (z) and the
bottom cluster, B, only contains edges from T (z). Also, z is the top boundary
node of B and the bottom boundary node of A. Clearly, A contains the edge
(p(z), z), since all clusters are connected tree patterns. A merge of type (a) or
(b) is only possible when B contains all children of its top boundary node. Thus
B contains the edge (z, z1).

We have L = (z, z1) and therefore all clusters in T containing (z, z1) lay on
the path from L to the root. The path P is a subpath of this path, and thus no
off-path clusters of P can contain (z, z1). Therefore no off-path clusters of P can
contain edges from both T (z) and T \ T (z). ��

Any edge from T (z) (except (z, z1)) contained in a cluster on P must be con-
tained in an off-path cluster of P . Lemma 5 therefore implies that T (z) =
∪C∈SzC and the following corollary.

Corollary 2. Let T be a tree with top tree T . For any node z in T , the subtree
T (z) can be represented by a set of O(log nT ) clusters in T .

Next we prove that our bottom-up top tree construction guarantees that two
identical subtrees T (z), T (z′) are represented by two identical sets of clusters
Sz, Sz′ . Two sets of clusters are identical (denoted Sz = Sz′) when C ∈ Sz iff
C′ ∈ Sz such that C and C′ are clusters corresponding to tree patterns in T
that have the same structure and labels.

Lemma 6. Let T be a tree with top tree T . Let T (z) and T (z′) be identical
subtrees in T and let Sz and Sz′ be the corresponding representing set of clusters
in T . Then, Sz = Sz′ .

Proof. Omitted due to lack of space.

Theorem 4. For any tree T , nT D = O(log nT ) · nD.

Proof. An edge is shared in the DAG if it is in a shared subtree of T . We denote
the edges in the DAG D that are shared as red edges, and the edges that are
not shared as blue. Let rD and bD be the number of red and blue edges in the
DAG D, respectively.

A cluster in the top tree T is red if it only contains red edges from D, blue if
it only contains blue edges from D, and purple if it contains both. Since clusters
are connected subtrees we have the property that if cluster C is red (resp. blue),
then all clusters in the subtree T (C) are red (resp. blue). Let r, b, and p be the
number of red, blue, and purple clusters in T , respectively. Since T is a binary
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tree, where all internal nodes have 2 children and all leaves are either red or
blue, we have p ≤ r + b. It is thus enough to bound the number of red and blue
clusters.

First we bound the number of red clusters in the DAG T D. Consider a
shared subtree T (z) from the DAG compression. T (z) is represented by at most
O(log nT ) clusters in T , and all these contain only edges from T (z). It follows
from Lemma 6 that all the clusters representing T (z) (and their subtrees in T )
are identical for all copies of T (z). Therefore each of these will appear only once
in the top DAG T D.

From Corollary 2 we have that each of the clusters representing T (z) has size
at most O(|T (z)|). Thus, the total size of the subtrees of the clusters repre-
senting T (z) is O(|T (z)| lognT ). This is true for all shared subtrees, and thus
r = O(rD lognT ).

To bound the number of blue clusters in the top DAG, we first note that
the blue clusters form rooted subtrees in the top tree. Let C be the root of
such a blue subtree in T . Then C is a connected component of blue edges in
T . It follows from Corollary 2 that |T (C)| = O(|C|). Thus the number of blue
clusters b = O(bD). The number of edges in the T D is thus b+r+p ≤ 2(b+r) =
O(bD + rD lognT ) = O(nD lognT ). ��

Lemma 7. There exist trees T , such that nD = Ω(nT / lognT ) · nT D.

Proof. Caterpillars and paths have nT D = O(log nT ), whereas nD = nT . ��

4 Supporting Navigational Queries

In this section we give a high-level sketch of how to perform the navigational
queries. All details can be found in the full version [6]. Let T be a tree with top
DAG T D. To uniquely identify nodes of T we refer to them by their preorder
numbers. For a node of T with preorder number x we want to support the
following queries.

Access(x): Return the label associated with node x.

Decompress(x): Return the tree T (x).

Parent(x): Return the parent of node x.

Depth(x): Return the depth of node x.

Height(x): Return the height of node x.

Size(x): Return the number of nodes in T (x).

Firstchild(x): Return the first child of x.

NextSibling(x): Return the sibling immediately to the right of x.

LevelAncestor(x, i): Return the ancestor of x whose distance from x is i.

NCA(x, y): Return the nearest common ancestor of the nodes x and y.
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The Data Structure. In order to enable the above queries, we augment the
top DAG T D of T with some additional information. Consider a cluster C in
T D. Recall that if C is a leaf in T D then C is a single edge in T and C stores
the labels of this edge’s endpoints. For each internal cluster C in T D we save
information about which type of merge that was used to construct C, the height
and size of the tree pattern C, and the distance between the top of C to the
top boundary nodes of its child clusters. From the definition of clusters and
tree patterns it follows that the preorder numbers in T of all the nodes (except
possibly the root) in a cluster/tree pattern C are either a consecutive sequence
[i1, . . . , ir] or two consecutive sequences [i1, . . . , ir], [is, . . . , it], where r < s. In
the second case the nodes with preorder numbers [ir+1, . . . , is−1] are nodes in
the subtree rooted at the bottom boundary node of C. We augment our data
structure with information that allows us to compute the sequence(s) of preorder
numbers in C in constant time.

All of our queries are based on traversals of the augmented top DAG T D.
During the traversal we identify nodes by computing preorder numbers local to
the cluster that we are currently visiting. The intervals of local preorder numbers
can be computed in constant time for each cluster.

Our data structures uses constant space for each cluster of T D, and thus the
total space remains O(nT D).

Navigation. The navigational queries can be grouped into three types. Access
and Depth are computed by a single top-down search of T D starting from its root
and ending with the leaf cluster containing x. At each step the local preorder
number of x is computed, along with some additional information in the case of
Depth. The procedures Firstchild, LevelAncestor, Parent, and NCA are computed
by a top-down search to find the local preorder number in a relevant cluster C,
and then a bottom-up search to compute the corresponding preorder number in
T . Since the depth of T D is O(log nT ) and the computation in each cluster of
T D takes constant time the total time for each operation is O(log nT ).

To answer the queries Decompress, Height, Size, and NextSibling the key idea is
to compute a small set of clusters representing T (x) and all necessary information
needed to answer the queries. The set is a subset denoted Šx of the set Sx,
where Sx is the set of O(log nT ) off-path clusters of P that represents T (x)
as defined in Section 3. Let M be the highest cluster on P that only contains
edges from T (x) and partition Sx into the set Ŝx that contains all clusters in Sx

that are descendants of M and the set Šx that contains the remaining clusters.
The desired subset is the set Šx. We then show how to implement a procedure
FindRepresentatives that efficiently computes Šx in O(log nT ) time. This is done
by a top-down traversal of T D to find M followed by a bottom-up traversal
that exploits the structural properties of the top tree. Note that not all off-path
clusters of P are in Sx. Therefore we carefully need to consider for each off-path
cluster in the bottom-up traversal, if it is in Sx or not. With FindRepresentatives,
the remaining procedures are straightforward to implement using the information
from the clusters in Šx.
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Abstract. We consider the complexity of computing the determinant
over arbitrary finite-dimensional algebras. We first consider the case that
A is fixed. We obtain the following dichotomy: If A/ radA is noncom-
mutative, then computing the determinant over A is hard. “Hard” here
means #P-hard over fields of characteristic 0 and ModpP-hard over fields
of characteristic p > 0. If A/ radA is commutative and the underlying
field is perfect, then we can compute the determinant over A in polyno-
mial time.
We also consider the case when A is part of the input. Here the hard-

ness is closely related to the nilpotency index of the commutator ideal of
A. The commutator ideal com(A) of A is the ideal generated by all ele-
ments of the form xy−yx with x, y ∈ A. We prove that if the nilpotency
index of com(A) is linear in n, where n × n is the format of the given
matrix, then computing the determinant is hard. On the other hand, we
show the following upper bound: Assume that there is an algebra B ⊆ A
with B = A/ rad(A). (If the underlying field is perfect, then this is always
true.) The center Z(A) of A is the set of all elements that commute with
all other elements. It is a commutative subalgebra. We call an ideal J a
complete ideal of noncommuting elements if B +Z(A) + J = A. If there
is such a J with nilpotency index o(n/ log n), then we can compute the
determinant in subexponential time. Therefore, the determinant cannot
be hard in this case, assuming the counting version of the exponential
time hypothesis.
Our results answer several open questions posed by Chien et al. [4].

1 Introduction

The determinant of a matrix M = (mi,j) ∈ kn×n over some field k is given by
the well-known formula

detM =
∑
σ∈Sn

sgn(σ)m1,σ(1) · · ·mn,σ(n).

The determinant plays a central role in linear algebra. It can be efficiently com-
puted, for instance, by Gaussian elimination. In fact, there are even efficient
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algorithms when the matrix M has entries from some commutative algebra, see
[12] and the references given therein.

A related polynomial is the permanent of M , given by

perM =
∑
σ∈Sn

m1,σ(1) · · ·mn,σ(n).

If M is {0, 1}-valued, then perM is the number of perfect matchings of the
bipartite graph defined by M . While the determinant is easy over commutative
algebras, the permanent is hard already over the rationals. Valiant [15] showed
that evaluating the {0, 1}-permanent over the rationals is at least as hard as
counting the number of satisfying assignments of a formula in 3-CNF.

Since the determinant and the permanent have similar formulas, it is tempt-
ing to try to modify algorithms for the determinant and use them to compute
the permanent. Godsil and Gutman [9] used the determinant to approximate the
permanent. They designed a matrix-valued random variable. In expectation, the
square of the determinant of this random variable is the permanent. However,
the variance is huge. Karmarkar et al. [11] showed how to lower the variance by
extending the underlying field to the complex numbers. Chien et al. [6], building
upon the work by Barvinok [2], showed that if one could compute the deter-
minant of an n × n-matrix the entries of which are themselves matrices of size
cn × cn for some constant c, then there is a fully polynomial time randomized
approximation scheme for the permanent of {0, 1}-matrices. See [13] for fur-
ther results in this direction. (Of course, there is a fully polynomial randomized
approximation scheme based on Markov chains, see [10]. However, if we could
evaluate noncommutative determinants as fast as commutative ones, then we
would get much faster approximation schemes.)

Therefore, it is important to understand the complexity of the determinant
over arbitrary finite-dimensional algebras, especially over noncommutative ones,
and not only over fields or commutative algebras. The first to study this problem
was Nisan [14]. He proved an exponential lower bound for the size of an algebraic
branching program for computing the determinant over the free noncommutative
algebra k〈Xi,j〉. While the lower bound is strong, the setting is limited, because it
only applies to a restricted circuit model and only to a very “powerful” algebra.
Chien and Sinclair [5] extended these bounds to a wide range of “concrete”
algebras by analysing their polynomial identities, for instance to matrix algebras
and the Hamiltonian quaternions, albeit only in the algebraic branching program
model.

Recently Arvind and Srinivasan [1] showed that the noncommutative determi-
nant cannot have small circuits unless the permanent has small circuits. Finally,
Chien et al. [4] made further progress by proving the #P-hardness and ModpP-
hardness of the determinant for odd p for large classes of algebras.

The fundamental question behind these results is: Which properties of the
algebra makes the determinant hard? In this work, we prove that this is exactly
noncommutativity.
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1.1 A Crash Course on the Structure of Algebras

An associative algebra A over some field k is a k-vector space together with
a bilinear mapping · : A × A → A, the multiplication in A. Multiplication is
associative and distributes over addition. If λ ∈ k, then λ(x·y) = (λx)·y = x·(λy)
for all x, y ∈ A. We will always assume that A is finite-dimensional (as a vector
space) and contains a unit element, which we denote by 1.

A left (right, twosided) ideal of an algebra is a vector space that is closed under
multiplication with arbitrary elements of A from the left (right, both sides). If
S is a subset of A, then the left (right, twosided) ideal of A generated by S is
the intersection of all left (right, twosided) ideals that contain S. Alternatively,
it can be defined as the linear span generated by all elements xs (sy, xsy) with
x, y ∈ A and s ∈ S.

A left (right, twosided) ideal I is called nilpotent, if Is = {0} for some positive
integer s. The nilpotency index of I is the smallest s such that Is = {0}. If there
is no such s, then the index is infinite.

The sum of all nilpotent left ideals of A is a nilpotent twosided ideal, which
contains every nilpotent right ideal of A. This twosided ideal is called the rad-
ical of A and is denoted by radA. The quotient algebra A/ radA contains no
nilpotent ideals other than the zero ideal. Since A is finite dimensional, we can
alternatively define the radical of A as the intersection of all maximal twosided
ideals. An ideal is maximal if it is not contained in any other ideal and is not
equal to A.

We call an algebra A semisimple, if radA = {0}. By the above fact, A/ radA
is semisimple. An algebra A is called simple, if there are no twosided ideals in A
except the zero ideal and A itself. An algebra D is called a division algebra, if
D× = D \ {0}. Here D× is the set of all invertible elements in D. An algebra A
is called local, if A/ radA is a division algebra.

The following fundamental theorem describes the structure of semisimple al-
gebras.

Theorem 1 (Wedderburn). Every finite dimensional semisimple k-algebra is
isomorphic to a finite direct product of simple algebras. Every finite dimensional
simple k-algebra A is isomorphic to an algebra Dn×n for an integer n ≥ 1 and a
k-division algebra D. The integer n and the algebra D are uniquely determined
by A (the latter one up to isomorphism).

For an introduction to associative algebras, we recommend [8].

1.2 Our Results

First we will consider the problem when the underlying algebra A is fixed: We
are given a matrix M ∈ An×n as an input and our task is to compute detM .
We prove that the determinant over A is hard if A/ radA is noncommutative.
If A/ radA is commutative, then the problem is polynomial time computable.
That means, we get a complete dichotomy (Theorem 3). More precisely, we show
that
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– computing the determinant overA is #P-hard if A/ radA is noncommutative
and the characteristic of k is 0.

– computing the determinant over A is ModpP-hard if A/ radA is noncommu-
tative and the characteristic p of k is positive.

Chien et al. show that if A/ radA is commutative and the field k is perfect,
then the determinant can be computed in polynomial time. A field is perfect if
every irreducible polynomial over k has distinct roots. Any “reasonable” field
is perfect, for instance, fields of characteristic zero are perfect, finite fields are
perfect as well as algebraically closed fields.1

Our dichotomy extends the results of Chien et al. in two ways: First it works
for arbitrary algebras A such that A/ radA is noncommutative. Chien et al.
proved this only for algebras whose semisimple part A/ radA contained at least
one matrix algebra. For instance, it did not apply to local algebras and in par-
ticular, division algebras like Hamiltonian quaternions. Second, we get Mod2P-
hardness, that is, ⊕P-hardness, over fields of characteristic 2. The proof by Chien
et al. did not work in this case.

Then we turn to the case when the algebra is given as a part of the input.
Beside the matrix M , we also get a basis and the multiplication table of the
algebra A from which the entries of M are taken. It seems to be natural that
the dimension of A should be polynomial in the size of M . The setting above
subsumes the case where we have a familiy of algebras An and our task is to
compute the n×n-determinant overAn, for instance, computing the determinant
of n × n-matrices with upper triangular n× n-matrices as entries. This setting
is of interest because there could be a sequence of algebras each of which is
noncommutative but still the determinant is easy to compute. This of course is
only possible if An/ radAn is commutative, by our first result.

We give evidence that the quantity that determines the hardness is the nilpo-
tency index of the commutator ideal of A. The commutator ideal com(A) of an
algebra A is the ideal generated by all elements of the form xy−yx with x, y ∈ A.
If the commutator ideal com(A) = {0}, then A is commutative. If its nilpotency
index is finite, then A/ radA is commutative. We prove that if the nilpotency
index of the commutator ideal of A is at least linear in n, then computing the
determinant of n× n-matrices is as hard as counting the number of solutions of
a formula in 3-CNF modulo the characteristic of k.

We prove an upper bound that is a little weaker in two ways: First we need that
the nilpotency index of a somewhat larger ideal is bounded and second the upper
bound does not fully match the lower bound from the hardness result. Assume
that there is an algebra B ⊆ A with B ∼= A/ rad(A). (If the underlying field is
perfect, then this is always true.) The center Z(A) of A is the set of all elements
that commute with all other elements. It is a commutative subalgebra. We call

1 What is actually needed by Chien et al. is that there is a subalgebra B of A such
that A = B⊕radA (as vector spaces). This is true if the algebra A is separable. Over
perfect fields, every algebra is separable. Any of these implications is often called
the Wedderburn-Malcev Theorem. The existence of the algebra B is only needed for
the upper bound and not for the hardness result.
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an ideal J a complete ideal of noncommuting elements if B + Z(A) + J = A. If
there is such a J with nilpotency index r, then we can compute the determinants
of n × n-matrices over A in time nO(r). Due to space limitations, the proof of
the general case is omitted here, but can be found in the full version (see the
footnote on the first page).

Over fields of characteristic 0 this result is almost tight assuming the counting
version of the exponential time hypothesis #ETH as formulated by Dell et al. [7].
If r = o(n/ logn), then computing the determinant over A cannot be #P-hard
under #ETH.

The ideal J is a superset of com(A). It is currently not clear whether the
condition that J has nilpotency index o(n/ logn) can be replaced by com(A)
has nilpotency index o(n/ logn) in the upper bound. The main reason is that
not too much is known about the structure of the radical. See the conclusions
for some examples. In order to replace the o(n/ logn) by a tight o(n), we need
a faster algorithm, for instance with running time 2O(r) or O(

(
n
r

)
). The latter

does not seem to be completely out of reach.

2 Determinants, Permanents, and Cycle Covers

Given an n× n-matrix M = (mi,j) the entries of which belong to an algebra A,
the (Cayley) determinant of M is defined by

detM =
∑
σ∈Sn

sgn(σ)m1,σ(1) · · ·mn,σ(n). (1)

(Since A might be noncommutative, the order of multiplication makes a differ-
ence. When the order is by rows, then we get the Cayley determinant.) Similarly,
the permanent of M is defined by

perM =
∑
σ∈Sn

m1,σ(1) · · ·mn,σ(n). (2)

We can interpret the matrix M as an edge-weighted digraph on the vertex set
V = {1, . . . , n}. There is an edge from i to j if mi,j �= 0 and the weight of this
edge is mi,j . We denote this graph by G(M). A cycle cover C of a digraph is
a subset of the edges such that every node has indegree and outdegree one in
C. C encodes a unique permutation, which maps every node i to the node j
where (i, j) is the unique edge in C leaving i. We set C(i) := j. In this way,
we can interpret C as a permutation. It is easy to see that sgn(C) = (−1)n+c

where c is the number of cycles in C. The weight of a cycle cover is the product
of the weights of the edges in C, that is, m1,C(1) · · ·mn,C(n). Again the order is
important, since the weights might not commute. For a digraph G, let CC(G)
be the set of its cycle covers. Now we can rewrite (1) and (2) as

detM =
∑

C∈CC(G(M))

sgn(C)m1,C(1) · · ·mn,C(n) (3)
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and

perM =
∑

C∈CC(G(M))

m1,C(1) · · ·mn,C(n). (4)

If G is an edge-weighted digraph, we will often write detG and perG for the
determinant and permanent of its weighted adjacency matrix.

3 Hardness Proofs for the Permanent

#3-SAT is the following problem: Given a Boolean formula φ in 3-CNF with n
variables and m clauses, count the number of satisfying assignments. #3-SAT
is #P-complete. It even stays #P-complete if we assume that every variable
appears as often unnegated as negated. We can achieve this by adding trivial
clauses of the form x̄∨ x∨ x or x̄∨ x̄∨ x for every variable x, if neccessary. This
reduction increases the size of φ only by a constant factor. Note that thereafter,
every assignment sets as many literals to true as to false.

We first briefly review the reduction by Dell et al. [7] of #3-SAT to the
permanent, which is similar to the original construction by Valiant [15], but
simpler and nicer. (It should go into any modern textbook.) The reduction by
Dell et al. is itself derived from the reduction in [3]. Chien et al. [4] used the same
approach; however, our gadgets can handle arbitrary noncommutative algebras
and not only matrix algebras.

A given formula φ is mapped to a graph Gφ. This graph will have O(m)
edges. For every variable x, there is a selector gadget, see Figure 1 (left-hand
side). There are two ways to cover this gadget by a cycle cover, taking the left-
hand edge will correspond to setting x to zero and taking the right-hand edge
will correspond to setting x to one.

For every clause, there is a clause gadget as depicted in Figure 1 (right-hand
side). Each of the three outer edges corresponds to one literal of the clause.
Taking one of the three outer edges corresponds to setting the literal to zero.
It is easy to check that for every subset of the outer edges, except for the one
consisting of all three outer edges, there is exactly one cycle cover. Call the
graph constructed so far G′φ. A cycle cover of G′φ is called consistent, if the
chosen edges in the selector gadgets and the clause gadgets are consistent, that
is, whenever we chose the left-hand edge in the selector gadget for x (i.e, x = 0),
then we choose all corresponding edges in the clause gadgets in which x appears
positively and vice versa.

Fact 2. Satisfying assignments of φ and consistent cycle covers of G′φ stand in
one-to-one correspondence.

The last step is to get rid of inconsistent cycle covers. This is done by connecting
the edge of a literal 
 in a clause gadget by the edge in the selector gadget
corresponding to setting 
 = 0 using an equality gadget, see Figure 2. The edge
of the selector gadget and the edge of the clause gadget are subdivided, let x and
z be the newly introduced vertices. These two vertices are connected as depicted



178 M. Bläser

“x = 1”“x = 0”

�̄1 �̄2

�̄3

Fig. 1. Left-hand side: The selector gadget. In all figures, edges without explicitely
stated weights have weight 1. Right-hand side: The clause gadget. In the gadget as
it is, there is a double edge between the two nodes at the bottom. The lower edge is
however subdivided when we introduce the equality gadgets.
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Fig. 2. The equality gadget. The pair of edges (u, v) and (u′, v′) of the left-hand side,
one of them is an edge of the selector gadget and the other is the corresponding outer
edge of a clause gadget, is connected as shown on the right-hand side.

in Figure 2. Since a literal appears in several clauses, the edge of the selector
gadget is subdivided as many times.

Every consistent cycle cover of G′φ can be extended to several cycle covers of
Gφ. If the two edges connected by a equality gadget are both taken, then we
take both path u−x−v and u′−z−v′ in Gφ. The interior vertex y is covered by
the self-loop, yielding a weight of −1. If both edges are not taken, then we take
none of the corresponding paths. There are six possibilities to cover the interior
nodes x, y, and z; four of them have weight 1, two of them have weight −1. This
sums up to 2. (The six different covers, albeit with different weights, are shown
in Figure 4.) Therefore, every consistent cycle cover is mapped to several cycle
covers with a total weight of (−1)p2q where p is the number of literals set to zero
and q is the number of literals set to one. Since we normalized φ, p = q = 3m/2.

There are also cycle covers that do not cover equality gadget consistently.
This can either mean that the path u − x − v is taken but not u′ − z − v′ or
that we enter the gadget via u but leave it via v′. One can prove that all cycle
covers in which at least one equality gadget is not covered consistently sum up to
zero. Altogether, we get that perGφ = (−2)3m/2 ·#3-SAT(φ), where #3-SAT(φ)
denotes the number of satisfying assignments of φ.

4 Hardness of the Noncommutative Determinant

We adapt the construction of the previous section to the determinant over non-
commutative algebras. Note that now every cycle cover C is weighted by sgn(C)
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and the order in which the edge weights are multiplied is important. The selec-
tor gadgets stay the same. The clause gadgets stay almost the same, the only
difference is that one edge gets weight −1 as is done by Chien et al. [4]. As be-
fore, for every proper subset of the outer edges, there is one cycle cover covering
the clause gadget. The new −1 weight compensates the fact that some covers
contain an odd number of cycles and some an even number. Let again G′φ denote
the resulting graph. Consistent cycle covers of G′φ with sign stand in one-to-one
correspondance with satisfying assignments of φ.

Note that since we are now working over some noncommutative algebra, the
order of the vertices can be important: Up to now, we used only edge weights 1
or −1. Therefore, the order of the vertices does not matter so far.

The structure of the equality gadgets also stays the same, but we use different
weights. To construct the weights, we use the following lemma.

Lemma 1. Let A be an associative algebra. A/ radA is noncommutative if and
only if there are invertible i, j ∈ A such that 1− iji−1j−1 is not nilpotent.

Proof. Assume that A/ radA is noncommutative and let A/ radA = A1×· · ·×At

be its decomposition into simple algebras as given by Wedderburn’s Theorem.
One of these factors, say A1, is either a matrix algebra of the form Bs×s with B
being a division algebra and s ≥ 2 or a noncommutative division algebra D. In
the first case A1 = Bs×s, set

i′ =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ and j′ =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0
1 0 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠
It is easy to check that

i′j′ − j′i′ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
0 −1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

(i′j′ − j′i′)2 is idempotent in A1 and therefore i′j′ − j′i′ cannot be nilpotent. In
the second case A1 = D, we choose i′ and j′ to be noncommuting elements in
D. i′j′− j′i′ is nonzero and therefore invertible in A1, as D is a division algebra.
The elements i = (i′, 1, . . . , 1) and j = (j′, 1, . . . , 1) are invertible in A/ radA
and can be lifted to invertible elements of A. ij− ji = (i′j′− j′i′, 0, . . . , 0) is not
nilpotent. We have

1− iji−1j−1 = −(ij − ji) · i−1j−1,
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Fig. 3. The modified equality gadget. i and j are the elements constructed in the proof
of Lemma 1, k = ij, and k′ = i−1j−1. The edges between x and y have weight i and
i−1, between y and z weights j and j−1, and between z and x weights k′ and k.

which is not nilpotent, either.2

For the converse direction, note that 1− iji−1j−1 /∈ radA, since 1− iji−1j−1
is not nilpotent. Therefore the image of 1 − iji−1j−1 in A/ radA under the
canonical projection is nonzero and thus, A/ radA is not commutative. ��

Let A be an algebra such that A/ radA is noncommutative. Choose i and j as
constructed above. Let k = ij. The edges of the equality gadget get weights as
depicted in Figure 3. The three new vertices x, y, and z of each gadget appear
consecutively in the order x, y, z in the ordering of all the vertices. Besides this,
the ordering of the new vertices can be arbitrary. Let Gφ denote the resulting
graph.

Now we analyse what happens with a consistent cycle cover C of G′φ when
moving over to Gφ, see Figure 4. Note that consistent cycle covers of G′φ have
the same sign. If both paths in the equality gadget are taken, then we cover y
by the self-loop. This adds one cycle to the cycle cover, which toggles the sign.
If both paths are not taken, then there are six cycles covers. Two of them, have
one cycle and signed weights3 −ijk′ = −iji−1j−1 and −ki−1j−1 = −iji−1j−1.
Three of them have two cycles and signed weights ii−1 = 1, jj−1 = 1, and
kk′ = iji−1j−1. Finally, there is one cycle cover with three cycles and signed
weight −1. The total signed weight contribution is 1−iji−1j−1. Doing this for all
equality gadgets, we get that every consistent cycle cover of G′φ can be extended
to consistent cycle covers of Gφ with total signed weight

(−1)3m/2(1− iji−1j−1)3m/2.

Recall that we normalized φ such that every assignment sets 3m/2 literals to
true and 3m/2 literals to false. Since 1− iji−1j−1 is not nilpotent, this weight
is nonzero.

2 To not fall into the same trap as a STOC’12 referee, please note that this is not
true in general. Here this holds because of the choice of i′ and j′. Either A1 is a
noncommutative division algebra or A1 is a matrix algebra. In the first case, being
nonzero already means invertible. In the second case, note that −(ij− ji) · i−1j−1 is
a matrix with an invertible 2×2-matrix in the upper left corner and zeros elsewhere.

3 The term signed weight also includes the change of sign induced by the parity change
of the cycles.
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Fig. 4. First row: The one possible configuration if both edges are taken. Second row:
The six possible configurations if none of the edges is taken.

It remains to analyse what happens with cycle covers of Gφ which are not con-
sistent, that is, in which at least one equality gadget is not covered consistently.
We will define an involution I without fixed points on the set of all inconsistent
cycle covers of Gφ such that the weight of C and I(C) cancel each other. From
this it follows that the total contribution of the inconsistent cycle covers is zero.
To define I, take an inconsistent cycle cover. We order the equality gadgets ar-
bitrarily. Let C be an inconsistent cycle cover and consider the first inconsistent
equality gadget. Then either C uses the path u − x − v in this gadget but not
u′ − z − v′ or it enters the gadget via u and leaves it via v′. (The cases where
u′ − z − v′ is used but not u− x− v or the gadget is entered via u′ and left via
v are symmetric.) Figure 5 shows how I pairs inconsistent cycle covers.

In the first case, C and I(C) only differ in how y and z are covered. On the
lefthand side, we use two cycles of weight 1, on the righthand side we use one
cycle of weight jj−1 = 1. So the weights of the cycle covers are the same, but
the signs differ, since the cycle cover on the lefthand side has one cycle more.
(In the symmetric case, we get two cycles of weight 1 versus one cycle of weight
ii−1 = 1.)

In the second case, we either use one edge of weight k and cover y by a cycle
of weight 1 (lefthand side), or we use two edges of weight i and j. Since k = ij,
the weight of both covers is the same, but again the signs differ, since the second
cover has one cycle more. (In the symmetric case, we have one edge with weight
k′ = i−1j−1 and one additional cycle or two edges with weight i−1j−1.)

This finishs the proof that the contribution of the inconsistent cycle covers is
0.

Altogether, we get that

det(G) = (−1)3m/2(1− iji−1j−1)3m/2#3-SAT(φ). (5)

Note that (−1)3m/2(1− iji−1j−1)3m/2 is a fixed nonzero element of A multiplied
by the scalar #3-SAT(φ).

Theorem 3. Let k be a field of characteristic p. Let A be an associative algebra
over k.
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Fig. 5. The involution I . I maps the configuration on the left-hand side to the corre-
sponding configuration on the right-hand side and vice versa.

1. If A/ radA is noncommutative, then evaluating the determinant over A is
#P-hard if p = 0 and ModpP-hard otherwise.

2. If A/ radA is commutative and k is perfect, then the determinant over A
can be evaluated in polynomial time.

Proof. The first part immediately follows from (5), since (−1)3m/2(1 −
iji−1j−1)3m/2 is a nonzero element of A by the choice of i and j. Note that
if p > 0, then we get #3-SAT(φ), which is a scalar from k, only modulo p.

The second part follows from the fact that there is an algorithm with running
time nO(d) for this problem, where d is the dimension of A [4]. Note that A is
fixed, so d is a constant. ��

5 Algebras as Part of the Input

If the algebra is part of the input, we have the following results. The proof can
be found in the full version.

Theorem 4. Let k be a field of characteristic p and A be an associative algebra
over k.

1. If the nilpotency index of the commutator ideal of A is Ω(n), then evaluating
the determinant over A is #P-hard if p = 0 and ModpP-hard otherwise,
where A is part of the input.

2. If there is a complete ideal of noncommutaing elements J with nilpotency
index o(n/ logn), then the determinant over A can be computed in subexpo-
nential time over perfect fields.

6 Conclusions

It is an interesting question whether the smallest ideal J can be much larger
than com(A) and how much their nilpotency indices can differ. There seems
to be no general answer, mainly because there is no analogue of Wedderburn’s
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theorem for the radical. For the algebra of upper triangular matrices, we have
J = com(A) = rad(A). For the free noncommutative algebra k〈x, y, z〉 modulo
the ideal of all monomials of degree d and the relations that make x commute
with y and z, we have rad(A) � J � com(A) for any J . More precisely, radA is
generated by x, y, and z, J is generated by y and z, and com(A) is generated by
yz− zy. In our upper bound, we can take the minimum over all complete ideals
J of noncommuting elements. Is there an easy characterisation of the best J?

Acknowledgement. I would like to thank Prahladh Harsha for drawing my
attention to this problem.
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Optimal Orthogonal Graph Drawing
with Convex Bend Costs�
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Abstract. Traditionally, the quality of orthogonal planar drawings is
quantified by the total number of bends, or the maximum number of
bends per edge. However, this neglects that in typical applications, edges
have varying importance. We consider the problem OptimalFlexDraw
that is defined as follows. Given a planar graph G on n vertices with
maximum degree 4 (4-planar graph) and for each edge e a cost function
coste : N0 −→ R defining costs depending on the number of bends e has,
compute an orthogonal drawing of G of minimum cost.

In this generality OptimalFlexDraw is NP-hard. We show that it
can be solved efficiently if 1) the cost function of each edge is convex and
2) the first bend on each edge does not cause any cost. Our algorithm
takes time O(n · Tflow(n)) and O(n2 · Tflow(n)) for biconnected and con-
nected graphs, respectively, where Tflow(n) denotes the time to compute
a minimum-cost flow in a planar network with multiple sources and sinks.
Our result is the first polynomial-time bend-optimization algorithm for
general 4-planar graphs optimizing over all embeddings. Previous work
considers restricted graph classes and unit costs.

1 Introduction

Orthogonal graph drawing is one of the most important techniques for the
human-readable visualization of complex data. Since edges are required to be
straight orthogonal lines—which automatically yields good angular resolution
and short links—the human eye may easily adapt to the flow of an edge. The
readability of orthogonal drawings can be further enhanced in the absence of
crossings, i.e., if the underlying data exhibits planar structure. In order to be
able to visualize all 4-planar graphs, we allow edges to have bends. Since bends
decrease readability, we seek to minimize the number of bends.

We consider the problem OptimalFlexDraw whose input consists of a
planar graph G with maximum degree 4 and for each edge e a cost function
coste : N0 −→ R defining costs depending on the number of bends on e. We seek
an orthogonal drawing ofG with minimum cost. Garg and Tamassia [7] show that
it is NP-hard to decide whether a 4-planar graph admits an orthogonal draw-
ing with zero bends, directly implying that OptimalFlexDraw is NP-hard in

� Partly done within GRADR – EUROGIGA project no. 10-EuroGIGA-OP-003.

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 184–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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general. For special cases, namely planar graphs with maximum degree 3 and
series-parallel graphs, Di Battista et al. [4] give an algorithm minimizing the
total number of bends, optimizing over all planar embeddings. They introduce
the concept of spirality that is similar to the concept of rotation we use. Blä-
sius et al. [2] consider the decision problem FlexDraw, where each edge has a
flexibility specifying its allowed number of bends. They give a polynomial-time
decision algorithm for the case that all flexibilities are positive. OptimalFlex-
Draw can be seen as the optimization version of FlexDraw since it allows to
find a drawing that minimizes the number of bends exceeding the flexibilities.

As minimizing the total number of bends is NP-hard, many results initially
fix the planar embedding. Tamassia [9] describes a flow network for minimizing
the number of bends for a fixed planar embedding. The technique can be easily
adapted to solve OptimalFlexDraw if the planar embedding is fixed. Biedl
and Kant [1] show that every planar graph admits a drawing with at most two
bends per edge except for the octahedron. Even though fixing an embedding
allows to efficiently minimize the total number of bends, it neglects that this
choice may have a huge impact on the number of bends in the resulting drawing.
Contribution and Outline. Our main result is the first polynomial-time bend-
optimization algorithm for general 4-planar graphs optimizing over all embed-
dings. Previous work considers restricted graph classes and unit costs. We solve
OptimalFlexDraw if 1) all cost functions are convex and 2) the first bend is
for free. Note that convexity is quite natural, and without condition 2) Opti-
malFlexDraw is NP-hard. An interesting special case is the minimization of
the total number of bends over all planar embeddings, where one bend is for
free. Moreover, as every 4-planar graph has a drawing with at most two bends
per edge [1], we can minimize the number of 2-bend edges in such a drawing.

To solve OptimalFlexDraw for biconnected graphs, we extend the notion
“number of bends” to split components and use dynamic programming to com-
pute their cost functions bottom-up in the SPQR-tree. In each step we use a
flow network similar to the one described by Tamassia [9]. The major problem is
that the cost functions for split components may be non-convex [3]. To overcome
this problem, we show the existence of an optimal solution with at most three
bends per edge except for a single edge per block with up to four bends. Due to
an extension to split components, it suffices to consider their cost functions on
the interval [0, 3], and we show that, on this interval, they are convex.

We show in Section 3 that for biconnected graphs, the number of bends per
edge can always be reduced to three and generalize this result to split components
in Section 4. In Section 5 we show that the cost functions for split components
are convex on the interval [0, 3]. This yields an algorithm for computing optimal
drawings of biconnected graphs, which extends to connected graphs. Omitted
proofs are in the appendix and in the full version of this paper [3].

2 Preliminaries

An instance of OptimalFlexDraw is a 4-planar graph G together with a cost
function coste : N0 −→ R∪ {∞} for each edge e assigning a cost to e depending
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on the number of its bends. OptimalFlexDraw asks for an optimal orthogonal
drawing, i.e., a drawing with minimum cost summed over all edges.

For a cost function coste(·) let Δ coste(ρ) = coste(ρ+1)−coste(ρ) be its differ-
ence function. A cost function is monotone if its difference function is greater or
equal to 0. It is convex, if its difference function is monotone. The base cost of the
edge e with monotone cost function is be = coste(0). According to the decision
problem FlexDraw, G is said to have positive flexibility if coste(0) = coste(1)
holds for every edge e. An instance G of OptimalFlexDraw is positive-convex
if it has positive flexibility and each cost function is convex.

2.1 Connectivity and the SPQR-Tree

A graph is connected if there exists a path between any pair of vertices. A
separating k-set is a set of k vertices whose removal disconnects the graph.
Separating 1-sets and 2-sets are cutvertices and separation pairs, respectively.
A connected graph is biconnected (triconnected) if it does not have a cutvertex
(separation pair). The cut components with respect to a separating k-set S are
the maximal subgraphs that are not disconnected by removing S.

The SPQR-tree T introduced by Di Battista and Tamassia [5,6] is a succinct
representation of all planar embeddings of a biconnected planar graph G. It
describes a decomposition of G along its split pairs, which are separation pairs
or single edges, into triconnected components. It can be computed in linear
time [8] and has linear size. Every node μ of T is associated with a multigraph
skel(μ), called skeleton, on a subset of the vertices of G. Each inner node in T is
an S-, P- or R-node, having a cycle, a bunch of parallel edges and a triconnected
graph as skeleton, respectively. The edges in these skeletons are called virtual
edges. The leaves of T are Q-nodes, their skeletons consist of an edge of G plus
a parallel virtual edge. When two nodes μ1 and μ2 are adjacent in T this edge
identifies a virtual edge in skel(μ1) with a virtual edge in skel(μ2), and each
virtual edge in each node is associated with exactly one such neighbor.

Rooting the SPQR-tree in some node τ determines for each node μ �= τ a unique
parent edge in skel(μ) that is associatedwithμ’s parent.Thepertinent graphpert(μ)
of a node μ is recursively defined as follows. For a Q-node pert(μ) is the edge in G
it corresponds to. For an inner node pert(μ) is the graph obtained from skel(μ) by
deleting the parent edge and replacing each virtual edge by the pertinent graph of
the corresponding child. The expansion graph of a virtual edge ε is the pertinent
graph of the child of μ corresponding to ε when T is rooted at μ. The SPQR-tree
represents all embeddings ofG on a sphere, i.e., embeddingswithout a specific outer
face, by allowing independent choices for the embeddings of all skeletons. For R-
nodes the embedding is fixed up to a flip, for P-nodes one can choose an arbitrary
order for the parallel edges, and for S- and Q-nodes there is no embedding choice.

Usually the SPQR-tree is assumed to be unrooted, as described above, or
rooted at a Q-node, representing embeddings with the corresponding edge on
the outer face. We consider the SPQR-tree to be rooted at an arbitrary node τ .
This also restricts the choice of the outer face and the embedding choices are
of the following kind. For every node μ �= τ one can choose an embedding for
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skel(μ) with the parent edge on the outer face. For τ itself, the choice for the
embedding of skel(τ) includes the choice of an outer face.

2.2 Orthogonal Representation

Two orthogonal drawings of a 4-planar graph G are equivalent, if they have the
same planar embedding, and the same shape, i.e., the sequence of right and left
turns is the same when traversing the faces of G. To make this precise, we define
orthogonal representations, originally introduced by Tamassia [9], as equivalence
classes of this relation. To ease the notation we only consider biconnected graphs.

Let Γ be an orthogonal drawing of a biconnected 4-planar graph G and let E
be the planar embedding induced by it. We define the rotation of an edge e in
an incident face f to be the number of bends to the right minus the number of
bends to the left when traversing f in clockwise order (counter-clockwise if f is
the outer face) and denote the resulting value by rot(ef ). Similarly, we define the
rotation of a vertex v in an incident face f , denoted by rot(vf ), to be 1, −1 and 0
if there is a turn to the right, a turn to the left and no turn, respectively. The
orthogonal representation R belonging to Γ consists of the planar embedding E
of G and all rotation values of edges and vertices, respectively. It is easy to see
that every orthogonal representation has the following properties.

(I) For every edge e with incident faces f1, f2 we have rot(ef1) = − rot(ef2).
(II) The sum over all rotations in a face is 4 (−4 for the outer face).

(III) The sum of rotations around a vertex v is 2 · (deg(v) − 2).
Tamassia showed that the converse is also true [9], i.e., if R satisfies the above
properties, then it is the orthogonal representation of a class of drawings. In
what follows we always neglect the exact geometry and work with orthogonal
representations instead of drawings. In some cases we write rotR(·) instead of
rot(·) to make clear which orthogonal representation we refer to. Moreover, the
face in the subscript is omitted if it is clear from the context.

Let G be a 4-planar graph with orthogonal representationR and two vertices s
and t incident to a common face f . We define πf (s, t) to be the path from s to t on
the boundary of f , when traversing f in clockwise direction (counter-clockwise
if f is the outer face). Let s = v1, . . . , vk = t be the vertices on the path πf (s, t).
The rotation of π(s, t) is defined as

rot(π(s, t)) =

k−1∑
i=1

rot({vi, vi+1}) +

k−1∑
i=2

rot(vi) .

Let G be a biconnected positive-convex instance of OptimalFlexDraw with
optimal orthogonal representationR and letH be a split component with respect
to {s, t} such that the orthogonal representation S induced by H has s and t on
its outer face. Then S is tight with respect to s and t if the rotations of s and t in
internal faces are 1, i.e., they have 90◦-angles in internal faces. The orthogonal
representation of G is tight if every split component having its corresponding
split pair on its outer face is tight. We can assume without loss of generality
that all orthogonal representations are tight [2, Lemma 2].
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2.3 Flow Network

A flow network is a tuple N = (V,A,COST, dem) where (V,A) is a directed
(multi-)graph, COST is a set containing a convex cost function costa : N0 −→
R∪ {∞} for each arc a ∈ A and dem: V −→ Z is the demand of the vertices. A
flow is a function φ : A −→ N0 assigning a certain amount of flow to each arc. It
is feasible, if the difference of incoming and outgoing flow at each vertex equals
its demand. The cost of φ is cost(φ) =

∑
a∈A costa(φ(a)). An arc a has capacity

c if costa(ρ) = 0 for ρ ∈ [0, c] and costa(ρ) = ∞ otherwise.
The parameterized flow network with respect to two nodes u, v ∈ V is defined

the same asN but with a parameterized demand of dem(u)−ρ for u and dem(v)+
ρ for v where ρ is a parameter. The cost function costN (ρ) of N is defined to be
cost(φ) of an optimal flow φ in N with respect to the demands determined by ρ.
Increasing ρ by 1 can be seen as pushing one unit of flow from u to v.

Theorem 1. The cost function of a parameterized flow network is convex on
the interval [ρ0,∞], where ρ0 = argminρ∈Z{costN (ρ)}.

3 Valid Drawings with Fixed Planar Embedding

In this section we consider the problem FlexDraw for biconnected planar
graphs with fixed embedding. Given an arbitrary valid orthogonal representa-
tion, i.e., an orthogonal representation that respects the flexibilities, we show
the existence of a valid orthogonal representation with the same angles around
vertices, the same planar embedding, and at most three bends per edge except
for possibly a single edge on the outer face with up to five bends.

Let G be a 4-planar graph with positive flexibility and valid orthogonal repre-
sentation R. If the number of bends of an edge e equals its flexibility, we orient
e such that its bends are right bends (we always assume that edges are bent in
only one direction). Otherwise, e remains undirected. A path π = (v1, . . . , vk) in
G is directed, if the edge {vi, vi+1} (for i ∈ {1, . . . , k − 1}) is either undirected
or directed from vi to vi+1. It is strictly directed, if it is directed and does not
contain undirected edges. These definitions extend to (strictly) directed cycles.
The terms left(C) and right(C) denote the set of edges and vertices lying to the
left and right of a (strictly) directed cycle C. A cut (U, V \ U) is directed from
U to V \ U , if every edge crossing the cut is undirected or directed from U to
V \U . It is strictly directed if it additionally does not contain undirected edges.

Lemma 1. Let G be a graph with positive flexibility and vertices s and t such
that G + st is biconnected and 4-planar. Let further R be a valid orthogonal
representation with s and t incident to a face f such that πf (t, s) is strictly
directed from t to s. The following holds.
(1) rotR(πf (s, t)) ≤ −3 if f is the outer face and G is not a single path
(2) rotR(πf (s, t)) ≤ −1 if f is the outer face
(3) rotR(πf (s, t)) ≤ 5
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Fig. 1. (a–c) Illustration of Lemma 1. (d) Two edges on the outer face with four bends.
(e) Example with O(n) edges requiring four bends. (f) The flex graph of an orthogonal
drawing. (g) Bending along a cycle in the flex graph. The resulting flex graph contains
the same cycle directed in the opposite direction, so this operation can be reversed.

Proof (Sketch). We show case (3), where f is an internal face; see Fig. 1(a).
The other cases work similarly. Since πf (t, s) is strictly directed, every edge on
this path has at least one right bend (when traversing from t to s), yielding a
rotation of at least 1. Moreover, every internal vertex in πf (t, s) may have a left
bend, yielding a rotation of at most −1. As the number of internal vertices is
one less than the number of edges in a path, rot(πf (t, s)) ≥ 1 holds. We first
assume that neither s nor t have degree 1; see Fig. 1(b). As the rotation around
f is 4, we have rot(πf (s, t)) = 4− rot(sf )− rot(tf )− rot(πf (t, s)). Moreover, we
have rot(sf ), rot(tf ) ≥ −1 (since deg(s), deg(t) > 1) and rot(πf (t, s)) ≥ 1 (as
seen above), yielding rot(πf (s, t)) ≤ 5. If t (or s) has degree 1, rot(πf (t, s)) ≥ 2
holds since an internal vertex t′ (or s′) of πf (t, s) has degree 3 and thus cannot
have rotation −1, canceling out the rotation of −2 at t (or s); see Fig. 1(c). ��
The flex graph G×R of G with respect to a valid orthogonal representation R is
the dual graph of G such that the dual edge e� is directed from the face right of
e to the face left of e (or undirected if e is undirected); see Fig. 1(f). Assume C
is a simple directed cycle in the flex graph. Then bending along this cycle yields
a new valid orthogonal representation R′ defined as follows; see Fig. 1(g). For
an edge e� = (f1, f2) in C dual to e we decrease rot(ef1) and increase rot(ef2)
by 1. It is easy to see that R′ is an orthogonal representation. Moreover, no edge
has more bends than allowed by its flexibility, as C is directed. The following
lemma states that a high rotation along a path πf (s, t) for two vertices s and t
sharing the face f can be reduced by 1 using a directed cycle in the flex graph.

Lemma 2. Let G be a biconnected 4-planar graph with positive flexibility, valid
orthogonal representation R, and s and t on a common face f . The flex graph
G×R contains a directed cycle C such that s ∈ left(C) and t ∈ right(C) if one of
the following conditions holds.
(1) rotR(πf (s, t)) ≥ −2, f is the outer face and πf (s, t) is not strictly directed

from t to s
(2) rotR(πf (s, t)) ≥ 0 and f is the outer face
(3) rotR(πf (s, t)) ≥ 6
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Proof (Sketch). Assume such a cycle C does not exist. By the duality of cycles
and cuts, this implies that there is no directed cut (S, T ) in G with s ∈ S and
t ∈ T . Thus for every partition V = S∪̇T with s ∈ S and t ∈ T there is a directed
edge with its source in T and its target in S. Iteratively applying this argument
yields a path π in G strictly directed from t to s. For each of the conditions
(1)–(3), we obtain a contradiction by applying Lemma 1 to the subgraph of G
consisting of the strictly directed path π and the path πf (s, t). ��

As edges with many bends imply the existence of paths with high rotation, we
can use Lemma 2 to successively reduce the number of bends on edges with many
bends. Since we only bend along cycles in the flex graph, neither the embedding
nor the angles around vertices are changed.

Theorem 2. Let G be a biconnected 4-planar graph with positive flexibility and
valid orthogonal representation. Then G has a valid orthogonal representation
with the same planar embedding, the same angles around vertices and at most
three bends per edge, except for one edge on the outer face with up to five bends.

Proof (Sketch). We iteratively bend along cycles in the flex graph to reduce
the number of bends on edges with more than three bends. To ensure that the
number of bends of an edge does not increase above three once it is below, we
set its flexibility down to its current number of bends (but at least 1).

Let e = {s, t} be an edge with more than three bends having its negative
rotation in an internal face f , i.e., rot(ef ) ≤ −4, and assume that πf (t, s) consists
of e. As the rotation around the face f is 4, we have πf (s, t) = 4 − rot(sf ) −
rot(tf )− rot(ef ), yielding πf (s, t) ≥ 6. By Lemma 2 a cycle C separating s from
t and thus containing e� exists. Bending along this cycle reduces the number of
bends on e. With a similar argument, the bends of edges having their negative
rotation on the outer face can be reduced to 5. Moreover, if e is an edge with
rot(ef ) ≤ −4, where f is the outer face, and the boundary of the outer face
contains a path with non-negative rotation, the bends of e can be reduced by
case (1) of Lemma 2. This is the case if there is another edge e′ with rot(e′f ) ≤ −4;
see Fig. 1(d) where one of the paths π1 or π2 must have non-negative rotation.
Repeatedly applying this operation yields the theorem. ��

If we allow the embedding to be changed slightly, we obtain an even stronger
result. Assume the edge e lying on the outer face has five bends. Rerouting e in
the opposite direction around the rest of the graph yields a drawing where e has
only three bends. Thus, there might be a single edge with up to four bends in the
worst case. Note that this result is restricted to biconnected graphs. For general
graphs it implies that each block contains at most a single edge with up to
four bends. Figure 1(e) illustrates an instance of FlexDraw with linearly many
blocks and linearly many edges requiring four bends. We note that increasing
the lower bound for the flexibilities from 1 to 2 in the above arguments yields a
result similar to the existence of 2-bend drawings by Biedl and Kant [1].

Theorem 2 implies that it is sufficient to consider the flexibility of every edge
to be at most 5, or in terms of costs, it is sufficient to store the cost function of
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HH

Fig. 2. Adding the safety edges (bold) to G and the effects on the dual graph

an edge only in the interval [0, 5]. However, there are two reasons why we need
a stronger result. First, we want to compute cost functions of split components
and thus we have to limit the number of “bends” they can have (we deal with
this in the next section). Second, the cost function of a split component may
already be non-convex on the interval [0, 5] [3]. Fortunately, there may be at
most a single edge with up to five bends, all remaining edges have at most three
bends and thus we only need to consider the interval [0, 3].

4 Flexibility of Split Components and Nice Drawings

Let G be a biconnected 4-planar graph with SPQR-tree T rooted at some node
τ . Recall that we do not require τ to be a Q-node. A node μ �= τ of T has
a unique parent and skel(μ) contains a unique virtual edge ε = {s, t} that is
associated with this parent. We call the split-pair {s, t} a principal split pair
and the pertinent graph pert(μ) with respect to the root τ a principal split
component. The vertices s and t are the poles of this split component. Note that
an edge (whose Q-node is not τ) is also a principal split component.

Let R be a valid orthogonal representation of G such that the planar embed-
ding of R is represented by T rooted at τ . Consider a principal split component
H with respect to the split pair {s, t} and let S be the restriction ofR to H . Note
that the poles s and t are on the outer face f of S. We define max{| rotS(πf (s, t))|,
| rotS(πf (t, s))|} to be the number of bends of the split component H . With this
terminology we can assign a flexibility flex(H) to H and we define R to be valid
if and only if H has at most flex(H) bends. We say that the graph G has positive
flexibility if the flexibility of every principal split component is at least 1. Note that
this terminology extends the notion of bends and flexibility for edges.

To obtain a result similar to Lemma 2 we need to extend the flex graph such
that it respects flexibilities of principal split components. As we cannot deal
with principal split components with respect to different roots at the same time,
we initially choose an arbitrary Q-node τ to be the root of the SPQR-tree T .
We then augment G for each principal split component H with two so-called
safety edges between the poles; see Fig. 2. As a cycle in the flex graph of the
augmented graph crosses H if and only if it crosses these safety edges, suitably
orienting them ensures that bending along a cycle in the flex graph does not
increase the number of bends of H above flex(H). As we consider only principal
split components, the safety edges can be added for all of them at the same
time without losing planarity. Denote the resulting augmented graph by G+

and call the resulting flex graph the extended flex graph. As a directed safety
edge represents a path with rotation at least 1 along the outer face of its split
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component, a strictly directed path in G+ yields a path in G with positive
rotation. All remaining arguments from the proof of Lemma 2 can be applied
literally, yielding the following lemma.

Lemma 3. Let G be a biconnected 4-planar graph with positive flexibility, valid
orthogonal representation R, and s and t sharing a face f . The extended flex
graph contains a directed cycle C such that s ∈ left(C) and t ∈ right(C), if one
of the following conditions holds.
(1) rotR(πf (s, t)) ≥ −2, f is the outer face and πf (s, t) is not strictly directed

from t to s
(2) rotR(πf (s, t)) ≥ 0 and f is the outer face
(3) rotR(πf (s, t)) ≥ 6

We define a valid orthogonal representation of G to be nice if 1) it is tight,
2) every principal split component has at most three bends, and 3) the edge
corresponding to the root τ of the SPQR-tree, in case τ is a Q-node, has at most
five bends. The following statement extends Theorem 2. Moreover, it obviously
extends from FlexDraw to OptimalFlexDraw, i.e., every positive-convex
4-planar graph has an optimal drawing that is nice.

Theorem 3. Every biconnected 4-planar graph with positive flexibility having
a valid orthogonal representation has a valid orthogonal representation with the
same planar embedding and the same angles around vertices that is nice with
respect to at least one node chosen as root of its SPQR-tree.

Proof (Sketch). Similar to the proof in Theorem 2 we can use Lemma 3 to reduce
the number of bends of split components having their negative rotation in an
internal face down to three, while preserving this property once it is achieved by
reducing the flexibilities. Similarly, the number of bends of split components with
negative rotation in the outer face can be reduced to five. Assume we have an
orthogonal representation where each principal split component with more than
three bends has its negative rotation on the outer face. If there are two disjoint
components of this type, a similar argument as for single edges can be used to
reduce the number of bends of one of them. For the remaining nested principal
split components of this type we can show that there is no need to reduce the
number of bends further, as the drawing is already nice if we reroot the SPQR-
tree at the node corresponding to the innermost of these split components. ��

5 Optimal Drawings with Variable Planar Embedding

All results presented so far fix the planar embedding of the input graph. In the
following we optimize over all embeddings of a biconnected 4-planar graph G. As
we only consider positive-convex instances of OptimalFlexDraw, it suffices to
consider nice drawings (Theorem 3). Whether a drawing is nice depends on the
node chosen as the root for the SPQR-tree T . For a node τ we call an orthogonal
representation τ-optimal if it is optimal among all representations that are nice
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with respect to the root τ . We say that it is (τ, E)-optimal if it is optimal among
all orthogonal representations that are nice with respect to τ and induce the
planar embedding E on skel(τ). Computing a (τ, E)-optimal solution for every
planar embedding E of skel(τ) obviously yields a τ -optimal orthogonal repre-
sentation. Moreover, the minimum of all τ -optimal solutions over all nodes of
the SPQR-tree yields an overall optimal orthogonal representation. Since G has
maximum degree 4, skel(τ) has O(| skel(τ)|) embeddings (including the choice
of an outer face), and hence the sum over all embeddings of all nodes of the
SPQR-tree is in O(n). Thus, an algorithm computing a (τ, E)-optimal solution
can be used to compute an overall optimal solution by applying it O(n) times.

In the following we show how to compute a (τ, E)-optimal solution efficiently,
using a dynamic program computing cost functions of principal split components
bottom-up in the SPQR-tree. We start by defining the cost function costH(·) of a
principal split component H with poles s and t. Recall that the number of bends
ofH with respect to an orthogonal representation S with s and t on the outer face
f is defined to be max{| rotS(πf (s, t))|, | rotS(πf (t, s))|}. This implies that there
is a lower bound of 
H = �(deg(s) + deg(t)− 2)/2� bends. For a number of bends
ρ ≥ 
H , we define costH(ρ) to be the cost of an orthogonal representation ofH that
is optimal among all nice representations with ρ bends. For ρ ∈ [0, 
H) we formally
set cost(ρ) = cost(
H). As we are only interested in nice drawings, it remains to
compute costH(ρ) for ρ ∈ [
H , 3]. One of the main results of this section is the
following theorem.

Theorem 4. If the poles of a principal split component do not both have de-
gree 3, then its cost function is convex on the interval [0, 3].

We prove Theorem 4 later and first assume that it holds. The base cost bH of
a principal split component is the minimum of costH(·). Due to Theorem 4 we
have bH = costH(0) except for the single case that deg(s) = deg(t) = 3, where
costH(·) may be non-convex. In this case bH = costH(3).

In the following we assume that the cost function of every principal split
component with respect to the root τ is already computed and show how this
can be used to compute a (τ, E)-optimal solution. To this end, we define a flow
network on skel(τ), similar to Tamassia’s flow network [9]. The cost functions
computed for the children of τ will be used as cost functions on arcs in the flow
network. Since only flow networks with convex costs can be solved efficiently,
we have to deal with potentially non-convex cost functions in the case where
both poles have degree 3. Our strategy is to simply ignore these subgraphs by
contracting them into single vertices. The following lemma justifies this strategy.

Lemma 4. Let G be a biconnected positive-convex instance of OptimalFlex-
Draw with τ-optimal orthogonal representation R and let H be a principal split
component with non-convex cost function and base cost bH . Let further G′ be
the graph obtained from G by contracting H into a single vertex and let R′ be a
τ-optimal orthogonal representation of G′. Then cost(R) = cost(R′) + bH holds.
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Now we are ready to define the flow network NE on skel(τ) with respect to its
fixed embedding E . For each vertex v, each virtual edge ε and each face f in
skel(τ) the flow network NE contains the nodes v, ε and f , called vertex node,
edge node and face node, respectively. The network NE contains the arcs (v, f)
and (f, v) with capacity 1, called vertex-face arcs, if the vertex v and the face f
are incident. For every virtual edge ε we add edge-face arcs (ε, f) and (f, ε) if f
is incident to ε. We use costH(·)− bH as cost function of the arc (f, ε), where H
is the expansion graph of ε. The edge-face arcs (ε, f) in the opposite direction
have infinite capacity with 0 cost. Every inner face has a demand of 4, the outer
face has a demand of −4. An edge node ε stemming from the edge ε = {s, t} with
expansion graph H has demand degH(s) + degH(t)− 2, where degH(v) denotes
the degree of v in H . The demand of a vertex node v is 4−degG(v)−degskel(τ)(v).

In the flow network NE , the flow entering a face node f via a vertex-face
arc or an edge-face arc is interpreted as the rotation at this vertex or along the
path between the poles of its expansion graph, respectively, where incoming flow
is positive rotation. Thus, a feasible flow describes the shapes of all expansion
graphs and the composition of their representations at vertices. Note that this
composition is possible as we can assume them to be tight. Let bH1 , . . . , bHk

be
the base costs of the children of τ . We define the total base costs of τ to be
bτ =

∑
i bHi . It can be shown that an optimal flow φ in NE corresponds to a

(τ, E)-optimal orthogonal representationR of G, with costs differing by the total
base costs, i.e., cost(R) = cost(φ) + bτ . We obtain the following lemma, where
Tflow(·) is time necessary to compute an optimal flow.

Lemma 5. Let G be a biconnected positive-convex instance of OptimalFlex-
Draw, let T be its SPQR-tree with root τ and let E be an embedding of skel(τ).
If the cost function of every principal split component is known, a (τ, E)-optimal
solution can be computed in O(Tflow(| skel(τ)|)) time.

It remains to show that Theorem 4 holds. We make a structural induction over
the SPQR-tree. For the leaves it obviously holds as edges are required to have
convex costs. For inner nodes we show the following lemma.

Lemma 6. If Theorem 4 holds for each principal split component corresponding
to a child of the node μ in the SPQR-tree, then it also holds for pert(μ).

Proof (Sketch). In an orthogonal representation S ofH = pert(μ), the number of
bends ρ is determined by the rotation along one of the two paths π(s, t) or π(t, s).
We define the partial cost function costEH(·) with respect to the embedding E of
skel(μ) to be the smallest possible cost of an orthogonal representation inducing
the planar embedding E on skel(μ) with ρ bends such that πf (s, t) determines
the number of bends. We show how to compute costEH(·) using a flow network
similar to NE . It can be shown that these partial cost functions are convex, and
that their minimum costH(·) defined by costH(ρ) = minE costEH(ρ) is convex.

We define NE as before with two changes. First, the parent edge plays a special
role as it should not occur in the resulting orthogonal representation. Removing
some arcs and adjusting the demands accordingly yields a flow network such that



Optimal Orthogonal Graph Drawing with Convex Bend Costs 195

an optimal flow corresponds to an optimal orthogonal representation. Second,
the flow network is parameterized as follows. The incoming flows at the two
face-nodes corresponding to the faces incident to the parent edge are equal to
the rotations along the paths π(s, t) and π(t, s) in a corresponding orthogonal
representation. We parameterize NE with respect to these two faces. It can then
be shown that the cost function of the flow and the partial cost function of H
coincide on the interval [
H , 3] up to the total base cost. Thus, convexity for
the partial cost function follows from the convexity of the cost function of a
parametrized flow network if costNE (ρ) is minimal for ρ = 
H ; see Theorem 1.
We note that this is not obvious and not even true if deg(s) = deg(t) = 3.
However, it is true for all other cases. Moreover, we can show that the minimum
over all partial cost functions is convex on the interval [
H , 3]. This is again not
obvious and not even true for a larger interval [3]. ��

The proof of Lemma 6 yields an algorithm computing a (τ, E)-optimal solution
bottom-up in the SPQR-tree. In each node μ a constant number of optimal flows
in a network of size | skel(μ)| has to be computed, consuming overall O(Tflow(n))
time. Applying this algorithm O(n) times yields an optimal drawing.

Theorem 5. OptimalFlexDraw can be solved in O(n · Tflow(n)) time for
positive-convex biconnected instances.

We can extend our algorithm to the case where G contains cutvertices (an ex-
tensive description is in the appendix), yielding the following theorem.

Theorem 6. OptimalFlexDraw can be solved in O(n2 · Tflow(n)) time for
positive-convex instances.
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Abstract. It is well known that many local graph problems, like Vertex
Cover and Dominating Set, can be solved in 2O(tw)nO(1) time for graphs
with a given tree decomposition of width tw. However, for nonlocal prob-
lems, like the fundamental class of connectivity problems, for a long time
it was unknown how to do this faster than twO(tw)nO(1) until recently,
when Cygan et al. (FOCS 2011) introduced the Cut&Count technique
that gives randomized algorithms for a wide range of connectivity prob-
lems running in time ctwnO(1) for a small constant c.
In this paper, we show that we can improve upon the Cut&Count

technique in multiple ways, with two new techniques. The first tech-
nique (rank-based approach) gives deterministic algorithms with O(ctwn)
running time for connectivity problems (like Hamiltonian Cycle and
Stei-ner Tree) and for weighted variants of these; the second technique
(determinant approach) gives deterministic algorithms running in time
ctwnO(1) for counting versions, e.g., counting the number of Hamiltonian
cycles for graphs of treewidth tw.
The rank-based approach introduces a new technique to speed up dy-

namic programming algorithms which is likely to have more applications.
The determinant-based approach uses the Matrix Tree Theorem for de-
riving closed formulas for counting versions of connectivity problems; we
show how to evaluate those formulas via dynamic programming.

1 Introduction

It is known since the 1980s that many (NP -hard) problems allow algorithms
with a running time of the type f(tw)nc on graphs with n vertices and a tree
decomposition of width tw. It is a natural question how we can optimize on
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the dependency of the treewidth, i.e., we first aim at obtaining a small growing
(but, since we assume P �= NP , exponential) function f(tw) and second a small
exponent c. For problems with locally checkable certificates, that is, certificates
assigning a constant number of bits per node that can be checked by a cardinality
check and iteratively looking at all neighborhoods of the input graph1, it quickly
became clear that f(tw) only needs to be single exponential. See [14,20] for
sample applications to the Independent Set/Vertex Cover problems. From
the work of [13] and known Karp-reductions between problems it follows that
this dependence cannot be improved to subexponential algorithms unless the
Exponential Time Hypothesis (ETH) fails. In [17] it was shown that under the
Strong ETH (SETH) the current algorithms are optimal even with respect to
the bases of the exponential dependence on the treewidth, that is, problems with
current best running time ctwnO(1) cannot be solved in (c− ε)twnO(1) for positive
ε where, e.g., c = 2 for Independent Set and c = 3 for Dominating Set.

A natural class of problems that does not have locally checkable certificates are
connectivity problems such as Hamiltonian Cycle and Steiner Tree (see for
example [11, Section 5]), begging the question whether these can be solved within
single exponential dependence on tw as well. Early results on the special case ofH-
minor-free graphs were given in [9]. A positive answer to the question was found
by Cygan et al. [8] using a randomized approach termed “Cut & Count”: It
provided a transformation of the natural certificates to “cut-certificates” trans-
forming the connectivity requirement into a locally checkable requirement. The
transformation is only valid modulo 2, but by a standard technique introduc-
ing randomization [19], the decision variant can be reduced to the counting
modulo 2 variant. This result was considered surprising since in the folklore
2O(tw log tw)nO(1) dynamic programming routines for connectivity problems all
information stored seemed needed: Given two partial solutions inducing differ-
ent connectivity properties, one can be extendable to a solution while the other
one can not (this resembles the notion of Myhill-Nerode equivalence classes [12]).

The Cut & Count approach is one of the dynamic programming algorithms
using a modulo 2 based transformation [3,4,16,15,18,23]. These algorithms give
the smallest running times currently known, but have several disadvantages
compared to traditional dynamic programming algorithms: (a) They are ran-
domized. (b) The dependence on the inputs weights in weighted extensions is
pseudo-polynomial. (c) They do not extend to counting the number of witnesses.
(d) They do not give intuition for the optimal substructure / equivalence classes.
An additional disadvantage of the Cut & Count approach of [8], compared to tra-
ditional dynamic programming algorithms on tree decompositions, is that their
dependence in terms of the input graph is superlinear. Our work shows that
each of these disadvantages can be overcome, with two different approaches,
both giving deterministic algorithms for connectivity problems that are single
exponential in the treewidth.

1 E.g., for the odd cycle transversal problem that asks to make the input graph bi-
partite by removing at most k vertices, a locally checkable certificate would be a
solution set combined with a proper two-coloring of the remaining graph.
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Table 1. Our results for some famous computational problems. The second column
gives running times when a path decomposition of width pw is given in the input; the
third column gives running times when a tree decomposition of width tw is given in the
input. Rows 1–4 use the rank-based approach; Rows 5–7 the determinant approach. ω
denotes the matrix multiplication exponent (currently it is known that ω < 2.3727 [24]).

1 Weighted Steiner Tree n(1 + 2ω)pwpwO(1) n(1 + 2ω+1)twtwO(1)

2 Traveling Salesman n(2 + 2ω/2)pwpwO(1) n(5 + 2(ω+2)/2)twtwO(1)

3 k-Path n(2 + 2ω/2)pw(k + pw)O(1) n(5 + 2(ω+2)/2)tw(k + tw)O(1)

4 Feedback Vertex Set n(1 + 2ω)pwpwO(1) n(1 + 2ω+1)twtwO(1)

5 # Hamiltonian Cycle Õ(6pwpwO(1)n2) Õ(15twtwO(1)n2)

6 # Steiner Tree Õ(5pwpwO(1)n3) Õ(10twtwO(1)n3)

7 Feedback Vertex Set Õ(5pwpwO(1)n3) Õ(10twtwO(1)n3)

Our Contribution. We present the “Rank based” and “Squared determinant”
approaches. For a number of key problems, we state the results obtained by
applying these approaches in Table 1.

The approaches can be used to quickly and deterministically solve weighted
and counting versions of problems solved by the Cut & Count approach. Addi-
tional advantages of the rank based approach are that it gives a more intuitive
insight in the optimal substructure / equivalence classes of a problem and that
is has only a linear dependence on the input graph in the running time. The
only disadvantage of both approaches when compared to the Cut & Count ap-
proach is that the dependence on the treewidth or pathwidth in the running
time is slightly worse. However, although we did not manage to overcome it,
this disadvantage might not be inherently due to the new methods. Due to the
generality of our key ideas, as one might expect, the approaches can be applied
to other connectivity problems, such as all problems mentioned in [8]. However,
our methods may inspire future work not involving tree decompositions as well.

Since one of the main strengths of the treewidth concept seems to be its
ubiquity, it is perhaps not surprising that our results improve, simplify, gen-
eralize or unify a number of seemingly unrelated results. E.g., we unify algo-
rithms for Feedback Vertex Set [6] and k-Path [2] and generalize algorithms
for restricted inputs such as H-minor-free (e.g. [9]) or bounded degree graphs
(e.g. [10]). A more detailed discussion is postponed to the full version.

For space reasons, many details (and material that might be considered ‘more
than details’) are omitted from this extended abstract. For all such material, we
refer to the full paper, available at arXiv.org [5].

2 Preliminaries

Partitions and the Partition Lattice. Given a base set U , we use Π(U) for
the set of all partitions of U . It is known that, together with the coarsening
relation ), Π(U) gives a lattice, with the minimum element being {U} and
the maximum element being the partition into singletons. We denote � for the
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meet operation and � for the join operation in this lattice; these operators are
associative and commutative. We use Π2(U) ⊂ Π(U) to denote the set of all
partitions of U in blocks of size 2, or equivalently, the set of perfect matchings
over U . Given p ∈ Π(U), we let #blocks(p) denote the number of blocks of p.
If X ⊆ U we let p↓X ∈ Π(X) be the partition obtained by removing all elements
not in X from it, and analogously we let for U ⊆ X denote p↑X ∈ Π(X) for
the partition obtained by adding singletons for every element in X \ U to p.
Also, for X ⊆ U , we let U [X ] be the partition of U where one block is {X} and
all other blocks are singletons. If a, b ∈ U we shorthand U [ab] = U [{a, b}]. The
empty set, vector and partition are all denoted by ∅.

Tree Decompositions and Treewidth. A tree decomposition [22] of a graphG
is a tree T in which each node x has an assigned set of vertices Bx ⊆ V (called
a bag) such that

⋃
x∈TBx = V with the following properties: (i) for any uv ∈ E,

there exists an x ∈ T such that u, v ∈ Bx, (ii) if v ∈ Bx and v ∈ By, then v ∈ Bz

for all z on the (unique) path from x to y in T. In a nice tree decomposition, T
is rooted, and each bag is of one of the following types:

– Leaf Bag: a leaf x of T with Bx = ∅.
– Introduce Vertex Bag: an internal vertex x of T with one child vertex y

for which Bx = By ∪ {v} for some v /∈ By.
– Introduce Edge Bag: an internal vertex x of T labeled with an edge uv ∈ E

with one child bag y for which u, v ∈ Bx = By.
– Forget Bag: an internal vertex x of T with one child bag y for which
Bx = By \ {v} for some v ∈ By.

– Join Bag: an internal vertex x with two child vertices l and r with Bx =
Br = Bl.

We require that every edge in E is introduced exactly once. This variant of nice
tree decompositions was also used by Cygan et al. [8].

A nice tree decomposition is a nice path decomposition if it does not contain
join bags. The width tw(T) of a (nice) tree decomposition T is the size of the
largest bag of T minus one, and the treewidth (pathwidth) of a graph G can be
defined as the minimum treewidth over all nice tree decompositions (nice path
decompositions) of G.

In this paper, we will always assume that nice tree decompositions of the
appropriate width are given. To each bag x in a nice tree decomposition T, we
associate the graph Gx = (Vx, Ex) with Vx the union of all bags By with y a
descendant of x, and Ex the set of all edges introduced in an descendant of x.

Further Notation. For two integers a, b we use a ≡ b to indicate that a is
even if and only if b is even. We use N to denote the set of all non-negative
integers. We use Iverson’s bracket notation: if p is a predicate we let [p] be 1
if p is true and 0 otherwise. If ω : U → {1, . . . , N}, we shorthand ω(S) =∑

e∈S ω(e) for S ⊆ U . For a function/vector s by s[v → α] we denote the
function s \ {(v, s(v))} ∪ {(v, α)}. Note that this definition works regardless of
whether s(v) is already defined or not. We use either s|X or s|X to denote the
function obtained by restricting the domain to X .
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3 The Rank Based Approach

3.1 Main Ideas of the Approach

Recall that a dynamic programming algorithm fixes a way to decompose cer-
tificates into ‘partial certificates’, and builds partial certificates in a bottom-
up manner while storing only their essential information. Given some language
L ⊆ {0, 1}∗, this is typically implemented by defining an equivalence ∼ on par-
tial certificates x, y ∈ {0, 1}k such that x ∼ y if xz ∈ L ↔ yz ∈ L, for every
extension z ∈ {0, 1}l. For connectivity problems on treewidth, the number of
non-equivalent certificates can be seen to be 2Θ(tw·lg tw). See for example [21] for
a lower bound in communication complexity.

We will use however, that sometimes we can represent the joint essential
information for sets of partial certificates more efficiently than naively repre-
senting essential information for every partial certificate separately. The rank
based approach achieves this as follows: Given a dynamic programming algo-
rithm, consider the matrix A whose rows and columns are indexed by partial
certificates, with A[x, y] = 1 if and only if xy ∈ L. Then observe that if a set of
rows X ⊆ {0, 1}n is linearly dependent (modulo 2), any partial certificate x ∈ X
is redundant in the sense that if xz ∈ L, there will be y ∈ X, y �= x with yz ∈ L.
Hence, the essential information can be reduced to rk(A) partial certificates.

The second ingredient to our approach are proofs that for the considered
problems, the rank (working in GF(2)) of such a matrix A is single exponential
in the treewidth, and moreover, we can give explicit bases.

Now, the approach is as follows: take the ‘usual’ dynamic programming algo-
rithm for the problem at hand, but add the following step: after each compu-
tation of a table at a bag node, form the submatrix of A with for each entry
in the table a row and for each element of the basis a column; find a row-basis
of this matrix and continue with only the partial certificates in this basis, of
which there are not more than the rank of the certificate matrix. This is easily
extended to weighted problems using a minimum weighted row-basis. For getting
this approach to work for connectivity problems we require an upper bound on
the rank of the matrix M defined as follows: Fix a ground set U and let p and q
be partitions of U (p and q represent connectivity induced by partial solutions),
define M[p, q] to be 1 if and only if the meet of p and q is the trivial parti-
tion, that is, if the union of the partial solutions induce a connected solution.
Although this matrix has dimensions of order 2θ(|U| log |U|), we exploit a simple
factorization in GF(2) of matrices with inner dimension 2|U| using an idea of [8].
To avoid creating a series of ad hoc results for single problems, we introduce a
collection of operations on sets of weighted partitions, such that our results ap-
ply to any dynamic programming (DP) formulation that can be expressed using
these operators only (see Section 3.2). In this extended abstract, we only state
and illustrate the main building blocks of the approach.
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3.2 Operators on Sets of Weighted Partitions

Recall that Π(U) denotes the set of all partitions of some set U . A set of weighted
partitions is a set A ⊆ Π(U) × N, i.e., a family of pairs, each consisting of a
partition of U and a non-negative integer weight.

We now define a collection of operators on sets of weighted partitions. The
operators naturally apply to connectivity problems by allowing, e.g., gluing of
connected components (i.e., different sets in a partition), or joining of two partial
solutions by taking the meet operation � on the respective partitions.

An important reason of interest in these operators is the following: if the re-
currences in a dynamic programming algorithm on a tree decomposition only
use these operators, then the naive algorithm evaluating the recurrence can be
improved beyond the typical 2Ω(tw·log tw) that comes from the high number of dif-
ferent possible partial solutions; and we typically get a running time of O(ctwn).

For notational ease, we let rmc(A) denote the set obtained by removing non-
minimal weight copies, i.e., rmc(A) = {(p, w) ∈ A | �(p, w′) ∈ A ∧ w′ < w}.
Definition 1. Let U be a set and A ⊆ Π(U)× N.

– Union. For B ⊆ Π(U)× N, define A ∪↓ B = rmc(A ∪ B).
– Insert. For X ∩ U = ∅, define ins(X,A) = {(p↑U∪X , w) | (p, w) ∈ A}.
– Shift. For w′ ∈ N define shft(w′,A) = {(p, w + w′) | (p, w) ∈ A}.
– Glue. For u, v, let Û = U ∪ {u, v} and define glue(uv,A) ⊆ Π(Û) × N as

glue(uv,A) = rmc({(Û [uv] � p↑Û , w) | (p, w) ∈ A}). Also, if ω : Û×Û → N,

let glueω(uv,A) = shft(ω(u, v), glue(uv,A)).
– Project. For X ⊆ U let X = U \X, and define proj(X,A) ⊆ Π(X)×N as

proj(X,A) =
{

(p↓X , w)
∣∣∣ (p, w) ∈ A ∧ ∀e ∈ X : ∃e′ ∈ X : p ) U [ee′]

}
.

– Join. For B ⊆ Π(U ′)×N let Û = U ∪U ′ and define join(A,B) ⊆ Π(Û)×N

as join(A,B) = rmc(
{

(p↑Û � q↑Û , w1 + w2)
∣∣∣ (p, w1) ∈ A ∧ (q, w2) ∈ B

}
).

See the full version for a description of the operators in words. Using straight-
forward implementation each of the operations union, shift, insert, glue and
project can be performed in S|U |O(1) time where S is the size of the input of the
operation. Given A and B, join(A,B) can be computed in time |A| · |B| · |U |O(1).

3.3 Representing Collections of Partitions

The key idea for getting a faster dynamic programming algorithm is to follow the
naive DP, but to consider only small representative sets of weighted partitions
instead of all weighted partitions that would be considered by the naive DP.
Intuitively, a representative (sub)set of partial solutions should allow us to always
extend to an optimal solution provided that one of the complete set of partial
solutions extends to it. Let us define this formally.

Definition 2. Given a set of weighted partitions A ⊆ Π(U)×N and a partition
q ∈ Π(U), define opt(q,A) = min {w | (p, w) ∈ A ∧ p � q = {U}}. For another
set of weighted partitions A′ ⊆ Π(U)×N, we say that A′ represents A if for all
q ∈ Π(U) it holds that opt(q,A′) = opt(q,A).
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Note that the definition of representation is symmetric, i.e., if A′ represents A
then A also represents A′. However, we will only be interested in the special
case where A′ ⊆ A and where we have a size guarantee for finding a small such
subset A′.

Definition 3. A function f : 2Π(U)×N×Z → 2Π(U ′)×N is said to preserve repre-
sentation if for every A,A′ ⊆ Π(U)×N and z ∈ Z it holds that if A′ represents
A then f(A′, z) represents f(A, z). (Note that Z stands for any combination of
further inputs.)

The following lemma and theorem are our main building blocks and establish
that the operations needed for the DP preserve representation, and, crucially,
that we can always find a reasonably small representative set of weighted parti-
tions. The proofs are deferred to the full version.

Lemma 1. The union, insert, shift, glue, project, and join operations from Def-
inition 1 preserve representation.

Theorem 1. There is an algorithm reduce() that given set of weighted parti-
tions A ⊆ Π(U)×N takes time |A|2(ω−1)|U||U |O(1) and outputs a set of weighted
partitions A′ ⊆ A such that A′ represents A and |A′| ≤ 2|U|, where ω denotes
the matrix multiplication exponent (it is known that ω < 2.3727 [24]).

With help of Lemma 1 and Theorem 1, we can now handle problems in the fol-
lowing way: we give recurrences for the different types of bags (leaf, introduce,
etc.) in a nice tree (or path) decompositions that use only union, insert, shift,
glue, project, and join operations. Correctness of an algorithm that interleaves
the computation of the recurrences with the (Gaussian elimination based) re-
duction step of Theorem 1 follows. Inspection of the resulting algorithms is still
needed for establishing the precise time bounds.

3.4 Application to Steiner Tree

We now sketch how to solve the Steiner Tree problem via a dynamic program-
ming formulation that requires only the operators introduced in Section 3.4.

Steiner Tree
Input: A graph G = (V,E) weight function ω : E → N \ {0}, a terminal set
K ⊆ V and a nice tree decomposition T of G of width tw.
Question: The minimum of ω(X) over all subsets X ⊆ E of G such that
G[X ] is connected and K ⊆ V (G[X ]).

We now describe the ‘folklore’ dynamic programming algorithm for Steiner
Tree on nice tree decompositions. For each bag x, we compute a table Ax.
Ax has an entry for each s ∈ {0, 1}Bx ; this entry is a set of pairs consisting of
a partition of s−1(1) and a weight value. The intuition is as follows: a ’partial
solution’ for the Steiner tree problem is a forest F in Gx that contains all vertices
in K and each tree in the forest has a nonempty intersection with Bx; now s
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denotes which vertices in Bx belong to F , i.e., v ∈ Bx belongs to F , iff s(v) = 1;
and the partition tells which vertices in s−1(1) belong to the same tree in F . The
weight value gives the total weight of all edges in F ; for given s and partition p,
we only store the minimum weight over all applicable forests.

Formally, we define, for a bag x, and s ∈ {0, 1}Bx

Ax(s) =

{(
p, min

X∈Ex(p,s)
ω(X)

) ∣∣∣∣ p ∈ Π(s−1(1)) ∧ Ex(p, s) �= ∅
}

with Ex(p, s) = {X ⊆ Ex| ∀v ∈ Bx : v ∈ V (G[X ]) ∨ v ∈ K → s(v) =
1 ∧∀v1, v2 ∈ s−1(1) : v1v2 are in same block in p ↔ v1, v2 connected in G[X ]
∧#blocks(p) = cc(G[X ])}.

The table Ax can be computed from the tables Ay of all the children of y,
using only the union, insert, shift, glue, project, and join operations. For each
of the different types of bags (leaf, forget, etc.), we can give such a recurrence.
We only state here the recurrence for the Introduce edge bag; for the other
recurrences, we refer to the full version.

Consider a bag x with child y introducing edge e = uv. One can show the
following recurrence, which is, by the results above, representation preserving.

Ax(s) =

{
Ay(s) if s(u) = 0 ∨ s(v) = 0,

Ay(s) ∪↓ glueω(uv,Ay(s)), otherwise.

Theorem 2. There exist algorithms that solve Steiner Tree in time n(1 +
2ω)pwpwO(1) time if a path decomposition of width pw of G is given, and in time
n(1 + 2ω+1)twtwO(1) time if a tree decomposition of width tw of G is given.

Proof. The algorithm is the following: use the above dynamic programming for-
mulation as discussed to compute Ar (where r is the child of the root, as dis-
cussed), but after evaluation of any entry Ax, use Theorem 1 to obtain and store
A′x = reduce(Ax) rather than Ax. Since Ax = reduce(A) represents A and the
recurrence uses only the operators defined in Definition 1 which all preserve rep-
resentation by Lemma 1, we have as invariant that for every x ∈ T the entry A′x
stored for Ax represents Ax by Lemma 1. In particular, the stored value A′r(s)
represents Ar(s) and hence we can safely read off the answer to the problem
from this stored value as done from Ar(s) in the folklore dynamic programming
algorithm. The time analysis can be found in the full version. ��

3.5 Further Results

A large number of other problems can be handled with the rank based approach.
In Table 1 we give a number of key results. Details are in the full version. The
results on Hamiltonian Cycle and Traveling Salesman are obtained by
combining our approach with the following result.

Theorem 3 ([7]). Let H be the submatrix of M restricted to all matchings.
Then H can be factorized into two matrices whose entries can be computed in
time |U |O(1), where the inner dimension of the factorization is 2|U|/2−1.
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An interesting corollary of our work is the following.

Theorem 4. There is an algorithm solving Traveling Salesman on cubic
graphs in 1.2186nnO(1) time.

4 Determinant Approach

In this section we will present the determinant approach that can be used to
solve counting versions of connectivity problems on graphs of small treewidth.
Throughout this section, we will assume a graph G along with a path/tree de-
composition T of G of width pw or tw is given.

4.1 Main Ideas of the Approach

The determinant approach gives a generic transformation of counting connected
objects to a more local transformation. In [8] the existence of such a transfor-
mation in GF(2) was already given. For extending this to counting problems, we
will need three key insights. The first insight is that (a variant of) Kirchhoff’s
Matrix Tree Theorem gives a reduction from counting connected objects to com-
puting a sum of determinants. However, we cannot fully control the contribution
of a connected object (it will appear to be either 1 or -1). To overcome this we
ensure that every connected object contributed exactly once, we compute a sum
of squares of determinants. The last obstacle is that the computation of a de-
terminant is not entirely local (in the sense that we can verify a contribution by
iteratively considering its intersection with all bags) since we have to account
for the number of inversions of a permutation in every summand of the deter-
minant. To overcome this obstacle, we show that this computation becomes a
local computation once we have fixed the order of the vertices in a proper way.

Formally, let A be an incidence matrix of an orientation of G, that is A = (ai,j)
is a matrix with n rows and m columns. Each row of A is indexed with a vertex
and each column of A is indexed with an edge. The entry av,e is defined to be 0
if v �∈ e; −1 if e = uv and u < v; or 1 if e = uv and u > v. We assume, that all
the vertices are ordered with respect to the post-ordering of their forget nodes
in the given tree decomposition, that is vertices forgotten in a left subtree are
smaller than vertices forgotten in the right subtree, and a vertex forgotten in
a bag x is smaller than a vertex forgotten in a bag which is an ancestor of x.
Similarly we order edges according to the post-ordering of the introduce edge
nodes in the tree decomposition.

Let v1 be an arbitrary fixed vertex and let F be the matrix A with the row
corresponding to v1 removed. For a subset S ⊆ E let FS be the matrix with
n − 1 rows and |S| columns, whose columns are those of F with indices in S.
The following folklore lemma is used in the proof of the Matrix Tree Theorem
(see for example [1, Page 203] where our matrix is denoted by N).

Lemma 2. Let S ⊆ E be a subset of size n − 1. If (V, S) is a tree, then
| det(FS)| = 1 and det(FS) = 0 otherwise.
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We are up to compute the number of connected edgesets X such that X ∈ F
where F is some implicitly defined set family. Our main idea is to use Lemma 2
to reduce this task to computing the quantity

∑
X∈F det(FX)2 instead, and to

ensure that if X ∈ F is connected, then it is a tree.
For two (not necessarily disjoint) subsets V1, V2 of an ordered set let us define

inv(V1, V2) = |{(u, v) : u ∈ V1, v ∈ V2, u > v}|. If X,Y are ordered sets, recall

that for a permutation f : X
1−1→ Y we have that the sign equals sgn(f) =

(−1)|{(e1,e2):e1,e2∈S∧e1<e2∧f(e1)>f(e2)}|. The following proposition will be useful:

Proposition 1. Let Xl, Xr ⊆ V and Yl, Yr ⊆ E such that Xl ∩ Xr = ∅ and
Yl ∩ Yr = ∅, and for every e1 ∈ Yl and e2 ∈ Yr we have that e1 < e2. Suppose

fl : Yl
1−1→ Xl and fr : Yr

1−1→ Xr. Denote f = fl ∪ fr, that is, f(v) = fl(v) if
v ∈ Yl and f(v) = fr(v) if v ∈ Yr. Then it holds that sgn(f) = sgn(f1)sgn(f2) ·
(−1)inv(Xl,Xr).

To see that the proposition is true, note that from the definition of sgn, the
pairs e1, e2 with e1, e2 ∈ Y1 or e1, e2 ∈ Y2 are already accounted for in the part
sgn(f1)sgn(f2) so it remains to show that |{(e1, e2) : e1 ∈ Y1, e2 ∈ Y2 ∧ e1 <
e2 ∧ f(e1) > f(e2)}| indeed equals inv(Xl, Xr), which follows easily from the
assumption that e1 < e2.

4.2 Counting Hamiltonian Cycles

For our first application to counting Hamiltonian cycles, we derive the following
formula which expresses the number of Hamiltonian cycles of a graph. (We use
that a 2-regular graph has n subtrees on n − 1 edges if it is connected and 0
otherwise, and Lemma 2.)∑

X⊆E;∀v∈V degX(v)=2

[X is a Hamiltonian cycle]

=
1

n
·

∑
X⊆E;∀v∈V degX (v)=2

∑
S⊆X,|S|=n−1

[(V, S) is a tree]

=
1

n
·

∑
X⊆E;∀v∈V degX (v)=2

∑
S⊆X,|S|=n−1

det(FS)2.

By plugging in the permutation definition of a determinant, we obtain the fol-
lowing expression for the number of Hamiltonian cycles of a graph:

1

n

∑
X⊆E;∀v∈V degX(v)=2

∑
S⊆X;|S|=n−1

(
∑

f :S
1−1→ V \{v1}

sgn(f)
∏
e∈S

af(e),e)
2

=
1

n

∑
X⊆E

∀v∈V degX (v)=2

∑
S⊆X

∑
f1,f2:S

1−1→ V \{v1}

sgn(f1)sgn(f2)
∏
e∈S

af1(e),eaf2(e),e.
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Note that in the last equality we dropped the assumption |S| = n − 1, as it
follows from the fact that f1 (and f2) is a bijection.

Our goal is to compute the formula by dynamic programming over some nice
tree decomposition T. To this end, let us define a notion of “partial sum” of
the above formula, that we will store in our dynamic programming table entries.
For every bag x ∈ T, sdeg ∈ {0, 1, 2}Bx, s1 ∈ {0, 1}Bx and s2 ∈ {0, 1}Bx define
Ax(sdeg, s1, s2) =∑

X⊆Ex

∀v∈(Vx\Bx) degX(v)=2

∀v∈Bx degX(v)=sdeg(v)

∑
S⊆X

∑
f1:S

1−1→ (Vx\{v1})\s−1
1 (0)

f2:S
1−1→ (Vx\{v1})\s−1

2 (0)

sgn(f1)sgn(f2)
∏
e∈S

af1(e),eaf2(e),e.

Intuitively in sdeg we store the degrees of vertices of Bx in G[X ], whereas s1 (and
s2) specify whether a vertex of Bx was already used as a value of the bijection
f1 (and f2).

Showing that the terms Ax(sdeg, s1, s2) can be computed in the claimed time
for the different types of nodes in a nice tree decompositions requires an intricate
proof, for which we refer to the full version.

Theorem 5. There exist algorithms that given a graph G solve # Hamiltonian
Cycle in Õ(6pwpwO(1)n2) time if a path decomposition of width pw is given, and
in time Õ(15twtwO(1)n2) time if a tree decomposition of width tw is given.

For other results that can be obtained with this approach, see the full paper.

5 Conclusions

In this paper, we have given deterministic algorithms for connectivity problems
on graphs of small treewidth, with the running time only single exponential in
the treewidth. We have given two different techniques. Each technique solves the
standard versions, but for the counting and weighted variants, only one of the
techniques appears to be usable. The rank-based approach gives a new twist to
the dynamic programming approach, in the sense that we consider the “algebraic
structure” of the partial certificates in a quite novel way. This suggests a study of
this algebraic structure for dynamic programming algorithms for other problems.

In related work [7], an approach similar to the rank-based one, but focused on
perfect matchings instead of partitions, is used to obtain a faster randomized al-
gorithm for Hamiltonicity parameterized by pathwidth; the algorithm is showed
to be tight under SETH, but does not apply to counting or the weighted case.
The present results, while slower for the special case of Hamiltonicity, give de-
terministic algorithms that apply also to problems where connectivity of partial
solutions does not appear to allow encoding via perfect matchings (e.g., Steiner
Tree and Feedback Vertex Set), and to counting and weighted versions.

Acknowledgements. We thank Piotr Sankowski for pointing us to relevant
literature on matrix-multiplication algorithms and Marcin Pilipczuk and �Lukasz
Kowalik for helpful discussions at an early stage of the paper.
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Abstract. Abstract Voronoi diagrams [15, 16] are based on bisecting
curves enjoying simple combinatorial properties, rather than on the ge-
ometric notions of sites and circles. They serve as a unifying concept.
Once the bisector system of any concrete type of Voronoi diagram is
shown to fulfill the AVD properties, structural results and efficient al-
gorithms become available without further effort. For example, the first
optimal algorithms for constructing nearest Voronoi diagrams of disjoint
convex objects, or of line segments under the Hausdorff metric, have been
obtained this way [20].
In a concrete order-k Voronoi diagram, all points are placed into the

same region that have the same k nearest neighbors among the given sites.
This paper is the first to study abstract Voronoi diagrams of arbitrary order
k.Weprove that their complexity is upper bounded by 2k(n−k). So far, an
O(k(n−k)) bound has been shown only for point sites in the Euclidean and
Lp plane [18, 19], and, very recently, for line segments [23]. These proofs
made extensive use of the geometry of the sites.
Our result on AVDs implies a 2k(n−k) upper bound for a wide range

of cases for which only trivial upper complexity bounds were previously
known, and a slightly sharper bound for the known cases.
Also, our proof shows that the reasons for this bound are combinato-

rial properties of certain permutation sequences.

Keywords: Abstract Voronoi diagrams, computational geometry, dis-
tance problems, higher order Voronoi diagrams, Voronoi diagrams.

1 Introduction

Voronoi diagrams are useful structures, known in many areas of science. The
underlying idea goes back to Descartes [11]. There are sites p, q that exert in-
fluence on their surrounding space, M . Each point of M is assigned to that site
p (resp. to those sites p1, . . . , pk) for which the influence is strongest. Points
assigned to the same site(s) form Voronoi regions.

The nature of the sites, the measure of influence, and space M can vary. The
order, k, can range from 1 to n− 1 if n sites are given. For k = 1 the standard
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nearest Voronoi diagram results, while for k = n−1 the farthest Voronoi diagram
is obtained, where all points of M having the same farthest site are placed in
the same Voronoi region. In this paper we are interested in values of k between
1 and n − 1; here an order-k Voronoi region contains all points that have the
same k nearest sites. See the surveys and monographs [5, 7, 8, 10, 12, 22].

A lot of attention has been given to nearest Voronoi diagrams in the plane.
Many concrete cases have the following features in common. The locus of all
points at identical distance to two sites p, q is an unbounded curve J(p, q). It
bisects the plane into two domains, D(p, q) and D(q, p); domain D(p, q) consists
of all points closer to p than to q. Intersecting all D(p, q), where q �= p for a
fixed p, results in the Voronoi region VR(p, S) of p with respect to site set S.
It equals the set of all points with unique nearest neighbor p in S. If geodesics
exist, Voronoi regions are pathwise connected, and the union of their closures
covers the plane, since each point has at least one nearest neighbor in S.

In abstract Voronoi diagrams (AVDs, for short) no sites or distance measures
are given. Instead, one takes unbounded curves J(p, q) = J(q, p) as primary
objects, together with the domains D(p, q) and D(q, p) they separate. Nearest
abstract Voronoi regions are defined by

VR(p, S) :=
⋂

q∈S\{p}
D(p, q),

and now one requires that the following properties hold true for each nonempty
subset S′ of S.

(A1) Each nearest Voronoi region VR(p, S′) is pathwise connected.
(A2) Each point of the plane belongs to the closure of a nearest Voronoi region

VR(p, S′).

Two more, rather technical, assumptions on the curves J(p, q) are stated in
Definition 1 below. It has been shown that the resulting nearest AVDs—the
plane minus all Voronoi regions— are planar graphs of complexity O(n). They
can be constructed, by randomized incremental construction, in O(n log n) many
steps [16,17,20]. Moreover, properties (A1) and (A2) need only be checked for all
subsets S′ of size three [16]. This makes it easier to verify that a concrete Voronoi
diagram is under the roof of the AVD concept. Examples of such applications can
be found in [1–3,9,14,20]. Farthest abstract Voronoi diagrams consist of regions
VR∗(p, S) :=

⋂
q∈S\{p}D(q, p). They have been shown to be trees of complexity

O(n), computable in expected O(n logn) many steps [21].
In this paper we consider, for the first time, general order-k abstract Voronoi

regions, defined by

VRk(P, S) :=
⋂

p∈P, q∈S\P
D(p, q),

for each subset P of S of size k. The order-k abstract Voronoi diagram V k(S) is
defined to be the complement of all order-k Voronoi regions in the plane; it equals
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the collection of all edges that separate order-k Voronoi regions (Lemma 4). In
addition to properties (A1) and (A2) we shall assume the following for each
nonempty subset S′ of S.

(A3) No nearest Voronoi region VR(p, S′) is empty.

In Lemma 1 we prove that property (A3) need only be tested for all subsets S′

of size four. Clearly, (A3) holds in all concrete cases where each nearest region
contains its site.

Figure 1 shows two concrete order-2 diagrams of points and line segments
under the Euclidean metric. We observe that the order-2 Voronoi region of line
segments s1, s2 is disconnected. In general, a Voronoi region in V 2(S) can have
n− 1 connected components. Figure 2 depicts a curve system fulfilling all prop-
erties required, and the resulting abstract Voronoi diagrams of orders 1 to 4. An
index p placed next to a curve indicates on which side the domain D(p, q) lies,
if q denotes the opposite index. The order-2 region of p1 and p2 consists of four
connected components.

p

q s1 s2

F1 ⊂ VR2({s1, s2}, S)

F2 ⊂ VR2({s1, s2}, S)

Fig. 1. Order-2 diagrams of points and line segments

In this paper we are proving the following result on the number of 2-dimen-
sional faces of order-k abstract Voronoi diagrams.

Theorem 1. The abstract order-k Voronoi diagram V k(S) has at most 2k(n−k)
many faces.

So far, an O(k(n − k)) bound was known only for points in L2 and in the Lp-
plane [18,19]. Quite recently, it has been shown for line segments in the Euclidean
plane [23], too. The proofs of these results depend on geometric arguments us-
ing k-sets1, k-nearest neighbor Delaunay triangulations, and point-line duality,
respectively. None of these arguments applies to abstract Voronoi diagrams.

1 We call a subset of size k of n points a k-set if it can be separated by a line passing
through two other points. Such k-sets correspond to unbounded order-(k+1) Voronoi
edges.
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Fig. 2. AVD of 5 sites in all orders

However, the upper bound on k-sets established in [4] had a combinatorial
proof; it was obtained by analyzing the cyclic permutation sequences that result
when projecting n point sites onto a rotating line. In such a sequence, consecu-
tive permutations differ by a switch of adjacent elements, and permutations at
distance

(
n
2

)
are inverse to each other.

In this paper we traverse the unbounded edges of higher order AVDs, and
obtain a strictly larger class of cyclic permutation sequences, where consecutive
permutations differ by switches and any two elements switch exactly twice. Our
proof is based on a tight upper bound to the number of switches that can occur
among the first k+ 1 elements; see Lemma 9. It is interesting to observe that in
our class, each permutation sequence can be realised by an AVD (Lemma 10),
while a similar statement does not hold for the sequences obtained by point
projection [13].

To avoid technical complications we are assuming, in this paper, that any
two input curves J(p, q) intersect in a finite number of points, and that Voronoi
vertices are of degree 3. How to get rid of the first assumption has been shown
for the case of nearest AVDs in [16]. The perturbation technique of [15] can be
used to obtain degree 3 vertices.
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Theorem 1 implies a 2k(n − k) upper complexity bound on a wide range
order-k Voronoi diagrams for which no good bounds were previously known.
For example, sites may be disjoint convex objects of constant complexity in L2

or under the Hausdorff metric. For point sites, distance can be measured by
any metric d satisfying the following conditions: points in general position have
unbounded bisector curves; d-circles are of constant algebraic complexity; each
d-circle contains an L2-circle and vice versa; for any two points a �= c there is a
third point b �= a, c such that μ(a, c) = μ(a, b) + μ(b, c) holds. This includes all
convex distance functions of constant complexity, but also the Karlsruhe metric
where motions are constrained to radial or circular segments with respect to a
fixed center point. A third example are point sites with additive weights ap, aq
that satisfy |ap − aq| < |p− q|, for any two sites p �= q; see [7] for a discussion of
these examples.

The rest of this paper is organized as follows. In Section 2 we present some
basic facts about AVDs. Then, in Section 3, permutation sequences will be stud-
ied, in order to establish an upper bound to the number of unbounded Voronoi
edges of order at most k. This will lead, in Section 4, to a tight upper bound for
the number of faces of order k.

2 Preliminaries

In this section we present some basic facts on abstract Voronoi diagrams of
various orders.

Definition 1. A curve system J := {J(p, q) : p �= q ∈ S} is called admissi-
ble if it fulfills, besides axioms (A1), (A2), (A3) stated in the introduction, the
following axioms.

(A4) Each curve J(p, q), where p �= q, is unbounded. After stereographic projec-
tion to the sphere, it can be completed to a closed Jordan curve through
the north pole.

(A5) Any two curves J(p, q) and J(r, t) have only finitely many intersection
points, and these intersections are transversal.

Fortunately, verification of these axioms can be based on constant size examples.

Lemma 1. To verify axioms (A1) and (A2) it is sufficient to check all subsets
S′ of size 3, and for (A3), of size 4.

Proofs for (A1) and (A2) can be found in [16, Section 4.3]. For (A3), the proof
is given in the Appendix.

The following fact will be very useful in the sequel. Its proof can be found
in [16, Lemma 5].

Lemma 2. For all p, q, r in S, D(p, q) ∩D(q, r) ⊆ D(p, r) holds.
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Consequently, for each x /∈
⋃

p,q∈S J(p, q) a global ordering of the site set S is
given by

p <x q :⇐⇒ x ∈ D(p, q).

Informally, one can interpret p <x q as “x is closer to p than to q“. We will write
p < q if it is clear which x ∈ R2 we are referring to.

As a direct consequence we show that property (A2) also holds for abstract
order-k Voronoi regions.

Lemma 3. Let J = {J(p, q) : p �= q ∈ S} be an admissible curve system. Then
for each k ∈ {1, . . . , n− 1}

R2 =
⋃

P⊆S,|P |=k

VRk(P, S).

Proof. Let x ∈ R2. If x is not contained in any bisecting curve J(p, q) then
it belongs to the order-k region VRk(P, S), where P = {p1, . . . , pk} are the k
smallest elements of S with respect to the ordering <x. Otherwise, x lies on
the boundary of a domain D ⊂ R2 \

⋃
p�=q∈S J(p, q), and D fully belongs to an

order-k region. ��

The proofs of the following Lemmata 4 and 5 are similar to the proof of Lemma 3.

Lemma 4.
V k(S) =

⋃
P �=P ′⊂S
|P |=|P ′|=k

VRk(P, S) ∩ VRk(P ′, S)

Lemma 5. If the intersection E := VRk(P, S)∩VRk(P ′, S) is not empty, there
are sites p ∈ P and p′ ∈ P ′ such that P \ {p} = P ′ \ {p′}, and E ⊆ J(p, p′)
holds. For each point x ∈ VRk(P, S) near E, index p is the k-th with respect to
<x, while for points x′ in VRk(P ′, S) index p′ appears at position k.

In particular, D(p, p′) lies on the same side of J(p, p′) as VRk(P, S) does.
If F, F ′ are connected components (faces) of VRk(P, S) and VRk(P ′, S), re-

spectively, the intersection F ∩F ′ can be empty, or otherwise be of dimension 0
(Voronoi vertices) or 1 (Voronoi edges).

For the next lemma we assume that all vertices are of degree 3. As in concrete
order-k Voronoi diagrams [18] there are two types of vertices that can be distin-
guished by the nature of sets P1, P2, P3 ⊂ S which define the adjacent order-k
Voronoi regions. In the first case there exists a set H ⊂ S of size k− 1 and three
more indices p, q, r ∈ S satisfying

P1 = H ∪ {p}, P2 = H ∪ {q}, P3 = H ∪ {r};

a vertex where such regions VRk(Pi, S) meet is called new in V k(S), or of nearest
type. In the second case, there is a subset K ⊂ S of size k − 2 and three more
sites p, q, r ∈ S such that

P1 = K ∪ {p, q}, P2 = K ∪ {p, r}, P3 = K ∪ {q, r}.
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A vertex adjacent to such regions is called old in V k(S), or of furthest type. The
proof of the following lemma follows quite directly from these definitions.

Lemma 6. Let v be a new vertex in V k(S). Then v is an old vertex of V k+1(S),
and v lies in the interior of a face of V k+2(S), i. e., v is not a vertex of V k+2(S).
Furthermore, every edge of V k(S) is included in a face of V k+1(S).

Already in [21] it has been shown that farthest abstract Voronoi diagrams are
trees, under a slightly different definition of admissible curves. In the Appendix
we give a short alternative proof of this fact based on our axioms (A1)–(A5).

Lemma 7. The farthest abstract Voronoi diagram V ∗(S) is a tree.

3 Bounding the Number of Unbounded Edges of V ≤k(S)

Let Γ be a circle in R2 large enough such that no pair of bisectors cross on
or outside of Γ (axiom (A5)) and each bisector crosses Γ transversally exactly
twice (axiom (A4)).
If we walk around Γ the ordering <x on S changes whenever we cross a bisector
J(p, q). Here indices p and q switch their places in the ordering. Because of
the construction of Γ there can be only one switch at a time and each pair of
sites switches exactly two times while walking one round around Γ , resulting in
n(n− 1) switches altogether.

Lemma 8. Suppose that two sites p and q switch in the ordering. Then they are
adjacent to each other just before and after the switch.

Proof. Let p1 < . . . < pn, and assume that we cross J(pi, pj), i < j, which
means that pi and pj switch their places in the ordering. Suppose j > i + 1;
then x ∈ D(pi+1, pj) before the switch and x ∈ D(pj , pi+1) after the switch, but
J(pi+1, pj) has not been crossed—a contradiction. ��

Every time a switch among the first k+ 1 elements of the ordering occurs, there
is an unbounded edge of a Voronoi diagram of order ≤ k. This means that the
maximum number of unbounded edges of all diagrams of order ≤ k is equal to
the maximum number of switches among the first k+1 elements in the ordering.

Permutation sequences and estimates for the maximum number of switches
among the first k elements have been used in [4] to bound the number of k-
sets of n points in the plane. These sequences resulted from projecting n points
in general position onto a rotating line. Hence, they were of length 2N , where
N =

(
n
2

)
, and they had the following properties. Adjacent permutations differ

by a transposition of adjacent elements, and any two permutations a distance
N apart are inverse to each other. It has been shown in [13] that not every
permutation of this type can be realized by a point set.

In the following lemma we introduce a larger class of permutation sequences
that fits the AVD framework.
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Lemma 9. Let P (S) be a cyclic sequence of permutations P0, . . . , PN = P0 such
that

(i) Pi+1 differs from Pi by an adjacent switch;
(ii) each pair of sites p, q ∈ S switches exactly two times in P (S).

Then the number of switches occuring in P (S) among the first k + 1 sites is
upper bounded by k(2n− k − 1). Furthermore, this bound is tight.

Proof. Call a switch good if it involves at least one of the k first sites of a per-
mutation; otherwise call it bad. Consider the permutation P0 = (p1, p2, . . ., pn).
For i ∈ {k+ 2, . . . , n}, define Bi as the set of bad switches where pi is switching
with a site in {p1, . . . , pi−1}. We remark that the sets Bi, for i ∈ {k+ 2, . . . , n},
are pairwise disjoint. If pi is not involved in a good switch, then all its 2i − 2
switches with sites in {p1, . . . , pi−1} are bad. Otherwise, for pi to be involved in
a good switch, it must first be involved in at least i − k − 1 bad switches with
sites in {p1, . . . , pi−1}, in order to reach the first k+1 positions of a permutation,
and since P0 = PN , it has to be involved in as many bad switches in order to
return to its original place in PN . In both cases, |Bi| ≥ 2(i− k − 1). Because of
(ii), the total number of switches is N = 2

(
n
2

)
. Therefore the number of good

switches is at most

2

(
n

2

)
−

n∑
i=k+2

|Bi| ≤ 2

(
n

2

)
− 2

n−k−1∑
j=1

j = k(2n− k − 1),

where j = i− k − 1.
To show that the bound is tight, let P0 = (p1, . . . , pn). We will switch each

pi with all pj having a place before pi in P0 in consecutive order until pi is
the first element and then in inverse order back. Start with i = 2 and continue
until i = n. Then the number of switches among the first k + 1 sites is exactly
2
(
n
2

)
− 2

∑n−k−1
j=1 j. ��

In contradistinction to the result in [13], each such permutation sequence can be
realized by an AVD. The following Lemma 10 will be used for proving that the
upper bound shown in Lemma 11 is tight. The proof of Lemma 10 is given in
the Appendix.

Lemma 10. Let P (S) be a sequence of permutations as in Lemma 9. Then
there exists an abstract Voronoi diagram where the ordering of the sites along Γ
changes according to P (S).

Let Si be the number of unbounded edges in V i(S). If an edge e has got two
unbounded endpieces, i. e. the edge e bounding a p- and q-region is the whole
bisector J(p, q), then e is counted twice as an unbounded edge.

Lemma 11. Let k ∈ {1, . . . , n− 1}. Then,

k(k + 1) ≤
k∑

i=1

Si ≤ k(2n− k − 1).

Both bounds can be attained.
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Proof. The second bound follows directly from Lemma 9. The first bound follows
from the fact that the minimum number of switches among the first (k+1) sites is
greater or equal to the total number of switches, n(n− 1), minus the maximum
number of switches among the last (n − k) sites, which again is equal to the
maximum number of switches among the first (n− k) sites. Using Lemma 9 this
implies

k∑
i=1

Si ≥ n(n− 1)− (n− k − 1)(2n− (n− k − 1)− 1) = k(k + 1).

The tightness of the bounds follows from Lemma 10. ��

4 Bounding the Number of Faces of V k(S)

In the following we assume that each Voronoi vertex is of degree 3. The following
two lemmata give combinatorial proofs for facts that were previously shown by
geometric arguments [18, 23].

Lemma 12. Let H be a subset of S of size k+ 1 and F a face of VRk+1(H,S).
The portion of V k(S) enclosed in F is exactly the farthest Voronoi diagram
V ∗(H) intersected with F .

Proof. ”⇒”: Let x ∈ F and suppose x ∈ VRk(H ′, S) for H ′ ⊂ S of size k. Since
F ⊆ VRk+1(H,S) it follows that x ∈ D(p, q) for all p ∈ H and q ∈ S \ H ,
implying H ′ ⊂ H . Let H \H ′ = {r}, then x ∈ D(p, r) for all p ∈ H ′ and hence
x ∈ VR∗(r,H).
”⇐”: Let x ∈ F and x ∈ VR∗(r,H). Then x ∈ D(p, q) for all p ∈ H and q ∈ S\H
and x ∈ D(p, r) for all p ∈ H \ {r}. This implies x ∈ VRk(H \ {r}, S). ��

Lemma 13. Let F be a face of VRk(H,S), H ⊆ S, |H | = k ≥ 2. Then V ∗(H)∩
F is a nonempty tree.

Proof. First we show that V ∗(H) ∩ F is not empty by assuming the opposite.
Then there is a p ∈ H such that F ⊆ VR∗(p,H). Let F ′ ⊆ VRk(H ′, S) be
a face of V k(S) adjacent to F along an edge e. By Lemma 5, we have H =
U ∪ {q} and H ′ = U ∪ {q′}, where q, q′ are different and not contained in U .
Also, e ⊆ J(q, q′) holds. If p were in U , we would obtain F ′ ⊆ D(p, q) and
F ⊆ V ∗(p,H) ⊆ D(q, p), hence e ⊆ J(p, q)—a contradiction to axiom (A5).
Thus, p /∈ U , which means p = q. Now Lemma 5 implies that each edge on
the boundary of F has to be part of a curve J(p, qj) such that D(p, qj) lies
on the F -side. Let q1, . . . , qi be the sites for which there is such an edge e on
the boundary of F . Then VR1(p, {p, q1, . . . , qi}) = F , because nearest Voronoi
regions are connected thanks to axiom (A1). But from F ⊆ V ∗(p,H) it follows
that VR1(p,H) ⊆ R2 \F and hence VR1(p, S) ⊆ F ∩R2 \F = ∅, a contradiction
to axiom (A3).

Next we show that V ∗(H) ∩ F is a tree. Because of Lemma 7 it is clear that
it is a forest. So it remains to prove that it is connected. Otherwise, there would
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be a domain D ⊂ F , bounded by two paths P1, P2 ⊂ F of V ∗(H) and two
disconnected parts e1 and e2 on the boundary of F . There is an index p ∈ H
such that D ⊆ VR∗(p,H). Since V ∗(H) is a tree, by Lemma 7, the upper (or:
the lower) two endpoints of P1 and P2 must be connected by a path P in V ∗(H)
that belongs to the boundary of VR∗(p,H); see Figure 3. Here path P connects
the endpoints of e1; both curves together encircle a domain D′, which is part of
VR∗(p,H). By definition of the farthest Voronoi diagram, there are q1, . . . , qi,
such that e1 ∪ P is part of J(p, q1), . . . , J(p, qi), and all D(p, qj) are situated
outside of D′; compare Lemma 5. But then VR∗(p, {p, q1, . . . , qi}) would be
bounded, a contradiction to Lemma 7. ��

F

P2
P1

e2

e1

D

D′

p
qi

p q1

q2

p

pqi−1

P
V ∗(H)

Fig. 3. The intersection of an order-k face F and the farthest Voronoi diagram of its
defining sites must be a tree

Lemma 14. Let F be a face of VRk+1(H,S) and m the number of Voronoi
vertices of V k(S) enclosed in its interior. Then F encloses 2m + 1 Voronoi
edges of V k(S).

Proof. See Lemmata 12 and 13. ��

The next two lemmata are from [23]. The proofs are given in the Appendix, for
completeness.

Lemma 15. Let Fk, Ek, Vk and Sk denote, respectively, the number of faces,
edges, vertices, and unbounded edges in V k(S). Then,

Ek = 3(Fk − 1)− Sk (1)

Vk = 2(Fk − 1)− Sk. (2)

Lemma 16. The number of faces in an AVD of order k is

Fk = 2kn− k2 − n+ 1−
k−1∑
i=1

Si.
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Theorem 2. The number of faces Fk in an AVD of order k is bounded as follows

n− k + 1 ≤ Fk ≤ 2k(n− k) + k + 1− n ∈ O(k(n − k)).

Both bounds can be attained.

Proof. Lemma 11 implies tight bounds k(k − 1) ≤
∑k−1

i=1 Si ≤ (k − 1)(2n − k).
Together with Lemma 16 this proves the theorem. ��

5 Concluding Remarks

A natural question is if weaker axioms than (A1)–(A5) can still imply Theorem 2.
In the case of nearest abstract Voronoi diagrams, it could be shown, with some
technical effort, that (A5) is dispensable [16]. A big challenge will be to design an
efficient algorithm for constructing abstract Voronoi diagrams of order k. Even
for the special case of points in the Euclidean metric, no optimal algorithm is
known for computing a single higher order Voronoi diagram.
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Abstract. We consider two-person zero-sum stochastic mean payoff
games with perfect information, or BWR-games, given by a digraph
G = (V,E), with local rewards r : E → R, and three types of ver-
tices: black VB, white VW , and random VR forming a partition of V . It
is a long-standing open question whether a polynomial time algorithm
for BWR-games exists, or not. In fact, a pseudo-polynomial algorithm
for these games would already imply their polynomial solvability. In this
paper, we show that BWR-games with a constant number of random
nodes can be solved in pseudo-polynomial time. That is, for any such
game with a few random nodes |VR| = O(1), a saddle point in pure sta-
tionary strategies can be found in time polynomial in |VW | + |VB |, the
maximum absolute local reward R, and the common denominator of the
transition probabilities.

1 Introduction

We consider two-person zero-sum stochastic games with perfect information and
mean payoff: Let G = (V,E) be a digraph whose vertex-set V is partitioned
into three subsets V = VB ∪ VW ∪ VR that correspond to black, white, and
random positions, controlled respectively, by two players, Black - the minimizer
and White - the maximizer, and by nature. We also fix a local reward function
r : E → Z, and probabilities p(v, u) for all arcs (v, u) going out of v ∈ VR.
Vertices v ∈ V and arcs e ∈ E are called positions and moves, respectively. In a
position v ∈ VW or v ∈ VB the corresponding player White or Black selects
an arc (v, u), while in a random position v ∈ VR a move (v, u) is chosen with the
given probability p(v, u). From a given initial position v0 ∈ V the game produces
an infinite walk (called a play). White’s objective is to maximize the limiting
mean payoff

c = lim inf
n→∞

∑n
i=0 bi
n+ 1

, (1)
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where bi is the expected reward incurred at step i of the play, while the objective
of Black is the opposite, that is, to minimize c. For this model it was shown
in [17, 28] (see also [9]) that a saddle point exists in pure positional uniformly
optimal strategies. Here “pure” means that the choice of a move (v, u) in a
personal position v ∈ VB ∪ VW is deterministic; “positional” means that this
choice depends solely on v, not on previous positions or moves; finally, “uniformly
optimal” means that the optimal strategies do not depend on the initial position
v0, either.

This class of BWR-games was introduced1 in [19]; see also [10]. It was recently
shown in [9] that the BWR-games and classical Gillette games [17] with perfect
information are polynomially equivalent. The special case when VR = ∅, so
called BW-games, is also known as cyclic, or mean payoff. They were introduced
for the complete bipartite digraphs in [31], for all (not necessarily complete)
bipartite digraphs in [16], and for arbitrary digraphs2 in [19]. A more special
case was considered extensively in the literature under the name of parity games
[2, 3, 11, 21, 23, 25], and later generalized also to include random nodes in [10].
A BWR-game is reduced to a minimum mean cycle problem in case VW = VR =
∅, see, e.g., [26]. If one of the sets VB or VW is empty, we obtain a Markov
decision process (MDP), which can be expressed as a linear program; see, e.g.,
[30]. Finally, if both are empty VB = VW = ∅, we get a weighted Markov chain.
In the special case when all rewards are zero except at special nodes called
terminals, each of which only has is a single outgoing arc forming a self-loop,
we get a stochastic terminal payoff game, and when the self-loops have 0/1
payoffs, and every random node has only two outgoing arcs with probability 1/2
each, we obtain the so-called simple stochastic games (SSG’s), introduced by
Condon [13, 14] and considered in several papers [18, 21]. In the latter games,
the objective of White is to maximize the probability of reaching the terminal,
while Black wants to minimize this probability. Recently, it was shown that
Gillette games with perfect information (and hence BWR-games by [9]) are
equivalent to SSG’s under polynomial-time reductions [1]. Thus, by recent results
of Björklund, Vorobyov [4], and Halman [21], all these games can be solved in

randomized strongly subexponential time 2O(
√
nd lognd), where nd = |VB |+ |VW |

is the number of deterministic vertices. For BW-games many pseudo-polynomial
and subexponential algorithms are known [2, 3, 5, 19–21, 27, 32, 34, 35]; see also
[25] for parity games. Besides their many applications (see e.g., [24, 29]), all
these games are of interest to Complexity Theory: Karzanov and Lebedev [27]
(see also [35]) proved that the decision problem “whether the value of a BW-
game is positive” is in the intersection of NP and co-NP. Yet, no polynomial
algorithm is known for these games, see e.g., the recent survey by Vorobyov [34].
A similar complexity claim can be shown to hold for SSG’s and BWR-games,
see [1, 9].

1 The results in [17, 28] were for a slightly different but (polynomially) equivalent
formulation.

2 In fact, a BW-game on an arbitrary digraph can be reduced to a BW-game on a
bipartite graph; see [9].
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1.1 Main Result

While there are numerous pseudo-polynomial algorithms known for the BW-
case, it is a challenging open question whether a pseudo-polynomial algorithm
exists for BWR-games. In fact, the problem of developing an efficient algorithm
for stochastic games with perfect information was mentioned as an open problem
already in the survey [33]. Our main result can be viewed as a partial solution
of this problem for the case when the number of random nodes is fixed.

For a BWR-game G let us denote by n = |VW | + |VB | + |VR| the number
of nodes, by k = |VR| the number of random nodes, and assume that all local
rewards are integral with maximum absolute value R, and all transition proba-
bilities are rational with common denominator D.

Theorem 1. A BWR-game G can be solved in (nDk)O(k)R · polylogR time.

We remark that our proof of Theorem 1 actually gives the following stronger
bound. Let G′ be a sub-game of G, and G′(R) be a game obtained from G′ by
contracting all random nodes into a single deterministic node with a self-loop
with reward R. Define ν(G′(R)) to be the number of distinct optimal values
achieved by nodes in G′(R), and ν = ν(G) be the maximum of ν(G′(R)) over
all sub-games G′ of G. Then, the algorithm of Theorem 1 solves any BWR-game
in time (νDk)O(k)R · poly(n, logR). For a BWR-game G, it is immediate that
ν(G) ≤ n, while for a stochastic terminal payoff game G with t terminals of
distinct rewards, we can show (Lemma 8) that ν ≤ t + 1, implying a running
time of (tDk)O(k)R · poly(n, logR) for these games, and of kO(k) poly(n) for
simple stochastic games. Thus, Theorem 1 extends the results in [12, 15, 18, 22]
and unifies them with the pseudo-polynomial algorithms for deterministic mean
payoff games [19, 32, 35].

We observe that any improvement of this result to a polynomial dependence
on k would yield a polynomial-time algorithm for solving BWR-games in general.
Indeed, by the results of Andersson and Miltersen [1], solving any BWR-game
can be reduced to solving the β-discounted version of the same game with dis-
count factor β = 1 − [(n!)222n+3D2n2

R]−1. Furthermore, it is also shown in [1]
that solving a (1 − 1

B )-discounted BWR-game with maximum reward R, com-
mon denominator of transition probabilities D, and integral B, can be reduced
to solving a stochastic terminal payoff game with 0/1 local rewards and rational
transition probabilities with common denominator BD, adding only two addi-
tional terminal nodes. Finally, Zwick and Paterson [35] showed that any such
game can be reduced to a simple stochastic game at the cost of increasing the
number of random nodes by log(BD) = O(n(log n+ n logD) + logR). Thus, a
pseudo-polynomial algorithm, that depends polynomially on k would solve the
original BWR-game in (weakly) polynomial time. Similarly, an improvement to
a poly-logarithmic dependence on R would imply that BW-games can be solved
in polynomial time.

It was shown in [6] that a pseudo-polynomial algorithm for BWR-games with
constant number of random nodes can be used to obtain a polynomial-time
approximation scheme for approximating the optimal values. Thus, we obtain
the following result as a corollary of Theorem 1.
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Corollary 1. For any ε > 0, there is an algorithm that returns, for any given
BWR-game with non-negative integral rewards, and rational transition probabil-
ities with minimum value pmin, a pair of strategies that approximates the value
from a given initial position within a relative error of 1 + ε. The running-time
of the algorithm is bounded by poly(n, 1/pmin, logR, 1/ε).

1.2 Main Idea of the Proof

Our approach relies heavily on the fact proved in [7] that ergodic BWR-games,
i.e., those in which the (optimal) value does not depend on initial position, can be
solved in (Dk)O(k)R ·poly(n, logR) time. For a non-ergodic game, this algorithm
can be used to find the classes of nodes with the largest and smallest values, but
cannot find the other classes since they interact via the random nodes. We follow
the idea in [18] in guessing the order of values of the random nodes; however,
unlike in the case for SSG’s, the resulting game after fixing this order is still very
complicated, and in fact, even if we know the actual values of all the nodes, it is
not clear how to find optimal strategies realizing these values. Nevertheless, we
show that if the values are known, then the problem can be reduced to solving
the ergodic case. Then to utilize the algorithm of [7], we have to overcome the
following main challenge: while the accuracy needed for solving an ergodic game
can be shown to be 1

DO(k) , this is not true in the general case. In fact, there is an
example with k = 1, in which the accuracy needed is exponentially small in n;
see [8]. To resolve this issue, we employ the idea of parametric search to reduce
the search space for all values into a set of products of intervals on the real line
of cardinality at most ν(G)k. Using such a set of intervals we can iteratively
replace random nodes by self-loops, on which the local reward is a guessed value
selected in a binary search manner. In more details:

1. We iterate steps 2, 4 and 5 below over the random nodes in the guessed
order, keeping only the nodes with highest rank (and hence having the same
optimal value), and deleting all the other random nodes. We iterate until no
random nodes remain, in which case we solve a BW-game.

2. We consider the situation when all the kept random nodes are replaced by
a self-loop with local reward parameter x; we show (Corollary 2) that the
value of any node in the resulting game defines an interval on the real line,
as x changes from −∞ to +∞.

3. We extend the result in [7] for discovering ergodicity to the case when there
is a single self-loop with reward x (Theorem 2 below). We show that the
running time for such a procedure does not depend on x.

4. We use binary search combined with our aforementioned extension of the
result in [7] (applied to a parametrized BW-game) to identify a set of at
most ν(G) intervals, in each of which, the dependence of values of different
nodes on x does not vary.

5. Since we do not know the real value of x, we guess among the identified
intervals one that contains x; for the guessed interval, we show that a non-
empty part of the game, namely the nodes that have values above the lower
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bound of the interval, can be solved by a call to a parametrized BWR-game
using again our extended procedure above.

6. The number of guesses is bounded by (kν(G))k ; eventually, we make a correct
guess which yields a pair of strategies that can be verified for optimality by
solving two MDP’s.

2 Preliminaries

2.1 BWR-Games

A BWR-game G = (G, p, r) is given by a digraph G = (V,E), where V =
VW ∪ VB ∪ VR is a partition of the vertices, that may have loops and multiple
arcs, but no terminal nodes3, i.e., nodes of out-degree 0; a set of probability
distributions p : E ∩ (VR × V ) → [0, 1] specifying the probability p(v, u) of a
move from v ∈ VR to u; and a local reward function r : E → R. We assume that∑

u | (v,u)∈E p(v, u) = 1 for all v ∈ VR; for convenience we will also assume that

p(v, u) > 0 whenever (v, u) ∈ E and v ∈ VR, and set p(v, u) = 0 for (v, u) �∈ E.
Standardly, we define a strategy sW ∈ SW (respectively, sB ∈ SB) as a

mapping that assigns a move (v, u) ∈ E to each position v ∈ VW (respectively,
v ∈ VB). A pair of strategies s = (sW , sB) is called a situation. Given a BWR-
game G = (G, p, r) and situation s = (sB, sW ), we obtain a weighted Markov
chain Gs = (Ps, r) with transition matrix Ps in the obvious way:

ps(v, u) =

⎧⎨⎩1 if (v ∈ VW and u = sW (v)) or (v ∈ VB and u = sB(v));
0 if (v ∈ VW and u �= sW (v)) or (v ∈ VB and u �= sB(v));
p(v, u) if v ∈ VR.

In the obtained Markov chain Gs = (Ps, r), we define the limiting (mean) effective
payoff μGs(v) = μs(v) as

μs(v) =
∑
w∈V

p∗s(v, w)
∑
u

ps(w, u)r(w, u), (2)

where p∗s(v, w) is the limit probability in Gs to be at node w when the initial
node is v. Doing this for all possible strategies of Black and White, we obtain
a matrix game M(v) : SW × SB → R, with entries μ(sW ,sB)(v) defined by
(2). It is known that every such game has a saddle point in pure strategies
[17, 28]. Moreover, there are optimal strategies (s∗W , s∗B) that do not depend on
the starting position v, so-called uniformly optimal strategies. In contrast, the
value of the game μG(v) = M(s∗W ,s∗B)(v) may depend on v.

2.2 Basic Lemmas

We will use the following notation throughout. For x ∈ R and a set Y ⊆ V such
that every v ∈ VW ∪VB has some arc (v, u) with u ∈ Y , we denote by G[Y ](x) the

3 This assumption is without loss of generality since otherwise one can add a loop to
each terminal node.
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sub-game obtained from G in the following way. We delete all nodes in V \Y and
all arcs (v, u) where v �∈ Y or u �∈ Y . For v ∈ VR∩Y such that

∑
u�∈Y p(v, u) > 0,

we add a new deterministic node u(v) with a self-loop (u(v), u(v)) with local
reward x, and an arc from v to u(v) with local reward 0 and transition probability
p(v, u(v)) :=

∑
u�∈Y p(v, u); all other arcs and nodes remain the same. When G

is a BW-game, then G[Y ] simply means the restriction of G on Y . Note that
G[Y ] may have terminals in general. In the sequel we consider only subsets Y for
which G[Y ] has no terminals. For a situation s = (sW , sB) such that s(v) ∈ Y
for all v ∈ Y , we denote by the s[Y ] := (sW [Y ], sB[Y ]) the restriction of s on
Y . For brevity in what follows, we will call (v, u) a black, white, or random arc,
depending on whether v ∈ VB , v ∈ VW , or v ∈ VR, respectively.

Lemma 1. (i) Given a BWR-game G = (G = (V = VB ∪VW ∪VR, E), P, r), let

Ĝ be the BW-game obtained from G by replacing each random node v ∈ VR
with a terminal deterministic node (black or white, arbitrarily) with a local
reward μG(v) on the self-loop (v, v). Then μĜ(v) = μG(v) for all v ∈ V .

(ii) Let Ĝ be as above and U ⊆ V be such that μG(v) �= μG(u) for all v ∈ U and
u ∈ V \ U . Then μĜ[U ](v) = μG(v) for all v ∈ U .

Let G = (G = (V = VB ∪ VW ∪ VR, E), p, r) be a BWR-game. In what follows
we will use the following notation. For a θ ∈ R, let S(θ) := {v ∈ V | μG(v) = θ}.
If S(θ) �= ∅, we refer to it as an ergodic class. If S(θ) = V the game G is said
to be ergodic. Let θ1 < θ2 < · · · < θ� be such that S(θi) �= ∅ for all i ∈ [
] and⋃�

i=1 S(θi) = V .
Ergodic classes necessarily satisfy the following properties.

Proposition 1. (i) There exists no arc (v, u) ∈ E such that v ∈ VW ∩ S(θi),
u ∈ S(θj), and j > i;

(ii) there exists no arc (v, u) ∈ E such that v ∈ VB ∩S(θi), u ∈ S(θj), and j < i;
(iii) for every v ∈ VW ∩ S(θi), there exists an arc (v, u) ∈ E such that u ∈ S(θi);
(iv) for every v ∈ VB ∩ S(θi), there exists an arc (v, u) ∈ E such that u ∈ S(θi);
(v) there exists no arc (v, u) ∈ E such that v ∈ VR ∩ S(θ1), and u �∈ S(θ1);

(vi) there exists no arc (v, u) ∈ E such that v ∈ VR ∩ S(θ�), and u �∈ S(θ�).

For i ∈ [
], define G[θi] to be the game G[S(θi)](θi). Proposition 1 guarantees
that the game G[θi] is well-defined, that is, for every v ∈ S(θi) there is at least
one arc going out of v in G[θi].

Lemma 2. For all i ∈ [
] and v ∈ S(θi), it holds that μG[θi](v) = θi.

Lemma 3. For i ∈ [
], let si := (siW , s
i
B) be a pair of optimal strategies in G[θi].

Then the situation s∗ = (s∗W , s∗B) obtained by concatenating all these strategies
together (that is, s∗W (v) := siW (v) for v ∈ VW ∩ S(θi) and s∗B(v) := siB(v) for
v ∈ VB ∩ S(θi)) is optimal in G.
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Remark 1. Lemma 3 states that, if we the know values of all the nodes, then
we can get uniformly optimal strategies by solving 
 ergodic different games. It
should be noted however that, if we use such reduction directly, then a pseudo-
polynomial algorithm for the ergodic case, as the one described in [7], does not
yield in general a pseudo-polynomial algorithm for solving the whole game. The
reason is that in our reduction in the proof of Lemma 3, we introduce local
rewards on self-loops (v, v) of value μG(v), which might be exponentially small
in n, even for games with a single random node; see, e.g., [8].

For the following claims, let us consider a BW or BWR-game G in which (w,w)
is a self-loop, with no other arcs leaving w. For x ∈ R, let us denote by G(x) be
the game obtained from G by setting r(w,w) = x.

Lemma 4. Let v be a node in a BW-game G, and x, y ∈ R.

(i) If μG(x)(v) < x, then for any y ≥ μG(x)(v), μG(y)(v) = μG(x)(v);
(ii) if μG(x)(v) > x, then for any y ≤ μG(x)(v), μG(y)(v) = μG(x)(v);

(iii) if μG(x)(v) = x, then for any y > x, y ≥ μG(y)(v) ≥ x;
(iv) if μG(x)(v) = x, then for any y < x, y ≤ μG(y)(v) ≤ x.

Corollary 2. For any node v ∈ V of a BW-game G there is an interval I(v) :=
[θl(v), θu(v)], such that

(i) μG(x)(v) = θu(v) if x ≥ θu(v);
(ii) μG(x)(v) = θl(v) if x ≤ θl(v);

(iii) μG(x)(v) = x if x ∈ I(v).

Lemma 5. For a BWR-game G, the set I(G(x)) := {x ∈ R : G(x) is ergodic}
forms a closed (if not empty) interval in R.

Lemma 6. In a BWR-game G, let θ1 ≤ θ2 be two real numbers in I(G(x)), and
s∗W ∈ SW and s∗B ∈ SB be optimal White and Black strategies in the games
G(θ2) and G(θ1), respectively. Then (s∗W , s∗B) is a pair of optimal strategies in
G(x) for all x ∈ [θ1, θ2].

3 Algorithm

For a node set S ⊆ V , we define the black closure clB(S) (respectively, the black
semi-closure cl′B(S)) of S to be the node set which is recursively obtained from
S by adding

(1) a node v ∈ VB (respectively, v ∈ VB ∪ VR), if some arc (v, u) ∈ E satisfies
u ∈ S, or

(2) a node v ∈ VW ∪ VR (respectively, v ∈ VW ), if all arcs (v, u) ∈ E satisfy
u ∈ S.

In words, clB(S) (respectively, cl′B(S)) is the set of nodes to which Black can
force a move with probability 1 (respectively, with some positive probability).

The white closure and semi-closure of S, clW (S) and cl′W (S), are defined
analogously. Associated with a black closure (respectively white closure clW (S))
is a (partial) strategy sB(clB(S)) (respectively, sW (clW (S))) which guarantees
Black (respectively, White) a move into S. Similar strategies are defined with
respect to semi-closures.
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3.1 Discovering Ergodicity in BWR-Games with a Special Self-loop

We first recall the following result on the accuracy needed for solving a rational
BWR-game.

Proposition 2 ([7]). Let G be a BWR-game with n nodes, k random nodes, lo-
cal integral rewards of maximum absolute value R, and rational transition prob-
abilities with common denominator D. Then for any node v,

(i) the value μG(v) is a rational number p/q with p, q ∈ Z and |p| ≤
(2D)(k+1)nR and |q| ≤ (2D)(k+1)n;

(ii) for any situation s, if v belongs to some absorbing class C in Gs, the
value μGs(v) is a rational number p/q with p, q ∈ Z and |p| ≤ Dk+1R and
|q| ≤ Dk+1. In particular, if the game is ergodic, then the value μG(v)
satisfies the latter condition.

The following result strengthens the results in [7, 19, 32, 35], and can be obtained
from the pumping algorithm and its analysis in [7].

Theorem 2. Let G be a BWR-game with n nodes, k random nodes, rational
transition probabilities with common denominator D, and assume that all local
rewards are integral of maximum absolute R, except on a single self-loop (w,w),
where the reward can be arbitrary.

(i) There is an algorithm BWR-IsErgodic(G) that, given any such BWR-game
G, finds whether or not G is ergodic in time (nD)O(k)R logR; if G is ergodic,
the algorithm finds also an optimal situation; otherwise, it finds a situation
certifying non-ergodicity.

(ii) If the given game G is also a BW-game, then there is an algorithm BW-
Solve(G) that finds an optimal strategy in G in time poly(n) · R logR.

3.2 Parametric Search

Our algorithm uses the following auxiliary routines:

BW-FindIntervals(G(x)): Let G(x) be a BW-game with a self-loop of reward x.
By Corollary 2, the end-points of the intervals I(v), for v ∈ V, partition the range
[−R,R] into a set of at most 2ν(G)+1 ≤ 2n+1 intervals I := I(G(x)), such that
the ”structure” of the game with respect to the dependence of the nodes’ values
on x is fixed over each interval. That is, for each I = [θl(I), θu(I)] ∈ I, there is a
uniquely defined partition Sl(I)∪Sm(I)∪Su(I) = V , such that μG(x)(v) = θu(v)

for all v ∈ Sl(I) (where θu(v) < θl(I)), μG(x)(v) = x for all v ∈ Sm(I), and
μG(x)(v) = θl(v) for all v ∈ Su(I) (where θl(v) > θu(I)) (indeed, Sm(I) is
defined as the set S such that I =

⋂
v∈S I(v)). BW-FindIntervals(G(x)) finds

this set of intervals I(G(x)) together with the partitions Sl, Sm, Su : I → 2V , as
follows. Given an interval I := [θl, θu], we apply binary search to find the first
point θ1 ∈ [θl, θu] such that there is a node v ∈ V with μG(θ1)(v) �= μG(θl)(v).
Each binary search step involves calling BW-Solve(G(x)) for some x ∈ [−R,R]
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which, in view of Proposition 2, can be chosen rational of the form p/q with
p, q ∈ Z and |p| ≤ DO((k+1)n)R and |q| ≤ DO((k+1)n). It follows that the total
number of binary search steps needed until we find θ1 is O(nk logD + logR).
Once θ1 is found, we can find the next point θ2 ∈ [θ1, R] at which the distribution
of values changes, and so on until the whole set of intervals I(G(x)) is found.

BWR-FindErgodicityInterval(G(x)): Let G(x) be a BWR-game with a self-
loop of reward x. By Lemma 5, the set of values of x ∈ [−R,R] for which G(x) is
ergodic is an interval Ie(G(x)). Given G(x), BWR-FindErgodicityInterval(G(x))
finds Ie(G(x)) by employing binary search, calling in each step the procedure
BWR-isErgodic(G(x)). Suppose that we start the search on the interval [θl, θu].
If the game is non-ergodic, the procedure will return a node v ∈ V , and either a
strategy sB ∈ SB certifying that μG(x)(v) < x or a strategy sW ∈ SW certifying
that μG(x)(v) > x. In the former case, we reduce the search into the interval
[θl, x], and in the latter case, we reduce the search into the interval [x, θu]. Again,
we need only to consider polynomially many search steps by Proposition 2.

3.3 Algorithm Description

For a BWR-game G and a parameter x ∈ R, define Ĝ(x) to be the BW-game
obtained from G by replacing each random node v ∈ VR in G with a terminal
deterministic node (black or white, arbitrarily) with a local reward of value x
on the self-loop (v, v).

For a node v ∈ VR, we define rank(v) = |{μG(u) | u ∈ VR, μG(u) > μG(v)}|+1.
For each v ∈ VR, our algorithm guesses its rank as g(v) (there are at most kk

possible guesses).
For each such guess g : VR → [k], we call procedure BWR-Solve(G, U, g, 
)

with U = V and 
 = 1. At any point in time, U represents the set of nodes for
which the value is not yet fixed by the procedure.

The procedure returns a situation s∗ which we check for optimality using linear
programming (see, e.g., [30]). We now describe this procedure BWR-Solve(·). For
an integer 
 ∈ [k], define G� to be the BWR-game obtained from G by removing
all nodes in the black closure clB(

⋃
h>�{v ∈ VR : g(v) = h}). We first form the

game Ĝ�(x) defined from G� by contracting all random nodes into a single node w

with self-loop (w,w) of reward x. Then we find the set of intervals I(Ĝ�(x)) using

the routine BW-FindIntervals(Ĝ�(x)) described above. Then for each such inter-
val I = [θl(I), θu(I)], we consider three sub-games, defined by the sets Su(I),
Sm(I), and Sl(I). By the definition of Su(I), the first sub-game G[Su(I)] is a
BW-game that does not depend on x, since all random nodes have either been re-
placed by a self-loop with reward x or have been deleted since their guessed rank
is strictly larger than 
. Hence, the optimal strategy s∗[Su(I)] in G[Su(I)] can
be obtained by calling BW-Solve(G[Su(I)]). The nodes in the second sub-game
G[Sm(I)] have the same value x. Although we do not know what the exact value
of x is, we can find the interval of ergodicity of the BWR-game G[Sm(I)](x) by
calling procedure BWR-FindErgodicityInterval(G[Sm(I)](x)) (step 7). Once we
determine this interval Ie = [θ1, θ2], we solve the two ergodic games G[Sm(I)](θ1)
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Algorithm 1. BWR-Solve(G, U, g, 
)
Input: A BWR-game G = (G = (V = (VB ∪VW ∪VR), E), p, r), a set of nodes U ⊆ V ,

a vector of rank guesses g : Vr → [k], and an integer �
Output: Either an optimal situation s∗ in G or ”INVALID guess”
1: if VR = ∅ then
2: s :=BW-Solve(G[U ])
3: else
4: (I, Sl, Sm, Su) :=BW-FindIntervals(Ĝ	[U ](x))
5: for each I = [θl(I), θu(I)] ∈ I do
6: s∗[Su(I)] :=BW-Solve(G[Su(I)])
7: Ie = [θ1, θ2] :=BWR-FindErgodicityInterval(G[Sm(I)](x))
8: s1 :=BWR-IsErgodic(G[Sm(I)](θ1))
9: s2 :=BWR-IsErgodic(G[Sm(I)](θ2))
10: s∗[Sm(I)] := (s2W , s1B)
11: s∗[U \ (Su(I) ∪ Sm(I))] :=BWR-Solve(G, U \ (Su(I) ∪ Sm(I)), g, �+ 1)
12: if s∗ is optimal in G then
13: return s∗

14: else
15: return ”INVALID guess”
16: end if
17: end for
18: end if

and G[Sm(I)](θ2) using procedure BWR-IsErgodic(·), and then combine the
strategies according to Lemma 6 to obtain an optimal situation for G[Sm(I)].
Finally, the rest of the game is solved by calling the procedure recursively with
G := G[U \ (Su(I) ∪ Sm(I))] and 
 := 
+ 1.

The following lemma states that if the guess is correct, then the procedure
actually solves the game.

Lemma 7. Let G be a BWR-game. If procedure BWR-Solve(G, U, g, 
) is called
with g(v) = rank(v) for all v ∈ VR, U = V and 
 = 1, then it returns an optimal
situation s∗.

Lemma 8. ν(G) ≤ n for a BWR-game, and ν(G) ≤ t + 1 for a stochastic
terminal payoff game with t terminals of distinct rewards.

Note that the depth of the recursion tree is at most k. The number of intervals
tried at each recursion level is at most 2ν(G) + 1. The claimed bound on the
running time follows.
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Abstract. We obtain a strong direct product theorem for two-party
bounded round communication complexity. Let sucr(μ, f, C) denote the
maximum success probability of an r-round communication protocol
that uses at most C bits of communication in computing f(x, y) when
(x, y) ∼ μ. Jain et al. [12] have recently showed that if sucr(μ, f, C) ≤ 2

3

and T � (C − Ω(r2)) · n
r
, then sucr(μ

n, fn, T ) ≤ exp(−Ω(n/r2)). Here
we prove that if suc7r(μ, f, C) ≤ 2

3
and T � (C − Ω(r log r)) · n then

sucr(μ
n, fn, T ) ≤ exp(−Ω(n)). Up to a log r factor, our result asymptot-

ically matches the upper bound on suc7r(μ
n, fn, T ) given by the trivial

solution which applies the per-copy optimal protocol independently to
each coordinate. The proof relies on a compression scheme that improves
the tradeoff between the number of rounds and the communication com-
plexity over known compression schemes.

1 Introduction

We study the direct sum and the direct product problem for bounded-round ran-
domized communication complexity. The direct sum problem studies the amount
of resources needed to solve n independent copies of a task in terms of the cost of
solving one copy. It is the case that if one copy costs C resources, then n copies
can be solved using Cn ≤ n · C resources. Can one do better? Direct sum theo-
rems answer this question by giving lower bounds for Cn in terms of C and n —
aiming to give a tight Ω(n ·C) bound whenever possible. If the task is solved in a
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randomized model, with some error allowed, the performance of a solution for a
single copy of the task is characterized by its cost C and its success probability ρ.
Clearly, with n ·C resources a success probability of at least ρn is attainable, but
is it optimal? A direct product theorem is stronger than a direct sum theorem
in that in addition to asserting that a certain amount of resources is necessary
to compute the n copies, it also shows that using a smaller amount of resources
will lead to a very low (possibly exponentially small) success probability.

Direct product theorems have a long history in complexity theory, and in
communication complexity in particular [19,16,21,11,12,6]. See [12] for a discus-
sion of the various direct product theorems. In the context of communication
complexity, direct product results for specific lower-bound techniques were given
by a number of papers: for discrepancy in the two party case by Shaltiel [21] and
Lee, Shraibman and Spalek [17], by Sherstov for generalized discrepancy [22],
and by Viola and Wigderson for the multiparty case [23]. More recently, a direct
product theorem was given by Jain and Yao in terms of the smooth rectan-
gle bound [13]. Direct product results for specific communication problems such
as set disjointness include [15,2]. Famous examples for direct product theorems
for other models of computation include Yao’s XOR lemma and Raz’s parallel
repetition theorem [20]. For (unbounded-round) communication complexity, the
current state-of-the-art results are given by [6], which shows that n copies of
a function cost Ω(

√
n) times the cost of one copy, and any computation using

less communication will fail except with an exponentially small probability. [13],
building on [14], obtains a strong direct product theorem in terms of the smooth
rectangle bound – showing that a strong direct product theorem holds for the
communication complexity of a large number of commonly studied functions.

In this paper we focus on the bounded-round, distributional, two party commu-
nication complexity model. Bounded-round communication complexity is used
extensively in streaming and sketching lower bounds (see e.g. [9,18] and refer-
ences therein). We prove a tight direct sum and direct product theorem for this
model. The two players are given inputs according to a distribution (x, y) ∼ μ
and need to compute a function f(x, y). The players perform the computation
using a communication protocol π. In the bounded-round model, the players are
allowed a total of at most r messages in their protocol π. The communication
cost ‖π‖ of a protocol π is the (worst-case) number of bits the players send
when running π. If π has r rounds then ‖π‖ ≥ r. The success probability of π,
denoted suc(μ, f, π), is the probability it outputs the correct value of f (for a
formal definition see Section 3.3). The probability that any r-round protocol of
communication cost C succeeds at computing f is denoted by

sucr(μ, f, C) := max
π is r-round and ‖π‖ ≤ C

suc(μ, f, π).

The unbounded round success probability suc(μ, f, C) is defined as sucC(μ, f, C)
(the trivial bound of C does not limit interaction, as r ≤ C by definition).

The function fn((x1, . . . , xn), (y1, . . . , yn)) is just the concatenation of n
copies of f . In other words, it outputs (f(x1, y1), . . . , f(xn, yn)). Assume that
sucr(μ, f, C) < 2/3. Both the direct sum and the direct product question ask
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what can be said about the cost, and the success probability of solving fn. A
strong direct sum theorem for bounded-round computation would assert that
sucαr(μn, fn, αn · C) < 3/4, for some constant α > 0. A direct product the-
orem would further assert that sucαr(μn, fn, αn · C) < (2/3)αn. Clearly, the
latter statement is the best one can hope for up to constants, since trivially
sucr(μn, fn, n · C) ≥ sucr(μ, f, C)n.

Prior to the present work, several general direct sum and direct product re-
sults for bounded-round communication complexity were given. The work [10]
by Harsha, Jain, McAllester and Radhakrishnan gives a strong direct sum result
for bounded-round communication, but it only works for product distributions
(i.e. when μ is of the form μ = μx × μy). The paper [5] by Braverman and
Rao gives a direct sum result for bounded-round communication of the follow-
ing form: if suc(μ, f, C) < 2/3, then sucr(μn, fn, n · C · (1 − o(1))) < 3/4, for
n sufficiently large. This result gives a tight dependence on the communica-
tion complexity, but assumes a lower bound on the communication complexity
of a single copy of f without restriction on the number of rounds. Therefore,
strictly speaking, it is not a direct sum result for bounded-round communi-
cation complexity. The only general direct product result for bounded-round
communication complexity was recently given by a Jain, Pereszlenyi, and Yao
[12], who showed that if sucr(μ, f, C) ≤ 2

3 and T & (C − Ω(r2)) · n
r , then

sucr(μn, fn, T ) ≤ exp(−Ω(n/r2)). This result is indeed a proper direct product
theorem for bounded-round communication. Its parameters are sub-optimal in
two respects: (1) there is no reason for the direct product theorem to not hold all
the way to T = Ω(C · n), and (2) in a tight direct product theorem the success
probability sucr(μn, fn, T ) would be exp(−Ω(n)) & exp(−Ω(n/r2)).

Our Results. Our main result is an optimal (up to constants and a log r fac-
tor) direct product theorem for bounded-round communication complexity (see
Theorem 2 below). The theorem improves over the parameters in [12], with
the exception of the dependence on the number of rounds: we require a lower
bound for protocols using 7r rounds of communication for one copy to get a
lower bound for an r-round protocol for n copies. Using Yao’s minimax principle
[24], our result also applies to the randomized bounded-round communication
complexity.

Our Techniques. Our general strategy is similar to other recent direct sum and
direct product results [10,1,12,6]. The first main ingredient is the notion of in-
formation cost of protocols. The information cost of a two-party protocol π over
a distribution μ of inputs (x, y) ∼ μ is defined as the amount of information the
parties learn about each other’s inputs from the messages of the protocol. More
formally, if we define X,Y to be the random variables representing the inputs,
and M to be the random variable representing the messages or transcript, then
the information cost of π with respect to μ is given by

IC(π, μ) := I(X ;M |Y ) + I(Y ;M |X),

where I(A;B|C) is the mutual information between A and B conditioned on C.
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In general, direct sum and direct product proofs proceed in two steps: As a
first step, it is shown that if fn can be solved using fewer than T resources, then
one copy of f can be solved using a protocol π, that while having high commu-
nication complexity (T ), has low information complexity: IC(π, μ) = O(T/n).1

The second step is to convert the protocol π into a protocol π′ that has low com-
munication cost, such as O(IC(π, μ))). This is done through protocol compres-
sion: the process of converting a low-information interactive protocol into a low
communication protocol. If successful, this step leads to a low-communication
protocol for one copy of f , which contradicts the initial lower bound assumption
on one copy of f .

The process of obtaining new direct sum results in communication complexity
has been tightly linked to the process of obtaining new protocol compression
results. In fact, the question of whether the general (unbounded-round) direct
sum for communication complexity holds is equivalent to the question of whether
all protocols can be compressed [5,4]. In the case of bounded-round protocols
the problem of compressing protocols reduces to the problem of compressing
individual messages in the protocol. The problem of message compression can
be rephrased as follows: player 1 has a distribution P of the message M ∼ P he
wants to send to player 2. Player 2 has some prior belief Q about the distribution
of M . How much communication is needed to ensure that both players jointly
sample M ∼ P? The natural information-theoretic lower bound for this problem

is the KL-divergence D

(
P

Q

)
. More specifically, if the element being sampled is

a, we should expect player 1 to communicate at least log(P (a)/Q(a)) bits to
player 2.

If we start off with the assumption that it is hard to solve one copy of f
using a bounded-round protocol, then to obtain a contradiction our compression
scheme should preserve (or at least not blow-up) the number of rounds in the
protocol. This means, ideally, that compression of one round should take only
a constant number of rounds. The round-compression scheme of [5], in fact,
manages to attain near-optimal compression in terms of communication cost.

The communication cost of the problem described above is reduced to D

(
P

Q

)
·

(1+o(1))+O(log 1/ε), where ε is an error parameter. There is a price to be paid
for such communication performance: there is no good bound on the number
of rounds such compression would take. Thus the resulting compressed protocol
is no longer bounded-round. Therefore, [5] only obtains a lower bound on the
bounded-round communication complexity of fn in terms of the unbounded-
round communication complexity of f .

The recent works [11,12] devise a different compression scheme that does not
increase the number of rounds at all: each message in the original protocol is
compressed into one message in the compressed protocol. As a result, these works
obtain direct product theorems for bounded-round communication complexity.

1 In the case of direct product, what is shown is that π is statistically close to being
a low information protocol.
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These compressions, however, end up paying a high price in the communication
overhead. Specifically, due to an application of Markov inequality, sending a
message a, on average, takes r · log(P (a)/Q(a)) bits – a multiplicative loss by an
r factor, which leads to a factor-r loss in the ultimate result.

Our main technical contribution is a new family of compression protocols for
compressing one round of communication. These protocols are parameterized by
two parameters (d, 
). They give a tradeoff between the communication overhead
and the resulting number of rounds. Specifically:

Theorem 1. For any a, 
 > 0, let log+
� (a) = max{0, log�(a)}. Suppose that

player 1 is given a distribution P (unknown to Player 2), and player 2 is given
a distribution Q, both over a universe U . Then, for every 0 < ε < 1/2, d ≥ 1
and integer 
 ≥ 2, there is a protocol such that at the end of the protocol:

– player 1 outputs an element a distributed according to P .
– player 2 outputs an element b s.t for each x ∈ U , Pr[b = a|a = x] > 1− ε.
– the communication is at most (2
+1) · log+

2 (P (a)/Q(a))+2 log(1/ε)+2d+5.
– the number of rounds is at most 2 log+� [(1/d) log+2 (P (a)/Q(a))] + 2.

The second condition implies in particular that player 2 outputs an element b
such that b = a with probability at least 1 − ε. The protocol requires no prior
knowledge or assumptions on P,Q.

One can see that setting d and 
 to be large in Theorem 1 will result in few
rounds but long communication, and vice versa. The compression scheme in The-
orem 1 may be of independent interest. It is possible to view both compression
schemes from [5] and from [11,12] as special cases of Theorem 1. The scheme
in [5] approximately corresponds to (d, 
) = (2, 1). The scheme in [11,12] corre-
sponds to d = Θ(IC(π, μ)). By carefully choosing the parameters in Theorem 1,
and analyzing the resulting number of rounds and communication cost over all
rounds simultaneously, we obtain a compression scheme that at the same time
increases the communication cost and the number of rounds of communication
by only a constant. This scheme, together with direct product reductions from
[6], allows us to complete the proof of Theorem 2.

Discussion and Open Problems. Our work essentially closes the direct product
question in the regime where the number of rounds r is small compared to C,
and sucr(μ, f, C) is constant in (0, 1). The general direct product problem (and
even the weaker direct sum problem) remains wide open. The key compression
challenge one needs to overcome is the problem of compressing protocols when
r " I, that is, when the amount of information π conveys in a typical round is
o(1). Further discussion on this problem can be found in [4,3].

An important area of tradeoff – both in terms of direct sum/product re-
sults and in terms of compression is the relationship between error, communi-
cation complexity, and the number of rounds. When performing compression
to a bounded number of rounds r, we inevitably have to abort the protocol if
the rounds “quota” is exceeded. What is the effect this has on error incurred? A
very recent work by Brody, Chakrabarti, and Kondapally [8] suggests the general
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tradeoff may take an interesting form. Understanding these tradeoffs is crucial
for getting tight parameters for bounded-round direct sum and product in the
regime where sucr(μ, f, C) is very close to 1.

2 Results

Let sucr(μ, f, C) denote the maximum success probability of an r-round commu-
nication protocol that uses at most C bits of communication to compute f(x, y)
when x, y ∼ μ. Denote by fn(x1, . . . , xn, y1, . . . , yn) the function that maps its
inputs to the tuple (f(x1, y1), f(x2, y2), . . . , f(xn, yn)) and μn denote the prod-
uct distribution on n pairs of inputs, where each pair is sampled independently
according to μ. We prove the following direct product result.

Theorem 2 (Main Theorem). Let f be a 2-party Boolean function. There
is a universal constant α > 0 such that if γ = 1 − suc7r(μ, f, C), T ≥ 2, and

T < αnγ2
(
C − r log(r/2γ)

αγ − r
αγ2

)
, then sucr(μn, fn, T ) ≤ exp

(
−αγ2n

)
.

When sucr(μ, f, C) ≤ 2
3 and r log r & C, Theorem 2 ensures that the success

probability of any protocol attempting to compute fn under μn using & Cn
communication and r/7 rounds must be exponentially small in n.

Our main technical contribution is showing how to compress bounded-round
protocols without introducing (too many) additional rounds.

The first step is the sampling protocol described in Theorem 1, which shows
how to jointly and efficiently sample from a desired distribution in an oblivious
manner. Suppose player 1 knows a distribution P , player 2 knows a distribution
Q, and the players wish to jointly sample from P without knowing the distribu-
tion of the other player. It is an extension of a protocol from [5]. The protocol
is interactive and the requires multiple rounds. The number of rounds required
for the simulation in [5] is Θ(

√
Δ), where Δ is the KL divergence between the

distributions P and Q. While this suffices for the particular objective in [5],
this is more than we can afford here: the compression scheme implies that an
r-round protocol which reveals I bits of information can be simulated by an
O(r

√
I)-round protocol that has I + o(I) communication. The resulting com-

pressed protocol is no longer bounded-round, requiring us to assume a stronger
lower bound on the hardness of one copy of f to reach a contradiction. Our new
compression protocol ensures that at most 7r rounds of communication are used
with high probability, which means that assuming that f cannot be efficiently
solved by a 7r-round protocol suffices.

The second step in the proof is showing how to use the single-message sampling
protocol from Theorem 1 to simulate communication protocols, with communi-
cation comparable to the amount of information they convey, while keeping the
number of rounds comparable to the original number. In fact, to prove our main
result, we actually need to analyze protocols that are merely close to having low
information cost. As noticed in [6], such protocols need not have low information
themselves. E.g., consider the protocol π in which player 1 sends her n-bit uni-
formly random input x with probability ε, and otherwise sends a random string.



238 M. Braverman et al.

Then π is ε-close to a 0-information protocol, but IC(π) = εn. Nevertheless,
truncation of protocols (as in [6]) implies that compression is possible even in
this more general setting. This is formalized by the next theorem.

Theorem 3 (Round preserving compression). Suppose θ is an r-round
protocol with inputs x, y and messages m, and q is another distribution on these

variables such that θ(xym)
ε≈ q(xym). Let I = Iq(X ;M |Y ) + Iq(Y ;M |X). Then

there exists a 7r-round protocol τ that 11ε-simulates θ such that

‖τ‖ ≤ 7
I

ε2
+ 2

r log(r/ε)

ε
+ 30

r

ε2
.

The compression protocol in Theorem 3 is obtained by sequential applications of
Theorem 1. However, in order to prevent a blowup in the number of simulating
rounds, we cannot use the guarantees of Theorem 1 on a per-round basis. We
analyze the protocol in a global manner, which yields the desirable tradeoff
between the number of rounds and the communication complexity.

3 Preliminaries

3.1 Notation

Unless otherwise stated, logarithms in this text are computed in base two. Ran-
dom variables are denoted by capital letters and values they attain are denoted
by lower-case letters. For example, A may be a random variable and then a
denotes a value A may attain and we may consider the event A = a. Given
a = a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We define a>i and a≤i
similarly. For an event E, define 1E to be the indicator random variable of E.

We use the notation p(a) to denote both the distribution on the variable a,
and the number Prp[A = a]. The meaning will typically be clear from context,
but in cases where there may be confusion we shall be more explicit about which
meaning is being used. We write p(a|b) to denote either the distribution of A
conditioned on the event B = b, or the number Pr[A = a|B = b]. For an event W ,
we write p(W ) to denote the probability of W according to p. We let Ep(a) [g(a)]
denote the expected value of g(a) when a is distributed according to p.

For two distributions p, q, we write |p(a) − q(a)| to denote the 
1 distance

between the distributions p and q. We write p
ε≈ q if |p− q| ≤ ε.

The divergence between p, q is defined to be

D

(
p(a)

q(a)

)
=

∑
a

p(a) log
p(a)

q(a)
.

For three random variables A,B,C jointly distributed according to p(a, b, c), the
mutual information between A,B conditioned on C is defined as

Ip(A;B|C) = E
p(cb)

[
D

(
p(a|bc)
p(a|c)

)]
= E

p(ca)

[
D

(
p(b|ac)
p(b|c)

)]
=

∑
a,b,c

p(abc) log
p(a|bc)
p(a|c) .
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3.2 Properties of Divergence

Lemma 1 (Chain Rule). If a = a1, . . . , as, then

D

(
p(a)

q(a)

)
=

s∑
i=1

E
p(a<i)

[
D

(
p(ai|a<i)

q(ai|a<i)

)]
.

The following lemmas describe basic properties of divergence (for proofs see [6]).

Lemma 2. Let S = {a : p(a) < q(a)}. Then,
∑

a∈S p(a) log p(a)
q(a) ≥ −1/(e ln 2).

Lemma 3 (Truncation Lemma [6]). Let p(a, b, c)
ε≈ q(a, b, c) where a =

a1, . . . , as. For every a, b, c, define k to be the minimum number j in [s] such
that

log
p(a≤j |bc)
p(a≤j |c)

> β.

If no such index exists, set k = s+ 1. Then,

p(k < s+ 1) <
Iq(A;B|C) + log(s+ 1) + 1/(e ln 2)

β − 2
+ 9ε/2.

3.3 Communication Complexity

Given a protocol π that operates on inputs X,Y drawn from a distribution μ
and (possibly) using public randomness S and messages M , we write π(xyms)
to denote the joint distribution of these variables. We write ‖π‖ to denote the
communication complexity of π, namely the maximum number of bits that may
be exchanged by the protocol.

A central measure in this paper is the information complexity of a commu-
nication protocol (see [1,4] and references within for a more detailed overview).
The internal information cost of π is defined to be IC(π) := Iπ(X ;M |Y S) +
Iπ(Y ;M |XS). It is well known (e.g, [4]) that for any protocol π, IC(π) ≤ ‖π‖.

Let q(x, y, a) be an arbitrary distribution. We say that π δ-simulates q, if

there is a function g and a function h such that π(x, y, g(x, s,m), h(y, s,m))
δ≈

q(x, y, a, a), where q(x, y, a, a) is the distribution on 4-tuples (x, y, a, a) where
(x, y, a) are distributed according to q. Thus if π δ-simulates q, the protocol
allows the parties to sample a according to q(a|xy). If in addition g(x, s,m)
does not depend on x, we say that π strongly δ-simulates q. Thus if π strongly
simulates q, then the outcome of the simulation is apparent even to an observer
that does not know x or y.

If λ is a protocol with inputs x, y, public randomness s′ and messages m′, we
say that π δ-simulates λ if π δ-simulates λ(x, y, (s′,m′)). Similarly, we say that
π strongly δ-simulates λ if π strongly δ-simulates λ(x, y, (s′,m′)). We say that π
computesf with success probability 1−δ, if π strongly δ-simulates π(x, y, f(x, y)).
We denote this by suc(μ, f, π) = 1− δ.

The next proposition is straightforward. A formal proof can be found in the
full version of this paper [7].
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Proposition 1. Let f : X × Y −→ Z and let π be such that suc(μ, f, π) =
1− δ. Then if λ is a protocol that ε-simulates π, there is a protocol τ such that
suc(μ, f, τ) ≥ 1− (δ + ε) and ‖τ‖ = ‖λ‖+ log |Z|. The number of rounds in τ is
the same as in π.

4 Proof of Theorem 1

Proof (of Theorem 1). Due to space constraints, here we only present the sam-
pling protocol. A full analysis of the protocol together with the proof of Theorem
1 appears in the full version of this paper [7].

We start by describing the content of the shared random tape. Both parties
interpret part of the shared random tape as a sequence of independent uniformly
selected elements {ei}∞i=1 = {(xi, pi)}∞i=1 from the set E := U × [0, 1]. There is
also a part of the shared random tape that contains random independent hash
functions {hi}∞i=1, that is, for every i, the function hi : U → {0, 1} is so that
Pr[hi(x) = hi(y)] = 1/2 for every x �= y in U .

The players use the following definitions: Define

EP := {(x, p) ∈ E : P (x) > p},

the set of points under the histogram of P . Similarly, define

EQ := {(y, q) ∈ E : Q(y) > q}.

For a constant C ≥ 1, define the C-multiple of EQ as

C · EQ := {(y, q) ∈ E : (y, q/C) ∈ EQ}.

For a non-negative integer t, set

Ct := 2d�
t

and st := 2d
t + �log(1/ε)�+ 1.

The Protocol. The protocol runs as follows:

1. Player 1 selects the first index i such that ei = (xi, pi) ∈ EP , and outputs
xi.

2. Player 1 uses 1 + �log log(1/ε)� bits to send player 2 the binary encoding of

k := �i/|U|�.

If k > 2log log(1/ε), player 1 sends the all-zero string and the players abort.
3. Repeat, until player 2 produces an output, starting with t = 0:

(a) Player 1 sends the values of all hash functions hj(xi) for 1 ≤ j ≤ st, that
have not been previously sent.

(b) If there is an ar = (yr, qr) with r ∈ {(k − 1) · |U| + 1, . . . , k · |U|} in
Ct · EQ such that hj(yr) = hj(xi) for some 1 ≤ j ≤ st, then player 2
says “success” and outputs yr (if there is more than one such ar, player
2 selects the first one).

(c) Otherwise, player 2 responds “failure” and the parties increment t to
t+ 1 and repeat.
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5 Round Preserving Compression – Proof of Theorem 3

Proof (of Theorem 3). Our simulating protocol for θ is the protocol σ described
in Figure 1 (The final protocol τ will be defined as a truncation of σ). Once
again, due to space constraints, here we only present the protocol. For a complete
analysis and the rest of the proof of Theorem 3, we refer the reader to the full
version of this paper [7].

Protocol σ for simulating θ

Player 1 repeatedly computes a message m′ = m′
1, . . . ,m

′
r and player 2 repeatedly

computes a message m′′ = m′′
1 , . . . ,m

′′
r as follows.

– For odd j, player 1 sets P = θ(mj |m′
<jx) and player 2 sets Q = θ(mj |m′′

<jy).
– For even j, player 1 sets Q = θ(mj |m′

<jx) and player 2 sets P = θ(mj |m′′
<jy).

– In each round j, the players run the protocol from Theorem 1 with error pa-
rameter ε/r, with � = 2,
and with d = β

rε
+ 1

ε
where

β =
I + 1/(e ln 2) + log(r + 1)

ε
+ 2.

This leaves player 1 with m′
j and player 2 with m′′

j .

Fig. 1. A round preserving compression of the protocol θ

6 Direct Product for Bounded Round Protocols

Let π be a (deterministic) r-round protocol for computing fn with inputs x =
x1, . . . , xn and y = y1, . . . , yn drawn from μn. To prove Theorem 2, we follow the
approach of [6] which itself resembles the proof of the parallel repetition theorem
[20]. Let W be the event that π correctly computes fn. For i ∈ [n], let Wi denote
the event that the protocol π correctly computes the i’th copy f(xi, yi). Let π(W )
denote the probability of W , and π(Wi|W ) denote the conditional probability
of the event Wi given W (clearly, π(Wi|W ) = 1). We shall prove that if π(W )
is not very small and ‖π‖ & Cn, then (1/n)

∑n
i=1 π(Wi|W ) < 1, which is a

contradiction. In fact, the proof holds for an arbitrary event W , as long as it
occurs with large enough probability:

Lemma 4 (Main Lemma). Let f be a 2-party Boolean function. There is a
universal constant α > 0 so that the following holds. For every γ > 0, and event

W such that π(W ) ≥ 2−γ
2n, if ‖π‖ ≥ 2, and ‖π‖ < αnγ2

(
C − r log(r/2γ)

αγ − r
αγ2

)
,

then 1
n

∑
i∈[n] π(Wi|W ) ≤ suc7r(μ, f, C) + γ/α.
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First let us see how Lemma 4 implies Theorem 2. As outlined above, let
W denote the event that π computes f correctly in all n coordinates.
So, (1/n)

∑
i∈[n] π(Wi|W ) = 1. Set γ = α(1 − suc7r(μ, f, C))/2 so that

suc7r(μ, f, C) + γ/α < 1. Then by Lemma 4, either ‖π‖ < 2, ‖π‖ ≥
αnγ2

(
C − r log(r/2γ)

αγ − r
αγ2

)
, or π(W ) < 2−γ

2n. It therefore remains to prove

Lemma 4.
The overall idea is to use π to produce a 7r-round protocol with commu-

nication complexity < C that computes f correctly with probability at least
(1/n)

∑n
i=1 π(Wi|W ) − O(γ). This would imply that (1/n)

∑
i∈[n] π(Wi|W ) ≤

suc7r(μ, f, C) + O(γ), as desired. The first step is to show that there exists a
good simulating protocol for a random coordinate of π|W , whose average infor-
mation cost is low (roughly ‖π‖/n) and still uses only r rounds. The existence
of such protocol was proven in [6], except their protocol is not guaranteed to
actually have low information cost, but to merely be statistically close to a low-
information protocol. This will suffices for our purpose:

Lemma 5 (Claims 26 and 27 from [6], restated). There is a protocol σ
taking inputs x, y ∼ μ so that the following holds:

– σ publicly chooses a uniform i ∈ [n] independent of x, y, and Si which is part
of the input to π.

– Ex,y,m,i,si |σ(xysim)− π(xiyisim|W )| ≤ 2γ.
– Rounds(σ) = Rounds(π).
– Ei [Iπ(Xi;M |YiSiiW ) + Iπ(Yi;M |XiSiiW )] ≤ 4‖π‖/n.

The second step of the proof of Lemma 4 is to compress the simulating protocol σ
so that it actually has low communication, without introducing many additional
rounds in the compression process. Since the second and fourth propositions
of Lemma 5 imply that σ is 2γ-close to a low-information distribution q =
π(xiyisim|W ), this is precisely the setting of Theorem 3. A formal proof of
Lemma 4 can be found in the full version of this paper [7].
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Abstract. The problem of (approximately) counting the number of tri-
angles in a graph is one of the basic problems in graph theory. In this
paper we study the problem in the streaming model. Specifically, the
amount of memory required by a randomized algorithm to solve this
problem. In case the algorithm is allowed one pass over the stream, we
present a best possible lower bound of Ω(m) for graphs G with m edges.
If a constant number of passes is allowed, we show a lower bound of
Ω(m/T ), T the number of triangles. We match, in some sense, this lower
bound with a 2-pass O(m/T 1/3)-memory algorithm that solves the prob-
lem of distinguishing graphs with no triangles from graphs with at least
T triangles. We present a new graph parameter ρ(G) – the triangle den-
sity, and conjecture that the space complexity of the triangles problem
is Θ(m/ρ(G)). We match this by a second algorithm that solves the
distinguishing problem using O(m/ρ(G))-memory.

1 Introduction

Counting the number of triangles in a graph G = (V,E) is one of the basic
algorithmic questions in graph theory. From a theoretical point of view, the
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key question is to determine the time and space complexity of the problem.
The brute-force approach enumerates all possible triples of nodes (taking O(n3)
time, n is the number of vertices in G). The algorithms with the lowest time
complexity for counting triangles rely on fast matrix multiplication. The asymp-
totically fastest algorithm to date is O(n2.372) [17]. An algorithm that runs in
time O(m1.41) with space complexity Θ(n2) is given in [2] (m is the number
of edges in G). In more practical applications, the number of triangles is a fre-
quently used network statistic in the exponential random graph model [13,8],
and naturally appears in models of real-world network evolution [12], and web
applications [4,7]. In the context of social networks, triangles have a natural in-
terpretation: friends of friends tend to be friends [16], and this can be used in
link recommendation/friend suggestion [14].

The memory restrictions when dealing with huge input sizes leads to consider
the streaming model: The edges of the graph come down the stream, and the
algorithm processes each edge as it comes in an on-line fashion (once it moves
down the stream, it cannot access it again). The algorithm is allowed ideally one
pass (or a limited number of passes) over the stream. The parameter of interest
is the amount of memory that the algorithm uses to solve the problem. Formally,

Definition 1. Triangles(c) is the problem of approximating the number of
triangles in the input graph within a multiplicative factor of 9/10 with probability
at least 2/3, using at most c passes over the data stream.

The choice of constants 9/10 and 2/3 in the definition is for the sake of clear
and simple presentation. In particular, one can take both the approximation rate
and success probability to be parameters of the problem.

Currently, no non-trivial algorithms are known to solve Triangles(c) when
c is constant (by trivial we mean an algorithm that uses Θ(m) memory, m the
number of edges, which is asymptotically the same as storing all graph edges).
All existing approximation algorithms receive T3 (the number of triangles in the
input graph) as part of their input. Obviously, T3 cannot be part of the input.
One way to implement such an algorithm is by “guessing” the correct value of
T3 and verifying the guess. This translates into Θ(log n) passes over the stream
(in form of a binary search for example). In light of what we’ve just said, a
fundamental questions remains open.

Question 1: Determine the space complexity of Triangles(1) and
Triangles(O(1)).

Throughout we assume that it takes constant space to represent a single vertex
of the graph. This assumption is widely made, and many results are stated under
this assumption. Bar-Yossef et. al. [3] showed that the space complexity required
to solve Triangles(1) is Ω(n2). Specifically, they showed that every one-pass
0.5-approximation algorithm that succeeds with probability 0.99, is as good as
the trivial algorithm that stores all edges and exhaustively computes the number
of triangles. While the lower bound determines the space complexity in the worst
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case, it is informative to study more refined notions of “worst case”. For example,
what is the space complexity of Triangles(1) when the graph has exactly m
edges, or at least T triangles. What is the space complexity of Triangles(2),
when two passes over the stream are allowed, rather than one. In those cases the
lower bound in [3] is irrelevant.

1.1 Our Results

In this paper we show that the space complexity of any algorithm that solves
Triangles(1) (i.e. in one pass) is Ω(m). This lower bound is asymptotically
tight, since the trivial algorithm that stores all edges of the graph uses that
much memory. Furthermore, the lower bound is true even when assuming that
the graph has T3 = O(n) triangles. Clearly one cannot expect this to be the
case for every value of T3, since when T3 = Θ(n3) for example, a straightforward
sampling algorithms solves Triangles(1) using O(1)-space. Formally,

Theorem 1. ∃c1, c2 > 0 s.t. the space complexity of Triangles(1) is Ω(m),
when the input is an n-vertex graph with m ∈ [c1n, c2n

2] edges. Furthermore,
this lower bound is true even if the graph has as many as 0.99n triangles.

Theorem 1 extends the aforementioned result in [3] in two aspects: the number
of edges is asymptotically the entire range (compared with Θ(n2) in [3]). The
graph may contain as many as a linear number of triangles (compared with one
triangle in [3]). In addition, our proof technique is conceptually and technically
simpler.

Improving upon the currently best known lower bound of Ω(n/T3) for
Triangles(O(1)) [10], we show that:

Theorem 2. The space complexity of Triangles(O(1)) for input graphs with
m edges and T3 triangles is Ω(m/max{T3, 1}).

Theorems 1 and 2 are proven, respectively, via reductions from the index problem
in communication complexity, and a variant of the set disjointness problem. The
proofs are rather standard and are omitted due to page limitation. They appear
in the full version of this paper.

From the algorithmic perspective, Triangles(1) has an asymptotically tight
lower bound, and a non-trivial solution for Triangles(O(1)) seems beyond the
reach of current techniques. As we already mentioned, all current state-of-the-art
approximation algorithms require a super-constant number of passes (regardless
of the space complexity). Hence, we start with a softer notion of approximation,
in the spirit of property testing.

Definition 2. Dist(c) is the following problem. Given two graph families: G1
consisting of triangle-free graphs, G2 consisting of graphs with at least T triangles,
and an input graph G ∈ G1∪G2, decide whether G ∈ G1 or G ∈ G2 with probability
at least 2/3, using at most c passes over the input.
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The same lower bounds that we derive for Triangles(c) are true for Dist(c) as
well (therefore there is nothing interesting to say algorithmically about Dist(1)).
Our main result is an algorithm that solves Dist(2) using O(m/T 1/3) space. We
now turn to describe our algorithm in details, and formally state the relevant
theorem. We assume that the parameter T is known to the algorithm (as it is
part of the problem definition).

Algorithm A

Output: ‘1’ iff a triangle was found.
Pass 1
(a) Set m′ = 6m/T 1/3, and p = m′/m.
(b) Store every edge e with probability p. If more than 5m′ edges are stored,

output FAIL.
(c) Let H be the graph stored by the algorithm at the end of (b). Search

for a triangle in H , if found output 1.
Pass 2 For every edge e, check whether e completes a triangle in H . Output

1 iff such edge exists.

Fig. 1. A two-pass algorithm with space complexity O(m/T 1/3)

Theorem 3. For T ≥ 216, Algorithm A solves Dist(2) using at most 30m/T 1/3

space.

When T = ω(1), our algorithm solves Dist(2) using sub-linear space. Also, our
lower bound on the space complexity of Dist(1), together with Algorithm A
for Dist(2), imply a space complexity separation result between one-pass and
two-passes. For example, Dist(2) can be solved in space O(m/n1/3) = o(m) for
graphs with T3 = n/2 triangles and m edges, while Dist(1) requires Ω(m)-space
for such graphs.

Remark. AlgorithmA assumesm is known. This assumption is done only for the
sake of clear and simple presentation, and can be easily removed: The algorithm
“guesses” an initial value for m, say m1 = 1. This value is used to define p for
the first m1 edges. If the number of edges exceeds that guess, then the algorithm
sets m2 = 2m1, and updates p accordingly for the next m2 edges. Every time
guess i is exceeded, the algorithm sets mi+1 = 2mi. The last interval will consist
of the last m/2 edges. Edges are still stored independently of each other, and in
expectation twice as many edges are stored. Storing more edges may only help
the algorithm (while not changing the asymptotic space complexity). Hence the
same analysis that we have for A goes through with this additional procedure.

1.2 A New Graph Parameter

While the bound given in Theorem 1 for Triangles(1) is asymptotically tight,
we suspect that the bound in Theorem 2 for Triangles(O(1)) is not tight,
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and conjecture a tight bound instead. Define the triangle density of a graph G,
ρ(G), to be the number of vertices that belong to some triangle in G. If G has
T triangles, it is easy to see that (6T )1/3 ≤ ρ(G) ≤ 3T (a clique or T disjoint
triangles).

Conjecture: The space complexity of Triangles(O(1)) and Dist(O(1)) is
Θ(m/ρ(G)).

The lower bound in Theorem 2 is consistent with the case ρ(G) = Θ(T ), and
Algorithm A is consistent with ρ(G) = Θ(T 1/3). We describe a second algorithm
that solves Dist(2) using O(m/ρ(G)) space, thus showing that one cannot hope
for a tighter bound than the one stated in the conjecture. A formal description
of the algorithm, a proof of correctness and analysis of its space complexity is
given in Section 2.

1.3 Related Work

Let us mention several approaches for approximating the number of triangles
in the streaming model. The first, and arguably most natural, is a sampling
approach. For example, the 2-pass algorithm suggested in [5], samples in the
first pass s random pairs (e, v) of an edge e = (u,w) and a vertex v, and stores
them. Then in the second pass checks for every pair (e, v) whether (u, v, w) is a
triangle. The total number of triangles is estimated as a function of the number
of pairs (e, v) that formed a triangle. The number of samples s is proportional
to (T1 + T2 + T3)/T3, where Ti is the number of vertex triples in the graph
spanning exactly i edges (one can verify that T1 + 2T2 + 3T3 = m(n− 2), where
m = |E(G)| and n = |V (G)|). A more sophisticated version of that algorithm
uses (T1 + T2)/T3 samples.

A different approach reduces the problem of approximating the number of tri-
angles to the problem of estimating the frequency moments of the data stream,
using the Alon-Matias-Szegedy (AMS) algorithm [1]. This approach was pre-
sented in [3] for the first time. The algorithm in [3] uses T1, T2, T3 to compute
the appropriate parameters with which to run AMS. The space complexity of
this algorithm is proportional to ((T1 + T2)/T3)3. In another work [10], the al-
gorithm uses m,C4, C6, T3 to compute the appropriate parameters to AMS (Ci

is the number of i-cycles in the graph). The space complexity of that algorithm
is (m3 +mC4 + C6 + T 2

3 )/T 2
3 .

One disadvantage that the aforementioned algorithms share is that in the
worse case, all of them store Ω(m) edges, regardless of the actual number of
triangles in the graph. One example for such “worse case” input is the graph
with vertex set V = A0 ∪ A1 ∪ A2, each Ai of size n/3. The edge set E is the
complete bi-partite graph on A0, A1 and on A1, A2. We can vary the number
of triangles T3 by adding isolated triangles, or edges between A0 and A2. For
a wide range of T3 values, each of the aforementioned algorithm stores Ω(m)
edges (as in particular T2 = Ω(n3)). In light of this, another interesting question
arises:
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Question 2: Can one solve Triangles(c) using space complexity depending
only on the number of edges m and triangles T3?

The space complexity of our Algorithm A depends only on m and T3 (see The-
orem 3), however it solves Dist(c) and not Triangles(c).

Finally let us mention the graph scarification approach, which we also used
as an ingredient in Algorithm A (see Figure 1.1). Given a stream of graph G’s
edges, one computes a sparse image of G by storing every edge independently
with probability p, where p is a parameter of the algorithm. This approach lends
itself to a 1-pass algorithm, by computing the sparsified image and extracting
from it an approximation to the total number of triangles. This approach was
analyzed both in [15] and [11], where sufficient conditions for its success were
established (assuming some additional information on the triangle structure).

In full generality, without any assumptions on G, this 1-pass algorithm is too
naive. Specifically, if the algorithm answers correctly with probability say 2/3
then p must be constant (think of the case where all triangles are “stacked” on
one common edge. This edge will not appear in the sparsified image w.p. at least
1− p, and a wrong answer is bound to be returned with that probability. Hence
p ≥ 1/3). In other words, the algorithm stores Ω(m) edges. This is of course
consistent with our lower bound in Theorem 1. Although our Algorithm A also
uses sparsification, we were able to avoid this pathological case, by introducing
a second pass. More details in the next section.

1.4 Theorem 3: Proof Outline

Recall the graph sparsification procedure. Given a graph G, store every edge,
independently of the others, with probability p. Let H be the sparsified image
of G. If G has at least T triangles, the expected number of triangles in H is
p3T . Taking p = Ω(T−1/3), the expected number of triangles in H is Ω(1), and
the number of edges in H is O(m/T 1/3). The key question is how concentrated
is the number of triangles in H? For example, think of two triangles sharing
an edge. If this edge was not picked in H then both triangles will not show up
in H . This phenomenon may translate into a large variance in the number of
triangles in H . To solve this problem, we identify the graph structure responsible
for large variance. More concretely, we call s triangles that share the same edge
an s-tower. For a carefully chosen number s∗ = s∗(p), one can show the following
fact: If G has no s∗-tower, then the variance is small and the number of triangles
in H is close to the expectation. If there is an s∗-tower, it is tall enough so that
at least one floor survives (a floor is two edges that belong to the same triangle).
In that case, in the second pass of A, the base of that tower is caught, and a
triangle is detected.

Paper Organization. We proceed with the description of our second algorithm
mentioned in Section 1.2. The proof of Theorem 3 follows in Section 3.
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Algorithm A2(G, T, ρ(G))

Output: 1 if a triangle is detected, 0 otherwise.
Pass 1
(a) Sample a set S of 4n/ρ(G) vertices, uniformly at random.
(b) Store all edges in the stream that touch the set S.
Pass 2 Check for every edge e if it completes a triangle with any of the

stored edges. Output 1 iff such edge exists.

2 The Second Algorithm

Theorem 4. Algorithm A2 solves Dist(2) using O(m/ρ(G)) space in expecta-
tion.

Proof. Let Z ⊂ V be the set of vertices in G that belong to some triangle. In our
notation, the size of Z is ρ(G). The algorithm never fails if there are no triangles
in G. Therefore let us consider the case where there are triangles in G.

The algorithm A2 fails only if S∩Z = ∅. Otherwise, S contains a vertex v that
belongs to some triangle {v, u, w}, and in the first pass the algorithm stores all
neighbors of v (and in particular the edges (v, u) and (v, w)). In the second pass
the edge (u,w) will be considered and A2 will detect the triangle. Let us bound
the probability of S∩Z = ∅. Let Ai be the event that the ith vertex chosen to be
in S doesn’t belong to Z. It is easy to see that the Ai’s are negatively correlated
(as there is no replacement). For every i, Pr[Ai] = 1− ρ(G)/n. Therefore,

Pr[S ∩ Z = ∅] = Pr[A1 ∧ A2 ∧ . . . A|S|] ≤ (1− ρ(G)/n)4n/ρ(G) ≤ e−4.

Now let us compute the expected number of edges stored by A2. For the ith

vertex in S, let Di be a random variable counting the degree of that vertex in G.
Since the ith vertex is a uniformly random vertex, E[Di] = 2m/n (the average
degree inG). The expected number of edges touching S is at most (using linearity
of expectation)

E

⎡⎣ |S|∑
i=1

Di

⎤⎦ =

|S|∑
i=1

E [Di] = (4n/ρ(G))(2m/n) = 8m/ρ(G).

This completes the Proof of Theorem 4.

3 Proof of Theorem 3

We denote by Bin(n, p) the binomial random variable with parameters n and
p, and expectation μ = np. We shall use the following variant of the Chernoff
bound, whose proof can be found in [9, p. 21]. Let ϕ(x) = (1 + x) ln(1 + x)− x.
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Theorem 5. If X ∼ Bin(n, p) and t ≥ 0 is some number, then

Pr
(
X ≥ μ+ t) ≤ e−μϕ(t/μ), P r

(
X ≤ μ− t) ≤ e−μϕ(−t/μ).

The algorithm A always answers correctly if the graphG has no triangles. There-
fore, it suffices to bound the error probability when the graph G has at least
T ≥ 1 triangles.

Let H be the graph in which each edge of the stream is included with proba-
bility p. Define two events:

B1 = “more than 5m′ edges were stored in the first pass (causing the algorithm
to output FAIL)”, and

B2 = “H has no triangles, and no edge of the stream completes a triangle in
H .”

Then, Pr[A fails] ≤ Pr[B1] + Pr[B2|Bc
1] ≤ Pr[B1] + Pr[B2]/Pr[Bc

1].
To bound Pr[B1] note that the number of edges stored by A is a binomial

random variable with expectation mp = m′. In our case, m′ ≥ 4: we can assume
w.l.o.g that m ≥ n/2 (isolated vertices are never visible to the algorithm), and
T always satisfies T ≤ n3/6, therefore m′ = 6m/T 1/3 ≥ 4. Using Theorem 5, the
probability of storing more than 5m′ edges is at most 1/50, hence Pr[B1] ≤ 1/50.
In turn,

Pr[A fails] ≤ 1

50
+

50

49
Pr[B2].

It suffices to show that Pr[B2] ≤ 0.3, and then derive Pr[A fails] ≤ 1/3, as
required. In what remains we prove Pr[B2] ≤ 0.3.

To this end, we call s triangles that share the same edge an s-tower. Each
pair of edges that belong to the same triangle is called a floor in the tower.
Let T3 ≥ T be the number of triangles in G. For p = m′/m = 6/T 1/3, let
μ = p3T3 = 216T3/T be the expected number of triangles in H and σ2 the
variance (σ is the standard deviation).

Lemma 1. If G contains no tower with more than T
2/3
3 floors, then σ ≤

110(T3/T )5/6.

To prove Lemma 1, we need the following claim.

Lemma 2. Let G be a graph with T3 triangles, having no tower with more than
h floors. Let π(G) be the number of pairs of triangles that share an edge. Then
π(G) ≤ 3T3h/2.

Proof. Observe that every pair of triangles that share an edge belongs to exactly
one tower: If the pair belongs to two towers, then the two triangles share two
edges, but then they are the same triangle. Every pair belongs to at least one
tower, since every such pair is a tower of height two. Therefore we can count the
number of pairs sharing an edge, by counting the number of pairs of triangles in
every tower. Let ai be the number of towers with i floors. Using this notation,
π(G) =

∑h
i=2 ai

(
i
2

)
. Next observe that

∑h
i=2 aii ≤ 3T3. The sum counts the
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number of triangles that belong to some tower, when every such triangle is
accounted for at most three times (as it belongs to at most three different towers).
Finally, we have

π(G) =
h∑

i=2

ai

(
i

2

)
≤ 1

2

h∑
i=2

(aii) · i ≤
1

2

h∑
i=2

(aii) · h =
h

2

h∑
i=2

aii ≤ 3T3h/2.

Proof. (Lemma 1) Index the triangles in G by 1, 2, . . . , T3. Let 1j be the indicator
random variable which takes the value 1 if all three edges of triangle j belong to
H .

E[1j ] = p3, Var[1j ] = p3(1− p3) ≤ p3.

In these notations, σ2 (the variance of the number of triangles in H) is given by

σ2 =

T3∑
i=1

Var(1i) +
∑
i<j

Cov(1i,1j),

T3∑
i=1

Var(1i) ≤ T3p
3 =

216T3
T

.

For two triangles that share no edge, Cov(1i,1j) = E[1i1j ]− E[1i]E[1j ] = p6 −
p6 = 0. Therefore we only need to consider triangles that share an edge. For
every such pair, Cov(1i,1j) = p5 − p6 ≤ p5. By Lemma 2 with h = T 2/3, there

are at most 1.5T
5/3
3 pairs of triangle that share an edge. Hence,

∑
i<j

Cov(1i,1j) ≤ 1.5T
5/3
3 p5 =

1.5 · 65 · T 5/3
3

T 5/3
≤

(
278T3
T

)5/3

.

To summarize,

σ2 ≤ 216T3
T

+

(
278T3
T

)5/3

≤
(

282T3
T

)5/3

.

Taking the square root, we get the desired bound on σ.

Proposition 1. Conditioned on G not having a tower with more than T
2/3
3

floors, Pr[B2] ≤ 0.26.

Proof. For a random variable X , with expectation μ and standard deviation σ,

Chebychev’s inequality implies Pr[X = 0] ≤
(

σ
μ

)2

. The expected number of

triangles in H is μ = 216T3/T . The standard deviation σ ≤ 110(T3/T )5/6 (by
Lemma 1). Therefore

Pr[no triangles in H ] ≤
(

110

216
·
(
T

T3

)1/6
)2

≤ 0.26.

Next we turn to the case where G contains a tower with at least T
2/3
3 floors.
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Proposition 2. Conditioned on G having a tower with at least T
2/3
3 floors,

Pr[B2] ≤ 0.001.

Proof. Fix a tower with at least T
2/3
3 floors. Every floor belongs to H indepen-

dently of the others with probability p2. Therefore the expected number of floors
that belong to H from that tower is

p2T
2/3
3 =

(
6

T 1/3

)2

T
2/3
3 = 36

(
T3
T

)2/3

≥ 36.

Using Chernoff’s bound (second inequality of Theorem 5) with μ = 36 and
t = 35, we get

Pr[no floor from the tower belongs to H ] ≤ e−36ϕ(−36/35) ≤ e−30 ≤ 0.001.

Finally, combining Propositions 1 and 2 we get Pr[B2] ≤ 0.26 + 0.001 < 0.3. To
complete the proof of Theorem 3, observe that the space complexity of A never
exceeds 5m′ which is 30m/T 1/3.
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Online Checkpointing
with Improved Worst-Case Guarantees
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Abstract. In the online checkpointing problem, the task is to continu-
ously maintain a set of k checkpoints that allow to rewind an ongoing
computation faster than by a full restart. The only operation allowed is
to replace an old checkpoint by the current state. Our aim are checkpoint
placement strategies that minimize rewinding cost, i.e., such that at all
times T when requested to rewind to some time t ≤ T the number of
computation steps that need to be redone to get to t from a checkpoint
before t is as small as possible. In particular, we want that the closest
checkpoint earlier than t is not further away from t than qk times the
ideal distance T/(k + 1), where qk is a small constant.

Improving over earlier work showing 1 + 1/k ≤ qk ≤ 2, we show
that qk can be chosen asymptotically less than 2. We present algorithms
with asymptotic discrepancy qk ≤ 1.59 + o(1) valid for all k and qk ≤
ln(4) + o(1) ≤ 1.39 + o(1) valid for k being a power of two. Experiments
indicate the uniform bound pk ≤ 1.7 for all k. For small k, we show how
to use a linear programming approach to compute good checkpointing
algorithms. This gives discrepancies of less than 1.55 for all k < 60.

We prove the first lower bound that is asymptotically more than one,
namely qk ≥ 1.30−o(1). We also show that optimal algorithms (yielding
the infimum discrepancy) exist for all k.

1 Introduction

Checkpointing means storing intermediate states of a long sequence of computa-
tions. This allows reverting the system to a previous state much faster, since only
the computations from the preceding checkpoint have to be redone. Checkpoint-
ing is one of the fundamental techniques in computer science. Classic results date
back to the seventies [4], more recent topics are checkpointing in distributed [5],
sensor network [8], or cloud [11] architectures.

Checkpointing usually involves a trade-off between the speed-up of reversions
to previous states and the costs incurred by setting checkpoints (time, mem-
ory). Much of the classic literature (see [6] and the references therein) studies
checkpointing with the focus of fault tolerance against immediately detectable
faults. Consequently, only reversions to the most recent checkpoint are needed.
However, setting a checkpoint can be expensive, because the whole system state
� Karl Bringmann is a recipient of the Google Europe Fellowship in Randomized Algo-
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has to be copied to secondary memory. In such scenarios, the central question is
how often to set a checkpoint such that the expected time spent on setting check-
points and redoing computations from the last checkpoint is minimized (under a
stochastic failure model and further, possibly time-dependent [10], assumptions
on the cost of setting a checkpoint).

In this work, we will regard a checkpointing problem of a different nature.
If not fault-tolerance of the system is the aim of checkpointing, then often the
checkpoints can be kept in main memory. Applications of this type arise in data
compression [2] and numerics [7,9]. In such scenarios, the cost of setting a check-
point is small compared to the cost of the regular computation. Consequently,
the memory used by the stored checkpoints is the bottleneck.

The first to provide a framework independent of a particular application were
Ahlroth, Pottonen and Schumacher [1]. They do not make assumptions on which
reversion will be requested, but simply investigate how checkpoints can be set
in an online fashion such that at all times their distribution is balanced over the
computation history.

They assume that the system is able to store up to k checkpoints (plus a
free checkpoint at time 0). At any point in time, a checkpoint may be discarded
and replaced by the current state as new checkpoint. Costs incurred by such a
change are ignored. However, as it turns out, good checkpointing algorithms do
not set checkpoints very often. For all algorithms discussed in the remainder of
this paper, each checkpoint is changed only O(log T ) times up to time T .

Each set of checkpoints, together with the current state and the state at
time 0, partitions the time from the process start to the current time T into
k+1 disjoint intervals. Clearly, without further problem-specific information, an
ideal set of checkpoints would lead to all these intervals having identical length.
Of course, this is not possible due to the restriction that new checkpoints can
only be set on the current time. As discrepancy measure for a checkpointing
algorithm, Ahlroth et al. mainly regard the maximum gap ratio, that is, the
maximum ratio of the longest interval vs. the shortest interval (ignoring the last
interval), over all current times T . They show that there is a simple algorithm
achieving a discrepancy of two: Start with all checkpoints placed evenly, e.g.,
at times 1, . . . , k. At an even time T , remove one of the checkpoints at an odd
time and place it at T . This will lead to all checkpoints being at the even times
2, 4, . . . , 2k when T = 2k is reached. Since these checkpoints form a scaled copy
of the initial ones, we can continue in this fashion forever. It is easy to see that
at all times, the intervals formed by neighboring checkpoints have at most two
different lengths, the larger being twice the smaller. This shows the discrepancy
of two.

Not much improvement is possible for general k as shown by the lower bound
of 21−1/�(k+1)/2� = 2(1 − o(1)). For small values of k, namely k = 2, 3, 4, and 5,
better upper bounds of approximately 1.414, 1.618, 1.755, and 1.755, respectively,
were shown.

In this work, we shall regard a different, and, as we find, more natural discrep-
ancy measure. Recall that the cost of reverting to a particular state is basically
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the cost of redoing the computation from the preceding checkpoint to the desired
point in time. Adopting a worst-case view on the time to revert to, our aim is
to keep the length of the longest interval small (at all times). Note that with
time progressing, the interval lengths necessarily grow. Hence a fair point of com-
parison is the length T/(k + 1) of a longest interval in the (at time T ) optimal
partition into equal length intervals. For this reason, we say that a checkpointing
algorithm (using k checkpoints) has maximum distance discrepancy (or simply
discrepancy) q if it places the checkpoints in such a way that at all times T , the
longest interval has length at most qT/(k+ 1). We denote by q∗(k) the infimum
discrepancy among all checkpointing algorithms using k checkpoints.

This discrepancy measure was suggested in [1]. There it was remarked that
an upper bound of β for the gap-ratio implies an upper bound of β(1 + 1

k ) for
the maximum distance discrepancy. Furthermore, for all k an upper bound of 2
and a lower bound of 1 + 1

k is shown for q∗(k). For k = 2, 3, 4, and 5, stronger
upper bounds of 1.785, 1.789, 1.624, and 1.565, respectively, were shown.

Our Results. In this work, we show that the optimal discrepancy q∗(k) is asymp-
totically bounded away from both one and two by a constant. We present al-
gorithms that achieve a discrepancy of 1.59 + O(1/k) for all k (Theorem 2),
and a discrepancy of ln(4) + o(1) ≤ 1.39 + o(1) for k being any power of two
(Theorem 3). For small values of k, and this might be an interesting case in appli-
cations with memory-consuming states, we show superior bounds by suggesting
a class of checkpointing algorithms and optimizing their parameters via a com-
bination of exhaustive search and linear programming (Table 1). Experiments
suggest q∗(k) ≤ 1.7 for all k (Sect. 6). We complement these constructive results
by a lower bound for q∗(k) of 2 − ln(2) − O(1/k) ≥ 1.3 − O(1/k) (Theorem 6).
We round off this work with a natural, but seemingly nontrivial result: We show
that for each k there is indeed a checkpointing algorithm having discrepancy
q∗(k) (Theorem 4). In other words, the infimum in the definition of q∗(k) can
be replaced by a minimum.

Due to space restrictions, some proofs are omitted. They can be found in the
full version of this paper [3].

2 Notation and Preliminaries

In our setting, we consider a long running computation during which we can
choose to save the state at the current time T in a checkpoint, or delete a pre-
viously placed one. We assume that our storage can hold at most k checkpoints
simultaneously, and that there are implicit checkpoints at time t = 0 and the
current time. We disregard any costs for placing or maintaining checkpoints.
Consequently, we may assume that we only delete a previous checkpoint when
a new one is placed.

An algorithm for checkpoint placement can be described by two infinite se-
quences. First, the time points where new checkpoints are placed, i.e., a non-
decreasing infinite sequence of reals t1 ≤ t2 ≤ . . . such that limi→∞ ti = ∞, and
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second, a rule that describes which old checkpoints to delete when a new one is
installed, that is, an injective function d : [k + 1..∞) → N satisfying di < i for
all i ≥ k + 1.

The algorithm A described by (t, d) will start with t1, . . . , tk as initial check-
points and then for each i ≥ k + 1, at time ti remove the checkpoint at tdi

and set a new checkpoint at the current time ti. We call the act of removing
a checkpoint and placing a new one a step of A. Note that there is little point
in setting the first k checkpoints to zero, so to make the following discrepancy
measure meaningful, we shall always require that tk > 0.

We call the set of checkpoints that exist at time T active. These, together
with the two implicit checkpoints at times 0 and T , define a sequence of k + 1
interval lengths LT = (
0, . . . , 
k). The discrepancy q(A, T ) of an algorithm A at
time T ≥ tk is calculated as q(A, T ) := (k+1)
̄T /T , where 
̄T = ||LT ||∞ denotes
the length of the longest interval.

The discrepancy Discr(A) of an algorithm A then is the supremum over the
discrepancy over all times T , i.e.,

Discr(A) := sup
T≥tk

q(A, T ).

Hence the discrepancy of an algorithm would be 1, if it always kept its check-
points evenly distributed. Denote the infimum discrepancy of a checkpointing
algorithm using k checkpoints by

q∗(k) := inf
A

Discr(A),

where A runs over all algorithms using k checkpoints. We will see in Sect. 7 that
algorithms achieving this discrepancy actually exist.

Note that we allow checkpointing algorithms to set checkpoints at continuous
time points. One can convert any such algorithm to an algorithm with integral
checkpoints by rounding all checkpointing times ti down. This does not increase
the discrepancy since �ti� − �ti−1� ≤ ti − ti−1 + 1, but with discrete time there
are at most �ti� − �ti−1� − 1 steps to recompute in this interval.

In the definition of the discrepancy, the supremum is never attained at some
T with ti < T < ti+1 for any i, further, at any time ti it suffices to consider the
two newly created intervals by deleting and storing a checkpoint. This is made
precise in the following two lemmas.

Lemma 1. In the definition of the discrepancy it suffices to consider times T =
ti for all i ≥ k, i.e., we have

Discr(A) = sup
i≥k

q(A, ti).

Lemma 2. Let i > k and let 
1, 
2 be the lengths of the two newly created
intervals at time ti due to the removal and the insertion of a checkpoint. Then

max{q(A, ti−1), q(A, ti)} = max{q(A, ti−1), (k + 1)
1/ti, (k + 1)
2/ti}.
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Intuitively, both lemmas rely on the fact that unchanged intervals improve in
discrepancy as time progresses. In Lemma 2, all intervals improve in discrepancy,
except the two that change. In Lemma 1, the interval [tn, T ], defined by the last
checkpoint tn and the current time T , has maximal discrepancy when we place
a new checkpoint.

Often, it will be useful to use a different notation for the checkpoint removed
in step i. Instead of the global index d, one can also use the index p : [k+1..∞) →
[1..k] among the active checkpoints, i.e.,

pi = di − |{j ∈ [i− 1] | dj < di}|.

We call an algorithm A = (t, p) cyclic, if the pi are periodic with some period
n, i.e., pi = pi+n for all i, and after n steps A has transformed the intervals
to a scaled version of themselves, that is, Ltk+jn

= γjLtk for some γ > 1 and
all j ∈ N. We call γ the scaling factor. For a cyclic algorithm A, it suffices to
fix the pattern of removals P = (pk+1, . . . , pk+n) and the checkpoint positions
t1, . . . , tk, tk+1, . . . , tk+n. Since our discrepancy notion is invariant under scaling,
we can assume without loss of generality that tk = 1 (and hence tk+n = γ).

Since cyclic algorithms transform the starting position to a scaled copy of
itself, it is easy to see that their discrepancy is given by the maximum over the
discrepancies during one period, i.e., for cyclic algorithms A with period n we
have

Discr(A) = max
k<i≤k+n

q(A, ti).

This makes this class of algorithms easy to analyze.

3 Introductory Example—A Simple Bound for k = 3

For the case of k = 3 there is a very simple algorithm, Simple, with a discrepancy
of 4/φ2 ≈ 1.53, where φ = (

√
5+1)/2 is the golden ratio. We use it to familiarize

ourselves with the notation from Sect. 2. The algorithm is cyclic with a pattern
of length one. We prove the following theorem.

Theorem 1. For k = 3 there is a cyclic algorithm Simple with period length
one and

Discr(Simple) = 4/φ2.

Proof. We fix the pattern to be P = (1), that is, algorithm Simple always
removes the oldest checkpoint. For this simple pattern it is easy to calculate the
discrepancy depending on the scaling factor γ. Since the intervals need to be a
scaled copy of themselves after just one step and we can fix t3 = 1, we know
immediately that

t1 = γ−2, t2 = γ−1, t3 = 1, t4 = γ,

and hence the discrepancy is determined by

4 ·max {t1/t3, (t2 − t1)/t3, (t3 − t2)/t3} = 4 ·max
{
γ−2, (γ − 1)/γ2, (γ − 1)/γ

}
.
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A simple calculation shows this maximum to be minimal at γ = φ.
Hence for k = 3 the algorithm with pattern (1) and checkpoint positions

t1 = 1/φ2, t2 = 1/φ, t3 = 1, and t4 = φ has discrepancy 4/φ2 ≈ 1.53. ��

4 An Upper Bound for Large k

In this section we present an algorithm, Linear, with a discrepancy of roughly
1.59 for large k. This improves upon the asymptotic bound of 2 from [1]. More-
over, Linear is easily implemented for all k.

Like the algorithm Simple of the previous section, the algorithm Linear is
cyclic. It has a simple pattern of length k. The pattern is just (1, . . . , k), that is,
at the i-th step of a period Linear deletes the i-th active checkpoint. Overall,
during one period Linear removes all checkpoints at times ti with odd index i,
as shown in Fig. 1.

This removal pattern is identical to the one of Powers-Of-Two algorithm
from [1]. However, that algorithm starts with a uniform checkpoint distribution
where removing any checkpoint doubles the maximum interval. This leads to
an asymptotic discrepancy of two. In contrast, Linear places checkpoints on
a polynomial. For i ∈ [1, 2k] we set ti = (i/k)α, where α is a constant. In the
analysis we optimize the choice of α and set α := 1.302. We show the following
theorem.

Theorem 2. Algorithm Linear has a discrepancy of at most 1.586 +O(k−1).

The proof of the above theorem is a straightforward calculation of the lengths of
the newly created intervals at each step, similar to the previous section, together
with some analytic estimations of the resulting discrepancies.

step 0
step 1
step 2
step 3
step 4
step 5

T = 1

T = 2.46

Fig. 1. One period of the algorithm Linear from Sect. 4 for k = 5. After one period
all intervals are scaled by the same factor.

5 An Improved Upper Bound for Large k

In this section we present the algorithm Binary that yields a discrepancy of
roughly ln(4) ≈ 1.39 for large k. Compared to the algorithm Linear from the
last section, Binary has a considerably better discrepancy at the price of a more
involved analysis, and it only works for k being a power of two.
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Theorem 3. For k ≥ 8 being any power of 2, the algorithm Binary has dis-
crepancy

Discr(Binary) ≤ ln(4) + 0.05/ lg(k/4) +O
(
k−1

)
Here and in the remainder of this paper, let ‘lg’ denote the binary and ‘ln’ the
natural logarithm. Note that the term O(1/k) quickly tends to 0, whereas the
Θ(1/ lg(k/4)) term is small due to the constant 0.05. Hence, this discrepancy
is close to ln(4) already for moderate k. Also note that ln(4) is by less than
0.1 larger than our lower bound from Sect. 8, leaving room for less than a 6%
improvement over algorithm Binary for large k.

5.1 The Algorithm Binary

The initial checkpoints t1, . . . , tk satisfy the equation

ti = αti/2 (1)

for each even 1 ≤ i ≤ k and some α = α(k) ≥ 2. Precisely, we set

α := 21+
lg(

√
2/ ln 4)

lg(k/4) ≈ 21+
0.029

lg(k/4) .

However, the usefulness of this expression becomes clear only in the analysis.
During one period we delete all odd checkpoints t1, t3, . . . , tk−1 and insert

tk+i := αtk/2+i, (2)

for 1 ≤ i ≤ k/2. Then after one period we end up with the checkpoints

(t2, t4, . . . , tk−2 , tk , tk+1 , tk+2 , . . . , tk+k/2)
= α· (t1, t2, . . . , tk/2−1, tk/2, tk/2+1, tk/2+2, . . . , tk/2+k/2) = α(t1, t2, . . . , tk),

which proves cyclicity. Note that (1) and (2) allow us to compute all ti from the
values tk/2+1, . . . , tk, however, we still have some freedom to choose the latter
values. Without loss of generality we can set tk := 1, then tk/2 = α−1. In between
these two values, we interpolate lg ti linearly, i.e., we set for i ∈ (k/2, k]

ti := α2i/k−2, (3)

completing the definition of the ti. Note that(3) also works for i = k and i = k/2.
In iteration 1 ≤ i ≤ k/2 we insert the checkpoint tk+i and remove the check-

point td(i+k), defined as follows. For m ∈ N = N≥1 let 2e(m) be the largest power
of 2 that divides m. We define S : N → N, S(m) := m/2e(m). Note that S(m) is
an odd integer. Using this definition, we set

d(k + i) := S(i+ k/2) (4)

finishing the definition of the algorithm Binary. If we write this down as a
pattern, then we have pi = 1 + k/(21+e(i)) for 1 ≤ i < k/2 and pk/2 = 1. For
intuition as to the behavior of this pattern, see the example in Fig. 2. It is not
hard to see that with d as defined above, we indeed delete all odd checkpoints
t1, t3, . . . , tk−1 during one period, in the full version of this paper we include a
formal proof of this.
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step 0
step 1
step 2
step 3
step 4
step 5
step 6
step 7
step 8

T = 1

T = 2.012

Fig. 2. One period of the algorithm Binary for k = 16. Note that, recursively, check-
points are removed twice as often from the right half of the initial setting as from the
second quarter.

5.2 Discrepancy Analysis

We now bound the largest discrepancy encountered during one period, i.e.,

Discr(Binary) = max
1≤i≤k/2

q(Binary, ti+k) = (k + 1) max
1≤i≤k/2


ti+k
/ti+k.

By Lemma 2, we only have to consider intervals newly created by insertion and
deletion at any step. We do this exemplarily for the intervals from insertion.

Intervals from Insertion: We compute the discrepancy of the interval newly
added at time ti+k, 1 ≤ i ≤ k/2. Its length is ti+k − ti+k−1, so its discrepancy is

(k + 1)
ti+k − ti+k−1

ti+k
= (k + 1)

(
1− ti+k−1

ti+k

)
= (k + 1)

(
1−

ti+k/2−1
ti+k/2

)
(3)
= (k + 1)

(
1− α−2/k

)
,

where the second equality holds because of (2) if i > 1 or (1) if i = 1.
Using ex ≥ 1 + x for x ∈ R yields a bound on the discrepancy of

(k + 1)
ti+k − ti+k−1

ti+k
≤ (k + 1) ln(α)

2

k
= ln(α2) +O(k−1).

Since we choose α ≈ 2, we obtain a discrepancy of roughly ln(4), and the error
term can easily be seen to be bounded by 0.05/ ln(k/4) +O(k−1).

6 Upper Bounds via Combinatorial Optimization

In this section we show how to find upper bounds on the optimal discrep-
ancy q∗(k) for fixed k. We do so by constructing cyclic algorithms using exhaus-
tive enumeration of all short patterns in the case of very small k or randomized



Online Checkpointing with Improved Worst-Case Guarantees 263

local search on the patterns for larger k, combined with linear programming to
optimize the checkpoint positions. This yields good algorithms as summarized
in Table 1. In the following we describe our algorithmic approach.

First we describe how to find a nearly optimal cyclic algorithm given a pat-
tern P and a scaling factor γ, i.e., how to optimize the checkpoint positions. To
do so, we construct a linear program that is feasible if a cyclic algorithm with
discrepancy λ and scaling factor γ exists. We use three kinds of constraints: We
fix the ordering of the checkpoints, enforce that the i-th active checkpoint after
one period is a factor γ larger than the i-th initial checkpoint, and upper bound
the discrepancy of each interval during the period by λ. We then use binary
search to optimize λ.

Lemma 3. For a fixed pattern P of length n and scaling factor γ, let q∗ =
infA Discr(A) be the optimal discrepancy among algorithms A using P and γ.
Then finding an algorithm with discrepancy at most q∗ + ε reduces to solving
O(log ε−1) linear feasibility problems with O(nk) inequalities and k+n variables.

To find good algorithms without a fixed γ, we need the following lemma which
is proved in the full paper.

Lemma 4. A cyclic algorithm with k checkpoints, discrepancy λ < k, and a
period length of n can have scaling factor at most γ ≤ (1 − λ/(k + 1))−n.

For any given pattern length n, Lemma 4 yields an upper bound on γ, while a
trivial lower bound is given by γ > 1. Now, for any given pattern P we optimize
over γ using a linear search with a small step size over the possible values for
γ. For each tested γ, we optimize over the checkpoint positions using the linear
programming approach described above.

Results: We ran experiments that exhaustively try all patterns up to length k
for k ∈ [3, 7]. For k = 8 we stopped after examining all patterns of length 7. For
larger k we used a randomized local search to find good patterns. The upper
bounds we found are summarized in Table 1.

We cannot prove (near) optimality for these algorithms, because we do not
know whether short patterns (or any finite patterns) are sufficient, and whether
the discrepancy behaves smoothly with γ and a linear search can find a nearly
optimal scaling factor. However, we tried all patterns of length 2k for k ∈ [3, 4, 5]
and found no better algorithm. Moreover, decreasing the step size in the linear
search for γ only yielded small improvements, suggesting that λ is continuous in
γ. This suggests that the bounds in Table 1 are indeed close to optimal.

Note that we can combine the results presented in Table 1 with experimental
results for the algorithm Linear (Theorem 2) to read off a global upper bound
of q∗(k) ≤ 1.7 for the optimal discrepancy for any k.

For a fixed pattern the method is efficient enough to find good checkpoint
positions for much larger k. For k ≤ 1000 we experimentally compared the
algorithm Linear of Sect. 4 with algorithms found for its pattern (1, . . . , k− 1).
The experiments show that for k = 1000 Linear is within 4.5% of the optimized
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Table 1. Upper bounds for different k. For k < 8 all patterns up to length k were tried.
For k = 8 all patterns up to length 7 were tried. For larger k, patterns were found via
randomized local search.

k 3 4 5 6 7 8 9 10 15 20 30 50 100
Discr. 1.529 1.541 1.472 1.498 1.499 1.499 1.488 1.492 1.466 1.457 1.466 1.481 1.484

bounds. For the algorithm Binary of Sect. 5, this comparison is even more
favorable. For k = 1024 the algorithm places its checkpoints so well that the
optimization procedure improves discrepancy only by 1.9%.

7 Existence of Optimal Algorithms

In this section, we prove that optimal algorithms for the checkpointing problem
exist, i.e., that there is an algorithm having discrepancy equal to the infimum
discrepancy q∗(k) := infA Discr(A) among all algorithms for k checkpoints.

Theorem 4. For each k there exists a checkpointing algorithm A for k check-
points with Discr(A) = q∗(k), i.e., there is an optimal checkpointing algorithm.

This a non-trivial statement. From the proof of this statement, we gain additional
insight in the behavior of good algorithms. In particular, we show that we can
assume without increasing discrepancy that for all i the i-th checkpoint is set by
a factor of at least (1 + 1/k)Θ(i) later than the first checkpoint.

Theorem 5. Let A = (t, d) be a checkpointing algorithm with Discr(A) < k− 1.
Then there is an algorithm A′ = (t′, d′) with the same starting position such that
(i) Discr(A′) ≤ Discr(A) and (ii) t′i+3 ≥ (1 + 1/k) · t′i for all i ≥ k.

8 Lower Bound

In this section, we prove a lower bound on the discrepancy of all checkpointing
algorithms. For large k we get a lower bound of roughly 1.3, so we have a lower
bound that is asymptotically larger than the trivial bound of 1. Moreover, it
shows that algorithm Binary from Sect. 5 is nearly optimal, as for large k the
presented lower bound is within 6% of the discrepancy of Binary.

Theorem 6. All checkpointing algorithms with k checkpoints have a discrepancy
of at least 2− ln 2−O(k−1) ≥ 1.306−O(k−1).

We present a sketch of the proof of the above theorem in the remainder of this
section.

Let A = (t, d) be an arbitrary checkpointing algorithm and let q′ := Discr(A)
be its discrepancy. For convenience, we define q = kq′/(k + 1) and bound q.



Online Checkpointing with Improved Worst-Case Guarantees 265

Since q < q′ this suffices to show a lower bound for the discrepancy of A. For
technical reasons we add a gratis checkpoint at time tk that must not be removed
by A. That is, even after the removal of the original checkpoint at tk, there still is
the gratis checkpoint active at tk. Clearly, this can only improve the discrepancy.
We analyze A from time tk until it deleted k/(2q) of the initial checkpoints1.
More formally, we let t′ be the minimal time at which the number of active
checkpoints of A contained in [0, tk] is k − k/(2q). Note that we might have
t′ = ∞, if the checkpointing algorithm A never deletes k/(2q) points from [0, tk].
However, in this case its discrepancy is lower bounded by 1.5, since, for any i > k,
there are at most k − k/(2q) checkpoints available in the interval (tk, ti].

Lemma 5. If t′ = ∞, then Discr(A) ≥ 1.5.

Hence, in the following we can assume that t′ < ∞. We partition the intervals
that exist at time t′ into three types:

1. Intervals existing both at time tk and t′. These are contained in [0, tk].
2. Intervals that are contained in [0, tk], but did not exist at time tk. These

were created by the removal of some checkpoint in [0, tk] after time tk.
3. Intervals contained in [tk, t

′].

Note that we need the gratis checkpoint at tk in order for these definitions to
make sense, as otherwise there could be an interval overlapping tk.

Let Li denote the set of intervals of type i for i ∈ {1, 2, 3}, and set ki := |Li|.
Let L2 = {I1, . . . , Ik2}, where the intervals are ordered by their creation times
τ1 ≤ . . . ≤ τk2 . Since each interval in L2 contains at least one deleted point
we have k2 ≤ k/(2q), and we set m := k

2q − k2. Then m counts the number
of deleted checkpoints in [0, tk] that did not create an interval in L2, but some
strict sub-interval of an interval in L2.

Since the intervals in L1 exist at time tk, we can bound their length as follows.

Lemma 6. The length of any interval in L1 is at most qtk/k.

The creation time τi of the i-th interval in L2 cannot be too late, as otherwise
there would not be sufficiently many checkpoints in [tk, τi] to guarantee discrep-
ancy q. That allows to bound the length of these intervals.

Lemma 7. The length of any interval Ii ∈ L2 is at most

|Ii| ≤
tk

k/q −m− i .

Furthermore, we need a relation between k1, k,m, and q.

1 To be precise we should round k
2q

to one of its nearest integers. When doing so, all
calculations in the remainder of this section go through as they are; this only slightly
increases the hidden constant in the error term O(k−1).
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Lemma 8. We have k1 = k +m− k/q + 1.

Now we use our bounds on the length of intervals from L1 and L2 to find a
bound on q. Note that the intervals in L1 and L2 partition [0, tk], so that

tk =
∑
I∈L1

|I|+
∑

I′∈L2

|I ′|.

Using Lemmas 6 and 7, we obtain

tk ≤ k1
qtk
k

+

k2∑
i=1

tk
k/q −m− i .

Plugging in Lemma 8 and simplifying yields

q ≥ 2−mp

k
−O(k−1)−Hk/q−m−1 +Hk/(2q)−1,

where Hn is the nth harmonic number. Now, observing m q
k + Hk/q−m−1 ≤

Hk/q−1 and using the asymptotics of Hn, we get the desired bound q ≥ 2 −
ln(2)−O(k−1).
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Abstract. The standard algorithm for fast generation of Erdős-Rényi
random graphs only works in the Real RAM model. The critical point
is the generation of geometric random variates Geo(p), for which there
is no algorithm that is both exact and efficient in any bounded precision
machine model. For a RAM model with word size w = Ω(log log(1/p)),
we show that this is possible and present an exact algorithm for sam-
pling Geo(p) in optimal expected time O(1 + log(1/p)/w). We also give
an exact algorithm for sampling min{n,Geo(p)} in optimal expected
time O(1 + log(min{1/p, n})/w). This yields a new exact algorithm for
sampling Erdős-Rényi and Chung-Lu random graphs of n vertices and
m (expected) edges in optimal expected runtime O(n + m) on a RAM
with word size w = Θ(log n).

1 Introduction

Random Graph Generation. A large fraction of empirical research on graph
algorithms is performed on random graphs. Random graph generation is also
commonly used for simulating networking protocols on the Internet topology
and the spread of epidemics (or rumors) on social networks (e.g. [16]) It is also
an important tool in real world applications such as detecting motifs in biological
networks (e.g. [21]). We focus on homogenous and inhomogenous random graphs
and consider Erdős-Rényi [9] and Chung-Lu graphs [5]. The key ingredient for
generating such graphs with n vertices faster than the obvious Θ(n2) algorithm
is an efficient algorithm for exact sampling of geometric random variates.

Efficient Random Variate Generation. Non-uniform random variates are
typically generated from random variates that are uniformly distributed on [0, 1].
With the introduction of Intel’s Ivy Bridge microarchitecture with built-in hard-
ware digital random number generation, we can assume that we have fast access
to a stream of high quality random bits. However, most non-uniform random
variate generation algorithms [8, 26] assume a Real RAM, which can manipu-
late real numbers. This assumption is highly problematic as real numbers are
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infinite objects and all physical computers can only handle finite portions of
these objects. Typical implementations, with e.g. double floating point preci-
sion, are efficient, but not exact (e.g. in C++11); that is, some outcomes might
not be reachable and others might become more likely than they should.

Exact Random Variate Generation. Knuth and Yao [18] initiated the study
of exact nonuniform random number generation. They discuss the power of var-
ious restricted machine models. Several authors [10, 11, 18] provided additional
results along these lines, but only presented efficient algorithms for single dis-
tributions. There also exist implementations of exact and efficient random num-
ber generators for exponential and normal distributions [15]. For parameterized
families of distributions such as the geometric distribution, one can study the
expected asymptotic runtime in the parameter. However, in this regard there
are no exact and efficient algorithms known on any bounded precision machine
model. For sampling Geo(p), the trivial algorithm of repeatedly sampling a coin
with Bernoulli distribution Ber(p) until it falls heads up has expected runtime
O(1/p), which is not efficient for p close to 0.

Exact and Efficient Random Variate Generation. Our aim is the design
of exact and efficient algorithms for random variate generation. We show that
this is possible in many cases and give a particularly fast algorithm for geometric
random variates. This allows exact and efficient generation of Erdős-Rényi and
Chung-Lu random graphs. It also allows exact and efficient generation of very
large non-uniform random variates (e.g. for cryptographic applications [13]),
which has been open so far.

Related Work on Random Graph Generation. There is a large body of
work on generating random regular graphs (e.g. [17]), graphs with a prescribed
degree distribution (e.g. [3]), and graphs with a prescribed joint degree distri-
bution (e.g. [23]). All these algorithms converge to the desired distribution for
n→∞. Note that this typically implies for finite n that only an approximation
of the true distribution is reached.

The most studied random graph model is certainly the Erdős-Rényi [9] random
graph G(n, p), where each edge of a graph of n vertices is present independently
and uniformly with probability p ∈ [0, 1]. Many experimental papers use algo-
rithms with runtime Θ(n2) to draw from G(n, p). The reason for this is probably
that most graph algorithm software libraries such as JUNG, LEDA, BGL, and
JDSL also do not contain efficient random graph generators. However, there are
several algorithms which can sample from G(n, p) in expected time O(m + n)
on a Real RAM, where m = Θ(pn2) is the expected number of edges [1, 20].
This is done by using the fact that in an ordered list of all Θ(n2) pairs of ver-
tices the distance between two consecutive edges is geometrically distributed.
The resulting distribution is not exact if the algorithm is run on a physical
computer, which can only handle bounded precision, as it ignores the bias intro-
duced by fixed-length number representations. The available implementation in
the library NetworkX [14] therefore also does not return the desired distribution
exactly. It is not obvious how to get an exact implementation even by using
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algebraic real numbers [19] and/or some high accuracy floating-point represen-
tation. The problem of sampling G(n, p) on a bounded precision model has been
studied by Blanca and Mihail [2]. They showed how to achieve an approximation
of the desired distribution efficiently. Our aim is an exact and efficient generation
on a bounded precision model instead.

Generating Random Geometric Distributions. As discussed above, all
previous algorithms to sample a geometric random variate which are efficient on
a Real RAM become inexact when implemented on a bounded precision machine.
We assume the more realistic model of a Word RAM with word size w that can
sample a random word in constant time; for a definition of the machine models
see Section 2. We first observe the following lower bound for any exact sampling
algorithm.

Theorem 1. On a RAM with word size w, any algorithm sampling a geometric
random variate Geo(p) with parameter p ∈ (0, 1) needs at least expected runtime
Ω(1 + log(1/p)/w).

Theorem 1 follows from Lemma 1, which shows that the expected output size
is Ω(log(1/p)) bits. To get a first upper bound we translate the well-known
inversion method (typically used on a Real RAM [8]) to our bounded precision
model by using multi-precision arithmetic, obtaining the following result.

Theorem 2. On a RAM with word size w = Ω(log log(1/p)), a geometric ran-
dom variate Geo(p) with parameter p ∈ (0, 1) can be sampled in expected runtime
O(1 + log(1/p) poly log log(1/p)/w).

To the best of our knowledge, this observation is not discussed in the literature
so far. However, as the following Theorem 3 is strictly stronger, we defer the
presentation of the inversion method and Theorem 2 to the full version of this
paper. It not only applies to geometric distributions, but to all distributions
where the inverse of the cumulative distribution is efficiently computable on a
Word RAM. The assumption on w is needed to handle pointers to an array as
large as the expected output size in constant time. This result is independent
of the rest of the paper and demonstrates that the classical inversion method
does not give an optimal runtime matching Theorem 1, since this algorithm, as
well as many other approaches, does not avoid taking logarithms. Note that it
is a long-standing open problem in analytic number theory and computational
complexity whether the logarithm can be computed in linear time.

Our aim is a Word RAM algorithm which returns the exact geometric distri-
bution in optimal runtime. In Section 3 we give a simple algorithm for this and
prove the following theorem. Note that our algorithm also works for bitstreams p,
see Section 2.

Theorem 3. On a RAM with word size w = Ω(log log(1/p)), a geometric ran-
dom variate Geo(p) with parameter p ∈ (0, 1) can be sampled in expected runtime
O(1 + log(1/p)/w), which is optimal.

Observe that, as a sample of a geometric random variate can be arbitrarily large,
the aforementioned sampling algorithm cannot work in bounded worst-case time
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or space. Also note that on a parallel machine with P Word RAM processors
the runtime decreases to O(1 + log(1/p)/(wP )).

Generating Bounded Random Geometric Distributions. In the full ver-
sion of this paper we extend this to sampling bounded geometric random distri-
butions Geo(p, n) = min{n,Geo(p)} and observe the following lower bound.

Theorem 4. On a RAM with word size w, any algorithm sampling a bounded
geometric random variate Geo(p, n) = min{n,Geo(p)} with parameters n ∈ N
and p ∈ (0, 1) needs at least expected runtime Ω(1 + log(min{1/p, n})/w).

We present an algorithm which achieves this optimal runtime bound and prove
the following theorem.

Theorem 5. On a RAM with word size w = Ω(log log(1/p)), a bounded geo-
metric random variate Geo(p, n) = min{n,Geo(p)} with parameters n ∈ N and
p ∈ (0, 1) can be sampled in expected runtime O(1 + log(min{1/p, n})/w), which
is optimal.

If p is a rational number with numerator and denominator fitting in O(1)
words, then this algorithm needs O(n) space in the worst case.

If p is a bitstream, we cannot bound the worst-case space usage of a sampling
algorithm for Geo(n, p) in general. However, if p is a rational with numerator and
denominator fitting in a constant number of words of the Word RAM, Theorem 5
shows that this is indeed possible.

Random Graph Generation. We believe our new exact and efficient sampling
algorithms for bounded and unbounded geometric distributions are of indepen-
dent interest, but also present in Section 4 one particular application, which is
the generation of random graphs. For generating graphs with n vertices it is
natural to assume w = Ω(log n).

Theorem 6. On a RAM with word size w = Ω(log n), the random graph G(n, p)
can be sampled in expected time Θ(n + m), where m = Θ(pn2) is the expected
number of edges. This is optimal if w = O(logn). If p is a rational number with
numerator and denominator fitting in O(1) words, then the worst-case space
complexity of the algorithm is asymptotically equivalent to the size of the output
graph, which is optimal.

A similar algorithm achieves optimal runtime for the more general Chung-Lu
random graphs G(n,W ) [5], generating a random graph with a given sequence
of expected degrees.

Theorem 7. Let W = (W1, . . . ,Wn) be rationals with common denominator,
where each numerator and the common denominator fit in O(1) words. Then on
a RAM with word size w = Ω(log n), the random graph G(n,W ) can be sampled
in expected time Θ(n + m), where m = Θ(

∑n
i=1Wi) is the expected number of

edges. This is optimal if w = O(logn). The worst-case space complexity of the
algorithm is asymptotically equivalent to the size of the output graph, which is
optimal.
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Both theorems follow from plugging our algorithm for sampling geometric ran-
dom variables into the best algorithm known for sampling the respective graph
class.

Note that due to tight space constraints many proofs, in particular for Theo-
rems 2, 4, 5, and 7, are defered to the full version of this paper.

2 Preliminaries

Machine Models. We discuss two variants of random access machines (RAMs).
Both are abstract computational machine models with an arbitrary number of
registers that can be indirectly addressed. In the classic RAM, each register
can contain an arbitrarily large natural number N0 and all basic mathematical
functions can be performed in constant time.

The two models relevant for this paper are the Real RAM, which allows
computation even with real numbers, and the Word RAM, which only allows
computation with bounded precision. In addition to the standard definitions,
we assume that a uniform random number can be sampled in constant time.
As we are dealing with randomized algorithms and a sample of a geometric
random variate can be arbitrarily large, we also allow potentially unbounded
space usage1.

The Real RAM is the main model of computability in computational geome-
try and is also used in numerical analysis. Here, each register can contain a real
number in the mathematical sense. All basic mathematical functions including
the logarithm of a real number can be computed in constant time. The disad-
vantage of the model is that real numbers are infinite objects and all physical
computers can only handle finite portions of these objects.

The Word RAM is a more realistic model of computation. It is parameterized
by a parameter w which determines the word length. The registers are called
words and contain integers in the range {0, . . . , 2w − 1}. The execution of basic
arithmetic instructions on words takes constant time; our algorithms only need
constant time addition, subtraction and comparison, as well as constant time
generation of random words. Long integers are represented by a string of words.
Floating point numbers are represented by an exponent (a string of words of
some length k) and a mantissa (a string of words of some length 
). Addition
and multiplication can then be done in time O(poly(
, k)) and with error 2−w�.
Note that the Word RAM offers an intrinsic parallelism where, in constant time,
an operation on w bits can be performed in parallel.

Random Graph Models. In the Erdős-Rényi [9] random graph model G(n, p),
each edge of an n vertex graph is independently present with probability p. This
yields a binomial degree distribution and approaches a Poisson distribution in the

1 We assume that accessing the i-th memory cell costs O(1) although it might make
more sense to assume cost proportional to the length of a pointer to i (which is
Θ(1 + log(i)/w)) or larger. However, our results remain valid as long as this cost is
O((2− ε)i/2

w

) for some ε > 0.
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limit. As many real-world networks have power-law degree distributions, we also
study inhomogenous random graphs. We consider Chung-Lu [5] graphs G(n,W )
with n vertices and weights W = (W1,W2, . . . ,Wn) ∈ Rn

�0. In this model, an
edge between two vertices i and j is independently present with probability
pi,j := min{WiWj/

∑
kWk, 1}. For sufficiently large graphs, the expected degree

of i converges to Wi. The related definitions of generalized random graph [25]
with pij = WiWj/(

∑
kWk +WiWj) and Norros-Reittu random graphs [22] with

pi,j = 1 − exp(−WiWj/
∑

kWk) can be handled in a similar way. However, we
will focus on Chung-Lu random graphs.

Probability Distributions. Let p ∈ (0, 1). The Bernoulli distribution Ber(p)
takes values in {0, 1} such that Pr[Ber(p) = 1] = 1 − Pr[Ber(p) = 0] = p. The
geometric distribution Geo(p) takes values in N0 such that for any i ∈ N0, we
have Pr[Geo(p) = i] = p(1 − p)i. For n ∈ N0, we define the bounded geometric
distribution Geo(p, n) to be min{n,Geo(p)}. This means that Geo(p, n) takes
values in {0, . . . , n} such that for any i ∈ N0, i < n, we have Pr[Geo(p, n) = i] =
p(1 − p)i, and Pr[Geo(p, n) = n] = (1 − p)n. The uniform distribution Uni[0, 1]
takes values in [0, 1] with uniform probability. For n ∈ N, we define the uniform
distribution Uni(n) to be the uniform distribution over {0, . . . , n− 1}.
Input Model. We assume the input p to be given in the following form: We
are given a number k ∈ N0 such that 2−k � p > c2−k for some fixed constant2

c > 0. Moreover, for any i ∈ N we are able to compute a number pi � 1 such
that |pi − 2kp| � 2−i. We can assume that pi has at most i + 1 bits (otherwise
take the first i+ 1 bits of pi+1, which are a 2−i-approximation of 2kp). Since we
assumed w = Ω(log log(1/p)), k fits into O(1) words; this resembles the usual
assumption that we can compute with numbers as large as the input/output size
in constant time. Furthermore, we want to assume that pi can be computed in
time poly(i). This means that p can be approximated efficiently. However, it is
sufficient even if the runtime is O((2−ε)i) for some constant ε > 0. All numbers
other than the input parameter p will be encoded as simple strings of words or
floating point numbers, as discussed in the paragraph “machine models”.

Notations. The base of all logarithms is 2. For integer division we use a div b :=
�a/b� for a, b ∈ Z. We typically use xi to denote the i-th bit (approximation) of
x. We denote the set {1, . . . , n} by [n].

3 Sampling Geometric Random Variates

In this section we show a Word RAM algorithm for generating a geometric ran-
dom variate Geo(p) in optimal expected runtime. We assume that the parame-
ter p is given by a bitstream, i.e., we are given k ∈ N0 and can approximate p∗
such that p = 2−kp∗ and c < p∗ � 1 for some c > 0. Approximating p∗ with pre-
cision i needs time O((2− ε)i) for some ε > 0. We first prove that the expected

2 One could set c = 1/2, but our results hold more generally, in the case where we
cannot compute such a good approximation of p.
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output size is Θ(log(1/p)), which gives a lower bound of Ω(1 + log(1/p)/w) for
the expected runtime of any algorithm sampling Geo(p) on the Word RAM as
(at most) w bits can be processed in parallel.

Lemma 1. For any p ∈ (0, 1), we have E[log(1+Geo(p))] = Θ(log(1/p)), where
the lower bound holds for 1/p large enough.

We now present an algorithm achieving this optimal expected runtime. The main
trick is that we split up Geo(p) into Geo(p) div 2k and Geo(p) mod 2k. It is easy
to see that both parts are independent random variables. Now, Geo(p) div 2k has
constant expected value, so we can iteratively check whether it equals 0, 1, 2, . . ..
On the other hand, Geo(p) mod 2k is sufficiently well approximated by the uni-
form distribution over {0, . . . , 2k−1}; the rejection method suffices for fast sam-
pling. These ideas are brought together in Algorithm 1.

Algorithm 1. GenGeo(p) samples Geo(p) given a bitstream p = 2−kp∗.

D ← 0
while Ber((1− p)2k) do

D ← D + 1

repeat

M
lazy←−− Uni(2k)

until Ber((1 − p)M )
fill up M with random bits
return 2kD +M

Here, D represents Geo(p) div 2k, initialized to 0. It is increased by 1 as long

as a Bernoulli random variate Ber((1− p)2k) turns out to be 1. Then M , corre-
sponding to Geo(p) mod 2k, is chosen uniformly from the interval {0, . . . , 2k−1},
but rejected with probability (1 − p)M . We sample M lazily, i.e., a bit of M is
sampled only if needed by the test Ber((1− p)M ). After we leave the loop, M is
filled up with random bits, so that we return the same value as if we had sam-
pled M completely inside of the second loop. The result is, naturally, 2kD+M .

We will next discuss correctness of this algorithm, describe the details of how
to implement it efficiently, and analyze its runtime. We postpone the issue of
how to sample Ber((1− p)n) to the end of this section. For the moment we will
just assume that this can be done in expected constant time, looking at the first
expected constant many bits of p and n.

Correctness. Let n � 0. The probability of outputting n = 2kD + M should
be p(1− p)n, i.e., it should be proportional to (1− p)n. Following the algorithm
step by step we see that the probability is

(
(1− p)2k

)D · (1− (1− p)2k
)︸ ︷︷ ︸

first loop

·
∑
t�0

(
1−

2k−1∑
i=0

2−k(1− p)i
)t

2−k(1− p)M︸ ︷︷ ︸
second loop

,
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where t is the number of iterations of the second loop; note that 2−k(1 − p)i

is the probability of outputting i in the first iteration of the second loop, so

that
∑2k−1

i=0 2−k(1 − p)i is the probability of leaving the second loop after the
first iteration. Collecting the factors dependent on D and M we see that this

probability is proportional to (1 − p)2
kD+M = (1 − p)n, showing correctness of

the algorithm.

Runtime. We show that the expected runtime of Algorithm 1 is O(1 +
log(1/p)/w). Again, assume that we can sample Ber((1 − p)n) in expected con-
stant time. By the last section, incrementing the counter D can be done in
amortized constant time, and we only need an expected constant number of bits
of M during the second loop, after which we fill up M with random bits in
time O(1 + log(1/p)/w). Hence, if we show that the two loops run in expected
constant time, then Algorithm 1 runs in expected time O(1 + log(1/p)/w).

We consider the probabilities of dropping out of the two loops. Since 2−k �
p > c2−k, for the first loop this is

1− (1− p)2k � 1− (1 − p)c/p � 1− e−c, (1)

so we have constant probability to drop out of this loop in every iteration.
Moreover, the second loop terminates immediately if k = 0; otherwise we have

(1 − p)M � (1− p)2k � (1− 2−k)2
k � (1− 1/2)2 = 1/4, (2)

so for the second loop we also have constant probability of dropping out.
To show that each loop runs in expected constant time, let T be a random

variable denoting the number of iterations of the loop; note that E[T ] = O(1),
since the probability of dropping out of each loop is Ω(1). Furthermore, let Xi

be the runtime of the i-th iteration of the loop; note that by assumption we can
sample Ber((1 − p)n) in expected constant time, so that E[Xi | T � i] = O(1).
The total runtime of the loop is X1 + . . . + XT . Thus, the following lemma
shows that the expected runtime of the loop is O(1). This finishes the proof of
Theorem 3, aside from sampling Ber((1 − p)n).

Lemma 2. Let T be a random variable with values in N0 and Xi, i ∈ N, be
random variables with values in R; we assume no independence. Let α ∈ R with
E[Xi | T � i] � α for all i ∈ N. Then we have E[X1 + . . .+XT ] � α · E[T ].

We remark that the above lemma is an easy special case of Wald’s equation.
Note that the only points where this algorithm is using the Word RAM par-

allelism are when we fill up M and when we compute with exponents. The
generation of Ber((1 − p)n), discussed in the remainder of this section, will use
Word RAM parallelism only for working with exponents. The filling of M can
be done in time O(1 + log(1/p)/w) as we assumed that we can generate ran-
dom words in unit time. Also note that given P processors, each one capable
of performing Word RAM operations, we can trivially further parallelize this

algorithm to run in expected time O
(
1 + log(1/p)

wP

)
.
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Sampling Ber((1−p)n). It is left to show how to sample a Bernoulli random
variable with parameter (1 − p)n. We can use the fact that we know k with
2−k � p > c2−k and can approximate 2kp by pi, and that n ∈ N, n � 2k. Note
that we can easily get an approximation ni of n of the form |2−kn − ni| � 2−i

in the situation of Algorithm 1: In the first loop we have n = 2k, then simply
pick ni = 1; in the second loop n = M is uniform in {0, . . . , 2k − 1}, so that we
get ni by determining (i.e. flipping) the highest i bits of n. In this situation we
can show the following lemma.

Lemma 3. Given bitstream p with 2−k � p = Ω(2−k), for n = 2k or for
uniformly random n in {0, . . . , 2k − 1} we can sample Ber((1− p)n) in expected
constant time.

In the full version of this paper we discuss a method to sample Ber(q) in expected
constant time which is closely related to Flajolet and Saheb [10].

Lemma 4. A Bernoulli random variate Ber(q) with parameter q ∈ (0, 1) (given
as a bitstream) can be sampled in constant expected runtime on a Word RAM.

The only thing we need to efficiently sample Ber(q) is to be able to com-
pute an approximation qi of q with |q − qi| � 2−i in time O((2 − ε)i). To
get such an approximation for (1 − p)n, we make use of the binomial theorem

(1 − p)n =
∑n

j=0

(
n
j

)
(−p)j . Noting that

(
n
j

)
� nj

j! and n � 1/p, we see that the

j-th summand is absolutely bounded by 1/j!. Moreover, the absolute value of
the summands is monotonically decreasing in j, and their sign is (−1)j , implying∣∣∑n

j=i+2

(
n
j

)
(−p)j

∣∣ � 1/(i + 2)! � 2−i−1. Thus, by summing up only the first

i+ 2 summands we get a good approximation of (1− p)n.
Moreover, we have

i+1∑
j=0

(
n

j

)
(−p)j =

1

(i+ 1)!

i+1∑
j=0

(−p)j
( i+1∏

h=j+1

h

) j−1∏
h=0

(n− h). (3)

We will compute the right-hand side of this with working precision r. This means
that we work with floating point numbers, with an exact exponent encoded by
a string of words, and a mantissa which is a string of �r/w� words. We get p
and n up to working precision r by plugging in 2−kpr and 2knr. Then we calcu-
late the numerator and denominator of the right-hand side independently with
working precision r. Note that adding or multiplying the floating point num-
bers takes time O(poly(r)) for adding/multiplying the mantissas (even using
the school method for multiplication is fine for this), and O(1 + log(i)) for sub-
tracting/adding the exponents, as all exponents in equation (3) are absolutely
bounded by O(poly(i) · k) and k fits in O(1) words.

Regarding runtime, noting that there are O(poly(i)) operations to carry out
in computing the right-hand side of equation (3), we see that we can compute
the latter with working precision r in time O(poly(r, i)). If we choose r large
enough so that this yields an approximation of equation (3) with absolute error
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at most 2−i−1, then combined with the error analysis from using only the first
i + 2 terms, we get a runtime of O(poly(r, i)) to compute an approximation of
(1−p)n with absolute error 2−i. Now, as long as we can choose r = poly(i), this
runtime is small enough to use Lemma 4, since we only needed an approximation
of (1−p)n with absolute error 2−i in time O((2−ε)i) for some ε > 0. Under this
assumption on r, we are done proving Lemma 3. The following lemma shows
that r = poly(i) is indeed sufficient.

Lemma 5. The absolute error of computing equation (3) with working precision
r = i+ α(1 + log(i)) is at most 2−i−1, for a large enough constant α.

4 Generating Random Graphs

In this section we show that Erdős-Rényi and Chung-Lu random graphs can be
efficiently generated. For this we simply take the efficient generation on Real
RAMs from [1, 20] and replace the generation of bounded geometric variables
by our algorithm from the last section. In the following we discuss why this is
sufficient and leads to the runtimes claimed in Theorems 6 and 7.

Consider the original efficient generation algorithm of Erdős-Rényi random
graphs described in [1], which is essentially the following. For each vertex u ∈ [n]
we want to sample its neighbors v ∈ [u−1] in decreasing order. Defining v0 := u,
the first neighbor v1 of u is distributed as v1 ∼ v0 − 1 − Geo(p, v0 − 1), where
the event v1 = 0 represents that u has no neighbor. Then the next neighbor is
distributed as v2 ∼ v1 − 1 − Geo(p, v1 − 1) and so on. Sampling the graph in
this way, we use m+ n bounded geometric variables, where m is the number of
edges in the final graph (which is a random variable).

In this algorithm we have to cope with indices of vertices, thus, it is natural to
assume w = Ω(log n). Under this assumption, all single operations of the original
algorithm can be performed in worst-case constant time on a Word RAM, except
for the generation of bounded geometric variables Geo(p, k), with k � n. The
latter, however, can be done in expected time O(1+log(min{n, 1/p})/w) = O(1)
using our algorithm from Theorem 5. Hence, the expected runtime of the mod-
ified algorithm (with replaced sampling of bounded geometric variables) should
be the same as that of the original algorithm. To prove this, consider the run-
time the modified algorithm spends on sampling bounded geometric variables.
This random variable can be written as X1 + . . . + XT , where T is a random
variable denoting the number of bounded geometric variables sampled by the
algorithm, and Xi is the time spent on sampling the i-th such variable. Note
that E[Xi | T � i] = O(1). Thus, by Lemma 2 we can bound E[X1 + . . .+ XT ]
by O(E[T ]). Since the original algorithm spends time Ω(T ), the total expected
runtime of the modified algorithm is asymptotically the same as the expected
runtime of the original algorithm, namely O(n+ pn2). This runtime is optimal,
as writing down a graph takes time Ω(n+m) (each index needs Θ(1) words; this
depends, however, on the representation of the graph). Noting that the space
requirements of the algorithm are met by Theorem 5, this proves Theorem 6.
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A similar result applies to the more general Chung-Lu random graphs
G(n,W ). Again we assume w = Ω(log n). Let us further assume, for simplic-
ity, that all given weights Wu, u ∈ V are rational numbers with the same
denominator, with each numerator and the common denominator fitting in
O(1) words. In this case, the sum S =

∑
u∈V Wu has the same denomi-

nator as all Wu and numerator bounded by n times the numerator of the
largest Wu. Since w = Ω(logn), the numerator of S fits in O(1) more words
than used for the largest Wu. Hence, numerator and denominator of S fit in
O(1) words and can be computed in O(n) time. Moreover, the edge probabili-
ties pu,v = min{WuWv/S, 1} are also rationals with numerator and denominator
fitting in O(1) words that can be computed in constant time if S is available.

Carefully examining the efficient sampling algorithm for Chung-Lu random
graphs, Algorithm 2 of Miller and Hagberg [20], we see that now every step can
be performed in the same deterministic time bound as on a Real RAM, except
for the generation of bounded geometric variables and Bernoulli variables. Note
that for any p ∈ (0, 1) we have Ber(p) ∼ Geo(1− p, 1), so Theorem 5 shows that
the bounded geometric as well as the Bernoulli random variables can be sampled
in expected constant time and bounded space (for w = Ω(log n)). Thus, we can
bound the expected runtime of the modified generation for Chung-Lu graphs
analogously to the Erdős-Rényi case, proving Theorem 7.

5 Conclusions and Future Work

We have presented new exact algorithms which can sample Geo(p) and
min{n,Geo(p)} in optimal time and space on a Word RAM. It remains open to
find similar algorithms for other non-uniform random variates besides exponen-
tial and normal distributions. Moreover, it would be interesting to see whether
our theoretically optimal algorithms are also practical, e.g., for generating very
large geometric random variates for cryptographic applications [13].

Regarding our new exact algorithm for sampling Erdős-Rényi and Chung-Lu
random graphs in optimal time and space on a Word RAM, we believe that
similar results can be proven for the more general case where the weights Wu

are given as bitstreams.
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Department of Computer Science
University of Bonn, Germany

{brunsch,roeglin}@cs.uni-bonn.de

Abstract. We show that the shadow vertex algorithm can be used to
compute a short path between a given pair of vertices of a polytope P =
{x ∈ Rn : Ax ≤ b} along the edges of P , where A ∈ Rm×n. Both, the
length of the path and the running time of the algorithm, are polynomial
in m, n, and a parameter 1/δ that is a measure for the flatness of the
vertices of P . For integer matrices A ∈ Zm×n we show a connection
between δ and the largest absolute value Δ of any sub-determinant of A,
yielding a bound of O(Δ4mn4) for the length of the computed path.
This bound is expressed in the same parameter Δ as the recent non-
constructive bound of O(Δ2n4 log(nΔ)) by Bonifas et al. [1].
For the special case of totally unimodular matrices, the length of

the computed path simplifies to O(mn4), which significantly improves
the previously best known constructive bound of O(m16n3 log3(mn)) by
Dyer and Frieze [7].

1 Introduction

We consider the following problem: Given a matrix A = [a1, . . . , am]T ∈ Rm×n, a
vector b ∈ Rm, and two vertices x1 and x2 of the polytope P ={x ∈ Rn : Ax ≤ b},
find a short path from x1 to x2 along the edges of P efficiently. In this context
efficient means that the running time of the algorithm is polynomially bounded
in m, n, and the length of the path it computes. Note, that the polytope P does
not have to be bounded.

The diameter d(P ) of the polytope P is the smallest integer d that bounds the
length of the shortest path between any two vertices of P from above. The poly-
nomial Hirsch conjecture states that the diameter of P is polynomially bounded
in m and n for any matrix A and any vector b. As long as this conjecture remains
unresolved, it is unclear whether there always exists a path of polynomial length
between the given vertices x1 and x2. Moreover, even if such a path exists, it is
open whether there is an efficient algorithm to find it.

Related Work. The diameter of polytopes has been studied extensively in the
last decades. In 1957 Hirsch conjectured that the diameter of P is bounded by
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m−n for any matrix A and any vector b (see Dantzig’s seminal book about linear
programming [6]). This conjecture has been disproven by Klee and Walkup [9]
who gave an unbounded counterexample. However, it remained open for quite a
long time whether the conjecture holds for bounded polytopes. More than fourty
years later Santos [12] gave the first counterexample to this refined conjecture
showing that there are bounded polytopes P for which d(P ) ≥ (1+ε)·m for some
ε > 0. This is the best known lower bound today. On the other hand, the best
known upper bound of O(m1+log n) due to Kalai and Kleitman [8] is only quasi-
polynomial. It is still an open question whether d(P ) is always polynomially
bounded in m and n. This has only been shown for special classes of polytopes
like 0/1 polytopes, flow-polytopes, and the transportation polytope. For these
classes of polytopes bounds of m − n (Naddef [10]), O(mn log n) (Orlin [11]),
and O(m) (Brightwell et al. [3]) have been shown, respectively. On the other
hand, there are bounds on the diameter of far more general classes of polytopes
that depend polynomially on m, n, and on additional parameters. Recently,
Bonifas et al. [1] showed that the diameter of polytopes P defined by integer
matrices A is bounded by a polynomial in n and a parameter that depends
on the matrix A. They showed that d(P ) = O(Δ2n4 log(nΔ)), where Δ is the
largest absolute value of any sub-determinant of A. Although the parameter Δ
can be very large in general, this approach allows to obtain bounds for classes
of polytopes for which Δ is known to be small. For example, if the matrix A is
totally unimodular, i.e., if all sub-determinants of A are from {−1, 0, 1}, then
their bound simplifies to O(n4 logn), improving the previously best known bound
of O(m16n3 log3(mn)) by Dyer and Frieze [7].

We are not only interested in the existence of a short path between two vertices
of a polytope but we want to compute such a path efficiently. It is clear that
lower bounds for the diameter of polytopes have direct (negative) consequences
for this algorithmic problem. However, upper bounds for the diameter do not
necessarily have algorithmic consequences as they might be non-constructive.
The aforementioned bounds of Orlin, Brightwell et al., and Dyer and Frieze are
constructive, whereas the bound of Bonifas et al. is not.

Our Contribution. We give a constructive upper bound for the diameter of the
polytope P = {x ∈ Rn : Ax ≤ b} for arbitrary matrices A ∈ Rm×n and arbitrary
vectors b ∈ Rm.1 This bound is polynomial in m, n, and a parameter 1/δ, which
depends only on the matrix A and is a measure for the angle between edges
of the polytope P and their neighboring facets. We say that a facet F of the
polytope P is neighboring an edge e if exactly one of the endpoints of e belongs
to F . The parameter δ denotes the smallest sine of any angle between an edge
and a neighboring facet in P . If, for example, every edge is orthogonal to its
neighboring facets, then δ = 1. On the other hand, if there exists an edge that
is almost parallel to a neighboring facet, then δ ≈ 0. The formal definition of δ
is deferred to Section 4.

A well-known pivot rule for the simplex algorithm is the shadow vertex rule,
which gained attention in recent years because it has been shown to have poly-

1 Note that we do not require the polytope to be bounded.
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nomial running time in the framework of smoothed analysis [13]. We will present
a randomized variant of this pivot rule that computes a path between two given
vertices of the polytope P . We will introduce this variant in Section 2 and we
call it shadow vertex algorithm in the following.

Theorem 1. Given vertices x1 and x2 of P , the shadow vertex algorithm effi-

ciently computes an x1-x2-path on the polytope P with expected length O
(
mn2

δ2

)
.

Let us emphasize that the algorithm is very simple and its running time depends
only polynomially on m, n and the length of the path it computes.

Theorem 1 does not resolve the polynomial Hirsch conjecture as δ can be
exponentially small. Furthermore, it does not imply a good running time of the
shadow vertex method for optimizing linear programs because for the variant
considered in this paper both vertices have to be known. Contrary to this, in
the optimization problem the objective is to determine the optimal vertex. To
compare our results with the result by Bonifas et al. [1], we show that, if A is
an integer matrix, then 1

δ ≤ nΔ2, which yields the following corollary.

Corollary 2. Let A ∈ Zm×n be an integer matrix and let b ∈ Rm be a real-valued
vector. Given vertices x1 and x2 of P , the shadow vertex algorithm efficiently
computes an x1-x2-path on the polytope P with expected length O(Δ4mn4).

This bound is worse than the bound of Bonifas et al., but it is constructive.
Furthermore, if A is a totally unimodular matrix, then Δ = 1. Hence, we obtain
the following corollary.

Corollary 3. Let A ∈ Zm×n be a totally unimodular matrix and let b ∈ Rm be
a vector. Given vertices x1 and x2 of P , the shadow vertex algorithm efficiently
computes an x1-x2-path on the polytope P with expected length O(mn4).

This is a significant improvement upon the previously best constructive bound
of O(m16n3 log3(mn)) due to Dyer and Frieze because we can assume m ≥ n.
Otherwise, P does not have vertices and the problem is ill-posed.

Organization of the Paper. In Section 2 we describe the shadow vertex algorithm.
In Section 3 we give an outline of our analysis and present the main ideas.
After that, in Section 4, we introduce the parameter δ and discuss some of its
properties. Section 5 is devoted to the proof of Theorem 1. We omitted some
proofs due to space limitations.

2 The Shadow Vertex Algorithm

Let us first introduce some notation. For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. Let A ∈ Rm×n be an m×n-matrix and let i ∈ [m] and j ∈ [n] be
indices. With Ai,j we refer to the (m− 1)× (n− 1)-submatrix obtained from A
by removing the ith row and the jth column. We call the determinant of any
k × k-submatrix of A a sub-determinant of A of size k. By In we denote the
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n × n-identity matrix diag(1, . . . , 1) and by Om×n the m × n-zero matrix. If
n ∈ N is clear from the context, then we define vector ei to be the ith column
of In. For a vector x ∈ Rn we denote by ‖x‖ = ‖x‖2 the Euclidean norm of x
and by N (x) = 1

‖x‖ · x for x �= 0 the normalization of vector x.

2.1 Shadow Vertex Pivot Rule

Our algorithm is inspired by the shadow vertex pivot rule for the simplex al-
gorithm. Before describing our algorithm, we will briefly explain the geometric
intuition behind this pivot rule. For a complete and more formal description,
we refer the reader to [2] or [13]. Let us consider the linear program min cTx
subject to x ∈ P for some vector c ∈ Rn and assume that an initial vertex x1 of
the polytope P is known. For the sake of simplicity, we assume that there is a
unique optimal vertex x� of P that minimizes the objective function cTx. The
shadow vertex pivot rule first computes a vector w ∈ Rn such that the vertex x1
minimizes the objective function wTx subject to x ∈ P . Again for the sake of
simplicity, let us assume that the vectors c and w are linearly independent.

In the second step, the polytope P is projected onto the plane spanned by
the vectors c and w. The resulting projection is a polygon P ′ and one can show
that the projections of both the initial vertex x1 and the optimal vertex x� are
vertices of this polygon. Additionally every edge between two vertices x and y
of P ′ corresponds to an edge of P between two vertices that are projected onto x
and y, respectively. Due to these properties a path from the projection of x1 to
the projection of x� along the edges of P ′ corresponds to a path from x1 to x�

along the edges of P .
This way, the problem of finding a path from x1 to x� on the polytope P is

reduced to finding a path between two vertices of a polygon. There are at most
two such paths and the shadow vertex pivot rule chooses the one along which
the objective cTx improves.

2.2 Our Algorithm

As described in the introduction we consider the following problem: We are given
a matrix A = [a1, . . . , am]T ∈ Rm×n, a vector b ∈ Rm, and two vertices x1, x2
of the polytope P = {x ∈ Rn : Ax ≤ b}. Our objective is to find a short path
from x1 to x2 along the edges of P .

We propose the following variant of the shadow vertex pivot rule to solve
this problem: First choose two vectors w1, w2 ∈ Rn such that x1 uniquely mini-
mizes wT

1 x subject to x ∈ P and x2 uniquely maximizes wT
2 x subject to x ∈ P .

Then project the polytope onto the plane spanned by w1 and w2 in order to
obtain a polygon P ′. Let us call the projection π. By the same arguments as for
the shadow vertex pivot rule, it follows that π(x1) and π(x2) are vertices of P ′

and that a path from π(x1) to π(x2) along the edges of P ′ can be translated into
a path from x1 to x2 along the edges of P . Hence, it suffices to compute such a
path to solve the problem. Again computing such a path is easy because P ′ is a
two-dimensional polygon.
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The vectors w1 and w2 are not uniquely determined, but they can be chosen
from cones that are determined by the vertices x1 and x2 and the polytope P .
We choose w1 and w2 randomly from these cones. A more precise description of
this algorithm is given as Algorithm 1.

Algorithm 1. Shadow Vertex Algorithm

1: Determine n linearly independent rows uT
k of A for which uT

k x1 = bk.
2: Determine n linearly independent rows vTk of A for which vTk x2 = bk.
3: Draw vectors λ, μ ∈ (0, 1]n independently and uniformly at random.
4: Set w1 = − [N (u1), . . . ,N (un)] · λ and w2 = [N (v1), . . . ,N (vn)] · μ.
5: Use the function π : x �→

(
wT

1 x,w
T
2 x

)
to project P onto the Euclidean plane and

obtain the shadow vertex polygon P ′ = π(P ).
6: Walk from π(x1) along the edges of P

′ in increasing direction of the second coor-
dinate until π(x2) is found.

7: Output the corresponding path of P .

Let us give some remarks about the algorithm above. The vectors u1, . . . , un
in Line 1 and the vectors v1, . . . , vn in Line 2 must exist because x1 and x2 are
vertices of P . The only point where our algorithm makes use of randomness is
in Line 3. By the choice of w1 and w2 in Line 4, x1 is the unique optimum of the
linear program minwT

1 x s.t. x ∈ P and x2 is the unique optimum of the linear
program maxwT

2 x s.t. x ∈ P . The former follows because for any y ∈ P with y �=
x1 there must be an index k ∈ [n] with uTk x1 < bk. The latter follows analogously.
Note, that ‖w1‖ ≤

∑n
k=1 λk · ‖N (uk)‖ ≤

∑n
k=1 λk ≤ n and, similarly, ‖w2‖ ≤ n.

The shadow vertex polygon P ′ in Line 5 has several important properties: The
projections of x1 and x2 are vertices of P ′ and all edges of P ′ correspond to
projected edges of P . Hence, any path on the edges of P ′ is the projection of
a path on the edges of P . Though we call P ′ a polygon, it does not have to
be bounded. This is the case if P is unbounded in the directions w1 or −w2.
Nevertheless, there is always a path from x1 to x2 which will be found in Line 6.
For more details about the shadow vertex pivot rule and formal proofs of these
properties, we refer to the book of Borgwardt [2].

Let us consider the projection P ′ = π(P ) of P to the Euclidean plane. We
denote the first coordinate by ξ and the second coordinate by η. Since w1 and w2

are chosen such that x1 and x2 are, among the points of P , optimal for the func-
tion x �→ wT

1 x and x �→ wT
2 x, respectively, the projections π(x1) and π(x2) of x1

and x2 must be the leftmost vertex and the topmost vertex of P ′, respectively.
As P ′ is a (not necessarily bounded) polygon, this implies that if we start in
vertex π(x1) and follow the edges of P ′ in direction of increasing values of η,
then we will end up in π(x2) after a finite number of steps. This is not only
true if P ′ is bounded but also if P is unbounded. Moreover, note that the slopes
of the edges of the path from π(x1) to π(x2) are positive and monotonically
decreasing.
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3 Outline of the Analysis

In the remainder of this paper we assume that the polytope P is non-degenerate,
i.e., for each vertex x of P there are exactly n indices i for which aTi x = bi. This
implies that for any edge between two vertices x and y of P there are exactly n−1
indices i for which aTi x = aTi y = bi.

From the description of the shadow vertex algorithm it is clear that the main
step in proving Theorem 1 is to bound the expected number of edges on the
path from π(x1) to π(x2) on the polygon P ′. In order to do this, we look at
the slopes of the edges on this path. As we discussed above, the sequence of
slopes is monotonically decreasing. We will show that due to the randomness in
the objective functions w1 and w2, it is even strictly decreasing with probability
one. Furthermore all slopes on this path are bounded from below by 0.

Instead of counting the edges on the path from π(x1) to π(x2) directly, we will
count the number of different slopes in the interval [0, 1] and we observe that the
expected number of slopes from the interval [0,∞) is twice the expected number
of slopes from the interval [0, 1]. In order to count the number of slopes in [0, 1],
we partition the interval [0, 1] into several small subintervals and we bound for
each of these subintervals I the expected number of slopes in I. Then we use
linearity of expectation to obtain an upper bound on the expected number of
different slopes in [0, 1], which directly translates into an upper bound on the
expected number of edges on the path from π(x1) to π(x2).

We choose the subintervals so small that, with high probability, none of them
contains more than one slope. Then, the expected number of slopes in a subinter-
val I = (t, t+ε] is approximately equal to the probability that there is a slope in
the interval I. In order to bound this probability, we use a technique reminiscent
of the principle of deferred decisions that we have already used in [5]. The main
idea is to split the random draw of the vectors w1 and w2 in the shadow vertex
algorithm into two steps. The first step reveals enough information about the
realizations of these vectors to determine the last edge e = (p̂, p�) on the path
from π(x1) to π(x2) whose slope is bigger than t. Even though e is determined
in the first step, its slope is not. We argue that there is still enough randomness
left in the second step to bound the probability that the slope of e lies in the
interval (t, t+ ε] from above, yielding Theorem 1.

We will now give some more details on how the random draw of the vectors w1

and w2 is partitioned. Let x̂ and x� be the vertices of the polytope P that
are projected onto p̂ and p�, respectively. Due to the non-degeneracy of the
polytope P , there are exactly n− 1 constraints that are tight for both x̂ and x�

and there is a unique constraint aTi x ≤ bi that is tight for x� but not for x̂. In
the first step the vector w1 is completely revealed while instead of w2 only an
element w̃2 from the ray {w2 + γ · ai : γ ≥ 0} is revealed. We then argue that
knowing w1 and w̃2 suffices to identify the edge e. The only randomness left in the
second step is the exact position of the vector w2 on the ray {w̃2 − γ · ai : γ ≥ 0},
which suffices to bound the probability that the slope of e lies in the interval
(t, t+ ε].
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Let us remark that the proof of Theorem 1 is inspired by the recent smoothed
analysis of the successive shortest path algorithm for the minimum-cost flow
problem [4]. Even though the general structure bears some similarity, the details
of our analysis are much more involved.

4 The Parameter δ

In this section we define the parameter δ that describes the flatness of the vertices
of the polytope and state some relevant properties.

Definition 4. 1. Let z1, . . . , zn ∈ Rn be linearly independent vectors and let
ϕ ∈ (0, π2 ] be the angle between zn and the hyperplane span{z1, . . . , zn−1}.
By δ̂({z1, . . . , zn−1} , zn) = sinϕ we denote the sine of angle ϕ. Moreover,

we set δ(z1, . . . , zn) = mink∈[n] δ̂({zi : i ∈ [n] \ {k}} , zk).
2. Given a matrix A = [a1, . . . , am]T ∈ Rm×n, we set

δ(A) = min {δ(ai1 , . . . , ain) : ai1 , . . . , ain linearly independent} .
The value δ̂({z1, . . . , zn−1} , zn) describes how orthogonal zn is to the span
of z1, . . . , zn−1. If ϕ ≈ 0, i.e., zn is close to the span of z1, . . . , zn−1, then
δ̂({z1, . . . , zn−1} , zn) ≈ 0. On the other hand, if zn is orthogonal to z1, . . . , zn−1,

then ϕ = π
2 and δ̂({z1, . . . , zn−1} , zn) = 1. The value δ̂({z1, . . . , zn−1} , zn)

equals the distance between both faces of the parallelotope Q, given by Q =
{
∑n

i=1 αi · N (zi) : αi ∈ [0, 1]}, that are parallel to span{z1, . . . , zn−1} and is
scale invariant.

The value δ(z1, . . . , zn) equals twice the inner radius rn of the parallelotope Q
and, thus, is a measure of the flatness of Q: A value δ(z1, . . . , zn) ≈ 0 implies
that Q is nearly (n − 1)-dimensional. On the other hand, if δ(z1, . . . , zn) = 1,
then the vectors z1, . . . , zn are pairwise orthogonal, that is, Q is an n-dimensional
unit cube.

The next lemma lists some useful statements concerning the parameter δ =
δ(A) including a connection to the parameters Δ1, Δn−1, and Δ introduced in
the paper of Bonifas et al. [1].

Lemma 5. Let z1, . . . , zn ∈ Rn be linearly independent vectors, let A ∈ Rm×n

be a matrix, let b ∈ Rm be a vector, and let δ = δ(A). Then, the following claims
hold true:

1. If M is the inverse of [N (z1), . . . ,N (zn)]T, then

δ(z1, . . . , zn) =
1

maxk∈[n] ‖mk‖
≤

√
n

maxk∈[n] ‖Mk‖
,

where [m1, . . . ,mn] = M and [M1, . . . ,Mn] = MT.
2. If Q ∈ Rn×n is an orthogonal matrix, then δ(Qz1, . . . , Qzn) = δ(z1, . . . , zn).
3. Let y1 and y2 be two neighboring vertices of P = {x ∈ Rn : Ax ≤ b} and

let aTi be a row of A. If aTi · (y2− y1) �= 0, then |aTi · (y2− y1)| ≥ δ · ‖y2− y1‖.
4. If A is an integral matrix, then 1

δ ≤ nΔ1Δn−1 ≤ nΔ2, where Δ, Δ1, and
Δn−1 are the largest absolute values of any sub-determinant of A of arbitrary
size, of size 1, and of size n− 1, respectively.
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5 Analysis

For the proof of Theorem 1 we assume that ‖ai‖ = 1 for all i ∈ [m]. This
entails no loss of generality since normalizing the rows of matrix A (and scaling
the right-hand side b appropriately) does neither change the behavior of our
algorithm nor does it change the parameter δ = δ(A).

For given linear functions L1 and L2, we denote by π = πL1,L2 the function
π : Rn → R2, given by π(x) = (L1(x), L2(x)). Note, that n-dimensional vectors
can be treated as linear functions. By P ′ = P ′L1,L2

we denote the projection
π(P ) of polytope P onto the Euclidean plane, and by R = RL1,L2 we denote the
path from π(x1) to π(x2) along the edges of polygon P ′.

Our goal is to bound the expected number of edges of the path R = Rw1,w2

which is random since w1 and w2 depend on the realizations of the random
vectors λ and μ. Each edge of R corresponds to a slope in (0,∞). These slopes
are pairwise distinct with probability one (see Lemma 8). Hence, the number
of edges of R equals the number of distinct slopes of R. In order to bound the
expected number of distinct slopes we first restrict our attention to slopes in the
interval (0, 1].

Definition 6. For a real ε > 0 let Fε denote the event that there are three
pairwise distinct vertices z1, z2, z3 of P such that z1 and z3 are neighbors of z2
and such that ∣∣∣∣wT

2 · (z2 − z1)

wT
1 · (z2 − z1)

− wT
2 · (z3 − z2)

wT
1 · (z3 − z2)

∣∣∣∣ ≤ ε .

Note that if event Fε does not occur, then all slopes of R differ by more than ε.
Particularly, all slopes are pairwise distinct. First of all we show that event Fε

is very unlikely to occur if ε is chosen sufficiently small.

Lemma 7. The probability that there are two neighboring vertices z1, z2 of P
such that |wT

1 · (z2 − z1)| ≤ ε · ‖z2 − z1‖ is bounded from above by 2mnε
δ .

Lemma 8. The probability of event Fε tends to 0 for ε→ 0.

Let p �= π(x2) be a vertex of R. We call the slope s of the edge incident to p
to the right of p the slope of p. As a convention, we set the slope of π(x2) to 0
which is smaller than the slope of any other vertex p of R.

Let t ≥ 0 be an arbitrary real, let p̂ be the right-most vertex of R whose
slope is larger than t, and let p� be the right neighbor of p̂. Let x̂ and x� be the
neighboring vertices of P with π(x̂) = p̂ and π(x�) = p�. Now let i = i(x�, x̂) ∈
[m] be the index for which aTi x

� = bi and for which x̂ is the (unique) neighbor x
of x� for which aTi x < bi. This index is unique due to the non-degeneracy of the
polytope P . For an arbitrary real γ ≥ 0 we consider the vector w̃2 = w2 + γ · ai.

Lemma 9. Let π̃ = πw1,w̃2 and let R̃ = Rw1,w̃2 be the path from π̃(x1) to π̃(x2)

in the projection P̃ ′ = P ′w1,w̃2
of polytope P . Furthermore, let p̃� be the left-most

vertex of R̃ whose slope does not exceed t. Then, p̃� = π̃(x�).
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Let us reformulate the statement of Lemma 9 as follows: The vertex p̃� is defined
for the path R̃ of polygon P̃ ′ with the same rules as used to define the vertex p�

of the original path R of polygon P ′. Even though R and R̃ can be very different
in shape, both vertices, p� and p̃�, correspond to the same solution x� in the
polytope P , that is, p� = π(x�) and p̃� = π̃(x�). Let us remark that Lemma 9 is
a significant generalization of Lemma 4.3 of [4].

Proof. We consider a linear auxiliary function w̄2 : Rn → R, given by w̄2(x) =
w̃T

2 x − γ · bi. The paths R̄ = Rw1,w̄2 and R̃ are identical except for a shift by
−γ · bi in the second coordinate because for π̄ = πw1,w̄2 we obtain

π̄(x) = (wT
1 x, w̃

T
2 x− γ · bi) = (wT

1 x, w̃
T
2 x)− (0, γ · bi) = π̃(x) − (0, γ · bi)

for all x ∈ Rn. Consequently, the slopes of R̄ and R̃ are exactly the same.
Let x ∈ P be an arbitrary point from the polytope P . Then, w̃T

2 x = wT
2 x +

γ · aTi x ≤ wT
2 x + γ · bi. The inequality is due to γ ≥ 0 and aTi x ≤ bi for all

x ∈ P . Equality holds, among others, for x = x� due to the choice of ai. Hence,
for all points x ∈ P the two-dimensional points π(x) and π̄(x) agree in the first
coordinate while the second coordinate of π(x) is at least the second coordinate
of π̄(x) as w̄2(x) = w̃T

2 x − γ · bi ≤ wT
2 x. Additionally, we have π(x�) = π̄(x�).

Thus, path R̄ is below path R but they meet at point p� = π(x�). Hence, the
slope of R̄ to the left (right) of p� is at least (at most) the slope of R to the left
(right) of p� which is greater than (at most) t. Consequently, p� is the left-most
vertex of R̄ whose slope does not exceed t. Since R̄ and R̃ are identical up to
a shift of −(0, γ · bi), π̃(x�) is the left-most vertex of R̃ whose slope does not
exceed t, i.e., π̃(x�) = p̃�. ��

Lemma 9 holds for any vector w̃2 on the ray �r = {w2 + γ · ai : γ ≥ 0}. As
‖w2‖ ≤ n (see Section 2.2), we have w2 ∈ [−n, n]n. Hence, ray �r intersects the
boundary of [−n, n]n in a unique point z. We choose w̃2 = w̃2(w2, i) := z and
obtain the following result.

Corollary 10. Let π̃ = πw1,w̃2(w2,i) and let p̃� be the left-most vertex of path

R̃ = Rw1,w̃2(w2,i) whose slope does not exceed t. Then, p̃� = π̃(x�).

Note, that Corollary 10 only holds for the right choice of index i = i(x�, x̂). The
vector w̃2(w2, i) is defined for any vector w2 ∈ [−n, n]n and any index i ∈ [m].
In the remainder, index i is an arbitrary index from [m].

We can now define the following event that is parameterized in i, t, and a real
ε > 0 and that depends on w1 and w2.

Definition 11. For an index i ∈ [m] and a real t ≥ 0 let p̃� be the left-most
vertex of R̃ = Rw1,w̃2(w2,i) whose slope does not exceed t and let y� be the cor-
responding vertex of P . For a real ε > 0 we denote by Ei,t,ε the event that the

conditions (1) aTi y
� = bi and (2)

wT
2 (ŷ−y�)

wT
1 (ŷ−y�)

∈ (t, t+ ε], where ŷ is the neighbor y

of y� for which aTi y < bi, are met. Note, that the vertex ŷ always exists and that
it is unique since the polytope P is non-degenerate.
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Let us remark that the vertices y� and ŷ, which depend on the index i, equal x�

and x̂ if we choose i = i(x�, x̂). In general, this is not the case.
Observe that all possible realizations of w2 from L := {w2 + x · ai : x ∈ R} are

mapped to the same vector w̃2(w2, i). Consequently, if w1 is fixed and if we only
consider realizations of μ for which w2 ∈ L, then vertex p̃� and, hence, vertex y�

from Definition 11 are already determined. However, since w2 is not completely
specified, we have some randomness left for event Ei,t,ε to occur. This allows us
to bound the probability of event Ei,t,ε from above (see proof of Lemma 13).
The next lemma shows why this probability matters.

Lemma 12. For reals t ≥ 0 and ε > 0 let At,ε denote the event that the path
R = Rw1,w2 has a slope in (t, t+ ε]. Then, At,ε ⊆

⋃m
i=1 Ei,t,ε.

Lemma 13. For reals t ≥ 0 and ε > 0 the probability of event At,ε is bounded

by Pr [At,ε] ≤ 4mn2ε
δ2 .

Proof. Due to Lemma 12 it suffices to show Pr [Ei,t,ε] ≤ 1
m · 4mn2ε

δ2 = 4n2ε
δ2 . We

apply the principle of deferred decisions and assume that vector λ ∈ (0, 1]n is not
random anymore, but arbitrarily fixed. Thus, vector w1 is already fixed. Now we
extend the normalized vector ai to an orthonormal basis {q1, . . . , qn−1, ai} of Rn

and consider the random vector (Y1, . . . , Yn−1, Z)T = QTw2 given by the matrix
vector product of the transpose of the orthogonal matrix Q = [q1, . . . , qn−1, ai]
and the vector w2 = [v1, . . . , vn]·μ. For fixed values y1, . . . , yn−1 let us consider all
realizations of μ such that (Y1, . . . , Yn−1) = (y1, . . . , yn−1). Then, w2 is fixed up

to the ray w2(Z) = Q·(y1, . . . , yn−1, Z)T =
∑n−1

j=1 yj ·qj+Z ·ai = w+Z ·ai for w =∑n−1
j=1 yj · qj . All realizations of w2(Z) that are under consideration are mapped

to the same value w̃2 by the function w2 �→ w̃2(w2, i), i.e., w̃2(w2(Z), i) = w̃2

for any possible realization of Z. In other words, if w2 = w2(Z) is specified up
to this ray, then the path Rw1,w̃2(w2,i) and, hence, the vectors y� and ŷ used for
the definition of event Ei,t,ε, are already determined.

Let us only consider the case that the first condition of event Ei,t,ε is fulfilled.
Otherwise, event Ei,t,ε cannot occur. Thus, event Ei,t,ε occurs iff

(t, t+ ε] � wT
2 · (ŷ − y�)

wT
1 · (ŷ − y�)

=
wT · (ŷ − y�)

wT
1 · (ŷ − y�)︸ ︷︷ ︸

=:α

+Z · a
T
i · (ŷ − y�)

wT
1 · (ŷ − y�)︸ ︷︷ ︸

=:β

.

The next step in this proof will be to show that the inequality |β| ≥ δ
n is

necessary for event Ei,t,ε to happen. For the sake of simplicity let us assume
that ‖ŷ − y�‖ = 1 since β is invariant under scaling. If event Ei,t,ε occurs, then
aTi y

� = bi, ŷ is a neighbor of y�, and aTi ŷ �= bi. That is, by Lemma 5, Claim 3
we obtain |aTi · (ŷ − y�)| ≥ δ · ‖ŷ − y�‖ = δ and, hence,

|β| =

∣∣∣∣ aTi · (ŷ − y�)

wT
1 · (ŷ − y�)

∣∣∣∣ ≥ δ

|wT
1 · (ŷ − y�)| ≥

δ

‖w1‖ · ‖ŷ − y�)‖ ≥
δ

n · 1 .
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Summarizing the previous observations we can state that if event Ei,t,ε occurs,
then |β| ≥ δ

n and α+ Z · β ∈ (t, t+ ε] ⊆ [t− ε, t+ ε]. Hence,

Z ∈
[
t− α
β

− ε

|β| ,
t− α
β

+
ε

|β|

]
⊆

[
t− α
β

− ε
δ
n

,
t− α
β

+
ε
δ
n

]
=: I(y1, . . . , yn−1) .

Let Bi,t,ε denote the event that Z falls into the interval I(Y1, . . . , Yn−1) of length
2nε
δ . We showed that Ei,t,ε ⊆ Bi,t,ε. Consequently,

Pr [Ei,t,ε] ≤ Pr [Bi,t,ε] ≤
2n · 2nεδ

δ(QTv1, . . . , QTvn)
≤ 4n2ε

δ2
,

where the second inequality is due to first claim of Theorem 15: By definition,
we have (Y1, . . . , Yn−1, Z)T = QTw2 = QT · [v1, . . . , vn] ·μ = [QTv1, . . . , Q

Tvn] ·μ.
The third inequality stems from δ(QTv1, . . . , Q

Tvn) = δ(v1, . . . , vn) ≥ δ, where
the equality is due to the orthogonality of Q (Claim 2 of Lemma 5). ��

Lemma 14. Let Y be the number of slopes of R = Rw1,w2 that lie in the interval

(0, 1]. Then, E [Y ] ≤ 4mn2

δ2 .

Proof (Theorem 1). Lemma 14 bounds only the expected number of edges on
the path R that have a slope in the interval (0, 1]. However, the lemma can also
be used to bound the expected number of edges whose slope is larger than 1.
For this, one only needs to exchange the order of the objective functions wT

1 x
and wT

2 x in the projection π. Then any edge with a slope of s > 0 becomes an
edge with slope 1

s . Due to the symmetry in the choice of w1 and w2, Lemma 14
can also be applied to bound the expected number of edges whose slope lies
in (0, 1] for this modified projection, which are exactly the edges whose original
slope lies in [1,∞).

Formally we can argue as follows. Consider the vertices x′1 = x2 and x′2 = x1,
the directions w′1 = −w2 and w′2 = −w1, and the projection π′ = πw′

1,w
′
2
,

yielding a path R′ from π′(x′1) to π′(x′2). Let X be the number of slopes of R
and let Y and Y ′ be the number of slopes of R and of R′, respectively, that
lie in the interval (0, 1]. The paths R and R′ are identical except for the linear
transformation (x, y) �→ (−y,−x). Consequently, s is a slope of R if and only
if 1

s is a slope of R′ and, hence, X ≤ Y + Y ′. One might expect equality here
but in the unlikely case that R contains an edge with slope equal to 1 we have
X = Y + Y ′ − 1. The expectation of Y is given by Lemma 14. Since this result
holds for any two vertices x1 and x2 it also holds for x′1 and x′2. Note, that w′1
and w′2 have exactly the same distribution as the directions the shadow vertex
algorithm computes for x′1 and x′2. Therefore, Lemma 14 can also be applied to

bound E [Y ′] and we obtain E [X ] ≤ E [Y ] + E [Y ′] = 8mn2

δ2 . ��

The proof of Corollary 2 follows from Theorem 1 and Claim 4 of Lemma 5.
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6 Some Probability Theory

The following theorem is a variant of Theorem 35 from [5]. The two differences
are as follows: In [5] arbitrary densities are considered. We only consider uniform
distributions. On the other hand, instead of considering matrices with entries
from {−1, 0, 1} we consider real-valued square matrices. This is why the results
from [5] cannot be applied directly.

Theorem 15. Let X1, . . . , Xn be independent random variables uniformly dis-
tributed on (0, 1], let A = [a1, . . . , an] ∈ Rn×n be an invertible matrix, let
(Y1, . . . , Yn−1, Z)T = A ·(X1, . . . , Xn)T be the linear combinations of X1, . . . , Xn

given by A, and let I : Rn−1 → {[x, x+ ε] : x ∈ R} be a function mapping a tu-
ple (y1, . . . , yn−1) to an interval I(y1, . . . , yn−1) of length ε. Then the probability
that Z lies in the interval I(Y1, . . . , Yn−1) can be bounded by

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2nε

δ(a1, . . . , an) ·mink∈[n] ‖ak‖
.
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† The work of this author was done while on sabbatical at Princeton University and
was also supported in part by NSF under grant CCF-0832787 and CCF-1218711.

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 291–302, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The problem, which was introduced by Itai, Konheim and Rodeh [13], is
natural and intuitively appealing, and has had applications to the design of data
structures (see for example the discussion in [10], and the more recent work on
cache-oblivious data structures [4,8,5]). A connection between this problem and
distributed resource allocation was recently shown by Emek and Korman [12].

The parameter m, the size of the label space must be at least the number
of items n or else no valid labeling is possible. There are two natural ranges of
parameters which have received the most attention. In the case of linearly many
labels we have m = cn for some c > 1, and in the case of polynomially many
labels we have m = θ(nC) for some constant C > 1. The size r of the universe U
is also a parameter which is not discussed explicitly in most of the literature on
the paper. If r ≤ m, since then we can simply fix an order preserving bijection
from U to {1, . . . ,m} in advance. In this paper we assume U = {1, . . . , 2n}.

Itai et al. [13] gave an algorithm for the case of linearly many labels having
worst case total cost O(n log(n)2). Improvements and simplifications were given
by Willard [15] and Bender et al. [3]. In the special case that m = n, algorithms
with cost O(log(n)3) per item are known [16,6]. It is also well known that the
algorithm of Itai et al. can be adapted to give total cost O(n log(n)) in the case
of polynomially many labels. All of these algorithms are deterministic.

In a previous paper [9], we proved a Ω(n log(n)2) lower bound in the case
of linearly many labels, and Ω(n log(n)3) lower bound for the case m = n.
In subsequent work with Babka and Čunát [2] we proved a lower bound
Ω(n log(n)/(log log(m) − log log(n))) when n1+ε ≤ m ≤ 2n

ε

, In particular, this
gives a Ω(n log(n)) bound for the case of m being polynomial in n. These lower
bounds match the known upper bounds to within a constant factor. Both of
these papers built heavily on previous partial results of Dietz, Seiferas and Zhang
([16,11,10]). These lower bounds apply only to deterministic algorithms, leaving
open the possibility of better randomized algorithms.

In this paper we use a model in which the cost of a randomized labeling al-
gorithm is the worst case over all input sequences of a given length n of the
expected number of moves made by the algorithm. This corresponds to running
the algorithm against an oblivious adversary (see [7]) who selects the input se-
quence having full knowledge of the algorithm, but not of the random bits flipped
in the execution of the algorithm.

There are many online problems where randomized algorithms perform prov-
ably better than deterministic ones. For example, the best deterministic algo-
rithm for the paging problem with k pages has competitive ratio k but there are
randomized algorithms having competitive ratio Θ(log(k)) [7].

Our Results. In this paper we establish the first lower bound for randomized on-
line labeling algorithms by showing that in the case of polynomially many labels
any randomized online labeling algorithm will have expected cost Ω(n log(n))
(for the worst case input). This matches the known deterministic upper bounds
up to constant factors, and thus randomization provides no more than a con-
stant factor advantage over determinism. Our bound also implies an Ω(n log(n))
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lower bound on the message complexity of randomized protocols for Distributed
Controller Problem [12,1].

Unlike many other lower bounds for non-uniform computation models, our
proof does not use Yao’s principle. Yao’s principle says (roughly) that to prove a
lower bound on the expected cost of an arbitrary randomized algorithm it suffices
to fix a distribution over inputs, and prove a lower bound on the expected cost
of a deterministic algorithm against the chosen distribution. Rather than use
Yao’s principle, our proof takes an arbitrary randomized algorithm and selects
a (deterministic) sequence that is hard for that algorithm.

The construction and analysis of the hard sequence follow the same overall strat-
egy of the previous lower bound for deterministic algorithms in the case of poly-
nomially many labels [10,2] which involves relating online labeling to a family of
one-player games called bucketing games (introduced in [10]) which involve the se-
quential placement of items into an ordered sequence of bins subject to certain rules
and costs. We define a map (an adversary) which associates to a labeling algorithm
A a hard sequence of items. We then show that the behavior of the algorithm on
this hard sequence can be associated to a strategy for playing a particular buck-
eting game, such that the cost incurred by the algorithm on the hard sequence is
bounded below by the cost of the associated bucketing game strategy. Finally we
prove a lower bound on the cost of any strategy for the bucketing game, which
therefore gives a lower bound on the cost of the algorithm on the hard input se-
quence.

In extending this argument from the case of deterministic algorithms to the
randomized case, each part of the proof requires significant changes. The adver-
sary which associates an algorithm to a hard sequence requires various careful
modifications. The argument that relates the cost of A on the hard sequence
to the cost of an associated bucketing strategy does not work for the original
version of the bucketing game, and we can only establish the connection to a
new variant of the bucketing game called tail-bucketing. Finally the lower bound
proof on the cost of any strategy for tail-bucketing is quite different from the
previous lower bound for the original version of bucketing.

Mapping a Randomized Algorithm to a Hard Input Sequence. We now
give an overview of the adversary which maps an algorithm to a hard input
sequence y1, . . . , yn. The adversary is deterministic. Its behavior will be deter-
mined by the expected behavior of the randomized algorithm. Even though we
are choosing the sequence obliviously, without seeing the actual responses of the
algorithm, we view the selection of the sequence in an online manner. We design
the sequence item by item. Having selected the first t − 1 items, we use the
known randomized algorithm to determine a probability distribution over the
sequence of labelings determined by the algorithm after each step. We then use
this probability distribution to determine the next item, which we select so as
to ensure that the expected cost incurred by the algorithm is large.

The adversary will maintain a hierarchy consisting of a nested sequence sub-
sets of the set of items inserted so far. The hierarchy at step t is used to determine
the item to be inserted at step p. This hierarchy is denoted
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St(1) ⊃ Tt(2) ⊃ St(2) ⊃ Tt(3) ⊃ · · · ⊃ Tt(d) ⊃ St(d).

The set St(1) consists of all items inserted through step t− 1. Each of the other
sets is an interval relative to the items inserted so far, i.e., it consists of all
inserted items in a given interval. The final subset St(d) has between 2 and 6
elements. (Note that this differs from the previous work for deterministic algo-
rithms where the hierarchy was a nested sequence of intervals of label values
rather than items; this modification seems necessary to handle randomized algo-
rithms). The next item to be inserted is selected to be an item that is between
two items in the final set St(d).

The hierarchy at step t is constructed as follows. The hierarchy for t = 1 has
d1 = 1 and S1(1) = {0, 2n}. The hierarchy at step t > 1 is constructed based
on the hierarchy at the previous step t − 1 and the expected behavior of the
algorithm on y1, . . . , yt−1.

We build the sets for the hierarchy at step t in order of increasing level (i.e.,
decreasing size). Intervals are either preserved (carried over from the previous
hierarchy, with the addition of yt−1) or rebuilt. To specify which intervals are
preserved, we specify a critical level for step t, qt which is at most the depth
dt−1 of the previous hierarchy. We’ll explain the choice of qt below. At step t,
the intervals Tt(i) and St(i) for i ≤ qt are preserved, which means that it is
obtained from the corresponding interval at step t − 1 by simply adding yt−1.
The intervals Tt(i) and St(i) for i ≥ qt are rebuilt. The rule for rebuilding the
hierarchy for i > qt is defined by induction on i as follows: Given St(i − 1),
Tt(i) is defined to be either the first or second half of St(i − 1), depending on
which of these sets is more likely to have a smaller range of labels (based on the
distribution over labels determined by the given algorithm). More precisely, we
look at the median item of St(i) and check whether (based on the randomized
labeling) it is more likely that its label is closer to the label of the minimum or
to the maximum element of St(i). If the median is more likely to have label close
to the minimum we pick the first half as Tt(i) otherwise the second half. Having
chosen Tt(i), we take St(i) to be the middle third of items in Tt(i). This process
terminates when |St(i)| < 7 and the depth dt of the hierarchy is set to this final
i. The adversary selects the next requested item yt to be between two items in
St(d).

This construction of the hierarchy is similar to that used in [2] in the deter-
ministic case. An important difference comes in the definition of the critical level
qt. In the deterministic case the critical level is the smallest index i such that
neither endpoint of Tt−1(i) was moved by the algorithm when inserting yt−1. In
the randomized case we need a probabilistic version of this: the critical level is
the smallest index i such that the probability that either endpoint of T (i) was
moved since the last time it was rebuilt is less than 1/4.

One of the crucial requirements in designing the adversary is that the hierarchy
never grows too deep. Note that when we rebuild Tt(i) it’s size is at most |St(i−
1)|/2 and when we rebuild St(i) its size is at most |Tt(i)|/3. This suggests that as
we proceed through the hierarchy each set is at most 1/2 the size of the previous
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and so the depth is at most log(n). This is not true since during a sequence of
steps in which a set in the hierarchy is not rebuilt its size grows by 1 at each
step and so the condition that the set is at most half the size of its predecessor
may not be preserved. Nevertheless we can show that the depth never grows to
more than 4 log(m+ 1) levels.

A Lower Bound on the Expected Cost of the Algorithm on the Hard
Sequence. In [9] it is noted that we can assume without loss of generality that
the algorithm is lazy, in the sense that for each step the set of relabeled items is a
sub-interval of the inserted items that contains the most recently inserted item.
(Intuitively, a non-lazy algorithm can be modified so that any relabeling that
violates laziness is deferred until later). This observation extends to randomized
algorithms.

In the deterministic case, this assumption and the definition of the critical
level qt+1 can be used to show that when the algorithm responds to the item
yt it moved at least a constant fraction of the items belonging to St(qt+1 + 1)
must have moved at step t− 1 and so the total cost of the algorithm is at least
Ω(

∑
t |St(qt+1 + 1)|). In the randomized case we get a related bound that the

expected total number of items is Ω(
∑

t |St(qt+1)− St(qt+1 + 1)|).
Bucketing Games. The next step in the analysis is to define bucketing games,
and to show that the lower bound on the cost of the algorithm given in the
previous paragraph is an upper bound on the cost of an appropriate bucketing
game.

The prefix bucketing game with n items and k buckets is a one player game.
The game starts with k empty buckets indexed 1, . . . , k. At each step the player
places an item in some bucket p. All the items from buckets 1, . . . , p − 1 are
then moved into bucket p as well, and the cost is the number of items in buckets
1, . . . , p before the merge, which is the number of items in bucket p after the
merge. The goal is to select the sequence of indices so as to minimize the total
cost. The total cost is the sum of the costs of each step. The goal is to select the
sequence of indexes p so that we would minimize the total cost. In [2] (following
[10]) it is shown that any deterministic labeling algorithm could be associated
to a bucketing strategy such that the cost of the labeling algorithm against our
adversary is at least a constant times the cost of the bucketing strategy. This
result is deduced using the lower bound of Ω(

∑
t |St(qt+1 + 1)| for the cost of

the algorithm mentioned earlier. It was also shown in [10] (see also [2]) that
the minimal cost of any bucketing strategy (for more than 2 log(n) buckets) is
Ω(n log(n)/(log(k)− log log(n)). These results together gave the lower bound on
deterministic labeling.

We use the same basic idea for the randomized case, but require several
significant changes to the game. The first difficulty is that the lower bound
Ω(

∑
t |St(qt+1)− St(qt+1 + 1)|) on the cost of a randomized algorithm in terms

of a sum given earlier is not the same as the lower bound we had for determin-
istic algorithms. This lower bound is no longer bounded below by the cost of
prefix bucketing. To relate this lower bound to bucketing, we must replace the
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cost function in bucketing by a smaller cost function, which is the number of
items in the bucket p before the merge, not after. In general, this cost function is
less expensive (often much less expensive) than the original cost function and we
call it the cheap cost function. The argument relating the cost of a randomized
algorithm to a bucketing strategy requires that the number of buckets be at
least 4 log(m) buckets. If we could prove a lower bound on the cost of bucketing
under the cheap function similar to the bound mentioned above for the original
function this would be enough to deduce the desired lower bound on random-
ized labeling. However with this cheap cost function this lower bound fails: if the
number of buckets is at least 1 + log(n), there is a bucketing strategy that costs
0 with the cheap cost function! So this will not give any lower bound on cost of
a randomized labeling algorithm

We overcome this problem by observing that we may make a further modifi-
cation of the rules for bucketing and still preserve the connection between the
cost of a randomized algorithm against our adversary and the cheap cost of a
bucketing. This modification is called tail bucketing. In a tail bucketing, after
merging all the items into the bucket p, we redistribute these items back among
buckets 1, . . . , p, so that bucket p keeps 1 − β fraction of the items and passes
the rest to the bucket p − 1, bucket p − 1 does the same, and the process con-
tinues down until bucket 1 which keeps the remaining items. It turns our that
our adversary can be related to tail bucketing for β = 1/6. We can prove that
the minimal cheap cost of tail bucketing is Ω(n log(n)) when k = O(log n). This
lower bound is asymptotically optimal and yields a similar bound for randomized
online labeling.

The lower bound proof for the cheap cost of tail bucketing has some interesting
twists. The proof consists of several reductions between different versions of
bucketing. The reductions show that we can lower bound the cheap cost of tail
bucketing with C log(n) buckets (for any C) by the cheap cost of ordinary prefix
bucketing with k = 1

4 logn buckets. Even though the cheap cost of ordinary
bucketing dropped to 0 once k = log(n) + 1, we are able to show that for
k = 1

4 log(n) there is a θ(n log(n)) bound for ordinary bucketing with the cheap
cost.

Due to space limitations large portion of the proofs are omitted and they will
appear in the full version. Unless otherwise specified, logarithms in this paper
are to base 2.

2 The Online Labeling Problem

We first define the deterministic version of online labeling. We have parameters
n ≤ m < r, and are given a sequence of n numbers from the set U = [1, r] and
must assign to each of them a label in the range [1,m]. (Here, and throughout
the paper, interval notation is used for consecutive sets of integers). A deter-
ministic online labeling algorithm A with parameters (n,m, r) is an algorithm
that on input sequence (y1, y2, . . . , yt) with t ≤ n of distinct elements from U
outputs a labeling fA : {y1, y2, . . . , yt} → [m] that respects the natural ordering
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of y1, . . . , yt, that is for any x, y ∈ {y1, y2, . . . , yt}, fA(x) < fA(y) if and only if
x < y. We refer to y1, y2, . . . , yt as items.

Fix an algorithm A. Any item sequence y1, . . . , yn determines a sequence
fA,0, fA,1, . . . , fA,n of labelings where ft is the labeling of (y1, . . . , yt) determined
by A. When the algorithm A is fixed we omit the subscript A. We say that A
relabels y ∈ {y1, y2, . . . , yt} at time t if ft−1(y) �= ft(y). In particular, yt is rela-
beled at time t. Relt = RelA,t denotes the set of items relabeled at step t. The
cost of A on y1, y2, . . . , yn is χA(y1, . . . , yn) =

∑n
t=1 |Relt|.

A randomized online labeling algorithm A is a probability distribution on
deterministic online labeling algorithms. Given a item sequence y1, . . . , yn,
the algorithm A determines a probability distribution over sequences of la-
belings f0, . . . , fn. The set Relt is a random variable whose value is a sub-
set of y1, . . . , yt. The cost of A on y1, y2, . . . , yn ∈ U is the expected cost
χA(y1, . . . , yn) = E [χA(y1, . . . , yn)]. The maximum cost χA(y1, . . . , yn) over all
sequences y1, . . . , yn is denoted χA(n). We write χm(n) for the smallest cost
χA(n) that can be achieved by any algorithm A with range m.

We state our main theorem.

Theorem 1. For any constant C0, there are positive constants C1 and C2 so
that the following holds. Let A be a randomized algorithm with parameters
(n,m, r), where n ≥ C1, r ≥ 2n and m ≤ nC0 . Then χA(n) ≥ C2n log(n).

To prove the theorem we will need some additional definitions. Let S ⊆ Y ⊆ U .
We write min(S) and max(S) for the least and greatest elements, respectively.
We say that S is a Y -interval if S = Y ∩ [min(S),max(S)]. We write med(S) for
the median of S which we take to be the �|S|/2�-th largest element of S. We define
left-half(S) = {y ∈ S|y ≤ med(S)} and right-half(S) = {y ∈ S|y ≥ med(S)}
(note that med(S) is contained in both). Also define left-third(S) to be the
smallest �|S|/3� elements, right-third(S) to be the largest �|S|/3� elements
and middle-third(S) = S − left-third(S)− right-third(S).

Given a labeling f of Y and a Y -interval S, we say that the Y -interval S is
left-leaning with respect to f if med(S) has a label that is closer to the label
of min(S) than it is to the label of max(S), i.e. (f(med(S)) − f(min(S))) ≤
(f(max(S))− f(med(S)). It is right-leaning otherwise.

A deterministic labeling algorithm is lazy if at each step t, the set of relabeled
items is a Yt-interval (which necessarily contains yt), and a randomized algorithm
is lazy if it is a distribution over lazy deterministic algorithms. In [9], it was shown
that there is an optimal deterministic algorithm that is lazy, and the same proof
works to show that there is an optimal lazy randomized algorithm. (Intuitively
this is the case because if the relabeled items at step t do not form a Yt-interval
and W is the largest Yt-interval of relabeled items containing yt then we can
defer relabeling the items in Yt \W until later.)

2.1 The Adversary

We now specify an adversary Adversary(A, n,m) which given an online label-
ing algorithm A, a length n, and label space size m, constructs a item sequence
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y1, y2, . . . , yn from the universe U = {1, . . . , 2n−1}. Our adversary and notation
borrow from past work in the deterministic case ([10,9]).

We think of the adversary as selecting y1, . . . , yn online, but after each step
the adversary only knows a probability distribution over the configurations of
the algorithm.

To avoid dealing with special cases in the description of the adversary, we
augment the set of items by items 0 and 2n which are given (permanent) labels
0 and m+ 1 respectively. We write Yt for the set {y1, . . . , yt}∪{0, 2n} of labeled
items after step t. At the beginning of step t, having chosen the set Yt−1, the
adversary will select a Yt−1-interval, denoted St(∗), of size at least 2 and select
yt to be min(St(∗)) + 2n−t. An easy induction on t shows that the items chosen
through step t are multiples of 2n−t, and it follows that yt is strictly between
the smallest and second smallest elements of St(∗). Therefore all of the chosen
items are distinct.

To choose St(∗), the adversary constructs a nested sequence of sets:

Yt−1 = St(1) ⊃ Tt(2) ⊃ St(2) ⊃ Tt(3) ⊃ · · · ⊃ Tt(dt) ⊃ St(dt)

called the hierarchy at step t, and chooses St(∗) = St(dt).
Note that the subscript for the hierarchy is one larger than the subscript of the

containing set Yt−1 because the hierarchy is built in step t in order to determine
yt. Each set St(i) and Tt(i) is a Yt−1-interval of size at least 2. The depth dt of
the hierarchy may vary with t. The sets St(i) and Tt(i) are said to be at level i
in the hierarchy.

The hierarchy for t = 1 has d1 = 1 and S1(1) = {0, 2n}. The hierarchy at
step t > 1 is constructed based on the hierarchy at the previous step t− 1 and
the expected behavior of the algorithm on y1, . . . , yt−1 as reflected by the joint
probability distribution over the sequence of functions f1, . . . , ft−1.

The pseudo-code for the adversary is given in Figure 1, and follows the infor-
mal description of the adversary sketched in the introduction.

Here is a more detailed explanation of how the critical level qt is selected.
When constructing each set St(i) of the hierarchy for i ≥ 2, the adversary
defines a parameter birtht(i) which is set equal to t if St(i) is rebuilt, and is
otherwise set to birtht−1(i). It is easy to see (by induction on t), that birtht(i)
is equal to the largest time u ≤ t such that Su(i) was rebuilt. It follows that for
each u ∈ [birtht(i), t], min(Tu(i)) = min(Tt(i)) and max(Tu(i)) = max(Tt(i)).

Say that item y has stable label during interval [a, b] if for each step u in
[a, b], fu(y) has the same value, and has unstable label on [a, b] otherwise. We
define the event stablet(i) to be the event (depending on A) that min(Tt(i))
and max(Tt(i)) have stable labels during interval [birtht(i− 1), t].

We are finally ready to define qt. If there is at least one level i ≥ 2 for which
Pr[stablet−1(i)] ≤ 3/4, let imin be the least such level, and choose qt = imin−1.
Otherwise set qt = dt−1.

The following lemma immediately implies Theorem 1.
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Lemma 1. Let n ≤ m be integers. Let A be a lazy randomized online labeling al-
gorithm with the range m. Let y1, y2, . . . , yn be the output of Adversary(A, n,m).
Then the cost satisfies:

χA(y1, y2, . . . , yn) ≥ 5

96

(
1

6

)28c log(2c)

(n+ 1) log(n+ 1)− n

4
,

where c = log(m+ 1)/ log(n+ 1).

The proof of this lemma has two main steps. The first step is to bound the
cost χA(y1, . . . , yn) from below by the minimum cost of a variant of the prefix-
bucketing game. The prefix-bucketing game was introduced and studied before
to get lower bounds for deterministic online labeling. The variant we consider
is called tail-bucketing. The second step is to give a lower bound on the cost of
tail-bucketing.

Adversary(A, n,m)

t = 1: S1(1)←− {0, 2n} and birth1(1) = 1, y1 = 2
n−1.

For t = 2, . . . , n do

– St(1)←− St−1(1) ∪ {yt−1};
– (Choose critical level) Consider the sequence of (dependent) random functions

f1, . . . , ft−1 produced byA in response to y1, . . . , yt−1. If there is an index i ≥ 2 for
which Pr[stablet−1(i)] ≤ 3/4, let imin be the least such index and let qt = imin−1.
Otherwise set qt = dt−1.

– i←− 1.
– (Preserve intervals up to the critical level) While i < qt do:

• i←− i+ 1.
• Tt(i)←− Tt−1(i) ∪ {yt−1}
• St(i)←− St−1(i) ∪ {yt−1}
• birtht(i)←− birtht−1(i)

– (Build intervals after the critical level) While |St(i)| ≥ 7 do:
• i←− i+ 1
• If St(i− 1) is left-leaning with respect to ft−1 with probability at least 1/2
then Tt(i)←− left-half(St(i− 1)) otherwise Tt(i)←− right-half(St(i− 1))

• St(i)←−middle-third(Tt(i)).
• birtht(i)←− t. [Record that St(i) and Tt(i) were rebuilt]

– dt ←− i.
– yt ←− min(St(dt)) + 2

n−t.

Output: y1, y2, . . . , yn.

Fig. 1. Pseudocode for the adversary

To prove the first step we will need two properties of Adversary(A, n,m).
In what follows, we fix A, n,m. Adversary(A, n,m) determines y1, . . . , yn and
the critical levels q1, . . . , qn. Note that the definition of qj only depends on the
expected behavior of the algorithm through the construction of fj−1. For pur-
poses of analysis, we also define the critical level qn+1 based on the expected
behavior of f1, . . . , fn in exactly the same way.
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Lemma 2. For any t ∈ [1, n], dt ≤ 4 log(m+ 1).

Lemma 3. The cost of A on y1, . . . , yn satisfies:

χA(y1, y2, . . . , yn) ≥ 1

40

∑
t

|St(qt+1) \ St(1 + qt+1)|,

where the sum ranges over time steps t ∈ [1, n] for which qt+1 < dt.

3 Prefix Bucketing and Tail Bucketing

We will need several different variants of prefix bucketing game introduced by
Dietz, Seiferas and Zhang [10]. We have k buckets numbered 1, . . . , k in which
items are placed. A bucket configuration is an arrangement of items in the buck-
ets; formally it is a mapping C : {1, . . . , k} to the nonnegative integers, where
C(i) is the number of items in bucket i. It will sometimes be convenient to
allow the range of the function C to be the nonnegative real numbers, which
corresponds to allowing a bucket to contain a fraction of an item.

A bucketing game is a one player game in which the player is given a sequence
of groups of items of sizes n1, . . . , n� and must sequentially place each group of
items into a bucket. The case that the sequence n1 = · · · = n� = 1 is called simple
bucketing. The placement is done in a sequence of 
 steps, and the player selects
a sequence p1, . . . , p� ∈ [1, k]�, called an (
, k)-placement sequence which specifies
the bucket into which each group is placed. Bucketing games vary depending on
two ingredients, the rearrangement rule and the cost functions.

When a group of m items is placed into bucket p, the items in the configuration
are rearranged according to a specified rearrangement rule, which is not under
the control of the player. Formally, a rearrangement rule is a function R that
takes as input the current configuration C, the number m of new items being
placed and the bucket p into which they are placed, and determines a new
configuration R(C,m, p) with the same total number of items.

The prefix rearrangement rule is as follows: all items currently in buckets
below p are moved to bucket p. We say that items are merged into bucket p.
Formally, the new configuration C ′ = R(C,m, p) satisfies C′(i) = 0 for i < p,
C′(p) = C(1) + · · ·+C(p) +m and C′(i) = C(i) for i > p. Most of the bucketing
games we’ll discuss use the prefix rearrangement function, but in Section 3.1
we’ll need another rearrangement rule.

The cost function specifies a cost each time a placement is made. For the
cost functions we consider the cost of placing a group depends on the current
configuration C and the selected bucket p but not on the number m of items
being placed. We consider four cost functions but for this extended abstract we
need only the cheap cost function: In cheap bucketing, the cost is the number of
items in bucket p before the placement:

costcheap(C, p) = C(p).

Fix a rearrangement ruleR and a cost function c. A placement sequence p1, . . . , p�
and a load sequence n1, . . . , n� together determine a sequence of configurations
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B = (B0, B1, . . . , B�), called a bucketing where B0 is the empty configuration
and for i ∈ [1, 
], Bi = R(Bi−1, ni, pi). Each of these 
 placements is charged
a cost according to the cost rule c. We write c[R](p1, . . . , p�|n1, . . . , n�) for the

sum
∑�

i=1 c(Bi−1, pi), which is the sum of the costs of each of the 
 rearrange-
ments that are done during the bucketing. If R is the prefix rule, we call B a
prefix bucketing and denote the cost simply by c(p1, . . . , p�|n1, . . . , n�). In the
case of simple bucketing, n1 = . . . = n� = 1, we write simply c[R](p1, . . . , p�) or
c(p1, . . . , p�) in the case of simple prefix bucketing.

3.1 Tail Bucketing and Online Labeling

We will need an alternative rearrangement function, called the tail rearrangement
rule. The bucketing game with this rule is called tail bucketing. The tail rear-
rangement rule Tailβ with parameter β acts on configuration C, bucket p and
group size m by first moving all items below bucket p to bucket p so that w =
C(1) + · · · + C(p) + m items are in bucket p (as with the prefix rule), but then
for j from p down to 1, β fraction of the items in bucket j are passed to bucket
j − 1, until we reach bucket 1. (Here we allow the number of items in a bucket to
be non-integral.) Thus for j ∈ [2, p] bucket j has w(1−β)(β)p−j items and bucket
1 has wβp−1 items. We will consider tail bucketing with the cheap cost function.

We now relate the expected cost of randomized online labeling algorithm A on
the sequence y1, y2, . . . , yn produced by our adversary to the cost of a specific tail
bucketing instance. For a lazy online labeling algorithm A and t = 1, . . . , n, let
ft, St(i), qt, yt be as defined by our adversary and the algorithm A. Denote Y =
{y1, y2, . . . , yn}. Set k = �4 log(m+ 1)�. Let q1, . . . , qn be the sequence of critical
levels produced by the algorithm. As mentioned prior to stating Lemma 2, we
define qn+1 for analysis purposes. For integer i ∈ [k] define ī to be ī = (k+1)− i.
Define the placement sequence p1 = q̄2, . . . , pn = q̄n+1, and consider the tail
bucketing B0, . . . , Bn+1 determined by this placement sequence with parameter
β = 1/6, and all group sizes 1 (so it is a simple bucketing). The following lemma
relates the cost of online labeling to the tail bucketing.

Lemma 4. Let {St(i) : 1 ≤ t ≤ n, 1 ≤ i ≤ dt} be the interval hierarchy com-
puted by Adversary(A, n,m) and BA = (B0, . . . , Bn) be the corresponding
tail-bucketing. Then for any t ∈ [1, n] and any j ∈ [1, dt]:

|St(j)\St(j + 1)| ≥ Bt−1(j̄)− 3.

Here, for the case j = dt, we take St(j + 1) to be ∅.
Corollary 1. The cost of randomized labeling algorithm A with label space [1,m]
on y1, . . . , yn satisfies:

χA(y1, y2, . . . , yn) ≥ 1

40
(min costcheap[Tail1/6](p1, . . . , pn)− 10n),

where the minimum is over all placement sequences (p1, . . . , pn) into �4 log(m+
1)� buckets.
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Armed with Corollary 1, it now suffices to prove a lower bound on the cheap
cost of simple tail bucketing when the number of items is n and the number of
buckets is �4 log(m+ 1)�. The lower bound is provided by the next statement:

Lemma 5. Let p1, . . . , pn be an arbitrary placement sequence into �4 log(m+1)�
buckets. Then

costcheap[Tail1/6](p1, . . . , pn) ≥ 5

12

(
1

6

)28c log(2c)

(n+ 1) log(n+ 1),

where c = log(m+ 1)/ log(n+ 1).

Now Lemma 1 follows from the above lemma and Corollary 1.
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9. Bulánek, J., Koucký, M., Saks, M.: Tight lower bounds for online labeling problem.
In: STOC, pp. 1185–1198 (2012)

10. Dietz, P., Seiferas, J., Zhang, J.: A tight lower bound for online monotonic list
labeling. SIAM J. Discrete Math. 18(3), 626–637 (2004)

11. Dietz,P., Zhang, J.: Lower bounds formonotonic list labeling. In:Gilbert, J.R.,Karls-
son, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 173–180. Springer, Heidelberg (1990)

12. Emek, Y., Korman, A.: New bounds for the controller problem. Distributed Com-
puting 24(3-4), 177–186 (2011)

13. Itai, A., Konheim, A., Rodeh, M.: A sparse table implementation of priority queues.
In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 417–431. Springer,
Heidelberg (1981)

14. Korman, A., Kutten, S.: Controller and estimator for dynamic networks. In: PODC,
pp. 175–184 (2007)

15. Willard, D.: A density control algorithm for doing insertions and deletions in a
sequentially ordered file in good worst-case time. Inf. Comput. 97(2), 150–204
(1992)

16. Zhang, J.: Density Control and On-Line Labeling Problems. PhD thesis, University
of Rochester (1993)



Dual Lower Bounds for Approximate Degree

and Markov-Bernstein Inequalities�

Mark Bun�� and Justin Thaler���

School of Engineering and Applied Sciences
Harvard University, Cambridge, MA
{mbun,jthaler}@seas.harvard.edu

Abstract. The ε-approximate degree of a Boolean function f : {−1, 1}n →
{−1, 1} is the minimum degree of a real polynomial that approximates
f to within ε in the �∞ norm. We prove several lower bounds on this
important complexity measure by explicitly constructing solutions to
the dual of an appropriate linear program. Our first result resolves the
ε-approximate degree of the two-level AND-OR tree for any constant
ε > 0. We show that this quantity is Θ(

√
n), closing a line of incremen-

tally larger lower bounds [3, 11, 21, 30, 32]. The same lower bound was
recently obtained independently by Sherstov using related techniques
[25]. Our second result gives an explicit dual polynomial that witnesses a
tight lower bound for the approximate degree of any symmetric Boolean
function, addressing a question of Špalek [34]. Our final contribution is
to reprove several Markov-type inequalities from approximation theory
by constructing explicit dual solutions to natural linear programs. These
inequalities underly the proofs of many of the best-known approximate
degree lower bounds, and have important uses throughout theoretical
computer science.

1 Introduction

Approximate degree is an important measure of the complexity of a Boolean
function. It captures whether a function can be approximated by a low-degree
polynomial with real coefficients in the 
∞ norm, and it has many applications
in theoretical computer science. The study of approximate degree has enabled
progress in circuit complexity [7, 8, 19, 29], quantum computing (where it has
been used to prove lower bounds on quantum query complexity, e.g. [2, 5, 14]),
communication complexity [4, 10, 17, 27, 31, 33, 34], and computational learning
theory (where approximate degree upper bounds underly the best known algo-
rithms for PAC learning DNF formulas and agnostically learning disjunctions)
[13, 15].

In this paper, we seek to advance our understanding of this fundamental
complexity measure. We focus on proving approximate degree lower bounds
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by specifying explicit dual polynomials, which are dual solutions to a certain
linear program capturing the approximate degree of any function. These poly-
nomials act as certificates of the high approximate degree of a function. Their
construction is of interest because these dual objects have been used recently to
resolve several long-standing open problems in communication complexity (e.g.
[4,10,17,27,33,34]). See the survey of Sherstov [26] for an excellent overview of
this body of literature.

Our Contributions. Our first result resolves the approximate degree of the
function f(x) = ∧N

i=1 ∨N
j=1 xij , showing this quantity is Θ(N). Known as the

two-level AND-OR tree, f is the simplest function whose approximate degree
was not previously characterized. A series of works spanning nearly two decades
proved incrementally larger lower bounds on the approximate degree of this
function, and this question was recently re-posed by Aaronson in a tutorial at
FOCS 2008 [1]. Our proof not only yields a tight lower bound, but it specifies
an explicit dual polynomial for the high approximate degree of f , answering a
question of Špalek [34] in the affirmative.

Our second result gives an explicit dual polynomial witnessing the high ap-
proximate degree of any symmetric Boolean function, recovering a well-known
result of Paturi [22]. Our solution builds on the work of Špalek [34], who gave an
explicit dual polynomial for the OR function, and addresses an open question
from that work.

Our final contribution is to reprove several classical Markov-type inequalities
of approximation theory using simpler ideas from linear programming. These in-
equalities bound the derivative of a polynomial in terms of its degree. Combined
with the well-known symmetrization technique (see e.g. [1, 19]), Markov-type
inequalties have traditionally been the primary tool used to prove approximate
degree lower bounds on Boolean functions (e.g. [2,3,21,32]). Our proofs of these
inequalities specify explicit dual solutions to a natural linear program (that dif-
fers from the one used to prove our first two results). While these inequalities
have been known for over a century [9, 18], to the best of our knowledge our
proof technique is novel, and we believe it sheds new light on these results.

2 Preliminaries

We work with Boolean functions f : {−1, 1}n → {−1, 1} under the standard
convention that 1 corresponds to logical false, and −1 corresponds to logical true.
We let ‖f‖∞ = maxx∈{−1,1} |f(x)| denote the 
∞ norm of f . The ε-approximate
degree of a function f : {−1, 1}n → {−1, 1}, denoted degε(f), is the minimum
(total) degree of any real polynomial p such that ‖p−f‖∞ ≤ ε, i.e. |p(x)−f(x)| ≤
ε for all x ∈ {−1, 1}n. We use d̃eg(f) to denote deg1/3(f), and use this to refer
to the approximate degree of a function without qualification. The choice of 1/3

is arbitrary, as d̃eg(f) is related to degε(f) by a constant factor for any constant
ε ∈ (0, 1). We let ORn and ANDn denote the OR function and AND function
on n variables respectively. Define s̃gn(x) = −1 if x < 0 and 1 otherwise.
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In addition to approximate degree, block sensitivity is also an important mea-
sure of the complexity of a Boolean function. We introduce this measure because
functions with low block sensitivity are an “easy case” in the analysis of Theo-
rem 2 below. The block sensitivity bsx(f) of a Boolean function f : {−1, 1}n →
{−1, 1} at the point x is the maximum number of pairwise disjoint subsets
S1, S2, S3, · · · ⊆ {1, 2, . . . , n} such that f(x) �= f(xS1) = f(xS2) = f(xS3) = . . .
Here, xS denotes the vector obtained from x by negating each entry whose in-
dex is in S. The block sensitivity bs(f) of f is the maximum of bsx(f) over all
x ∈ {−1, 1}n.

2.1 A Dual Characterization of Approximate Degree

For a subset S ⊂ {1, . . . , n} and x ∈ {−1, 1}n, let χS(x) =
∏

i∈S xi. Strong
LP-duality yields the following well-known dual characterization of approximate
degree (cf. [27]).

Theorem 1. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then degε(f) >
d if and only if there is a polynomial φ : {−1, 1}n → R such that∑

x∈{−1,1}n
f(x)φ(x) > ε, (1)

∑
x∈{−1,1}n

|φ(x)| = 1, (2)

and ∑
x∈{−1,1}n

φ(x)χS(x) = 0 for each |S| ≤ d. (3)

If φ satisfies Eq. (3), we say φ has pure high degree d. We refer to any feasible
solution φ to the dual LP as a dual polynomial for f .

3 A Dual Polynomial for the AND-OR Tree

Define AND-ORM
N : {−1, 1}MN → {−1, 1} by f(x) = ∧M

i=1 ∨N
j=1 xij . AND-ORN

N

is known as the two-level AND-OR tree, and its approximate degree has resisted
characterization for close to two decades. Nisan and Szegedy proved an Ω(N1/2)

lower bound on d̃eg(AND-ORN
N ) in [21]. This was subsequently improved to

Ω(
√
N logN) by Shi [32], and improved further to Ω(N2/3) by Ambainis [3].

Most recently, Sherstov proved an Ω(N3/4) lower bound in [30], which was the
best lower bound prior to our work. The best upper bound is O(N) due to Høyer,
Mosca, and de Wolf [11], which matches our new lower bound.

By refining Sherstov’s analysis in [30], we will show that d̃eg(AND-ORM
N ) =

Ω(
√
MN), which matches an upper bound implied by a result of Sherstov [28].

In particular, this implies that the approximate degree of the two-level AND-OR
tree is Θ(N).

Theorem 2. d̃eg(AND-ORM
N ) = Θ(

√
MN).
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Independent Work by Sherstov. Independently of our work, Sherstov [25]

has discovered the same Ω(
√
MN) lower bound on d̃eg(AND-ORM

N ). Both his
proof and ours exploit the fact that the OR function has a dual polynomial with
one-sided error. Our proof proceeds by constructing an explicit dual polynomial
for AND-ORM

N , by combining a dual polynomial for ORN with a dual polynomial
for ANDM . In contrast, Sherstov mixes the primal and dual views: his proof
combines a dual polynomial for ORN with an approximating polynomial p for
AND-ORM

N to construct an approximating polynomial q for ANDM . The proof
in [25] shows that q has much lower degree than p, so the desired lower bound
on the degree of p follows from known lower bounds on the degree of q.

The proof of [25] is shorter, while our proof has the benefit of yielding an
explicit dual polynomial witnessing the lower bound.

3.1 Proof Outline

Our proof is a refinement of a result of Sherstov [30], which roughly showed
that approximate degree increases multiplicatively under function composition.
Specifically, Sherstov showed the following.

Proposition 1 ([30, Theorem 3.3]). Let F : {−1, 1}M → {−1, 1} and f :
{−1, 1}N → {−1, 1} be given functions. Then for all ε, δ > 0,

degε−4δ bs(F )(F (f, . . . , f)) ≥ degε(F ) deg1−δ(f).

Sherstov’s proof of Proposition 1 proceeds by taking a dual witness Ψ to the
high ε-approximate degree of F , and combining it with a dual witness ψ to
the high (1 − δ)-approximate degree of f to obtain a dual witness ζ for the
high (ε−4δbs(F ))-approximate degree of F (f, . . . , f). His proof proceeds in two
steps: he first shows that ζ has pure high degree at least degε(F ) deg1−δ(f), and
then he lower bounds the correlation of ζ with F (f, . . . , f). The latter step of
this analysis yields a lower bound on the correlation of ζ with F (f, . . . , f) that
deteriorates rapidly as the block sensitivity bs(F ) grows.

Proposition 1 itself does not yield a tight lower bound for d̃eg(AND-ORM
N ),

because the function ANDM has maximum block sensitivity bs(ANDM ) = M .
We address this by refining the second step of Sherstov’s analysis in the case
where F = ANDM and f = ORN . We leverage two facts. First, although the
block sensitivity of ANDM is high, it is only high at one input, namely the all-
true input. At all other inputs, ANDM has low block sensitivity and the analysis
of Proposition 1 is tight. Second, we use the fact that any dual witness to the
high approximate degree of ORN has one-sided error. Namely, if ψ(x) < 0 for
such a dual witness ψ, then we know that ψ(x) agrees in sign with ORN (x).
This property allows us to handle the all-true input to ANDM separately: we
use it to show that despite the high block-sensitivity of ANDM at the all-true
input y, this input nonetheless contributes positively to the correlation between
ζ and F (f, . . . , f).
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3.2 Proof of Thm. 2

As in Sherstov’s proof of Proposition 1, we define ζ :
(
{−1, 1}N

)M → R by

ζ(x1, . . . , xM ) := 2MΨ(. . . , s̃gn(ψ(xi)), . . . )

M∏
i=1

|ψ(xi)|, (4)

where Ψ and ψ are dual witnesses to the high ε-approximate degree of ANDM

and (1 − δ)-approximate degree of ORN , respectively, for suitable ε and δ, and
xi = (xi,1, . . . , xi,N ). To show that ζ is a dual witness for the fact that the

(1/3)-approximate degree of AND-ORM
N is Ω(

√
MN), it suffices to check that

ζ satisfies the conditions of Thm. 1. The only place where our analysis differs
from that of Sherstov’s is in verifying Expression (1), i.e. that

∑
(x1,...,xM)∈({−1,1}N )M

ζ(x1, . . . , xM )AND-ORM
N (x1, . . . , xM ) > 1/3. (5)

Let A1 = {x ∈ {−1, 1}N : ψ(x) ≥ 0,ORN (x) = −1} and A−1 = {x ∈ {−1, 1}N :
ψ(x) < 0,ORN (x) = 1}, so A1 ∪ A−1 is the set of all inputs x where the sign
of ψ(x) disagrees with ORN (x). Notice that

∑
x∈A1∪A−1

|ψ(x)| < δ/2 because
ψ has correlation 1 − δ with f . A sequence of manipulations found in the full
version of this paper shows that the left-hand side of (5) equals∑

z∈{−1,1}M
Ψ(z) ·E[ANDM (. . . , yizi, . . . )], (6)

where y ∈ {−1, 1}M is a random string whose ith bit independently takes on
value −1 with probability 2

∑
x∈Azi

|ψ(x)| < δ.

All z �= −1M can be handled as in Sherstov’s proof of Proposition 1, because
ANDM has low block sensitivity at these inputs. These inputs contribute a total
of at least ε − 4δ − |Ψ(−1M )| to Expression (6). We only need to argue that
the term corresponding to z = −1M contributes |Ψ(−1M )| to the correlation.
In the full version, we argue that any dual witness for the ORN function has
one-sided error [12]. That is, if OR(x) = 1 (i.e. if x = 1N ), then s̃gn(ψ(x)) = 1.
This implies that A−1 is empty; that is, if s̃gn(ψ(x)) = −1, then it must be
the case that ORN (x) = −1. Therefore, for z = −1M , the yi’s are all −1 with
probability 1, and hence Ey[ANDM (. . . , yizi, . . . )] = ANDM (−1M ) = −1. By
the one-sided error of any dual witness for ANDM , s̃gn(Ψ(−1M )) = −1, and thus
the term corresponding to z = −1M contributes −Ψ(z) = |Ψ(z)| to Expression
(6) as claimed. ��
Remark 1. Špalek [34] has exhibited an explicit dual witness showing that the ε-
approximate degree of both the AND function and the OR function isΩ(

√
n), for

ε = 1/14 (in fact, we generalize Špalek’s construction in the next section to any
symmetric function). It is relatively straightforward to modify his construction
to handle any constant ε ∈ (0, 1). With these dual polynomials in hand, the
dual solution ζ we construct in our proof is completely explicit. This answers a
question of Špalek [34, Section 4] in the affirmative.
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4 Dual Polynomials for Symmetric Boolean Functions

In this section, we construct a dual polynomial witnessing a tight lower bound
on the approximate degree of any symmetric function. The lower bound we
recover was first proved by Paturi [22] via a symmetrization argument combined
with the classical Markov-Bernstein inequality from approximation theory (see
Section 5). Paturi also provided a matching upper bound. Špalek [34], building
on work of Szegedy, presented a dual witness to the Ω(

√
n)-approximate degree

of the OR function and asked whether one could construct an analogous dual
polynomial for the symmetric t-threshold function [34, Section 4]. We accomplish
this in the more general case of arbitrary symmetric functions by extending the
ideas underlying Špalek’s dual polynomial for OR.

4.1 Symmetric Functions

For a vector x ∈ {−1, 1}n, let |x| = 1
2 (n− (x1 + · · ·+ xn)) denote the number of

−1’s in x. A Boolean function f : {−1, 1}n → {−1, 1} is symmetric if f(x) = f(y)
whenever |x| = |y|. That is, the value of f depends only on the number of inputs
that are set to −1.

Let [n] = {0, 1, . . . , n}. To each symmetric function f , we can associate a
unique univariate function F : [n] → {−1, 1} by taking F (|x|) = f(x). Through-
out this section, we follow the convention that lower case letters refer to multi-
variate functions, while upper case letters refer to their univariate counterparts.

We now discuss the dual characterization of approximate degree established
in Thm. 1, as it applies to symmetric functions. Following the notation in [34],
the standard inner product p · q =

∑
x∈{−1,1}n p(x)q(x) on symmetric functions

p, q induces an inner product on the associated univariate functions:

P ·Q :=
n∑

i=0

(
n

i

)
P (i)Q(i).

We refer to this as the correlation between P and Q. Similarly, the 
1-norm
‖p‖1 =

∑
x∈{−1,1}n |p(x)| induces a norm ‖P‖1 =

∑n
i=0

(
n
i

)
P (i). These defini-

tions carry over verbatim when f is real-valued instead of Boolean-valued.
If f is symmetric, we can restrict our attention to symmetric φ in the state-

ment of Thm. 1, and it becomes convenient to work with the following reformu-
lation of Thm. 1.

Corollary 1. A symmetric function f : {−1, 1}n → {−1, 1} has ε-approximate
degree greater than d iff there exists a symmetric function φ : {−1, 1}n → R with
pure high degree d such that

Φ · F
‖Φ‖1

=
φ · f
‖φ‖1

> ε.

(Here, F and Φ are the univariate function associated to f and φ, respectively).
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We clarify that the pure high degree of a multivariate polynomial φ does not
correspond to the smallest degree of a monomial in the associated univariate
function Φ. When we talk about the pure high degree of a univariate polynomial
Φ, we mean the pure high degree of its corresponding multilinear polynomial φ.
It is straightforward to check that if ψ is a multivariate polynomial of degree
n − d, then multiplying ψ by the parity function yields a univariate function
Φ(k) := Ψ(k) · (−1)k with pure high degree d.

We are now in a position to state the lower bound that we will prove in
this section. Paturi [22] completely characterized the approximate degree of a
symmetric Boolean function by the location of the layer t closest to the center
of the Boolean hypercube such that F (t− 1) �= F (t).

Theorem 3 ([22], Theorem 4). Given a nonconstant symmetric Boolean func-
tion f with associated univariate function F , let Γ (f) = min{|2t − n − 1| :

F (t− 1) �= F (t), 1 ≤ k ≤ n}. Then d̃eg(f) = Θ(
√
n(n− Γ (f)).

Paturi proved the upper bound non-explicitly by appealing to Jackson theo-
rems from approximation theory. He proved the lower bound by combining sym-
metrization with an appeal to the Markov-Bernstein inequality (see Section 5)
– his proof does not yield an explicit dual polynomial. We construct an explicit
dual polynomial to prove the following proposition, which is easily seen to imply
Paturi’s lower bound.

Proposition 2. Given f and F as above, let 1 ≤ t ≤ n be an integer with

F (t− 1) �= F (t). Then d̃eg(f) = Ω(
√
t(n− t+ 1)).

Proof Outline. We start with an intuitive discussion of Špalek’s construction
of a dual polynomial for OR, with the goal of elucidating how we extend the
construction to arbitrary symmetric functions. Consider the perfect squares S =
{k2 : 0 ≤ k2 ≤ n} and the univariate polynomial

R(x) =
1

n!

∏
i∈[n]\S

(x− i).

This polynomial is supported on S, and for all k ∈ S,

(
n

k2

)
|R(k2)| =

(
n

k2

)
· 1

n!
·

∏
i∈[n]
i�=k2

|k2 − i|∏
i∈S
i�=k2

|k2 − i| =
1∏

i∈S
i�=k2

|k2 − i| .

Note the remarkable cancellation in the final equality. This quotient is maximized
at k = 1. In other words, the threshold point t = 1 makes the largest contribution
to the 
1 mass of R. Moreover, one can check that R(0) is only a constant factor
smaller than R(1).

Špalek exploits this distribution of the 
1 mass by considering the polynomial
P (x) = R(x)/(x − 2). The values of P (x) are related to R(x) by a constant
multiple for x = 0, 1, but P (k) decays as |P (k2)| ≈ |R(k2)|/k2 for larger values.
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This decay is fast enough that a constant fraction of the 
1 mass of P comes
from the point P (0).1 Now P is an (n − Ω(

√
n))-degree univariate polynomial,

so we just need to show that Q(i) = (−1)iP (i) has high correlation with OR.
We can write

Q ·OR = 2Q(0)−Q · 1 = 2Q(0),

since the multilinear polynomial associated to Q has pure high degree Ω(
√
n),

and therefore has zero correlation with constant functions. Because a constant
fraction of the 
1 mass of Q comes from Q(0), it follows that |Q · OR |/‖Q‖1 is
bounded below by a constant. By perhaps changing the sign of Q, we get a good
dual polynomial for OR.

A natural approach to extend Špalek’s argument to symmetric functions with
a “jump” at t is the following:

1) Find a set S with |S| = Ω(
√
t(n− t+ 1)) such that the maximum contribu-

tion to the 
1 norm of R(x) = 1
n!

∏
i∈[n]\S(x− i) comes from the point x = t.

Equivalently, (
n

j

)
|R(j)| =

1∏
i∈S
i�=j
|j − i|

is maximized at j = t.
2) Define a polynomial P (x) = R(x)/(x − (t − 1))(x − (t + 1)). Dividing R(x)

by the factor (x− t− 1) is analogous to Špalek’s division of R(x) by (x− 2).
We also divide by (x− t+ 1) because we will ultimately need our polynomial
P (x) to decay faster than Špalek’s by a factor of |x− t| as x moves away from
the threshold. By dividing by both (x− t− 1) and (x− t+ 1), we ensure that
most of the 
1 mass of P is concentrated at the points t− 1, t, t+ 1.

3) Obtain Q by multiplying P by parity, and observe that Q(t − 1) and Q(t)
have opposite signs. Since F (t− 1) and F (t) also have opposite signs, we can
ensure that both t − 1 and t contribute positive correlation. Suppose these
two points contribute a 1/2 + ε constant fraction of the 
1-norm of Q. Then
even in the worst case where the remaining points all contribute negative
correlation, Q · F is still at least a 2ε fraction of ‖Q‖1 and we have a good
dual polynomial. Notice that the pure high degree of Q is |S| + 2, yielding
the desired lower bound.

In the case where t = Ω(n), we can use the set

S = {t± 4
 : 0 ≤ 
 ≤ t/4},

yielding a remarkably clean dual polynomial for the majority function. This
partial result also gives the right intuition for general t, although the details are
somewhat more complicated and spelled out in the full version of this paper. In
general, the set S interpolates between the set for OR used by Špalek, and the
set described above for linear t. In particular, S contains all points of the form
t± 4
, plus additional points corresponding to perfect squares when t = o(n).

1 It is also necessary to check that P (2) is only a constant factor larger than P (0).
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5 A Constructive Proof of Markov-Bernstein Inequalities

The Markov-Bernstein inequality for polynomials with real coefficients asserts
that

p′(x) ≤ min

{
n√

1− x2
, n2

}
‖p‖[−1,1], x ∈ (−1, 1)

for every real polynomial of degree at most n. Here, and in what follows,

‖p‖[−1,1] := sup
y∈[−1,1]

|p(y)|.

This inequality has found numerous uses in theoretical computer science, es-
pecially in conjunction with symmetrization as a method for bounding the ε-
approximate degree of various functions (e.g. [2, 8, 13, 16, 21, 22, 27]).

We prove a number of important special cases of this inequality based on linear
programming duality. Our proofs are constructive in that we exhibit explicit
dual solutions to a linear program bounding the derivative of a constrained
polynomial.

The special cases of the Markov-Bernstein inequality that we prove are suffi-
cient for many applications in theoretical computer science. The dual solutions
we exhibit are remarkably clean, and we believe that they shed new light on
these classical inequalities.

5.1 Proving the Markov-Bernstein Inequality at x = 0

The following linear program with uncountably many constraints captures the
problem of finding a polynomial p(x) = cnx

n + cn−1x
n−1 + · · ·+ c1x + c0 with

real-valued coefficients that maximizes |p′(0)| subject to the constraint that
‖p‖[−1,1] ≤ 1. Below the variables are c0, . . . cn, and there is a constraint for
every x ∈ [−1, 1].

max c1
such that

∑n
i=0 cix

i ≤ 1, ∀x ∈ [−1, 1]
−
∑n

i=0 cix
i ≤ 1, ∀x ∈ [−1, 1]

We will actually upper bound the value of the following LP, which is obtained
from the above by throwing away all but finitely many constraints. Not coin-
cidentally, the constraints that we keep are those that are tight for the primal
solution corresponding to the Chebyshev polynomials of the first kind. Through-
out this section, we refer to this LP as Primal.

max c1
such that

∑n
i=0 cix

i ≤ 1, ∀x = cos(kπ/n), k ∈ {0, 2, . . . , n− 1}
−
∑n

i=0 cix
i ≤ 1, ∀x = cos(kπ/n), k ∈ {1, 3, . . . , n}

The dual to Primal can be written as
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min
∑n

i=0 yi
such that Ay = e

yj ≥ 0 ∀j ∈ {0, . . . , n}

where Aij = (−1)j cosi(jπ/n) and e = (0, 1, 0, 0, 0, . . . , 0)T . We refer to this
linear program as Dual.

Our goal is to prove that Primal has value at most n. For odd n, it is well-
known that this value is achieved by the coefficients of (−1)(n−1)/2Tn(x), the
degree n Chebyshev polynomial of the first kind. Our knowledge of this primal-
optimal solution informed our search for a dual-optimal solution, but our proof
makes no explicit reference to the Chebyshev polynomials, and we do not need to
invoke strong LP duality; weak duality suffices. Our arguments rely on a number
of trigonometric identities that can all be established by elementary methods.

Proposition 3. Let n = 2m+ 1 be odd. Define the (n+ 1)× (n+ 1) matrix A
by Aij = (−1)j+m cosi(jπ/n) for 0 ≤ i, j ≤ n. Then

y =
1

n
(1/2, sec2(π/n), sec2(2π/n), . . . , sec2((n− 1)π/n), 1/2)T

is the unique solution to Ay = e1, where e1 = (0, 1, 0, 0, . . . , 0)T .

Note that y is clearly nonnegative, and thus is the unique feasible solution for
Dual. Therefore it is the dual-optimal solution, and as the entries of y sum to
n, it exactly recovers the Markov-Bernstein inequality at x = 0:

Corollary 2. Let p be a polynomial of degree n = 2m + 1 with ‖p‖[−1,1] ≤ 1.
Then p′(0) ≤ n.

While we have recovered the Markov-Bernstein inequality only for odd-degree
polynomials at zero, a simple “shift-and-scale” argument recovers the asymptotic
bound for any x bounded away from the endpoints {−1, 1}.

Corollary 3. Let p be a polynomial of degree n with ‖p‖[−1,1] ≤ 1. Then for any

x0 ∈ (−1, 1), |p′(x0)| ≤ n+1
1−|x0|‖p‖[−1,1]. In particular, for any constant ε ∈ (0, 1),

‖p′‖[−1+ε,1−ε] = O(n)‖p‖[−1,1].

We remark that the full Markov-Bernstein inequality guarantees that |p′(x)| ≤
n√

1−x2
‖p‖[−1,1], which has quadratically better dependence on the distance from

x to ±1. However, for x bounded away from ±1 our bound is asymptotically
tight and sufficient for many applications in theoretical computer science, such
as proving that the approximate degree of the Majority function on n variables
is Ω(n). Moreover, we can recover the Markov-Bernstein inequality near ±1 by
considering a different linear program. We omit the details from this extended
abstract for brevity.
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6 Conclusion

The approximate degree is a fundamental measure of the complexity of a Boolean
function, with pervasive applications throughout theoretical computer science.
We have sought to advance our understanding of this complexity measure by
resolving the approximate degree of the AND-OR tree, and reproving old lower
bounds through the construction of explicit dual witnesses. Nonetheless, few
general results on approximate degree are known, and our understanding of
the approximate degree of fundamental classes of functions remains incomplete.
For example, the approximate degree of AC0 remains open [2, 6], as does the
approximate degree of approximate majority (see [20, Page 11]).2

Resolving these open questions may require moving beyond traditional sym-
metrization-based arguments, which transform a polynomial p on n variables

into a polynomial q on m < n variables in such a way that d̃eg(q) ≤ d̃eg(p),

before obtaining a lower bound on d̃eg(q). Symmetrization necessarily “throws
away” information about p; in contrast, the method of constructing dual poly-
nomials appears to be a very powerful and complete way of reasoning about
approximate degree. Can progress be made on these open problems by directly
constructing good dual polynomials?
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Abstract. In a seminal STOC’95 paper, Arya et al. conjectured that
spanners for low-dimensional Euclidean spaces with constant maxi-
mum degree, hop-diameter O(log n) and lightness O(log n) (i.e., weight
O(log n) · w(MST)) can be constructed in O(n log n) time. This conjec-
ture, which became a central open question in this area, was resolved
in the affirmative by Elkin and Solomon in STOC’13 (even for doubling
metrics).
In this work we present a simpler construction of spanners for doubling

metrics with the above guarantees. Moreover, our construction extends
in a simple and natural way to provide k-fault tolerant spanners with
maximum degree O(k2), hop-diameterO(log n) and lightness O(k2 log n).

1 Introduction

An n-point metric space (X, d) can be represented by a complete weighted graph
G = (X,E), where the weight w(e) of an edge e = (u, v) is given by d(u, v). A
t-spanner of X is a weighted subgraph H = (X,E′) of G (where E′ ⊆ E has
the same weights) that preserves all pairwise distances to within a factor of t,
i.e., dH(u, v) ≤ t ·d(u, v) for all u, v ∈ X , where dH(u, v) is the distance between
u and v in H . The parameter t is called the stretch of the spanner H . A path
between u and v in H with weight at most t · d(u, v) is called a t-spanner path.

In this paper we focus on the regime of stretch t = 1+ε, for an arbitrarily small
0 < ε < 1

2 . In general, there are metric spaces (such as the one corresponding
to uniformly weighted complete graph), where the only possible (1 + ε)-spanner
is the complete graph. A special class of metric spaces, which has been subject
to intensive research in the last decade, is the class of doubling metrics. The
doubling dimension of a metric space (X, d), denoted by dim(X) (or dim when
the context is clear), is the smallest value ρ such that every ball in X can be
covered by 2ρ balls of half the radius [12]. A metric space is called doubling if its
doubling dimension is bounded by some constant. (We will sometimes disregard
dependencies on ε and dim to avoid cluttered expressions in the text, but we
provide these dependencies in all formal statements.) The doubling dimension is
a generalization of the Euclidean dimension for arbitrary metric spaces, as the
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Euclidean space RD equipped with any of the 
p-norms has doubling dimension
Θ(D) [12]. Spanners for doubling metrics (hereafter, doubling spanners), and in
particular for low-dimensional Euclidean spaces, have been studied extensively
since the mid-eighties; see [6,1,9,2,13,10,3,11,15] and the references therein.

In addition to small stretch and small number of edges, it is often desirable
to optimize other parameters depending on the application. First, it is often im-
portant for the spanner to achieve a small maximum degree (or shortly, degree),
hence having a small number of edges. Second, it is sometimes required that the
hop-diameter would be small, i.e., every pair of points should be connected by a
t-spanner path with a small number of edges (or hops). Third, it is desirable that
the weight of the spanner would be at most some small factor (called lightness)
times the weight of a minimum spanning tree (MST) of the metric space.

A natural requirement for a spanner is to be robust against node failures,
meaning that even when some of the nodes in the spanner fail, the remaining
part still provides a t-spanner. Formally, given a parameter 1 ≤ k ≤ n − 2, a
spanner H of X is called a k-vertex-fault-tolerant t-spanner ((k, t)-VFTS), if for
any subset F ⊆ X with |F | ≤ k, H \ F is a t-spanner for X \ F .

1.1 Our Contribution

The following is the main result of this paper.

Theorem 1 ((k, 1 + ε)-VFTS with Degree O(k2), Hop-Diameter O(log n)
and Lightness O(k2 logn)). Let (X, d) be an n-point metric space, and let
0 < ε < 1. Given any parameter 1 ≤ k ≤ n − 2, there exists a (k, 1 + ε)-VFTS
with degree ε−O(dim) ·k2, hop-diameter O(log n), and lightness ε−O(dim) ·k2 · logn.
Such a spanner can be constructed in ε−O(dim) · n logn+ ε−O(dim) · k2n time.

Research Background. We review the most relevant related work; the readers
can refer to [5,8] for a more detailed survey. In a seminal STOC’95 paper, Arya
et al. [1] gave several constructions of Euclidean spanners that trade between
degree, hop-diameter and lightness. In particular, they showed that for any n-
point low-dimensional Euclidean space, a (1 + ε)-spanner with constant degree,
hop-diameter O(log n) and lightness O(log2 n) can be built in O(n log n) time.

Arya et al. [1] conjectured that the lightness bound can be improved to
O(log n), without increasing the stretch, the degree and the hop-diameter of
the spanner, and within the same running time O(n log n). The bound O(log n)
on the lightness is optimal due to a lower bound result by Dinitz et al. [7].

This conjecture was resolved in the affirmative by Elkin and Solomon [8] only
recently. In fact, Elkin and Solomon showed a stronger result: their construction
works for doubling metrics, and moreover, it provides a general tradeoff between
the involved parameters that is tight up to constants in the entire range.

Chan et al. [4] showed that the standard net-tree with cross edge framework
(used in [9,2]) can be modified to give a simpler spanner construction with all the
desired properties, except for running time O(n log n). Combining the techniques
from a previous work on k-fault tolerant spanners [5], a precursor of this paper’s
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result was achieved, but with a worse lightness of O(k3 logn); moreover, the
running time was not analyzed in [4]. Solomon [14] made further improvements to
the construction in [4], and achieved improved lightness O(k2 logn) and running
time O(n logn). This paper is the result of a collaboration between the authors
of the (unpublished) manuscripts [4,14].

1.2 Our Techniques

We first give the main ideas for constructing a spanner when all nodes are func-
tioning. The treatment for fault-tolerance is given in Section 5. We use the stan-
dard net-tree with cross edge framework from [9,2]: given a metric space (X, d),
construct a hierarchical sequence {Ni} of nets with geometrically increasing dis-
tance scales. For each x ∈ Ni ⊆ X in level i (hereafter, level-i net-point), we
have a node (x, i) called incubator. The hierarchical net structure induces an
incubator tree (IncTree) with the incubators as nodes. At each level, if two net-
points are close together with respect to the distance scale at that level, we add
a cross edge between their corresponding incubators.

A basic spanner [9,2] consisting of the tree edges and the cross edges can be
shown to have a low stretch. The basic idea is that for any two points u and v,
we can start at the corresponding leaf nodes and climb to an appropriate level
(depending on d(u, v)) to reach net-points u′ and v′ that are close to u and v,
respectively, such that the cross edge {u′, v′} is guaranteed to exist. Observe
that there is a 1-1 correspondence between the leaf nodes and the original points
of X (i.e., each leaf corresponds to a unique point), and we later show how to
label each internal node with a unique point in X using the incubator-zombie
terminology.1 Next, we analyze each of the involved parameters (degree, hop-
diameter, and lightness), and explain how issues that arise can be resolved.
Degree. Since the doubling dimension is constant, each node in the net-tree has
a constant number of children and a constant number of incident cross edges.
However, in many net-based spanner constructions, each chain of lonely nodes
(i.e., a chain of nodes each of which has only one child) will be contracted ; this
may increase the degree of the contracted nodes due to cross edges. The idea of
constant degree single-sink spanners (used in [2,5]) can be applied to resolve this
issue. However, a simpler method is parent replacement, used by Gottlieb and
Roditty [11] to build a routing tree (RouTree) and reroute spanner paths, thus
pruning unnecessary cross edges. In Section 3 we use Gottlieb and Roditty’s
construction to bound the degree of our spanner construction.

Hop-Diameter. Observe that there may be many levels in the net-tree. In this
case, in the aforementioned spanner path between u and v, it will take many hops
to go from u (respectively, v) to an appropriate ancestor u′ (resp., v′). However,
this can be easily fixed by adding shortcut edges to subtrees of the contracted
routing tree (ConRouTree) at “small” distance scales via the 1-spanner construc-
tion with hop-diameter O(log n) for tree metrics by Solomon and Elkin [15]; this
“shortcut spanner” increases both the degree and the lightness by a constant.

1 The terminology is borrowed from [8], but these terms have different meaning there.
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We shall see in Section 4 that there are only O(log n) levels with “large” distance
scales, and hence hop-diameter O(log n) can achieved.

Lightness. For doubling metrics, lightness comes almost for free. We will show
that the total weight of small-scale edges is O(w(MST)). For each of the O(log n)
large-scale levels, the standard analysis in [9,2] uses the fact that for doubling
metrics each net-point has a constant number of neighbors at that level. Conse-
quently, the weight of edges from each large-scale level is only a constant times
that of an MST, thereby giving lightness O(log n). See Section 4 for the details.

To summarize, we obtained a spanner on the incubators that consists of
(1) edges in ConRouTree, where each chain of lonely nodes is contracted into a sin-
gle super incubator, (2) useful cross edges (which are not pruned after rerouting),
and (3) edges in the shortcut spanner for ConRouTree. The resulting incubator
graph H has constant degree, hop-diameter O(log n), lightness O(log n), and low
stretch with respect to the leaf nodes.

The final step is to convert the incubator graph H (which contains more than
n nodes) to a spanner H for the original n-point metric space. One way is to
label each node in the net-tree with the corresponding net-point in X . Then,
an edge between two nodes induces an edge between their labels. However, this
labeling is problematic, due to the hierarchical property of the nets. Although
H has constant degree, if a point in X is used as a label for many nodes, that
point will accumulate a large degree. In particular, the point associated with the
root node is a net-point at every level, hence this gives rise to a large degree.

The key idea is simple and has been used in [1,11]: we label each node with a
point that is nearby with respect to the relevant distance scale (which means that
small stretch will still be preserved), such that each label is used only a constant
number of times. This guarantees that the degree of the resulting spanner will be
constant. In order to describe the labeling process clearly, we find it convenient
to use the incubator-zombie terminology.

Incubators Working with Zombies. Each incubator will receive a label that
we refer to as a zombie, which is identified with a point in X . The incubator
graphH and the zombies naturally induce a spanner on X : if there is an edge be-
tween two incubators, then there is an induced edge between the corresponding
zombies. It is left to show how we assign zombies to incubators. Each leaf incuba-
tor can be simply assigned its original net-point, as there is a 1-1 correspondence
between leaf incubators and points in X . Also, since each internal incubator has
at least two children in the contracted incubator tree (ConIncTree), each internal
incubator can be assigned a unique nearby zombie from its descendant leaves.
(To achieve fault-tolerance, we use a zombie-climbing process that involves using
both ConIncTree and ConRouTree; we will guarantee that each internal incubator
holds up to k + 1 nearby zombies, and each point appears as a zombie in O(k)
incubators. We provide the details in Section 5.)

Sketch Analysis. Since each incubator contains a nearby zombie, small stretch
and lightness can still be preserved. Since the incubator graph H has constant
degree and each point in X can be the identity of at most two zombies, the
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degree of the resulting spanner H is constant too. The hop-diameter of H is
O(log n), as any spanner path (between leaf nodes) in H with l hops gives rise to
a spanner path in H with at most l hops. Finally, the running time is dominated
by the subroutines that our construction uses, which have been shown (in the
relevant references) to take O(n logn) time.

2 Preliminaries

Let (X, d) be an n-point doubling metric, and let 1 ≤ k ≤ n−2 be the maximum
number of failed nodes allowed. We consider the regime of stretch 1 + ε, for an
arbitrarily small 0 < ε < 1

2 . We assume that the minimum inter-point distance
of X is 1, and let Δ := maxu,v∈X d(u, v) be the diameter of X .

The ball of radius r > 0 centered at x is B(x, r) := {u ∈ X : d(x, u) ≤ r}.
A set Y ⊆ X is called an r-cover of X if for any point x ∈ X there is a point
y ∈ Y , with d(x, y) ≤ r. A set Y is an r-packing if for any pair of distinct points
y, y′ ∈ Y , it holds that d(y, y′) > r. For r1 ≥ r2 > 0, we say that a set Y ⊆ X is
an (r1, r2)-net for X if Y is both an r1-cover of X and an r2-packing. Note that
such a net can be constructed by a greedy algorithm. By recursively applying
the definition of doubling dimension, we can get the following key fact [12].

Fact 1 (Nets Have Small Size [12]). Let R ≥ 2r > 0 and let Y ⊆ X be an
r-packing contained in a ball of radius R. Then, |Y | ≤ (Rr )2dim.

The minimum spanning tree of a metric space (X, d) is denoted by MST(X) (or
simply MST if (X, d) is clear from the context). Also, we denote by w(MST) the
weight of MST. Given a spanner H for (X, d), the lightness of H is defined as
the ratio of the weight of H to the weight of MST.

Fact 2 (Two Lower Bounds for w(MST)). 1. w(MST) ≥ Δ.
2. Let S ⊆ X be an r-packing, with r ≤ Δ. Then, w(MST) ≥ 1

2r · |S|.

Hierarchical Nets. We consider the hierarchical nets that are used by Gottlieb
and Roditty [11]. Let ri := 5i and 
 := �log5Δ�. Also, let {Ni}�i≥0 be a sequence
of hierarchical nets, where N0 := X and for each i ≥ 1, Ni is a (3ri, ri)-net for
Ni−1. (Observe that N� contains one point.) As mentioned in [11], this choice of
parameters is needed to achieve running time O(n log n).

Net-Tree with Cross Edge Framework. We recap the basic spanner con-
struction [2,11] using the incubator-zombie terminology.
Incubators. For each level i and each x ∈ Ni, there is a corresponding incubator
C = (x, i), where x is the identity of the incubator and i is its level. For C1 =
(x1, i1) and C2 = (x2, i2), define d(C1, C2) := d(x1, x2); for C1 = (x1, i1) and
x2 ∈ X , define d(C1, x2) := d(x1, x2).

Incubator Tree. The hierarchical nets induce a tree structure (hereafter, the
incubator tree IncTree) on the incubators as follows. The only incubator at level

 is the root, and for each level 0 ≤ i < 
, each incubator at level i (hereafter,
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level-i incubator) has a parent at level i+ 1 within distance 3ri+1. (Recall that
Ni+1 is a 3ri+1-cover for Ni.) Hence, every descendant of a level-i incubator can
reach it by climbing a path of weight at most

∑
j≤i 3rj ≤ 4ri.

Cross Edges. In order to achieve stretch (1 + ε), in each level cross edges are
added between incubators that are close together with respect to the distance
scale at that level. Specifically, for each level 0 ≤ i < 
, for all u, v ∈ Ni such
that u �= v and d(u, v) ≤ γri, for some appropriate parameter γ = O(1ε ), we
add a cross edge between the corresponding incubators (u, i) and (v, i) (with
weight d(u, v)). The basic spanner construction is obtained as the union of the
tree (IncTree) edges and the cross edges. The following lemma gives the essence
of the cross edge framework; a variant of this lemma appears in [2, Lemma 5.1]
and [9]. Since we shall later reroute spanner paths and assign internal incubators
with labels (which we refer to as zombies), we also give an extended version here.

Lemma 1 (Cross Edge Framework Guarantees Low Stretch). Consider
the cross edge framework as described above.
(a) Let μ > 0 be an arbitrary constant. Suppose a graph H on the incubators
contains all cross edges (defined with some appropriate parameter γ depending
on μ and ε), and for each level i ≥ 1, each level-(i − 1) incubator is connected
via a tree edge to some level-i incubator within distance μri. Then, H contains
a (1 + ε)-spanner path Pu,v for each u, v ∈ X, obtained by climbing up from
the leaf incubators corresponding to u and v to some level-j ancestors u′ and v′,
respectively, where u′ and v′ are connected by a cross edge and rj = O(ε)·d(u, v).
(b) In the above graph H, if for each level i ≥ 1, each level-i incubator (u, i) is

labeled with a point û such that d(u, û) = O(ri), then the path P̂u,v induced by
the above path Pu,v and the labels is a (1 +O(ε))-spanner path.

Lonely Incubators. An incubator is called lonely if it has exactly one child in-
cubator (which has the same identity as the parent); otherwise it is non-lonely.
Observe that the leaf incubators have no children and are non-lonely. For effi-
ciency reasons, a long chain of lonely incubators will be represented implicitly;
implementation details can be found in [11]. As we shall later see, for the zombie-
climbing process (described in Section 5) to succeed we need the property that
each internal incubator has at least two children. Observe that at the bottom of
a chain C of lonely incubators is a non-lonely incubator C with the same iden-
tity. We shall later contract a chain C of lonely incubators (together with the
non-lonely incubator C at the bottom) into a super incubator.

Running Time. All the subroutines that our construction uses have been shown
(in the relevant references) to take O(n log n) running time. Hence, we disregard
the running time analysis, except for places which require clarification.

Challenges Ahead. Lemma 1 can be used to achieve low stretch. As lonely
incubators need to be contracted, the next issue is that many cross edges will be
inherited by the super incubator, which may explode the degree. To overcome
this obstacle, in Section 3 we use Gottlieb and Roditty’s technique [11] to reroute
spanner paths and prune redundant cross edges. In Section 4 we show that
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hop-diameter O(log n) (and lightness O(log n) too) can be achieved by applying
Solomon and Elkin’s shortcut spanner [15] to all subtrees at sufficiently small
distance scales (less than Δ

n ). In Section 5 we describe a zombie-climbing process,
which converts a graph on the incubators to a k-fault tolerant spanner on X with
all the desired properties, thereby completing the proof of Theorem 1.

3 Reducing Degree via Gottlieb-Roditty’s Spanner

By Fact 1, each internal incubator has at most O(1)O(dim) children in IncTree,
and each incubator is incident on at most ε−O(dim) cross edges. However, the
problem that arises is that when a chain of lonely incubators is contracted, the
cross edges that are incident on the corresponding super incubator may explode
its degree. We employ the parent replacement technique due to Gottlieb and
Roditty [11] to reroute spanner paths and make some cross edges redundant.
Our procedure below is a simple modification of subroutines that appear in [11],
and hence can be implemented within the same running time O(n log n).

Routing Tree. We carry out the parent replacement procedure by constructing
a routing tree (RouTree), which has the same leaf incubators as IncTree; moreover,
each level-(i− 1) child incubator is connected to a level-i parent incubator with
an edge of possibly heavier weight at most 5ri (as opposed to weight at most 3ri
as in IncTree). Consider a non-root incubator C in the (uncontracted) IncTree.
The parent incubator of C in RouTree is determined by the following rules.

(1) If either the parent C′ of C in IncTree or the parent of C′ is non-lonely, then
C will have the same parent C′ in RouTree.
(2) For a chain of at least two lonely incubators, we start from the bottom
incubator Ci = (x, i) (which is non-lonely) at some level i. If the parent Ci+1 of
Ci = (x, i) in IncTree is lonely and the parent of Ci+1 is also lonely, then we try
to find a new parent for Ci. Specifically, if there is some point w ∈ Ni+1 \ {x}
such that d(x,w) ≤ 5ri+1 (if there is more than one such point w, we can pick
one arbitrarily), then a non-lonely adopting parent is found as follows.

(a) If the incubator Ĉi+1 = (w, i+1) is non-lonely, then Ĉi+1 is designated as the

adopting parent of Ci (which means that Ĉi+1 will be Ci’s parent in RouTree).

Similarly, Ci is designated as an adopted child of Ĉi+1.

(b) If the incubator Ĉi+1 is lonely, then it does not adopt Ci. However, we shall

see in Lemma 2 that the parent Ĉi+2 of Ĉi+1 cannot be lonely. Moreover, it is

close enough to Ci+1, namely, d(Ci+1, Ĉi+2) ≤ 5ri+2. In this case Ĉi+2 will adopt
Ci+1 (and will be its parent in RouTree), and Ci+1 will remain Ci’s parent.

Observe that once an adopting parent is found, there is no need to find adopting
parents for the rest of the lonely ancestors in the chain, because these lonely
ancestors will not adopt, and so they will not be used for routing.

If there is no such nearby point w ∈ Ni+1 \ {x} for Ci = (x, i), then Ci’s
parent in RouTree remains Ci+1, and we continue to climb up the chain.
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Lemma 2 (Lonely Incubators Need Not Adopt). [Proof in full version]
Suppose that an incubator Ci = (x, i) has at least two lonely ancestors (excluding
Ci) and there exists a point w ∈ Ni+1 \ {x}, such that d(x,w) ≤ 5ri+1 and the

incubator Ĉi+1 = (w, i+ 1) is lonely. Then, the parent Ĉi+2 = (u, i+ 2) of Ĉi+1

in IncTree is non-lonely; moreover, d(x, u) ≤ 5ri+2.

Rerouting Spanner Paths. When we wish to find a spanner path between u
and v, we use RouTree to climb to the corresponding ancestor incubators (from
an appropriate level) which are connected by a cross edge. Observe that using
RouTree, it is still possible to climb from a level-i incubator to a level-(i + 1)
incubator that is within distance O(ri+1) from it. Hence, by Lemma 1, stretch
1 + ε can still be preserved.

Degree Analysis. Notice that only non-lonely incubators can adopt, and by
Fact 1, each incubator can have only O(1)O(dim) adopted child incubators. Hence,
the degree of RouTree is O(1)O(dim). Consider a chain of lonely incubators with
identity x. If some incubator C = (x, i) has found an adopting parent, then all
lonely ancestors of C in the chain will not be used for routing (since a lonely
incubator cannot adopt). Thus the cross edges incident on those unused lonely
ancestors are redundant. Next, we show that the number of useful cross edges
accumulated by a chain of lonely incubators (until an adoption occurs) is small.

Lemma 3 (No Nearby Net-Points Implies Few Cross Edges). [Proof in
full version] Suppose that x ∈ Ni and all other points in Ni are at distance
more than 5ri away (i.e., no adopting parent is found for any child of (x, i)).
Then, there are at most O(γ)O(dim) = ε−O(dim) cross edges with level at most i
connecting incubators with identity x and non-descendants of (x, i).

Pruning Cross Edges and Routing Tree. After the lowest level incubator
in a chain of lonely incubators finds an adopting parent, redundant cross edges
incident on the ancestors of the adopted incubator can be pruned. By Lemma 3,
no matter if an adopting parent is found for a chain, at most ε−O(dim) remaining
cross edges are incident on incubators in the chain for the following reason.

• If no adopting parent is found for a chain, Lemma 3 can be applied to the second
lonely incubator (if any) from the top of the chain. Since the top incubator has
only ε−O(dim) cross edges, the entire chain has ε−O(dim) incident cross edges.
• If some point w ∈ Ni+1 \{x} is found for an incubator Ci = (x, i) in the parent
replacement process described above, Lemma 3 can be applied to Ci (unless Ci is
the bottom incubator in the chain, and then we do not need to apply the lemma).
Since either Ci or its parent will be adopted (and the cross edges incident on
the ancestors of the adopted child are redundant, and will be pruned), it follows
that the entire chain has ε−O(dim) remaining incident cross edges.

For efficiency reasons, observe that we can first build RouTree and add cross
edges only for incubators that are actually used for routing. In other words, we
do not have to add redundant cross edges that will be pruned later.
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Contraction Phase. After finishing the construction of RouTree, we start the
contraction phase, which involves contracting all chains of lonely incubators.
The above argument implies that the number of cross edges incident on a super
incubator is at most ε−O(dim). Also, since lonely incubators cannot adopt, the
degree of the routing tree cannot increase.

• If no adopting parent is found for a chain, the chain will be contracted to a
super incubator C, which has the same parent C (that itself may be a super
incubator corresponding to a contracted chain) in the contracted incubator tree
(ConIncTree) and the contracted routing tree (ConRouTree).

• If an adopting parent Ĉ is found for a chain, the chain will be contracted to
a super incubator C, whose parent C in ConRouTree is different from its parent
C̃ in ConIncTree; either one among C and C̃ can be a super incubator.

Multiple edges are removed from the resulting multi-graph, keeping just the edge
of minimum level between any pair of incident (super) incubators.

Corollary 1 (Constant Degree). ConRouTree has degree O(1)O(dim), and
each incubator (and also super incubator) has ε−O(dim) cross edges.

4 Achieving Small Hop-Diameter and Lightness

Consider ConRouTree constructed in Section 3. Observe that if the maximum
inter-point distance Δ is large enough (exponential in n), the hop-diameter will
be as large as Θ(n). In this section we add edges to shortcut ConRouTree, such
that for each level i, any leaf incubator can reach some level-i incubator in
O(log n) hops and within distance O(ri); this guarantees that the hop-diameter
is O(log n). We also make sure that the lightness will be in check.

Theorem 2 (Spanner Shortcut [15]). Let T be a tree (whose edges have
positive weights) with n nodes and degree deg(T ). For the tree metric induced by
the shortest-path distances in T , a 1-spanner J with O(n) edges, degree at most
deg(T ) + 4, and hop-diameter O(log n) can be constructed in O(n log n) time.

Levels of Super Incubators and Edges. Technically, a super incubator is of the
same level as the non-lonely incubator at the bottom of the corresponding chain.
The level of an edge before the contractions is defined as the maximum level of
its endpoint incubators, and its level after the contractions remains the same.

Shortcut the Low Levels of ConRouTree. Let r̂ = Δ
n , and define σ := �log5 r̂�.

Observe that the number of levels above σ is O(log n). We shortcut all maximal
subtrees rooted at level at most σ in ConRouTree, i.e., the root of each such
subtree is at level at most σ, but its parent is at level greater than σ. Each such
subtree is shortcut via the 1-spanner that is given by Theorem 2. Notice that
this shortcut procedure adds edges that enable going from each leaf incubator to
any of its ancestor incubators in ConRouTree tree in O(log n) hops. This implies
that for any u, v ∈ X , there is a spanner path between the corresponding leaf
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incubators with O(log n) hops and weight at most (1 + ε) ·d(u, v). Moreover, the
shortcut procedure increases the degree of each incubator by at most four.

Large vs Small Scales. We analyze the weight of the spanner by considering
the weight contribution from large-scale edges and small-scale edges separately.
An edge has a small scale if its level is at most σ (we use the convention that a
shortcut edge has a small scale); otherwise, it has a large scale. We remark that
the following lemma remains valid if we increase the weight of each level-i edge
by O(ri); this observation will be used later (in Section 5) when we apply our
labeling procedure.

Lemma 4 (Edges are Light). [Proof in full version] The total weight of all
large-scale edges is ε−O(dim) ·log n·w(MST), and the total weight of all small-scale
edges is ε−O(dim) · w(MST).

Incubator Graph H. To summarize, we build an incubator graph H on the
incubators (and super incubators) that consists of (1) the edges in ConRouTree,
(2) useful cross edges that remain after pruning, and (3) edges used to shortcut
the low levels (at most σ) of ConRouTree. The incubator graph H has degree
ε−O(dim). Moreover, for any u, v ∈ X , there is a path in H between the corre-
sponding leaf incubators with O(log n) hops and weight at most (1 + ε) · d(u, v).
Also, Lemma 4 implies that it has weight ε−O(dim) · logn ·w(MST). Finally, it is
easy to see that H can be implemented within ε−O(dim) · n logn time.

In other words, the incubator graph H has almost all the desired properties,
except that each point in X may be the identity of many incubators (and super
incubators). Moreover, we have not considered fault tolerance so far. We will
address these issues in Section 5.

5 Incubators Working with Zombies: Fault Tolerance

The incubator graph H defined at the end of Section 4 achieves all the desired
properties, except that the same point may be the identity of many incubators.
Moreover, there is a 1-1 correspondence between the leaf incubators and the
points in X . In this section we show how to convert H into a k-fault tolerant
spanner H for X that satisfies all the desired properties. To this end we devise
a simple labeling procedure (that we refer to below as the zombie-climbing pro-
cedure), which is convenient to describe via the incubator-zombie terminology.

Zombies. A zombie is identified by a point x ∈ X , which is the identity of the
zombie. When the context is clear, we do not distinguish between a zombie and
its identity. After the zombie-climbing procedure is finished, each leaf incubator
will contain a zombie whose identity is the same as the leaf’s identity, and each
internal incubator will contain up to k + 1 zombies with distinct identities.

Induced Spanner on X. The incubator graphH together with the zombies induce
a spanner H on X in a natural way: two points u and v are neighbors in H if
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there are zombies with identities u and v residing in neighboring incubators in
H. Hence, it suffices to describe how zombies are assigned to incubators.

The Zombies Are Climbing. . .We assign zombies to incubators in two stages.
In the first stage, we use ConIncTree to assign a single host zombie to each
incubator; in the second stage, for each internal incubator, we use ConRouTree
to collect up to k additional guest zombies with distinct identities, which are
also different from the identity of the host zombie.

First Stage. Consider ConIncTree, and note that each internal incubator has at
least two children. Each incubator is assigned a host zombie as follows. A leaf
incubator C creates two zombies with the same identity as itself; one stays in
C as its host zombie and the other climbs to C’s parent. An internal incubator
Ĉ receives exactly one zombie from each of its (at least two) children. One of

these zombies stays in Ĉ as its host zombie, and another one (chosen arbitrarily)

climbs to Ĉ’s parent incubator (if any); extra zombies (which do not become host
zombies) are discarded. Since there are O(n) incubators, this procedure takes
O(n) time. Observe that each point can appear as the identity of at most two
host zombies: once in a leaf incubator, and at most once in an internal incubator.

Second Stage. We use ConRouTree in this step. Each internal incubator C col-
lects up to k guest zombies with distinct identities from the host zombies of C’s
descendants (in ConRouTree) using a bounded breadth-first search. Specifically,
when a descendant incubator C̃ is visited, if its host zombie z̃ is different from
the host zombie of C and from all the guest zombies already collected by C,
then z̃ will be collected as one of C’s guest zombies. The breadth-first search
terminates once C has collected k distinct guest zombies or when all C’s descen-
dants in ConRouTree have been visited. Since for each breadth-first search, O(k)
incubators are visited (as each point can appear as the identity of at most two
host zombies), the second stage can be implemented within O(kn) time.

Lemma 5 (Each Point Appears as O(k) Zombies). [Proof in full version]
Each point can be the identity of a zombie in at most 2k+2 incubators (as either
a host or a guest).

Fault Tolerance. Recall that in the cross edge framework, the low-stretch span-
ner path between any two points u and v is obtained as follows. We start from
the two leaf incubators corresponding to u and v, and climb to the ancestor in-
cubators (according to ConRouTree in our case) in some appropriate level, where
a cross edge is guaranteed to exist. Observe that only incubators with the same
identity will be contracted, and so this does not change the stretch of the span-
ner path. The two following lemmas show that for any functioning point u, each
ancestor of the leaf incubator corresponding to u (in ConRouTree) contains at
least one nearby functioning zombie. Consequently, fault-tolerance is achieved.
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Lemma 6 (Every Ancestor in ConRouTree Has a Functioning Zombie).
[Proof in full version] Suppose that at most k points fail. Let u be an arbitrary
functioning point, and let Cu be the leaf incubator corresponding to u. Then,
every ancestor of Cu in ConRouTree contains at least one functioning zombie.

Lemma 7 (Incubators Contain Nearby Zombies). [Proof in full version]
If an incubator C = (x, i) contains a zombie z, then d(x, z) = O(ri).

Tying Up Everything Together – Completing the Proof of Theorem 1
Stretch and Fault-Tolerance. Lemmas 6 and 7 state that each incubator contains
a functioning zombie that is nearby, which implies that a level-i incubator edge
will induce a functioning zombie edge with weight that is greater by at most
an additive factor of O(ri). The second assertion of Lemma 1 implies that the
stretch of the resulting spanner is 1 + O(ε); we can achieve stretch (1 + ε) by
rescaling γ (and other parameters) by an appropriate constant.

Degree. Since the incubator graph H has degree ε−O(dim) and each incubator
contains at most k+ 1 zombies, it follows that each occurrence of a point as the
identity of some zombie will incur a degree of at most ε−O(dim) ·k. By Lemma 5,
each point can be the identity of at most 2k+ 2 zombies, which implies that the
degree of H is at most ε−O(dim) · k2.

Hop-Diameter. Observe that any spanner path in H (between leaf nodes) with
l hops induces a functioning spanner path in H with at most l hops. Hence the
hop-diameter of H is O(log n).

Lightness. As already mentioned, in the proof of Lemma 4, the upper bound
still holds if we add O(ri) to the weight of each level-i incubator edge. Moreover,
as only zombies within distance O(ri) are assigned to a level-i incubator, it
follows that each level-i zombie edge has weight at most an additive factor O(ri)
greater than that of the inducing incubator edge. Since every incubator edge
induces at most O(k2) zombie edges, we conclude that the lightness of H is
ε−O(dim) · k2 logn.

Running Time. As mentioned in Sections 3 and 4, our construction uses subrou-
tines from Gottlieb-Roditty’s spanner [11] and Elkin-Solomon’s shortcut span-
ner [15], which have running time at most ε−O(dim) · n logn. Also, the zombie-
climbing procedure takes time O(kn). Finally, observe that there are ε−O(dim) ·n
edges in H, each of which induces O(k2) zombie edges; hence, transforming the
incubator graph H into the ultimate spanner H takes ε−O(dim) · k2n time.

Acknowledgments. The fourth-named author is grateful to Michael Elkin and
Michiel Smid for helpful discussions.

References

1. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners:
short, thin, and lanky. In: STOC, pp. 489–498 (1995)

2. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in dou-
bling metrics. In: SODA, pp. 762–771 (2005)



New Doubling Spanners: Better and Simpler 327

3. Chan, T.-H.H., Gupta, A.: Small hop-diameter sparse spanners for doubling met-
rics. Discrete & Computational Geometry 41(1), 28–44 (2009)

4. Chan, T.-H.H., Li, M., Ning, L.: Incubators vs zombies: Fault-tolerant, short, thin
and lanky spanners for doubling metrics. CoRR, abs/1207.0892 (2012)

5. Chan, T.-H.H., Li, M., Ning, L.: Sparse fault-tolerant spanners for doubling metrics
with bounded hop-diameter or degree. In: Czumaj, A., Mehlhorn, K., Pitts, A.,
Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 182–193. Springer,
Heidelberg (2012)

6. Chew, P.: There is a planar graph almost as good as the complete graph. In: SoCG,
pp. 169–177 (1986)

7. Dinitz, Y., Elkin, M., Solomon, S.: Shallow-low-light trees, and tight lower bounds
for Euclidean spanners. In: FOCS, pp. 519–528 (2008)

8. Elkin, M., Solomon, S.: Optimal Euclidean spanners: really short, thin and lanky.
In: STOC (to appear, 2013)

9. Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. In: SoCG,
pp. 190–199 (2004)

10. Gottlieb, L.-A., Roditty, L.: Improved algorithms for fully dynamic geometric span-
ners and geometric routing. In: SODA, pp. 591–600 (2008)

11. Gottlieb, L.-A., Roditty, L.: An optimal dynamic spanner for doublingmetric spaces.
In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 478–489.
Springer, Heidelberg (2008)

12. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: FOCS, pp. 534–543 (2003)

13. Roditty, L.: Fully dynamic geometric spanners. In: SoCG, pp. 373–380 (2007)
14. Solomon, S.: Fault-tolerant spanners for doubling metrics: Better and simpler.

CoRR, abs/1207.7040 (2012)
15. Solomon, S., Elkin, M.: Balancing degree, diameter and weight in Euclidean span-

ners. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 48–59. Springer, Heidelberg (2010)



Maximum Edge-Disjoint Paths in k-Sums of Graphs�

Chandra Chekuri1,��, Guyslain Naves2, and F. Bruce Shepherd3,���

1 Dept. of Computer Science, University of Illinois, Urbana, IL 61801, USA
chekuri@illinois.edu

2 Laboratoire d’Informatique Fondamentale, Faculté des Sciences de Luminy, Marseille, France
guyslain.naves@lif.univ-mrs.fr

3 Dept. Mathematics and Statistics, McGill University, Montreal, Canada
bruce.shepherd@mcgill.ca

Abstract. We consider the approximability of the maximum edge-disjoint paths
problem (MEDP) in undirected graphs, and in particular, the integrality gap of the
natural multicommodity flow based relaxation for it. The integrality gap is known
to be Ω(

√
n) even for planar graphs [11] due to a simple topological obstruction

and a major focus, following earlier work [14], has been understanding the gap if
some constant congestion is allowed. In planar graphs the integrality gap is O(1)
with congestion 2 [19,5]. In general graphs, recent work has shown the gap to
be O(polylog(n)) [8,9] with congestion 2. Moreover, the gap is Ω(logΩ(c) n) in
general graphs with congestion c for any constant c ≥ 1 [1].

It is natural to ask for which classes of graphs does a constant-factor constant-
congestion property hold. It is easy to deduce that for given constant bounds on
the approximation and congestion, the class of “nice” graphs is minor-closed.
Is the converse true? Does every proper minor-closed family of graphs exhibit
a constant-factor constant-congestion bound relative to the LP relaxation? We
conjecture that the answer is yes. One stumbling block has been that such bounds
were not known for bounded treewidth graphs (or even treewidth 3). In this paper
we give a polytime algorithm which takes a fractional routing solution in a graph
of bounded treewidth and is able to integrally route a constant fraction of the
LP solution’s value. Note that we do not incur any edge congestion. Previously
this was not known even for series parallel graphs which have treewidth 2. The
algorithm is based on a more general argument that applies to k-sums of graphs
in some graph family, as long as the graph family has a constant-factor constant-
congestion bound. We then use this to show that such bounds hold for the class
of k-sums of bounded genus graphs.

1 Introduction

The disjoint paths problem is the following: given an undirected graph G = (V,E)
and node pairs H = {s1t1, . . . , sptp}, are there disjoint paths connecting the given
pairs? We use NDP and EDP to refer to the version in which the paths are required to
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be node-disjoint or edge-disjoint. Disjoint path problems are cornerstone problems in
combinatorial optimization. The seminal work on graph minors of Robertson and Sey-
mour [17] gives a polynomial time algorithm for NDP (and hence also for EDP) when
p is fixed; the algorithmic and structural tools developed for this have led to many other
fundamental results. In contrast to the undirected case, the problem in directed graphs
is NP-Complete for p = 2 [10]. Further, NDP and EDP are NP-Complete in undirected
graphs when p is part of the input. The maximization versions of EDP and NDP have
also attracted intense interest, especially in connection to its approximability. In the
maximum edge-disjoint path (MAX EDP) problem we are given an undirected (in this
paper) graph G = (V,E), and node pairs H = {s1t1, . . . , sptp} , called commodities
or demands. MAX EDP asks for a maximum size subset I ⊆ {1, 2, . . . , p} of com-
modities which is routable. A set I is routable if there is a family of edge-disjoint paths
(Pi)i∈I where Pi has extremities si and ti for each i ∈ I . In a more general setting, the
edges have integer capacities c : E(G) → N, and instead of edge-disjoint paths, we ask
that for each edge e ∈ E(G), at most c(e) paths of (Pi)i∈I contain e. For any demand
h = st ∈ H , denote by Ph the set of st-paths in G, and P =

⋃
h∈H Ph. A natural

linear programming relaxation of MAX EDP is then:

max
∑

h∈H zh subject to∑
P∈Ph

xP = zh ≤ 1 (for all h ∈ H)∑
P∈P,e∈P xP ≤ ce (for all e ∈ E)

x ≥ 0

(1)

NP-Completeness of EDP implies that MAX EDP is NP-Hard. In fact, MAX EDP is
NP-Hard in capacitated trees for which EDP is trivially solvable. This indicates that
MAX EDP inherits hardness also from the selection of the subset of demands to route.
As pointed out in [11], a grid example shows that the integrality gap of the multicom-
modity flow relaxation may be as large as Ω(

√
n) even in planar graphs. However, the

grid example is not robust in the sense that if we allow edge-congestion 2 (or equiv-
alently, if we assume all capacities are initially at least 2), then the example only has
a constant-factor gap. This observation led Kleinberg-Tardos [14] to seek better ap-
proximations (polylog or constant-factor) for planar graphs in the regime where some
low congestion is allowed. With some work, this agenda proved fruitful: a constant-
approximation with edge congestion 4 was proved possible in planar graphs [5]; this
was improved to (an optimal) edge congestion 2 in [19].

In general graphs, Chuzhoy [8] recently obtained the first poly-logarithmic approx-
imation with constant congestion (14). This was subsequently improved to the optimal
congestion of 2 by Chuzhoy and Li [9]. It is also known that, in general graphs, the
integrality gap of the flow LP is Ω(logΩ(1/c) n) even if congestion c is allowed; the
known hardness of approximation results for MAX EDP with congestion have similar
bounds as the integrality gap bounds, see [1].

For any constants α, β ≥ 1, one may ask for which graphs does the LP for MAX

EDP admit an integrality gap of α if edge congestion β is allowed. It is natural to
require this for any possible collection of demands and any possible assignment of
edge capacities. For fixed constants, it is easy to see that the class of such graphs is
closed under minors. Is the converse true? That is, do all minor-closed graphs exhibit a
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constant-factor constant-congestion (CFCC) integrality gap for MAX EDP? In fact we
consider the following stronger conjecture with congestion 2.

Conjecture 1. Let G be any proper minor-closed family of graphs. Then the integrality
gap of the flow LP for MAX EDP is at most a constant cG when congestion 2 is allowed.

The preceding conjecture is inherently a geometric question, but one would also antic-
ipate a polytime algorithm for producing the routable sets which establish the gap. In
attempting to prove Conjecture 1, one must delve into the structure of minor-closed fam-
ilies of graphs, and in particular the characterization given by Robertson and Seymour
[17]. Two minor-closed families that form the building blocks for this characterization
are (i) graphs embedded on surfaces of bounded genus (in particular planar graphs), and
(ii) graphs with bounded treewidth. For MAX EDP, we have a constant-factor integral-
ity gap with congestion 2 for planar graphs. In [6] it is shown that the integrality gap
of the LP for MAX EDP in graphs of treewidth at most k is O(k log k logn); note that
this is with congestion 1. Existing integrality gap results, when interpreted in terms of
treewidth k, show that the integrality gap is Ω(k) for congestion 1 and Ω(logO(1/c) k)
for congestion c > 1. It was asked in [6] whether the gap is O(k) with congestion 1. In
particular, the question of whether the gap is O(1) for k = 2 (this is precisely the class
of series parallel graphs) was open. In this paper we show the following result.

Theorem 1. The integrality gap of the flow LP for MAX EDP is 2O(k) in graphs of
treewidth at most k. Moreover, there is a polynomial-time algorithm that given a graph
G, a tree decomposition for G of width k, and fractional solution to the LP of value
OPT, outputs an integral solution of value Ω(OPT/2O(k)).

The preceding theorem is a special case of a more general theorem that we prove below.
Let G be a family of graphs. For any integer k ≥ 1, let Gk denote the class of graphs
obtained from G by the k-sum operation. The k-sum operation is formally defined in
Section 2.1; the structure theorem of Robertson and Seymour is based on the k-sum
operation over certain classes of graphs.

Theorem 2. Let G be a minor-closed class of graphs such that the integrality gap of
the flow LP is α with congestion β. Then the integrality gap of the flow LP for the class
Gk is 2O(k)α with congestion β + 3.

The preceding theorem is effective in the following sense: there is a polynomial-time
algorithm that gives a constant-factor, constant congestion result for Gk assuming that
(i) such an algorithm exists for G and (ii) there is a polynomial-time algorithm to find a
tree decomposition over G for a given graphG ∈ Gk.

We give the following as a second piece of evidence towards Conjecture 1.

Theorem 3. The integrality gap of the flow LP on graphs of genus g > 0 isO(g log2(g+
1)) with congestion 3.1

1 We believe that the congestion bound in the preceding theorem can be improved to 2 with
some additional technical work. We do not give a polynomial-time algorithm although we
believe that it too is achievable with some (potentially messy) technical work.
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Theorems 2 and 3 imply that the class of graphs obtained as k-sums of graphs with
genus g is CFCC when k and g are fixed constants. The bottleneck in extending our re-
sults to prove Conjecture 1 are planar graphs (or more generally bounded genus graphs)
that have “vortices” which play a non-trivial role in the Robertson-Seymour structure
theorem.

A Brief Discussion of Technical Ideas and Related Work: The approximability of MAX

EDP in undirected and directed graphs has received much attention in the recent years.
We refer the reader to some recent papers [9,8,19,1]. A framework based on well-linked
decompositions [3] has played an important role in understanding the integrality gap of
the flow relaxation in undirected graphs. It is based on recursively cutting the input
graph along sparse cuts until the given instance is well-linked. However, this frame-
work loses at least a logarithmic factor in the approximation. The work in [5] obtained a
constant-factor approximation for planar graphs by using a more refined decomposition
that took advantage of the structure of planar graphs. For graphs of treewidth k, [6] used
the well-linked decomposition framework to obtain an O(k log k logn)-approximation
and integrality gap. Our work here shows that one can bypass the well-linked decom-
position framework for bounded treewidth graphs, and more generally for k-sums over
families of graphs. The key high-level idea is to effectively reduce the (tree)width of one
side of a sparse cut if the terminals cannot route to a small set of nodes. Making this
work requires a somewhat nuanced induction hypothesis. For bounded-genus graphs,
we adapt the well-linked decomposition to effectively reduce the problem to the planar
graph case.

There are two streams of questions comparing minimum cuts to maximum flows in
graphs. First, the flow-cut gap measures the gap between a sparsest cut and a maximum
concurrent flow of an instance. The second measures the throughput-gap by comparing
the maximum throughput flow and the minimum multicut. These gap results have been
of fundamental importance in algorithms starting with the seminal work of Leighton
and Rao [16]. It is known that the gaps in general undirected graphs are Θ(log n); see
[20] for a survey. It is also conjectured [12] (the GNRS Conjecture) that the flow-cut gap
is O(1) for minor-closed families. This conjecture is very much open and is not known
even for planar graphs or treewidth 3 graphs; see [15] for relevant discussion and known
results. In contrast, the work of Klein, Plotkin and Rao [13] showed that the throughput-
gap is O(1) in any proper minor-closed family of graphs (formally shown in [21]). The
focus of these works is on fractional flows, in contrast to our focus on integral routings.
Conjecture 1 is essentially asking about the integrality gap of throughput flows. Given
the O(1) throughput-gap [13], it can also be viewed as asking whether the gap between
the maximum integer throughput flow with congestion 2 is within an O(1) factor of the
minimum multicut. Analogously for flow-cut gaps, [7] conjectured that the gap between
the maximum integer concurrent flow and the sparsest cut isO(1) in minor-free graphs.

Organization: Due to space constraints several technical ingredients needed to prove
Theorem 1 and Theorem 2 are presented only in the full version of the article; a sum-
mary of these ingredients at a high-level is provided in Section 3 after some prelimi-
naries. The proof of Theorem 3 and discussion of open problems also appear in the full
version.
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2 Preliminaries

Recall that an instance of MAX EDP consists of a graph G and demand pairs H . In
general H can be a multiset, however it is convenient to assume that H is a matching
on the nodes of G. Indeed we just have to attach the terminals to leaves created from
new nodes. With this assumption we use X to denote the set of terminals (the endpoints
of the demand pairs) and M the matching on X that corresponds to the demands. We
call the triple (G,X,M) a matching instance of MAX EDP. Let x̄ be a feasible solution
to the LP relaxation (1). For each node v ∈ X , we also use x(v) to denote the value∑

P∈Ph
xP where v is an endpoint of the demand h; this is called the marginal value of

v. We assume that all capacities ce are 1; this does not affect the integrality gap analysis.
Moreover, as argued previously (cf. [2]), at a loss of a factor of 2 in the approximation
ratio, the assumption can be made for polynomial-time algorithms that are based on
rounding a solution to the flow relaxation.

2.1 k-Sums and the Structure Theorem of Robertson and Seymour

Let G1 and G2 be two graphs, and Ci a clique of size k in Gi. The graph G obtained
by identifying the nodes of C1 one-to-one with those of C2, and then removing some
of the edges between nodes of C1 = C2, is called a k-sum of G1 and G2. For a class
of graphs G, we define the class Gk of the graphs obtained from G by k-sums, to be the
smallest class of graphs such that: (i) G is included in Gk, and (ii) if G is a k-sum of
G1 ∈ G and G2 ∈ Gk, then G ∈ Gk.

Fix a class of graphs G. A tree T is a tree decomposition over G for a graph G =
(V,E), if each node A in T is associated to a subset of nodes XA ⊆ V , called a bag,
and the following properties hold:

(i) for each v ∈ V (G), the set of nodes of T whose bags contain v, form a non-
empty sub-tree of T ,

(ii) for each edge uv ∈ E(G), there is a bag with both u and v in it,
(iii) for any bag X , the graph obtained from G[X ] by adding cliques overX ∩ Y , for

every adjacent bag Y , is in G. We denote this graph by G[[X ]].

When G is closed under taking minors, condition (iii) implies that G[X ] itself is in G,
as well as any graph obtained from G[X ] by adding edges in X ∩ Y , for any adjacent
bag Y . Throughout we assume that G is minor-closed. We sometimes identify the nodes
of T with their respective bags. We also denote by V (T ), the union of all bags, and so
V (T ) ⊆ V (G).

A set of nodes X ∩ Y , for X and Y adjacent bags, is called a separator. When the
tree decomposition T is minimal (with respect to the number of bags), the separators
are disconnecting node sets of G. Thus each edge e of T identifies a separator, denoted
by Ve. For convenience, we usually work with rooted tree decompositions, where an
arbitrary node is chosen to be the root. Then, for bag X and its parent Y , we denote by
SX the separator X ∩ Y .

The width of a tree decomposition T is the maximum cardinality of a separator of
T . The width of a graph (relative to a graph class G) is the smallest width of a tree
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decomposition for that graph. A graph of width k can thus be obtained by k-sums of
graphs from G. As a special case, the treewidth of a graph G is the smallest k such that
G admits a decomposition of width k relative to the class of all graphs with at most
k + 1 nodes.

Let T be a tree decomposition of a graph G, rooted at a node R. For any edge e of
the tree decomposition, let Te and Te be the subtrees obtained from T by removing e,
with R ∈ Te. We denote by Ge the graph obtained from the induced subgraph of G on
node set V (Te), and then removing all edges in V (Te) × V (Te). Note that Te is a tree
decomposition of Ge.

We recall informally the graph structure theorem proved by Robertson and Seymour.
For k ∈ N, let Lk be the graphs obtained in the following way.

– we start from a graph G embeddable on a surface of genus k,
– then we add vortices of width k to at most k faces of G,
– then we add at most k apex nodes. That is, each of these nodes can be adjacent to

an arbitrary subset of nodes.

Then, we consider the closure Lk
k of Lk by k-sums. For a graph H , we denote by KH

the graphs that do not contain an H-minor.

Theorem 4 (Robertson and Seymour [18]). For any graph H , there is an integer
k > 0 such that KH ⊆ Lk

k.

In order to prove Conjecture 1, one should be able to use the preceding decomposition
theorem, proving that the CFCC property holds for bounded genus graph and is pre-
served by adding a constant number of vortices and apex nodes, and by taking k-sums.
Apex nodes are easy to deal with. This paper provides a proof for bounded genus graphs
and for k-sums. This leaves only the cases of vortices as the bottleneck in proving the
conjecture.

3 Technical Ingredients

We rely on several technical tools and ingredients that are either explicitly or implicitly
used in recent work on MAX EDP. Due to space constraints the full development of
these tools is available only in the full version of the article. Here we give a high-level
description.

Moving Terminals: The idea here (also leveraged in previous work, cf. [5,6]) is to
reduce a MAX EDP instance to a simpler/easier instance by moving the terminals (by
sending flow) to a specific set of new locations (nodes). The two instances are equivalent
up to an additional constant congestion and constant-factor approximation.

Sparsifiers: Given a graph G = (V,E) and S ⊂ V a sparsifier is a graph H only
on the node set S that acts as a proxy for routing between nodes in S in the original
graph G. We are interested in integer sparsifiers of certain type when |S| is small, a
constant in our setting. We say that H = (S,EH) is a (σ, ρ)-sparsifier for S in G if
the following properties are true: (i) any feasible (fractional) multicommodity flow in
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G with the endpoints in S is (fractionally) routable inH with congestion at most σ, and
(ii) any integer multicommodity flow in H is integrally routable in G with congestion
ρ. A simple argument shows that for any G any S ⊂ V , the existence of a (|S|2, 2)-
sparsifier.

Routing through a Small Set of Nodes: The idea here is that if all the flow for a given
instance intersects a small set of nodes, say p, then one can in fact obtain an Ω(1/p)-
approximation for MAX EDP. This follows the ideas from [4] where the special case
of p = 1 was exploited.

4 MAX EDP in k-Sums over a Family G
The goal of this section is to prove Theorem 2. Throughout, we assume G is a minor
closed family, and we wish to prove bounds for the family Gk obtained by k-sums. In
particular, we assume that every subgraph on k nodes is included in G.

Let A be an algorithm/oracle that has the following property: given a MAX EDP
instance on a graph G ∈ G it integrally routes h pairs with congestion β where h is at
least a 1/α fraction of the value of an optimum fractional solution to that instance. We
call A an (α, β)-oracle. We describe an algorithm using A to approximate MAX EDP
on Gk. The proof is via induction on the width of a decomposition and the number of
nodes. One basic step is to take a sparse cut S, lose all the flow crossing that cut, and
recurse on both sides. We need to make our recursion on treewidth on the side S to
which we charge the flow lost by cutting the graph. On the other side, V \S, we simply
recurse on the number of nodes. The main difficulty is to show how the treewidth is
decreased on the S side. The trick is a trade-off between the main treewidth parameter
and some connectivity properties in parts of the graph with higher treewidth. To drive
this we need a more refined induction hypothesis rather than basing it only on the width
of a tree decomposition.

Given k ≤ p, a p-degenerate k-tree decomposition over G of a connected graph G
is a rooted tree decomposition T where some leaves (nodes of degree 1) of the tree are
labelled degenerate and:

– for every node X of T , either G[[X ]] ∈ G or X is a degenerate leaf (in which case
G[[X ]] may be arbitrary),

– the separator corresponding to any edge uv ∈ T is of size at most k, unless it is
incident to a degenerate leaf, in which case it may be up to size p.

A pendant leaf is not necessarily degenerate but if it is not, then it corresponds to a graph
in G. We use (k, p)-tree decomposition as a shorthand notation. We call a multiflow
in such a graph G flush with the decomposition if every flow path that terminates at
some node in a degenerate leaf L, also intersects SL (we recall that SL is the separator
V (L) ∩ V (X) where X is the parent node of L).

We may think of graphs with such flush / degenerate decompositions as having an
effective treewidth of size k. In effect, we can ignore that some separators can be larger,
because we have the separate property of flushness which we can leverage via our tech-
nical tools.



Maximum Edge-Disjoint Paths in k-Sums of Graphs 335

The next theorem describes the algorithm for converting an LP solution on some
graph in Gp, into an integral routing. As we process this solution, the tree decomposition
becomes degenerate with the value of p fixed, k is gradually reduced to 0. We will
assume that p > 0 for if k = p = 0 all the separators are empty and the given connected
graph G is in G and we can simply use A.

Theorem 5. Let A be an (α, β) oracle for MAX EDP in a minor-closed family G. Let
G be graph with a (k, p)-tree decomposition T and suppose thatG,H is an instance of
MAX EDP with a fractional solution x̄ that is flush with T . Then there is an algorithm
with oracleA, which computes an integral multicommodity flow with congestion β + 3

and value γ =
∑

i xi

216·αp23k
. Moreover, this algorithm can be used to obtain the following:

1. an LP -based approximation algorithm with ratio O(αp23p) and congestion β + 3
for MAX EDP in Gp

2. an algorithm with approximation ratioO((p+1)3p) and congestion 1 for the class
of graphs of treewidth p.

The proof of the preceding theorem is somewhat long and technical and occupies the
rest of the section. To help the exposition we break it up into several components. The
proof proceeds by induction on k and the number of nodes. The base case with k = 0
is non-trivial and we treat it first.

The Base Case: We can assume without loss of generality thatG is connected. Through-
out we assume a fixed p ≥ 1 and consider a decomposition together with a flush frac-
tional routing x̄ as described. Let x : V → R be the

marginal values of x̄. Again we use xi to denote the common value x(si) = x(ti).
Hence |x̄| =

∑
i xi = 1

2

∑
v∈V (G) x(v) where we use the notation |x̄| to denote the

value of the flow x̄.
Now assume that k = 0 and p ≥ 1. We may assume that T has more than one

node otherwise G ∈ G and we can apply A. Since G is connected, each separator
corresponding to an edge of T must be non-trivial. Since k = 0, each edge of T must be
incident to a degenerate leaf. It follows that T is a single edge between two degenerate
leaves or a star whose leaves are all degenerate. If T is a single edge between two
degenerate leaves, all flow paths intersect the separator of size p associated with the
edge; hence using the tool to route through a small set of nodes, there is an integral
routing of value at least (

∑
i xi)/(12p). We therefore restrict our attention to the case

when T is a star with 
 leaves. Let G∗ = G[X ] where X is the bag at the center/root;
we observe that G∗ ∈ G. Let Xi be the bag at the i’th leaf. We let Gi denote the
graph obtained fromG[Xi] after removing the edges between the separator nodes Si =
X ∩Xi.

The base case of theorem assertion (2) on treewidth p graphs holds as follows. By
flushness, all flow paths intersect G∗, which has at most p + 1 nodes. Hence there is
some node which is receiving at least (

∑
i xi)/(p+ 1) of this flow. Using our technical

tool for routing through a small set of nodes, there is a (congestion 1) integral routing
of value at least (

∑
i xi)/(12(p+ 1)).
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Now consider the general case with a minor-closed class G and T a star whose center
is G∗ ∈ G. We proceed in the following steps:

1. Using the flushness property move the terminals in each Gi to the separator Si that
is contained in G∗.

2. In G replace each Gi by a (p2, 2) sparsifier on Si to obtain a new graph G′. Via
the sparsifier property, scale the flow in G down by a factor of p2 to obtain a corre-
sponding feasible flow in G′.

3. Apply the algorithmA on the new instance in G′.
4. Transfer the routing in G′ to a routing in G with additive congestion +1 via the

sparsifier property.
5. Convert the routing in G into a solution for our original instance before the termi-

nals were moved (incur an additional +2 additive congestion).

We describe the steps in more detail. We observe that the graphs Gi are edge-disjoint.
The first step is a simple application of the technique for moving terminals, where for
each i, we move any terminals in Gi − Si to the separator Si via clustering. This is
possible because of the flushness assumption; if P is a flow path with an endpoint in
Gi − Si then that path intersects Si. This incurs a factor 5 loss in the value of the new
flow we work with (and it incurs an additive 2 congestion when we convert back to an
integral solution for our original instance). To avoid notational overload we let f be the
flow for the new instance which is at least 1

5 th of the original flow.
After the preceding step no node in Gi − Si is the end point of an active flow path.

In step (2), we can simultaneously replace each Gi by a (p2, 2)-sparsifier Fi on Si. Call
the new instance G′ and note that since we only added edges to the separators Si, G′ is
a subgraph of G[[X ]] and hence G′ ∈ G. At this step, we also need to convert our flows
in Gi’s to be flows in G′. The sparsifier guarantees that any multicommodity flow on
Si that is feasible in Gi can be routed in Fi with congestion p2. Hence, scaling the flow
down by p2 guarantees its feasibility in G′.

We now work with the new flow x̄′ in the graphG′ and applyA to obtain a routing of
size |x̄′| /α ≥ |x̄| /(5p2α) with congestion β. We must now convert this integral routing
to one inG. Again, for each i, there is an embedded integral routing in Fi which will be
re-routed in Gi. We incur an additive 1 congestion for this. Finally the way we moved
terminals in the first part allows us to route the original pairs in G before they were
moved to the separators, incurring an additive congestion of 2, the technical details are
given in the full version.

Thus the total number of pairs routed is at least |x̄| /(5αp2) and the overall conges-
tion of the routing is β + 3. This proves the base case when k = 0.

The Induction Step: Henceforth, we assume that p ≥ k > 0 and that T contains at
least one edge e with the associated separator Ve (the intersection of the bags at the two
end points of e) of size equal to k; otherwise T is a star with degenerate leaves as in
the base case, or we may use k − 1. We consider an easy setting when there is a flow g
that simultaneously routes x(v)/6 amount from each vertex v to the set Ve. (Note that
checking the existence of the desired flow to Ve can be done by a simple maximum-flow
computation.) We then obtain an integral (congestion 1) flow of size (

∑
i xi)/(216k)



Maximum Edge-Disjoint Paths in k-Sums of Graphs 337

using the technical tool for routing through a small set of nodes, aplied to Ve. This is
sufficient to establish the induction step for k.

Assume now that there is no such flow g. Then there is a cut U ⊂ V \ Ve with
c(U) := c(δ(U)) < 1

6x(U). We may assume that U is minimal and central (G[U ]
and G[V \ U ] are connected). Such a cut can be recovered from the maximum flow
computation. We now work with a reduced flow x̄′ obtained from x̄ by eliminating any
flow path that intersects δ(U). We also let x′ be the marginals for x̄′. Obviously we
have

|x̄| − |x̄′| ≤ c(U) <
x(U)

6
.

Let fU , fŪ be the flow vectors obtained from x̄′, where fU only uses the flow paths
contained in U , and fŪ uses the flow paths contained in V \ U . The idea is that we
recurse on G[U ] and G[V \ U ]. We modify the instance on G[U ] to ensure that it has
a (k − 1, p)-tree decomposition and charge the lost flow to this side. The recursion on
G[V \U ] is based on reducing the number of nodes, the width is not reduced. Reducing
the width on the U side and ensuring the flushness property is not immediate; it requires
us to modifying fU and in the process we may lose further flow. We explain this process
before analyzing the number of pairs routed by the algorithm.

We note that G[U ] and G[V \ U ] easily admit (k, p)-tree decompositions, by inter-
secting the nodes of T with U and V \ U respectively, and removing the empty nodes;
recall G[U ] and G[V \ U ] are connected. Denote these by TU and TŪ respectively. De-
generate leaves of TU and TŪ are the same as the degenerate leaves of T . Some of these
are “split” by the cut, otherwise they are simply assigned to either TU or TŪ . If split,
the two “halves” go to appropriate sides of the decomposition. The flows fU , fŪ will
be flush with each such degenerate leaf (if the leaf is split, any flow path that crosses
the cut is removed).

We proceed in TŪ by induction on the number of nodes. However, since we charge
the lost flow to the cut (i.e., to TU ) we modify TU to obtain a (k − 1, p)-tree decompo-
sition. We state a lemma that accomplishes this.

Lemma 1. For the residual instance on G[U ] with flow fU we can either route 1
216k ·

|fU | /2 pairs integrally or find a (k − 1, p)-tree decomposition T ′U and a reduced flow
vector f ′U that is flush with T ′U with |f ′U | ≥ |fU | /2.

We postpone the proof of the above lemma and proceed to finish the recursive analysis.
We apply the induction hypothesis for k on TŪ with the number of nodes reduced;
hence the algorithm routes at least |fŪ |

αp2216·3k pairs in G[V \U ] with congestion at most
β + 3. For G[U ] we consider two cases based on the preceding lemma. In the first
case the algorithm directly routes 1

216k · |fU | /2 pairs integrally in G[U ]. In the second
case we recurse onG[U ] with the flow f ′U that is flush with respect to the (k−1, p)-tree

decomposition T ′U ; by the induction hypothesis the algorithm routes at least
|f ′

U |
αp2216·3k−1

pairs with congestion β+ 3. Since the number of pairs routed in this second case is less
than in the first case, we may focus on it, as we now show that the total number of pairs
routed in G[U ] and G[V \ U ] satisfies the induction hypothesis for k. We first observe
that |f | ≤ |fU | + |fŪ | + c(U). Moreover, c(U) < x(U)/6, and since at least x(U)/2
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flow originated in U , and we lost at most c(U) of this flow, we have |fU | ≥ 2c(U). The
total number of pairs routed is at least

|f ′U |
216αp2 · 3k−1 +

|fŪ |
216αp2 · 3k ≥

3 |f ′U |+ |fŪ |
216αp2 · 3k ≥ (3/2) |fU |+ |fŪ |

216αp2 · 3k

≥ |fU |+ |fŪ |+ c(U)

216αp2 · 3k ≥ |x̄|
216αp2 · 3k

which establishes the induction step for k. A very similar analysis shows the slightly
stronger bound for treewidth p graphs — we simply have to use the stronger induction
hypothesis in the preceding calculations and observe that the base case analysis also
proves the desired stronger hypothesis.

Proof of Lemma 1: Recall that TU is a (k, p)-degenerate decomposition for G[U ] and
that fU is flush with respect to TU . However, we wish to find a (k − 1, p)-degenerate
decomposition. Recall that U is disjoint from Ve, the separator of size k associated with
an edge e of T . We can assume that T is rooted and without loss of generality that TU is
a sub-tree of Te. The reason that TU may not be a (k − 1, p)-tree decomposition is that
it may contain a edge e′ not incident to a degenerate leaf such that |Ve′ | = k. Ve′ was
then also a separator of G since T is a (k, p)-tree decomposition. By centrality of U ,
every node that Ve′ separates from Ve must then be in U ; therefore, letting U ′ = V (Te′)
(the union of all bags contained in Te′ ), we have U ′ ⊂ U . We claim that we can route
x(v)/6 from each v ∈ U ′ to Ve′ in G′ = Ge′ (this is the graph induced by G[U ′] but
edges between the separator nodes Ve′ removed); this follows from the minimality of
U since a cutset induced by W ⊂ U ′ \ Ve′ is also a cutset of G. We define a (k− 1, p)-
tree decomposition T ′U , by contracting every maximal subtree of TU rooted at such a
separator of size k. Each such subtree identifies a new degenerate leaf in T ′U . However,
the flow fU may not be flush with T ′U due to the creation of new degenerate leaves. We
try to amend this by dropping flow paths with end points in a new degenerate leaf L
that does not intersect the separator SL. Let f ′U be the residual flow; observe that by
definition f ′U is flush with respect to T ′U . Two cases arise.

– If |f ′U | ≥ |fU | /2 then we have the desired degenerate (k − 1, p)-decomposition of
G[U ].

– Else at least |fU | /2 of the flow is being routed completely within the new degener-
ate leaves L. Moreover, these graphs and flows are edge-disjoint. Note also in such
an L, we have that the terminals involved can simultaneously route x(v)/6 each to
SL. We can thus obtain a constant fraction of the profit as |SL| is bounded (using
the technical tool to route through a small set of nodes), separately to every new
leaf. In particular, we route at least 1

216k · |fU | /2 of the pairs. In this case, we no
longer need to recurse on TU .

This finishes the proof of the lemma.
Finally, the main inductive claim implies the claimed algorithmic results since we

can start with a proper p-decomposition T of G ∈ Gp (viewed as a (p, p)-tree decom-
position with no degenerate leaves) and an arbitrary multiflow on its support (since there
are no degenerate leaves the flushness is satisfied) in order to begin our induction. This
finishes the proof. ��
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Abstract. We study the ATSP (Asymmetric Traveling Salesman Problem), and
our focus is on negative results in the framework of the Sherali-Adams (SA) Lift
and Project method.

Our main result pertains to the standard LP (linear programming) relaxation
of ATSP, due to Dantzig, Fulkerson, and Johnson. For any fixed integer t ≥ 0
and small ε, 0 < ε � 1, there exists a digraph G on ν = ν(t, ε) = O(t/ε)
vertices such that the integrality ratio for level t of the SA system starting with
the standard LP on G is ≥ 1 + 1−ε

2t+3
≈ 4

3
, 6
5
, 8
7
, . . . . Thus, in terms of the input

size, the result holds for any t = 0, 1, . . . , Θ(ν) levels. Our key contribution is
to identify a structural property of digraphs that allows us to construct fractional
feasible solutions for any level t of the SA system starting from the standard LP.
Our hard instances are simple and satisfy the structural property.

There is a further relaxation of the standard LP called the balanced LP, and
our methods simplify considerably when the starting LP for the SA system is the
balanced LP; in particular, the relevant structural property (of digraphs) simplifies
such that it is satisfied by the digraphs given by the well-known construction of
Charikar, Goemans and Karloff (CGK). Consequently, the CGK digraphs serve
as hard instances, and we obtain an integrality ratio of 1 + 1−ε

t+1
for any level t

of the SA system, where 0 < ε � 1 and the number of vertices is ν(t, ε) =
O((t/ε)(t/ε)).

Also, our results for the standard LP extend to the PATH ATSP (find a min
cost Hamiltonian dipath from a given source vertex to a given sink vertex).

1 Introduction

The Traveling Salesman Problem (TSP) is a celebrated problem in combinatorial op-
timization, with many connections to theory and practice. The problem is to find a
minimum cost tour of a set of cities; the tour should visit each city exactly once. The
most well known version of this probelm is the symmetric one (denoted TSP), where
the distance (a.k.a. cost) from city i to city j is equal to the distance (cost) from city j
to city i. The more general version is called the asymmetric TSP (denoted ATSP), and
it does not have the symmetry restriction on the costs. Throughout, we assume that the
costs satisfy the triangle inequalities, i.e., the costs are metric.

Linear programming (LP) relaxations play a central role in solving TSP or ATSP,
both in practice and in the theoretical setting of approximation algorithms. Many LP

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 340–351, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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relaxations are known for ATSP, see [17] for a recent survey. The most well-known
relaxation (and the one that is most useful for theory and practice) is due to Dantzig,
Fulkerson and Johnson; we call it the standard LP or the DFJ LP. It has a constraint for
every nontrivial cut, and has an indegree and an outdegree constraint for each vertex;
see Section 2.1. There is a further relaxation of the standard LP that is of interest; we
call it the balanced LP (Bal LP); it is obtained from the standard LP by replacing the
indegree and outdegree constraint at each vertex by a balance (equation) constraint. For
metric costs, the optimal value of the standard LP is the same as the optimal value of
the balanced LP; this is a well-known fact, see [17], [6, Footnote 3].

One key question in the area is the quality of the objective value computed by the
standard LP. This is measured by the integrality ratio (a.k.a. integrality gap) of the
relaxation, and is defined to be the supremum over all instances of the integrality ratio
of the instance. The integrality ratio of an instance I is given by opt(I)/dfj(I), where
opt(I) denotes the optimum (minimum cost of a tour) of I , and dfj(I) denotes the
optimal value of the standard LP relaxation of I; we assume that the optima exist and
that dfj(I) �= 0.1

For both TSP and ATSP, significant research efforts have been devoted over several
decades to prove bounds on the integrality ratio of the standard LP. For TSP, methods
based on Christofides’ algorithm show that the integrality ratio is ≤ 3

2 , whereas the
best lower bound known on the integrality ratio is 4

3 . Closing this gap is a major open
problem in the area. For ATSP, a recent result of Asadpour et al. [2] shows that the
integrality ratio is≤ O(log n/ log logn). On the other hand, Charikar, et al. [6] showed
a lower bound of 2 on the integrality ratio, thereby refuting an earlier conjecture of Carr
and Vempala [5] that the integrality ratio is ≤ 4

3 .
Lampis [12] and Papadimitriou and Vempala [16], respectively, have proved

hardness-of-approximation thresholds of 185
184 for TSP and 117

116 for ATSP; both results
assume that P�=NP.

Our goal is to prove lower bounds on the integrality ratios for ATSP for the tighter LP
relaxations obtained by applying the Sherali-Adams Lift-and-Project method. Before
stating our results, we present an overview of Lift-and-Project methods.

1.1 Hierarchies of Convex Relaxations

Over the past 25 years, several methods have been developed in order to obtain tight-
enings of relaxations in a systematic manner. Assume that each variable yi is in the
interval [0, 1], i.e., the integral solutions are zero/one, and let n denote the number of
variables in the original relaxation. The goal is to start with a simple relaxation, and
then iteratively obtain a sequence of stronger/tighter relaxations such that the associ-
ated polytopes form a nested family that contains (and converges to) the integral hull2.

These procedures, usually called Lift-and-Project hierarchies (or systems, or meth-
ods, or procedures), use polynomial reasonings together with the fact that in the 0/1

1 Although the term integrality ratio is used in two different senses—one refers to an instance,
the other to a relaxation (i.e., all instances)—the context will resolve the ambiguity.

2 By the integral hull we mean the convex hull of the zero-one solutions that are feasible for the
original relaxation.
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domain, general polynomials can be reduced to multilinear polynomials (utilizing the
identity y2i = yi), and then finally obtain a stronger relaxation by applying linearization
(e.g., for subsets S of {1, . . . , n}, the term

∏
i∈S yi is replaced by a variable yS). In

this overview, we gloss over the Project step. In particular, Sherali and Adams [18] de-
vised the Sherali-Adams (SA) system, Lovász and Schrijver [15] devised the Lovász-
Schrijver (LS) system, and Lasserre [13] devised the Lasserre system. See Lau-
rent [14] for a survey of these systems; several other Lift-and-Project systems are
known, see [9,3].

The index of each relaxation in the sequence of tightened relaxations is known as the
level in the hierarchy; the level of the original relaxation is defined to be zero. For each
of these hierarchies and for any t = O(1), it is known that the relaxation at level t of
the hierarchy can be solved to optimality in polynomial time, assuming that the original
relaxation has a polynomial-time separation oracle, [19] (additional mild conditions
may be needed for some hierarchies). In fact, the relaxation at level n is exact, i.e., the
associated polytope is equal to the integral hull.

Over the last two decades, a number of important improvements on approximation
guarantees have been achieved based on relaxations obtained from Lift-and-Project sys-
tems. See [9] for a recent survey of many such positive results.

Starting with the work of Arora et al. [1], substantial research efforts have been
devoted to showing that tightened relaxations (for many levels) fail to reduce the inte-
grality ratio for many combinatorial optimization problems (see [9] for a list of negative
results). This task seems especially difficult for the SA system because it strengthens
relaxations in a “global manner;” this enhances its algorithmic leverage for deriving
positive results, but makes it more challenging to design instances with bad integral-
ity ratios. Moreover, an integrality ratio for the SA system may be viewed as an un-
conditional inapproximability result for a restricted model of computation, whereas,
hardness-of-approximation results are usually proved under some complexity assump-
tions, such as P�=NP. The SA system is known to be more powerful than the LS
system, while it is weaker than the Lasserre system; it is incomparable with the LS+

system (the positive-semidefinite version of the Lovász-Schrijver system [15]).
A key paper by Fernández de la Vega and Kenyon-Mathieu [10] introduced a proba-

bilistic interpretation of the SA system, and based on this, negative results (for the SA
system) have been proved for a number of combinatorial problems; also see Charikar
et al. [7], and Benabbas, et al. [4]. At the moment, it is not clear that methods based
on [10] could give negative results for TSP and its variants, because the natural LP
relaxations (of TSP and related problems) have “global constraints.”

To the best of our knowledge, there are only two previous papers with negative results
for Lift-and-Project methods applied to TSP and its variants. Cheung [8] proves an
integrality ratio of 4

3 for TSP, for O(1) levels of LS+. For ATSP, Watson [20] proves
an integrality ratio of 3

2 for level 1 of the Lovász-Schrijver hieararchy, starting from
the balanced LP (in fact, both the hierarchies LS and SA give the same relaxation at
level one).

We mention that Cheung’s results [8] for TSP do not apply to ATSP, although at
level 0, it is well known that any integrality ratio for the standard LP for TSP applies
also to the standard LP for ATSP (this relationship does not hold for level 1 or higher).
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1.2 Our Results and Their Significance

Our main contribution is a generic construction of fractional feasible solutions for any
level t of the SA system starting from the standard LP relaxation of ATSP. We have a
similar but considerably simpler construction when the starting LP for the SA system
is the balanced LP. Our results on integrality ratios are direct corollaries.

We have the following results pertaining to the balanced LP relaxation of ATSP:
We formulate a property of digraphs that we call the good decomposition property,
and given any digraph with this property, we construct a vector y on the edges such
that y is a fractional feasible solution to the level t tightening of the balanced LP by
the Sherali-Adams system. Charikar, Goemans, and Karloff (CGK) [6] constructed a
family of digraphs for which the standard LP has an integrality ratio of 2. We show
that the digraphs in the CGK family have the good decomposition property, hence,
we obtain an integrality ratio for level t of SA. In more detail, we prove that for any
integer t ≥ 0 and small enough ε > 0, there is a digraph G from the CGK family on
ν = ν(t, ε) = O((t/ε)t/ε) vertices such that the integrality ratio of the level-t tightening
of Bal LP is≥ 1+ 1−ε

t+1 ≈ 2, 32 ,
4
3 ,

5
4 , . . . (where t = 0 identifies the original relaxation).

Our main result pertains to the standard LP relaxation of ATSP. Our key contri-
bution is to identify a structural property of digraphs that allows us to construct frac-
tional feasible solutions for the level t tightening of the standard LP by the Sherali-
Adams system. This construction is much more difficult than the construction for the
balanced LP. We present a simple family of digraphs that satisfy the structural property,
and this immediately gives our results on integrality ratios. We prove that for any in-
teger t ≥ 0 and small enough ε > 0, there are digraphs G on ν = ν(t, ε) = O(t/ε)
vertices such that the integrality ratio of the level t tightening of the standard LP onG is
≥ 1+ 1−ε

2t+3 ≈
4
3 ,

6
5 ,

8
7 ,

10
9 , . . . . The rank of a starting relaxation (or polytope) is defined

to be the minimum number of tightenings required to find the integral hull (in the worst
case). An immediate corollary is that the SA-rank of the standard LP relaxation on a
digraphG = (V,E) is linear in |V |, whereas, the rank in terms of the number of edges
is Ω(

√
|E|) (since the LP is on a complete digraph, namely, the metric completion).

Our results for the balanced LP and for the standard LP are incomparable, because
the SA system starting from the standard LP is strictly stronger than the SA system
starting from the balanced LP, although both the level zero LPs have the same opti-
mal value, assuming metric costs. (In fact, there is an example on 5 vertices [11, Fig-
ure 4.4, p.60] such that the optimal values of the level 1 tightenings are different: 9 1

3 for
the balanced LP and 10 for the standard LP.)

Finally, we extend our main results to the natural realaxation of PATH ATSP (min
cost Hamiltonian dipath from a given source vertex to a given sink vertex), and we
obtain integrality ratios ≥ 1 + 2−ε

3t+4 ≈
3
2 ,

9
7 ,

6
5 ,

15
13 , . . . for the level-t SA tightenings.

Our result on PATH ATSP is obtained by “reducing” from the result for ATSP; the idea
behind this comes from an analogous result of Watson [20] in the symmetric setting;
Watson gives a method for transforming Cheung’s [8] result on the integrality ratio for
TSP to obtain a lower bound on the integrality ratio for PATH TSP.
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The solutions given by our constructions are not positive semidefinite; thus, they do
not apply to the LS+ hierarchy nor to the Lasserre hierarchy.

Let us assess our results, and place them in context. Observe that our integrality
ratios fade out as the level of the SA tightening increases, and for t ≥ 55 (roughly) our
integrality ratio falls below the hardness threshold of 117

116 of [16]. Thus, our integrality
ratios cannot be optimal, and it is possible that an integrality ratio of 2 can be proved
for O(1) levels of the SA system.

On the other hand, our results are not restricted to t = O(1). For example, pa-
rameterized with respect to the number of vertices in the input ν, our lower bound
for the standard LP holds even for level t = Ω(ν), and our lower bound for the bal-
anced LP (which improves on our lower bound for the standard LP) holds even for
level t = Ω(log ν/ log log ν), thus giving unconditional inapproximability results for
these restricted algorithms, even allowing super-polynomial running time.

Moreover, our results (and the fact that they are not optimal) should be contrasted
with the known integrality ratio results for the level zero standard LP, a topic that has
been studied for decades.

2 Preliminaries

When discussing a digraph (directed graph), we use the terms dicycle (directed cycle),
etc., but we use the term edge rather than directed edge or arc. For a digraphG = (V,E)
and U ⊆ V , δout(U) denotes {(v, w) ∈ E : v ∈ U,w �∈ U}, the set of edges outgoing
from U , and δin(U) denotes {(v, w) ∈ E : v �∈ U,w ∈ U}. For x ∈ RE and S ⊆ E,
x(S) denotes

∑
e∈S xe.

By the metric completion of a digraph G = (V,E) with nonnegative edge costs
c ∈ RE , we mean the complete digraphG′ on V with the edge costs c′, where c′(v, w)
is taken to be the minimum cost (w.r.t. c) of a v, w dipath of G.

For a positive integer t and a ground set U , let Pt denote the family of subsets of
U of size at most t, i.e., Pt = {S : S ⊆ U, |S| ≤ t}. We usually take the ground set
to be the set of edges of a fixed digraph. Now, let G be a digraph, and let the ground
set (for Pt) be E = E(G). Let E′ be a subset of E. Let 1E

′, t denote a vector indexed

by elements of Pt such that for any S ∈ Pt, 1E
′, t

S = 1 if S ⊆ E′, and 1E′, t
S = 0,

otherwise.
We denote set difference by−, and we denote the addition (removal) of a single item

e to (from) a set S by S + e (respectively, S − e), rather than by S ∪ {e} (respectively,
S − {e}).

2.1 LP Relaxations for Asymmetric TSP

Let G = (V,E) be a digraph with nonnegative edge costs c. Let ÂTSPDFJ (G) be the
feasible region (polytope) of the following linear program that has a variable xe for
each edge e of G:
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minimize
∑
e

cexe

subject to x
(
δin(S)

)
≥ 1, ∀S : ∅ ⊂ S ⊂ V

x
(
δout(S)

)
≥ 1, ∀S : ∅ ⊂ S ⊂ V

x
(
δin({v})

)
= 1, x

(
δout({v})

)
= 1, ∀v ∈ V

0 ≤ x ≤ 1

In particular, when G is a complete graph with metric costs, the above linear program
is the standard LP relaxation of ATSP (a.k.a. DFJ LP).

We obtain the balanced LP (Bal LP) from the standard LP by replacing the two
constraints x

(
δin({v})

)
= 1, x (δout({v})) = 1 by the constraint x

(
δin({v})

)
=

x (δout({v})), for each vertex v. Let ÂTSPBAL(G) be the feasible region (polytope) of
Bal LP.

2.2 The Sherali-Adams System

Definition 1 (The Sherali-Adams system). Consider a polytope P̂ ⊆ [0, 1]n over
the variables y1, . . . , yn, and its description by a system of linear constraints of the
form

∑n
i=1 aiyi ≥ b; note that the constraints yi ≥ 0 and yi ≤ 1 for all i ∈ {1, . . . , n}

are included in the system. The level-t Sherali-Adams tightened relaxation SAt(P̂ )

of P̂ , is an LP over the variables {yS : S ⊆ {1, 2, . . . , n}, |S| ≤ t+ 1} (thus,
y ∈ RPt+1 where Pt+1 has ground set {1, 2, . . . , n}); moreover, we have y∅ = 1. For
every constraint

∑n
i=1 aiyi ≥ b of P̂ and for every disjoint S,Q ⊆ {1, . . . , n} with

|S|+ |Q| ≤ t, the following is a constraint of the level-t Sherali-Adams relaxation.

n∑
i=1

ai
∑
∅⊆T⊆Q

(−1)|T |yS∪T∪{i} ≥ b
∑
∅⊆T⊆Q

(−1)|T |yS∪T . (1)

There are a number of approaches for certifying that y ∈ SAt(P̂ ) for a given y. One
popular approach is to give a probabilistic interpretation to the entries of y, satisfying
certain conditions. We follow an alternative approach, that is standard, see [14], [19,
Lemma 2.9], but has been rarely used in the context of integrality ratios.

First, we introduce some notation. Given a polytope P̂ ⊆ [0, 1]n, consider the cone
P = {y∅(1, y) : y∅ ≥ 0, y ∈ P̂}. It is not difficult to see that the SA system can be
applied to the cone P , so that the projection in the n original variables can be obtained
by projecting any y ∈ SAt(P ) with y∅ = 1 on the n original variables. Note that
SAt(P ) is a cone, hence, we may have y ∈ SAt(P ) with y∅ �= 1; but if y∅ �= 0,
we can replace y by 1

y∅
y. Also, note that SAt(P̂ ) = {y : y∅ = 1, y ∈ SAt(P )} by

Definition 1.
For a vector y indexed by subsets of {1, . . . , n} of size at most t + 1, define a shift

operator “∗” as follows: for every e ∈ {1, . . . , n}, let e ∗ y to be a vector indexed
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by subsets of {1, . . . , n} of size at most t, such that (e ∗ y)S := yS+e. We have the
following folklore fact, [19, Lemma 2.9].

Fact 1. y ∈ SAt(P ) if and only if e ∗ y ∈ SAt−1(P ), and y − e ∗ y ∈
SAt−1(P ), ∀e ∈ {1, . . . , n}.

Eliminating Variables to 0. In our discusssion of the standard LP and the balanced LP,
it will be convenient to restrict the support to the edge set of a given digraph rather than
the complete digraph. Thus, we assume that some of the variables are absent. Formally,
this is equivalent to setting these variables in advance to zero. As long as the nonzero
variables induce a feasible solution, we are justified in setting the other variables to
zero. See the full version of the paper for further details.

3 SA Applied to the Balanced LP Relaxation of ATSP

3.1 Certifying a Feasible Solution

A strongly connected digraph G = (V,E) is said to have a good decomposition with
witness set F if the following hold

(i) E partitions into edge-disjoint dicycles C1, C2, . . . , CN , that is, there exist edge-
disjoint dicycles C1, C2, . . . , CN such that E =

⋃
1≤j≤N E(Cj); letN denote the

set of indices of these dicycles, thus N = {1, . . . , N};
(ii) moreover, there exists a nonempty subset F of N such that for each j ∈ F the

digraphG− E(Cj) is strongly connected.

LetF denoteN−F . For an edge e, we use index(e) to denote the index j of the dicycle
Cj , j ∈ N that contains e. In this section, by a dicycle Ci, Cj , etc., we mean one of
the dicycles C1, . . . , CN , and we identify a dicycle Cj with its edge set, E(Cj). See
Figure 1 for an illustration of a good decomposition of a digraph.

Informally speaking, our plan is as follows: given a digraphG that has a good decom-

position with witness set F , we construct a feasible solution to SAt(ÂTSPBAL(G)) by
assigning the same fractional value to the edges of the dicycles Cj with j ∈ F , while
assigning the value 1 to the edges of the dicycles Ci with i ∈ F (this is not com-
pletely correct; we will refine this plan). Let ATSPBAL(G) be the associated cone of

ÂTSPBAL(G).

Fig. 1. A digraph G with a good decomposition given by the dicycle with thick edges, and the
length 2 dicycles Cj formed by the anti-parallel pairs of thin edges; G − E(Cj) is strongly
connected for each dicycle Cj
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Definition 2. Let t be a nonnegative integer. For any set S ⊆ E of size≤ t+1, and any
subset I of F , let F I(S) denote the set of indices j ∈ F −I such thatE(Cj)∩S �= ∅;
moreover, let fI(S) denote |F I(S)|, namely, the number of dicycles Cj with indices in
F − I that intersect S.

Definition 3. For a nonnegative integer t and for any subset I ofF , let yI, t be a vector
indexed by the elements of Pt+1 and defined as follows:

yI, tS =
t+ 2− fI(S)

t+ 2
, ∀S ∈ Pt+1

Theorem 2. Let G = (V,E) be a strongly connected digraph that has a good decom-
position, and let F be the witness set. Then

yI, t ∈ SAt(ÂTSPBAL(G)), ∀t ∈ Z+, ∀I ⊆ F .

Corollary 1. We have

y∅, t ∈ SAt(ÂTSPBAL(G)), ∀t ∈ Z+,

and moreover, for each dicycle Cj , j ∈ N , and each edge e of Cj we have

y∅, te =

{
t+1
t+2 , if j ∈ F
1, otherwise.

(2)

When we apply the above theorem to bound the integrality ratio, then we fix I = ∅,
hence, Corollary 1 suffices. The more general setting of the theorem is essential for our
induction proof; we give a high-level explanation in the proof-sketch below. Informally
speaking, we assign the value 1 (rather than a fractional value) to the edges of the
dicycles Cj with j ∈ I ⊆ F . For the sake of exposition, we call the dicycles Cj with
j ∈ F−I the fractional dicycles, and we call the remaining dicyclesCi (thus i ∈ I∪F )
the integral dicycles.

Proof. To prove Theorem 2, we need to prove yI, t ∈ SAt(ATSPBAL(G)). We prove
this by induction on t.

Note that yI, t∅ = 1 by Definition 3.
The induction basis is important, and it follows easily from the good decomposition

property. In Lemma 3 (below) we show that y∅, 0 ∈ SA0(ATSPBAL(G)). It follows
that yI, 0 ∈ SA0(ATSPBAL(G)), ∀I ⊆ F because yI, 0 ≥ y∅, 0 (this follows from
Definitions 2,3, since F I(S) ⊆ F ∅(S)).

In the induction step, we assume that yI, t ∈ SAt(ATSPBAL(G)) for some integer
t ≥ 0 (the induction hypothesis), and we apply the recursive definition based on the
shift operator, namely, yI, t+1 ∈ SAt+1(ATSPBAL(G)) iff for each e ∈ E

e ∗ yI, t+1 ∈ SAt(ATSPBAL(G)), (3)

yI, t+1 − e ∗ yI, t+1 ∈ SAt(ATSPBAL(G)). (4)

Lemma 1 (below) proves (3) and Lemma 2 (below) proves (4).
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We prove that e ∗ yI, t+1 is in SAt(ATSPBAL(G)) by showing that for some edges
e, e ∗ yI, t+1 is a scalar multiple of yI

′, t, where I ′ � I (see Equation (5) in Lemma 1);
thus, the induction hinges on the use of I.

Before proving Lemma 1 and Lemma 2, we show that yI, t+1, restricted to Pt+1, can
be written as a convex combination of yI, t and the integral feasible solution 1E, t+1.
This is used in the proof of Lemma 1; for some of the edges e ∈ E, we show that
e ∗ yI, t+1 = yI, t+1 (see Equation (5)), and then we have to show that the latter is in
SAt(ATSPBAL(G)).

Fact 3. Let t be a nonnegative integer and let I be a subset of F . Then for any

S ∈ Pt+1 we have yI, t+1
S =

t+ 2

t+ 3
yI, tS +

1

t+ 3
1E, t+1
S .

Proof. We have S ⊆ E, |S| ≤ t+ 1, and we get 1E, t+1
S = 1 from the definition. Thus,

yI, t+1
S =

t+ 3− fI(S)

t+ 3
=

t+ 2− fI(S)

t+ 3
+

1

t+ 3
=

t+ 2

t+ 3
yI, tS +

1

t+ 3
1E, t+1
S .

Lemma 1. Suppose that yI, t ∈ SAt(ATSPBAL(G)), for each I ⊆ F . Then
e ∗ yI, t+1 ∈ SAt(ATSPBAL(G)), ∀e ∈ E.

Proof. For any S ∈ Pt+1, the definition of the shift operator gives (e ∗ yI, t+1)S =

yI, t+1
S+e . Let C(e) denote the dicycle containing edge e, and recall that index(e) denotes

the index of C(e).
We first show that

e ∗ yI, t+1
S =

{
t+2
t+3y

I+index(e), t
S if index(e) ∈ F − I

yI, t+1
S otherwise

(5)

If index(e) ∈ I ∪ F , that is, the dicycle C(e) is not “fractional,” then Definition 3
directly gives yI, t+1

S+e = yI, t+1
S . Otherwise, if index(e) ∈ F−I, then from Definition 3

we see that if C(e) ∩ S �= ∅, then F I(S + e) = F I(S), and otherwise, fI(S + e) =
fI(S) + 1. Hence,

(e ∗ yI, t+1)S =

{
t+3−fI(S)

t+3 if C(e) ∩ S �= ∅
t+2−fI(S)

t+3 if C(e) ∩ S = ∅
(6)

=
t+ 2

t+ 3
y
I+index(e), t
S (7)

where in the last line we use Definition 3 to infer that fI+index(e)(S) = fI(S) − 1, if
C(e) ∩ S �= ∅, and fI+index(e)(S) = fI(S), otherwise.

Note that Fact 3 along with yI, t ∈ SAt(ATSPBAL(G)) implies that yI, t+1, re-
stricted to Pt+1, is in SAt(ATSPBAL(G)) because it can be written as a convex com-
bination of yI, t and an integeral feasible solution 1E, t+1. Equation (5) proves Lemma
1 because both yI+index(e), t and yI, t+1 (restricted to Pt+1) are in SAt(ATSPBAL(G)).
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Lemma 2. Suppose that yI, t ∈ SAt(ATSPBAL(G)), for each I ⊆ F . Then

yI, t+1 − e ∗ yI, t+1 ∈ SAt(ATSPBAL(G)), ∀e ∈ E.

Proof. Let C(e) denote the dicycle containing edge e, and recall that index(e) denotes
the index of C(e). If index(e) ∈ I ∪F , then we have F I(S+e) = F I(S), ∀S ∈ Pt+1,
hence, we have yI, t+1 = e ∗ yI, t+1, and the lemma follows.

Otherwise, we have index(e) ∈ F − I. Then, for any S ∈ Pt+1, Equation (6) gives

(yI, t+1 − e ∗ yI, t+1)S =

{
0 if C(e) ∩ S �= ∅
1

t+3 if C(e) ∩ S = ∅
(8)

=
1

t+ 3
1E−C(e), t+1
S (9)

The good-decomposition property of G implies that 1E−C(e), t+1 is a feasible integral
solution of SAt(ATSPBAL(G)).

Lemma 3. We have y∅, 0 ∈ SA0(ATSPBAL(G)).

Proof. Observe that y∅, 0 has |E| + 1 elements, and y∅, 0∅ = 1 (by Definition 3); the
other |E| elements are indexed by the singleton sets of E. For notational convenience,
let y ∈ RE denote the restriction of y∅, 0 to indices that are singleton sets; thus, ye =

y∅, 0{e}, ∀e ∈ E. By Definition 3, ye = 1/2 if e ∈ E(Cj) where j ∈ F , and ye = 1,

otherwise. We claim that y is a feasible solution to ÂTSPBAL(G).
y is clearly in [0, 1]E . Moreover, y satisifes the balance-constraint at each vertex

because it assigns the same value (either 1/2 or 1) to every edge in a dicycle Cj , ∀j ∈
N .

To show feasibility of the cut-constraints, consider any cut ∅ �= U ⊂ V . Since
1E is a feasible solution, there exists an edge e ∈ E crossing from U to V − U . If
e ∈ E(Cj), j ∈ F , then we have ye = 1, which implies y(δout(U)) = y(δin(U)) ≥ 1
(from the balance-constraints at the vertices). Otherwise, we have e ∈ E(Cj), j ∈ F .
Applying the good-decomposition property of G, we see that there exists an edge e′(�=
e) ∈ E − E(Cj) such that e′ ∈ δout(U), i.e., |δout(U)| ≥ 2. Since ye ≥ 1

2 for each
e ∈ E, the cut-constraints y(δin(U)) = y(δout(U)) ≥ 1 are satisfied.

The next result presents our first lower bound on the integrality ratio for the level t
relaxation of the Sherali-Adams procedure starting with the balanced LP. The relevant
instance is a simple digraph on Θ(t) vertices; see Figure 1. In the next subsection, we
present better integrality ratios using the CGK construction, but the CGK digraph is not
as simple and it has Θ(tt) vertices.

Theorem 4. Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε & 1. There
exists a digraph on ν = ν(t, ε) = Θ(t/ε) vertices such that the integrality ratio for
the level t tightening of the balanced LP (Bal LP) (by the Sherali-Adams system) is
≥ 1 + 1−ε

2t+3 .
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3.2 CGK (Charikar-Goemans-Karloff) Construction

We focus on the CGK [6] construction and show in Theorem 5 that the resulting digraph
has a good decomposition. This theorem along with a lemma from [6] shows that the
integrality ratio is≥ 1+ 1−ε

t+1 for the level t relaxation of the Sherali-Adams procedure
starting with the balanced LP, for any given 0 < ε& 1, see Theorem 6.

The CGK construction gives a digraph Gk with edge costs for each k = 0, 1, 2, . . . ,
and for any given k ≥ 2, their hard instance Lk is obtained by a simple modification of
Gk, see [6, Section 3].

Theorem 5. For k ≥ 2, Lk has a good decomposition with witness set F such that
F = N , i.e. every cycle in the decomposition can be assigned a fractional value.

Theorem 6. Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε & 1. There
exists a digraph on ν = ν(t, ε) = O((t/ε)(t/ε)) vertices such that the integrality ratio
for the level t tightening of the balanced LP (Bal LP) (by the Sherali-Adams system)
is ≥ 1 + 1−ε

t+1 .

4 SA Applied to the Standard (DFJ LP) Relaxation of ATSP

We state the main result of this section. Further details can be found in the full version
of the paper.

Theorem 7. Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε & 1. There
exists a digraph on ν = ν(t, ε) = Θ(t/ε) vertices such that the integrality ratio for
the level t tightening of the standard LP (DFJ LP) (by the Sherali-Adams system) is
≥ 1 + 1−ε

2t+3 .

5 Path ATSP

We state the main result of this section. See the full version of the paper for further
details.

Let G = (V,E) be a digraph with nonnegative edge cost c, and let p and q be
two distinguished vertices. In the path ATSP, the goal is to compute a Hamiltonian (or
spanning) dipath from p to q with minimum cost in the metric completion of G.

Theorem 8. Let t be a nonnegative integer, and let ε ∈ R satisfy 0 < ε & 1. There
exists a digraph on ν = ν(t, ε) = Θ(t/ε) vertices such that the integrality ratio for
the level t tightening of the standard LP (PATSP) (by the Sherali-Adams system) is
≥ 1 + 2−ε

3t+4 .
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Counting Matchings of Size k Is #W[1]-Hard
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Abstract. We prove #W[1]-hardness of the following parameterized
counting problem: Given a simple undirected graph G and a parame-
ter k ∈ N, compute the number of matchings of size k in G.

It is known from [1] that, given an edge-weighted graph G, computing
a particular weighted sum over the matchings in G is #W[1]-hard. In the
present paper, we exhibit a reduction that does not require weights.

This solves an open problem from [5] and adds a natural parameter-
ized counting problem to the scarce list of #W[1]-hard problems. Since
the classical version of this problem is well-studied, we believe that our
result facilitates future #W[1]-hardness proofs for other problems.

1 Introduction

Let G = (V, E) be an undirected graph on n vertices. A matching M in G is a
set of vertex-disjoint edges M ⊆ E. For k ∈ N, a k-matching is a matching with
|M | = k, and (n/2)-matchings are commonly referred to as perfect matchings.

Counting (Perfect) Matchings: Two natural counting problems on matchings
are well-studied: The problem #PerfMatch of counting all perfect matchings
in an input graph G, and the problem #Match of counting all matchings in
G. The problem #PerfMatch already appeared along with the definition of the
complexity class #P in [10] and was among the first problems to be proven
#P-complete. In [11], the problem #Match was also proven #P-hard.

Subsequent work identified restricted graph classes on which the problems
#PerfMatch and #Match are already #P-hard, as well as some tractable graph
classes. For instance, #Match is already hard on planar 3-regular graphs [14],
while #PerfMatch admits a polynomial-time algorithm on planar graphs [9].
This last result, and matchings in general, are also central to the new theory of
holographic algorithms introduced in [12].

Parameterized Counting Complexity: In a relatively new approach to
#Match, and other #P-hard problems in general, counting problems are consid-
ered as parameterized problems, see [4]. In such problems, inputs x come with an
additional parameter k, and a parameterized counting problem is fixed-parameter
tractable (fpt) in k if it can be solved in time f(k)|x|O(1) for a computable func-
tion f . The class #W[1] and the notion of #W[1]-hardness were both defined in
[4], bridging classical counting complexity and parameterized complexity theory.

In parameterized counting problems on graphs, the parameter k typically ei-
ther measures some notion of intricacy of the input graph or the intricacy of the

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 352–363, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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structures to be counted. Typical parameters associated with the input graph
are, e.g., its treewidth, cliquewidth or genus. For instance, a counting analogue
of Courcelle’s famous theorem [2] is known [7]: Given a graph G of treewidth
tw(G) and a formula φ(X) in monadic second-order logic over graphs with a free
set variable X , counting the sets X with G |= φ(X) is fpt in tw(G). This implies
that counting perfect (or general) matchings in G is fpt in tw(G).

A natural parameter associated with the structures to be counted is their size.
This includes the results that counting k-vertex covers is fpt in k, while counting
k-paths, k-cliques or k-cycles are each #W[1]-hard, all proven in [4].

Counting k-Matchings: It was conjectured in [4] that counting k-matchings
on bipartite graphs is #W[1]-hard in the parameter k. The problem for general
graphs is an open problem in [5]. The conjecture was later backed up by a proof
[1] that counting weighted k-matchings is indeed #W[1]-hard: Let G = (V, E, w)
be an edge-weighted bipartite graph and assign to every matching M ⊆ E the
weight w(M) :=

∏
e∈M w(e). It was shown that, for a particular w : E → Z,

computing the sum
∑

M w(M) over matchings M in G is #W[1]-hard.
Also, the best known algorithms for counting k-matchings exhibit time bounds

of the type f(k)nΘ(k). Among these is [13] with a runtime of O(2k+o(k)( n
k/2

)
).

Our Result: We show that counting k-matchings is #W[1]-hard on unweighted
graphs without multiple edges or self-loops. It is known that weights in the sense
of [1] can be simulated by parallel edges. This however creates multigraphs,
and standard reductions to simple graphs fail. Our proof relies on a particular
gadget construction, which is analyzed by tools from commutative algebra. This
technique can probably also be applied to other counting problems.

2 Preliminaries

Parameterized Counting: Let p#Clique be the problem of counting cliques
of size k in a graph G, parameterized by k. Define the class #W[1] as the set of
parameterized counting problems A with A ≤T

fpt p#Clique. Here, A ≤T
fpt B means

that A admits an fpt-algorithm that solves instances (x, k) of A with oracle access
to B, under the restriction that all oracle queries (y, k′) feature k′ ≤ g(k) for
some computable g : N → N. For a more formal definition, consider [4].

Polynomials: Let x = (x1, . . . , xs) be a tuple of indeterminates and let Nx

be the set of monomials over x. Given a multivariate polynomial p ∈ Z[x] and
ν ∈ Nx, write c(ν) ∈ Z for the coefficient of monomial ν in p. This gives p =∑

ν c(ν) · ν. Note that only finitely many c(ν) are non-zero.
Let x = y∪̇z be a partition of the indeterminates of p. We can equivalently

consider p ∈ (Z[z])[y]. For ν ∈ Ny, define [ν]p as the uniquely determined
polynomial Hν ∈ Z[z] in the expansion p(x) =

∑
θ∈Ny Hθ(z) · θ.

Matchings: Let G = (V, E) be a graph and k ∈ N. Define Mk[G] as the set
of k-matchings of G, let mk := |Mk[G]| and define M[G] :=

⋃
k∈N

Mk[G]. For
a formal indeterminate X , let M(G; X) :=

∑
k mkXk be the edge-generating
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matching polynomial of G. Given u ∈ V and M ∈ M[G], we write u ∈ sat(M)
and say that u is matched by M if {u, w} ∈ M for some w ∈ V .

2.1 Algebraic Independence

Crucial parts of our proof rely on algebraic independence, a notion from commu-
tative algebra. A general introduction to this topic is given in [6].
Definition 1. Let P = {p1, . . . , pt} ⊆ Z[x1, . . . , xs] be a set of polynomials and
let y = (ṗ1, . . . , ṗt) be a tuple of indeterminates. An annihilator for P is a
polynomial A ∈ Z[y] which annihilates P , i.e., A(p1, . . . , pt) ≡ 0. If the only
annihilator for P is the zero polynomial, we call P algebraically independent.

Remark 1. In the previous definition, we wrote y = (ṗ1, . . . , ṗt) to highlight the
correspondence between indeterminates and polynomials. In this paper, expres-
sions of the form ṗ always denote indeterminates.

Restricting the annihilator A to linear functions without mixed-variable terms
yields an alternative definition of linear independence. Algebraic independence
generalizes this by allowing “polynomial” instead of only linear combinations.

We require only two ingredients from the theory of algebraic independence:
The classical Jacobian criterion allows us to reduce algebraic independence to
linear independence, and Lemma 1 allows us to argue about annihilators of
“almost-independent” sets. A proof of Theorem 1 can be found in [3].
Theorem 1. Let P = {p1, . . . , pt} ⊆ Z[x]. Then P is algebraically independent
iff rank(JP ) = t, where JP denotes the Jacobian matrix (JP )i,j = ∂pi/∂xj.

Lemma 1. Let I = Z[x] and let P, Q ⊆ I with P = {p1, . . . , pr} and Q =
{q1, . . . , qt} such that P ∪ Q is algebraically independent. Let s = p1 + . . . + pr.

Define indeterminates ṡ, p = (ṗ1, . . . , ṗr) and q = (q̇1, . . . , q̇t), and define a
ring O := Z[ṡ, p, q]. Let A ∈ O be an arbitrary annihilator for the set {s}∪P ∪Q.

Let ν ∈ Nq be arbitrary, and consider [ν]A ∈ Z[ṡ, p]. Applying the substitution
ṡ := ṗ1 + . . . + ṗr to [ν]A yields a polynomial Aν ∈ Z[p] with Aν ≡ 0.

Proof. Since A annihilates {s} ∪ P ∪ Q, we have A(s, p1, . . . , pr, q1, . . . , qt) ≡ 0.
Considering A from (Z[ṡ, p])[q], this equation can be rewritten as∑

ν∈Nq

([ν]A)(s, p1, . . . , pr) · ν(q1, . . . , qt) ≡ 0. (1)

Note that ([ν]A)(s, p1, . . . , pr) = Aν(p1, . . . , pr) since ṡ := ṗ1 + . . . + ṗr and
s = p1 + . . .+ pr. If Aν �≡ 0 for some ν, then (1) displays a nontrivial annihilator
for P ∪ Q after substitution of ṡ, contradicting its independence. 	


2.2 Outline of the Reduction

We prove #W[1]-hardness of counting k-matchings by a reduction from the prob-
lem p#CC of counting k-partial cycle covers, whose #W[1]-hardness was shown
in [1]. Let us first define the notion of k-partial cycle covers:
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Definition 2. [1] Let G = (V, E) be a directed graph and let t ∈ N. A t-partial
path-cycle cover C in G is a set C ⊆ E with |C| = t that consists of a vertex-
disjoint union of simple paths and cycles.

Let ρ(C) be the number of paths in C. We call C a t-partial cycle cover if
ρ(C) = 0. The set of t-partial path-cycle covers in G with ρ paths is denoted by
PCt,ρ[G]. Define PCt[G] :=

⋃
ρ PCt,ρ[G] and extend this to PC[G] :=

⋃
t PCt[G].

For t, ρ ∈ N, let mt,ρ := |PCt,ρ[G]|, if G is clear from the context.

For compatibility with [1], define Ck[G] := PCk,0[G]. In the following sections,
only two parameterized counting problems will be relevant:

p#CC
Input: directed graph G, k ∈ N
Parameter: k

Output: |Ck[G]|

p#Match
Input: undirected graph G, k ∈ N
Parameter: k

Output: |Mk[G]|

It holds that p#Match ∈ #W[1], as it is subsumed by the more general prob-
lem of counting embeddings from [4]. In the following, we sketch the reduction
p#CC ≤T

fpt p#Match. The rest of this paper provides its details. We obtain:

Theorem 2. The problem p#Match is #W[1]-complete.

The reduction works as follows: To begin with, we are given a directed graph G
and k ∈ N as inputs, and we wish to count the number of k-partial cycle covers
in G. We are also given an oracle for p#Match that can be queried about the
numbers of K-matchings in arbitrary graphs, provided that K ≤ g(k), where g
is computable. It turns out that our queries even satisfy K ≤ 3k, and that the
reduction can be carried out in polynomial time.

The proof begins in Section 3 with the description of a particular graph
transformation: First, we construct an undirected graph G′ and a bijection S :
PCk[G] → Mk[G′]. Next, we apply gadgets to G′ to obtain a graph H = H(G)
and show that, for K = 3k, the quantity |MK [H ]| can be written as a particular
weighted sum over the matchings M ∈ Mk[G′]. The weight of M in this sum
depends on the number of paths in its associated path-cycle cover S−1(M).

We proceed to show in Sections 3 and 4 that the weights in this sum in fact
allow to distinguish matchings M ∈ Mk[G′] according to the number of paths
in S−1(M). Finally, we use this in Section 4.2 to recover the number of k-partial
path-cycle covers with zero paths in G by oracle calls to p#Match.

3 The Gadget Construction

3.1 Global Construction

We want to count k-partial cycle covers in a directed graph G with an oracle for
p#Match. Let n = |V |. First, we define a graph S(G) as in [1]:

Definition 3. [1] Given a directed graph G = (V, E), replace each vertex w ∈ V
by vertices win and wout, and replace each (u, v) ∈ E by the undirected edge
{uout, vin}. We call the resulting graph the split graph S(G). Let G′ = S(G).
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Fig. 1. (left) A partial path-cycle cover C. (middle) The matching M ′ = S(C).
(right) For w ∈ V , the gray area between {wout, win} symbolizes Vw. Cancelled edges
indicate edges in Vw that cannot be included into M ′ since {wout , win} is in-blocked,
out-blocked or blocked, as seen in the first, second and fourth pair, respectively.

The graph G′ is bipartite, and considering S as a function, it induces a bijection
between PCt[G] and Mt[G′] for all t ∈ N, as shown in [1]. Consider the left and
middle part of Fig. 1 for an example. We also observe the following:

Remark 2. Let C ∈ PCt,ρ[G]. Since C has ρ paths, there are ρ vertices incident
with only an incoming edge in C, another ρ vertices incident with only an out-
going edge, and t − ρ vertices incident with both an incoming and an outgoing
edge. The remaining n − t − ρ vertices are not incident with any edge in C.

This translates to M = S(C) as follows: Consider pairs {wout, win} ⊆ V (G′),
for w ∈ V (G). There are ρ such pairs with win ∈ sat(M) and wout /∈ sat(M).
We call such pairs in-blocked. There are another ρ pairs with wout ∈ sat(M)
and win /∈ sat(M), which we call out-blocked. There are t − ρ pairs with both
wout, win ∈ sat(M), which we call blocked. The remaining n − t − ρ pairs feature
sat(M) ∩ {wout, win} = ∅. We call these pairs free. 	

This roughly implies the following: If we can distinguish matchings M ∈ Mt[G′]
according to how many pairs {wout, win} occur in the above states, then we can
hope to distinguish t-partial path-cycle covers C = S−1(M) by ρ(C).

In the remaining section, we present a particular construction that achieves
exactly this, as will be proven in Section 4. The construction uses a gadget, i.e.,
an undirected graph V with two special vertices uout and uin that can be inserted
locally into G′ to yield a graph H = H(G).1

Definition 4. Given a graph G, define a graph H = H(G) as follows: First, let
G′ = S(G). For each w ∈ V (G), add a fresh copy Vw of V to G′, identifying
the vertex wout ∈ V (G′) with uout ∈ V (Vw), and identifying win ∈ V (G′) with
uin ∈ V (Vw). Note that, by construction, G′ appears as a subgraph in H.

Let s ∈ V (G′) with s ∈ {wout, win} for w ∈ V (G). If M ∈ M[H ] and s ∈
sat(M), then s ∈ e for some e ∈ M . Then either e ∈ E(Vw), in which case
we call s internally matched, or e ∈ E(G′) and s is externally matched. If
1 The actual definition of V is irrelevant for now and is treated in the next subsection.
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s is externally matched, then all edges in M that stem from E(Vw) must be
contained in E(Vw − s). Thus, when extending a matching N ∈ M[G′] to some
M ∈ M[H ] by including edges from Vw, we have to distinguish the state of the
pair {wout, win} in N .2 This is illustrated in the right part of Fig. 1.

We account for this by associating four restricted matching polynomials with
the gadget V . Recall that V features special vertices uout and uin. The restricted
polynomials MA(V) are indexed by A ⊆ {uout, uin} and are defined like M(V),
except that they count only matchings M ∈ M[V ] with sat(M)∩{uout, uin} ⊆ A.

Definition 5. Let V be a graph with uout, uin ∈ V (V). For A ⊆ {uout, uin}, let

MA(V ; X) :=
∑

M∈M[V]
sat(M)∩{uout ,uin}⊆A

X |M|.

We consider V fixed. Define B := M∅(V), U := M{uout}(V), V := M{uin}(V),
and F := M{uout ,uin}(V). Finally, for t, ρ ∈ N with ρ ≤ t and n − t − ρ ≥ 0,
define a polynomial Mix(t,ρ) ∈ Z[X ] by Mix(t,ρ) := Bt−ρ · Uρ · V ρ · F n−t−ρ.

The polynomials Mix(t,ρ) are crucial in Section 4 because the matching poly-
nomial M(H) can be written as a weighted sum over the path-cycle covers
C ∈ PC[G] such that C ∈ PCt,ρ[G] is weighted by Xt · Mix(t,ρ). This is stated
in the following lemma, which can be proved using standard combinatorial ar-
guments. Recall that mt,ρ(G) = |PCt,ρ[G]| by Definition 2.

Lemma 2. Let G be a graph and let H = H(G) as in Definition 4. Then

M(H) =
∑

0≤ρ≤t≤n

mt,ρ(G) · Xt · Mix(t,ρ).

We close this subsection with a remark about the coefficients of B, U, V, F :

Remark 3. Note that [X0]D = 1 for all D ∈ {B, U, V, F}. Furthermore, it can be
verified that [X1]F = [X1](U + V − B) if {u, v} /∈ E(V). The gadget introduced
in the next subsection will feature {u, v} /∈ E(V). 	


3.2 Local Construction: The Venn Gadget

We are ready to provide an explicit construction for the gadget V : The Venn
gadget V(x) is an undirected graph with special vertices uout and uin, as shown
in Fig. 2 on the next page. Its precise manifestation depends on a tuple

x = (a∅, au, av, auv, b∅, bu, bv, buv, cu, cv, cuv) ∈ N11. (2)

The eleven parameters, which will be considered as indeterminates later, are
named so as to reflect the particular set system represented by the gadget.
2 This might evoke memories of matchgates in the readership of [12].
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Fig. 2. The Venn gadget V features named vertices uout , uin, a and b. The other vertices
are partitioned into the disjoint sets a∅, . . . , cuv. In this figure, an edge leading from a
special vertex w into a set S symbolizes that w is adjacent to all vertices in S.

Definition 6. Given a tuple x ∈ N11 as specified in (2), the Venn gadget V(x)
is constructed as follows from the empty graph:

1. Create (a∅ + au + av + auv) + (b∅ + bu + bv + buv) + (cu + cv + cuv) fresh and
unnamed vertices. Abusing notation slightly, group these vertices into sets
a∅, . . . , cuv in the obvious way.

2. Create a special vertex uout adjacent to all of (au∪auv)∪(bu∪buv)∪(cu∪cuv).
3. Create a special vertex uin adjacent to all of (av ∪auv)∪(bv ∪buv)∪(cv ∪cuv).
4. Create a vertex a adjacent to all of a∅ ∪ au ∪ av ∪ auv.
5. Create a vertex b adjacent to all of b∅ ∪ bu ∪ bv ∪ buv.

Remark 4. Note that constructing V(x) for different x ∈ N11 yields different
graphs. Thus, using the gadget V(x) to construct the graph H in Definition 4 in
fact yields a graph H = H(x) that also depends on x.

Furthermore, when considering x as a tuple of indeterminates, the matching
polynomials B, U, V, F associated with V , introduced in Definition 5, are easily
seen to be elements in Z[X, x]. Equivalently, we can define I := Z[x] and say
that B, U, V, F ∈ I[X ], where X denotes a formal generating variable. 	

We now consider the coefficients of the polynomials B, U, V, F ∈ I[X ] from
Remark 4. Note that these coefficients are elements of I = Z[x], and thus in
turn polynomials. We show that the set of coefficients is “almost” algebraically
independent, in the sense that it allows Lemma 1 to be invoked.

First observe that deg(B) = 2, deg(U) = deg(V ) = 3 and deg(F ) = 4, as these
are the maximum cardinalities of matchings counted by B, U, V, F , respectively.
These four polynomials therefore feature at most 16 non-zero coefficients in total.
For D ∈ {B, U, V, F}, abbreviate Di := [X i]D ∈ I.

Furthermore, note that B0 = V0 = U0 = F0 = 1 by Remark 3. We will
ignore these four coefficients from now on, for reasons that will become clear in
Section 4. Let Y be the set of all other coefficients of B, U, V, F . For convenience:

Y := {B1, B2, U1, U2, U3, V 1, V 2, V 3, F1, F 2, F 3, F 4}.
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Additionally, let B := {B1, U1, V1, F1}. Note that F1 = U1+V1−B1 by Remark 3.
The set B is thus algebraically (and even linearly) dependent. We now consider
the set Y ′ := Y\{F1}. After computing the elements in Y ′ explicitly and verifying
that det(JY ′) �≡ 0, we obtain the following lemma as a corollary from Theorem 1:

Lemma 3. The set Y ′ ⊆ I is algebraically independent.

We can now apply Lemma 1 verbatim to obtain the following corollary. It states
a restriction on annihilators for Y which will be used in Section 4.1.

Corollary 1 (of Lemma 1). Let P := B \ {F1} and Q := Y \ B. By Lemma 3,
the set P ∪ Q = Y ′ is algebraically independent. Recall that F1 = U1 + V1 − B1.

Define indeterminates Ḟ1, p = (Ḃ1, U̇1, V̇1) and q, where q represents Q, and
let y = (Ḟ1, p, q). Let O = Z[y] and let A ∈ O annihilate Y = {F1} ∪ P ∪ Q.

Let θ∗ = Ḃb
2 with b > 0 and consider [θ∗]A ∈ Z[Ḟ1, p]. Applying the substitu-

tion Ḟ1 := U̇1 + V̇1 − Ḃ1 to [θ∗]A yields a polynomial Aθ∗ ∈ Z[p] with Aθ∗ ≡ 0.

4 Analysis of the Graph Construction

Recall that we wish to determine mk,0, where mt,ρ denotes the number of t-
partial path-cycle covers with ρ paths in G. We fix k and K := 3k. We also fix
y and O = Z[y] as in Corollary 1, as well as x and I = Z[x] as in Remark 4.

The indeterminates in y correspond to Y from Section 3.2. We extend this view
by considering the polynomials B, U, V, F and Mix(t,ρ) ∈ Z[X ] from Definition 5
formally as elements from O[X ], writing Mix(t,ρ)

O to make this explicit:

Definition 7. For D ∈ {B, U, V, F}, let DO =
∑deg(D)

i=1 ḊiX
i ∈ O[X ]. Define

Mix(t,ρ)
O ∈ O[X ] exactly as Mix(t,ρ) in Definition 5, but replace any D by DO.

Let MixO ∈ O(K+1)×(K+1) be the matrix whose entry at (t, ρ) is [XK−t]Mix(t,ρ)
O

for 0 ≤ ρ ≤ t ≤ K, and 0 else. Also write MixO for the set of its entries.

We similarly define MO(H) ∈ O[X ] by formally replacing coefficients of Venn
gadgets with indeterminates from y. Extending Lemma 2, we obtain:

Lemma 4. Let H = H(G) according to Definition 4. For matrices A, B of the
same dimensions, let A � B :=

∑
ij AijBij . Then

[XK ]MO(H) =

⎛
⎜⎜⎝

[XK ]Mix(0,0)
O . . . [X0]Mix(K,0)

O
. . .

...
[X0]Mix(K,K)

O

⎞
⎟⎟⎠

︸ ︷︷ ︸
=MixO

�

⎛
⎜⎝

m0,0 . . . mK,0
. . .

...
mK,K

⎞
⎟⎠ .

This yields a formal “linear combination” of the quantities mt,ρ with coefficients
from O. For t = k and 0 ≤ ρ ≤ k, the interesting quantities mk,ρ appear in it as

[XK ]MO(H) = . . . + mk,0[X2k]Mix(k,0)
O + . . . + mk,k[X2k]Mix(k,k)

O + . . . (3)
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In Section 4.1, we substitute the polynomials Y ⊆ I from Section 3.2 into the
indeterminates y, yielding a matrix MixI ∈ I(K+1)×(K+1). We show that, after
this substitution, the polynomial p∗ := [X2k]Mix(k,0)

I associated with mk,0 in (3)
is special, in the sense that it cannot be written as a linear combination (with
rational coefficients) of the other polynomials in MixI.

In Section 4.2, we show that a linear system of equations in the unknowns
mt,ρ can be set up from (3) by evaluating3 the entries of MixI on ξ ∈ N11 and
using oracle calls on graphs derived by the gadget construction from Section 3.
This system will feature O(k11) linear equations, whose integer coefficients can
be computed in time nO(1). Furthermore, the specialness of p∗ will imply that
the system can be solved unambiguously for mk,0. This proves Theorem 2.

4.1 The Polynomial p∗ Is Special

We consider expansions of the polynomials p ∈ MixO into monomials over y.
This is used to show that, after substitution of Y from Section 3.2 into y, the
polynomial p∗ = [X2k]Mix(k,0)

I associated with mk,0 satisfies the following:

Theorem 3. Substitute Y into y in all of MixO to obtain the matrix MixI. Then
p∗ = [X2k]Mix(k,0)

I is not in the span of the other entries in MixI. Formally, if∑
0≤ρ≤t≤K

αt,ρ · [XK−t]Mix(t,ρ)
I ≡ 0, (4)

with αt,ρ ∈ Q for all 0 ≤ ρ ≤ t ≤ K, then αk,0 = 0.

This theorem will be proven at the end of this subsection. We first consider poly-
nomials p ∈ MixO and require some notation for the set of monomials appearing
in p. Recall that O = Z[y], and note that [θ]p ∈ Z if p ∈ O and θ ∈ Ny.

Definition 8. For p ∈ O, let Mp = {θ ∈ Ny | [θ]p �= 0}. For P ⊆ O, define
MP =

⋃
p∈P Mp. If θ ∈ Ny and θ ∈ MP , we say that θ appears in P .

Our proof of Theorem 3 proceeds as follows: We first identify a special monomial
θ∗ ∈ Ny and show that, among all p ∈ MixO, the monomial θ∗ appears only in
p = p∗. Using this, we show that containment of p∗ in the span of the other
polynomials yields an annihilator for Y that contradicts Corollary 1.

To begin with, we define several quantities associated with monomials in Ny:

Definition 9. Let θ ∈ Ny and observe that θ is of the form

θ = (Ḃb1
1 Ḃb2

2 )(U̇u1
1 U̇u2

2 U̇u3
3 )(V̇ v1

1 V̇ v2
2 V̇ v3

3 )(Ḟ f1
1 Ḟ f2

2 Ḟ f3
3 Ḟ f4

4 ).

Define td(θ) :=
∑4

i=1 i(bi + ui + vi + fi). Let Θ := MMixO. For 
 ∈ N, let
Θ� := Θ ∩ {θ | td(θ) = 
}. Let occ(θ) := (

∑
i bi,

∑
i ui,

∑
i vi,

∑
i fi) and write

occB(θ) for the first entry of occ(θ).
3 Recall that I = Z[x], where x is the tuple of 11 indeterminates from (2) in Section 3.2.

Thus, evaluating Mix(t,ρ)
I (ξ) at ξ ∈ N11 yields an integer value.
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Example 1. Let θ = Ḃ1
1Ḃ2

2U̇4
2 V̇ 5

2 Ḟ 6
1 . Then td(θ) = 1 · (1 + 6) + 2 · (2 + 4 + 5) = 29

and occ(θ) = (3, 4, 5, 6). Furthermore, we have occB(θ) = 3.

This notation is used for the statement of the following lemma, which follows
from a relatively straightforward application of the multinomial theorem.

Lemma 5. Let 0 ≤ t ≤ K. For a, b1, . . . , b� ∈ N with s :=
∑

i bi ≤ a, let(
a

b1,...,b�

)
= a!

b1!...b�!(a−s)! . With θ ∈ Ny written as in Definition 9, we have

[XK−t]Mix(t,ρ)
O =

∑
θ∈ΘK−t

(
t − ρ

b1, b2

)(
ρ

u1, u2, u3

)(
ρ

v1, v2, v3

)(
n − t − ρ

f1, f2, f3, f4

)
︸ ︷︷ ︸

=:λt,ρ(θ)

θ.

Corollary 2. A monomial θ ∈ Θ appears in [XK−t]Mix(t,ρ)
O iff td(θ) = K − t

and λt,ρ(θ) �= 0. The second condition is true iff occ(θ) ≤ (t − ρ, ρ, ρ, n − t − ρ),
where ≤ is considered component-wise.

We now define the special monomial θ∗ := Ḃk
2 and show that it appears only in

the previously defined special polynomial p∗ = [X2k]Mix(k,0)
O .

Lemma 6. If θ ∈ Θ contains θ∗ = Ḃk
2 as a factor, then θ = θ∗. Furthermore,

if θ∗ appears in p ∈ MixO, then p = p∗. In fact, we have [θ∗]p∗ = 1.

Proof. If θ ∈ Θ contains Ḃk
2 , then td(θ) ≥ 2k. Since θ ∈ Θ, it must appear in

[XK−t]Mix(t,ρ)
O for some 0 ≤ ρ ≤ t ≤ K. Then K − t ≥ td(θ) by Corollary 2.

Recall that K = 3k, implying t ≤ k. Since θ contains Ḃk
2 , we have occB(θ) ≥ k.

But by Corollary 2, we also have occB(θ) ≤ t − ρ.
The last two inequalities and t ≤ k imply ρ = 0 and occB(θ) = k. Thus θ

appears only in p∗. But then td(θ) = 2k, and thus θ = θ∗. Finally, [θ∗]p∗ =
λk,0(θ∗) = 1 follows independently from Lemma 5. 	

This allows us to finish the subsection with the promised proof of Theorem 3.

Proof (of Theorem 3). Assume there were coefficients αt,ρ satisfying (4) with
αk,0 �= 0. With λt,ρ(θ) from Lemma 5, write [XK−t]Mix(t,ρ)

O =
∑

θ∈Θ λt,ρ(θ) · θ
and rearrange (4) to obtain

A :=

(
αk,0 ·

∑
θ∈Θ

λk,0(θ) · θ

)
+

∑
θ∈Θ

θ
∑

0≤ρ≤t≤K
(t,ρ) 
=(k,0)

αt,ρ · λt,ρ(θ) ≡ 0. (5)

By Lemma 6, the monomial θ∗ = Ḃk
2 appears only in the parentheses and has

λk,0(θ∗) = 1. Regrouping (5) yields A = αk,0 · θ∗ +
∑

θ 
=θ∗ μ(θ) · θ, for new
coefficients μ, with the property that A(B1, . . . , F4) ≡ 0.

Also by Lemma 6, the only monomial in A that contains θ∗ is θ∗ itself. There-
fore, A is a nontrivial annihilator for the set Y from Section 3.2, with the property
that [θ∗]A = αk,0 ∈ Q is non-zero. Corollary 1 then leads to a contradiction:
Since [θ∗]A �= 0 is constant, it is unaffected by the substitution Ḟ1 := U̇1+V̇1−Ḃ1,
thus contradicting Aθ∗ ≡ 0 from Corollary 1. 	
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4.2 Deriving Linear Equations from Mix

In this subsection, we complete the proof of Theorem 2. For this, we substitute
the elements in Y from Section 3.2 into MixO. Using the gadget V(x), we can
evaluate the resulting polynomials Mix(t,ρ)

I to yield integer values.

Definition 10. For ξ ∈ N11, let Mix(ξ) ∈ Z(K+1)×(K+1) be the matrix obtained
from MixI by evaluating each of its entries p ∈ I at ξ.

For Ξ = (ξ1, . . . , ξD) with ξi ∈ N11, let Mix(Ξ) ∈ ZD×(K+1)2 be such that
the i-th row of Mix(Ξ) contains the entries of Mix(ξi) as a row vector. Consider
columns of Mix(Ξ) to be indexed by pairs (t, ρ) and write A(t,ρ) for column (t, ρ).

Remark 5. If |Ξ| ≤ nO(1) and all entries of Ξ have bit-length nO(1), then Mix(Ξ)
can be computed in time nO(1): It holds by Definition 5 that Mix(t,ρ)

O ∈ O[X ]
is the product of n polynomials, each of degree ≤ 4. Any [X�]Mix(t,ρ)

O ∈ O can
therefore be computed, the elements in Y can be substituted into it, and the
resulting p ∈ I can be evaluated at any ξi, all in time nO(1).

In the following, we fix Ξ = (ξ1, . . . , ξD), with D = (K + 1)11, to some enu-
meration of the grid {0, . . . , K}11. Furthermore, if B ∈ Z�×b2 is a matrix whose
columns are indexed by pairs (i, j), and C ∈ Zb×b, let B � C ∈ Z� be defined by
(B � C)t =

∑
ij Bt,(i,j)Cij . It can be checked that Lemma 4 implies

Mix(Ξ) �

⎛
⎜⎝

m0,0 . . . mK,0
. . .

...
mK,K

⎞
⎟⎠ =

⎛
⎜⎝

[XK ]M(H(ξ1))
...

[XK ]M(H(ξD))

⎞
⎟⎠ , (6)

with H(ξ) for ξ ∈ N11 as in Remark 4. Recall that [XK ]M(H(ξ)) ∈ N counts
the K-matchings in H(ξ). Since K = 3k, we can thus evaluate the right-hand
side of (6) by D oracle queries of the form (H(ξ), K) to p#Match.

We consider (6) as a linear system of equations in the unknowns mt,ρ. By
Remark 5, Mix(Ξ) can be evaluated in time nO(1). This implies that a solution
to (6) can also be found in time nO(1). The final and crucial step towards the
proof of Theorem 2 now consists of showing that all solutions to (6) agree on
their values for mk,0. For this, we build upon Theorem 3 to show that column
(k, 0) of Mix(Ξ) is not contained in the linear span of its other columns.

First, we require a generalization of the fact that every univariate polynomial
p ∈ Z[x] of degree d that vanishes at d + 1 points has p ≡ 0. This is stated in
the following lemma, a corollary of the classical Schwartz-Zippel lemma [8,15].

Lemma 7. Let p ∈ Z[x1, . . . , xs] be a polynomial with deg(p) ≤ d. If p(ξ) = 0
holds for all ξ ∈ {0, . . . , d}s, then p ≡ 0. 	

From this, we obtain the last missing step for the proof of Theorem 2.

Lemma 8. If
∑

t,ρ αt,ρ · A(t,ρ) = 0 for coefficients αt,ρ ∈ Q, then αk,0 = 0.
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Proof. Observe that deg(p) ≤ K for p ∈ MixI: All monomials θ appearing in
p ∈ MixO have td(θ) ≤ K, and it can be verified that substituting Y into y then
yields polynomials of degree ≤ K. Also recall that I = Z[x] with |x| = 11.

Assume there were coefficients αt,ρ with αk,0 �= 0 and
∑

t,ρ αt,ρ · A(t,ρ) = 0.
Then q =

∑
t,ρ αt,ρ · [XK−t]Mix(t,ρ)

I vanishes on {0, . . . , K}11. Thus q ≡ 0 by
Lemma 7, contradicting Theorem 3 because αk,0 �= 0. 	
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Abstract. We first show that the Traveling Salesman Problem in an
n-vertex graph with average degree bounded by d can be solved in
O�(2(1−εd)n) time1 and exponential space for a constant εd depending
only on d. Thus, we generalize the recent results of Björklund et al.
[TALG 2012] on graphs of bounded degree.
Then, we move to the problem of counting perfect matchings in a

graph. We first present a simple algorithm for counting perfect match-
ings in an n-vertex graph in O�(2n/2) time and polynomial space; our
algorithm matches the complexity bounds of the algorithm of Björklund
[SODA 2012], but relies on inclusion-exclusion principle instead of al-
gebraic transformations. Building upon this result, we show that the
number of perfect matchings in an n-vertex graph with average degree
bounded by d can be computed in O�(2(1−ε2d)n/2) time and exponen-
tial space, where ε2d is the constant obtained by us for the Traveling
Salesman Problem in graphs of average degree at most 2d.
Moreover we obtain a simple algorithm that computes a permanent of

an n×nmatrix over an arbitrary commutative ring with at most dn non-
zero entries usingO�(2(1−1/(3.55d))n) time and ring operations, improving
and simplifying the recent result of Izumi and Wadayama [FOCS 2012].

1 Introduction

Improving upon the 50-years old O�(2n)-time dynamic programming algorithms
for the Traveling Salesman Problem by Bellman [1] and Held and Karp [7] is
a major open problem in the field of exponential-time algorithms [14]. A sim-
ilar situation appears when we want to count perfect matchings in a graph: a
half-century old O�(2n/2)-time algorithm of Ryser for bipartite graphs [12] has
only recently been transferred to arbitrary graphs [3], and breaking these time
complexity barriers seems like a very challenging task.

From a broader perspective, improving upon a trivial brute-force or a simple
dynamic programming algorithm is one of the main goals the field of exponential-
time algorithms. Although the last few years brought a number of positive results
in that direction, most notably the O�(1.66n) randomized algorithm for finding
a Hamiltonian cycle in an undirected graph [2], it is conjectured (the so-called

� Partially supported by NCN grant N206567140 and Foundation for Polish Science.
1 The O�-notation suppresses factors polynomial in the input size.

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 364–375, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Strong Exponential Time Hypothesis [8]) that the problem of satisfying a general
CNF-SAT formulae does not admit any exponentially better algorithm than
the trivial brute-force one. A number of lower bounds were proven using this
assumption [6,10,11].

In 2008 Björklund et al. [5] observed that the classical dynamic programming
algorithm for TSP can be trimmed to running time O�(2(1−εΔ)n) in graphs of
maximum degreeΔ. The cost of this improvement is the use of exponential space,
as we can no longer easily translate the dynamic programming algorithm into
an inclusion-exclusion formula. The ideas from [5] were also applied to the Fast
Subset Convolution algorithm, yielding a similar improvements for the problem
of computing the chromatic number in graphs of bounded degree [4]. In this
work, we investigate the class of graphs of bounded average degree, a significantly
broader graph class than this of bounded maximum degree.

In the first part of our paper we generalize the results of [5].

Theorem 1. For every d ≥ 1 there exists a constant εd > 0 such that, given
an n-vertex graph G of average degree bounded by d, in O�(2(1−εd)n) time and
exponential space one can find in G a smallest weight Hamiltonian cycle.

We note that in Theorem 1 the constant εd depends on d in a doubly-exponential
manner, which is worse than the single-exponential behaviour of [5] in graphs of
bounded degree.

The proof of Theorem 1 follows the same general approach as the results of [5]
— we want to limit the number of states of the classical dynamic programming
algorithm for TSP — but, in order to deal with graphs of bounded average
degree, we need to introduce new concepts and tools. Recall that, by a standard
averaging argument, if the average degree of an n-vertex graph G is bounded by
d, for any D ≥ d there are at most dn/D vertices of degree at least D. However,
it turns out that this bound cannot be tight for a large number of values of D at
the same time. This simple observation lies at the heart of the proof of Theorem
1, as we may afford a more expensive branching on vertices of degree more than
D provided that there are significantly less than dn/D of them.

In the second part, we move to the problem of counting perfect matchings
in an n-vertex graph. We start with an observation that this problem can be
reduced to a problem of counting some special types of cycle covers, which, in
turn, can be done in O�(2n/2)-time and polynomial space using the inclusion-
exclusion principle (see Section 5.1). Note that an algorithm matching this bound
in general graphs has been discovered only last year [3], in contrast to the 50-
years old algorithm of Ryser [12] for bipartite graphs. Thus, we obtain a new
proof of the main result of [3], using the inclusion-exclusion principle instead of
advanced algebraic transformations.

Once we develop our inclusion-exclusion-based algorithm for counting perfect
matchings, we may turn it into a dynamic programming algorithm and apply
the ideas of Theorem 1, obtaining the following.

Theorem 2. Given an n-vertex graph G of average degree bounded by d, in
O�(2(1−ε2d)n/2) time and exponential space one can count the number of perfect
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matchings in G where ε2d is the constant given by Theorem 1 for graphs of
average degree at most 2d.

To the best of our knowledge, this is the first result that breaks the 2n/2-barrier
for counting perfect matchings in not necessarily bipartite graphs of bounded
(average) degree.

When bipartite graphs are concerned, the classical algorithm of Ryser [12]
has been improved for graphs of bounded average degree first by Servedio and
Wan [13] and, very recently, by Izumi and Wadayama [9]. Our last result is the
following theorem.

Theorem 3. For any commutative ring R, given an n × n matrix M with el-
ements from R with at most dn non-zero entries for some d ≥ 2, one can
compute the permanent of M using O�(2(1−1/(3.55d))n) time and performing
O�(2(1−1/(3.55d))n) operations over the ring R. The algorithm may require to
use exponential space and store an exponential number of elements from R.

Note that the number of perfect matchings in a bipartite graph is equal to the
permanent of the adjacency matrix of this graph (computed over Z). Hence, we
improve the running time of [9,13] in terms of the dependency on d. We would
like to emphasise that our proof of Theorem 3 is elementary and does not need
the advanced techniques of coding theory used in [9].

Organization of the paper Section 2 contains preliminaries. Next, in Section 3
we prove the main technical tool, that is Lemma 9, used in the proofs of The-
orem 1 and Theorem 2. In Section 4 we prove Theorem 1, while in Section 5.1
we first show an inclusion-exclusion based algorithm for counting perfect match-
ings, which is later modified in Section 5.2 to fit the bounded average degree
framework and prove Theorem 2. Finally, Section 6 contains a simple dynamic
programming algorithm, proving Theorem 3.

We would like to note that both Section 5.1 and Section 6 are self-contained
and do not rely on other sections (in particular do not depend on Lemma 9).

2 Preliminaries

We use standard (multi)graph notation. For a graph G = (V,E) and a vertex
v ∈ V the neighbourhood of v is defined as NG(v) = {u : uv ∈ E} \ {v} and
the closed neighbourhood of v as NG[v] = NG(v) ∪ {v}. The degree of v ∈ V
is denoted degG(v) and equals the number of end-points of edges incident to v.
In particular a self-loop contributes 2 to the degree of a vertex. We omit the
subscript if the graph G is clear from the context. The average degree of an
n-vertex graph G = (V,E) is defined as 1

n

∑
v∈V deg(v) = 2|E|/n. A cycle cover

in a multigraph G = (V,E) is a subset of edges C ⊆ E, where each vertex is of
degree exactly two if G is undirected or each vertex has exactly one outgoing and
one ingoing arc, if G is directed. Note that this definition allows a cycle cover to
contain cycles of length 1, i.e. self-loops, as well as taking two different parallel
edges as a length 2 cycle (but does not allow using the same edge twice).
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For a graph G = (V,E) by Vdeg=c, Vdeg>c, Vdeg≥c let us denote the subsets of
vertices of degree equal to c, greater than c and at least c respectively.

We also need the following well-known bounds.

Lemma 4. For any n, k ≥ 1 it holds that(
n

k

)
≤

(en
k

)k

.

Lemma 5. For any n ≥ 1, it holds that Hn−1 ≥ lnn, where Hn =
∑n

i=1
1
i .

Proof. It is well-known that limn→∞Hn − lnn = γ where γ > 0.577 is the
Euler-Mascheroni constant and the sequence Hn − lnn is decreasing. Therefore
Hn−1 = Hn − 1

n ≥ lnn+ γ − 1
n , hence the lemma is proven for n ≥ 2 as γ > 1

2 .
For n = 1, note that Hn−1 = lnn = 0. ��

3 Properties of Bounded Average Degree Graphs

This section contains technical results concerning bounded average degree graphs.
In particular we prove Lemma 9, which is needed to get the claimed running
times in Theorems 1 and 2. However, as the proofs of this section are not needed
to understand the algorithms in further sections the reader may decide to see
only Definition 8 and the statement of Lemma 9.

Lemma 6. Given an n-vertex graph G = (V,E) of average degree at most d and
maximum degree at most D one can in polynomial time find a set A containing
� n
2+4dD� vertices of degree at most 2d, where for each x, y ∈ A, x �= y we have
NG[x] ∩NG[y] = ∅.

Proof. Note that |Vdeg≤2d| ≥ n/2. We apply the following procedure. Initially
we set A := ∅ and all the vertices are unmarked. Next, as long as there exists
an unmarked vertex x in Vdeg≤2d, we add x to A and mark all the vertices
NG[NG[x]]. Since the setNG[NG[x]] contains at most 1+2d+2d(D−1) = 1+2dD
vertices, at the end of the process we have |A| ≥ n

2+4dD . Clearly this routine can
be implemented in polynomial time. ��

Lemma 7. For any α ≥ 0 and an n-vertex graph G = (V,E) of average degree
at most d there exists D ≤ eα such that |Vdeg>D| ≤ nd

αD .

Proof. By standard counting arguments we have

∞∑
i=0

|Vdeg>i| =

∞∑
i=0

i|Vdeg=i| ≤ nd.

For the sake of contradiction assume that |Vdeg>i| > nd
αi , for each i ≤ eα. Then

∞∑
i=0

|Vdeg>i| ≥
�eα�∑
i=1

|Vdeg>i| >
nd

α

�eα�∑
i=1

1/i =
nd

α
H�eα� ≥ nd,

where the last inequality follows from Lemma 5. ��
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In the following definition we capture a superset of the sets used in the dynamic
programming algorithms of Theorems 1 and 2.

Definition 8. For an undirected graph G = (V,E) and two vertices s, t ∈ V by
deg2sets(G, s, t) we define the set of all subsets X ⊆ V \ {s, t}, for which there
exists a set of edges F ⊆ E such that:

– degF (v) = 0 for each v ∈ V \ (X ∪ {s, t}),
– degF (v) = 2 for each v ∈ X,
– degF (v) ≤ 1 for v ∈ {s, t}.

Lemma 9. For every d ≥ 1 there exists a constant εd > 0, such that for an
n-vertex graph G = (V,E) of average degree at most d for any s, t ∈ V the
cardinality of deg2sets(G, s, t) is at most O�(2(1−εd)n).

Proof. Use Lemma 7 with α = ecd for some sufficiently large universal constant

c (it suffices to take c = 20). Hence we can find an integer D ≤ eα = ee
cd

such
that there are at most nd

αD vertices of degree greater than D in G.
Let D′ = max(2d,D) and H = G[Vdeg≤D′ ]. Moreover let Y = Vdeg>D′ and

recall |Y | ≤ nd
αD , as D′ ≥ D and Y ⊆ Vdeg>D. Note that H contains at least n/2

vertices and has average degree upper bounded by d. By Lemma 6 there exists a
set A ⊆ V (H) of �n/(4 + 8dD′)� vertices having disjoint closed neighbourhoods
in H . Note that, since d ≥ 1 and D′ ≥ 2d:

|A| =

⌈
n

4 + 8dD′

⌉
≥ n

4 + 8dD′
≥ n

2dD′ + 8dD′
=

n

10dD′
. (1)

If n ≤ 8edD′
4−e , n = O(1) and the claim is trivial. Otherwise:

|A| =

⌈
n

4 + 8dD′

⌉
<

n

8dD′
+ 1 <

n

2edD′
. (2)

Moreover, as d ≥ 1 and D′ = max(2d,D) ≤ 2dD, for sufficiently large c we have:

|Y | ≤ nd

αD
≤ n

20dD′
· 40d3

ecd
<

n

20dD′
≤ |A|

2
. (3)

Consider an arbitrary set X ∈ deg2sets(G, s, t), and a corresponding set F ⊆ E
from Definition 8. Define ZX as the set of vertices x ∈ X ∩ V (H) such that
NH(x) ∩X = ∅. Note that F is a set of paths and cycles, where each vertex of
ZX is of degree two, hence F contains at least 2|ZX | edges between ZX and Y ,
as any path/cycle of F visiting a vertex of ZX has to enter from Y and leave to
Y . Hence by the upper bound of 2 on the degrees in F we have |ZX | ≤ |Y |.

For each x ∈ A \ (ZX ∪ {s, t}) we have that NH [x] ∩X �= {x} and |NH [x]| ≤
2d+ 1. By definition, if x ∈ A ∩ ZX , we have NH [x] ∩X = {x}. Therefore, for
fixed v and A ∩ ZX there are at most

2n
(

22d+1 − 1

22d+1

)|A\(ZX∪{s,t})|(
1

2

)|A∩ZX |
≤ 2n+2

(
22d+1 − 1

22d+1

)|A|
choices for X ∈ deg2sets(G, s).
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Moreover, there are at most
∑|Y |

i=0

(|A|
i

)
≤ n

(|A|
|Y |

)
choices for ZX ∩A. Thus

|deg2sets(G, s, t)| ≤ 2n+2 ·
(

22d+1 − 1

22d+1

)|A|
· n

(
|A|
|Y |

)
. (4)

Let us now estimate
(|A|
|Y |

)
by Lemma 4. Since D ≤ D′, |Y | ≤ nd

αD and by (2) and

(3): (
|A|
|Y |

)
≤

(
e|A|
|Y |

)|Y |
≤

(
e

n

2edD′
· αD
nd

) nd
αD

≤
( α

2d2

) nd
αD

< α
nd
αD . (5)

By the standard inequality 1− x ≤ e−x we have that

(22d+1 − 1)/22d+1 = (1− 1/22d+1) ≤ e−1/2
2d+1

. (6)

Using (1), (5) and (6) we obtain that(
|A|
|Y |

)(
22d+1 − 1

22d+1

)|A|/2
≤ exp

(
nd lnα

αD
− n

20dD′22d+1

)
.

Plugging in α = ecd and using the fact that e10d > 40d2 for d ≥ 1 we obtain:(
|A|
|Y |

)(
22d+1 − 1

22d+1

)|A|/2
≤ exp

(
ncd

e(c−10)d20d · 2dD − n

20dD′22d+1

)
.

Since D′ = max(2d,D) ≤ 2dD and e5d > d22d+1 as d ≥ 1, we get(
|A|
|Y |

)(
22d+1 − 1

22d+1

)|A|/2
≤ exp

( n

20dD′22d+1

( c

e(c−15)d
− 1

))
.

Finally, for sufficiently large c, as d ≥ 1, we have c < e(c−15)d and(
|A|
|Y |

)(
22d+1 − 1

22d+1

)|A|/2
< 1. (7)

Consequently, plugging (7) into (4) and using (1) and (6) we obtain:

|deg2sets(G, s, t)| < n2n+2

(
22d+1 − 1

22d+1

)|A|/2
≤ n2n+2 exp

(
− n

22d+1 · 20dD′

)
≤ n2n+2 exp

(
− n

22d+1 · 20d · eecd
)
.

This concludes the proof of the lemma. Note that the dependency on d in the
final constant εd is doubly-exponential. ��
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4 Algorithm for TSP

To prove Theorem 1, it suffices to solve in O�(2(1−εd)n) time the following prob-
lem. We are given an undirected n-vertex graph G = (V,E) of average degree at
most d, vertices a, b ∈ V and a weight function c : E → R+. We are to find the
cheapest Hamiltonian path between a and b in G, or verify that no Hamiltonian
ab-path exists.

We solve the problem by the standard dynamic programing approach. That
is for each a ∈ X ⊆ V and v ∈ X we compute t[X ][v], which is the cost of the
cheapest path from a to v with the vertex set X . The entry t[V ][b] is the answer
to our problem. Note that it is enough to consider only such pairs (X, v), for
which there exists an av-path with the vertex set X .

We first set t[{a}][a] = 0. Then iteratively, for each i = 1, 2, . . . , n − 1, for
each u ∈ V , for each X ⊆ V such that |X | = i, a, u ∈ X and t[X ][u] is
defined, for each edge uv ∈ E where v �∈ X , if t[X ∪ {v}][v] is undefined or
t[X ∪ {v}][v] > t[X ][u] + c(uv), we set t[X ∪ {v}][v] = t[X ][u] + c(uv).

Finally, note that if t[X ][v] is defined then X \ {a, v} ∈ deg2sets(G, a, v).
Hence, the complexity of the above algorithm is within a polynomial factor from∑

v∈V |deg2sets(G, a, v)|, which is bounded by O�(2(1−εd)n) by Lemma 9.

5 Counting Perfect Matchings

In this section we design algorithms counting the number of perfect matchings
in a given graph. First, in Section 5.1 we show an inclusion-exclusion based
algorithm, which given an n-vertex graph computes the number of its perfect
matchings in O�(2n/2) time and polynomial space. This matches the time and
space bounds of the algorithm of Björklund [3]. Next, in Section 5.2 we show how
the algorithm from Section 5.1 can be reformulated as a dynamic programming
routine (using exponential space), which together with Lemma 9 will imply the
running time claimed in Theorem 2.

5.1 Inclusion-Exclusion Based Algorithm

In the following theorem we show an algorithm computing the number of perfect
matchings of an undirected graph in O�(2n/2) time and polynomial space, thus
matching the time and space complexity of the algorithm by Björklund [3].

Theorem 10. Given an n-vertex graph G = (V,E) in O�(2n/2) time and poly-
nomial space one can count the number of perfect matchings in G.

Proof. Clearly we can assume that n is even. Consider the edges of G being
black and let V = {v0, . . . , vn−1}. Now we add to the graph a perfect matching
of red edges ER = {v2iv2i+1 : 0 ≤ i < n/2} obtaining a multigraph G′. Denote
ei = v2iv2i+1 ∈ ER.

We say that a cycle or a walk in G′ is alternating, if, when we traverse the cycle
(walk), the colours of the edges alternate; in particular, an alternating cycle or
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closed walk is of even length. Observe that for any perfect matching M ⊆ E the
multiset M ∪ER is a cycle cover (potentially with 2-cycles), where all the cycles
are alternating. Moreover, for any cycle cover Y of G′ composed of alternating
cycles the set Y \ ER is a perfect matching in G. This leads us to the following
observation.

Observation 11. The number of perfect matchings in G equals the number of
cycle covers in G′ where each cycle is alternating.

We are going to compute the number of cycle covers of G′ with alternating cycles
using the inclusion-exclusion principle over the set of red edges ER.

For an edge ei ∈ ER, we say that a closed walk C is ei-nice if it is alternating,
traverses ei exactly once and does not traverse any edge ej ∈ ER for j < i. Note
that for an alternating walk C, if C contains a vertex v2j or v2j+1, it needs to
traverse the edge ej ∈ ER, as this is the only red edge incident to v2j and v2j+1.
A closed walk is nice if it is ei-nice for some ei ∈ ER; note that, in this case,
the edge ei is defined uniquely. For a positive integer r let us define the universe
Ωr as the set of r-tuples, where each of the r coordinates contains a nice closed
walk in G′ and the total length of all the walks equals n. For 0 ≤ i < n/2 let
Ar,i ⊆ Ωr be the set of r-tuples, where at least one walk contains the arc ei.
Note that by the observations we made so far the number of perfect matchings
in G equals

∑
1≤r≤n/2 |

⋂
0≤i<n/2Ar,i|/r!, as the tuples in Ωr are ordered and in

any tuple of
⋂

0≤i<n/2 Ar,i all walks are pairwise different. Therefore from now
on we assume r to be fixed. By the inclusion-exclusion principle∣∣∣∣∣∣

⋂
0≤i<n/2

Ar,i

∣∣∣∣∣∣ =
∑

I⊆{0,...,n/2−1}
(−1)|I|

∣∣∣∣∣⋂
i∈I

(Ωr \Ar,i)

∣∣∣∣∣ ,
where we define

⋂
i∈I(Ωr \Ar,i) for I = ∅ as Ωr. Hence to prove the theorem it

is enough to compute the value |
⋂

i∈I(Ωr \Ar,i)| for a given I ⊆ {0, . . . , n/2−1}
in polynomial time. Let G′I be the graph G′ with all the endpoints of edges ei
for i ∈ I removed. Let pa,q be the number of ea-nice closed walks in G′I of length
q. Note that the value pa,q can be computed in polynomial time by standard
dynamic programming algorithm, filling in a table tp[b][q̂], a ≤ b < n/2, 0 ≤ q̂ <
q, where tp[b][q̂] is the number of alternating walks W of length q̂ in G′I with the
first edge ea, the last edge eb, which visit ea only once and does not visit any
edge ec for c < a.

Finally, having the values pa,q is enough to compute |
⋂

i∈I(Ωr \ Ai)| by the
standard knapsack type dynamic programming. That is, we fill in a table t[r̂][q],
0 ≤ r̂ ≤ r, 0 ≤ q ≤ n/2, where t[r̂][q] is the number of r̂-tuples of nice closed
walks in G′I of total length q. ��

5.2 Dynamic Programming Based Algorithm

To prove Theorem 2 we want to reformulate the algorithm from Section 5.1,
to use dynamic programming instead of the inclusion exclusion principle. This
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causes the space complexity to be exponential, however it will allow us to use
Lemma 9 to obtain an improved running time for bounded average degree graphs.

Assume that we are given an n-vertex undirected graph G = (V,E), where
n is even, and we are to count the number of perfect matchings in G. We are
going to construct an undirected multigraph G′ having only n/2 vertices, where
the edges of G′ will be labeled with unordered pairs of vertices of G, i.e. with
edges of G. As the set of vertices of G′ = (V ′, E′) we take V ′ = {v′0, . . . , v′n/2−1}.
For each edge vavb of G we add to G′ exactly one edge: v′�a/2�v

′
�b/2� labeled with

{va, vb}. For an edge e′ ∈ E′ by 
(e′) let us denote the label of e′. Note that
G′ may contain self-loops and parallel edges. Observe that if the graph G is of
average degree d, then the graph G′ is of average degree 2d.

In what follows we count the number of particular cycle covers of G′, where
we use the labels of edges to make sure that a cycle going through a vertex
v′i ∈ V ′ never uses two edges of G′ corresponding to two edges of G incident to
the same vertex.

Lemma 12. The number of perfect matchings in G equals the number of cycle
covers C ⊆ E′ of G′, where

⋃
e∈C 
(e) = V .

Proof. We show a bijection between perfect matchings in G and cycle covers C
of G′ satisfying the condition

⋃
e∈C 
(e) = V .

Let M be a perfect matching in G. As f(M) we define f(M) = {v′�a/2�v′�b/2� :

vavb ∈ M}. Note that f(M) is a cycle cover and moreover
⋃

e∈f(M) 
(e) = V .

In the reverse direction, for a cycle cover C ⊆ E′ of G′, consider a set of edges
h(C) defined as h(C) = {
(e) : e ∈ C}. Clearly the condition

⋃
e∈C 
(e) = V

implies that h(C) is a perfect matching, and moreover h = f−1. ��

Observe, that if a cycle cover C ⊆ E′ of G′ does not satisfy
⋃

e∈C 
(e) = V ,
then there is a vertex v′i ∈ V ′, such that the two edges of C incident to v′i
do not have disjoint labels. Intuitively this means we are able to verify the
condition

⋃
e∈C 
(e) = V locally, which is enough to derive the following dynamic

programming routine.

Lemma 13. One can compute the number of cycle covers C of G′ satisfying⋃
e∈C 
(e) = V in O�(

∑
s,t∈V |deg2sets(G′, s, t)|) time and space.

Proof. An ordered r-cycle cover of a graph H is a tuple of r cycles in H , whose
union is a cycle cover of H . As each cycle cover ofH that contains exactly r cycles
can be ordered into exactly r! different ordered r-cycle covers, it is sufficient to
count, for any 1 ≤ r ≤ n/2, the number of ordered r-cycle covers C in G′ such
that each two edges in C have disjoint labels. In the rest of the proof, we focus
on one fixed value of r.

For 0 ≤ q ≤ r and X ⊆ V ′ as t[q][X ] let us define the number of ordered q-
cycle covers in G′[X ] where each two edges have disjoint labels; note that t[r][V ′]
is exactly the value we need. Moreover for 0 ≤ q < r, X ⊆ V ′, v′a, v

′
b ∈ X , a < b

and x ∈ {v2b, v2b+1} as t2[q][X ][v′a][v′b][x] we define the number of pairs (C,P )
where
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– C is an ordered q-cycle cover of G′[Y ] for some Y ⊆ X \ {v′a, v′b};
– P is a v′av

′
b-path with the vertex set X \ Y that does not contain any vertex

v′c with c < a;
– any two edges of C ∪ P have disjoint labels;
– the label of the edge of P incident to v′a contains v2a;
– the label of the edge of P incident to v′b contains x.

Note that we have the following border values: t[0][∅] = 1 and t[0][X ] = 0 for
X �= ∅.

Consider an entry t2[q][X ][v′a][v′b][x], and let (C,P ) be one of the pairs counted
in it. We have two cases: either P is of length 1 or longer. The number of pairs
(C,P ) in the first case equals t[q][X \{v′a, v′b}] · |{v′av′b ∈ E′ : 
(v′av

′
b) = {v2a, x}}|.

In the second case, let v′cv
′
b be the last edge of P ; note that c > a by the assump-

tions on P . The label of v′cv
′
b equals {v2c, x} or {v2c+1, x}. Thus, the number of

elements (C,P ) in the second case equals
∑

v′
c∈X\{v′

a,v
′
b}
∑

y∈{v2c,v2c+1} t2[q][X \
{v′b}][v′a][v′c][y ⊕ 1] · |{v′cv′b ∈ E′ : 
(v′cv

′
b) = {y, x}}|, where for y = v′r we define

y ⊕ 1 = v′r⊕1.
Let us now move to the entry t[q][X ] and let C be an ordered q-cycle cover in

G′[X ]. Again, there are two cases: either the last cycle of C (henceforth denoted
W ) is of length 1 or longer. The number of the elements C of the first type equals∑

v′
a∈X t[q− 1][X \ {v′a}] · |{v′av′a ∈ E′}|. In the second case, let v′a be the lowest-

numbered vertex on W and let e = v′av
′
b be the edge of W where v2a+1 ∈ 
(e).

Note that both v′a and e are defined uniquely; moreover, a < b and no vertex
v′c with c < a belongs to W . Thus the number of elements C of the second
type equals

∑
v′
a,v

′
b∈X,a<b

∑
x∈{v2b,v2b+1} t2[q− 1][X ][v′a][v′b][x⊕ 1] · |{v′av′b ∈ E′ :


(v′av
′
b) = {v2a+1, x}}|.

So far we have given recursive formulas, that allow computing the entries
of the tables t and t2. However the values t[q][X ], t2[q][X ][v′a][v′b][x] for X �∈⋃

s,t∈V ′ deg2sets(G′, s, t) are equal to zero. The last step of the proof is to show
how to perform the dynamic programming computation in a time complexity
within a polynomial factor from the number of non-zero entries of the table. We
do that in a bottom-up manner, that is iteratively, for each q = 1, 2, . . . , r, for
each i = 1, 2, . . . , n, we want to compute the values of non-zero entries t[q][X ]
for all sets X of cardinality i and then compute the values of non-zero entries
t2[q][X ][∗][∗][∗] for all sets X of cardinality i. Having the non-zero entries for the
pairs (q′, i′) where q′ < q, i′ ≤ i one can compute the list of non-zero entries
t[q][X ] for |X | = i by investigating to which recursive formulas the non-zero
entries for (q′, i′) contribute to. Analogously having the non-zero entries for the
pairs (q′, i′) where q′ ≤ q, i′ < i we generate the non-zero entries t2[q][X ][∗][∗][∗]
for |X | = i, which finishes the proof of the lemma. ��

Theorem 2 follows directly from the Lemma 9 together with Lemma 13.
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6 Counting Perfect Matchings in Bipartite Graphs

In this section we prove Theorem 3. Let R be an arbitrary commutative ring,
and A = (ai,j)1≤i,j≤n be an n × n matrix with elements from R with at most
dn non-zero elements, for some d ≥ 2. We are to compute the permanent of A.

Let C ⊆ {1, 2, . . . , n} be the set of columns of A containing �k/(αd)� columns
with the smallest number of non-zero entries, where α ≥ 2 is a constant to be
determined later. Let R = {1 ≤ i ≤ n : ∃j∈C : ai,j �= 0}. Observe that |R| ≤ k/α,
as the average number of non-zero entries in the columns of C is at most d.
Without loss of generality assume that R = {n − |R| + 1, n − |R| + 2, . . . , n},
that is, we order the rows of A such that the rows of R appear at the bottom of
the matrix. In particular for any 1 ≤ i ≤ k(1− 1/α) and j ∈ C we have ai,j = 0.

Consider the following standard dynamic programming approach. For a subset
X of columns of A define t[X ] as the permanent of (ai,j)1≤i≤|X|,j∈X , a |X |× |X |
submatrix of A. Note that we are to compute t[{1, 2, . . . , n}]. Observe that the
following recursive formula allows to compute the entries of the table t, where
we sum over the element used in the permanent computation in the |X |-th row
of A:

t[X ] =
∑
j∈X

a|X|,jt[X \ {j}] ,

where t[∅] is defined as 1.
Let us upper bound the number of sets X , for which t[X ] is non-zero. If

1 ≤ |X | ≤ (1 − 1/α)k and t[X ] �= 0, then X ∩ C = ∅, as ai,j = 0 for j ∈ C
and i ≤ (1− 1/α)k. Consequently there are at most 2k−�k/(αd)� ≤ 21+(1−1/(αd))k

sets X with t[X ] �= 0 of cardinality at most (1 − 1/α)k. At the same time
there are at most k

(
k

�k/α�
)

sets of cardinality greater than (1− 1/α)k. By using

the binary entropy function, we get
(

k
�k/α�

)
= O�(2H(1/α)k), where H(p) =

−p log2 p−(1−p) log2(1−p). For d ≥ 2 and α = 3.55 we have 2H(1/α) ≤ 21−1/(αd).
Consequently if we skip the computation of values t[X ] for sets X of cardinality
at most (1 − 1/α)k, such that X ∩ C �= ∅, we obtain the claimed running time,
which finishes the proof of Theorem 3.

Note that the constant α = 3.55 can be improved if we have a stronger lower
bound on d. However, in our analysis it is crucial that α > 2.

7 Conclusions and Open Problems

We would like to conclude with two open problems that arise from our work.
First, can our ideas be applied to obtain an O�(2(1−ε)n) time algorithm for
computing the chromatic number of graphs of bounded average degree? For
graphs of bounded maximum degree such an algorithm is due to Björklund et
al. [4].

Second, can we make a similar improvements as in our work if only polynomial
space is allowed? To the best of our knowledge, this question remains open even
in graphs of bounded maximum degree.
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Abstract. This paper makes two contributions towards determining some well-
studied optimal constants in Fourier analysis of Boolean functions and high-
dimensional geometry.

1. It has been known since 1994 [GL94] that every linear threshold function has
squared Fourier mass at least 1/2 on its degree-0 and degree-1 coefficients.
Denote the minimum such Fourier mass by W≤1[LTF], where the mini-
mum is taken over all n-variable linear threshold functions and all n ≥ 0.
Benjamini, Kalai and Schramm [BKS99] have conjectured that the true value
of W≤1[LTF] is 2/π. We make progress on this conjecture by proving that
W≤1[LTF] ≥ 1/2+c for some absolute constant c > 0. The key ingredient
in our proof is a “robust” version of the well-known Khintchine inequality
in functional analysis, which we believe may be of independent interest.

2. We give an algorithm with the following property: given any η > 0, the
algorithm runs in time 2poly(1/η) and determines the value of W≤1[LTF]
up to an additive error of ±η. We give a similar 2poly(1/η)-time algorithm to
determine Tomaszewski’s constant to within an additive error of ±η; this is
the minimum (over all origin-centered hyperplanes H) fraction of points in
{−1, 1}n that lie within Euclidean distance 1 of H . Tomaszewski’s constant
is conjectured to be 1/2; lower bounds on it have been given by Holzman
and Kleitman [HK92] and independently by Ben-Tal, Nemirovski and Roos
[BTNR02]. Our algorithms combine tools from anti-concentration of sums
of independent random variables, Fourier analysis, and Hermite analysis of
linear threshold functions.

1 Introduction

This paper is inspired by a belief that simple mathematical objects should be well un-
derstood. We study two closely related kinds of simple objects: n-dimensional linear
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threshold functions f(x) = sign(w · x− θ), and n-dimensional origin-centered hyper-
planes H = {x ∈ Rn : w · x = 0}. Benjamini, Kalai and Schramm [BKS99] and
Tomaszewski [Guy86] have posed the question of determining two universal constants
related to halfspaces and origin-centered hyperplanes respectively; we refer to these
quantities as “the BKS constant” and “Tomaszewski’s constant.” While these constants
arise in various contexts including uniform-distribution learning and optimization the-
ory, little progress has been made on determining their actual values over the past twenty
years. In both cases there is an easy upper bound which is conjectured to be the correct
value; Gotsman and Linial [GL94] gave the best previously known lower bound on the
BKS constant in 1994, and Holzmann and Kleitman [HK92] gave the best known lower
bound on Tomaszewski’s constant in 1992.

We give two main results. The first of these is an improved lower bound on the BKS
constant; a key ingredient in the proof is a “robust” version of the well-known Khint-
chine inequality, which we believe may be of independent interest. Our second main
result is a pair of algorithms for computing the BKS constant and Tomaszewski’s con-
stant up to any prescribed accuracy. The first algorithm, given any η > 0, runs in time
2poly(1/η) and computes the BKS constant up to an additive η, and the second algorithm
runs in time 2poly(1/η) and has the same guarantee for Tomaszewski’s constant.

1.1 Background and Problem Statements

First Problem: Low-Degree Fourier Weight of Linear Threshold Functions. A lin-
ear threshold function, henceforth denoted simply LTF, is a function f : {−1, 1}n →
{−1, 1} of the form f(x) = sign(w · x − θ) where w ∈ Rn and θ ∈ R (the univariate
function sign : R→ R is sign(z) = 1 for z ≥ 0 and sign(z) = −1 for z < 0). The val-
uesw1, . . . , wn are the weights and θ is the threshold. Linear threshold functions play a
central role in many areas of computer science such as concrete complexity theory and
machine learning, see e.g. [DGJ+10] and the references therein.

It is well known [BKS99, Per04] that LTFs are highly noise-stable, and hence they
must have a large amount of Fourier weight at low degrees. For f : {−1, 1}n → R and
k ∈ [0, n] let us define Wk[f ] =

∑
S⊆[n],|S|=k f̂

2(S) and W≤k[f ] =
∑k

j=0 W
j [f ];

we will be particularly interested in the Fourier weight of LTFs at levels 0 and 1. More
precisely, for n ∈ N let LTFn denote the set of all n-dimensional LTFs, and let LTF =
∪∞n=1LTFn. We define the following universal constant:

Definition 1. Let W≤1[LTF]
def
= infh∈LTF W≤1(h) = infn∈N W≤1[LTFn], where

W≤1[LTFn]
def
= infh∈LTFn W≤1(h).

Benjamini, Kalai and Schramm (see Remark 3.7 of [BKS99]) and subsequently
O’Donnell (see the Conjecture following Theorem 2 of Section 5.1 of [O’D12]) have
conjectured that W≤1[LTF] = 2/π, and hence we will sometimes refer to W≤1[LTF]
as “the BKS constant.” As n → ∞, a standard analysis of the n-variable Majority
function shows that W≤1[LTF] ≤ 2/π. Gotsman and Linial [GL94] observed that
W≤1[LTF] ≥ 1/2 but until now no better lower bound was known. We note that since
the universal constant W≤1[LTF] is obtained by taking the infimum over an infinite
set, it is not a priori clear whether the computational problem of computing or even
approximating W≤1[LTF] is decidable.
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Jackson [Jac06] has shown that improved lower bounds on W≤1[LTF] translate
directly into improved noise-tolerance bounds for agnostic weak learning of LTFs in
the “Restricted Focus of Attention” model of Ben-David and Dichterman [BDD98].
Further motivation for studying W≤1[f ] comes from the fact that W1[f ] is closely
related to the noise stability of f (see [O’D12]). In particular, if NSρ[f ] represents the

noise stability of f when the noise rate is (1−ρ)/2, then it is known that dNSρ[f ]
dρ

∣∣∣
ρ=0

=

W1[f ]. This means that for a function f with E[f ] = 0, we have NSρ[f ] → ρ·W≤1[f ]
as ρ → 0. Thus, at very large noise rates, W1[f ] quantifies the size of the “noisy
boundary” of mean-zero functions f .

Second Problem: How Many Hypercube Points Have Distance at Most 1 from
an Origin-Centered Hyperplane? For n ∈ N and n > 1, let Sn−1 denote the n-
dimensional sphere Sn−1 = {w ∈ Rn : ‖w‖2 = 1}, and let S = ∪n>1Sn−1. Each unit
vector w ∈ Sn−1 defines an origin-centered hyperplane Hw = {x ∈ Rn : w · x = 0}.
Given a unit vectorw ∈ Sn−1, we define T(w) ∈ [0, 1] to be T(w) = Prx∈{−1,1}n [|w·
x| ≤ 1], the fraction of hypercube points in {−1, 1}n that lie within Euclidean distance
1 of the hyperplane Hw. We define the following universal constant, which we call
“Tomaszewski’s constant:”

Definition 2. Define T(S)
def
= infw∈S T(w) = infn∈NT(Sn−1), where T(Sn−1)

def
=

infw∈Sn−1 T(w).

Tomaszewski [Guy86] has conjectured that T(S) = 1/2. The main result of Holzman
and Kleitman [HK92] is a proof that 3/8 ≤ T(S); the upper bound T(S) ≤ 1/2 is
witnessed by the vector w = (1/

√
2, 1/

√
2). As noted in [HK92], the quantity T(S)

has a number of appealing geometric and probabilistic reformulations. Similar to the
BKS constant, since T(S) is obtained by taking the infimum over an infinite set, it is
not immediately evident that any algorithm can compute or approximate T(S).1

An interesting quantity in its own right, Tomaszewski’s constant also arises in a range
of contexts in optimization theory, see e.g. [So09, BTNR02]. In fact, the latter paper
proves a lower bound of 1/3 on the value of Tomaszewski’s constant independently of
[HK92], and independently conjectures that the optimal lower bound is 1/2.

1.2 Our Results

A Better Lower Bound for the BKS Constant W≤1[LTF]. Our first main result is
the following theorem:

Theorem 1 (Lower Bound for the BKS constant). There exists a universal constant
c′ > 0 such that W≤1[LTF] ≥ 1

2 + c′.

This is the first improvement on the [GL94] lower bound of 1/2 since 1994. We actually
give two quite different proofs of this theorem, which are sketched in the “Techniques”
subsection below.

1 Whenever we speak of “an algorithm to compute or approximate” one of these constants, of
course what we really mean is an algorithm that outputs the desired value together with a
proof of correctness of its output value.
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An Algorithm for Approximating the BKS Constant W≤1[LTF]. Our next main
result shows that in fact there is a finite-time algorithm that approximates the BKS
constant up to any desired accuracy:

Theorem 2 (Approximating the BKS constant). There is an algorithm that, on input
an accuracy parameter ε > 0, runs in time 2poly(1/ε) and outputs a value Γε such that

W≤1[LTF] ≤ Γε ≤W≤1[LTF] + ε. (1)

An Algorithm for Approximating Tomaszewski’s Constant T(S). Our final main
result is an algorithm that approximates T(S) up to any desired accuracy:

Theorem 3 (Approximating Tomaszewski’s constant). There is an algorithm that,
on input ε > 0, runs in time 2poly(1/ε) and outputs a value Γε such that

T(S) ≤ Γε ≤ T(S) + ε. (2)

1.3 Our Techniques for Theorem 1: Lower-Bounding the BKS Constant

It is easy to show that it suffices to consider the level-1 Fourier weight W1 of LTFs
that have threshold θ = 0 and have w · x �= 0 for all x ∈ {−1, 1}n, so we confine our
discussion to such zero-threshold LTFs. To explain our approaches to lower bounding
W≤1[LTF], we recall the essentials of the simple argument of [GL94] that gives a
lower bound of 1/2. The key ingredient of their argument is the well-known Khintchine
inequality from functional analysis:

Definition 3. For a unit vector w ∈ Sn−1 we define K(w)
def
= Ex∈{−1,1}n [|w · x|] to

be the “Khintchine constant for w.”

The following is a classical theorem in functional analysis (we write ei to denote the
unit vector in Rn with a 1 in coordinate i):

Theorem 4 (Khintchine inequality, [Sza76]). For w ∈ Sn−1 any unit vector, we have
K(w) ≥ 1/

√
2, with equality holding if and only if w = 1√

2
(±ei ± ej) for some

i �= j ∈ [n].

Szarek [Sza76] was the first to obtain the optimal constant 1/
√

2, and subsequently
several simplifications of his proof were given [Haa82, Tom87, LO94]; we shall give
a simple self-contained proof in Section 2.1 below, which is quite similar to Filmus’s
[Fil12] translation of the [LO94] proof into “Fourier language.” With Theorem 4 in
hand, the Gotsman-Linial lower bound is almost immediate:

Proposition 1 ([GL94]). Let f : {−1, 1}n → {−1, 1} be a zero-threshold LTF
f(x) = sign(w · x) where w ∈ Rn has ‖w‖2 = 1. Then W1[f ] ≥ (K(w))

2
.

Proof. We have that K(w) = Ex[f(x)(w · x)] =
∑n

i=1 f̂(i)wi ≤
√∑n

i=1 f̂
2(i) ·√∑n

i=1 w
2
i =

√
W1[f ] where the first equality uses the definition of f , the second is

Plancherel’s identity, the inequality is Cauchy-Schwarz, and the last equality uses the
assumption that w is a unit vector. ��
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First Proof of Theorem 1: A “Robust” Khintchine Inequality. Given the strict con-
dition required for equality in the Khintchine inequality, it is natural to expect that
if a unit vector w ∈ Rn is “far” from 1√

2
(±ei ± ej), then K(w) should be sig-

nificantly larger than 1/
√

2. We prove a robust version of the Khintchine inequal-
ity which makes this intuition precise. Given a unit vector w ∈ Sn−1, define d(w)
to be d(w) = min ‖w − w∗‖2, where w∗ ranges over all 4

(
n
2

)
vectors of the form

1√
2
(±ei ± ej). Our “robust Khintchine” inequality is the following:

Theorem 5 (Robust Khintchine inequality). There exists a universal constant c > 0
such that for any w ∈ Sn−1, we have K(w) ≥ 1√

2
+ c · d(w).

Armed with our robust Khintchine inequality, the simple proof of Proposition 1 suggests
a natural approach to lower-bounding W≤1[LTF]. If w is such that d(w) is “large” (at
least some absolute constant), then the statement of Proposition 1 immediately gives
a lower bound better than 1/2. So the only remaining vectors w to handle are highly
constrained vectors which are almost exactly of the form 1√

2
(±ei± ej). A natural hope

is that the Cauchy-Schwarz inequality in the proof of Proposition 1 is not tight for such
highly constrained vectors, and indeed this is essentially how we proceed (modulo some
simple cases in which it is easy to bound W≤1 above 1/2 directly).

Second Proof of Theorem 1: Anticoncentration, Fourier Analysis of LTFs, and
LTF Approximation. Our second proof of Theorem 1 employs several sophisticated
ingredients from recent work on structural properties of LTFs [OS11, MORS10]. The
first of these ingredients is a result (Theorem 6.1 of [OS11]) which essentially says that
any LTF f(x) = sign(w · x) can be perturbed very slightly to another LTF f ′(x) =
sign(w′ ·x) (where bothw andw′ are unit vectors). The key properties of this perturba-
tion are that (i) f and f ′ are extremely close, differing only on a tiny fraction of inputs in
{−1, 1}n; but (ii) the linear form w′ · x has some nontrivial “anti-concentration” when
x is distributed uniformly over {−1, 1}n, meaning that very few inputs have w′ ·x very
close to 0.

Why is this useful? It turns out that the anti-concentration of w′ · x, together with
results on the degree-1 Fourier spectrum of “regular” halfspaces from [MORS10], lets
us establish a lower bound on W≤1[f ′] that is strictly greater than 1/2. Then the fact
that f and f ′ agree on almost every input in {−1, 1}n lets us argue that the original LTF
f must similarly have W≤1[f ] strictly greater than 1/2. Interestingly, the lower bound
on W≤1[f ′] is proved using the Gotsman-Linial inequality W≤1[f ′] ≥ (K(w))2; in
fact, the anti-concentration of w′ · x is combined with ingredients in the simple Fourier
proof of the (original, non-robust) Khintchine inequality (specifically, an upper bound
on the total influence of the function 
(x) = |w′ · x|) to obtain the result. Because of
space constraints we give this second proof in the full version of the paper.

1.4 Our Techniques for Theorem 2: Approximating the BKS Constant

As in the previous subsection, it suffices to consider only zero-threshold LTFs sign(w ·
x). Our algorithm turns out to be very simple (though its analysis is not):
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Let K = Θ(ε−24). Enumerate all K-variable zero-threshold LTFs, and output

the value Γε
def
= min{W1[f ] : f is a zero-thresholdK-variable LTF.}.

It is well known (see e.g. [MT94]) that there exist 2Θ(K2) distinctK-variable LTFs, and
it is straightforward to confirm that they can be enumerated in output-polynomial time.
Thus the above simple algorithm runs in time 2poly(1/ε); the challenge is to show that
the value Γε thus obtained indeed satisfies Equation (1).

A key ingredient in our analysis is the notion of the “critical index” of an LTF f . The
critical index was implicitly introduced and used in [Ser07] and was explicitly used in
[DS09, DGJ+10, OS11, DDFS12] and other works. To define the critical index we need
to first define “regularity”:

Definition 4 (regularity). Fix τ > 0. We say that a vector w = (w1, . . . , wn) ∈ Rn is
τ -regular if maxi∈[n] |wi| ≤ τ‖w‖ = τ

√
w2

1 + · · ·+ w2
n. A linear form w · x is said to

be τ -regular if w is τ -regular, and similarly an LTF is said to be τ -regular if it is of the
form sign(w · x− θ) where w is τ -regular.

Regularity is a helpful notion because if w is τ -regular then the Berry-Esséen theorem
tells us that for uniform x ∈ {−1, 1}n, the linear form w · x is “distributed like a
Gaussian up to error τ .” This can be useful for many reasons (as we will see below).

Intuitively, the critical index of w is the first index i such that from that point on, the
vector (wi, wi+1, . . . , wn) is regular. A precise definition follows:

Definition 5 (critical index). Given a vectorw ∈ Rn such that |w1| ≥ · · · ≥ |wn| > 0,
for k ∈ [n] we denote by σk the quantity

√∑n
i=k w

2
i . We define the τ -critical index

c(w, τ) of w as the smallest index i ∈ [n] for which |wi| ≤ τ ·σi. If this inequality does
not hold for any i ∈ [n], we define c(w, τ) = ∞.

Returning to Theorem 2, since our algorithm minimizes over a proper subset of all
LTFs, it suffices to show that for any zero-threshold LTF f = sign(w · x), there is a K-
variable zero-threshold LTF g such that W1[g]−W1[f ] < ε. At a high level our proof
is a case analysis based on the size of the δ-critical index c(w, δ) of the weight vector
w, where we choose the parameter δ to be δ = poly(ε). The first case is relatively easy:
if the δ-critical index is large, then it is known that the function f is very close to some
K-variable LTF g. Since the two functions agree almost everywhere, it is easy to show
that |W1[f ]−W1[g]| ≤ ε as desired.

The case that the critical index is small is much more challenging. In this case it is by
no means true that f can be well approximated by an LTF on few variables – consider,
for example, the majority function. We deal with this challenge by developing a novel
variable reduction technique which lets us construct a poly(1/ε)-variable LTF g whose
level-1 Fourier weight closely matches that of f .

How is this done? The answer again comes from the critical index. Since the critical
index c(w, δ) is small, we know that except for the “head” portion

∑c(w,δ)−1
i=1 wixi of

the linear form, the “tail” portion
∑n

i=c(w,δ)wixi of the linear form “behaves like a
Gaussian.” Guided by this intuition, our variable reduction technique proceeds in three
steps. In the first step, we replace the tail coordinates xT = (xc(w,δ), . . . , xn) by inde-
pendent Gaussian random variables and show that the degree-1 Fourier weight of the
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corresponding “mixed” function (which has some±1-valued inputs and some Gaussian
inputs) is approximately equal to W1[f ]. In the second step, we replace the tail random
variable wT · GT , where GT is the vector of Gaussians from the first step, by a single
Gaussian random variable G, where G ∼ N (0, ‖wT ‖2). We show that this transforma-
tion exactly preserves the degree-1 weight. At this point we have reduced the number
of variables from n down to c(w, δ) (which is small in this case!), but the last variable
is Gaussian rather than Boolean. As suggested by the Central Limit Theorem, though,
one may try to replace this Gaussian random variable by a normalized sum of indepen-
dent ±1 random variables

∑M
i=1 zi/

√
M . This is exactly the third step of our variable

reduction technique. Via a careful analysis, we show that by taking M = poly(1/ε),
this operation preserves the degree-1 weight up to an additive ε. Combining all these
steps, we obtain the desired result.

1.5 Our Techniques for Theorem 3: Approximating Tomaszewski’s Constant

The first step of our proof of Theorem 3 is similar in spirit to the main structural in-
gredient of our proof of Theorem 2: we show that given any ε > 0, there is a value
Kε = poly(1/ε) such that it suffices to consider linear formsw ·x overKε-dimensional
space, i.e. for any n ∈ N we have T(Sn−1) ≤ T(SKε−1) ≤ T(Sn−1) + ε. Similar to
the high-level outline of Theorem 2, our proof again proceeds by fixing any w ∈ Sn−1

and doing a case analysis based on whether the critical index of w is “large” or “small.”
However, the technical details of each of these cases is quite different from the earlier
proof. In the “small critical index” case we employ Gaussian anti-concentration (which
is inherited by the “tail” random variable wTxT since the tail vectorwT is regular), and
in the “large critical index” case we use an anti-concentration result from [OS11].

Unlike the previous situation for the BKS constant, at this point more work remains
to be done for approximating Tomaszewski’s constant. While there are only 2poly(1/ε)

many halfspaces over poly(1/ε) many variables and hence a brute-force enumeration
could cover all of them in 2poly(1/ε) time for the BKS constant, here we must contend
with the fact that SKε−1 is an uncountably infinite set, so we cannot naively minimize
over all its elements. Instead we take a dual approach and exploit the fact that while there
are uncountably infinitely many vectors in SKε−1, there are only 2Kε many hypercube
points in {−1, 1}Kε, and (with some care) the desired infimum over all unit vectors can
be formulated in the language of existential theory of the reals. We then use an algo-
rithm for deciding existential theory of the reals (see [Ren88]) to compute the infimum.
Because of space constraints we prove Theorem 3 in the full version of the paper.

Discussion. It is interesting to note that determining Tomaszewski’s constant is an in-
stance of the well-studied generic problem of understanding tails of Rademacher sums.
For the sake of discussion, let us define Tin(w, a) = Prx∈{−1,1}n [|w · x| ≤ a] and
Tout(w, a) = Prx∈{−1,1}n [|w · x| ≥ a] where w ∈ Sn−1. Further, let Tin(a) =
infw∈STin(w, a) and Tout(a) = infw∈S Tout(w, a). Note that Tomaszewski’s constant
T(S) is simply Tin(1). Much effort has been expended on getting sharp estimates for
Tin(a) andTout(a) for various values of a (see e.g. [Pin12, Ben04]). As a representative

example, Bentkus and Dzindzalieta [BD12] proved that Tin(a) ≥ 1
4 + 1

4 ·
√

2− 2
a2 for

a ∈ (1,
√

2]. Similarly, Pinelis [Pin94] showed that there is an absolute constant c > 0
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such that Tout(a) ≥ 1 − c · φ(a)
a where φ(x) is the density function of the standard

normalN (0, 1) (note this beats the standard Hoeffding bound by a factor of 1/a).
On the complementary side, Montgomery-Smith [MS90] proved that there is an ab-

solute constant c′ > 0 such thatTout(a) ≥ e−c
′·a2

for all a ≤ 1. Similarly, Oleszkiewicz
[Ole96] proved that Tout(1) ≥ 1/10. The conjectured lower bound on Tout(1) is 7/32
(see [HK94]). While we have not investigated this in detail, we suspect that our tech-
niques may be applicable to some of the above problems. Finally, we note that apart
from being of intrinsic interest to functional analysts and probability theorists, the above
quantities arise frequently in the optimization literature (see [HLNZ08, BTNR02]). Re-
lated tail bounds have also found applications in extremal combinatorics (see [AHS12]).

2 Proof of Theorem 5: A “Robust” Khintchine Inequality

It will be convenient for us to reformulate Theorems 4 and 5 as follows: Let us say that
a unit vector w = (w1, . . . , wn) ∈ Sn−1 is proper if wi ≥ wi+1 ≥ 0 for all i ∈ [n− 1].
Then we may state the “basic” Khintchine inequality with optimal constant, Theorem 4,
in the following equivalent way:

Theorem 6 (Khintchine inequality, [Sza76]). Let w ∈ Rn be a proper unit vector.

Then K(w) ≥ 1/
√

2, with equality if and only if w = w∗
def
= (1/

√
2, 1/

√
2, 0, . . . , 0).

And we may restate our “robust” Khintchine inequality, Theorem 5, as follows:

Theorem 7 (Robust Khintchine inequality). There exists a universal constant c > 0
such that the following holds: Let w ∈ Rn be a proper unit vector. Then K(w) ≥
1/
√

2 + c · ‖w − w∗‖2,where w∗
def
= (1/

√
2, 1/

√
2, 0, . . . , 0).

Before we proceed with the proof of Theorem 7, we give a simple Fourier analytic proof
of the “basic” Khintchine inequality with optimal constant, K(w) ≥ 1/

√
2. (We note

that this is a well-known argument by now; it is given in somewhat more general form
in [Ole99] and in [KLO96].) We then build on this to prove Theorem 7.

2.1 Warm-Up: Simple Proof That K(w) ≥ 1/
√
2

We consider the function 
(x) = |
∑n

i=1 wixi| where
∑

i w
2
i = 1 and will show that

K(w) = Ex[
(x)] ≥ 1/
√

2. Noting that Ex[(
(x))2] = 1, we have (E[
(x)])2 = 1 −
Var[
], so it suffices to show that Var[
] ≤ 1/2. This follows directly by combining the
following claims. The first bound is an improved Poincaré inequality for even functions:

Fact 8. (Poincaré inequality) Let f : {−1, 1}n → R be even. Then Var[f ] ≤ (1/2) ·
Inf(f).

Proof. Since f is even, we have that f̂(S) = 0 for all S with odd |S|. We can thus write

Inf(f) =
∑

S⊆[n],|S| even
|S|·f̂2(S) ≥ 2·

∑
∅�=S,|S| even

f̂2(S) = 2·
∑

∅�=S⊆[n]
f̂2(S) = 2·Var[f ].
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The second is an upper bound on the influences in 
 as a function of the weights:

Lemma 1. Let 
(x) = |
∑n

i=1 wixi|. For any i ∈ [n], we have Infi(
) ≤ w2
i .

Proof. Recall that Infi(
) = Ex

[
Varxi

[

(x)

]]
= Ex

[
Exi [


2(x)] − (Exi [
(x)])2
]
.

We claim that for any x ∈ {−1, 1}n, it holds that Varxi [
(x)] ≤ w2
i , which yields the

lemma. To show this claim we write 
(x) = |wixi + ci|, where ci =
∑

j �=i wj ·xj does
not depend on xi.

Since 
2(x) = c2i +w2
i + 2ciwixi, it follows that Exi [


2(x)] = c2i +w2
i , and clearly

Exi [
(x)] = (1/2) · (|wi− ci|+ |wi + ci|). We consider two cases based on the relative
magnitudes of ci and wi.

If |ci| ≤ |wi|, we have Exi [
(x)] = (1/2)·(sign(wi)(wi − ci) + sign(wi)(wi + ci))
= |wi|. Hence, in this case Varxi [
(x)] = c2i ≤ w2

i . If on the other hand |ci| > |wi|,
then we have Exi [
(x)] = (1/2) · (sign(ci)(ci − wi) + sign(ci)(ci + wi)) = |ci|, so
again Varxi [
(x)] = w2

i as desired. ��

The bound K(w) ≥ 1/
√

2 follows from the above two claims using the fact that 
 is
even and that

∑
iw

2
i = 1.

2.2 Proof of Theorem 7

Let w ∈ Rn be a proper unit vector and denote τ = ‖w − w∗‖2. To prove Theorem 7,
one would intuitively want to obtain a robust version of the simple Fourier-analytic
proof of Theorem 6 from the previous subsection. Recall that the latter proof boils
down to the following:

Var[
] ≤ (1/2) · Inf(
) = (1/2) ·
n∑

i=1

Infi(
) ≤ (1/2) ·
n∑

i=1

w2
i = 1/2

where the first inequality is Fact 8 and the second is Lemma 1. While it is clear that
both inequalities can be individually tight, one could hope to show that both inequalities
cannot be tight simultaneously. It turns out that this intuition is not quite true, however it
holds if one imposes some additional conditions on the weight vectorw. The remaining
cases forw that do not satisfy these conditions can be handled by elementary arguments.

We first note that without loss of generality we may assume that w1 = maxi wi >
0.3, for otherwise Theorem 7 follows directly from the following result of König et al:

Theorem 9 ([KSTJ99]). For a proper unit vectorw ∈ Rn, we have K(w) ≥
√

2/π−
(1−

√
2/π)w1.

Indeed, if w1 ≤ 0.3, the above theorem gives that K(w) ≥ 1.3
√

2/π− 0.3 > 0.737 >

1/
√

2 + 3/100 ≥ 1/
√

2 + (1/50)τ, where the last inequality follows from the fact that
τ ≤

√
2 (as both w and w∗ are unit vectors). Hence, we will henceforth assume that

w1 > 0.3.
The preceding discussion leads us to the following definition:

Definition 6 (canonical vector). We say that a proper unit vector w ∈ Rn is canonical
if it satisfies the following conditions: (a) w1 ∈ [0.3, 1/

√
2 + 1/100]; and (b) τ =

‖w − w∗‖2 ≥ 1/5.
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The following lemma establishes Theorem 7 for non-canonical vectors:

Lemma 2. Let w be a proper non-canonical vector. Then K(w) ≥ 1/
√

2+(1/1000)τ ,
where τ = ‖w − w∗‖2.

The proof of Lemma 2 is elementary, using only basic facts about symmetric random
variables, but sufficiently long that we give it in the full version. For canonical vectors
we show:

Theorem 10. There exist universal constants c1, c2 > 0 such that: Let w ∈ Rn be
canonical. Consider the mapping 
(x) = |w · x|. Then at least one of the following
statements is true : (1) Inf1(
) ≤ w2

1 − c1; (2) W>2[
] ≥ c2.

This proof is more involved, using Fourier analysis and critical index arguments (see the
full version). We proceed now to show that for canonical vectors, Theorem 7 follows
from Theorem 10. To see this we argue as follows: Let w ∈ Rn be canonical. We will
show that there exists a universal constant c > 0 such that K(w) ≥ 1/

√
2 + c; as

mentioned above, since τ <
√

2, this is sufficient for our purposes. Now recall that

K(w) = Ex[
(x)] = 
̂(0) =
√

1−Var[
]. (3)

In both cases, we will show that there exists a constant c′ > 0 such that

Var[
] ≤ 1/2− c′. (4)

From this (3) gives K(w) ≥
√

1/2 + c′ = 1/
√

2 + c′′ where c′′ > 0 is a universal
constant, so to establish Theorem 7 it suffices to establish (4).

Suppose first that statement (1) of Theorem 10 holds. In this case we exploit the fact
that Lemma 1 is not tight. We can write

Var[
] ≤ (1/2) · Inf(f) ≤ (1/2) ·
(
w2

1 − c1 +
n∑

i=2

w2
i

)
≤ (1/2)− c1/2,

giving (4). Now suppose that statement (2) of Theorem 10 holds, i.e. at least a c2 fraction
of the total Fourier mass of 
 lies above level 2. Since 
 is even, this is equivalent to the
statement W≥4[
] ≥ c2. In this case, we prove a better upper bound on the variance
because Fact 8 is not tight. In particular, we have

Inf(
) ≥ 2W2[
]+4W≥4[
] = 2
(
Var[
]−W≥4[
]

)
+4W≥4[
] = 2 Var[
]+2W≥4[
]

which yields Var[
] ≤ (1/2)Inf(
)−W≥4[
] ≤ (1/2)−c2, again giving (4) as desired.

3 Proof of Theorem 1 Using Theorem 5

We first observe that it suffices to prove the theorem for balanced LTFs, i.e. LTFs f :

{−1, 1}n → {−1, 1} with f̂(∅) =E[f ] = 0. (Note that any balanced LTF can be
represented with a threshold of 0, i.e. f(x) = sign(w · x) for some w ∈ Rn.) To see
this, let f : {−1, 1}n → {−1, 1} be an arbitrary n-variable threshold function, i.e.
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f(x) = sign(w0 +
∑n

i=1 wixi), and note that we may assume that w0 �= w · x for all
x ∈ {−1, 1}n. Consider the (n+1)-variable balanced LTF g : (x, y) → {−1, 1}, where
y ∈ {−1, 1}, defined by g(x, y) = sign(w0y +

∑n
i=1 wixi). Then it is easy to see that

ĝ(y) = E[f ] and ĝ(i) = f̂(i) for all i ∈ [n]. Therefore, W≤1[f ] = W1[g] = W≤1[g].
Let f = sign(w · x) be an LTF. We may assume that w is a proper unit vector, i.e.

that ‖w‖2 = 1 and wi ≥ wi+1 > 0 for i ∈ [n− 1]. We can also assume that w · x �= 0
for all x ∈ {−1, 1}n. We distinguish two cases: If w is “far” from w∗ (i.e. the worst-
case vector for the Khintchine inequality), the desired statement follows immediately
from our robust inequality (Theorem 5). For the complementary case, we use a separate
argument that exploits the structure of w. More formally, we have the following two
cases:

Let τ > 0 be a sufficiently small universal constant, to be specified.

[Case I: ‖w − w∗‖2 ≥ τ ]. In this case, Proposition 1 and Theorem 5 give us

W1[f ] ≥ (K(w))
2 ≥ (1/

√
2 + cτ)2 ≥ 1/2 +

√
2cτ

which completes the proof of Theorem 1 for Case I.

[Case II: ‖w − w∗‖2 ≤ τ ]. In this case the idea is to consider the restrictions of
f obtained by fixing the variables x1, x2 and argue based on their bias. See the full
version for details.
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Abstract. We present a general transformation for combining a con-
stant number of binary search tree data structures (BSTs) into a single
BST whose running time is within a constant factor of the minimum of
any “well-behaved” bound on the running time of the given BSTs, for
any online access sequence. (A BST has a well-behaved bound with f(n)
overhead if it spends at most O(f(n)) time per access and its bound
satisfies a weak sense of closure under subsequences.) In particular, we
obtain a BST data structure that is O(log log n) competitive, satisfies
the working set bound (and thus satisfies the static finger bound and
the static optimality bound), satisfies the dynamic finger bound, satis-
fies the unified bound with an additive O(log log n) factor, and performs
each access in worst-case O(log n) time.

1 Introduction

Binary search trees (BSTs) are one of the most fundamental and well-studied
data structures in computer science. Yet, many fundamental questions about
their performance remain open. While information theory dictates the worst-
case running time of a single access in an n node BST to be Ω(log n), which
is achieved by many BSTs (e.g., [2]), BSTs are generally not built to execute
a single access, and there is a long line of research attempting to minimize the
overall running time of executing an online access sequence. This line of work
was initiated by Allen and Munro [1], and then by Sleator and Tarjan [15] who
invented the splay tree. Central to splay trees and many of the data structures in
the subsequent literature is the BST model. The BST model provides a precise
model of computation, which is not only essential for comparing different BSTs,
but also allows the obtaining of lower bounds on the optimal offline BST.

In the BST model, the elements of a totally ordered set are stored in the
nodes of a binary tree and a BST data structure is allowed at unit cost to
manipulate the tree by following the parent, left-child, or right-child pointers at
each node or rotate the node with its parent. We give a formal description of
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the model in Section 1.1. A common theme in the literature since the invention
of splay trees concerns proving various bounds on the running time of splay
trees and other BST data structures [4, 6, 7, 12, 15]. Sleator and Tarjan [15]
proved a number of upper bounds on the performance of splay trees. The static
optimality bound requires that any access sequence is executed within a constant
factor of the time it would take to execute it on the best static tree for that
sequence. The static finger bound requires that each access x is executed in
O(log d(f, x)) amortized time where d(f, x) is the number of keys between any
fixed finger f and x. The working set bound requires that each access x is
executed in O(logw(x)) amortized time where w(x) is the number of elements
accessed since the last access to x. Cole [6] and Cole et al. [7] later proved that
splay trees also have the dynamic finger bound which requires that each access x
is executed in O(log d(y, x)) amortized time where y is the previous item in the
access sequence. Iacono [14] introduced the unified bound, which generalizes and
implies both the dynamic finger and working set bounds. Bose et al. [4] presented
layered working set trees, and showed how to achieve the unified bound with an
additive cost of O(log log n) per access, by combining them with the skip-splay
trees of Derryberry and Sleator [12].

A BST data structure satisfies the dynamic optimality bound if it is O(1)-
competitive with respect to the best offline BST data structure. Dynamic opti-
mality implies all other bounds of BSTs. The existence of a dynamically optimal
BST data structure is a major open problem. While splay trees were conjectured
by Sleator and Tarjan to be dynamically optimal, despite decades of research,
there were no online BSTs known to be o(log n)-competitive until Demaine et
al. invented Tango trees [8] which are O(log logn)-competitive. Later, Wang et
al. [17] presented a variant of Tango trees, called multi-splay trees, which are also
O(log logn)-competitive and retain some bounds of splay trees. Bose et al. [3]
gave a transformation where given any BST whose amortized running time per
access is O(log n), they show how to deamortize it to obtain O(log n) worst-case
running time per access while preserving its original bounds.

Results and Implications. In this paper we present a structural tool to com-
bine bounds of BSTs from a certain general class of BST bounds, which we
refer to as well-behaved bounds. Specifically, our method can be used to pro-
duce an online BST data structure which combines well-behaved bounds of all
known BST data structures. In particular, we obtain a BST data structure that
is O(log logn) competitive, satisfies the working set bound (and thus satisfies
the static finger bound and the static optimality bound), satisfies the dynamic
finger bound, satisfies the unified bound with an additive O(log logn), and per-
forms each access in worst-case O(log n) time. Moreover, we can add to this list
any well-behaved bound realized by a BST data structure.

Note that requiring the data structures our method produces to be in the
BST model precludes the possibility of a trivial solution such as running all
data structures in parallel and picking the fastest.

Our result has a number of implications. First, it could be interpreted as a
weak optimality result where our method produces a BST data structure which
is O(1)-competitive with respect to a constant number of given BST data struc-
tures whose actual running times are well-behaved. In comparison, a dynami-
cally optimal BST data structure, if one exists, would be O(1)-competitive with
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respect to all BST data structures. On the other hand, the existence of our
method is a necessary condition for the existence of a dynamically optimal BST.
Lastly, techniques introduced in this paper (in particular the simulation of mul-
tiple fingers in Section 2) may be of independent interest for augmenting a BST
in nontrivial ways, as we do here. Indeed, they are also used in [5].

1.1 Preliminaries

The BST Model. Given a set S of elements from a totally ordered universe,
where |S| = n, a BST data structure T stores the elements of S in a rooted tree,
where each node in the tree stores an element of S, which we refer to as the key
of the node. The node also stores three pointers pointing to its parent, left child,
and right child. Any key contained in the left subtree of a node is smaller than
the key stored in the node; and any key contained in the right subtree of a node
is greater than the key stored in the node. Each node can store data in addition
to its key and the pointers.

Although BST data structures usually support insertions, deletions, and
searches, in this paper we consider only successful searches, which we call ac-
cesses. To implement such searches, a BST data structure has a single pointer
which we call the finger, pointed to a node in the BST T . The finger initially
points to the root of the tree before the first access. Whenever a finger points
to a node as a result of an operation o we say the node is touched, and denote
the node by N(o). An access sequence (x1, x2, . . . , xm) satisfies xi ∈ S for all
i. A BST data structure executes each access i by performing a sequence of
unit-cost operations on the finger—where the allowed unit-cost operations are
following the left-child pointer, following the right-child pointer, following the
parent pointer, and performing a rotation on the finger and its parent—such
that the node containing the search key xi is touched as a result of these oper-
ations. Any augmented data stored in a node can be modified when the node
is touched during an access. The running time of an access is the number of
unit-cost operations performed during that access.

An offline BST data structure executes each operation as a function of the
entire access sequence. An online BST data structure executes each operation
as a function of the prefix of the access sequence ending with the current access.
Furthermore, as coined by [3], a real-world BST data structure is one which can
be implemented with a constant number of O(log n) bit registers and O(log n)
bits of augmented data at each node.

The Multifinger-BST Model. The Multifinger-BST model is identical to the
BST model with one difference: in the Multifinger-BST model we have access to
a constant number of fingers, all initially pointing to the root.

We now formally define what it means for a BST data structure to simulate
a Multifinger-BST data structure.

Definition 1. A BST data structure S simulates a Multifinger-BST data struc-
ture M if there is a correspondence between the ith operation opM [i] performed
by M and a contiguous subsequence opS [ji], opS [ji + 1], . . . , N(opS [ji+1 − 1]) of
the operations performed by S, for j1 < j2 < · · · , such that the touched nodes
satisfy N(opM [i]) ∈ {N(opS [ji]), N(opS [ji + 1]), . . . , N(opS [ji+1 − 1])}.
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For any access sequence X , there exists an offline BST data structure that ex-
ecutes it optimally. We denote the number of unit-cost operations performed by
this data structure by OPT(X). An online BST data structure is c-competitive
if it executes all sequences X of length Ω(n) in time at most c ·OPT(X), where
n is the number of nodes in the tree. An online BST that is O(1)-competitive is
called dynamically optimal.

Because a BST data structure is a Multifinger-BST data structure with one
finger, the following definitions apply to BST data structures as well.

Definition 2. Given a Multifinger-BST data structure A and an initial tree T ,

let T (A, T,X) =
∑|X|

i=1 τ(A, T,X, i)+f(n) be an upper bound on the total running
time of A on any access sequence X starting from tree T , where τ(A, T,X, i)
denotes an amortized upper bound on the running time of A on the ith access
of access sequence X, and f(n) denotes the overhead. Define TX′(A, T,X) =∑|X′|

i=1 τ(A, T,X, π(i)) where X ′ is a contiguous subsequence of access sequence
X and π(i) is the index of the ith access of X ′ in X. The bound τ is well-
behaved with overhead f(n) if there exists constants C0 and C1 such that the
cost of executing any single access xi is at most C1 · f(n), and for any given tree
T , access sequence X, and any contiguous subsequence X ′ of X, T (A, T,X ′) ≤
C0 · TX′(A, T,X) + C1 · f(n).

1.2 Our Results

Given k online BST data structures A1, . . . ,Ak, where k is a constant, our main
result is the design of an online BST data structure which takes as input an
online access sequence (x1, . . . , xm), along with an initial tree T ; and executes, for
all j, access sequence (x1, . . . , xj) in time O

(
mini∈{1,...,k} T (Ai, T, (x1, . . . , xj))

)
where T (Ai, T,X) is a well-behaved bound on the running time ofAi. To simplify
the presentation, we let k = 2. By combining k BSTs two at a time, in a balanced
binary tree, we achieve an O(k) (constant) overhead.

Theorem 3. Given two online BST data structures A0 and A1, let
TX′(A0, T,X) and TX′(A1, T,X) be well-behaved amortized upper bounds with
overhead f(n) ≥ n on the running time of A0 and A1, respectively, on
a contiguous subsequence X ′ of any online access sequence X from an ini-
tial tree T . Then there exists an online BST data structure, Combo-BST =
Combo-BST(A0,A1, f(n)) such that

TX′(Combo-BST, T,X) = O(min(TX′(A0, T,X), TX′(A1, T,X)) + f(n)).

If A0 and A1 are real-world BST data structures, so is Combo-BST.

Corollary 4. There exists a BST data structure that is O(log logn)-competitive,
satisfies the working set bound (and thus satisfies the static finger bound and the
static optimality bound), satisfies the dynamic finger bound, satisfies the unified
bound1 with an additive O(log logn), all with additive overhead O(n log n), and
performs each access in worst-case O(log n) time.

1 The Cache-splay tree [11] was claimed to achieve the unified bound. However, this
claim has been rescinded by one of the authors at the 5th Bertinoro Workshop on
Algorithms and Data Structures.
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Proof. We apply Theorem 3 to combine the bounds of the splay tree, the multi-
splay tree [17], and the layered working set tree [4]. The multi-splay tree is
O(log logn)-competitive. Observe that OPT(X) is a well-behaved bound with
overhead O(n) because any tree can be transformed to any other tree in O(n)
time [16]. Therefore, O(log log n)-competitiveness of multi-splay trees is a well-
behaved bound with overhead O(n log logn). On the other hand, the multi-
splay tree also satisfies the working set bound. The working set bound is a
well-behaved bound with O(n logn) overhead because only the first instance of
each item in a subsequence of an access sequence has a different working set
number with respect to that subsequence and the log of each such difference is
upper bounded by log n. The working set bound implies the static finger and
static optimality bounds with overhead O(n log n) [13]. The splay tree satisfies
the the dynamic finger bound [6, 7], which is a well-behaved bound with O(n)
overhead because the additive term in the dynamic finger bound is linear and
only the first access in a subsequence may have an increase in the amortized
bound which is at most logn. The layered working set tree [4] satisfies the
unified bound with an additive O(log logn). Similar to the working set bound,
the unified bound is a well-behaved bound with O(n logn) overhead because
only the first instance of each item in a subsequence of an access sequence has
a different unified bound value with respect to that subsequence and each such
difference is at most logn. Therefore, because the O(log logn) term is additive
and is dominated by O(log n), the unified bound with an additive O(log logn) is
a well-behaved bound with O(n logn) overhead. Lastly, because the multi-splay
tree performs each access in O(log n) worst-case time and because O(log n) is a
well-behaved bound with no overhead, we can apply the transformation of Bose
et al. [3] to our BST data structure to satisfy all of our bounds while performing
each access in O(log n) worst-case time. ��

To achieve these results, we present OneFinger-BST, which can simulate any
Multifinger-BST data structure in the BST model in constant amortized time
per operation. We will present our Combo-BST data structure as a Multifinger-
BST data structure in Section 4 and use OneFinger-BST to transform it into a
BST data structure.

Theorem 5. Given any Multifinger-BST data structure A, where opA[j] is the
jth operation performed by A, OneFinger-BST(A) is a BST data structure such
that, for any k, given k operations (opA[1], . . . , opA[k]) online, OneFinger-BST(A)
simulates them in C2 · k total time for some constant C2 that depends on the
number of fingers used by A. If A is a real-world BST data structure, then so is
OneFinger-BST(A).

Organization and Roadmap. The rest of the paper is organized as follows.
We present a method to transform a Multifinger-BST data structure to a BST
data structure (Theorem 5) in Section 2. We show how to load and save the state
of the tree in O(n) time in the Multifinger-BST model using multiple fingers in
Section 3. We present our BST data structure, the Combo-BST, in Section 4.
We analyze Combo-BST and prove our Theorem 3 in Section 5.
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2 Simulating Multiple Fingers

In this section, we present OneFinger-BST, which transforms any given
Multifinger-BST data structure T into a BST data structure OneFinger-BST(T ).

Structural Terminology. First we present some structural terminology de-
fined by [10], adapted here to the BST model; refer to Figure 1.

prosthetic fingers

fingers
knuckles

T

tendons

hand T ′

Fig. 1. A tree T with a set of fingers, and the corresponding hand structure

Given any Multifinger-BST T with a set F of fingers f1, . . . , f|F |, where |F | =
O(1), let S(T, F ) be the be the Steiner tree with terminals fi, that is, the union
of shortest paths in T between all pairs of fingers2 F . We define prosthetic
fingers, denoted by P ′(T, F ), to be the set of nodes with degree 3 in S(T, F )
that are not in F . Then, we define the set of pseudofingers, denoted by P (T, F ),
to be P (T, F ) = F ∪ P ′(T, F ). Note that |P (T, F )| ≤ 2|F | = O(1). The hand
H(T, F ) is the compressed Steiner tree obtained from the Steiner tree S(T, F )
by contracting every vertex not in P (T, F ) (each of degree 2). A tendon τx,y is
the shortest path in S(T, F ) connecting two pseudofingers x and y (excluding
nodes x and y), where x is an ancestor of y and x and y are adjacent in H(T, F ).
We refer to x as the top of τx,y and y as the bottom of τx,y. A knuckle is a
connected component of T after removing all of its pseudofingers and tendons.

To avoid confusion, we use parentT (x), left-childT (x), and right-childT (x)
to denote the pointers of a node x in the Multifinger-BST T , and use
parent(x), left-child(x), and right-child(x) to denote the pointers of a node x
in OneFinger-BST(T ).

Our Approach. To simulate a Multifinger-BST data structure, OneFinger-BST
needs to handle the movement and rotation of multiple fingers. To accomplish
this, OneFinger-BST maintains the hand structure. We discuss how this is done
at a high level in Section 2.2. However, a crucial part of maintaining the hand

2 For convenience, we also define the root of the tree T to be a finger.
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is an efficient implementation of tendons in the BST model where the distance
between any two fingers connected by a tendon is at most a constant. We will
implement a tendon as a pair of double-ended queues (deques). The next lemma
lets us do this by showing that a tendon consists of an increasing and a decreasing
subsequence. See Figure 2a.

Lemma 6. A tendon can be partitioned into two subsets of nodes T> and T<
such that the level-order key values of nodes in T> are increasing and the level-
order key values of nodes in T< are decreasing, where the maximum key value
in T> is smaller than the minimum key value in T<.

Proof. Letting T> to be the set of all nodes in tendon τx,y whose left-child is also
in the tendon, and T< to be the set of all nodes in tendon τx,y whose right-child
is also in the tendon yields the statement of the lemma. ��

Deque-BST. It is straightforward to implement double ended queues (deques)
in the BST model. We implement the deques for storing T> and T< symmetri-
cally. LeftDeque-BST is a BST data structure storing the set of nodes in T>
and RightDeque-BST is a BST data structure symmetric to LeftDeque-BST
storing the set of nodes in T<. We denote the roots of LeftDeque-BST and
RightDeque-BST by r> and r< respectively. Because they are symmetric struc-
tures, we only describe LeftDeque-BST. Any node x to be pushed into a
LeftDeque-BST is given as the parent of the r>. Similarly, whenever a node
is popped from LeftDeque-BST, it becomes the parent of r>. LeftDeque-BST
supports the following operations in constant amortized time: push-min(T>, x),
push-max(T>, x), pop-min(T>), pop-max(T>).

2.1 Tendon-BST

We now present a BST data structure, Tendon-BST, which supports the following
operations on a given tendon τx,y, where x′ = parentT (x) and y′ = parentT (y),
τx′,y ← AddTop(τx,y), τx,y ← AddBottom(τx,y′ , y), τx,y ← RemoveTop(τx′,y),
τx,y′ ← RemoveBottom(τx,y).

Implementation. We implement the Tendon-BST operations using
LeftDeque-BST and RightDeque-BST. See Figure 2b. Nodes x, r>, r<, and
y form a path in Tendon-BST where node x is an ancestor of nodes r>, r<,
and y; and node y is a descedant of nodes x, r>, and r<. There are four
such possible paths and the particular one formed depends on the key values
of x and y, and the relationship between node y and its parent in T . These
invariants imply that the distance between x and y is 3. When we need to
insert a node into the tendon, we perform a constant number of rotations to
preserve the invariants and position the node appropriately as the parent of
r> or r<. We then call the appropriate LeftDeque-BST or RightDeque-BST
operation. Removing a node from the tendon is symmetric. Because deques
(LeftDeque-BST, RightDeque-BST) can be implemented in constant amortized
time per operation, and Tendon-BST performs a constant number of unit-cost
operations in addition to one deque operation, it supports all of its operations
in constant amortized time.
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x

∈ T>
∈ T<

y

(a) τx,y and sets T> and T<

r<

r>

x

y

(b) Tendon-BST storing τx,y.

Fig. 2. A tendon in Multifinger-BST T and how its stored using Tendon-BST

2.2 OneFinger-BST

At a high level, the OneFinger-BST data structure maintains the hand H(T, F ),
which is of constant size, where each node corresponds to a pseudofinger in
P (T, F ). For each pseudofinger x the parent pointer, parent(x), either points
to another pseudofinger or the bottom of a tendon, and the child pointers,
left-child(x), right-child(x), each point to either another pseudofinger, or the root
of a knuckle, or the top of a tendon.

Intuitively, the Tendon-BST structure allows us to compress a tendon down to
constant depth. Whenever an operation is to be done at a finger, OneFinger-BST
uncompresses the 3 surrounding tendons until the elements at distance up to
3 from the finger are as in the original tree, then performs the operation.
OneFinger-BST then reconstructs the hand structure locally, possibly chang-
ing the set of pseudofingers if needed, and recompresses all tendons using
Tendon-BST. This is all done in amortized O(1) time because Tendon-BST oper-
ations used for decompression and recompression take amortized O(1) time and
reconfiguring any constant size local subtree into any shape takes O(1) time in
the worst case.

ADT. OneFinger-BST is a BST data structure supporting the following op-
erations on a Multifinger-BST T with a set F of fingers f1, . . . , f|F |, where
|F | = O(1):

– MoveToParent(fi): Move finger fi to its parent in T , parentT (fi).
– MoveToLeftChild(fi): Move finger fi to its left-child in T , left-childT (fi).
– MoveToRightChild(fi): Move finger fi to its right-child in T , right-childT (fi).
– RotateAt(fi): Rotate finger fi with its parent in T , parentT (fi).
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Implementation. We augment each node with a O(|F |) bit field to store the
type of the node and the fingers currently on the node.

All the OneFinger-BST operations take as input the finger they are to be per-
formed on. We first do a brute force search using the augmented bits mentioned
above to find the node pointed to by the input finger. Note that all such fingers
will be within a O(1) distance from the root . We then perform the operation as
well as the relevant updates to the tree to reflect the changes in H(T, F ). Specif-
ically, in order to perform the operation, we extract the relevant nodes from the
surrounding tendons of the finger by calling the appropriate Tendon-BST func-
tions. We perform the operation and update the nodes to reflect the structural
changes to the hand structure. Then we insert the tendon nodes back into their
corresponding tendons using the appropriate Tendon-BST functions.

Theorem 7. Given any Multifinger-BST data structure A, where opA[j] is the
jth operation performed by A, OneFinger-BST(A) is a BST data structure such
that, for any k, given k operations (opA[1], . . . , opA[k]) online, OneFinger-BST(A)
simulates them in C2 · k total time for some constant C2 that depends on the
number of fingers used by A. If A is a real-world BST data structure, then so is
OneFinger-BST(A).

Proof. Note that before opM [1], all the fingers are initialized to the root of the
tree and therefore the potentials associated with the deques of the tendons is
zero. All finger movements and rotations are performed using OneFinger-BST
operations. Each operation requires one finger movement or rotation and at
most a constant number of Tendon-BST operations, as well as the time it takes to
traverse between fingers. Because the time spent traversing between a constant
number of fingers is at most a constant, this implies that OneFinger-BST(M)
simulates operations (opM [1], . . . , opM [k]) in C2 · k time for any k. ��

3 Multifinger-BST with Buffers

In our model, each node in the tree is allowed to store O(log n) bits of augmented
data. In this section, we show how to use this O(n logn) collective bits of data to
implement a traversable “buffer” data structure. More precisely, we show how to
augment any Multifinger-BST data structure into a structure called Buf-MFBST
supporting buffer operations.

Definition 8. A buffer is a sequence b1, b2, . . . , bn of cells, where each cell can
store O(log n) bits of data. The buffer can be traversed by a constant number of
buffer-fingers, each initially on cell b1, and each movable forwards or backwards
one cell at a time.

ADT. In addition to Multifinger-BST operations, Buf-MFBST supports the
following operations on any buffer-finger bf of a buffer: bf.PreviousCell(),
bf.NextCell(), bf.ReadCell(), bf.WriteCell(d).
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Implementation. We store the jth buffer cell in the jth node in the in-order
traversal of the tree. PreviousCell() and NextCell() are performed by traversing
to the previous or next node respectively in the in-order traversal of the tree.

Lemma 9. Given a tree T , traversing it in-order (or symmetrically in reverse-
in-order) with a finger, interleaved with r rotation operations performed by other
fingers, takes O(n+ r) time.

Proof. The cost of traversing the tree in-order is at most 2n. Each rotation
performed in between the in-order traversal operations can increase the total
length of any path corresponding to a subsequence of the in-order traversal by
at most one. Thus, the cost of traversing T in-order, interleaved with r rotation
operations, is O(n+ r). ��

Tree state. We present an augmentation in the Multifinger-BST model, which
we refer to as TSB, such that given any Multifinger-BST data structure M , TSB
augments M with a tree state buffer. The following operations are supported
on a tree state buffer: SaveState(): save the current state of the tree on the tree
state buffer, LoadState(): transform the current tree to the state stored in the
tree state buffer. Let the encoding of the tree state be a sequence of operations
performed by a linear time algorithm LeftifyTree(T ) that transforms the tree into
a left path. There are numerous folklore linear time implementations of such an
algorithm. We can save the state of T by calling LeftifyTree(T ) and recording
the performed operations in the tree state buffer. To load a tree state in the tree
state buffer, we call LeftifyTree(T ) then undo all the operations in the tree state
buffer. Note that TSB maintains up to n cells but we may need to store more
data. We can either pack more data into each cell or use multiple copies of TSB.
We can also apply TSB to itself to allow for multiple buffers.

Lemma 10. Given any Multifinger-BST data structure M with k fingers,
TSB(M) is a Multifinger-BST data structure with O(k) fingers such that the
number of operations performed to execute SaveState() or LoadState() is O(n).

Proof. Because LeftifyTree(T ) runs in linear time, there can be only O(n) rota-
tions, and by Lemma 9 the running time of both operations is O(n). ��

4 Combo-MFBST and Combo-BST

Given two online BST data structures A0 and A1, let TX′(A0, T,X) be any
well-behaved upper bound with overhead f(n) ≥ n on the running time of
A0, and let TX′(A1, T,X) be any well-behaved upper bound with overhead
f(n) ≥ n on the running time of A1 on a contiguous subsequence X ′ of X ,
for any online access sequence X and initial tree T . Then Combo-MFBST =
Combo-MFBST(A0,A1, f(n)) is defined as follows. It uses a tree state buffer
ST∗ implemented as a TSB. It stores the initial tree state T in ST∗ by calling
SaveState() before executing any accesses. Then, Combo-MFBST executes any
online access sequence in rounds by alternating between emulating A0 and A1.
Specifically, each round consists of C3 · f(n) operations that execute the access
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sequence using BST data structure Aμ, for μ ∈ {0, 1}, always starting from the
initial tree T . When the operation limit C3 ·f(n) gets reached, say in the middle
of executing access xi, Combo-MFBST transforms the tree back to its initial state
T by calling LoadState() on ST∗; and toggles the active BST data structure by
setting μ to 1 − μ. The next round re-runs access xi, this time on the opposite
BST data structure. By picking a suitably large C3, we ensure that every round
completes at least one access, and thus no access gets executed by the same BST
data structure in more than one round.

Lemma 11. Given two BST data structures, A0 and A1, Combo-MFBST =
Combo-MFBST(A0,A1, f(n)) for any f(n) is a Multifinger-BST data structure
with O(1) fingers. Furthermore, if A0 and A1 are real-world BST data structures,
then so is Combo-MFBST.

Proof. Combo-MFBST(A0,A1, f(n)) has one tree state buffer which has O(1)
fingers by Lemma 10. Because TSB augments each node with at most O(log n)
bits and Combo-MFBST uses only a constant number of registers each of size
O(log n) bits, the lemma follows. ��

Definition 12. Given two online BST data structures A0 and A1,
Combo-BST(A0,A1, f(n)) = OneFinger-BST(Combo-MFBST(A0,A1, f(n))).

5 Analysis

Theorem 13. Given two online BST data structures A0 and A1, let
TX′(A0, T,X) and TX′(A1, T,X) be well-behaved amortized upper bounds with
overhead f(n) ≥ n on the running time of A0 and A1, respectively, on a
contiguous subsequence X ′ of X for any online access sequence X and ini-
tial tree T Then there exists an online BST data structure, Combo-BST =
Combo-BST(A0,A1, f(n)) such that

TX′(Combo-BST, T,X) = O(min(TX′(A0, T,X), TX′(A1, T,X)) + f(n)).

If A0 and A1 are real-world BST data structures, so is Combo-BST.

Proof. Let Amin = A0 if TX′(A0, T,X) ≤ TX′(A1, T,X), and Amin = A1 other-
wise. Let X ′′ = X ′1 · . . . ·X ′k be the subsequence of X ′ executed by Amin. If the
Combo-MFBST terminates after at most 2k+ 1 rounds (k of them performed by
Amin), then taking into account the TSB traversal at every round which takes
O(n) = O(f(n)) time by Lemma 10 we have

TX′(Combo-MFBST, T,X) = O(k · f(n) + k · n). (1)

Now we need to bound k. Each round but the last one runs for C3 · f(n) steps
exactly, and in particular, T (Amin, T,X

′
j) ≥ C3 · f(n) for all j < k, that is, it

might need more steps to complete the last access of X ′j . Summing over all j, we

get C3(k− 1)f(n) ≤
∑k−1

j=1 T (Amin, T,X
′
j) ≤ C0

∑k−1
j=1 TX′

j
(Amin, T,X) +C1(k−

1)f(n) ≤ C0TX′(Amin, T,X)+C1(k−1)f(n) by well-behavedness, the definition
of T and the fact that X ′js are disjoint subsets of X ′. Therefore, setting C3 > C1
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yields k− 1 ≤ O(TX′(Amin, T,X)/f(n)). Combining with Equation 1, we obtain
the desired bound for Combo-MFBST. By Lemma 11, Combo-MFBST is a real-
world Multifinger-BST data structure. Applying OneFinger-BST (Theorem 5)
yields our result. ��
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fuse together (self-assemble) whenever their total attachment strength
is at least the global temperature τ . Our main result is that for all
τ ′ < τ , each temperature-τ ′ 2HAM tile system cannot simulate at least
one temperature-τ 2HAM tile system. This impossibility result proves
that the 2HAM is not intrinsically universal, in stark contrast to the
simpler abstract Tile Assembly Model which was shown to be intrinsi-
cally universal (The tile assembly model is intrinsically universal, FOCS
2012). On the positive side, we prove that, for every fixed tempera-
ture τ ≥ 2, temperature-τ 2HAM tile systems are intrinsically universal:
for each τ there is a single universal 2HAM tile set U that, when ap-
propriately initialized, is capable of simulating the behavior of any tem-
perature τ 2HAM tile system. As a corollary of these results we find an
infinite set of infinite hierarchies of 2HAM systems with strictly increas-
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each τ , a temperature-τ 2HAM system that simultaneously simulates all
temperature-τ 2HAM systems.

1 Introduction

Self-assembly is the process through which unorganized, simple, components au-
tomatically coalesce according to simple local rules to form some kind of target
structure. It sounds simple, but the end result can be extraordinary. For example,
researchers have been able to self-assemble a wide variety of structures experi-
mentally at the nanoscale, such as regular arrays [28], fractal structures [13,24],
smiling faces [23], DNA tweezers [29], logic circuits [21], neural networks [22],
and molecular robots [18]. These examples are fundamental because they demon-
strate that self-assembly can, in principle, be used to manufacture specialized
geometrical, mechanical and computational objects at the nanoscale. Potential
future applications of nanoscale self-assembly include the production of smaller,
more efficient microprocessors and medical technologies that are capable of di-
agnosing and even treating disease at the cellular level.

Controlling nanoscale self-assembly for the purposes of manufacturing atom-
ically precise components will require a bottom-up, hands-off strategy. In other
words, the self-assembling units themselves will have to be “programmed” to
direct themselves to do the right thing–efficiently and correctly. Thus, it is nec-
essary to study the extent to which the process of self-assembly can be controlled
in an algorithmic sense.

In 1998, Erik Winfree [27] introduced the abstract Tile Assembly Model
(aTAM), an over-simplified discrete mathematical model of algorithmic DNA
nanoscale self-assembly pioneered by Seeman [25]. The aTAM essentially aug-
ments classical Wang tiling [26] with a mechanism for sequential “growth” of
a tiling (in Wang tiling, only the existence of a valid, mismatch-free tiling is
considered and not the order of tile placement). In the aTAM, the fundamental
components are un-rotatable, but translatable square “tile types” whose sides
are labeled with (alpha-numeric) glue “colors” and (integer) “strengths”. Two
tiles that are placed next to each other interact if the glue colors on their abut-
ting sides match, and they bind if the strengths on their abutting sides match
and sum to at least a certain (integer) “temperature”. Self-assembly starts from
a “seed” tile type and proceeds nondeterministically and asynchronously as tiles
bind to the seed-containing-assembly. Despite its deliberate over-simplification,
the aTAM is a computationally expressive model. For example, Winfree [27]
proved that it is Turing universal, which implies that self-assembly can be di-
rected by a computer program.

In this paper, we work in a generalization of the aTAM, called the two-handed [3]
(a.k.a., hierarchical [5], q-tile [6], polyomino [17]) abstract Tile Assembly Model
(2HAM). A central feature of the 2HAM is that, unlike the aTAM, it allows two
“supertile” assemblies, each consisting of one or more tiles, to fuse together. For two
such assemblies to bind, they should not “sterically hinder” each other, and they
should have a sufficient number of matching glues distributed along the interface
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where they meet. Hence the model includes notions of local interactions (individual
glues) and non-local interactions (large assemblies coming together). In the 2HAM,
an assembly of tiles is producible if it is either a single tile, or if it results from the
stable combination of two other producible assemblies.

We study the intrinsic universality in the 2HAM. Intrinsic universality uses
a special notion of simulation, where the simulator preserves the dynamics of
the simulated system. In the field of cellular automata, the topic of intrinsic
universality has given rise to a rich theory [2, 4, 7, 8, 12, 19, 20] and indeed has
also been studied in Wang tiling [14–16] and tile self-assembly [10,11]. The aTAM
has been shown to be intrinsically universal [10], meaning that there is a single
set of tiles U that works at temperature 2, and when appropriately initialized, is
capable of simulating the behavior of an arbitrary aTAM tile assembly system.
Modulo rescaling, this single tile set U represents the full power and expressivity
of the entire aTAM model, at any temperature. Here, we ask whether there such
a universal tile set for the 2HAM.

The theoretical power of non-local interaction in the 2HAM has been the sub-
ject of recent research. For example, Doty and Chen [5] proved that, surprisingly,
N ×N squares do not self-assemble any faster in so-called partial order 2HAM
systems than they do in the aTAM, despite being able to exploit massive par-
allelism. More recently, Cannon, et al. [3], while comparing the abilities of the
2HAM and the aTAM, proved three main results, which seem to suggest that
the 2HAM is at least as powerful as the aTAM: (1) non-local binding in the
2HAM can dramatically reduce the tile complexity (i.e., minimum number of
unique tile types required to self-assemble a shape) for certain classes of shapes;
(2) the 2HAM can simulate the aTAM in the following sense: for any aTAM
tile system T , there is a corresponding 2HAM tile system S, which simulates
the exact behavior—modulo connectivity—of T , at scale factor 5; (3) the prob-
lem of verifying whether a 2HAM system uniquely produces a given assembly is
coNP-complete (for the aTAM this problem is decidable in polynomial time [1]).

Main results. In this paper, we ask if the 2HAM is intrinsically universal : does
there exist a “universal” 2HAM tile set U that, when appropriately initialized,
is capable of simulating the behavior of an arbitrary 2HAM tile system? A
positive answer would imply that such a tile set U has the ability to model the
capabilities of all 2HAM systems.1 Our first main result, Theorem 1, says that
the 2HAM is not intrinsically universal, which means that the 2HAM is incapable
of simulating itself. This statement stands in stark contrast to the case of the
aTAM, which was recently shown to be intrinsically universal by Doty, Lutz,
Patitz, Schweller, Summers and Woods [10]. Specifically, we show that for any
temperature τ , there is a temperature τ 2HAM system that cannot be simulated
by any temperature τ ′ < τ 2HAM system. It is worthy of note that, in order to
prove this result, we use a simple, yet novel combinatorial argument, which as

1 Note that the above simulation result of Cannon et al. does not imply that the 2HAM
is intrinsically universal because (a) it is for 2HAM simulating aTAM, and (b) it is
an example of a “for all, there exists...” statement, whereas intrinsic universality is a
“there exists, for all...” statement.
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far as we are aware of, is the first lower bound proof in the 2HAM that does not
use an information-theoretic argument. In our proof of Theorem 1 we show that
the 2HAM cannot simulate massively cooperative binding, where the number of
cooperative bindings is larger than the temperature of the simulator).

Our second main result, Theorem 3, is positive: we show, via constructions,
that the 2HAM is intrinsically universal for fixed temperature, that is, the tem-
perature τ 2HAM can simulate the temperature τ 2HAM. So although our
impossibility result tells us that the 2HAM can not simulate “too much” cooper-
ative binding, our positive result tells us it can indeed simulate some cooperative
binding: an amount exactly equal to the temperature of the simulator.

As an immediate corollary of these results, we get a separation between classes
of 2HAM tile systems based on their temperatures. That is, we exhibit an infinite
hierarchy of 2HAM systems, of strictly-increasing temperature, that cannot be
simulated by lesser temperature systems but can downward simulate lower tem-
perature systems. Indeed, we exhibit an infinite number of such hierarchies in
Theorem 4. Thus, as was suggested as future work in [10], and as has been shown
in the theory of cellular automata [8], we use the notion of intrinsic universality
to classify, and separate, 2HAM systems via their simulation ability.

As noted above, we show that temperature τ 2HAM systems are intrinsically
universal. We actually show this for two different, seemingly natural, notions of
simulation (called simulation and strong simulation), showing trade-offs between,
and even within, these notions of simulation. For both notions of simulation,
we show tradeoffs between scale factor, number of tile types, and complexity
of the initial configuration. Finally, we show how to construct, for each τ , a
temperature-τ 2HAM system that simultaneously simulates all temperature-τ
2HAM systems. We finish with a conjecture:

Conjecture 1. There exists c ∈ N, such that for each τ ≥ c, temperature τ 2HAM
systems do not strongly simulate Temperature τ − 1 2HAM systems.

2 Definitions

2.1 Informal Definition of 2HAM

The 2HAM [6, 9] is a generalization of the aTAM in that it allows for two as-
semblies, both possibly consisting of more than one tile, to attach to each other.
Since we must allow that the assemblies might require translation before they
can bind, we define a supertile to be the set of all translations of a τ -stable as-
sembly, and speak of the attachment of supertiles to each other, modeling that
the assemblies attach, if possible, after appropriate translation. We now give a
brief, informal, sketch of the 2HAM.

A tile type is a unit square with four sides, each having a glue consisting
of a label (a finite string) and strength (a non-negative integer). We assume a
finite set T of tile types, but an infinite number of copies of each tile type,
each copy referred to as a tile. A supertile is (the set of all translations of) a
positioning of tiles on the integer lattice Z2. Two adjacent tiles in a supertile
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interact if the glues on their abutting sides are equal and have positive strength.
Each supertile induces a binding graph, a grid graph whose vertices are tiles,
with an edge between two tiles if they interact. The supertile is τ-stable if every
cut of its binding graph has strength at least τ , where the weight of an edge
is the strength of the glue it represents. That is, the supertile is stable if at
least energy τ is required to separate the supertile into two parts. A 2HAM
tile assembly system (TAS) is a pair T = (T, τ), where T is a finite tile set
and τ is the temperature, usually 1 or 2. Given a TAS T = (T, τ), a supertile
is producible, written as α ∈ A[T ] if either it is a single tile from T , or it is
the τ -stable result of translating two producible assemblies without overlap. A
supertile α is terminal, written as α ∈ A�[T ] if for every producible supertile
β, α and β cannot be τ -stably attached. A TAS is directed if it has only one
terminal, producible supertile.2

2.2 Definitions for Simulation

In this subsection, we formally define what it means for one 2HAM TAS to
“simulate” another 2HAM TAS. For a tileset T , let AT and ÃT denote the set
of all assemblies over T and all supertiles over T respectively. Let AT

<∞ and

ÃT
<∞ denote the set of all finite assemblies over T and all finite supertiles over

T respectively.
In what follows, let U be a tile set. An m-block assembly, or macrotile, over tile

set U is a partial function γ : Zm×Zm ��� U , where Zm = {0, 1, . . .m− 1}. Let
BU

m be the set of all m-block assemblies over U . The m-block with no domain
is said to be empty. For an arbitrary assembly α ∈ AU define αm

x,y to be the
m-block defined by αm

x,y(i, j) = α(mx+ i,my + j) for 0 ≤ i, j < m.

For a partial function R : BU
m ��� T , define the assembly representation

function R∗ : AU ��� AT such that R∗(α) = β if and only if β(x, y) = R(αm
x,y)

for all x, y ∈ Z2. Further, α is said to map cleanly to β under R∗ if either (1) for
all non empty blocks αm

x,y, (x+u, y+ v) ∈ dom β for some u, v ∈ {−1, 0, 1} such
that u2 + v2 < 2, or (2) α has at most one non-empty m-block αm

x,y. In other
words, we allow for the existence of simulator “fuzz” directly north, south, east
or west of a simulator macrotile, but we exclude the possibility of diagonal fuzz.

For a given assembly representation function R∗, define the supertile represen-
tation function R̃ : ÃU ��� P(AT ) such that R̃(α̃) = {R∗(α)|α ∈ α̃}. α̃ is said to
map cleanly to R̃(α̃) if R̃(α̃) ∈ ÃT and α maps cleanly to R∗(α) for all α ∈ α̃.

In the following definitions, let T = (T, S, τ) be a 2HAM TAS and, for some
initial configuration ST , that depends on T , let U = (U, ST , τ

′) be a 2HAM
TAS, and let R be an m-block representation function R : BU

m ��� T .

Definition 1. We say that U and T have equivalent productions (at scale factor
m), and we write U ⇔R T if the following conditions hold:

1.
{
R̃(α̃)|α̃ ∈ A[U ]

}
= A[T ].

2 We do not use this definition in this paper but have included it for the sake of
completeness.
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2. For all α̃ ∈ A[U ], α̃ maps cleanly to R̃(α̃)

Definition 2. We say that T follows U (at scale factor m), and we write T /R
U if, for any α̃, β̃ ∈ A[U ] such that α̃→1

U β̃, R̃(α̃) →≤1T R̃
(
β̃
)

.

Definition 3. We say that U weakly models T (at scale factor m), and we
write U |=−R T if, for any α̃, β̃ ∈ A[T ] such that α̃→1

T β̃, for all α̃′ ∈ A[U ] such

that R̃(α̃′) = α̃, there exists an α̃′′ ∈ A[U ] such that R̃(α̃′′) = β̃, α̃′ →U α̃′′, and

α̃′′ →1
U β̃
′ for some β̃′ ∈ A[U ] with R̃

(
β̃′
)

= β̃.

Definition 4. We say that U strongly models T (at scale factor m), and we
write U |=+

R T if for any α̃, β̃ ∈ A[T ] such that γ̃ ∈ Cτ
α̃,β̃

, then for all α̃′, β̃′ ∈

A[U ] such that R̃(α̃′) = α̃ and R̃
(
β̃′
)

= β̃, it must be that there exist α̃′′, β̃′′, γ̃′ ∈

A[U ], such that α̃′ →U α̃′′, β̃′ →U β̃′′, R̃(α̃′′) = α̃, R̃
(
β̃′′

)
= β̃, R̃(γ̃′) = γ̃, and

γ̃′ ∈ Cτ ′

α̃′′,β̃′′ .

Definition 5. Let U ⇔R T and T /R U .

1. U simulates T (at scale factor m) if U |=−R T .
2. U strongly simulates T (at scale factor m) if U |=+

R T .

For simulation, we require that when a simulated supertile α̃ may grow, via one
combination attachment, into a second supertile β̃, then any simulator supertile
that maps to α̃ must also grow into a simulator supertile that maps to β̃. The
converse should also be true.

For strong simulation, in addition to requiring that all supertiles mapping to
α̃ must be capable of growing into a supertile mapping to β̃ when α̃ can grow
into β̃ in the simulated system, we further require that this growth can take
place by the attachment of any supertile mapping to γ̃, where γ̃ is the supertile
that attaches to α̃ to get β̃.

2.3 Intrinsic Universality

Let REPR denote the set of all m-block (or macrotile) representation functions.
Let C be a class of tile assembly systems, and let U be a tile set. We say U is
intrinsically universal for C if there are computable functionsR : C→ REPR and
S : C→

(
AU

<∞ → N ∪ {∞}
)
, and a τ ′ ∈ Z+ such that, for each T = (T, S, τ) ∈ C,

there is a constant m ∈ N such that, letting R = R(T ), ST = S(T ), and
UT = (U, ST , τ

′), UT simulates T at scale m and using macrotile representation
function R. That is, R(T ) gives a representation function R that interprets
macrotiles (or m-blocks) of UT as assemblies of T , and S(T ) gives the initial
state used to create the necessary macrotiles from U to represent T subject to
the constraint that no macrotile in ST can be larger than a single m×m square.
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3 The 2HAM Is Not Intrinsically Universal

In this section, we prove the main result of this paper: there is no universal
2HAM tile set that, when appropriately initialized, is capable of simulating an
arbitrary 2HAM system. That is, we prove that the 2HAM, unlike the aTAM,
is not intrinsically universal.

Theorem 1. The 2HAM is not intrinsically universal.

In order to prove Theorem 1, we prove Theorem 2, which says that, for any
claimed 2HAM simulator U , that runs at temperature τ ′, there exists a 2HAM
system, with temperature τ > τ ′, that cannot be simulated by U .

Theorem 2. Let τ ∈ N, τ ≥ 2. For every tile set U , there exists a 2HAM TAS
T = (T, S, τ) such that for any initial configuration ST and τ ′ ≤ τ − 1, the
2HAM TAS U = (U, ST , τ

′) does not simulate T .

The basic idea of the proof of Theorem 2 is to use Definitions 3 and 1 in order
to exhibit two producible supertiles in T , that do not combine in T because
of a lack of total binding strength, and show that the supertiles that simulate
them in U do combine in the (lower temperature) simulator U . Then we argue
that Definition 2 says that, because the simulating supertiles can combine in
the simulator U , then so too can the supertiles being simulated in the simulated
system T , which contradicts the fact that the two originally chosen supertiles
from T do not combine in T .

Proof. Our proof is by contradiction. Therefore, suppose, for the sake of ob-
taining a contradiction, that there exists a universal tile set U such that, for
any 2HAM TAS T = (T, S, τ), there exists an initial configuration ST and
τ ′ ≤ τ − 1, such that U = (U, ST , τ

′) simulates T . Define T = (T, τ) where T
is the tile set defined in Figure 1, the default initial state is used, and τ > 1.
Let U = (U, ST , τ

′) be the temperature τ ′ ≤ τ − 1 2HAM system, which uses
tile set U and initial configuration ST (depending on T ) to simulate T at scale
factor m. Let R̃ denote the assembly replacement function that testifies to the
fact that U simulates T .
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Fig. 1. The tile set for the proof of Theorem 2. Black rectangles represent strength-τ
glues (labeled 1-8), and black squares represent the strength-1 glue (labeled 0).

We say that a supertile l̃ ∈ A[T ] is a left half-ladder of height h ∈ N if it
contains h tiles of the type A2 and h− 1 tiles of type A3, arranged in a vertical
column, plus τ tiles of each of the types A1 and A0. (An example of a left half-
ladder is shown on the left in Figure 2. The dotted lines show positions at which
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Fig. 2. Example half-ladders with τ rungs

tiles of type A1 and A0 could potentially attach, but since a half-ladder has
exactly τ of each, only τ such locations have tiles.) Essentially, a left half-ladder
consists of a single-tile-wide vertical column of height 2h− 1 with an A2 tile at
the bottom and top, and those in between alternating between A3 and A2 tiles.
To the east of exactly τ of the A2 tiles, an A1 tile is attached and to the east of
each A1 tile, an A0 tile type is attached. These A1-A0 pairs, collectively, form
the τ rungs of the left half-ladder. We can define right half-ladders similarly.
A right half-ladder of height h is defined exactly the same way but using the
tile types B3, B2, B1, and B0 and with rungs growing to the left of the vertical
column. The east glue of A0 is a strength-1 glue matching the west glue of B0.

Let LEFT ⊆ A[T ] and RIGHT ⊆ A[T ] be the set of all left and right half-
ladders of height h, respectively. Note that there are

(
h
τ

)
half-ladders of height

h in LEFT (RIGHT ). Define, for each l̃ ∈ LEFT , the mirror image of l̃ as the

supertile
¯̃
l ∈ RIGHT such that

¯̃
l has rungs at the same positions as l̃.

For some l̃ ∈ LEFT , we say that
˜̂
l ∈ A[U ] is a simulator left half-ladder of

height h if R̃
(

˜̂
l
)

= l̃. Note that
˜̂
l need not be unique. (One could even imagine
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˜̂
l and

˜̂
l′ satisfying R̃

(
˜̂
l
)

= l̃ and R̃
(

˜̂
l′
)

= l̃ but
˜̂
l and

˜̂
l′ only differ by a single

tile!) The notation Cτ
α̃,β̃

is defined as the set of all supertiles that result in the

τ -stable combination of the supertiles α̃ and β̃.

For some ˜̂r ∈ A[U ], we say that ˜̂r is a mate of
˜̂
l if R̃

(
˜̂r
)

= r̃ ∈ RIGHT , where

r̃ =
¯̃
l, Cτ

l̃,r̃
�= ∅ (they combine in T ), and Cτ−1

ˆ̃l,ˆ̃r
�= ∅ (they combine in U). For a

simulator left half-ladder
˜̂
l, we say that

˜̂
l is combinable if

˜̂
l has a mate. Part 1 of

Definition 5 guarantees the existence of at least one combinable simulator left
half-ladder for each left half-ladder. It is easy to see from Part 1 of Definition 5
that an arbitrary simulator left half-ladder need not be combinable, since by

Definition 3, it may be a half-ladder
˜̂
l ∈ A[U ], which must first “grow into” a

combinable left half-ladder
˜̂
l′ (analogous to α̃′ →U α̃′′ in Definition 3).

Denote as LEFT ′ some set that contains exactly one combinable simulator
left half-ladder for each l̃ ∈ LEFT . Note that, by Definitions 1 and 3, there must

be at least one combinable simulator left half-ladder
˜̂
l for each l̃, but that there

also may be more than one, so the set LEFT ′, while certainly not empty, need
not be unique. By the definition of LEFT ′, it is easy to see that |LEFT ′| =

(
h
τ

)
.

We know that each combinable simulator left half-ladder
˜̂
l has exactly τ rungs,

and furthermore, since glue strengths in the 2HAM cannot be fractional, it is
the case that τ ′ of these rungs bind to (the corresponding rungs of) a mate with
a combined total strength of at least τ ′. (Note that some, but not all, of these
τ ′ rungs may be redundant in the sense that they do not interact with positive
strength.)

There are
(
h
τ ′
)

ways to position/choose τ ′ rungs on a (simulator) half-ladder
of height h. (Note that a rung on a simulator half-ladder need not be a m×m
block of tiles but merely a collection of rung-like blocks that map to rungs in
the input system T via R̃.) Now consider the size

(
h
τ ′
)

set of all possible rung

positions, each denoted by a subset X ⊂ {0, 1, . . . , h − 1}, and the size
(
h
τ

)
set

LEFT ′. For each simulated half-ladder
˜̂
l ∈ LEFT ′, there must exist a set of τ ′

rungs X such that
˜̂
l binds to a mate via the rungs specified by X , with total

strength at least τ ′. As there are
(
h
τ

)
elements of LEFT ′ and only

(
h
τ ′
)

choices
for X , the Generalized Pigeonhole Principle implies that there must be some
set LEFT ′′ ⊂ LEFT ′ with |LEFT ′′| ≥

(
h
τ

)
/
(
h
τ ′
)

such that every simulator left
half-ladder in LEFT ′′ binds to a mate via the τ ′ rungs specified by a single
choice of X , with total strength at least τ ′. In the case that h ≥ 2τ , we have
that |LEFT ′′| ≥

(
h
τ

)
/
(
h
τ ′
)
≥

(
h
τ

)
/
(

h
τ−1

)
= h−τ+1

τ .

Let k = |U |4m2

, which is the number of ways to tile a neighborhood of four
m ×m squares from a set of |U | distinct tile types. If h = τ

(
kτ−1 + τ

)
, then

|LEFT ′′| ≥ kτ−1 + 1. There are kτ
′ ≤ kτ−1 ways to tile τ ′ neighborhoods that

map to tiles of type A0 (plus any additional simulator fuzz that connects to
simulated A0 tiles), under R̃, at the ends of the τ ′ rungs of a simulator left
half-ladder. This tells us that there are at least two (combinable) simulator left
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half-ladders
˜̂
l1,

˜̂
l2 ∈ LEFT ′′ such that

˜̂
l1 binds to a mate via the rungs specified

by X , with total strength at least τ ′,
˜̂
l2 binds to a mate via the rungs specified

by X , with total strength at least τ ′ and the rungs (along with any surrounding

fuzz) specified by X of
˜̂
l1 are tiled exactly the same as the rungs specified by X

of
˜̂
l2 are tiled. Thus, we can conclude that ˜̂r, a mate of

˜̂
l1, is a mate of

˜̂
l2. We

can conclude this because, while
˜̂
l1 and

˜̂
l2 agree exactly along τ ′ of their rungs,

they also each have one rung in a unique position and since consecutive rungs in
T have at least two empty spaces between then, the offset simulator rungs (and

even their fuzz) cannot prevent
˜̂
l2 from matching up with the mate of

˜̂
l1.

However, R̃
(

˜̂r
)

= r̃ ∈ R, R̃
(

˜̂
l2

)
= l̃2 ∈ L but Cτ

r̃,l̃2
= ∅ because r̃ and l̃2

differ from each other in one rung location and therefore interact in T with total
strength at most τ − 1. This is a contradiction to Definition 2, which implies
Cτ

r̃,l̃2
�= ∅. ��

Corollary 1. There is no universal tile set U for the 2HAM, i.e., there is no U
such that, for all 2HAM tile assembly systems T = (T, S, τ), there exists an ini-
tial configuration ST and temperature τ ′ such that U = (U, ST , τ

′) simulates T .

Proof. Our proof is by contradiction, so assume that U is a universal tile set.
Denote as g the strength of the strongest glue on any tile type in U . Let T ′ =
(T ′, 4g + 1) be a modified version of the TAS T = (T, τ) from the proof of
Theorem 2 with each τ -strength glue in T converted to a strength 4g + 1 glue
in T ′ (all other glues and labels are unmodified). For any initial configuration
ST , we know that U = (U, ST , τ

′) does not simulate T for any τ ′ < 4g + 1. If
τ ′ ≥ 4g + 1, then the size of the largest supertile in A[U ] is 1, whence U is not
a universal tile set. ��

4 The Temperature-τ 2HAM Is Intrinsically Universal

In this section we state our second main result, which states that for fixed tem-
perature τ ≥ 2 the class of 2HAM systems at temperature τ is intrinsically
universal. In other words, for such τ there is a tile set that, when appropriately
initialized, simulates any temperature τ 2HAM system. Denote as 2HAM(k) the
set of all 2HAM systems at temperature k.

Theorem 3. For all τ ≥ 2, 2HAM(τ) is intrinsically universal.

In the full version of this paper we prove this theorem for two different, but
seemingly natural notions of simulation. The first, simply called simulation, is
where we require that when a simulated supertile α̃ may grow, via one attach-
ment, into a second supertile β̃, then any simulator supertile that maps to α̃
must also grow into a simulator supertile that maps to β̃. The converse should
also be true. The second notion, called strong simulation, is a stricter definition
where in addition to requiring that all supertiles mapping to α̃ must be capable
of growing into a supertile mapping to β̃ when α̃ can grow into β̃ in the simulated
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system, we further require that this growth can take place by the attachment of
any supertile mapping to γ̃, where γ̃ is the supertile that attaches to α̃ to get β̃.
Theorem 3 is proven for both notions of simulation. For each notion we provide
three results, and in all cases we provide lower scale factor for simulation relative
to strong simulation.

When we combine our negative and positive results, we get a separation be-
tween classes of 2HAM tile systems based on their temperatures.

Theorem 4. There exists an infinite number of infinite hierarchies of 2HAM
systems with strictly-increasing power (and temperature) that can simulate down-
ward within their own hierarchy.

Proof. Our first main result (Theorem 2) tells us that the temperature τ 2HAM
cannot be simulated by any temperature τ ′ < τ 2HAM. Hence we have, for
all i > 0, c ≥ 4, 2HAM

(
ci
)
0 2HAM

(
ci−1

)
, where 0 is the relation “cannot

be simulated by”. Moreover, Theorem 3 tells us that temperature τ 2HAM is
intrinsically universal for fixed temperature τ . Suppose that τ ′ < τ such that
τ/τ ′ ∈ N. Then temperature τ 2HAM can simulate temperature τ ′ (by simu-
lating strength g ≤ τ ′ attachments in the temperature τ ′ system with strength
g (τ/τ ′) attachments in the temperature τ system). Thus, for all 0 < i′ ≤ i,

2HAM
(
ci
)

can simulate, via Theorem 3, 2HAM
(
ci

′
)

. The theorem follows by

noting that our choice of c was arbitrary. ��

We have shown that for each τ ≥ 2 there exists a single set of tile types Uτ , and
a set of input supertiles over Uτ , such that the 2HAM system strongly simulates
any 2HAM TAS T . A related question is: does there exist a tile set that can
simulate, or strongly simulate, all temperature τ 2HAM TASs simultaneously?
Surprisingly, the answer is yes!

Theorem 5. For each τ > 1, there exists a 2HAM system S = (Uτ , τ) which
simultaneously strongly simulates all 2HAM systems T = (T, τ).
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Abstract. We consider the following clustering with outliers problem:
Given a set of points X ⊂ {−1, 1}n, such that there is some point z ∈
{−1, 1}n for which Prx∈X [〈x, z〉 ≥ ε] ≥ δ, find z. We call such a point z
a (δ, ε)-center of X.
In this work we give lower and upper bounds for the task of finding a

(δ, ε)-center. We first show that for δ = 1−ν close to 1, i.e. in the “unique
decoding regime”, given a (1− ν, ε)-centered set our algorithm can find
a (1 − (1 + o(1))ν, (1 − o(1))ε)-center. More interestingly, we study the
“list decoding regime”, i.e. when δ is close to 0. Our main upper bound
shows that for values of ε and δ that are larger than 1/poly log(n), there
exists a polynomial time algorithm that finds a (δ−o(1), ε−o(1))-center.
Moreover, our algorithm outputs a list of centers explaining all of the
clusters in the input.
Our main lower bound shows that given a set for which there exists a

(δ, ε)-center, it is hard to find even a (δ/nc, ε)-center for some constant
c and ε = 1/poly(n), δ = 1/poly(n).

Keywords: Clustering, list decoding, approximation algorithms.

1 Introduction

Suppose we are given access to a set of points X ⊂ {−1, 1}n such that at
least δ fraction of these points are ε-correlated with some unknown “center”
z ∈ {−1, 1}n. We wish to recover (an approximation of) z even if the remaining
1−δ fraction of the points in X are arranged in an adversarial manner. Formally,
a (δ, ε)-center is defined as follows,

Definition 1. Given a set X ⊂ {−1, 1}n, the point z ∈ {−1, 1}n is called a
(δ, ε)-center if there exists X ′ ⊂ X, |X | ≥ δX, such that:

∀x ∈ X ′ 〈x, z〉 ≥ ε.

We denote by Cε(z) the set of all points x ∈ X satisfying 〈z, x〉 ≥ ε.

We call Cε(z) the cluster of z in X .
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Clustering is a vastly studied topic, but usually the the focus is on inputs that
are drawn from some unknown (parameterized) distribution, or on deterministic
data with a small amount of adversarial noise. Here we consider the problem
in the “list decoding” regime, where the fraction of corrupted data points ap-
proaches 1. In this case, there are potentially more than a single cluster, so the
algorithm needs to output a list of clusters.

Formally, we study the following (δ, ε)-clustering problem: Given a set X ⊂
{−1, 1}n that contains a (δ, ε)-center, find all such centers.

Ideally, we are seeking an algorithm that lists all possible centers. Of course,
list decoding is feasible when there is some way to bound the list size. In the case
of error correcting codes, the distance of the code may facilitate such a bound.
In our case, there is no underlying code, so we instead rely on an approximate
representation. The idea is simply to output a short list of centers such that
every cluster is ‘represented’ by some center in the list. Pinning down the best
notion of ‘representation’ turns out to be tricky, and we view this as part of the
contribution of this paper, on which we elaborate more in Section 3.2.

In this work, we study upper and lower bounds for the problem of finding (δ, ε)-
center. The complexity of this problem depends on the choice of the parameters
ε and δ: We show that when ε or δ are close to 1, then the task of finding a (δ, ε)-
center is relatively easy. For ε and δ that are larger than 1/poly log(n) we present
an algorithm that finds a ((1 − o(1))δ, (1 − o(1))ε)-center. We complement our
results by showing hardness results when δ and ε are much smaller. We elaborate
on these results next.

1.1 Upper Bounds

In this part we present several approximation results for the (δ, ε)-clustering
problem. The approximation version of the (δ, ε)-center problem allows the out-
put to be a center whose cluster has a smaller margin value ε′ ≤ ε, and that
contains a smaller δ′ ≤ δ fraction of the points. In other words, under the
promise of existence of a (δ, ε) center, the approximation algorithm will find a
(δ′, ε′)-center.

Definition 2 (Approximate-Cluster Problem). An instance of the problem
is a (δ, ε)-centered set of points X = {x1, . . . , xN} ⊂ {−1, 1}n. The goal is to
find a (δ′, ε′) center with parameters as close as possible to ε, δ.

We first give an approximation algorithm for the easier “unique-decoding” pa-
rameter regime, i.e. where δ is close to 1.

Theorem 1. Let 0 < ε, δ < 1, and let X ⊂ {−1, 1}n. There is a polynomial-
time algorithm for solving the following problems,

1. If X is (1, ε)-centered find a (1, ε−O( logN√
n

))-center.

2. If X is (1 − ν, ε)-centered find a (1 − 1/a, ε − aν(1 + ε))-center, for any
a > 1. In particular, for a parameter τ > 0 if ν < τ2ε/(1 + ε) then this gives
a (1− τ, (1 − τ)ε)-center.

This algorithm is simply based on linear programming.
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We next turn to the more challenging setting that is when both ε and δ are
small. Our main result is a polynomial time algorithm that approximates the
(δ, ε)-center for values of ε and δ that are larger than 1/poly log(n). As explained
earlier we are in a “list decoding” setting, that allows for more than one cluster
to exist simultaneously. Moreover, we want our algorithm to output a list that
“exhaustively” explains all of the clusters in the data.

Here, the goal for the algorithm is to output an exhaustive list of centers,
namely a list for which:

– Each member in the list is a cluster in the data.
– Each cluster in the data is approximately equal to one of the clusters in the

list.

The reason for asking only for an approximate equality to members in the list is
clear: there can be an exponential number of different clusters, and approxima-
tion seems like a natural way to get a manageable list size. However, it turns out
that even when allowing approximate centers, there still might be an exponential
number of them (more details in Section 3.2). We show that this can only occur
if the exponentially-many clusters are contained in one bigger cluster. In light of
this example, the new goal for the algorithm becomes to output a list of centers
that “cover” all of the clusters in the set. We state below an informal version of
our main theorem, for a formal version please see Section 3.2.

Theorem 2 (Main result, informal). Let ε, δ > 0 be parameters, and let
X ⊂ {−1, 1}n be (δ, ε)-centered, with |X | = N . There exists an algorithm that
runs in time polynomial in n,N, exp( 1

ε2 log 1/εδ ), and outputs a list L of points

each in {−1, 1}n, such that with probability 1− 2−n the following holds:

– Each y ∈ L is a ((1− o(1)) · δ, (1− o(1)) · ε) center for X.
– For every z ∈ {−1, 1}n which is a (δ, ε)-center and , there exists y ∈ L such

that,
C(1−o(1))ε(z) ⊆o(1) C(1−o(1))ε(y),

where for sets A,B and 0 < τ < 1 we define A ⊆τ B if |A \B| < τ |A|.
– Moreover, if z ∈ {−1, 1}n is a (δ, ε)-center that is approximately maximal1,

there exists y ∈ L such that,∣∣Cε(z) � C(1−o(1))ε(y)
∣∣ < o(1) |Cε(z)| .

We note that, while a priory the number of covering centers could be exponen-
tially large, the correctness of our algorithm is a proof that it is polynomially
bounded.

Let us briefly sketch our proof of this theorem. We first randomly restrict the
given set of points into a small poly-logarithmic subset of coordinates. We show
that a (δ, ε)-center for X is still a center in the restricted space (if δ and ε are

1 Essentially, a cluster is approximately maximal if it is not approximately contained
in any larger cluster, see Definition 5.
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large enough). Therefore, we can enumerate over all possible centers and find a
solution in the restricted space. Then we show how to extend the solution from
the local space into a global solution.

Our last algorithmic result deals with smaller values of ε, ε ≥ logn/
√
n. When

δ and ε are this small the above algorithm runs in super polynomial time. For
such a choice of parameters, we prove that there is always a data point x ∈ X
that is itself a (2δε, ε2)-center. This leads to the following algorithm:

Theorem 3. Let X ⊂ {−1, 1}n be an (δ, ε)-centered set of N elements and let
ε " logn/

√
n. There is an algorithm that runs in time poly(N) and outputs a

list L such that:

– Each z ∈ L is a (2δε, ε2)-center.
– For every center z, there exists a center z′ ∈ L, such that at least 2ε fraction

of the points x ∈ X satisfying 〈x, z〉 > ε are also satisfying 〈x, z′〉 > ε2.

Observe that this result is incomparable to the one attained in Theorem 2. While
in Theorem 2 we are able to find almost the whole cluster of each maximal
center, the algorithm proposed by Theorem 3 finds only a non-trivial subset of
each cluster. On the other hand, Theorem 3 is stronger in the sense that it has
a guarantee for each center, and not just for a subset of them as in Theorem 2.

1.2 Lower Bounds

We next turn to lower bounds. It is not hard to see that given a (1, poly(1/n))-
centered set it is NP-hard to find such a center, by reduction from, say, 3SAT.
Moreover, we describe stronger reductions that show the hardness of the ap-
proximation problem. That is, we show that for some choices of the parameters
(δ, ε, δ′, ε′) the approximate center problem is infeasible unless BPP ⊇ NP.
Formally, we consider the following gap-clustering problem:

Definition 3. The gap-clustering problem with parameters (δ, ε, δ′, ε′):
The input of the problem is a set of point X ⊂ {−1, 1}n. The goal is to

distinguish between the following cases:

– There exists a (δ, ε)-center in X.
– There is no (δ′, ε′)-center in X.

There are four parameters involved so it is complicated to understand the trade-
offs between the settings of the parameters. There are two key points to address:
First we would like to get as large as possible a gap between δ and δ′ and ε and
ε′. The second is the location of the gap: find the largest ε and δ for which the
problem is still hard.

Since a large gap between δ and δ′ might lead to a small gap between ε and
ε′, and vice versa, we separate this optimization question into two: find largest
δ-gap and find the largest ε-gap.

Our first hardness result focuses on the gap between ε and ε′. It shows that
it is hard to distinguish between the case that there exists a (δ, ε)-center, and
the case that there is no (δ/c, ε/2)-center for some constant c > 1, ε which is an
arbitrarily large polynomial in 1/n, and δ that is a constant, formally:
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Theorem 4. Unless BPP ⊇ NP, there exist constants δ, c > 1, such that for
every constant α > 2, it is infeasible to solve the gap-clustering problem with
parameters: δ, δ′ = δ/c, ε = 2

n1/α − o( 1
n1/α ) and ε′ = 1

n1/α + ω( 1
n1/α ).

Our next result focuses on amplifying the gap between δ and δ′. It shows that it
is NP-hard to distinguish between the case that there exists a (δ, ε)-center, and
the case that there is no ( δ

nc , ε
′)-center, for some constant c, and for ε, δ which

are poly(1/n), and ε′ = (1− o(1))ε. Formally:

Theorem 5. Unless BPP ⊇ NP, there exist constants c1 > 0, c2 > 0 such that
it is infeasible to solve the gap-clustering problem with parameters: δ = n−c1 , δ′ =
δ

nc2
and ε > ε′ = Θ(n−1/3).

There is a gap between our algorithmic results and the aforementioned lower
bounds, two particular open questions are:

– Theorem 3 states that given a (δ, ε)-centered set, there is a polynomial time
algorithm that finds a (δε, ε2)-center. A natural question that arises is how
hard is the task of finding a better center - that is finding a (δ′, ε′)-center
for ε′ " ε2 and δ′ being non trivial.

– Both our hardness results deal with sub-constant values of ε, and it is not
clear whether we can strengthen our hardness result to deal with larger values
of ε. In particular, given a (δ = 1/poly(n), ε = Ω(1))-centered set is it hard
to find a (δ′, ε/2)-center for any nontrivial δ′ ? Note that if we take δ to be
larger than 1/poly(log(n)), then by Theorem 2 we can find an approximate
solution in polynomial time.

1.3 Related Work

Upper Bounds. The most related work on clustering with outliers, as far as we
know, is the work of [BHPI02]. This work considers several clustering problems,
one of which is the clustering with outliers problem. The main difference is that
we consider a set of data points in the Boolean hypercube {−1, 1}n, whereas
they consider a set of points in Rn, and their algorithm outputs centers that are
in Rn as well. We provide a more detailed comparison between our work and
theirs in the full version of the paper.

We are not aware of works that looked at the “list-decoding” version of the
clustering problem, where the algorithm needs to output a list explaining all
of the clusters in the data. In other settings in theoretical computer science
list decoding has been, of course, extremely successful. The seminal work of
Goldreich and Levin [GL89] has a similar feel: a string is recovered from its
noisy parities. In our setting, we get not a parity of the bits, but an ε-correlated
version of them, and this only on a δ fraction of the inputs. The most similar
works are those of [IJK06, IJKW10] on list decoding direct products. In these
works the decoding algorithm is given an access to k-tuples of bits of the hidden
string such that only a δ fraction of the k-tuples are correct and the rest are
adversarial noise. Our setting is even harder in that even the δ fraction of “good”
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inputs are only guaranteed to be ε-correlated with the hidden string, rather than
completely equal to it on k known bits. Extending our clustering algorithm to
a direct product decoding result has been one of our main motivations, and is
still work in progress.

Lower Bounds. Our lower bounds are closely related to the works of [FGKP09,
GR06] on the MaxLin-Q problem, defined as follows: Given a system of equations
over the rationales, and we are expected to “almost” satisfy as many equations as
possible. Formally a MaxLin-Q with parameters (N,n, δ, ε) consists of a system
of N equations over n variables x1, . . . , xn with rational coefficients,

{ai0 +
N∑
j=1

aijxj = 0}j=1,...,N

and the goal is to distinguish between the following cases:

– At least (1− δ)N of the equations can be satisfied.
– In any assignment: ∣∣∣∣∣∣ai0 +

N∑
j=1

aijxj

∣∣∣∣∣∣ < ε

is true for at most δN equations.

In [FGKP09] this problem is shown to be NP-hard for any constant value of
δ > 0.

The gap-clustering problem and MaxLin-Q are similar in the following sense:
In the completeness case, there exits an assignment (center) that satisfies (cor-
relates) much more equations (points) compared to the soundness case. Fur-
thermore, the quality of the solution considered in the completeness is much
better compared to the soundness case. However, there are several hurdles that
prevent us from reducing MaxLin-Q into gap-clustering. First, the coefficients
of the linear-equations can take values outside {−1, 1} unlike in gap-clustering.
Second, in MaxLin-Q we are trying to satisfy equalities, and not inequalities as
in gap-clustering. Third, note that it is hard to solve MaxLin-Q even when there
is an assignment that satisfies 1 − ε fraction of equalities. In comparison, the
problem of finding a (1 − δ, ε)-center is easy, see Theorem 1.

Although we could not directly reduce MaxLin-Q into gap-clustering, we were
able to apply similar ideas to those presented in [FGKP09] and [GR06] to derive
our hardness results.

Organization of the Paper: Section 2 contains standard tools we use later.
Section 3 studies the upper bounds for our clustering problem and contains
the proof of Theorem Theorem 2. In Section 4 we study lower bounds for the
gap-clustering problem.
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2 Preliminaries

We state the Johnson bound as appears in the book [AB08]. It asserts that, for
an error correcting code with distance 1/2− ε2, and for every word x, a ball of
radius 1/2− ε around x cannot contain too many codewords.

Lemma 1 (Johnson Bound [Joh62], Theorem 19.23 in [AB08]). Let 0 <
ε < 1, for every x ∈ {0, 1}n, there exist at most 1/(2ε) vectors y1, . . . , y� ∈
{0, 1}n such that Δ(x, yi) ≤ 1/2− ε for every i ∈ [
], and Δ(yi, yi′) ≥ 1/2− ε2

for every i �= i′ ∈ [
].

We also state here the standard Chernoff bound:

Lemma 2 (Chernoff Bound). Let X1, . . . , Xt be random independent vari-
ables taking values in the interval [0, 1], with expectations μ1, . . . , μt, respectively.
Let X = 1

t

∑
i∈[t]Xi, and let μ = 1

t

∑
i∈[t] μi be the expectation of X. For any

0 < γ ≤ 1, we have the following:

Pr[|X − μ| ≥ γ] ≤ exp−γ
2n/3 .

Notation. For two sets A,B ⊆ {−1, 1}n we denote their symmetric difference
by A�B. For a vector z ∈ {−1, 1}n and a subset K ⊆ [n], we denote by zK its
restriction to the coordinates in K.

3 Upper Bounds: Algorithms for Clustering

In this section we describe algorithms for clustering first in the “unique decoding”
regime, where a small fraction of the data points are corrupted, and then in the
“list decoding” regime, where a very large fraction of the data is corrupted.

We first observe that if X has a (δ, ε)-center, for ε = 1 − τ for small τ ,
then finding an approximate center is relatively easy: Any point x ∈ X that
belongs to the centered cluster is itself a (δ, 1 − 2τ)-center for that cluster, by
the triangle inequality. By enumerating over all elements in X and checking for
each x ∈ X how many y ∈ X are within the specified radius, we can recover a
(δ, 1− 2τ)-center.

The more interesting case is, therefore, when ε < 1/2 approaches 0.

3.1 Clustering with Few Outliers (Proof of Theorem 1)

We begin by addressing the easier “unique decoding” regime, where only a rela-
tively small fraction of the data points are corrupt. More accurately, we give an
algorithm that addresses the situation where δ is close to 1.

Theorem 1. Let 0 < ε, δ < 1, and let X ⊂ {−1, 1}n. There is a polynomial-time
algorithm for solving the following problems,
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1. If X is (1, ε)-centered find a (1, ε−O( logN√
n

))-center.

2. If X is (1 − ν, ε)-centered find a (1 − 1/a, ε − aν(1 + ε))-center, for any
a > 1. In particular, for a parameter τ > 0 if ν < τ2ε/(1 + ε) then this gives
a (1− τ, (1 − τ)ε)-center.

Proof. 1. Given a (1, ε)-centered set X ⊆ {−1, 1}n, write a linear program in
variables z1, . . . , zn ∈ R with the following equations

∀x ∈ X,
∑
i

xizi ≥ εn; ∀i ∈ [n], −1 ≤ zi ≤ 1

The solution will be some z ∈ [−1, 1]n, and output z̃ the randomized round-
ing of z, i.e. z̃i = 1 with probability (1 + zi)/2.
A standard Chernoff bound will show that |〈z̃, x〉 − 〈z, x〉| <

√
2 log |X | /n

for all x ∈ X with high probability.
2. Given a (1 − ν, ε)-centered set X we write a similar linear program, except

we add ‘violation’ variables vx per each x as follows

∀i ∈ [n] − 1 ≤ zi ≤ 1

∀x ∈ X 0 ≤ vx ≤ 1 + ε

∀x ∈ X 1

n

∑
i

xizi + vx ≥ ε

and then we find a solution minimizing val = 1
|X|

∑
x vx. Again, the final

output of the algorithm is a randomized rounding z̃ of the solution z.
It is easy to see that the solution z = 0̄ with ∀x, vx = ε is a feasible solution
whose value is val = ε. A more interesting solution is where z is the promised
(1−ν, ε)-center, and for every equation violated by x outside this ball, we set
vx = 1+ε. This solution has value val = 0·(1−ν)+(1+ε)·ν = (1+ε)ν. These
two solutions show that the solution to the linear program gives information
only as long as (1 + ε)ν < ε. Suppose z, {vx}x∈X is the solution for this
system, with value v = Ex[vx] ≤ (1 + ε)ν < ε. By Markov’s inequality, at
most 1/a fraction of the x’s have vx > av. The remaining 1− 1/a equations
are satisfied to within av, as claimed. The last conclusion follows by setting
a = 1/τ .

3.2 Clustering with Few Outliers: The List Decoding Regime

We now turn to the clustering question when the input consists of mostly noise.
In other words, where the data set X is guaranteed to be (δ, ε)-centered, for
values of δ, ε as small as 1/poly log(n).

Clearly, X might have several distinct (δ, ε)-centers, and ideally we would like
an algorithm that outputs a list of all of them. To control the length of the list,
we must settle for a list of centers that ‘represent’ all the possible centers in
X . One natural way to define ‘represent’ is by saying that z represents z′ if the
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symmetric difference between Cε(z) and Cε(z
′) is small (compared to their size).

However, this notion turns out to be insufficient. It is easy to describe a set X of
points that are highly correlated to a single center, and yet could be explained
by an exponential number of other centers, whose pairwise symmetric difference
is large, see full version for details. This example shows that the best we can
hope for is an algorithm that outputs a list of clusters that “approximately
cover” every cluster, in the sense that every (δ, ε) cluster is guaranteed to be
approximately contained in a cluster from the list.

Definition 4. We say that A ⊆τ B if |A \B| ≤ τ |A|.

Definition 5 (τ-maximal center). For a set X, and parameters δ, ε, τ > 0
we say that a (δ, ε)-center z is τ-maximal if the following holds: For every z′ ∈
{−1, 1}n, if Cε(z) ⊆2τ C(1−τ)ε(z

′), then∣∣C(1−τ)ε(z
′)
∣∣ < (1 + ρ) |Cε(z)| , for ρ = τ2δε/8.

The main point of this definition is that if there is some z′ whose cluster approx-
imately contains the cluster of a maximal z, then the cluster of z′ is not much
larger. With this definition, we can now state the formal version of Theorem 2:

Theorem 6 (Formal Version of Theorem 2). Let ε, δ, τ > 0 be parameters.
Let X ⊂ {−1, 1}n be an N -element set that is (δ, ε)-centered. There exists an

algorithm that runs in time polynomial in n,N, 2O( 1
ε2τ2 log 1/τ2δε), and outputs a

list L of points each in {−1, 1}n, such that with probability 1− 2−n the following
holds:

1. Each y ∈ L is a ((1− τ) · δ, (1− 2τ) · ε) center for X.
2. For each z ∈ {−1, 1}n which is a (δ, ε)-center there exists y ∈ L such that,

C(1−τ)ε(z) ⊆2τ C(1−2τ)ε(y).

3. Moreover, if z is τ-maximal, then∣∣Cε(z)�C(1−τ)ε(y)
∣∣ < O(τ)

∣∣C(1−τ)ε(z)
∣∣ .

The following lemma is the main technical tool in the proof:

Lemma 3. Let ε, δ, τ > 0 be parameters. Let X ⊂ {−1, 1}n be an N -element set
that is (δ, ε)-centered. There exists an algorithm that runs in time poly(n,N, 2k),
where k = O( 1

ε2τ2 log 1/τ2δε), and outputs a list L of at most 2k points each in
{−1, 1}n, such that:

– Each y ∈ L is a ((1− τ) · δ, (1− 2τ) · ε) center for X.
– For each z ∈ {−1, 1}n which is a (δ, ε)-center with probability > 1/2 there

exists y ∈ L such that,

C(1−τ)ε(z) ⊆2τ C(1−2τ)ε(y).
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Due to space limitations we omit the full proof of Theorem 6 and give below
only the proof of the main technical lemma above, Lemma 3.

Proof (Proof of Lemma 3). The proof of this lemma follows by randomly re-
stricting the points to a smaller dimensional space and then enumerating to find
a good approximation for the cluster. The approximate center is then found by
applying Theorem 1 on the approximate cluster. This algorithm is relatively
efficient when ε, δ = poly(1/ logn). The algorithm is as follows.

Algorithm 1. Randomly Restrict and Enumerate

Input: A (δ, ε)-centered set X.
Parameters: k = C

ε2τ2 log 1/τ
2δε for some large enough C to be determined later, and

τ > 0.

1. Choose at random a multiset K ⊆ [n] by selecting a random i ∈ [n] into K
repeatedly k times with replacement.

2. For each y ∈ {−1, 1}k let X(y) = {x ∈ X | 〈xK , y〉 ≥ (1− τ/2) · ε}, and compute
the center z(y) of X(y) using the linear programming algorithm from Item 3 of
Theorem 1 with correlation parameter (1− τ )ε. If z(y) is a ((1− τ ) · δ, (1− 2τ ) · ε)
center for X then output it.

Clearly, each center produced by the list is a ((1− τ) · δ, (1− 2τ) · ε) center for
X . Moreover, the list size is bounded by 2k. It is left to prove the second and
the third item of the lemma. Let z∗ be a (δ, ε)-center, and consider the set

X∗ := {x ∈ X | 〈xK , z∗K〉 > ε(1− τ/2)} .

We will prove that 1−γ fraction of the elements of X∗ also belong to C(1−τ)ε(z
∗),

which means that X∗ is (1−γ, (1−τ)ε)-centered. This implies that at step 2 our
algorithm will output some center z′ of X∗ (because X∗ = X(y) for y = z∗K). We
will then prove that C1−τε(z

∗) ⊂2τ C(1−2τ)ε(z
′) which means that z∗ is covered

by our list.
We first claim that the sampling is good enough.

Claim. We say that x ∈ X is typical with respect to K if |〈x, z∗〉 − 〈xK , z∗K〉| ≤
τε
2 . Then for at least half of the choices of K, the fraction of typical x’s is at

least 1− γ for γ := 2 exp(−τ2ε2k/12) < τ2δε/8.

Proof. We first show that Prx∈X,K [x is not typical] ≤ γ. In fact, we show this
for each fixed x separately. For a random i, xiz

∗
i can be viewed as a random ±1

variable whose expectation is 〈x, z∗〉. By a Chernoff bound the probability that
|〈x, z∗〉 − 〈xK , z∗K〉| > τε/2 is at most γ/2.

By an averaging argument this means that for at least half of the choices of
K have no more than γ atypical x’s, which gives the claim.
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Suppose from now on that K is as in the claim, so there are at most γ atypical
points x ∈ X . Clearly, every point in X∗ for which 〈x, z∗〉 < (1 − τ)ε must be
atypical,and every typical point in Cε(z) is also in X∗. So z∗ is a (1 − γ/(δ −
γ), (1− τ)ε)-center for this set. These conditions allow step 2 of the algorithm to
work, according to Theorem 1, and to output a point z′ that is a (1−τ, (1−2τ)ε)-
center for X∗. The conditions of Theorem 1 are simply that γ/(δ− γ) < 2γ/δ <
τ2 ε

1−ε which clearly holds by the choice of k.
In order to complete the proof, we show∣∣C(1−τ)ε(z

∗) \ C(1−2τ)ε(z
′)
∣∣ ≤ γ |X |+ τ |X∗| ≤ 3τ

∣∣C(1−τ)ε(z
∗)
∣∣

This is simply since the measure of points that are in C(1−τ)ε(z
∗) but not in X∗

is at most γ |X |, and the measure of points in X∗ but not in C(1−2τ)ε(z
′) is at

most τ |X∗| (by the guarantee of Theorem 1). For the last inequality we rely on
the fact that

∣∣C(1−τ)ε(z
∗)
∣∣ ≥ δ and γ/δ < τ .

Due to space limitations we omit the proof of Theorem 3, and it appears in the
full version of this paper.

4 Hardness of Approximating the Gap-Clustering
Problem

In this section we study the hardness of the task of finding a (δ, ε) over various
choices of parameters. We first show that it is infeasible to solve the task of
finding a (δ, ε)-center without approximation, even when δ = 1.

Claim. Unless BPP ⊇ NP, given a (1, ε)-centered set it is infeasible to find a
(1, ε)-center, for ε = n−1/3(1− o(1)).

Due to space limitation we omit the proof, and it can be foul in the full version
of the paper.

Of course, the more interesting question is that of approximate hardness. We
show that one cannot even find an approximate center when such exists. Recall
the definition the problem (Definition 3), where the task is given a set of points
X distinguish between the case that there exists a (δ, ε)-center, and the case
where no (δ′, ε′)-center exists.

There are two key points which we like to address in the parameters settings:
First we would like to get as large as possible a gap between δ and δ′ and ε
and ε′. The second is locating the gap- finding the largest ε and δ for which
the problem is hard. It is easy to see the larger ε and δ are, the stronger is the
hardness result.

There are four parameters involved so the gaps and tradeoffs between the
parameters can become quite complicated. We separate the task of finding the
largest δ-gap and the task of finding the largest ε-gap.

Our first hardness result shows a factor 2 gap between ε and ε′. It shows that
it is hard to distinguish between the case that there exists a (δ, ε)-center, and the
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case that there is no (δ/c, ε/2) for some constant c > 1, ε which is an arbitrarily
large polynomial in 1/n, and δ that is a constant:

Theorem 4. Unless BPP ⊇ NP, there exist constants δ, c > 1, such that for
every constant α > 2, it is infeasible to solve the gap-clustering problem with
parameters: δ, δ′ = δ/c, ε = 2

n1/α − o( 1
n1/α ) and ε′ = 1

n1/α + ω( 1
n1/α ).

Due to space limitations we omit the proof, and include it in the full version of
the paper.

Our next result shows a polynomial gap between δ and δ′. It shows that it is
hard to distinguish between the case that there exists a (δ, ε)-center, and the case
that no ( δ

nc , ε
′)-center exists, for c being some constant, ε, δ which are poly(1/n),

and ε′ = (1− o(1))ε:

Theorem 5. Unless BPP ⊇ NP, there exist constants c1 > 0, c2 > 0 such that
it is infeasible to solve the gap-clustering problem with parameters: δ = n−c1 , δ′ =
δ

nc2
and ε > ε′ = Θ(n−1/3).

Due to space limitations we omit the proof, and include it in the full version of
the paper.
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Abstract. We present the first combinatorial polynomial time algo-
rithm for computing the equilibrium of the Arrow-Debreu market model
with linear utilities. Our algorithm views the allocation of money as
flows and iteratively improves the balanced flow as in [Devanur et al.
2008] for Fisher’s model. We develop new methods to carefully deal with
the flows and surpluses during price adjustments. In our algorithm, we
need O(n6 log(nU)) maximum flow computations, where n is the number
of persons and U is the maximum integer utility, and the length of the
numbers is at most O(n log(nU)) to guarantee an exact solution. The
previous polynomial time algorithms [Nenakov and Primak 1983, Jain
2007, Ye 2007] for this problem are based on solving convex programs
using the ellipsoid algorithm or interior-point method.

1 Introduction

We provide the first combinatorial polynomial algorithm for computing the
model of economic markets formulated by Walras in 1874 [15]. In this model,
every person has an initial distribution of some goods and a utility function of all
goods. The market clears at a set of prices if every person sells its initial goods
and then uses its entire revenue to buy a bundle of goods with maximum utility.
We want to find the market equilibrium in which every good is assigned a price
so that the market clears. In 1954, two Nobel laureates, Arrow and Debreu [2],
proved that the market equilibrium always exists if the utility functions are con-
cave, which is why this model is usually called “Arrow-Debreu market”. But,
their proof is based on Kakutani’s fixed point theorem and non-constructive.
Since then, many algorithmic results studied the linear version of this model,
that is, all utility functions are linear.

The first polynomial time algorithm for the linear Arrow-Debreu model is
given by [13,11]; it is based on solving a convex program using the ellipsoid
algorithm. There are non-combinatorial algorithms which are faster than our
algorithm, e.g., the one with time bound of O(n4 logU) given by Ye [16] using
the interior-point method. However, our algorithm has the advantage of being
quite simple (see Figure 1 for a complete listing) and combinatorial, and hence,
gives additional insight in the nature of the problem. We obtain equilibrium
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prices by a simple procedure that iteratively adjusts prices and allocations in a
carefully chosen, but intuitive manner. Previous to our algorithms, combinatorial
algorithms were only known for computing approximate equilibria for the Arrow-
Debreu model. Devanur and Vazirani [8] gave an approximation scheme with

running time O(n
4

ε log n
ε ), improving [12]. Recently, Ghiyasvand and Orlin [10]

improved the running time to O(nε (m+ n logn)).
Many combinatorial algorithms consider a simpler model proposed by Fisher

(see [3]), in which every buyer possesses an initial amount of money instead of
some goods. Eisenberg and Gale [9] reduced the problem of computing the Fisher
market equilibrium to a concave cost maximization problem and thus gave the
first polynomial algorithm for the Fisher market by ellipsoid algorithm. The first
combinatorial polynomial algorithm for the linear Fisher market equilibrium
is given by Devanur et al [7]. When the input data is integral, the running
time of their algorithm is O(n8 logU + n7 log emax), where n is the number of
buyers, U the largest integer utility, and emax the largest initial amount of money
of a buyer. Recently, Orlin [14] improved the running time for computing the
linear Fisher model to O(n4 logU + n3 log emax) and also gave the first strongly
polynomial algorithm with running time O(n4 logn).

We first define the model we will use in this paper, then discuss our main
contributions.

1.1 Model and Definitions

We make the following assumptions on the model as in Jain’s paper [11]:

1. There are n persons in the system. Each person i has only one good, which is
different from the goods other people have. The good person i has is denoted
by good i.

2. Each person has only one unit of good. So, if the price of good i is pi, person
i will obtain pi units of money when selling its good.

3. Each person i has a linear utility function
∑

j uijzij , where zij is the amount
of good j consumed by i.

4. Each uij is an integer between 0 and U .
5. For all i, there is a j such that uij > 0. (Everybody likes some good.)
6. For all j, there is an i such that uij > 0. (Every good is liked by somebody.)
7. For every proper subset P of persons, there exist i ∈ P and j /∈ P such that
uij > 0.

All these assumptions, with the exception of the last, are without loss of general-
ity. The last assumption implies that all the equilibrium prices are nonzero [11].
The discuss more about the last assumption will appear in the full version of
this paper.

Let p = (p1, p2, ..., pn) denote the vector of prices of goods 1 to n, so they
are also the budgets of persons 1 to n. In this paper, we denote the set of all
buyers by B = {b1, b2, ..., bn} and the set of all goods by C = {c1, c2, ..., cn}. So,
if the price of goods ci is pi, buyer bi will have pi amount of money. For a subset
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B′ of persons or a subset C′ of goods, we also use p(B′) or p(C′) to denote the
total prices of the goods the persons in B′ own or the goods in C′. For a vector
v = (v1, v2, ..., vk), let:

– |v| = |v1|+ |v2|+ ...+ |vk| be the l1-norm of v.
– ‖v‖ =

√
v21 + v22 + ...+ v2k be the l2-norm of v.

It can be shown that each person only buys their favorite goods to maximize
their utilities, that is, the goods with the maximum ratio of utility and price.
Define its bang per buck to be αi = maxj{uij/pj}. The classical Arrow-Debreu [2]
theorem says that there is a non-zero market clearing price vector, in which all
the goods are sold and every buyer spends all its money to obtain a bundle of
goods maximizing its utility.

For the current price vector p, the “equality graph” is a flow network G =
({s, t} ∪ B ∪ C,EG), where s is the source node and t is the sink node, then
B = {b1, ..., bn} denotes the set of buyers and C = {c1, ..., cn} denotes the set of
goods. EG consists of:

– Edges from s to every node bi in B with capacity pi.
– Edges from every node ci in C to t with capacity pi.
– Edges from bi to cj with infinite capacity if uij/pj = αi. Call these edges

“equality edges”.

So, our aim is to find a price vector p such that there is a flow in which all edges
from s and to t are saturated, i.e., (s,B ∪ C ∪ t) and (s ∪ B ∪ C, t) are both
minimum cuts. When this is satisfied, all goods are sold and all of the money
earned by every person is spent.

In a flow f , define the surplus r(bi) of a buyer i to be the residual capacity
of the edge (s, bi), and define the surplus r(cj) of a good j to be the residual
capacity of the edge (cj , t). That is, r(bi) = pi−

∑
j fij , and r(cj) = pj −

∑
i fij ,

where fij is the amount of flow in the edge (bi, cj). Define the surplus vector of
buyers to be r(B) = (r(b1), r(b2), ..., r(bn)). Also, define the total surplus to be
|r(B)| =

∑
i r(bi), which is also

∑
j r(cj) since the total capacity from s and to

t are both equal to
∑

i pi. For convenience, we denote the surplus vector of flow
f ′ by r′(B). In the network corresponding to market clearing prices, the total
surplus of a maximum flow is zero.

1.2 Overview of Our Algorithm

The overall structure of our algorithm is similar to the ones of Devanur et al. [7]
and Orlin [14] for computing equilibrium prices in Fisher markets, however,
the details are quite different. The algorithm works iteratively. It starts with
all prices equal to one. In each iteration it adjusts prices and allocations. The
adjustment is guided by the analysis of a maximum flow in the equality graph.
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In each iteration we first compute a balanced maximum flow [7]. A balanced
maximum flow1 is a maximum flow that minimizes the l2-norm of the surplus
vector r(B). We then order the buyers in order of decreasing surpluses: b1, . . . , bn.
We find the minimal i such that r(bi) is substantially larger (by a factor of
1 + 1/n) than r(bi+1); i = n if there is no such i. Let B′ = {b1, . . . , bi} and let
Γ (B′) be the goods that are adjacent to a node in B′ in the equality graph.
Since the flow is balanced, there is no flow from the buyers in B \ B′ to the
goods in Γ (B′). We raise the prices of and the flows2 into the nodes of Γ (B′)
by a common factor x. This affects the surpluses of the buyers, some go up
and some go down. More precisely, there are four kind of buyers, depending on
whether a buyer belongs to B′ or not and on whether the good owned by the
buyer belongs to Γ (B′) or not. We increase the prices until one of three events
happens: (1) a new edge enters the equality graph3 (2) the surplus of a buyer
in B′ and a buyer in B \B′ becomes equal, or (3) x reaches a substantial value
(1 + 1/(n3) in our algorithm).4 This ends the description of an iteration.

In what sense are we making progress? The l2-norm of the surplus vector
does not decrease in every iteration.5 In (3), the l2-norm may increase. However,
also at least one price increases significantly. Since we can independently upper
bound the prices, we can bound the number of iterations in which event (3)
occurs, and as a consequence, the total increase of the l2-norm of the surplus
vector. When event (1) or (2) occurs, the l2-norm of the surplus vector decreases
substantially, since surplus moves from a buyer in B′ to a buyer in B \ B′ and
buyers in these two groups have, by the choice of groups, substantially different
surpluses.

We continue until the l2-norm of the surplus vector is sufficiently small, so
that a simple rounding procedure yields equilibrium prices.

1.3 Other Results

There are also algorithms considering Arrow-Debreu model with non-linear util-
ities [6,5]. The CES (constant elasticity of substitution) utility functions have
drawn much attention, where the utility functions are of the form u(x1, , xn) =
(
∑n

j=1 cjx
p
j )1/p for −∞ < p < 1 and p �= 0. [5] has shown that for p > 0 and

−1 ≤ p < 0, there are polynomial algorithms by convex program. However,
Chen, Paparas and Yannakakis [4] have shown that it is PPAD-hard to solve
market equilibrium of CES utilities for p < −1. They also define a new concept
“Non-monotone utilities”, and show the PPAD-hardness to solve the markets

1 In contrast to [7] the balanced maximum flow is not unique.
2 In [7,14] only prices are raised and flows stay the same. This works for Fisher’s
model because budgets are fixed. However, in the Arrow-Debreu model, an increase
of prices of goods will also increase the budgets of their owners.

3 The increase of prices of goods in Γ (B′) makes the goods in C\Γ (B′) more attractive
and hence an equality edge connecting a buyer in B′ with a good in C \ Γ (B′) may
come into existence. This event also exists in [7,14].

4 Events (2) and (3) have no parallel in [7,14].
5 In [7] the balance is strictly decreasing.
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with non-monotone utilities. It remains open to find the exact border between
tractable and intractable utility functions.

2 The Algorithm

As in [7], our algorithm finds a balanced flow and increases the prices in the
“active subgraph”. But, in the Arrow-Debreu model, when we increase the prices
of some good i, the budget of buyer i will also increase. So, we need to find a
careful way to prevent the total surplus from increasing.

2.1 Balanced Flow

Definition 1. In the network G of current p, a balanced flow is a maximum
flow that minimizes ‖r(B)‖ over all choices of maximum flows.

For flows f and f ′ and their surplus vectors r(B) and r′(B), respectively, if
‖r(B)‖ < ‖r′(B)‖, then we say f is more balanced than f ′. The next lemma
shows why it is called “balanced”.

Lemma 1. [7] If a ≥ bi ≥ 0, i = 1, 2, ..., k and δ ≥
∑k

i=1 δi, where δ, δi ≥ 0,
i = 1, 2, ..., k, then:

‖(a, b1, b2, ..., bk)‖2 ≤ ‖(a+ δ, b1 − δ1, b2 − δ2, ..., bk − δk)‖2 − δ2. (1)

Proof.

(a+ δ)2 +

k∑
i=1

(bi − δi)2 − a2 −
k∑

i=1

b2i (2)

≥ 2aδ + δ2 − 2

k∑
i=1

biδi ≥ δ2 + 2a(δ −
k∑

i=1

δi) ≥ δ2. (3)

Lemma 2. [7] In the network G for a price vector p, given a maximum flow f ,
a balanced flow f ′ can be computed by at most n max-flow computations.

Proof. In the residual graph Gf w.r.t. f , let S ⊆ B ∪ C be the set of nodes
reachable from s, and let T = (B ∪ C) \ S be the remaining nodes. Then, there
are no edges from S∩B to T ∩C in the equality graph, and there is no flow from
T ∩ B to S ∩ C. The buyers in T ∩ B and the goods in S ∩ C have no surplus
w.r.t. f , and this holds true for every maximum flow. Let G′ be the network
spanned by s ∪ S ∪ t, and let f ′ be the balanced maximum flow in G′. The f ′

can be computed by n max-flow computations. (Corollary 8.8 in [7] is applicable
since (s ∪ S, t) is a min-cut in G′.) Finally, f ′ together with the restriction of f
to s ∪ T ∪ t is a balanced flow in G.

The surpluses of all goods in f ′ are the same as those in f since we only balance
the surpluses of buyers.
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2.2 Price Adjustment

We need to increase the prices of some goods to get more equality edges ([7,14]).
For a subset of buyers B1, define its neighborhood Γ (B1) in the current network
to be: Γ (B1) = {cj ∈ C|∃bi ∈ B1, s.t. (bi, cj) ∈ EG}. Clearly, there is no
edge in G from B1 to C \ Γ (B1). In a balanced flow f , given a surplus bound
S > 0, let B(S) denote the subset of buyers with surpluses at least S, that is,
B(S) = {bi ∈ B|r(bi) ≥ S}. We can see the goods in Γ (B(S)) have no surplus.

Lemma 3. In a balanced flow f , given a surplus bound S, there is no edge that
carries flow from B \B(S) to Γ (B(S)).

Proof. Suppose there is such an edge (bi, cj) that carries flow such that bi /∈
B(S) and cj ∈ Γ (B(S)). Then, in the residual graph, there are directed edges
(bk, cj) and (cj , bi) with nonzero capacities in which bk ∈ B(S). However, r(bk) ≥
S > r(bi), so we can augment along this path and get a more balanced flow,
contradicting that f is already a balanced flow.

From Lemma 3, we can increase the prices in Γ (B(S)) by the same factor x
without inconsistency. There is no edge from B(S) to C \ Γ (B(S)), and the
edges from B \ B(S) to Γ (B(S)) are not carrying flow, and hence, there will
be no harm if they disappear from the equality graph. If there are edges (bi, cj)
and (bi, ck) where bi ∈ B(S), cj , ck ∈ Γ (B(S)), then uij/pj = uik/pk. Since the
prices in Γ (B(S)) are multiplied by a common factor x, uij/pj and uik/pk remain
equal after a price adjustment. However, the goods in C \ Γ (B(S)) will become
more attractive, so there may be edges from B(S) to C \ Γ (B(S)) entering the
network, and the increase of prices needs to stop when this happens. Define such
a factor to be X(S), that is,

X(S) = min{uij
pj
· pk
uik
|bi ∈ B(S), (bi, cj) ∈ EG, ck /∈ Γ (B(S))}. (4)

So, we need O(n2) multiplications/divisions to compute X(S). When we increase
the prices of the goods in Γ (B(S)) by a common factor x ≤ X(S), the equality
edges in B(S) ∪ Γ (B(S)) will remain in the network. We will also need the
following theorem to prevent the total surplus from increasing.

Theorem 1. Given a balanced flow f in the current network G and a surplus
bound S, we can multiply the prices of goods in Γ (B(S)) with a parameter x > 1.
When x ≤ mini{pi/(pi − r(bi))|bi ∈ B(S), ci /∈ Γ (B(S))} and x ≤ X(S), we
obtain a flow f ′ in the new network G′ of adjusted prices with the same value of
total surplus by:

f ′ij =

{
x · fij if cj ∈ Γ (B(S));
fij if cj /∈ Γ (B(S)).

Then, the surplus of each good remains unchanged, and the surpluses of the
buyers become:
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r′(bi) =

⎧⎪⎪⎨⎪⎪⎩
x · r(bi) if bi ∈ B(S), ci ∈ Γ (B(S));
(1 − x)pi + x · r(bi) if bi ∈ B(S), ci /∈ Γ (B(S));
(x− 1)pi + r(bi) if bi /∈ B(S), ci ∈ Γ (B(S));
r(bi) if bi /∈ B(S), ci /∈ Γ (B(S)).

We call these kinds of buyers type 1 to type 4 buyers, respectively.

Proof. Since the flows on all edges associated with goods in Γ (B(S)) are multi-
plied by x, the surplus of each good in Γ (B(S)) remains zero. Only the surplus
of type 2 buyers decreases because the flows from a type 2 buyer bi are multiplied
by x, but its budget pi is not changed. The flow after adjustment is x(pi−r(bi)).
We need this to be at most pi, so x ≤ pi/(pi − r(bi)) for all type 2 buyers bi,
and in f ′, the new surplus r′(bi) = (1− x)pi + x · r(bi).

Since both money and flows are multiplied by x for a type 1 buyer, their
surplus is also multiplied by x. For a type 3 buyer bi, their flows are not changed,
but their money is multiplied by x, so the new surplus is xpi − (pi − r(bi)).

After each price adjustment, in the new network, we will find a maximum flow by
augmentation on the adjusted flow f ′ and then find a balanced flow by Lemma 2.
This guarantees that when the surplus of a good becomes zero, it will not change
back to non-zero anymore. Thus, the prices of the goods with non-zero surpluses
have not been adjusted.

Property 1. The prices of goods with non-zero surpluses remain unchanged in
the algorithm.

2.3 Whole Procedure

The whole algorithm is shown in Figure 1, where K is a constant we will set
later. In this section, one iteration denotes the execution of one entire iteration
inside the loop. The rounding procedures and termination conditions are given
by the following two lemmas, whose proofs will be discussed in the full version
of this paper.

Lemma 4. When the total surplus is at least 1
4n4U3n = ε, we can slightly adjust

prices to rational numbers of length O(n log(nU)), so that in its adjusted flow,
the l2-norm of the surplus vector only increases by a factor of 1 +O(1/n4).

Lemma 5. When the total surplus is < 1
4n4U3n = ε in a flow f , we can obtain

an exact solution from the current equality graph in polynomial time.

In the first iteration, we construct a balanced flow f in the network where all
prices are equal to 1. In the equality graph, we have at least one edge incident
to every buyer. The total surplus will be bounded by n, actually n − 1 as at
least one good will be sold completely. From Theorem 1, in the execution of the
algorithm, the total surplus will never increase.
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Initially set pi = 1 for all goods i;
Repeat

Construct the network G for the current p, and compute the balanced flow f in it;
Sort all buyers by their surpluses in decreasing order: b1, b2, ..., bn;

Find the first i in which r(bi)
r(bi+1)

> 1 + 1/n, and i = n when there is no such i;

Let S = r(bi) and obtain B(S), Γ (B(S)), X(S); (B(S) = {b1, b2, ..., bi})
Multiply the prices in Γ (B(S)) by a gradually increasing factor x > 1 until:
(Let f ′ be the flow corresponding to x which is constructed according to Theorem 1.)

New equality edges emerge (x reaches X(S));
OR the surplus of a buyer ∈ B(S) and a buyer /∈ B(S) equals in f ′;
OR x reaches 1 + 1

K·n3

Round the prices in Γ (B(S)) according Lemma 4;
Until |r(B)| < ε, where ε = 1

4n4U3n ;
Finally, round the prices according to Lemma 5 to get an exact solution.

Fig. 1. The whole algorithm

To ensure that the algorithm will terminate in a polynomial number of steps,
we will require the following lemmas. From Property 1, the prices of goods with
surplus stay one during the whole algorithm, so there is still a good with price
one in the end. And, we need to bound the largest price:

Lemma 6. The prices of goods are at most (nU)n−1 throughout the algorithm.

Proof. It is enough to show that during the entire algorithm, for any non-empty
and proper subset Ĉ of goods, there are goods ci ∈ Ĉ, cj /∈ Ĉ such that pi/pj ≤
nU . So, when we sort all the prices in decreasing order, the ratio of two adjacent
prices is at most nU . Since there is always a good with price 1, the largest price
is ≤ (nU)n−1.

If Ĉ contains goods with surpluses, then their price is 1. The claim follows.
Let B̂ = Γ (Ĉ) be the set of buyers adjacent to goods in Ĉ in the equality

graph. If there exist bi, cj s.t. bi ∈ B̂, cj /∈ Ĉ and uij > 0, let ck ∈ Ĉ be one of
the goods adjacent to bi in the equality graph, and then uij/pj ≤ uik/pk. So,
pk/pj ≤ uik/uij ≤ U .

If there do not exist such bi, cj , then the buyers in B̂ do not like any goods

in C \ Ĉ, and there is bk /∈ B̂, but ck ∈ Ĉ. Otherwise the persons whose goods
are in Ĉ will not like any goods not in Ĉ, contradicting assumption (7). Let
B′ = {j|bj ∈ B̂, cj �∈ Ĉ} and B′′ = {j|bj �∈ B̂, cj ∈ Ĉ}. We have:

pk ≤ p(B′′) = p(Ĉ)− p({j|bj ∈ B̂, cj ∈ Ĉ}) (5)

≤ p(B̂)− p({j|bj ∈ B̂, cj ∈ Ĉ}) = p(B′). (6)

The inequality of the second line holds since goods in Ĉ have surplus 0 and all
of the flows from B̂ go to Ĉ. Thus, B′ must be non-empty, and hence, there is
a j ∈ B′ with pj ≥ p(B′)/n. We conclude pk ≤ npj.

By Lemma 5, we can round to the exact solution when the algorithm terminates.
To analyze the correctness and running time, we need the following lemma:
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Lemma 7. After every price adjustment by x, the l2-norm of the surplus vector
‖r(B)‖ will either

– be multiplied by a factor of 1 +O(1/n3) when x = 1 + 1
Kn3 , or

– be divided by a factor of 1 +Ω(1/n3).

Note that by Lemma 4, the rounding procedure can only increase ‖r(B)‖ by a
factor of 1 +O(1/n4).

Theorem 2. In total, we need to compute O(n6 log(nU)) maximum flows, and
the length of numbers is bounded by O(n log(nU)). Thus, if we use the common
O(n3) max-flow algorithm (see [1]), the total running time is O(n10 log2(nU)).

Proof. By Lemma 6, every price can be multiplied by x = 1 + 1
Kn3 for

O(log1+1/(Kn3)(nU)n) = O(n4 log(nU)) times, so the total number of iterations

of the first type in Lemma 7 is O(n5 log(nU)). The total factor multiplied to

‖r(B)‖ by the first type iterations is (1 +O(1/n3))O(n5 log(nU)).
At the beginning, ‖r(B)‖ ≤

√
n. When the algorithm terminates, ‖r(B)‖ <

ε = 1
4n4U3n , so the number of second type iterations is bounded by

log1+Ω(1/n3)(
1

ε

√
n(1 +O(1/n3))O(n5 log(nU))) = O(n5 log(nU)). (7)

Thus, the total number of iterations performed is bounded by O(n5 log(nU)).
Since we need to compute n max-flows for the balanced flow in every iteration
by Lemma 2, we need O(n6 log(nU)) maximum flow computations in total. By
Lemma 6 and Lemma 4, the length of the numbers to be handled is bounded
by O(n log(nU)). Note that max-flow computations only need additions and
subtractions. We perform multiplications and divisions when we scale prices
and when we set up the max-flow computation in the computation of balanced
flow. The numbers of multiplications/divisons is by a factor n less than the
numbers of additions/subtractions, and hence, it suffices to charge O(n log(nU))
per arithmetic operation.

Next we will prove Lemma 7. When we sort all the buyers by their surpluses
b1, b2, ..., bn in decreasing order, b1 is at least |r(B)|/n (where |r(B)| is the total

surplus). So, for the first i in which r(bi)
r(bi+1)

> 1+1/n, we can see
r(bj)

r(bj+1)
≤ 1+1/n

for j < i, so r(bi) ≥ r(b1)(1 + 1/n)−n > |r(B)|/(e · n). When such an i does not
exist, each r(bi) is larger than |r(B)|/(e · n), and all goods in Γ (B) must have
zero surplus because the flow is otherwise not maximum. Thus, there are goods
that have no buyers, and hence, either new equality edges emerge, or x reaches
1 + 1

Kn3 .
From the algorithm, in every iteration, x satisfies the following conditions:

1. x ≤ 1 + 1
Kn3 .

2. In f ′, r′(b) ≥ r′(b′) for all b ∈ B(S), b′ /∈ B(S). Here, r′(b) is the surplus of
b w.r.t. f ′, the flow corresponding to x by Theorem 1.

3. If x < 1 + 1
Kn3 , the following possibilities arise:
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(a) There is a new equality edge (bi, cj) with bi ∈ B(S), cj /∈ Γ (B(S)).
By Lemma 8 below, we can obtain a flow f ′′ in which either r′′(bi) =
r′(bi)− pj, or there is a bk /∈ B(S) with r′′(bi) = r′′(bk) (same as (b)).

(b) When x satisfies the second requirement in the algorithm, it satisfies:
there exist b ∈ B(S) and b′ /∈ B(S) such that r′(b) = r′(b′) in f ′.

Lemma 8. If there is a new equality edge (bi, cj) with bi ∈ B(S), cj /∈ Γ (B(S)),
we can obtain a flow f ′′ from f ′ (without increasing the total surplus) in which
either r′′(bi) = r′(bi)− pj, or there is a bk /∈ B(S) with r′′(bi) = r′′(bk).

Proof. Let B′ ⊆ B \B(S) be the set of buyers with flows to cj in f ′, and let w
be the largest surplus of a buyer in B \B(S). Run the following procedure (f ′′

denotes the current flow in the algorithm):

Augment along (bi, cj) gradually until:
r′′(bi) = w or r′′(cj) = 0;

If r′′(bi) = w then Exit;
For all bk ∈ B′ in any order

Augment along (bi, cj, bk) gradually until:
r′′(bi) = max{r′′(bk), w} or f ′′(bk, cj) = 0;

Set w = max{r′′(bk), w};
If r′′(bi) = w then Exit.

During the procedure, the surplus of bi decreases but cannot become less than the
surplus of a buyer in B \B(S), so condition (2) holds. In the end, if r′′(bi) = w,
then there is a bk ∈ B \ B(S) s.t. r′′(bi) = r′′(bk); otherwise, cj has no surplus,
and the flows to it all come from bi, so r′′(bi) = r′(bi)− pj .

From Theorem 1, the surpluses in f ′ will increase for type 1 and 3 buyers, will
decrease for type 2 buyers, and will stay unchanged for type 4 buyers. Note that
the surplus of a type 1 or 2 buyer cannot be smaller than the surplus of any type
3 or 4 buyer. From Theorem 1 and Lemma 8, we infer that the total surplus will
not increase, type 2 and 3 buyers will get more balanced, and r′(b) = x · r(b) for
type 1 buyers b, so ‖r′(B)‖ ≤ x‖r(B)‖ = (1 +O(1/n3))‖r(B)‖.

In (3a), there is a new equality edge (bi, cj). After the procedure described
in Lemma 8, if there is no bk /∈ B(S) such that r′′(bi) = r′′(bk), then r′′(bi) =
r′(bi)− pj (pj ≥ 1). For all bk /∈ B(S), r′′(bi) > r′′(bk), and r′′(bk) = r′(bk) + δk,
where δk ≥ 0 and

∑
bk /∈B(S) δk ≤ pj . Because |r(B)| ≤ n, ‖r(B)‖2 ≤ n2. By

Lemma 1,

‖r′′(B)‖2 ≤ ‖r′(B)‖2 − p2j (8)

≤ x2‖r(B)‖2 − 1 (9)

≤ x2‖r(B)‖2 − 1

n2
‖r(B)‖2 (10)

= (1−Θ(1/n2))‖r(B)‖2. (11)

So, we have ‖r′′(B)‖ = (1 −Ω(1/n2))‖r(B)‖.
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In (3a), after the procedure described in Lemma 8, if there is bk /∈ B(S) such
that r′′(bi) = r′′(bk), then we are in a similar situation as in (3b), possibly with
an even smaller total surplus. So, we can prove this case by the proof of (3b).

In (3b), let u1, u2, ..., uk and v1, v2, ..., vk′ be the list of original surpluses of
type 2 and 3 buyers, respectively. Define u = min{ui}, v = max{vj}, so ui ≥ u
for all i, and vj ≤ v for all j, and u > (1 + 1/n)v. After the price and flow
adjustments in Theorem 1, the list of surpluses will be u1−δ1, u2−δ2, ..., uk−δk
and v1 + δ′1, v2 + δ′2, ..., vk + δ′k′ (here δi, δ

′
j ≥ 0 for all i, j), and there exist

I, J such that uI − δI = vJ + δ′J , where uI − δI is the smallest among ui − δi,
and vJ + δ′J is the largest among vj + δ′j by condition (2). Since the surpluses
of type 1 buyers also increase (and the total surplus may decrease), we have∑

i δi ≥
∑

j δ
′
j , δI ≤

∑
i δi, and δ′J ≤

∑
j δ
′
j . Compute:∑

i

(ui − δi)2 +
∑
j

(vj + δ′j)
2 − (

∑
i

u2i +
∑
j

v2j ) (12)

= −2
∑
i

uiδi + 2
∑
j

vjδ
′
j +

∑
i

δ2i +
∑
j

δ′
2
j (13)

≤ −u
∑
i

δi + v
∑
j

δ′j −
∑
i

δi(ui − δi) +
∑
j

δ′j(vj + δ′j) (14)

≤ −(u− v)
∑
i

δi − (uI − δI)
∑
i

δi + (vJ + δ′J)
∑
j

δ′j (15)

≤ −(u− v)
∑
i

δi (16)

≤ −(u− v) max{δI , δ′J} (17)

≤ −1

2
(u − v)2 (18)

< − 1

2(n+ 1)2
u2. (19)

Let w1, w2, ...wk′′ be the list of surpluses of type 1 buyers; all of them are ≤
e · u. After price adjustment, the surpluses will be x · w1, x · w2, ...x · wk′′ from
Theorem 1. Compute:∑

i

(xwi)
2 ≤ (1 +

1

Kn3
)2
∑
i

w2
i (20)

≤
∑
i

w2
i + (

2

Kn3
+

1

K2n6
) · ne2u2 (21)

=
∑
i

w2
i + (

2

Kn2
+

1

K2n5
)e2u2. (22)

Let K = 32e2, then the change to the sum of squares of surpluses for type 2 and
3 buyers is less than − 1

8n2u
2 = − 4

Kn2 e
2u2. The total change to ‖r(B)‖2 is:

< (− 2

Kn2
+

1

K2n5
)e2u2. (23)
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Since u ≥ 1
er(bi) for all buyers bi, nu

2 ≥ 1
e2 ‖r(B)‖2. Since the change is negative:

‖r′(B)‖2 < ‖r(B)‖2 + (− 2

Kn2
+

1

K2n5
)

1

n
‖r(B)‖2 (24)

= ‖r(B)‖2 − 2

Kn3
‖r(B)‖2 +

1

K2n6
‖r(B)‖2 (25)

= ‖r(B)‖2(1 − 1

Kn3
)2. (26)

Thus, Lemma 7 is proved.
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Abstract. During the last decade, an active line of research in proof
complexity has been into the space complexity of proofs and how space
is related to other measures. By now these aspects of resolution are fairly
well understood, but many open problems remain for the related but
stronger polynomial calculus (PC/PCR) proof system. For instance, the
space complexity of many standard “benchmark formulas” is still open,
as well as the relation of space to size and degree in PC/PCR.

We prove that if a formula requires large resolution width, then mak-
ing XOR substitution yields a formula requiring large PCR space, pro-
viding some circumstantial evidence that degree might be a lower bound
for space. More importantly, this immediately yields formulas that are
very hard for space but very easy for size, exhibiting a size-space sepa-
ration similar to what is known for resolution. Using related ideas, we
show that if a graph has good expansion and in addition its edge set can
be partitioned into short cycles, then the Tseitin formula over this graph
requires large PCR space. In particular, Tseitin formulas over random
4-regular graphs almost surely require space at least Ω

(√
n
)
.

Our proofs use techniques recently introduced in [Bonacina-Galesi ’13].
Our final contribution, however, is to show that these techniques prov-
ably cannot yield non-constant space lower bounds for the functional
pigeonhole principle, delineating the limitations of this framework and
suggesting that we are still far from characterizing PC/PCR space.

1 Introduction

Proof complexity studies how hard it is to provide succinct certificates for tauto-
logical formulas in propositional logic—i.e., proofs that formulas always evaluate
to true under any truth value assignment, where these proofs are verifiable in
time polynomial in their size. It is widely believed that there is no proof sys-
tem where such efficiently verifiable proofs can always be found of size at most
polynomial in the size of the formulas they prove. Showing this would establish
NP �= co-NP, and hence P �= NP, and the study of proof complexity was initiated
by Cook and Reckhow [16] as an approach towards this (still very distant) goal.
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A second prominent motivation for proof complexity is the connection to
applied SAT solving. By a standard transformation, any propositional logic for-
mula F can be transformed to another formula F ′ in conjunctive normal form
(CNF) such that F ′ has the same size up to constant factors and is unsatisfi-
able if and only if F is a tautology. Any algorithm for solving SAT defines a
proof system in the sense that the execution trace of the algorithm constitutes
a polynomial-time verifiable witness of unsatisfiability (such a witness is often
referred to as a refutation rather than a proof , and we will use the two terms
interchangeably in this paper). In the other direction, most modern SAT solvers
can in fact be seen to search for proofs in systems studied in proof complex-
ity, and upper and lower bounds for these proof systems hence give information
about the potential and limitations of such SAT solvers.

In addition to running time, a major concern in SAT solving is memory
consumption. In proof complexity, these two resources are modelled by proof
size/length and proof space. It is thus interesting to understand these complex-
ity measures and how they are related to each other, and such a study reveals
intriguing connections that are also of intrinsic interest to proof complexity. In
this context, it is natural to focus on proof systems at comparatively low levels
in the proof complexity hierarchy that are, or could plausibly be, used as a basis
for SAT solvers. Such proof systems include resolution and polynomial calculus.
This paper takes as its starting point the former system but focuses on the latter.

Previous Work. The resolution proof system was introduced in [12], and is at
the foundation of state-of-the-art SAT solvers based on so-called conflict-driven
clause learning (CDCL) [4, 23]. In resolution, one derives new disjunctive clauses
from the clauses of the original CNF formula until contradiction is reached. One
of the early breakthroughs in proof complexity was the (sub)exponential lower
bound on proof length (measured as the number of clauses in a proof) obtained
by Haken [19]. Truly exponential lower bounds—i.e., bounds exp(Ω(n)) in the
size n of the formula—were later established in [14, 25] and other papers.

Ben-Sasson and Wigderson [11] identified width as a crucial resource, where
the width is the size of a largest clause in a resolution proof. They proved that
strong lower bounds on width imply strong lower bounds on length, and used
this to rederive essentially all known length lower bounds in terms of width.

The study of space in resolution was initiated by Esteban and Torán [17],
measuring the space of a proof (informally) as the maximum number of clauses
needed to be kept in memory during proof verification. Alekhnovich et al. [1]
later extended the concept of space to a more general setting, including other
proof systems. The (clause) space measure can be shown to be at most linear in
the formula size, and matching lower bounds were proven in [1, 8, 17].

Atserias and Dalmau [3] proved that space is in fact lower-bounded by width,
which allowed to rederive all hitherto known space lower bounds as corollaries
of width lower bounds. A strong separation of the two measures was obtained
in [9], exhibiting formulas with constant width complexity but almost linear
space complexity. Also, dramatic space-width trade-offs have been shown in [7],
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with formulas refutable in constant width and constant space where optimizing
one of the measures causes essentially worst-case behaviour of the other.

Regarding the connections between length and space, it follows from [3] that
formulas of low space complexity also have short proofs. For the subsystem
of tree-like resolution, where each line in the proof can only be used once,
[17] showed that length upper bounds also imply space upper bounds, but for
general resolution [9] established that this is false in the strongest possible sense.
Strong trade-offs between length and space were proven in [5, 10].

This paper focuses on the more powerful polynomial calculus (PC)1 proof
system [15], which is not at all as well understood. In a PC proof, clauses are
interpreted as multilinear polynomials (expanded out to sums of monomials), and
one derives contradiction by showing that these polynomials have no common
root. Intriguingly, while proof complexity-theoretic results seem to hold out the
promise that SAT solvers based on PC could be orders of magnitude faster than
CDCL, such algebraic solvers have so far failed to be truly competitive.

Proof size2 in PC is measured as the total number of monomials and the
analogue of resolution space is the number of monomials needed in memory
during verification of a proof. Resolution width translates into polynomial degree
in PC. While length, space and width in resolution are fairly well understood,
our understanding of the corresponding measures in PC is much more limited.

Impagliazzo et al. [21] showed that strong degree lower bounds imply strong
size lower bounds. This is a parallel to the length-width relation in [11], and in
fact this latter paper can be seen as a translation of [21] from PC to resolution.
This size-degree relation has been used to prove exponential lower bounds on
size in a number of papers, with [2] perhaps providing the most general setting.

The first lower bounds on space were reported in [1], but only sublinear bounds
and only for formulas of unbounded width. The first space lower bounds for
k-CNF formulas were presented in [18], and asymptotically optimal (linear) lower
bounds were finally proven by Bonacina and Galesi [13]. However, there are
several formula families with high resolution space complexity for which the PC
space complexity has remained unknown, e.g., Tseitin formulas (encoding that
the sum of all vertex degrees in an undirected graph must be even), ordering
principle formulas, and functional pigeonhole principle (FPHP) formulas.

Regarding the relation between space and degree, it is open whether degree is
a lower bound for space (the analogue of what holds in resolution) and also it has
been unknown whether the two measures can be separated in the sense that there
are formulas of low degree complexity requiring high space. However, [6] recently
proved a space-degree trade-off analogous to the resolution space-width trade-off
in [7] (in fact for the very same formulas). This could be interpreted as indicating

1 Strictly speaking, to get a stronger proof system than resolution we need to look
at the generalization PCR as defined in [1], but for simplicity we will be somewhat
sloppy in this introduction in distinguishing between PC and PCR.

2 The length of a proof is the number of lines, whereas size also considers the size
of lines. In resolution the two measures are essentially equivalent. In PC size and
length can be very different, however, and so size is the right measure to study.
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that there should be a space-degree separation analogous to the space-width
separation in resolution, and the authors of [13] suggest that their techniques
might be a step towards understanding degree and proving that degree lower-
bounds space, similar to how this was done for resolution width in [3].

As to size versus space in PC, essentially nothing has been known. It is open
whether small space complexity implies small size complexity and/or the other
way around. Some size-space trade-offs were recently reported in [6, 20], but
these trade-offs are weaker than the corresponding results for resolution.

Our Results. We study the relation of size, space, and degree in PC (and the
stronger system PCR) and present a number of new results as described below.

1. We prove that if the resolution width of refuting a CNF formula F is w, then
by substituting each variable by an exclusive or of two new variables and
expanding out we get a new CNF formula F [⊕] requiring PCR space Ω(w).
In one sense, this is stronger than claiming that degree is a lower bound for
space, since high width complexity is a necessary but not sufficient condition
for high degree complexity. In another sense, however, this is (much) weaker
in that XOR substitution can amplify the hardness of formulas substantially.
Nevertheless, to the best of our knowledge this is the first result making any
connection between width/degree and space for polynomial calculus.

2. More importantly, this result yields essentially optimal separations between
length and degree on the one hand and space on the other. Namely, taking
expander graphs and making double copies of all edges, we show that Tseitin
formulas over such graphs have proofs in size O(n logn) and degree O(1) in
PC but require space Θ(n) in PCR. (Furthermore, since these small-size
proofs are tree-like, this shows that there is no tight correlation between size
and space in tree-like PC/PCR in contrast to resolution.)

3. Using related ideas, we also prove strong PCR space lower bounds for Tseitin
formulas over (simple or multi-)graphs where the edge set can be partitioned
into small cycles. (The two copies of every edge in the multi-graph above form
such cycles, but this works in greater generality.) In particular, for Tseitin
formulas over random d-regular graphs for d ≥ 4 we establish that an Ω(

√
n)

PCR space lower bound holds asymptotically almost surely.
4. On the negative side, we show that the techniques in [13] cannot prove

any non-constant PCR space lower bounds for functional pigeonhole princi-
ple (FPHP) formulas. That is, although these formulas require high degree
and it seems plausible that they are hard also with respect to space, the
machinery developed in [13] provably cannot establish such lower bounds.
Unfortunately, this seems to indicate that we are further from characterizing
degree in PC/PCR than previously hoped.

Organization of This Paper. The rest of this paper is organized as follows.
We briefly review preliminaries in Section 2. In Section 3, we give a more de-
tailed overview of our results and sketch some proofs. Section 4 contains some
concluding remarks. Due to space constraints, most of the proofs are deferred to
the full-length version of this paper.
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2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal)
or its negation ¬x or x (a negative literal). It will also be convenient to use the
alternative notation x0 = x, x1 = x, where we identify 0 with true and 1 with
false3 (so that xb is true if x = b). A clause C = a1 ∨ · · · ∨ ak is a disjunction of
literals. We denote the empty clause by ⊥. A clause containing at most k literals
is called a k-clause. A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of
clauses. A k-CNF formula is a CNF formula consisting of k-clauses.

Let F be a field and consider the polynomial ring F[x, x, y, y, . . .] (where x and
x are viewed as distinct formal variables). We write [n] = {1, . . . , n}.

Definition 1 (Polynomial calculus resolution (PCR)). A PCR configura-
tion P is a set of polynomials in F[x, x, y, y, . . .]. A PCR refutation of a CNF
formula F is a sequence of configurations {P0, . . . ,Pτ} such that P0 = ∅, 1 ∈ Pτ ,
and for t ∈ [τ ] we obtain Pt from Pt−1 by one of the following steps:

Axiom download Pt = Pt−1 ∪ {p}, where p is either a monomial m =
∏

i x
b
i

encoding a clause C =
∨

i x
b
i ∈ F , or a Boolean axiom x2 − x or comple-

mentarity axiom x + x− 1 for any variable x (or x).
Inference Pt = Pt−1 ∪ {p}, where p is inferred by linear combination q r

αq+βr or

multiplication q
xq from polynomials q, r ∈ Pt−1 for α, β ∈ F and x a variable.

Erasure Pt = Pt−1 \ {p}, where p is a polynomial in Pt−1.

If we drop complementarity axioms and encode each negative literal x as the
polynomial (1− x), the proof system is called polynomial calculus (PC).

The size S (π) of a PC/PCR refutation π is the number of monomials (counted
with repetitions) in all downloaded or derived polynomials in π, the (monomial)
space Sp(π) is the maximal number of monomials (counted with repetitions)4

in any configuration in π, and the degree Deg(π) is the maximal degree of any
monomial appearing in π. Taking the minimum over all PCR refutations of a
formula F , we define the size SPCR(F 2 ⊥), space SpPCR(F 2 ⊥), and degree
DegPCR(F 2⊥) of refuting F in PCR (and analogously for PC).

We can also define resolution in this framework, where proof lines are always
clauses (i.e., single monomials) and new clauses can be derived by the resolution
rule inferring C∨D from C∨x and D∨x. The length of a resolution refutation π
is the number of downloaded and derived clauses, the space is the maximal
number of clauses in any configuration, and the width is the size of a largest
clause appearing in π (or equivalently the degree of such a monomial). Taking
the minimum over all refutations as above we get the measures LR(F 2 ⊥),
SpR(F 2 ⊥), and WR(F 2 ⊥). It is not hard to show that PCR can simulate
resolution efficiently with respect to all these measures.

3 Note that this is the opposite of what is found in many other papers, but as we will
see shortly it is the natural choice in the context of polynomial calculus.

4 In [1], space is defined without repetitions. All our results hold in this setting as well.
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We say that a refutation is tree-like if every line is used at most once as
the premise of an inference rule before being erased (though it can possibly be
rederived later). All measures discussed above can also be defined for restricted
subsystems of resolution, PC and PCR admitting only tree-like refutations.

Let us now describe the formulas which will be the main focus of our study.

Definition 2 (Tseitin formula). Let G = (V,E) be an undirected graph and
χ : V → {0, 1} be a function. Identify every edge e ∈ E with a variable xe and let
PARITY v,χ denote the CNF encoding of the constraint that the number of true
edges xe incident to a vertex v ∈ V is equal to χ(v) (mod 2). Then the Tseitin
formula over G with respect to f is Ts(G,χ) =

∧
v∈V PARITY v,χ.

When the degree of G is bounded by d, Ts(G,χ) is a d-CNF formula with
at most 2d−1|V | clauses. We say that a vertex set U has odd (even) charge if∑

u∈U χ(u) is odd (even). By a simple counting argument one sees that Ts(G,χ)
is unsatisfiable if V (G) has odd charge. Lower bounds on the hardness of refuting
such unsatisfiable formulas Ts(G,χ) can be proven in terms of the expansion
of G as defined next.

Definition 3 (Connectivity expansion [1]). The connectivity expansion of
G = (V,E) is the largest c such that for every E′ ⊆ E, |E′| ≤ c, the graph
G′ = (V,E \ E′) has a connected component of size strictly greater than |V |/2.

If F is a CNF formula and f : {0, 1}d → {0, 1} is a Boolean function, then we can
obtain a new CNF formula by substituting f(x1, . . . , xd) for every variable x and
expanding out to conjunctive normal form. We write F [f ] to denote the resulting
substituted formula, where we will be interested in substitutions with a particular
kind of functions defined as follows.

Definition 4 (Non-authoritarian function [10]). We say that a Boolean
function f(x1, . . . , xd) is non-authoritarian if for every xi and for every assign-
ment α to xi there exist α0, α1 extending α such that f(αb) = b for b ∈ {0, 1}.

By way of example, exclusive or (XOR), denoted ⊕, is clearly non-authoritarian,
since regardless of the value of one variable, the other one can be flipped to make
the function true or false, but standard non-exclusive or ∨ is not.

Let us finally give a brief overview of the framework developed in [13], which
we use to prove our PCR space lower bounds.5 A partial partition Q of a vari-
able set V is a collection of disjoint sets Qi ⊆ V . We use the notation

⋃
Q =⋃

Qi∈QQi. For two sets of partial assignments H and H ′ to disjoint domains, we
denote by H×H ′ the set of assignments H×H ′ = {α ∪ β | α ∈ H and β ∈ H ′}.
A set of partial assignments H to the domain Q is flippable on Q if for each
variable x ∈ Q and b ∈ {0, 1} there exists an assignment αb ∈ H such that
αb(x) = b. We say that H satisfies a formula F if all α ∈ H satisfy F .

A Q-structured assignment set is a pair (Q,H) consisting of a partial partition
Q = {Q1, . . . , Qt} of V and a set of partial assignments H =

∏t
i=1 Hi, where

5 The actual definitions that we use are slightly different but essentially equivalent.
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each Hi assigns to and is flippable on Qi. We write (Q,H) � (Q′,H′) if Q ⊆ Q′
and H′	Q = H, where H′	Q =

∏
Qi∈QH ′i. A structured assignment set (Q,H)

respects a CNF formula F ′ if for every clause C ∈ F ′ either Vars(C) ∩
⋃
Q = ∅

or there is a set Q ∈ Q such that Vars(C) ⊆ Q and H satisfies C.
Expressed in this language, the key technical definition in [13] is as follows.

Definition 5 (Extendible family). A non-empty family F of structured as-
signment sets (Q,H) is r-extendible for a CNF formula F with respect to a
satisfiable F ′ ⊆ F if every (Q,H) ∈ F satisfies the following conditions.

Size |Q| ≤ r.
Respectfulness (Q,H) respects F ′.
Restrictability For every Q′ ⊆ Q the restriction (Q′,H	Q′) is in F .
Extendibility If |Q| < r then for every clause C ∈ F \F ′ there exists (Q′,H′) ∈

F such that 1. (Q,H) � (Q′,H′), 2. H′ satisfies C, and 3. |Q′| ≤ |Q|+ 1.

To prove PCR space lower bounds for a formula F , it is sufficient to find an
extendible family for F . All space lower bounds presented in this paper are
obtained in this manner, where in addition we always have F ′ = ∅.

Theorem 6 ([13]). Suppose that F is a CNF formula which has an r-extendible
family F with respect to some F ′ ⊆ F . Then SpPCR(F 2⊥) ≥ r/4.

3 Overview of Results and Sketches of Some Proofs

In this section, we give a more detailed overview with formal statements of
our results, and also provide some proof sketches in order to convey the main
technical ideas. As a general rule, the upper bounds we state are for polynomial
calculus (PC) whereas the lower bounds hold for the stronger system PCR.

Relating PCR Space and Resolution Width. The starting point of our
work is the question of how space and degree are related in polynomial calculus,
and in particular whether it is true that degree lower-bounds space. While this
question remains wide open, we make partial progress by showing that if the res-
olution width of refuting a CNF formula F is large (which in particular must be
the case if F requires high degree), then by making XOR substitution we obtain
a formula F [⊕] that requires large PCR space. In fact, this works not only for
exclusive or but for any non-authoritarian function (as defined in Definition 4).
The formal statement is as follows.

Theorem 7. Let F be a k-CNF formula and let f be any non-authoritarian
function. Then SpPCR(F [f ] 2⊥) ≥ (WR(F 2⊥)− k + 1)/4 holds over any field.

Proof (sketch). In one sentence, the proof of Theorem 7 is by combining the
concept of extendible families in Definition 5 with the combinatorial character-
ization of resolution width in [3]. We show that the properties of F implied by
the width lower bound can be used to construct an extendible family for F [f ].
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To make this description easier to parse, let us start by describing in somewhat
more detail the width characterization in [3].

Consider the following game played on F by two players Spoiler and Dupli-
cator . Spoiler asks about assignments to variables in F and Duplicator answers
true or false. Spoiler can only remember 	 assignments simultaneously, however,
and has to forget some variable when this limit is reached. If Duplicator is later
asked about some forgotten variable, the new assignment need not be consistent
with the previous forgotten one. Spoiler wins the game by constructing a partial
assignment that falsifies some clause in F , and the game is a Duplicator win
if there is a strategy to keep playing forever without Spoiler ever reaching this
goal. It was proven in [3] that this game exactly captures resolution width in the
sense that Duplicator has a winning strategy if and only if 	 ≤WR(F 2⊥).

Let us fix r = WR(F 2⊥)− k + 1 and use Duplicator’s winning strategy for
	 = WR(F 2⊥) to build an r-extendible family for F [⊕] (the proof for general
non-authoritarian functions is very similar). Consider any assignment α reached
during the game. We define a corresponding structured assignment set (Qα,Hα)
by adding a block Qx = {x1, x2} to Qα for every x ∈ Dom(α), and let Hx

contain all assignments αx to {x1, x2} such that αx(x1 ⊕ x2) = α(x).
Given these structured assignment sets (Qα,Hα), the family F is constructed

inductively as follows. The base case is that (Q∅,H∅) = (∅, ∅) is in F . To extend
(Qα,Hα) to satisfy a clause in C[⊕], we simulate a Spoiler with memory α
who asks about all variables in C. Since Duplicator does not falsify C, when all
variables have been queried some literal in C must be satisfied by the assignment.
Fix one such variable assignment {x = b} and add

(
Qα∪{x=b},Hα∪{x=b}

)
as

defined above to F . All that remains now is to verify that this yields an extendible
family as described in Definition 5 and then apply Theorem 6.

Separation of Size and Degree from Space. It follows from Theorem 7
that there are formulas which have small PC refutations in constant degree but
nevertheless require maximal space in PCR.

Theorem 8. For any field F of characteristic p there is a family of k-CNF
formulas Fn (where k depends on p) of size O(n) for which SpPCR(Fn 2⊥) =
Ω(n) over any field but which have tree-like PC refutations πn : Fn 2⊥ over F
of size S (πn) = O(n logn) and degree Deg(πn) = O(1).

Proof (sketch). Let us focus on p = 2. Consider a Tseitin formula Ts(G,χ) for
any constant-degree graph G over n vertices with connectivity expansion Ω(n)
and any odd-charge function χ.

From [11] we know that WR(F 2 ⊥) = Ω(n). It is not hard to see that
XOR substitution yields another Tseitin formula Ts(G′, χ) for the multi-graph
G′ obtained from G by adding double copies of all edges. This formula requires
large PCR space (over any field) by Theorem 7. The upper bound follows by
observing that the CNF encodes a linear system of equations, which is easily
shown inconsistent in PC by summing up all equations in a tree-like fashion.
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It follows from Theorem 8 that tree-like space in PC/PCR is not upper-
bounded by tree-like size, in contrast to resolution. This is the only example we
are aware of where the relations between size, degree, and space in PC/PCR
differ from those between length, width, and space in resolution, so let us state
this as a formal corollary.

Corollary 9. It is not true in PC/PCR that tree-like space complexity is upper-
bounded by the logarithm of tree-like size complexity.

Space Complexity of Tseitin Formulas. A closer analysis of the proof of
Theorem 8 reveals that it partitions the edge set of G′ into small edge-disjoint
cycles (namely, length-2 cycles corresponding to the two copies of each original
edge) and uses partial assignments that all maintain the same parities of the
vertices on a given cycle. It turns out that this approach can be made to work
in greater generality as stated next.

Theorem 10. Let G = (V,E) be a connected graph of bounded degree d with
connectivity expansion c such that E can be partitioned into cycles of length at
most b. Then it holds over any field that SpPCR(Ts(G,χ) 2⊥) ≥ c/4b− d/8.

Proof (sketch). We build on the resolution space lower bound in [1, 17], where
the proof works by inductively constructing an assignment αt for each derived
configuration Ct (which corresponds to removing edges from G and updating
the vertex charges accordingly) such that (a) αt satisfies Ct, and (b) αt does
not create any odd-charge component in G of size less than n/2. The inductive
update can be performed as long as the space is not too large, which shows that
contradiction cannot be derived in small space (since Ct is satisfiable).

To lift this proof to PCR, however, we must maintain not just one but an
exponential number of such good assignments, and in general we do not know
how to do this. Nevertheless, some more thought reveals that the only important
aspect of our assignments are the resulting vertex parities. And if the edge set
is partitioned into cycles, we can always shift edge charges along the cycles so
that for all the exponentially many assignments, these parities are all the same
(meaning that we only have to maintain one good assignment after all).

Some graphs, such as rectangular grids, can be partitioned into cycles of size O(1),
yielding tight bounds on space. A bit more surprisingly, random d-regular graphs
for d ≥ 4 turn out to (sort of) admit partitions into cycles of size O(

√
n), which

yields the following theorem.

Theorem 11. Let G be a random d-regular graph on n vertices, where d ≥ 4.
Then over any field it holds almost surely that SpPCR(Ts(G,χ) 2⊥) = Ω

(√
n
)
.

Proof (sketch). As long as we are interested in properties holding asymptotically
almost surely, we can replace random 4-regular graphs with unions of two random
Hamiltonian cycles [22]. We show that a graph distributed according to the
latter model almost surely decomposes into cycles of length O(

√
n), along with

εn additional edges (which are easily taken care of separately). Since random
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graphs are also excellent expanders, we can apply Theorem 10. The argument
easily extends to random d-regular graphs for any d ≥ 4.

We believe that the true space bound should actually be Θ(n), just as for reso-
lution, but such a result seems beyond the reach of our current techniques. Also,
note that to make Theorem 10 go through we need graph expansion plus par-
titions into small cycles. It seems plausible that expansion alone should imply
PCR space lower bounds, as for resolution, but again we cannot prove this.

Limitations of the PCR Space Lower Bound Technique. The framework
in [13] can also be used to rederive all PCR space lower bounds shown previously
in [1, 18], and in this sense [13] sums up what we know about PCR space lower
bounds. There are also intriguing similarities between [13] and [3] (as partly
hinted in the proof sketch for Theorem 7), which raises the question whether
extendible families could perhaps be a step towards characterizing degree and
showing that degree lower-bounds space in PC/PCR.

Even more intriguingly, however, there are CNF formulas for which it seems
reasonable to expect that PCR space lower bounds should hold, but where ex-
tendible families seem very hard to construct. Such formulas include ordering
principle formulas, functional pigeonhole principle (FPHP) formulas, and ran-
dom 3-CNF formulas. In fact, no PCR space lower bounds are known for any
3-CNF formula—it is consistent with current knowledge that all 3-CNF formulas
could have constant space complexity in PCR (!), though this seemingly absurd
possibility can be ruled out for PC [18].

We show that the problems in applying [13] to the functional version of the
pigeonhole principle are inherent, in that these techniques provably cannot es-
tablish any nontrivial space lower bound.

Theorem 12. There is no r-extendible family for FPHPn+1
n for r > 1.

Since by [24] these formulas require PC refutation degree Ω(n), one way of
interpreting Theorem 12 is that the concept of r-extendible families is very far
from providing the hoped-for characterization of degree.

One step towards proving PCR space lower bounds could be to obtain a weaker
PC space lower bound—as noted above in the discussion of 3-CNF formulas, this
can sometimes be easier. For FPHPn+1

n , however, and for a slightly more general
class of formulas described in the full-length version of this paper, it turns out
that such PC space lower bounds would immediately imply also PCR space lower
bounds.

Theorem 13. SpPCR(FPHPn+1
n 2⊥) = Θ(SpPC(FPHPn+1

n 2⊥)).

4 Concluding Remarks

In this paper, following up on recent work in [6, 13, 18, 20], we report further
progress on understanding space complexity in polynomial calculus and how the
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space measure is related to size and degree. Specifically, we separate size and
degree from space, and provide some circumstantial evidence for the conjecture
that degree might be a lower bound on space in PC/PCR. We also prove space
lower bounds for a large class of Tseitin formulas, a well-studied formula family
for which nothing was previously known regarding PCR space.

We believe that our lower bounds for Tseitin formulas over random graphs
are not optimal, however. And for the functional pigeonhole principle, we show
that the technical tools developed in [13] cannot prove any non-constant PCR
space lower bounds. Although we have not been able to prove this, we believe
that similar impossibility results should hold also for ordering principle formulas
and for the canonical 3-CNF version of the pigeonhole principle. Since all of
these formulas require large degree in PCR and large space in resolution, it is
natural to suspect that they should be hard for PCR space as well. The fact that
arguments along the lines of [13] do not seem to be able to establish this suggests
that we are still far from a combinatorial characterization of degree analogous
to the characterization of resolution width in [3]. It thus remains a major open
problem to understand the relation between degree and space in PC/PCR, and
in particular whether degree (or even width) is a lower bound on space or not.

Also, our separations of size and degree on the one hand and space on the
other depend on the characteristic of the underlying field. It would be satisfying
to find formulas that provide such separations regardless of characteristic. Nat-
ural candidates are ordering principle formulas or onto function pigeon principle
formulas, or, for potentially even stronger separations, pebbling formulas.
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Abstract. We investigate the approximability of K-Facility Location by deter-
ministic strategyproof mechanisms. Our main result is an elegant characterization
of deterministic strategyproof mechanisms with a bounded approximation ratio
for 2-Facility Location on the line. Specifically, we show that for instances with
n ≥ 5 agents, any such mechanism either admits a unique dictator, or always
places the facilities at the two extremes. As a consequence, we obtain that the
best approximation ratio achievable by deterministic strategyproof mechanisms
for 2-Facility Location on the line is precisely n− 2. Employing a technical tool
developed for the characterization, we show that for every K ≥ 3, there do not
exist any deterministic anonymous strategyproof mechanisms with a bounded ap-
proximation ratio for K-Facility Location on the line, even for simple instances
with K + 1 agents. Moreover, building on the characterization for the line, we
show that there do not exist any deterministic mechanisms with a bounded ap-
proximation ratio for 2-Facility Location in more general metric spaces, which is
true even for simple instances with 3 agents located in a star.

1 Introduction

We study K-Facility Location games, where K facilities are placed in a continuous
metric space based on the preferences of n strategic agents. Such problems are moti-
vated by natural scenarios in Social Choice, where the government plans to build a fixed
number of public facilities in an area (see e.g., [13]). Each agent reports her ideal loca-
tion, and the government applies a mechanism mapping their preferences to K facility
locations. The government seeks to minimize the social cost, namely the total distance
of the agents’ locations to the nearest facility. On the other hand, the agents seek to min-
imize their connection cost, namely the distance of their location to the nearest facility.
In fact, an agent may even misreport her ideal location in an attempt of manipulating
the mechanism. Therefore, the mechanism should be strategyproof, i.e., ensure that no
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agent can benefit from misreporting her location. Moreover, to compute a desirable out-
come, the mechanism should achieve a good approximation to the optimal social cost.

Previous Work. In addition to strategyproofness, which is an essential property of any
mechanism, Social Choice suggests a few efficiency-related properties, e.g., onto, non-
dictatorship, and Pareto-efficiency, that accompany strategyproofness, and ensure that
the mechanism’s outcome is socially desirable. There are several characterization the-
orems which state that for a particular domain, the class of strategyproof mechanisms
with some efficiency-related properties coincides with a rather restricted class of mech-
anisms (see e.g., [2]). A notable example of a problem admitting a rich class of strate-
gyproof mechanisms is that of locating a single facility on the line, where the agents’
preferences are single-peaked. Moulin [14] proved that a mechanism is strategyproof
for 1-Facility Location on the line iff it is a generalized median voter scheme. Schum-
mer and Vohra [17] extended this characterization to tree metrics. For non-tree metrics,
they proved that any onto strategyproof mechanism must be a dictatorship. Recently,
Dokow et al. [4] obtained similar characterizations for the class of onto strategyproof
mechanisms for 1-Facility Location on the discrete line and on the discrete circle.

Adopting an algorithmic viewpoint, Procaccia and Tennenholtz [16] introduced the
framework of Approximate Mechanism Design without Money. The idea is to consider
game-theoretic versions of optimization problems, where a social objective function
summarizes (or even strengthens) the efficiency-related properties. Any reasonable ap-
proximation to the optimal solution can be regarded as a socially desirable outcome, and
we seek to determine the best approximation ratio achievable by strategyproof mecha-
nisms. For example, the results of [14,17] imply that 1-Facility Location in tree metrics
can be solved optimally by a strategyproof mechanism. On the other hand, the nega-
tive result of [17] implies that the best approximation ratio achievable by deterministic
mechanisms for 1-Facility Location in general metrics is n− 1.

Procaccia and Tennenholtz [16] considered location problems on the line, and ob-
tained upper and lower bounds on the approximation ratio achievable by strategyproof
mechanisms. For 2-Facility Location, they suggested the TWO-EXTREMES mechanism,
that places the facilities at the leftmost and at the rightmost location, and achieves an
approximation ratio of n−2. On the negative side, they proved a lower bound of 3/2 on
the approximation ratio of any deterministic mechanism. Lu et al. [12] strengthened the
lower bound for deterministic mechanisms to 2 and established a lower bound of 1.045
for randomized mechanisms. Shortly afterwards, Lu et al. [11] significantly improved
the lower bound for deterministic mechanisms to (n− 1)/2. On the positive side, they
proved that a natural randomized mechanism is strategyproof and achieves an approxi-
mation ratio of 4 for 2-Facility Location in general metrics. However, Lu et al. observed
that this mechanism is not strategyproof for more than two facilities.

Motivation and Contribution. Facility Location games are among the central prob-
lems in the research agenda of Mechanism Design without Money, and have received
considerable attention. Our work is motivated by the apparent difficulty of obtaining any
strong(er) positive results on the approximability of K-Facility Location by determin-
istic mechanisms. In fact, among the main open problems of [11] were (i) to determine
the best approximation ratio achievable by deterministic mechanisms for 2-Facility Lo-
cation on the line, (ii) to investigate the existence of deterministic mechanisms with a
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bounded approximation ratio for K-Facility Location with K ≥ 3, and (iii) to investi-
gate the existence of deterministic mechanisms with a bounded approximation ratio for
2-Facility Location in metric spaces other than the line and the circle. In this work, we
resolve the first question, and obtain strong negative results for the second and the third.

Attacking these questions requires a complete understanding of the behavior of de-
terministic strategyproof mechanisms for K-Facility Location, similar to that offered
by characterization theorems in Social Choice. Hence, we suggest an approach in the
intersection of Social Choice and Mechanism Design without Money. Following the ap-
proach of the latter, we focus on nice mechanisms, namely deterministic strategyproof
mechanisms with an approximation ratio bounded by a function of n and K . Following
the approach of Social Choice, we embark on a complete characterization of nice mech-
anisms. Although for simplicity, we focus on the objective of social cost, the class of
nice mechanisms is very general and essentially independent of the objective function.
E.g., for any p ≥ 1 or for p = ∞, a mechanism achieves a bounded approximation ratio
for the objective of minimizing the Lp norm of the agents’ connection cost iff it achieves
a bounded approximation for the objective of social cost. Thus, to a very large extent, a
characterization of nice mechanisms retains the generality of characterizations in Social
Choice, since it captures all, but some socially intolerable, strategyproof mechanisms.

Focusing on nice mechanisms facilitates the characterization, since it excludes sev-
eral socially intolerable mechanisms. Nevertheless, any characterization of nice mech-
anisms, even for two facilities, remains an intriguing task, because there is no apparent
notion of monotonicity (as e.g., in [10]), and the combinatorial structure of the prefer-
ences is significantly more complicated than that for a single facility.

Our main result is an elegant characterization of nice mechanisms for 2-Facility Lo-
cation on the line. We show that any nice mechanism for n ≥ 5 agents either admits
a unique dictator, or always places the facilities at the two extremes (Theorem 1). A
corollary is that the best approximation ratio achievable by deterministic mechanisms
for 2-Facility Location on the line is n − 2. Another rather surprising consequence is
that TWO-EXTREMES is the only anonymous nice mechanism for this problem.

The proof of Theorem 1 proceeds by establishing the characterization at three dif-
ferent levels of generality: 3-agent, 3-location, and general instances. Along the way,
we develop strong technical tools that fully describe the behavior of nice mechanisms.
To exploit locality, we first focus on well-separated instances with 3 agents, where an
isolated agent is served by one facility, and two nearby agents are served by the other
facility. Interestingly, we identify two large classes of well-separated instances where
any nice mechanism should keep allocating the latter facility to the same agent (Propo-
sitions 1 and 2). Building on this, we show that the location of the facility serving the
nearby agents is determined by a generalized median voter scheme, as in [14], but with
a threshold depending on the location and the identity of the isolated agent, and then
extend this property to general instances with 3 agents (Fig. 1). The key step is to show
that the threshold of each isolated agent can take only two extreme values: one corre-
sponding to the existence of a partial dictator, and one corresponding to allocating the
facility to the furthest agent. Then, considering all possible cases for the agents’ thresh-
olds, we show that any nice mechanism for 3 agents either places the facilities at the
two extremes, or admits a partial dictator (Theorem 2).
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Employing partial group strategyproofness [11, Sec. 3], and a new technical tool for
moving agents between different coalitions without affecting the outcome (Lemma 1),
and show that any nice mechanism applied to 3-location instances with n ≥ 5 agents
either admits a (full) dictator, or places the facilities at the two extremes (Theorem 3).
Rather surprisingly, this implies that nice mechanisms for 3 agents are somewhat less
restricted than nice mechanisms for n ≥ 5 agents. Finally, in Section 3.3, we employ
induction on the number of different locations, and conclude the proof of Theorem 1.

In addition to extending the ideas of [14] to 2-Facility Location games and to ex-
ploiting the notions of image sets and partial group strategyproofness, we introduce new
ideas and technical tools, which provide new insights into the behavior of nice mecha-
nisms for K-Facility Location games and may be of independent interest. Among them,
we may single out the notion of well-separated instances and the idea of reducing K-
Facility Location in well-separated instances to a single facility game between the two
nearby agents, the ideas used to extend the facility allocation from well-separated to
general instances, and the technical tool of moving agents between different coalitions.

For K ≥ 3 facilities, we show that there do not exist any anonymous nice mecha-
nisms even for well-separated instances with K +1 agents on the line (Theorem 4). For
2-Facility Location in metric spaces more general than the line and the circle, we show
that there do not exist any nice mechanisms, which holds even for simple instances with
3 agents in a star (Theorem 5). Both results are based on the technical tools for well-
separated instances developed in the proof of Theorem 1, thus indicating the generality
and the potential applicability of our techniques.

Other Related Work. In Social Choice, the work on multiple facility location games
mostly focuses on Pareto-efficient deterministic strategyproof mechanisms with some
additional properties (see e.g., [3,9,13]). However, known results do not have any im-
mediate implications for the approximability of the social cost.
Single Facility. Alon et al. [1] almost completely characterized the approximation ra-
tios achievable by randomized and deterministic mechanisms for 1-Facility Location in
general metrics and rings. Next, [6] proved that for the L2 norm of the agents’ distances,
the best approximation ratio is 1.5 for randomized and 2 for deterministic mechanisms.
Multiple Facilities. Recently, we presented, in [7], the first randomized strategyproof
mechanism with a bounded approximation ratio forK-Facility Location on the line. The
mechanism works by equalizing the expected connection cost of all agents, and is n-
approximate for the social cost and 2-approximate for the maximum cost of the agents.
Moreover, in [7], we presented a randomized strategyproof mechanism that applies to
instances with K facilities and K + 1 agents on the line, and is 2-approximate for
the social cost, thus improving on the approximation ratio of (K + 1)/2 obtained by
Escoffier et al. [5] for this special case. Notably, Theorem 4 shows that instances with
only K + 1 agents are hard for deterministic mechanisms.
Imposing Mechanisms. Nissim et al. [15] introduced the notion of imposing mecha-
nisms, where the mechanism can restrict how the agents exploit its outcome. They
obtained a randomized imposing mechanism for K-Facility Location on the line that
approximates the average optimal social cost within an additive term of o(n). Subse-
quently, we proved, in [8], that the imposing version of the randomized mechanism of
[11] is 4K-approximate and strategyproof for K-Facility Location in general metrics.
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2 Notation, Definitions, and Preliminaries

Except for Section 5, we consider K-Facility Location on the real line. So, in this sec-
tion, we introduce the notation and the basic notions only for instances on the real line.

Notation. For a tuple x = (x1, . . . , xn) ∈ IRn, minx, maxx, and medx denote the
smallest, the largest, and the �n/2�-smallest coordinate of x, respectively. We let x−i
be the tuple x without xi. We write (x−i, a) to denote the tuple x with a in place of xi,
(x−{i,j}, a, b) to denote x with a in place of xi and b in place of xj , and so on.

Instances. Let N = {1, . . . , n} be a set of n ≥ 3 agents. Each agent i ∈ N has a
location xi ∈ IR, which is i’s private information. We usually refer to a locations profile
x = (x1, . . . , xn) ∈ IRn as an instance. For an instance x, we say that the agents are
arranged on the line according to a permutation π if π arranges them in increasing
order of their locations in x, i.e., xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n). In the following,
we consider 3-agent instances, where n = 3, and 3-location instances, where there are
three different locations x1, x2, x3, and a partition of N into three coalitionsN1, N2, N3

such that all agents in coalition Ni occupy location xi, i ∈ {1, 2, 3}. We usually denote
such an instance as (x1:N1, x2:N2, x3:N3). For a set N of agents, we let I(N) denote
the set of all instances, and let I3(N) denote the set of all 3-location instances.

Mechanisms. A mechanism F forK-Facility Location maps an instance x to a K-tuple
(y1, . . . , yK) ∈ IRK , y1 ≤ · · · ≤ yK , of facility locations. We let F (x) denote the out-
come of F for instance x, and let F�(x) denote y�, i.e., the 	-th smallest coordinate in
F (x). For 2-Facility Location, F1(x) denotes the leftmost and F2(x) denotes the right-
most facility. We write y ∈ F (x) to denote that F (x) has a facility at y. A mechanism
F is anonymous if for all x and all agent permutations π, F (x) = F (xπ(1), . . . , xπ(n)).
An agent i is a dictator of F if for all instances x, xi ∈ F (x).

Social Cost. Given a mechanism F for K-Facility Location and an instance x, the
cost of agent i is cost[xi, F (x)] = min1≤�≤K{|xi − F�(x)|}. The social cost of F
for x is cost[F (x)] =

∑n
i=1 cost[xi, F (x)]. The optimal cost for an instance x is

min
∑n

i=1 cost[xi, (y1, . . . , yK)], where the minimum is over all tuples (y1, . . . , yK).
A mechanism F has an approximation ratio of ρ ≥ 1, if for any instance x, the cost

of F (x) is at most ρ times the optimal cost for x. We say that the approximation ratio
ρ of F is bounded if ρ depends only on n and K . Since for any p ≥ 1 (or for p = ∞),
and for any non-negative n-tuple c, ‖c‖p ≤

∑n
i=1 ci ≤ n1−1/p‖c‖p, a mechanism has

a bounded approximation ratio for the Lp norm of the agent costs if and only if it has a
bounded approximation ratio for the social cost.

Strategyproofness. A mechanism F is strategyproof if no agent can benefit from mis-
reporting her location. Formally, for all instances x, any agent i, and all locations y,
cost[xi, F (x)] ≤ cost[xi, F (x−i, y)]. A mechanism F is group strategyproof if for
any coalition of agents misreporting their locations, at least one of them does not bene-
fit. Formally, for all instances x, any coalition S, and all subinstances yS , there exists
some agent i ∈ S such that cost[xi, F (x)] ≤ cost[xi, F (x−S ,yS)]. A mechanism F is
partially group strategyproof if for any coalition of agents that occupy the same loca-
tion, none of them can benefit if they misreport their location simultaneously. Formally,
for all instances x, any coalition of agents S, all occupying the same location x in x,
and all subinstances yS , cost[x, F (x)] ≤ cost[x, F (x−S ,yS)].
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Any group strategyproof mechanism is partially group strategyproof, and any par-
tially group strategyproof mechanism is strategyproof. [11, Lemma 2.1] shows that any
strategyproof mechanism for K-Facility Location is partially group strategyproof.

Image Sets. Given a mechanism F , the image (or option) set Ii(x−i) of an agent i with
respect to an instance x−i is the set of facility locations the agent i can obtain by vary-
ing her reported location, i.e., Ii(x−i) = {a ∈ IR : ∃y ∈ IR such that a ∈ F (x−i, y)}.
If F is strategyproof, any image set Ii(x−i) is a collection of closed intervals (see
e.g., [18, p. 249]), and F places a facility at the location in Ii(x−i) closest to the
location of agent i. Formally, for any agent i, all instances x, and all locations y,
cost[y, F (x−i, y)] = infa∈Ii(x−i){|y − a|}. In [11, Section 3.1], it is shown that us-
ing partial group strategyproofness, we can extend the notion of image sets and the
properties above to coalitions of agents that occupy the same location in an instance x.

Any (open) interval in the complement of an image set I ≡ Ii(x−i) is called a hole
of I . Given a location y �∈ I , we let ly = supa∈I{a < y} and ry = infa∈I{a > y}
be the locations in I nearest to y on the left and on the right, respectively. Since I is a
collection of closed intervals, ly and ry are well defined and satisfy ly < y < ry . For
convenience, given a y �∈ I , we refer to the interval (ly, ry) as a y-hole in I .

Nice Mechanisms. We refer to any mechanism F that is deterministic, strategyproof,
and has a bounded approximation ratio as a nice mechanism. We usually refer to F
without mentioning its approximation ratio, with the understanding that given F and
the set N of agents, we can determine an upper bound ρ on F ’s approximation ratio.

Due to the bounded approximation ratio, a nice mechanism F for K-Facility Loca-
tion is unanimous, i.e., for all x where the agents occupy only K locations x1, . . . , xK ,
F (x) = (x1, . . . , xK). Similarly, any hole in an image set Ii(x−i) of F is a bounded
interval. Otherwise, we could move agent i sufficiently far away from the other agents,
and obtain an instance for which F would have approximation ratio larger than ρ.

Well-Separated Instances. Given a nice mechanism F for K-Facility Location with
approximation ratio ρ, a (K + 1)-agent instance x is called (i1| · · · |iK−1|iK , iK+1)-
well-separated if xi1 < · · · < xiK+1 and ρ(xiK+1 − xiK ) < min2≤�≤K{xi� − xi�−1

}.
Namely, in a well-separated instance, there are two nearby agents whose distance to
each other is less than 1/ρ times the optimal social cost. Therefore any mechanism
with an approximation ratio of ρ serves the two nearby agents by the same facility, and
serves the remaining “isolated” agents by a different facility each.

We can show that if there is an (i1| · · · |iK−1|iK , iK+1)-well-separated instance x
with FK(x) = xiK (resp. FK(x) = xiK+1 ), then as long as we “push” the locations of
agents iK and iK+1 to the right (resp. left), while keeping the instance well-separated,
the rightmost facility of F stays with the location of iK (resp. iK+1). We note that the
equivalent property holds if the two nearby agents are located elsewhere in the instance.

Proposition 1. Let F be a nice mechanism and x be a (i1| · · · |iK−1|iK , iK+1)-well-
separated instance with FK(x) = xiK . Then for every (i1| · · · |iK−1|iK , iK+1)-well-
separated instance x′ = (x−{iK ,iK+1}, x

′
iK , x′iK+1

) with xiK ≤ x′iK , FK(x′) = x′iK .

Proposition 2. Let F be a nice mechanism and x be a (i1| · · · |iK−1|iK , iK+1)-well-
separated instance with FK(x) = xiK+1 . For all (i1| · · · |iK−1|iK , iK+1)-well-separa-
ted instances x′ = (x−{iK ,iK+1}, x

′
iK , x′iK+1

) with x′iK+1
≤ xiK+1 , FK(x′) = x′iK+1

.
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3 Strategyproof Mechanisms for 2-Facility Location

We start with discussing the key proof steps and the consequences of our main result:

Theorem 1. Let F be a nice mechanism for 2-Facility Location with n ≥ 5 agents.
Then, either F (x) = (minx,maxx) for all instances x, or there exists a unique dic-
tator j such that for all x, xj ∈ F (x).

We are aware of only two nice mechanisms for 2-Facility Location with n ≥ 4 agents,
one for each case of Theorem 1. The DICTATORIAL mechanism is an adaptation of
the mechanism of [11] for the circle. It chooses a dictator j, and for each instance x,
allocates a facility to xj . Then, it considers the distance of the dictator to the leftmost
and to the rightmost location, dl = |minx− xj | and dr = |maxx− xj |, respectively.
The second facility is placed at xj−max{dl, 2dr}, if dl > dr, and to xj+max{dr, 2dl},
otherwise. As in [11, Section 5], it can be shown that DICTATORIAL is strategyproof
and (n − 1)-approximate for the line. The TWO-EXTREMES mechanism places the
facilities at (minx,maxx), for all instances x, and is group strategyproof, anonymous,
and (n − 2)-approximate, as shown in [16]. By Theorem 1, TWO-EXTREMES is the
only anonymous nice mechanism for 2-Facility Location with n ≥ 5 agents and its
approximation ratio is best possible. Using Theorem 1, we can show that:

Corollary 1. Any deterministic strategyproof mechanism for 2-Facility Location with
n ≥ 5 agents has an approximation ratio of at least n− 2.

The crux, and the most technically involved part, of the proof of Theorem 1 is to estab-
lish a characterization of nice mechanisms dealing with just 3 agents. In particular, we
show that any nice mechanism for 2-Facility Location with 3 agents either places the
facilities at the two extremes, or admits a partial dictator, namely an agent allocated a
facility either for all agent permutations or for all agent permutations but one.

Theorem 2. Let F be any nice mechanism for 2-Facility Location with n = 3 agents.
Then, there exist at most two permutations π1, π2, with π1(2) = π2(2), such that for all
instances x where the agents are arranged on the line according to π1 or π2, medx ∈
F (x). For any other permutation π and instance x, where the agents are arranged on
the line according to π, F (x) = (minx,maxx).

We highlight that the notion of a partial dictator is essential. The COMBINED mecha-
nism for 3 agents chooses a permutation (i, j, k) of the agents, and for each instance x,
places the facilities using TWO-EXTREMES, if xi < xk, and using DICTATORIAL with
dictator j, otherwise. Thus, COMBINED admits a partial dictator, is strategyproof, and
achieves an approximation ratio of 2.

Using the notion of partial group strategyproofness, we extend Theorem 2 to 3-
location instances. The next step is to show that when applied to 3-location instances
with n ≥ 5 agents, nice mechanisms do not have the option of a partial dictator. More
formally, in Section 3.2, we sketch the proof of the following:

Theorem 3. Let N be a set of n ≥ 5 agents, and let F be any nice mechanism for
2-Facility Location applied to instances in I3(N). Then, either there exists a unique
dictator j ∈ N such that for all instances x ∈ I3(N), xj ∈ F (x), or for all instances
x ∈ I3(N), F (x) = (minx,maxx).
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Finally, in Section 3.3, we employ induction on the number of agents, and extend Theo-
rem 3 to general instances with n ≥ 5 agents, thus concluding the proof of Theorem 1.
In the next three subsections, we present the main ideas of the proof of Theorem 1.
We usually omit any quantification of F , with the understanding that F denotes a nice
mechanism for 2-Facility Location applied to the relevant class of instances.

3.1 Strategyproof Allocation of 2 Facilities to 3 Agents

In this section, we sketch the proof of Theorem 2. In the following, we let ↑ and ↓
denote the largest and the smallest element of the affinely extended real line. Hence, ↑
is greater than any real number and ↓ is less than any real number. We use the indices
i, j, k to implicitly define a permutation of the agents. We mostly use the convention
that i is the leftmost agent, j is the middle agent, and k is the rightmost agent.

We recall that given a nice mechanism F with approximation ratio ρ for 3 agents, a
3-agent instance x is (i|j, k)-well-separated if xi < xj < xk and ρ(xk−xj) < xj−xi.
Similarly, x is (i, j|k)-well-separated if xi < xj < xk and ρ(xj −xi) < xk−xj . A 3-
agent instance x is i-left-well-separated if x is either (i|j, k) or (i|k, j)-well-separated,
and is k-right-well-separated if it is either (i, j|k) or (j, i|k)-well-separated. Moreover,
a 3-agent instance x is i-well-separated if x is either i-left or i-right-well-separated.

At a high-level, the proof of Theorem 2 proceeds by gradually restricting the possible
outcomes of a nice mechanism. There are three main steps, each establishing the desired
conclusion for a different level of generality. As a first step, we consider the behavior
of nice mechanisms for well-separated instances. Since the mechanism has a bounded
approximation ratio, for any i-well-separated instance, one facility serves the isolated
agent i, and the other facility is placed between the locations of the two nearby agents j,
k. Thus, building on the characterization of [14], we show that for any i-well-separated
instance, the facility serving agents j and k is allocated by a generalized median voter
scheme (see e.g., [18, Definition 10.3]) whose characteristic threshold may depend on
the identity i and the location a of the isolated agent. More specifically, we show that
any agent-location pair (i, a) specifies a unique threshold p ∈ [a,+∞) ∪ {↑} and a
preferred agent j �= i, that fully determine the location of the rightmost facility for
all i-left-well-separated instances x with xi = a (see Fig. 1.a; by symmetry, the same
holds for i-right-well-separated instances and the leftmost facility, though possibly with
different values of p and j). Moreover, the allocation of the rightmost facility becomes
simple for the two extreme values of the threshold p: if p = a, the preferred agent j
serves as a dictator imposed by i for all i-left-well-separated instances, while if p = ↑,
the rightmost facility is placed at the rightmost location.

The key step is to show that the threshold p of any agent-location pair (i, a) can be
either a or ↑ (resp. either a or ↓ if i is the rightmost agent). To this end, we first extend
the allocation above to general instances with i as the leftmost (resp. rightmost) agent
(see Fig. 1.b). In a nutshell, we show that for most such instances, the threshold p and
the preferred agent j, that determine the location of a facility on the right (resp. left) part
of the instance, are the same as those for i-left (resp. i-right) well-separated instances.
Thus, if the preferred agent j is located on the right (resp. left) of the threshold p, she
essentially serves as a partial dictator, imposed by the leftmost (resp. rightmost) agent,
for the corresponding permutation of agents.
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Fig. 1. (a) The location of F2(x) for all i-left-well-separated instances x with xi = a. We let
j be the preferred agent and p be the threshold of (i, a). The location of agent j (resp. k) is on
the x-axis (resp. y-axis). The area around the line xj = xk includes all i-left-well-separated
instances. For instances in the dark grey area (where xj ≤ xk ≤ p), F2(x) = xk, for instances
in the black triangle (where xj ≤ p ≤ xk), F2(x) = p, and for instances in the light grey
area (where either xj ≥ p or xk ≤ xj ≤ p), F2(x) = xj . (b) We consider instances x with
xi = a < xj , xk, which are not necessarily well-separated. The plot depicts for which instances
a facility (not necessarily the rightmost one) is placed at either xj , or xk, or p.

As consequence, we obtain that the thresholds of the two allocation rules (one im-
posed by the leftmost agent and one imposed by the rightmost agent) always fall in the
two extremes: either a or ↑ for the leftmost agent (resp. either a or ↓ for the rightmost
agent). Otherwise, there exist instances with two different partial dictators, leading to
an unbounded approximation ratio. Intuitively, the black triangle in Fig. 1.b does not
exist, and either p = a, which corresponds to the existence of a partial dictator, or p = ↑
(resp. p = ↓), which corresponds to placing the facilities at the two extremes.

Building on this, we show that the thresholds of the two allocation rules, one for the
leftmost and one for the rightmost agent, can only depend on their identity, and not on
their location. Moreover, if an agent i imposes a partial dictator, the third agent agrees
with i not only on the existence of a partial dictator, but also on the dictator’s iden-
tity, and the partial dictator is unique. Therefore, every nice mechanism is essentially
characterized by whether there are two agents that agree on imposing the third agent
as a partial dictator or not. Examining all possible cases, we conclude that every nice
mechanism F either always places the facilities at the two extremes, or admits a partial
dictator j. In the latter case, the partial dictator j is identified by any instance x, with
xi < xj < xk, such that xj ∈ F (x).

3.2 Strategyproof Allocation of 2 Facilities to 3 Locations

The proof of Theorem 3 is based on an extension of Theorem 2 to 3-location instances.
To justify the extension, we can restate the whole proof of Theorem 2 with 3 coalitions
of agents, instead of 3 agents, and use that any strategyproof mechanism is also partially
group strategyproof [11, Lemma 2.1].
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A central notion in the proof of Theorem 3 is that of a dictator coalition. A non-
empty C ⊂ N , |C| ≤ |N | − 2, is a dictator coalition for 3-location instances, if for
all partitions N1, N2 of N \ C and all instances x = (x1 :N1, x:C, x2 :N2) ∈ I3(N),
x ∈ F (x). The first main step is to show the following property of dictator coalitions:

Lemma 1. Let N be a set of n ≥ 4 agents. If there exists a 3-location instance x =
(x1:N1, x2:N2, x3:N3), with x1 < x2 < x3 and |N2| ≤ n − 3, such that x2 ∈ F (x),
then any coalition N ′2 ⊇ N2 is a dictator coalition for 3-location instances.

To conclude the proof of Theorem 3, we show that for n ≥ 5 agents, if there exists
a 3-location instance where the middle coalition is allocated a facility, this coalition
includes a unique agent serving as a dictator for all instances.

3.3 Strategyproof Allocation of 2 Facilities to n Agents

The final step is to extend Theorem 3 to general instances with n ≥ 5 agents. The
proof considers two different cases, depending on how the mechanism F behaves for
3-location instances, and proceeds by induction on the number of different locations.

We first consider the case where F admits a dictator j for 3-location instances, and
show that the agent j is a dictator for all x ∈ I(N). For sake of contradiction, we
assume an instance x = (x1, . . . , xn) ∈ I(N) for which xj �∈ F (x). Wlog., we
let k �= j be the rightmost agent of x (if j is the rightmost agent, the argument is
symmetric). Since xj �∈ F (x), there is a xj -hole (l, r) in the imageset Ij(x−j). For a
small ε ∈ (0, (r − l)/2), we consider the instance x1 = (x−j , l + ε), where j moves
from xj to l + ε. By strategyproofness, and since l + ε is in the left half of the hole
(l, r), l ∈ F (x1). Then, we iteratively move all agents i ∈ N \ {j, k} from xi to l. By
strategyproofness, if F has a facility at l before i moves from xi to l, F keeps its facility
at l after i’s move. Otherwise, agent i with location l could manipulate F by reporting
xi. Thus, we obtain a 3-location instance x′ = (l:N \ {j, k}, l + ε:{j}, xk:{k}) with
l < l + ε < xk, such that l ∈ F (x′). Moreover, since j is a dictator for 3-location
instances, l + ε ∈ F (x′), and thus F (x′) = (l, l + ε). For ε sufficiently smaller than
xk − l, this contradicts the bounded approximation ration of F .

The case where F does not admit a dictator for 3-location instances is similar.

4 Inexistence of Anonymous Nice Mechanisms for K ≥ 3

In this section, we obtain an impossibility result for anomynous nice K-Facility Loca-
tion mechanisms, for all K ≥ 3.

Theorem 4. For every K ≥ 3, any deterministic anonymous strategyproof mechanism
for K-Facility Location with n ≥ K + 1 agents on the real line has an unbounded
approximation ratio.

Proof sketch. We only consider here the case where K = 3 and n = 4. For sake of
contradiction, we let F be an anonymous nice mechanism for 3-Facility Location, and
let ρ be its approximation ratio for instances with 4 agents. Next, we construct a family
of instances for which the approximation ratio of F is greater than ρ.
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Since F is anonymous, we assume that for any instance x, x1 < x2 < x3 < x4. For
some large λ > ρ, we consider the instance x = (0, λ, 3λ2 + λ, 3λ2 + λ+ 1), which is
(1|2|3, 4)-well-separated. We first show that F3(x) ∈ [x3, x4]. Wlog., we assume that
F3(x) ∈ {x3, x4}. Otherwise, if F3(x) = a and x3 < a < x4, the instance (x−4, a) is
also (1|2|3, 4)-well-separated and has F3(x−4, a) = a, due to F ’s strategyproofness.

Let F3(x) = x4 (the case where F3(x) = x3 is symmetric). Since x is an (1|2|3, 4)-
well-separated instance, both x3 and x4 are served by the facility at x4. Hence, there
is a x3-hole (l, r) in the image set I3(x−3). We note that 3λ2 + λ = x3 < r ≤ x4 =
3λ2 + λ + 1, since x3 �∈ F (x) and x4 ∈ F (x), and that l ≥ λ2 + λ − 1. The latter
holds because if l < λ2 + λ − 1, then y = 2λ2 + λ would lie in the right half of the
hole (l, r). Thus, if agent 3 moves to y, by strategyproofness, the nearest facility to y in
F (x−3, y) would be at r > 3λ2 +λ, and thus cost[F (x−3, y)] > λ2. Since the optimal
cost for (x−3, y) is λ, F ’s approximation ratio would be λ > ρ.

Let us now consider the instance x′ = (x−3, l+ ε), where ε ∈ (0, 1] is chosen small
enough that l + ε lies in the left half of the hole (l, r) and the instance (0, λ, l, l + ε)
is (1|2|3, 4)-well-separated. Since F is strategyproof, and since l is the nearest point to
l + ε in I3(x−3), l ∈ F (x′). Then, we consider the instance x′′ = (x′−4, l). Since F
is anonymous and strategyproof, and since l ∈ F (x′), x′′3 = l ∈ F (x′′). Moreover, by
Proposition 2, x′′4 = l + ε ∈ F (x′′), because for the (1|2|3, 4)-well-separated instance
x, F3(x) = x4, and x′′ is an (1|2|3, 4)-well-separated instance with x′′4 ≤ x4. Since
both x′′3 , x

′′
4 ∈ F (x′′), either the agents 1 and 2 are served by the same facility of

F (x′′) or the agent 2 is served by the facility at l. In both cases, cost[F (x′′)] ≥ λ. But
the optimal cost for x′′ is ε ≤ 1, and F ’s approximation ratio is at least λ > ρ. ��

5 Inexistence of Nice Mechanisms for K = 2 and General Metrics

Next, we consider 3-location instances of 2-Facility Location with n ≥ 3 agents in a
metric space consisting of 3 half-lines [0,∞) with a common origin O. This is concep-
tually equivalent to a continuous star with center O and 3 long branches starting at O.
So, we refer to this metric as S3, and to its 3 branches as b1, b2, and b3. We show that:

Theorem 5. Any deterministic strategyproof mechanism for 2-Facility Location with
n ≥ 3 agents in S3 has an unbounded approximation ratio.

Proof sketch. We first extend Theorem 2 so that we characterize nice mechanisms for 2-
Facility Location with 3 agents in S3, when all agents are located on (at most) two fixed
branches. To this end, we use that for instances where the 3 agents lie on 2 branches
only, nice mechanisms cannot take any advantage of the third branch.

Next we show that for all i-well-separated instances with the 3 agents on different
branches of S3, (i) a nice mechanism places the facility serving agents j and k in the
closed interval between them, and (ii) if for such an instance, a facility is allocated to
agent j, then as long as we “push” the location of j towards O, a facility stays with j.

For sake of contradiction, we let F be any nice mechanism for 2-Facility Location
in S3, and let i (resp. k) be the partial dictator of F on the line b1 − b2 (resp. b1 − b3, if
F does not admit a partial dictator, i and k are any two agents). We consider an i-well-
separated instance x where i is on the branch b1, j is on b2, and k is on b3. Thus, agents
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j and k are served by the same facility of F (x), which, by property (i) above, is located
between them. Wlog., we can assume that this facility is allocated to j. Then, “pushing”
the location of j to the center O of S3, we obtain an i-well separated instance x′ on the
line b1 − b3 for which F allocates a facility to agent j in the middle. This contradicts
the hypothesis that F (x′) places the facilities at the two extremes, because agent k is
the dictator of F on the line b1 − b3.

Then, using partial group strategyproofness, we extend the proof to instances with
n ≥ 3 agents. To this end, we consider a 3-location instance where a coalition of n− 2
agents plays the role of i, and the remaining 2 agents play the role of j and k. ��
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Abstract. In this paper, we consider the “foreach” sparse recovery
problem with failure probability p. The goal of the problem is to de-
sign a distribution over m ×N matrices Φ and a decoding algorithm A
such that for every x ∈ RN , we have with probability at least 1− p

‖x− A(Φx)‖2 � C‖x− xk‖2,

where xk is the best k-sparse approximation of x.
Our two main results are: (1) We prove a lower bound on m, the

number measurements, of Ω(k log(n/k) + log(1/p)) for 2−Θ(N) � p < 1.
Cohen, Dahmen, and DeVore [4] prove that this bound is tight. (2) We
prove nearly matching upper bounds that also admit sub-linear time
decoding. Previous such results were obtained only when p = Ω(1). One
corollary of our result is an an extension of Gilbert et al. [6] results for
information-theoretically bounded adversaries.

1 Introduction

In a large number of modern scientific and computational applications, we have
considerably more data than we can hope to process efficiently and more data
than is essential for distilling useful information. Sparse signal recovery [7] is one
method for both reducing the amount of data we collect or process initially and
then, from the reduced collection of observations, recovering (an approximation
to) the key pieces of information in the data. Sparse recovery assumes the fol-
lowing mathematical model: a data point is a vector x ∈ RN , using a matrix Φ
of size m × N , where m & N , we collect “measurements” of x non-adaptively
and linearly as Φx; then, using a “recovery algorithm” A, we return a good
approximation to x. The error guarantee must satisfy

‖x−A(Φx)‖2 � C‖x− xk‖2, (1)

where C is a constant (ideally arbitrarily close to 1) and xk is the best k-sparse
approximation of x. This is customarily called an 	2/	2-error guarantee in the
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literature. This paper considers the sparse recovery problem with failure prob-
ability p, the goal of which is to design a distribution over m × N matrices Φ
and a decoding algorithm A such that for every x ∈ RN , the error guarantee
holds with probability at least 1 − p. The reader is referred to [7] and the ref-
erences therein for a survey of sparse matrix techniques for sparse recovery, and
to [1] for a collection of articles (and the references therein) that emphasize the
applications of sparse recovery in signal and image processing.

There are many parameters of interest in the design problem: (i) number of
measurements m; (ii) decoding time, i.e. runtime of algorithm A; (iii) approx-
imation factor C and (iv) failure probability p. We would like to minimize all
the four parameters simultaneously. It turns out, however, that optimizing the
failure probability p can lead to wildly different recovery schemes. Much of the
sparse recovery or compressive sensing literature has focused on the case of either
p = 0 (which is called the “forall” model) or p = Ω(1) (the “foreach” model).
Cohen, Dahmen, and DeVore [5] showed a lower bound of m = Ω(N) for the
number of measurements when p = 0, rendering a sparse recovery system useless
as one must collect (asymptotically) as many measurements as the length of the
original signal1. Thus, algorithmically there is not much to do in this regime.

The case of p � Ω(1) has resulted in much more algorithmic success. Candés
and Tao showed in [2] that O(k log(N/k)) random measurements with a polyno-
mial time recovery algorithm are sufficient for compressible vectors and Cohen et
al. [5] show that O(k log(N/k)) measurements are sufficient for any vector (but
the recovery algorithm given is not polynomial time). In a subsequent paper,
Cohen et al. [4] give a polynomial time algorithm with O(k log(N/k)) measure-
ments. The next goal was to match the O(k log(N/k)) measurements but with
sub-linear time decoding. This goal was achieved by Gilbert, Li, Porat, and
Strauss [8] who showed that there is a distribution on m × N matrices with
m = O(k log(N/k)) and a decoding algorithm A such that, for each x ∈ RN the
	2/	2-error guarantee is satisfied with probability p = Θ(1). The next natural
goal was to nail down the correct dependence on C = 1+ε. Gilbert et al.’s result
actually needs O(1εk log(N/k)) measurements. This was then shown to be tight
by Price and Woodruff [21].

At this point, we completely understand the problem for the case of p = 0 or
p = Ω(1). Somewhat surprisingly, there is no work that has explicitly considered
the 	2/	2 sparse recovery problem when 0 < p � o(1). The main goal of this
paper is to close this gap in our understanding.

Given the importance of the sparse recovery problem, we believe that it is
important to close the gap. Similar studies have been done extensively in a closely
related field: coding theory. While the model of worst-case errors pioneered by
Hamming (which corresponds to the forall model) and the oblivious/stochastic
error model pioneered by Shannon (which corresponds to the foreach model)
are most well-known, there is a rich set of results in trying to understand the

1 For this reason, all of the forall sparse signal recovery results satisfy a different,
weaker error guarantee. E.g. in the �1/�1 forall sparse recovery we replace the con-
dition (1) by ‖x− A(Φx)‖1 � C‖x− xk‖1.
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power of intermediate channels, including the arbitrarily varying channel [14].
Another way to consider intermediate channels is to consider computationally
bounded adversaries [16]. Gilbert et al. [6] considered a computationally bounded
adversarial model for the sparse recovery problem in which signals are generated
neither obliviously (as in the foreach model) nor adversarially (in the forall
model) in order to interpolate between the forall and foreach signal models. Our
results in this paper imply new results for the 	1/	1 sparse recovery problem as
well as the 	2/	2 sparse recovery problem against bounded adversaries.

Our main contributions are as follows.

1. We prove that the number measurements has to be Ω(k log(N/k)+log(1/p))
for 2−Θ(N) � p < 1.

2. We prove nearly matching upper bounds that also admit sub-linear time
decoding.

3. We present applications of our result to obtain
(i) the best known number of measurements for 	1/	1 forall sparse recovery

with sublinear (poly(k, logN)) time decoding (in [9]), and
(ii) nearly tight upper and lower bounds on the number of measurements

needed to perform 	2/	2-sparse recovery against information-theoretically
bounded adversary.

As was mentioned earlier, there are many parameters one could optimize. We
will not pay very close attention to the approximation factor C, other than to
stipulate that C � O(1). In most of our upper bounds, we can handle C = 1 + ε
for an arbitrary constant ε, but optimizing the dependence on ε is beyond the
scope of this paper.

Lower Bound Result. We prove a lower bound of Ω(log(1/p)) on the number
of measurements when the failure probability satisfies 2−Θ(N) � p < 1. (When
p � 2−Ω(N), our results imply a tight bound of m = Ω(N).) The Ω(log(1/p))
lower bound along with the lower bound of Ω(k log(N/k)) from [21] implies the
final form of the lower bound claimed above. The obvious follow-up question is
whether this bound is tight. Indeed, an upper bound result Cohen, Dahmen, and
DeVore [4] proves that this bound is tight if we only care about polynomial time
decoding. Thus, the interesting algorithmic question is how close we can get to
this bound with sub-linear time decoding.

Upper Bound Results. For the upper bounds, we provide several algorithms that
span the trade-offs between number of measurements and failure probability. For
completeness, we include the running times and the space requirements of the
algorithms and measurement matrices in Table 1, which summarizes our main
results and compares them with existing results.

We begin by first considering the most natural way to boost the failure prob-
ability of a given 	2/	2 sparse recovery problem: we repeat the scheme s times
with independent randomness and pick the “best” answer– see the full version [9]
for more details. This boosts the decoding error probability from the original p
to pΩ(s)– though the reduction does blow up the approximation factor by a
multiplicative factor of

√
3.
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Table 1. Summary of algorithmic results. The results in [20] are for �1/�1 forall sparse
recovery but their results can be easily adapted to our setting with our proofs. c is
some constant � 8 and α > 0 is any arbitrary constant and we ignore the constant
factors in front of all the expressions.

Reference k m p Decoding time Space

[4] Any k k log(N/k) + log(1/p) Any p poly(N) poly(N)

[8] Any k k log(N/k) p � Ω(1) k · poly log N k · poly log N

[20] k � NΩ(1) k log(N/k) p = (N/k)−k/ logc k k1+αpoly log N Nk0.2

Any k k log(N/k) logc
k

N p = k−k/ logc k k1+αpoly log N Nk0.2

[8] Any k k log(N/k) p � 2−k/ logc k k · poly log N k · poly log N
+ weak/top conv.

This paper k � NΩ(1) k log(N/k) p = (N/k)−k/ logc k k1+αpoly log N k · poly log N

Any k � log(N/k) k log(N/k) logαk N p = (N/k)−k/ logc k k2α
−1

poly log N k · poly log N

The above implies that if we can optimally solve the 	2/	2 sparse recovery
problem for p � (N/k)−k (i.e. with O(k log(N/k)) measurements), then we
can solve the problem optimally for smaller p. Hence, for the rest of the de-
scription we focus on the case p � (N/k)−O(k) (where the goal is to obtain
m = O(k log(N/k))). Note that in this case, the amplification does not help as
even for p = Ω(1), previous results (e.g. [21]) imply that m � Ω(k log(N/k)).
Thus, if the original decoding error probability is p then to obtain the (N/k)−k

decoding error probability implies that the number of measurements will be
larger than the optimal value a factor of k log(N/k)/ log(1/p). As we will see
shortly the best know upper bound can achieve p = 2−k, which implies that
amplification will be larger than the optimal value of Ω(k log(N/k) by a fac-
tor of log(N/k). In this work, we show how to achieve the same goal with an
asymptotically smaller blow-up.

For p � (N/k)−k, there are two related works. The first is that of Porat
and Strauss [20] who considered the sparse recovery problem under the 	1/	1
forall guarantee. Despite the different error guarantee, our construction is closely
related to that of [20] and our proofs imply the results for [20] listed in Table 1.
Note that the results for polynomially large k are pretty much the same except
we have a better space complexity. For general k, our result also has better
number of measurements and failure probability guarantee. The second work
is that of Gilbert et al. [8]. Even though the results in that paper are cited
for p � Ω(1), it can be shown that if one uses O(k)-wise independent random
variables instead of the pair-wise independent random variables as used in [8],
one can obtain a “weak system” with failure probability 2−k. Then our “weak
system to top level system conversion” leads to the result claimed in the second
to last row in Table 1. Our results have a better failure probability at the cost
of larger number of measurements.

It is natural to ask whether decreasing the failure probability (the base changed
from 2 to (N/k)) is worth giving up the optimality in the number of measure-
ments (which is what [8] obtains). Note that achieving a failure probability of
(N/k)−k is a very natural goal and our results are better than those in [8] when
we anchor on the failure probability goal first.
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Bounded Adversary Results. We also obtain some results for 	2/	2-sparse re-
covery against information-theoretically-bounded adversaries as considered by
Gilbert et al. [6]. (See Section 2 for a formal definition of such bounded ad-
versaries.) Gilbert et al. show that O(k log(N/k)) measurements is sufficient for
such adversaries with O(logN) bits of information. Our results allow us to prove
results for a general number of information bits bound of s. In particular, we
observe that for such adversaries O(k log(N/k) + s) measurements suffice. Fur-
ther, if one desires sublinear time decoding then our results in Table 1 allows
for a similar conclusion but with extra poly log k factors. We also observe that
one needs Ω̃(

√
s) many measurements against such an adversary (assuming the

entries are polynomially large). In the final version of the paper, we will present
a proof suggested to us by an anonymous reviewer that leads to the optimal
Ω(s) lower bound.

Lower Bound Techniques. Our lower bound technique is inspired by the geo-
metric approach of Cohen et al. [5] for the p = 0 case. Our bound holds for
the entire range of failure probability p. Our technique also yields a simpler and
more intuitive proof of Cohen et al. result. Both results hold even for sparsity
k = 1.

The technical crux of the lower bound result in [5] for p = 0 is to show that
any measurement matrix Φ with O(N/C2) rows has a null space vector n that
is “non-flat,” – i.e. n has one coordinate that has most of the mass of n. On
the other hand since Φn = 0, the decoding algorithm A has to output the same
answer when x = n and when x = 0. It is easy to see that then A does not
satisfy (1) for at least one of these two cases (the output for 0 has to be 0 while
the output for n has to be non-flat and in particular not 0).

To briefly introduce our technique, consider the case of p = 2−N (where we
want a lower bound of m = Ω(N)). The straightforward extension of Cohen, et
al.’s argument is to define a distribution over, say, all the unit vectors in RN ,
argue that this gives a large measure of “bad vectors,” and then apply Yao’s
minimax lemma to obtain our final result; i.e., that there are “a lot” of non-flat
vectors in the null space of a given matrix Φ. This argument fails because the
distribution on the bad vectors must be independent of the measurement matrix
Φ (and algorithm A) in order to apply Yao’s lemma but null space vectors, of
course, depend on Φ. On the other hand, if we define the “hard” distribution
to be the uniform distribution, then the measure of null space vectors for any
m � 1 is zero, and thus this obvious generalization does not work.

We overcome this obstacle with a simple idea. The hard distribution is still
the uniform distribution on the unit sphere SN−1. We first show that there is a
region R on this sphere with large measure (� p) such that all vectors in R have
a positive “spike” (large mass) at one particular coordinate j∗ ∈ [N ]. (The region
R is simply a small spherical cap about the unit vector ej∗ .) In particular, to
recover an input vector v ∈ R, the algorithm has to assign a large positive mass
to the j∗th coordinate of A(Φv). Next, by applying a certain invertible linear
reflector to R, we can construct a region R′ (which is also a region on the sphere,
and is just a reflection of R) with the same measure satisfying the following: for
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each vector v ∈ R, the reflection v′ of v (v′ ∈ R′) has a negative spike at
the same coordinate j∗; furthermore, Φv = Φv′, which forces the algorithm A
into a dichotomy. The algorithm can not recover both v and v′ well at once.
Roughly speaking, the algorithm will be wrong with probability at least half
the total measure of R and R′, which is p. Finally, Yao’s lemma completes the
lower bound proof. There are some additional technical obstacles that we need
to overcome in this step—see [9] for more details.

Upper Bound Techniques. We believe that our main algorithmic contributions
are the new techniques that we introduce in this paper, which should be useful
in (similar) applications.

Our upper bounds follows the same outline used by Gilbert, Li, Porat and
Strauss [8] and Porat and Strauss [20]. At a high level, the construction fol-
lows three steps. The first step is to design an “identification scheme,” which
in sub-linear time computes a set S ⊆ [N ] of size roughly k that contains Ω(k)
of the “heavy hitters.” (Heavy hitters are the coordinates where if the output
vector does not put in enough mass then (1) will not be satisfied.) In the second
step, we develop a “weak level system” which essentially estimates the values
of coordinates in S. Finally, using a loop invariant iterative scheme, we convert
the weak system into a “top level system,” which is the overall system that we
want to design. (The way this iterative procedure works is that it makes sure
that after iteration i, one is missing only O(k/2i) heavy hitters– so after log k
steps we would have recovered all of them.) The last two steps are designed to
run in time |S| · poly logN , so if the first step runs in sub-linear time, then the
overall procedure is sub-linear. 2. Our main contribution is in the first step, so
we will focus on the identification part here. The second step (taking median of
measurements like Count-Sketch [3]) is standard [12].

In order to highlight and to summarize our technical contributions, we present
an overview of the scheme in [20] (when adapted to the 	2/	2 sparse recovery
problem). We focus only on the identification step. For near-linear time identifi-
cation, one uses a lossless bipartite expander where each edge in the adjacency
matrix is replaced by a random ±1 value. The intuition is that because of the
expansion property most heavy hitters will not collide with another heavy hitter
in most of the measurements it participates in. Further, the expansion property
implies that the 	22 noise in most of the neighboring measurements will be low.
(The random ±1 is a standard trick to convert this to an low 	2 noise.) Thus,
if we define the value of an index to be median value of all the measurements,
then we should get very good estimates for most of the heavy hitters (and in
particular, we can identify them by outputting the top O(k) median values).
Since this step implies computing N medians overall we have a near linear time
computation. However, note that if we had access to a subset S′ ⊆ [N ] that had

2 We would also like to point out that Gilbert et al.’s construction has a failure prob-
ability of Ω(1) in the very first iteration of the last step (weak to top level system
conversion) and it seems unlikely that this can be made smaller without significantly
changing their scheme.
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most of the heavy hitters in it, we can get away with a run time nearly linear in
|S′| (by just computing the medians in S′).

This seems like a chicken and egg problem as the set S′ is what we were after
to begin with! Porat and Strauss use recursion to compute S′ in sub-linear time.
(The scheme was also subsequently used by Ngo, Porat and Rudra to design
near optimal sub-linear time decodable 	1/	1 forall sparse recovery schemes for
non-negative signals [19].) To give the main intuition, consider the scheme that
results in Õ(

√
N) identification time. We think of the domain [N ] as L×R, where

both L and R are isomorphic to [
√
N ]. (Think of L as the first logN

2 bits in the
logN -bit representation of any index in [N ] and R to be the remaining bits.)
If one can obtain lists SL ⊂ L and SR ⊂ R that contain the projections of the
heavy hitters in L and R, respectively, then SL × SR will contain all the heavy
hitters, i.e. S′ ⊆ SL×SR. (We can use the near linear time scheme to obtain SL

and SR in Õ(
√
N) time in the base case. One also has to make sure that when

going from [N ] to a domain of size
√
N , not too many heavy hitters collide.

This can be done by, say, randomly permuting [N ] before applying the recursive
scheme.) The simplest thing to do would be to set S′ = SL×SR. However, since
both |SL| and |SR| can be Ω(k), this step itself will take Ω(k2) time, which is
too much if we are shooting for a decoding time of k1+αpoly logN for α < 1.
The way Porat and Strauss solved this problem was to store the whole inversion
map as a table. This allowed k · poly logN decoding time but the scheme ended
up needing Ω(N) space overall.

To get a running time of k1+αpoly logN one needs to apply the recursive idea
with more levels. One can think of the whole procedure as a recursion tree with
N = O(logk N) nodes. Unfortunately, this process introduces another technical
hurdle. At each node, the expander based scheme loses some, say ζ, fraction
of the heavy hitters. To bound the overall fraction of lost heavy hitters, Porat
and Strauss use the naive union bound of ζ · N . However, we need the overall
fraction of lost heavy hitters to be O(1). This in turn introduces extra factors
of logk N in the number of measurements (resulting in the ultimate number of
measurements of k log(N/k) log8k N in [20]).

We are now ready to present the new ideas that improve upon Porat and
Strauss’ solutions to solve the two issues raised above. Instead of dividing [N ]
into [

√
N ]× [

√
N ], we first apply a code C : [N ] → [ b

√
N ]r. (Note that the Porat

Strauss construction corresponds to the case when r = b = 2 and C just “splits”
the logN bits into two equal parts.) Thus, in our recursive algorithm at the
root we will get r subsets S1, . . . , Sr ⊆ [ b

√
N ] with the guarantee that for (most)

i ∈ [r], Si contains C(j)i for most heavy hitters j. Thus, we need to recover
the j’s for which the condition in the last sentence is true. This is exactly the
list recovery problem that has been studied in the coding theory literature. (See
e.g. [22].) Thus, if we can design a code C that solves the list recovery problem
very efficiently, we would solve the first problem above3. For the second problem,

3 We would like to point out that [19] also uses list recoverable codes but those codes
are used in a different context: they used it to replace expanders and further, the
codes have the traditional parameters.
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note that since we are using a code C, even if we only have C(j)i ∈ Si for say
r/2 positions i ∈ [r], we can recover all such indices j. In other words, unlike in
the Porat Strauss construction where we can lose a heavy hitter even if we lose
it in any of the N recursive call, in our case we only lose a heavy hitter if it is
lost in multiple recursive calls. This fact allows us to do a better union bound
than the naive one used in [20].

The question then is whether there exists code C with the desired proper-
ties. The most crucial part is that the code needs to have a decoding algorithm
whose running time is (near) linear in maxi∈[r] |Si|. Further, we need such codes
with r = O(1), i.e. of constant block length independent of maxi∈[r] |Si|. Unfor-
tunately, the known results on list recovery, be it for Reed-Solomon codes [11]
or folded Reed-Solomon codes [10] do not work well in this regime—these re-
sults need r � Ω(maxi∈[r] |Si|), which is way too expensive. For our setting, the
best we can do with Reed-Solomon list recovery is to do the naive thing of going
through all possibilities in ×i∈[r]Si. (These codes however can correct for optimal
number of errors and lead to our result in the last row of Table 1.) Fortunately,
a recent result of Ngo, Porat, Ré and Rudra [18] gave an algorithmic proof of the
Loomis-Whitney inequality [17]. The (combinatorial) Loomis-Whitney inequal-
ity has found uses in theoretical computer science before [13,15]. In this work, we
present the first application of the algorithmic Loomis Whitney inequality of [18]
and show that it naturally defines a code C with the required (algorithmic) list
recoverability. This code leads to the result in the second to last row of Table 1.
Interestingly, we get optimal weak level systems by this method. We lose in the
final failure probability because of the weak level to top level system conversion.

We conclude the contribution overview by pointing out three technical aspects
of our results.

– As was mentioned earlier, we first randomly permute the columns of the
matrix to make the recursion work. To complete our identification algorithm,
we need to perform the inverse operation on the indices to be output. The
naive way would be to use a table lookup, which will require O(N logN)
space, but would still be an improvement over [20]. However, we are able to
exploit the specific nature of the recursive tree and the fact that our main
results use the Reed-Solomon code and the code based on Loomis-Whitney
inequality to have sub-linear space usage.

– In the weak level to top level system, both Gilbert et al., and Porat and
Strauss decrease the parameters geometrically—however in our case, we need
to use different decay functions to obtain our failure probability.

– Unlike the argument in [20] we explicitly use an expander while Porat and
Strauss used a random graph. However, because of this, [20] need at least
N -wise independence in their random variables to make their argument go
through. Our use of expanders allows us to get away with using only Õ(k)-
wise independence, which among others leads to our better space usage.
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2 Preliminaries

We fix notations, terminology, and concepts that will be used throughout the
paper. Let [N ] denote the set {1, . . . , N}. Let G : [N ] × [	] → [M ] be an 	-
regular bipartite graph, and MG be its adjacency matrix. We will often switch
back and forth between the graph G and the matrixMG.For any subset S ⊆ [N ],
let Γ (S) ⊆ [M ] denote the set of neighbor vertices of S in G. Further, let E(S)
denote the set of edges incident on S. A bipartite graph G : [N ] × [	] → [M ]
is a (t, ε)-expander if for every subset S ⊆ [N ] of |S| � t, we have |Γ (S)| �
|S|	(1 − ε). Several expander properties used in our proofs are listed in the
complete paper [9], along with some probability basics.

Sparse Recovery Basics. For a vector x = (xi)
N
i=1 ∈ RN , the set of k highest-

magnitude coordinates of x is denoted by Hk(x). Such elements are called heavy

hitters. Every element i ∈ [N ]\Hk(x) such that |xi| �
√

ζ2η
k · ‖z‖2 will be called

a heavy tail element. Here, ζ and η are constants that will be clear from context.
All the remaining indices will be called light tail elements; let L denote the set of
light tail elements. A vector w = (wi)

N
i=1 ∈ RN is called a flat tail if wi = 1/|S|

for every non-zero wi, where S = supp(w).

Definition 1. A probabilistic m×N matrix M is called an (k, C)-approximate
sparse recovery system or (k, C)-top level system with failure probability p if
there exists a decoding algorithm A such that for every x ∈ RN , the following
holds with probability at least 1− p:

‖x−A(Mx)‖2 � C · ‖x− xHk(x)‖2.

The parameter m is called the number of measurements of the system.

Definition 2. A probabilistic matrix M with N columns is called a (k, ζ, η)-
weak identification matrix with (	, p)-guarantee if there is an algorithm that,
given Mx and a subset S ⊆ [N ], with probability at least 1− p outputs a subset
I ⊆ S such that (i) |I| � 	 and (ii) at most ζk of the elements of Hk(x) are not
present in I. The time taken to compute I will be called identification time.

Definition 3. We will call a (random) m×N matrix M a (k, ζ, η) weak 	2/	2
system if the following holds for any vector x = y + z such that |supp(y)| � k.
GivenMx one can compute x̂ such that there exist ŷ, ẑ that satisfy the following
properties: (1) x = x̂ + ŷ + ẑ; (2) |supp(x̂)| � O(k/η);4 (3) |supp(ŷ)| � ζk; (4)
‖ẑ‖2 � (1 + O (η)) · ‖z‖2

Bounded Adversary Model. We summarize the relevant definitions of computa-
tionally bounded adversaries from [6]. In this setting, Mallory is the name of
the process that generates inputs x to the sparse recovery problem. We recall
two definitions for Mallory: (i) Oblivious: Mallory cannot see the matrix Φ and

4 This part is different from the weak system in [20], where we have |supp(x̂)| � O(k).
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generates the signal x independent from Φ. For sparse signal recovery, this model
is equivalent to the “foreach” signal model. (ii) Information-Theoretic: Mal-
lory’s output has bounded mutual information with the matrix. To cast this in a
computational light, we say that an algorithm M is (s-)information-theoretically-
bounded if M(x) = M2(M1(x)), where the output of M1 consists of at most s
bits. This model is similar to that of the “information bottleneck” [23].

Lemma 1 of [6] relates the information-theoretically bounded adversary to
a bound on the success probability of an oblivious adversary. We re-state the
lemma for completeness:

Lemma 1. Pick 	 = 	(N), and fix 0 < α < 1. Let A be any randomized algo-
rithm which takes input x ∈ {0, 1}N , r ∈ {0, 1}m, and “succeeds” with probability
1 − β. Then for any information theoretically bounded algorithm M with space
	, A(M(r), r) succeeds with probability at least

min {1− α, 1− 	/ log(α/β)}

over the choices of r.

3 Lower Bounds

Lower Bound for 	2/	2-Foreach Sparse Recovery with Low Risk. For the sake
of completeness we present a simplified version of the proof of the Ω(N) lower
bound from [5] for the 	2/	2 forall sparse recovery in [9]. Our main result is the
following, whose proof can be found in [9].

Theorem 4. Let C � 1 and p be such that
√

12 + 16C2 · e−
ln(6+8C2)

2 ·N � p <
1. Then, any 	2/	2 foreach sparse recovery scheme using m × N measurement
matrices Φ with failure probability at most p and approximation factor C must

have m � 1
(6+8C2) ln(6+8C2) ln

(√
12+16C2

p

)
= Ω(log(1/p)) measurements.

Lower Bound for Bounded Adversary Model. In this section, we show the fol-
lowing result (proof is in [9]):

Theorem 5. Any 	2/	2 sparse recovery scheme that uses at most b bits in each
entry of Φ needs at least Ω

(√
s
b

)
number of measurements to be successful

against an s-information-theoretically-bounded adversary.

4 Sublinear Decoding

We present known results with polynomial time decoding on 	2/	2 sparse recov-
ery problem in [9].

Our strategy for designing sub-linear time decodable top level systems will be
as follows: we will first design weak identification matrices that have sublinear
identification time. Then we (in a black-box manner) convert such matrices to
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sub-linear time decodable top level systems. We now present an outline of how we
implement our strategy. In [9] we show how expanders can be used to construct
various schemes that will be useful later. In [9], we show how to convert weak
identification systems to top level systems. The rest of technical development is
in designing weak identification system with good parameters.

Our first main result on sub-linear time decodable top levels systems will be:

Theorem 6. For any k � NΩ(1) and ε, α > 0, there exists a (k, 1 +
ε)-top level system with O(ε−11k log(N/k)) measurements, failure probability

(N/k)−k/ log13+α k and decoding time ε−4 · k1+α · logO(1) N .5 This scheme uses

Oε(k · logO(1) N) bits of space.

In fact, our results also work for k = No(1) but we then do not get the optimal
number of measurements. However, an increase in the decoding time leads to
our second main result, which has near-optimal number of measurements.

Theorem 7. For any 1 � k � N and ε, α > 0, there exists a (k, 1 + ε)-top
level system with O(ε−11k log(N/k) logαk N) measurements, failure probability

(N/k)−k/ log13+α k and decoding time (k/ε)Θ(2−α) · logO(1) N .6 This scheme uses

Oε(k · logO(1) N) bits of space.

The proofs are deferred to [9].

Consequences for the Bounded Adversary Model. Our first corollary is an upper
bound for the information-theoretic bounded adversary and follows directly from
Lemma 1 (by setting β = α2−s/α) and the result of [5].

Corollary 8. Fix 0 < α < 1. There is a randomized sparse signal recovery
algorithm that with m = O(k log(N/k) + s/α) measurements will foil an s-
information-theoretically bounded adversary; that is, the algorithm’s output will
meet the 	2/	2 error guarantees with probability 1− α.

The algorithm in [5] does not have a sublinear running time. If the goal is to
defeat such an adversary and to do so with a sublinear algorithm, we must
adjust our measurements accordingly, using Table 1. We note that in [6], there
was a single result for O(logN)-information-theoretically bounded adversaries
(O(k log(N/k) measurements are sufficient) and this corollary provides an upper
bound for the entire range of parameter s.
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Abstract. We investigate the autoreducibility and mitoticity of com-
plete sets for several classes with respect to different polynomial-time
and logarithmic-space reducibility notions.

Previous work in this area focused on polynomial-time reducibility
notions. Here we obtain new mitoticity and autoreducibility results for
the classes EXP and NEXP with respect to some restricted truth-table
reductions (e.g., ≤p

2-tt,≤
p
ctt,≤p

dtt).
Moreover, we start a systematic study of logarithmic-space autore-

ducibility and mitoticity which enables us to also consider P and smaller
classes. Among others, we obtain the following results:

– Regarding ≤log
m , ≤log

2-tt, ≤
log
dtt and ≤

log
ctt , complete sets for PSPACE and

EXP are mitotic, and complete sets for NEXP are autoreducible.
– All ≤log

1-tt-complete sets for NL and P are ≤log
2-tt-autoreducible, and all

≤log
btt-complete sets for NL, P and ΔP

k are ≤log
log-T-autoreducible.

– There is a ≤log
3-tt-complete set for PSPACE that is not even ≤log

btt-
autoreducible.

Using the last result, we conclude that some of our results are hard or
even impossible to improve.

1 Introduction

A set C is called autoreducible if C can be reduced to itself by a reduction
that does not query its own input. In this way, each reducibility induces a cor-
responding autoreducibility notion. The main question in connection with au-
toreducibility asks whether all complete sets of a certain complexity class are
autoreducible. Interestingly, in several cases answering such questions would lead
to new separations of complexity classes.

For example, consider the question of whether all polynomial-time truth-
table-complete sets for EXP are polynomial-time truth-table-autoreducible.
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Buhrman et al. [5] show that a positive answer results in NL �= NP while a
negative answer implies PH �= EXP. So the study of the autoreducibility of
complete sets is a fascinating and important topic.

Mitoticity is another structural property of complete sets that could lead
to separations of complexity classes. A set C is mitotic if it can be partioned
into sets C1 and C2 such that C, C1, and C2 are equivalent. Here again each
reducibility induces a corresponding notion of mitoticity.

Over the past 20 years, researchers were able to solve autoreducibility and
mitoticity questions for several complexity classes and with respect to several
polynomial-time reducibility notions. With our paper we further develop this
knowledge in two ways: First, we extend techniques by Buhrman et al. [5] to
show new mitoticity results for EXP and NEXP. Second, we start a systematic
investigation of autoreducibility and mitoticity for logarithmic-space reductions.
Since the previous research was concerned with polynomial-time reductions, it
did not produce conclusions about P or smaller classes.

With respect to polynomial-time 2-truth-table reducibility (≤p
2-tt) we show

that all EXP-complete sets are mitotic and all NEXP-complete sets are autore-
ducible. With respect to logspace reducibilities (e.g., ≤log

m , ≤log
2-tt, ≤

log
btt, ≤

log
T )

we obtain several autoreducibility and mitoticity results for complete sets of
the classes NL, P, PSPACE, EXP, and NEXP. Table 1 summarizes previously
known results and their references together with results newly obtained in this
paper. For example, we show:

(i) All ≤log
2-tt-complete sets for PSPACE are ≤log

2-tt-mitotic.

(ii) All ≤log
2-tt-complete sets for EXP are ≤log

2-tt-mitotic.

Note that in both cases, mitoticity implies autoreducibility.
The restriction of the reduction allows us to show stronger negative results.

We prove:

(iii) There exists a ≤log
3-tt-complete set for PSPACE that is not ≤log

btt-
autoreducible.

This result is particularly interesting, since it shows that statement (i) does not

hold for ≤log
3-tt and that (ii) cannot be improved to ≤log

3-tt, unless one separates
EXP from PSPACE. Furthermore, for logspace bounded-truth-table reducibility
we obtain that resolving the autoreducibility or mitoticity of complete sets for
classes between L and PSPACE in one or the other way implies new separations
of complexity classes:

(iv) For every C ∈ {P,NP,ΔP
k ,PP} it holds that

• if all ≤log
btt-complete sets for C are ≤log

btt-autoreducible, then C �= PSPACE
• otherwise, L �= C.

The paper is organized as follows. Section 2 contains the preliminary definitions
and some basic propositions about autoreducibility and mitoticity. In section 3 we
use search techniques in computation trees and self-reducibility to establish autore-
ducibility of complete sets for NL and P. In section 4 we use local checkability to
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obtain further autoreducibility results for NL, P, and ΔP
k . Moreover, we argue that

some of those results are difficult to improve, as such an improvement would sepa-
rate P or ΔP

k from PSPACE. In section 5 we consider higher complexity classes such
as PSPACE,EXP,NEXP and use diagonalization to obtain mitoticity and autore-
ducibility results, some of which again are hard or even impossible to improve.

2 Preliminaries

Let log 0 = 0 and logn = �log2 n� for n ≥ 1. A set is called trivial if it is finite
or cofinite; otherwise the set is called nontrivial. The characteristic function of
a set A is denoted by cA or simply A. If M is a machine, then M(x) denotes the
computation of M on input x and L(M) denotes the language accepted by M .
Let 〈· · · 〉 be a standard pairing function computable in logarithmic space.

The operators ∧,∨,→,←,↔ denote the usual 2-ary Boolean functions and
¬∧,¬∨, �→, �←,⊕ denote the negations of these functions.

The notions of polynomial-time (resp., logspace) oracle Turing machine and
polynomial-time-computable (resp., logspace-computable) function are defined
according to Ladner, Lynch, and Selman [11,12]. These machines use a single
write-only oracle query tape that is automatically erased after each query.

For sets A and B we say that A is polynomial-time Turing reducible to B (A ≤p
T

B), if there exists a polynomial-time oracle Turing machine that accepts A with B
as its oracle. If M on input x asks at most O(log |x|) queries, then A is polynomial-
time log-Turing reducible to B (A ≤p

log-T B). If M ’s queries are nonadaptive (i.e.,
independent of the oracle), then A is polynomial-time truth-table reducible to B
(A ≤p

tt B). If M asks at most k nonadaptive queries, then A is polynomial-time
k-truth-table reducible to B (A ≤p

k-tt B). A is polynomial-time bounded-truth-
table reducible to B (A ≤p

btt B), if A ≤p
k-tt B for some k. A is polynomial-time

disjunctive-truth-table reducible to B (A ≤p
dtt B), if there exists a polynomial-

time-computable function f such that for all x, f(x) = (q1, . . . , qn) for some n ≥ 1
and (x ∈ A ⇐⇒ cB(q1) ∨ · · · cB(qn)). If n is bounded by some constant k, then
A is polynomial-time k-disjunctive-truth-table reducible to B (A ≤p

k-dtt B). The
polynomial-time conjunctive-truth-table reducibilities≤p

ctt and≤p
k-ctt are defined

analogously. A is polynomial-time many-one reducible to B (A ≤p
m B), if there

exists a polynomial-time-computable function f such that (x ∈ A ⇐⇒ f(x) ∈
B). For a k-ary Boolean function α, A is polynomial-time α-truth-table reducible
to a set B (A ≤p

αtt B), if there exists a polynomial-time-computable function f
such that f(x) = (q1, . . . , qk) and (x ∈ A ⇐⇒ α(cB(q1), . . . , cB(qk))). We also
use the following logspace reducibilities which are defined analogously in terms of
logspace oracle Turing machines and logspace-computable functions:≤log

T ,≤log
log-T,

≤log
tt , ≤log

k-tt, ≤
log
btt, ≤

log
dtt, ≤

log
k-dtt, ≤

log
ctt , ≤

log
k-ctt, ≤log

m , ≤log
αtt.

Consider a logspace oracle Turing machine M on input x. If we run through all
configurations and compute the next string that is queried, we obtain a list L of
all strings that are possibly queried during the computation of M on x. Now we
can simulate the computation of M on x such that each time a string q is queried,
we query all strings from L and use the answer to q in the further computation.
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Table 1. Are all complete sets for certain classes autoreducible or even mitotitc? For
each reduction ≤ in the first column and each class C in the first row, the corresponding
cell shows whether all ≤-complete sets for C are autoreducible or mitotic, where Mx

y

means ≤x
y-mitotic, and Ax

y means ≤x
y-autoreducible. From the first cell in the upper

table we know for instance that all ≤log
m -complete sets for NL are ≤log

1-tt-autoreducible.
k ≥ 2 is a fixed integer, α is an arbitrary binary boolean function. For the cells marked
with X1, X2, and X3, negative results are known: There is a ≤log

btt-complete set for

PSPACE that is not ≤log
btt-autoreducible (Theorem 12) and a ≤log

btt-complete set for
EXP that is not ≤p

btt-autoreducible [5]. Results implied by universal relations be-
tween reductions are omitted. For the definitions of the reductions and the classes, see
section 2.

reduction NL P ΔP
k PSPACE EXP NEXP references

≤log
m Alog

1-tt, A
log
2-dtt, A

log
2-ctt A

log
1-tt Mlog

m Mlog
m Alog

m 5, 9, 20, 23

≤log
1-tt Alog

2-tt Alog
2-tt Mlog

m Mlog
m Alog

m 9, 29

≤log
αtt Alog

btt Alog
btt 17

≤log
2-tt Mlog

2-tt Mlog
2-tt Alog

2-tt 24, 27

≤log
k-ctt Alog

k-tt, A
log
2k-ctt Alog

k-tt Mlog
k-ctt Mlog

k-ctt Alog
k-ctt 5, 9, 27

≤log
k-dtt Alog

k-tt, A
log
2k-dtt Alog

k-tt Mlog
k-dtt Mlog

k-dtt A
log
k-dtt 5, 9, 27

≤log
btt Alog

log-T Alog
log-T Alog

log-T X1 X2 11, 12, 15, [5]

≤log
ctt Alog

ctt Mlog
ctt Mlog

ctt Alog
ctt 9, 23, 27

≤log
dtt Alog

dtt Mlog
dtt Mlog

dtt Alog
dtt 9, 23, 27

≤log
tt Alog

tt Alog
tt Alog

tt 9, 15

≤log
T Alog

tt Alog
tt Alog

tt 9, 15

reduction NP ΔP
k PSPACE EXP NEXP references

≤p
m Mp

m Mp
m Mp

m Mp
m Mp

m [3,6,7,8]

≤p
1-tt Mp

1-tt Mp
1-tt Mp

m Mp
m [4,7,8,10], 29

≤p
2-tt Mp

2-tt Ap
2-tt [5], 24, 27

≤p
k-ctt Mp

k-ctt Ap
k-ctt 23, 27

≤p
k-dtt Ap

k-dtt Ap
k-dtt Mp

k-dtt A
p
k-dtt [7], 23, 27

≤p
btt X3 [5]

≤p
ctt Mp

ctt Ap
ctt 23, 27

≤p
dtt Ap

dtt Ap
dtt Mp

dtt Ap
dtt [7], 23, 27

≤p
tt ABPP

tt Ap
tt ABPP

tt [2,5]

≤p
T Ap

T Ap
T Ap

T [2,5]
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This shows that we may assume that logspace oracle Turing machines query
nonadaptively.

Proposition 1 ([11]). A ≤log
tt B if and only if A ≤log

T B.

Definition 2 (autoreducibility). For ≤ ∈ {≤p
T, ≤

p
log-T, ≤

p
tt, ≤

p
k-tt, ≤

p
btt,

≤log
T , ≤log

log-T, ≤
log
tt , ≤log

k-tt, ≤
log
btt}, a set A is ≤-autoreducible, if A ≤ A via an

oracle Turing machine that on input x does not query x.
For ≤ ∈ {≤p

dtt, ≤
p
k-dtt, ≤

p
ctt, ≤

p
k-ctt, ≤p

m, ≤
p
αtt, ≤

log
dtt, ≤

log
k-dtt, ≤

log
ctt, ≤

log
k-ctt,

≤log
m , ≤log

αtt}, a set A is ≤-autoreducible, if A ≤ A via a function f such that if
f(x) = (q1, . . . , qn), then x /∈ {q1, . . . , qn}.

Definition 3 (mitoticity). For any polynomial-time reducibility ≤p, a set A
is ≤p-mitotic, if there exists a separator S ∈ P such that A ≡p A ∩ S ≡p A ∩ S.
Analogously we define mitoticity for logspace reducibilities for which the separator
is chosen from L.

Proposition 4. For every reduction ≤ and every non-trivial set A, if A is ≤-
mitotic, then A is ≤-autoreducible.

Proposition 5. Let k ≥ 1 and let C be a complexity class closed under comple-
mentation. All ≤log

m -complete sets for C are ≤log
1-tt-autoreducible and all ≤log

k-dtt-

or ≤log
k-ctt-complete sets for C are ≤log

k-tt-autoreducible.

3 Autoreducibility by Self-reducibility

We use the notion of self-reducibility to show the autoreducibility of complete
sets. For NL and P there exist self-reducible, ≤log

m -complete sets. In this section
we argue that this implies that all complete sets for NL and P are autoreducible
(not only for ≤log

m , but also several other logspace reducibility notions). For exam-

ple, we obtain that all ≤log
tt -complete sets for NL and P are ≤log

tt -autoreducible.

The following notion of ≤log
T -self-reducibility is a restriction of ≤log

T -
autoreducibility which demands that oracle queries have a certain structure.

Definition 6 ([1]). A is ≤log
T -self-reducible if there is a logspace oracle Turing

machine M that accepts A with oracle A such that on input x, the queries asked
by M are of the same length as x, lexicographically smaller than x, and differ
from x at most in the last log |x| symbols.

The notions of ≤log
tt -self-reducibility and ≤log

k-tt-self-reducibility are defined anal-

ogously. By Proposition 1, a set is ≤log
T -self-reducible if and only if it is ≤log

tt -self-
reducible.

There is a technical difficulty in defining self-reducibility for disjunctive and
conjunctive truth-table reducibilities. In these cases, the reduction cannot simply
accept or reject, but must generate queries that represent the answer. However,
a self-reduction on input x = y0|y| is not allowed to make any query, since the
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last log |x| symbols of x already reached the minimal possible value. Therefore,
in the definition below the self-reduction may accept or reject without asking
any queries.

Definition 7. A setA is≤log
dtt-self-reducible if there is a logspace-computable func-

tion f whose values can be 0, 1, or a list of words (y1, . . . yn) where n ≥ 1 such
that the following holds: If f(x) ∈ {0, 1}, then cA(x) = f(x). Otherwise, it holds
that f(x) = (y1, . . . yn) such that the yi are of the same length as x, are lexico-
graphically smaller than x, differ from x at most in the last log |x| symbols, and

x ∈ A ⇔ (cA(y1)∨· · ·∨cA(yn)). Ifn is bounded by some constant k, thenA is≤log
k-dtt-

self-reducible. The notions of ≤log
ctt-self-reducibility and ≤log

k-ctt-self-reducibility are

defined analogously. A is ≤log
m -self-reducible if it is ≤log

1-dtt-self-reducibile.

Each nontrivial self-reducible set B is autoreducible. The lemma below says that
if a set A is in some sense equivalent to a self-reducible set B, then also A is
autoreducible. The proof for the easiest case of ≤log

dtt works by first executing
the reduction A ≤log

m B and then it iteratively follows exactly one of the self-

reducibility-queries of B. For each of these queries, the ≤log
dtt-reduction to A

is computed. If x does not occur among the queries of this reduction, we can
complete the reduction. Otherwise, we continue the self-reduction on this path,
as it positively depends on whether x ∈ A.

Lemma 8. Let l ≥ 1 and A,B be sets.

1. A ≤log
m B ≤log

tt A and B is ≤log
tt -self-reducible =⇒ A is ≤log

tt -autoreducible.

2. A ≤log
m B ≤log

1-tt A and B is ≤log
2-tt-self-reducible =⇒ A is ≤log

2-tt-autoreducible.

3. A ≤log
m B ≤log

dtt A and B is ≤log
dtt-self-reducible =⇒ A is ≤log

dtt-autoreducible.

4. A ≤log
m B ≤log

l-dtt A, B is ≤log
2-dtt-self-reducible =⇒ A is ≤log

2l-dtt-autoreducible.

A suitable encoding of {(C, g) | gate g in circuit C computes 1} is ≤log
m -complete

for P and ≤log
tt -self-reducible. By Lemma 8 this shows that all ≤log

m -complete sets

for P are ≤log
tt -autoreducible. Restrictions of the circuit type yield similar results

for other classes and reductions.

Theorem 9. Let k ≥ 1.

1. All ≤log
tt -complete sets for NL, P, ACk, SACk, NCk are ≤log

tt -autoreducible.

2. All ≤log
1-tt-complete sets for NL, P are ≤log

2-tt-autoreducible.

3. All ≤log
dtt-complete sets for NL are ≤log

dtt-autoreducible.

4. All ≤log
ctt-complete sets for NL are ≤log

ctt-autoreducible.
5. All ≤log

k-dtt-complete sets for NL are ≤log
2k-dtt-autoreducible.

6. All ≤log
k-ctt-complete sets for NL are ≤log

2k-ctt-autoreducible.

7. All ≤log
m -complete sets for NL are ≤log

2-dtt- and ≤
log
2-ctt-autoreducible.

We now use self-reducibility to show that for restricted ≤log
2-tt reducibility it holds

that complete sets for NL and P are autoreducible.

Theorem 10. All sets that are ≤log
(→)tt-complete for NL (resp., P) are ≤log

btt-

autoreducible.
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4 Autoreducibility by Local Checkability of Computations

If we represent computations of NL, P, and ΔP
k machines in tableaus or configu-

ration graphs, we can locally check the consistency of these computations. This
technique allows us to show

(i) the ≤log
log-T-autoreducibility of all ≤log

btt-complete sets for NL, P, and ΔP
k , and

(ii) the ≤log
btt-autoreducibility of all ≤log

αtt-complete sets for NL and P, for all 2-ary
Boolean α.

Using techniques by Buhrman et al. [5] we show that not all ≤log
btt-complete

sets for PSPACE are ≤log
btt-autoreducible. Hence certain improvements of (i) and

(ii) are difficult to obtain: Improving (i) to ≤log
btt-autoreducibility for P (resp.,

ΔP
k ) implies P �= PSPACE (resp., ΔP

k �= PSPACE), and improving (ii) to 3-ary
Boolean α for P implies P �= PSPACE.

Moreover, we obtain that resolving the ≤log
btt-autoreducibility of ≤log

btt-complete
sets for P, NP, PP, ΔP

k , ΣP
k , or ΠP

k leads to unknown separations of complexity
classes.

Theorem 11. 1. All ≤log
btt-complete sets for NL are ≤log

log-T-autoreducible.

2. All ≤log
btt-complete sets for P are ≤log

log-T-autoreducible.

Proof (Sketch for 2.). Let A be ≤log
btt-complete for P. Computing a bit in the

computation tableau of the machine for A on input x can be done in polynomial
time and thus is ≤log

btt-reducible to A. Fixing the answer for the query x in this
reduction to 0 or 1 leads to two tableaus of which at least one is correct. For
simplicity, we assume that they are not equal. Computing the index to the first
difference in the two tableaus is again a polynomial task and thus reducible to
A with at most logarithmically many queries (the length of the index is at most
logarithmic). Let i be the index obtained from the reduction when queries to x
are always answered by 1. If the tableaus are equal at index i, we reject (since
the assumption x ∈ A was incorrect). Otherwise, we accept if and only if there is
a local inconsistency at index i in the tableau computed when answering queries
to x by 0. If x /∈ A, there will be no inconsistency and otherwise, the index i is
obtained from the right assumption and the inconsistency will be found. ��

Theorem 11 raises the question of whether one can improve this result to obtain a
non-adaptive autoreduction, especially because only a constant number of queries
in the proof is adaptive. The next theorem and its corollary show that at least
in the case of P (Theorem 11.2) such an improvement is difficult to obtain as it
separates P from PSPACE. The proof is based on an idea by Buhrman et al. [5]
who show that not all ≤p

btt-complete sets for EXP are ≤p
btt-autoreducible. Note

that ≤log
2-T-reducibility implies ≤log

3-tt-reducibility.

Theorem 12. For every k there is a ≤log
2-T-complete set for PSPACE that is not

≤log

nk-tt
-autoreducible. In particular, not all ≤log

btt-complete sets for PSPACE are

≤log
btt-autoreducible.
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It follows that improving Theorem 11.2 to ≤log
log-tt-autoreducibility or ≤log

nc-tt-
autoreducibility separates P from PSPACE. At this point we also observe two
similar statements (13.2 and 13.3) which will explain the difficulty of improving
the Theorems 15 and 17 below.

Corollary 13. Let c ≥ 1 and k ≥ 2.

1. If all ≤log
btt-complete sets for P are ≤log

nc-tt-autoreducible, then P �= PSPACE.

2. If all ≤log
3-tt-complete sets for P are ≤log

btt-autoreducible, then P �= PSPACE.

3. If all ≤log
btt-complete sets for ΔP

k are ≤log
nc-tt-autoreducible, then ΔP

k �=
PSPACE.

Trivially, all ≤log
btt-complete sets for L are ≤log

btt-autoreducible and ≤log
btt-mitotic.

This shows that proving or refuting Theorem 12 for class like P, NP, or ΔP
k leads

to unknown separations of complexity classes.

Corollary 14. Let k ≥ 1 and C ∈ {P,NP,PP,ΔP
k ,Σ

P
k ,Π

P
k }.

1. If all ≤log
btt-complete sets for C are ≤log

btt-autoreducible, then C �= PSPACE,
otherwise C �= L.

2. If all ≤log
btt-complete sets for C are ≤log

btt-mitotic, then C �= PSPACE, otherwise
C �= L.

Using another technique by Buhrman at al. [5] we generalize the proof of Theo-
rem 11 and obtain similar results for all Δ-levels of the polynomial-time hierar-
chy. By Corollary 13.3, improving the theorem to ≤log

nc-tt-autoreducibility or even

≤log
btt-autoreducibility separates ΔP

k from PSPACE.

Theorem 15. Let k ≥ 0. All ≤log
btt-complete sets for ΔP

k are ≤log
log-T-autoreducible

and all ≤log
tt -complete sets for ΔP

k are ≤log
tt -autoreducible.

In the proof of the next lemma we locally check configuration graphs of
nondeterministic (resp., alternating) logspace machines to obtain the ≤log

btt-

autoreducibility of ≤log
(↔)tt-complete sets for NL and P. Together with the re-

sults from previous sections this shows Theorem 17, which states that for ev-
ery fixed 2-ary Boolean function α, all ≤log

αtt-complete sets for NL and P are

≤log
btt-autoreducible. By Theorem 12, improving the theorem to 3-ary Boolean

functions separates P from PSPACE.

Lemma 16. All sets ≤log
(↔)tt-complete for NL or ≤log

(↔)tt-complete for P are ≤log
btt-

autoreducible.

Theorem 17. For every α : {0, 1}2 → {0, 1}, all ≤log
αtt-complete sets for NL and

all ≤log
αtt-complete sets for P are ≤log

btt-autoreducible.
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5 Mitoticity and Autoreducibility by Diagonalization

We use diagonalization to obtain logspace mitoticity and autoreducibility results.
Generally speaking, the diagonalization prevents difficult cases that could not be
handled. Buhrman et al. [5] use this technique to show for EXP and other classes
that all ≤p

2-tt-complete sets are ≤p
2-tt-autoreducible. We extend this technique

and show the statement for NEXP.
Moreover, we consider several logspace reducibilities and obtain results for

PSPACE, EXP, and NEXP, as those classes are powerful enough to diagonalize
against logspace reductions. Since PSPACE and EXP are closed under comple-
mentation, we obtain that their many-one complete sets are mitotic. For NEXP
we can only show that many-one complete sets are autoreducible.

5.1 Complete Sets for Classes Closed under Complementation

We will first show mitoticity and autoreducibility results for ≤log
m -complete sets

and for ≤log
2-tt-complete sets, that generally apply to classes that have certain

closure properties. For this purpose, we first define length-restricted reductions
computable in space log2.

Definition 18. Let A and B be sets.

1. We define A ≤log2-lin
m B similarly to A ≤log

m B, except that, on input x, the
computation of f(x) is allowed to use (log |x|)2 space, but it must hold that
|f(x)| ≤ c · |x|, where c > 0 is some constant.

2. We define A ≤log2-lin
1-tt B similarly to A ≤log

1-tt B, except that, on input x, the
oracle machine is allowed to use (log |x|)2 space, but may only ask one oracle
question of length at most c · |x|, where c > 0 is some constant.

We obtain the following results.

Theorem 19. If a class C is closed under union, complement, and ≤log2-lin
m -

reducibility, then all ≤log
m -complete sets in C are ≤log

m -mitotic.

Corollary 20. All ≤log
m -complete sets for the following classes are ≤log

m -mitotic:
QP = DTIME(2polylog(n)), PSPACE, EXP, REC, DSPACE(s) and NSPACE(s)
for all space-constructible s ≥ log2.

We adapt a technique by Buhrman et al. [5] to the logspace setting and obtain
the following result.

Theorem 21. If a class C is closed under ≤log2-lin
1-tt -reducibility, then all ≤log

2-tt-

complete sets for C are ≤log
2-tt-autoreducible.

Corollary 22. All ≤log
2-tt-complete sets for the following classes are ≤log

2-tt-
autoreducible: QP = DTIME(2polylog(n)), PSPACE, EXP, REC, DSPACE(s)
and NSPACE(s) for all space-constructible s ≥ log2.
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5.2 Complete Sets for NEXP

It is unknown whether the above results apply to NEXP, so here we cannot
conclude mitoticity. We can, however, show that sets complete for NEXP are at
least autoreducible.

Theorem 23. 1. For every k ≥ 1 and ≤ ∈ {≤p
k-dtt,≤

p
k-ctt,≤

p
dtt,≤

p
ctt}, every

≤-complete set for NEXP is ≤-autoreducible.
2. For every k ≥ 1 and ≤ ∈ {≤log

k-dtt,≤
log
k-ctt,≤

log
dtt,≤

log
ctt}, every ≤-complete set

for NEXP is ≤-autoreducible.

Proof (partial). In order to illustrate the diagonalization technique, we show the
basic result for ≤p

dtt and NEXP. Let A be a ≤p
dtt-complete set for NEXP. Recall

that A ≤p
dtt B ⇐⇒ there exists a polynomial-time computable function f

such that for all x, f(x) = 〈q1, . . . , qn〉 and (x ∈ A ⇐⇒ B(q1) ∨ · · · ∨ B(qn)).
Let {fi}i≥1 be an enumeration of all polynomial-time Turing transducers such
that the computation of fi on x can be simulated in time |x|i + i. Let B be
the set of inputs 〈0i, x〉 accepted by the following nondeterministic algorithm in
exponential time.

1. Q := set of all queries of fi on input 〈0i, x〉
2. if x /∈ Q, then accept 〈0i, x〉 ⇐⇒ x ∈ A
3. otherwise, reject 〈0i, x〉

Obviously B ∈ NEXP. So B ≤p
dtt A via some disjunctive truth-table reduction

fj. For every x, if x is one of the queries of fj(〈0j , x〉), then, by the above
algorithm, 〈0j , x〉 /∈ B. Hence for each query q of fj(〈0j , x〉) we have q /∈ A. In
particular x /∈ A. On the other hand, if fj(〈0j , x〉) = 〈q1, . . . , qm〉 and x �= qi
for all i, then x ∈ A ⇔〈0j, x〉 ∈ B ⇔ cA(q1) ∨ · · · ∨ cA(qm). Based on this
observation, we obtain the following autoreduction for A, where x is the input.

1. Q := set of all queries of fj on input 〈0j , x〉
2. if x /∈ Q, then return fj(〈0j , x〉)
3. otherwise, return some fixed value y ∈ A− {x}

��

Note that every non-trivial ≤log
1-dtt-autoreducible set is also ≤log

m -autoreducible,
and similarly every non-trivial ≤p

1-dtt-autoreducible set is also ≤p
m-autoreducible,

hence Theorem 23 covers ≤log
m and ≤p

m as a special case.

Theorem 24. 1. Every ≤p
2-tt-complete set for NEXP is ≤p

2-tt-autoreducible.

2. Every ≤log
2-tt-complete set for NEXP is ≤log

2-tt-autoreducible.

Note that by Theorem 12 (resp., [5]), there exist ≤log
3-tt-complete sets for PSPACE

(resp., ≤p
3-tt-complete sets for EXP) that are not ≤log

btt-autoreducible (resp., ≤p
btt-

autoreducible), hence improving Theorem 24.1 to ≤p
3-tt separates NEXP from

EXP, and improving Theorem 24.2 to ≤log
3-tt separates NEXP from PSPACE.
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5.3 Complete Sets for PSPACE and EXP

We show that for some restricted polynomial-time truth-table reductions, com-
plete sets for EXP are complete under length-increasing reductions, and the
same holds considering logspace reductions for PSPACE and EXP. By carefully
repeating the length-increasing reductions in such a way that we switch between
stages defined by a separator set we obtain mitoticity for PSPACE and EXP.

Definition 25. Given two sets A and B, we define A ≤p
T-li B if there is a

Turing machine M such that A = L(MB) and all queries made by MB(x) are
of length strictly greater than |x|. The notions ≤p

2-tt-li, ≤
p
k-ctt-li, ≤

p
k-dtt-li, ≤

p
dtt-li,

≤p
ctt-li, ≤

p
m-li and ≤

log
T-li, ≤

log
2-tt-li, ≤

log
k-ctt-li, ≤

log
k-dtt-li, ≤

log
dtt-li, ≤

log
ctt-li, ≤

log
m-li are defined

similarly.

Berman [3] and Ganesan and Homer [6] show that all many-one complete sets
for EXP are many-one length-increasing equivalent. In the following lemma, we
generalize to show that it also holds for some certain polynomial-time reductions
and logspace reductions under EXP and PSPACE.

Lemma 26. 1. For every k ≥ 2 and ≤ ∈ {≤p
2-tt,≤

p
k-ctt,≤

p
k-dtt,≤

p
ctt,≤

p
dtt}, all

≤-complete sets for EXP are ≤-li equivalent.
2. For every k ≥ 2 and ≤ ∈ {≤log

2-tt,≤
log
k-ctt,≤

log
k-dtt,≤

log
ctt,≤

log
dtt}, all ≤-complete

sets for EXP (resp., PSPACE) are ≤-li equivalent.

Theorem 27. 1. For every k ≥ 2 and ≤ ∈ {≤p
2-tt,≤

p
k-ctt,≤

p
k-dtt,≤

p
ctt,≤

p
dtt},

every ≤-complete set for EXP is ≤-mitotic.
2. For every k ≥ 2 and ≤ ∈ {≤log

2-tt,≤
log
k-ctt,≤

log
k-dtt,≤

log
ctt ,≤

log
dtt}, every ≤-complete

set for EXP (resp., PSPACE) is ≤-mitotic.

Note that by Theorem 12 (resp., [5]), there exist ≤log
3-tt-complete sets for PSPACE

(resp., ≤p
3-tt-complete sets for EXP) that are not ≤log

btt-autoreducible (resp., ≤p
btt-

autoreducible), hence Theorem 27 cannot be improved to ≤log
3-tt or ≤p

3-tt.

5.4 Complete Sets for 1-Truth-Table Reductions

Homer, Kurtz, and Royer [10] and Buhrman [4] showed that for EXP and NEXP,
every ≤p

1-tt-complete set is also ≤p
m-complete. Their approach also applies to

≤log
1-tt-complete sets for PSPACE,EXP and NEXP, so we have the following

theorem.

Theorem 28 ([4,10])

1. All ≤log
1-tt-complete sets for PSPACE (resp., EXP,NEXP) are ≤log

m -complete
for PSPACE (resp., EXP, NEXP).

2. All ≤p
1-tt-complete sets for EXP (resp., NEXP) are ≤p

m-complete for EXP
(resp., NEXP).

This means that most of the obtained results for many-one complete sets also
hold for 1-truth-table complete sets. We obtain the following corollary.
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Corollary 29. 1. All ≤log
1-tt-complete sets for PSPACE,EXP are ≤log

m -mitotic.

2. All ≤log
1-tt-complete sets for NEXP are ≤log

m -autoreducible.
3. All ≤p

1-tt-complete sets for EXP,NEXP are ≤p
m-mitotic.
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Abstract. We show that all minimal edge dominating sets of a graph
can be generated in incremental polynomial time. We present an algo-
rithm that solves the equivalent problem of enumerating minimal (ver-
tex) dominating sets of line graphs in incremental polynomial, and con-
sequently output polynomial, time. Enumeration of minimal dominating
sets in graphs has very recently been shown to be equivalent to enu-
meration of minimal transversals in hypergraphs. The question whether
the minimal transversals of a hypergraph can be enumerated in output
polynomial time is a fundamental and challenging question; it has been
open for several decades and has triggered extensive research. To obtain
our result, we present a flipping method to generate all minimal domi-
nating sets of a graph. Its basic idea is to apply a flipping operation to a
minimal dominating set D∗ to generate minimal dominating sets D such
that G[D] contains more edges than G[D∗]. We show that the flipping
method works efficiently on line graphs, resulting in an algorithm with
delay O(n2m2|L|) between each pair of consecutively output minimal
dominating sets, where n and m are the numbers of vertices and edges
of the input graph, respectively, and L is the set of already generated
minimal dominating sets. Furthermore, we are able to improve the delay
to O(n2m|L|) on line graphs of bipartite graphs. Finally we show that
the flipping method is also efficient on graphs of large girth, resulting
in an incremental polynomial time algorithm to enumerate the minimal
dominating sets of graphs of girth at least 7.

1 Introduction

Enumerating, i.e., generating or listing, all vertex or edge subsets of a graph
that satisfy a specified property plays a central role in graph algorithms; see
e.g. [1, 2, 8–10, 16, 20–22, 24, 29, 30, 32]. Enumeration algorithms with running
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time that is polynomial in the size of the input plus the size of the output are
called output polynomial time algorithms. For various enumeration problems
it has been shown that no output polynomial time algorithm can exist unless
P = NP [20, 22, 24]. A potentially better behavior than output polynomial time
is achieved by so called incremental polynomial time algorithms, which means
that the next set in the list of output sets is generated in time that is polynomial
in the size of the input plus the size of the already generated part of the output.
Incremental polynomial time immediately implies output polynomial time.

One of the most classical and widely studied enumeration problems is that
of listing all minimal transversals of a hypergraph, i.e., minimal hitting sets of
its set of hyperedges. This problem has applications in areas like database the-
ory, machine learning, data mining, game theory, artificial intelligence, mathe-
matical programming, and distributed systems; extensive lists of corresponding
references are provided by e.g., Eiter and Gottlob [10], and Elbassioni, Makino,
and Rauf [11]. Whether or not all minimal transversals of a hypergraph can be
listed in output polynomial time has been identified as a fundamental challenge
in a long list of seminal papers, e.g., [8–12, 16, 27], and it remains unresolved
despite continuous attempts since the 1980’s.

Recently Kanté, Limouzy, Mary, and Nourine [18] have proved that enumer-
ating the minimal transversals of a hypergraph is equivalent to enumerating the
minimal dominating sets of a graph. In particular, they show that an output
polynomial time algorithm for enumerating minimal dominating sets in graphs
implies an output polynomial time algorithm for enumerating minimal transver-
sals in hypergraphs. Dominating sets form one of the best studied notions in
computer science; the number of papers on domination in graphs is in the thou-
sands, and several well known surveys and books are dedicated to the topic (see,
e.g., [14]).

Given the importance of the hypergraph transversal enumeration problem
and the failed attempts to resolve whether it can be solved in output polynomial
time, efforts to identify tractable special cases have been highly appreciated
[3, 4, 6–8, 10, 11, 25, 26]. The newly proved equivalence to domination allows
for new ways to attack this long-standing open problem. In fact some results on
output polynomial algorithms to enumerate minimal dominating sets in graphs
already exist for graphs of bounded treewidth and of bounded clique-width [5],
interval graphs [8], strongly chordal graphs [8], planar graphs [10], degenerate
graphs [10], and split graphs [17].

In this paper we show that all minimal dominating sets of line graphs and of
graphs of large girth can be enumerated in incremental polynomial time. More
precisely, we give algorithms where the time delay between two consecutively
generated minimal dominating sets is O(n2m2|L|) on line graphs, O(n2m|L|)
on line graphs of bipartite graphs, and O(n2m|L|2) on graphs of girth at least
7, where L is the set of already generated minimal dominating sets of an in-
put graph on n vertices and m edges. Line graphs form one of the oldest and
most studied graph classes [15, 23, 33] and they can be recognized in linear time
[28]. Our results, in addition to proving tractability for two substantial cases of
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the hypergraph transversal enumeration problem, imply incremental polynomial
time enumeration of minimal edge dominating sets in arbitrary graphs. In par-
ticular, we obtain an algorithm with delay O(m6|L|) to enumerate all minimal
edge dominating sets of any graph on m edges, where L is the set of already
generated edge dominating sets. For bipartite graphs, we are able to reduce the
delay to O(m4|L|).

Our algorithms are based on the supergraph technique for enumerating vertex
subsets in graphs [2, 21, 29, 32]. As a central tool in our algorithms, we present a
new flipping method to generate the out-neighbors of a node of the supergraph,
in other words, to generate new minimal dominating sets from a parent domi-
nating set. Given a minimal dominating set D∗, our flipping operation replaces
an isolated vertex of G[D∗] with a neighbor outside of D∗, and, if necessary,
supplies the resulting set with additional vertices to obtain new minimal domi-
nating sets D, such that G[D] has more edges compared to G[D∗]. Each of our
algorithms starts with enumerating all maximal independent sets of the input
graph G using the algorithm of Johnson, Papadimitriou, and Yannakakis [16],
which gives the initial set of minimal dominating sets. Then the flipping opera-
tion is applied to every appropriate minimal dominating set found, to find new
minimal dominating sets inducing subgraphs with more edges. We show that on
all graphs, the flipping method enables us to identify a unique parent for each
minimal dominating set. On line graphs and graphs of girth at least 7, we are
able to prove additional (different) properties of the parents, which allow us to
obtain the desired running time on these graph classes.

In a very recent publication of their work that was simultaneous with and
independent from our work, Kanté, Limouzy, Mary, and Nourine [19] give output
polynomial time algorithms for enumerating the minimal dominating sets of line
graphs and path graphs. Their method is completely different from ours, as they
obtain their algorithms through proving that line graphs and path graphs have
closed neighborhood hypergraphs of bounded conformality.

2 Definitions and Preliminary Results

As input graphs to our enumeration problem, we consider finite undirected
graphs without loops or multiple edges. Given such a graph G = (V,E), its
vertex and edge sets, V and E, are also denoted by V (G) and E(G), respec-
tively. The subgraph of G induced by a subset U ⊆ V is denoted by G[U ]. For
a vertex v, we denote by N(v) its (open) neighborhood, that is, the set of ver-
tices that are adjacent to v. The closed neighborhood of v is the set N(v) ∪ {v},
and it is denoted by N [v]. If N(v) = ∅ then v is isolated. For a set U ⊆ V ,
N [U ] = ∪v∈UN [v], and N(U) = N [U ] \ U . The girth g(G) of a graph G is the
length of a shortest cycle in G; if G has no cycles, then g(G) = +∞. A set of
vertices is a clique if it induces a complete subgraph of G. A clique is maximal
if no proper superset of it is a clique.

Two edges in E are adjacent if they share an endpoint. The line graph L(G)
of G is the graph whose set of vertices is E(G), such that two vertices e and e′ of
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L(G) are adjacent if and only if e and e′ are adjacent edges of G. A graph H is
a line graph if H is isomorphic to L(G) for some graph G. Equivalently, a graph
is a line graph if its edges can be partitioned into maximal cliques such that no
vertex lies in more than two maximal cliques. This implies in particular that the
neighborhood of every vertex can be partitioned into at most two cliques. It is
well known that line graphs do not have induced subgraphs isomorphic to K1,3,
also called a claw.

A vertex v dominates a vertex u if u ∈ N(v); similarly v dominates a set of
vertices U if U ⊆ N [v]. For two sets D,U ⊆ V , D dominates U if U ⊆ N [D].
A set of vertices D is a dominating set of G = (V,E) if D dominates V . A
dominating set is minimal if no proper subset of it is a dominating set. Let
D be a dominating set of G, and let v ∈ D. Vertex u is a private vertex, or
simply private, for vertex v (with respect to D) if u is dominated by v but is
not nominated by D \ {v}. Clearly, D is a minimal dominating set if and only if
each vertex of D has a private vertex. We denote by PD[v] the set of all private
vertices for v. Notice that a vertex of D can be private for itself. Vertex u is a
private neighbor of v ∈ D if u ∈ N(v)∩PD[v]. The set of all private neighbors of
v is denoted by PD(v). Note that PD[v] = PD(v) ∪ {v} if v is isolated in G[D],
and otherwise PD[v] = PD(v).

A set of edges A ⊆ E is an edge dominating set if each edge e ∈ E is either in
A or is adjacent to an edge in A. An edge dominating set is minimal if no proper
subset of it is an edge dominating set. It is easy to see that A is a (minimal)
edge dominating set of G if and only if A is a (minimal) dominating set of L(G).

Let φ(X) be a property of a set of vertices or edges X of a graph, e.g., “X
is a minimal dominating set”. The enumeration problem for property φ(X) for
a given graph G on n vertices and m edges asks for the set C of all subsets
of vertices or edges X of G that satisfy φ(X). An enumeration algorithm is
an algorithm that solves this problem, i.e., that lists the elements of C without
repetitions. An enumeration algorithm A is said to be output polynomial time
if there is a polynomial p(x, y) such that all elements of C are listed in time
bounded by p((n + m), |C|). Assume now that X1, . . . , X� are the elements of C
enumerated in the order in which they are generated by A. The delay of A is the
maximum time A requires between outputting Xi−1 and Xi, for i ∈ {1, . . . , 	}.
Algorithm A is incremental polynomial time if there is a polynomial p(x, i) such
that for each i ∈ {1, . . . , 	}, Xi is generated in time bounded by p((n + m), i).
Finally, A is a polynomial delay algorithm if there is a polynomial p(x) such that
for each i ∈ {1, . . . , 	}, the delay between outputting Xi−1 and Xi is at most
p(n + m).

A set of vertices U ⊆ V is an independent set if no two vertices of U are
adjacent in G, and an independent set is maximal if no proper superset of it is
an independent set. The following observation is folklore.

Observation 1. Every maximal independent set of a graph G is a minimal
dominating set of G. Furthermore, the set of all maximal independent sets of G
is exactly the set of all its minimal dominating sets D such that G[D] has no
edges.
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Theorem 1 ([16]). All maximal independent sets of a graph with n vertices
and m edges can be enumerated in lexicographic order with polynomial delay
O(n(m+n log |I|)), where I is the set of already generated maximal independent
sets.

Let v1, . . . , vn be the vertices of a graph G. Suppose that D′ is a dominating set
of G. We say that a minimal dominating set D is obtained from D′ by greedy
removal of vertices (with respect to order v1, . . . , vn) if we initially let D = D′,
and then recursively apply the following rule: If D is not minimal, then find a
vertex vi with the smallest index i such that D \ {vi} is a dominating set in G,
and set D = D\{vi}. Clearly, when we apply this rule, we never remove vertices
of D′ that have private neighbors.

Finally, give some definitions on directed graphs, as the supergraph technique
that we use creates an auxiliary directed graph. To distinguish this graph from
the input graph, we will call the vertices of a directed graph nodes. The edges of
a directed graph have directions and are called arcs. An arc (u, v) has direction
from node u to node v. The out-neighbors of a node u are all nodes v such that
(u, v) is an arc. Similarly, the in-neighbors of a node v are all nodes u such that
(u, v) is an arc. In this paper, an in-neighbor will sometimes be called a parent.

3 Enumeration by Flipping: The General Approach

In this section we describe the general scheme of our enumeration algorithms.
Let G be a graph; we fix an (arbitrary) order of its vertices: v1, . . . , vn. Observe
that this order induces a lexicographic order on the set 2V (G). Whenever greedy
removal of vertices of a dominating set is performed further in the paper, it is
done with respect to this ordering.

Let D be a minimal dominating set of G such that G[D] has at least one edge
uw. Then vertex u ∈ D is dominated by vertex w ∈ D. Let v ∈ PD(u). Let
Xuv ⊆ PD(u) \N [v] be a maximal independent set in G[PD(u) \N [v]] selected
greedily with respect to ordering v1, . . . , vn, i.e., we initially set Xuv = ∅ and then
recursively include in Xuv the vertex of PD(u)\(N [{v}∪Xuv]) with the smallest
index as long as it is possible. Consider the set D′ = (D\{u})∪Xuv∪{v}. Notice
that D′ is a dominating set in G, since all vertices of PD(u) are dominated by
Xuv ∪{v}. Let Zuv be the set of vertices that are removed to ensure minimality,
and let D∗ = ((D \ {u}) ∪Xuv ∪ {v}) \ Zuv.

Lemma 1. The set D∗ is a minimal dominating set in G such that Xuv∪{v} ⊆
D∗, |E(G[D∗])| < |E(G[D])| and v is an isolated vertex of G[D∗].

Our main tool, the flipping operation is exactly the reverse of how we generated
D∗ from D; i.e., it replaces an isolated vertex v of G[D∗] with a neighbor u in
G to obtain D. In particular, we are interested in all minimal dominating sets
D that can be generated from D∗ in this way.

Given D and D∗ as defined above, we say that D∗ is a parent of D with
respect to flipping u and v. We say that D∗ is a parent of D if there are vertices
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u, v ∈ V (G) such that D∗ is a parent with respect to flipping u and v. It is
important to note that each minimal dominating set D such that E(G[D]) �= ∅
has a unique parent with respect to flipping of any vertices u ∈ D ∩N [D \ {u}]
and v ∈ PD(u), as both sets Xuv and Zuv are lexicographically first sets selected
by a greedy algorithm. Similarly, we say that D is a child of D∗ (with respect
to flipping u and v) if D∗ is the parent of D (with respect to flipping u and v).

Assume that there is an enumeration algorithm A that, given a minimal dom-
inating set D∗ of a graph G such that G[D∗] has isolated vertices, an isolated
vertex v of G[D∗], and a neighbor u of v in G, generates with polynomial delay a
set of minimal dominating sets D with the property that D contains all minimal
dominating sets D that are children of D∗ with respect to flipping u and v. In
this case we can enumerate all minimal dominating sets of the graph G with n
vertices and m edges as follows.

Our method is a variant of the supergraph technique that has been applied
for enumerating subsets with various properties in graphs [2, 21, 29, 32]. More
precisely, we define a directed graph G whose nodes are minimal dominating
sets of G, with an additional special node r, called the root, that has no in-
neighbors. Recall that by Observation 1., maximal independent sets are minimal
dominating sets, i.e., they are nodes of G . We add an arc from the root r to every
maximal independent set of G. For each minimal dominating set D∗ ∈ V (G), we
add an arc from D∗ to every minimal dominating set D such that A generates
D from D∗ for some choice of u and v.

Next we run Depth-First Search in G starting from r. Observe that we need
not construct G explicitly to do this, as for each node W �= r of G we can use
A to generate all out-neighbors of W , and we can generate the out-neighbors
of r with polynomial delay by Theorem 1. Hence, we maintain a list L of mini-
mal dominating sets of G sorted in lexicographic order that are already visited
nodes of G. Also we keep a stack S of records RW for W ∈ V (G) that are on
the path from r to the current node of G. These records are used to generate
out-neighbors. The record Rr contains the last generated maximal independent
set and the information that is necessary to proceed with the enumeration of
maximal independent sets. Each of the records RW , for W �= r, contains the cur-
rent choice of u and v, the last set D generated by A for the instance (W,u, v),
and the information that is necessary for A to proceed with the enumeration.

Lemma 2. Suppose that A generates the elements of D for a triple (D∗, u, v)
with polynomial delay O(p(n,m)). Let L∗ be the set of all minimal dominating
sets. Then the algorithm described above enumerates all minimal dominating sets
as follows:

– with delay O((p(n,m) + n2)m|L|2) and total running time O((p(n,m) +
n2)m|L∗|2);

– if |E(G[D])| > |E(G[D∗])| for every D ∈ D, then the delay is O((p(n,m) +
n2)m2|L|), and the total running time is O((p(n,m) + n2)m|L∗|2);

– if D contains only children of D∗ with respect to flipping of u and v, then the
delay is O((p(n,m) + n2)m|L|), and the total running time is O((p(n,m) +
n2)m|L∗|).
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Proof. Recall that any minimal dominating set D with at least one edge has
a parent D∗ and |E(G[D∗])| < |E(G[D])|. Because A generates D from D∗,
(D∗, D) is an arc in G. It follows that for any minimal dominating set D ∈ V (G)
with at least one edge, there is a maximal independent set I ∈ V (G) such
that I and D are connected by a directed path in G. As (r, I) is an arc in G,
D is reachable from r. We conclude that Depth-First Search visits, and thus
enumerates all nodes of G. It remains to evaluate the running time.

To get a new minimal dominating set, we consider the records in S. For each
record RW for W �= r, we have at most m possibilities for u and v to get a new
set D. As soon as a new set is generated it is added to L unless it is already in
L. Hence, we generate at most m|L| sets for W in time (p(n,m) + n2)m|L|, as
each set is generated with polynomial delay O(p(n,m)), and after its generation
we immediately test whether or not it is already in L, which takes O(n log |L|) =
O(n2) time, because |L| ≤ 2n. For Rr, we generate at most |L| sets. Because
any isolated vertex of G belongs to every maximal independent set, each set
is generated with delay O(n′(m + n′ log |L|)), i.e., in time O(n′(m + n′2)) by
Theorem 1, where n′ is the number of non-isolated vertices. As n′ ≤ 2m, these
sets are generated in time O(n2m|L|). Since |S| ≤ |L|, in time O((p(n,m) +
n2)m|L|2) we either obtain a new minimal dominating set or conclude that the
list of minimal dominating sets is exhausted.

To get the bound for the total running time, recall that Depth-First Search
runs in time that is linear in |E(G)|. As for each arc we perform O((p(n,m) +
n2)m) operations, the total running time is O((p(n,m) + n2)m|L∗|2).

If for every D ∈ D, |E(G[D])| > |E(G[D∗])|, then the delay is less. To see
this, we observe that the number of edges in any minimal dominating set is at
most m. Hence, any directed path starting from r in G has length at most m
and, therefore, |S| ≤ m + 1. By the same arguments as above, we get that in
time O((p(n,m) + n2)m2|L|) we either obtain a new minimal dominating set or
conclude that the list of minimal dominating sets is complete.

Assume finally that D contains only children of D∗ with respect to flipping
of u and v. Since each minimal dominating set D with E(G[D]) �= ∅ has a
unique parent with respect to flipping of any vertices u ∈ D ∩ N [D \ {u}] and
v ∈ PD(u), each D has at most m parents. Hence, we generate at most m|L|
sets until we obtain a new minimal dominating set or conclude that the list is
exhausted. As to generate a set and check whether it is already listed we spend
time O(p(n,m) +n2), the delay between two consecutive sets that are output is
O((p(n,m)+n2)m|L|) and the total running time is O((p(n,m)+n2)m|L∗|). ��

To be able to apply our method, we have to show how to construct an algorithm,
like algorithm A above, that produces D with polynomial delay. We will use the
following lemma for this purpose.

Lemma 3. Let D be a child of D∗ with respect to flipping u and v; D∗ =
((D \ {u})∪Xuv ∪{v}) \Zuv. Then for every vertex z ∈ Zuv, the following three
statements are true:
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1. z /∈ N [Xuv ∪ {v}],
2. z is dominated by a vertex of D∗ \ (Xuv ∪ {v}),
3. there is a vertex x ∈ N [Xuv ∪ {v}] \ N [u] adjacent to z such that x /∈

N [D∗ \ (Xuv ∪ {v})].

Furthermore, for every x ∈ N [Xuv∪{v}]\N [u] such that x /∈ N [D∗\(Xuv∪{v})],
there is a vertex z ∈ Zuv such that x and z are adjacent.

We use this lemma to construct an algorithm for generating D. The idea is to
generate D by considering all possible candidates for Xuv and Zuv. It would
be interesting to know whether this can be done efficiently in general. On line
graphs and graphs of girth at least 7, we are able to prove additional properties
of the parent minimal dominating sets which result in efficient algorithms for
generating D, as will be explained in the sections below.

4 Enumeration of Minimal Edge Dominating Sets

In this section we show that all minimal edge dominating sets of an arbitrary
graph can be enumerated in incremental polynomial time. We achieve this by
enumerating the minimal dominating sets in line graphs.

For line graphs, we construct an enumeration algorithm that, given a minimal
dominating set D∗ of a graph G such that G[D∗] has isolated vertices, an isolated
vertex v of G[D∗], and a neighbor u of v in G, generates with polynomial delay
a set of minimal dominating sets D that contains all children of D∗ with respect
to flipping u and v, and has the property that |E(G[D])| > |E(G[D∗])|, for every
D ∈ D.

This is possible because on line graphs we can prove additional properties of
a parent in the flipping method. Let D be a minimal dominating set of a graph
G such that G[D] has at least one edge uw, and assume that v ∈ PD(u). Recall
that D∗ is defined by choosing a maximal independent set Xuv ⊆ PD(u) \N [v]
in G[PD(u) \ N [v]], then considering the set D′ = (D \ {u}) ∪ Xuv ∪ {v}, and
letting D∗ = D′ \ Zuv where Zuv ⊆ D ∩D′.

Lemma 4. If G is a line graph, then:

– Xuv = ∅,
– each vertex of Zuv is adjacent to exactly one vertex of PD∗(v) \N [u],
– each vertex of PD∗(v) \N [u] is adjacent to exactly one vertex of Zuv.

Consider a line graph G with n vertices v1, . . . , vn and m edges. Let D∗ be a
minimal dominating set and let v be an isolated vertex of G[D∗]. Suppose that
u is a neighbor of v. Let {x1, . . . , xk} = PD∗(v) \ N [u]. We construct minimal
dominating sets from (D∗ \ {v})∪ {u} by adding a set Z that contains a neigh-
bor of each xi from N(xi) \N [v]. Recall that the vertices x1, . . . , xk should be
dominated by Zuv for every child of D∗ by Lemma 3, and by the same lemma
each xi is dominated by a vertex from N(xi) \N [v].

Let U = N [u]∪(
⋃k

i=1(N [xi]\N [v])∪{xi}). We need the following observation
that also will be used in the next section. To see its correctness, it is sufficient
to notice that because G contains no claws, N [xi] \N [v] is a clique.
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Lemma 5. For any choice of a set Z = {z1, . . . , zk} such that zi ∈ N(xi)\N [v]
for i ∈ {1, . . . , k}, U is dominated by Z ∪ {u}.
We want to ensure that by subsequent removal of vertices of D∗ \ {v} (which
we do to guarantee minimality), the number of edges in the obtained minimal
dominating set is not decreased. To do it, for each vertex vj ∈ V (G), we construct
the sets of vertices Rj that cannot belong to Zuv for any child D of D∗, where
both D and D∗ contain vj . First, we set Rj = ∅ for every vj �∈ D∗ \ {v}. Let
vj be a vertex of D∗ \ {v} that has a neighbor vs such that either vs ∈ D∗ or
vs = u. As G does not contain a claw, K = N(vj) \N [vs] is a clique. Then we
set Rj = K in this case. Notice that we can have several possibilities for vs. In
this case vs is chosen arbitrary. For all other vj ∈ D∗ \ {v}, Rj = ∅. Denote by
R the set ∪n

j=1Rj . For each i ∈ {1, . . . , k}, let

Zi = {z ∈ V |z ∈ N(D∗\{v})∩(N(xi)\(N [v]∪R)), N(z)∩(PD∗(v)\N [u]) = {xi}}.

We generate a set D of minimal dominating sets as follows.

Case 1. If at least one of the following three conditions is fulfilled, then we set
D = ∅:
i) there is a vertex x ∈ D∗ \ {v} such that N [x] ⊆ N [D∗ \ {v, x}] ∪ U ,
ii) k ≥ 1 and there is an index i ∈ {1, . . . , k} such that Zi = ∅,

iii) u is not adjacent to any vertex of D∗ \ {v} and N(u) ∩ (∪k
i=1Zi) = ∅.

Otherwise, we consider two other cases.

Case 2. If u is adjacent to a vertex of D∗ \ {v}, then we consecutively construct
all sets Z = {z1, . . . , zk} where zi ∈ Zi, for 1 ≤ i ≤ k (if k = 0, then Z = ∅).
For each Z, we construct the set D′ = (D∗ \ {v}) ∪ {u} ∪ Z. Notice that D′ is
a dominating set as all vertices of PD∗ [v] are dominated by D′, but D′ is not
necessarily minimal. Hence, we construct a minimal dominating set D from D′

by the greedy removal of vertices. The obtained set D is unique for a given set
Z, and it is added to D.

Recall that by the definition of the parent-child relation, u should be dominated
by a vertex in a child. If u is not adjacent to a vertex of D∗ \ {v}, it should be
adjacent to at least one of the added vertices. This gives us the next case.

Case 3. If u is not adjacent to any vertex of D∗ \{v}, and N(u)∩(
⋃k

i=1 Zi) �= ∅,
then we proceed as follows. Let j be the smallest index such that N(u)∩Zj �= ∅,
and let j′ be the smallest index at least j such that Zj′ \ N(u) = ∅ (j′ =
k if they are all non-empty). For each t starting from t = j and continuing
until t = j′, we do the following. If N(u) ∩ Zt = ∅ then we go to next step
t = t + 1. Otherwise, for each w ∈ N(u) ∩ Zt, we consider all possible sets
Z = {z1, . . . , zt−1, zt+1, . . . , zk} ∪ {w} such that zi ∈ Zi \N(u) for 1 ≤ i ≤ t− 1,
and zi ∈ Zi for t + 1 ≤ i ≤ k. As above, for each such set Z, we construct the
set D′ = (D∗ \ {v})∪{u}∪Z and then create a minimal dominating set D from
D′ by the greedy removal of vertices. The obtained set D is unique for a given
set Z, and it is added to D.

We summarize the properties of the above algorithm in the following lemma.



494 P.A. Golovach et al.

Lemma 6. The set D is a set of minimal dominating sets such that D contains
all children of D∗ with respect to flipping u and v. Furthermore, |E(G[D])| >
|E(G[D∗])| for every D ∈ D, and the elements of D are generated with delay
O(n + m).

Combining Lemmas 2 and 6, we obtain the following theorem and corollary.

Theorem 2. All minimal dominating sets of a line graph can be enumerated
in incremental polynomial time. On input graphs with n vertices and m edges,
the delay is O(n2m2|L|), and the total running time is O(n2m|L∗|2), where L
is the set of already generated minimal dominating sets and L∗ is the set of all
minimal dominating sets.

Corollary 1. All minimal edge dominating sets of an arbitrary graph be enu-
merated in incremental polynomial time. On input graphs with m edges, the delay
is O(m6|L|) and the total running time is O(m4|L∗|2), where L is the set of al-
ready generated minimal edge dominating sets and L∗ is the set of all minimal
edge dominating sets.

We can improve the dependence of the total running time on the size of the
output if we restrict our attention to edge dominating sets of bipartite graphs.
Again, we work on the equivalent problem of generating minimal dominating
sets of line graphs of bipartite graphs.

Theorem 3. All minimal dominating sets of the line graph of a bipartite graph
can be enumerated in incremental polynomial time. On input graphs with n
vertices and m edges, the delay is O(n2m|L|), and the total running time is
O(n2m|L∗|), where L is the set of already generated minimal dominating sets,
and L∗ is the set of all minimal dominating sets.

Corollary 2. All minimal edge dominating sets of a bipartite graph edges can be
enumerated in incremental polynomial time. On input graphs with m edges, the
delay is O(m4|L|), and the total running time is O(m4|L∗|), where L is the set
of already generated minimal dominating sets, and L∗ is the set of all minimal
edge dominating sets.

5 Graphs of Large Girth and Concluding Remarks

On line graphs we were able to observe properties of the parent relation in
addition to uniqueness, which made it possible to apply the flipping method
and design efficient algorithms for enumerating the minimal dominating sets.
As another application of the flipping method, we show that it also works on
graphs of girth at least 7. To do this, we observe other desirable properties of
the parent relation on this graph class. As a result, we obtain an algorithm that
enumerates the minimal dominating sets of a graph of girth at least 7 with delay
O(n2m|L|2).



An Incremental Polynomial Time Algorithm 495

To conclude, the flipping method that we have described in this paper has
the property that each generated minimal dominating set has a unique parent.
It would be very interesting to know whether this can be used to obtain output
polynomial time algorithms for enumerating minimal dominating sets in general.
For the algorithms that we have given in this paper, on the studied graph classes
we were able to give additional properties of the parents to obtain the desired
running times. Are there additional properties of parents in general graphs that
can result in efficient algorithms?

As a first step towards resolving these questions, on which other graph classes
can the flipping method be used to enumerate the minimal dominating sets in
output polynomial time? Another interesting question is whether the minimal
dominating sets of line graphs or graphs of large girth can be enumerated with
polynomial delay.
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Abstract. A poset game is a two-player game played over a partially
ordered set (poset) in which the players alternate choosing an element of
the poset, removing it and all elements greater than it. The first player
unable to select an element of the poset loses. Polynomial time algorithms
exist for certain restricted classes of poset games, such as the game of
Nim. However, until recently the complexity of arbitrary finite poset
games was only known to exist somewhere between NC1 and PSPACE.
We resolve this discrepancy by showing that deciding the winner of an
arbitrary finite poset game is PSPACE-complete. To this end, we give an
explicit reduction from Node Kayles, a PSPACE-complete game in which
players vie to chose an independent set in a graph.

1 Introduction

A partially ordered set, or poset, is a set of elements with a binary relation
(denoted ≤) indicating the ordering of elements that is reflexive, transitive, and
antisymmetric. A poset game is an impartial two-player game played over some
poset. Each turn, a player selects an element of the poset, removing it and
all elements greater than it. A player loses when faced with the empty set.
Equivalently, the last player able to select an element wins. We will assume that
the number of elements in the poset is finite, which ensures that the game will
eventually end in such a manner.

Poset games have been studied in various forms since a complete analysis of
the game of Nim was given in 1901 by C. Bouton [2]. Other poset games with
explicit polynomial time strategies include Von Neumann’s Hackendot [17] and
impartial Hackenbush on trees [1]. The above games have no induced subposet
of cardinality four that form an ‘N’. In fact, it is shown in [4] that all N-free
poset games can be solved in polynomial time.

However there are several other well-studied poset games played over specific
structures with unknown complexity [8]. Perhaps the most popular is the game
of Chomp, which was introduced by Gale in 1974 and is played on the cross
product of two Nim stacks [10]. Work by Byrnes [3] shows that certain Chomp
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graduate Research Funding Program. This work was also supported by the Barry
M. Goldwater Scholarship.
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positions exhibit periodic behavior, but a quick general solution still does not
exist. In Subset Takeaway [11], introduced by Gale in 1982, the players take
turns removing a set and all its supersets from a collection of sets. In Shuh’s
Game of Divisors [15], the players alternate removing a divisor of n and its
multiples. In fact, both Chomp and Subset Takeaway are special cases of the
Game of Divisors, with n the product of at most two primes and n square-free,
respectively.

In this paper, we discuss the complexity of deciding the winner of an arbitrary
finite poset game, which has remained a longstanding question in the attempt
to classify the tractability of combinatorial games [8,9]. Let PG be the lan-
guage consisting of poset games with a winning strategy for the first player. Let
⟨P,≤⟩ ∈ PG and P = {p1, p2, . . . , pn}. We will assume that ⟨P,≤⟩ is represented
as input in some explicit manner, such as a 0-1 matrix A where aij = 1 iff pi ≤ pj .
Although not all matrices of this type describe a legitimate poset, it is easy to
check the validity of a matrix representation of a poset in polynomial time.

In [13], Kalinich shows that PG is at least as hard as NC1 under AC0 reductions
by creating a correspondence with boolean circuits. Weighted poset games, which
are a generalization of poset games, were shown to be PSPACE-complete in [12].
That result, which uses a completely different technique than the one described in
this paper, along with another proof in [16], clearly show that PG is in PSPACE.
We show that PG is indeed PSPACE-complete.

In [14], Schaefer shows that the two-player game Node Kayles is PSPACE-
complete. In Node Kayles, the players take turns removing a vertex and all
neighbors of that vertex from a graph. The first player unable to move loses.

In Section 2 we will give two constructions that serve as the basis for a re-
duction from Node Kayles to PG. We will then give a variety of lemmas demon-
strating the desirable properties of these constructions in Section 3. In Section 4
we will combine these lemmas to show that PG is PSPACE-complete.

2 Constructions

Below we will give two constructions, ψ and ϕ. When applied in succession, they
reduce an instance of Node Kayles into an instance of PG such that the winning
player is preserved. Let G be the class of finite simple graphs and P be the class
of finite posets. For g ∈ G we will write g = (V,E) where V is the set of vertices
and E is the set of edges. We will use Kn to denote the complete graph on n
vertices.

2.1 ψ-Construction

Define ψ ∶ G→ G such that

– ∣E∣ is odd 	⇒ ψ(g) = g ⊍K2 ⊍K2

– ∣E∣ is even 	⇒ ψ(g) = g ⊍K2 ⊍K4
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ψ(g)

Fig. 1. Example of ψ-construction when ∣E∣ is odd

ψ(g)

Fig. 2. Example of ψ-construction when ∣E∣ is even

This construction serves two purposes. First, the edge cardinality of the re-
sulting graph is always odd. Second, for every vertex, there is an edge that is not
incident to it. It is also important to note that the winning player of the Node
Kayles game does not change (see Lemma 1).

2.2 ϕ-Construction

Let ϕ ∶ G→ P be a function from simple graphs to posets, where ϕ(g) = A∪B∪C
is a three-level poset with disjoint levels A, B, and C from lowest to highest.
That is, for any a ∈ A, b ∈ B, and c ∈ C, b /≤ a, c /≤ b, and c /≤ a. Furthermore, any
two elements on the same level are incomparable.

Fix g = (V,E). The elements of the poset ϕ(g) are as follows:

– The elements of C are the edges of g. That is, C = E.
– The elements of B are the vertices of g. That is, B = V .
– The elements of A are copies of the edges of g. To represent this, let γ ∶ C → A

be a 1-1 correspondence between the elements of C and the elements of A.

For each edge e = (v1, v2) and b ∈ B, the ≤ relationship of the poset ϕ(g) is as
follows:

– b ≤ e iff b = v1 or b = v2. That is, e lies directly above its endpoints in B.
– γ(e) ≤ b iff b ≠ v1 and b ≠ v2. That is, γ(e) is less than all the elements in B

except the endpoints of e.

3 Lemmas

Lemma 1. Player 1 wins the Node Kayles game on g iff Player 1 wins the Node
Kayles game on ψ(g).
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ϕ(g)

v1 v2

v3v4

v1 v2 v3 v4

(v1, v2) (v1, v3) (v3, v4)

γ((v3, v4)) γ((v1, v3)) γ((v1, v2))

Fig. 3. Example ϕ-construction. Note that the left picture is an undirected graph
representing a Node Kayles game, and the right picture is a Hasse Diagram representing
the resultant poset game.

Proof. Suppose that the Node Kayles game played on g is a win for Player 1,
who we will assume by convention is the first to play. We will show that this gives
Player 1 an explicit winning strategy on ψ(g). Player 1 first chooses the winning
move in g. If Player 2 chooses a vertex in g, Player 1 can always respond with
another move in g because Player 1 has the winning strategy on g. If Player 2
chooses a vertex in one of the complete graphs, Player 1 can respond with a vertex
in the other complete graph, removing both complete graphs from consideration
for the remainder of the game. Because Player 1 can respond to any move of
Player 2, Player 1 will eventually win. Of course, this argument holds if Player 2
has the winning strategy in g, and similarly shows that a player has a winning
strategy on g if he has a winning strategy on ψ(g).

In terms of Sprague-Grundy theory, the disjoint union of the two complete
graphs has Grundy number zero. Adding a game of Grundy number zero to an
existing game does not change the winner of the original game [1]. In particular,
the Grundy number of g is equal to the Grundy number of ψ(g). ⊓⊔

Let g = (V,E) be a finite simple graph and e = (v1, v2) be an arbitrary edge in
ψ(g). For the following lemmas, assume that two players are playing the poset
game on ϕ(ψ(g)). Also assume, for simplicity, that the players are Alice and
Bob.

Lemma 2. Assume no moves in A or C have yet been chosen. If both v1 and
v2 have been chosen, then γ(e) is a winning move.

Proof. Because the ψ-construction always leaves a graph with an odd number
of edges, choosing γ(e) leaves an even number of incomparable points in A. ⊓⊔

Lemma 3. Assume no moves in A or C have yet been chosen. If exactly one of
v1 and v2 has been chosen, then γ(e) is a losing move.

Proof. First notice that e has already been removed from the poset because both
v1 ≤ e and v2 ≤ e. Because γ(e) /≤ v1 and γ(e) /≤ v2, choosing γ(e) leaves a single
point (either v1 or v2) in B. Thus, the next player can win by choosing the lone
element in B, leaving an even number of incomparable points in A. ⊓⊔
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Lemma 4. Assume no moves in A or C have yet been chosen. If neither v1 nor
v2 has been chosen, then both e and γ(e) are losing moves.

Proof. Assume that either player, say Alice, chooses γ(e), which results in an
even number of incomparable points in A, v1 and v2 in B, and e in C. Bob can
then respond by choosing e. If Alice responds with v1, then Bob can respond
with v2 (and vice versa), resulting in an even number of points in A, which is a
win for Bob.

If, however, Alice responds with a point a ∈ A, there are three cases: a ≤ v1 and
a ≤ v2, a ≤ v1 and a /≤ v2, or a ≤ v2 and a /≤ v1. Note that, by construction, there
is no point a such that a /≤ v1 and a /≤ v2. That is, the only point that is not less
than both v1 and v2 is γ(e), which has already been taken by assumption. So first
assume that a ≤ v1 and a ≤ v2. This would leave an odd number of elements in
A, resulting in a win for Bob. Consider then that a ≤ v1 and a /≤ v2 or a ≤ v2 and
a /≤ v1. Without loss of generality we can assume a ≤ v1 and a /≤ v2. Because ψ(g)
has at least two distinct components, each having at least one edge, there exists
an edge e2 that is not incident to either v1 or v2. By construction, γ(e2) ≤ v2.
Thus, Bob can choose γ(e2), leaving only an even number of elements in A,
resulting in a win for Bob.

If Alice had initially chosen e instead of γ(e), then Bob could have responded
with γ(e), which leads to the same game as played as above, which was a win
for Bob. ⊓⊔

4 Main Theorem

Theorem 1. PG is PSPACE-complete.

Proof. It is straightforward to check and demonstrated explicitly in [16] that PG
is in PSPACE. We will next give a reduction from Node Kayles to PG to show
that the latter is also PSPACE-hard. First note that ϕ(ψ(g)) is computable in
polynomial time.

We will argue inductively that Player 1 has a winning strategy for the poset
game played on ϕ(ψ(g)) iff Player 1 has a winning strategy for the Nodes Kales
game played on g. The idea behind the construction is that both players are
forced to play elements in B until two elements v1 and v2 representing adjacent
vertices in ψ(g) have been chosen. At this point the following player can win by
choosing the element γ((v1, v2)) in A.

Assume that the poset game played on ϕ(ψ(g)) has been played in the pre-
scribed manner so far. That is, no elements from A or C have yet been chosen.
Lemma 2 ensures that choosing a vertex neighboring a vertex that has already
been chosen is a losing move. Lemma 3 and Lemma 4 ensure that choosing any
point in A or C before two neighboring vertices have been chosen is a losing
move. Thus, a player has a winning strategy on ϕ(ψ(g)) iff that player has a
winning strategy on ψ(g), since there is an obvious correspondence between the
moves in ϕ(ψ(g)) and the moves in ψ(g). Lemma 1 ensures that a player has a
winning strategy on ψ(g) iff he has a winning strategy on g. ⊓⊔
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Fig. 4. Example of full reduction from g to ψ(g) to ϕ(ψ(g))

5 Future Work

Using the above theorem, it follows easily that deciding the winner of a finite
poset game with any height k ≥ 3 is PSPACE-complete. In contrast, determining
the winner of single-level poset games is trivially obtained by considering the
parity of the poset elements. There are also polynomial time algorithms for
some two-level poset games. In [7], Fraenkel and Aviezri give a polynomial time
algorithm for finding the Grundy number of poset games played over a restricted
class of two-level posets whose upper elements act like edges of a hypergraph.
In [5], Fenner, Gurjar, Korwar, and Thierauf give a natural generalization of
that algorithm and explore other possible avenues for finding the winner in
polynomial time. However, neither of these results yield a general algorithm,
and the complexity of two-level poset games remains an open problem.

This work has also spawned a new PSPACE-complete game on sets invented
by Fenner and Fortnow [6]. Given a collection of finite sets S1, . . . , Sk, each player
takes turns picking a non-empty set Si, removing the elements of Si from all the
sets Sj . The player who empties all the sets wins. To reduce a poset game into an
instance of set-game, simply take the sets as the upper cones of the poset. That
is, each set consists of an element and all elements greater than it. However, if
the cardinality of the sets is bounded, the complexity is still open.

Acknowledgements. I would like to thank Dr. Stephen Fenner for almost
everything leading to this result. Perpetually busy, he still always finds the time
to teach me and listen to my ideas. I am also very grateful for the support I
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Abstract. We consider the problem of storing a string S in dynamic
compressed form, while permitting operations directly on the compressed
representation of S: access a substring of S; replace, insert or delete a
symbol in S; count how many occurrences of a given symbol appear in
any given prefix of S (called rank operation) and locate the position of
the ith occurrence of a symbol inside S (called select operation). We
discuss the time complexity of several combinations of these operations
along with the entropy space bounds of the corresponding compressed
indexes. In this way, we extend or improve the bounds of previous work
by Ferragina and Venturini [TCS, 2007], Jansson et al. [ICALP, 2012],
and Nekrich and Navarro [SODA, 2013].

1 Introduction

The volume of unstructured, semi-structured, and replicated data, such as tex-
tual data, text with markup, and data backup and log analysis, has been grow-
ing much faster than structured (relational) data in recent years [IDC’s “Digital
Universe Survey”, 2011]. Such non-relational data is commonly viewed as a (of-
ten highly compressible) string, and the processing of this data is not always
amenable to external-memory solutions. Considerations like these, and the com-
mon practice of storing important data in the main memory of a computing
cluster, have motivated the development of compressed string storage schemes
[6,20,8], which store a string S[1, n] from the alphabet [σ] = {1, . . . , σ} in com-
pressed form, while allowing random access to the string via the operation:

Access(i,m): return the substring S[i, i+m−1] for m ≥ 1 and 1 ≤ i ≤ n−m+1.

These schemes have been developed on the standard RAM model with a word
size of Θ(lg n) bits. They support Access optimally (as a substring of length
	 = Θ(lgσ n) fits in O(1) words, Access(i, 	) executes in O(1) time) and aim to
minimize the space in bits, expressed as the sum of two components that, when
S is compressible, is smaller than the n lg σ bits used by S in ‘raw’ form:

– nHk(S) where Hk(S) is the k-th order empirical entropy of S (a measure of
compressibility, see the end of this section), and k ≥ 0 is an integer, and

– the redundancy, or any additional space required to support random access.

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 504–515, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Table 1. Summary of discussed results. Here � = Θ(lgσ n), ρ = (k lg σ + lg lgn)/lgσ n,
λ = lg n/ lg lgn, δ = min{lgσ n, (k + 1)λ}, † = time to Access one symbol.

Access(i, �) Replace Insert/Delete Rank/Select space (bits) ref.
O(1) — — — n(Hk + O(ρ)) [6,20,8]
O(1) O(δ) — — n(Hk + O(ρ)) [11]
O(1) O(1/ε) — — n(Hk + O(ε(k + 1) lg σ + ρ)) [11]
O(1) O(1) — — n(Hk + O(ρ)) Thm.1
O(λ) O(λ) O(λ) — n(H0 + O(lg lgn/ lgσ n)) [11]
O(λ) O(λ) O(λ) — n(Hk + O(ρ + k lg lgn/ lgn)) [11]
O(λ) O(λ) O(λ) — n(Hk + O(lg lgn/lgσn)) Thm.2

O(λ)† O(λ) O(λ) O(λ) n(H0 + O(1)) + O(σ(lg σ + (lgn)1+ε)) [13]
O(1) O(λ) — O(λ) n(Hk + O(lg lgσ + ρlg lgn)) Cor.1

The redundancy is a quantity of significant fundamental interest, particularly
for lower bounds (see [17] and references therein), and is critical in practice.
The best space upper bound is currently n(Hk(S) + O(ρ(k, σ, n))) bits, which
holds simultaneously for all 0 ≤ k ≤ lgσ n, where ρ(k, σ, n) = k lg σ+lg lgn

lgσ n . As

k increases, the Hk term decreases, but ρ increases. However, so long as k =
o(lgσ n), ρ = o(n lg σ) is asymptotically smaller than S in ‘raw’ form. The data
structure of [6] attains the above space bound and supports Access in O(1) time.
We now describe our contributions in the context of related work.

Dynamic Access-only Sequences. The storage schemes of [6,20,8] are all static,
i.e., do not permit changes to S (see Table 1, first row). Although there has been
work on storing dynamic sequences in a compressed format, the gap (in com-
pression performance and Access time) with the static storage schemes remained
large, until a recent breakthrough result by Jansson et al. [11]. They considered
expanding the repertoire to include, in addition to Access:

Replace(i, c): replace S[i] by a symbol c ∈ [σ].
Insert(i, c): insert the symbol c into S between positions i− 1 (if it exists) and i,

and make S one symbol longer.
Delete(i): delete S[i] and make S one symbol shorter.

Jansson et al. gave two schemes (Table 1, rows 2 and 3) that achieve “high-
order” compression and O(1) time for Access(i, 	), but effectively do not sup-
port O(1)-time Replace. To achieve a redundancy of O(ρ(k, σ, n)), Replace takes
O(min{lgσ n, (k + 1) lgn/ lg lgn}) time (Table 1, row 2). Unfortunately, the re-
dundancy needed to get O(1)-time Replace (take 1/ε = O(1) in row 3) is rather
large: the first term is asymptotically larger even than S in ‘raw’ form, unless
k is constant. Jansson et al. state that removing the first term while obtaining
O(1)-time Access(i, 	) and Replace is an open question, which we resolve here.

– We give a representation whose space usage is n(Hk(S) + O(ρ(k, σ, n))),
which matches the redundancy of the best known static schemes [6,20,8],
and supports Access(i, 	) and Replace in O(1) time (Table 1, row 4). The
data structure is simple and has potential to be practical.

Jansson et al. also gave a storage scheme (Table 1, rows 5 and 6) supporting all
four operations in O(lg n/ lg lg n) time, which is optimal [7].
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– We give a scheme with space usage n(Hk(S) + O(lg lg n/ lgσ n)) bits, for all
k ≤ 1

8 lgσ n, that supports all four operations in O(lg n/ lg lg n) time (Table 1,
row 7). While the redundancy of Jansson et al. is greater than that of the
static schemes of [6,20,8], ours is less. Our redundancy has (surprisingly) no
significant dependency on k: increasing k does not affect space usage.

Dynamic Rank/Select Sequences. In other recent work, Navarro and Nekrich [13]
considered dynamic sequences that support further operations on S:

Rank(c, i) : return |{j ≤ i|S[j] = c}|, for any c ∈ [σ] and 1 ≤ i ≤ n.
Select(c, i) : return the position of the i-th occurrence of c in S (−1 if there are

fewer than i occurrences of c in S), for any c ∈ [σ] and i ≥ 1.

Rank and Select operations are fundamental components of a number of space-
efficient data structures used in a variety of applications, such as indexing com-
pressed XML documents [4] or compressed text [5,10]. Improving on a number
of earlier papers, Navarro and Nekrich finally achieved an optimal [7] (amor-
tized) time of O(lg n/ lg lg n) (Table 1, second-to-last row). A key shortcoming is
that they are unable to achieve “higher-order” entropy compression. Also, their
Access operation costs O(lg n/ lg lgn) time per symbol retrieved.

– We give a scheme that occupies nHk(S) +O(n(lg lg σ+ (k lg σ lg lg n)/ lgσ n)
bits and supports Access(i, 	) in O(1) time, Rank and Select in O(lg n/ lg lg n)
time, and Replace in O(lg n/ lg lg n) amortized time (Table 1, last row).

Note that a lower bound of Ω(lg n/ lg lg n) time holds for the above operations
by a simple reduction from the Subset Rank problem as discussed in [19]. Com-
pared to [13], we achieve higher-order entropy compression, which had not been
achieved before for dynamic strings supporting Rank/Select and we can retrieve
substrings of length 	 quickly. However, our redundancy is worse and the Replace
operation is weaker than a general Insert/Delete. We obtain this result by a tech-
nique that could be used in other problems. Compressed string storage schemes
are the basis of an effective way of designing space-efficient data structures [1]:
de-couple the storage of the data (S) from the succinct indices used to support
operations. Our technique is to ‘encapsulate’ a static Rank/Select succinct index
[9] within a ‘dynamization’ index, while updating S using the dynamic storage
scheme of Theorem 1.

Empirical Entropy. Here we recall this notion. For each c ∈ [σ], let pc = nc/n be
its empirical probability of occurring in S, where nc is its number of occurrences.
The zero-th order empirical entropy of S is defined as H0(S) = −

∑σ
c=1 pc lg pc.

For any string w of length k, let wS be the string of single symbols following the
occurrences of w in S, taken from left to right. The kth order empirical entropy
of S is defined as Hk(S) = 1

n

∑
w∈[σ]k |wS | H0(wS). Not surprisingly, for any

k ≥ 0 we have Hk(S) ≥ Hk+1(S). The value nHk(S) is a lower bound to the
output size of any compressor that encodes each symbol of S only considering
the symbol itself and the k immediately preceding symbols [12].
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2 Entropy Bounds for Dynamic Storage of Strings

This section presents two main results on storing a dynamic compressed string.

Theorem 1. Given a string S[1, n] over the alphabet Σ = [σ] = {1, . . . , σ},
there exists an index storing S that supports Access(i,m) in O(1 + m

lgσ n ) time

and Replace in O(1) time (bounds are worst-case and optimal). The overall space
occupancy is nHk(S) + O(nk lg σ+lg lgn

lgσ n ) bits for all k = o(lgσ n).

Theorem 2. Given a string S[1, n] over the alphabet Σ = [σ], there exists an
index storing S that supports Access(i,m) in O( lgn

lg lg n + m
lgσ n ) time, and Replace,

Insert, Delete in O( lg n
lg lg n ) time (bounds are worst-case and optimal). The overall

space occupancy is nHk(S) + O(n lg lgn
lgσ n ) bits for all k ≤ 1

8 lgσ n.

2.1 Supporting Access and Replace (Theorem 1)

Squeezing the current string S into S�. At any time we conceptually represent S
as a sequence S� of n′ = �n/	� macro-symbols over the macro-alphabet Σ�,
where 	 = � 12 lgσ n�. Each macro-symbol is made up of 	 consecutive symbols in
S (namely, S�[i] = S[(i−1)·	+1, . . . , i·	], for any 1 ≤ i ≤ n′) and thus the macro-
alphabet has size σ� = Θ(

√
n). In this way, the 0-th order entropy-encoding of S�

gives the k-th order entropy-encoding of S as stated below.

Lemma 1 ([6]). For any 	, with 1 ≤ 	 ≤ n, it holds n′H0(S�) ≤ nHk(S) +
O(n′k lg σ), simultaneously over all k ≤ 	.

Lemma 1 implies that if we can maintain a dynamic compressed representation
of S� in n′H0(S�) +O(n′ lg lg n) bits, we obtain a dynamic compressed represen-
tation of S in nHk(S) + O(nk lg σ+lg lgn

lgσ n ) bits.

Codewords for the macro-alphabet Σ� of S�. We now focus on a dynamic encod-
ing of the macro-symbols in Σ� to obtain a 0-th order entropy-encoding of S�. We
divide the whole set of assigned codewords into classes Cj , where 0 ≤ j ≤ 1

2 lg n′,
and each of the codewords in Cj is of fixed length j + 3 bits. We also assign a
nonempty set Γc of codewords to each macro-symbol c ∈ Σ� (and remark that
c can be encoded by any codeword in Γc). We want to preserve the following
invariants (on the number of codewords):

1. |Cj | < 2j+3, for any 0 ≤ j ≤ 1
2 lg n′.

2. |Cj ∩ Γc| ≤ 1, for any class Cj and any macro-symbol c ∈ Σ�.
3. |Γc ∩ Γc′ | = 0, for any two distinct macro-symbols c, c′ ∈ Σ�.

We will discuss the rationale of the invariants 1–3 and how to maintain them in
the next paragraphs. From a data structure point of view, for each class Cj we
keep (i) a decoding table (an array of 2j+3 entries) Dj that maps each codeword
to its assigned macro-symbol and (ii) a free-list Fj of available codewords that
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can be still assigned to that class if required (where the next available codeword
is the head of Fj). Moreover, for each macro-symbol c we keep (iii) an array Wc

of 1
2 lgn′ entries that represent Γc: entry Wc[j] contains the codeword of Cj that

has been assigned to c, or ⊥ when there is no such codeword; and (iv) a counter
fc that stores the number of occurrences of c within the current S�. The space

required for storing (i)–(iv) is O(
∑ 1

2 lgn′

j=0 2j+3(lg σ�+lgn)+σ� lg2 n′+σ� lg n′) =

O(
√
n lgn lgn′) = o(n′) bits.

Dynamic 0-th order entropy-encoding of S�. The encoding of S� is obtained
by concatenating the codewords of its n′ macro-symbols: given any occurrence
of macro-symbol c, this occurrence is encoded by any chosen codeword from
Γc. However the codewords may change during the lifetime of S�, and thus we
cannot simply store the resulting encoding of S� as a binary string: we need
to access and modify codewords, and to increase or reduce the space reserved
to them. Hence, we use the data structure in [11, Th.6] that stores a set of n′

binary strings of up to lg n′ bits each, and supports the following two operations:
(1) Address(i) returns a memory pointer to the ith binary string (1 ≤ i ≤ n′), and
(2) Realloc(i, b) changes the length of the ith binary string to b bits (b ≤ lgn′),
as restated next using our parameters.

Lemma 2 ([11]). Let B be a set of n′ binary strings, each of length at most
lgn′, and let s be the total number of bits for all the strings in B. We can store
B in s + O(n′ lg lgn + lg4 n) bits while supporting address and realloc in O(1)
time.

Our plan is to use Lemma 2 with s = n′H0(S�) + O(n′): by the discussion in
the previous paragraphs, the total space occupancy of our encoding scheme is
n′H0(S�) + O(n′ lg lgn) bits as claimed.

Initialization. The macro-symbols in S� are grouped into classes having approx-
imately the same number of occurrences. Specifically, we scan S� and compute
the number of occurrences fc of each macro-symbol c that appear in it. Then
we assign one class Cj to each each c using fc, so that n′

2j < fc ≤ n′
2j+1 .1 We

initialize each class Cj to be empty and set its free-list Fj to contain all the 2j+3

binary codewords of fixed length j + 3 bits. We also initialize each array Wc

to contain all ⊥s (see points (i)–(iv) in a previous paragraph). Then, for each
macro-symbol c with fc > 0, say of class Cj , we extract a codeword w from Fj

and set Dj [w] = c and Wc[j] = w. Note that after the initialization, we have a
single codeword shared by all the occurrences of the same macro-symbol but, as
we will see shortly, this is not mandatory during the rest of the lifetime of S�.

Operation Access(i,m). Let p = �i/	�. We retrieve the pth macro-symbol and
its next O(m/	) macro-symbols (if needed), taking O(1) time per macro-symbol

1 An exception is the last class Cj for j = 1
2
lgn′, containing the macro-symbols with

less than n′
2j+1 = O(

√
n′) occurrences.
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(i.e. 	 symbols in S) as follows. We first retrieve the pth codeword, say w, and its
length, say j′, using address as in Lemma 2. In this way we infer that w ∈ Cj′−3
and return the 	 symbols of Σ that are stored in table entry Dj′−3[w] in O(1)
time (since they take a total of O(lg n) bits). We repeat this task O(1 + m/	)
times for p, p + 1, . . . , thus attaining a cost of O(1 + m

lgσ n ) time.

Operation Replace(i, c). We first describe an amortized implementation, which
will then be deamortized. During an execution of Replace, the number of oc-
currences of a macro-symbol can change. Thus, macro-symbols may move to
different classes in the lifetime of the data structure. Once a macro-symbol en-
ters a class for the first time, it is assigned an available codeword of that class.
Since the number of available codewords in any class is limited, it may happen
that the last available codeword is consumed in this way. For the moment, we
rebuild the whole data structure from scratch in that case. We have thus two
conflicting goals. On one hand, the codewords of a class should be as large as pos-
sible to postpone the rebuilding. On the other hand, these codewords should be
as small as possible to limit the loss with respect to entropy. We will show that
rebuilding is needed only after Ω(n′) Replace operations and, simultaneously,
that the loss in the entropy is just O(1) bits per macro-symbol of S�.

Operation Replace(i, c) must change the pth macro-symbol in S�, where p =
�i/	�. Wlog assume that S�[p] = x has to be replaced by macro-symbol y (i.e.,
y is obtained from x by substituting x’s symbol in position i− (p− 1)	 with c).
We perform the following steps and maintain Invariants 1–3 mentioned earlier:

1. Set fx = fx − 1 and fy = fy + 1 (data structures (iv)).
2. Let Cj be the current class of macro-symbol y (for the updated fy):

(a) If there is a codeword in Cj assigned to y, let e be such a codeword.
(b) If such a codeword does not exist, extract e from Fj and assign it to y.

3. Encode S�[p] with e (see Lemma 2) and update data structures (i)–(iii).
4. If |Cj | = 2j+3 (i.e., Fj is empty), rebuild all the data structures from scratch.

Lemma 3. Ω(n′) Replace operations are required before |Cj | = 2j+3, for any j.

Proof. Initially, at most 2j codewords of class Cj are used. Indeed, a macro-

symbol c is in class Cj iff its number of occurrences fc is in (n
′

2j ,
n′

2j+1 ]. Pes-
simistically, assume that all the macro-symbols in the classes Cj−1 and Cj+1

move to class Cj . We have at most 2j+2 codewords assigned to macro-symbols
in classes Cj−1, Cj and Cj+1. Any other macro-symbol c has a number of oc-

currences Θ(n
′

2j ) away from the interval (n
′

2j ,
n′

2j+1 ]. Thus, to use the remaining

(at least) 2j+3 − 2j+2 = 2j+2 codewords, we need at least 2j+2×Θ(n
′

2j ) = Ω(n′)
Replace operations. ��

The time complexity of Replace is clearly dominated by Step 4. Indeed, Steps 1–
3 take O(1) time while Step 4 requires O(n′) time. Lemma 3 implies that we
can amortize this cost to O(1) time. To deamortize the cost, we employ an
incremental rebuilding scheme to obtain our claimed bounds.
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We scan the macro-symbols in S� and update their codewords and data struc-
tures, namely, the codeword of the macro-symbol at hand is replaced with the
codeword of its current class. We can release and reassign any codeword that is
no longer in use in the encoding of S� using the free-lists. More precisely, we fix
a constant d and, at the rth Replace, we update the codewords of the d macro-
symbols of S� in positions 1 + (d · r) mod n′, . . . , 1 + (d · r + d− 1) mod n′. If
a codeword is replaced, we check if it is no longer in use and, if so, we release
it to Fj , where its length is j + 3. By Lemma 3, it follows that this mechanism
guarantees that no class can use all its codewords because the reassignment is
faster by a constant factor and terminates before any condition |Cj | = 2j+3 may
happen (i.e., the condition in Step 4 does not hold anymore at this point).

Bounding the space occupancy. It remains to prove that in Lemma 2, our s is at
most

∑
c∈Σ�(fc lg n′

fc
+ O(fc)) = n′H0(S�) + O(n′) bits. (Recall that this gives

the bound of Theorem 1 by Lemma 1.) It suffices to prove that the overall length
of the codewords in Γc representing the fc occurrences of any macro-symbol c
in S� can be bounded by fc lg n′

fc
+ O(fc) bits.

Lemma 4. For any macro-symbol c ∈ Σ�, the overall space required by the fc
codewords of c in the encoding of S� is fc lg n′

fc
+ O(fc) bits.

Proof. Assume that Cj is the current class of macro-symbol c (i.e., n′
2j < fc ≤

n′
2j+1 ). In the ideal scenario, all the fc occurrences are encoded with the j + 3-
length codeword of class Cj . In this case, each of them would require j + 3 =

lg n′
fc

+ O(1) bits and the thesis would follow. However, there are occurrences of
c encoded with codewords from other classes. For each class Ci, let fc,i be the
number of occurrences of c encoded with a codeword of class Ci. The amount of

additional space over the ideal scenario above can be bounded by
∑ 1

2 lgn′

i=0 fc,i ·
(i − j) ≤

∑ 1
2 lgn′

i>j fc,i · (i − j) = O(fc), where the latter equality follows by

observing that fc,i ≤ fc
2i−j−1 , for any i > j. ��

2.2 Supporting Access, Replace, Insert and Delete (Theorem 2)

Different rules of the game. As previously mentioned, the lower bound of Ω( lgn
lg lgn )

time in [7] applies to the operations in this setting. Keeping this in mind, we
can orchestrate a different data layout than the one described in Section 2.1
as we have O( lgn

lg lgn ) time per operation. This, in turn, allows us to reduce the

redundancy from O(nk lg σ+lg lgn
lgσ n ) to O(n lg lgn

lgσ n ) bits and, moreover, the resulting

redundancy is now independent of k.
We need an alternative to Lemma 1 that uses the first order entropy H1 and

variable-length blocks. Consider any partition of S as a sequence Sm,M of n′

blocks, where 0 ≤ m ≤M ≤ n. Each block is a substring of S of length ranging
from m to M and can be seen as belonging to the macro-alphabet Λ = ∪M

i=mΣi.
Note that we use the term ‘block’ rather than ‘macro-symbol’ (as in Section 2.1)
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because blocks are now of variable length and will be split and merged when
necessary; thus, we will refer to Sm,M as a sequence of blocks. We now relate
H1(Sm,M ) to Hk(S) as follows.

Lemma 5. For any m,M , with 0 ≤ m ≤ M ≤ n, it holds n′H1(Sm,M ) ≤
nHk(S) + O (n′(1 + lg(M −m + 1)) + k lg σ) , simultaneously over all k ≤ m.

Proof. To obtain this inequality we define a k-order encoder E giving a compres-
sion size for S that is lower bounded by n′H1(Sm,M ) bits and upper bounded
by nHk(S) + O(n′(1 + lg(M −m + 1)) + k lg σ) bits (so the claim will follow).

We first discuss the upper bound. For every position i (k ≤ i ≤ n), let pi
denote the empirical conditional probability of seeing symbol S[i] after the k-
order context S[i − k, i − 1]. Given these pi’s, the k-order arithmetic encoder
represents S within

∑n
i=k lg pi + 2 + k lg σ ≤ nHk(S) + 2 + k lg σ bits (see e.g.,

[6,8]).2 Using this fact, our encoder E encodes the blocks of S individually: (1) it
writes the length of the block by using O(1 + lg(M −m+ 1)) bits; (2) it encodes
the symbols in the block with the aforementioned k-order arithmetic encoder.
This approach increases the above encoding by O(n′ + n′ lg(M −m + 1)) bits.
The size is at most nHk(S)+O(n′+n′ lg(M−m+1))+O(k lg σ) bits, as claimed.

We now discuss the lower bound. Note that the information content of Sm,M

and S is the same as they represent the same string, and E assigns to each block
of Sm,M its own binary codeword. These codewords do not uniquely identify a
block (i.e., there may exist two different blocks that have been assigned the same
codeword). However, since the k-order context of any symbol is within its own
block or the preceding block, for any block B, these codewords uniquely identify
all the blocks that follows B in Sm,M . Thus, the compression size of E has to
be at least n′H1(Sm,M ) bits, where blocks of Sm,M are seen as macro-symbols
from the alphabet Λ: the first-order entropy is a lower bound for any compressor
which encodes each macro-symbol with a codeword that only depends on the
macro-symbol itself and the immediately preceding one [12]. ��

Toy case. Armed with Lemma 5, let us first study the static case to achieve the
first order entropy for S�,�, with 	 = m = M = 1

8 lgσ n, and O(lg n/ lg lg n) time
for Access. Lemma 5 implies that we obtain a compressed representation of S in
nHk(S) + O(n lg lgn

lgσ n ) bits.

We divide S�,� into super-blocks of b = lg n/ lg lg n blocks each. (a) For each
block c ∈ S�,�, we construct a table T 1

c that stores the blocks following c in
S�,�, sorted by their conditional frequencies. Each of these blocks has been as-
signed a codeword from the set {ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .}: the larger the
conditional frequency of a block, the shorter its codeword.

In order to achieve n′H1(S�,�) plus lower order terms, each super-block is
encoded as follows: the first block of the super-block is written uncompressed;
each remaining block c′ is encoded by its codeword T 1

c [c′], where c is the block
preceding c′ in the super-block.

2 The term k lg σ accounts for the cost of writing explicitly the first k symbols of S,
which do not have any k-order context.
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Apart from the tables in (a), the encoding of S�,� comprises (b) the concate-
nation of the aforementioned encodings of its super-blocks, and (c) a suitable
encoding of the starting positions in (b) of the individual encodings of the super-
blocks and their blocks (this is necessary as the codewords are not prefix-free).

As for the space occupancy, we have that the tables in (a) require O(σ2� lg n) =
o(n1/2) bits; the encoding in (b) requires at most H1(S�,�) bits plus O(lg σ�) =
O(lg n) bits per super-block and O(1) bits per block; the encoding in (c) re-
quires O(n lg lg n

lgσ n ) bits using a standard two-level solution with succinct dictionar-

ies [18]. Summing up, the space for this static scheme is n′H1(S�,�)+O(n lg lgn
lgσ n ) ≤

nHk(S) + O(n lg lgn
lgσ n ) bits by Lemma 5 (setting 	 = m = M = 1

8 lgσ n).

Operation Access(i,m) identifies the pth block of S�,� as in Section 2.1 but
it now decompresses the whole super-block containing that block. This requires
O(lg n/ lg lg n) time. After that, the decoding of the next O(m/	) blocks adds
O(m/	) time to the latter cost.

Fully dynamic representation. We maintain a flexible partition S�,2� of S, where
super-blocks contains between b and 2b blocks of S�,2� (i.e., between b	 and 4b	
symbols of S). We do not give here the implementation details that are of com-
mon use in dynamic data structures. For example, once a block (or a super-block)
becomes too large or too small, it is split or merged with the preceding block (or
super-block). Instead, we discuss how to maintain the compressed representation
for S�,2� in terms of the data structures (a)–(c) previously discussed.

As for (c), we adopt the dynamic binary vector in [21] using O(n lg lgn/ lgσ n)
bits, and supporting Rank, Select, Insert, and Delete in O(lg n/ lg lgn) time.

As for (a) and (b), observe that when any Replace, Insert or Delete of a symbol
is performed in S, we have to change at most 2 blocks of S�,2�. Consequently,
some conditional frequencies should be changed in the tables T 1

c in (a) but we
cannot afford the time cost of this change. Here is our solution in short.

Be lazy. Let us consider the snapshot of the tables T 1
c in (a) for a certain

instance of S�,2� during its lifetime. We use them anyway to encode the blocks
in (b) of the current instance, called S′�,2�, obtained after say r updates of S. This
potentially introduces a loss in space as we are using the outdated statistics of
S�,2� to encode also the blocks of S′�,2�. The result in [11, Th.4] shows that this

loss can be bounded by O(r lgn) bits.3 By choosing r = Θ(n lg σ lg lg n/ lg2 n),
this loss remains dominated by the redundancy of Theorem 2.

Use amortization and deamortize. By our choice of r, we have Θ(r lgn
lg lgn ) =

Θ(n/	) credits after r update operations: they are enough to cover the cost of
updating the tables in (a) and re-encoding all the Θ(n/	) blocks (and their super-
blocks) in (b) and (c). We thus have a scheme supporting all the operations in
O( lgn

lg lgn ) amortized time. From this point, the deamortization scheme follows the

same idea in [11], which consists in dividing updates into phases and spreading
the cost of the re-encoding within each phase. We refer to [11] for the details.

3 We measure the loss with respect to |S′
�,2�|H1(S

′
�,2�) of the current partition.
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3 Dynamizing Static Rank/Select Succinct Indexes

This section presents a dynamization result and an example of its application.
A Rank/Select succinct index for a static string is a data structure that supports
Rank and Select on a string S but reads symbols from S solely through (constant-
time) probe operations. A Rank/Select succinct index for a dynamic string S also
supports Rank and Select on S, also only probes S, but is notified when S is
modified by a Replace operation. We show:

Theorem 3. Let I be a succinct index for a static string S[1..n] over the alpha-
bet [σ] that occupies at most f(n, σ) bits of space, where f is a convex function of
n. Further, suppose that I can be constructed in linear time using O(f(n, σ)) bits
of space. Then, I can be used to build a succinct index for a dynamic string S,
supporting Rank and Select with an additive overhead of O(lg n/ lg lg n) time per
operation and Replace on S in O(lg n/ lg lgn) amortized time. The resulting in-

dex requires O(n (lg σ+lg lgn) lg lgn
lgn ) bits of additional space, plus O(f(n, σ)) bits

of temporary working space.

Choosing the Rank/Select index from [9, Theorem 4(a)] as I and Theorem 1 to
store S, we obtain the following result via Theorem 3:

Corollary 1. A string S[1, n] over the alphabet Σ = [σ] can be stored in nHk(S)+
O(n(lg lg σ+(k lg σ lg lg n)/ lgσ n)) bits for all k = o(lgσ n), so as to support Rank
and Select in O( lgn

lg lgn ) time, Access(i,m) in O(1 + m
lgσ n ) time, and Replace in

O( lgn
lg lgn ) amortized time.

3.1 Proof of Theorem 3

Two-level solution. We partition the string S into chunks of m = σ lg2 n symbols
each, and we use M = n/m to denote the number of these chunks (M = 1 if
σ = Ω(n/ lg2 n)). The first level dynamically maintains the cumulative number
of occurrences of each symbol in each chunk while the second level builds a static
instance of I on each chunk together with additional data structures to correct
its potentially wrong answers. The first level routes a Rank or Select query to
the appropriate chunk; the second level handles the query for that chunk.

First level. For each symbol c, we maintain an array Ac[1,M ], where Ac[i] stores
the number of occurrences of symbol c in the ith chunk, for 1 ≤ i ≤ M . Every
time we replace a symbol c in the ith chunk with a new symbol c′, we increase
Ac′ [i] and decrease Ac[i], both by 1. We then construct an instance of the dy-
namic partial-sums data structure in [16] on each of these arrays. This data
structure answers prefix sum queries, predecessor queries on the prefix sums and
±1 updates on the arrays in O(lg n/ lg lg n) worst-case time. For each symbol c,
it is easy to see that these queries suffice to reduce Rank and Select on S to those
on a chunk. As the data structures use a linear number of words of memory, the
overall space usage for all Ac’s is O(Mσ lgn) = O(n/ lg n) bits overall.
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Second level. The second level supports Rank, Select and Replace on each chunk
C (of size m). The key idea in our solution is to build a static index IC on C,
whose local operations are denoted by Static Rank and Static Select to distinguish
them from Rank and Select that we want to support dynamically. The index IC
is rebuilt from scratch as soon as Θ(m lg lg n/ lgn) updates occur in C: since
rebuilding takes O(m) time, the rebuilding phase costs O(lg n/ lg lgn) amortized
time per update. Note that while Static Rank and Static Select need to probe the
original content of C, Replace operations could have changed C meanwhile. In
the full version, we will show how to solve this problem.

Now, consider Rank and Select queries on the current content of C. They are
solved by first querying the static index IC with Static Rank and Static Select.
However, they may report incorrect answers since IC is built on the original
content of C. We give two solutions to correct these potentially incorrect answers,
depending on the alphabet size σ. The solution for small alphabets, namely, when
lg σ = O(lg n/ lg lg n), is quite standard and will be given in the full version of
this paper. Below we discuss the solution for large alphabets, namely, when
lg σ = ω(lgn/ lg lgn) and so we can use O(n) additional bits without increasing
the space complexity in Theorem 3.

Operations for large alphabets. Here we implement the operations as follows.
Rank is supported by indexing two dynamic sequences A[1,m] and D[1,m]

that keep track of the modifications occurred in the chunk C. Initially, when
there are no updates, A = ⊥m and D = ⊥m for a special symbol ⊥ that denotes
no symbol change. An update that modifies the i-th position in C with symbol
c is recorded by setting A[i] = c and D[i] = C[i]: subsequent modifications of
the i-th position change only A[i] = c. Supporting Rank on A and D suffices
for correcting the (potentially) wrong results of Static Rank. Indeed, we have
Rank(c, i) = Static Rank(c, i) + RankA(c, i) − RankD(c, i). We observe that A
and D contain only O(m lg lgn/ lgn) = O(σ lgn lg lg n) occurrences of symbols
different from ⊥, before the rebuilding. This sparseness allows us to remain
within the space bound of Theorem 3 by using the solution of Navarro and
Nekrich [13] on A and D. Indeed, it requires mH0(A)+O(m+σ lg1+ε m) = O(m)
bits for A, as m = σ lg2 n, and an analogous argument holds for D.

Select is supported by maintaining a dynamic ternary vector Tc for each sym-
bol c over the alphabet {⊥,+,−} as follows. Initially, we start with the sequence
Tc = ⊥nc , where nc is the number of occurrences of c in C. When the j-th occur-
rence of c in the sequence is replaced by some other symbol, we change the j-th
occurrence of a symbol from {⊥,+} in Tc to a −. When a symbol other than c
at position i is replaced by a c, then first we count the number of occurrences
j of c before the position j, using a Rank operation, and then insert a + after
the j-th occurrence of a symbol from {⊥,+} in Tc. We use the index in [21] for
supporting SelectTc(⊥/+, i) and RankTc(⊥/+, j) in O(lg n/ lg lgn) time. In this
case the space usage is:

∑
c∈[σ]O(nc lg 3) = O(m) bits. Operation Select(c, i) is

then the following one:

1. Set j = SelectTc(⊥/+, i) and k = RankTc(+, j).
2. If Tc[j] = ⊥, return Static Select(c, j − k); else, return SelectA(c, k).



Dynamic Compressed Strings with Random Access 515

Finally, Replace is supported by changing the content of A, D and Tc’s, as dis-
cussed above.
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Abstract. We prove a complexity dichotomy theorem for symmetric
complex-weighted Boolean #CSP when the constraint graph of the input
must be planar. The problems that are #P-hard over general graphs
but tractable over planar graphs are precisely those with a holographic
reduction to matchgates. This generalizes a theorem of Cai, Lu, and
Xia for the case of real weights. We also obtain a dichotomy theorem
for a symmetric arity 4 signature with complex weights in the planar
Holant framework, which we use in the proof of our #CSP dichotomy.
In particular, we reduce the problem of evaluating the Tutte polynomial
of a planar graph at the point (3, 3) to counting the number of Eulerian
orientations over planar 4-regular graphs to show the latter is #P-hard.
This strengthens a theorem by Huang and Lu to the planar setting.

1 Introduction

In 1979, Valiant [2] defined the class #P to explain the apparent intractability
of counting the number of perfect matchings in a graph. Yet over a decade
earlier, Kasteleyn [3] gave a polynomial-time algorithm to compute this quantity
for planar graphs. This was an important milestone in a decades-long research
program by physicists in statistical mechanics to determine what problems the
restriction to the planar setting renders tractable [4–10, 3, 11–13]. More recently,
Valiant introduced matchgates [14, 15] and holographic algorithms [16, 17] that
rely on Kasteleyn’s algorithm to solve certain counting problems over planar
graphs. In a series of papers [18–21], Cai et al. characterized the local constraint
functions (which define counting problems) that are representable by matchgates
in a holographic algorithm.

From the viewpoint of computational complexity, we seek to understand ex-
actly which intractable problems the planarity restriction enable us to efficiently
compute. Partial answers to this question have been given in the context of var-
ious counting frameworks [22–25]. In every case, the problems that are #P-hard
over general graphs but tractable over planar graphs are essentially those char-
acterized by Cai et al. In this paper, we give more evidence for this phenomenon
by extending the results of [23] to the setting of complex-valued constraint func-
tions. This provides the most natural setting to express holographic algorithms
and transformations.
� Full version with proofs available at [1].
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Our main result is a dichotomy theorem for the framework of counting Con-
straint Satisfaction Problems (#CSP), but our proof is in a generalized frame-
work called Holant problems [26–29]. We briefly introduce the Holant framework
and then explain its main advantages. A set of functions F defines the problem
Holant(F). An instance of this problem is a tuple Ω = (G,F , π) called a sig-
nature grid, where G = (V,E) is a graph, π labels each v ∈ V with a function
fv ∈ F , and fv maps {0, 1}deg(v) to C. We also call the functions in F signatures.
An assignment σ for every e ∈ E gives an evaluation

∏
v∈V fv(σ |E(v)), where

E(v) denotes the incident edges of v and σ |E(v) denotes the restriction of σ to
E(v). The counting problem on the instance Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv
(
σ |E(v)

)
. (1)

Counting the number of perfect matchings in G corresponds to attaching the
Exact-One signature at every vertex of G. A function or signature is called
symmetric if its output depends only on the Hamming weight of the input. We
often denote a symmetric signature by the list of its outputs sorted by input
Hamming weight in ascending order. For example, [0, 1, 0, 0] is the Exact-One
function on three bits. The output is 1 if and only if the input is 001, 010, or
100, and 0 otherwise.

We consider #CSP, which are also parametrized by a set of functions F . The
problem #CSP(F) is equivalent to Holant(F ∪ EQ), where EQ = {=1,=2, . . . }
and (=k) = [1, 0, . . . , 0, 1] is the equality signature of arity k. This explicit role
of equality signatures permits a finer classification of problems. For a direct
definition of #CSP, see [30].

We often consider a Holant problem over bipartite graphs, which is denoted
by Holant(F | G), where the sets F and G contain the signatures available
for assignment to the vertices in each partition. Considering the edge-vertex
incidence graph, one can see that Holant(F) is equivalent to Holant(=2| F).
One powerful tool in this setting is the holographic transformation. Let T be a
nonsingular 2-by-2 matrix and define TF = {T⊗ arity(f)f | f ∈ F}, where T⊗k

is the tensor product of k factors of T . Here we view f as a column vector by
listing its values in lexicographical order as in a truth table. Similarly FT is
defined by viewing f ∈ F as a row vector. Valiant’s Holant theorem [16] states
that Holant(F | G) is equivalent to Holant(FT−1 | TG).

Cai, Lu, and Xia gave a dichotomy for complex-weighted Boolean #CSP(F)
in [28]. Let Pl-#CSP(F) (resp. Pl-Holant(F)) denote the #CSP (resp. Holant
problem) defined by F when the inputs are restricted to planar graphs. In this
paper, we investigate the complexity of Pl-#CSP(F) for a set F of symmetric
complex-weighted functions. In particular, we would like to determine which sets
become tractable under this planarity restriction. Holographic algorithms with
matchgates provide planar tractable problems for sets that are matchgate real-
izable after a holographic transformation. From the Holant perspective, the sig-
natures in EQ are always available in #CSP(F). By the signature theory of Cai
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and Lu [21], the Hadamard matrix H =
[
1 1
1 −1

]
essentially defines the only1 holo-

graphic transformation under which EQ becomes matchgate realizable. Let F̂
denote HF for any set of signatures F . Then ÊQ is {[1, 0], [1, 0, 1], [1, 0, 1, 0], . . .}
while (=2)(H−1)⊗2 is still =2. Therefore #CSP(F) and Holant(F ∪ EQ) are

equivalent to Holant(F̂ ∪ ÊQ) by Valiant’s Holant theorem.
Our main dichotomy theorem is stated as follows.

Theorem 1. Let F be a set of symmetric, complex-valued signatures in Boolean
variables. Then Pl-#CSP(F) is #P-hard unless F satisfies one of the following
conditions, in which case it is tractable:
1. #CSP(F) is tractable (cf. [28]); or

2. F̂ is realizable by matchgates (cf. [21]).

A more explicit description of the tractable cases can be found in Theorem 19.
In many previous dichotomy theorems for Boolean #CSP(F), the proof of

hardness began by pinning. The goal of this technique is to realize the constant
functions [1, 0] and [0, 1] and was always achieved by a nonplanar reduction.
This does not imply the collapse of any complexity classes because the tractable
sets for #CSP(F) include [1, 0] and [0, 1]. However, EQ with {[1, 0], [0, 1]} are
not simultaneously realizable as matchgates. Therefore, according to our main
result, if pinning were possible for Pl-#CSP(F), then #P collapses to P! In-

stead, apply the Hadamard transformation and consider Pl-Holant(F̂ ∪ ÊQ).
In this Hadamard basis, pinning becomes possible again since [1, 0] and [0, 1]
are included in every tractable set. Indeed, we prove our pinning result in this
Hadamard basis, which is discussed in Section 4.

For Holant problems, it is often important to understand the complexity of
the small arity cases first [23, 31, 32]. In [23], Cai, Lu, and Xia gave a dichotomy
for Pl-Holant(f) when f is a symmetric arity 3 signature while a dichotomy
for Holant(f) when f is a symmetric arity 4 signature was shown in [32]. In
the proof of the latter result, most of the reductions were planar. However,
the crucial starting point for hardness, namely counting Eulerian orientations
(#EO) over 4-regular graphs, was not known to be #P-hard under the planarity
restriction. Huang and Lu [31] had recently proved that #EO is #P-hard over
4-regular graphs but left open its complexity when the input is also planar. We
show that #EO remains #P-hard over planar 4-regular graphs. The problem
we reduce from is the evaluation of the Tutte polynomial of a planar graph at
the point (3,3), which has a natural expression in the Holant framework. In
addition, we determine the complexity of counting complex-weighted matchings
over planar 4-regular graphs. The problem is #P-hard except for the tractable
case of counting perfect matchings. With these two ingredients, we obtain a
dichotomy for Pl-Holant(f) when f is a symmetric arity 4 signature.

Our main result is a generalization of the dichotomy by Cai, Lu, and Xia [23]
for Pl-#CSP(F) when F contains symmetric real-weighted Boolean functions. It
is natural to consider complex weights in the Holant framework because surpris-
ing equivalences between problems are often discovered via complex holographic

1 Up to transformations under which matchgates are closed.
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transformations, sometimes even between problems using only rational weights.
Our proof of hardness for #EO over planar 4-regular graphs in Section 3 is a
prime example of this. Extending the range from R to C also enlarges the set of
problems that can be transformed into the framework.

However, a dichotomy for complex weights is more technically challenging.
The proof technique of polynomial interpolation often has infinitely many fail-
ure cases in C corresponding to the infinitely many roots of unity, which prevents
a brute force analysis of failure cases as was done in [23]. This increased diffi-
culty requires us to develop new ideas to bypass previous interpolation proofs.
In particular, we perform a planar interpolation with a rotationally invariant
signature to prove the #P-hardness of #EO over planar 4-regular graphs. For
the complexity of counting complex-weighted matchings over planar 4-regular
graphs, we introduce the notion of planar pairings to build reductions. We show
that every planar 3-regular graph has a planar pairing and that it can be effi-
ciently computed. We also refine and extend existing techniques for application
in the new setting, including the recursive unary construction, the anti-gadget
technique, compressed matrix criteria, and domain pairing.

2 Preliminaries

The framework of Holant problems is defined for functions mapping any [q]k → F
for a finite q and some field F. In this paper, we investigate the complex-weighted
Boolean Holant problems, that is, all functions are [2]k → C. Technically, func-
tions must take complex algebraic numbers for issues of computability.

A signature grid Ω = (G,F , π) consists of a graph G = (V,E), where each
vertex is labeled by a function fv ∈ F , and π : V → F is the labeling. If the
graph G is planar, then we call Ω a planar signature grid. The Holant problem
on instance Ω is to evaluate HolantΩ =

∑
σ

∏
v∈V fv(σ |E(v)), a sum over all

edge assignments σ : E → {0, 1}.
A function fv can be represented by listing its values in lexicographical order

as in a truth table, which is a vector in C2deg(v) , or as a tensor in (C2)⊗ deg(v). We
also use fα to denote the value f(α), where α is a binary string. A function f ∈ F
is also called a signature. A symmetric signature f on k Boolean variables can
be expressed as [f0, f1, . . . , fk], where fw is the value of f on inputs of Hamming
weight w. In this paper, we consider symmetric signatures. Since a signature of
arity k must be placed on a vertex of degree k, we can represent a signature
of arity k by a labeled vertex with k ordered dangling edges. Throughout this
paper, we do not distinguish between these two views.

A Holant problem is parametrized by a set of signatures.

Definition 2. For a signature set F , define the counting problem Holant(F) as:
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

The problem Pl-Holant(F) is defined similarly using a planar signature grid.
The Holantc framework is the special case of Holant problems when the constant
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signatures of the domain are freely available. In the Boolean domain, the constant
signatures are [1, 0] and [0, 1].

Definition 3. For signature setF ,Holantc(F) denotesHolant(F∪{[0, 1], [1, 0]}).

The problem Pl-Holantc(F) is defined similarly. A symmetric signature f of arity
n is degenerate if there exists a unary signature u such that f = u⊗n. Replacing
a signature f ∈ F by a constant multiple cf , where c �= 0, does not change the
complexity of Holant(F). It introduces a global factor to HolantΩ. Hence, for
two signatures f, g of the same arity, we use f �= g to mean that these signatures
are not equal in the projective space sense, i.e. not equal up to any nonzero
constant factor. We denote polynomial time Turing equivalence by ≡T .

An instance of #CSP(F) has the following bipartite view. Create a node for
each variable and each constraint. Connect a variable node to a constraint node
if the variable appears in the constraint function. This bipartite graph is also
known as the constraint graph. Under this view, we can see that #CSP(F) ≡T

Holant(F | EQ) ≡T Holant(F ∪ EQ), where EQ = {=1,=2,=3, . . . } is the set of
equality signatures of all arities. This equivalence also holds for the planar ver-
sions of these frameworks. For the #CSP framework, the following two signature
sets are tractable [28].

Definition 4. A k-ary function f(x1, . . . , xk) is affine if it has the form λχAx=0·√
−1

∑n
j=1〈αj ,x〉

, where λ ∈ C, x = (x1, x2, . . . , xk, 1)T, A is a matrix over F2, αj

is a vector over F2, and χ is a 0-1 indicator function such that χAx=0 is 1
iff Ax = 0. Note that the dot product 〈αj , x〉 is calculated over F2, while the
summation

∑n
j=1 on the exponent of i =

√
−1 is evaluated as a sum mod 4 of

0-1 terms. We use A to denote the set of all affine functions.

Definition 5. A function is of product type if it can be expressed as a product
of unary functions, binary equality functions ([1, 0, 1]), and binary disequality
functions ([0, 1, 0]). We use P to denote the set of product type functions.

In the Holant framework, there are two corresponding signature sets that are
tractable. A signature f is A -transformable if there exists a holographic trans-
formation T such that f ∈ TA and [1, 0, 1]T⊗2 ∈ A . Similarly, a signature
f is P-transformable if there exists a holographic transformation T such that
f ∈ TP and [1, 0, 1]T⊗2 ∈ P. These two families are tractable because after a
transformation by T , it is a tractable #CSP instance.

Matchgates were introduced by Valiant [14, 15] and are combinatorial in na-
ture. They encode computation as a sum of weighted perfect matchings, which
has a polynomial-time algorithm by the work of Kasteleyn [3].

We say a signature is a matchgate signature if there is some matchgate that
realizes this signature and use M to denote the set of all matchgate signatures.
Lemmas 6.2 and 6.3 in [18] (and the paragraph the follows them) characterize
the symmetric signatures in M . Instead of formally stating these two lemmas,
we explicitly list all the symmetric signatures in M : For any α, β ∈ C,
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1. [αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn];
2. [αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn, 0];
3. [0, αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn];
4. [0, αn, 0, αn−1β, 0, . . . , 0, αβn−1, 0, βn, 0].

Roughly speaking, the symmetric matchgate signatures have 0 for every other
entry (which is called the parity condition), and form a geometric progression
with the remaining entries. We also say a signature f is M -transformable if there
exists a holographic transformation T such that f ∈ TM and [1, 0, 1]T⊗2 ∈ M .

3 Pl-Holant Dichotomy for a Symmetric 4-ary Signature

One of our main results is a dichotomy theorem for Pl-Holant(f) when f is a
symmetric arity 4 signature with complex weights, which uses the #P-hardness
of counting Eulerian orientations over planar 4-regular graphs in a crucial way.

Recall that an orientation of the edges of a graph G is an Eulerian orientation
if for each vertex v of G, the number of incoming edges of v equals the number
of outgoing edges of v.

Counting the number of (unweighted) Eulerian orientations over 4-regular
graphs was shown to be #P-hard in Theorem V.10 of [31]. We improve this
result by showing that this problem remains #P-hard when the input is also
planar. We reduce from the problem of counting weighted Eulerian orientations
over medial graphs, which are planar 4-regular graphs (see Section 2 in [33] for a
definition). Las Vergnas [34] showed that this problem is equivalent to evaluating
the Tutte polynomial at the point (3,3), which is #P-hard for planar graphs [22].

Theorem 6 (Theorem 2.1 in [34]). Let G be a connected plane graph and let
O(H) be the set of all Eulerian orientations of the medial graph H of G. Then

2 · T(G; 3, 3) =
∑

O∈O(H)

2β(O), (2)

where β(O) is the number of saddle vertices in the orientation O, i.e. the number
of vertices in which the edges are oriented “in, out, in, out” in cyclic order.

Our proof also uses two notions from [32].

Definition 7. The matrix Mg =

⎡⎣ g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111

⎤⎦ is the signature matrix

of an arity 4 signature g. When we present g pictorially, we order the four
external edges ABCD counterclockwise. In Mg, the row index bits are ordered
AB and the column index bits are ordered DC, in a reverse way. This is for
convenience so that the signature matrix of the linking of two arity 4 signatures
is the matrix product of the signature matrices of the two signatures.

Now we can prove our hardness result.
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Fig. 1. The planar tetrahedron gadget. Each vertex is assigned [3, 0, 1, 0, 3].

Theorem 8. #Eulerian-Orientations is#P-hard on planar 4-regular graphs.

Proof. We reduce from calculating the right-hand side of (2) to Pl-Holant(�=2 |
[0, 0, 1, 0, 0]). The bipartite Holant problem Pl-Holant( �=2 | f) expresses the

right-hand side of (2), where the signature matrix of f is Mf =

[
0 0 0 1
0 1 2 0
0 2 1 0
1 0 0 0

]
. A

holographic transformation by Z =
[
1 1
i −i

]
transforms Pl-Holant(�=2 | f) to

Pl-Holant(f̂), where the signature matrix of f̂ is Mf̂ =

[
2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2

]
. We also per-

form a holographic transformation by Z on our target problem Pl-Holant(�=2 |
[0, 0, 1, 0, 0]) to get Pl-Holant([3, 0, 1, 0, 3]). Using the planar tetrahedron gad-
get in Figure 1, we assign [3, 0, 1, 0, 3] to every vertex and obtain a gadget with

signature 32ĝ, where the signature matrix of ĝ is Mĝ = 1
2

[
19 0 0 7
0 7 5 0
0 5 7 0
7 0 0 19

]
.

Now we show how to reduce Pl-Holant(f̂) to Pl-Holant(ĝ) by interpolation.

Consider an instance Ω of Pl-Holant(f̂). Suppose that f̂ appears n times in Ω.
We construct from Ω a sequence of instances Ωs of Holant(ĝ) indexed by s ≥ 1.

We obtain Ωs from Ω by replacing each occurrence of f̂ with the gadget Ns

in Figure 2 with ĝ assigned to all vertices. Although f̂ and ĝ are asymmetric
signatures, they are invariant under a cyclic permutation of their inputs. Thus,
it is unnecessary to specify which edge corresponds to which input. We call such
signatures rotationally symmetric.

To obtain Ωs from Ω, we effectively replace Mf̂ with MNs = (Mĝ)s, the sth

power of the signature matrix Mĝ. Let T =

[
0 0 1 1
1 1 0 0
−1 1 0 0
0 0 −1 1

]
. Then Mf̂ = TΛf̂T

−1 =

T

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

]
T−1 and Mĝ = TΛĝT

−1 = T

[
1 0 0 0
0 6 0 0
0 0 6 0
0 0 0 13

]
T−1. We can view our con-

N1 N2

Ns

Ns+1

Fig. 2. Recursive construction to interpolate f̂ . The vertices are assigned ĝ.
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struction of Ωs as first replacing each Mf̂ by TΛf̂T
−1, which does not change the

Holant value, and then replacing each Λf̂ with Λs
ĝ. We stratify the assignments

in Ω based on the assignment to Λf̂ . We only need to consider the assignments to
Λf̂ that assign 0000 j many times, 0110 or 1001 k many times, and 1111 	 many
times. Let cjk� be the sum over all such assignments of the products of evalu-
ations (including the contributions from T and T−1) on Ω. Then Pl-HolantΩ
and Pl-HolantΩs , for s ≥ 1, can be expressed as Pl-HolantΩ =

∑
j+k+�=n 3�cjk�

and Pl-HolantΩs =
∑

j+k+�=n(6k13�)scjk�. This coefficient matrix in the linear
system involving Pl-HolantΩs is Vandermonde and of full rank since for any
0 ≤ k + 	 ≤ n and 0 ≤ k′ + 	′ ≤ n such that (k, 	) �= (k′, 	′), 6k13� �= 6k

′
13�

′
.

Therefore, we can solve the linear system for the unknown cjk�’s and obtain the
value of HolantΩ. ��

The previous proof can be easily modified to reduce from #EO over 4-regular
graphs by interpolating the so-called crossover signature. Conceptually, the cur-
rent proof is simpler because the #P-hardness proof for #EO over 4-regular
graphs in [31] reduces from the same starting point as our current proof.

It was shown that any symmetric signature with a rank 3 signature matrix
defines a #P-hard Holant problem (see Corollary 5.7 [32]). The only nonplanar
part of the proof is that the initial problem in the reduction, counting Eulerian
orientations over 4-regular graphs, was not known to be #P-hard when the
input is also input planar. The reductions themselves were all planar. Here we
have shown the #P-hardness of this problem under the planarity restriction in
Theorem 8, and therefore obtain the planar version of Corollary 5.7 in [32].

Corollary 9. For a symmetric arity 4 signature [f0, f1, f2, f3, f4] with complex
weights, if there does not exist a, b, c ∈ C, not all zero, such that for all k ∈
{0, 1, 2}, afk + bfk+1 + cfk+2 = 0, then Pl-Holant(f) is #P-hard.

With Corollary 9, only one obstacle remains in proving a dichotomy for a sym-
metric arity 4 signature in the Pl-Holant framework: the case [v, 1, 0, 0, 0] when
v �= 0. We handle this by a reduction from Pl-Holant([v, 1, 0, 0]), which is #P-
hard over planar graphs for v �= 0. These problems are the weighted versions of
counting matchings over planar k-regular graphs for k = 4, 3 respectively. This
proof uses a refined interpolation technique. A planar F -gate is essentially a
planar graph gadget where the vertices are assigned signatures in F .

Lemma 10. Let F be a set of signatures. If there exists a planar F-gate with
signature matrix M ∈ C2×2 and a planar F-gate with signature s ∈ C2×1 such
that (1) det(M) �= 0, (2) det([s Ms]) �= 0, and (3) M has infinite order modulo
a scalar, then Pl-Holant(F ∪ {[a, b]}) ≤T Pl-Holant(F) for any a, b ∈ C.

The refinement is in the third condition. Previous work [35, 27, 29] used a
stronger third condition: the ratio of the eigenvalues of M is not a root of unity.
The first two conditions of Lemma 10 are easy to check. Our third condition
holds in one of these two cases: either the eigenvalues are the same but M is
not a multiple of the identity matrix, or the eigenvalues are different but their
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ratio is not a root of unity. The power of this lemma is that when our third con-
dition fails to hold, we can construct M−1 by some constant number of copies
of M and use this in other gadget constructions. This is called the anti-gadget
technique [25]. We use this interpolation lemma or the anti-gadget technique to
realize [1, 0, 0].

To effectively use [1, 0, 0], we introduce the notion of a planar pairing.

Definition 11 (Planar pairing). A planar pairing in a graph G = (V,E) is a
set of edges P ⊂ V ×V such that P is a perfect matching in the graph (V, V ×V ),
and the graph (V,E ∪ P ) is planar.

Lemma 12. For any planar 3-regular graph G, there exists a planar pairing
that can be computed in polynomial time.

With this lemma, we may use [1, 0, 0] as [1, 0] on every vertex of a planar 3-regular
graph, and obtain the hardness of the weighted versions of counting matchings
over planar 4-regular graphs.

Lemma 13. If v ∈ C− {0}, then Pl-Holant([v, 1, 0, 0, 0]) is #P-hard.

Combining Corollary 9 and Lemma 12 with Theorem 22 in [36], we can prove our
Pl-Holant dichotomy for a symmetric arity 4 signature. A signature is vanishing
if the Holant is always 0 [32].

Theorem 14. If f is a non-degenerate, symmetric, complex-valued signature
of arity 4 in Boolean variables, then Pl-Holant(f) is #P-hard unless f is A -
transformable or P-transformable or vanishing or M -transformable, in which
case the problem is in P.

4 Pinning for Planar Graphs

The idea of “pinning” is a common reduction technique between counting prob-
lems. For the #CSP framework, pinning fixes some variables to specific values
of the domain by means of the constant functions [37, 30, 38, 31]. For counting
graph homomorphisms, pinning is used when the input graph is connected and
the target graph is disconnected. Pinning a vertex of the input graph to a vertex
of the target graph forces all the vertices of the input graph to map to the same
connected component of the target graph [39–42]. In the Boolean domain, the
constant 0 and 1 functions are the signatures [1, 0] and [0, 1] respectively.

From these works, the most relevant pinning lemma for the Pl-#CSP frame-
work is by Dyer, Goldberg, and Jerrum in [30], where they show how to pin
in the #CSP framework. However, the proof of this pinning lemma is highly
nonplanar. Cai, Lu, and Xia [23] overcame this difficultly in the proof of their
dichotomy theorem for the real-weighted Pl-#CSP framework by first under-
going a holographic transformation by the Hadamard matrix H =

[
1 1
1 −1

]
and

then pinning in this Hadamard basis.2 We stress that this holographic transfor-
mation is necessary. Indeed, if one were able to pin in the standard basis of the

2 The pinning in [23], which is accomplished in Section IV, is not summarized in a
single statement but is implied by the combination of all the results in that section.
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Pl-#CSP framework, then P = #P would follow since Pl-#CSP(M̂ ) is tractable

but Pl-#CSP(M̂ ∪ {[1, 0], [0, 1]}) is #P-hard by our main result, Theorem 19.
Since Pl-#CSP(F) is Turing equivalent to Pl-Holant(F ∪ EQ), its expression

in the Hadamard basis is Pl-Holant(HF ∪ ÊQ). As [1, 0] ∈ ÊQ, pinning in this
Hadamard basis amounts to obtaining the missing signature [0, 1].

Theorem 15 (Pinning). Let F be any set of complex-weighted symmetric sig-

natures. Then Pl-Holantc(F ∪ ÊQ) is #P-hard (or in P) iff Pl-Holant(F ∪ ÊQ)
is #P-hard (or in P).

This theorem does not exclude the possibility that either framework can express
a problem of intermediate complexity. It merely says that if one framework does
not contain a problem of intermediate complexity, then neither does the other.
Our goal is to prove a dichotomy for Pl-Holant(F ∪ ÊQ). By Theorem 15, this

is equivalent to proving a dichotomy for Pl-Holantc(F ∪ ÊQ).
In Theorem 15, the difference between the two counting problems is the pres-

ence of [0, 1] in the first problem. The proof is quite involved and can be found
in the full version of this paper [1]. It is proved in several steps under various
assumptions on F . Each of these steps is proved in one of three ways:
1. either the first problem is tractable (so the second problem is as well);
2. or the second problem is #P-hard (so the first problem is as well);
3. or the first problem reduces to the second problem by constructing [0, 1]

using the signatures from the second problem.

5 Main Dichotomy

Our main dichotomy theorem relies on a dichotomy for a single signature.

Theorem 16. If f is a non-degenerate symmetric signature of arity at least 2
with complex weights in Boolean variables, then Pl-Holant({f}∪ÊQ) is #P-hard

unless f ∈ A ∪ P̂ ∪M , in which case the problem is in P.

We also prove a useful result that we call the Mixing Theorem.

Theorem 17 (Mixing). Let F be any set of symmetric, complex-valued signa-

tures. If F ⊆ A ∪ P̂ ∪M , then Pl-Holant(F ∪ ÊQ) is #P-hard unless F ⊆ A ,

F ⊆ P̂, or F ⊆M .

By Theorems 15, 16, and 17, the proof of our main theorem is straightforward.

Theorem 18. Let F be any set of symmetric, complex-valued signatures in

Boolean variables. Then Pl-Holant(F ∪ÊQ) is #P-hard unless F ⊆ A , F ⊆ P̂,
or F ⊆ M , in which case the problem is in P.

We also have the corresponding theorem for the Pl-#CSP framework in the
standard basis, which is equivalent to Theorem 1.

Theorem 19. Let F be any set of symmetric, complex-valued signatures in
Boolean variables. Then Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆ P,

or F ⊆ M̂ , in which case the problem is in P.
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Abstract. We study the power of Arthur-Merlin probabilistic proof sys-
tems in the data stream model. We show a canonical AM streaming
algorithm for a wide class of data stream problems. The algorithm offers
a tradeoff between the length of the proof and the space complexity that
is needed to verify it.

As an application, we give an AM streaming algorithm for the Dis-
tinct Elements problem. Given a data stream of length m over alphabet
of size n, the algorithm uses Õ(s) space and a proof of size Õ(w), for
every s, w such that s ·w ≥ n (where Õ hides a polylog(m,n) factor). We
also prove a lower bound, showing that every MA streaming algorithm
for the Distinct Elements problem that uses s bits of space and a proof
of size w, satisfies s · w = Ω(n).

As a part of the proof of the lower bound for the Distinct Elements prob-
lem, we show a new lower bound of Ω (

√
n) on the MA communication

complexity of theGapHammingDistance problem, andprove its tightness.

Keywords: Probabilistic Proof Systems, Data Streams, Communica-
tion Complexity.

1 Introduction

The data stream computational model is an abstraction commonly used for
algorithms that process network traffic using sublinear space [2,14,5]. In the
settings of this model, we have an algorithm that gets a sequence of elements
(typically, each element is an integer) as input. This sequence of elements is
called a data stream and is usually denoted by σ = (a1, . . . , am); where a1 is the
first element, a2 is the second element, and so forth. The algorithm receives its
input (a data stream) element-by-element. After it sees each ai, it no longer has
an access to elements with index that is smaller than i. The algorithm is required
to compute a function of the data stream, using as little space as possible.

Among the most fundamental problems in the data stream model is the prob-
lem of Distinct Elements, i.e., the problem of computing the number of distinct
elements in a given data stream. The problem has been studied extensively in the
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last two decades (see, for example, [2,14,15]). Its significance stems both from
the vast variety of applications that it spans (covering IP routing, database op-
erations and text compression, e.g., [16,2,11]), and due to the theoretical insight
that it gives on the nature of computation in the data stream model.

Alon et al. [2] have shown a lower bound of Ω(n) (where n is the size of the
alphabet from which the elements are taken) on the streaming complexity of
the computation of the exact number of distinct elements in a sufficiently long
data stream (i.e., where the length of the data stream is at least proportional to
n). The goal of reducing the space complexity of the Distinct Elements problem
has led to a long line of research of approximation algorithms for the problem,
starting with the seminal paper [10] by Flajolet and Martin. Recently, Kane at
el. [15] gave the first optimal approximation algorithm for estimating the number
of distinct elements in a data stream; for a data stream with alphabet of size
n, given ε > 0 their algorithm computes a (1 ± ε) multiplicative approximation
using O(ε−2 + logn) bits of space, with 2/3 success probability.

A natural approach for reducing the space complexity of streaming algorithms,
without settling on an approximation, is by considering a probabilistic proof sys-
tem. Chakrabarti at el. [5] have shown data stream with annotations algorithms
for several data stream problems, using a probabilistic proof system that is very
similar to MA. This line of work continued in [8], wherein a probabilistic proof
system was used in order to reduce the streaming complexity of numerous graph
problems. In a subsequent work [9], Cormode at el. provided a practical instan-
tiation of one of the most efficient general-purpose construction of an interactive
proof for arbitrary computations, due to Goldwasser et al. [12].

In this work, we study the power of Arthur-Merlin probabilistic proof systems
in the data stream model. We show a canonical AM streaming algorithm for a
wide class of data stream problems. The algorithm offers a tradeoff between the
length of the proof and the space complexity that is needed to verify it. We show
that the problem of Distinct Elements falls within the class of problems that our
canonical algorithm can handle. Thus, we give an AM streaming algorithm for
the Distinct Elements problem. Given a data stream of length m over alphabet
of size n, the algorithm uses Õ(s) space and a proof of size Õ(w), for every s, w
such that s ·w ≥ n (where throughout the paper Õ hides a polylog(m,n) factor).

In addition, we give a lower bound on the MA streaming complexity of the
Distinct Elements problem. Our lower bound for Distinct Elements relies on a
new lower bound that we prove on the MA communication complexity of the
Gap Hamming Distance problem.

1.1 Arthur-Merlin Probabilistic Proof Systems

An MA (Merlin-Arthur) proof is a probabilistic extension of the notion of proof
in complexity theory. Proofs of this type are commonly described as an inter-
action between two players, usually referred to as Merlin and Arthur. We think
of Merlin as an omniscient prover, and of Arthur as a computationally bounded
verifier. Merlin is supposed to send Arthur a valid proof for the correctness of
a certain statement. After seeing both the input and Merlin’s proof, with high
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probability Arthur can verify a valid proof for a correct statement, and reject
every possible alleged proof for a wrong statement.

An AM proof is defined almost the same as an MA proof, except that in
AM proof systems we assume that both the prover and the verifier have access
to a common source of randomness (alternatively, AM proof systems can be
described as MA proof systems that start with an extra round, wherein Arthur
sends Merlin a random string).

The notion of AM and MA proof systems can be extended to many compu-
tational models. In this work we consider both the communication complexity
analogue ofMA, wherein Alice and Bob receive a proof that they use in order to
save communication, and the data stream analogues of MA and AM, wherein
the data stream algorithm receives a proof and uses it in order to reduce the
required resources for solving a data stream problem.

Recently, probabilistic proof systems for streaming algorithms have been used
to provide an abstraction of the notion of delegation of computation to a cloud
(see [8,9,7]). In the context of cloud computing, a common scenario is one where
a user receives or generates a massive amount of data, which he cannot afford
to store locally. The user can stream the data he receives to the cloud, keeping
only a short certificate of the data he streamed. Later, when the user wants to
calculate a function of that data, the cloud can perform the calculations and
send the result to the user. However, the user cannot automatically trust the
cloud (as an error could occur during the computation, or the service provider
might not be honest). Thus the user would like to use the short certificate that
he saved in order to verify the answer that he gets from the cloud.

1.2 Communication Complexity and the Gap Hamming Distance
Problem

Communication complexity is a central model in computational complexity. In
its basic setup, we have two computationally unbounded players, Alice and Bob,
holding (respectively) binary strings x, y of length n each. The players need to
compute a function of both of the inputs, using the least amount of communi-
cation between them.

In this work we examine the well known communication complexity problem
of Gap Hamming Distance (GHD), wherein each of the two parties gets an n
bit binary string, and together the parties need to tell whether the Hamming
distance of the strings is larger than n

2 +
√
n or smaller than n

2 −
√
n (assuming

that one of the possibilities occurs). In [6] a tight linear lower bound was proven
on the communication complexity of a randomized communication complexity
protocol for GHD. Following [6], a couple of other proofs ([21,19]) were given for
the aforementioned lower bound. Relying on [19], in this work we give a tight
lower bound of Ω(

√
n) on the MA communication complexity of GHD.

1.3 Our Results

The main contributions in this work are:
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1. A canonical AM streaming algorithm for a wide class of data stream prob-
lems, including the Distinct Elements problem.

2. A lower bound on the MA streaming complexity of the Distinct Elements
problem.

3. A tight lower bound on the MA communication complexity of the Gap
Hamming Distance problem.

In order to state the results precisely, we first introduce the following notations:
given a data stream σ = (a1, . . . , am) (over alphabet [n]), the element indicator
χi : [n] → {0, 1} of the i’th element (i ∈ [m]) of the stream σ, is the function
that indicates whether a given element is in position i ∈ [m] of σ, i.e., χi(j) = 1
if and only if ai = j. Furthermore, let χ : [n] → {0, 1}m be the element indicator
of σ, defined by

χ(j) =
(
χ1(j), . . . , χm(j)

)
.

In addition, given m ∈ N we define a clause over m variables x1, . . . , xm as a
function C : {0, 1}m → {0, 1} of the form (y1 ∨ y2 ∨ . . . ∨ ym), where for every
i ∈ [m] the literal yi is either a variable (xj), a negation of a variable (¬xj), or
one of the constants {0, 1}.

Equipped with the notations above, we formally state our results. Let 0 ≤
ε < 1/2. Let P be a data stream problem such that for every m,n ∈ N there
exists a set of k = k(m,n) clauses {Ct}t∈[k] over m variables, and a function
ψ : {0, 1}k → Z, such that for every data stream σ = (a1, . . . , am) with alphabet
[n],

(1− ε)P(σ) ≤
n∑

j=1

ψ
(
C1 ◦ χ(j), . . . , Ck ◦ χ(j)

)
≤ (1 + ε)P(σ).

Moreover, we assume that ψ and {Ct}t∈[k] are known to the verifier1, and that
there exists B ≤ poly(m,n) such that ψ(x) < B for every x ∈ {0, 1}k. Given such
P , for every 0 < δ ≤ 1 and every s, w ∈ N such that s · w ≥ n, we give an AM
streaming algorithm, with error probability δ, for approximating P(σ) within a
multiplicative factor of 1±ε. The algorithm uses space O

(
sk·polylog(m,n, δ−1)

)
,

a proof of size W = O
(
wk · polylog(m,n, δ−1)

)
, and randomness complexity

polylog(m,n, δ−1).
We show that the aforementioned algorithm, when applied to the Distinct

Elements problem with parameters s, w such that s · w ≥ n, yields an AM
streaming algorithm for the problem. The algorithm computes, with probability
at least 2/3, the exact number of distinct elements in a data stream of length
m over alphabet [n], using space Õ(s) and a proof of size Õ(w). For example,
by fixing w = n, we get an AM streaming algorithm for the Distinct Elements
problem that uses only polylogarithmic space.
1 For example, ψ and {Ct}t∈[k] can be polylog(m,n)-space uniform; that is, the de-

scription of ψ and {Ct}t∈[k] can be computed by a deterministic Turing machine
that runs in polylog(m,n) space.
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We note that an interesting special case of the class of problems that our
canonical AM streaming algorithm handles can also be stated in terms of
Boolean circuits, instead of clauses. That is, given 0 ≤ ε < 1/2 and a data
stream problem P such that for every m,n ∈ N there exists an unbounded fan-
in Boolean circuit C : {0, 1}m → {0, 1} with k = k(m,n) non-input gates, such
that for every data stream σ = (a1, . . . , am) with alphabet [n],

(1 − ε)P(σ) ≤
n∑

j=1

C
(
χ1(j), . . . , χm(j)

)
≤ (1 + ε)P(σ).

Assuming that C is known to the verifier, we get an AM streaming algorithm
for P with the same parameters as in the original formulation of the canonical
AM algorithm above.

Our next result is a lower bound on the MA streaming complexity of the
Distinct Elements problem. We show that every MA streaming algorithm that
approximates, within a multiplicative factor of 1± 1/

√
n, the number of distinct

elements in a data stream of length m over alphabet [n] (where m > n), using s
bits of space and a proof of size w, must satisfy s · w = Ω(n).

Last, we show a tight (up to a logarithmic factor) lower bound on the MA
communication complexity of the Gap Hamming Distance problem. For every
MA communication complexity protocol for GHD that communicates t bits and
uses a proof of size w, we have t ·w = Ω(n). We prove the tightness of the lower
bound by giving, for every t, w ∈ N such that t ·w ≥ n, an MA communication
complexity protocol for GHD, which communicates O(t logn) bits and uses a
proof of size O(w logn).

For the full formal proofs, we refer the reader to the full version [13].

1.4 Related Work

The data stream model has gained a great deal of attention after the publication
of the seminal paper by Alon, Matias and Szegedy [2]. In the scope of that work,
the authors have shown a lower bound of Ω(n) (where n is the size of the alpha-
bet) on the streaming complexity of Distinct Elements (i.e., the computation of
the exact number of distinct elements in a data stream) where the length of the
input is at least proportional to n.

Following [2] there was a long line of theoretical research on the approximation
of the Distinct Element problem ([14,3,4,15], see [16] for a survey of earlier
results). Finally, Kane et al. [15] gave the first optimal approximation algorithm
for estimating the number of distinct elements in a data stream; for a data
stream with alphabet of size n, given ε > 0 their algorithm computes a (1 ± ε)
multiplicative approximation using O(ε−2+logn) bits of space, with 2/3 success
probability. This result matches the tight lower bound of Indyk and Woodruff
[14].

In a recent sequence of works, the data stream model was extended to sup-
port several interactive and non-interactive proof systems [5,8,7]. The model of
streaming algorithms with non-interactive proofs was first introduced in [5] and
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extended in [8,9]. In [5] the authors gave an optimal (up to polylogarithmic fac-
tors) data stream with annotations algorithm for computing the k’th frequency
moment exactly, for every integer k ≥ 1.

2 Preliminaries

2.1 MA Communication Complexity

In MA communication complexity protocols, we have a (possibly partial) func-
tion f : X × Y → {0, 1} (for some finite sets X,Y ), and three computationally
unbounded parties: Merlin, Alice, and Bob. The function f is known to all par-
ties. Alice gets as an input x ∈ X . Bob gets as an input y ∈ Y . Merlin sees both
x and y. We think of Merlin as a prover, and think of Alice and Bob as verifiers.
We assume that Alice and Bob share a private random string that Merlin cannot
see.

At the beginning of anMA communication complexity protocol, Merlin sends
a proof string w to both Alice and Bob, so both players have a free access to w.
The players proceed as before. In each step of the protocol, one of the players
sends one bit to the other player. At the end of the protocol, both players have
to know an answer z. Hence, the answer depends on the input (x, y) as well as on
the proof w. For a protocol P , denote by P

(
(x, y), w

)
the probabilistic answer z

given by the protocol on input (x, y) and proof w.
An MA communication complexity protocol has three parameters: a limit on

the probability of error of the protocol, denoted by ε; a limit on the number of
bits of communication between Alice and Bob, denoted by T ; and a limit on the
length of Merlin’s proof string, denoted by W .

With the above in mind, we can now define MAε(T,W ) communication com-
plexity as follows:

Definition 1. An MAε(T,W )-communication complexity protocol for f is a
probabilistic communication complexity protocol P , as above (i.e., with an addi-
tional proof string w presented to the players). During the protocol, Alice and
Bob communicate at most T bits. The protocol satisfies,

1. Completeness: for all (x, y) ∈ f−1(1), there exists a string w such that
|w| < W , that satisfies

Pr
[
P
(
(x, y), w

)
= 1

]
> 1− ε.

2. Soundness: for all (x, y) ∈ f−1(0) and for any string w such that |w| < W ,
we have

Pr
[
P
(
(x, y), w

)
= 1

]
< ε.
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2.2 Streaming Complexity

Let ε ≥ 0, δ > 0. Let m,n ∈ N. A data stream σ = (a1, . . . , am) is a sequence of
elements, each from [n] = {1, . . . , n}. We say that the length of the stream is m,
and the alphabet size is n.

A streaming algorithm is a space-bounded probabilistic algorithm that gets
an element-by-element access to a data stream. After each element arrives, the
algorithm can no longer access the elements that precede it. At the end of its
run, the streaming algorithm is required to output (with high probability) a
certain function of the data stream that it read. When dealing with streaming
algorithms, the main resource we are concerned with is the size of the space that
the algorithm uses.

Formally, a data stream problem P is a collection of functions {fm,n : [n]m →
R}m,n∈N. That is, a function for every combination of length and alphabet size
of a data stream. However, slightly abusing notation for the sake of brevity,
we will define each data stream problem by a single function (which in fact
depends on the length m and alphabet size n of the data stream). A δ-error,
ε-approximation data stream algorithm Aε,δ for P is a probabilistic algorithm
that gets a sequential, one pass access to a data stream σ = (a1, . . . , am) (where
each ai is a member of [n]), and satisfies:

Pr

[∣∣∣∣Aε,δ(σ)

fm,n(σ)
− 1

∣∣∣∣ > ε

]
< δ.

If ε = 0 we say that the streaming algorithm is exact.
Last, given a data stream problem P = {fm,n : [n]m → R}m,n∈N and a data

stream σ = (a1, . . . , am) (with alphabet [n]) we denote by P(σ) the output
of fm,n(σ), for the fm,n ∈ P that matches the length and alphabet size of σ.
Similarly, when applying a family of functions to σ, we in fact apply a specific
function in the family, according to the parameters m,n of σ.

The Distinct Elements Problem The Distinct Elements problem is the
problem of computing the exact number of distinct elements that appear in a
data stream, denoted by F0(σ). Formally, we define:

Definition 2. The Distinct Elements problem is the data stream problem of
computing the exact number of distinct elements in a given data stream σ =
(a1, . . . , am) (where ai ∈ [n] for every i), i.e., computing (exactly):

F0(σ) =
∣∣ {i ∈ N : ∃j ∈ [m] aj = i}

∣∣.
Note that if we define 00 = 0 then this is exactly the 0’th frequency moment of
the stream. Hence the notation F0.

3 Streaming Algorithms with Probabilistic Proof Systems

In this section we extend the data stream computational model in order to
support two types of probabilistic proof systems: MA algorithms, wherein the
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streaming algorithm gets a proof that it probabilistically verifies, and AM al-
gorithms that extend MA algorithms by adding shared randomness. We study
both of these probabilistic proof systems in two variations: in the first, the proof
is also being streamed to the verifier, and in the second, the verifier has a free
access to the proof. Formal definitions follow.

3.1 MA Streaming Algorithms

Similarly to the way MA communication complexity protocols are defined, in
MA streaming algorithms we have an omniscient prover (Merlin) who sends a
proof to a verifier (Arthur), which is in fact a streaming algorithm that gets
both the input stream and the proof (either by a free access or by a one-pass,
sequential access). The streaming algorithm computes a function of the input
stream. Using the proof we hope to achieve a better space complexity than what
the regular streaming model allows.

We start with MA proofs wherein the proof is being streamed to the verifier.
Formally, we define

Definition 3. Let ε ≥ 0, δ > 0, and let P = {fm,n : [n]m → R}m,n∈N be a
data stream problem. An MA streaming algorithm for P is a probabilistic data
stream algorithm A, which simultaneously gets two streams: an input stream
σ = (a1, . . . , am) (where ai ∈ [n] for every i) and a proof stream ω; to both it
has a sequential, one pass access.2 Given two functions S,W : N2 → N, we say
that an MA streaming algorithm is MAε,δ

(
S(m,n),W (m,n)

)
if it uses at most

S(m,n) bits of space, and satisfies:

1. Completeness: for every σ = (a1, . . . , am) (with alphabet [n]) there exists
a non empty set Wσ of proof streams of length at most W (m,n), such that
for every ω ∈ Wσ we have,

Pr

[∣∣∣∣A(σ, ω)

fm,n(σ)
− 1

∣∣∣∣ ≤ ε

]
> 1− δ

2. Soundness: for every σ = (a1, . . . , am) (with alphabet [n]), and for every
ω �∈ Wσ we have

Pr[A(σ, ω) �= ⊥] < δ

where ⊥ �∈ R is a symbol that represents that the algorithm could not verify
the correctness of the proof.

The second natural way to define anMA probabilistic proof system for the data
stream model, is by allowing the algorithm a free access to the proof. We denote
2 We note that one may consider several possible ways to implement the mechanism

of accessing two streams simultaneously. However, since for all of our algorithms the
order does not matter — for simplicity, we assume that first the proof stream is
being received, and then the input stream is being received.
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this model by M̂A streaming complexity. Note that by definition, the model of
MA streaming with a free access to the proof is stronger than the model of MA
streaming with a proof stream. In this work we prove lower bounds on the M̂A
streaming complexity, hence it also implies lower bounds on the MA streaming
complexity.

3.2 AM Streaming Algorithms

We can further extend the data stream model to support an AM probabilistic
proof system. Similarly to the case of MA proofs, an AM streaming algorithm
receives a proof stream and an input stream, to which it has a sequential, one
pass access; except that in AM proof systems the prover and verifier also share
a common random string. Formally, we define

Definition 4. Let ε ≥ 0, δ > 0, and let P = {fm,n : [n]m → R}m,n∈N be a data
stream problem. An AM streaming algorithm for P is a probabilistic data stream
algorithm Ar that has an oracle access to a common random string r, and that is
also allowed to make private random coin tosses. The algorithm simultaneously
gets two streams: an input stream σ = (a1, . . . , am) (where ai ∈ [n] for every
i) and a proof stream ω, to both it has a sequential, one pass access. Given
two functions S,W : N2 → N, we say that an AM streaming algorithm is
AMε,δ

(
S(m,n),W (m,n)

)
if it uses at most S(m,n) bits of space, and satisfies

that for every σ = (a1, . . . , am) (over alphabet [n]), with probability at least
1 − δ/2 (over r) there exists a non empty set Wσ(r) of proof streams of length
at most W (m,n), such that:

1. Completeness: For every ω ∈ Wσ(r)

Pr

[∣∣∣∣Ar(σ, ω)

fm,n(σ)
− 1

∣∣∣∣ ≤ ε

]
> 1− δ

2
,

where the probability is taken over the private random coin tosses of Ar.
2. Soundness: For ω �∈ Wσ(r)

Pr [Ar(σ, ω) = ⊥] > 1− δ

2
,

where the probability is taken over the private random coin tosses of Ar, and
⊥ �∈ R is a symbol that represents that the algorithm could not verify the
correctness of the proof.

The randomness complexity of the algorithm is the total size of the common ran-
dom string r, and the number of private random coin tosses that the algorithms
performs.

Note that we slightly deviate from the standard definition of an AM algorithm,
by allowing A to be a probabilistic algorithm with a private random string.

Just as with the MA streaming model, we can define ÂM streaming algo-
rithms by allowing a free access to the proof. Again, by definition the model
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of AM streaming with a free access to the proof is stronger than the model of
AM streaming with a proof stream. Our canonical AM algorithm works for the
weaker model, wherein the proof is being streamed, thus our AM upper bounds
also implies ÂM upper bounds.

4 Techniques

The main intuition behind our canonical AM streaming algorithm is based on
the “algebrization” inspired communication complexity protocol of Aaronson and
Wigderson [1]. However our proof is much more technically involved.

In general, say we have a data stream problem P and two integers s, w such
that s · w ≥ n. If there exists a low degree polynomial g(x, y) : Z2 → Z (that
depends on the input stream σ) and two domains Dw,Ds ⊆ Z of cardinality w, s
(respectively) such that

P(σ) =
∑

x∈Dw

∑
y∈Ds

g(x, y),

then assuming we can efficiently evaluate g at a random point, by a straightfor-
ward adaptation of the [1] protocol to the settings of streaming algorithms, we
obtain a simple MA streaming algorithm for P .

However, in our case we can only express P(σ) as∑
x∈Dw

∑
y∈Ds

ψ
(
C1 ◦ χ̃(x, y), . . . , Ck ◦ χ̃(x, y)

)
,

where k is a natural number, {Ct}t∈[k] are clauses over m variables, ψ : {0, 1}k →
Z is a function over the hypercube, χ̃ : Dw × Ds → {0, 1}m is the bivariate
equivalent of the element indicator χ : [n] → {0, 1}m, and Dw,Ds ⊆ Z are
domains of cardinality w, s (respectively).

The function ψ
(
C1 ◦ χ̃(x, y), . . . , Ck ◦ χ̃(x, y)

)
is not a low degree polynomial.

We would have liked to overcome this difficulty by using the approximation
method of [18,20]. The latter allows us to have a low degree approximation of the
clauses {Ct}t∈[k], such that with high probability (over the construction of the
approximation polynomials) we can replace the clauses with low degree polyno-
mials, without changing the output. The aforementioned randomized procedure
comes at a cost of turning the MA streaming algorithm to an AM streaming
algorithm.

Yet, the above does not sufficiently reduces the degree of

ψ
(
C1 ◦ χ̃(x, y), . . . , Ck ◦ χ̃(x, y)

)
.

This is due to the fact that the method of [18,20] results with approximation
polynomials over a finite field of cardinality that is larger than P(σ). The degree
of the approximation polynomials is close to the cardinality of the finite field,
which in our case can be a large number (poly(m,n)).
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Instead we aim to apply the method of [18,20] to approximate

{P(σ) (mod q)}q∈Q
for a set Q of polylog(m,n) primes, each of size at most polylog(m,n). This
way, each approximation polynomial that we get is over a finite field of cardi-
nality polylog(m,n), and of sufficiently low degree. Then, we use the Chinese
Remainder Theorem to extract the value of P(σ) from {P(σ) (mod q)}q∈Q.

Nonetheless, this is still not enough, as for every q ∈ Q we want the answer to
be the summation of the polynomial approximation of ψ

(
C1 ◦ χ̃(x, y), . . . , Ck ◦

χ̃(x, y)
)

(mod q) over some domain Dw ×Ds ⊆ Z2 (where |Dw| = w and |Ds| =
s). Since the cardinality of the field Fq is typically smaller than w and s, we use
an extension (of sufficient cardinality) of the field Fq.

At each step of the construction, we make sure that we perserve both the
restrictions that are imposed by the data stream model, and the conditions that
are needed to ensure an efficient verification of the proof.

The idea behind our AM streaming algorithm for Distinct Elements is simply
noting that we can indicate whether an element j appears in the data stream,
by the disjunction of the element indicators of j ∈ [n] in all of the positions
of the stream (i.e., χ1(j), . . . , χm(j)). Then we can represent the number of
distinct elements as a sum of disjunctions, and use the canonical AM streaming
algorithm in order to solve the Distinct Elements problem.

As for the lower bound on the MA streaming complexity of the Distinct
Elements problem, we start by establishing a lower bound on the MA com-
munication complexity of the Gap Hamming Distance problem (GHD). A key
element in the proof of the latter is based on Sherstov’s recent result [19] on the
Gap Orthogonality problem (ORT) and its relation to GHD. Sherstov observed
that the problem of Gap Orthogonality readily reduces to Gap Hamming Dis-
tance problem. Although at first glance it seems that the transition to ORT is of
little substance, it turns out that Yao’s corruption bound [22] suits it perfectly.
In fact, the corruption property for ORT is equivalent to the anti-concentration
property of orthogonal vectors in the Boolean cube. Using this observation, we
prove a lower bound on the MA communication complexity of ORT (following
the method of [17]), which in turn, by the reduction from ORT to GHD, implies a
lower bound on the MA communication complexity of GHD. Next we adapt the
reduction that was implicitly stated in [14], and reduce the MA communication
complexity problem of GHD to theMA problem of calculating the exact number
of Distinct Elements.

For the full formal proofs, we refer the reader to the full version [13].
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Abstract. In this work, we present the first local-decoding algorithm for
expander codes. This yields a new family of constant-rate codes that can
recover from a constant fraction of errors in the codeword symbols, and
where any symbol of the codeword can be recovered with high probability
by reading Nε symbols from the corrupted codeword, where N is the
block-length of the code.

Expander codes, introduced by Sipser and Spielman, are formed from
an expander graph G = (V,E) of degree d, and an inner code of block-
length d over an alphabet Σ. Each edge of the expander graph is associ-
ated with a symbol in Σ. A string in ΣE will be a codeword if for each
vertex in V , the symbols on the adjacent edges form a codeword in the
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We show that if the inner code has a smooth reconstruction algorithm
in the noiseless setting, then the corresponding expander code has an ef-
ficient local-correction algorithm in the noisy setting. Instantiating our
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novel locally decodable codes with constant rate. This provides an alter-
native to the multiplicity codes of Kopparty, Saraf and Yekhanin (STOC
’11) and the lifted codes of Guo, Kopparty and Sudan (ITCS ’13).

Keywords: error correcting codes, expander codes, locally decodable
codes.

1 Introduction

Expander codes, introduced in [29], are linear codes which are notable for their
efficient decoding algorithms. In this paper, we show that when appropriately

� Research supported in part by NSF grants CNS-0830803; CCF-0916574; IIS-1065276;
CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF grant 2008411, OKAWA
Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Re-
search Award, B. John Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award. This material is also based upon
work supported by the Defense Advanced Research Projects Agency through the U.S.
Office of Naval Research under Contract N00014-11-1-0392. The views expressed are
those of the author and do not reflect the official policy or position of the Department
of Defense or the U.S. Government.

�� Research supported in part by NSF grant CCF-1161233.

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 540–551, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Local Correctability of Expander Codes 541

instantiated, expander codes are also locally decodable, and we give a sublinear
time local-decoding algorithm.

In standard error correction, a sender encodes a message x ∈ {0, 1}k as a
codeword c ∈ {0, 1}N , and transmits it to a receiver across a noisy channel.
The receiver’s goal is to recover x from the corrupted codeword w. Decoding
algorithms typically process all of w and in turn recover all of x. The goal of
local decoding is to recover only few bits of x, with the benefit of querying
only a few bits of w. The number of bits, q, of w needed to recover a single
bit x is known as the query complexity, and the important trade-off in local
decoding is between this quantity and the rate r = k/N of the code. When q
is constant or even logarithmic in k, the best known codes have rates which
tend to zero as N grows. Until recently, there were no known locally decodable
codes with rate approaching 1 and sublinear locality; to date, there are only two
constructions known [18,22]. In this work, we show that expander codes provide
a new construction of efficiently locally decodable codes with constant rate.

1.1 Notation and Preliminaries

We will construct linear codes C of length N and message length k, over an
alphabet Σ = F, for some finite field F. That is, C ⊂ FN is a linear subspace of
dimension k. The rate of C is the ratio r = k/N . We say a d-regular graph G
is a spectral expander with parameter λ, if λ is the second-largest eigenvalue of
the normalized adjacency matrix of G. Intuitively, the smaller λ is, the better
connected G is—see [19] for a survey of expanders and their applications. For
n ∈ Z, [n] denotes the set {1, 2, . . . , n}. For an event E , 1E is the indicator
variable which is 1 if E occurs and 0 otherwise. For x, y ∈ ΣN , Δ(x, y) denotes
relative Hamming distance, x[i] denotes the ith symbol of x, and x|S denotes x
restricted to symbols indexed by S ⊂ [N ].

A code is locally decodable if there is a decoding algorithm that recovers any
symbol, x[i], of the message, making only a few queries to received word.

Definition 1 (Locally Decodable Codes (LDCs)). Let C ⊂ ΣN be a code
of size |Σ|k, and let E : Σk → ΣN be an encoding map. Then (C, E) is (q, ρ)-
locally decodable with error probability η if there is a randomized algorithm R,
so that for any w ∈ ΣN with Δ(w,E(x)) < ρ, for each i ∈ [k],

P {R(w, i) = x[i]} ≥ 1− η,

and further R accesses at most q symbols of w.

We actually construct a stronger primitive, locally correctable codes.

Definition 2 (Locally Correctable Codes (LCCs)). Let C ⊂ ΣN be a code.
Then C is (q, ρ)-locally correctable with error probability η if there is a randomized
algorithm, R, so that for any w ∈ FN with Δ(w,E(x)) < ρ, for each j ∈ [N ],

P {R(w, j) = w[j]} ≥ 1− η,

and further R accesses at most q symbols of w.
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When there is a constant ρ > 0 and a failure probability η = o(1) so that C is
(q, ρ)-locally correctable with error probability η, we will simply say that C is
locally correctable with query complexity q (and similarly for locally decodable).

When C is a linear code, writing the generator matrix in systematic form gives
an encoding function E : Fk → FN so that for every x ∈ Fk and for all i ∈ [k],
E(x)[i] = x[i]. If C is a (q, ρ) linear LCC, then (E, C) is a (q, ρ) LDC. Thus we
will focus our attention on creating locally correctable linear codes.

Many LCCs work on the following principle: suppose, for each i ∈ [N ], there
is a set of q query positions Q(i), which are smooth—that is, each query is
almost uniformly distributed within the codeword—and a method to determine
c[i] from {c[j] : j ∈ Q(i)} for any uncorrupted codeword c ∈ C. If q is constant,
this smooth local reconstruction algorithm yields a local correction algorithm:
with high probability none of the locations queried are corrupted. When q is
merely sublinear in N , as is the case in this work, this reasoning fails. This
work demonstrates how to turn codes which only possess a local reconstruction
procedure (in the noiseless setting) into LCCs with constant rate and sublinear
query complexity.

Definition 3 (Smooth reconstruction). For a code C ⊂ ΣN , consider a pair
of algorithms (Q,A), where Q is a randomized query algorithm with inputs in
[N ] and outputs in 2N , and A : Σq × [N ] → Σ is a deterministic reconstruction
algorithm. We say that (Q,A) is a s-smooth local reconstruction algorithm with
query complexity q if the following hold.

1. For each i ∈ [N ], the query set Q(i) has |Q(i)| ≤ q.
2. For each i ∈ [N ], there is some set S ⊂ [N ] of size s, so that each query in

Q(i) is uniformly distributed in S.
3. For all i ∈ [N ] and for all codewords c ∈ C, A(c|Q(i) , i) = c[i].

If s = N , then we say the reconstruction is perfectly smooth, since all symbols
are equally likely to be queried (though the queries need not be independent).
The inner codes we consider decode a symbol indexed by x ∈ Fm by querying
random subspaces through x (but not x itself), and thus will have s = N − 1.

1.2 Related Work

The first local-decoding procedure for an error-correcting code was the majority-
logic decoder for Reed-Muller codes proposed by Reed [28]. Local-decoding pro-
cedures have found many applications in theoretical computer science including
proof-checking [3, 23, 27] and self-testing [9, 10, 16, 17]. While these applications
implicitly used local-decoding procedures, the first explicit definition of locally
decodable codes did not appear until later [21]. An excellent survey is avail-
able [33]. The study of locally decodable codes focuses on the trade-off between
rate (the ratio of message length to codeword length) and query complexity
(the number of queries made by the decoder). Research in this on locally de-
codable codes is separated into two distinct areas: the first seeks to minimize
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the query complexity, while the second seeks to maximize the rate. In the low-
query-complexity regime, Yekhanin was the first to exhibit codes with a constant
number of queries and a subexponential rate [32]. Following Yekhanin’s work,
there has been significant progress in constructing locally decodable codes with
constant query-complexity [7, 8, 11–14, 20, 32]. On the other hand, in the high-
rate regime, there has been less progress. In 2011, Kopparty, Saraf and Yekhanin
introduced multiplicity codes, the first codes with a sublinear local-decoding al-
gorithm [22] and rate greater than one half. Like Reed-Muller codes, multiplicity
codes treat the message as a multivariate polynomial, and create codewords by
evaluating the polynomial at a sequence of points. Multiplicity codes improve
on the performance of Reed-Muller codes by including evaluations of the partial
derivatives of the message polynomial in the codeword. A separate line of work
has developed high-rate locally decodable codes by “lifting” shorter codes [18].
The work of Guo, Kopparty and Sudan takes a short code C0 of length qt, and
lifts it to a longer code C, of length N > qt over Fq, such that every restriction
of a codeword in C to an affine subspace of dimension t yields a codeword in
C0. The definition provides a natural local-correcting procedure for the outer
code: to decode a symbol of the outer code, pick a random affine subspace of
dimension t that contains the symbol, read the qt coordinates and decode the
resulting codeword using the code C0. By lifting explicit inner codes the outer
code can achieve constant rate and query complexity Nε.

In this work, we show that expander codes can also give constant-rate lo-
cally decodable codes with query complexity Nε. Expander codes, introduced
by Sipser and Spielman [29], are formed by choosing a d-regular expander graph,
G, on n vertices, and a code C0 of length d (called the inner code), and defining
the codeword to be all assignments of symbols to the edges of G so that for
every vertex in G, its edges form a codeword in C0. The connection between
error-correcting codes and graphs was first noticed by Gallager [15] who showed
that a random bipartite graph induces a good error-correcting code. Gallager’s
construction was refined by Tanner [31], who suggested the use of an inner code.
Sipser and Spielman [29] were the first to consider this type of code with an
expander graph, and Spielman [30] showed that these expander codes could be
encoded and decoded in linear time. Spielman’s work provided the first family of
error-correcting code with linear-time encoding and decoding procedures. The
decoding procedure has since been improved by Barg and Zemor [4–6, 34].

1.3 Our Approach and Contributions

We show that certain expander codes can be efficiently locally decoded, and we
instantiate our results to obtain novel families of (Nε, ρ)-LCCs of rate 1−α for
arbitrary α, ε > 0 and some positive constant ρ. Our decoding algorithm runs
in time linear in the number of queries, and hence sublinear in the length of
the message. We provide a general method for turning codes with smooth local
reconstruction algorithms into LCCs: our main result, Theorem 2, states that
as long as the inner code C0 has rate at least 1/2 and possesses a smooth local
reconstruction algorithm, then the corresponding family of expander codes are
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constant rate LCCs. In Section 3, we give examples of inner codes, leading to
the parameters claimed above.

Our approach (and the resulting codes) are very different from earlier ap-
proaches. Both multiplicity codes and lifted Reed-Solomon codes use the same
basic principle, also at work in Reed-Muller codes: in these schemes, for any two
codewords c1 and c2 which differ at index i, the corresponding queries c1|Q(i) and

c2|Q(i) differ in many places. Thus, if the queries are smooth, with high probabil-
ity they will not have too many errors, and the correct symbol can be recovered.
In contrast, our decoder works differently: while our queries are smooth, they
will not have this distance property. In fact, we will see in the proof of Theorem 2
that changing a mere log(q) out of our q queries may change the correct answer.
The trick is that these problematic error patterns must have a lot of structure,
and we will show that they are unlikely to occur.

Finally, our results port a typical argument from the low-query regime to the
high-rate regime. As mentioned above, when the query complexity, q, is constant,
a smooth local reconstruction algorithm is sufficient for local correctability, but
this reasoning fails when q grows with N . Our work overcomes this problem:
Theorem 2 shows that any family of codes, C0, with good rate and smooth local
reconstruction can be used to obtain a family of LCCs with similar parameters.

2 Local Correctability of Expander Codes

In this section, we give an efficient local correction algorithm for expander codes
with appropriate inner codes. We use a formulation of expander codes due to [34].
Let G be a d-regular expander graph on n vertices with parameter λ. We will

take G to be a Ramanujan graph, so that λ ≤ 2
√
d−1
d ; explicit constructions of

Ramanujan graphs are known [24–26] for arbitrarily large values of d. Let H be
the double cover of G. That is, H is a bipartite graph whose vertices V (H) are
two disjoint copies V0 and V1 of V (G), and so that

E(H) = {(u0, v1) : (u, v) ∈ E(G)} ,

where ui denotes the copy of u in Vi. Fix a linear inner code C0 over Σ of rate
r0 and relative distance δ0. Let N = nd. For vi ∈ V (H), let E(vi) denote the
edges attached to v. The expander code C ⊂ ΣN arising from G and C0 is given
by

C = CN (C0, G) =
{
x ∈ ΣN : x|E(vi)

∈ C0 for all vi ∈ V (H)
}

(1)

The following theorem shows that as long as the inner code C0 has good rate
and distance, so does the resulting code C.

Theorem 1 ( [29,31]). The code C has rate r = 2r0−1, and as long as 2λ ≤ δ0,
the relative distance of C is at least δ20/2.
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2.1 Local Correction

If the inner code C0 has a smooth local reconstruction procedure, then not only
does C have good distance, but in fact it is also efficiently locally decodable. Our
main result is the following theorem.

Theorem 2. Let C0 be a linear code over Σ of length d and rate r0 > 1/2.
Suppose that C0 has a s0-smooth local reconstruction procedure with query com-
plexity q0. Let C = CN (C0, G) be the expander code of length N arising from the
inner code C0 and a Ramanujan graph G. Choose any γ < 1/2 and any ζ > 0

satisfying γ
(
eζq0

)−1/γ
> 8λ. Then C is (q, ρ)-locally correctable, for any error

rate ρ, with ρ < γ
(
eζq0

)−1/γ − 2λ. The success probability is

1−
(
N

d

)−1/ ln(d/4)

and the query complexity is

q =

(
N

d

)ε

where ε =

(
1 +

ln(q′0) + 1

ζ

)
· ln(q′0)

ln(d/4)
.

Further, when the length of the inner code, d, is constant, the correction algo-
rithm runs in time O(|Σ|q′0+1q), where q′0 = q0 + (d− s0).

Remark 1. We will choose d (and hence q′0 < d) and |Σ| to be constant. Thus,
the rate of C, as well as the parameters ρ and ε, will be constants independent
of the block length N . The parameter ζ trades off between the query complexity
and the allowable error rate. When q0 is much smaller than d (for example,
q0 = 3 and d is reasonably large), we will take ζ = O(1). On the other hand,
if q0 = dε and d is chosen to be a sufficiently large constant, we should take
ζ � ln(q0).

Here, we give the correction algorithm and sketch our argument, the detailed
proof can be found in the full version of this paper. First, we observe that it
suffices to consider the case when Q0 is perfectly smooth: that is, the queries
of the inner code are uniformly random. Otherwise, if Q0 is s0-smooth with q0
queries, we may modify it so that it is d-smooth with q0 + (d − s0) queries,
by having it query extra points and then ignore them. Thus, we assume in the
following that Q0 makes q0 perfectly smooth queries.

Now, suppose that C0 has smooth local reconstruction algorithm (Q0, A0),
and we receive a corrupted codeword, w, which differs from a correct codeword
c∗ in at most a ρ fraction of the entries. Say we wish to determine c∗[(u0, v1)],
for (u0, v1) ∈ E(H). The algorithm proceeds in two steps. First, we find a set of
about Nε/2 query positions which are nearly uniform in [N ], and whose correct
values together determine c∗[(u0, v1)]. Next, we correct each of these queries with
very high probability—for each, we will make another Nε/2 or so queries.
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Step 1. By construction, c∗[(u0, v1)] is a symbol in a codeword of the inner
code, C0, which lies on the edges emanating from u0. By applying Q0, we may

choose q0 of these edges, S =
{

(u0, s
(i)
1 ) : i ∈ [q0]

}
, so that A0 (c∗|S , (u0, v1)) =

c[(u0, v1)]. Now we repeat on each of these edges: each (u0, s
(i)
1 ) is part of a

codeword emanating from s
(i)
1 , and so q0 more queries determine each of those,

and so on. Repeating this L1 times yields a q0-ary tree T of depth L1, whose
nodes are labeled by of edges of H . This tree-making procedure is given more
precisely below in Algorithm 2. Because the queries are smooth, each path down
this tree is a random walk in H ; because G is an expander, this means that the
leaves themselves, while not independent, are each close to uniform on E(H).
Note that at this point, we have not made any queries, merely documented a
tree, T , of edges we could query.

Step 2. Our next step is to actually make queries to determine the correct
values on the edges represented in the leaves of T . By construction, these values
determine c∗[(u0, v1)]. Unfortunately, in expectation a ρ fraction of the leaves
are corrupted, and we need them all to be correct. We will use the fact that
each leaf is nearly uniform in E(H) to argue that we can correct it with very
high probability—large enough to tolerate a union bound over all of the leaves.
For each edge, e, of H that shows up on a leaf of T , we repeat the tree-making
process beginning at this edge, resulting in new q0-ary trees Te of depth L2. This
time, we make all the queries along the way, resulting in an evaluated tree τe,
whose nodes are labeled by elements of Σ; the root of τe is the e-th position in
the corrupted codeword, w[e], and we hope to correct it to c∗[e], which we do
in Algorithm 3. The intuition is as follows: suppose that we (the decoder) are
fooled by some errors in τ into making an incorrect guess at the root. Then these
errors must have a very particular structure: if the root is incorrect, then one of
its children must be, and so on. Thus, the errors disproportionately affect some
path from the root to a leaf of τ . To be slightly more precise, for two labelings
σ and ν of the same tree by elements of Σ, consider the distance

D(σ, ν) = max
P

Δ (σ|P , ν|P ) , (2)

where the maximum is over all paths P from the root to a leaf, and σ|P denotes
the restriction of σ to P . Because G is an expander, it is very unlikely that
τ contains a path from the root to a leaf with more than a constant fraction
η < 1/2 of errors. In the favorable case, the distance between the correct tree
τ∗ arising from c∗ and the observed tree τ is at most D(τ∗, τ) ≤ η. In contrast,
we also show that if σ∗ and τ∗ are both trees arising from legitimate codewords
with distinct roots, then σ∗ and τ∗ must differ on an entire path P , and so
D(σ∗, τ) > 1 − η. To take advantage of this, we must efficiently decide which
symbol a ∈ Σ has a tree σ∗ with root labelled a, so that D(σ∗, τ) < η, and then
c∗[e] = a will be our answer. Algorithm 3 does precisely this, with one pass over
τ . Loosely, we assume recursively that each node y at level 	 − 1 knows how
far the subtree below it is from a tree σ∗ with root a—this is captured in the
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quantity besta(y). At level 	, a node x determines besta(x) by assigning labels to
its children so that A0 returns a, and using the values from the previous level.

Once all the leaves of T are correctly evaluated, we may use A0 to work our
way back up T and determine the correct symbol corresponding to the edge at
the root of T . The complete correction algorithm is given below in Algorithm 1.

Algorithm 1. correct: Local correcting protocol.

Input: An index e0 ∈ E(H), and a corrupted codeword w ∈ ΣE(H).
Output: With high probability, the correct value of the e0’th symbol.
Set L1 = log(q0)/ log(d/4) and a parameter L2

T = makeTree(e0, L1)
for each edge e of H that showed up on a leaf of T do

Te = makeTree(e, L2)
Let τe = Te|w be the tree of symbols from w
w∗[e] = correctSubtree(τe)

Initialize a q0-ary tree τ∗ of depth L1

Label the leaves of τ∗ according to T and w∗: if a leaf of T is labeled e, label
the corresponding leaf of τ∗ with w∗[e].
Use the local reconstruction algorithm A0 of C0 to label all the nodes in τ∗

return The label on the root of τ∗

Algorithm 2. makeTree: Uses the local correction property of C0 to con-
struct a tree of indices.
Input: An initial edge e0 = (u0, v1) ∈ E(H), and a depth L.
Output: A q0-ary tree T of depth L, whose nodes are indexed by edges of H ,

with root e0
Initialize a tree T with a single node labeled e0
s = 0
for � ∈ [L] do

Let leaves be the current leaves of T
for e = (us, v1−s) ∈ leaves do

Let
{
v
(i)
1−s : i ∈ [d]

}
be the neighbors of us in H

Choose queries Q0(e) ⊂
{
(us, v

(i)
1−s) : i ∈ [d]

}
, and add each query in T

as a child at e.
s = 1− s

return T

The number of queries made by Algorithm 1 is q = qL1+L2
0 and the running

time is O(td|Σ|q0+1q), where td is the time required to run the local correction
algorithm of C0. When d and |Σ| are constant, and the running time is O(q).
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Algorithm 3. correctSubtree: Correct the root of a fully evaluated tree τ .

Input: τ , a q0-ary tree of depth L whose nodes are labeled with elements of Σ.
Output: A guess at the root of the correct tree τ .
For a node x of τ , let τ [x] denote the label on x.
for leaves x of τ and a ∈ Σ do

besta(x) =

{
1 τ [x] �= a

0 τ [x] = a

for � = L− 1, L− 2, . . . , 0 do
for nodes x at level � in τ and a ∈ Σ do

Let y1, . . . , yq0 be the children of x
Let Sa ⊂ Σq0 be the set of query responses for the children of x so that
A0 returns a on those responses
besta(x) = min(a0,...,aq0 )∈Sa maxr∈[q0]

(
bestar (yr) + 1τ(yr) 
=ar

)
Let r be the root of τ
for a ∈ Σ do

Score(a) =
besta(r) + 1τ(r) 
=a

L

return a ∈ Σ with the smallest Score(a)

3 Examples

In this section, we provide two examples of choices for C0, both of which result
in (Nε, ρ)-LCCs of rate 1 − α for any sufficiently small constants ε, α > 0 and
for some constant ρ > 0. Our main example is a generalization of Reed-Muller
codes, based on affine geometries. With these codes as C0, we provide LCCs over
Fp—unlike multiplicity codes, these codes work naturally over small fields.

Our second example comes from the observation that if the C0 is itself an LCC
(of a fixed length) our construction provides a new family of (Nε, ρ)-LCCs. In
particular, plugging the multiplicity codes of [22] into our construction yields a
novel family of LCCs. This new family of LCCs has a very different structure
than the underlying multiplicity codes, but achieves roughly the same rate and
locality. Due to space constraints, the reader is referred to the full paper for the
full details of both examples.

Codes from Affine Geometries. One advantage of our construction is that the
inner code C0 need not actually be a good locally decodable or correctable code.
Rather, we only need a smooth reconstruction procedure, which is easier to come
by. One example comes from affine geometries.

For a prime power h = p� and parameters r and m, consider the r-dimensional
affine subspaces L1, . . . , Lt of the vector space Fm

h . let H be the t×hm incidence
matrix of the Li and the points of Fm

h , and let A∗(r,m, h) be the code over Fp

whose parity check matrix is H . These finite geometry codes are well-studied,
and their ranks can be exactly computed—see [1, 2] for an overview.
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The definition of A∗(r,m, h) gives a reconstruction procedure: we may query
all the points in a random r-dimensional affine subspace, and use the correspond-
ing parity check. The locality of A∗(r,m, h) has been noticed before, for example
in [18], where it was observed that these codes could be viewed as lifted parity
check codes. However, as they note, these codes do not themselves make good
LCCs—the reconstruction procedure cannot tolerate any errors in the chosen
subspace, and thus the error rate ρ must tend to zero as the block length grows.
Even though these codes are not good LCCs, we can use them in Theorem 2 to
obtain good LCCs with sublinear query complexity, which can correct a constant
fraction of errors.

For any sufficiently small constants ε, α, and any prime p, we show in the
full version of this paper how to pick r,m, and h, so that Theorem 2 applies,
and so that the resulting expander code C of block-length N is a linear p-ary
(Nε, ρ) LCC with rate 1 − α and query complexity Nε, where ρ is a constant
independent of N .

Multiplicity codes. Multiplicity codes [22] are themselves a family of constant-
rate locally decodable codes. We can, however, use a multiplicity code of constant
length as the inner code C0 in our construction. This results in a new family of
constant-rate locally decodable codes. The parameters we obtain from this con-
struction are slightly worse than the original multiplicity codes, and the main
reason we include this example is novelty—these new codes have a very different
structure than the original multiplicity codes. We show in the full version that for
an arbitrarily small constant β, the multiplicity codes from [22] with block-length
d, locality on the order of d(1−β)ε, and rate 1−α result via Theorem 2 in a family
of expander codes CN of block-length N , with locality O(Nε) and rate 1− 2α.

4 Conclusion

In the constant-rate regime, all known LDCs work by using a smooth local
reconstruction algorithm. When the locality is, say, three, then with very high
probability none of the queried positions will be corrupted. This reasoning fails
for constant rate codes, which have larger query complexity: we expect a ρ
fraction of errors in our queries, and this is often difficult to deal with. In this
work, we have shown how to make the low-query argument valid in a high-rate
setting—any code with large enough rate and with a good local reconstruction
algorithm can be used to make a full-blown locally correctable code.

This work presented the first sublinear time algorithm for locally correcting
expander codes. More precisely, we have shown that as long as the inner code
C0 admits a smooth local reconstruction algorithm with appropriate parameters,
then the resulting expander code C is a (Nε, ρ)-LCC with rate 1 − α, for any
α, ε > 0 and some constant ρ. Further, we presented a correction algorithm
with runtime linear in the number of queries. Expander codes are a natural
construction, and it is our hope that the additional structure of our codes, as
well as the extremely fast decoding time, will lead to new applications of local
decodability.
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Abstract. Byzantine broadcast is a distributed primitive that allows a
specific party (called “sender”) to consistently distribute a value v among
n parties in the presence of potential misbehavior of up to t of the parties.
Broadcast requires that correct parties always agree on the same value
and if the sender is correct, then the agreed value is v. Broadcast without
a setup (i.e., from scratch) is achievable from point-to-point channels if
and only if t < n/3. In case t ≥ n/3 a trusted setup is required. The
setup may be assumed to be given initially or generated by the parties
in a setup phase.

It is known that generating setup for protocols with cryptographic
security is relatively simple and only consists of setting up a public-key
infrastructure. However, generating setup for information-theoretically
secure protocols is much more involved. In this paper we study the
complexity of setup generation for information-theoretic protocols using
point-to-point channels and temporarily available broadcast channels.
We optimize the number of rounds in which the temporary broadcast
channels are used while minimizing the number of bits broadcast with
them. We give the first information-theoretically secure broadcast pro-
tocol tolerating t < n/2 that uses the temporary broadcast channels
during only 1 round in the setup phase. Furthermore, only O(n3) bits
need to be broadcast with the temporary broadcast channels during that
round, independently of the security parameter employed. The broadcast
protocol presented in this paper allows to construct the first information-
theoretically secure MPC protocol which uses a broadcast channel during
only one round. Additionally, the presented broadcast protocol supports
refreshing, which allows to broadcast an a priori unknown number of
times given a fixed-size setup.

1 Introduction

1.1 Byzantine Broadcast

The Byzantine broadcast problem (aka Byzantine generals) is stated as fol-
lows [PSL80]: A specific party (the sender) wants to distribute a message among
n parties in such a way that all correct parties obtain the same message, even
when some of the parties are malicious. The malicious misbehavior is modeled
by a central adversary who corrupts up to t parties and takes full control of
their actions. Corrupted parties are called Byzantine and the remaining parties

� The full version of this paper can be found here [HR13].
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are called correct. Broadcast requires that all correct parties agree on the same
value v, and if the sender is correct, then v is the value proposed by the sender.
Broadcast is one of the most fundamental primitives in distributed computing.
It is used to implement various protocols like voting, bidding, collective contract
signing, etc. Basically, this list can be continued with all protocols for secure
multi-party computation (MPC) [GMW87].

There exist various implementations of Byzantine broadcast from synchronous
point-to-point communication channels with different security guarantees. In the
model without trusted setup, perfectly-secure Byzantine broadcast is achievable
when t < n/3 [PSL80, BGP92, CW92]. In the model with trusted setup, crypto-
graphically or information-theoretically secure Byzantine broadcast is achievable
for any t < n [DS83, PW96].

Closely related to the broadcast problem is the consensus problem. In consen-
sus each party holds a value as an input, and then parties agree on a common
value as an output of consensus. Consensus and broadcast are reducible to each
other with the help of point-to-point channels in case t < n/2.

1.2 Model and Definitions

Parties. We consider a setting consisting of n parties (players) P = {P1, . . . , Pn}
with some designated party called the sender, which we denote with Ps for some
s ∈ {1, . . . , n}. We assume that each pair of parties is connected with a secure
synchronous channel, where synchronous means that the parties share a common
clock and that the message delay is bounded by a constant.

Broadcast definition. A broadcast protocol allows the sender Ps to distribute
a value vs among a set of parties P such that:
Validity: If the sender Ps is correct, then every correct party Pi ∈ P decides

on the value proposed by the sender vi = vs.
Consistency: All correct parties in P decide on the same value.
Termination: Every correct party in P terminates.

Adversary. The faultiness of parties is modeled in terms of a central adversary
corrupting some of the parties. The adversary can corrupt up to t < n/2 parties,
making corrupted parties deviate from the protocol in any desired manner.
We consider information-theoretic security which captures the fact that the pro-
tocol may fail only with some negligible probability even in the settings where
the adversary has unbounded computing power.

1.3 Broadcast with a Trusted Setup

Broadcast is achievable from point-to-point channels if and only if t < n/3. In
order to tolerate t ≥ n/3 a broadcast protocol must additionally use a trusted
setup which is provided to the parties beforehand. Such a trusted setup may
be assumed to be a part of the model or to be distributed by a temporarily
available trusted party. In this paper we consider the alternative case where
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parties themselves generate the setup using point-to-point communication and
temporarily available during a setup phase broadcast channels.

Formally, a broadcast scheme is a pair of protocols (Setup, Broadcast), where
Setup generates the parties’ secret states with which they start the execution of
Broadcast. The Setup protocol makes uses of temporary broadcast and point-to-
point communication channels, while Broadcast employs point-to-point channels
only. It is required that the combination of Setup and Broadcast achieves broad-
cast defined above and Setup is independent of the sender’s input vs provided in
Broadcast.

In this paper we study the efficiency of broadcast schemes, in particular the
temporary broadcast-efficiency of the setup protocol. We employ two measures
of efficiency for the temporary broadcast used in the setup protocol: round com-
plexity and bit complexity. Round complexity denotes the number of rounds in
which temporary broadcast is used and bit complexity denotes the number of
bits broadcast by it.

1.4 Contributions

If computational security suffices, then in the setup phase it is enough to con-
sistently generate a Public-Key Infrastructure (PKI) and then employ [DS83]
to broadcast. Generating PKI requires only 1 round of temporary broadcast,
in which each party broadcasts his public key. In case of information-theoretic
security known solutions require Ω(n2) rounds of temporary broadcast while
broadcasting Ω(n8κ) bits [PW96], where κ is a security parameter. Motivated
by the gap between computational and information-theoretically secure proto-
cols, Garay et al. [GGO12] initiated the study of information-theoretically se-
cure broadcast schemes for t < n/2.1 They focused on optimizing the temporary
broadcast round complexity in the setup phase and gave a broadcast scheme
which requires only 3 rounds of the temporary broadcast. The number of bits
broadcast by their protocol in the setup phase is Ω(n6κ). Another construc-
tion by Hirt et al. [BHR07] yields a broadcast scheme for t < n/2 which needs
Ω(n) rounds of temporary broadcast with Ω(nκ) bits broadcast in the setup
phase.2

This paper gives the first information-theoretically secure broadcast scheme that
requires only 1 round of the temporary broadcast in the setup phase for t < n/2,
which is trivially optimal. This result not only improves the broadcast round com-
plexity of all existing broadcast schemes, but allows to construct an MPC pro-
tocol which uses only one round of broadcast (existence of such schemes was un-
resolved before [KK07, GGO12]).3 Furthermore, our protocol needs to broadcast

1 Their original motivation was to optimize the number of broadcast rounds needed
for information-theoretically secure MPC. The broadcast scheme they give is used
as a core component of an MPC protocol.

2 One can view this construction as a broadcast scheme by interpreting the refresh
protocol presented in this paper as the setup protocol.

3 Additionally, this shows that the lower bound of at least 2 broadcast rounds for MPC
protocols given in [GGO12] is wrong.
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onlyO(n3) bits in the setup phase regardless of how long the security parameter κ
is. To our knowledge, this is the first protocol with such a property. Additionally,
we give an efficient refresh protocol which allows to broadcast many values given
a fixed setup. The table below summarizes the existing broadcast schemes:

Security Threshold BC rounds BC bits Ref.

comp. t < n 1 Ω(nκ) [DS83]

inf.-theor.

t < n Ω(n2) Ω(n8κ) [PW96]

t < n/2

Ω(n) Ω(nκ) [BHR07]

3 Ω(n6κ) [GGO12]

1 O(n3) This paper

1.5 Organization of the Paper

First, we give a broadcast scheme for three players (n = 3) which tolerates any
t ≤ 3 number of corruptions (Section 2). Then, in Section 3 we show how to use
the scheme for three players to obtain a broadcast scheme for arbitrary number
of players n tolerating t < n/2 corruptions. Most proofs appear only in the full
version of this paper [HR13].

2 The Broadcast Scheme for n = 3 and t ≤ 3

In this section we consider a setting consisting of only three players and show
how one can prepare a setup that allows a designated player to broadcast one
bit. The broadcast scheme is based on a series of reductions among modifications
of well known cryptographic primitives. On the highest level we show that: (1)
temporary broadcast allows to construct information checking, (2) information
checking allows to construct verifiable secret sharing, and (3) verifiable secret
sharing allows to construct a setup protocol.

Additionally, we present an optimization which allows players to efficiently
generate many setups in parallel. This reduces the number of bits broadcast
in the setup phase while still requiring only one round of a temporary broad-
cast.

2.1 Detectable Information Checking

Information checking (IC) is an information-theoretically secure method for au-
thenticating data among three players D, I,R. The dealer D holds a secret value
s from some finite field F which he sends to an intermediary I together with an
authentication information. The intended recipient R gets a verification infor-
mation. Later I sends s′ and some authentication information to R, who uses
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the verification information to check whether s = s′. We propose a non-robust
modification of IC which we call Detectable Information Checking (DIC), where
the authentication phase may either succeed or abort. If it aborts then the parties
output a dispute Δ, which is a pair of players (i.e., Δ ⊆ {D, I,R}), at least one
of them being Byzantine.

Formally, a DIC scheme is a pair4 of protocols (ICSetup, ICReveal), where in
ICSetup D inputs s and then parties either abort with a dispute or succeed by
saving a local state. If ICSetup succeeds then parties invoke ICReveal such that
R outputs s′ or ⊥. A DIC scheme must satisfy the following security proper-
ties:

Completeness: If D, I and R are correct, then ICSetup succeeds and R will
output s′ = s in ICReveal.

Non-Forgery: If D and R are correct and ICSetup succeeds, then R will output
s′ = s or s′ = ⊥ in ICReveal.

Commitment: If I and R are correct and ICSetup succeeds, then at the end of
ICSetup I knows a value s′ such that R will output s′ in ICReveal.

Privacy: If D and I are correct, then R obtains no information on s during
ICSetup.

Detection: In case ICSetup aborts every correct party outputs the same dis-
pute Δ.

Termination: Every correct party terminates ICSetup, respectively ICReveal.
We say that a DIC scheme is information-theoretically secure if the properties
above are guaranteed with overwhelming probability.

The Protocol. In this section we present a protocol for DIC based on [CDD+99].
The secret and the verification information will lie on a line (a polynomial of
degree 1), where the secret will be the value in 0. Intermediary I gets to know
the line, while the recipient R learns a value on this line in some secret point α
unknown to I. In the reveal phase, R accepts a line from I only if the evaluation
of this line in α is correct. In order to ensure commitment property I verifies
whether D distributed consistent information to him and to R. This is done
during one broadcast round in ICSetup. As an outcome of the broadcast parties
may succeed in ICSetup or abort with a dispute.

Let s, y, z, α ∈ F. We say that the triple (s, y, z) is 1α-consistent provided
that three points (0, s), (1, y) and (α, z) lie on a line in F (that is, for some
L(x) = bx + c over F, we have L(0) = s, L(1) = y and L(α) = z).

Lemma 1. The pair of protocols (ICSetup, ICReveal) achieves DIC (except with
probability O(1/|F|)). Furthermore, ICSetup uses the underlying broadcast chan-
nel during one predetermined round (where each player broadcasts O(log |F|)
bits) and ICReveal does not use broadcast at all.

4 Sometimes (as in [CDD+99, GGO12]) IC is presented as a triple of protocols Distr,
AuthVal, RevealVal where Distr and AuthVal is a more fine-grained representation of
ICSetup.
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Protocol ICSetup(s):
1. Dealer D chooses a random value α ∈ F \ {0, 1} and additional random y, z ∈ F

such that (s, y, z) is 1α-consistent. In addition it chooses a random 1α-consistent
vector (s′, y′, z′). D sends s, s′, y, y′ to I and α, z, z′ to R.

2. Intermediary I chooses a random d ∈ F. I sends d to D and d, s′ + ds, y′ + dy to
R. Let d1 denote the value received by D and d2, s

′′, y′′ the values received by R.
3. Every player broadcasts the following (in parallel):

3.1 Dealer broadcasts triple TD = (d1, s
′ + d1s, y

′ + d1y).
3.2 Intermediary broadcasts triple TI = (d, s′ + ds, y′ + dy).
3.3 Recipient broadcasts triple TR = (d2, s

′′, y′′) and a bit b, where b is 1 if
(s′′, y′′, z′ + d2z) is 1α-consistent and 0 otherwise.

4. Every player checks for abortion:
If TD �= TI then abort with Δ = {D, I}.
If TR �= TI then abort with Δ = {R, I}.
If TD = TR and b = 0 then abort with Δ = {D,R}.
Otherwise, the protocol succeeds and D stores nothing, I stores (s, y) and R
stores (α, z).

Protocol ICReveal(s):
1. Intermediary I sends s, y to R. If (s, y, z) is 1α-consistent then R decides on s,

otherwise on ⊥.

2.2 Detectable Verifiable Secret Sharing

Verifiable secret sharing (VSS) is a classical cryptographic primitive for secure
sharing of a secret. It lies in a core of many protocols for multi-party computation
and is used in various applications. In this section we consider a very restricted
setting for VSS consisting of only three players D,P1, P2. The dealer D holds
a secret value s from some finite field F and shares it among two recipients
P1, P2, such that individually they have no information about s. Later in the
reconstruction phase all correct recipients reconstruct the same s′ which equals
s if the dealer is correct. We consider a non-robust version of VSS which we call
Detectable Verifiable Secret Sharing (or short DVSS), where the sharing phase
can abort in the presence of malicious behavior.

Formally, a DVSS scheme is a pair of protocols (VSS-Share,VSS-Rec), where in
VSS-Share D inputs s and then parties either abort with a dispute Δ or succeed
by saving a local state. If VSS-Share succeeds then the parties invoke VSS-Rec
such that the recipients reconstruct the shared secret. A DVSS scheme must
satisfy the following security properties:

Correctness: If VSS-Share succeeds, then there exists a fixed value s′ ∈ F
which will be reconstructed as a result of VSS-Rec by every correct recipient.
If D is correct then s′ = s.

Privacy: If D is correct, then corrupted parties obtain no information on s in
VSS-Share.

Detection: If D,P1 and P2 are correct then VSS-Share always succeeds. In
case VSS-Share aborts every correct party outputs the same dispute Δ.

Termination: Every correct party terminates VSS-Share, respectively VSS-Rec.

We say that a DVSS scheme is information-theoretically secure if the properties
above are guaranteed with overwhelming probability. Furthermore, by t-DVSS
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we denote a DVSS scheme tolerating ≤ t corruptions, and by t-DVSS+ we denote
a scheme which is t-DVSS but Detection and Termination hold for arbitrary
number of corruptions.

The Protocol. In this section we present an implementation of 1-DVSS+ based
on DIC. In order to share a secret s the dealer generates two random values s1, s2
such that s1 + s2 = s. Then the dealer authenticates s1 by invoking ICSetup(s1)
where P1 acts as intermediary and P2 as recipient. In parallel, the dealer au-
thenticates s2 by invoking ICSetup(s2) where P2 acts as intermediary and P1 as
recipient. If one of the ICSetup invocations aborts then VSS-Share aborts as well.
The reconstruction consists of running ICReveal among P1, P2 and the dealer
sending the secret s to both recipients. If a correct recipient obtains non-⊥ value
in ICReveal, then it reconstructs s′ = s1+s2, otherwise it outputs s′ = s received
from the dealer.

Protocol VSS-Share(s):
1. The dealer D chooses random s1, s2 ∈ F such that s = s1 + s2.
2. Then D, P1, P2 execute in parallel ICSetup(s1) where P1 is intermediary and P2

is recipient and ICSetup(s2) where P2 is intermediary and P1 is recipient.
3. Every player checks for abortion:

If any of ICSetup aborts, then VSS-Share aborts as well with a dispute Δ
output by one of ICSetup (in case both aborts, then output the dispute from
the first).
Otherwise, the protocol succeeds and each player saves the states obtained
from both ICSetup invocations.

Protocol VSS-Rec(s):
1. The dealer D sends s to both recipients.
2. Players P1, P2 invoke ICReveal(s1) and ICReveal(s2). If Pi obtains a share sj �= ⊥

from the other recipient Pj then it decides on si + sj , otherwise it decides on a
value s received from the dealer.

Lemma 2. The pair of protocols (VSS-Share,VSS-Rec) achieves 1-DVSS+ (ex-
cept with probability O(1/|F|)). Furthermore, VSS-Share uses the underlying
broadcast channel in only one predetermined round (where each player broad-
casts O(log |F|) bits) and VSS-Rec does not use broadcast at all.

Proof. First, we show that each 1-DVSS+ property is satisfied:
Correctness: We prove that Correctness holds when the number of corrupted

parties t ≤ 1. If all parties are correct (t = 0) then, due to the Complete-
ness property of DIC, correct recipients will output s1 + s2 = s in VSS-Rec.
Assume now only one party is corrupted (t = 1). Consider two cases: (1) the
dealer is corrupted and (2) one of the recipients is corrupted. In case (1), due
to the Commitment property of DIC, player P1 knows s1 such that P2 outputs
s1 in ICReveal, and P2 knows s2 such that P1 outputs s1 in ICReveal (except
with probability O(1/|F|)). Hence, since both P1 and P2 are correct they will
both output s′ = s1 + s2 in VSS-Rec. In case (2), wlog assume that a correct
recipient is P1. Due to the Non-Forgery property of DIC, player P1 may obtain
in ICReveal only s2 or ⊥ (except with probability O(1/|F|)). In both cases P1

outputs s′ = s1 + s2 or s′ = s, which is the same for a correct D.
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Privacy: Wlog assume that a corrupted recipient is P2 and P1 is correct. Due to
the Privacy property of DIC, player P2 who acts as a recipient in ICSetup(s1)
has no information about s1 in the end of ICSetup. Hence, after VSS-Share
P2’s view contains only s2 which is independent of s.

Detection: If all parties are correct then, due to the Completeness property of
DIC, both ICReveal(s1) and ICReveal(s2) succeed and hence VSS-Share suc-
ceeds. Parties abort if and only if one of ICSetup aborts. Due to the Detection
property of ICSetup parties output the same dispute Δ.

Termination: Due to their specifications, protocols VSS-Share and VSS-Rec
always terminate.

Finally, the protocol VSS-Share uses the underlying broadcast channel only at
Step 2 where ICSetup uses it, while the protocol VSS-Rec does not broadcast.
Since two instances of ICSetup are invoked in parallel, according to Lemma 1
there is only one predetermined round where the underlying broadcast channel
is invoked and each player broadcasts O(log |F|) bits.

2.3 Broadcast Scheme

We consider three players {D,P1, P2}, where D is the sender (also called the
dealer) and P1, P2 are the recipients. In the setup phase parties execute protocol
Setup3 which makes use of a temporary broadcast channel. The setup generation
may abort by outputting a dispute Δ. Later the dealer D can broadcast a bit
value with the protocol Broadcast3 using the setup created. This is done differ-
ently depending on whether the preceding Setup3 aborted or succeeded.

The Protocol. The protocol for generating a setup uses 1-DVSS+ together with
Message Authentication Codes (MACs). We employ a MAC scheme which uses
a preshared key. In the setup phase, the dealer shares a random key from some
finite field F using VSS-Share. In order to broadcast a message later, the dealer
sends the message together with its authentication information to recipients.
Then the recipients exchange the messages they received from the dealer. It is
guaranteed that if both recipients are correct then they hold the same set of
at most two messages. Then the parties invoke VSS-Rec and learn the key for
the MAC scheme used. Recipients decide on the message with a valid MAC,
respectively on ⊥ if no/both messages match.

In order to construct an information-theoretically secure MAC scheme, we
employ a trivially unforgeable authentication scheme for bits. To authenticate a
message consisting of one bit b the dealer sends to the recipients P1, P2 either
the left part of the preshared key (b = 0) or its right part (b = 1).

For the simplicity of the presentation, let P1 denote P2 and P2 denote P1. Ad-
ditionally, let F be a finite field of 22κ elements interpreted as bit strings of length
2κ.

Protocol Setup3:
1. The dealer generates random k0||k1 ∈ {0, 1}2κ.

Parties execute VSS-Share(k0||k1). If VSS-Share aborts, then abort as well and
output the dispute Δ.
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Protocol Broadcast3(b):
1. If Setup3 succeeded

1.1 The dealer sends kb to both P1, P2. Denote the values received by the players
P1 and P2 with a1 and a2, respectively.

1.2 The recipients exchange a1 and a2 and form a set of authenticators A =
{a1, a2}.

1.3 The players execute VSS-Rec and get k0||k1 as an output.
1.4 The recipients decide on 0 if k0 ∈ A and on 1 otherwise. The dealer decides

on b.
2. else Setup3 aborted with Δ then

2.1 If Δ = {D, Pi} then the dealer sends b to Pi who forwards it to Pi. All parties
decide on the values received. The dealer decides on b.

2.2 If Δ = {P1, P2} then the dealer sends b to P1 and P2. All parties decide on
the values received. The dealer decides on b.

Lemma 3. The protocol Broadcast3 achieves broadcast (of b) given that Setup3
has been executed before (except with probability O(2−κ)). Furthermore, Setup3
is independent of b and uses the temporary available broadcast channel in only
one predetermined round (where each party broadcasts O(κ) bits).

2.4 Efficient Parallel Setup

In the previous section we have shown how to generate a setup for one bit
broadcast. An obvious approach for generating a setup for an 	 bit message is
to prepare 	 such setups. In this section we show how to efficiently parallelize 	
setup invocations such that the temporary broadcast is used only small number
of times. As a key ingredient of such a parallelization, we present the proto-
col BCFromTenBits3 which given an opportunity to broadcast 10 bits allows to
broadcast a message of arbitrary fixed length. The protocol is perfectly secure,
i.e., its security depends only on the security of the underlying broadcast.

The protocol BCFromTenBits3 works recursively. At each iteration the parties
reduce the broadcast of a long message to broadcasting a shorter message. The
recursion stops once the dealer is supposed to broadcast 10 bits only. Each
recursive iteration has the same structure: first the dealer distributes the long
message using point-to-point channels, then the recipients exchange the messages
received from the dealer, and afterwards each recipient forwards to the dealer
the message received from the other recipient. Finally, the dealer broadcasts a
hint that allows each correct recipient to decide on one of the messages he has
received. The hint consists of a key k for a special c-identifying predicate (see
later). The task of broadcasting a long message is now reduced to broadcasting
the key k which has a smaller bit-length than the message.

Identifying Predicates. An identifying predicate allows to identify a specific
element v from some small subset S ⊆ D where D is a potentially large domain.
More formally, a c-identifying predicate is a function Q : D × K → {0, 1} such
that for any S ⊆ D with |S| ≤ c and any value v ∈ S there exists a key k ∈ K
with Q(v, k) = 1 and Q(v′, k) = 0 for all v′ ∈ S \ {v}. The goal of constructing
such a function Q is to have |K| as small as possible given c and |D|.
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Assume now D = {0, 1}�, then Q can be constructed as following: for a set S
and a value v, we find c − 1 bit positions p1, . . . , pc−1 such that v differs from
any other value v′ ∈ S in some position pi. Then the key k for a set S and a
value v is defined by positions p1, . . . , pc−1 and bits b1, . . . , bc−1 which v has at
these positions. Hence, for this Q the key space K = {0, 1}(c−1)(�log ��+1).

Protocol BCFromTenBits3(v ∈ {0, 1}�):
1. If � ≤ 10 then the parties use the underlying broadcast given in order to broadcast

v.
2. Otherwise:

2.1 The dealer sends v to P1 and P2. Denote the values received by v1 and v2.
2.2 P1 sends v1 to P2, denoted by v12, and P2 sends v2 to P1, denoted by v21.

P1 forms the set V1 = {v1, v21} and P2 forms the set V2 = {v2, v12}.
2.3 The recipients send v21 and v12 to the dealer. Denote received values by v210

and v120. Let S = {v, v120, v120}.
2.4 The dealer chooses a key k for the 3-identifying predicate Q with the

domain {0, 1}�, the set of values S and the value v. The parties invoke
BCFromTenBits3(k) recursively. Let k

′ denote the result of the broadcast.
2.5 Each recipient Pi decides on a unique v′ ∈ Vi such that Q(v′, k′) = 1 (if

k′ = ⊥ or none/both values in Vi have Q equal to 1, then decide on ⊥). The
dealer decides on v.

Lemma 4. The protocol BCFromTenBits3 perfectly secure achieves broadcast (of
v from a predetermined domain {0, 1}�) given that the dealer can broadcast 10
bits. Furthermore, the dealer needs to broadcast 10 bits only in one predetermined
round which index depends only on 	.

Parallelizing Setup3. We run many instances of Setup3 in parallel such that
each player consolidates the values it needs to broadcast in one string which is
broadcast with BCFromTenBits3. The protocol BCFromTenBits3 uses temporary
broadcast as its underlying primitive for broadcasting 10 bits. The following
lemma summarizes the properties achieved by this construction:

Lemma 5. The broadcast scheme described above generates 	 setups. Further-
more, the temporary broadcast is used in one predetermined round only where
each player broadcasts at most 10 bits.

3 Broadcast Scheme for any n and t < n/2

Broadcast is achievable from point-to-point channels without a trusted setup
if and only if t < n/3. Fitzi and Maurer [FM00] proposed a construction of a
broadcast protocol for t < n/2 from the broadcast channels among every triple
of players. In this paper we use following theorem from [FM00]:

Theorem 1. In the model where broadcast is available among every triple of
players there is a protocol that implements broadcast among n players tolerating
t < n/2 corruptions. This protocol invokes underlying triple broadcast channels
at most n times for each triple (Pi, Pj , Pk), where Pi is the sender and Pj , Pk

are the recipients.
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The protocol we present generates n setups for each triple of players where Pi

is the sender and Pj , Pk are the recipients. It is done by invoking in parallel
procedure Setup3.

Protocol Setupn:
1. For each possible sender Pi and recipients Pj , Pk (i, j, k are all different): Parties

Pi, Pj , Pk invoke Setup3 n times in parallel.

Protocol Broadcastn(b):
1. Use protocol by [FM00], whenever Pi needs to broadcast 1 bit among Pj , Pk use

the protocol Broadcast3 with the prepared setup.

Theorem 2. The protocol Broadcastn achieves broadcast (of b) for t < n/2
given that Setupn has been executed before (except with probability O(n42−κ)).
Furthermore, Setupn is independent of b and uses temporary broadcast procedure
in only one predetermined round (where players needs to broadcast O(n3) bits).

4 Conclusions

In this paper we study the efficiency of information-theoretically secure broad-
cast schemes in terms of the temporary broadcast usage during the setup phase.
All known schemes [PW96, BHR07, GGO12] use temporary broadcast in strictly
more than one round in the setup phase. We give a broadcast scheme for t < n/2
which requires only 1 round of the temporary broadcast. Furthermore, the pre-
sented scheme requires only O(n3) bits to be broadcast in the setup phase.

One of the most important applications of broadcast schemes is a secure MPC
[GMW87]. In the settings with t < n/2 MPC is achievable from point-to-point
communication only when a broadcast channel is available additionally. Such
a broadcast channel is usually simulated with a broadcast scheme which toler-
ates t < n/2. The broadcast scheme presented in this paper shows that there is
an information-theoretically secure MPC protocol which uses a broadcast chan-
nel during only one round. This is achieved by running Setupn sufficiently many
times in parallel (this uses one round of temporary broadcast) to prepare enough
setups, and simulating all invocations to broadcast in the MPC protocol by
Broadcastn. Furthermore, if it is not known beforehand how many times the
broadcast channel will be used, a refresh protocol is used. It allows to gener-
ate arbitrary many setups from a given fixed-size setup. We describe a refresh
protocol for our scheme in the full version of this paper [HR13].
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On Model-Based RIP-1 Matrices�
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Abstract. The Restricted Isometry Property (RIP) is a fundamental
property of a matrix enabling sparse recovery [5]. Informally, an m × n
matrix satisfies RIP of order k in the �p norm if ‖Ax‖p ≈ ‖x‖p for any
vector x that is k-sparse, i.e., that has at most k non-zeros. The minimal
number of rows m necessary for the property to hold has been extensively
investigated, and tight bounds are known. Motivated by signal processing
models, a recent work of Baraniuk et al [3] has generalized this notion to
the case where the support of x must belong to a given model, i.e., a given
family of supports. This more general notion is much less understood,
especially for norms other than �2.

In this paper we present tight bounds for the model-based RIP prop-
erty in the �1 norm. Our bounds hold for the two most frequently investi-
gated models: tree-sparsity and block-sparsity. We also show implications
of our results to sparse recovery problems.

1 Introduction

In recent years, a new “linear” approach for obtaining a succinct approximate
representation of n-dimensional vectors (or signals) has been discovered. For
any signal x, the representation is equal to Ax, where A is an m× n matrix, or
possibly a random variable chosen from some distribution over such matrices.
The vector Ax is often referred to as the measurement vector or linear sketch of
x. Although m is typically much smaller than n, the sketch Ax often contains
plenty of useful information about the signal x.

A particularly useful and well-studied problem is that of stable sparse recov-
ery. We say that a vector x′ is k-sparse if it has at most k non-zero coordinates.
The sparse recovery problem is typically defined as follows: for some norm pa-
rameters p and q and an approximation factor C > 0, given Ax, recover an
“approximation” vector x∗ such that

‖x− x∗‖p ≤ C min
k-sparse x′

‖x− x′‖q (1)

(this inequality is often referred to as 	p/	q guarantee). Sparse recovery has a
tremendous number of applications in areas such as compressive sensing of sig-
nals [5,6], genetic data acquisition and analysis and data stream algorithms [14,10].

� The full version of this paper is available at http://arxiv.org/abs/1304.3604
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c© Springer-Verlag Berlin Heidelberg 2013



On Model-Based RIP-1 Matrices 565

It is known [5] that there exist matrices A and associated recovery algorithms
that produce approximations x∗ satisfying Equation (1) with p = q = 11 constant
approximation factor C, and sketch length

m = O(k log(n/k)) (2)

This result was proved by showing that there exist matrices A with m =
O(k log(n/k)) rows that satisfy the Restricted Isometry Property (RIP). For-
mally, we say that A is a (k, ε)-RIP-p matrix, if for every x ∈ Rn with at most
k non-zero coordinates we have

(1− ε)‖x‖p ≤ ‖Ax‖p ≤ (1 + ε)‖x‖p.

The proof of [5] proceeds by showing that (i) there exist matrices with m =
O(k log(n/k)) rows that satisfy (k, ε)-RIP-2 for some constant ε > 0 and (ii) for
such matrices there exist a polynomial time recovery algorithm that given Ax
produces x∗ satisfying Equation 1. Similar results were obtained for RIP-1 ma-
trices [4]. The latter matrices are closely connected to hashing-based streaming
algorithms for heavy-hitter problems, see [10] for an overview.

It is known that the bound on the number of measurements in Equation (2) is
asymptotically optimal for some constant C and p = q = 1, see [2] and [8] (build-
ing on [6,9,11,13]). The necessity of the “extra” logarithmic factor multiplying k
is quite unfortunate: the sketch length determines the “compression rate”, and
for large n any logarithmic factor can worsen that rate tenfold. Fortunately, a
more careful modeling offers a way to overcome the aforementioned limitation.
In particular, after decades of research in signal modeling, signal processing
researchers know that not all supports (i.e., sets of non-zero coordinates) are
equally common . For example, if a signal is a function of time, large coefficients
of the signal tend to occur consecutively. This phenomenon can be exploited by
searching for the best k-sparse approximation x∗ whose support belongs to a
given “model” family of supports Mk (i.e., x∗ is Mk-sparse). Formally, we seek
x∗ such that

‖x− x∗‖p ≤ C · min
supp(x′)⊆T

T∈Mk

‖x− x′‖q (3)

for some family Mk of k-subsets of [n]. Clearly, the original k-sparse recovery
problem corresponds to the case, when Mk is a family of all k-subsets of [n].

A prototypical example of a sparsity model is block sparsity [7]. Here the signal
is divided into blocks of size b, and the non-zero coefficients belong to at most
k/b blocks. This model is particularly useful for bursty time signals, where the
“activity” occurs during a limited time period, and is therefore contained in a
few blocks. Another example is tree sparsity [16] which models the structure of
wavelet coefficients. Here the non-zero coefficients form a rooted subtree in a full
binary tree defined over the coordinates.2. For many such scenarios the size of

1 In fact, one can prove a somewhat stronger guarantee, referred to as the �2/�1 guar-
antee.

2 See Section 2 for formal definitions of the two models.
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the family Mk is much smaller than
(
n
k

)
, which in principle makes it possible to

recover an approximation from fewer measurements.
An elegant and very general model-based sparse recovery scheme was recently

provided in a seminal work of Baraniuk et al [3]. The scheme has the property
that, for any “computationally tractable” family of supports of “small” size, it
guarantees a near-optimal sketch length m = O(k), i.e., without any logarithmic
factors. This is achieved by showing the existence of matrices A satisfying the
model-based variant of RIP. Formally, we say that A satisfies ε-Mk-RIP-p if

(1 − ε)‖x‖p ≤ ‖Ax‖p ≤ (1 + ε)‖x‖p (4)

for any Mk-sparse vector x ∈ Rn.
In [3] it was shown that there exist matrices with m = O(k) rows that satisfy

ε-Mk-RIP-2 as long as (i) either Mk is the block-sparse model and b = Ω(log n)
or (ii) Mk is the tree-sparse model. This property can be then used to give an
efficient algorithm that, given Ax, finds x∗ satisfying a variant of the guarantee
of Equation 3. However, the guarantees offered in [3], when phrased in the 	1/	1
framework, results in a super-constant approximation factor C = Θ(

√
logn) [12].

The question of whether this bound can be improved has attracted considerable
attention in signal processing and streaming communities. In particular, one of
the problems3 listed in the Bertinoro workshop open problem list [1] asks whether
there exist matrices A with m = O(k) rows that provide the 	1/	1 guarantee for
the tree-sparse model with some constant approximation factor C.

Our results In this paper we make a substantial progress on this question. In
particular:

1. For both block-sparse and tree-sparse models, we show that there exist m×n
matrices A that provide the 	1/	1 guarantee for some constant approximation
factor C, such that the number of measurements improves over the bound
of Equation 2 for a wide range of parameters k and b. In particular we show
that for the block-sparse model we can achieve m = O(k logk n) as long
as b = ω(logn) and k ≥ 2b. This improves over the O(k log(n/k)) bound of
Equation 2 for any k in this range. In particular, if k = nΩ(1), we obtain m =
O(k). For the tree-sparse model we achieve m = O(k log(n/k)/ log log(n/k))
as long as k = ω(logn). This also improves over the O(k log(n/k)) bound of
Equation 2.
We note, however, that our results are not accompanied by efficient recovery
algorithms. Instead, we show the existence of model-based RIP-1 matrices
with the given number of rows. This implies that Ax contains enough in-
formation to recover the desired approximation x∗ (see Section A for more
details).

2. We complement the aforementioned results by showing that the measure-
ment bounds achievable for a matrix satisfying block-sparse or tree-sparse

3 See Question 15: Sparse Recovery for Tree Models. The question was posed by the
first author.
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RIP-1 property cannot be improved (i.e., our upper bounds are tight). This
provides strong evidence that the number of measurements required for
sparse recovery itself cannot be O(k).

Our results show a significant difference between the model-based RIP-1 and
RIP-2 matrices. For the 	2 norm, the original paper [3] shows that the number
of measurements is fully determined by the cardinality of the model. Specifically,
their proof proceeds by applying the union bound over all elements of Mk on
top of the Johnson–Lindenstrauss-type concentration inequality. This leads to a
measurement bound of m = O(k+log |Mk|), which is O(k) for the tree-sparse or
block-sparse models. In contrast, in case of the 	1 norm our lower bounds show
that such a “cardinality-based” argument does not apply, and the number of rows
needed to achieve the RIP-1 property is substantially higher than O(k). For in-
stance, the tree-sparse case with k = ω(logn) gives an almost optimal separation
between the number of rows: O(k) for p = 2 and Ω(k log(n/k)/ log log(n/k)) for
p = 1.

Our techniques Our lower bounds are obtained by relating RIP-1 matrices to
novel combinatorial/geometric structures we call generalized expanders. Specifi-
cally, it is known [4] that any binary 0-1 matrix A that satisfies (k, ε)-RIP-1 is an
adjacency matrix of an unbalanced (k, ε)-expander (see Section 2 for the formal
definition). The notion of a generalized expander can be viewed as extending
the notion of expansion to matrices that are not binary. Formally, we define it
as follows.

Definition 1 (Generalized expander). Let A be an m × n real matrix. We
say that A is a generalized (k, ε)-expander, if all A’s columns have 	1-norm at
most 1 + ε, and for every S ⊆ [n] with |S| ≤ k we have∑

i∈[m]

max
j∈S

|aij | ≥ |S| · (1− ε).

Observe that the notion coincides with the standard notion of expansion for
binary 0-1 matrices (after a proper scaling).

In this paper we show that any (not necessarily binary) RIP-1 matrix is also
a generalized expander. We then use this fact to show that any RIP-1 matrix
can be sparsified by replacing most of its entries by 0. This in turn lets us use
counting arguments to lower bound the number of rows of such matrix.

Our upper bounds are obtained by constructing low-degree expander-like
graphs. However, we only require that the expansion holds for the sets from
the given model Mk. This allows us to reduce the number of the right nodes of
the graph, which corresponds to reducing the number of rows in its adjacency
matrix.

2 Definitions

In this section we provide the definitions we will use throughout the text.
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Definition 2 (Expander). Let G = (U, V,E) with |U | = n, |V | = m, E ⊆
U × V be a bipartite graph such that all vertices from U have the same degree
d. Then we say that G is a (k, ε)-expander, if for every S ⊆ U with |S| ≤ k we
have

| {v ∈ V | ∃u ∈ S (u, v) ∈ E} | ≥ (1− ε)d|S|.

Definition 3 (Model). Let us call any non-empty subset

Mk ⊆ Σk = {A ⊆ [n] | |A| = k}

a model.

In particular, Σk is a model as well.

Definition 4 (Block-sparse model). Suppose that b, k ∈ [n]. Moreover, b
divides both k and n. Let us partition our universe [n] into n/b disjoint blocks
B1, B2, . . . , Bn/b of size b. We consider the following block-sparse model: Bk,b

consists of all unions of k/b blocks.

Definition 5 (Tree-sparse model). Suppose that k ∈ [n] and n = 2h+1 − 1,
where h is a non-negative integer. Let us identify the elements of [n] with the
vertices of a full binary tree of depth h. Then, tree-sparse model Tk consists of
all subtrees of size k that contain the root of the full binary tree.

Definition 6 (Model-sparse vector/set). Let Mk ⊆ Σk be any model. We
say that a set S ⊆ [n] is Mk-sparse, if S lies within a set from Mk. Moreover,
let us call a vector x ∈ Rn Mk-sparse, if its support is a Mk-sparse set.

It is straightforward to generalize the notions of RIP-p matrix, expanders and
generalized expanders to the case of Mk-sparse vectors and sets. Let us call the
corresponding objects ε-Mk-RIP-p matrix, ε-Mk-expander and generalized ε-
Mk-expander, respectively. Clearly, the initial definitions correspond to the case
of Σk-sparse vectors and sets.

Our two main objects of interest are Bk,b- and Tk-RIP-1 matrices.

3 Sparsification of RIP-1 Matrices

In this section we show that any n × m matrix, which is (k, ε)-RIP-1, can be
sparsified after removing (1 − Ω(1))n columns (Theorem 1). Then we state an
obvious generalization of this fact (Theorem 2), which will be useful for proving
lower bounds on the number of rows for Bk,b- and Tk-RIP-1 matrices.

Theorem 1. Let A be any m×n matrix, which is (k, ε)-RIP-1. Then there exists
an m×Ω(n) matrix B which is (k,O(ε))-RIP-1, has at most O(m/k) non-zero
entries per column and can be obtained from A by removing some columns and
then setting some entries to zero.

We prove this theorem via the sequence of lemmas. First we prove that for every
matrix A there exists a ±1-vector x such that ‖Ax‖1 is small.
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Lemma 1. Let A be any m× k matrix. Then there exists a vector x ∈ {−1, 1}k
such that

‖Ax‖1 ≤
∑
i∈[m]

⎛⎝∑
j∈[k]

a2ij

⎞⎠1/2

. (5)

Proof. Let us use a probabilistic argument. Namely, let us sample all coordinates
xi independently and uniformly at random from {−1, 1}. Then

E [‖Ax‖1] =
∑
i∈[m]

E

⎡⎣∣∣∣∣∣∣
∑
j∈[k]

aijxj

∣∣∣∣∣∣
⎤⎦ ≤ ∑

i∈[m]

⎛⎜⎝E

⎡⎢⎣
⎛⎝∑

j∈[k]
aijxj

⎞⎠2
⎤⎥⎦
⎞⎟⎠

1/2

=

=
∑
i∈[m]

⎛⎝E

⎡⎣∑
j∈[k]

a2ijx
2
j

⎤⎦⎞⎠1/2

=
∑
i∈[m]

⎛⎝∑
j∈[k]

a2ij

⎞⎠1/2

.

Thus, there exists a vector x ∈ {−1, 1}k that satisfies (5). ��
As a trivial corollary we have the following statement.

Corollary 1. Let A be any m× k matrix that preserves (up to 1± ε) 	1-norms
of all vectors. Then

∑
i∈[m]

⎛⎝∑
j∈[k]

a2ij

⎞⎠1/2

≥ (1− ε)k.

The next lemma shows that every (k, ε)-RIP-1 matrix is a generalized (k,O(ε))-
expander. This is a generalization of a theorem from [4].

Lemma 2. Let A be any m × n matrix, which is (k, ε)-RIP-1. Then, A is a
generalized (k, 3ε)-expander.

Proof. For the proof we need the following lemma.

Lemma 3. For any y ∈ Rk

‖y‖1 − ‖y‖∞ ≤
(

1 +
1√
2

)
(‖y‖1 − ‖y‖2). (6)

Proof. Clearly, if y = 0, then the desired inequality is trivial. Otherwise, by
homogenity we can assume that ‖y‖1 = 1. If ‖y‖∞ = 1, then ‖y‖2 = 1, and both
sides of (6) are equal to zero. So, we can assume that ‖y‖∞ < 1. Suppose that
‖y‖∞ = t for some t ∈ (0; 1). If 1/n > t ≥ 1/(n + 1) (thus, n = �1/t− 1�) for
some positive integer n, then, clearly, ‖y‖2 ≤

√
nt2 + (1 − nt)2. One can check

using elementary analysis that for every t ∈ (0; 1)

1− ‖y‖∞
1− ‖y‖2

≤ 1− t

1−
√⌈

1
t − 1

⌉
t2 +

(
1−

⌈
1
t − 1

⌉
t
)2 ≤ 1 +

1√
2

(equality is attained on t = 1/2). This concludes the proof. ��
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Let S ⊆ [n] be any subset of size at most k. For any i ∈ [m] let us denote
yi = (aij)j∈S ∈ RS .

We have∑
i∈[m]

‖yi‖∞ ≥
(

1 +
1√
2

) ∑
i∈[m]

‖yi‖2 −
1√
2
·
∑
i∈[m]

‖yi‖1 (by Lemma 3)

≥
(

1 +
1√
2

)
(1− ε)|S| − 1√

2
· (1 + ε)|S| (by Corollary 1 and RIP-1)

= (1− (1 +
√

2)ε)|S|.

So, A is a generalized (k, (1 +
√

2)ε)-expander. Since 1 +
√

2 < 3, this concludes
the proof.

��
Finally, we prove Theorem 1.

Proof (Proof of Theorem 1). By Lemma 2 A is a generalized (k, 3ε)-expander.
Let us partition [n] into n/k disjoint sets of size k arbitrarily: [n] = S1 ∪ S2 ∪
. . . ∪ Sn/k. Now for every i ∈ [m] and every St let us zero out all the entries aij
for j ∈ St except one with the largest absolute value. Let A′ be the resulting
matrix. Since A is a generalized (k, 3ε)-expander, we know that the (vector) 	1
norm of the difference A−A′ is at most 3εn. Thus, each column of A− A′ has
the 	1 norm of at most 3ε on the average. The number of non-zero entries in A′is
at most mn/k, so a column has at most m/k non-zero entries on the average.
Thus, by Markov inequality there is a set of n/3 columns such that we have
moved each of them by at most 9ε and each of them contains at most 3m/k
non-zero entries. We define a matrix B that consists of these columns. Since we
have modified each of these columns by at most 9ε and A is (k, ε)-RIP-1 we have
that B is (k, 10ε)-RIP-1. ��
The following theorem is a straightforward generalization of Theorem 1. It can
be proved via literally the same argument.

Theorem 2. Suppose that a model Mk ⊆ Σk has the following properties:

– for some l ≤ k all sets from Σl are Mk-sparse;
– there exists a partition of an Ω(1)-fraction of [n] into disjoint subsets of size

Ω(k) such that each of these subsets is Mk-sparse.

Then if A is an m× n matrix which is ε-Mk-RIP-1 for some sufficiently small
ε > 0, there exists an m×Ω(n) matrix B which is (l, O(ε))-RIP-1, has at most
O(m/k) non-zero entries per column and can be obtained from A by removing
some columns and then setting some entries to zero.

4 Lower Bounds for Model-Based RIP-1 Matrices

In this section we prove lower bounds on the number of rows for Bk,b- and Tk-
RIP-1 matrices.

This is done using the following general theorem.



On Model-Based RIP-1 Matrices 571

Theorem 3. If a model Mk ⊆ Σk satisfies the statement of Theorem 2 and A
is an m×n matrix which is ε-Mk-RIP-1 for some sufficiently small ε > 0, then

m = Ω

(
k · log(n/k)

log(k/l)

)
.

The proof is a combination of Theorem 2 and a counting argument similar to
one used in [15].

First, we need the following standard geometric fact. See the full version for
the proof.

Theorem 4. Let v1, v2, . . . , vn ∈ Rd be a set of d-dimensional vectors such that

– for every i ∈ [n] we have ‖vi‖1 ≤ 1.1;
– for every i �= j ∈ [n] we have ‖vi − vj‖1 ≥ 0.9.

Then, n ≤ 4d.

The next theorem shows a tradeoff between m and column sparsity for any RIP-
1 matrix. Its variant was proved in [15], but we present here the proof for the
sake of completeness.

Theorem 5 ([15]). Let A be an m× n matrix, which is (k, ε)-RIP-1 for some
sufficiently small ε > 0. Moreover, suppose that every column of A has at most
s non-zero entries. Then

s log
(m

sk

)
= Ω

(
log

(n
k

))
.

Proof. We need a lemma from [15], which is proved by a standard probabilistic
argument.

Lemma 4. There exists a set X ⊆ Rn of k/2-sparse vectors such that

– log |X | = Ω(k log(n/k));
– every vector from X has a unit 	1-norm;
– all pairwise 	1-distances between the elements of X are at least 1.

Now let us see how A acts on the elements of X . Clearly, for every x ∈ X the
vector Ax is sk-sparse. By pigeonhole principle we have that for some S ⊆ [m]
with |S| ≤ sk there exists a subset X ′ ⊆ X with

|X ′| ≥ |X |(
m
sk

) (7)

such that for every x ∈ X ′ the support of Ax lies within S.
On the other hand, since A is (k, ε)-RIP-1 one can easily see that the set

{Ax}x∈X′ (which lies in the sk-dimensional subspace) has the following proper-
ties:

– every vector from the set has 	1-norm at most 1 + ε;



572 P. Indyk and I. Razenshteyn

– all pairwise distances are at least 1− ε.

Since this set lies in the sk-dimensional subspace by Theorem 4 its cardinality is
bounded by 4sk (provided that ε is sufficiently small). Thus, we have by plugging
this bound into (7)

2Ω(k log(n/k))(
m
sk

) ≤ 4sk.

Now by using a standard estimate
(
m
sk

)
≤ 2O(sk log(m/sk)) we have the desired

statement. ��
Now we can finish the proof of Theorem 3.

Proof (Proof of Theorem 3). By Theorem 2 we can get an m× Ω(n) matrix A
with column sparsity s = O(m/k) and which is (l, O(ε))-RIP-1. Then applying
Theorem 5 we have s log(m/sl) = Ω(log(n/l)). Since, s = O(m/k) we get the
desired bound

m = Ω

(
k · log(n/k)

log(k/l)

)
.

��
Next we apply Theorem 3 to Bk,b- and Tk-RIP-1 matrices.

Theorem 6. For any k ≥ 2b and sufficiently small ε > 0 if A is an m × n
matrix which is ε-Bk,b-RIP-1, then m = Ω(k logk n).

Proof. Clearly, if k ≥ 2b, then Bk,b satisfies the conditions of Theorem 2 for
l = 2. Thus, by Theorem 3 we have

m = Ω

(
k · log(n/k)

log k

)
= Ω(k logk n).

��
Theorem 7. Let A be an m × n matrix which is ε-Tk-RIP-1. Then, if ε is
sufficiently small and k = ω(logn),

m = Ω

(
k · log(n/k)

log log(n/k)

)
.

Proof. The next Lemma shows that for any k = ω(logn) the model Tk satisfies
the first condition of Theorem 2 with l = Ω(k/ log(n/k)).

Lemma 5. Let S ⊆ [n] be a subset of the full binary tree. Then there exists a
subtree that contains both S and the root with at most O(|S| log(n/|S|)) vertices.

Proof. Let T be a subtree that consists of log |S| levels of the full binary tree that
are closest to the root. Let T ′ be a subtree that is a union of T and paths from the
root to all the elements of |S|. It is not hard to see that |T ′ \T | ≤ |S| log(n/|S|).
As a result we get

|T ′| ≤ |T |+ |S| log(n/|S|) ≤ O(|S| log(n/|S|)).

��
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The second condition of Theorem 2 is satisfied as well (here we use that k =
ω(logn)). Thus, applying Theorem 3 we have

m = Ω

(
k · log(n/k)

log log(n/k)

)
.

��

5 Upper Bounds for Model-Based RIP-1 Matrices

In this section we complement the lower bounds by upper bounds. Since the
proofs are quite standard probabilistic arguments, we omit them and refer the
reader to the full version.

We use the following obvious modification of a theorem from [4].

Theorem 8 ([4]). If a graph G = (U, V,E) is an ε-Mk-expander for some
model Mk ⊆ Σk, then the normalized (by a factor of d, where d is the degree
of all vertices from U) adjacency matrix of G (which size is |V | × |U |) is an
O(ε)-Mk-RIP-1 matrix.

Thus, it is sufficient to build Bk,b- and Tk-expanders with as small m as possible.
We use the standard probabilistic argument to show the existence of such graphs.
Namely, for every vertex u ∈ U we sample a subset of [m] of size d (d has to be
carefully chosen). Then, we connect u and all the vertices from this subset. All
sets we sample are uniform (among all d-subsets of [m]) and independent.

Theorem 9. For every ε > 0 and b = ω(logn) there exists an ε-Bk,b-RIP-1
matrix with

m = O

(
k

ε2
· logk n

)
.

Theorem 10. For every ε > 0 and k = ω(logn) there exists an ε-Tk-RIP-1
matrix with

m = O

(
k

ε2
· log(n/k)

log log(n/k)

)
.

We note that the requirement that b is not too small is necessary. E.g., if we had
b = 1, then the property is equivalent to the standard (k, ε)-RIP-1 matrix, for
which the upper bound of O(k logk n) can not be achieved.
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A RIP-1 Yields Sparse Recovery

In this section we show improved upper bounds on the number of measurements
needed to recover good block- or tree-sparse approximations with 	1/	1 guarantee
and constant approximation factor. This result is folklore, but we include it for
completeness.

Suppose that Mk ⊆ Σk is some model. We say that an m× n matrix A is ε-

M(2)
k -RIP-1, if for every x ∈ Rn such that suppx ⊆ S1 ∪S2 for some Mk-sparse

sets S1 and S2 one has

(1− ε)‖x‖1 ≤ ‖Ax‖1 ≤ (1 + ε)‖x‖1.
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Let A be any ε-M(2)
k -RIP-1 matrix for a sufficiently small ε such that ‖A‖1 ≤

1 + ε. Algorithm 1 (whose running time is exponential in n) given y = Ax for
some x ∈ Rn recovers a vector x∗ ∈ Rn such that

‖x− x∗‖1 ≤ (3 + O(ε)) · min
x′ is Mk-sparse

‖x− x′‖1. (8)

Note that the optimization problem within the for-loop can be easily reduced

Algorithm 1. Model-based sparse recovery

Input: y = Ax for some x ∈ R
n

Output: a good Mk-approximation x∗ of x
x∗ ← 0
for S ⊆ [n] is an Mk-sparse set do

x̃← argminsuppx′⊆S ‖y − Ax′‖1
if ‖y − Ax̃‖1 ≤ ‖y − Ax∗‖1 then

x∗ ← x̃
end if

end for

to a linear program. For the proof that (8) holds for x∗ see the full version.

It is immediate to see that any ε-B2k,b-RIP-1 matrix is ε-B(2)
k,b-RIP-1. Similarly,

any ε-T2k-RIP-1 matrix is ε-T (2)
k -RIP-1. Moreover, since all the singletons are

both block- and tree-sparse, we have that these matrices have 	1-norm at most
1 + ε. Thus, plugging Theorems 9 and 10 we get the following result.

Theorem 11. The problem of model-based stable sparse recovery with 	1/	1
guarantee and a constant approximation factor can be solved

– with
m = O(k logk n)

measurements for Bk,b, provided that b = ω(logn);
– with

m = O

(
k · log(n/k)

log log(n/k)

)
measurements for Tk, provided that k = ω(logn).
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secret randomness. We apply robust r-wise independent PRGs towards
reducing the randomness complexity of private circuits and protocols
for secure multiparty computation, as well as improving the “black-box
complexity” of constant-round secure two-party computation.

1 Introduction

Pseudorandomness is a central tool in complexity theory and cryptography. A
pseudorandom generator (PRG) is a deterministic function G : {0, 1}n → {0, 1}m
which stretches a short random seed into a longer output which looks random to
any computationally bounded distinguisher. The question we ask in this work can
be pictorially described as follows. Consider an implementation of G by a boolean
circuit, and suppose that an attacker can observe a set S of k wires anywhere in
the circuit. Since S may contain output wires, the output conditioned on S may
no longer look random. But how big is the “shadow” S can cast on the output?
Can we design PRG implementations in which the effect of observing any such
S is localized to roughly k bits of the output?

We formalize the above question via the notion of robust pseudorandom gener-
ators. We say that a circuit implementation of G is (k, q)-robust if for every set S
of at most k wires anywhere in the circuit there is a set T (“shadow”) of at most
q|S| outputs such that conditioned on the values of S, the outputs outside T are
pseudorandom. We will be mainly interested in a stronger notion of robustness
in which the conditioning is on both S and T ; if such a stronger requirement is
met we say that G is strongly (k, q)-robust. We consider the robustness of three
distinct types of PRG: r-wise independent PRGs, where the distinguisher can
observe any r bits of the output, small-bias PRGs [1], where the distinguisher can
compute the parity of any subset of the outputs, and cryptographic PRGs [2, 3],
where the distinguisher can perform arbitrary polynomial-time computations.

To motivate the notion of robust PRGs, consider a simple application of cryp-
tographic PRGs for one-time symmetric encryption. To encrypt a long mes-
sage M ∈ {0, 1}m with a short secret key K ∈ {0, 1}n, it suffices to compute
C = M ⊕ G(K). Since G(K) is indistinguishable from random, so is C. Now,
suppose that k << n intermediate values in the computation of C are leaked.
What do these values together with C reveal about M? The dense model theo-
rem [4–6] assures us that if G is sufficiently strong, then M is indistinguishable
from some source whose min-entropy is roughly m − k. However, even a single
lost bit of entropy can correspond to global information about m. For instance, if
an intermediate value reveals the parity of G(K), this information together with
C reveals the parity of M . Our goal is to provide the guarantee that if arbitrary
k physical bits are leaked during the process of computing C, this is no worse
than leaking (roughly) k physical bits of M .

We turn to the question of constructing robust PRGs, starting with some
simple observations. First, if k = n, the set S can include the entire PRG seed,
conditioned on which the entire output is fixed. We thus restrict the attention
to the case where k < n. Second, allowing n to be much bigger than k, we can
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use the following näıve construction: if G′ : {0, 1}n′ → {0, 1}m is a PRG then
G : {0, 1}n′(k+1) → {0, 1}m defined by G(x1, . . . , xk+1) = G′(x1) ⊕ G′(x2) ⊕
· · ·⊕G′(xk+1) (computed in the natural way) is a strong (k, 1) robust PRG. The
main weakness of this construction is that its seed length is far from optimal.
A secondary weakness, which turns out to be crucial for one of our motivating
applications, is that the circuit size of G is much bigger than its output length.
Our main goal in this work is to construct robust PRGs in which n is very close
to k, while keeping q constant and maximizing the stretch function m(n). As a
secondary goal, we would like to minimize the circuit size of robust PRGs. These
goals are nontrivial to meet also when considering non-explicit constructions.

1.1 Our Results

We present several constructions of robust PRGs with near-optimal parameters.

– Robust r-wise independent PRGs: Using explicit constructions of un-
balanced lossless expanders [7, 8], we get constructions of strong (k, q)-robust
r-wise PRGs with q = O(1) and either r, k = Ω(n) and linear stretch, or
r, k = n1−η and arbitrary polynomial (or even exp(nδ)) stretch, for an arbi-
trary constant η > 0. For randomized (non-explicit) constructions, we can
get an arbitrary polynomial stretch with r, k = Ω(n).

– Robust ε-biased PRGs: We get an explicit construction of a strong (k, q)-
robust ε-biased PRG with q = O(1), k = Ω(n), linear stretch, and expo-
nentially small bias. We also get a randomized construction with a small
polynomial stretch which satisfies the weaker notion of robustness.

– Robust cryptographic PRGs: PRG constructions with constant output
and input locality [9–12] yield (n, q)-robust PRGs with linear stretch and
q = O(1). We show that a cryptographic PRG from [9], which has linear
stretch, is robust with a better value of q (under a similar assumption).

The output locality of the above PRGs (i.e., the number of inputs on which each
output depends) is at most polylogarithmic in the seed length, and their circuit
size is at most quasilinear in the output length.

As discussed above, robust PRGs can be directly motivated by their useful-
ness as a more resilient alternative to traditional PRGs. We present several other
applications of (strong) robust r-wise independent PRGs in cryptography. The
high level idea behind these applications is as follows. Suppose that a crypto-
graphic computation, which has secret inputs w and secret randomness ρ, is
attacked by an adversary who can observe intermediate values in the compu-
tation. Whenever it is guaranteed that the adversary’s view depends only on a
small number of bits from ρ (but can arbitrarily depend on w), we can replace
the true randomness ρ by pseudorandomness generated using a robust r-wise
independent PRG without degrading the security of the implementation. Note
that robustness is necessary here because the PRG computation becomes a part
of the new implementation and hence it is also subject to attacks. We apply this
idea in the following domains.
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Private Circuits. A t-private circuit [13] is a randomized circuit which trans-
forms a randomly encoded input into an encoded output while providing the
guarantee that the joint values of any t wires reveal nothing about the input.
We show that any t-private circuit in which each wire depends on at most 	 bits
of randomness can be converted via the use of robust r-wise PRGs into a t pri-
vate circuit which uses roughly t	 bits of randomness. Applying this to a variant
of the construction from [13], we get t-private circuits which can use O(t3) bits
of randomness to protect an arbitrary poly(t)-time computation.

Secure Multiparty Computation. We show a similar application of r-wise
PRGs in the related context of unconditionally secure multiparty computation.
Here we improve the randomness complexity of a previous randomness-efficient
protocol from [14], which implicitly relies on the näıve robust PRG construction
described above.

Secure Two-Party Computation. We obtain a constant-round two-party
computation protocol secure against malicious parties in which evaluating a
circuit of size s with security 2−κ requires only a polylogarithmic (in κ, s) num-
ber of calls to a cryptographic PRG for each gate of the circuit, where κ is a
security parameter, and a small number of oblivious transfers. In fact, our pro-
tocol is non-interactive in a model that allows parallel oblivious transfers. This
improves over previous constant-round protocols which combine Yao’s garbled
circuit construction with a “cut-and-choose” technique (e.g., [15]), where the
number of PRG calls per gate is O(κ). This also improves over a previous pro-
tocol from [16] in which the number of PRG calls is similar to our protocol but
the number of oblivious transfers is very large (comparable to the number of
PRG calls). The improvement over [16] results from implementing randomized
circuits of a near-optimal size which use a small amount of randomness to make
any disjunction of circuit wires or their negation essentially independent of the
input. For this application, the crucial feature of our robust PRG constructions
is their near-optimal circuit size rather than seed length.

1.2 Related Work

It is instructive to view the question we study in the broader context of leakage-
resilient cryptography. The general goal in this area is to get an implementation
of a cryptographic function (say, a PRG or an encryption scheme) which re-
mains “as secure as possible” in the presence of information leakage. One way
of classifying works in this area is according to the following criteria:

– What is the class of leakage functions? One may consider either (A) local
leakage, where the adversary can probe k physical bits in the implementation,
or (B) global leakage, where the adversary can learn arbitrary k bits of
information.

– Which parts of the system leak? Here one can consider either (1) confined
leakage, which applies only to part of the implementation (e.g., a secret key,
a seed, or an online phase), or (2) unconfined leakage, where the leakage
applies to the entire implementation.
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In case (1) one can hope to offer full protection against leakage, whereas in
case (2) one needs to settle for allowing a similar type of leakage in the “ideal
model.” That is, if arbitrary k bits of information can be leaked, the best
we can hope for is that the adversary will learn k bits of information of the
same type about the secrets.

Most work on leakage resilient cryptography falls either into category (B1)
(e.g., [6, 17–20]), (A1) (e.g., [13, 21, 22]), or (B2) (e.g., [23–25]). Our work
may be the first to study nontrivial questions of type (A2).

We conclude by comparing our notion of robust PRGs with other notions of
robustness for PRGs considered in the literature. An exposure resilient function
(ERF) [22] is a PRG whose output remains pseudorandom even if k physical bits
of the seed (and the seed alone) are leaked. Thus, ERFs can be classified into
category (A1). An ERF can be obtained by applying a standard PRG on top
of an extractor for bit-fixing sources [26]. A natural approach for constructing
a robust PRG from an ERF is to apply a private circuit compiler (such as [13])
to the ERF. This approach fails because of the high randomness complexity
of private circuits. Even if one uses the randomness-efficient private circuits
mentioned above, the parameters of the resulting robust PRG will end up being
worse than those obtained by taking the exclusive-or of k + 1 standard PRGs.
Finally, the dense model theorem (already mentioned above) implies that any
sufficiently strong cryptographic PRG offers leakage resilience of type (B2). That
is, leaking arbitrary k bits of information about the seed is no worse than leaking
roughly k bits of information about the output.

Organization. In Section 2 we give formal definitions for different variants of
robust PRGs. Section 3 describes our constructions of robust r-wise independent
PRGs and Section 4 describes their application to reducing the randomness
complexity of private circuits. For lack of space, additional constructions and
applications as well as some of the proofs are deferred to the full version.

2 Definitions

In this section we define the different notions of robust PRGs we will be interested
in. We will need the following notion of “fooling” with respect to functions of
varying input lengths.

Definition 1. Let F =
⋃

n Fn be a class of functions, where the functions in
Fn are from {0, 1}n to {0, 1}. A probability distribution D on {0, 1}n is said to
ε-fool F if for any f ∈ Fn, |Pr[f(D) = 1]− Pr[f(U) = 1]| ≤ ε.

Definition 2. A circuit implementation C of a function G : {0, 1}n → {0, 1}m
is a (k, q)-robust pesudorandom generator (PRG) for a class F of functions with
error ε if the following holds. Let X be the uniform distribution over {0, 1}n and
Y = G(X). For any set S of at most k wires in G, there is a set T of at most
q|S| output bits such that conditioned on any fixing of the values CS of the wires
in S, the distribution YT̄ of the output bits not in T ε-fools F . We say that G is
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a strong (k, q)-robust PRG for F if conditioned on any fixing of the values CS

and YT , we have that YT̄ ε-fools F .

If the implementation is understood or unimportant, we may simply say that a
function is a robust PRG. This may happen if each output bit depends on only
few input bits, and any implementation that does not involve using extraneous
bits is robust.

When each Fn consists of all tests on r bits, we call a robust PRG for F
with 0 error a robust r-wise independent PRG. When each Fn consists of all
parities on subsets of the n bits, we call a robust PRG for F a robust ε-biased
PRG. A robust cryptographic PRG is one which is robust for each F that can
be computed by circuits of poly(n) size with negligible error ε(n).

We handle leakage of arbitrary wire values by constructing a local PRG which
can handle leakage of inputs. In particular, we have the following definitions and
simple lemma.

Definition 3. A function f : {0, 1}n → {0, 1}m is d-local if each output bit
depends on at most d input bits.

Definition 4. A function G : {0, 1}n → {0, 1}m is a (k, q)-input robust PRG
for a class F of functions with error ε if the following holds. Let X be the uniform
distribution over {0, 1}n and Y = G(X). For any set S of at most k input bits,
there is a set T of at most q|S| output bits such that conditioned on any fixing of
the values XS of the inputs S, the values YT̄ of the output bits not in T ε-fools
F . We say that G is a strong (k, q)-input robust PRG for F if conditioned on
any fixing of the values XS and YT , we have that YT̄ ε-fools F .

Lemma 1. A d-local (strong) (dk, q)-input robust PRG is a (strong) (k, dq)-
robust PRG with the same error.

3 Robust r-Wise Independence Generators

Our construction of a robust r-wise independent PRG is simple. A bipartite
graph H = ([m], [n], E) induces a function GH : {0, 1}n → {0, 1}m where the
ith output bit is the parity of the input bits corresponding to the neighbors of
i. That is, GH(x1, . . . , xn) = (y1, . . . , ym) where yi = ⊕j∈Γ (i)xj .

We will take H to be a bipartite expander with expansion bigger than half
the degree. This is defined as follows.

Definition 5. A bipartite graph ([m], [n], E) with left vertices [m] and right ver-
tices [n] is an (	, b)-expander if for any subset V ⊆ [m] on the left with |V | ≤ 	,
we have that |Γ (V )| ≥ b|V |.

We can now state our theorem.

Theorem 1. Suppose H is a d-left-regular (	, (1/2 + γ)d)-expander. Then for
any constant 0 < α < 1, we have that GH is a strong (αγ	, 1/γ)-robust r-wise
independent PRG, with r = (1− α)	.
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One surprising feature of this theorem is that the degree d of the expander
does not appear anywhere explicitly. Besides expansion bigger than d/2, the
important parameter of the expander is 	, the maximum size of subsets which
expand. The parameter 	 determines the robustness of the PRG. We have 	 ≤
2n/d, so the degree appears implicitly there.

First we state a result for random d-left-regular graphs H with d ≤
√
n and

m = nΩ(d). In this case, for any γ < 1/2, with probability 1−n−Ω(d), the random
graph H is an (Ω(n/d), (1/2 + γ)d)-expander, which is essentially best possible.
This gives:

Theorem 2. There exists β > 0 such that for any d ≤
√
n, for a random d-left-

regular H with m = nβd, with probability 1− n−βd, the function GH : {0, 1}n →
{0, 1}m is a strong (βn/d, 21)-robust r-wise independent PRG for r = βn.

We now instantiate theorem 1 with known expander constructions. Capalbo
et al. [7] achieved expansion bigger than d/2 for constant degree graphs, with
	 = Ω(n/d). This yields:

Theorem 3. For any constant C > 0 there is a constant β > 0 such that
there is an explicit O(1)-local strong (βn, 21)-robust r-wise independent PRG
G : {0, 1}n → {0, 1}Cn for r = βn.

For larger stretch but lower robustness we use the expanders of Guruswami,
Umans, and Vadhan [8]. They achieve 	 = n1−η for any η > 0, which gives:

Theorem 4. For any η > 0 there exists δ, C > 0 such that for any m ≤ exp(nδ),
there is an explicit d-local strong (n1−η, 21)-robust r-wise independent PRG G :
{0, 1}n → {0, 1}m for r = n1−η and d ≤ logC m.

We now prove theorem 1. We do this by showing that GH is strongly (dαγ	,
1/(γd))-input-robust. Let S be the set of input bits that are fixed with |S| =
s ≤ kd ≤ αγd	 = αc	.

We now consider the input bits in S̄, which are the bits not in S. Let x ∈
{0, 1}n be the input string, and y = G(x) ∈ {0, 1}m be the output string. For
any output bit yi we associate with it a vector Vi ∈ {0, 1}n. The vector Vi has
exactly d 1s at the d positions of yi’s neighbors (more precisely, yi’s corresponding
vertex’s neighbors), and has 0s everywhere else, i.e., Vi is the indicator vector
of whether an xj influences yi. We then let V̄i ∈ {0, 1}n−s be the vector that is
obtained by projecting Vi into the bits that are in S̄. Now let X be the uniform
distribution over {0, 1}n, and Y = G(X) be the output distribution of the PRG.
The following fact is immediate.

Fact 5. For any subset W of the output bits, we have⊕
Yi∈W

Yi is a constant ⇐⇒
∑

Yi∈W
V̄i = 0.

We now have the following lemma, whose proof appears in the full version.
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Lemma 2. For any subset W of the output bits, let W̄ be the output bits not
in W . Assume that conditioned on some fixing of the input bits {Xi ∈ S} and
the output bits {Yh ∈ W}, there exist some bits Yj1, · · · , Yjl ∈ W̄ such that

Y ′ =
⊕l

i=1 Yji is not uniform. Then Y ′ is a constant. Moreover, V̄ ′ =
∑l

i=1 V̄ji

is in Span({V̄h : Yh ∈ W}), and vice versa.

We now slightly abuse notation and use S to also denote the set of right vertices
in H that correspond to the fixed bits. Below we borrow some techniques from
[27]. We have the following definition.

Definition 6. Suppose H = ([m], [n], E) is a d-left-regular (	, d/2+ c)-expander
where c = γd. For any subset T ⊂ [m] we let Δ(T ) ⊂ [n] be the set of unique
neighbors of T , i.e. the set of right vertices that are adjacent to only one vertex
in T . For any subset S ⊂ [n] with |S| < c	, we define an inference relation 2S
on subsets of the left vertices as follows.

T1 2S T2 ⇐⇒ |T2| ≤ 	− |S|/c ∧ |Δ(T2) \ [Γ (T1) ∪ S]| < c|T2|.

We now set T = ∅ and repeat the following step as long as it is possible: if there
exists a non-empty subset T1 ⊂ [m] \ T such that T 2S T1 then let T = T ∪ T1.
Since the graph is finite the above procedure terminates in finite steps. We denote
the final T by Cl(S). We now have the following lemma.

Lemma 3. If |S| < c	 then |Cl(S)| ≤ |S|/c.

Proof. Assume for the sake of contradiction that |Cl(S)| > |S|/c. Consider the
sequence of subsets of left vertices T1, T2, · · · , Tv that we add to the set T . Note
that all these Ti’s are disjoint. Let Cv = ∪v

i=1Ti be the set of left vertices derived
in v steps. Thus |Cv| =

∑v
i=1 |Ti|.

Let v0 be the first v such that |Cv| > |S|/c. Thus Cv0−1 ≤ |S|/c and |Cv0 | ≤
|Cv0−1|+|Tv0 | ≤ |S|/c+	−|S|/c ≤ 	. By the expansion property, Cv0 has at least
(d/2 + c)|Cv0 | neighbors and thus Δ(Cv0 ) ≥ 2(d/2 + c)|Cv0 | − d|Cv0 | = 2c|Cv0 |.
Therefore |Δ(Cv0 ) \ S| ≥ 2c|Cv0 | − |S| > c|Cv0 |.

On the other hand, since each time when we add Ti to T , the number of
unique neighbors in Δ(T ) \S increases by at most |Δ(Ti) \ [Γ (T ) ∪ S] |, we have
|Δ(Cv0) \ S| <

∑v0
i=1 c|Ti| = c|Cv0 |, which is a contradiction. ��

Now we have the following lemma.

Lemma 4. Let T = Cl(S). Then conditioned on any fixing of the input bits in
S and any fixing of the output bits in T , the output bits that are not in T are
r-wise independent, where r = 	− |S|/c ≥ (1− α)	.

Proof. Let T̄ be the set of output bits that are not in T . Assume that the lemma
is not true. Then, for some fixing of the input bits in S and some fixing of the
output bits in T , there exist 1 ≤ l ≤ r = 	−|S|/c output bits {Yj1, · · · , Yjl ∈ T̄}
such that

⊕l
i=1 Yji is not uniform.
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By lemma 2, V̄ ′ =
∑l

i=1 V̄ji is in Span({V̄h : Yh ∈ T }). Let T1 be the set of left
vertices corresponding to {Yj1, · · · , Yjl}. Then we have that Δ(T1) \ S ⊂ Γ (T ).
Thus |Δ(T1) \ Γ (T ) ∪ S| = 0 < c|T1|. This means that we can add T1 to T in
the procedure where we obtain Cl(S), which contradicts the fact that Cl(S) is
obtained when the procedure stops. ��

Note that |T | ≤ |S|/c ≤ kd/c = k/γ, thus the theorem is proved.
Due to lack of space, our robust ε-biased generators and cryptographic gen-

erators are deferred to the full version.

4 Applications

In this section and in the full version we present several applications of robust
r-wise PRGs in cryptography. The following technical lemma captures a typical
application scenario in which a strong robust r-wise PRG is used to replace a true
source of randomness in cryptographic implementations in which the adversary
has a local view of the randomness. The security of this approach will follow
by showing that the view of any wire-probing adversary who attacks the “real
world” implementation, in which a robust PRG is used to generate randomness,
can be simulated given the view of a wire-probing adversary who attacks an ideal
implementation which uses a true source of randomness. To simplify notation,
we will use G to denote both the function computed by a robust PRG and its
circuit implementation.

Lemma 5. Let λ be a positive integer and G : {0, 1}n → {0, 1}m be a strong
(k, q) robust r-wise PRG with r ≥ max(λ, kq). Then for any set S of at most k
wires in G there is a set T ⊆ [m], |T | ≤ q|S|, and a randomized algorithm Sim
(a simulator) such that the following holds. For every Q : {0, 1}m → V which
depends on at most λ bits of its input, the distributions Real and Sim(Ideal) are
identical, where Real = (Q(G(X)), GS(X)), Ideal = (Q(R), RT ), X is uniformly
distributed over {0, 1}n, and R is uniformly distributed over {0, 1}m. Moreover,
if G is linear over the binary field then Sim can be implemented in probabilistic
polynomial time.

Lemma 5 provides a general recipe for reducing the randomness complexity of
cryptographic implementations in which the adversary’s view depends on at
most λ bits of randomness (but potentially also on many bits of secret data). In
the next section and in the full version we give examples for such applications.

4.1 Private Circuits

A t-private circuit is a randomized circuit which transforms a randomly encoded
input into an encoded output while providing the guarantee that the joint values
of any t wires reveal nothing about the input. (For simplicity we address here the
stateless variant of private circuits with encoded inputs and outputs, see [13, Sec-
tion 3] and [28, Section 2.1]; our result applies to other variants as well.) We will



Robust Pseudorandom Generators 585

show that robust r-wise PRGs can be used to reduce the randomness complexity
of private circuits in which each wire depends on few bits of the randomness.
The latter feature can be enforced by adding a simple “rerandomization gadget”
to existing constructions.

Definition 7. (Private circuit) A private circuit for f : {0, 1}ni → {0, 1}no

is defined by a triple (I, C,O), where

– I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder;
– C is a randomized boolean circuit with input ŵ ∈ {0, 1}n̂i, output ŷ ∈
{0, 1}n̂o, and randomness ρ ∈ {0, 1}m;

– O : {0, 1}n̂o → {0, 1}no is an output decoder.

We say that C a t-private implementation of f with encoder I and decoder O if
the following requirements hold:

– Correctness: For any input w ∈ {0, 1}ni we have Pr[O(C(I(w), ρ)) = f(w)] =
1], where the probability is over the randomness of I and ρ.

– Privacy: For any w,w′ ∈ {0, 1}ni and any set P of t wires in C, the distri-
butions CP (I(w), ρ) and CP (I(w′), ρ) are identical.

We say that C makes an 	-local use of its randomness if the value of each of its
wires is determined by its input ŵ and at most 	 bits of the randomness ρ (where
the identity of these bits may depend on the wire). Unless noted otherwise, we
assume I and O to be the following canonical encoder and decoder: I encodes
each input bit wi by a block of t+ 1 random bits with parity wi, and O takes the
parity of each block of t + 1 bits.

Note that without any requirement on I and O the above definition is trivially
satisfied by having I compute a secret sharing of f(w) which is passed by C to
the decoder. However, applications of private circuit require the use of encoder
and decoder which are independent of f .

The following theorem applies robust r-wise PRGs towards reducing the ran-
domness complexity of private circuits.

Theorem 6. Suppose C is a qt-private implementation of f with encoder I
and decoder O, where C uses m random bits and makes an 	-local use of its
randomness. Let G : {0, 1}n → {0, 1}m be a strong (t, q) robust r-wise PRG
with r = t · max(	, q). Then, the circuit C′ defined by C′(ŵ, ρ′) = C(ŵ, G(ρ′))
is a t-private implementation of f with encoder I and decoder O which uses n
random bits.

Proof. We show that the view of an adversary A′ who attacks C′(ŵ, ρ′) by
probing a set S of t′ ≤ t wires in G and a set P of t − t′ additional wires in C
is independent of the input w. Since C is qt-private, it suffices to show that the
view of A′ can be simulated given the view of an adversary A who probes at
most qt wires in C(ŵ, ρ).

Let T and Sim be as promised by Lemma 5 for λ = t	. For any ŵ, let
Qŵ(ρ) = CP (ŵ, ρ). Since C makes an 	-local use of its randomness, Qŵ de-
pends on at most λ bits of ρ. Thus, for any fixed ŵ, we have Sim(Qŵ(R), RT ) ≡
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(Qŵ(G(X)), GS(X)), where R is uniform on {0, 1}m and X is uniform on {0, 1}n.
It follows that Sim(QI(w)(R), RT ) ≡ (QI(w)(G(X)), GS(X)). Since the distribu-
tion to which Sim is applied captures the view of an adversary A who corrupts a
set P ∪T of at most qt′+(t−t′) ≤ qt wires in C and the distribution on the right
hand side captures the view of A′, it follows that the view of A′ is independent
of w as required. ��

Theorem 6 implies that robust PRGs can be used to reduce the question of
improving the randomness complexity of private circuits to that of improving
their randomness locality. Luckily, known constructions such as the one from [13],
while technically not satisfying the randomness locality condition, can be easily
modified to have good randomness locality. Indeed, a variant of the construction
of [13] (see full version) shows the following.

Lemma 6. Any function f with circuit size s admits a t-private implementa-
tion (I, C,O) with the canonical encoder I and decoder O, where C uses O(t2s)
random bits and makes an O(t2)-local use of its randomness.

Combining Lemma 6 with Theorems 2,4 we get the following corollary.

Corollary 1. For any polynomial s(·), any function f of circuit size s(t) admits
a t-private implementation (I, C,O) with the canonic encoder I and decoder
O, where C uses O(t3) random bits (alternatively, O(t3+ε) random bits for an
explicit construction of C from a circuit for f).

Using a naive implementation of robust PRGs obtained by taking the exclusive-
or of k + 1 independent r-wise PRGs gives an O(t4) bound on the randomness.
Improving the randomness locality of private circuits would immediate yield a
corresponding improvement to Corollary 1.

An Alternative Model. While we considered in this section a model of private
circuit which receives encoded inputs and produces encoded outputs, the results
apply also to an alternative variant in which the inputs and outputs are not
protected by an encoder and decoder. In this case one should settle for the
following relaxed t-privacy requirement: the distribution of any set of at most t
wires in C can be simulated given t bits from the input and output. To apply
robust PRGs and get efficient simulation in this context, one needs to use the
efficient simulation variant of Lemma 5.

See full version for applications to secure multiparty computation.
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Abstract. In this paper we develop general LP and ILP techniques
to find an approximate solution with improved objective value close to
an existing solution. The task of improving an approximate solution is
closely related to a classical theorem of Cook et al. [1] in the sensitivity
analysis for LPs and ILPs. This result is often applied in designing robust
algorithms for online problems. We apply our new techniques to the
online bin packing problem, where it is allowed to reassign a certain
number of items, measured by the migration factor. The migration factor
is defined by the total size of reassigned items divided by the size of
the arriving item. We obtain a robust asymptotic fully polynomial time
approximation scheme (AFPTAS) for the online bin packing problem
with migration factor bounded by a polynomial in 1

ε
. This answers an

open question stated by Epstein and Levin [2] in the affirmative. As a
byproduct we prove an approximate variant of the sensitivity theorem
by Cook at el. [1] for linear programs.

1 Introduction

The idea behind robust algorithms is to find solutions of an optimization problem
that are not only good for a single instance, but also if the instance may change
in certain ways. Instances change for example due to uncertainty or when new
data arrive. With changing parameters and data, we have the effort to keep as
much parts of the existing solution as possible, since modifying a solution is often
connected with costs or may even be impossible in practice. Achieving robustness
especially for linear programming (LP) and integer linear programming (ILP) is
thus a big concern and a very interesting research area. Looking at worst case
scenarios, how much do we have to modify a solution if the LP/ILP is changing?
There is a result of Cook et al. [1] giving an upper bound for ILPs when changing
the right hand side of the ILP. Many algorithms in the theory of robustness are
based on this theorem.

As a concrete application we consider the classical online bin packing problem,
where items arrive over time and our objective is to assign these items into as
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few bins as possible. The notion of robustness allows to repack a certain number
of already packed items when a new item arrives. On the one hand we want to
guarantee that we use only a certain number of additional bins away from the
minimum solution and on the other hand, when a new item arrives, we want to
repack as few items as possible. In the case of offline bin packing it is known
that unless P = N P there is no polynomial time approximation algorithm for
offline bin packing that produces a solution better than 3

2 OPT , where OPT is
the minimum number of bins needed. For this reason, the most common way to
deal with the inapproximability problem is the introduction of the asymptotic
approximation ratio. The asymptotic approximation ratio for an algorithm A is
defined to be limx→∞ sup{ A(I)

OPT(I) | OPT(I ) = x}. This leads to the notion of
asymptotic polynomial time approximation schemes (APTAS). Given an instance
of size n and a parameter ε ∈ (0, 1], an APTAS has a running time of poly(n)f( 1

ε )

and asymptotic approximation ratio 1 + ε, where f is an arbitrary function.
An APTAS is called an asymptotic fully polynomial time approximation scheme
(AFPTAS) if its running time is polynomial in n and 1

ε . The first APTAS for
offline bin packing was developed by Fernandez de la Vega & Lueker [3], and
Karmakar & Karp improved this result by giving an AFPTAS [4] (see survey
on bin packing [5]). Since the introduction by Ullman of the classical online bin
packing problem [6], there has been plenty of research (see survey [7]). The best
known algorithm has an asymptotic competitive ratio of 1.58889 [8] compared
to the optimum in the offline case, while the best known lower bound is 1.54037
[9]. Due to the relatively high lower bound of the classical online bin packing
problem, there has been effort to extend the model with the purpose to obtain
an improved competitive ratio. The model we follow is the notion of robustness.
Introduced by Sanders et al. [10] it allows repacking of arbitrary items while the
number of items that are being repacked is limited. To give a measure on how
many items are allowed to be repacked Sanders et al. [10] defined the migration
factor. It is defined by the complete size of all moved items divided by the size
of the arriving one. An (A)PTAS is called robust if its migration factor is of
the size f(1

ε ), where f is an arbitrary function that only depends on 1
ε . Since

the promising introduction of robustness, several robust algorithms have been
developed. Sanders et al. [10] found a robust PTAS for the online scheduling
problem on identical machines, where the goal is to minimize the makespan.
The robust PTAS has constant but exponential migration factor 2O( 1

ε log2 1
ε ).

In case of bin packing Epstein and Levin [2] developed a robust APTAS for
the classical bin packing problem with migration factor 2O( 1

ε2 log 1
ε ) and running

time double exponential in 1
ε . In addition they proved that there is no optimal

online algorithm with a constant migration factor. Furthermore, Epstein and
Levin [11] showed that the robust APTAS for bin packing can be generalized
to packing d-dimensional cubes into a minimum number of unit cubes. Recently
Epstein and Levin [12] also designed a robust algorithm for preemptive online
scheduling of jobs on identical machines, where the corresponding offline problem
is polynomial solvable. They presented an algorithm with migration factor 1− 1

m
that computes an optimal solution whenever a new item arrives. Skutella and
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Verschae [13] studied the problem of maximizing the minimum load given n jobs
and m machines. They proved that there is no robust PTAS for this machine
covering problem. On the positive side, they gave a robust PTAS for the machine
covering problem in the case that migrations can be reserved for a later timestep.
The algorithm has an amortized migration factor of 2O( 1

ε log2 1
ε ).

Our Results
An online algorithm is called fully robust if its migration factor is bounded by
p(1

ε ), where p is a polynomial in 1
ε . The purpose of this paper is to give meth-

ods to develop fully robust algorithms. In Section 2 we develop a theorem for a
given linear program (LP) min {‖x‖1 |Ax ≥ b, x ≥ 0}. Given an approximate so-
lution x′ with value (1 + δ)LIN (where LIN is the minimum objective value of
the LP) and a parameter α ∈ (0, δLIN ], we prove the existence of an improved
solution x′′ with value (1 + δ)LIN − α and distance ‖x′′ − x′‖1 ≤ α(2/δ + 2). In
addition, for a given fractional solution x′ and corresponding integral solution y′,
the existence of an improved integral solution y′′ with ‖y′′ − y′‖1 = O(α+m

δ ) is
shown (m is the number of rows of A). Since both results are constructive, we pro-
pose also algorithms to compute such improved solutions. Previous robust online
algorithms require an optimum solutions of the corresponding ILP and use a sen-
sitivity theorem by Cook et al.[1]. This results in an exponential migration factor
in 1

ε ([2, 11, 13, 10]). In contrast to this we consider approximate solutions of the
corresponding LP relaxations and are able to use the techniques above to improve
the fractional and integral solutions. Furthermore we also prove an approximate
version of a sensitivity theorem for LPs with modified right hand side b and b′.
During the online algorithm the number of non-zero variables increases from step
to step and would result in a large additive term. To avoid this we present algo-
rithms in Section 2.2 to control the number of non-zero variables of the LP and
ILP solutions. We can bound the number of non-zero variables and the additive
term by O(εLIN ) + O( 1

ε2 ). In Section 3 we present the fully robust AFPTAS for
the robust bin packing problem. We use a modified version of the clever rounding
techniques of Epstein and Levin [2]. This rounding technique is used to round the
incoming items dynamically and control the number of item sizes. One difficulty
is that we use approximate solutions of the LP. During the online algorithm items
are rounded to different values and are shifted across different rounding groups.
We show how to embed the rounded instance into another rounded instance that
fulfills several invariants. By combining the dynanic rounding and the algorithm
to get improved solutions of the LP and ILP, we are able to obtain a fully robust
AFPTAS for the online bin packing problem. The algorithm has a migration fac-
tor of O(1/ε4) and running time polynomial in 1

ε and t, where t is the number
of arrived items. This resolves an open question of Epstein and Levin [2]. We be-
lieve that our techniques can be used for other online problems like strip packing,
scheduling moldable tasks, resource constrained scheduling and multi-commodity
flow problems to obtain online algorithms with low migration factors. Proofs omit-
ted due to space constraints can be found in the full version of the paper. For a
detailed view on this paper we recommend the full paper version [14].
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2 Robustness of Approximate LPs and ILPs

We consider a matrix A ∈ Rm×n
≥0 , a vector b ∈ Rm

≥0 and a cost vector c ∈ Rn
≥0.

The goal in a linear program (LP) is to find a x ≥ 0 with Ax ≥ b such that the
objective value cT x is minimal. We say xOPT is an optimal solution if cT xOPT =
min

{
cT x|Ax ≥ b, x ≥ 0

}
and we define LIN = cT xOPT . In general we suppose

that the objective function of a solution is positive and hence LIN > 0. We say
x′ is an approximate solution with approximation ratio (1+δ) for some δ ∈ (0, 1]
if ‖x′‖1 ≤ (1 + δ)LIN . We will present Theorem 1 with general objective value
c, but for the remaining part of the paper we will assume that cT = (1, 1, . . . , 1)
and therefore cT xOPT =

∥∥xOPT
∥∥

1 = LIN . The following theorem is central.
Given an approximate solution x′, we want to improve its approximation by
some constant. But to achieve robustness we have to maintain most parts of x′.
We show that by changing x′ by size of O(α

δ ), we can improve the approximation
by a constant α.
Theorem 1. Consider the LP min

{
cT x|Ax ≥ b, x ≥ 0

}
and an approximate so-

lution x′ with cT x′ = (1 + δ)LIN for some δ > 0. For every positive α ≤ δLIN
there exists a solution x′′ with objective value of at most cT x′′ ≤ (1 + δ)LIN − α

and distance ‖x′ − x′′‖1 ≤ α(1/δ + 1)‖x′‖1
+‖xOPT‖1
cT x′ . If cT = (1, 1, . . . , 1) then

‖x′ − x′′‖1 ≤ 2α(1/δ + 1).
The proof basically relies on a convex combination between x′ and an optimal
solution (see full paper). From here on we suppose that cT = (1, 1, . . . , 1).

Of course, one major application of Theorem 1 is to improve the approxima-
tion. But we can also apply Theorem 1 to obtain an approximate variant of the
theorem of Cook et al. [1] for the sensitivity analysis of an LP (see full paper).

2.1 Algorithmic Use

Let x′ be an approximate solution of the LP with ‖x′‖1 ≤ (1+δ)LIN . In Theorem
1, we have proven the existence of a solution x′′ near x′ with ‖x′′‖1 ≤ (1+δ)LIN−
α. We are looking now for algorithmic ways to calculate this improved solution
x′′. The following algorithm computes an improved solution x′′ that is near to
x′.

Algorithm 1

1. Set xvar := α(1/δ+1)
‖x′‖ x′, xfix := x′ − xvar and bvar := b − A(xfix)

2. Solve the LP x̂ = min {‖x‖1 |Ax ≥ bvar, x ≥ 0}
3. Generate a new solution x′′ = xfix + x̂

If x̂ is a basic feasible solution, compared to x′, our new solution x′′ has up to
m additional non-zero components. See full paper for the proof of the following
theorem.
Theorem 2. Given solution x′ with ‖x′‖1 ≤ (1+δ)LIN and ‖x′‖1 ≥ α(1/δ+1).
Algorithm 1 returns a feasible solution x′′ with ‖x′′‖1 ≤ (1 + δ)LIN − α and the
distance between x′ and x′′ is ‖x′′ − x′‖1 ≤ 2α(1/δ + 1).
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2.2 Integer Programming

In this section we discuss how we can apply results from the previous sections
to integer programming. Consider a fractional solution x′ of the LP and a cor-
responding integral solution y′. By rounding each component x′

i up to the next
integer value, it is easy to get a feasible integer solution y′ with an additional
additive term ‖y′‖1 ≤ ‖x′‖1 + C, where C is the number of non-zero compo-
nents. We can apply any of the previous algorithms to x′ to get an improved
solution x′′. But our actual goal is to find a corresponding integer solution y′′

with improved objective value ‖y′′‖1 ≤ (1+δ)LIN +C −α such that the distance
between y′′ and y′ is small. In the following we present an algorithm that com-
putes a suitable y′′ with improved objective value and small distance between
y′′ and y′. We show that the distance between y′′ and y′ is bounded by O(m+α

δ ).
Note that the straight forward approach to simply round up each component x′′

i

leads to a distance between y′′ and y′ that depends on C and hence (depending
on the LP) is too high. The running time of the presented algorithm depends
on the number of non-zero components and the time to compute an optimal
solution of an LP.

Let x′ be an approximate solution of the LP min{‖x‖1 | Ax ≥ b, x ≥ 0}
with ‖x′‖1 ≤ (1 + δ)LIN and ‖x′‖1 ≥ α(1/δ + 1). Furthermore let y′ be an
approximate integer solution of the LP with ‖y′‖1 ≤ (1 + 2δ)LIN and ‖y′‖1 ≥
(m + 1)(1/δ + 2) and y′

i ≥ x′
i for i = 1, . . . , n. In addition we suppose that both

x′ and y′ have exactly K ≤ δLIN non-zero components. Our goal is now to
compute a fractional solution x′′ and and integer solution y′′ having improved
approximation properties and still ≤ δLIN non-zero components. For a vector
z ∈ Rn

≥0, let V (z) be the set of all integral vectors v = (v1, . . . , vn)T such that
0 ≤ vi ≤ zi. Furthermore we denote with a1, . . . , aK the indices of the non-zero
components y′

aj
such that y′

a1 ≤ . . . ≤ y′
aK

are sorted in non-decreasing order.

Algorithm 2

1. Choose 
 maximally such that the sum of smallest 
 components 1, . . . , 
 are∑
1≤i≤� y′

ai
≤ (m + 1)(1/δ + 2)

2. Set xvar
i =

{
x′

i if i = aj for j ≤ 

α(1/δ+1)

‖x′‖ x′
i else

and ȳi =

{
0 if i = aj for j ≤ 


y′
i else

3. Set xfix = x′ − xvar, bvar = b − A(xfix) and compute an optimal solution x̂
of min {‖x‖1 |Ax ≥ bvar, x ≥ 0}

4. Set x′′ = xfix + x̂
5. For each 1 ≤ i ≤ n set ŷi = max{�x′′

i �, ȳi}
6. If possible choose d ∈ V (ŷ−x′′) such that ‖d‖1 = α(1/δ+1) otherwise choose

d ∈ V (ŷ − x′′) such that ‖d‖1 < α(1/δ + 1) is maximal.
7. Return y′′ = ŷ − d
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Theorem 3. Let x′ be a solution of the LP with ‖x′‖1 ≤ (1+δ)LIN and ‖x′‖1 ≥
α(1/δ + 1). Let y′ be an integral solution of the LP with ‖y′‖1 ≤ (1 + 2δ)LIN
and ‖y′‖1 ≥ (m + 1)(1/δ + 2). Solutions x′ and y′ have both exactly K non-zero
components and for each component we have x′

i ≤ y′
i. Then Algorithm 2 returns

a fractional solution x′′ with ‖x′′‖1 ≤ (1+ δ)LIN −α and an integral solution y′′

with ‖y′′‖1 ≤ (1+2δ)LIN −α. Both x′′ and y′′ have the same number of non-zero
components with x′′

i ≤ y′′
i and the number of non-zero components is bounded by

δLIN. The distance between y′′ and y′ is bounded by ‖y′′ − y′‖1 = O(m+α
δ ).

Proof. Feasibility: Feasibility and approximation for the fractional solution x′′

follow easily from correctness of Algorithm 1 and the fact that removing addi-
tional components x′

a1 , . . . , x′
a�

and reassigning them optimally does not worsen
the approximation. Each integral component ŷi is by definition (step 5) greater
or equal than x′′

i . By choice of d step 6 and 7 retain this property for y′′ and
imply thus feasibility for y′′.

Distance between y′′ and y′: The only steps where components of y′ are
changed are step 2, 5 and 7. In step 2 we change y′ to obtain ȳ, in step 5 we
change ȳ to obtain ŷ and in step 7 we change ŷ to obtain y′′. Summing up the
change in each step leads therefore to the maximum possible distance between
y′′ and y′. In step 2 of the algorithm 
 components of y′ are set to zero to obtain
ȳ, which by the definition of 
 results in a change of at most (m + 1)(1/δ + 2).
We define L by L =

∑
1≤i≤� y′

ai
with 0 ≤ L ≤ (m + 1)(1/δ + 2). In step 5, the

only components ȳi being changed are the ones where x′′
i is larger than ȳi. So the

change in step 5 is bounded by
∑

x′′
i

>ȳi
(�x′′

i �− ȳi) =
∑

x′′
i

>ȳi
(�xfix

i + x̂i�− ȳi) ≤∑
x′′

i
>ȳi

(�xfix
i � − ȳi + �x̂i�) ≤ ∑

x′′
i

>ȳi
�x̂i� by knowing that �xfix

i � − ȳi ≤ 0 since
xfix

i = ȳi = 0 if i = aj for a j ≤ 
 or �xfix
i � < �x′

i� ≤ y′
i. Furthermore we

can bound
∑

x′′
i

>ȳi
�x̂i� ≤ ‖x̂‖1 + m ≤ ‖xvar‖1 + m since x̂ is a basic feasible

solution and ‖xvar‖1 can be bounded by L + α(1/δ + 1) (i.e. we get L for the
size of components x′

a1 , . . . , x′
aK

plus
∑

i>�
α(1/δ+1)

‖x′‖1
x′

ai
≤ α(1/δ + 1) for the

remaining ones). Therefore we have ‖ŷ − ȳ‖1 ≤ L + α(1/δ + 1) + m. In step 7,
‖y′′ − ŷ‖1 = ‖d‖1 ≤ α(1/δ +2)+m. In sum this makes a total change of at most
(m + 1)(1/δ + 2) + L + α(1/δ + 1) + m + α(1/δ + 2) + m ≤ 2(m + 1)(1/δ + 2) +
2m + α(2/δ + 3) = O(m+α

δ ).
Number of components: The property that x′ and y′ have the same number

of non-zero components together with the property that y′
i ≥ x′

i implies that x′
i >

0 whenever y′
i > 0. This property holds also for xfix and ȳ since a component

ȳi is set to zero if and only if xfix
i = 0. Notice that y′′ = ŷ − d ≥ x′′. Suppose

by contradiction that there is a component i with x′′
i = 0 and y′′

i > 0, then
ŷi = y′′

i + di > 0 and by definition of ŷ we obtain ȳi > 0. In this case we
have xfix

i > 0, which gives a contradiction to x′′
i = 0 = xfix

i + x̂i > 0. Using
the property that x′′ and y′′ have the same number of non-zero components, it
is sufficient to prove that the number of non-zero components of x′′ is limited
by δLIN . Our new solution x′′ is composed of xfix and x̂. Solution xfix has
K − 
 non-zero components, since in step 2 we set 
 components of xfix to
zero. Being a basic feasible solution, x̂ has at most m non-zero components and
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hence x′′ has at most K + m − 
 non-zero components. If 
 ≥ m, then x′′ has
≤ K ≤ δLIN non-zero components. So let 
 < m: The total number of non-
zero components after step 4 is (K + m − 
). We now prove that this number is
bounded by δLIN . Parameter 
 is chosen to be maximal, therefore

∑
i≤l+1 y′

ai
≥

(m + 1)(1/δ + 2). Hence, the average size of components y′
a1 , . . . , y′

a�+1
is greater

than (m+1)(1/δ+2)
�+1

�+1≤m

≥ (m+1)(1/δ+2)
m > 1/δ + 2. Since the components are

sorted in non-decreasing order, every component y′
i with i ≥ 
 + 1 has size

> 1/δ + 2. Summing over all non-zero components of y′ yields the following
inequality: ‖y′‖1 =

∑K
i=�+2 y′

ai
+ y′

a�+1 + L ≥ (K − 
 − 1)(1/δ + 2) + y′
a�+1 + L ≥

(K − 
 − 1)(1/δ + 2) + (m + 1)(1/δ + 2) = (K − 
 + m)(1/δ + 2). Using that
‖y′‖1 ≤ (1 + 2δ)LIN yields (1 + 2δ)LIN ≥ (K − 
 + m)(1/δ + 2). Dividing both
sides by (1/δ + 2) gives (K − 
 + m) ≤ δLIN . This shows that the number of
non-zero components of x′′ and y′′ is at most δLIN .

Approximation: Case1: ‖d‖1 = α(1/δ + 2) + m
The following inequalities ‖ŷ‖1 ≤ ‖ȳ‖1 + L + α(1/δ + 2) + m = ‖y′‖1 + α(1/δ +
1)+m and ‖y′‖1 ≤ (1+2δ)LIN together yield the aimed approximation ‖y′′‖1 =
‖ŷ‖1 − ‖d‖1 = ‖ŷ‖1 − α(1/δ + 2) − m ≤ (1 + 2δ)LIN − α.
Case2: ‖d‖1 < α(1/δ + 2) + m
Since d is chosen maximally, y′′

i − x′′
i < 1 for every components i = 1, . . . , n.

Since ‖x′′‖1 ≤ (1 + δ)LIN − α and y′′ has at most δLIN non-zero components
‖y′′‖1 is bounded by (1 + δ)LIN − α + δLIN = (1 + 2δ)LIN − α. 	

In case of bin packing the LP solution x̂ can not be computed efficiently. There-
fore we adapt the algorithm further. The final algorithm called Algorithm B (see
full paper), which we use later in the bin packing algorithm allows the use of
an approximate LP solution. An approximate fractional solution for bin packing
can then be solved efficiently using max-min resource sharing [15].

3 AFPTAS for Robust Bin Packing

The goal of this section is to give a fully robust AFPTAS for the bin packing
problem using the methods developed in the previous section. For that purpose
we show at first the common way how one can formulate a rounded instance
of bin packing as an ILP. In Section 3.2 we present abstract properties of a
rounding that need to be fulfilled to obtain a suitable rounding and in Section
3.3 we present the used dynamic rounding algorithm. The crucial part however
is the analysis of the dynamic rounding in combination with ILP techniques.
Since the ILP and its optimal value are in constant change due to the dynamic
rounding, it is difficult to to give a bound for the approximation. Based on the
abstract properties we therefore develop techniques how to view and analyze the
problem as a whole.

The online bin packing problem is defined as follows: Let It = {i1, . . . it}
be an instance with t items at time step t ∈ N and let s : It → (0, 1] be a
mapping that defines the sizes of the items. Our objective is to find a function
Bt : {i1, . . . , it} → N+, such that

∑
i:Bt(i)=j s(i) ≤ 1 for all j and minimal
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maxi {Bt(i)} (i.e. Bt describes a packing of the items into a minimum number of
bins). We allow to move few items when creating a new solution Bt+1 for instance
It+1 = It ∪ {it+1}. Sanders et al. [10] and also Epstein and Levin [2] defined the
migration factor to give a measure for the amount of repacking. The migration
factor is defined as the total size of all items that are moved between the solutions
divided by the size of the arriving item. Formally the migration factor of two
packings Bt and Bt+1 is defined by

∑
j≤t:Bt(ij) 
=Bt+1(ij) s(ij)/s(it+1).

3.1 LP-Formulation

Let I be an instance of bin packing with m different item sizes s1, . . . , sm. Sup-
pose that for each item ik ∈ I there is a size sj with s(ik) = sj . A configura-
tion Ci is a multiset of sizes {a(Ci, 1) : s1, a(Ci, 2) : s2, . . . a(Ci, m) : sm} with∑

1≤j≤m a(Ci, j)sj ≤ 1, where a(Ci, j) denotes how often size sj appears in con-
figuration Ci. We denote by C the set of all configurations. Let |C| = n. We
consider the following LP relaxation of the bin packing problem:

min ‖x‖1∑
Ci∈C

xia(Ci, j) ≥ bj ∀1 ≤ j ≤ m

xi ≥ 0 ∀1 ≤ j ≤ n

Component bj states the number of items i in I with s(i) = sj for j = 1, . . . , m.
This LP-formulation was first described by Eisemann [16]. Suppose that each
size sj is larger or equal to ε/2 for some ε ∈ (0, 1/2]. Since the number of
different item sizes is m, the number of feasible packings for a bin is bounded
by |C| = n ≤ (2

ε + 1)m. Obviously an optimal integral solution of the LP gives
a solution to our bin packing problem. We denote by OPT(I) the value of an
optimal solution. An optimal fractional solution is a lower bound for the optimal
value. We denote the optimal fractional solution by LIN (I).

3.2 Rounding

We use a rounding technique based on the offline APTAS by Fernandez de La
Vega & Lueker [3]. As we plan to modify the rounding through the dynamic
rounding algorithm we give a more abstract approach on how we can round the
items to obtain an approximate packing. At first we divide the set of items into
small ones and large ones. An item i is called small if s(i) < ε/2, otherwise it is
called large. Instance I is partitioned accordingly into the large items IL and the
small items IS . We treat small items and large items differently. Small items can
be packed using a greedy algorithm and large items need to be rounded using
a rounding function. We define a rounding function as a function R : IL �→ N
which maps each large item i to a group j. By Rj we denote the set of items
being mapped to the same group j, i.e. Rj = {i ∈ IL | R(i) = j}. By λR

j we
denote an item i with s(i) = max{s(ik) | ik ∈ Rj}. Given an instance I and a
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rounding function R, we define the rounded instance IR by rounding the size
of every large item i ∈ Rj for j ≥ 1 up to the size s(λR

j ) of the largest item in
its group. Items in R0 are excluded from instance IR. We write sR(i) for the
rounded size of item i in IR. Depending on constants c and d, we define the
following properties for a rounding function R.

(A) max {R(i) | i ∈ IL} = c/ε2 for a constant c ∈ R+

(B) |Ri| = |Rj | for all i, j ≥ 2
(C) |R0| = d|R1| for a constant d ∈ R+ with d ≥ 1
(D) s(i) ≤ s(j) ⇔ R(i) ≥ R(j)

Any rounding function fulfilling property (A) has at most Θ(1/ε2) different item
sizes and hence instance IR can now be solved approximately using the LP
relaxation. The resulting LP relaxation has Θ(1/ε2) rows and can be solved
approximatley with accuracy (1 + δ) using the max-min resource sharing [15] in
polynomial time. Based on the fractional solution we obtain an integral solution
y of the LP with ‖y‖1 ≤ (1 + δ)LIN (IR) + C for some additive term C ≥ 0.
We say a packing B corresponds to a rounding R and solution y if items in
R1, . . . , Rm are packed by B according to the integral solution y of the LP. The
LP is defined by instance IR. Items in R0 are each packed in separate bins.

Lemma 4. Given instance I with items greater than ε/2 and a rounding func-
tion R fulfilling properties (A) to (D), then OPT(IR) ≤ OPT(I) and |R0| ≤
2d
c εOPT(I). Let y be an integral solution of the LP for instance IR with ‖y‖1 ≤

(1 + δ)LIN (I R) + C for some value C ≥ 0, let B be a packing of I which corre-
sponds to R and y and let ε′ = 2d

c ε. Then

max
i

{Bt(i)} = ‖y‖1 + |R0| ≤ (1 + ε′ + δ)OPT (I) + C.

Given instance I = {i1, . . . , it}, we define m by m = �1/ε2� if �1/ε2� is even and
otherwise m = �1/ε2� + 1. By definition m is always even. For every instance I
we find a rounding function R with rounding groups R0, R1, . . . Rm which fulfills
properties (A)-(D) such that |R0| < 2|R1| and |R0| ≥ |R1|. Using this rounding
technique in combination with an approximate LP solver leads to an AFPTAS
for the offline bin packing problem (see [3] or full paper).

3.3 Online Bin Packing

Let us consider the case where items arrive online. As new items arrive we are al-
lowed to repack several items but we intend to keep the migration factor as small as
possible. We present operations that modify the current rounding Rt and packing
Bt to give a solution for the new instance. The given operations worsen the ap-
proximation but by applying the results from the previous section we can main-
tain an approximation ratio that depends on ε. The presented rounding technique
is similar to the one used in [2]. In our algorithm we use approximate solutions of
ILPs in contrast to the APTAS of Epstein & Levin which solve the ILPs optimally.
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Handling with approximate ILPs results in a different analysis of the algorithm
because many helpful properties of optimal solution are getting lost.

Note that in an online scenario of bin packing where large and small items
arrive online, small items do not need to be considered. We use the same tech-
niques as in [2] to pack small items. As a small item arrives we place it via
FirstFit [17]. In this case FirstFit increases the number of bins being used by at
most 1 ([3]) and the migration factor is zero as we repack no item. Whenever a
new large item arrives several small items might also need to be replaced. Every
small item in a bin that is repacked by the algorithm, is replaced via FirstFit.
Packing small items with this strategy does not increase the number of bins
that need to be repacked as a large item arrives. Later on the migration factor
will solely be determined by the number of bins that are being repacked. More
precisely, we will prove that the number of bins, that need to be repacked is
bounded by O(1/ε3). Therefore we assume without loss of generality that every
arriving item is large, i.e. has a size ≥ ε/2 (see also [2]). Our rounding Rt will
be constructed by three different operations, called the insertion, creation and
union operation. The insertion operation is performed whenever a large item ar-
rives. This operation is followed by a creation or an union operation depending
on the phase the algorithm is in. For the exact definition of the operations and
how to use them see full paper. The following algorithm is our central algorithm
for the robust online bin packing problem. The exact algorithm as well as its
analysis are stated in the full paper.

Algorithm 4

– While the size of all items = O(m/δ̄) use the offline AFPTAS.
– Afterwards use operations insert, create or union repetitively to obtain a

suitable rounding Rt and a packing for each instance It

– Use Algorithm B before each operation to improve the packing by a constant.

Operations insert, create and union worsen the approximation ratio. Therefore
we use Algorithm B in advance of each operation to maintain a fixed approxi-
mation guarantee. It remains to prove that applying Algorithm B to a solution
for IRt impacts the overall approximation Δ = ε̄ + δ̄ + ε̄δ̄ in the same way. We
define C = ΔOPT(It) + m. See full paper for the proof.

Theorem 5. Given a rounding function Rt and an LP defined for IRt . Let
x be a fractional solution of the LP with ‖x‖1 + |R0

t | ≤ (1 + Δ)OPT (It) and
‖x‖1 ≥ 2α(1/δ̄ + 1) and ‖x‖1 = (1 + δ′)LIN (IRt) for some δ′ > 0. Let y be an
integral solution of the LP with ‖y‖1 ≥ (m+2)(1/δ̄+2) and corresponding packing
B such that maxi Bt(i) = ‖y‖1 + |R0

t | ≤ (1 + 2Δ)OPT (It) + m. Suppose x and y
have the same number ≤ C of non-zero components and for all components i we
have yi ≥ xi. Then using Algorithm B on x and y returns new solutions x′ with
‖x′‖1 + |R0

t | ≤ (1 + Δ)OPT (It) − α and integral solution y′ with corresponding
packing B′

t such that

max
i

B′
t(i) ≤ (1 + 2Δ)OPT(It) + m − α.
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Further, both solutions x′ and y′ have the same number ≤ C of non-zero com-
ponents and for each component we have x′

i ≤ y′
i.

Set δ̄ = ε̄. Then Δ = 2ε̄ + ε̄2 = O(ε). Using the above theorem inductively after
each operation leads to the following main theorem.

Theorem 6. Algorithm 4 is a fully robust AFPTAS for the bin packing problem.

3.4 Running Time

Storing items that are in the same rounding group in a heap structure, we can
perform each operation (insertion, creation and union) in time O( 1

ε2 log(ε2t)).
Furthermore Algorithm B needs to look through all non-zero components. The
number of non-zero components is bounded by O(εOPT ) = O(εt). Main part of
the complexity lies in finding an approximate LP solution. Let M(n) be the time
to solve a system of n linear equations. The running time of max-min resource
sharing is then in our case O(M( 1

ε2 ) 1
ε4 + 1

ε7 ) (see [18]). Therefore the running
time of the Algorithm is O(M( 1

ε2 ) 1
ε4 + εt + 1

ε2 log(ε2t)).

4 Conclusion

Based on approximate solutions, we developed an analog to a theorem of Cook
et al. [1]. Our improvement helps to develop online algorithms with a migration
factor that is bounded by a polynomial in 1/ε, while algorithms based on Cook’s
theorem usually have exponential migration factors. We therefore applied our
techniques to the famous online bin packing problem. This led to the creation
of the first fully robust AFPTAS for an NP-hard online optimization problem.
The migration factor of our algorithm is of size O( 1

ε4 ), which is a notable re-
duction compared to previous robust algorithms. When a new item arrives at
time t the algorithm needs running time of O(M( 1

ε2 ) 1
ε4 + εt + 1

ε2 log(ε2t)), where
M(n) is the time to solve a system of n linear equations. Any improvement to
the max-min resource sharing algorithm based on the special structure of bin
packing would immediately speed up our online algorithm. We believe that there
is room to reduce the running time and the migration factor. Note for example
that we give only a very rough bound for the migration factor as the algorithm
repacks O( 1

ε3 ) bins. Repacking these bins in a more carefully way might lead
to a smaller migration factor. An open question is the existence of an AFP-
TAS with a constant migration factor that is independent of ε. We mention in
closing that the LP/ILP-techniques we present are very general and hence can
possibly be used to obtain fully robust algorithms for several other online opti-
mization problems as well (i.e. multi-commodity flow, strip packing, scheduling
with malleable/moldable task or scheduling with resource constraints).
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Abstract. Let G = (V,E) be an undirected unweighted graph on n
vertices. A subgraph H of G is called an (α, β) spanner of G if for each
(u, v) ∈ V × V , the u-v distance in H is at most α · δG(u, v) + β. The
following is a natural relaxation of the above problem: we care for only
certain distances, these are captured by the set P ⊆ V × V and the
problem is to construct a sparse subgraph H , called an (α, β) P-spanner,
where for every (u, v) ∈ P , the u-v distance inH is at most α·δG(u, v)+β.

We show how to construct a (1,2) P-spanner of size Õ(n · |P|1/3)
and a (1,2) (S × V )-spanner of size Õ(n · (n|S|)1/4). A D-spanner is a
P-spanner when P is described implicitly via a distance threshold D
as P = {(u, v) : δ(u, v) ≥ D}. For a given D ∈ Z

+, we show how to
construct a (1, 4) D-spanner of size Õ(n3/2/D1/4) and for D ≥ 2, a
(1, 4 logD) D-spanner of size Õ(n3/2/

√
D).

1 Introduction

Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph
H of G is said to be a spanner with stretch function (α, β) if for every pair of
vertices (u, v) we have: δH(u, v) ≤ α · δG(u, v) + β, where δH(u, v) is the
distance between u and v in the graph H and δG(u, v) is the distance between
u and v in the graph G. The goal in spanner problems is to show the sparsest
possible subgraph for a given stretch function. Constructing sparse spanners with
small stretch is a fundamental problem in graph algorithms and this problem
has been well-studied in weighted and unweighted graphs during the last 25
years [4, 5, 8, 14–16, 18, 20, 22–24, 26, 27].

The following is a natural variant of the spanner problem: we relax the con-
dition that the stretch in the subgraph has to be bounded by (α, β) for all pairs
of vertices. We care for only certain distances here – this set is given by a sub-
set P ⊆ V × V and the problem is to compute a sparse subgraph H such that
δH(u, v) ≤ α · δG(u, v) + β for all (u, v) ∈ P . For pairs outside P , the stretch in
H can be arbitrary. Such a subgraph H is called an (α, β) P-spanner or pairwise
spanner of G. When P = S × V , we will refer to the P-spanner as a sourcewise
spanner.

Pairwise preservers were studied by Coppersmith and Elkin [10] in 2005 where
the input is G = (V,E) along with P ⊆ V × V and the problem is to construct
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a sparse subgraph H such that the u-v distance for each (u, v) ∈ P is exactly
preserved, i.e., δH(u, v) = δG(u, v) for all (u, v) ∈ P . They constructed such a
subgraph H of size O(min{n

√
|P|, n+

√
n|P|}). They posed the problem of com-

puting sparser subgraphs where distances between pairs in P are approximately
preserved, namely the problem of computing sparse P-spanners.

Pettie [22] showed a (1, O(log n)) (S × V )-spanner of size O(n
√
|S|). Cygan

et al. [13] very recently showed size-stretch trade-off results for (1, 2k) sourcewise
spanners and (1, 4k) pairwise spanners, for all integers k ≥ 1. In particular, their
(1, 2) (S × V )-spanner has size O(n4/3|S|1/3). Also known is a (1, 2) (S × S)-
spanner of size O(n

√
|S|) (see [13, 22]).

Our Results. We consider the problem of constructing sparse (1,2) P-spanners
for P = S×V , where S ⊆ V , and for general P ⊆ V ×V . Such pairwise spanners
are relevant in settings where only certain distances are of interest to us and we
seek a sparse subgraph that captures these distances almost exactly.

Another motivation for this problem is that all the currently known “purely
additive” spanners can be constructed via appropriate (1,2) P-spanners. When
the stretch function is (1, β) for β = O(1), the corresponding spanner is said to
be purely additive. Purely additive spanners are known for unweighted graphs
when β = 2, 4, 6. These results are as follows: a (1, 2) spanner of size O(n3/2) [16],
a (1, 4) spanner of size O(n1.4log0.2n) [8], and a (1, 6) spanner of size O(n4/3) [4].

The (1, 2) spanner is obviously a (1, 2) P-spanner, where P = V × V . The
(1, 6) spanner of size O(n4/3) can be obtained using the sparse (1, 2) (S × S)-
spanner of size O(n

√
|S|) for an appropriate S ⊆ V . We will see that a (1, 4)

spanner of size O(n1.4log0.2n) can be obtained via a (1, 2) (S×V )-spanner of size
O(n · (n|S| logn)1/4). Note that this is a deterministic construction of a (1, 4)
spanner of this size, thereby improving upon the construction in [8] which is
randomized and which shows an O(n1.4log0.2n) bound on the expected size of
the (1, 4) spanner. We show the following results here.

Theorem 1. For any S ⊆ V , there is a polynomial time algorithm to compute
a (1, 2) (S × V )-spanner of size O(n · (n|S| logn)1/4).

Theorem 2. For any P ⊆ V × V , there is a polynomial time algorithm to
compute a (1, 2) P-spanner of size O(n · (|P| logn)1/3).

We next study a variant of the P-spanner problem where the set P is not specified
explicitly as a part of the input. Instead, the set P is described implicitly via a
distance threshold D. Here along with the input graph G, we are given D ∈ Z+

and the set P = {(u, v) : δG(u, v) ≥ D}. The problem of computing sparse
D-preservers, where the problem is to compute a sparse P-preserver for the set
P = {(u, v) : δG(u, v) ≥ D}, was studied by Bollobás et al. [7] in 2003.

The motivation for studying D-preservers was the following result of Elkin and
Peleg [16]: for any ε > 0 and k ∈ Z+, there exists a value f(ε, k) such that there
is a subgraph H of G with O(n1+1/k) edges where δH(u, v) ≤ (1 + ε) · δG(u, v)
for all (u, v) with δG(u, v) ≥ f(ε, k). This motivated the question studied in [7]
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of whether there is a sparse subgraph, where all large distances can be exactly
preserved and they showed such a D-preserver of size O(n2/D). Here we consider
the question of whether there is a subgraph sparser than the D-preserver where
distances ≥ D can be approximated with a small additive stretch. Let an (α, β)
D-spanner refer to an (α, β) P-spanner for P = {(u, v) : δG(u, v) ≥ D}. We
show the following results here.

Theorem 3. For any D ∈ Z+, there is a polynomial time algorithm to compute
a (1, 4) D-spanner of size O(n3/2 · (logn/D)1/4).

Theorem 4. For any integer D ≥ 2, there is a polynomial time algorithm to
compute a (1, 4 logD) D-spanner of size O(n ·

√
n logn/D).

1.1 Background and Related Work

Graph spanners were introduced by Peleg and Schaffer [20] in 1989. Thereafter,
spanners have been very well-studied, and there are several applications involving
spanners, including algorithms for approximate shortest paths [1, 9, 15], approx-
imate distance oracles [3, 6, 25], labeling schemes [17, 19], network design [21],
and routing [2, 11, 12].

There are several algorithms known for computing multiplicative and additive
spanners in weighted and unweighted graphs. It is known that every graph on
n vertices admits a (2k − 1, 0)-spanner of size O(n1+1/k) [5, 18, 23, 24]. For
unweighted graphs, Dor et al. [14] (with subsequent work by Elkin and Peleg in
[16]) showed the first purely-additive spanner of stretch (1,2) and size O(n3/2).
Baswana et al. [4] showed the construction a (1, 6) spanner of size O(n4/3). Very
recently, Chechik [8] showed the construction of a (1,4)-spanner with expected
size O(n1.4log0.2n).

The problem of constructing sparse P-spanners, for a given P ⊆ V × V , was
studied by Cygan et al. [13] who showed the following constructions for any
integer k ≥ 1: a (1, 4k) P-spanner of size O(n1+1/(2k+1) · (k|P|)k/(4k+2)) and a
(1, 2k) (S × V )-spanner of size O(n1+1/(2k+1) · (k|S|)k/(2k+1)) for any S ⊆ V .

Techniques. The algorithms in [4, 13] are based on clustering and path-buying.
The clustering step is common to several spanner algorithms. Section 2 describes
this step. The path-buying technique was introduced in the (1,6) spanner algo-
rithm [4]. Here a path p is assigned a value and a cost – if p’s value dominates
its cost, then p is “bought”, i.e., p is added to the subgraph being constructed.

Clustering along with breadth-first-search trees rooted at all cluster centers
yields a (1,2) spanner [14, 16]. The algorithm in [8] for (1,4) spanner uses ran-
domization first to pick a small sample of vertices for rooting BFS trees and then
to cover the neighborhood of high-degree vertices with high probability; some
selected shortest paths are also added and the resulting graph is shown to be a
(1,4) spanner with high probability.

All our algorithms combine these three steps: (1) clustering, (2) path-buying,
and (3) selecting a few vertices to root BFS trees.
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We mark shortest paths as high-cost or low-cost. High-cost paths turn out to be
easy to approximate via BFS trees. The path-buying step assesses each low-cost
path p – if adding p to our subgraph improves a sufficient number of relevant
distances, then p is added to our subgraph, else we show that our subgraph
already contains a good approximation of p. These algorithms are described in
Sections 3 and 4.

2 Clustering and BFS Trees

A clustering of a graph G = (V,E) is a partition of the vertex set V into subsets
C1, . . . , Cλ called clusters and the set U = V \ ∪iCi of unclustered vertices.
Associated with each cluster Ci is a vertex called its cluster center, denoted by
center(Ci), with the following property:

– In the graph G, center(Ci) is a common neighbor of all x ∈ Ci.
Several clusters can share the same cluster center and center(Ci) /∈ Ci for any i.
We follow the clustering procedure used in [13]. Given an integer h, where 1 ≤
h ≤ n, this procedure efficiently constructs the clustering C = {C1, . . . , Cλ, U}
as follows:

– initially all the vertices are unclustered and C = ∅.
– while there exists a v ∈ V with more than h unclustered neighbors

• C = an arbitrary subset of h unclustered neighbors of v; center(C) = v.
• all vertices in C are marked clustered; C = C ∪ {C}.

– let U denote the set of unclustered vertices. C = C ∪ {U}.

Thus each cluster C is a collection of exactly h vertices and there can be at most
n/h clusters in C. Associated with C is a subgraph GC , whose edge set consists
of the following:

(i) all edges (a, b) in G where either a or b (or both) is in U ,
(ii) for each cluster Ci, all edges e in G where both endpoints of e are in Ci,

and
(iii) for each cluster Ci, the edges (x, center(Ci)) ∀ x ∈ Ci.

It is easy to see that the subgraph GC has size O(nh). It follows from (i) and
(ii) above that any edge not present in GC has to be an inter-cluster edge, i.e., it
is an edge whose endpoints belong to distinct clusters. The following definition
of the cost of a path will be used in the rest of the paper.

Definition 1. For any path p in G, let cost(p) be the number of edges in p that
are not present in GC.

Lemma 1 (from [13]). Let ρ be a shortest path in G with cost(ρ) ≥ t, where
t ∈ R+. Then there are at least t/2 clusters of C having at least one vertex on ρ.

For each pair of vertices u and v, we select an arbitrary shortest u-v path in
G as the shortest u-v path. Let R = {ρ1, . . . , ρ(n

2)
} be the set of all

(
n
2

)
pairwise

shortest paths in G.
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Definition 2. Call a path ρ high-cost if ρ ∈ R and cost(ρ) ≥ (n lnn)/h2.

Lemma 2. There is a polynomial time algorithm to compute cluster indices
i1, . . . , ik, where k is O(h), so that the set Ci1 ∪ · · · ∪Cik has at least one vertex
on every high-cost path.

Proof. We form a table T0 whose rows are all the high-cost paths. Let these
paths be ρ′1, . . . , ρ

′
�. The columns of T0 are all the clusters C1, . . . , Cλ in C. For

1 ≤ i ≤ 	 and 1 ≤ j ≤ λ, we have T0[i, j] = 1 if cluster Cj contains at least one
vertex on path ρ′i, else T [i, j] = 0.

It follows from Lemma 1 that there are at least t/2 1’s in each row, where
t = (n lnn)/h2. So the total number of 1’s in T0 is at least 	 · t/2. Thus there
has to be a column in T0 with at least 	 · t/(2λ) 1’s. Let i1 be the index of such
a column. Delete all the rows that have a 1 in the i1-th column from T0 and call
the resulting table T1.

Let r1 be the number of rows in T1. Note that r1 ≤ 	(1−t/(2λ)). The invariant
remains that every row in T1 has at least t/2 1’s. Repeat the same step for T1

to determine a column index i2 and so on.
After k steps, where k = �(4λ lnn)/t�, the number of rows in Tk is at most

	(1− t/(2λ))(4λ/t) lnn ≤ 	/n2 < 1,

since 	 ≤
(
n
2

)
. In other words, Tk has zero rows. Thus the set Ci1 ∪ · · · ∪ Cik

has at least one vertex on every high-cost path, where i1, . . . , ik are the column
indices selected in these k steps. The value k = �(4λ lnn)/t�, which is O(h) since
λ ≤ n/h and t = (n lnn)/h2. ��

It follows from Lemma 2 that that every high-cost path ρ contains a neighbor
of some vertex in {center(Ci1 ), . . . , center(Cik)}. Hence the breadth-first-search
tree in G rooted at this cluster center contains a path of length at most |ρ|+ 2
between the endpoints of ρ.

Define T as the subgraph of G whose edge set is Ti1 ∪ · · · ∪ Tik , where for
j = 1, . . . , k, Tij is the BFS tree in G rooted at center(Cij ). We can conclude
Corollary 1 from Lemma 2.

Corollary 1. If (u, v) is a pair of vertices whose shortest path in R has cost
≥ (n lnn)/h2, then T has a path of length at most δG(u, v) + 2 between u and v.

3 Algorithms for Sparse (1,2) P-Spanners

In this section we first present our algorithm for a (1,2) (S × V )-spanner and
then use this sourcewise spanner to construct a (1,4) all-pairs spanner. We then
present our algorithm to compute a (1,2) P-spanner, for general P .

3.1 A (1,2) Sourcewise Spanner

The input here is an undirected unweighted graph G = (V,E) on n vertices and
a subset S ⊆ V . Our algorithm to find a sparse (1,2) (S × V )-spanner H in G
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is presented below. Note that in the path-buying step, when a path p is added
to H , it means H becomes H ∪ {p}. Recall that R = {ρ1, . . . , ρ(n

2)
} is the set of

all pairwise shortest paths in G.

1. Clustering. Call the clustering procedure with h = �(n|S| lnn)1/4�. This com-
putes the clustering C = {C1, . . . , Cλ, U} and the post-clustering subgraph
GC . Initialize H to GC .

2. Path-buying. For each p ∈ R where one endpoint of p (call it s) belongs to
S and the other endpoint (call it v) belongs to a cluster in C do:

– If cost(p) <
√

n lnn
|S| and |p| < δH(s, Ci), where Ci is v’s cluster, then add

p to H . [note that δH(s, Ci) = min{δH(s, x) : x ∈ Ci}]
3. Adding BFS trees. Select O(h) cluster indices (as given by Lemma 2) so that

the union of these clusters contains at least one vertex on each path in R
with cost ≥ (n lnn)/h2.

– Add the edges of the BFS trees rooted at these O(h) cluster centers to H .
4. Return the subgraph H .

The value h = �(n|S| lnn)1/4�. So a path p ∈ R with cost ≥
√

(n lnn)/|S|
has cost at least (n lnn)/h2, i.e., it is high-cost (Definition 2). If (u, v) are the
endpoints of such a path, then due to the edges added to H in step 3 of our
algorithm, we have δH(u, v) ≤ δG(u, v) + 2 (by Corollary 1).

Call a path p ∈ R low-cost if cost(p) <
√

(n lnn)/|S|. Suppose p is low-cost
and its endpoints are s and v, where s ∈ S. Step 2 buys p only if v is clustered
and p improves the current distance between s and v’s cluster. Lemma 4 shows
a (1,2) stretch distance in H for all (S × V ) distances in G. Lemma 3 bounds
the size of H . Theorem 1 stated in Section 1 follows from these lemmas.

Lemma 3. The size of the subgraph H is O(n · (n|S| logn)1/4).

Proof. The clustering step and the step of adding BFS trees add O(nh) edges to
our subgraph H . Since h = �(n|S| logn)1/4)�, this bounds the number of such
edges by O(n · (n|S| logn)1/4).

We now to need to bound the number of edges added to H in the path-buying
step (step 2). Since every path added in step 2 contributes at most

√
(n lnn)/|S|

edges that are not present in GC , we can bound the total number of new edges
added to H in step 2 by

√
(n lnn)/|S|·(the number of paths added in step 2).

Each path added in step 2 is between a source vertex and a clustered vertex.
We now bound the number of s-Ci paths added in step 2 for a fixed pair (s, Ci),
where s ∈ S and Ci is a cluster in C. Once an s-Ci path p ∈ R is added to H
in step 2, the s-Ci distance in H becomes ≤ δG(s, Ci) + 2, since p is a shortest
path.1 Thereafter in step 2, at most 2 s-Ci paths can be bought. Thus in total,
at most 3 s-Ci paths can be added to H in step 2 and this is true for each pair

1 If δG(s, Ci) = d, then δG(s, v) ∈ {d, d + 1, d + 2} ∀v ∈ Ci due to length ≤ 2 paths
between every pair of vertices in Ci.



Small Stretch Pairwise Spanners 607

(s, Ci). So the number of paths added to H in step 2 is at most 3|S|λ, where λ
is the number of clusters. So the number of edges added in step 2 is at most√

n lnn

|S| · 3|S| · n

(n|S| lnn)1/4
= 3n5/4 · |S|1/4 · ln1/4 n.

Thus the size of the final subgraph H is O(n · (n|S| logn)1/4). ��

Lemma 4. Let (s, t) ∈ S×V . Then δH(s, t) ≤ δG(s, t)+2, where H is our final
subgraph.

Proof. Let ρ ∈ R be the s-t shortest path in G. If ρ contains only unclustered
vertices, then the entire path ρ is present in H (since GC is a subgraph of H).

So let us assume there are some clustered vertices on ρ. Let v be the last
vertex on ρ that is clustered, where we regard s as the first vertex on ρ. Let ρ′

be the subpath of ρ between s and v and let ρ′′ be the subpath of ρ between v
and t. Since every vertex on ρ after v is unclustered, the entire path ρ′′ is present
in H .

We will now show that H has a path of length at most |ρ′| + 2 between s
and v. This will imply that H has a path of length at most |ρ| + 2 between s
and t. Let p ∈ R be the s-v shortest path, so |p| = |ρ′|. If p is high-cost, then
Corollary 1 proves there is a path of length at most |p|+ 2 between s and v in
one of the BFS trees added to H in step 3.

So let us assume p is low-cost. Our algorithm would have considered p in
step 2 since the vertex v is clustered. Let v ∈ Ci, where Ci ∈ C and let X
be our subgraph when path p is considered in step 2. Since p is low-cost, if
δX(s, Ci) > |p|, then we would have bought p, in which case δX(s, v) = |p|. So
let us assume that δX(s, Ci) ≤ |p| when we considered p in step 2. So X has a
path of length ≤ |p| between s and Ci.

Since X has a path of length at most 2 between every pair of vertices in Ci,
this means there is a path of length at most |p|+ 2 between s and v in X . Thus
δH(s, v) ≤ |ρ′|+ 2. Hence δH(s, t) ≤ |ρ|+ 2. ��

A (1,4) All-Pairs Spanner. As an application of our sparse (1,2) (S × V )-
spanner, we now show a simple deterministic construction of a (1,4) all-pairs
spanner of size O(n1.4 log0.2 n).

The input is G = (V,E). The set S of source vertices gets determined in step 1
of our algorithm, which is described below.

1. Let S be the set of center clusters in the clustering C computed by the
clustering procedure on G with parameter h = �n0.4 log0.2 n�. Let G0 be the
subgraph of GC whose edge set consists of the following:
– all edges with at least one endpoint unclustered in C and for each cluster

Ci ∈ C, the edges (x, center(Ci)) for all x ∈ Ci.
2. Call our (1,2) (S×V )-spanner algorithm in G. Let H be this graph. Return

H ′ = G0 ∪H .
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We can show the following lemma (proof omitted here) which bounds the size
of the subgraph H ′ and shows it to be a (1, 4) all-pairs spanner.

Lemma 5. The size of H ′ is O(n1.4 log0.2 n). For any pair (u, v) ∈ V × V , we
have δH′(u, v) ≤ δG(u, v) + 4.

3.2 A (1,2) Pairwise Spanner

In this section we consider the problem of computing a sparse (1,2) P-spanner in
G = (V,E), for a given subset P ⊆ V × V . The path-buying step is very simple
here: for each (u, v) ∈ P , we buy the shortest u-v path in G if its cost is “low”,
else the BFS trees added to H will take care of the (u, v) distance in H . Our
algorithm is presented below.

1. Clustering. Call the clustering procedure with parameter h = �(|P| lnn)1/3�
to compute the clustering C and the subgraph GC . Initialize H to GC .

2. Path-buying. For each (u, v) ∈ P do: if cost(ρ) < n · (lnn)1/3

|P|2/3 , then add ρ to

H , where ρ ∈ R is the shortest u-v path in G.

3. Adding BFS trees. Select O(h) cluster indices as given by Lemma 2 so that
the union of these clusters contains at least one vertex on each high-cost
path (Definition 2). Add the BFS trees rooted at these O(h) cluster centers
to H .

4. Return this subgraph H .

It is easy to prove the following lemma which shows the correctness of the above
algorithm. We can now conclude Theorem 2 stated in Section 1.

Lemma 6. The final H is a (1,2) P-spanner and its size is O(n|P|1/3 log1/3 n).

4 Purely Additive D-Spanners

Given an undirected unweighted graph G = (V,E) on n vertices and a distance
threshold D ∈ Z+, in this section we consider the problem of constructing sparse
(1, β) P-spanners of G for the set P = {(u, v) ∈ V × V : δG(u, v) ≥ D}. We
present our algorithm for β = 4 in Section 4.1 and we present our algorithm for
β = 4 logD (assuming D ≥ 2) in Section 4.2.

4.1 A (1,4) D-Spanner

Our path-buying strategy here uses the function cost(p) (Definition 1) that was
used in the algorithms in Section 3 and it also uses a new function valueX(p)
defined below. For a vertex v on p and a cluster C with at least one vertex on
p, let δp(v, C) be the distance in p between v and C, i.e., the least length of a
subpath of p between v and a vertex in C.
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Definition 3. For any path p in G and subgraph X of G, let valueX(p) be the
number of pairs (v, C) such that δp(v, C) < δX(v, C), where vertex v and cluster
C are incident on p.

That is, for a path p, valueX(p) counts the (vertex, cluster) pairs incident
on p whose distance in p is strictly smaller than their distance in the subgraph
X . Our algorithm to compute a (1,4) P-spanner of G for the set P = {(u, v) :
δG(u, v) ≥ D} is presented below.

1. Clustering. Call the clustering procedure with h = �
√
n · (lnn/D)1/4� to

compute the clustering C and the post-clustering subgraph GC . Initialize H
to GC .

2. Path-buying. For each ρ ∈ R do: if ρ satisfies cost(ρ) ≤ valueH(ρ) ·
√

lnn
D in

the current subgraph H , then add ρ to H .

3. Adding BFS trees. Select O(h) cluster indices as given by Lemma 2. Add
the edges of the BFS trees rooted at the corresponding cluster centers to H .
Return this subgraph H .

Since h = �
√
n · (lnn/D)1/4�, a path ρ ∈ R with cost ≥

√
D lnn has cost at least

(n lnn)/h2, thus such a path is necessarily high-cost. We know from Corollary 1
that edges added in step 3 ensure a (1,2) stretch in H for the endpoints of
high-cost paths.

Lemma 7 shows a (1,4) stretch in H for shortest paths of length ≥ D and cost
<
√
D lnn. Lemma 8 bounds the size of the final subgraph H . Their proofs are

omitted here. Theorem 3 from Section 1 follows from these lemmas.

Lemma 7. If p ∈ R with |p| ≥ D and cost(p) <
√
D lnn, then there is a path

of length ≤ |p|+ 4 between p’s endpoints in our subgraph at the end of step 2.

Lemma 8. The final subgraph H has size O(n3/2 · ( log n
D )1/4).

4.2 A (1, 4 logD) D-Spanner

Our input is the graph G and a distance threshold D ∈ Z+. Our path-buying
step here will use the function costX(p) which is the number of edges in p that are
missing in the subgraph X . We will also use the function valueX(p) (Definition 3)
that we used in our previous algorithm. A pair (v, C) supports p in X if this pair
of vertex and cluster contributes 1 to valueX(p).

For a pair of vertices (u, v) with distance ≥ D in G and whose shortest path
p0 is “low-cost”, the path-buying step in this algorithm starts with p0 and builds
a sequence of u-v paths p1, p2, . . . using the subroutine next-path till it finds an
affordable path. Such an idea was seen before in [13]. Our overall algorithm is
given below and the subroutine next-path is described later.

1. Clustering. Call the clustering procedure with parameter h = �
√

(n lnn)/D�.
This computes the clustering C and the post-clustering subgraph GC . Initial-
ize H to GC .
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2. Path-buying. For each (u, v) ∈ (V ×V ) such that δG(u, v) ≥ D and costH(p0)
is less than D (where p0 ∈ R is the shortest u-v path in G) do:

– for i = 0, 1, 2, . . . do
(i) If costH(pi) ≤ 108 · valueH(pi)/D, then add pi to H and quit the

inner for-loop.
(ii) Else construct the u-v path pi+1 using the subroutine next-path(pi).

3. Adding BFS trees. Select O(h) cluster indices as given by Lemma 2. Add
the edges of the BFS trees rooted at the corresponding cluster centers to H .
Return this subgraph H .

It can be shown that the condition in step 2(i) will have to be satisfied for
some i ≤ �log9/5 D�. We now describe the subroutine next-path(pi), whose input
pi satisfies costX(pi) > 108 · valueX(pi)/D in the current subgraph X . Also
δG(u, v) ≥ D, where u and v are the endpoints of pi. The path pi need not be a
minimum length u-v path, however we will maintain the following invariant: for
every cluster C ∈ C, there are at most 3 vertices of C on pi.

The above property is true for p0 since this is a shortest path. We now assume
that pi satisfies this property and construct a u-v path pi+1 that also satisfies
this property. Additionally, |pi+1| and costX(pi+1) will satisfy Claim 1.

Claim 1 |pi+1| ≤ |pi|+ 2 and costX(pi+1) ≤ 5/9 · costX(pi).

The subroutine next-path(pi) constructs pi+1 as follows.

– Since δG(u, v) ≥ D, the path pi has ≥ D edges. Let x be a vertex on pi such
that both the u-x subpath (call this left) and the x-v subpath (call this right)
have ≥ �D/2� edges.

– Let costX(pi) = t. So pi has t edges that are missing in X . Thus either left
or right has at least �t/2� edges that are missing in X . Assume it is right. Let q
denote the longest suffix of right containing �t/18� missing edges. (If it was left
that had ≥ �t/2� missing edges, then q would have been a prefix of left.)

– Every edge missing in X has to be an inter-cluster edge, so these �t/18�miss-
ing edges are incident on �t/18�+1 ≥ t/18 clustered vertices. In case �t/18� = 0,
this one clustered vertex is the endpoint of q other than b: this vertex has to be
clustered by q’s maximality.

– A single cluster has at most 3 vertices on pi (by our invariant), hence there
are ≥ t/54 distinct clusters incident on q. Consider the set T of all pairs (w,C),
where C is one of these ≥ t/54 clusters incident on q and w is one of the ≥ D/2
vertices of left. So |T | ≥ t ·D/108.

– We did not buy pi, so it has to be the case that t > 108 · valueX(pi)/D, i.e.,
valueX(pi) < tD/108. Hence there exists a pair in T that does not support pi in
X . In other words, for this pair (r, C0) ∈ T , we have δX(r, C0) ≤ δpi(r, C0).

– We now construct a u-v path p′ by combining the prefix of left between u
and r with the shortest r-C0 path in X , along with a path of length ≤ 2 in GC
between two vertices in C0, and the suffix of right between C0 and v.

– The path p′ need not obey our invariant that every cluster has ≤ 3 vertices
on p′. But using the length ≤ 2 paths in GC between every pair of vertices in
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the same cluster, it is easy to modify (in fact, shorten) p′ so that this property
holds. Call the resulting path pi+1.

Proof of Claim 1. Recall that the path p′ is made up of the following subpaths:
(i) the subpath of pi between u and r, (ii) an r-C0 path in X of length ≤
δpi(r, C0), (iii) a path of length ≤ 2 in X between 2 vertices of C0, (iv) the
subpath of pi between the last vertex of C0 and v.

It is easy to see that the sum of subpaths (i), (ii), and (iv) is at most |pi|.
Thus |p′| ≤ |pi|+ 2. Since |pi+1| ≤ |p′|, we have |pi+1| ≤ |pi|+ 2.

We now bound the cost of p′ in terms of the cost of pi. It follows from our
construction that among the 4 subpaths that we added to form p′, subpaths (ii)
and (iii) use only edges in X . So these have cost 0 in X .

Subpath (iv) has at most �t/18� edges that are missing in X , where t =
costX(pi). Similarly, subpath (i) is a prefix of left, which has at most �t/2� edges
that are missing in X . Thus costX(p′) ≤ �t/2�+�t/18� ≤ 5/9 ·t = 5/9 ·costX(pi).

Every edge in pi+1 that is not in p′ is an edge of GC (thus an edge of X). So
costX(pi+1) ≤ costX(p′). Hence costX(pi+1) ≤ 5/9 · costX(pi). ��
The size of the final subgraph H can be bounded by O(n ·

√
(n logn)/D) and

the correctness of our algorithm follows from Lemma 9 (proof omitted here). For
any D ∈ Z+, the stretch bound shown here is max{4 logD, 2} which is 4 logD,
for D ≥ 2. Theorem 4 from Section 1 follows.

Lemma 9. Let D ∈ Z+. For all (u, v) ∈ V ×V such that δG(u, v) ≥ D, we have
δH(u, v) ≤ δG(u, v) + max{4 logD, 2}, where H is the final subgraph.

Acknowledgments. We thank the reviewers for their helpful comments.
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Abstract. We present a linear-time algorithm to compute a decomposi-
tion scheme for graphs G that have a set X ⊆ V (G), called a treewidth-
modulator, such that the treewidth of G − X is bounded by a constant.
Our decomposition, called a protrusion decomposition, is the cornerstone
in obtaining the following two main results. Our first result is that any
parameterized graph problem (with parameter k) that has finite integer
index and such that positive instances have a treewidth-modulator of
size O(k) admits a linear kernel on the class of H-topological-minor-free
graphs, for any fixed graph H . This result partially extends previous
meta-theorems on the existence of linear kernels on graphs of bounded
genus and H-minor-free graphs.

Let F be a fixed finite family of graphs containing at least one planar
graph. Given an n-vertex graph G and a non-negative integer k, Planar-

F-Deletion asks whether G has a set X ⊆ V (G) such that |X| � k
and G − X is H-minor-free for every H ∈ F . As our second applica-
tion, we present the first single-exponential algorithm to solve Planar-

F-Deletion. Namely, our algorithm runs in time 2O(k) · n2, which is
asymptotically optimal with respect to k. So far, single-exponential algo-
rithms were only known for special cases of the family F .

Keywords: parameterized complexity, linear kernels, algorithmic meta-
theorems, sparse graphs, single-exponential algorithms, graph minors.

1 Introduction

This work contributes to the two main areas of parameterized complexity, namely,
kernels and fixed-parameter tractable (FPT) algorithms (see, e.g., [11] for an in-
troduction). In many cases, the key ingredient in order to solve a hard graph
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problem is to find an appropriate decomposition of the input graph, which allows
to take advantage of the structure given by the graph class and/or the problem
under study. In this article we follow this paradigm and present (in Section 3) a
novel linear-time algorithm to compute a decomposition for graphs G that have a
set X ⊆ V (G), called t-treewidth-modulator, such that the treewidth of G − X is
at most some constant t−1. We then exploit this decomposition in two different
ways: to analyze the size of kernels and to obtain efficient FPT algorithms. We
would like to note that similar decompositions have already been (explicitly or
implicitly) used for obtaining polynomial kernels [1, 4, 13, 15, 18].
Linear Kernels. During the last decade, a plethora of results emerged on linear
kernels for graph-theoretic problems restricted to sparse graph classes. A cele-
brated result by Alber et al. [1] prompted an explosion of research papers on
linear kernels on planar graphs. Guo and Niedermeier [18] designed a general
framework and showed that problems that satisfy a certain “distance property”
have linear kernels on planar graphs. Bodlaender et al. [4] provided a meta-
theorem for problems to have a linear kernel on graphs of bounded genus. Fomin
et al. [15] extended these results for bidimensional problems on H-minor-free
graphs. A common feature of these meta-theorems on sparse graphs is a decom-
position scheme of the input graph that, loosely speaking, allows to deal with
each part of the decomposition independently. For instance, the approach of [18],
which is much inspired from [1], is to consider a so-called region decomposition
of the input planar graph. The key point is that in an appropriately reduced
Yes-instance, there are O(k) regions and each one has constant size, yielding
the desired linear kernel. This idea was generalized in [4] to graphs on surfaces,
where the role of regions is played by protrusions, which are graphs with small
treewidth and small boundary (see Section 2 for details). The resulting decom-
position is called protrusion decomposition. A crucial point is that while the
reduction rules of [1] are problem-dependent, those of [4] are automated, rely-
ing on a property called finite integer index (FII), which was introduced by
Bodlaender and de Fluiter [5]. Having FII essentially guarantees that “large”
protrusions of an instance can be replaced by “small” equivalent gadget graphs.
This operation is usually called the protrusion replacement rule. FII is also of
central importance to the approach of [15] on H-minor-free graphs.

In the spirit of the above results, our algorithm to compute protrusion decom-
positions allows us to prove that we can obtain (in Section 4) linear kernels on
a larger class of sparse graphs. A parameterized problem is treewidth-bounding
if Yes-instances have a t-treewidth-modulator of size O(k) for some constant t.
Our first main result is:
Theorem I. Fix a graph H . Let Π be a parameterized graph problem on the
class of H-topological-minor-free graphs that is treewidth-bounding and has FII.
Then Π admits a linear kernel.
It turns out that a host of problems including Treewidth-t Vertex Deletion,
Chordal Vertex Deletion, Interval Vertex Deletion, Edge Domina-

ting Set, to name a few, satisfy the conditions of our theorem. Since for any
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fixed graph H , the class of H-topological-minor-free graphs strictly contains the
class of H-minor-free graphs, our result is in fact an extension of the results of
Fomin et al. [15].
Efficient FPT algorithms. In the second part of the paper (Section 5) we
are interested in single-exponential algorithms, that is, algorithms that solve a
parameterized problem with parameter k on an n-vertex graph in time 2O(k) ·
nO(1). Let F be a finite family of graphs containing at least one planar graph. In
the Planar-F-Deletion problem, given a graph G and a non-negative integer
parameter k as input, we are asked whether G has a set X ⊆ V (G) such that
|X | � k and G − X is H-minor-free for every H ∈ F .

Note that Vertex Cover and Feedback Vertex Set correspond to the
special cases of F = {K2} and F = {K3}, respectively. Recent works have
provided, using quite different techniques, single-exponential algorithms for the
particular cases F = {K3, T2} [7, 22], F = {θc} [19], or F = {K4} [20]. The
Planar-F-Deletion problem was first stated by Fellows and Langston [12],
who proposed a non-uniform f(k) · n2-time algorithm for some function f(k),
relying on the meta-theorem of Robertson and Seymour [24]. Explicit bounds
on the function f(k) can be obtained via dynamic programming. Indeed, as the
Yes-instances of Planar-F-Deletion have treewidth O(k), using standard
dynamic programming techniques on graphs of bounded treewidth (see for in-
stance [2]), it can be seen that Planar-F-Deletion can be solved in time
22O(k log k) · n2. Recently, Fomin et al. [14] provided a 2O(k) · n log2 n-time algo-
rithm for the Planar-Connected-F-Deletion problem, which is the special
case of Planar-F-Deletion when every graph in the family F is connected.
In this paper we get rid of the connectivity assumption:
Theorem II. Planar-F-Deletion can be solved in time 2O(k) · n2.
This result unifies, generalizes, and simplifies a number of results given in [6, 8,
14, 17, 19, 20]. Besides the fact that removing the connectivity constraint is an
important theoretical step towards the general case where F may not contain
any planar graph, it turns out that many natural such families F do contain
disconnected planar graphs [10]. An important feature of our approach, in com-
parison with previous work [14, 19, 20], is that our algorithm does not use any
reduction rule. This is because if F may contain disconnected graphs, Planar-

F-Deletion has not FII for some choices of F , and then the protrusion re-
placement rule cannot be applied. A more in-depth discussion can be found in
the full version. Finally, it should also be noted that the function 2O(k) in The-
orem II is best possible assuming the Exponential Time Hypothesis (ETH), as
Vertex Cover cannot be solved in time 2o(k) · poly(n) unless the ETH fails.
Further research. Concerning our kernelization algorithms, a natural question
is whether similar results can be obtained for an even larger class of sparse graphs.
As discussed in the full version, obtaining a kernel for Treewidth-t Vertex

Deletion on graphs of bounded expansion is as hard as on general graphs, and
according to Fomin et al. [14], this problem has a kernel of size kO(t) on general
graphs, and no uniform polynomial kernel (a polynomial kernel whose degree
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does not depend on t) is known. This fact makes us suspect that our kernelization
result may settle the limit of meta-theorems about the existence of linear, or even
uniform polynomial, kernels on sparse graph classes. We would like to note that
the degree of the polynomial of the running time of our kernelization algorithm
depends linearly on the size of the excluded topological minor H . It seems that
the recent fast protrusion replacer of Fomin et al. [14] could be applied to get
rid of this dependency on H .

Concerning the Planar-F-Deletion problem, no single-exponential algo-
rithm is known when the family F does not contain any planar graph. Is it
possible to find such a family, or can it be proved that, under some complexity
assumption, a single-exponential algorithm is not possible? Very recently, a ran-
domized (Monte Carlo) constant-factor approximation algorithm for Planar-F-

Deletion has been given by Fomin et al. [14]. Finding a deterministic constant-
factor approximation remains open.

2 Preliminaries

We use standard graph-theoretic notation (see [9] and the full version for any
undefined terminology). Given a graph G, we let V (G) denote its vertex set
and E(G) its edge set. A minor of G is a graph obtained from a subgraph
of G by contracting zero or more edges. A topological minor of G is a graph
obtained from a subgraph of G by contracting zero or more edges, such that
each contracted edge has at least one endpoint with degree at most two. A
graph G is H-(topological)-minor-free if G does not contain H as a (topological)
minor.

A parameterized graph problem Π is a set of tuples (G, k), where G is a
graph and k ∈ N0. If G is a graph class, we define Π restricted to G as ΠG =
{(G, k) | (G, k) ∈ Π and G ∈ G} . A parameterized problem Π is fixed-parameter
tractable (FPT for short) if there exists an algorithm that decides instances (x, k)
in time f(k)·poly(|x|), where f is a function of k alone. A kernelization algorithm,
or just kernel, for a parameterized problem Π ⊆ Γ ∗ × N0 is an algorithm that
given (x, k) ∈ Γ ∗ × N0 outputs, in time polynomial in |x| + k, an instance
(x′, k′) ∈ Γ ∗ × N0 such that (x, k) ∈ Π if and only if (x′, k′) ∈ Π , and |x′|, k′ �
g(k), where g is some computable function. The function g is called the size of
the kernel. If g(k) = kO(1) or g(k) = O(k), we say that Π admits a polynomial
kernel and a linear kernel, respectively.

Given a graph G = (V, E), we denote a tree-decomposition of G by (T, {Wx |
x ∈ V (T )}), where T is a tree and {Wx | x ∈ V (T )} are the bags of the
decomposition. We refer the reader to Diestel’s book [9] for an introduction to
the theory of treewidth.

We restate the main definitions of the protrusion machinery developed in [4,
15]. Given a graph G = (V, E) and a set W ⊆ V , we define ∂G(W ) as the set of
vertices in W that have a neighbor in V \W . For a set W ⊆ V the neighborhood
of W is NG(W ) = ∂G(V \ W ). Superscripts and subscripts are omitted when it
is clear which graph is being referred to.
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Given a graph G, a set W ⊆ V (G) is a t-protrusion of G if |∂G(W )| � t and
tw(G[W ]) � t − 1.1 If W is a t-protrusion, the vertex set W ′ = W \ ∂G(W ) is
the restricted protrusion of W . We call ∂G(W ) the boundary and |W | the size
of the t-protrusion W of G. Given a restricted t-protrusion W ′, we denote its
extended protrusion by W ′+ = W ′ ∪ N(W ′).

A t-boundaried graph is a graph G = (V, E) with a set bd(G) (called the
boundary2 or the terminals of G) of t distinguished vertices labeled 1 through t.
Let Gt denote the class of t-boundaried graphs, with graphs from G. If W ⊆ V
is an r-protrusion in G, then we let GW be the r-boundaried graph G[W ] with
boundary ∂G(W ), where the vertices of ∂G(W ) are assigned labels 1 through r
according to their order in G. Gluing two t-boundaried graphs G1 and G2
creates the graph G1 ⊕ G2 obtained by taking the disjoint union of G1 and G2
and identifying each vertex in bd(G1) with its corresponding vertex in bd(G2),
i.e. those vertices sharing the same label.

If G1 is a subgraph of G with a t-boundary bd(G1), ungluing G1 from G
creates the t-boundaried graph G � G1 = G − (V (G1) \ bd(G1)) with boundary
bd(G � G1) = bd(G1), the vertices of which are assigned labels according to
their order in the graph G. Let W be a t-protrusion in G, let GW denote the
graph G[W ] with boundary bd(GW ) = ∂G(W ), and let G1 be a t-boundaried
graph. Then replacing GW by G1 corresponds to the operation (G � GW ) ⊕ G1.

An (α, t)-protrusion decomposition of a graph G is a partition P = Y0 � Y1 �
· · ·�Y� of V (G) such that: (1) for every 1 � i � 
, N(Yi) ⊆ Y0; (2) max{
, |Y0|} �
α; (3) for every 1 � i � 
, Yi ∪ NY0(Yi) is a t-protrusion of G. Y0 is called the
separating part of P . Hereafter, the value of t will be fixed to some constant.
When G is the input of a parameterized graph problem with parameter k, we
say that an (α, t)-protrusion decomposition of G is linear whenever α = O(k).

Let ΠG be a parameterized graph problem restricted to a class G and let
G1, G2 be two t-boundaried graphs in Gt. We say that G1 ≡Π,t G2 if there exists
a constant ΔΠ,t(G1, G2) (that depends on Π , t, and the ordered pair (G1, G2))
such that for all t-boundaried graphs G3 and for all k: (1) G1 ⊕ G3 ∈ G iff
G2 ⊕ G3 ∈ G; (2) (G1 ⊕ G3, k) ∈ Π iff (G2 ⊕ G3, k + ΔΠ,t(G1, G2)) ∈ Π . We say
that the problem ΠG has finite integer index in the class G iff for every integer t,
the equivalence relation ≡Π,t has finite index. In the case that (G1 ⊕G, k) �∈ Π or
G1 ⊕ G �∈ G for all G ∈ Gt, we set ΔΠ,t(G1, G2) = 0. Note that ΔΠ,t(G1, G2) =
−ΔΠ,t(G2, G1).

If a parameterized problem has FII then it can be reduced by “replacing
protrusions”, hinging on the fact that each “large” protrusion can be replaced
by a “small” gadget from the same equivalence class that behaves similar w.r.t.
to the problem at hand. Exchanging G1 by a gadget G2 changes the parameter k
by ΔΠ,t(G1, G2). Lemma 1 guarantees the existence of a set of representatives
such that the replacement operation does not increase the parameter. In the full
version we show how to find protrusions in polynomial time and how to identify
by which representative to replace a protrusion, assuming that we are given the

1 In [4], tw(G[W ]) � t, but we want the size of the bags to be at most t.
2 Usually denoted by ∂(G), but this collides with our usage of ∂.
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set of representatives, an assumption we make from now on. This makes our
algorithms in Section 4 non-uniform, as those in previous works [4, 13–15].

Lemma 1. [�] 3 Let Π be a parameterized graph problem that has FII in a
graph class G. Then for every t, there exists a finite set Rt of t-boundaried
graphs such that for each G ∈ Gt there exists G′ ∈ Rt such that G ≡Π,t G′ and
ΔΠ,t(G, G′) � 0.

For a parameterized problem Π that has FII in the class G, let Rt denote the
set of representatives as in Lemma 1. The protrusion limit of ΠG is a function
ρΠG : N → N defined as ρΠG (t) = maxG∈Rt |V (G)|. We drop the subscript when
it is clear which graph problem is being referred to. We also define ρ′(t) := ρ(2t).

Lemma 2 ([4]). [�] Let Π be a parameterized graph problem with FII in G
and let t ∈ N be a constant. For a graph G ∈ G, if one is given a t-protrusion
X ⊆ V (G) such that ρ′

ΠG (t) < |X |, then one can, in time O(|X |), find a 2t-
protrusion W such that ρ′

ΠG (t) < |W | � 2 · ρ′
ΠG (t).

3 Constructing Protrusion Decompositions

We present our algorithm to compute protrusion decompositions. Algorithm 1
marks the bags of a tree-decomposition of an input graph G that comes equipped
with a t-treewidth-modulator X ⊆ V (G). Our algorithm also takes an additional
integer parameter r, which depends on the graph class to which G belongs and
the precise problem one might want to solve (see Sections 4 and 5 for details).

Note that an optimal tree-decomposition of every connected component C of
G − X such that |NX(C)| � r can be computed in time linear in n = |V (G)|
using the algorithm of Bodlaender [3]. In the full version we sketch how the
Large-subgraph marking step can be implemented using standard dynamic pro-
gramming techniques. It is quite easy to see that Algorithm 1 runs in linear
time.

Lemma 3. [�] Let Y0 be the set of vertices computed by Algorithm 1. Every
connected component C of G − Y0 satisfies |NX(C)| < r and |NY0(C)| < r + 2t,
and thus forms a restricted protrusion.

Given a graph G and a subset S ⊆ V (G), we define a cluster of G − S as a max-
imal collection of connected components of G − S with the same neighborhood
in S. Note that the set of all clusters of G − S induces a partition of the set of
connected components of G − S, which can be easily found in linear time if G
and S are given. By Lemma 3 and using the fact that tw(G − X) � t − 1, the
following proposition follows.

Proposition 1. Let r, t be two positive integers, let G be a graph and X ⊆ V (G)
such that tw(G − X) � t − 1, let Y0 ⊆ V (G) be the output of Algorithm 1 with
input (G, X, r), and let Y1, . . . , Y� be the set of all clusters of G − Y0. Then
P := Y0 � Y1 � · · · � Y� is a (max{
, |Y0|}, 2t + r)-protrusion decomposition of G.
3 The proofs of the results marked with ‘[�]’ can be found in [CoRR, abs/1207.0835].

http://arxiv.org/abs/1207.0835
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Algorithm 1: Bag marking algorithm

Input: A graph G, a subset X ⊆ V (G) such that tw(G − X) � t − 1, and an
integer r > 0.

Set M ← ∅ as the set of marked bags;
Compute an optimal rooted tree-decomposition TC = (TC , BC) of every
connected component C of G − X such that |NX (C)| � r;
Repeat the following loop for every rooted tree-decomposition TC ;
while TC contains an unprocessed bag do

Let B be an unprocessed bag at the farthest distance from the root of TC ;
[LCA marking step]
if B is the LCA of two marked bags of M then

M ← M ∪ {B} and remove the vertices of B from every bag of TC ;

[Large-subgraph marking step]
else if GB contains a connected component CB such that |NX (CB)| � r
then

M ← M ∪ {B} and remove the vertices of B from every bag of TC ;

Bag B is now processed;

return Y0 = X ∪ V (M);

In other words, each cluster of G−Y0 is a restricted (2t+r)-protrusion. Note that
Proposition 1 neither bounds 
 nor |Y0|. In the sequel, we will use Algorithm 1
and Proposition 1 to give explicit bounds on 
 and |Y0|, in order to achieve our
two main results.

4 Linear Kernels on Graphs Excluding a Topological
Minor

In this section we prove our first main result (Theorem I). We then state a
number of concrete problems that satisfy the structural constraints imposed by
this theorem and discuss these constraints in the context of previous work in this
area. With the protrusion machinery of Section 2 at hand, we can now describe
the protrusion reduction rule. In the following, we will drop the subscript from
the protrusion limit functions ρΠ and ρ′

Π .

Reduction Rule 1 (Protrusion reduction rule). Let ΠG denote a param-
eterized graph problem restricted to some graph class G, let (G, k) ∈ ΠG be a
Yes-instance of ΠG, and let t ∈ N be a constant. Suppose that W ′ ⊆ V (G) is a
t-protrusion of G such that |W ′| > ρ′(t). Let W ⊆ V (G) be a 2t-protrusion of G
such that ρ′(t) < |W | � 2 · ρ′(t), obtained as described in Lemma 2. We let GW

denote the 2t-boundaried graph G[W ] with boundary bd(GW ) = ∂G(W ). Let fur-
ther G1 ∈ R2t be the representative of GW for the equivalence relation ≡Π,|∂(W )|
as defined in Lemma 1. The protrusion reduction rule (for boundary size t) is
the following: Reduce (G, k) to (G′, k′) = (G � GW ⊕ G1, k − ΔΠ,2t(G1, GW )).
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By Lemma 1, the parameter in the new instance does not increase. The safety
of the above reduction rule is shown in the full version. Note that if (G, k) is
reduced w.r.t. the protrusion reduction rule with boundary size β, then for all
t � β, every t-protrusion W of G has size at most ρ′(t).

Definition 1 (Treewidth-bounding). A parameterized graph problem ΠG is
called (s, t)-treewidth-bounding for a function s : N → N and a constant t if
for all (G, k) ∈ Π there exists X ⊆ V (G) (the treewidth-modulator) such that
|X | � s(k) and tw(G − X) � t − 1. We call ΠG treewidth-bounding on a graph
class G if this condition holds under the restriction that G ∈ G. We call s the
treewidth-modulator size and t the treewidth bound of the problem ΠG.

We assume in the following that the problem ΠG at hand is (s, t)-treewidth-
bounding. Note that in general s, t depend on ΠG and G.

We first prove a slight generalization of Theorem I which highlights all the
key ingredients required. To this end, we define the constriction operation, which
essentially shrinks paths into edges.

Definition 2 (Constriction). Let G be a graph and let P be a set of paths in
G such that for each P ∈ P we have (1) the endpoints of P are not connected
by an edge in G; and (2) for all P ′ ∈ P, with P ′ �= P , V (P ) ∩ V (P ′) has
at most one vertex, which must also be an endpoint of both paths. We define
the constriction of G under P, denoted by G|P , as the graph H obtained by
connecting the endpoints of each P ∈ P by an edge and then removing all inner
vertices of P .

We say that H is a d-constriction of G if there exists G′ ⊆ G and a set of paths
P in G′ such that d = maxP ∈P |P | and H = G′|P . Given graph classes G, H
and some integer d � 2, we say that G d-constricts into H if for every G ∈ G,
every possible d-constriction H of G is contained in the class H. For the case
that G = H we say that G is closed under d-constrictions. We will call H the
witness class, as the proof of Theorem 1 works by taking an input graph G and
constricting it into some witness graph H whose properties will yield the desired
bound on |G|. We let ω(G) denote the size of a largest clique in G and #ω(G)
the total number of cliques in G (not necessarily maximal ones).

Theorem 1. [�] Let G, H be graph classes closed under taking subgraphs such
that G d-constricts into H for a fixed constant d ∈ N. Assume that H has the
property that there exist functions fE , f#ω : N → N and a constant ωH (depend-
ing only on H) such that for each graph H ∈ H the following conditions hold:

|E(H)| � fE(|H |), #ω(H) � f#ω(|H |), and ω(H) < ωH.

Let Π be a parameterized graph problem that has FII and is (s, t)-treewidth-
bounding, both on the graph class G. Define xk := s(k) + 2t · fE(s(k)). Then any
reduced instance (G, k) ∈ Π has a protrusion decomposition V (G) = Y0 � Y1 �
· · · � Y� such that: (1) |Y0| � xk; (2) |Yi| � ρ′(2t + ωH) for 1 � i � 
; and (3)

 � f#ω(xk) + xk + 1. Hence Π restricted to G admits kernels of size at most
xk + (f#ω(xk) + xk + 1)ρ′(2t + ωH).
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Theorem 1 directly implies the following, using the fact that H-topological-minor-
free graphs are ε-degenerate.

Theorem 2. [�] Fix a graph H and let GH be the class of H-topological-minor-
free graphs. Let Π be a parameterized graph-theoretic problem that has FII and
is (sΠ,GH , tΠ,GH )-treewidth-bounding on the class GH . Then Π admits a kernel
of size O(sΠ,GH (k)).

Theorem I is now just a consequence of the special case for which the treewidth-
bound is linear. We present concrete problems that are affected by our result.

Corollary 1. The following problems are linearly treewidth-bounding and have
FII on GH and hence admit linear kernels on GH : Vertex Cover

4; Clus-

ter Vertex Deletion
4; Feedback Vertex Set; Chordal Vertex Dele-

tion; Interval and Proper Interval Vertex Deletion; Cograph

Vertex Deletion; Edge Dominating Set.

Theorem I requires problems to be treewidth-bounding, at first glance, a quite
strong restriction. However, the property of being treewidth-bounding appears
implicitly or explicitly in previous work on linear kernels on sparse graphs [4,15].

5 Single-Exponential Algorithm for Planar-F-Deletion

This section is devoted to the single-exponential algorithm for the Planar-

F-Deletion problem. Let henceforth Hp be some fixed (connected or discon-
nected) arbitrary planar graph in the family F , and let r := |V (Hp)|. First of
all, using iterative compression, we reduce the problem to obtaining a single-
exponential algorithm for the Disjoint Planar-F-Deletion problem, which
is defined as follows: given a graph G and a subset of vertices X ⊆ V (G) such
that G − X is H-minor-free for every H ∈ F , compute a set X̃ ⊆ V (G) disjoint
from X such that |X̃| < |X | and G− X̃ is H-minor-free for every H ∈ F , if such
a set exists. The parameter is k = |X |.

The input set X is called the initial solution and the set X̃ the alternative so-
lution. Let tF be a constant (depending on the family F) such that tw(G − X) �
tF − 1 (note that such a constant exists by Robertson and Seymour [23]). The fol-
lowing lemma relies on the fact that being F -minor-free is a hereditary property
with respect to induced subgraphs. For a proof, see for instance [6, 19–21].

Lemma 4. If the parameterized Disjoint Planar-F-Deletion problem can
be solved in time ck · p(n), where c is a constant and p(n) is a polynomial in n,
then the Planar-F-Deletion problem can be solved in time (c + 1)k · p(n) · n.

To solve Disjoint Planar-F-Deletion, we first construct a protrusion decom-
position using Algorithm 1 with input (G, X, r). But it turns out that the set Y0

4 Listed for completeness; these problems have a kernel with a linear number of vertices
on general graphs.
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output by Algorithm 1 does not define a linear protrusion decomposition of G,
which is crucial for our purposes. To circumvent this problem, our strategy is to
guess the intersection I of the alternative solution X̃ with the set Y0. As a result,
we obtain Proposition 2, which is fundamental in order to prove Theorem II.

Proposition 2 (Linear protrusion decomposition). Let (G, X, k) be a Yes-
instance of the Disjoint Planar-F-Deletion problem. There exists a 2O(k) ·n-
time algorithm that identifies a set I ⊆ V (G) of size at most k and a (O(k), 2tF +
r)-protrusion decomposition P = Y0 �Y1 �· · ·�Y� of G−I such that: (1) X ⊆ Y0;
and (2) there exists a set X ′ ⊆ V (G)\Y0 of size at most k −|I| such that G− X̃,
with X̃ = X ′ ∪ I, is H-minor-free for every graph H ∈ F .

Towards the proof of Proposition 2, we need the following ingredient.

Proposition 3 (Thomason [25], Fomin, Oum, and Thilikos [16]). There
is a constant α < 0.320 such that every n-vertex graph with no Kr-minor has at
most (αr

√
log r) · n edges. There is a constant μ < 11.355 such that, for r > 2,

every n-vertex graph with no Kr-minor has at most 2μr log log r · n cliques.

For the sake of simplicity, let henceforth αr := αr
√

log r and μr := 2μr log log r.
For each guessed set I ⊆ Y0, we denote GI := G − I.

Lemma 5. [�] If (G, X, k) is a Yes-instance of the Disjoint Planar-F-Deletion

problem, then the set Y0 = V (M) ∪ X of vertices returned by Algorithm 1 has size
at most k + 2tF · (1 + αr) · k.

Lemma 6. [�] If (GI , Y0\I, k−|I|) is a Yes-instance of the Disjoint Planar-F-

Deletion problem, then the number of clusters of GI −Y0 is at most (5tFαrμr) ·k,
where Y0 is the set of vertices returned by Algorithm 1.

We are now ready to prove Proposition 2.

Proof (of Proposition 2). By Lemma 5, we can compute in linear time a set Y0
of O(k) vertices containing X such that every cluster of G − Y0 is a restricted
(2tF + r)-protrusion. If (G, X, k) is a Yes-instance of the Disjoint Planar-F-

Deletion problem, then there exists a set X̃ of size at most |X | and disjoint from
X such that G− X̃ does not contain any graph H ∈ F as a minor. Branching on
every possible subset of Y0 \X , one can guess the intersection I of X̃ with Y0 \X .
By Lemma 5, the branching degree is 2O(k). As (G, X, k) is a Yes-instance, for
at least one of the guessed subsets I, the instance (GI , Y0 \ I, k − |I|) is a Yes-
instance of the Disjoint Planar-F-Deletion problem. Now, by Lemma 6,
the partition P = (Y0 \ I) � Y1 � · · · � Y�, where {Y1, . . . , Y�} is the set of clusters
of GI − Y0, is an (O(k), r + 2tF)-protrusion decomposition of GI .

By Proposition 2, we can focus on solving Disjoint Planar-F-Deletion in
single-exponential time when a linear protrusion decomposition is given. To that
aim, we define an equivalence relation on subsets of vertices of each restricted
protrusion Yi. The key observation is that each of these equivalence relations
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defines finitely many equivalence classes such that any partial solution lying on
Yi can be replaced with one of the representatives while preserving the feasi-
bility. This basically follows from the finite index of MSO-definable properties
(see, e.g., [5]). Then, we use a decomposability property of the solution, namely,
that there always exists a solution which is formed by the union of one repre-
sentative per restricted protrusion. Finally, in order to make the algorithm fully
constructive and uniform on the family F , we use classic arguments from tree
automaton theory, such as the method of test sets. All details can be found in
the full version.

Proposition 4. [�] Let (G, Y0, k) be an instance of Disjoint Planar-F-

Deletion and let P = Y0 � Y1 � · · · � Y� be an (α, β)-protrusion decomposi-
tion of G, for some constant β. There exists an O(2� · n)-time algorithm which
computes a solution X̃ ⊆ V (G) \ Y0 of size at most k if it exists, or correctly
decides that there is no such solution.

We finally have all the ingredients to piece everything together.

Proof (of Theorem II). Lemma 4 states that Planar-F-Deletion can be re-
duced to Disjoint Planar-F-Deletion so that the former is single-exponential
time solvable provided that the latter is, and the degree of the polynomial
function in n increases by one. We now proceed to solve Disjoint Planar-F-

Deletion in time 2O(k) · n. Given an instance (G, X, k) of Disjoint Planar-

F-Deletion, we apply Proposition 2 to either correctly decide that (G, X, k) is
a No-instance, or identify in time 2O(k) · n a set I ⊆ V (G) of size at most k and
a (O(k), 2tF + r)-protrusion decomposition P = Y0 � Y1 � · · · � Y� of G − I, with
X ⊆ Y0, such that there exists a set X ′ ⊆ V (G) \ Y0 of size at most k − |I| such
that G − X̃, with X̃ = X ′ ∪ I, is H-minor-free for every graph H ∈ F . Finally,
using Proposition 4 we can solve the instance (GI , Y0 \I, k −|I|) in time 2O(k) ·n.
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Abstract. A class of valued constraint satisfaction problems (VCSPs) is
characterised by a valued constraint language, a fixed set of cost functions
on a finite domain. An instance of the problem is specified by a sum of
cost functions from the language with the goal to minimise the sum.

We study which classes of finite-valued languages can be solved exactly
by the basic linear programming relaxation (BLP). Thapper and Živný
showed [20] that if BLP solves the language then the language admits a
binary commutative fractional polymorphism. We prove that the converse
is also true. This leads to a necessary and a sufficient condition which
can be checked in polynomial time for a given language. In contrast, the
previous necessary and sufficient condition due to [20] involved infinitely
many inequalities.

More recently, Thapper and Živný [21] showed (using, in particular, a
technique introduced in this paper) that core languages that do not sat-
isfy our condition are NP-hard. Taken together, these results imply that
a finite-valued language can either be solved using Linear Programming
or is NP-hard.

1 Introduction

We consider a particular linear programming relaxation of a class of optimization
problems called in this paper basic LP (BLP). This relaxation has been studied
extensively in various domains, especially for objective functions with unary and
binary terms. Researchers analyzed its properties, developed efficient algorithms
for (approximately) solving this LP, and applied to large-scale practical problems
[18,14,22,10,23,5,19,1,11,17].

It has been long recognized that for some classes of optimization problems
(e.g. for submodular functions on a chain) BLP relaxation is guaranteed to be
tight (i.e. the integrality gap is zero), and allows to solve the problem exactly.
A natural question is whether it is possible to characterize such classes.

One possible way to pose the problem formally is to use the framework of
Valued Constraint Satisfaction Problems (VCSPs) [4]. In this framework a class
of allowed objective functions is specified by a language Γ , which is a collection
of cost functions over a fixed domain D. We say that BLP solves V CSP (Γ ) if the
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relaxation is tight for all functions that can be expressed as a sum of functions
from Γ with overlapping sets of variables.

A major step in the characterization of languages that can be solved by
BLP has been recently made by Thapper and Živný [20]. They gave a sufficient
condition for BLP to solve V CSP (Γ ) that covers many known languages such
as (1) submodular functions on arbitrary lattices; (2) k-submodular functions;
(3) weakly (and hence strongly) tree-submodular functions on arbitrary trees.

Thapper and Živný also presented a necessary and sufficient condition for
BLP to solve V CSP (Γ ). However, their characterization has one drawback:
it involves infinitely many inequalities, which leaves an open question whether
checking the condition is a decidable problem for a given finite language Γ .

We resolve this question affirmatively for finite-valued languages Γ . As our
main contribution, we show that BLP solves such Γ iff Γ admits a fractional
symmetric polymorphism of arity k for some k ≥ 2. We prove this result using a
mixture of algebraic tools and techniques from Linear Programming.

Very recently, Thapper and Živný [21] showed (using, in particular, a tech-
nique introduced in this paper) that a core language that does not satisfy our
condition is NP-hard. It follows from [20,21] and from our results that a finite-
valued language can either be solved by a Linear Programming or is NP-hard.

Related Work. Kun et al. [15] studied the BLP relaxation for CSP problems
and for robust approximatility of Max-CSPs. They showed, in particular, that
BLP robustly decides a CSP language iff it has width 1. Width-1 CSPs were
introduced in [7]. A simple characterization of such CSPs was given in [6].

Our work heavily exploits the notion of fractional polymorphisms [2]. Frac-
tional polymorphisms is a generalization of multimorphisms [4]. It is known that
they can characterize all tractable VCSPs [2].

We also mention the work of Raghavendra on analyzing SDP relaxations [16].
Under the assumption of the unique games conjecture [9], it was shown that
the basic SDP relaxation solves all tractable finite-valued VCSPs (without a
characterization of the tractable cases). Furthermore, results in Chapters 6 and
7 of [16] imply that the basic SDP relaxation solves languages that admit a cyclic
fractional polymorphism of some arity m ≥ 2. If was not clear whether the SDP
relaxation can solve exactly more languages compared to the BLP relaxation.
Results in [20,21] and our results imply that this is not the case (assuming that
P �= NP ).

2 Background and Statement of the Results

Let D be a finite domain. A finite-valued language Γ is a set of cost functions
f : Dn → Q where arity n ≥ 1 may be different for different functions f ∈ Γ .
The argument of f is called a labeling.

Definition 1. An instance I of the valued constraint satisfaction problem (VCSP)
is a function DV → Q given by

CostI(x) =
∑
t∈T

ft(xv(t,1), . . . , xv(t,nt))
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It is specified by a finite set of nodes V , finite set of terms T , cost functions
ft : Dnt → Q of arity nt and indices v(t, k) ∈ V for t ∈ T, k = 1, . . . , nt. A
solution to I is a labeling x ∈ DV with the minimum cost. Instance I is called
a Γ -instance if all terms ft belong to Γ .

The class of optimization problems consisting of all Γ -instances is referred to
as V CSP (Γ ). Language Γ is called tractable if V CSP (Γ ′) can be solved in
polynomial time for each finite Γ ′ ⊆ Γ . It is called NP-hard if V CSP (Γ ′) is
NP-hard for some finite Γ ′ ⊆ Γ .

One way to tackle a VCSP instance is to formulate and solve a convex re-
laxation of the problem. Two examples are basic LP relaxation and basic SDP
relaxation, as they are called in [20] and [16] respectively.

The basic LP relaxation will be of particular relevance to this paper. Following
[20], we say that basic LP solves V CSP (Γ ) if for any instance I from V CSP (Γ )
the optimal value of the relaxation equals minx CostI(x).

We will study which languages Γ are solved by basic LP. We will do it in-
directly by relying on the characterization of [20]. The formulation of basic LP
will not be used, and so we omit it in order to avoid unnecessary notation. We
refer interested readers to [20] for details.

Fractional Polymorphisms. We denote Om to be the set of operations g :
Dm → D. A fractional polymorphism of arity m is a probability distribution ω
over Om, i.e. a vector with components ω(g) ≥ 0 for g : Dm → D that sum to
1. Language Γ is said to admit ω if every cost function f ∈ Γ of arity n satisfies∑

g∈Om

ω(g)f(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm) ∀x1, . . . , xm ∈ Dn (1)

x1 . . . xm

x1
1 . . . xm

1

. . . . . . . . .
x1
n . . . xm

n

g(x1, . . . , xm)
g(x1

1, . . . , x
m
1 )

. . .
g(x1

n, . . . , x
m
n )

where function fm is defined via fm(x1, . . . , xm) =
1
m (f(x1) + . . . + f(xm)). We view labelings in Dn

as column vectors; given m such columns, operation
g : Dm → D produces a new column as shown on
the right.

Operation g ∈ Om is called symmetric if it is invariant with respect to any
permutation of its arguments: g(a1, . . . , am) = g(aπ(1), . . . , aπ(m)) for any per-
mutation π : [1,m] → [1,m] and any (a1, . . . , am) ∈ Dm. It is called cyclic if
g(a1, a2, . . . , am) = (a2, . . . , am, a1) for any (a1, . . . , am) ∈ Dm. Note, in the case
m = 2 both definitions coincide. A fractional polymorphism ω is called symmet-
ric (cyclic) if all operations in supp(ω) are symmetric (cyclic). As usual, supp(ω)
denotes the support of distribution ω: supp(ω) = {g ∈ Om | ω(g) > 0}.
Generalized Fractional Polymorphisms. LetOm→k be the set of mappings
g : Dm → Dk. A mapping g ∈ Om→k can also be viewed as a sequence of k
operations g = (g1, . . . , gk) with gi ∈ Om. We define a generalized fractional
polymorphism of arity m → k as a probability distribution ρ over Om→k. We
say that language Γ admits ρ if every cost function f ∈ Γ of arity n satisfies∑

g∈Om→k

ρ(g)fk(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm) ∀x1, . . . , xm ∈ Dn (2)
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Equivalently, ρ is a generalized fractional polymorphism of Γ of arity m→ k iff
vector

ω =
∑

g=(g1,...,gk)∈Om→k

ρ(g) · 1

k
(χg1 + . . . + χgk) (3)

is a fractional polymorphism of Γ of arity m.
We can identify fractional polymorphisms of arity m with generalized frac-

tional polymorphisms of arity m → 1. For brevity, we will omit the word “gen-
eralized”.

We always use the following convention: if g = (g1, . . . , gk) is a mapping in
Om→k then we extend it to m labelings x1, . . . , xm ∈ Dn component-wise, i.e.
[g(x1, . . . , xm)]v = g(x1

v, . . . , x
m
v ) for all v ∈ [1, n]. Thus, g(x1, . . . , xm) is a

sequence of k labelings (g1(x1, . . . , xm), . . . gk(x1, . . . , xm)) in Dn.

Fractional Polymorphisms and SDP/LP Relaxations. It has been shown
that fractional polymorphisms can be used for characterizing languages that can
be solved exactly by certain convex relaxations. For the SDP relaxation, the
following is known; it is implied by results in Chapters 6 and 7 of [16].

Theorem 1 ([16]). If Γ has a cyclic fractional polymorphism of some arity
k ≥ 2 then the basic SDP relaxation solves VCSP(Γ ) in polynomial time.

The more relevant for our paper case of the LP relaxation has been analyzed
in [20]: 1

Theorem 2 ([20]). For a finite-valued language Γ , the basic LP relaxation
solves V CSP (Γ ) (in polynomial time) iff Γ admits an m-ary symmetric frac-
tional polymorphism for every m ≥ 2.

Theorem 3 ([20], Theorem 4.4). If Γ admits a k-ary fractional polymor-
phism ω such that supp(ω) generates a symmetric m-ary operation2 then Γ
admits an m-ary symmetric fractional polymorphism.

While the theorems give a necessary and sufficient condition for BLP to solve
V CSP (Γ ), it was not clear whether checking this condition for a given finite
language Γ is a decidable problem (we would need to consider infinitely many
values of m). Our result given below resolves this question affirmatively.3

Theorem 4. Suppose that a finite-valued language Γ admits a fractional poly-
morphism of arity k ≥ 2 whose support contains at least one symmetric opera-
tion. Then Γ admits a symmetric fractional polymorphism of every arity m ≥ 2
(and thus BLP solves V CSP (Γ )).

1 Thapper and Živný also present some results for infinite-valued languages; we refer
to [20] for details.

2 A set O of operations is said to generate f , if f can be obtained by composition
from projections and operations in O.

3 To check whether Γ satisfies the condition of Theorem 4, we need to check whether
there exists a probability distribution ω over O2 that satisfies inequality (1) for all
f ∈ Γ of arity n and all x1, x2 ∈ Dn. This problem can be casted as an LP whose size
is polynomial in the size of language Γ (which is specified by

∑
f∈Γ |D|

arf rational
numbers, where ar f is the arity of function f).
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A more recent result implies a dichotomy for finite-valued languages: every
language is either tractable (via BLP) or is NP-hard.

Theorem 5 ([21]). If a finite-valued core language Γ does not admit a sym-
metric fractional polymorphism of arity 2 then it is NP-hard.4

STP Multimorphisms. As a minor contribution, we formally prove that
if a finite-valued language admits an STP multimorphism then it also admits
a submodularity multimorphism with respect to some total order on D. (This
has implications for the complexity classification of conservative finite-valued
languages.) This result is already known, but to our knowledge a formal proof
has not been written down yet. We refer to section 4 for further discussion.

3 Proof of Theorem 4

We will prove the following result.

Theorem 6. Suppose that a finite-valued language Γ over a domain D admits
a symmetric fractional polymorphism of arity m − 1 ≥ 2. Then Γ admits a
symmetric fractional polymorphism of arity m.

This will imply Theorem 4. Indeed, suppose that Γ admits a fractional poly-
morphism of arity k ≥ 2 which contains a symmetric operation. Induction on
m yields that Γ admits an m-ary symmetric fractional polymorphism for every
m ≥ k (we need to use Theorem 3 for the base case and Theorem 6 for the
induction step). This also implies the claim for all m ∈ [2, k − 1]: it is straight-
forward to show that if Γ admits a symmetric fractional polymorphism of arity
pm where p,m ∈ N then it also admits a symmetric fractional polymorphism of
arity m.

We thus concentrate on proving Theorem 6. From now on we fix a symmetric
fractional polymorphism ω of Γ of arity m− 1.

Consider a permutation π of the set [1,m] � {1, . . . ,m} and a symmetric
operation s ∈ supp(ω) of arity m−1. For such π and s we introduce the following
definitions.

– For a labeling α = (a1, . . . , am) ∈ Dm, let απ ∈ Dm and αs ∈ Dm be the
following labelings:

απ = (aπ(1), . . . , aπ(m)) (4)

αs = (s(α−1), . . . , s(α−m)) (5)

where α−i ∈ Dm−1 is the labeling obtained from α by removing the i-th
element.

4 We refer to [21] for the definition of a core. (It differs from the definition in [8],
but [21] shows that the two definitions are equivalent.) The coreness assumption is
not a severe restriction: if Γ is not a core then there is a polynomial-time reduction
between V CSP (Γ ) and V CSP (Γ ′) for some core language Γ ′ on a smaller domain.
It is also not difficult to show that Theorem 5 holds for non-core languages as well,
using induction on the size of the domain D.
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– For an operation g : Dm → D, let gπ : Dm → D be the following operation:

gπ(α) = g(απ) (6)

– For a mapping g : Dm → Dm, let gs : Dm → Dm be the following mapping:

gs(α) = [g(α)]s (7)

The last definition can also be expressed as

gs = (s ◦ g−1, . . . , s ◦ g−m) (8)

where g−i : Dm → Dm−1 is the sequence of m − 1 operations obtained from
g = (g1, . . . , gm) by removing the i-th operation.

Let 1 be the identity mapping Dm → Dm, and let V = {1s1...sk | s1, . . . , sk ∈
supp(ω), k ≥ 0} be the set of all mappings that can be obtained from 1.

Proposition 7. Every g = (g1, . . . , gm) ∈ V satisfies the following:

(gπ1 , . . . , g
π
m) = (gπ(1), . . . , gπ(m)) ∀ permutation π (9)

Thus, permuting the arguments of gi(·, . . . , ·) gives a mapping which is also
present in the sequence g, possibly at a different position.

Proof. Checking that 1 satisfies (9) is straightforward. Let us prove that for
any g : Dm → Dm satisfying (9) and for any symmetric operation s ∈ Om−1

mapping gs also satisfies (9). Consider i ∈ [1,m]. We need to show that (s ◦
g−i)

π = s ◦ g−π(i). For each α ∈ Dm we have

(s ◦ g−i)π(α) = s ◦ g−i(απ)

= s(g1(απ), . . . , gi−1(απ), gi+1(απ), . . . , gm(απ))

= s(gπ1 (α), . . . , gπi−1(α), gπi+1(α), . . . , gπm(α))

= s(gπ(1)(α), . . . , gπ(i−1)(α), gπ(i+1)(α), . . . , gπ(m)(α)) = s ◦ g−π(i)(α)
��

Graph on Mappings. Let us define a directed weighted graph G = (V,E,w)
with the set of edges E = {(g,gs) | g ∈ V, s ∈ supp(ω)} and positive weights
w(g,h) =

∑
s∈supp(ω):h=gs ω(s) for (g,h) ∈ E. Clearly, we have∑

h:(g,h)∈E
w(g,h) = 1 ∀g ∈ V (10)

We define H[G] to be the set of strongly connected components H ⊆ V of G
which are sinks, i.e. all edges in G from H lead to vertices in H . We also denote
Ĥ =

⋃
H∈H[G] H ⊆ V .
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3.1 Proof Overview: Main Theorems

From now on we fix a function f ∈ Γ of arity n. Recall that we defined
fm(x1, . . . , xm) = 1

m

∑
i∈[1,m] f(xi). For a mapping g ∈ Om→m we define

Rangen(g) = {g(x1, . . . , xm) | x1, . . . , xm ∈ Dn}

We will prove the following.

Theorem 8. There exists a fractional polymorphism ρ of Γ of arity m → m
with supp(ρ) ⊆ Ĥ.

Theorem 9. Let ĝ be a mapping in Ĥ and p ∈ Om→m be any mapping such that
p(α) is a permutation of α for all α ∈ Dm. For any (x1, . . . , xm) ∈ Rangen(ĝ)
there holds fm(x1, . . . , xm) = fm(p(x1, . . . , xm)).

This will imply Theorem 6. Indeed, we can construct an m-ary symmetric frac-
tional polymorphism of Γ as follows. Take vector ρ from Theorem 8, take a
symmetric mapping p ∈ Om→m satisfying the condition of Theorem 9, and
define a fractional polymorphism of arity m→ m

ρ′ =
∑

g∈supp(ρ)
ρ(g)χp◦g

Function f admits ρ′ since for any labelings x1, . . . , xm ∈ Dn there holds∑
h∈supp(ρ′)

ρ′(h)fm(h(x1, . . . , xm)) =
∑

g∈supp(ρ)

ρ(g)fm(p(g(x1, . . . , xm)))

=
∑

g∈supp(ρ)

ρ(g)fm(g(x1, . . . , xm)) ≤ fm(x1, . . . , xm)

Note, for any h = (h1, . . . , hm) ∈ supp(ρ′) operations h1, . . . , hm are symmetric.
Indeed, we have h = p ◦ g for some g ∈ V . If α ∈ Dm and π is a permutation
of the set [1,m] then h(απ) = p(g(απ)) = p([g(α)]π) = p(g(α)) = h(α) which
implies the claim.

We can finally apply transformation (3) to vector ρ′ to get a symmetric frac-
tional polymorphism of arity m.

A proof of Theorem 8 is given in [12]. To prove Theorem 9, we will need
an auxiliary result. Let us fix a connected component H ∈ H[G], and denote
I = H×[1,m]. Given labelings x1, . . . , xm, we define labelings xgi for all (g, i) ∈ I
via

(xg1, . . . , xgm) = g(x1, . . . , xm) (11)

Note that xgi is a function of (x1, . . . , xm); for brevity of notation, this depen-
dence is not shown. For a vector λ ∈ RH and an index i ∈ [1,m] we define
function Fλ

i via

Fλ
i (x1, . . . , xm) =

∑
g∈H

λgf(xgi) ∀x1, . . . , xm ∈ Dn (12)
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Theorem 10. Consider H ∈ H[G].
(a) There holds fm(xg′1, . . . , xg′m) = fm(xg′′1, . . . , xg′′m) for all g′,g′′ ∈ H and
x1, . . . , xm ∈ Dn.
(b) There exists a probability distribution λ over H such that Fλ

i′ (x
1, . . . , xm) =

Fλ
i′′ (x

1, . . . , xm) for all i′, i′′ ∈ [1,m] and x1, . . . , xm ∈ Dn.

We prove this theorem in section 3.2; using this result, we then prove Theorem 9
in section 3.3.

3.2 Proof of Theorem 10

First, we make the following observation.

Proposition 11. If h = gs where g ∈ H, s ∈ supp(ω) then xhi =
s((xg1, . . . , xgm)−i) for i ∈ [1,m] where (xg1, . . . , xgm)−i is the sequence of m−1
labelings obtained by removing the i-th labeling.

Proof. Consider node v ∈ [1, n], and denote α = (x1
v, . . . , x

m
v ), β = (xg1

v , . . . , xgm
v ),

γ = (xh1
v , . . . , xhm

v ). By definition (11), β = g(α) and γ = h(α). Therefore,
γ = gs(α) = [g(α)]s = βs. In other words, the i-th component of γ equals
s(β−i), which is what we needed to show.

��
We will show that for fixed distinct mappings g′,g′′ ∈ H there holds∑

i∈[1,m]

f(xg′i)−
∑

i∈[1,m]

f(xg′′i) ≤ 0 (13a)

and that there exists a probability distribution λ over H such that for fixed
distinct indices i′, i′′ ∈ [1,m] there holds∑

g∈H
λgf(xgi′)−

∑
g∈H

λgf(xgi′′ ) ≤ 0 (13b)

Clearly, this will imply Theorem 10.
To prove these facts, we will use the following strategy. For each (g, i) ∈ I let

us write the polymorphism inequality for labelings (xg1, . . . , xgm)−i:∑
s∈supp(ω)

ω(s)f(s((xg1, . . . , xgm)−i)) ≤
1

m− 1

∑
j∈[1,m]−{i}

f(xgj)

Let us multiply this inequality by weight λgi ≥ 0 (to be defined later), and apply
Proposition 11 and the fact that w(g,h) =

∑
s∈supp(ω):h=gs ω(s):

λgi

∑
h:(g,h)∈E

w(g,h)f(xhi)− λgi

m− 1

∑
j∈[1,m]−{i}

f(xgj) ≤ 0 ∀(g, i) ∈ I

Summing these inequalities over (g, i) ∈ I gives

∑
(g,i)∈I

⎡⎣ ∑
h:(h,g)∈E

w(h,g)λhi −
∑

j∈[1,m]−{i}

λgj

m− 1

⎤⎦ f(xgi) ≤ 0 (14)
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Parts (a,b) of Lemma 12 together with Remark 1 below show that coefficients
λgi can be chosen in such a way that the last inequality becomes equivalent
to (13a) and (13b) respectively, thus proving Theorem 10.

Lemma 12. (a) There exists vector λ ∈ RI
≥0 that satisfies

∑
h:(h,g)∈E

w(h,g)λhi −
∑

j∈[1,m]−{i}

λgj

m− 1
= cg ∀(g, i) ∈ I (15)

where cg = [g = g′] − [g = g′′] and [·] is the Iverson bracket: it equals 1 if the
argument is true, and 0 otherwise.
(b) There exists vector λ ∈ RI∪H

≥0 that satisfies

∑
h:(h,g)∈E

w(h,g)λhi −
∑

j∈[1,m]−{i}

λgj

m− 1
= ciλg ∀(g, i) ∈ I (16a)

∑
g∈H

λg = 1 (16b)

where ci = [i = i′]− [i = i′′].

Remark 1. Note that vector λ in part (b) depends on the pair (i′, i′′); let us de-
note it as λi′i′′ . To establish Theorem 10(b), it suffices to show that vectors λi′i′′

in Lemma 12(b) can be chosen in such a way that for a given g ∈ H components
λi′i′′
g are the same for all pairs (i′, i′′). This can be done as follows. Take vector

λ12 constructed in Lemma 12(b). For a pair of distinct indices (i′, i′′) �= (1, 2)
select permutation π of [1,m] with π(i′) = 1, π(i′′) = 2, and define vector λi′i′′

via

λi′i′′
g = λ12

g ∀g ∈ H λi′i′′
gi = λ12

gπ(i) ∀(g, i) ∈ I

Clearly, vector λi′i′′ satisfies conditions of Lemma 12(b) for the pair (i′, i′′). Thus,
Lemma 12 indeed implies Theorem 10. The proof of part (a) of this lemma is
given below; the proof of part (b) is based on the same idea, and is given in [12].

Proof. Part (a) Suppose the claim does not hold. By Farkas’s lemma there
exists vector y ∈ RI such that ∑

(g,i)∈I
cgygi < 0 (17a)

∑
h:(g,h)∈E

w(g,h)yhi −
∑

j∈[1,m]−{i}

ygj
m− 1

≥ 0 ∀(g, i) ∈ I (17b)

Denote ug =
∑

i∈[1,m] ygi. Summing inequalities (17b) over i ∈ [1,m] gives∑
h:(g,h)∈E

w(g,h)uh − ug ≥ 0 ∀g ∈ H (18)
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Denote H∗ = arg max{ug |g ∈ H}. From (10) and (18) we conclude that g ∈ H∗

implies h ∈ H∗ for all (g,h) ∈ E. Therefore, H∗ = H (since H is a strongly
connected component of G).

We showed that ug = C for all g ∈ H where C ∈ R is some constant. But
then the expression on the LHS of (17a) equals C − C = 0 - a contradiction.

��

3.3 Proof of Theorem 9

Let H ∈ H[G] be the strongly connected component that contains ĝ, and let
λ ∈ RH

≥0 be a vector constructed in Theorem 10(b). We denote Fλ(x1, . . . , xm) =

Fλ
i (x1, . . . , xm) for i ∈ [1,m].

Lemma 13. The following transformation does not change Fλ(x1, . . . , xm): pick
node v ∈ [1, n] and permute values (x1

v, . . . , x
m
v ).

Proof. It suffices to prove the claim for a permutation which swaps values xi
v and

xj
v for i, j ∈ [1,m] (since any other permutation can be obtained by repeatedly

applying such swaps). Since m ≥ 3 there exists index k ∈ [1,m]− {i, j}. Using
Proposition 7, it can be checked that the swap above does not affect labelings
xgk in (11) for g ∈ H , and therefore Fλ

k (x1, . . . , xm) does not change.
��

Lemma 14. If (x1, . . . , xm) ∈ Rangen(ĝ) then (x1, . . . , xm) = (xg1, . . . , xgm)
for some g ∈ H.

Proof. It suffices to show that there exists g ∈ H with g◦ ĝ = ĝ. We refer to [12]
for the proof of this fact.

��

Lemma 15. If (x1, . . . , xm) ∈ Rangen(ĝ) then fm(x1, . . . , xm) = Fλ(x1, . . . , xm).

Proof. From Theorem 10(a) and Lemma 14 we get that fm(xg1, . . . , xgm) =
fm(x1, . . . , xm) for all g ∈ H . Using this fact and the definition of Fλ

i (·), we can
write

Fλ(x1, . . . , xm) =
1

m

∑
i∈[1,m]

Fλ
i (x

1, . . . , xm) =
1

m

∑
g∈H

λg

∑
i∈[1,m]

f(xgi)

=
∑
g∈H

λgf
m(xg1, . . . , xgm) =

∑
g∈H

λgf
m(x1, . . . , xm) = fm(x1, . . . , xm)

��
To establish Theorem 9, it remains to prove that condition (x1, . . . , xm) ∈
Rangen(ĝ) implies p(x1, . . . , xm) ∈ Rangen(ĝ). This proof follows mechanically
from Proposition 7, and is omitted.

4 STP Multimorphisms

In this section we consider Symmetric Tournament Pairs (STP) multimorphisms [3].
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Definition 2. (a) A pair of operations 〈�,�〉 with �,� : D ×D → D is called
an STP if

a � b = b � a, a � b = b � a ∀a, b ∈ D (commutativity) (19a)

{a � b, a � b} = {a, b} ∀a, b ∈ D (conservativity) (19b)

(b) Pair 〈�,�〉 is called a submodularity operation if there exists a total order
on D for which a � b = min{a, b}, a � b = max{a, b} for all a, b ∈ D.
(c) Language Γ admits 〈�,�〉 (or 〈�,�〉 is a multimorphism of Γ ) if every
function f ∈ Γ of arity n satisfies

f(x � y) + f(x � y) ≤ f(x) + f(y) ∀x, y ∈ Dn (20)

It has been shown in [3] that if Γ admits an STP multimorphism then V CSP (Γ )
can be solved in polynomial time. STP multimorphisms also appeared in the
dichotomy result of [13]:

Theorem 16. Suppose a finite-valued language Γ is conservative, i.e. it con-
tains all possible unary cost functions u : D → {0, 1}. Then Γ either admits an
STP multimorphism or it is NP-hard.

In this paper we prove the following (see [12]).

Theorem 17. If a finite-valued language Γ admits an STP multimorphism then
it also admits a submodularity multimorphism.

This fact is already known; in particular, footnote 2 in [13] mentions that this
result is implicitly contained in [3], and sketches a proof strategy. However, to
our knowledge a formal proof has never appeared in the literature. This paper
fills this gap. Our proof is different from the one suggested in [13], and inspired
some of the proof techniques used in the main part of this paper.

Acknowledgements. I thank Andrei Krokhin for helpful discussions and for
communicating the result of Raghavendra [16] about cyclic fractional polymor-
phisms.

References

1. Blake, A., Kohli, P., Rother, C. (eds.): Advances in Markov Random Fields for
Vision and Image Processing. MIT Press (2011)

2. Cohen, D.A., Cooper, M.C., Jeavons, P.G.: An algebraic characterisation of com-
plexity for valued constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204,
pp. 107–121. Springer, Heidelberg (2006)

3. Cohen, D., Cooper, M., Jeavons, P.: Generalising submodularity and Horn clauses:
Tractable optimization problems defined by tournament pair multimorphisms. The-
oretical Computer Science 401(1), 36–51 (2008)

4. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: The complexity of soft constraint
satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)



636 V. Kolmogorov

5. Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artif. Intell. 174(7-8), 449–478 (2010)

6. Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J.
(ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)

7. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP a and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal
on Computing 28(1), 57–104 (1998)

8. Huber, A., Krokhin, A., Powell, R.: Skew bisubmodularity and valued CSPs. In:
SODA (2013)

9. Khot, S.: On the unique games conjecture (invited survey). In: Proceedings of the
25th Annual IEEE Conference on Computational Complexity (CCC 2010), pp.
99–121 (2010)

10. Kolmogorov, V.: Convergent tree-reweighted messages passing. PAMI 28(10),
1568–1583 (2006)

11. Kolmogorov, V., Schoenemann, T.: Generalized sequential tree-reweighted message
passing. CoRR, abs/1205.6352 (2012)

12. Kolmogorov, V.: The power of linear programming for valued CSPs: a constructive
characterization. ArXiv, abs/1207.7213v4 (2012)
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Abstract. We study the communication complexity and streaming com-
plexity of approximating unweighted semi-matchings. A semi-matching in
a bipartite graph G = (A,B,E), with n = |A|, is a subset of edges S ⊆ E
that matches all A vertices to B vertices with the goal usually being to
do this as fairly as possible. While the term semi-matching was coined in
2003 by Harvey et al. [WADS 2003], the problem had already previously
been studied in the scheduling literature under different names.

We present a deterministic one-pass streaming algorithm that for any
0 ≤ ε ≤ 1 uses space Õ(n1+ε) and computes an O(n(1−ε)/2)-approximation
to the semi-matching problem. Furthermore, with O(log n) passes it is
possible to compute an O(log n)-approximation with space Õ(n).

In the one-way two-party communication setting, we show that for
every ε > 0, deterministic communication protocols for computing an

O(n
1

(1+ε)c+1 )-approximation require a message of size more than cn bits.
We present two deterministic protocols communicating n and 2n edges
that compute an O(

√
n) and an O(n1/3)-approximation respectively.

Finally, we improve on results of Harvey et al. [Journal of Algorithms
2006] and prove new links between semi-matchings and matchings. While
it was known that an optimal semi-matching contains a maximummatch-
ing, we show that there is a hierachical decomposition of an optimal
semi-matching into maximum matchings. A similar result holds for semi-
matchings that do not admit length-two degree-minimizing paths.

1 Introduction

Semi-matchings. A matching in an unweighted bipartite graph G = (A,B,E)
can be seen as a one-to-one assignment matching the A vertices to B vertices.
The usual aim is to find a matching that leaves as few A vertices without as-
sociations as possible. A semi-matching is then an extension of a matching, in
that it is required that all A vertices are matched to B vertices. This, however,
is generally not possible in an injective way, and therefore we now allow the
matching of multiple A vertices to the same B vertex. Typical objectives here

� Research supported in part by ANR project RDAM. A full version of this paper can
be found at: http://arxiv.org/abs/1304.6906

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 637–649, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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are to minimize the maximal number of A vertices that are matched to the same
B vertex, or to optimize with respect to even stronger balancing constraints.
The term ‘semi-matching’ was coined by Harvey et al. [HLLT03] and also used
in [FLN10], however, the problem had already previously been intensely studied
in the scheduling literature [ECS73, Hor73, ANR95, Abr03, LL04]. We stick to
this term since it nicely reflects the structural property of entirely matching one
bipartition of the graph.

The most prominent application of the semi-matching problem is that of as-
signing a set of unit-length jobs to a set of identical machines with respect to
assignment conditions expressed through edges between the two sets. The ob-
jective of minimizing the maximal number of jobs that a machine receives then
corresponds to minimizing the makespan of the scheduling problem. Optimiz-
ing the cost function

∑
b∈B degS(b)(degS(b) + 1)/2, where degS(b) denotes the

number of jobs that a machine b receives in the semi-matching S, corresponds
to minimizing the total completion time of the jobs (optimizing with respect to
this cost function automatically minimizes the maximal degree).

It is well known that matchings are of maximal size if they do not admit aug-
menting paths [Ber57]. Augmenting paths for matchings correspond to degree-
minimizing paths for semi-matchings. They first appeared in [HLLT03] under
the name of cost-reducing-paths, and they were used for the computation of a
semi-matching that minimizes a certain cost function. We use the term ‘degree-
minimizing-path’ since it is more appropriate in our setting. A degree-minimizing
path starts at a B node of high degree, then alternates between edges of the semi-
matching and edges outside the semi-matching, and ends at another B node of
degree at least by two smaller than the degree of the starting point of the path.
Flipping the semi-matching and non-semi-matching edges of the path then gen-
erates a new semi-matching such that the large degree of the start node of the
path is decreased by 1, and the small degree of the end node of the path is
increased by 1. An optimal semi-matching is defined in [HLLT03] to be one
that does not admit any degree-minimizing paths. It was shown in [HLLT03]
that such a semi-matching is also optimal with respect to a large set of cost
functions, including the minimization of the maximal degree as well as the mini-
mization of the total completion time. At present, the best existing algorithm for
computing an optimal semi-matching [FLN10] runs in time O(

√
|V ||E| log |V |)

where V = A ∪B. See [FLN10] for a broader overview about previous work on
semi-matchings (including works from the scheduling literature).

In this paper, we study approximation algorithms for the semi-matching prob-
lem in different computational settings. The notion of approximation that we
consider is with respect to the maximal degree: given a bipartite graph G =
(A,B,E) with n = |A|, we are interested in computing a semi-matching S such
that deg maxS ≤ c · deg maxS∗, where S∗ denotes an optimal semi-matching,
deg max denotes the maximal degree of a vertex w.r.t. a set of edges, and c is
the approximation factor. This notion of approximation corresponds to approx-
imating the makespan when the semi-matching is seen as a scheduling problem.
This setting was already studied in e.g. [ANR95].
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Streaming Algorithms and Communication Complexity. Streaming Al-
gorithms fall into the category of massive data set algorithms. In many applica-
tions, the data that an algorithm is called upon to process is too large to fit into
the computer’s memory. In order to cope with this problem, a streaming algo-
rithm sequentially scans the input while using a random access memory of size
sublinear in the length of the input stream. Multiple passes often help to further
decrease the size of the random access memory. Graph streams are widely studied
in the streaming model, and in the last years matching problems have received
particular attention [AG11, GKK12, KMM12, Kap13]. A graph stream is a se-
quence of the edges of the input graph with a priori no assumption on the order
of the edges. Particular arrival orders of the edges are studied in the literature
and allow the design of algorithms that depend on that order. Besides uniform
random order [KMM12], the vertex arrival order [GKK12, Kap13] of edges of
a bipartite graph is studied where edges incident to the same A node arrive
in blocks. Deciding basic graph properties such as connectivity already requires
Ω(|V |) space [FKM+05], where V denotes the vertex set of a graph. Many works
considering graph streams allow an algorithm to use O(|V | polylog |V |) space.
This setting is usually called the semi-streaming setting.

Space lower bounds for streaming algorithms are often obtained via Commu-
nication Complexity. There is an inherent link between streaming algorithms and
one-way k-party communication protocols. A streaming algorithm for a problem
P with space s also serves as a one-way k-party communication protocol for P
with communication cost O(sk). Conversely, a lower bound on the size of any
message of such a protocol is also a lower bound on the space requirements of a
streaming algorithm. Determining the communication complexity of problems is
in itself an important task, however, the previously discussed link to streaming
algorithms provides an additional motivation.

Our Contributions. We initiate the study of the semi-matching problem in the
streaming and the communication settings. We present a deterministic one-pass
streaming algorithm that for any 0 ≤ ε ≤ 1 uses space Õ(n1+ε) and computes
an O(n(1−ε)/2)-approximation to the semi-matching problem (Theorem 1)1.
Furthermore, we show that with O(logn) passes we can compute an O(logn)-
approximation with space Õ(n) (Theorem 2).

In the two-party one-way communication setting, we show that for any ε > 0,

deterministic communication protocols that compute an O(n
1

(1+ε)c+1 )-
approximation to the semi-matching problem require a message of size at least cn
bits (Theorem 5). We present two deterministic protocols communicating n and
2n edges that compute an O(

√
n)-approximation and an O(n1/3)-approximation,

respectively (Theorem 3).
While it was known that optimal semi-matchings contain a maximum match-

ing [HLLT03], we show that there is a hierarchical decomposition of an optimal
semi-matching into maximum matchings (Lemma 10). Similarly, we show that
semi-matchings that do not admit length-two degree-minimizing paths can be

1 We write Õ(n) to denote O(npolylog n).
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decomposed into maximal matchings (Lemma 9). The latter result allows us
to prove that the maximal degree of a semi-matching that does not admit a
length-two degree-minimizing path is at most �log(n + 1)� times the maximal
degree of an optimal semi-matching (Theorem 6).

A Semi-streaming Algorithm for Vertex Arrival Order. In [ANR95],
the semi-matching problem is studied in the online model (seen as a scheduling
problem). In this model, the A vertices arrive online together with their incident
edges, and it has to be irrevocably decided to which B node an A node is
matched. It is shown that the greedy algorithm matching an A node to the B
node that currently has the smallest degree is �log(n+1)�-competitive, and that
this result is tight. This algorithm can also be seen as a one-pass �log(n + 1)�-
approximation semi-streaming algorithm (meaning Õ(n) space) for the semi-
matching problem when the input stream is in vertex arrival order. Note that
our one-pass algorithm does not assume any order on the input sequence, and
when allowing Õ(n) space it achieves an O(

√
n)-approximation.

Techniques. Our streaming algorithms are based on the following greedy al-
gorithm. To keep the illustration simple, suppose that the input graph has a
perfect matching. Fix a maximal degree dmax (for instance dmax = n1/4) and
greedily add edges to a set S1 such that the maximal degree of a B node in S1

does not exceed dmax, and the degree of any A node in S1 is at most 1. This
algorithm leaves at most O(n/dmax) A vertices unmatched in S1. To match the
yet unmatched vertices, we use a second greedy algorithm that we run in parallel
to the first one. We fix a parameter d′ appropriately (if dmax = n1/4 then we set
d′ = n1/2) and for all vertices a ∈ A we store arbitrary d′ edges incident to a in
a set E′. Then, we compute an optimal semi-matching S2 of the unmatched ver-
tices in S1 and the B nodes only considering the edges in E′. We prove that such
a semi-matching has bounded maximal degree (if dmax = n1/4 and d′ = n1/2 then
this degree is n1/4). The set S1∪S2 is hence a semi-matching of maximal degree
dmax + deg maxS2 and the space requirement of this algorithm is Õ(nd′). In
Section 3 we generalize this idea for any 0 ≤ ε ≤ 1 to obtain one-pass algorithms
with approximation factors O(n(1−ε)/2) using space Õ(n1+ε), and a log(n)-pass
algorithm with approximation factor O(logn) using space Õ(n).

In the two-party one-way communication setting, the edge set E of a bipartite
graph G = (A,B,E) is split among two players, Alice and Bob. Alice sends a
message to Bob and Bob outputs a semi-matching of G. Our communication
upper bounds make use of what we call a c-semi-matching skeleton (or simply c-
skeleton). A c-skeleton of a bipartite graph G = (A,B,E) is a subset of edges S ⊆
E such that for any A′ ⊆ A : deg max semi(A′, B, S) ≤ c ·deg max semi(A′, B,E)
where semi(A′, B,E′) denotes an optimal semi-matching between A′ and B using
edges in E′. We show that if Alice sends a c-skeleton S of her subgraph to Bob,
and Bob computes an optimal semi-matching using his edges and the skeleton,
then the resulting semi-matching is a c+1-approximation. We show that there is
an O(

√
n)-skeleton consisting of n edges, and that there is an O(n1/3)-skeleton

consisting of 2n edges. It turns out that an optimal semi-matching is an O(
√
n)-
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skeleton, and we show how an O(n1/2)-skeleton can be improved to an O(n1/3)-
skeleton by adding additional n edges. These skeletons are almost optimal: we

show that for any ε > 0, an O(n
1

(1+ε)c+1 )-skeleton has at least cn edges. Inspired
by the prior lower bound, we prove that for any ε > 0, the deterministic one-way
two-party communication complexity of approximating semi-matchings within a

factor O(n
1

(1+ε)c+1 ) is at least cn bits.
In order to prove our structure lemmas on semi-matchings, we make use of

degree-minimizing paths. Our results on the decomposition of semi-matchings
into maximum and maximal matchings directly relate the absence of degree-
minimizing paths to the absence of augmenting paths in matchings.

Organization. After presenting notations and definitions in Section 2, we present
our streaming algorithms in Section 3. We then discuss the one-way two-party
communication setting in Section 4. We conclude with Section 5, where we
present our results on the structure of semi-matchings. Due to space limita-
tions, many of our proofs are omitted, however, all of them can be found in the
full version of this paper.

2 Notations and Definitions

Let G = (A,B,E) be a bipartite graph and let n = |A|. For ease of presentation,
we assume that |B| is upper-bounded by a polynomial in n. Let e ∈ E be an
edge connecting nodes a ∈ A and b ∈ B. Then, we write A(e) to denote the
vertex a, B(e) to denote the vertex b, and ab to denote e. Furthermore, for a
subset E′ ⊆ E, we define A(E′) =

⋃
e∈E′ A(e) (respectively B(E′)). For subsets

A′ ⊆ A and B′ ⊆ B we write E′|A′×B′ to denote the subset of edges of E′ whose
endpoints are all in A′ ∪B′. We denote by E′(a) the set of edges of E′ ⊆ E that
have an endpoint in vertex a, and E′(A′) the set of edges that have endpoints
in vertices of A′, where A′ ⊆ A (similarly we define E′(B′) for B′ ⊆ B).

For a node v ∈ A ∪ B, the neighborhood of v is the set of nodes that are
connected to v and we denote it by Γ (v). For a subset E′ ⊆ E, we write ΓE′(v)
to denote the neighborhood of v in the graph induced by E′. Note that by this
definition Γ (v) = ΓE(v). For a subset E′ ⊆ E, we denote by degE′(v) the degree
in E′ of a node v ∈ V , which is the number of edges of E′ with an endpoint in
v. We define deg maxE′ := maxv∈A∪B degE′(v).

Matchings. A matching is a subset M ⊆ E such that ∀v ∈ A∪B : degM (v) ≤ 1.
A maximal matching is a matching that is inclusion-wise maximal, i.e. it can
not be enlarged by adding another edge of E to it. A maximum matching is
a matching of maximal size. A length p augmenting path (p ≥ 3, p odd) with
respect to a matching M is a path P = (v1, . . . , vp+1) such that v1, vp+1 /∈
A(M) ∪B(M) and for i ≤ 1/2(p− 1) : v2iv2i+1 ∈M , and v2i−1v2i /∈M .

Semi-matchings. A semi-matching of G is a subset S ⊆ E such that ∀a ∈
A : degS(a) = 1. A degree-minimizing path P = (b1, a1, . . . , bk−1, ak−1, bk) with
respect to a semi-matching S is a path of length 2k (k ≥ 1) such that for
all i ≤ k : (ai, bi) ∈ S, for all i ≤ k − 1 : (ai, bi+1) /∈ S, and degS(b1) >
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degS(b2) ≥ degS(b3) ≥ · · · ≥ deg(bk−1) > deg(bk). An optimal semi-matching
S∗ ⊆ E is a semi-matching that does not admit any degree-minimizing-paths.
For A′ ⊆ A,B′ ⊆ B,E′ ⊆ E, we denote by semi(A′, B′, E′) an optimal semi-
matching in the graph G′ = (A′, B′, E′), and we denote by semi2(A′, B′, E′) a
semi-matching that does not admit degree-minimizing paths of length two in G′.

Incomplete d-Bounded Semi-matchings. Let d be an integer. Then an in-
complete d-bounded semi-matching of G is a subset S ⊆ E such that ∀a ∈ A :
degS(a) ≤ 1 and ∀b ∈ B : degS(b) ≤ d. For subsets A′ ⊆ A,B′ ⊆ B,E′ ⊆ E,
we write isemid(A′, B′, E′) to denote an incomplete d-bounded semi-matching of
maximal size in the graph G′ = (A′, B′, E′).

Approximation. We say that an algorithm (or communication protocol) is a c-
approximation algorithm (resp. communication protocol) to the semi-matching
problem if it outputs a semi-matching S such that deg maxS ≤ c · deg maxS∗,
where S∗ denotes an optimal semi-matching. We note that this measure was
previously used for approximating semi-matching, e.g, in [ANR95].

3 Streaming Algorithms

To present our streaming algorithms, we describe an algorithm, asemi(G, s, d, p)
(Algorithm 1), that computes an incomplete 2dp-bounded semi-matching in the
graph G using space Õ(s), and makes at most p ≥ 1 passes over the input
stream. If appropriate parameters are chosen, then the output is not only an
incomplete semi-matching, but also a semi-matching. We run multiple copies of
this algorithm with different parameters in parallel in order to obtain a one-pass
algorithm for the semi-matching problem (Theorem 1). Using other parameters,
we also obtain a log(n)-pass algorithm, as stated in Theorem 2.

Algorithm 1. Approximating semi-matchings: asemi(G, s, d, p)

Require: G = (A,B,E) is a bipartite graph
S ← ∅

repeat at most p times or until |A(S)| = |A|
S ← S ∪ incomplete(G|(A\A(S))×B, s, d)

end repeat
return S

asemi(G, s, d, p) starts with an empty incomplete semi-matching S and adds
edges to S by invoking incomplete(G, s, d) (Algorithm 2) on the subgraph of
the as yet unmatched A vertices in S and all B vertices. Each invocation of
incomplete(G, s, d) makes one pass over the input stream and returns a 2d-
bounded incomplete semi-matching while using space Õ(s). Since we make at
most p passes, the resulting incomplete semi-matching has a maximal degree of
at most 2dp.

incomplete(G, s, d) collects edges greedily from graph G and puts them into
an incomplete d-bounded semi-matching S1 and a set E′. An edge e from the
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Algorithm 2. Computing incomplete semi-matchings: incomplete(G, s, d)

Require: G = (A,B,E) is a bipartite graph
k← s/|A|, S1 ← ∅, E′ ← ∅

while ∃ an edge ab in stream do
if ab /∈ A×B then continue
if degS1

(a) = 0 and degS1
(b) < d then S1 ← S1 ∪ {ab}

if degE′(a) < k then E′ ← E′ ∪ {ab}
end while
S2 ← isemid(E

′|(A\A(S1))×B)
S ← S1 ∪ S2

return S

input stream is put into S1 if S1 ∪ {e} is still an incomplete d-bounded semi-
matching. An edge e = ab is added to E′ if the degree of a in E′ ∪ {e} is less
or equal to a parameter k which is chosen to be s/|A| in order to ensure that
the algorithm does not exceed space Õ(s). The algorithm returns an incomplete
2d-bounded semi-matching that consists of S1 and S2, where S2 is an optimal in-
complete d-bounded semi-matching between the A vertices that are not matched
in S1 and all B vertices, using only edges in E′.

We lower-bound the size of S2 in Lemma 1 (proof omitted). We prove that
for any bipartite graph G = (A,B,E) and any k > 0, if we store for each a ∈ A
any min{k, degG(a)} incident edges to a, then we can compute an incomplete
d-bounded semi-matching of size at least min{kd, |A|} using only those edges,
where d is an upper-bound on the maximal degree of an optimal semi-matching
between A and B in G.

Lemma 1 is then used in the proof of Lemma 2, where we show a lower bound
on the size of the output S1 ∪ S2 of incomplete(G, s, d).

Lemma 1. Let G = (A,B,E) be a bipartite graph, let k > 0 and let d ≥
deg max semi(A,B,E). Let E′ ⊆ E such that for all a ∈ A : degE′(a) =
min{k, degE(a)}. Then there is an incomplete d-bounded semi-matching S ⊆ E′

such that |S| ≥ min{kd, |A|}.

Lemma 2. Let G = (A,B,E) be a bipartite graph, let s ≥ |A| and let d ≥
deg max semi(A,B,E). Then incomplete(G, s, d) (see Algorithm 2) uses Õ(s)
space and outputs an incomplete 2d-bounded semi-matching S such that |S| ≥
min{|A| d

d+d∗ + ds
|A| , |A|}.

Proof. The proof refers to the variables of Algorithm 2 and the values they
take at the end of the algorithm. Furthermore, let S∗ = semi(A,B,E), d∗ =
deg maxS∗, and let A′ = A \A(S1).

Firstly, we lower-bound |S1|. Let a ∈ A′ and b = S∗(a). Then degS1
(b) = d

since otherwise a would have been matched in S1. Hence, we obtain |A(S1)| ≥
d|B(S∗(A′))| ≥ d|A′|/d∗, where the second inequality holds since the maximal
degree in S∗ is d∗. Furthermore, since A′ = A \ A(S1) and |S1| = |A(S1)|,
we obtain |S1| ≥ |A| d

d+d∗ . We apply Lemma 1 on the graph induced by the
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edge set E′|A′×B. We obtain that |S2| ≥ min{ds/|A|, |A′|} and consequently
|S| = |S1|+ |S2| ≥ min{|A| d

d+d∗ + ds
|A| , |A|}.

Concerning space, the dominating factor is the storage space for the at most
k + 1 edges per A vertex, and hence space is bounded by Õ(k|A|) = Õ(s). ��

In the proof of Theorem 1 (proof omitted), for 0 ≤ ε ≤ 1 we show that asemi(G,
n1+ε, n(1−ε)/2d′, 1) returns a semi-matching if d′ is at least the maximal degree
of an optimal semi-matching. Using a standard technique, we run log(n) + 1
copies of asemi for all d′ = 2i with 0 ≤ i ≤ log(n) and we return the best semi-
matching, obtaining a 1-pass algorithm. We use the same idea in Theorem 2,
where we obtain a 4 logn-approximation algorithm that makes log(n) passes and
uses space Õ(n) (proof omitted).

Theorem 1. Let G = (A,B,E) be a bipartite graph with n = |A|. For any
0 ≤ ε ≤ 1 there is a one-pass streaming algorithm using Õ(n1+ε) space that
computes a 4n(1−ε)/2-approximation to the semi-matching problem.

Theorem 2. Let G = (A,B,E) be a bipartite graph with n = |A|. There is
a log(n)-pass streaming algorithm using space Õ(n) that computes a 4 logn-
approximation to the semi-matching problem.

4 Two-Party Communication Complexity

We now consider one-way two-party protocols which are given a bipartite graph
G = (A,B,E) as input, such that E1 ⊆ E is given to Alice and E2 ⊆ E is given
to Bob. Alice sends a single message to Bob, and Bob outputs a valid semi-
matching S for G. A central idea for our upper and lower bounds is what we call a
c-semi-matching skeleton (or c-skeleton). Given a bipartite graph G = (A,B,E),
we define a c-semi-matching skeleton to be a subset of edges S ⊆ E such that
∀A′ ⊆ A : deg max semi(A′, B, S) ≤ c · deg max semi(A′, B,E). We show how
to construct an O(

√
n)-skeleton of size n, and an O(n1/3)-skeleton of size 2n.

We show that if Alice sends a c-skeleton of her subgraph G = (A,B,E1) to
Bob, then Bob can output a c+ 1-approximation to the semi-matching problem.
Using our skeletons, we thus obtain one-way two party communication protocols
for the semi-matching problem with approximation factors O(

√
n) and O(n1/3),

respectively (Theorem 3). Then, we show that for any ε > 0, an O(n
1

(1+ε)c+1 )-
skeleton requires at least cn edges. This renders our O(

√
n)-skeleton and our

O(n1/3)-skeleton tight up to a constant.

Upper Bound. Firstly, we discuss the construction of two skeletons. In Lemma 4,
we show that an optimal semi-matching is an O(

√
n)-skeleton. We use the fol-

lowing key observation: Given a bipartite graph G = (A,B,E), let A′ ⊆ A be

such that A′ has minimal expansion, meaning that A′ = arg minA′′⊆A
|Γ (A′′)|
|A′′| .

The maximal degree in a semi-matching is then clearly at least � |A
′|

|Γ (A′)|� since all

vertices of A′ have to be matched to its neighborhood. However, it is also true

that the maximal degree of a semi-matching equals � |A
′|

|Γ (A′)|�. A similar fact was
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used in [GKK12] for fractional matchings, and also in [KRT01]. We state this
fact in Lemma 3 (proof omitted).

Lemma 3. Let G = (A,B,E) with |A| = n, and let d = deg max semi(A,B,E).

Let A′ = arg minA′′⊆A
|Γ (A′′)|
|A′′| and let α = |Γ (A′)|

|A′| . Then: d = �α−1�.

Lemma 4. Let G = (A,B,E) with n = |A|, and let S = semi(A,B,E). Then:
∀A′ ⊆ A : deg max semi(A′, B, S) <

√
n (deg max semi(A′, B,E))1/2 + 1.

Proof. Let A′ ⊆ A be an arbitrary subset. Let A′′ = arg minA′′′⊆A′
|ΓS(A′′′)|
|A′′′| , and

let k = |ΓS(A′′)|. Let d = deg max semi(A′, B, S). Then by Lemma 3, d = � |A
′′|
k �.

Furthermore, since A′′ is the set of minimal expansion in S, for all b ∈ ΓS(A′′) :
degS(b) = d, and hence |A′′| = kd.

Let d∗ = deg max semi(A′′, B,E). Then d∗ ≤ deg max semi(A′, B,E), since
A′′ ⊆ A′. It holds that ∀x ∈ ΓE(A′′) \ ΓS(A′′) : degS(x) ≥ d− 1 since otherwise
there was a degree-minimizing path of length 2 in S. The sum of the degrees of
the vertices in ΓE(A′′) is upper-bounded by the number of A nodes. We obtain
hence (|ΓE(A′′)| − k)(d − 1) + kd ≤ n, and this implies that |ΓE(A′′)| ≤ n−k

d−1 .
Clearly, d∗ ≥ |A′′|/|ΓE(A′′)|, and using the prior upper bound on |ΓE(A′′)| and

the equality |A′′| = kd, we obtain d∗ ≥ kd(d−1)
n−k which implies that d <

√
n
√
d∗+1

for any k ≥ 1. ��

In order to obtain an O(n1/3)-skeleton, for each a ∈ A we add one edge to the
O(
√
n)-skeleton. Let S = semi(A,B,E) be the O(

√
n)-skeleton, let B′ = B(S)

be the B nodes that are matched in the skeleton, and for all b ∈ B′ let Ab = ΓS(b)
be the set of A nodes that are matched to b in S. Intuitively, in order to obtain a
better skeleton, we have to increase the size of the neighborhood in the skeleton
of all subsets of A, and in particular of the subsets Ab for b ∈ B′. We achieve
this by adding additional optimal semi-matchings Sb = semi(Ab, B,E) for all
subsets Ab with b ∈ B′ to S, see Lemma 5.

Lemma 5. Let G = (A,B,E) be a bipartite graph with n = |A|. Let S =
semi(A,B,E), and for all b ∈ B(S) : Sb = semi(ΓS(b), B,E). Then: ∀A′ ⊆ A :
deg max semi(A′, B, S ∪

⋃
b∈B(S) Sb) ≤ �2n1/3 deg max semi(A′, B,E)�.

We mention that there are graphs for which adding further semi-matchings
Sb1b2 = semi(Ab1b2 , B,E) to our O(n1/3)-skeleton, where Ab1b2 is the set of A
vertices whose neighborhood in our O(n1/3)-skeleton is the set {b1, b2}, does not
help to improve the quality of the skeleton. Finally, we state our main theorem.

Theorem 3. Let G = (A,B,E) with n = |A| and m = |B|. Then there are two
one-way two party deterministic communication protocols for the semi-matching
problem, one with (1) message size cn logm and approximation factor n1/2 + 2,
and one with (2) message size 2cn logm and approximation factor 2n1/3 + 2.

Lower Bounds for Semi-matching-Skeletons. We present now a lower bound
that shows that the skeletons of the previous subsection are essentially opti-
mal. For an integer c, we consider the complete bipartite graph Kn,m where
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m is a carefully chosen value depending on c and n. We show in Lemma 6
(proof omitted) that for any subset of edges E′ of Kn,m such that for all
a ∈ A : degE′(a) ≤ c, there is a subset A′ ⊆ A with |A′| ≤ m such that an
optimal semi-matching that matches A′ using edges in E′ has a maximal degree

of Ω(n
1

c+1 ). Note that since |A′| ≤ m, there is a matching in Kn,m that matches

all A′ vertices. This implies that such an E′ is only an Ω(n
1

c+1 )-skeleton.

Lemma 6. Let G = (A,B,E) be the complete bipartite graph with |A| = n and

|B| = (c!)
1

c+1n
1

c+1 for an integer c. Let E′ ⊆ E be an arbitrary subset such
that ∀a ∈ A : degE′(a) ≤ c. Then there exists an A′ ⊆ A with |A′| ≤ |B| and
deg max semi(A′, B,E′) ≥ (c!)

1
c+1

c n
1

c+1 > e−1.3n
1

c+1 .

We extend Lemma 6 now to edge sets of bounded cardinality without restriction
on the maximal degree of an A node, and we state then our lower-bound result
in Theorem 4.

Lemma 7. Let c > 0 be an integer, let ε > 0 be a constant, and let c′ =
(1 + ε)c. Let G = (A,B,E) be the complete bipartite graph with |A| = n and

|B| = (c′!)
1

c′+1 ( ε
1+ε · n)

1
c′+1 . Let E′ ⊆ E be an arbitrary subset of size at most

cn. Then there exists an A′ ⊆ A with |A′| ≤ |B| and deg max semi(A′, B,E′) >

e−1.3( ε
1+εn)

1
c′+1 .

Theorem 4. Let c > 0 be an integer. Then for all ε > 0, an O(n
1

(1+ε)c+1 )-semi-
matching skeleton requires at least cn edges.

One-Way, Two Party Communication Lower Bound. To prove a lower
bound on the deterministic communication complexity we define a family of bi-
partite graphs. For given integers n and m, let G1 = {G1(x)|x ∈ {0, 1}n×m}
be defined as follows. Let B0 = {b01, . . . , b0m}, B1 = {b11, . . . , b1m} and A =
{a1, . . . , an}. Given x ∈ {0, 1}n×m, let Ex = {(ai, bxi,j

j ) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
(i.e, the entries of the matrix x determine if there is an edge (ai, b

0
j) or an edge

(ai, b
1
j) for all i, j). Then, we define G1(x) = (A,B0 ∪ B1, Ex). From Lemma 7

we immediately obtain the following lemma.

Lemma 8. Let c > 0 be an integer, let ε > 0 be a constant, and let c′ = (1+ε)c.

Let n be a sufficiently large integer, and let m = (c′!)
1

c′+1 ( ε
1+ε · n)

1
c′+1 . Let G =

(A,B0 ∪B1, E) be a graph G ∈ G1, and let E′ ⊆ E be such that |E′| ≤ cn. Then
there exists a set of nodes A′ ⊆ A with |A′| ≤ m and deg max semi(A′, B0 ∪
B1, E

′) > 1/2e−1.3( ε
1+εn)

1
c′+1 .

We further define a second family of bipartite graphs G2 on the sets of nodes A
and C, |A| = |C| = n. For a set A′ ⊆ A we define the graph G2(A′) to be an
arbitrary matching from all the nodes of A′ to nodes of C. The family of graphs
G2 is defined as G2 = {G2(A′)|A′ ⊆ A}.

Our lower bound will be proved using a family of graphs G. Slightly abusing
notation, the family of graphs G is defined as G = G1 × G2. That is, the graphs
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in G are all graphs G = (A,B0 ∪ B1 ∪ C,E1 ∪ E2) built from a graph G1 =
(A,B0 ∪B1, E1) ∈ G1 and a graph G2 = (A,C,E1) ∈ G2 where the set of nodes
A is the same for G1 and G2. We now prove our lower bound.

Theorem 5. Let c > 0 be an integer and let ε > 0 be an arbitrarily small con-
stant. Let P be a β-approximation one-way two-party protocol for semi matching

that has communication complexity at most α. If β ≤ γ = 1/2 1
e1.3 ( ε

ε+1n)
1

(1+ε)c+1 ,
then α > cn, where n is the number of nodes to be matched.

Proof. Take n sufficiently large. Let c′ = (1 + ε)c and let m = (c′!)
1

c′+1 ( ε
1+ε ·

n)
1

c′+1 . We consider as possible inputs the graphs in G (for n and m). Given an
input graph, Alice will get as input all edges between A and B0 ∪ B1 (i.e., a
graph in G1) and Bob will get all edges between A and C (i.e., a graph in G2)

Assume towards a contradiction that the communication complexity of P is
at most cn. Then there is a set of graphs G∗ ⊆ G1, |G∗| ≥ 2nm−cn, such that
on all graphs in G∗ Alice sends the same message to Bob. Consider the set
X∗ ⊆ {0, 1}n×m such that G∗ = {G1(x) |x ∈ X∗}, Since there is a one-to-one
correspondence between G∗ and X∗, |X∗| ≥ 2nm−cn, and there are at most cn
entries which are constant over all matrices in X∗, otherwise |X∗| < 2nm−cn.
This means that there are at most cn edges that exist in all graphs in G∗. Let
E′ be the set of all these edges.

Consider now the graph G = (A,B0 ∪ B1, E
′). Since |E′| ≤ cn, by Lemma 8

there exists a set A′ ⊆ A with |A′| ≤ m and deg max semi(A′, B0 ∪B1, E
′) > γ.

We now define G∗2 ∈ G2 to be G∗2 = G2(A \A′).
Now observe that on any of G ∈ G∗ × {G∗2} ⊆ G, P gives the same output

semi-matching S. S can include, as edges matching the nodes in A′, only edges
from E′, since for any other edge there exists an input in G∗ × {G∗2} in which
that edge does not exist and P would not be correct on that input. It follows
(by Lemma 8) that the maximum degree of S is greater than γ. On the other
hand, since |A′| ≤ m, there is a perfect matching in any graph in G∗ × {G∗2}.
The approximation ratio of P is therefore greater than γ. A contradiction. ��

5 The Structure of Semi-matchings

We now present our results concerning the structure of semi-matchings. All
proofs of this section are deferred to the full version of this paper. Firstly, we
show in Lemma 9 that a semi-matching that does not admit length-two degree-
minimizing paths can be decomposed into maximal matchings. In Lemma 10, we
show that if a semi-matching does not admit any degree-minimizing paths, then
there is a similar decomposition into maximum matchings. Lemma 9 is then used
to prove that semi-matchings that do not admit length-two degree-minimizing
paths approximate optimal semi-matchings within a factor �log(n+ 1)�. To this
end, in the full version of this paper we show that the first d∗ maximal matchings
of the decomposition of such a semi-matching match at least 1/2 of the A ver-
tices, where d∗ is the maximal degree of an optimal semi-matching. In Theorem 6,
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we then apply this result �log(n + 1)� times, showing that the maximal degree
of a semi-matching that does not admit length-two degree-minimizing paths is
at most �log(n + 1)� times the maximal degree of an optimal semi-matching.

Lemma 9. Let S = semi2(A,B,E) be a semi-matching in G that does not admit
a length-two degree-minimizing path, and let d = deg maxS. Then S can be
partitioned into d matchings M1, . . . ,Md such that ∀i : Mi is a maximal matching
in G|Ai×Bi , where A1 = A, B1 = B, and for i > 1 : Ai = A\

⋃
1≤j<i A(Mj) and

Bi = B(Mj−1).

Lemma 10. Let S∗ = semi(A,B,E) be a semi-matching in G that does not
admit degree-minimizing paths of any length, and let d∗ = deg maxS∗. Then
S∗ can be partitioned into d∗ matchings M1, . . . ,Md∗ such that ∀i : Mi is a
maximum matching in G|Ai×Bi , where A1 = A, B1 = B, and for i > 1 : Ai =
A \

⋃
1≤j<i A(Mj) and Bi = B(Mj−1).

Theorem 6. Let S = semi2(A,B,E) be a semi-matching of G that does not
admit a length-two degree-minimizing path. Let S∗ = semi(A,B,E) be an optimal
semi-matching in G. Then deg maxS ≤ �log(n + 1)� deg maxS∗.
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Abstract. In this paper we describe a data structure that supports pat-
tern matching queries on a dynamically arriving text over an alphabet of
constant size. Each new symbol can be prepended to T in O(1) expected
worst-case time. At any moment, we can report all occurrences of a pat-
tern P in the current text in O(|P |+ k) time, where |P | is the length of
P and k is the number of occurrences. This resolves, under assumption
of constant size alphabet, a long-standing open problem of existence of
a real-time indexing method for string matching (see [2]).

1 Introduction

Two main versions of the string matching problem differ in which of the two
components – pattern P or text T – is provided first in the input (or is considered
as fixed) and can then be preprocessed before processing the other component.
The framework when the text has to be preprocessed is usually called indexing,
as it can be viewed as constructing a text index supporting matching queries.

Real-time variants of the string matching problem are about as old as the
string matching itself. In the 70s, existence of real-time string matching algo-
rithms was first studied for Turing machines. For example, it has been shown
that the language {P#T } where P occurs in T can be recognized by a Tur-
ing machine, while the language {T#P} cannot [7]. In the realm of the RAM
model, the real-time variant of pattern-preprocessing string matching has been
extensively studied, leading to very efficient solutions (see e.g. [3] and references
therein). The indexing variant, however, still has important unsolved questions.

In the real-time indexing problem, we have to maintain an indexing data
structure for a text that arrives online, by spending O(1) worst-case time on
each new character; a string matching query must be answered in O(|P |) time
for a query string P . Back in the 70s, Slisenko [15] claimed a solution to the

� This work was done while this author was at Laboratoire d’Informatique Gaspard
Monge, Université Paris-Est & CNRS
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real-time indexing problem, but its complex and voluminous full description
made it unacknowledged by the scientific community, and the problem remained
to be considered open for many years. In 1994, Kosaraju [11] presented another
solution which, however, did not support repetitive matching queries on different
portions of arriving text, but assumed that the text is entirely read before the
matching query is made. In 2008, Amir and Nor [2] proposed another algorithm
that fixes this drawback and allows queries to be made at any moment of the
text scan.

All the three existing real-time indexing solutions [15,11,2] support only exis-
tential queries asking whether the pattern occurs in the text, but are unable to
report occurrences of the pattern. Designing a real-time text indexing algorithm
that would support queries on all occurrences of a pattern is stated in [2] as
the most important remaining open problem. The algorithms of [11,2] assume
a constant size alphabet and are both based on constructions of “incomplete”
suffix trees which can be built real-time but can only answer existential queries.
To output all occurrences of a pattern, a fully-featured suffix tree is needed, how-
ever a real-time suffix tree construction, first studied in [1], is in itself an open
question. The best currently known algorithm [4] spends O(log logn) worst-case
time on each character, and a truly real-time construction seems unlikely to ex-
ist. Therefore, a suffix tree alone seems to be insufficient to solve the real-time
indexing problem.

In this paper, we propose the first real-time text indexing solution that sup-
ports reporting all pattern occurrences, under the assumption of constant size
alphabet. The general idea is to maintain several data structures, three in our
case, each supporting queries for different pattern lengths. Our method employs
the suffix tree construction technique recently proposed by Kopelowitz [9]. Simi-
lar to [9] and to previous real-time indexing solutions [11,2], we assume that the
text is read right-to-left, or otherwise the pattern needs to be reversed before
executing the query. We use the word RAM computation model; the same model
is also used in e.g., [4,9].

The paper is organized as follows. In Section 2.1, we describe auxiliary data
structures and Kopelowitz’ technique that are essential for our algorithm. In
Section 3, we describe the three data structures for different pattern lengths
that constitute a basis of our solution. These data structures, however, do not
provide a fully real-time algorithm. Then in Section 4, we show how to “fix” the
solution of Section 3 in order to obtain a fully real-time algorithm.

Throughout the paper, Σ is an alphabet of constant size σ. Since the text T
is read right-to-left, it will be convenient for us to enumerate symbols of T from
the end, i.e. T = tn . . . t1 and substring ti+�ti+�−1 . . . ti will be denoted T [i+	..i].
T [i..] denotes suffix T [i..1]. Throughout this paper, we reserve k to denote the
number of objects (occurrences of a pattern, elements in a list, etc) in the query
answer.

2 Preliminaries

In this Section, we describe main algorithmic tools used by our algorithms.
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2.1 Range Reporting and Predecessor Queries on Colored Lists

We use data structures from [13] for searching in dynamic colored lists.

Colored Range Reporting in a List. Let elements of a dynamic linked list L be
assigned positive integer values called colors. A colored range reporting query on
a list L consists of two integers col1 < col2 and two pointers ptr1 and ptr2 that
point to elements e1 and e2 of L. An answer to a colored range reporting query
consists of all elements e ∈ L occurring between e1 and e2 (including e1 and e2)
such that col1 ≤ col(e) ≤ col2, where col(e) is the color of e. The following
result on colored range reporting has been proved by Mortensen [13].

Lemma 1 ([13]). Suppose that col(e) ≤ logf n for all e ∈ L and some constant
f ≤ 1/4. We can answer color range reporting queries on L in O(log logm + k)
time using an O(m)-space data structure, where m is the number of elements in
L. Insertion of a new element into L is supported in O(log logm) time.

Note that the bound f ≤ 1/4 follows from the description in [12]: the data
structure in [13] uses Q-heaps [6] to answer certain queries on the set of colors
in constant time.

Colored Predecessor Problem. The colored predecessor query on a list L consists
of an element e ∈ L and a color col. The answer to a query (e, col) is the closest
element e′ ∈ L which precedes e such that col(e) = col. The following Lemma
is also proved in [13]; we also refer to [8], where a similar problem is solved.

Lemma 2 ([13]). Suppose that col(e) ≤ logf n for all e ∈ L and some constant
f ≤ 1/4. There exists an O(m) space data structure that answers colored prede-
cessor queries on L in O(log logm) time and supports insertions in O(log logm)
time, where m is the number of elements in L.

2.2 On-Line Indexing for Alphabets of Small Size

Kopelowitz [9] described an online indexing method that works for an arbitrar-
ily large alphabet A. We describe below a simplified version of his algorithm,
adapted to our purposes, for the case when the alphabet size |A| ≤ log1/4 n. For
a current text T , Kopelowitz’ algorithm maintains a list S of its lexicographi-
cally sorted suffixes and a suffix tree T .1 Besides, the following auxiliary data
structures are used. For any symbol a ∈ A that occurs in T at least once, we
store a in a data structure A. Since A contains at most log1/4 n elements, we can
search in A in O(1) time using Q-heaps [6]. For every a in A, we store a pointer
last(a) to the last (lexicographically largest) suffix of T that starts with a. Fur-
thermore, every suffix T [i..] in S is colored with color ti+1, i.e., the color of T [i..]
is the symbol that precedes the starting position of T [i..] in T . We maintain the
structure D for colored predecessor queries on S, as in Lemma 2. For each T [i..]
in S, we also store a pointer to the suffix T [i+ 1..] in S. Finally, we store a data

1 In subsequent sections we will consider S to be a part of T .
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structure for weighted level ancestor queries on T : for any leaf v of T and for
any integer q, we can find the lowest ancestor u of v such that the string depth
of u is smaller than q. The data structure from [10] uses linear space, supports
dynamic tree updates in expected O(log logn) time, and answers the weighted
level ancestor queries in worst-case O(log log n) time.

The algorithm of Kopelowitz [9] consists of three phases. During the first
phase we prepend a symbol tn+1 to the current text T = tn . . . t1 and find the
position of the new suffix tn+1T in the lexicographically ordered list of suffixes.
To do this, we first check if tn+1 occurs at least once in T . We query A for the
largest symbol a ≤ tn+1; if a �= tn+1, then the suffix tn+1T should be inserted
after last(a) into S. If a = tn+1, at least one suffix of T starts with tn+1. Using
D, we look for the predecessor of T [n..] in S colored with tn+1. Let T [j..] denote
such a predecessor of T [n..]. Then T [j + 1..] starts with symbol tn+1, and it is
easy to check that T [j + 1..] is the lexicographically largest suffix that precedes
tn+1T .

When we know suffixes S′ = T [i′..] and S′′ = T [i′′..] of T that respec-
tively precede and follow tn+1T , we can find the longest common prefixes 	′ =
lcp(tn+1T, S

′) and 	′′ = lcp(tn+1T, S
′′) in O(1) time using the data structure

of [5]. If 	′ > 	′′, we find the leaf v of T that holds S′ and the lowest ancestor
u of v with string depth at most 	′; u is found using the dynamic weighted level
ancestor structure from [10]. If the string depth of u equals 	′, we create a new
child of u that holds the new suffix tn+1T . Otherwise, let w be a child of u which
is an ancestor of v. We split the edge from u to w and create a new node u′.
Then, we create a new child of u′ that holds toT . The case 	′′ ≥ 	′ is symmetric.
When the new suffix is inserted into the suffix tree, we update all the auxiliary
data structures during the third phase. We refer to [9] for a detailed description
of the algorithm.

The only difference between the described procedure and the original algo-
rithm of Kopelowitz [9] is that our method assumes an alphabet of size |A| ≤
log1/4 n, which allows us to employ the colored predecessor data structure to
search for the position of suffix tn+1T during the first phase. The algorithm in [9]
works for an arbitrarily large alphabet, and therefore requires more complicated
data structures.

3 Fast Off-Line Solution

In this section we describe the main part of our algorithm. The algorithm updates
the index by reading the text in the right-to-left order. However, the algorithm
we describe now will not be on-line, as it will have to access symbols to the left
of the currently processed symbol. Another “flaw” of the algorithm is that it will
support pattern matching queries only with an additional exception: we will be
able to report all occurrences of a pattern except for those with start positions
among a small number of most recently processed symbols of T . In the next
section we will show how to fix these issues and turn our algorithm into a fully
real-time indexing solution that reports all occurrences of a pattern.
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The algorithm distinguishes between three types of query patterns depending
on their length: long patterns contain at least (log logn)2 symbols, medium-size

patterns contain between (log(3) n)2 and (log logn)2 symbols, and short patterns

contain less than (log(3) n)2 symbols2. For each of the three types of patterns, the
algorithm will maintain a separate data structure supporting queries in O(|P |+k)
time for matching patterns of the corresponding type.

3.1 Long Patterns

To match long patterns, we maintain a sparse suffix tree TL storing only suffixes
that start at positions q · d for q ≥ 1 and d = log logn/(4 logσ). Suffixes stored

in TL are regarded as strings over a meta-alphabet of size σd = log1/4 n. This
allows us to use the method of Section 2.2 to maintain TL. Recall that the method
maintains a list of sorted suffixes that we denote LL.

Using TL we can find occurrences of a pattern P that start at positions qd for
q ≥ 1, but not occurrences starting at positions qd+ δ for 1 ≤ δ < d. To be able
to find all occurrences, we maintain an additional list LE defined as follows.

The list LE contains copies of all nodes of TL as they occur during the Euler
tour of TL. Thus, LE contains one element for each leaf and two elements for
each internal node of TL. The first copy of an internal node u precedes the copies
of all nodes in the subtree of u, and the second copy of u occurs immediately
after the copies of all descendants of u. To simplify the presentation, we will not
distinguish between elements of LE and suffix tree nodes that they represent. If
a node of LE is a leaf that corresponds to a suffix T [i..], we mark it with the

meta-symbol
←−
T [i, d] = ti+1ti+2 . . . ti+d which is interpreted as the color of the

leaf for the suffix T [i..]. Colors are ordered by lexicographic order of underlying
strings. If S = s1 . . . sj is a string with j < d, then S defines an interval of colors,
denoted [minc(S),maxc(S)], corresponding to all strings of length d with prefix

S. Recall that there are log1/4 n different colors. On list LE , we maintain the
data structure of Lemma 1 for colored range reporting queries.

After reading character ti where i = qd for q ≥ 1, we add the suffix T [i..],

viewed as a string over the meta-alphabet of cardinality log1/4 n, to TL according
to the algorithm described in Section 2.2. In addition, we have to update the
list LE , i.e. to insert to LE the new leaf holding the suffix T [i..] marked with
the color ti+1ti+2 . . . ti+d. (Note that here the algorithms “looks ahead” for the
forthcoming d letters of T .) If a new internal node has been inserted into TL, we
also update the list LL accordingly. (Details are left out and can be found e.g.
in [12].)

Since the meta-alphabet size is only log1/4 n, the navigation in TL from a
node to a child can be supported in O(1) time. Observe that the children of
any internal node v ∈ TL are naturally ordered by the lexicographic order of
edge labels. We store the children of v in a data structure Pv which allows us to
find in time O(1) the child whose edge label starts with a string (meta-symbol)

2 Henceforth, log(3) n = log log log n.
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S = s1 . . . sd. Moreover, we can also compute in time O(1) the “smallest” and
the “largest” child of v whose edge label starts with a string S = s1 . . . sj with
j ≤ d. Pv will also support adding a new edge to Pv in O(1) time. Data structure
Pv can be implemented using e.g. atomic heaps [6]; since all elements in Pv are

bounded by log1/4 n, we can also implement Pv as described in [14].
We now consider a long query pattern P = p1 . . . pm and show how the oc-

currences of P are computed. An occurrence of P is said to be a δ-occurrence if
it starts in T at a position j = qd + δ, for some q. For each δ, 0 ≤ δ ≤ d− 1, we
find all δ-occurrences as follows. First we “spell out”Pδ = pδ+1 . . . pm in TL over
the meta-alphabet, i.e. we traverse TL proceeding by blocks of up to d letters of
Σ. If this process fails at some step, then P has no δ-occurrences. Otherwise,
we spell out Pδ completely, and retrieve the closest explicit descendant node vδ,
or a range of descendant nodes vlδ, v

l+1
δ , . . . , vrδ in the case when Pδ spells to an

explicit node except for a suffix of length less than d. The whole spelling step
takes time O(|P |/d + 1).

Now we jump to the list LE and retrieve the first occurrence of vδ (or vlδ)
and the second occurrence of vδ (or vrδ ) in LE . A leaf u of T corresponds to a
δ-occurrence of P if and only if u occurs in the subtree of vδ (or the subtrees of
vlδ, . . . , v

r
δ ) and the color of u belongs to [minc(pδ . . . p1),maxc(pδ . . . p1)]. In the

list LE , these leaves occur precisely within the interval we computed. Therefore,
all δ-occurrences of P can be retrieved in time O(log logn + kδ) by a colored
range reporting query (Lemma 1), where kδ is the number of δ-occurrences.
Summing up over all δ, all occurrences of a long pattern P can be reported in
time O(d(|P |/d + log logn) + k) = O(|P | + d log logn + k) = O(|P | + k), as
d = log logn/(4 logσ), σ = O(1) and |P | ≥ (log logn)2.

3.2 Medium-Size Patterns

Now we show how to answer matching queries for patterns P where (log(3) n)2 ≤
|P | < (log logn)2. In a nutshell, we apply the same method as in Section 3.1
with the main difference that the sparse suffix tree will store only truncated
suffixes of length (log logn)2, i.e. prefixes of suffixes bounded by (log logn)2

symbols. We store truncated suffixes starting at positions spaced by log(3) n =
log log logn symbols. The total number of different truncated suffixes is at most
σ(log log n)2 . This small number of suffixes will allow us to search and update the
data structures faster compared to Section 3.1. We now describe the details of
the construction.

We store all truncated suffixes that start at positions qd′, for q ≥ 1 and
d′ = log(3) n, in a tree TM . TM is organized in the same way as the standard suffix
tree; that is, TM is a compressed trie for substrings T [qd′..qd′ − (log logn)2 + 1],
where these substrings are regarded as strings over the meta-alphabet Σd′

.3

Observe that the same truncated suffix can occur several times. Therefore, we

3 For simplicity we assume that log(3) n and log log n are integers and log(3) n divides
log log n. If this is not the case, we can find d′ and d that satisfy these requirements
such that log log n ≤ d ≤ 2 log log n and log(3) n ≤ d′ ≤ 2 log(3) n.
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augment each leaf v with a list of colors Col(v) corresponding to left contexts
of the corresponding truncated suffix S. More precisely, if S = T [qd′..qd′ −
(log logn)2 + 1] for some q ≥ 1, then

←−
T [qd′, d′] is added to Col(v). Note that the

number of colors is bounded by σlog(3) n. Futhermore, for each color col in Col(v),

we store all positions i = qd′ of T such that S occurs at i and
←−
T [i, d′] = col. As

in Section 3.1, we store a list LM that contains colored elements corresponding
to the Euler tour traversal of TM . For each internal node, LM contains two
elements. For every leaf v and for each value col in its color list Col(v), LM

contains a separate element colored with col. Observe that since the size of

LM is bounded by O(σ(log logn)2+log(3) n), updates of LM can be supported in

O(log log(σ(log logn)2)) = O(log(3) n) time, and colored reporting queries on LM

can be answered in O(log(3) n + k) time (see Lemma 1).
Truncated suffixes are added to TM using a method similar to that of Sec-

tion 3.1. After reading a symbol tqd′ for some q ≥ 1, we add Snew = T [qd′..qd′−
(log logn)2 + 1] colored with

←−
T [qd′, d′] to the tree TM . To find the place of Snew

in the list of leaves of TM , here we compare truncated suffixes directly rather
than using predecessor queries, as in Kopelowitz’s algorithm (Section 2.2). Ob-
serve that every truncated suffix can be viewed as an integer in the range [1..U ]

for U = σ(log logn)2 . We store current truncated suffixes in the van Emde Boas
data structure V . Using V , we can find the largest Sprev ≤ Snew and the smallest

Snext ≥ Snew in TM in O(log logU) = O(log(3) n) time. Let 	′ = lcp(Sprev, Snew),
	′′ = lcp(Snext, Snew), and 	 = max(	′, 	′′). Observe that lcp values can be com-
puted in O(1) time using standard bit operations. Once 	 is known, we update the

tree TM spending O(log log |TM |) = O(log(3) n) expected time on the weighted
level ancestor query. Finally, we update LM : if LM already contains a leaf with

string value Snew and color
←−
T [qd′, d′], we add qd′ to the list of its occurrences,

otherwise we insert a new element into LM and initialize its location list to qd′.
Altogether, the addition of a new truncated suffix Snew requires O(log(3) n) time.

A query for a pattern P = p1 . . . pm, such that (log(3) n)2 ≤ m < (log logn)2,

is answered in the same way as in Section 3.1. For each ρ = 0, . . . , log(3) n − 1,
we find locus nodes vlρ, . . . , v

r
ρ (possibly with vlρ = vrρ) of Pρ = pρ+1 . . . pm.

Then, we find all elements in LM occurring between the first occurrence of vlρ
and the second occurrence of vrρ and colored with a color col that belongs to
[minc(pρ . . . p1),maxc(pρ . . . p1)]. For every such element, we traverse the asso-
ciated list of occurrences: if a position i is in the list, then P occurs at position
(i + ρ). The total time needed to find all occurrences of a medium-size pattern

P is O(d′(|P |/d′ + log(3) n) + k) = O(|P | + (log(3) n)2 + k) = O(|P | + k) since

|P | ≥ (log(3) n)2.

3.3 Short Patterns

Finally, we describe our indexing data structure for patterns P with |P | <

(log(3) n)2. We maintain the tree TS of truncated suffixes of length Δ = (log(3) n)2

seen so far in the text. For every position i of T , TS contains the substring
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T [i..i − Δ + 1]. TS is organized as a compacted trie. We support queries and

updates on TS using tabulation. There are O(2σ
Δ

) different trees, and O(σΔ)
different queries can be made on each tree. Therefore, we can afford explicitly
storing all possible trees TS and tabulating possible tree updates. Each internal
node of a tree stores pointers to its lefmost and rightmost leaves, the leaves of a
tree are organized in a list, and each leaf stores the encoding of the corresponding
string Q.

The update table Tu stores, for each tree TS and for any string Q, |Q| = Δ, a
pointer to the tree T ′S (possibly the same) obtained after adding Q to TS . Table

Tu uses O(2σ
Δ

σΔ) = o(n) space. The output table To stores, for every string Q
of length Δ, the list of positions in the current text T where Q occurs. To has
σΔ = o(n) entries and all lists of occurrences take O(n) space altogether.

When scanning the text, we maintain the encoding of the string Q of Δ most
recently read symbols of T . The encoding is updated after each symbol using
bit operations. After reading a new symbol, the current tree TS is updated using
table Tu and the current position is added to the entry To[Q]. Updates take
O(1) time.

To answer a query P , |P | < Δ, we find the locus u of P in the current tree TS ,
retrieve the leftmost and rightmost leaves and traverse the leaves in the subtree
of u. For each traversed leaf vl with label Q, we report the occurrences stored in
To[Q]. The query takes time O(|P |+ k).

4 Real-Time Indexing

The indexes for long and medium-size patterns, described in Sections 3.1 and 3.2
respectively, do not provide real-time indexing solutions for several reasons. The
index for long patterns, for example, requires to look ahead for the forthcoming
d symbols when processing symbols ti for i = qd, q ≥ 1. Furthermore, for such
i, we are unable to find occurrences of query patterns P starting at positions
ti−1 . . . ti−d+1 before processing ti. A similar situation holds for medium-size
patterns. Another issue is that in our previous development we assumed the
length n of T to be known, whereas this may of course not be the case in the
real-time setting. In this Section, we show how to fix these issues in order to turn
the indexes real-time. Firstly we show how the data structures of Sections 3.1
and 3.2 can be updated in a real-time mode. Then, we describe how to search
for patterns that start among most recently processed symbols. We describe our
solutions to these issues for the case of long patterns, as a simple change of
parameters provides a solution for medium-size patterns too. Finally, we will
show how we can circumvent the fact that the length of T is not known in
advance.

In the algorithm of Section 3.1, the text is partitioned into blocks of length
d, and the insertion of a new suffix T [i..] is triggered only when the leftmost
symbol ti of a block is reached. The insertion takes time O(d) and assumes the
knowledge of the forthcoming block ti+d . . . ti+1. To turn this algorithm real-
time, we apply a standard deamortization technique. We distribute the cost of
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the insertion of suffix T [i− d..] over d symbols of the block ti+d . . . ti+1. This is
correct, as by the time we start reading the block ti+d . . . ti+1, we have read the
block ti . . . ti−d+1 and therefore have all necessary information to insert suffix
T [i − d..]. In this way, we spend O(1) expected time per symbol to update all
involved data structures.

Now assume we are reading a block ti+d . . . ti+1, i.e. we are processing some
symbol ti+δ for 1 ≤ δ < i. At this point, we are unable to find occurrences of
a query pattern P starting at ti+δ . . . ti+1 as well as within the two previous
blocks, as they have not been indexed yet. This concerns up to (3d − 1) most
recent symbols. We then introduce a separate procedure to search for occurrences
that start in 3d leftmost positions of the already processed text. This can be done
by simply storing T in a compact form Tc where every logσ n consecutive symbols
are packed into one computer word4. Thus, Tc uses O(|T |/ logσ n) words of space.
Using Tc, we can test whether T [j..j − |P |+ 1] = P , for any pattern P and any
position j, in O(�|P |/ logσ n�) = o(|P |/d) + O(1) time. Therefore, checking 3d
positions takes time o(|P |) + O(d) = O(|P |) for a long pattern P .

We now describe how we can apply our algorithm in the case when the text
length is not known beforehand. In this case, we assume |T | to take increasing
values n0 < n1 < . . . , as long as the text T keeps growing. Here, n0 is some
appropriate initial value and ni = 2ni−1 for i ≥ 1.

Suppose now that ni is the currently assumed value of |T |. After we reach
character tni/2, during the processing of the next ni/2 symbols, we keep building
the index for |T | = ni and, in parallel, rebuild all the data structures under
assumption that |T | = ni+1 = 2ni. In particular, if log log(2ni) �= log logni, we

build a new index for long patterns, and if log(3)(2ni) �= log(3) ni, we build a
new index for meduim-size and short patterns. If logσ(2ni) �= logσ ni, we also
construct a new compact representation Tc introduced earlier in this section.
Altogether, we distribute the construction cost of the data structures for T [ni..1]
under assumption |T | = 2ni over the processing of tni/2+1 . . . tni . Since O(ni) =
O(ni/2), processing these ni/2 symbols remains real-time. By the time tni has
been read, all data structures for |T | = 2ni have been built, and the algorithm
proceeds with the new value |T | = ni+1. Observe finally that the intervals [ni/2+
1, ni] are all disjoint, therefore the overhead per letter incurred by the procedure
remains constant. In conclusion, the whole algorithm remains real-time. We finish
with our main result.

Theorem 1. There exists a data structure storing a text T that can be updated
in O(1) worst-case expected time after prepending a new symbol to T . This data
structure reports all occurrences of a pattern P in the current text T in O(|P |+k)
time, where k is the number of occurrences.

5 Conclusions

In this paper we presented the first real-time indexing data structure that sup-
ports reporting all pattern occurrences in optimal time O(|P | + k). As in the

4 In fact, it would suffice to store 3d− 1 most recently read symbols in compact form.
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previous works on this topic [11,2,4], we assume that the input text is over an
alphabet of constant size. It may be possible to extend our result to alphabets
of poly-logarithmic size.

Our algorithm spends a constant expected worst-case time for updating the
data structure when a new text symbol arrives. The expectation comes only from
the updates of the weighted level ancestor structure [10], which, in turn, comes
from the updates for the dynamic predecessor problem (y-fast tries). We feel
that one can get rid of the expectation, however we have not found a solution
to this so far.

Acknowledgements. GK has been supported by the Marie-Curie Intra-European
fellowship for carrier development. We thank the anonymous reviewers for help-
ful comments.
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Abstract. We introduce the polynomial coefficient matrix and identify
maximum rank of this matrix under variable substitution as a complexity
measure for multivariate polynomials. We use our techniques to prove
super-polynomial lower bounds against several classes of non-multilinear
arithmetic circuits. In particular, we obtain the following results :
– As our first main result, we prove that any homogeneous depth-3

circuit for computing the product of d matrices of dimension n × n
requires Ω(nd−1/2d) size. This improves the lower bounds in [9] for
d = ω(1).

– As our second main result, we show that there is an explicit poly-
nomial on n variables and degree at most n

2
for which any depth-3

circuit C of product dimension at most n
10

(dimension of the space

of affine forms feeding into each product gate) requires size 2Ω(n).
This generalizes the lower bounds against diagonal circuits proved
in [14]. Diagonal circuits are of product dimension 1.

– We prove a nΩ(log n) lower bound on the size of product-sparse for-
mulas. By definition, any multilinear formula is a product-sparse for-
mula. Thus, this result extends the known super-polynomial lower
bounds on the size of multilinear formulas [11].

– We prove a 2Ω(n) lower bound on the size of partitioned arith-
metic branching programs. This result extends the known exponen-
tial lower bound on the size of ordered arithmetic branching pro-
grams [7].

1 Introduction

Arithmetic circuits are a fundamental model of computation for polynomials.
Establishing the limitations of polynomial sized arithmetic circuits is a central
open question in the area of algebraic complexity(see [17] for a detailed sur-
vey). One of the recent surprises in the area was the result due to Agrawal and
Vinay [2] where they show that if a polynomial in n variables of degree d (linear
in n) can be computed by arithmetic circuits of size 2o(n), then it can also be
computed by depth-4 circuits of size 2o(n). The parameters of this result was fur-
ther tightened by Koiran [8]. These results explained the elusiveness of proving
lower bounds against even depth-4 circuits. For depth-3 circuits, the best known
general result (over finite fields) is an exponential lower bound due to Grigoriev
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and Karpinski [5] and Grigoriev and Razborov [4]. Over infinite fields, obtaining
such strong lower bounds is a long-standing open problem. Lower bounds for
restricted classes of depth-3 and depth-4 circuits are studied in [1,9,16] .

One class of models which has been extensively studied is when the gates are
restricted to compute multilinear polynomials. Super-polynomial lower bounds
are known for the size of multilinear formulas computing the permanent or de-
terminant polynomial [12]. However, even under this restriction proving super-
polynomial lower bounds against arbitrary multilinear arithmetic circuits is an
open problem (see [17] and references there in). The parameter identified by [11],
which showed the limitations of multilinear formulas, was the rank of a matrix
associated with the circuit - namely the partial derivatives matrix1. The method
showed that there exists a partition of variables into two sets such that the rank
of the partial derivatives matrix of any polynomial computed by the model is
upper bounded by a function of the size of the circuit. But there are explicit poly-
nomials for which the rank of the partial derivatives matrix is high. This program
has been carried out for several classes of multilinear polynomials and several
variants of multilinear circuits [3,7,10,11,12,13]. However, the partial derivatives
matrix, in the form that was studied, was known to yield lower bounds only for
multilinear circuits.

In this work, we generalize this framework to prove lower bounds against sev-
eral classes of non-multilinear arithmetic circuits. This generalization also shows
that the multilinearity restriction in the above proof strategy can possibly be
eliminated from the circuit model side. Hence it can also be seen as an approach
towards proving lower bounds against the general arithmetic circuits.

We introduce a variant of the partial derivatives matrix where the entries will
be polynomials instead of constants - which we call the polynomial coefficient
matrix. Instead of rank of the partial derivatives matrix, we analyze the max-rank
- the maximum rank of the polynomial coefficient matrix2 under any substitution
for the variables from the underlying field. We first prove how the max-rank
changes under arithmetic operations. These tools are combined to prove upper
bounds on max-rank of various restrictions of arithmetic circuits.

In [9], it was proved that any homogeneous depth-3 circuit for multiplying d
n × n matrices (Iterated Matrix Multiplication, IMMn

d ) requires Ω
(
nd−1/d!

)
size. We use our techniques to improve this result in terms of the lower bound.
Our methods are completely different from [9] and this demonstrates the power
of this method beyond the reach of the original partial derivatives matrix method
due to Raz [11]. As our first main result, we prove the following.

Theorem 1. Any homogeneous depth-3 circuit for computing the product of d
matrices of dimension n× n requires Ω(nd−1/2d) size.

1 An exponential sized matrix associated with the multilinear polynomial with respect
to a partition of the variables into two sets. See Section 2 for the formal definition.

2 When it is clear from the context, we drop the matrix as well as the partition. By the
term, max-rank of a polynomial, we denote the maximum rank of the polynomial
coefficient matrix corresponding to the polynomial with respect to the partition in
the context.
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Notice that compared to the bounds in [9], our bounds are stronger when
d = ω(1). Very recently, Gupta et al. [6] studied the model of homogeneous
circuits and proved a strong lower bound parameterized by the bottom fan-in.
They studied depth-4 circuits (ΣΠΣΠ) and showed that if the fan-in of the
bottom level product gate of the circuits is t, then any homogeneous depth-4
circuit computing the permanent (and the determinant) of n× n matrices must
have size 2Ω(n

t ). In particular, this implies a 2Ω(n) lower bound for any depth-3
homogeneous circuit computing the permanent (and the determinant) of n× n
matrices (n2 variables). However, we remark that Theorem 1 is addressing the
iterated matrix multiplication polynomial and hence is not directly subsumed by
the above result. Moreover, the techniques used in [6] are substantially different
from ours.

We apply our method to depth-3 circuits where space of the affine forms
feeding into each product gate in the circuit is of limited dimension. Formally, a
depth-3 ΣΠΣ circuit C is said to be of product dimension r if for each product
gate P in C, where P = Πd

i=1Li, where Li is an affine form for each i, the
dimension of the span of the set {Li}i∈[d] is at most r. As our second main result,
we prove exponential lower bounds on the size (in fact, the top fan in) of depth-3
circuits of bounded product dimension for computing an explicit polynomial.

Theorem 2. There is an explicit polynomial on n variables and degree ≤ n
2 for

which any ΣΠΣ circuit C of product dimension at most n
10 requires size 2Ω(n).

In [14], the author studies diagonal circuits, which are depth-3 circuits where
each product gate is an exponentiation gate. Clearly, such a product gate can be
visualized as a product gate with the same affine form being fed into it multiple
times. Thus, these circuits are of product dimension 1, and our lower bound
result generalizes size lower bounds against diagonal circuits.

Note that the product dimension of a depth-3 circuit is different from the
dimension of the span of all affine forms computed at the bottom sum gates of a
ΣΠΣ circuit. It can be easily seen that, when this parameter, which we refer to
as the total dimension of the circuit, when bounded, the model non-universal.

For our next result, we generalize the model of syntactic multilinear formulas
to product-sparse formulas. We formally define product-sparse formulas and full
max-rank polynomials in Section 2. These formulas can compute non-multilinear
polynomials as well. We show the following theorem regarding this model using
our methods.

Theorem 3. Let X be a set of 2n variables and let f ∈ F[X ] be a full max-
rank polynomial. Let Φ be any (s, d)-product-sparse formula of size nε logn, for a
constant ε. If sd = o(n1/8), then f cannot be computed by Φ.

As our fourth result, we define partitioned arithmetic branching programs which
are generalizations of ordered ABPs. We prove an exponential lower bound for
partitioned ABPs extending results in [7].

Theorem 4. Let X be a set of 2n variables and F be a field. For any full max-
rank homogeneous polynomial f of degree n over X and F, the size of any par-
titioned ABP computing f must be 2Ω(n).
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2 Preliminaries

In this section, we define some of the models we study. For more detailed account
of models and the results we refer the reader to the survey [17].

An arithmetic circuit Φ over the field F and the set of variables X = {x1, x2, . . .
, xn} is a directed acyclic graph G = (V,E). The vertices of G with in-degree
0 are called input gates and are labelled by variables in X or constants from
the field F. The vertices of G with out-degree 0 are called output gates. Rest all
vertices are referred to as internal vertices. Every internal vertex is either a plus
gate or a product gate. We will study arithmetic circuits with a single output
gate. Thus, the polynomial computed by the arithmetic circuit is the polynomial
associated with the output gate. The size of Φ is defined to be the number of
gates in Φ. For a vertex v ∈ V , we denote the set of variables that occur in the
subgraph rooted at v by Xv.

We consider depth restricted circuits. A ΣΠΣ circuit is a levelled depth-3
circuit with a plus gate at the top, multiplication gates at the middle level and
plus gates at the bottom level. The fan-in of the top plus gate is referred to as
top fan-in. A ΣΠΣ circuit is said to be homogeneous if the plus gate at the
bottom level compute homogeneous linear forms only.

An important restricted model of arithmetic circuits is multilinear circuits.
A polynomial f ∈ F[X ] is called multilinear if the degree of every variable in
f is at most one. An arithmetic circuit is called multilinear if the polynomial
computed at every gate is multilinear. An arithmetic circuit is called syntactic
multilinear if for every product gate v with children v1 and v2, Xv1 ∩Xv2 = φ.
An arithmetic circuit is called an arithmetic formula if the underlying undirected
graph is acyclic i.e. fan-out of every vertex is at most one.

Let Φ be a formula defined over the set of variables X and a field F. For a
product gate v in Φ with children v1 and v2, let us define the following properties:

Disjoint v is said to be disjoint if Xv1 ∩Xv2 = φ.
Sparse v is said to be s-sparse if the number of monomials in the polynomial

computed by at least one of its input gates is at most 2s.

For a node v, let us define the product-sparse depth of v to be equal to the
maximum number of non-disjoint product gates in any path from a leaf to v.

Definition 1. A formula is said to be a (s, d)-product-sparse if every product
gate v is either disjoint or s-sparse, where d is the product-sparse depth of the
root node.

Clearly, any syntactic multilinear formula is a (s, 0)-product-sparse formula for
any s. Thus, proving lower bounds for product-sparse formulas will be a strength-
ening of known results.

An Arithmetic Branching Program (ABP) B is a levelled graph G(V,E) in
which V can be partitioned into levels L0, L1, . . . , Ld such that L0 = {s} and
Ld = {t} and edges can only go between consecutive levels. s and t are called
the source and sink respectively. The weight function w assigns affine forms to
E. For a path p, extend the weight function by w(p) =

∏
e∈p w(e). B computes
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the polynomial
∑

p w(p) where p runs over all source-sink paths. B is said to
be homogeneous if all edge labels are homogeneous linear forms and naturally
computes a homogeneous polynomial. For any i, j ∈ V , Pi,j denotes all paths
from i to j in G, Xi,j denotes the variables occuring in those paths and fi,j
denotes the polynomial

∑
p∈Pi,j

w(p).

Definition 2. Let B be a homogeneous ABP over a field F and set of variables
X = {x1, x2, . . . , x2n}. B is said to be π-partitioned for a permutation π : [2n] →
[2n] if there exists an i = 2αn for some constant α such that the following
condition is satisfied, ∀v ∈ Li :

– Either, Xs,v ⊆ {xπ(1), xπ(2), . . . , xπ(n)} and |Xv,t| ≤ 2n(1− α).
– Or, Xv,t ⊆ {xπ(n+1), xπ(n+2), . . . , xπ(2n)} and |Xs,v| ≤ 2n(1− α)

We say that B is partitioned with respect to the level Li. B is said to be a
partitioned ABP if it is π-partitioned for some π : [2n] → [2n].

We now introduce the main tool used in the paper and prove its properties.
Let Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zm} be two sets of variables. Let
f ∈ F[Y, Z] be a multilinear polynomial. Define Lf to be the 2m × 2m partial
derivatives matrix as follows: for monic multilinear monomials p ∈ F[Y ], q ∈ F[Z],
define Lf (p, q) to be the coefficient of the monomial pq in f . Let us denote
the rank of Lf by rank(Lf ). We extend the partial derivatives matrix to non-
multilinear polynomials.

Definition 3 (Polynomial Coefficient Matrix). For f ∈ F[Y, Z], define Mf

to be the 2m × 2m polynomial coefficient matrix with each entry from F[Y, Z]
defined as follows. For monic multilinear monomials p and q in Y and Z respec-
tively, Mf (p, q) = G if and only if f can be uniquely written as f = pq(G) + Q,
where G,Q ∈ F[Y, Z] such that G does not contain any variable other than those
present in p and q, Q does not have any monomial m which is divisible by pq
and which contains only variables that are present in p and q.

Observe that we can write, f =
∑
p,q

Mf (p, q)pq and for a multilinear polynomial

f , Mf is same as Lf . For any function S : Y ∪Z → F, let us denote by Mf |S the
matrix obtained by substituting each variable x by S(x) at each entry in Mf .
Let us define max-rank(Mf ) = max

S:Y ∪Z→F

{rank(Mf |S)}. The following proposi-

tion bounds the max-rank of the matrix (similar bounds on the rank of partial
derivatives matrix for some cases have been proved in [13]). We defer the proof
to the full version of the paper.

Proposition 1. Let f, g ∈ F[Y, Z], h ∈ F[Y ] and w ∈ F [Z].

1.1 If f contains variables Y ′ ⊆ Y and Z ′ ⊆ Z only, then max-rank(Mf) ≤ 2a

where a = min{|Y ′|, |Z ′|}.
1.2 max-rank(Mf+g) ≤ max-rank(Mf) + max-rank(Mg).
1.3 Let Y1, Y2 ⊆ Y and Z1, Z2 ⊆ Z such that Y1 ∩ Y2 = φ and Z1 ∩ Z2 = φ.

If f ∈ F[Y1, Z1] and g ∈ F[Y2, Z2], then max-rank(Mfg) = max-rank(Mf ) ·
max-rank(Mg).
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1.4 max-rank(Mfh) ≤ max-rank(Mf ) and max-rank(Mfw) ≤ max-rank(Mf ).
1.5 If g is a linear form, then max-rank(Mfg) ≤ 2 ·max-rank(Mf ).
1.6 If g can be expressed as

∑
i∈[r]

hiwi where hi ∈ F[Y ] and wi ∈ F[Z], then

max-rank(Mfg) ≤ r ·max-rank(Mf ).
1.7 If g has r monomials, then max-rank(Mfg) ≤ r ·max-rank(Mf ).

Full Rank Polynomials: Let X = {x1, · · · , x2n}, Y = {y1, · · · , yn} and Z =
{z1, · · · , zn} be sets of variables and f ∈ F[X ]. f is said to be a full rank poly-
nomial if for any partition A : X → Y ∪ Z, rank(LfA) = 2n, where fA is the
polynomial obtained from f after substituting every variable x by A(x). We say
that f is a full max-rank polynomial if max-rank(MfA) = 2n for any partition
A. Any full rank polynomial is also a full max-rank polynomial. Many full rank
polynomials have been studied in the literature [7,11,12].

3 Lower Bounds against Homogeneous Depth-3 Circuits

Let Φ be a homogeneous ΣΠΣ circuit with top fan-in k defined over the set

of variables X and field F computing a homogeneous polynomial f =
k∑

i=1

Pi,

where Pi =
deg(Pi)∏
j=1

li,j , each li,j is a linear form and deg(Pi) is the fan-in of

the ith multiplication gate. For a partition A : X → Y ∪ Z, denote by ΦA the
circuit obtained after replacing every variable x by A(x) and the corresponding
polynomial by fA. We prove the following upper bound on the max-rank(MfA).

Lemma 1. Let Φ be a homogeneous ΣΠΣ circuit as defined above and the de-
gree of f be d. Then, for any partition A : X → Y ∪Z, max-rank(MfA) ≤ k ·2d.

Proof. Let us denote by lAi,j and PA
i the polynomials obtained after substitution

of x by A(x) in the polynomials li,j and Pi respectively.
Since each li,j is a homogeneous linear form, a multiplication gate Pi computes
a homogeneous polynomial of degree deg(Pi). Thus if deg(Pi) �= d then the mul-
tiplication gate Pi does not contribute any monomial in the output polynomial
f . Hence, it can be assumed without loss of generality that deg(Pi) = d for all
i ∈ [k].

Since li,j is a homogeneous linear form, max-rank(MlAi,j
) ≤ 2. Thus, using

Proposition 1.5,∀i ∈ [k] : max-rank(MPA
i

) ≤ 2d. Hence, using Proposition 1.2,

max-rank(MfA) ≤
∑

i∈[k] max-rank(MPA
i

) ≤ k · 2d.

In [9], it was proved that any homogeneous ΣΠΣ circuit for multiplying d n×n
matrices requires Ω(nd−1/d!) size. We prove a better lower bound using our
techniques. Formally, let X1, X2, . . . , Xd be disjoint sets of variables of size n2

each, with X = ∪i∈[d]X
i. The variables in X i will be denoted by xi

jk for j, k ∈ [n].

We will be looking at the problem of multiplying d n×n matrices A1, A2, . . . , Ad
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where (j, k)th entry of matrix Ai, denoted by Ai
jk, is defined to be equal xi

jk for
all i ∈ [d] and j, k ∈ [n]. The output polynomial, that we are interested in, is the
(1, 1)th entry of

∏
i∈[d] A

i denoted by f . We also refer to f by IMMn
d . f is clearly

a homogeneous multilinear polynomial of degree d. Moreover, any monomial in
f contains one variable each from the sets X1, X2, . . . , Xd.

We first prove an important lemma below.

Lemma 2. For the polynomial f as defined above, there exists a bijective par-
tition B : X → Y ∪ Z such that max-rank(MfB ) = nd−1.

Proof. We fix some notations first. For i < j, let us denote the set {i, i+1, . . . , j}
by [i, j]. Let us also denote the pair ((k, i), (k + 1, j)) by eijk for any i, j, k.
Construct a directed graph G(V,E) on the set of vertices V = [0, d]× [1, n] and
consisting of edges E = {eijk | k ∈ [0, d− 1], i, j ∈ [1, n]}. Note that the edges
eijk and ejik are two distinct edges for fixed values of i, j, k when i �= j. Let us
also define a weight function w : E → X such that w(eijk) = xk+1

ij .
It is easy to observe that the above graph encodes the matrices A1, A2, . . . , Ad.

The weights on the edges are the variables in the matrices. For example, a
variable xk+1

ij in the matrix Ak+1 is the weight of the edge eijk. Let us denote
the set of paths in G from the vertex (0, 1) to the vertex (d, 1) by P . Let us
extend the weight function and define w(p) =

∏
e∈p w(e) for any p ∈ P . Since,

all paths in P are of length equal to d, the weights corresponding to each of
these paths are monomials of degree d.

Let us define the partition B : X → Y ∪ Z as follows: all the variables
in odd numbered matrices are assigned variables in Y and all the variables in
even numbered matrices are assigned variables in Z. Let us denote the variable
assigned by B to x2k−1

ij by y2k−1ij and the variable assigned to x2k
ij by z2kij .

It follows from the matrix multiplication properties that for any path p ∈ P ,
the monomial w(p) is a monomial in the output polynomial. Each such path is
uniquely specified once we specify the odd steps in the path. Now, specifying
odd steps in the path corresponds to specifying a variable from each of the odd
numbered matrices. To count number of such ways, let us first consider the case
when d is even. There are d/2 odd numbered matrices and we have n2 ways to
choose a variable from each of these d/2 matrices except for the first matrix for
which we can only choose a variable from the 1st row since our output polynomial
is the (1, 1)th entry. Thus, there are nd−1 number of ways to specify one variable
each from the odd numbered matrices, the number of such paths is also nd−1.
We get the same count for the case when d is odd using a similar argument.
Since once the odd steps are chosen, there is only one way to choose the even
steps, all these nd−1 monomials give rise to non-zero entries in different rows and
columns in the matrix MfB . Hence, the matrix is an identity block of dimension
nd−1 upto a permutation of rows and columns and thus it has rank nd−1.

Theorem 5. Any homogeneous ΣΠΣ circuit for computing the product of d
n× n matrices requires Ω(nd−1/2d) size.
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Proof. Let Φ be a homogeneous ΣΠΣ circuit computing f . Then, using Lemma 1,
for any partition A, max-rank(MfA) ≤ k ·2d. From Lemma 2, we know that there
exists a partition B such that max-rank(MfB ) = nd−1. Hence, k ≥ nd−1/2d.

It is worth noting that there exists a depth-2 circuit of size nd−1 computing
IMMn

d polynomial. As observed in Lemma 2, there are nd−1 monomials in the
IMMn

d polynomial. Hence, the sum of monomials representation for IMMn
d will

have top fan-in equal to nd−1. We remark that when the number of matrices is
a constant, the upper and lower bounds for IMMn

d polynomial asymptotically
match.

4 Lower Bounds against Depth-3 Circuits of Bounded
Product Dimension

If a depth-3 circuit is not homogeneous, the fan-in of a product gate can be
arbitrarily larger than the degree of the polynomial being computed. Hence the
techniques in the previous section fails to give non-trivial size lower bounds. In
this section, we study depth-3 circuits with bounded product dimension - where
the affine forms feeding into every product gate are from a linear vector space
of small dimension and prove exponential size lower bounds for such circuits.

We will first prove an upper bound on the max-rank of the polynomial co-
efficient matrix for the polynomial computed by a depth-3 circuit of product
dimension r, parameterized by r. Let C be a ΣΠΣ circuit of product dimen-
sion r and top fan in k. Let P j be the product gates in C for j ∈ [k], given
by P j = Πs

i=1L
j
i . Without loss of generality, let us assume that the vectors

Lj
1, L

j
2, . . . , L

j
r form a basis for the span of {Lj

1, L
j
2, . . . , L

j
s}. Let lji be the homo-

geneous part of Lj
i for each i. So, clearly the set {lji }i∈[r′] spans the set {lji }i∈[s],

where r′ ≤ r. To simplify the notation, we will refer to r′ as r. In the following
presentation, we will always use d to refer to the degree of the homogeneous
polynomial computed by the circuit under consideration. Now, let us express
each lji as a linear combination of {lji }i∈[r]. Let us expand the product P j into

a sum of product of homogeneous linear forms coming from {lji }i∈r. Let P j
d be

the slice of P j of degree exactly d, for each j ∈ [k].

Observation 6. Let Cd = Σi∈[k]P
i
d. If C computes a homogeneous polynomial

of degree d, then Cd computes the same polynomial.

Proof. We know that, C = Σi∈[k]P
i. Now, writing each product gate as a sum of

product of homogeneous linear forms as described in the paragraph above, we get
C = Σi∈[k]Σj∈[d]P

i
j . Now, equating the degree d parts of the polynomial in both

sides of the equality, we obtain Cd = Σi∈[k]P
i
d. If C computes a homogeneous

polynomial of degree d, C = Cd and the lemma follows.

We know that for each P j
d = ΣiΠ

d
u=1lαiu where αiu ∈ [r] and j ∈ [k]. We now

use the following lemma to simplify the inner product terms Πd
u=1lαiu in the

expression for P j
d .
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Lemma 3. ([15]) Any monomial of degree d can be written as a linear combi-
nation of dth power of some 2d linear forms. Further, each of the 2d linear forms
in the expression corresponds to Σx∈Sx for a subset S of [d].

By applying to each product term Πd
u=1lαiu in P j

d , we obtain the following:

Lemma 4. If P j
d = ΣiΠ

d
u=1lαiu where αiu ∈ [r], then P j

d = Σv
q=1cqLq

d for

some homogeneous linear forms Lq, constants cq and v ≤
(
d+r
r

)
.

Proof. Consider any product term in the sum of products expansion P j
d as de-

scribed, say S = Πd
u=1lαiu . From Lemma 3, we know that S can be written as

S = Σ2d

t=1Lt
d, where for every subset U of [d], there is a β ∈ [2d] such that

Lβ = Σu∈U lαiu . In general, each Lt can be written as Lt = Σi∈[r]γili for non-
negative integers γi satisfying Σi∈[r]γi ≤ d. Now, each of the product terms in

P j
d can be expanded in a similar fashion into dth powers of linear forms, each

from the set {Σi∈[r]γili : γi ∈ Z≥0 ∧ Σi∈[r]γi ≤ d}. The number of distinct such

linear forms is at most
(
d+r
r

)
. Hence, the lemma follows.

We now bound the max-rank of the power of a homogeneous linear form which
in turn will give us a bound for P j

d due to the subadditivity of max-rank.

Lemma 5. Given a linear form l and any positive integer t, the max-rank of lt

is at most t + 1 for any partition of the set X of variables into Y and Z.

Proof. Partition the linear form l into two parts, l = ly + lz, where ly consists of
all variables in l from the set Y and lz consists of the variables which come from
the set Z. By the binomial theorem, lt = Σt

i=0

(
t
i

)
liyl

t−i
z . Now, liy is a polynomial

just in Y variables and hence its max-rank can be bounded above by 1, and
multiplication by lt−iz does not increase the max-rank any further, by Proposi-
tion 1.4. Hence, the max-rank of each term in the sum is at most 1 and there
are at most t + 1 terms, so, by using the subadditivity of max-rank, we get an
upper bound of t + 1 on the max-rank of the sum.

The following lemma gives an upper bound on the max-rank of P j
d and follows

from Lemma 4, Lemma 5 and the subadditivity of max-rank.

Lemma 6. The max-rank of P j
d is at most (d+ 1)

(
d+r
r

)
for any partition of the

set X of variables into Y and Z.

Now we are ready to prove the theorem.

Theorem 7. There is an explicit polynomial in n variables and degree n
2 for

which any ΣΠΣ circuit C of product dimension at most n
10 requires size 2Ω(n).

Proof. We describe the explicit polynomial Q(X) first. Fix an equal sized parti-
tion A of X into Y and Z. Order all subsets of Y and Z of size exactly n

4 in any or-

der, say S1, S2, . . . , Sw and T1, T2, . . . , Tw, where w =
(n

2
n
4

)
. Let us define the poly-

nomial QA(Y, Z) for the partition A as follows: QA(Y, Z) = Σw
i=1Πy∈SiΠz∈Tiyz.
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We obtain the polynomial Q(X) by replacing variables in Y and Z in QA(Y, Z)
by A−1(Y ) and A−1(Z) respectively.

Now we prove the size lower bound. The polynomial coefficient matrix of Q
with respect to the partition Y and Z is simply the diagonal submatrix, and the

rank is at least
(n

2
n
4

)
≥ 2

n
2√
n

. Since C computes the polynomial, the top fan in k

should be at least
2
n
2√
n

(d+r
r )(d+1)

. For d = n
2 , and r = n

10 , we have a lower bound of

2cn, for a constant c > 0.

5 Lower Bounds against Product-Sparse Formulas

Let Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zm}. Let Φ be a (s, d)-product-
sparse formula defined over the field F and the variables Y ∪ Z. For a node
v, let us denote by Φv the sub-circuit rooted at v, and denote by Yv and Zv,
the set of variables in Y and Z that appear in Φv respectively. Let us define,
a(v) = min{|Yv|, |Zv|} and b(v) = (|Yv| + |Zv|)/2. We say that a node v is k-
unbalanced if b(v)− a(v) ≥ k. Let γ be a simple path from a leaf to the node v.
We say that γ is k-unbalanced if it contains at least one k-unbalanced node. We
say that γ is central if for every u, u1 on the path γ such that there is an edge
from u1 to u in Φ, b(u) ≤ 2b(u1). v is said to be k-weak if every central path
that reaches v is k-unbalanced.

We prove that if v is k-weak then the max-rank of the matrix Mv can be
bounded. The proof goes via induction on |Φv| and follows the same outline as
that of [12]. It only differs in the case of non-disjoint product gates which we
include in full detail below. The proofs of the rest of cases is easy to see.

Lemma 7. Let Φ be a (s, d)-product-sparse formula over the set of variables
Y ∪ Z, and let v be a node in Φ. Denote the product-sparse depth of v by d(v).
If v is k-weak, max-rank(Mv) ≤ 2s·d(v) · |Φv| · 2b(v)−k/2 .

Proof. Consider the case when v is a s-sparse product gate with children v1 and
v2. Without loss of generality it can be assumed that v is not disjoint.

Let us suppose that the product-sparse depth of v is d. Without loss of gen-
erality, assume that v2 computes a sparse polynomial having at most 2s number
of monomials. Thus using Proposition 1.7, max-rank(Mv) ≤ 2s ·max-rank(Mv1)
Clearly, product-sparse depth of v1 is at most d − 1. Consider the following
cases: Case 1 : If b(v) ≤ 2b(v1), then v1 is also k-weak. Therefore, by induction
hypothesis, max-rank(Mv1) ≤ 2s(d−1) · |Φv1 | ·2b(v1)−k/2 ≤ 2s(d−1) · |Φv | ·2b(v)−k/2.
Thus, max-rank(Mv) ≤ 2sd · |Φv| · 2b(v)−k/2. Case 2 : If b(v) > 2b(v1), then
b(v1) < b(v)/2 < b(v) − k/2 since b(v) ≥ k. Therefore using Proposition 1.1,
max-rank(Mv1) ≤ 2a(v1) ≤ 2b(v1) < 2b(v)−k/2. Therefore, max-rank(Mv) ≤
2s · 2b(v)−k/2 ≤ 2sd · |Φv| · 2b(v)−k/2 .

Now, to prove a lower bound for (s, d)-product-sparse formulas computing a full
max-rank polynomial, we only need to show that there exists a partition that
makes the formula k-weak with suitable values of s, d and k.
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In [11], Raz proved that for syntactic multilinear formulas of size at most
nε logn, where ε is a small enough universal constant, there exists such a partition
that makes the formula k-weak for k = n1/8. We observe that this result also
holds for product-sparse formulas, the proof given in [11] is not specific to just
syntactic multilinear formulas and holds for any arithmetic formula. With above
lemma, the following theorem is easy to derive.

Theorem 8. Let X be a set of 2n variables and let f ∈ F[X ] be a full max-
rank polynomial. Let Φ be any (s, d)-product-sparse formula of size nε logn for a
constant ε (same as in [11]). If sd = o(n1/8), then f cannot be computed by Φ.

6 Lower Bounds against Partitioned Arithmetic
Branching Programs

In the preliminaries section, we defined partitioned arithmetic branching pro-
grams which are a generalization of ordered ABPs. By definition, any polynomial
computed by a partitioned ABP is homogenous. In [7], a full rank homogenous
polynomial was constructed. Thus, to prove lower bounds for partitioned ABP,
we only need to upper bound the max-rank of the polynomial coefficient ma-
trix for any polynomial being computed by a partitioned ABP. Now we prove
such an upper bound and use it to prove exponential lower bound on the size of
partitioned ABPs, thus extending result in [7].

Theorem 9. Let X be a set of 2n variables and F be a field. For any full max-
rank homogenous polynomial f of degree n over X and F, the size of any parti-
tioned ABP computing f must be 2Ω(n).

Proof. Let B be a π-partitioned ABP computing f for a permutation π : [2n] →
[2n]. Let L0, L1, . . . , Ln be the levels of B. Consider any partition A that assigns
all n y-variables to {xπ(1), xπ(2), . . . , xπ(n)} and all n z-variables to {xπ(n+1),
xπ(n+2), . . . , xπ(2n)}. Let us denote by fA the polynomial obtained from f after
substituting each variable x by A(x). Let B is partitioned with respect to the
level Li for i = 2αn. We can write, f = fst =

∑
v∈Li

fs,vfv,t . Consider a node
v ∈ Li. By definition, there are following two cases:
Case 1: Xs,v ⊆ {xπ(1), xπ(2), . . . , xπ(n)} and |Xv,t| ≤ 2n(1−α). Thus, fA

s,v ∈ F[Y ].
Hence, using Proposition 1.4 and 1.1,
max-rank(MfA

s,vf
A
v,t

) ≤ max-rank(MfA
v,t

) ≤ 2|Xv,t|/2 ≤ 2n(1−α)

Case 2: Xv,t ⊆ {xπ(n+1), xπ(n+2), . . . , xπ(2n)} and |Xs,v| ≤ 2n(1 − α). Thus,
fA
v,t ∈ F[Z]. Hence, again using Proposition 1.4 and 1.1,

max-rank(MfA
s,vf

A
v,t

) ≤ max-rank(MfA
s,v

) ≤ 2|Xs,v|/2 ≤ 2n(1−α) Thus, in

any case, max-rank(MfA
s,vf

A
v,t

) ≤ 2n(1−α) for all v ∈ Li. Using Proposition 1.2,

max-rank(MfA) ≤ |Li| · 2n(1−α). Since f is a full max-rank polynomial, we get
|Li| ≥ 2αn.
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Abstract. A well-known result by Frick and Grohe shows that deciding
FO logic on trees involves a parameter dependence that is a tower of expo-
nentials. Though this lower bound is tight for Courcelle’s theorem, it has
been evaded by a series of recent meta-theorems for other graph classes.
Hereweprovide someadditional non-elementary lower bound results,which
are in some senses stronger. Our goal is to explain common traits in these
recent meta-theorems and identify barriers to further progress.

More specifically, first, we show that on the class of threshold graphs,
and therefore also on any union and complement-closed class, there is no
model-checking algorithm with elementary parameter dependence even
for FO logic. Second, we show that there is no model-checking algorithm
with elementary parameter dependence for MSO logic even restricted
to paths (or equivalently to unary strings), unless EXP=NEXP. As a
corollary, we resolve an open problem on the complexity of MSO model-
checking on graphs of bounded max-leaf number. Finally, we look at
MSO on the class of colored trees of depth d. We show that, assuming
the ETH, for every fixed d ≥ 1 at least d+1 levels of exponentiation are
necessary for this problem, thus showing that the (d+1)-fold exponential
algorithm recently given by Gajarský and Hliněnỳ is essentially optimal.

1 Introduction

Algorithmic meta-theorems are general statements establishing tractability for
a whole class of problems (often defined by expressibility in a certain logic) in
some class of inputs (usually a family of graphs). The most famous theorem
in this area is one due to Courcelle [2] stating that all problems expressible
in monadic second-order logic (MSO2) are linear-time solvable on graphs of
bounded treewidth. Much work has been devoted in recent years to proving
stronger and stronger meta-theorems in this spirit, often extending Courcelle’s
theorem to other graph classes (see e.g. [3,7,5] or [12,13] for some great surveys).

The most often cited drawback of Courcelle’s theorem has to do with the “hid-
den constant” in the algorithm’s linear running time. It is clear that the running
time must somehow depend on the input formula and the graph’s treewidth,
but the dependence given in Courcelle’s theorem is in the worst case a tower
of exponentials whose height grows with the size of the formula. Unfortunately,
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this cannot be avoided: Frick and Grohe [8] proved that the parameter depen-
dence has to be non-elementary even if one restricts the problem severely by just
looking at properties expressible in first-order logic on trees.

This lower bound result, though quite devastating, has proven very fruitful
and influential: several papers have appeared recently with the explicit aim of
proving meta-theorems which evade it, and thus achieve a much better depen-
dence on the parameters. Specifically, in [15] algorithmic meta-theorems with an
elementary parameter dependence are shown for vertex cover, max-leaf number
and the newly defined neighborhood diversity. A meta-theorem for twin cover
was shown by Ganian [10]. In addition, meta-theorems were shown for tree-depth
by Gajarský and Hliněnỳ [9] and for the newly defined shrub-depth (which gen-
eralizes neighborhood diversity and twin cover) by Ganian et al. [11].

Thus, together with improved meta-theorems, these papers give a new crop
of graph complexity measures, some more general than others. It becomes a
natural question how much progress we can hope to achieve this way, that is,
how far this process of defining more and more general “graph widths” can go on
before hitting some other natural barrier that precludes an elementary parameter
dependence. Is simply avoiding the class of all trees enough?

This is exactly the question we try to answer in this paper. Towards this
end we try to give hardness results for graph families which are as simple as
possible. Perhaps most striking among them is a result showing that not only is
avoiding all trees not enough but in fact it is necessary to avoid the much smaller
class of uncolored paths if one hopes for an elementary parameter dependence.
As an example application, this almost immediately rules out the existence of
meta-theorems with elementary parameter dependence in any induced-subgraph-
closed graph class with unbounded diameter and any edge-subdivision-closed
graph class. This explains why all recently shown meta-theorems we mentioned
work on classes which are closed under induced subgraphs but have bounded
diameter and are not closed under edge subdivisions.

Our results can be summarized as follows. First, a non-elementary lower bound
for model checking FO logic on threshold graphs is shown. In a sense, this is
a natural analogue of the lower bound for trees to the realm of clique-width,
since threshold graphs are known to have the smallest possible clique-width.
The proof is relatively simple and consists mostly of translating a similar lower
bound given in [8] for FO model checking on binary words. However, the main
interest of this result is that as a corollary we show that the complexity of FO
model checking is non-elementary for any graph class closed under disjoint union
and complement. This explains why, though some of the recent meta-theorems
work on complement-closed graph classes (e.g. neighborhood diversity, shrub-
depth) and some work on union-closed graph classes (e.g. tree-depth), no such
meta-theorem has been shown for a class that has both properties.

Our second result is that model checking MSO logic on uncolored paths (or
equivalently on unary strings) has a non-elementary parameter dependence. This
is the most technically demanding of the results of this paper, and it is proved un-
der the assumption EXP�=NEXP. The proof consists of simulating the workings
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of a non-deterministic Turing machine via an MSO question on a path. Though
the idea of simulating Turing machines has appeared before in similar contexts
[14], because the graphs we have here are very restricted we face a number of
significant new challenges. The main tool we use to overcome them, which may
be of independent interest, is an MSO formula construction that compares the
sizes of ordered sets while using an extremely small number of quantifiers. In
the end, this result strengthens both non-elementary MSO lower bounds given
in [8] (for trees and for binary strings), modulo a slightly stronger complexity
assumption. It also resolves the complexity of MSO model checking for max-leaf
number, which was left open in [15]. As an added corollary, we give an alterna-
tive, self-contained proof of a result from [3], stating that MSO2 model checking
is not in XP for cliques unless EXP=NEXP.

Finally, we study one of the recent positive results in this area by considering
the problem of model-checking MSO logic on rooted colored trees of height d.
This is an especially interesting problem, since the (d + 1)-fold exponential al-
gorithm of [9] is the main tool used in the meta-theorems of both [9] and [11].
We show that, assuming the ETH, any algorithm needs at least d + 1 levels of
exponentiation, and therefore the algorithm of [9] is essentially optimal.

2 Preliminaries

The basic problem we are concerned with is model-checking: We are given a
formula φ (in some logic) and a structure S (usually a graph or a string) and
must decide if S |= φ, that is, if S satisfies the property described by φ.

Due to space constraints, we do not give a full definition of FO and MSO logic
here (see e.g. [8]). Let us just briefly describe some conventions. We use lower-case
letters to denote singleton (FO) variables, and capitals to denote set variables.
When the input is a graph, we assume the existence of an E(x, y) predicate
encoding edges; when it’s a string a ≺ predicate encodes a total ordering; when
it’s a rooted tree a C(x, y) predicate encodes that x is a child of y. Sometimes
the input also has a set of colors (also called labels). For each color c we are given
a unary predicate Pc(x). When the input is an uncolored graph that consists of
a single path it is possible to simulate the ≺ predicate by picking one endpoint
of the path arbitrarily (call it s) and saying that x ≺ y if all paths from s to
y contain x. Thus, model-checking MSO logic on uncolored paths is at least as
hard as it is on unary strings. In most of the paper when we talk about MSO
logic for graphs we mean MSO1, that is, with quantification over vertex sets only.
An exception is Corollary 4 which talks about MSO2 logic, which allows edge
set quantifiers. We will implicitly assume that our MSO formulas are allowed
to use simple set operations (such as union and intersection) as these can be
implemented with FO formulas of constant size.

A graph is a threshold graph ([1]) if it can be constructed from K1 by re-
peatedly adding union vertices (not connected to any previous vertex) and join
vertices (connected to all previous vertices), one at a time. Thus, a threshold
graph can be described by a string over the alphabet {u, j}. A graph is a co-
graph if it is K1, or it is a disjoint union of cographs, or it is the complement
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of a cograph. It is not hard to see that threshold graphs are cographs. From
the definition it follows that any class of graphs that contains K1 and is closed
under disjoint union and complement contains all cographs; if it is closed under
the union and join operations it contains all threshold graphs.

All logarithms are base two. We define exp(k)(n) as follows: exp(0)(n) = n and
exp(k+1)(n) = 2exp

(k)(n). Then log(k) n is the inverse of exp(k)(n). Finally, log∗ n

is the minimum i such that log(i) n ≤ 1.

3 Threshold Graphs

As mentioned, Frick and Grohe [8] showed that there is no FPT model-checking
algorithm for FO logic on trees with an elementary dependence on the formula
size, under standard complexity assumptions. In many senses this is a great lower
bound result, because it matches the tower of exponentials that appears in the
running time of Courcelle’s theorem, while looking both at a much simpler logic
(FO rather than MSO2) and at the class of graphs with the smallest possible
treewidth, namely trees.

Courcelle, Makowsky and Rotics [3] have given an extension of Courcelle’s
theorem to MSO1 logic for clique-width. The parameter dependence is again a
tower of exponentials and, since trees have cliquewidth at most 3 ([4]), we al-
ready know that this cannot be avoided even for graphs of constant clique-width.
Here we will slightly strengthen this result, showing that the non-elementary de-
pendence cannot be avoided even on cographs, the class of graphs that has the
smallest possible clique-width (that is, clique-width 2) without being trivial.
We will heavily rely on a lower bound, due again to Frick and Grohe, on the
complexity of model checking on binary strings.

One interesting consequence of the lower bound we give for cographs is that
it precludes the existence of an FPT algorithm with elementary parameter de-
pendence for any graph class that satisfies two simple properties: closure under
disjoint unions and closure under complement. The reason for this is that if a
class is closed under both of these operations and it contains the single-vertex
graph, then it must contain all cographs (we will also show that the assumption
that K1 is in the class is not needed). This observation helps to explain why,
though some of the recent elementary model-checking algorithms which have ap-
peared work on union-closed graph classes, and some work on complement-closed
graph classes, no such algorithms are known for classes with both properties.

The proof we present here is relatively simple and it relies on the following
theorem.

Theorem 1 ([8]). Unless FPT=AW[∗], for any constant c and any elementary
function f there is no model-checking algorithm for FO logic on binary words
which given a formula φ and a word w decides if w |= φ in time at most f(φ)|w|c.

We will reduce this problem to FO model checking on threshold graphs. This
is quite natural, since the definition of threshold graphs gives a straightforward
correspondence between graphs and strings.
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Theorem 2. Unless FPT=AW[∗], for any constant c and any elementary func-
tion f there is no model-checking algorithm for FO logic on connected threshold
graphs which given a formula φ and such a graph G decides if G |= φ in time at
most f(φ)|G|c.

Proof (sketch). We can encode an arbitrary binary string with a threshold graph
by encoding each 0 by two vertices uj and each 1 by three vertices ujj. We
also need to encode a FO formula for strings to one for graphs. Existential
quantification in the string is simulated by existential quantification in the graph
where we ask that the vertex selected is a union vertex (this can be expressed in
FO logic). The predicates x ≺ y and P1(x) can be implemented by checking if
there are join vertices connected to x but not y in the first case, and checking for
two join vertices connected to x but not later union vertices in the second. ��

Corollary 1. Let C be a graph class that is closed under disjoint union and
complement, or under disjoint union and join. Unless FPT=AW[∗], for any
constant c and any elementary function f there is no model-checking algorithm
for FO logic on C which given a formula φ and a graph G ∈ C decides if G |= φ
in time at most f(φ)|G|c.

4 Paths, Unary Strings

The main result of this section is a reduction proving that, under the assumption
that EXP�=NEXP, there is no FPT model-checking algorithm for MSO logic
with an elementary parameter dependence on the formula even on graphs that
consist of a single path, or equivalently, on unary strings. As a consequence, this
settles the complexity of MSO model-checking on graphs with bounded max-leaf
number, a problem left open in [15], since paths have the smallest possible max-
leaf number. Until now a similar result was known only for the much richer class
of binary strings (or equivalently colored paths), under the weaker assumption
that P�=NP [8]. It is somewhat surprising that we are able to extend this result
to uncolored paths, because in this case the size of the input is exponentially
blown-up compared to a reasonable encoding. One would expect this to make
the problem easier, but in fact, it only makes it more complicated to establish
hardness.

Indeed, one of the main hurdles in proving a lower bound for MSO on unary
strings, or paths, is information-theoretic. Normally, one would start with an NP-
hard problem, and reduce to a model-checking instance with a very small formula
φ. But, because the path we construct can naturally be stored with a number
of bits that is logarithmic in its size, in order to encode n bits of information
from the original instance into the new instance we need to construct a path of
exponential size. Thus, a polynomial-time reduction seems unlikely and this is
the reason we end up using the assumption that EXP�=NEXP, instead of P�=NP.

Our approach is to start from the prototypical NEXP-complete problem: given
n bits of input for a non-deterministic Turing machine that runs in time 2n

k

, does
the machine accept? We will use the input path to simulate the machine’s tape
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and then ask for a subset of the vertices of this path that corresponds to cells in
the tape where 1 is written. Thus, what we need at this point is an MSO formula
that checks if the chosen vertices encode a correct accepting computation.

Of course, to describe a machine’s computation in MSO logic a significant
amount of machinery will be needed. We note that, though the approach of sim-
ulating a Turing machine with an MSO formula has been used before (e.g. [14]),
the problem here is significantly more challenging for two reasons: first, unlike
previous cases the input here is uncolored, so it is harder to encode arbitrary
bits; and second, there are (obviously) no grid-like minors in our graph, so it’s
harder to encode the evolution of a machine’s tape, and in particular to identify
vertices that correspond to the same tape cell in different points in time.

Our main building block to overcome these problems is an MSO construction
which compares the sizes of paths (or generally, ordered sets) of size n with very
few (roughly 2O(log∗ n)) quantifiers. This construction may be of independent
interest in the context of the counting power of MSO logic. We first describe
how to build this formula, then use it to obtain other basic arithmetic operations
(such as exponentiation and division) and finally explain how they all fit together
to give the promised result.

4.1 Measuring Long Paths with Few Quantifiers

To keep the presentation simple we will concentrate on the model-checking prob-
lem on unary strings; formulas for MSO on paths can easily be constructed as
explained in section 2. We therefore assume that there is a predicate ≺ which
gives a total ordering of all elements.

Let us now develop our basic tool, which will be an MSO formula eqL(P1, P2),
where P1, P2 are free set variables. The desired behavior of the formula is that
if |P1| = |P2| and |P1| ≤ L then the formula will be true, while on the other
hand whenever the formula is true it must be the case that |P1| = |P2|. In other
words, the formula will always correctly identify equal sets with size up to L,
and it will never identify two unequal sets as equal (it may however be false for
two equal sets larger than L). Our main objective is to achieve this with as few
quantifiers as possible.

We will work inductively. It should be clear that for very small values of L
(say L = 4) it is possible to compare sets of elements with size at most L with
a constant number of set and vertex quantifiers and we can simply make the
formula false if one set has more than 4 elements. So, suppose that we have a
way to construct the desired formula for some L. We will show how to use it to
make the formula eqL′ , where L′ ≥ L·2L. If our recursive definition of eqL′ uses a
constant number of copies of eqL then in the end we will have |eqL| = 2O(log∗ L),
because for each level of exponentiation we blow up the size of a formula by
a constant factor. This will be sufficiently small to rule out a non-elementary
parameter dependence.

Let us now give a high-level description of the idea, by concentrating first on
the set P1. We will select a subset of P1, call it Q1, and this naturally divides P1

into sections, which are defined as maximal sets of vertices of P1, consecutive in



Model Checking Lower Bounds for Simple Graphs 679

the ordering, with the property that either all or none of their vertices belong
in Q1. We will make sure that all sections have length L, except perhaps the
last, which we call the remainder (see Figure 1). It is not hard to see that this
structure can be imposed if the predicate eqL is available. We do the same for P2

and now we need to verify that the two remainders have the same length (easy
with eqL) and that we have the same number of sections on P1 and P2.

Fig. 1. An example of the counting structure imposed on a set for L = 4. Assume
that the elements of the set are displayed here in the ordering given by ≺. We select
a set of elements (indicated by boxes) to create sections of elements of size L, and a
remainder set (indicated by a dashed box). We then select some elements from each
section appropriately (indicated by solid grey filling) so that we simulate counting in
binary. For L = 4 this method can count up to length L2L = 64 before overflowing.

We need to count the number of sections this structure creates on P1 (which
may be up to 2L). We select another subset of P1, call it B1. The intuition here
is that selecting B1 corresponds to writing a binary number on each section, by
interpreting positions selected in B1 as 1 and the rest as 0. We will now need to
make sure that each section encodes the binary number that is one larger than
the number encoded by the immediately preceding section. This is achievable by
using eqL to locate the elements that represent the same bit positions. We also
make sure that there was no overflow in the counting and that counting started
from zero, that is, all sections have some vertex not in B1 and the first has no
vertices in B1.

Finally, assuming that the above counting structure is correctly imposed on
both P1 and P2 all that is left is to take the last sections on both and compare
them. If the same binary number is encoded on both then |P1| = |P2|.

Lemma 1. Let L > 2 be a power of two. Then we can define a formula eqL(P1, P2)
such that the formula is true if and only if |P1| = |P2| < L logL. Furthermore
|eqL| = 2O(log∗ L).

Before we go on, we will also need formulas to perform some slightly more
complicated arithmetic operations than simply counting. In particular, we will
need a formula expL(P1, P2), which will be true if |P2| = 2|P1|. The trick we use
for this is shown in Figure 2.

Finally, we will need the following MSO formulas root(k)(P1, P2) which checks
if |P2| = |P1|k, assuming k is a power of two; div(P1, P2) which checks is |P1|
divides |P2|; and modL(P1, P2, R) which is true if |P2| mod |P1| = |R| and |P1| ≤
L.
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Fig. 2. An example where the set on the left has size 4 and we verify that the set on
the right has size 24. First we select a subset of elements on the right of size one more
than the set on the left. Then we ensure that distances between consecutive elements
are doubled at each step and the first and last element are selected.

4.2 Hardness for Unary Strings and Paths

Theorem 3. Let f be an elementary function and c a constant. If there exists
an algorithm which, given a unary string w of length n and an MSO formula φ
decides if w |= φ in time f(|φ|)nc then EXP=NEXP.

Proof (sketch). Suppose we are given a non-deterministic Turing machine run-
ning in time T = 2n

k

for k a power of two, and therefore using at most T cells
of its tape, when given n bits of input. We are also given the n bits of input,
which we interpret as a binary number I ≤ 2n. We must decide if the machine
accepts using the hypothetical model-checking algorithm for unary words.

We construct a path of size T 2(2I + 1). Using div we locate a sub-path of
size I (finding the largest odd divisor of the path) and a sub-path of size T 2,
which we divide into sections of size T using root. These sections will represent
snapshots of the tape during the machine’s execution. We ask for a subset of the
elements of the path that encodes the tape cells on which the machine writes
1. Now we need to check two things: first, that the bits at the beginning of the
tape correspond to the input. This can be done with exp and some arithmetic
on the size of I. Second, that the bits selected encode a correct computation.
This is done by checking all pairs of elements from consecutive snapshots that
correspond to the same cell. These are identified using eqL (their distance is
exactly T ). ��

Corollary 2. Let f be an elementary function and c a constant. If there exists
an algorithm which, given a path P on n vertices and an MSO formula φ decides
if P |= φ in time f(|φ|)nc then EXP=NEXP.

Corollary 3. Let f be an elementary function, c a constant, and C a class of
graphs closed under edge sub-divisions. If there exists an algorithm which, given
a graph G ∈ C on n vertices and an MSO formula φ decides if G |= φ in
time f(|φ|)nc then EXP=NEXP. The same is true if C is closed under induced
subgraphs and, for all d > 0 contains a graph with diameter d.

Finally, we can extend the ideas given above to obtain an alternative, self-
contained proof of a result given in [3]: MSO2 model-checking on cliques is not
in XP, unless EXP=NEXP. In [3] this is proved under the equivalent assumption
P1 �=NP1 (the P�=NP assumption for unary languages). That proof relies on the
work of Fagin on graph spectra [6].
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Here we can simply reuse the ideas of Theorem 3 by observing two basic
facts: first, with an appropriate MSO2 formula we can select a set of edges in the
given clique that induces a spanning path. Therefore, we can assume we have
the same structure as in the case of paths. Second, the eqL predicate can be
constructed in constant size, since two disjoint sets of vertices are equal if and
only if there exists a perfect matching between them in the clique (and this is
MSO2-expressible).

Corollary 4. If there exists an algorithm which, given a clique Kn on n vertices
and an MSO2 formula φ decides if Kn |= φ in nf(|φ|), for any function f , then
EXP=NEXP.

5 Tree-Depth

In this section we give a lower bound result that applies to the model-checking
algorithm for trees of bounded height given by Gajarský and Hliněnỳ [9]. We
recall here the main result:

Theorem 4 ([9]). Let T be a rooted t-colored tree of height h ≥ 1, and let φ
be an MSO sentence with r quantifiers. Then T |= φ can be decided by an FPT
algorithm in time O

(
exp(h+1)

(
2h+5r(t + r)

)
+ |V (T )|

)
.

Theorem 4 is the main algorithmic tool used to obtain the recent elementary
model-checking algorithms for tree-depth and shrub-depth given in [9] and [11],
since in both cases the strategy is to interpret the graph into a colored tree of
bounded height.

The running time given in Theorem 4 is an elementary function of the formula
φ, but non-elementary in the height of the tree. Though we would very much
like to avoid that, it is not hard to see that the dependence on at least one of the
parameters must be non-elementary, since allowing h to grow eventually gives
the class of all trees so the lower bound result of Frick and Grohe should apply.

It is less obvious however what the height of the exponentiation tower has
to be exactly, as a function of h, the height of the tree. The fact that we know
that the height of the tower must be unbounded (so that we eventually get
a non-elementary function) does not preclude an algorithm that runs in time
exp(

√
h)(|φ|) or, less ambitiously, exp(h/2)(|φ|), or even exp(h−5)(|φ|). Recall that

we are trying to determine the number of levels of exponentiation in the running
time here, so shaving off even an additive constant would be a non-negligible
improvement.

We show that even such an improvement is probably impossible, and Theorem
4 determines precisely the complexity of MSO model-checking on colored trees
of height h, at least in the sense that it gives exactly the correct level of exponen-
tiations. We establish this fact assuming the ETH, by combining lower bound
ideas which have appeared in [8] and [15]. More specifically, the main technical
obstacle is comparing indices, or in other words, counting economically in our
construction. For this, we use the tree representation of numbers of [8] pruned
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to height h− 1. We then use roughly log(h) n colors to differentiate the leaves of
the constructed trees.

Theorem 5. If for some constant h ≥ 1 there exists a model-checking algorithm
for t-colored rooted trees of height h that runs in exp(h+1)(o(t)) ·poly(n) time for
trees with n vertices then the Exponential Time Hypothesis fails.

6 Conclusions and Open Problems

We have proved non-elementary lower bounds for FO logic on cographs and MSO
logic on uncolored paths. The hope is that, since these lower bounds concern very
simple graph families, they can be used as “sanity checks” guiding the design of
future graph widths. We have also given a lower bound for MSO logic on colored
trees of bounded height. It would be interesting to see if this can be extended to
uncolored trees.

Finally, let us mention that a promising direction in this area that we did
not tackle here is that of alternative logics, besides FO and MSO variants. One
example is the meta-theorems given by Pilipczuk [16] for a kind of modal logic.
The algorithmic properties of such logics are still mostly unexplored but they
may be a good way to evade the lower bounds given in [8] and this paper.
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Abstract. We say that a graph with n vertices is c-Ramsey if it does
not contain either a clique or an independent set of size c log n. We define
a CNF formula which expresses this property for a graph G. We show
a superpolynomial lower bound on the length of resolution proofs that
G is c-Ramsey, for every graph G. Our proof makes use of the fact that
every Ramsey graph must contain a large subgraph with some of the
statistical properties of the random graph.

Introduction

The proof of the existence of c-Ramsey graphs, i.e., graphs that have no clique or
independent set of size c logn, was one of the first applications of the probabilistic
method in combinatorics [12]. The problem, posed by Erdős, of constructing such
graphs explicitly is still open [9]. In this paper we are interested in the problem:
how hard is it to certify that a graph G of size n is c-Ramsey. By definition,
c-Ramsey graphs are in coNP; finding polynomial certificates would put this set
in NP. We believe that this is not possible and our result is a first step in this
direction. We show that there is no resolution proof that G is c-Ramsey with
length shorter than nΩ(logn). Let us stress that this is not a worst-case result:
for a fixed constant c ≥ 2, the lower bound nΩ(logn) holds for every c-Ramsey
graph G. The brute force approach to checking that G satisfies the property
takes time nO(logn) and can be turned into a resolution proof. Hence our result
is asymptotically optimal.

We prove our result for one natural formalization of the c-Ramsey property,
a formalization that we call binary. For an alternative formalization, the unary
formalization, we derive the same lower bound only for tree-like resolution proofs
(see Section 1.1).

Since most SAT solvers used in practice are essentially proof search algorithms
for resolution [19], our lower bound on resolution proof size shows that the ver-
ification problem is hard for quite a large class of algorithms. Also note that,
while it does not follow from the resolution lower bound that there is no algo-
rithm which will construct a Ramsey graph in polynomial time, it does follow
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that, given an algorithm, there is no polynomial-size resolution proof that the
algorithm decides if a graph is c-Ramsey.

The finite Ramsey theorem states that for any k, there is some N such that
every graph of size at least N contains a clique or independent set of size k. We
write r(k) for the least such N . Computing the actual value of r(k) is challenging,
and so far only a few values have been discovered. In fact, even to determine
the asymptotic behavior of the function r(k) is a longstanding open problem, in
spite of the nontrivial results proved about it, see e.g., [12,23,10].

A c-Ramsey graph is a witness that r(c log n) > n, so proving that a graph
is Ramsey is in some sense proving a lower bound for r(k). Previously, proof
complexity has focused on upper bounds for r(k). Krishnamurthy and Moll [18]
proved partial results on the complexity of proving the exact upper bound, and
conjectured that the propositional formalization of the exact upper bound is
hard in general. Kraj́ıček later proved an exponential lower bound on the length
of bounded depth Frege proofs of the tautology proposed by Krishnamurthy
and Moll [17]. The upper bound r(k) ≤ 4k has short proofs in a relatively
weak fragment of sequent calculus, in which every formula in a proof has small
constant depth [17,21]. Recently Pudlák [22] has shown a lower bound on proofs
of r(k) ≤ 4k in resolution. We discuss this in more detail in Section 1. There
are also results known about the off-diagonal Ramsey numbers r(k, s) where
cliques of size k and independent sets of size s are considered. See [13,1,14,7] for
estimates and [8] for resolution lower bounds.

The paper is organized as follows. In Section 1 we formally state our main result,
mention some open problems, and then outline the method we will use. In Section
2 we apply this to prove a simple version of our main theorem, restricted to the
case when G is a random graph. In Section 3 we prove the full version. This will
use one extra ingredient, a result from [20] that every Ramsey graph G has a large
subset with some of the statistical density properties of the random graph.

1 Definitions and Results

Resolution [6] is a system for refuting propositional CNFs, that is, propositional
formulas in conjunctive normal form. A resolution refutation is a sequence of
disjunctions, which in this context we call clauses. Resolution has a single in-
ference rule: from two clauses A ∨ x and B ∨ ¬x we can infer the new clause
A ∨B (which is a logical consequence). A resolution refutation of a CNF φ is a
derivation of the empty clause from the clauses of φ. For an unsatisfiable formula
φ we define L(φ) to be the length, that is, the number of clauses, of the shortest
resolution refutation of φ. If φ is satisfiable we consider L(φ) to be infinite.

Let c > 0 be a constant, whose value will be fixed for the rest of the paper.

Definition 1 (c-Ramsey graph). We say that a graph with n vertices is
c-Ramsey if there is no set of c logn vertices which form either a clique or an
independent set.

We now describe how we formalize the c-Ramsey property in a way suitable for
the resolution proof system. Given a graph G on n = 2k vertices, we will define
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a formula ΨG in conjunctive normal form which is satisfiable if and only there
is a homogeneous set (a set inducing an empty or complete subgraph) of size
ck in G, that is, if and only if G is not Ramsey. We identify the vertices of G
with the binary strings of length k. In this way we can use an assignment to k
propositional variables to determine a vertex.

The formula ΨG has variables to represent an injective mapping from a set of
ck “indices” to the vertices of G, and asserts that the vertices mapped to form
either a clique or an independent set. It has a single extra variable y to indicate
which of these two cases holds.

In more detail, for each i ∈ [ck] we have k variables xi
1, . . . , x

i
k which we think

of as naming, in binary, the vertex of G to which i is mapped. We have an
additional variable y, so there are ck2 +1 variables in total. To simplify notation
we will write propositional literals in the form “xi

b = 1”, “xi
b �= 0”, “xi

b = 0” and
“xi

b �= 1”. The first and the second are aliases for the literal xi
b. The third and

the fourth are aliases for literal ¬xi
b.

Thus the formula ΨG expressing that G is c-Ramsey is a conjunction of clauses
asserting the following:

1. The map is injective. For each vertex v ∈ V (G), represented as v1 · · · vk
in binary, and each pair of distinct i, j ∈ [ck], we have the clause

k∨
b=1

(xi
b �= vb) ∨

k∨
b=1

(xj
b �= vb).

These clauses guarantee that no two indices i and j map to the same vertex v.

2. If y = 0, then the image of the mapping is an independent set.
For each pair of distinct vertices u, v ∈ V (G), represented respectively as
u1 . . . uk and v1 . . . vk, and each pair of distinct i, j ∈ [ck], if {u, v} ∈ E(G)
we have the clause

y ∨
k∨

b=1

(xi
b �= ub) ∨

k∨
b=1

(xj
b �= vb).

These clauses guarantee that, if y = 0, then no two indices are mapped to
two vertices with an edge between them.

3. If y = 1, then the image of the mapping is a clique. For each pair
of distinct vertices u, v ∈ V (G), represented respectively as u1 . . . uk and
v1 . . . vk, and each pair of distinct i, j ∈ [ck], if {u, v} /∈ E(G) we have the
clause

¬y ∨
k∨

b=1

(xi
b �= ub) ∨

k∨
b=1

(xj
b �= vb).

These clauses guarantee that, if y = 1, then no two indices are mapped to
two vertices without an edge between them.
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The formula ΨG has
(
ck
2

) (
n +

(
n
2

))
clauses in total, and so is unusual in that the

number of clauses is exponentially larger than the number of variables. However
the number of clauses is polynomial in the number n of vertices of G.

If G is Ramsey, then ΨG is unsatisfiable and has only c log2 n + 1 variables.
So we can refute ΨG in quasipolynomial size by a brute-force search through all
assignments:

Proposition 1. If G is c-Ramsey, the formula ΨG has a (treelike) resolution
refutation of size nO(logn).

At this point, we should recall the formalization of the Ramsey theorem that is
more usually studied in proof complexity. This is the family RAMn of proposi-
tional CNFs, where RAMn has one variable for each distinct pair of points in [n]
and asserts that the graph represented by these variables is 1

2 -Ramsey. Hence
RAMn is satisfiable if and only if any 1

2 -Ramsey graph on n vertices exists. In
contrast, our formula ΨG is satisfiable if and only if our particular graph G is
not c-Ramsey.

Put differently, a refutation of RAMn is a proof that r(k) ≤ 22k. This was
recently shown to require exponential size (in n) resolution refutations [22]. On
the other hand a refutation of ΨG is a proof that G is c-Ramsey, and hence that
G witnesses that r(k) > 2

k
c .

We now state our main result. We postpone the proof to Section 3.

Theorem 1. Let G be any graph with n vertices. Then L(ΨG) ≥ nΩ(logn).

If G is not c-Ramsey then this is trivial, since ΨG is satisfiable and therefore
L(ΨG) is infinite by convention. If G is c-Ramsey, then by Proposition 1 this
bound is tight and we know that L(ΨG) = nΘ(logn).

1.1 Open Problems

Our formalization ΨG, apart from being natural, is motivated by the τ -tautologies
introduced by Kraj́ıček [15]. Although it has similar properties we are not able
to show that it is a τ -tautology.

We callΨG the binary encoding because the vertices of the graph are represented
by strings of propositional variables. One can also consider the unary encoding Ψu

G

in which a vertex of the graph is determined by a single propositional variable.
More precisely, the mapping from an index i to the vertices of G is represented
by n variables {piv : v ∈ V (G)} and we have clauses asserting that for each i,
exactly one of the variables piv is true. Otherwise the structure of Ψu

G is similar to
that ofΨG. As before, ifG is a c-Ramsey graph we have the brute-force upper bound
L(Ψu

G) = nO(logn). But we are not able to prove a superpolynomial lower bound
on resolution size. However we are able to prove such a lower bound if we restrict
to treelike resolution, as a corollary of our main theorem (we are grateful to Leszek
Ko�lodziejczyk for pointing out this simple proof).

Theorem 2. Let G be any c-Ramsey graph with n vertices. Then Ψu
G requires

treelike resolution refutations of size nΩ(logn).
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Proof. (Sketch) Suppose we have a small treelike resolution refutation of the
unary formula Ψu

G. We can produce from it an at most polynomially larger
treelike Res(k) refutation of the binary formula ΨG as follows. Replace each
variable piv asserting that index i is mapped to vertex v with the conjunction∧k

b=1 x
i
b = vb. The substitution instance of Ψu

G is then almost identical to the
ΨG, except for the additional clauses asserting that every index maps to exactly
one vertex; but these are easy to derive in treelike Res(k).

It is well known that every treelike depth d+ 1 Frege proof can be made into
a DAG-like depth d Frege proof with at most polynomial increase in size [16].
In particular, we can turn our treelike Res(k) refutation of ΨG into a resolution
refutation. The lower bound then follows from Theorem 1.

Lower bounds for DAG-like resolution would have interesting consequences for
various areas of proof complexity [3,11]. The problem of proving a superpoly-
nomial lower bound on Ψu

G is related to the following open problem (rephrased

from [5]): consider a random graph G distributed according to G(n, n−(1+ε) 2
k−1 )

for some ε > 0. Does every resolution proof that there is no k-clique in G require
size nΩ(k)?

Another natural problem is to extend our lower bound to proof systems
stronger than resolution. A superpolynomial lower bound on the proofs of ΨG in
Res(log) (resolution with logarithmic size conjunctions in clauses) would imply
a superpolynomial lower bound on general resolution proofs of Ψu

G.

1.2 Resolution Width and Combinatorial Games

The width of a clause is the number of literals it contains. The width of a CNF φ
is the width of its widest clause. Similarly the width of a resolution refutation Π
is the width of its widest clause. The width of refuting an unsatisfiable CNF φ is
the minimum width of Π over all refutations Π of φ. We will denote it by W (φ).

A remarkable result about resolution is that it is possible to prove a lower
bound on the proof length by proving a lower bound on the proof width.

Theorem 3 ([4]). For any CNF φ with m variables and width k,

L(φ) ≥ 2
Ω

(
(W (φ)−k)2

m

)
.

Now consider a game played between two players, called the Prover and the
Adversary. The Prover claims that a CNF φ is unsatisfiable and the Adversary
claims to know a satisfying assignment. At each round of the game the Prover
asks for the value of some variable and the Adversary has to answer. The Prover
saves the answer in memory, where each variable value occupies one memory
location. The Prover can also delete any saved value, in order to save memory. If
the deleted variable is asked again, the Adversary is allowed to answer differently.
The Prover wins when the partial assignment in memory falsifies a clause of φ.
The Adversary wins if he has a strategy to play forever.
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If φ is in fact unsatisfiable, then the Prover can always eventually win, by ask-
ing for the total assignment. If φ is satisfiable, then there is an obvious winning
strategy for the Adversary (answering according to a fixed satisfying assign-
ment). However, even if φ is unsatisfiable, it may be that the Prover cannot win
the game unless he uses a large amount of memory. Indeed, it turns out that
the smallest number of memory locations that the Prover needs to win the game
for an unsatisfiable φ is related to the width of resolution refutations. (We only
need one direction of this relationship – for a converse see [2].)

Lemma 1. Given an unsatisfiable CNF φ, it holds that W (φ) + 1 memory lo-
cations are sufficient for the Prover in order to win the game against any Ad-
versary.

1.3 The Clique Formula

For any graph G, the formula ΨG	y=1 is satisfiable if and only if G has a clique
of size ck. We will call this restricted formula Clique(G). Dually, ΨG 	y=0 is
equivalent to Clique(Ḡ). Since fixing a variable in a resolution refutation results
in a refutation for the corresponding restricted formula, we have

max
{
L(Clique(G)), L(Clique(Ḡ))

}
≤ L(ΨG).

Furthermore we can easily construct a refutation of ΨG from refutations of
ΨG	y=1 and ΨG	y=0. In this way we get

L(ΨG) ≤ L(Clique(Ḡ)) + L(Clique(G)) + 1.

We can now describe our high-level approach. To lower-bound L(ΨG) it is enough
to lower-bound L(Clique(G)), which we will do indirectly by exhibiting a good
strategy for the Adversary in the game on Clique(G). This game works as follows:
the Adversary claims to know ck strings in {0, 1}k which name ck vertices in G
which form a clique. The Prover starts with no knowledge of these strings but
can query them, one bit at a time, and can also forget bits to save memory. The
Prover wins if at any point there are two fully-specified strings for which the
corresponding vertices are not connected by an edge in G.

We will give a strategy for the Adversary which will beat any Prover limited
to εk2 memory for a constant ε > 0. It follows by Lemma 1 that Clique(G) is not
refutable in width εk2. The formula Clique(G) has ck2 variables and has width
2k. Hence applying Theorem 3 we get

L(ΨG) ≥ L(Clique(G)) ≥ 2
Ω

(
(εk2−2k)2

ck2

)
≥ 2Ω(k2) ≥ nΩ(logn).

1.4 Other Notation

We will consider simple graphs with n = 2k vertices. We identify the vertices
with the binary strings of length k. For any vertex v ∈ G we denote its binary
representation by v1 · · · vk.
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A pattern is a partial assignment to k variables. Formally, it is a string p =
p1 · · · pk ∈ {∗, 0, 1}k, and we say that p is consistent with v if for all i ∈ [k] either
pi = vi or pi = ∗. The size |p| of p is the number of bits set to 0 or 1. The empty
pattern is a string of k stars.

For any vertex v ∈ V (G) we let N(v) be the set {u
∣∣{v, u} ∈ E(G)} of neigh-

bors of v. Notice that v �∈ N(v). For any U ⊆ V (G) we let N(U) be the set of
vertices of G which neighbor every point in U , that is,

⋂
v∈U N(U). Notice that

U ∩N(U) = ∅.

2 Lower Bounds for the Random Graph

We consider random graphs on n vertices given by the usual distribution G(n, 1
2 )

in the Erdős-Rényi model.

Theorem 4. If G is a random graph, then with high probability L(ΨG) = nΩ(logn).

We will use the method outlined in Section 1.3 above, so to prove the theorem it
is enough to give a strategy for the Adversary in the game on Clique(G) which
forces the Prover to use a large amount of memory. This is Lemma 3 below. We
first prove a lemma which captures the property of the random graph which we
need.

Lemma 2. For a random graph G, with high probability, the following property
P holds. Let U ⊆ V (G) with |U | ≤ 1

3k and let p be any pattern with |p| ≤ 1
3k.

Then p is consistent with at least one vertex in N(U).

Proof. Fix such a set U and such a pattern p. The probability that an arbitrary
vertex v /∈ U is in N(U) is at least 2−

1
3k = n−

1
3 . The pattern p is consistent with

at least n
2
3 − |U | vertices outside U . The probability that no vertex consistent

with p is in N(U) is hence at most

(
1− n−

1
3

)n
2
3−|U|

≤ e−(1−o(1))n
1
3 .

We can bound the number of such sets U by n
1
3k ≤ nlogn and the number of

patterns p by 3k ≤ n2, so by the union bound property P fails to hold with

probability at most 2−Ω(n
1
3 ).

Lemma 3. Let G be any graph with property P. Then there is an Adversary
strategy in the game on Clique(G) which wins against any Prover who uses at
most 1

9k
2 memory locations.

Proof. For each index i ∈ [ck], we will write pi for the pattern representing the
current information in the Prover’s memory about the ith vertex. The Adver-
sary’s strategy is to answer queries arbitrarily (say with 0) as long as the index
i being queried has |pi| < 1

3k − 1. If |pi| = 1
3k − 1, the Adversary privately fixes

the ith vertex to be some particular vertex vi of G consistent with pi, and then
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answers queries to i according to vi until, through the Prover forgetting bits,
|pi| falls below 1

3k again, at which point the Adversary considers the ith vertex
no longer to be fixed.

If the Adversary is able to guarantee that the set of currently fixed vertices
always forms a clique, then the Prover can never win. So suppose we are at a
point in the game where the Adversary has to fix a vertex for index i, that is,
where the Prover is querying a bit for i and |pi| = 1

3k − 1. Let U ⊆ V (G) be
the set of vertices that the Adversary currently has fixed. It is enough to show
that there is some vertex consistent with pi which is connected by an edge in G
to every vertex in U . But by the limitation on the size of the Prover’s memory,
no more than 1

3k vertices can be fixed at any one time. Hence |U | ≤ 1
3k and the

existence of such a vertex follows from property P.

3 Lower Bounds for Ramsey Graphs

We prove Theorem 1, that for any c-Ramsey graph G on n vertices, L(ΨG) ≥
nΩ(logn). As in the previous section we will do this by showing, in Lemma 5
below, that the Adversary has a strategy for the game on Clique(G) which
forces the Prover to use a lot of memory.

Definition 2. Given sets A,B ⊆ V (G) we define their mutual density by

d(A,B) =
e(A,B)

|A||B|

where we write e(A,B) for the number of edges in G with one end in A and the
other in B. For a single vertex v we will write d(v,B) instead of d({v}, B).

Our main tool in our analysis of Ramsey graphs is the statistical property shown
in Corollary 1 below, which plays a role analogous to that played by Lemma 2
for random graphs. We use the following result proved in [20, Case II of Theorem
1]:

Lemma 4 ([20]). There exists constants β > 0, δ > 0 such that if G is a c-

Ramsey graph, then there is a set S ⊆ V (G) with |S| ≥ n
3
4 such that, for all

A,B ⊆ S, if |A|, |B| ≥ |S|1−β then δ ≤ d(A,B) ≤ 1− δ.

Now fix a c-Ramsey graph G. Let S, β and δ be as in the above lemma, and
let m = |S|. Notice that since our goal is to give an Adversary strategy for
the formula Clique(G), we will only use the lower bound δ ≤ d(A,B) from the
lemma.

Corollary 1. Let X,Y1, Y2, . . . , Yr ⊆ S be such that |X | ≥ rm1−β and
|Y1|, . . . , |Yr| ≥ m1−β. Then there exists v ∈ X such that d(v, Yi) ≥ δ for each
i = 1, . . . , r.
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Proof. For i = 1, . . . , r let

Xi = {u ∈ X | d(u, Yi) < δ}.

By Lemma 4, each |Xi| < m1−β. Hence X \
⋃

i Xi is non-empty and we can take
v to be any vertex in X \

⋃
i Xi.

The next lemma implies our main result, Theorem 1.

Lemma 5. There is a constant ε > 0, independent of n and G, such that there
exists a strategy for the Adversary in the game on Clique(G) which wins against
any Prover who is limited to ε2k2 memory locations.

Proof. Let ε > 0 be a constant, whose precise value we will fix later. As in the
proof of Lemma 3, the Adversary’s replies when queried about the ith vertex will
depend on the size of pi, the pattern representing the current information known
to the Prover about the ith vertex. If |pi| < εk − 1 the Adversary can reply in
a somewhat arbitrary way (see below), but if |pi| = εk − 1 then the Adversary
will fix a value vi for the ith vertex, consistent with pi, and will reply according
to vi until |pi| falls back below εk, at which point the vertex is no longer fixed.
By the limitation on the Prover’s memory, no more than εk vertices can be fixed
simultaneously, which will allow the Adversary to ensure that the set of currently
fixed vertices always forms a clique.

Let S, β and δ be as in Lemma 4 and let m = |S|. We will need to use
Corollary 1 above to make sure that the Adversary can find a vi with suitable
density properties when fixing the ith vertex. But here there is a difficulty which
does not arise with the random graph. Corollary 1 only works for subsets of
the set S, and S may be distributed very non-uniformly over the vertices of
G. In particular, through some sequence of querying and forgetting bits for i,
the Prover may be able to force the Adversary into a position where the set of
vertices consistent with a small pi has only a very small intersection with S, so
that it is impossible to apply Corollary 1.

Let α be a constant with 0 < α < β, whose precise value we will fix later.
We write Cp for the set of vertices of G consistent with a pattern p. We write
Pεk for the set of patterns p with |p| ≤ εk. To avoid the problem in the previous
paragraph, we will construct a non-empty set S∗ ⊆ S with the property that,
for every p ∈ Pεk, either

Cp ∩ S∗ = ∅ or |Cp ∩ S∗| > m1−α.

In the second case we will call the pattern p active. The Adversary can then
focus on the set S∗, in the sense that he will pretend that his clique is in S∗ and
will ignore the vertices outside S∗.

We construct S∗ in a brute-force way. We start with S0 = S and define a
sequence of subsets S0, S1, . . . where each St+1 = St\Cp for the lexicographically
first p ∈ Pεk for which 0 < |St ∩ Cp| ≤ m1−α, if any such p exists. We stop as
soon as there is no such p, and let S∗ be the final subset in the sequence. To
show that S∗ is non-empty, notice that at each step at most m1−α elements are
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removed. Furthermore there are at most |Pεk| steps, since a set of vertices Cp

may be removed at most once. Recall that n = 2k and m ≥ n
3
4 . We have

|Pεk| =

εk∑
i=0

2i
(
k

i

)
≤ 2εk

εk∑
i=0

(
k

i

)
≤ nεnH(ε),

where H(x) is the binary entropy function −x log x− (1− x) log(1− x), and we

are using the estimate
∑εk

i=0

(
k
i

)
≤ 2kH(ε) which holds for 0 < ε < 1. Then

|S∗| ≥ |S| − |Pεk| ·m1−α ≥ n
3
4 − εk · nε+H(ε)n

3
4 (1−α),

so, for large n, S∗ is non-empty as long as we choose α and ε satisfying

3
4α > ε + H(ε). ( )

Notice that if S∗ is non-empty then in fact |S∗| > m1−α, since S∗ must intersect
at least the set Cp where p is the empty pattern.

We can now give the details of the Adversary’s strategy. The Adversary
maintains the following three conditions, which in particular guarantee that the
Prover will never win.

1. For each index i, if |pi| < εk then pi is active, that is, Cpi ∩ S∗ �= ∅.
2. For each index i, if |pi| ≥ εk then the ith vertex is fixed to some vi ∈ Cpi∩S∗;

furthermore the set U of currently fixed vertices vj forms a clique.
3. For every active p ∈ Pεk and every U ′ ⊆ U , we have

|Cp ∩ S∗ ∩N(U ′)| ≥ |Cp ∩ S∗| · δ|U
′|.

(Recall that 0 < δ < 1 is the constant from Lemma 4.) These are true at the
start of the game, because no vertices are fixed and each pi is the empty pattern.

Suppose that, at a turn in the game, the Prover queries a bit for an index i
for which he currently has information pi. If |pi| < εk − 1, then by condition 1
there is at least one vertex v in Cpi ∩ S∗. The Adversary chooses an arbitrary
such v and replies according to the bit of v. If |pi| ≥ εk, then a vertex vi ∈ Cpi

is already fixed, and the Adversary replies according to the bit of vi.
If |pi| = εk − 1, then the Adversary must fix a vertex vi for i in a way that

satisfies conditions 2 and 3. To preserve condition 2, vi must be connected to
every vertex in the set U of currently fixed vertices. To preserve condition 3, it
is enough to choose vi such that

d(vi, Cp ∩ S∗ ∩N(U ′)) ≥ |Cp ∩ S∗ ∩N(U ′)| · δ

for every active p in Pεk and every U ′ ⊆ U . To find such a vi we will apply
Corollary 1, with one set Y for each pair of a suitable p and U ′. We put

X = Cpi ∩N(U) ∩ S∗

Y(p,U ′) = Cp ∩N(U ′) ∩ S∗ for each active p ∈ Pεk and each U ′ ⊆ U

r = |{pairs (p, U ′)}| ≤ |Pεk| · 2|U|.
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We know |U | ≤ εk. By condition 1 we know pi is active, hence |Cpi∩S∗| > m1−α.
So by condition 3 we have

|X | ≥ m1−αδεk = m1−α+ 4
3 ε log δ.

For similar reasons we have the same lower bound on the size of each Y(p,U ′).
Furthermore

r ≤ 2εk · εk · nε+H(ε) = εk · n2ε+H(ε) = εk ·m 8
3 ε+

4
3H(ε).

To apply Corollary 1 we need to satisfy |X | ≥ rm1−β and |Y(p,U ′)| ≥ m1−β .
Both conditions are implied by the inequality

β − α > 8
3ε + 4

3H(ε)− 4
3ε log δ. (†)

We can now fix values for the constants α and ε to satisfy the inequalities ( )
and (†). Since H(ε) goes to zero as ε goes to zero, we can make the right hand
sides of ( ) and (†) arbitrary small by setting ε to be a small constant. We then
set α appropriately.

Finally, it is straightforward to check that if the Prover forgets a bit for an
index i, then the three conditions are preserved.

Acknowledgements. Part of this work was done while Lauria was at the In-
stitute of Mathematics of the Academy of Sciences of the Czech Republic, sup-
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49–56. Birkhäuser, Boston (1987)

14. Kim, J.H.: The Ramsey number r(3, t) has order of magnitude t2/ log(t). Random
Structures and Algorithms 7(3), 173–208 (1995)

15. Krajicek, J.: Tautologies from pseudo-random generators. Bulletin of Symbolic
Logic, 197–212 (2001)

16. Kraj́ıček, J.: Lower bounds to the size of constant-depth propositional proofs. Jour-
nal of Symbolic Logic 59(1), 73–86 (1994)
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Abstract. We prove that the randomized decision tree complexity of the
recursive majority-of-three is Ω(2.55d), where d is the depth of the recur-
sion. The proof is by a bottom up induction, which is same in spirit as the
one in the proof of Saks and Wigderson in their 1986 paper on the com-
plexity of evaluating game trees. Previous work includes an Ω

(
(7/3)d

)
lower bound, published in 2003 by Jayram, Kumar, and Sivakumar. Their
proof used a top down induction and tools from information theory. In
2011, Magniez, Nayak, Santha, and Xiao, improved the lower bound to
Ω
(
(5/2)d

)
and the upper bound to O(2.64946d).

Keywords: Boolean functions, randomized computation, decision tree
complexity, query complexity, lower bounds, generalized costs.

1 Introduction

In this paper we will be working with the decision tree model. We prove a lower
bound on the randomized decision tree complexity of the recursive majority-of-
three function. Formally, maj1(x1, x2, x3) is 1 if and only if at least two of x1,
x2, x3 are 1. Letting yi = (x(i−1)3d+1, . . . , xi3d), for i = 1, 2, 3, define for d > 0,

majd+1(x1, . . . , x3d+1) = maj(majd−1(y1),majd−1(y2),majd−1(y3)).

We write maj for maj1. The function can be represented by a uniform ternary
tree. In particular, let Ud be a tree of depth d, such that every internal node has
three children and all leaves are on the same level. The function computed by
interpreting Ud as a circuit with internal nodes labeled by maj-gates is majd.

This function seems to have been given by Ravi Boppana (see Example 1.2
in [7]) as an example of a function that has deterministic complexity 3d, while
its randomized complexity is asymptotically smaller. Other functions with this
property are known. A notable example is the function nandd, first analyzed by
Snir [10]. This is the function represented by a uniform binary tree of depth d,
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with the internal nodes labeled by nand-gates. A simple randomized framework
that can be used to compute both majd and nandd is the following. Start at the
root; as long as the output is not known, choose a child at random and evaluate
it recursively. Algorithms of this type are called in [7] directional. For majd the
directional algorithm computes the output in (8/3)d queries. It was noted in [7]
that better algorithms exist for majd. Interestingly, Saks and Wigderson show
that the directional algorithm is optimal for the nandd function, and show that
its zero-error randomized decision tree complexity is Θ

(
( 1+

√
33

4 )d
)
. Their proof

uses a bottom up induction and generalized costs. Their method of generalized
costs allows them to charge for a query according to the value of the variable.
Furthermore, they conjecture that the maximum gap between deterministic and
randomized complexity is achieved for this function.

Inspired by their technique we prove an Ω(2.55d) lower bound on majd that
also holds for algorithms with bounded-error. (The bound of [7] for nandd was
extended to bounded-error algorithms by Santha in [8].) In contrast to the ex-
act asymptotic bounds we have for nandd, there had been no progress on the
randomized decision tree complexity of majd for several years. However, recent
papers have narrowed the gap between the upper and lower bounds for recursive
majority. An Ω

(
(7/3)d

)
lower bound was showed in [4]. Jayram, Kumar, and

Sivakumar, proved their bound using tools from information theory and a top
down induction. Furthermore, they presented a non-directional algorithm that
improves the O

(
(8/3)d

)
upper bound. Magniez, Nayak, Santha, and Xiao [6],

significantly improved the lower bound to Ω
(
(5/2)d

)
and the upper bound to

O(2.64946d). (Both of these lower bounds hold for the case that the randomized
decision tree is allowed to err. )

Our proof of the lower bound is simpler than the aforementioned ones; it
doesn’t require a background in information theory and it only uses induction.
Note that, Landau, Nachmias, Peres, and Vanniasegaram [5], showed how to re-
move the information theoretic notions from the proof in [4], keeping its under-
lying structure the same. Our proof can be even more simplified, if one requires
the known Ω(2.5d) lower bound. A simpler proof of this bound seems to have
been already known to Jonah Serman [9] in 2007.

We note that both majd and nandd, belong to the class of read-once functions.
These are functions that can be computed by read-once Boolean formulae, that
is, formulae such that each input variable appears exactly once. Heiman, New-
man, and Wigderson [2] showed that read-once formulae with threshold gates
have zero-error randomized complexity Ω(n/2d) (here n is the number of vari-
ables and d the depth of a canonical tree-representation of the read-once func-
tion). Heiman and Wigderson [3] managed to show that for every read-once func-
tion f we have R(f) ∈ Ω(D(f)0.51), where R(f) and D(f) are the randomized
and deterministic complexity of f respectively. Note that the conjecture of Saks
and Wigderson states that for every function f we have R(f) ∈ Ω(D(f)0.753...).
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2 Definitions and Notation

In this section we introduce basic concepts related to decision tree complexity.
The reader can find a more complete exposition in the survey of Buhrman and
de Wolf [1].

2.1 Definitions Pertaining to Decision Trees

A deterministic Boolean decision tree Q over a set of variables Z = {zi | i ∈ [n]},
where [n] = {1, 2, . . . , n}, is a rooted and ordered binary tree. Each internal
node is labeled by a variable zi ∈ Z and each leaf with a value from {0, 1}. An
assignment to Z (or an input to Q) is a member of {0, 1}n. The output Q(σ) of Q
on an input σ is defined recursively as follows. Start at the root and let its label
be zi. If σi = 0, we continue with the left child of the root; if σi = 1, we continue
with the right child of the root. We continue recursively until we reach a leaf.
We define Q(σ) to be the label of that leaf. When we reach an internal node, we
say that Q queries or reads the corresponding variable. We say that Q computes
a Boolean function f : {0, 1}n → {0, 1}, if for all σ ∈ {0, 1}n, Q(σ) = f(σ). The
cost of Q on input σ, cost(Q;σ), is the number of variables queried when the
input is σ. The cost of Q, cost(Q), is its depth, the maximum distance of a leaf
from the root. The deterministic complexity, D(f), of a Boolean function f is
the minimum cost over all Boolean decision trees that compute f .

A randomized Boolean decision tree QR is a distribution p over deterministic
decision trees. On input σ, a deterministic decision tree is chosen according to p
and evaluated. The cost of QR on input σ is cost(QR;σ) =

∑
Q p(Q) cost(Q;σ).

The cost of QR is maxσ cost(QR;σ). A randomized decision tree QR computes
a Boolean function f , if p(Q) > 0 only when Q computes f . A randomized
decision tree QR computes a Boolean function f with error δ, if, for all inputs
σ, QR(σ) = f(σ) with probability at least 1 − δ. The randomized complexity,
R(f), of a Boolean function f is the minimum cost of any randomized Boolean
decision tree that computes f . The δ-error randomized complexity, Rδ(f), of a
Boolean function f , is the minimum cost of any randomized Boolean decision
tree that computes f with error δ.

We are going to take a distributional view on randomized algorithms. Let μ
be a distribution over {0, 1}n and QR a randomized decision tree. The expected
cost of QR under μ is

costμ(QR) =
∑

σ μ(σ) cost(QR;σ).

The δ-error expected complexity under μ, Rμ
δ (f), of a Boolean function f , is the

minimum expected cost under μ of any randomized Boolean decision tree that
computes f with error δ. Clearly, Rδ(f) ≥ Rμ

δ (f), for any μ, and thus we can
prove lower bounds on randomized complexity by providing lower bounds for
the expected cost under any distribution.
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2.2 Introducing Cost-Functions

We are going to utilize the method of generalized costs of Saks and Wigderson
[7]. To that end, we define a cost-function relative to a variable set Z, to be a
function φ : {0, 1}n × Z → IR. We extend the previous cost-related definitions
as follows. The cost of a decision tree Q under cost-function φ on input σ is

cost(Q;φ;σ) =
∑

z∈S φ(σ; z),

where S = {z | z is queried by Q on input σ}. The cost of a randomized decision
tree QR on input σ under cost-function φ is

cost(QR;φ;σ) =
∑

Q p(Q) cost(Q;φ;σ),

where p is the corresponding distribution over deterministic decision trees. Fi-
nally, the expected cost of a randomized decision tree QR under cost-function φ
and distribution μ is

costμ(QR;φ) =
∑

σ μ(σ) cost(QR;φ;σ).

Fact 1. Let φ and ψ be two cost-functions relative to Z. For any decision tree
Q over Z, any assignment σ to Z, and any a, b ∈ IR, we have

a cost(Q;φ;σ) + b cost(Q;ψ;σ) = cost(Q; aφ + bψ;σ).

For φ, ψ : {0, 1}n × Z → IR, we write φ ≥ ψ, if for all (σ, z) ∈ {0, 1}n × Z,
φ(σ, z) ≥ ψ(σ, z).

Fact 2. Let φ and ψ be two cost-functions relative to Z. For any decision tree Q
over Z and any assignment σ to Z, if φ ≥ ψ, then cost(Q;φ;σ) ≥ cost(Q;ψ;σ).

2.3 Definitions Pertaining to Trees

For a rooted tree T , the depth of a leaf is the number of edges on the path to
the root. The depth of the tree is the maximum depth of a leaf. We denote by
LT the set of its leaves and by VT the set of its internal nodes. Define the set
of leaf-parents of T , PT , as the set of all nodes in VT all of whose children are
leaves. For S ⊆ PT let LT (S) be the set of the leaves of the nodes in S. We
call a tree uniform if all the leaves are on the same level. A tree such that every
node has exactly three children is called ternary. For a positive integer d, let Ud

denote the uniform ternary tree of depth d.
In the following, let T denote a ternary tree with n leaves. We define a distri-

bution μT over {0, 1}n that is placing positive weight on inputs that we consider
difficult; we call these inputs reluctant, in accordance with [7]. Let

M0 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and M1 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}.

In the following definition we view T as a circuit with every internal node labeled
by a maj-gate. We denote the corresponding function by FT .
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Definition 3. Call an input to a ternary tree reluctant, if it is such that the
inputs to every gate belong to M0∪M1. Let μT , the reluctant distribution for T ,
be the uniform distribution over all reluctant inputs. We write μd ≡ μUd

, and
μT (0) (μT (1)) for μT conditioned on the output of FT being 0 (1).

Suppose the inputs to a gate, under an assignment σ, belong to M0 (M1). We
call an input to this gate a minority under σ if it has the value 1 (0) and a
majority otherwise.

3 Proof Outline and Preliminaries

Our goal is to prove a lower bound on the expected cost of any randomized
decision tree QR that computes majd with bounded error δ. We now discuss
the outline of our proof. We start with the tree T ≡ Ud that represents majd,
the natural cost-function ψ that charges 1 for any query, and the reluctant
distribution μ ≡ μT . We define a process that shrinks tree T to a smaller tree
T ′ and a corresponding randomized decision tree Q′R that computes FT ′ with
bounded error δ. The crucial part is to show that for a “more expensive” cost-
function ψ′, costμ(QR;ψ) ≥ costμ′(Q′R;ψ′), where μ′ ≡ μT ′ . Our goal is to apply
the shrinking process repeatedly to the leaves of Ud, until we obtain a recurrence
of the form

Rμd

δ (majd) ≥ λ · Rμd−1

δ (majd−1),

for some constant λ. The quality of our lower bound (i.e. the constant λ, since
the recurrence will lead to Rδ(majd) ∈ Ω(λd)) will depend on how much more
expensive ψ′ is than ψ.

The main ingredient in this framework is the shrinking process. A natural
choice would be to shrink T by removing three leaves u, v, w so that their
parent s would become a leaf in T ′. Then, if we had a good algorithm Q for
FT we could design an algorithm Q′ for FT ′ as follows. On input σs, Q′ would
simulate Q on one of the inputs σ01s, σ10s, σ0s1, σ1s0, σs01, σs10, with equal
probability. We will show in the next section that such a shrinking process can
give an alternate—and simpler—proof of the Ω(2.5d) lower bound of Magniez,
Nayak, Santha, and Xiao [6].

To improve their bound we are going to shrink nine leaves to three at a time
instead of three to one. This is made precise by the following definition.

Definition 4 (shrink(T ; s)). For a ternary tree T , let s be the parent of u, v, w ∈
PT . Define shrink(T ; s) as the tree with the children of u, v, w removed.

After shrinking our initial tree T to T ′ ≡ shrink(T ; s) (notice that u, v, w ∈ LT ′),
we need to define a randomized decision tree Q′R that will compute FT ′ with
error at most δ. We do so by defining for each deterministic tree Q that QR may
choose, a randomized tree Q′.

Definition 5. Let Q be any deterministic decision tree for FT . We define a
randomized decision tree Q′ for FT ′ , where T ′ ≡ shrink(T ; s). The algorithm Q′

on input σuvw chooses σu, σv, σw independently and uniformly at random from
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{x01, x10, 0x1, 1x0, 01x, 10x}, where x is u, v, w respectively. Then, Q′ simulates
Q on input σ̂ = σσuσvσw. This induces a randomized algorithm Q′R for FT ′ .

Fact 6. If QR is a δ-error randomized decision tree for FT , then Q′R is a δ-error
randomized decision tree for FT ′ .

It will be useful to express costμ′(Q′;ψ′), for some cost-function ψ′, in terms of
Q. We have the following proposition.

Proposition 7. For a ternary tree T and s the parent of u, v, w ∈ PT , let
T ′ ≡ shrink(T ; s). Let ψ′ be a cost-function on T ′, such that ψ′(σ; z) = λ for all
σ ∈ {0, 1}|LT′ | and z ∈ {u, v, w}. Then

costμ′(Q′;ψ′) = costμ(Q;ψ∗),

where (μ, μ′) is any of (μT , μT ′), (μT (0), μT ′(0)), (μT (1), μT ′(1)), and

ψ∗(σ; z) =

⎧⎨⎩
ψ′(σ; z), if z ∈ LT \ LT (u, v, w);
0.5 · λ, if z ∈ LT (u, v, w) and z is a majority under σ;
0, if z ∈ LT (u, v, w) and z is a minority under σ.

(1)

Proof. Observe that by the definition of Q′, Pr[σ̂ = σ] = μ(σ). Furthermore,
each σ is encountered 23 times over the random choices of Q′. For (i, j, k) ∈ [3]3

define cost-functions for T as follows.

ψ(i,j,k)(σ; z) =

⎧⎨⎩
0, if z ∈ LT (u, v, w) \ {ui, vj , wk};
λ, if z ∈ {ui, vj , wk};
ψ′(σ; z), otherwise.

The indices i, j, k are going to play the role of x in Definition 5. We have

costμ′(Q′;ψ′) =
∑

σ μ(σ) 1
23

∑
(i,j,k)∈Iσ cost(Q;ψ(i,j,k);σ),

where Iσ = {(i, j, k) ∈ [3]3 |ui, vj , wk are majorities under σ}. The proposition
follows since for any σ in the support of μ and any z, we have ψ∗(σ, z) =∑

(i,j,k)∈Iσ
1
23ψ(i,j,k)(σ, z). ��

4 The Ω(2.5d) Lower Bound and a Toy Problem

We sketch a proof of the Ω(2.5d) lower bound of Magniez, Nayak, Santha, and
Xiao [6], by applying the proof outline discussed in the previous section coupled
with a simple shrinking process that shrinks three leaves to one. In addition, we
define and analyze a toy problem that will play a crucial role in obtaining the
improved Ω(2.55d) bound.

For both of these tasks it is useful to define a cost-function φη, where η ∈ IR,
as follows.

φη(σ; z) =

{
1, if z is a minority under σ;
η, otherwise.

(2)
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4.1 Proof of the Ω(2.5d) Lower Bound

Let T be any ternary tree and x, y, z three of its leaves with a common parent u.
Let T ′ be the ternary tree obtained by removing x, y, z, and thus transforming
u to a leaf. Let ψ be a cost-function for T with ψ(σ, x) = ψ(σ, y) = ψ(σ, z) = λ
for any σ. Let ψ′ be a cost-function for T ′ with ψ′(σ, u) = 2.5 · λ and ψ′(σ, v) =
ψ(σ, v) for any other leaf v. For any algorithm Q for FT consider the algorithm Q′

for FT ′ that on input σu outputs one of Q(σ01u), Q(σ10u), Q(σ0u1), Q(σ1u0),
Q(σu01), Q(σu10) with equal probability. If Q is a δ-error algorithm for FT , then
Q′ is a δ-error algorithm for FT ′ . We claim that, with μ = μT and μ′ = μT ′ ,

costμ(Q;ψ) ≥ costμ′(Q′;ψ′).

Accepting this claim, we start with T ≡ Ud and apply it repeatedly by shrinking
each time three leaves at depth d that are siblings. We end up with Ud−1 and a
cost function that charges 2.5 for each query. We have shown Rμd

δ (majd) ≥ 2.5 ·
R

μd−1

δ (majd−1). Repeating this d times we obtain Rμd

δ (majd) ≥ 2.5d ·Rμ0

δ (maj0).
Finally, it is not hard to show that you have to read a bit with probability at
least 1−2δ to be able to guess it with error at most δ, thus Rμ0

δ (maj0) ≥ (1−2δ).
Putting these together, Rμd

δ (majd) ≥ (1− 2δ) · 2.5d.
To prove the claim, we observe that as in Proposition 7, costμ′(Q′;ψ′) =

costμ(Q;ψ′′), where

ψ′′(σ; z) =

⎧⎨⎩
ψ′(σ; z), if z ∈ LT \ LT (u);
1.25 · λ, if z ∈ LT (u) and z is a majority under σ;
0, if z ∈ LT (u) and z is a minority under σ.

By Fact 1 it suffices to show that costμ(Q;ψ − ψ′′) ≥ 0. Note now that ψ − ψ′′

is equal to λφ−0.25 on x, y, z, and zero everywhere else. Thus, we can focus on
how these three leaves are queried by Q and ignore all the other leaves. To do
this, observe that if we fix values on the rest of the leaves, we obtain from Q a
decision tree on three variables.

In the table below we list the deterministic decision trees1 Q for three variables
that are relevant to our problem. We label the input variables x, y, z, in the order
they are queried. We write “and* z” to denote a conditional read. That is, z is
queried only if the value of maj(x, y, z) cannot be determined from the values of
x and y. Decision trees that read z even if x = y are of no interest, neither for
majd, nor for the toy problem we will consider in the next section.

In the last column we calculate
∑

σ∈M0
cost(Q;φη;σ). Because of the sym-

metries involved we can look up the costs for σ ∈M1 as well. For example, the
cost of the decision tree in row (2a) when σ ∈M1, is the same as the cost of the
decision tree in row (2b) when σ ∈M0.

1 We abuse the term “decision tree” here, since we are actually listing algorithms that
query bits but do not output anything.
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Decision tree Cost

(1) If x = 0, stop; if x = 1, stop. 1 + 2η

(2a) If x = 0, stop; if x = 1, read y. 1 + 3η

(2b) If x = 0, read y; if x = 1, stop. 2 + 3η

(3a) If x = 0, stop; if x = 1, read y and* z. 1 + 4η

(3b) If x = 0, read y and* z; if x = 1, stop. 2 + 4η

(4) If x = 0, read y; if x = 1, read y. 2 + 4η

(5a) If x = 0, read y; if x = 1, read y and* z. 2 + 5η

(5b) If x = 0, read y and* z; if x = 1, read y. 2 + 5η

(6) If x = 0, read y and* z; if x = 1, read y and* z. 2 + 6η

What we are going to use from this table is that for η ∈ [−0.5, 0] the decision
tree of row (3a) has the minimum cost when (x, y, z) ∈M0, and the tree of row
(3b) when (x, y, z) ∈M1. Their cost is 1 + 4η. One can now verify that there is
no (deterministic) decision tree Q that can achieve costμ(Q;φ−0.25) < 0. This
completes the proof of the claim and the sketch of the Ω(2.5d) lower bound.

Remark. Note the role of the value of u in the above argument. In particular,
if u = 0, then the best decision tree is the one on row (3a), whereas if u = 1, it
is the one on row (3b). We can do better, if we only want a bound for maj1.

Proposition 8. Rμ1

δ (maj1) ≥ 8
3 ·R

μ0

δ (maj0).

Proof. Let ψ1 be the cost-function for maj1 defined by ψ1(σ; z) = 1 for all σ
and z. Let ψ0 be the cost-function for maj0 defined by ψ0(0;u) = ψ0(1;u) =
8/3. Then, as in the proof of Proposition 7, we can show that costμ1(Q1;ψ1)−
costμ0(Q0;ψ0) = costμ1(Q1;φ−1/3). Observe now—by examining the table—
that for any deterministic algorithm Q,

∑
σ∈M0∪M1

cost(Q;φ−1/3;σ) ≥ 0. The
zero is achieved by the tree on row (6) of the table. Thus, costμ1(Q1;ψ1) ≥
costμ0(Q0;ψ0) and the result follows. ��

4.2 The Toy Problem and a Corollary

Recall that in order to improve the lower bound, we need a shrinking process
that shrinks nine leaves to three. Since it would be rather tedious to analyze
decision trees on nine variables, we introduce a toy problem that reduces our
analysis on decision trees over {0, 1}6. We present first the toy problem and
following its analysis a corollary that reveals its usefulness.

Let μ be the uniform distribution over
{

(u, v)
∣∣ (u ∈ M0 ∧ v ∈ M1

)
∨
(
u ∈

M1∧ v ∈M0

)}
. We seek the minimum real η for which costμ(Q;φη) ≥ 0 for any

decision tree Q. We show that we can have η = −0.3. Although it is not stated
in the following lemma, it is easily observable from the proof that this value is
best possible. Although the analysis of the toy problem is optimal, one could
improve the constant 2.55 by analyzing directly the decision trees over {0, 1}9.



704 N. Leonardos

Lemma 9. For any decision tree Q over {0, 1}6, costμ(Q;φ−0.3) ≥ 0.

Proof. For the proof we are going to do some case analysis, taking advantage of
the symmetries involved. Denote the input by (x, y, z, u, v, w), and call (x, y, z)
the left side and (u, v, w) the right side. Assume, without loss of generality (due
to the symmetry of μ and the fact that we are calculating expected cost), that
the variables on the left side are queried in the order x, y, z and on the right side
in the order u, v, w. Assume further, that x is the first variable queried by Q,
and let Q0 (Q1) be the decision tree if x = 0 (x = 1). We only analyze Q0, as
the analysis of Q1 would be the same with the roles of 0 and 1 exchanged. Thus,
we assume x = 0 and proceed with the analysis of Q0.

In all of the following cases we calculate the cost scaled; in particular, we
calculate C ≡

∑
σ:x=0 cost(Q;φ;σ).

Case 1. Suppose that Q0 is empty. Then C = 3 + 6η > 0.
Case 2. Suppose that Q0 queries y. Then, either x = y or x �= y. In the

first case, we may assume Q0 does not query z, since such a query increases the
cost by 1. In the second case, we may assume Q0 queries z, since such a query
decreases the cost by −η. Therefore, the optimal Q0 first “finishes” with the
left side and then proceeds to the right side, knowing whether (u, v, w) ∈ M0

or (u, v, w) ∈ M1. In the first case, the optimal Q0 continues with the right
side as in row (3a) of the table; in the second case, as in row (3b). The cost is
C = (3 · 2η + 1 + 4η) + 2 · (3 · (1 + 2η) + 1 + 4η), which is 0 for η = −0.3.

Case 3. Suppose that Q0 queries u.
(i) Suppose x = u. If Q0 does not query anything else, then this case con-

tributes to the cost 4·(1+η). Otherwise let us assume (without loss of generality)
that it reads y. Then, as in Case 2, we may assume that Q0 “finishes” the left
side before doing anything else. There are four inputs such that x = u = 0. For
two of the inputs the left side belongs to M0 and for the other two to M1. In the
first case, the optimal Q0 reads v and w (they are both majorities). In the second
case, it does not read any of v, w (it costs an additional 1 + 2η > 0 if it reads
them). In total the cost of this case is then (1+4η)+(2+4η)+2·(1+3η) = 5+14η.

(ii) Suppose x �= u. If Q0 does not query anything else, then this case con-
tributes to the cost 2 + 8η. Otherwise let us assume (without loss of generality)
that it reads y. With similar considerations as in case 3(i), we find that the total
cost of this case is then (2 + 4η) + 2 · 3η + 2 · (1 + 3η) = 4 + 16η.

Summing up for case 3, we find that the best Q0 can do is C = 9 + 30η = 0.
The case analysis is complete. ��
We prove a corollary of this lemma that connects the toy problem to our real
goal, which is the analysis of the process of shrinking nine leaves to three.

Lemma 10. Let T ≡ U2 with root s and T ′ ≡ shrink(T ; s). Let ψ and ψ′ be
cost-functions such that ψ(σ; z) = λ ≥ 0 for all σ ∈ {0, 1}9 and all variables
z ∈ LT , and ψ′(σ; z) = 2.55 · λ for all σ ∈ {0, 1}3 and all variables z ∈ LT ′ .
Then, for any deterministic decision tree Q over {0, 1}9,

costμ(Q;ψ) ≥ costμ′(Q′;ψ′),

where (μ, μ′) is any of (μT , μT ′), (μT (0), μT ′(0)), (μT (1), μT ′(1)).
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Proof. Recall the definition of ψ∗ from page 701. We have

costμ(Q;ψ)− costμ′(Q′;ψ′)

= costμ(Q;ψ)− costμ(Q;ψ∗) by Proposition 7

= costμ(Q;ψ − ψ∗) by Fact 1

=
∑

σ:maj2(σ)=0 μ(σ) cost(Q;ψ − ψ∗;σ)

+
∑

σ:maj2(σ)=1 μ(σ) cost(Q;ψ − ψ∗;σ).

According to whether we are interested in μT , μT (0), or μT (1), one of the sums
might be empty. Without loss of generality, we assume the first sum is nonempty
and show it is nonnegative. The other sum can be treated similarly. To that end,
we define an intermediate cost-function ξ. In the following definition, σ is an
assignment, z a variable, and u is the value of the parent of z under σ.

ξ(σ; z) =

⎧⎨⎩λ, if z is a minority under σ;
−0.275 · λ, if z is a majority under σ and u = 0;
−0.3 · λ, if z is a majority under σ and u = 1.

Observe that ψ−ψ∗ ≥ ξ (they agree on minorities and ψ−ψ∗ is λ−0.5 ·2.55 ·λ =
−0.275 · λ on all majorities) and thus it suffices to show that∑

σ:maj2(σ)=0 μ(σ) cost(Q; ξ;σ) ≥ 0. (3)

We are going to decompose the above sum into terms that correspond either to
the toy problem and Lemma 9 applies or correspond to queries over 3 variables
and the table of Section 4.1 can be used.

To that end, we decompose ξ into several cost-functions. Let u, v, and w be
the children of s. Define a cost-function ξu by

ξu(σ; z) =

⎧⎨⎩
0, if z ∈ LT (u);
−0.3 · λ, if z is a majority under σ and z ∈ LT (v, w);
λ, if z is a minority under σ and z ∈ LT (v, w).

Similarly define ξv and ξw. For α ∈M0 define

Cu(α) ≡
∑

β∈M0

∑
γ∈M1

μ(αβγ) cost(Q; ξu;αβγ) + μ(αγβ) cost(Q; ξu;αγβ).

Similarly define Cv and Cw (assigning α to v and w respectively). These terms—
as shown later—correspond to the toy problem. Define a cost-function ξ′u by

ξ′u(σ; z) =

⎧⎨⎩0, if z ∈ LT (v, w);
−0.25 · λ, if z is a majority under σ and z ∈ LT (u);
λ, if z is a minority under σ and z ∈ LT (u).

Similarly define ξ′v and ξ′w. For (α, β) ∈M0 ×M1 define

C′u(α, β) ≡
∑

γ∈M0
μ(γαβ) cost(Q; ξ′u; γαβ) + μ(γβα) cost(Q; ξ′u; γβα).
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Similarly define C′v and C′w. These terms will be analyzed using the table.
We now argue that we have the following decomposition

∑
σ:maj2(σ)=0 μ(σ) cost(Q; ξ;σ) =

1

2

[∑
α∈M0

(
Cu(α) + Cv(α) + Cw(α)

)
+
∑

α∈M0

∑
β∈M1

(
C′u(α, β) + C′v(α, β) + C′w(α, β)

)]
. (4)

To prove this, we fix a σ = xyz on the left-hand side and see if each bit—
assuming it is queried by Q—is charged the same in both sides of the equation.
Without loss of generality, let us assume σ is such that maj(x) = maj(y) = 0
and maj(z) = 1. A minority (under σ) is charged λ on the left side. A minority
below u is charged λ once in Cv(y) and once in C′u(y, z) on the right, for a total
of 0.5 · (λ + λ). Similarly for a minority below v. A minority below w will be
charged λ in Cu(x) and Cv(y), which corresponds to the amount charged on the
left side. A majority below u will be charged −0.3 · λ in Cv(y) and −0.25 · λ in
C′u(y, z), for a total of 0.5 · (−0.3− 0.25) · λ; this is how much is charged in the
left side as well. Similarly for a majority below v. Finally, a majority below w
is charged −0.3 · λ in Cu(x) and Cv(y), equal to the amount charged on the left
side.

We now finish the proof by showing that the right-hand side of (4) is nonneg-
ative. We argue that, for any α ∈ M0, Cu(α) ≥ 0. Each fixed α ∈ M0 induces
a decision tree Qα over {0, 1}6 such that Qα(βγ) = Q(αβγ). Observe that ξu
agrees on LT (v, w) with λφ−0.3 (where φ−0.3 is defined in Equation 2). Thus,
Cu(γ) = λ costμ(Qγ ;φ−0.3) and Lemma 9 shows that Cu(α) ≥ 0. Similarly, for
any α ∈ M0, Cv(γ), Cw(γ) ≥ 0. Along similar lines we can show that, for any
(α, β) ∈M0×M1, C′u(α, β), C′v(α, β), C′w(α, β) ≥ 0. (Lemma 9 is not needed in
this case; inspection of the table in Section 4.1 suffices.) ��

5 Proof of the Lower Bound

We prove a lemma that carries out the inductive proof sketched in Section 3.

Lemma 11 (Shrinking Lemma). For a ternary tree T and s the parent of
u, v, w ∈ PT , let T

′ denote shrink(T ; s). Let ψ and ψ′ be cost-functions on T and
T ′ such that ψ(σ; z) = λ for all σ ∈ {0, 1}|LT | and z ∈ LT (u, v, w) and

ψ′(σ; t) =

{
2.55 · λ, if t ∈ {u, v, w};
ψ(σ; t), otherwise.

Then, for any randomized decision tree QR, μ ≡ μT and μ′ ≡ μT ′ ,

costμ(QR;ψ) ≥ costμ′(Q′R;ψ′).

Proof. Let n denote the number of leaves in T . Fix a partial assignment π ∈
{0, 1}n−9 for the leaves in LT \ LT (u, v, w) and let ρ ∈ {0, 1}9. We write πρ for
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the assignment that equals ρ on the variables LT (u, v, w) and π everywhere else.
For any deterministic tree Q we have (recalling Proposition 7 and Fact 1)

Δ(Q) ≡ costμ(Q;ψ)− costμ′(Q′;ψ′) = costμ(Q;ψ)− costμ(Q;ψ∗)

= costμ(Q;ψ − ψ∗) =
∑

πρ μ(πρ) cost(Q;ψ − ψ∗;πρ).

Now, ψ and ψ∗ are equal over LT \LT (u, v, w). Furthermore, having fixed π, we
can define a deterministic tree Qπ over {0, 1}9 so that on input ρ ∈ {0, 1}9
we have Qπ(ρ) = Q(πρ). Thus Δ(Q) =

∑
πρ μ(πρ) cost(Qπ;ψ − ψ∗; ρ). Fi-

nally, recalling the definition of ψ∗ (page 701), we see that ψ − ψ∗ ≥ λφ−0.3
on LT (u, v, w) and by Fact 2, Δ(Q) ≥

∑
πρ μ(πρ) cost(Qπ;λφ−0.3; ρ). Thus,

we may apply Lemma 10, which implies that, for each fixed π, each summand
is greater or equal to zero. It follows that, for any Q, Δ(Q) ≥ 0. We have
costμ(QR;ψ)− costμ′(Q′R;ψ′) =

∑
Q p(Q)Δ(Q) ≥ 0. ��

Theorem 12. Rμd

δ (majd) ≥ 8
3 · (1 − 2δ) · 2.55d−1.

Proof. We start with T ≡ Ud and apply the Shrinking Lemma repeatedly by
shrinking each time nine leaves at depth d that have a common ancestor at depth
d−2. We end up with Ud−1 and a cost function that charges 2.55 for each query,
obtaining Rμd

δ (majd) ≥ 2.55 ·Rμd−1

δ (majd−1). Repeating this d− 1 times we get
Rμd

δ (majd) ≥ 2.55d−1 ·Rμ1

δ (maj1). By Proposition 8, Rμ1

δ (maj1) ≥ 8
3 ·R

μ0

δ (maj0).
A δ-error decision tree for maj0 should guess a random bit with error at most δ;
thus, Rμ0

δ (maj0) ≥ 1− 2δ. ��
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Abstract. Motivated by the problem of testing planarity and related
properties, we study the problem of designing efficient partition oracles.
A partition oracle is a procedure that, given access to the incidence lists
representation of a bounded-degree graph G = (V,E) and a parameter
ε, when queried on a vertex v ∈ V , returns the part (subset of vertices)
which v belongs to in a partition of all graph vertices. The partition
should be such that all parts are small, each part is connected, and if the
graph has certain properties, the total number of edges between parts
is at most ε|V |. In this work we give a partition oracle for graphs with
excluded minors whose query complexity is quasi-polynomial in 1/ε, thus
improving on the result of Hassidim et al. (Proceedings of FOCS 2009)
who gave a partition oracle with query complexity exponential in 1/ε.
This improvement implies corresponding improvements in the complex-
ity of testing planarity and other properties that are characterized by
excluded minors as well as sublinear-time approximation algorithms that
work under the promise that the graph has an excluded minor.

1 Introduction

An important and well studied family of graphs is the family of Planar Graphs .
A natural problem is that of deciding whether a given graph G = (V,E) is
planar. Indeed, there is variety of linear-time algorithms for deciding planarity
(e.g. [12,3]). However, what if one is willing to relax the decision task while
requiring that the algorithm be much more efficient, and run in sub-linear time?
Namely, here we refer to the notion of Property Testing where the goal is to decide
(with high success probability) whether a graph has the property (planarity)
or is far from having the property (in the sense that relatively many edges-
modifications are required in order to obtain the property). Such a task should
be performed by accessing only small portions of the input graph.
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Another type of problem related to planar graphs is that of solving a cer-
tain decision, search, or optimization problem, under the promise that the input
graph is planar, where the problem may be hard in general. In some cases the
problem remains hard even under the promise (e.g., Minimum Vertex-Cover [10]),
while in other cases the promise can be exploited to give more efficient algorithms
than are known for general graphs (e.g., Graph Isomorphism [13]). Here too we
may seek even more efficient, sublinear-time, algorithms, which are allowed to
output approximate solutions.

The problem of testing planarity, and, more generally, testing any minor-
closed property of graphs1 was first studied by Benjamini, Schramm and
Shapira [2]. They gave a testing algorithm whose query complexity and run-
ning time are independent of |V |.2 This result was later improved (in terms
of the dependence on the distance parameter, ε) by Hassidim et al. [11], who
also considered sublinear-time approximation algorithms that work under the
promise that the graph has an excluded (constant size) minor (or more gen-
erally, for hyperfinite graphs as we explain subsequently). They show how to
approximate the size of the minimum vertex cover, the minimum dominating set
and the maximum independent set of such graphs, to within an additive term
of ε|V | in time that depends only on ε and the degree bound, d, but not on |V |.

The main tool introduced by Hassidim et al. [11] for performing these tasks is
Partition Oracles . Given query access to the incidence-lists representation of a
graph, a partition oracle provides access to a partition of the vertices into small
connected components. A partition oracle is defined with respect to a class of
graphs, C, and may be randomized. If the input graph belongs to C, then with
high probability the partition determined by the oracle is such that the number of
edges between vertices in different parts of the partition is relatively small (i.e.,
at most ε|V |). Such a bound on the number of edges between parts together
with the bound on the size of each part lends itself to designing efficient testing
algorithms and other sublinear approximation algorithms.

Hassidim et al. [11] provide a partition oracle for hyperfinite [8] classes of

graphs that makes 2d
poly(1/ε)

queries to the graph, where d is and upper bound
on the degree. A graph G = (V,E) is (ε, k)-hyperfinite if it is possible to remove
at most ε|V | edges of the graph so that the remaining graph has connected
components of size at most k. A graph G is ρ-hyperfinite for ρ : R+ → R+

if for every ε ∈ (0, 1], G is (ε, ρ(ε))-hyperfinite. For graphs with an excluded
minor, (a special case of hyperfinite graphs), they provide a partition oracle
with query complexity dpoly(1/ε) (as detailed in [18, Sec. 2]). Hassidim et al. [11]

1 For a fixed graph H , H is a minor of G if H is isomorphic to a graph that can be
obtained by zero or more edge contractions on a subgraph of G. We say that a graph
G is H-minor free (or excludes H as a minor) if H is not a minor of G. A property
P (class of graphs) is minor-closed if every minor of a graph in P is also in P . Any
minor-closed property can be characterized by a finite family of excluded minors [22].

2 Their algorithm has two-sided error. If one-sided error is desired, then for any fixed
H that contains a simple cycle, the query complexity of one-sided error testing of
H-minor freeness is Ω(

√
|V |) [4].
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leave as an open problem whether it is possible to design a partition oracle for
graphs with an excluded minor that has query complexity polynomial in 1/ε. In
particular, this would imply an algorithm for testing planarity whose complexity
is polynomial in 1/ε.

1.1 Our Contribution

In this work we present a partition oracle for graphs with an excluded minor
whose query complexity and running time are (d/ε)O(log(1/ε)) = dO(log2(1/ε)),
that is, quasi-polynomial in 1/ε.

Implications. Hassidim et al. [11] show how it is possible to reduce the problem
of testing H-minor freeness (for a fixed graph H) to the problem of designing
a partition oracle for H-minor free graphs. Using this reduction they obtain
a testing algorithm for H-minor freeness (and more generally, for any minor-
closed property) whose query complexity and running time are 2poly(1/ε). As
noted previously, this improves on the testing algorithm of Benjamini et al. [2]

for minor-closed properties, whose complexity is 222
poly(1/ε)

. Using our partition
oracle (and the reduction in [11]) we get a testing algorithm whose complexity

is 2O(log2(1/ε)).
Other applications of a partition oracle for a class of graphs C are con-

stant time algorithms that work under the promise that the input graph be-
longs to C, where in our case C is any class of graphs with an excluded minor.
Under this promise, Hassidim et al. [11] provide constant time ε|V |-additive-
approximation algorithms for the size of a minimum vertex cover, minimum
dominating set and maximum independent set. They also obtain an ε-additive-
approximation algorithm for the distance from not having any graph in H as
an induced subgraph where H is a fixed subset of graphs. Combined with our
partition oracle, the query complexity of these algorithms drops from dpoly(1/ε)

to (d/ε)O(log(1/ε)) = dO(log2(1/ε)).

Techniques. As in [11], our partition oracle runs a local emulation of a global
partitioning algorithm. Hence, we first give a high-level idea of the global parti-
tioning algorithm, and then discuss the local emulation. Our global partitioning
algorithm is based on the global partitioning algorithm of [11] for graphs with an
excluded minor, as described in [18, Sec. 2], which in turn builds on a clustering
method of Czygrinow, Hańćkowiak, and Wawrzyniak [6]. The algorithm is also
similar to the “Binary Bor̊uvka” algorithm [20] for finding a minimum-weight
spanning tree. The global algorithm works iteratively, coarsening the partition
in each iteration. Initially each vertex is in its own part of the partition, and in
each iteration some subsets of parts are merged into larger (connected) parts.
The decisions regarding these merges are based on the numbers of edges between
parts, as well as on certain random choices. Applying the analysis in [18] it is
possible to show that with high constant probability, after O(log(1/ε)) iterations,
the number of edges between parts is at most ε|V |, as required. Since the sizes of
the parts obtained after the last merging step may be much larger than desired,
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as a final step it is possible to refine the partition without increasing the number
of edges crossing between parts by too much by applying an algorithm of Alon
Seymour and Thomas [1].

When turning to the local emulation of the global algorithm by the partition
oracle, the query complexity and running time of the partition oracle depend
on the sizes of the parts in the intermediate stages of the algorithm. These
sizes are bounded as a function of 1/ε and d, but can still be quite large. As
an end-result, the partition oracle described in [18] has complexity that grows
exponentially with poly(1/ε). To reduce this complexity, we modify the global
partition algorithm as follows: If (following a merging stage) the size of a part
goes above a certain threshold, we ‘break’ it into smaller parts. To this end
we apply to each large part (in each iteration) the abovementioned algorithm of
Alon Seymour and Thomas [1]. This algorithm finds (in graphs with an excluded
minor) a relatively small vertex separator whose removal creates small connected
components. Each such refinement of the partition increases the number of edges
crossing between parts. However, we set the parameters for the algorithm in [1]
so that the decrease in the number of edges between parts due to the merging
steps dominates the increase due to the ‘breaking’ steps. One could have hoped
that since the sizes of the parts are now always bounded by some polynomial
in 1/ε (and d), the complexity of the partition oracle will by poly(d/ε) as well.
However, this is not the case, since in order to determine the part that a vertex,
v, belongs to after a certain iteration, it is necessary to determine the parts that
other vertices in the local neighborhood of v belong to in previous iterations.
This leads to a recursion formula whose solution is quasi-polynomial in 1/ε.

1.2 Other Related Work

Yoshida and Ito [23] were the first to provide a testing algorithm for a minor-
closed property whose complexity is polynomial in 1/ε and d. They give a testing
algorithm for the property of being outerplanar. Their result was generalized by
Edelman et al. [7] who design a partition oracle with complexity poly(d/ε) for
the class of bounded treewidth graphs. Known families of graphs with bounded
treewidth include cactus graphs, outerplanar graphs and series-parallel graphs.
However, many graphs with an excluded minor do not have bounded treewidth.
For example, planar graphs are known to have treewidth of Ω(

√
n).

Building on the partition oracle of [11], Newman and Sohler [17] design an
algorithm for testing any property of graphs under the promise that the input
graph is taken from C, for any C that is a ρ-hyperfinite family of graphs. The
number of queries their algorithm makes to the graph is independent of |V | but
is at least exponential in 1/ε. In a recent work, Onak [19] proves that there exists
a property such that testing this property requires performing 2Ω(1/ε) queries
even under the promise that the input graph is taken from a hyperfinite family
of graphs. This family of graphs T consists of graphs that are unions of bounded
degree trees. Onak [19] defines a subclass of T and shows that every algorithm
for testing the property of membership in this subclass must perform 2Ω(1/ε)

queries to the graph.



A Quasi-Polynomial Time Partition Oracle for Graphs 713

Czumaj, Shapira, and Sohler [5] investigated another promise problem. They
proved that any hereditary property, namely a property that is closed under
vertex removal, can be tested in time independent of the input size if the input
graph belongs to a hereditary and non-expanding family of graphs.

As for approximation under a promise, Elek [9] proved that under the promise
that the input graph, G = (V,E), has sub-exponential growth and bounded
degree, the size of the minimum vertex cover, the minimum dominating set
and the maximum independent set, can be approximated up to an ε|V |-additive
error with time complexity that is independent of the graph size. Newman and
Sohler [17] showed how to obtain an ε|V |-additive approximation for a large class
of graph parameters.

2 Preliminaries

In this section we introduce several definitions and some known results that will
be used in the following sections. Unless stated explicitly otherwise, we consider
simple graphs, that is, with no self-loops and no parallel edges. The graphs we
consider have a known degree bound d, and we assume we have query access to
their incidence-lists representation. Namely, for any vertex v and index 1 ≤ i ≤ d
it is possible to obtain the ith neighbor of v (where if v has less than i neighbors,
then a special symbol is returned). If the graph is edge-weighted, then the weight
of the edge is returned as well.

For a graph G = (V,E) and two sets of vertices V1, V2 ⊆ V , we let E(V1, V2)
denote the set of edges in G with one endpoint in V1 and one endpoint in V2.

That is E(V1, V2)
def
= {(v1, v2) ∈ E : v1 ∈ V1, v2 ∈ V2}.

Definition 1 Let G = (V,E,w) be an edge-weighted graph and let P =
(V1, . . . , Vt) be a partition of the vertices of G such that for every 1 ≤ i ≤ t,
the subgraph induced by Vi is connected. Define the contraction G/P of G with
respect to the partition P to be the edge-weighted graph G′ = (V ′, E′, w′) where:

1. V ′ = {V1, . . . , Vt} (that is, there is a vertex in V ′ for each subset of the
partition P);

2. (Vi, Vj) ∈ E′ if and only if i �= j and E(Vi, Vj) �= ∅;
3. w′((Vi, Vj)) =

∑
(u,v)∈E(Vi,Vj)

w((u, v)).

As a special case of Definition 1 we get the standard notion of a single-edge
contraction.

Definition 2 Let G = (V,E,w) be an edge-weighted graph on n vertices
v1, . . . , vn, and let (vi, vj) be an edge of G. The graph obtained from G by con-
tracting the edge (vi, vj) is G/P where P is the partition of V into {vi, vj} and
singletons {vk} for every k �= i, j.

Definition 3 For ε ∈ (0, 1], k ≥ 1 and a graph G = (V,E), we say that a
partition P = (V1, . . . , Vt) of V is an (ε, k)-partition (with respect to G), if the
following conditions hold:
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1. For every 1 ≤ i ≤ t it holds that |Vi| ≤ k;
2. For every 1 ≤ i ≤ t the subgraph induced by Vi in G is connected;
3. The total number of edges whose endpoints are in different parts of the parti-

tion is at most ε|V | (that is, |{(vi, vj) ∈ E : vi ∈ Vj , vj ∈ Vj , i �= j}| ≤ ε|V |).

Let G = (V,E) be a graph and let P be a partition of V . We denote by gP the
function from v ∈ V to 2V (the set of all subsets of V ), that on input v ∈ V ,
returns the subset V� ∈ P such that v ∈ V�.

Definition 4 ([11]) An oracle O is a partition oracle if, given query access to
the incidence-lists representation of a graph G = (V,E), the oracle O provides
query access to a partition P = (V1, . . . , Vt) of V , where P is determined by G
and the internal randomness of the oracle. Namely, on input v ∈ V , the oracle
returns gP(v) and for any sequence of queries, O answers consistently with the
same P. An oracle O is an (ε, k)-partition oracle with respect to a class of graphs
C if the partition P it answers according to has the following properties.

1. For every V� ∈ P , |V�| ≤ k and the subgraph induced by V� in G is connected.
2. If G belongs to C, then |{(u, v) ∈ E : gP(v) �= gP(u)}| ≤ ε|V | with high

constant probability, where the probability is taken over the internal coin
flips of O.

By the above definition, if G ∈ C, then with high constant probability the par-
tition P is an (ε, k)-partition, while if G /∈ C then it is only required that each
part of the partition is connected and has size at most k. We are interested in
partition oracles that have small query complexity, namely, that perform few
queries to the graph (for each vertex they are queried on).

Recall that a graph H is called a minor of a graph G if H is isomorphic to a
graph that can be obtained by zero or more edge contractions on a subgraph of
G. A graph G is H-minor free if H is not a minor of G. Mader [15] proved that a
sufficiently large average degree guarantees a Kt-minor. With combination with
the theorem of Nash-Williams’ [16] the follwing is obtained.

Fact 1 Let H be a fixed graph. There is a constant c1(|H |), such that in every
H-minor free graph, G = (V,E), it holds that |E| ≤ c1(|H |) · |V | and that E can
be partitioned into at most c1(H) forests.

The following corollary will play a central role in this work. It follows from [1,
Proposition 4.1] (see proof in the full version of this paper [14]):

Corollary 1 Let H be a fixed graph. There is a constant c2(H) > 1 such that
for every γ ∈ (0, 1], every H-minor free graph G = (V,E) with degree bounded
by d is (γ, c2(H)d2/γ2)-hyperfinite. Furthermore, a (γ, c2(H)d2/γ2) partition of
V can be found in time O(|V |3/2).

3 A Global Partitioning Algorithm

Our partition oracle is local, in the sense that its output is determined by the
local neighborhood of the vertex it is queried on. However, as in previous work,
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the oracle is based on a global partitioning algorithm, which accesses the whole
graph, and the oracle emulates this algorithm locally. In this section we describe
this global partition algorithm. As noted in the introduction, our algorithm and
its analysis are based on [18] (which in turn builds on a clustering method of
Czygrinow, Hańćkowiak, and Wawrzyniak [6], and is also similar to the “Binary
Bor̊uvka” algorithm [20] for finding a minimum-weight spanning tree).

The algorithm proceeds in iterations, where in iteration i it considers a graph
Gi−1, where Gi−1 is edge-weighted. The vertices of Gi−1 correspond to (disjoint)
subsets of vertices that induce connected subgraphs in G, and the weight of an
edge between two vertices in Gi−1 is the number of edges in G between the two
corresponding subsets of vertices. Initially, the underlying graph G0 is G and
all edges have weight 1. In each iteration the algorithm contracts a subset of
the edges so that each vertex in Gi corresponds to a subset that is the union
of subsets of vertices that correspond to vertices in Gi−1. When the algorithm
terminates it outputs the partition into subsets that correspond to the vertices
of the final graph.

Each iteration of the algorithm consists of two phases. In the first phase of
iteration i, a subset of the edges of Gi−1 are contracted, resulting in a graph G̃i.
In the second phase, some of the subsets that correspond to vertices in G̃i remain
as is, and some are ‘broken’ into smaller subsets. The vertices of Gi correspond
to these subsets (both ‘broken’ and ‘unbroken’). Observe that if the graph G is

H-minor free for some fixed graph H , then every Gi and G̃i are H-minor free
as well.

In the first phase of iteration i, the contracted edges are selected randomly
as follows. Each vertex in Gi−1 selects an incident edge with maximum weight
and tosses a fair coin to be ‘Heads’ or ‘Tails’. Each selected edge is contracted
if and only if it is selected by a ‘Heads’ vertex and its other endpoint is a ‘Tails’
vertex. This way, in each iteration, the contracted edges form stars (depth-1

trees). Therefore, a vertex in the graph G̃i that results from the contraction
of edges in Gi−1 as described above, corresponds to a subset of vertices in V
that induces a connected subgraph in G, and G̃i = G/P̃ i (recall Definition 1)

where P̃ i is this partition into subsets. Since each vertex in each G̃i corresponds
to a connected subgraph in G, we shall refer to the vertices of G̃i as connected
components (to be precise, they are connected components in the graph resulting

from removing all edges in G the correspond to (weighted) edges in G̃i). In each
iteration, following the contraction of edges, if the size of a component goes
above a certain threshold, k = poly(d/ε), then the component is ‘broken’ into
smaller connected components, each of size at most k. This is done using the
algorithm referred to in Corollary 1, and Gi is the (edge-weighted) graph whose
vertices correspond to the new components.

Theorem 2 Let H be a fixed graph. If the input graph G is H-minor free and
has degree bounded by d, then for any given ε ∈ (0, 1], Algorithm 3 outputs an
(ε, O(d2/ε2))-partition of G with high constant probability.
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Algorithm 1. A global (ε, c2(H)d2/ε2)-partition algorithm for an H-minor free
graph G = (V,E)

1. Set G0 := G
2. For i = 1 to � = Θ(log 1/ε):

(a) Toss a fair coin for every vertex in Gi−1.
(b) For each vertex u let (u, v) be an edge with maximum weight that is incident

to u (where ties are broken arbitrarily). If u’s coin toss is ‘Heads’ and v’s coin
toss is ‘Tails’, then contract (u, v).

(c) Let G̃i = (Ṽ i, Ẽi, w̃i) denote the graph resulting from the contraction of the

edges as determined in the previous step. Hence, each vertex ṽij ∈ Ṽ i corre-

sponds to a subset of vertices in G, which we denote by C̃i
j .

(d) Let γ = ε/(3�). For each C̃i
j such that |C̃i

j | > c2(H)/γ2, partition the vertices

in C̃i
j into connected subsets of size at most k = c2(H)d2/γ2 each by running

the algorithm referred to in Corollary 1 on the subgraph induced by C̃i
j in G.

(e) Set Gi := G/Pi, where Pi is the partition resulting from the previous step.
3. For each subset C�

j in P� such that |C�
j | > c2(H)d2/ε2, partition the vertices in C�

j

into connected subsets each of size at most 3c2(H)d2/ε2 by running the algorithm
referred to in Corollary 1, and output the resulting partition.

Proof: We first claim that in each iteration, after Step 2b, the total weight of

the edges in the graph is decreased by a factor of
(

1− 1
8c1(H)

)
with probability

at least 1
8c1(H)−1 , where the probability is taken over the coin tosses of the

algorithm. Fixing an iteration i, by Fact 1 we know that the edges of Gi−1 can
be partitioned into at most c1(H) forests. It follows that one of these forests

contains edges with total weight at least w(Gi−1)
c1(H) where w(Gi−1) denotes the

total weight of the edges in Gi−1. Suppose we orient the edges of the forest from
roots to leaves, so that each vertex in the forest has in-degree at most 1. Recall
that for each vertex v, the edge selected by v in Step 2b is the heaviest among its
incident edges. It follows that the expected total weight of edges contracted in

Step 2b is at least w(Gi−1)
c1(H) (recall that an edge (v, u) selected by v is contracted

if the coin flip of v is ‘Heads’ and that of u is ‘Tails’, an event that occurs
with probability 1/4). Thus, the expected total weight of edges that are not

contracted is at most w(Gi−1)− w(Gi−1)
4c1(H) =

(
1− 1

4c1(H)

)
w(Gi−1). By Markov’s

inequality the probability that the total weight of edges that are not contracted

is at least
(

1− 1
8c1(H)

)
w(Gi−1) is at most 1− 1

8c1(H)−1 . We say that an iteration

i is successful if w(G̃i) ≤
(

1− 1
8c1(H)

)
w(Gi−1). Using martingale analysis it can

be shown that with probability at least 9/10, the number of successful iterations
is at least �

16c1(H)−2 (the full analysis appears in [14]).

Our second claim is that for every i, after Step 2d, it holds that w(Gi) ≤
w(G̃i) + εn

3� (where n = |V |). This follows from Corollary 1: For each component

C̃i
j that we break, we increase the total weight of edges between components by
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an additive term of at most γ|C̃i
j | =

ε|C̃i
j|

3� . Thus, after Step 2d of the 	th iteration,

with probability at least 9/10, the weight of the edges in G� is upper bounded by
2εn/3. Since we add at most εn/3 weight in Step 3 (when breaking the subsets
corresponding to vertices in G� into subsets of size at most 3c2(H)d2/ε2), we
obtain the desired result.

4 The Partition Oracle

In this section we describe how, given query access to the incidence-lists repre-
sentation of a graph G = (V,E) and a vertex v ∈ V , it is possible to emulate
Algorithm 3 locally and determine the part that v belongs to in the partition P
that the algorithm outputs. Namely, we prove the following theorem.

Theorem 3 For any fixed graph H there exists an (ε, O(d2/ε2))-partition-oracle
for H-minor free graphs that makes (d/ε)O(log(1/ε)) queries to the graph for each
query to the oracle. The total time complexity of a sequence of q queries to the
oracle is q log q · (d/ε)O(log(1/ε)).

Proof: Recall that the partition P is determined randomly based on the
‘Heads’/‘Tails’ coin-flips of the vertices in each iteration. Since we want the
oracle to be efficient, the oracle will flip coins “on the fly” as required for de-
termining gP(v). Since the oracle has to be consistent with the same P for any
sequence of queries it gets, it will keep in its memory all the outcomes of the coin
flips it has made. For the sake of simplicity, whenever an outcome of a coin is
required, we shall say that a coin is flipped, without explicitly stating that first
the oracle checks whether the outcome of this coin flip has already been deter-
mined. We shall also explain subsequently how to break ties (deterministically)
in the choice of a heaviest incident edge in each iteration of the algorithm.

Recall that the algorithm constructs a sequence of graphs G0 = G, G̃1, G1,
. . . , G̃�, G�, and that for each 0 ≤ i ≤ 	, the vertices in Gi correspond to con-
nected subgraphs of G (which we refer to as components). For a vertex v ∈ V let

Ci(v) denote the vertex/component that v it belongs to in Gi, and define C̃i(v)

analogously with respect to G̃i. Indeed, we shall refer to vertices in Gi (G̃i) and
to the components that correspond to them, interchangeably. When the algo-
rithm flips a coin for a vertex C in Gi, we may think of the coin flip as being
associated with the vertex having the largest id (according to some arbitrary
ordering) in the corresponding component in G. When the algorithm selects a
heaviest edge incident to C and there are several edges (C,C1), . . . , (C,Cr) with
the same maximum weight, it breaks ties by selecting the edge (C,Cj) for which
Cj contains the vertex with the largest id (according to the same abovementioned
arbitrary ordering). We can then refer to (C,Cj) as the heaviest edge incident
to C. In particular, since in G0 all edges have the same weight, the heaviest edge
incident to a vertex u in G0 is the edge (u, y) for which y is maximized.

Let Qi(v) denote the number of queries to G that are performed in order to
determine Ci(v), and let Qi denote an upper bound on Qi(v) that holds for
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any vertex v. We first observe that Q1 ≤ d2. In order to determine C1(v), the
oracle first flips a coin for v. If the outcome is ‘Tails’ then the oracle queries
the neighbors of v. For each neighbor u of v it determines whether (u, v) is the
heaviest edge incident to u (by querying all of u’s neighbors). If so, it flips a
coin for u, and if the outcome is ‘Heads’, then the edge is contracted (implying

that u ∈ C̃1(v)). If v is a ‘Heads’ vertex, then it finds its heaviest incident edge,
(v, u) by querying all of v’s neighbors. If u is a ‘Tails’ vertex (so that (v, u) is
contracted), then the oracle queries all of u neighbors, and for each neighbor it
queries all of its neighbors. By doing so (and flipping all necessary coins) it can
determine which additional edges (u, y) incident to u are contracted (implying

for each that y ∈ C̃1(v) = C̃1(u)). In both cases (of the outcome of v’s coin flip),
the number of queries performed to G is at most d2. Recall that a component
as constructed above is ‘broken’ if it contains more than k = Õ(d2/ε2) vertices.

Since |C̃1(v)| ≤ d + 1 for every v, we have that C1(v) = C̃1(v).
For general i > 1, to determine the connected component that a vertex v be-

longs to after iteration i, we do the following. First we determine the component
it belongs to after iteration i − 1, namely Ci−1(v), at a cost of at most Qi−1

queries. Note that by the definition of the algorithm, |Ci−1(v)| ≤ k. We now
have two cases:
Case 1: Ci−1(v) is a ‘Tails’ vertex for iteration i. In this case we query all edges
incident to vertices in Ci−1(v), which amounts to at most d · k edges. For each
endpoint u of such an edge we find Ci−1(u). For each Ci−1(u) that is ‘Heads’ we
determine whether its heaviest incident edge connects to Ci−1(v) and if so the

edge is contracted (so that Ci−1(u) ⊂ C̃i(v)). To do so, we need, again, to query
all the edges incident to vertices in Ci−1(u), and for each endpoint y of such
an edge we need to find Ci−1(y). The weight of each edge (Ci−1(u), Ci−1(y)) is
|E(Ci−1(u), Ci−1(y))| (and since all edges incident to vertices in Ci−1(y) have
been queried, this weight is determined). The total number of vertices x for which
we need to find Ci−1(x) is upper bounded by d2k2, and this is also an upper
bound on the number of queries performed in order to determine the identity of
these vertices.
Case 2: Ci−1(v) is a ‘Heads’ vertex in iteration i. In this case we find its heaviest
incident edge in Gi−1, as previously described for Ci−1(u). Let C′ denote the
other endpoint in Gi−1. If C′ is a ‘Tails’ vertex then we apply the same procedure
to C′ as described in Case 1 for Ci−1(v) (that is, in the case that Ci−1(v) is a
‘Tails’ vertex in Gi−1). The bound on the number of queries performed is also

as in Case 1. In either of the two cases we might need to ‘break’ C̃i(v) (in case

|C̃i(v)| > k) so as to obtain Ci(v). However, this does not require performing

any additional queries to G since all edges between vertices in C̃i(v) are known,
and this step only contributes to the running time of the partition oracle. We
thus get the following recurrence relation for Qi: Qi = d2 ·k2+d2 ·k2 ·Qi−1. Since
k = poly(d/ε) we get that Q� ≤ (d · poly(d/ε))2� = (d/ε)O(log(1/ε)), as claimed.

Finally, we turn to the running time. Let T i(v) denote the running time
for determining Ci(v). By the same reasoning as above we have that T i ≤
O(d2 ·k2)·T i−1+B where B is an upper bound on the running time of breaking a
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connected component at each iteration. From Corollary 1 we obtain that B ≤ (d·
k2)3/2. Thus, the running time of the oracle is (d/ε)O(log(1/ε)) for a single query.
As explained above, for the sake of consistency, the oracle stores its previous
coin-flips. By using a balanced search tree to store the coin flips we obtain
that the total running time of the oracle for a sequence of q queries is q log q ·
(d/ε)O(log(1/ε)), as claimed.

5 Applications

In this section we state the improved complexity for the applications, of the
partition oracle, which are presented in [11]. We obtain an improvement either
in the query complexity or in the time complexity for all their applications
excluding the application of approximating the distance to hereditary properties
in which case the improvement we obtain is not asymptotic.

• Hassidim et al. [11] show that for any fixed graph H there is a testing algo-
rithm for the property of being H-minor free in the bounded-degree model
that performs O(1/ε2) queries to O, where O is an (εd/4, k)-partitioning or-
acle for the class of H-minor free graphs with degree bounded by d, and
has O(dk/ε + k3/ε6) time complexity. By using the partition oracle from
Theorem 3 we obtain that the query and time complexity of testing H-
minor freeness (in the bounded-degree model) is improved from dpoly(1/ε) to
(d/ε)O(log 1/ε).

• Let P be a minor-closed property. According to [21], P can be characterized as
a finite set of excluded minors. Let S denote this set. By taking the proximity
parameter to be ε/|S| and applying the testing algorithm for minor-freeness
on every minor in S we obtain that the query and time complexity of test-
ing a minor-closed property in the bounded degree model is improved from
2poly(|S|/ε) to (|S|/ε)O(log |S|/ε). In particular this implies a testing algorithm
for planarity with complexity (1/ε)O(log(1/ε)).

The next approximation algorithms work under the promise that the input graph
is a graph with an excluded minor (of constant size). Under this promise we ob-
tain the following improvements in the query complexity while the time complex-
ity remains unchanged (the former time complexity dominates the improvement
in the time complexity of the partition oracle):

• Hassidim et al. [11] provide a constant time ε|V |-additive-approximation al-
gorithm for minimum vertex cover size, maximum independent set size, and
the minimum dominating set size for any family of graphs with an efficient
partition oracle. The algorithms makes O(1/ε2) queries to the partition ora-
cle. By using the partition oracle from Theorem 3, the query complexity of
the approximation algorithms is improved from dpoly(1/ε) to (d/ε)O(log 1/ε)

• By Lemma 11 in [11], for any finite set of connected graphs H, there is an
ε-additive-approximation algorithm for the distance to the property of not
having any graph in H as an induced subgraph, which makes O(1/ε2) queries
to the partition oracle. Hence, the query complexity of the algorithm is im-
proved from dpoly(1/ε) to (d/ε)O(log 1/ε).
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Abstract. We consider connectivity-augmentation problems in a set-
ting where each potential new edge has a nonnegative cost associated
with it, and the task is to achieve a certain connectivity target with
at most p new edges of minimum total cost. The main result is that
the minimum cost augmentation of edge-connectivity from k − 1 to k
with at most p new edges is fixed-parameter tractable parameterized by
p and admits a polynomial kernel. We also prove the fixed-parameter
tractability of increasing edge-connectivity from 0 to 2, and increasing
node-connectivity from 1 to 2.

1 Introduction

Designing networks satisfying certain connectivity requirements has been a rich
source of computational problems since the earliest days of algorithmic graph
theory: for example, the original motivation of Bor̊uvka’s work on finding min-
imum cost spanning trees was designing efficient electricity network in Moravia
[22]. In many applications, we have stronger requirements than simply achieving
connectivity: one may want to have connections between (certain pairs of) nodes
even after a certain number of node or link failures. Survivable network design
problems deal with such more general requirements.

In the simplest scenario, the task is to achieve k-edge-connectivity or k-node-
connectivity by adding the minimum number of new edges to a given directed or
undirected graph G. This setting already leads to a surprisingly complex theory
and, somewhat unexpectedly, there are exact polynomial-time algorithms for
many of these questions. For example, there is a polynomial-time algorithm for
achieving k-edge-connectivity in an undirected graph by adding the minimum
number of edges (Watanabe and Nakamura [24], see also Frank [7]). For k-
node-connectivity, a polynomial-time algorithm is known only for the special
case when the graph is already (k − 1)-node-connected; the general case is still
open [23]. We refer the reader to the recent book by Frank [8] on more results
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of similar flavour. One can observe that increasing connectivity by one already
poses significant challenges and in general the node-connectivity versions of these
problems seem to be more difficult than their edge-connectivity counterparts.

For most applications, minimizing the number of new edges is a very simplified
objective: for example, it might not be possible to realize direct connections
between nodes that are very far from each other. A slightly more realistic setting
is to assume that the input specifies a list of potential new edges (“links”) and
the task is to achieve the required connectivity by using the minimum number
of links from this list. Unfortunately, almost all problems of this form turn out
to be NP-hard: deciding if the empty graph on n nodes can be augmented to
be 2-edge-connected with n new edges from a given list is equivalent to finding
a Hamiltonian cycle (similar simple arguments can show the NP-hardness of
augmenting to k-edge-connectivity also for larger k). Even though these problems
are already hard, this setting is still unrealistic: it is difficult to imagine any
application where all the potential new links have the same cost. Therefore,
one typically tries to solve a minimum cost version of the problem, where for
every pair u, v of nodes, a (finite or infinite) cost c(u, v) of connecting u and v
is given. When the goal is to achieve k-edge connectivity, we call this problem
Minimum Cost Edge-Connectivity Augmentation to k (see Section 2 for a more
formal definition). In the special case when the input graph is assumed to be
(k − 1)-edge-connected (as in e.g. [16,13,18,23]), we call the problem Minimum
Cost Edge-Connectivity Augmentation by One. Alternatively, one can think of
this problem with the edge-connectivity target being the minimum cut value
of the input graph plus one. The same terminology will be used for the node-
connectivity versions and the minimum cardinality variants (where every cost is
either 1 or infinite).

Due to the hardness of the more general minimum cost problems, research over
the last two decades has focused mostly on the approximability of the problem.
This field is also known as survivable network design, e.g. [1,11,15,3,17,2]; for a
survey, see [18]. In this paper, we approach these problems from the viewpoint
of parameterized complexity. We say that a problem with parameter p is fixed-
parameter tractable (FPT) if it can be solved in time f(p) · nO(1), where f(p)
is an arbitrary computable function depending only on p and n is the size of
the input [5,6]. The tool box of fixed-parameter tractability includes many tech-
niques such as bounded search trees, color coding, bidimensionality, etc. The
method that received most attention in recent years is the technique of kernel-
ization [19,20]. A polynomial kernelization is a polynomial-time algorithm that
produces an equivalent instance of size pO(1), i.e., polynomial in the parameter,
but not depending on the size of the instance. Clearly, polynomial kernelization
implies fixed-parameter tractability, as kernelization in time nO(1) followed by
any brute force algorithm on the pO(1)-size kernel yields a f(p) · nO(1) time al-
gorithm. The conceptual message of polynomial kernelization is that the hard
problem can be solved by first applying a preprocessing to extract a “hard core”
and then solving this small hard instance by whatever method available. An in-
teresting example of fixed-parameter tractability in the context of connectivity
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augmentation is the result by Jackson and Jordán [14], showing that for the
problem of making a graph k-node-connected by adding a minimum number of
arbitrary new edges admits a 2O(k) ·nO(1) time algorithm (it is still open whether
there is a polynomial-time algorithm for this problem).

As observed above, if the link between arbitrary pair of nodes is not always
available (or if they have different costs for different pairs), then the problem
for augmenting a (k − 1)-edge-connected graph to a k-edge-connected one is
NP-hard for any fixed k ≥ 2. Thus for these problems we cannot expect fixed-
parameter tractability when parameterizing by k. In this paper, we consider
a different parameterization: we assume that the input contains an integer p,
which is a upper bound on the number of new edges that can be added. Assum-
ing that the number p of new links is much smaller than the size of the graph,
exponential dependence on p is still acceptable, as long as the running time de-
pends only polynomially on the size of the graph. It follows from Nagamochi [21,
Lemma 7] that Minimum Cardinality Edge-Connectivity Augmentation from 1
to 2 is fixed-parameter tractable parameterized by this upper bound p. Guo and
Uhlmann [12] showed that this problem, as well as its node-connectivity counter-
part, admits a kernel of O(p2) nodes and O(p2) links. Neither of these algorithms
seem to work for the more general minimum cost version of the problem, as the
algorithms rely on discarding links that can be replaced by more useful ones.
Arguments of this form cannot be generalized to the case when the links have
different costs, as the more useful links can have higher costs. Our results go
beyond the results of [21,12] by considering higher order edge-connectivity and
by allowing arbitrary costs on the links.

We present a kernelization algorithm for the problem Minimum Cost Edge-
Connectivity Augmentation by One for arbitrary k. The algorithm starts by
doing the opposite of the obvious: instead of decreasing the size of the instance
by discarding provably unnecessary links, we add new links to ensure that the
instance has a certain closure property; we call instances satisfying this property
metric instances. We argue that these changes do not affect the value of the
optimum solution. The natural machinery for this approach is to work with a
more general problem. Besides the costs, every link is equipped with a positive
integer weight. Our task is to find a minimum cost set of links of total weight at
most p whose addition makes the graph k-edge-connected. Our main result ad-
dresses the corresponding problem, Weighted Minimum Cost Edge-Connectivity
Augmentation.

Theorem 1.1. Weighted Minimum Cost Edge-Connectivity Augmentation by
One admits a kernel of O(p) nodes, O(p) edges, O(p3) links, with all costs inte-
gers of O(p6 log p) bits.

The original problem is the special case when all links have weight one. Strictly
speaking, Theorem 1.1 does not give a kernel for the original problem, as the
kernel may contain links of higher weight even if all links in the input had weight
one. Our next theorem, which can be derived from the previous one, shows that
we may obtain a kernel that is an unweighted instance. However, there is a
trade-off in the bound on the kernel size.
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Theorem 1.2. Minimum Cost Edge-Connectivity Augmentation by One admits
a kernel of O(p4) nodes, O(p4) edges and O(p4) links, with all costs integers of
O(p8 log p) bits.

Let us now outline the main ideas of the proof of Theorem 1.1. We first show that
every input can be efficiently reduced to a metric instance, one with the closure
property. We first describe our algorithm in the special case of increasing edge-
connectivity from 1 to 2, where connectivity augmentation can be interpreted
as covering a tree by paths. The closure property of the instance allows us to
prove that there is an optimum solution where every new link is incident only
to “corner nodes” (leaves and branch nodes). Either the problem is infeasible,
or we can bound the number of corner nodes by O(p). Hence we can also bound
the number of potential links in the resulting small instance.

Augmenting edge connectivity from 2 to 3 is similar to augmenting from 1 to
2, but this time the graph we need to work on is no longer a tree, but a cactus
graph. Thus the arguments are slightly more complicated, but generally go along
the same lines. Finally, in the general case of increasing edge-connectivity from
k − 1 to k, we use the uncrossing properties of minimum cuts and a classical
result of Dinits, Karzanov, and Lomonosov [4] to show that we can assume that
(depending on the parity of k) the problem can be always reduced to the case
k = 2 or k = 3.

In kernels for the weighted problem, a further technical issue has to be over-
come: each finite cost in the produced instance has to be a rational number
represented by pO(1) bits. As we have no assumption on the sizes of the num-
bers appearing in the input, this is a nontrivial requirement. It turns out that
a technique of Frank and Tardos [10] (used earlier in the design of strongly
polynomial-time algorithms) can be straightforwardly applied here: the costs
in the input can be preprocessed in a way that the each number is an inte-
ger of O(p6 log p) bits long and the relative costs of the feasible solutions do
not change. We believe that this observation is of independent interest, as this
technique seems to be an essential tool for kernelization of problems involving
costs.

To prove Theorem 1.2 (see the full version), we first obtain a kernel by applying
our weighted result to our unweighted instance; this kernel will however contain
links of weight higher than one. Still, every link f in the (weighted) kernel can
be replaced by a sequence of w(f) original unweighted edges. This replaces the
O(p2) links by O(p4) original ones.

We try to extend our results in two directions. The results described next are
proved only in the full version of the paper. First, we show that in the case of
increasing connectivity from 1 to 2, the node-connectivity version can be directly
reduced to the edge-connectivity version.

Theorem 1.3. Weighted Minimum Cost Node-Connectivity Augmentation from
1 to 2 admits a a kernel of O(p) nodes, O(p) edges, O(p3) links, with all costs
integers of O(p6 log p) bits.
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For higher connectivities, we do not expect such a clean reduction to work.
Polynomial-time exact and approximation algorithms for node-connectivity are
typically much more involved than for edge-connectivity (compare e.g. [24] and
[7] to [9] and [23]), and it is reasonable to expect that the situation is similar in
the case of fixed-parameter tractability.

A natural goal for future work is trying to remove the assumption of Theo-
rems 1.1 and 1.2 that the input graph is (k−1)-connected. In the case of 2-edge-
connectivity, we show that the problem is fixed-parameter tractable even if the
input graph is not connected. However, the algorithm uses nontrivial branching
and it does not provide a polynomial kernel.

Theorem 1.4. Minimum Cost Edge-Connectivity Augmentation to 2 can be
solved in time 2O(p log p) · nO(1).

The additional branching arguments needed in Theorem 1.4 can show a glimpse
of the difficulties one can encounter when trying to solve the problem larger k,
especially with respect to kernelization. For augmentation by one, the following
notion of shadows was crucial to define the metric closure of the instances: f is
a shadow of link e if the weight of e is at most that of f , and e covers every
k-cut covered by f — in other words, link f can be automatically substituted by
link e. When the input graph is not assumed to be connected, we cannot extend
the shadow relation to links connecting different components, only in special,
restricted situations. Therefore, we cannot prove the existence of an optimal
solution with all links incident to corner nodes only. Instead, we prove that there
is an optimal solution such that all leaves are adjacent to either corner nodes or
certain other special nodes; this enables the branching in the FPT algorithm. A
further difficulty arises if we want to avoid using two copies of the same link.
This was automatically excluded for augmentation by one, whereas now further
efforts are needed to enforce this.

2 Preliminaries

For a set V , let
(
V
2

)
denote the edge set of the complete graph on V . Let n = |V |

denote the number of nodes. For a set X ⊆ V and F ⊆
(
V
2

)
, let dF (X) denote

the number of edges e = uv ∈ F with u ∈ X , v ∈ V \X . When we are given a
graph G = (V,E) and it is clear from the context, d(X) will denote dE(X). A set
∅ �= X � V will be called a cut, and minimum cut if d(X) takes the minimum
value. For a function z : V → R, and a set X ⊆ V , let z(X) =

∑
v∈X z(v)

(we use the same notation with functions on edges as well). For u, v ∈ V , a set
X ⊆ V is called an uv̄-set if u ∈ X , v ∈ V \X .

Let us be given an undirected graph G = (V,E) (possibly containing parallel
edges), a connectivity target k ∈ Z+, and a cost function c :

(
V
2

)
→ R+ ∪ {∞}.

For a given nonnegative integer p, our aim is to find a minimum cost set of edges
F ⊆

(
V
2

)
of cardinality at most p such that (V,E ∪ F ) is k-edge-connected.

We will work with a more general version of this problem. Let E∗ denote an
edge set on V , possibly containing parallel edges. We call the elements of E edges
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and all edges in E∗ links. Besides the cost function c : E∗ → R+ ∪ {∞}, we are
also given a positive integer weight function w : E∗ → Z+. We restrict the total
weight of the augmenting edge set to be at most p instead of its cardinality. Let
us define our main problem.

Weighted Minimum Cost Edge Connectivity Augmentation

Input: Graph G = (V,E), set of links E∗, integers k, p > 0, weight
function w : E∗ → Z+, cost function c : E∗ → R+ ∪ {∞}.

Find: minimum cost link set F ⊆ E∗ such that w(F ) ≤ p and
(V,E ∪ F ) is k-edge-connected.

A problem instance is thus given by (V,E,E∗, c, w, k, p). An F ⊆ E∗ for which
(V,E ∪F ) is k-edge-connected is called an augmenting link set. If all weights are
equal to one, we simply refer to the problem as Minimum Cost Edge Connectivity
Augmentation.

An edge between x, y ∈ V will be denoted as xy. For a link f , we use f = (x, y)
if it is a link between x and y; note that there might be several links between
the same nodes with different weights. We may ignore all links of weight > p.
If for a pair of nodes u, v ∈ V , there are two links e and f between u and v
such that c(e) ≤ c(f) and w(e) ≤ w(f), then we may also ignore the link f .
It is convenient to assume that for every value 1 ≤ t ≤ p and every two nodes
u, v ∈ V , there is exactly one link e between u and v with w(e) = t (if there is
no such link in the input E∗, we can add one of cost ∞). This e will be referred
to as the t-link between u and v. With this convention, we will assume that E∗

consists of exactly p copies of
(
V
2

)
: a t-link between any two nodes u, v ∈ V for

every 1 ≤ t ≤ p. However, in the input links of infinite cost should not be listed.
For a set S ⊆ V , by G/S we mean the contraction of S to a single node s.

That is, the node set of the contracted graph is (V −S)∪{s}, and every edge uv
with u /∈ S, v ∈ S is replaced by an edge us (possibly creating parallel edges);
edges inside S are removed. Note that S is not assumed to be connected. We also
contract the links to E∗/S accordingly. If multiple t-links are created between s
and another node, we keep only one with minimum cost.

We say that two nodes x and y are k-inseparable if there is no xȳ-set X with
d(X) < k. By Menger’s theorem, this is equivalent to the existence of k edge-
disjoint paths between x and y; this property can be tested in polynomial time
by a max flow-min cut computation. Let us say that the node set S ⊆ V is
k-inseparable if any two nodes x, y ∈ S are k-inseparable. It is easy to verify
that being k-inseparable is an equivalence relation. The maximal k-inseparable
sets hence give a partition of the node set V . The following proposition provides
us with a preprocessing step that can be used to simplify the instance:

Proposition 2.1. For a problem instance (V,E,E∗, c, w, k, p), let S ⊆ V be a k-
inseparable set of nodes. Let us consider the instance obtained by the contraction
of S. Assume F̄ ⊆ E∗/S is an optimal solution to the contracted problem. Then
the pre-image of F̄ in E∗ is an optimal solution to the original problem.
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Note that contracting a k-inseparable set S does not affect whether x, y �∈ S
are k-inseparable. Thus by Proposition 2.1, we can simplify the instance by con-
tracting each class of the partition given by the k-inseparable relation. Observe
that after such a contraction, there are no longer any k-inseparable pair of nodes.
Thus we may assume in our algorithms that every pair of nodes can be separated
by a cut of size smaller than k.

3 Augmenting Edge Connectivity by One

3.1 Metric Instances

The following notions will be used for augmenting edge-connectivity from 1 to
2 and from 2 to 3. We formulate them here in a generic way. Assume the input
graph is (k − 1)-edge-connected. Let D denote the set of all minimum cuts,
represented by the node sets. That is, X ∈ D if and only if d(X) = k − 1. Note
that, by the minimality of the cut, both X and V \X induce connected graphs
if X ∈ D. For a link e = (u, v) ∈ E∗, let us define D(e) ⊆ D as the subset of
minimum cuts covered by e. That is, X ∈ D is in D(e) if and only if X is an
uv̄-set or a vū-set. Clearly, augmenting edge-connectivity by one is equivalent to
covering all the minimum cuts of the graph.

Proposition 3.1. Assume (V,E) is (k− 1)-edge-connected. Then (V,E ∪F ) is
k-edge-connected if and only if ∪e∈FD(e) = D.

The following definition identifies the class of metric instances that plays a key
role in our algorithm.

Definition 3.2. We say that the link f is a shadow of link e, if w(f) ≥ w(e)
and D(f) ⊆ D(e). The instance (V,E,E∗, c, w, k, p) is metric, if

(i) c(f) ≤ c(e) holds whenever the link f is a shadow of link e.
(ii) Consider three links e = (u, v), f = (v, z) and h = (u, z) with w(h) ≥

w(e) + w(f). Then c(h) ≤ c(e) + c(f).

Whereas the input instance may not be metric, we can create its metric com-
pletion with the following simple subroutine. Let us call the inequalities in (i)
shadow inequalities and those in (ii) triangle inequalities. Let us define the rank
of the inequality c(f) ≤ c(e) to be w(f), and the rank of c(h) ≤ c(e)+ c(f) to be
w(h). By fixing the triangle inequality c(h) > c(e) + c(f), we mean decreasing
the value of c(h) to c(e) + c(f).

The subroutine Metric-Completion(c) consists of p iterations, one for each
t = 1, 2, . . . , p. In the t’th iteration, first all triangle inequalities of rank t are
taken in an arbitrary order, and the violated ones are fixed. That is, c(h) is
set to min{c(h), c(e) + c(f)}. Then for every t-link f , we decrease c(f) to the
min{c(e) : f is a shadow of e}. Note that we perform these steps one after the
other for every violated inequality: in each step, we decrease the cost of a single
link f only (this will be important in the analysis of the algorithm). The first part
of iteration 1 is void as there are no rank 1 triangle inequalities. The subroutine
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can be implemented in polynomial time: the number of triangle inequalities is
O(p3n3), and they can be efficiently listed; further, every link is the shadow of
O(pn2) other ones.

Lemma 3.3. Consider a problem instance (V,E,E∗, c, w, k, p) with the graph
(V,E) being (k − 1)-edge-connected. Metric-Completion(c) returns a metric
cost function c̄ with c̄(e) ≤ c(e) for every link e ∈ E∗. Moreover, if for a link
set F̄ ⊆ E∗, graph (V,E ∪ F̄ ) is k-edge-connected, then there exists an F ⊆ E∗

such that (V,E ∪ F ) is k-edge-connected, c(F ) ≤ c̄(F̄ ), and w(F ) ≤ w(F̄ ).
Consequently, an optimal solution for c̄ provides an optimal solution for c.

The proof (see full version) proceeds by showing that after iteration t, all rank
t inequalities are satisfied and they remain satisfied later on. The proof also
provides an efficient way for transforming an augmenting link set F̄ to another
F as in the lemma. For this, in every step of Metric-Completion(c) we have
to keep track of the inequalities responsible for cost reductions.

By Lemma 3.3, we may restrict our attention to metric instances. In what
follows, we show how to construct a kernel for metric instances for cases k = 2
and k = 3. (The case k = 2 could be easily reduced to k = 3, but we treat it
separately as it is somewhat simpler.) Section 3.4 then shows how the case of
general k can be reduced to either of these cases depending on the parity of k.

3.2 Augmentation from 1 to 2

In this section, we assume that the input graph (V,E) is connected. By Proposi-
tion 2.1, we may assume that it is a tree: after contracting all the 2-inseparable
sets, there are no two nodes with two edge-disjoint paths between them, imply-
ing that there is no cycle in the graph. The minimum cuts are given by the edges
of the tree, that is, D is in one-to-one correspondence with E.

Based on Lemma 3.3, it suffices to solve the problem assuming that the in-
stance (V,E,E∗, c, w, 2, p) is metric. The main observation is that in a metric
instance we only need to use links that connect certain special nodes, whose
number we can bound by a function of p.

Let us refer to the leaves and nodes of degree at least 3 as corner nodes; let
R ⊆ V denote their set. Every leaf in the tree (V,E) requires at least one incident
edge in F . If the number of leaves is greater than 2p, we may conclude that the
problem is infeasible. (Formally, in this case we may return the following kernel:
a single edge as the input graph with an empty link set.) If there are at most 2p
leaves, then |R| ≤ 4p− 2, due to the following simple fact.

Proposition 3.4. The number of nodes of degree at least 3 in a tree is at most
the number of leaves minus 2.

Based on the following theorem, we can obtain a kernel on at most 4p− 2 nodes
by contracting each path of degree-2 nodes to a single edge. The number of links
in the kernel will be O(p3).

Theorem 3.5. For a metric instance (V,E,E∗, c, w, 2, p), there exists an opti-
mal solution F such that every edge in F is only incident to corner nodes.
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The proof (see full version) analyses an optimal solution with the total number
of links minimal, and subject to this, the total length of the paths in the tree be-
tween the endpoints of the links minimal. Such an optimal solution may contain
no links incident to degree 2 nodes.

3.3 Augmentation from 2 to 3

In this section we assume that the input graph is 2-edge-connected but not 3-
edge-connected. Let us call a 2-edge-connected graph G = (V,E) a cactus, if
every edge belongs to exactly one circuit. This is equivalent to saying that every
block (maximal induced 2-node-connected subgraph) is a circuit (possibly of
length 2, using two parallel edges). Figure 1 gives an example of a cactus.

Fig. 1. A cactus graph. The shaded nodes are in the set T .

By Proposition 2.1, we may assume that every 3-inseparable set in G is a
singleton, that is, there are no two nodes in the graph connected by 3 edge-
disjoint paths.

Proposition 3.6. Assume that G = (V,E) is a 2-edge-connected graph such
that every 3-inseparable set is a singleton. Then G is a cactus.

In the rest of the section, we assume G = (V,E) is a cactus. The set of minimum
cuts D corresponds to arbitrary pairs of 2 edges on the same circuit.

Again by Lemma 3.3, we may restrict our attention to metric instances. Let us
call a circuit of length 2 a 2-circuit (that is, a set of two parallel edges between two
nodes). Let R1 denote the set of nodes of degree 2, or equivalently, the set of nodes
incident to exactly one circuit. Let R2 denote the set of nodes incident to at least
3 circuits, or at least two circuits not both 2-circuits. Let R = R1 ∪ R2 and let
T = V \ R denote the set of remaining nodes, that is, the set of nodes that are
incident to precisely two circuits, both 2-circuits (see Figure 1). The elements of R
will be again called corner nodes. We can give the following simple bound:

Proposition 3.7. |R2| ≤ 4|R1| − 8.

Observe that every node in R1 forms a singleton minimum cut. Hence if |R1| >
2p, we may conclude infeasibility. Otherwise, Proposition 3.7 gives |R| ≤ 10p−8.
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We prove the analogue of Theorem 3.5: we show that it is sufficient to consider
only links incident to R. It follows that we can obtain a kernel on at most 10p−8
nodes by replacing every path consisting of 2-circuits by a single 2-circuit. The
number of links in the kernel will be O(p3).

3.4 Augmenting Edge-Connectivity for Higher Values

In this section, we assume that the input graph G = (V,E) is already (k − 1)-
connected, where k is the connectivity target. We show that for even or odd k,
the problem can be reduced to the k = 2 or the k = 3 case, respectively.

Assume first k is even. We use the following simple structure theorem, which
is based on the observation that if the minimum cut value in a graph is odd,
then the family of minimum cuts is cross-free.

Theorem 3.8 ([8, Thm 7.1.2]). Assume the minimum cut value k − 1 in the
graph G = (V,E) is odd. Then there exists a tree H = (U,L) along with a map
ϕ : V → U such that the min-cuts of G and the edges of H are in one-to-one
correspondence: for every edge e ∈ L, the pre-images of the two components of
H − e are the sides of the corresponding min-cut, and every minimum cut can
be obtained this way.

For odd k, the following theorem shows that the minimum cuts can be repre-
sented by a cactus.

Theorem 3.9 (Dinits, Karzanov, Lomonosov [4], [8, Thm 7.1.8]). Con-
sider a loopless graph G = (V,E) with minimum cut value k − 1. Then there
exists a cactus H = (U,L) along with a map ϕ : V → U such that the min-cuts
of G and the edges of H are in one-to-one correspondence. That is, for every
minimum cut X ⊆ U of H, ϕ−1(X) is a minimum cut in G, and every minimum
cut in G can be obtained in this form.

Observe that if G does not contain k-inseparable pairs (e.g., it was obtained by
contracting all the maximal k-inseparable sets), then ϕ in Theorems 3.8 and 3.9
is one-to-one: ϕ(x) = ϕ(y) would mean that there is no minimum cut separating
x and y. Therefore, in this case Theorems 3.8 and 3.9 imply that we can replace
the graph with a tree or cactus graph H in a way that the minimum cuts are
preserved. Note that the value of the minimum cut does change: it becomes 1
(if H is a tree) or 2 (if H is a cactus), but X ⊆ V is a minimum cut in G if and
only if it is a minimum cut in H .

Lemma 3.10. Let G = (V,E) be a (k−1)-edge-connected graph containing no k-
inseparable pairs. Then in polynomial time, one can construct a graph H = (V, L)
on the same node set having exactly the same set of minimum cuts such that

1. if k is even, then H is a tree (hence the minimum cuts are of size 1);
2. if k is odd, then H is a cactus (hence the minimum cuts are of size 2);

Now we are ready to show that if G is (k − 1)-edge-connected, then a kernel
containing O(p) nodes, O(p) edges, and O(p3) links is possible for every k. First,
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we contract every maximal k-inseparable set; if multiple links are created be-
tween two nodes with the same weight, let us only keep one with minimum
cost. By Proposition 2.1, this does not change the problem. Then we can ap-
ply Lemma 3.10 to obtain an equivalent problem on graph H having a specific
structure. If k is even, then covering the (k − 1)-cuts of G is equivalent to cov-
ering the 1-cuts of the tree H , that is, augmenting the connectivity of G to k
is equivalent to augmenting the connectivity of H to 2. Therefore, we can use
the algorithm described in Section 3.2 to obtain a kernel. If k is odd, then cov-
ering the (k − 1)-cuts of G is equivalent to covering the 2-cuts of the cactus H ,
that is, augmenting the connectivity of G to k is equivalent to augmenting the
connectivity of H to 3. In this case, Section 3.3 gives a kernel.

3.5 Decreasing the Size of the Cost

We have shown that for arbitrary instance (V,E,E∗, c, w, k, p), if (V,E) is (k −
1)-edge-connected then there exists a kernel on O(p) nodes and O(p3) links.
However, the costs of the links in this kernel can be arbitrary rational numbers
(assuming the input contained rational entries).

We show that the technique of Frank and Tardos [10] is applicable to replace
the cost by integers whose size is polynomial in p and the instance remains
equivalent to the original one.

Theorem 3.11 ([10]). Let us be given a rational vector c = (c1, . . . , cn) and
an integer N . Then there exists an integral vector c̄ = (c̄1, . . . , c̄n) such that

||c̄||∞ ≤ 24n
3

Nn(n+2) and sign(c · b) = sign(c̄ · b), where b is an arbitrary integer
vector with ||b||1 ≤ N−1. Such a vector c̄ can be constructed in polynomial time.

In our setting, n = O(p3) is the length of the vector. What we need to guarantee
is that for c and c̄, c(F ) < c(F ′) if and only if c̄(F ) < c̄(F ′) for arbitrary two
sets of links F, F ′ with |F |, |F ′| ≤ p. Hence we need to guarantee the property
for vectors b with ||b||1 ≤ 2p, giving N = 2p+ 1. Therefore the theorem provides

a guarantee ||c̄||∞ ≤ 2O(p6)(2p + 1)O(p6), meaning that the entries of c̄ can be
described by O(p6 log p) bits. An optimal solution for the cost vector c̄ will be
optimal for the original cost c. This completes the proof of Theorem 1.1.
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22. Nesetril, J., Milková, E., Nesetrilová, H.: Otakar Boruvka on minimum spanning
tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics 233(1-3), 3–36 (2001)

23. Végh, L.A.: Augmenting undirected node-connectivity by one. SIAM Journal on
Discrete Mathematics 25(2), 695–718 (2011)

24. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. J. Com-
put. Syst. Sci. 35(1), 96–144 (1987)



Graph Reconstruction via Distance Oracles�

Claire Mathieu�� and Hang Zhou� � �

Département d’Informatique UMR CNRS 8548,
École Normale Supérieure, Paris, France

{cmathieu,hangzhou}@di.ens.fr

Abstract. We study the problem of reconstructing a hidden graph given
access to a distance oracle. We design randomized algorithms for the fol-
lowing problems: reconstruction of a degree bounded graph with query
complexity Õ(n3/2); reconstruction of a degree bounded outerplanar
graph with query complexity Õ(n); and near-optimal approximate re-
construction of a general graph.

1 Introduction

Decentralized networks (such as the Internet or sensor networks) raise algorith-
mic problems different from static, centrally planned networks. A challenge is
the lack of accurate maps for the topology of these networks, due to their dy-
namical structure and to the lack of centralized control. How can we achieve
an accurate picture of the topology with minimal overhead? This problem has
recently received attention (see e.g., [4,8,10,12]).

For Internet networks, the topology can be investigated at the router and au-
tonomous system (AS) level, where the set of routers (ASs) and their physical
connections (peering relations) are the vertices and edges of a graph, respectively.
Traditionally, inference of routing topology has relied on tools such as traceroute
and mtrace to generate path information. However, these tools require coopera-
tion of intermediate nodes or routers to generate messages. Increasingly, routers
block traceroute requests due to privacy and security concerns, so inference of
topology increasingly relies on delay information rather than on the route it-
self. At this level of generality, many problems are provably intractable [2], thus
suggesting the need to study related but simpler questions. In this paper, for
simplicity we assume that we have access to every vertex in the graph, and only
the edges are unknown.

The Problem. Consider the shortest path metric δ(·, ·) of a connected, un-
weighted graph G = (V,E), where |V | = n. In our computational model, we are

� Full version available at http://arxiv.org/abs/1304.6588
�� CNRS. Research supported in part by the French ANR Blanc program under

contract ANR-12-BS02-005 (RDAM project) and by the NSF medium AF grant
0964037.

� � � Research supported in part by the French ANR Blanc program under contract
ANR-12-BS02-005 (RDAM project).

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 733–744, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://arxiv.org/abs/1304.6588


734 C. Mathieu and H. Zhou

given the vertex set V , and we have access to δ via a query oracle Query(·, ·)
which, upon receiving a query (u, v) ∈ V 2, returns δ(u, v). The metric recon-
struction problem is to find the metric δ on V . The efficiency of a reconstruction
algorithm is measured by its query complexity, i.e., the number of queries to the
oracle. (We focus on query complexity, but our algorithms can also easily be
implemented in polynomial time and space).

Note that finding δ is equivalent to finding every edge in E, thus this problem
is also called the graph reconstruction problem.

Related Work. Reyzin and Srivastava [18] showed an Ω(n2) lower bound for the
graph reconstruction problem on general graphs. We extend their result to get
a lower bound for the graph approximate reconstruction problem.

To reconstruct graphs of bounded degree, we apply some algorithmic ideas
previously developed for compact routing [21] and ideas for Voronoi cells [15].

A closely related model in network discovery and verification provides queries
which, upon receiving a node q, returns the distances from q to all other nodes
in the graph [12], instead of the distance between a pair of nodes in our model.
The problem of minimizing the number of queries is NP-hard and admits an
O(log n)-approximation algorithm (see [12]). In another model, a query at a node
q returns all edges on all shortest paths from q to any other node [4]. Network
tomography also proposes statistical models [6,20].

Our Results. In Section 2, we consider the reconstruction problem on graphs
of bounded degree. We provide a randomized algorithm to reconstruct such a
graph with query complexity Õ(n3/2). Our algorithm selects a set of nodes (called
centers) of expected size Õ(

√
n), so that they separate the graph into Õ(

√
n)

slightly overlapped subgraphs, each of size O(
√
n). We show that the graph

reconstruction problem is reduced to reconstructing every subgraph, which can
be done in O(n) queries by exhaustive search inside this subgraph.

In Section 3, we consider outerplanar graphs of bounded degree. An outerpla-
nar graph is a graph which can be embedded in the plane with all vertices on
the exterior face. Chartrand and Harary [7] first introduced outerplanar graphs
and proved that a graph is outerplanar if and only if it contains no subgraph
homeomorphic from K4 or K2,3. Outerplanar graphs have received much atten-
tion in the literature because of their simplicity and numerous applications. In
this paper, we show how to reconstruct degree bounded outerplanar graphs with
expected query complexity Õ(n). The idea is to find the node x which appears
most often among all shortest paths (between every pair of nodes), and then
partition the graph into components with respect x. We will show that such
partition is β-balanced for some constant β < 1, i.e., each resulting component
is at most β fraction of the graph. Such partitioning allows us to reconstruct the
graph recursively with O(log n) levels of recursion. However, it takes too many
queries to compute all shortest paths in order to get x. Instead, we consider an
approximate version of x by computing a sampling of shortest paths to get the
node which is most often visited among all sampling shortest paths. We will show
that the node obtained in this way is able to provide a β-balanced partition with
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high probability. Our algorithm for outerplanar graphs gives an O(Δ · n log3 n)
bound which, for a tree (a special case of an outerplanar graph), is only slightly
worse than the optimal algorithm for trees with query complexity O(Δ · n logn)
(see [14]). On the other hand, the tree model typically restricts queries to pairs
of tree leaves, but we allow queries of any pair of vertices, not just leaves.

In Section 4, we consider an approximate version of the metric reconstruction
problem for general graphs. The metric δ̂ is an f -approximation of the metric δ
if for every pair of nodes (u, v), δ̂(u, v) ≤ δ(u, v) ≤ f · δ̂(u, v), where f is any sub-
linear function of n. We give a simple algorithm to compute an f -approximation
of the metric with expected query complexity O(n2(logn)/f). We show that our
algorithm is near-optimal by providing an Ω(n2/f) query lower bound.

An open question is whether the Õ(n3/2) bound in Theorem 1 is tight.

Other Models. The problem of reconstructing an unknown graph by queries
that reveal partial information has been studied extensively in many different
contexts, independently stemming from a number of applications.

In evolutionary biology, the goal is to reconstruct evolutionary trees, thus
the hidden graph has a tree structure. One may query a pair of species and
get in return the distance between them in the (unknown) tree [22]. See for
example [14,16,19]. In this paper, we assume that our graph is not necessarily a
tree, but may have an arbitrary connected topology.

Another graph reconstruction problem is motivated by DNA shotgun sequenc-
ing and linkage discovery problem of artificial intelligence [5]. In this model we
have access to an oracle which receives a subset of vertices and returns the num-
ber of edges whose endpoints are both in this subset. This model has been much
studied (e.g., [3,9,13,18]) and an optimal algorithm has been found in [17]. Our
model is different since there is no counting.

Geometric reconstruction deals with, for example, reconstructing a curve from
a sampling of points [1,11] or reconstructing a road network from a given collec-
tion of path traces [8]. In contrast, our problem contains no geometry, so results
are incomparable.

2 Degree Bounded Graphs

Theorem 1. Assume that the graph G has bounded degree Δ. Then we have
a randomized algorithm for the metric reconstruction problem, with query com-
plexity O(Δ4 · n3/2 · log2 n · log logn), which is Õ(n3/2) when Δ is constant.

Our reconstruction proceeds in two phases.
In the first phase, we follow the notation from Thorup and Zwick [21]: Let A ⊂

V be a subset of vertices called centers. For v ∈ V , let δ(A, v) = min{δ(u, v) |
u ∈ A} denote the distance from v to the closest node in A. For every w ∈ V , let
the cluster of w with respect to the set A be defined by CA

w = {v ∈ V | δ(w, v) <
δ(A, v)}. Thus for w /∈ A, CA

w is the set of the vertices whose closest neighbor in
A ∪ {w} is w. Algorithm Modified-Center(V, s), which is randomized, takes
as input the vertex set V and a parameter s ∈ [1, n], and returns a subset A ⊂ V
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of vertices such that all clusters CA
w (for all w ∈ V ) are of size at most 6n/s.

A has expected size at most 2s logn, thus the expected number of queries is
O(s · n · log2 n · log logn). This algorithm applies, in a different context, ideas
from [21], except that we use sampling to compute an estimate of |CA

w |.
In the second phase, Algorithm Local-Reconstruction(V,A) takes as in-

put the vertex set V and the set A computed by Modified-Center(V, s), and
returns the edge set of G. It partitions the graph into slightly overlapped com-
ponents according to the centers in A, and proceeds by exhaustive search within
each component. Inspired by the Voronoi diagram partitioning in [15], we show
that these components together cover every edge of the graph. The expected
query complexity in this phase is O(s log n(n + Δ4(n/s)2)).

Letting s =
√
n, the expected total number of queries in the two phases is

O(Δ4 · n3/2 · log2 n · log logn).
We use the notation Query(A, v) to mean Query(a, v) for every a ∈ A, and

the notation Query(A,B) to mean Query(a, b) for every a ∈ A and b ∈ B.

Modified-Center(V, s)
1 A← ∅, W ← V
2 T ← K · logn · log logn (K = O(1) to be defined later)
3 while W �= ∅
4 do A′ ← Random subset of W s.t. every node has prob. s/|W |
5 Query(A′, V )
6 A← A ∪ A′

7 for w ∈ W
8 do X ← Random multi-subset of V with s · T elements
9 Query(X,w)

10 Let ĈA
w ← |X ∩ CA

w | · n/|X |
11 W ← {w ∈W : ĈA

w ≥ 5n/s}
12 return A

Local-Reconstruction(V,A)
1 E ← ∅
2 for a ∈ A
3 do Ba ← {v ∈ V | δ(v, a) ≤ 2}
4 Query(Ba, V )
5 Da ← Ba

6 for b ∈ Ba

7 do Da ← Da ∪ {v ∈ V | δ(b, v) < δ(A, v)}
8 Query(Da, Da)
9 E ← E ∪ {(d1, d2) ∈ Da ×Da : δ(d1, d2) = 1}

10 return E

Figure 1 gives an illustration of Algorithm Local-Reconstruction(V,A).
Vertices a1, . . . , a5 are centers in A and define subsets Da1 , . . . , Da5 which overlap
slightly. We will show in Lemma 3 that the subsets Da (for all a ∈ A) together
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cover every edge in E. Thus the local reconstruction over every Da (for a ∈ A)
is sufficient to reconstruct the graph.

a1

Da1

Da2

Da3

Da4

Da5

a2

a3

a4

a5

Fig. 1. Partition by centers

Theorem 1 follows from Lemma 2 and 3.
Lemma 2. With probability at least 1/(4e), the Modified-Center(V, s) algo-
rithm takes O(s · n · log2 n · log logn) queries and returns a set A of size at most
4s logn such that |CA

w | ≤ 6n/s for every w ∈ V .

Remark. The difference between our algorithm and algorithm Center(G, s)
in [21] is that, Center(G, s) eliminates w ∈ W when |CA

w | < 4n/s, by calculat-
ing |CA

w | exactly, which needs n queries in our model; while our algorithm gives
an estimation of |CA

w | using O(s · log n · log logn) queries, so that with high prob-
ability, it eliminates w ∈ W when CA

w < 4n/s and it does not eliminate w ∈ W
when CA

w > 6n/s.

Proof. Fix A and w and let Yw = |X ∩CA
w | = |{x ∈ X | δ(x,w) < δ(x,A)}|. The

expected value of Yw is |CA
w | · |X |/n. Since X is random, by standard Chernoff

bounds there is a constant K such that, for any node w,{
P [Yw > 5T ] > 1− 1/(4n logn), if CA

w > 6n/s (and thus E[Yw] > 6T )
P [Yw < 5T ] > 1− 1/(4n logn), if CA

w < 4n/s (and thus E[Yw] < 4T ).

Let ĈA
w = Yw · n/|X |, where |X | = s · T . When the number of nodes w in

estimation is at most 4n logn, with probability at least (1−1/(4n logn))4n logn ∼
1/e, we have:{

ĈA
w > 5n/s, if CA

w > 6n/s

ĈA
w < 5n/s, if CA

w < 4n/s
, for every w in estimation. (1)
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We assume that n is large enough that this probability is at least 1/(2e).
Using the same proof as that of Theorem 3.1 in [21], we can prove that under

condition (1), algorithm Modified-Center(V, s) executes an expected number
of at most 2 logn iterations of the while loop and returns a set A of expected size
at most 2s logn such that |CA

w | ≤ 6n/s for every w ∈ V . Thus with probability
at least 1/2, the algorithm executes at most 4 logn iterations of the while loop
and the set A is of size at most 4s logn. The number of queries is O(s ·n · log2 n ·
log logn) in this case, since every iteration takes O(s ·n · log n · log logn) queries.
So the lemma follows. ��

Lemma 3. Under the conditions that |A| ≤ 4s logn and |CA
w | ≤ 6n/s for every

w ∈ V , Algorithm Local-Reconstruction(V,A) finds all edges in the graph
using O(s log n(n + Δ4(n/s)2)) queries.

Proof. Let Da = Ba

⋃
b∈Ba

CA
b . We will prove that for every edge (u, v) in E,

there is some a ∈ A, such that u and v are both in Da. Thus the algorithm is
correct: it finds all edges in E.

Consider (u, v) ∈ E. Without loss of generality, we assume δ(A, u) ≤ δ(A, v).
Let a ∈ A be such that δ(a, u) = δ(A, u). We will show that u and v are both
in Da. When δ(a, u) ≤ 1, u and v are both in Ba ⊆ Da. So we consider only
δ(a, u) ≥ 2. Take b to be the node, in any of the shortest paths from a to u,
such that δ(a, b) = 2. Then δ(b, u) = δ(a, u)− 2 and δ(b, v) ≤ δ(b, u) + δ(u, v) =
δ(a, u)− 1 by the triangle inequality. Using δ(a, u) = δ(A, u) ≤ δ(A, v), we have
δ(b, u) < δ(A, u) and δ(b, v) < δ(A, v). So u and v are both in CA

b , which is a
subset of Da since b ∈ Ba.

Because every Da (for a ∈ A) has size at most Δ2 · 6n/s, the total query
complexity is O(s log n(n + Δ4(n/s)2)). ��

3 Degree Bounded Outerplanar Graphs

In this section, we consider the connected graph G = (V,E) to be outerplanar [7]
and of bounded degree Δ. We show how to reconstruct such a graph with ex-
pected query complexity Õ(n). Generally speaking, we partition the graph into
balanced-sized subgraphs and recursively reconstruct these subgraphs.

3.1 Self-contained Subsets, Polygons and Partitions

Before giving details of the algorithm, we first need some new notions.

Definition 4. The subset U ⊆ V is said to be self-contained, if for every (x, y) ∈
U × U , any shortest path in G between x and y contains nodes only in U .

For every subset U ⊆ V , note G[U ] to be the subgraph induced by U , i.e., G[U ]
has exactly the edges over U in the graph. It is easy to see that for every self-
contained subset U , G[U ] is outerplanar and connected; and that the intersection
of several self-contained subsets is again self-contained.
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Definition 5. We say that the k-tuple (x1, . . . , xk) ∈ V k (where k ≥ 3) forms
a polygon if G[{x1, . . . , xk}] has exactly k edges: (x1, x2), (x2, x3), . . . , (xk, x1).

Definition 6. Let U be a self-contained subset of V and let U1, . . . , Uη be subsets
of U . We say that {U1, . . . , Uη} is a partition of U if every Ui is self-contained,
and for every edge (x, y) in G[U ], there exists some Ui (1 ≤ i ≤ η) such that x
and y are both in Ui. Let β < 1 be some constant. The partition {U1, . . . , Uη} of
U is said to be β-balanced if every Ui is of size at most β|U |.

Given any partition of U , the reconstruction problem over U can be reduced to
the independent reconstruction over every Ui (1 ≤ i ≤ η).

Let U be a self-contained subset of V . For every vertex v ∈ U , its removal
would separate U into nv (nv ≥ 1) connected components. For every i ∈ [1, nv],
let S∗v,i be the set of nodes in the ith component and let Sv,i = S∗v,i ∪ {v}. We
say that {Sv,1, . . . , Sv,nv} is the partition of U by the node v.

3.2 Balanced-Partition Algorithm

Let us now introduce the main algorithm Balanced-Partition(U), which
takes as input a self-contained subset U ⊆ V with |U | ≥ 10 and returns a
β-balanced partition of U , for some constant β ∈ (0.7, 1). The algorithm takes
a sampling of 2ω nodes (a1, . . . , aω, b1, . . . , bω), where ω = C · log |U | for some
constant C > 1, and tries to find a β-balanced partition of U under this sam-
pling. It stops if it finds such a partition, and repeatedly tries another sampling
otherwise. Below is the general framework of our algorithm. The details of the
algorithmic implementation are given in the full version of the paper, where we
give the constants C and β.

1. Take a sampling of 2ω nodes (a1, . . . , aω, b1, . . . , bω). For every i ∈ [1, ω],
compute a shortest path between ai and bi. Let x be some node with the
most occurrences in the ω paths above.

2. Partition U into Sx,1, . . . , Sx,nx by the node x. If all these sets have size at
most β|U |, return {Sx,1, . . . , Sx,nx}; otherwise let D = Sx,k be the largest
set among them and let V0 = U\S∗x,k.

3. In the set D, compute the neighbors of x in order: y1, . . . , yλ, where λ ≤ Δ.
If λ = 1, go to Step 1.

4. For every i ∈ [1, λ], partition U into Syi,1, . . . , Syi,nyi
by yi. Let Syi,ki be the

subset containing x and let Vi = U\S∗yi,ki
(see Figure 2). If |Vi| > β|U |, go

to Step 1.
5. Let T = D∩Sy1,k1∩· · ·∩Syλ,kλ

. Separate T into subsets T1,. . . ,Tλ−1 as in Fig-
ure 2. If every Ti has at most β|U | nodes, return {T1, . . . , Tλ−1, V0, . . . , Vλ}.

6. Let Tj be the set with more than β|U | nodes. Find the unique polygon
(q1, . . . , ql) in Tj that goes by nodes x, yj and yj+1.

7. For every i ∈ [1, l], partition U into Sqi,1, . . . , Sqi,nqi
by qi. Let Sqi,mi be the

subset containing the polygon above and let Wi = U\S∗qi,mi
(see Figure 3).

If |Wi| > β|U |, go to Step 1.
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8. Let R = Sq1,m1 ∩ · · · ∩ Sql,ml
. Separate R into subsets R1, . . . , Rl as in

Figure 3. If some Ri has more than β|U | nodes, go to Step 1; else return
{R1, . . . , Rl,W1, . . . ,Wl}.

x

y1

yiyi+1

yλ

V0

V1

ViVi+1

Vλ

T1Tλ−1

Ti

Fig. 2. Partition by neighbors

q1

q2

qiqi+1

ql

R1Rl

Ri

W1

W2

WiWi+1

Wl

Fig. 3. Partition by polygon

In the full version of the paper, we give formal definitions and algorithms for
subproblems: shortest path between two nodes; partition U by a given node;
obtain the neighbors of x in order; partitions U with respect to an edge; and
find the unique polygon that goes by nodes x, yj and yj+1. Finally, we give an
improved implementation of partitioning U by a polygon (Steps 7 - 8). All these
algorithms use O(Δ · |U | log2 |U |) queries. It is easy to see that the algorithm
Balanced-Partition(U) always stops with a β-balanced partition of U .

3.3 From Balanced Partitioning to Graph Reconstruction

Let us show how to reconstruct the graph using Balanced-Partition(U) as-
suming the following proposition, which will be proved in Section 3.4.

Proposition 7. For any self-contained subset U ⊆ V with |U | ≥ 10, the ran-
domized algorithm Balanced-Partition(U) returns a β-balanced partition of
U with query complexity O(Δ · |U | log2 |U |).
Based on the algorithm Balanced-Partition(U), we reconstruct the graph
recursively: we partition the vertex set V into self-contained subsets V1, . . . , Vk

such that every Vi has size ≤ βn; for every Vi, if |Vi| < 10, we reconstruct G[Vi]
using at most 92 queries; otherwise we partition Vi into self-contained subsets of
size at most β|Vi| ≤ β2n, and continue with these subsets, etc. Thus the number
of levels L of the recursion is O(log n).

Every time Balanced-Partition(U) returns a partition {U1, . . . , Uk}, we al-
ways have |U1|+· · ·+|Uk| ≤ |U |+2(k−1). For every 1 ≤ i ≤ L, let Ui,1, . . . , Ui,Mi
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be all sets on the ith level of the recursion. We then have |Ui,1|+· · ·+|Ui,Mi | ≤ 3n.
Thus the total query complexity on every level is O(Δ·n log2 n) by Proposition 7.
So we have the following theorem.

Theorem 8. Assume that the outerplanar graph G has bounded degree Δ. We
have a randomized algorithm for the metric reconstruction problem with query
complexity O(Δ · n log3 n), which is Õ(n) when Δ is constant.

3.4 Complexity Analysis of the Balanced-Partition Algorithm

Now let us prove Proposition 7. Since the query complexity to try every sampling
is O(Δ · |U | log2 |U |), we only need to prove, as in the following proposition,
that for every sampling, the algorithm finds a β-balanced partition with high
probability. This guarantees that the average number of samplings is a constant,
which gives the O(Δ · |U | log2 |U |) query complexity in Proposition 7.

Proposition 9. In the algorithm Balanced-Partition(U), every sampling of
(a1, . . . , aω, b1, . . . , bω) gives a β-balanced partition with probability at least 2/3.

To prove Proposition 9, we need Lemmas 10, 11 and 12, whose proofs are in the
full version of the paper.

Lemma 10. Let (a1, . . . , aω, b1, . . . , bω) be any sampling during the algorithm
Balanced-Partition(U). Let x be the node computed from this sampling in
Step 1. We say that a set S is a β-bad set, if it is a self-contained subset of U
such that x /∈ S and |S| ≥ β|U | for some constant β. Then x does not lead to a
β-balanced partition of U only when there exists some β-bad set.

For any node u ∈ U , define pu to be be the probability that u is in at least
one of the shortest paths between two nodes a and b, where a and b are chosen
uniformly and independently at random from U .

Lemma 11. There exists some constant α ∈ (0, 1), s.t. in every outerplanar
graph of bounded degree, there is a node z with pz ≥ α.

Lemma 12. Let ω = C · log |U | (for some constant C to be chosen in the proof).
Take a sample of 2ω nodes uniformly and independently at random from U . Let
them be a1, . . . , aω, b1, . . . , bω. For every v ∈ U , let p̂v be the percentage of pairs
(ai, bi)1≤i≤ω such that v is in some shortest path between ai and bi. Let x be
some node in U with the largest p̂x. Then with probability at least 2/3, we have
px > α/2, where α > 0 is the constant in Lemma 11.

Now we will prove Proposition 9. By Lemma 10, we only need to bound the prob-
ability of existence of β-bad set. Let C be the constant chosen in Lemma 12. Let
x be the node computed from the sampling (a1, . . . , aω, b1, . . . , bω) in Step 1 of
Algorithm Balanced-Partition(U). Take β =

√
1− α/2, where the constant

α ∈ (0, 1) is provided by Lemma 11. Then β ∈ (0.7, 1). Suppose there exists a
β-bad set S. For every (a, b) ∈ S×S, any shortest path between a and b cannot
go by x, since S is self-contained. So px ≤ 1 − (|S|/|U |)2 ≤ 1 − β2 = α/2. By
Lemma 12, the probability that px ≤ α/2 is at most 1/3. So the probability of
existence of β-bad set is at most 1/3. Thus we complete the proof.
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4 Approximate Reconstruction on General Graphs

In this section, we study the approximate version of the metric reconstruction
problem. We first give an algorithm for the approximate reconstruction, and
then show that this algorithm is near-optimal by providing a query lower bound
which coincides with its query complexity up to a logarithmic factor.

Definition 13. Let f be any sublinear function of n. An f -approximation δ̂ of
the metric δ is such that, for every (u, v) ∈ V 2, δ̂(u, v) ≤ δ(u, v) ≤ f · δ̂(u, v).

The following algorithm Approx-Reconstruction(V ) receives the vertex set
V and samples an expected number of O(n(log n)/f) nodes. For every sampled
node u, it makes all queries related to u and provides an estimate δ̂(v, w) for
every v within distance f/2 from u and every w ∈ V \{v}.

Approx-Reconstruction(V )

1 while δ̂ is not defined on every pair of nodes
2 do u← a node chosen from V uniformly at random
3 for every v ∈ V
4 do Query(u, v) and let δ̂(u, v) ← δ(u, v).
5 Su ← {v : δ(u, v) < f/2}
6 for v ∈ Su \ {u}
7 do for w ∈ Su\{v}
8 do δ̂(v, w) ← 1
9 for w /∈ Su

10 do δ̂(v, w) ← δ(u,w)− δ(u, v)

11 return δ̂

Theorem 14. The randomized algorithm Approx-Reconstruction(V ) com-
putes an f -approximation δ̂ of the metric δ using O(n2(log n)/f) queries.

Proof. First we prove that for every (v, w), we have δ̂(v, w) ≤ δ(v, w) ≤ f ·δ̂(v, w).
There are two cases:

Case 1: w ∈ Su\{v} (line 7). Then δ̂(v, w) = 1 ≤ δ(v, w) ≤ δ(u, v) + δ(u,w) <

(f/2) + (f/2) = f = f · δ̂(v, w), because v and w are in Su.
Case 2: w /∈ Su (line 9). On the one hand, by the triangular inequality,

δ(v, w) ≥ δ(w, u) − δ(v, u) = δ̂(v, w). On the other hand, by the triangular
inequality, δ(w, v) ≤ (δ(u,w) − δ(u, v)) + 2δ(u, v). The first tem is δ̂(v, w).
The second term, by definition of Su, is at most f − 1. Since v ∈ Su and
w /∈ Su, we have δ(u,w) − δ(v, w) ≥ 1, so the second term can be bounded
by f − 1 ≤ (f − 1) · δ̂(v, w). Adding completes the proof of the upper bound.

Next, we analyze the query complexity of the algorithm. Since G is connected,
for every node v there are at least f/2 points u such that v ∈ Su. Let X denote all
samples during the algorithm. The number of queries is n|X |, and its expectation
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is n
∑

t Pr[|X | > t]. Let Xt denote the first t samples chosen. We have:

Pr[|X | > t] = Pr[∃v, ∀u ∈ Xt, v /∈ Su] ≤
{

1 if t < 2n(lnn)/f∑
v Pr[∀u ∈ Xt, v /∈ Su] otherwise.

By independence, Pr[∀u ∈ Xt, v /∈ Su] ≤ (1− (f/2)/n)t ≤ e−tf/(2n). Thus

E[#queries] ≤ n
2n lnn

f
+ n2 (1/n)

f/(4n)
= O(n2(log n)/f). ��

On the lower bound side, Reyzin and Srivastava proved a tight Ω(n2) bound for
the exact reconstruction problem, as in the following proposition.

Proposition 15. [18] Any deterministic or randomized algorithm for the exact
graph reconstruction problem requires Ω(n2) queries.

We extend the proof of Proposition 15 to get a lower bound for approximate
reconstruction as in Theorem 16, whose proof is in the full version of the paper.

Theorem 16. Any deterministic or randomized approximation algorithm re-
quires Ω(n2/f) queries to compute an f -approximation of the graph metric.

Acknowledgments. We would like to thank Fabrice Ben Hamouda for his
helpful comments.
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Abstract. We study scheduling problems on a machine of varying speed.
Assuming a known speed function (given through an oracle) we ask for a
cost-efficient scheduling solution. Our main result is a PTAS for minimiz-
ing the total weighted completion time on a machine of varying speed.
This implies also a PTAS for the closely related problem of scheduling
to minimize generalized global cost functions. The key to our results is a
re-interpretation of the problem within the well-known two-dimensional
Gantt chart: instead of the standard approach of scheduling in the time-
dimension, we construct scheduling solutions in the weight-dimension.

We also consider a dynamic problem variant in which deciding upon
the speed is part of the scheduling problem and we are interested in
the tradeoff between scheduling cost and speed-scaling cost, which is
typically the energy consumption. We obtain two insightful results: (1)
the optimal scheduling order is independent of the energy consumption
and (2) the problem can be reduced to the setting where the speed of
the machine is fixed, and thus admits a PTAS.

1 Introduction

In several computation and production environments we face scheduling prob-
lems in which the speed of resources may vary. We distinguish mainly two types
of varying speed scenarios: one, in which the speed is a given function of time,
and another dynamic setting in which deciding upon the processor speed is part
of the scheduling problem. The first setting occurs, e.g., in production environ-
ments where the speed of a resource may change due to overloading, aging, or in
an extreme case it may be completely unavailable due to maintenance or failure.
The dynamic setting finds application particularly in modern computer architec-
tures, where speed-scaling is an important tool for power-management. Here we
are interested in the tradeoff between the power consumption and the quality-
of-service. Both research directions—scheduling on a machine with given speed
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fluctuation as well as scheduling including speed-scaling—have been pursued
quite extensively, but seemingly separately from each other.

The main focus of our work and the main technical contribution lie in the set-
ting with a given speed function. We present a PTAS for scheduling to minimize
the sum of weighted completion times

∑
j wjCj , which is best possible unless

P=NP. In addition, we draw an interesting connection between the given speed
and dynamic models which allows us to utilize the results for the given speed
setting also for the dynamic problem. Very useful in our arguments is the well-
known geometric view of the min-sum scheduling problem in a two-dimensional
Gantt chart, an interpretation originally introduced in [11]. Crucial to our re-
sults is the deviation from the standard view of scheduling in the time dimension
and switching to scheduling in the weight dimension. This dual view allows us
to cope with the highly sensitive speed changes in the time dimension which
prohibit standard rounding, guessing, and approximation techniques.

Previous Work

Research on scheduling on a machine of given varying speed has been mainly fo-
cused on the special case of scheduling with non-availability periods, see e.g. [18].
Despite a history of more than 30 years, only recently the first constant approx-
imation for min

∑
wjCj was derived in [12]. In fact, their (4 + ε)-approximation

computes a universal sequence which has the same guarantee for any (unknown)
speed function. For the setting with release dates, they give an approximation
algorithm with the same guarantee for any given speed function. If the speed is
only increasing, there is an efficient PTAS [20], if all release dates are equal. In
this case the complexity remains an open question, whereas for general speed
functions the problem is strongly NP-hard, even when for each job the weight
and processing time are equal [22].

The problem of scheduling on a machine of varying speed is equivalent to
scheduling on an ideal machine (of constant speed) but minimizing a more gen-
eral global cost function

∑
wjf(Cj), where f is a nondecreasing function. In

this identification, f(C) denotes the time that the varying speed machine needs
to process a work volume of C [14]. Also, the special case of only nondecreas-
ing (nonincreasing) speed functions corresponds to concave (convex) global cost
functions. Recently, in [14] tight guarantees for the Smith rule for all convex and
all concave functions f were given. They also show that the problem for increas-
ing piecewise linear cost function is strongly NP-hard even with only two slopes,
and so is our problem when the speed function takes only two distinct values.

Even more general min-sum cost functions have been studied, where each job
may have its individual nondecreasing cost function. A (2 + ε)-approximation
was recently derived in [10]. For the more complex setting with release dates
a randomized O(log log(nmaxj pj))-approximation is known [5]. Clearly, these
results translate also to the setting with varying machine speed.

Scheduling with dynamic speed-scaling was initiated in [23] and became a
very active research field in the past fifteen years. Most work focuses on schedul-
ing problems where jobs have deadlines by which they must finish. We refer
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to [2,15] for an overview. Closer to our setting is the work initiated by Pruhs et
al. [19] where they obtain a polynomial algorithm for minimizing the total flow
time given an energy budget if all jobs have the same work volume. This work
is later continued by many other; see, e. g., [3, 6, 8] and the references therein.
Most of this literature is concerned with online algorithms to minimize total
(or weighted) flow time plus energy. The minimization of the weighted sum of
completion times plus energy has been considered recently in [4,7]. These works
derive constant approximations for general non-preemptive models with unre-
lated machines and release dates [4] and additional precedence constraints [7].
For our general objective of speed-scaling with an energy budget, [4] also give a
randomized (2 + ε)-approximation for unrelated machines with release dates.

Our Results

We give several best possible algorithms for problem variants that involve
scheduling to minimize the total weighted completion time on a single machine
that may vary its speed.

Our main result is an efficient PTAS (Section 3) for scheduling to minimize∑
wjCj on a machine of varying speed (given by an oracle). This is best possible

since the problem is strongly NP-hard, even when the machine speed takes only
two distinct values [14]. We also provide an FPTAS (Section 5.3) for the case that
there is a constant number of time intervals with different uniform speeds (and
the max ratio of speeds is bounded). Our results generalize recent previous results
such as a PTAS on a machine with only increasing speeds [20] and FPTASes for
only one non-availability period [16, 17].

Our results cannot be obtained with standard scheduling techniques which
heavily rely on rounding processing requirements or completion times. Such ap-
proaches typically fail on machines that may change their speed since the slight-
est error introduced by rounding might provoke an unbounded increase in the
solution cost. Similarly, adding any amount of idle time to the machine might be
fatal. Our techniques completely avoid this difficulty by a change of paradigm.
To explain our ideas it is helpful to use a 2D-Gantt chart interpretation [11]; see
Section 2. As observed before, e.g., in [13], we obtain a dual scheduling problem
by looking at the y-axis in a 2D-Gantt chart and switching the roles of the pro-
cessing times and weights. In other words, a dual solution describes a schedule
by specifying the remaining weight of the system at the moment a job completes.
This simple idea avoids the difficulties on the time-axis and allows to combine
old with new techniques for scheduling on the weight-axis.

In case that an algorithm can set the machine at arbitrary speeds, we show in
Section 4 that the optimal scheduling sequence is independent of the available
energy. This follows by analyzing a convex program that models the optimal
energy assignment for a given job permutation. A similar observation was made
independently by Vásquez [21] in a game-theoretic setting. We show that com-
puting this universal optimal sequence corresponds to the problem of schedul-
ing with a particular concave global cost function, which can be solved with
our PTAS mentioned above, or with a PTAS for non-decreasing speed [20].
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Interestingly, this reduction relies again on a problem transformation from time-
space to weight-space in the 2D-Gantt chart. For a given scheduling sequence,
we give an explicit formula for computing the optimal energy (speed) assign-
ment. Thus, we have a PTAS for speed-scaling and scheduling for a given energy
budget. We remark that the complexity of this problem is open.

In many applications, including most modern computer architectures, ma-
chines are only capable of using a given number of discrete power (speed) states.
We also provide in Section 5 an efficient PTAS for this complex scenario. This
algorithm is again based on our techniques relying on dual schedules. Further-
more, we obtain a (1+ε)-approximation of the Pareto frontier for the energy-cost
bicriteria problem. On the other hand, we show that this problem is NP-hard
even when there are only two speed states. We complement this result by giving
an FPTAS for a constant number of available speeds.

We also notice that in the speed-scaling setting, our (F)PTAS results can
be utilized to obtain a (2 + ε)-approximation for the more general problem of
preemptively scheduling jobs with non-trivial release dates on identical parallel
machines. Here, we apply our previous results to solve a fast single machine
relaxation [9] combined with a trick to control the actual job execution times.
Then, we keep the energy assignments computed in the relaxation and apply
preemptive list scheduling on parallel machines respecting release dates.

We finally remark that all our results for the setting with given speed translate
directly to a corresponding result for the equivalent problem 1| |

∑
j wjf(Cj)

(with f non-decreasing).

2 Model, Definitions, and Preliminaries

Problem Definition. We consider two types of scheduling problems. In both
cases we are given a set of jobs J = {1, . . . , n} with work volume (processing time
at speed 1) vj ≥ 0 and weights wj ≥ 1. We seek a schedule on a single machine
(permutation of jobs) that minimizes the sum of weighted completion times. The
speed of the machine may vary—this is where the problems distinguish.

In the problem scheduling on a machine of given varying speed we assume that
the speed function is given indirectly by an oracle. Given a value v, the oracle
returns the first point in time when the machine can finish v units of work. Thus,
for a given order of jobs, we can compute the execution time of each job and
then the total cost of the solution (assuming that there is no idle time).

In the problem scheduling with speed-scaling an algorithm determines not only
a schedule for the jobs but will also decide at which speed s > 0 the machine
will run at any time. Running a machine at certain speed requires a certain
amount of power. Power is typically modeled as a monomial (convex) function
of speed, P (s) = sα with a small constant α > 1. Given an energy budget E,
we ask for the optimal power (and thus speed) distribution and corresponding
schedule that minimizes

∑
j wjCj . More generally, we are interested in quan-

tifying the tradeoff between the scheduling objective
∑

j∈J wjCj and the total
energy consumption, that is, we aim for computing the Pareto curve for the bi-
criteria minimization problem. We consider two variants of speed-scaling: If the
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Fig. 1. 2D-Gantt chart. The x-axis shows a schedule, while the y-axis corresponds
to W (t) =

∑
Cj>t wj plus the idle weight in the corresponding weight-schedule.

machine can run at an arbitrary power level p ∈ R+, we say that we are in the
continuous-speed setting. On the other hand, if that machine can only choose
among a finite set of speeds {s1, . . . , sκ} we are in an discrete-speed environment.

From Time-Space to Weight-Space. For a schedule S, we let Cj(S) denote
the completion time of j and we let WS(t) denote the total weight of jobs
completed (strictly) after t. Whenever S is clear from the context we omit it. It
is not hard to see that ∑

j∈J
wjCj(S) =

∫ ∞
0

WS(t)dt. (1)

Our main idea is to describe our schedule in terms of the remaining weight
function W . That is, instead of determining Cj for each job j, we will implicitly
describe the completion time of j by the value of W at the time that j completes.
We call this value the starting weight of the job j, and denote it by Sw

j . Similarly,
we define the completion weight of j as Cw

j := Sw
j + wj . This has a natural

interpretation in the two axes of the 2D-Gantt chart (see Figure 1): A typical
schedule determines completion times for jobs in time-space (x-axis), which is
highly sensitive when the speed of the machine may vary. We call such a solution
a time-schedule. Describing a scheduling solution in terms of remaining weight
can be seen as scheduling in the weight-space (y-axis), yielding a weight-schedule.

In weight-space the weights play the role of processing times. All notions that
are usually considered in schedules apply in weight-space. For example, we say
that a weight-schedule is feasible if there are no two jobs overlapping, and that
the machine is idle at weight value w if w �∈ [Sw

j , C
w
j ] for all j. In this case we say

that w is idle weight. A weight-schedule immediately defines a non-preemptive
time-schedule by ordering the jobs by decreasing completion weights.

Consider a weight-schedule S with completion weights Cw
1 ≥ . . . ≥ Cw

n , and
corresponding completion times C1 ≤ . . . ≤ Cn. To simplify notation let C0 =
Cw

n+1 = 0. Then we define the cost of S as
∑n

j=1(Cw
j − Cw

j+1)Cj . It is easy

to check, even from the 2D-Gantt chart, that this value equals
∑n

j=1 x
S
j C

w
j ,

where xSj is the execution time of job j (in time-space). Moreover, the last
expression is equivalent to Equation (1) if and only if the weight-schedule does
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not have any idle weight. In general, the cost of the weight-schedule can only
overestimate the cost of the corresponding schedule in time space, given by (1).

On a machine of varying speed, the weight-schedule has a number of technical
advantages. For instance, while creating idle time can increase the cost arbitrar-
ily, we can create idle weight without provoking an unbounded increase in the
cost. This gives us flexibility in weight-space and implicitly a way to delay one
or more jobs in the time-schedule without increasing the cost. More precisely,
we have the following observation that can be easily seen in the 2D-Gantt chart.

Observation 1. Consider a weight-schedule S with enough idle weight so that
decreasing the completion weight of some job j, while leaving the rest untouched,
yields a feasible weight-schedule. If the order of the jobs is changed, then the
corresponding time-schedule is also modified. However, since the order of jobs in
the time-schedule is reversed, job j gets delayed but the completion time of each
job j′ �= j is not increased. Thus, this operation does not increase the cost of S.

3 A PTAS for Scheduling on a Machine with Given
Speeds

In what follows we give a PTAS for minimizing
∑

j wjCj on a machine with a
given speed function. In order to gain structure, we start by applying several
modifications to the instance and optimal solution. First we round the weights
of the jobs to the next integer power of 1 + ε, which can only increase the
objective function by a factor 1 + ε. Additionally, we discretize the weight-space
in intervals that increase exponentially. That is, we consider intervals Iu = [(1 +

ε)u−1, (1 + ε)u) for u ∈ {1, . . . , ν} where ν :=
⌈
log1+ε

∑
j∈J wj

⌉
. We denote the

length of each interval Iu as |Iu| := ε(1 + ε)u−1. We will apply two important
procedures to modify weight-schedules. They are used to create idle weight so to
apply Observation 1, and they only increase the total cost by a factor 1 +O(ε).
Similar techniques, applied in time-space, were used by Afrati et al. [1].
Weight Stretch: We multiply by 1 + ε the completion weight of each job. This
creates an idle weight interval of length εwj before the starting weight of job j.
Stretch Intervals: We delay the completion weight of each job j with Cw

j ∈ Iu by

|Iu|, so that Cw
j belongs to Iu+1. Then |Iu+1|−|Iu| = ε2(1+ε)u−1 = ε|Iu+1|/(1+

ε) units of weight are left idle in Iu+1 after the transformation, unless there was
only one job completely covering Iu+1. By moving jobs within Iu, we can assume
that this idle weight is consecutive.

3.1 Dynamic Program

We now show our dynamic programming (DP) approach to obtain a PTAS. We
first describe a DP table with exponentially many entries and then discuss how
to reduce its size. Consider a subset of jobs S ⊆ J and a partial schedule of
S in the weight-space. In our dynamic program, S will correspond to the set
of jobs at the beginning of the weight-schedule, i. e., if j ∈ S and k ∈ J \ S
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then Cw
j < Cw

k . A partial weight-schedule S of jobs in S implies a schedule
in time-space with the following interpretation. Note that the makespan of the
time-schedule is completely defined by the total work volume

∑
j vj . We impose

that the last job of the schedule, which corresponds to the first job in S, finishes
at the makespan. This uniquely determines a value of Cj for each j ∈ S, and thus
also its execution time xSj . The total cost of this partial schedule is

∑
j∈S xSj C

w
j

(which has a simple interpretation in the 2D-Gantt chart).
Consider Fu := {S ⊆ J : w(S) ≤ (1+ε)u}. That is, a set S ∈ Fu is a potential

set to be scheduled in Iu or before. For a given interval Iu and set S ∈ Fu, we
construct a table entry T (u, S) with a (1 +O(ε))-approximation to the optimal
cost of a weight-schedule of S subject to Cw

j ≤ (1 + ε)u for all j ∈ S.
Consider now S ∈ Fu and S′ ∈ Fu−1 with S′ ⊆ S. Let S be a partial schedule

of S where the set of jobs with completion weight in Iu is exactly S \ S′. We
define APXu(S′, S) = (1 + ε)u

∑
j∈S\S′ xSj , which is a (1 + ε)-approximation to∑

j∈S\S′ xSj C
w
j , the partial cost associated to S \ S′. We remark that the values∑

j∈S\S′ xSj and APXu(S′, S) do not depend on the whole schedule S, but only

on the total work volume of jobs in S′. We can compute T (u, S) with the following
formula, T (u, S) = min{T (u− 1, S′) + APXu(S′, S) : S′ ∈ Fu−1, S

′ ⊆ S}.
The set Fu can be of exponential, and thus also this DP table. In the following

we show that there is a polynomial size set F̃u that yields (1 + ε)-approximate
solutions. We remark that the set F̃u will not depend on the speed of the machine.
Thus, the same set can be used in the speed-scaling scenario.

3.2 Light Jobs

We structure an instance by classifying jobs by their size in weight-space.

Definition 1. In a given schedule, a job j is said to be light if wj ≤ ε|Iu|, where
u is such that Sw

j ∈ Iu. A job that is not light is heavy.

Given a weight-schedule for heavy jobs, we can greedily find a (1 + O(ε))-
approximate solution for the complete instance. To show this, consider any
weight-schedule S. First, remove all light jobs. Then we move jobs within each
interval Iu, such that the idle weight inside each interval is consecutive. Clearly,
this can only increase the cost of the solution by a 1 + ε factor. After, we apply
the following preemptive greedy algorithm to assign light jobs, which we call
Algorithm Smith in Weight-Space: For u = 1, . . . , ν and each idle weight w ∈ Iu,
process a job j maximizing vj/wj among all available jobs with wj ≤ ε|Iu|.

To remove preemptions, we apply the Stretch Interval subroutine1 twice, cre-
ating an idle weight interval in Iu of length at least 2ε|Iu|/(1 + ε) ≥ ε|Iu| (for
ε ≤ 1). This gives enough space in each interval Iu to completely process the
(unique) preempted light job with starting weight in Iu. Then, Observation 1
implies that we can remove preemptions, obtaining a new schedule S ′. We now
show that the cost of S ′ is at most a factor of 1 +O(ε) larger than the cost of S.

1 The Stretch Interval procedure also applies to preemptive settings by interpreting
each piece of a job as an independent job.
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To do so we need a few definitions. For any weight-schedule S, let us define the
remaining volume function as V S(w) :=

∑
j:Cw

j ≥w
vj . For a given w, let Ij(w)

be equal 1 if the weight-schedule processes j at weight w, and 0 otherwise. Then,
fj(w) := (1/wj)

∫∞
w Ij(w

′)dw′ corresponds to the fraction of job j processed af-
ter w. With this we define the fractional remaining volume function, which is
similar to the remaining volume function but treats light jobs as “liquid”:

V Sf (w) :=
∑

j:j is light

fj(w) · vj +
∑

j:j is heavy,Cw
j ≥w

vj for all w ≥ 0.

We notice that V Sf (w) ≤ V S(w) for all w ≥ 0.
Consider now the function f(v) corresponding to the earliest point in time in

which the machine can process a work volume of v. Notice that this is the same
function used when transforming our problem to 1| |

∑
j wjf(Cj). It is easy to

see—even from the 2D-Gantt chart—that
∫∞
0 f(V S(w))dw corresponds to the

cost of the weight-schedule S. Also, notice that f(v) is non-decreasing, so that
V S(w) ≤ V S

′
(w) for all w implies that the cost of S is at most the cost of S ′.

Lemma 1. The cost of S ′ is at most 1 +O(ε) times larger than the cost of S.
Proof (Idea). If we assume the position of heavy jobs as given, the schedule Sf
returned by Algorithm Smith in Weight Space minimizes V

Sf
f (w) for any given

w ≥ 0. The result follows by combining this insight plus the ideas above.

Corollary 1. At a loss of a 1 + O(ε) factor in the objective function, we can
assume the following. For a given interval Iu, consider any pair of jobs j, k
whose weights are at most ε|Iu|. If both jobs are processed in Iu or later and
vk/wk ≤ vj/wj, then Cw

j ≤ Cw
k .

3.3 Localization and Compact Search Space

The objective of this section is to compute, for each job j ∈ J , two values rwj
and dwj so that job j is scheduled completely within [rwj , d

w
j ) in some (1 +O(ε))-

approximate weight-schedule. We call rwj and dwj the release-weight and deadline-
weight of job j, respectively. Crucially, we need that the length of the interval
[rwj , d

w
j ) is not too large, namely that dj ∈ O(poly(1/ε)rj). Such values can be

obtained by using Corollary 1 and techniques from [1]; we skip the details.

Lemma 2. We can compute in poly-time values rwj and dwj for each j ∈ J such
that: (i) there exists a (1 + O(ε))-approximate weight-schedule that processes
each job j within [rwj , d

w
j ), (ii) there exists a constant s ∈ O(log(1/ε)/ε) such

that dwj ≤ rwj · (1 + ε)s, (iii) rwj and dwj are integer powers of (1 + ε), and (iv)
the values rwj an dwj are independent of the speed of the machine.

Now we are ready to express set F̃u. Instead of describing a set S ∈ F̃u, we
describe V = J \ S, that is, the jobs with completion weights in Iu+1 or later.
Clearly, Lemma 2 implies that we just need to decide about jobs with release
weights rwj = (1+ε)v with v ∈ {u+1−s, . . . , u−1}. Enumerating over (basically)
all possibilities for each v ∈ {u + 1− s, . . . , u− 1}, we obtain the following.
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Lemma 3. For each interval Iu, we can construct in poly-time a set F̃u that
satisfies the following: (i) there exists a (1 +O(ε))-approximate weight-schedule
in which the set of jobs with completion weight at most (1 + ε)u belongs to F̃u

for each interval Iu, (ii) the set F̃u has cardinality at most 2O(log2(1/ε)/ε3), and
(iii) the set F̃u is completely independent of the speed of the machine.

With the discussion at the beginning of this section we obtain a PTAS, which is
a best possible approximation since the problem is strongly NP-hard [14].

Theorem 1. There exists an efficient PTAS for minimizing the weighted sum
of completion times on a machine with given varying speed.

4 Speed-Scaling for Continuous Speeds

When assuming a continuous spectrum of speeds, each job will be executed at
a uniform speed because of the convexity of the power function [23]. Let sj be
the speed at which job j is running. Then j’s power consumption is pj = sαj ,

and its execution time is xj = vj/sj = vj/p
1/α
j . The energy that is required for

processing j is Ej = pj · xj = pj · vjsj = sα−1j · vj = vαj /x
α−1
j .

Let π be a sequence of jobs in a schedule, where π(j) is the index of the
j-th job in the sequence for each i ∈ {1, . . . , n}. Computing the optimal energy
assignment for all jobs, given a fixed sequence π and using a total amount of
energy E, can be done with a convex program. We rewrite the objective function
as

∑n
j=1 wjCj =

∑n
j=1 wπ(j)

∑j
k=1 xπ(k) =

∑n
j=1 xπ(j)

∑n
k=j wπ(k) and define

Wπ
π(j) =

∑n
k=j wπ(k). Note that xj =

(
vαj /Ej

)1/(α−1)
, and that Wπ

j is the total
remaining weight just before j is completed in any schedule concordant with π.

min

⎧⎨⎩
n∑

j=1

Wπ
j ·

(
vαj
Ej

)1/(α−1)
:

n∑
j=1

Ej ≤ E, and Ej ≥ 0 ∀j ∈ {1, . . . , n}

⎫⎬⎭ .

This program has linear constraints and a convex objective function. The next
theorem easily follows by the well-known KKT conditions.

Theorem 2. For a given job sequence π, a power function P (s) = sα and an
energy budget E, the optimal energy assignment in an optimal schedule for min-
imizing

∑
j wjCj subject to Cπ(1) < . . . < Cπ(n) is determined by

Ej = vj ·
(
Wπ

j

)(α−1)/α · E
γπ

, where γπ =
n∑

j=1

vj ·
(
Wπ

j

)(α−1)/α
.

Interestingly, the optimal job sequence is independent of the energy distribu-
tion, and even stronger, it is independent of the overall energy budget. In other
words, one scheduling sequence is universally optimal for all energy budgets.
Furthermore, this sequence is obtained by solving in weight-space a (standard)
scheduling problem with a cost function that depends on the power function.
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Theorem 3. Given a power function P (s) = sα, there is a universal sequence
that minimizes

∑
j wjCj for any energy budget. The sequence is given by revers-

ing an optimal solution of the scheduling problem 1| |
∑

wjC
(α−1)/α
j on a single

machine of unit speed.

Thus, the scheduling part of the speed-scaling scheduling problem reduces to a
problem which can be solved by our PTAS from Sect. 3. Since the cost func-
tion f(x) = x(α−1)/α is concave for α > 1, the specialized PTAS in [20] also
solves it. Combining Theorems 2 and 3 gives the main result.

Theorem 4. There is a PTAS for the continuous speed-scaling and scheduling
problem with a given energy budget E.

5 Speed-Scaling for Discrete Speeds

In this section we consider a more realistic setting, where the machine can choose
from a set of κ different speeds available s1 > . . . > sκ ≥ 1.

5.1 A PTAS for Discrete Speeds

Let the power function P (s) be an arbitrary computable function. To derive our
algorithm, we adopt the PTAS for scheduling on a machine with given varying
speed (Sect. 3) and incorporate the allocation of energy.

We adopt the same definitions of weight intervals Iu and sets Fu as in Sect. 3.
For a subset of jobs S ∈ Fu and a value z ≥ 0, let E[u, S, z] be the minimum total
energy necessary for scheduling S such that Cw

j ≤ (1 + ε)u for each j ∈ S, and
the scheduling cost is at most z, i.e.,

∑
j∈S xj ·Cw

j ≤ z where xj is the execution
time under some feasible speed assignment. Recall that the speed assignment
determines the energy. The recursive definition of a state is as follows:

E(u, S, z) = min{E(u− 1, S′, z′) + APXu(S \ S′, z − z′) : S′ ∈ Fu−1, S
′ ⊆ S}.

Here APXu(S\S′, z−z′) is the minimum energy necessary for scheduling all jobs
j ∈ S\S′ with Cw

j ∈ Iu, such that their partial (rounded) cost
∑

j∈S\S′ xj(1+ε)u

is at most z − z′.

Lemma 4. The value APXu(S \ S′, z − z′) can be computed with an LP.

We let the DP fill the table for u ∈ {0, . . . , ν} with ν = �log
∑

j∈J wj� and z ∈
[1, zUB] for some upper bound such as zUB =

∑
j∈J wj

∑j
k=1 vj/sκ. Then among

all end states [ν, J, · ] with value at most the energy budget E we choose the one
with minimum cost z. Then we obtain the corresponding (1 + ε)-approximate
solution for energy E by backtracking.

This DP has an exponential number of entries. However, we can apply results
from Section 3 and standard rounding techniques to reduce the running time.

Theorem 5. There is an efficient PTAS for minimizing the total scheduling
cost for speed-scaling with a given energy budget.
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5.2 Speed-Scaling for Discrete Speeds Is NP-Hard

We complement Theorem 5 by showing that our problem is NP-hard. Our re-
duction is based on the NP-hard problem 1|dj = d|

∑
wjTj [24].

Theorem 6. The problem of minimizing
∑

j wjCj on a single machine for dis-
crete speeds is NP-hard, even if the number of available power levels is 2.

5.3 An FPTAS for a Constant Number of Speed States

Let s1 > . . . > sκ ≥ 1. A simple interchange argument shows that an optimal
solution chooses the speed non-increasing over time. We construct a schedule in
weight-space. There are at most κ jobs that run at more than one speed; call
them split jobs. We guess the split jobs together with their completion weight up
to a factor 1 + ε. This partitions the weight space into κ subintervals Ii, which
we have to fill with the remaining jobs non-preemptively. By construction all
jobs in one subinterval run at the same uniform speed. The high-level idea now
is to use a DP for partitioning the remaining jobs and keeping control on the
power consumption and the total cost. One critical point is that we do not know
the execution time xj for split jobs and we cannot guess them: this would cause
a running time dependency on the max-speed ratio. However, for each possible
objective value for the split jobs, we can compute the minimum energy with an
LP similar to the one in the PTAS in Section 5.1.

The main challenge is to reduce the exponential number DP states to a poly-
nomial size. The intuition behind our algorithm is to remove the states with
the same (rounded) objective value and nearly the same total work (differing
by at most ε|Ii|/n) assigned to an interval Ii. Among them, we want to store
those with smallest amount of work in an interval Ii, in order to make sure that
enough space remains for further jobs. To show that this approach is feasible we
show bounds on the change in the total cost. This yields the next theorem. The
theorem after follows by applying these techniques in time-space.

Theorem 7. There is an FPTAS for speed-scaling with a given energy budget
for min

∑
wjCj on a single machine with constantly many discrete speeds.

Theorem 8. There exists an FPTAS for non-preemptive2 scheduling to mini-
mize

∑
wjCj on a single machine with a constant number of intervals of dif-

ferent, but uniform speed. For the resumable1 setting, there is an FPTAS in the
same setting when the maximum ratio of speeds is bounded.
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Abstract. Paging is a prominent problem in the field of online algo-
rithms. While in the deterministic setting there exist simple and efficient
strongly competitive algorithms, in the randomized setting a tradeoff
between competitiveness and memory is still not settled. In this paper
we address the conjecture in [2], that there exist strongly competitive
randomized paging algorithms using o(k) bookmarks, i.e. pages not in
cache that the algorithm keeps track of. We prove tighter bounds for
Equitable2 [2], showing that it requires less than k bookmarks, more
precisely ≈ 0.62k. We then give a lower bound for Equitable2 showing
that it cannot both be strongly competitive and use o(k) bookmarks. Our
main result proves the conjecture that there exist strongly competitive
paging algorithms using o(k) bookmarks. We propose an algorithm, de-
noted Partition2, which is a variant of the Partition algorithm in [3].
While Partition is unbounded in its space requirements, Partition2
uses Θ(k/ log k) bookmarks.

1 Introduction

The paging problem is defined as follows. We have a two-level memory hierarchy
consisting of a fast cache which can accommodate k pages, and a slow memory
of infinite size. The input consists of requests to pages which are processed
sequentially as follows. If the currently requested page is not in cache, a cache
miss occurs and the requested page must be brought into cache. If the cache is
full, a page must be evicted to accommodate the new one. The cost is given by
the number of misses incurred.

Online algorithms in general and paging algorithms in particular are typically
analyzed in the framework of competitive analysis [4,5]. An algorithm A is said to
have a competitive ratio of c (or c-competitive) if its cost satisfies for any input
cost(A) ≤ c · cost(OPT ) + b, where b is a constant and cost(OPT ) is the cost
of an optimal offline algorithm, i.e. an algorithm which is presented with the
input in advance and processes it optimally; for randomized algorithms, cost(A)
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is the expected cost of A. An algorithm achieving an optimal competitive ratio is
strongly competitive. For paging, an optimal offline algorithm (OPT ) evicts the
page whose next request occurs the furthest in the future [6]. For comprehensive
surveys on online algorithms in general and paging algorithms in particular, we
refer the interested reader to [7,8].

Competitive ratio has often been criticized for its pessimistic quality guar-
antees. Especially in the deterministic setting, the empirically measured per-
formance for practical algorithms is far below the theoretical guarantee of k
provided by competitive analysis [9]. This gap is significantly smaller for ran-
domized algorithms, since the best possible competitive ratio is Hk. Although
using only the quality guarantees provided by competitive analysis is a naive
way to distinguish good paging algorithms from bad ones, we have shown in [10]
that ideas from competitive analysis for randomized algorithms can be success-
fully employed to design algorithms with good performance on real-world inputs.
That is because an optimal randomized algorithm can be viewed as a collection
of reasonable deterministic algorithms, and the algorithm designer can simply
look for suitable algorithms in this collection.

Randomized paging algorithms have been well studied over the past two
decades. In [11] a lower bound of Hk on the competitive ratio of randomized
paging algorithms has been given1. Also in [11], a simple (2Hk − 1)-competitive
algorithm, denoted Mark, has been proposed. In [12] it was shown that no ran-
domized marking algorithm can achieve a competitive ratio better than (2−ε)Hk

for any ε > 0. The first strongly competitive paging algorithm, Partition, was
proposed in [3]. While it is strongly competitive, its time and space usage are in
the worst case proportional to the input size independent of the cache size, which
is hopelessly high. More recent research focused on improving these bounds, es-
pecially the space requirements. Apart from the k pages in cache, a paging
algorithm may store information about pages not in cache. In the literature,
these “extra” pages are denoted bookmarks. An Hk-competitive algorithm, de-
noted Equitable, using O(k2 log k) bookmarks was proposed in [13]. A better
version of Equitable, denoted Equitable2, improved this bound to 2k book-
marks [14]. This solved the open question in [8] that there exist Hk-competitive
paging algorithms using O(k) space. In [15] we proposed an algorithm, Online-
MIN, which further improved Equitable2 by reducing its runtime for process-
ing a page from O(k2) to O(log k/ log log k) while maintaining its space usage.
Note that Mark and most deterministic algorithms use no bookmarks.

A distinct line of research for randomized paging algorithms considers fixed
cache sizes (k = 2 and k = 3 to our best knowledge) to obtain tighter bounds
than for general k. In [16], for k = 2, a 3

2 -competitive algorithm using only one
bookmark was proposed. Still for k = 2, for randomized algorithms using no
bookmarks lower and upper bounds on the competitive ratio of 37

24 ≈ 1.5416
and ≈ 1.6514 respectively were given in [12,16]. In [14], strongly competitive
randomized paging algorithms were proposed for k = 2 and k = 3, using 1 and 2
bookmarks respectively.

1 Hk =
∑k

i=1 1/i is the kth harmonic number.
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Our Contributions. This work focuses on the number of bookmarks needed by
randomized algorithms to achieve the optimal competitive ratio of Hk. The best
previously known result is 2k [14]. In [2] it was conjectured that there exist
algorithms that use o(k) bookmarks and are Hk-competitive. We first give a
tighter analysis for Equitable2 improving the amount of bookmarks from 2k
to ≈ 0.62k, which is the first solution using less than k bookmarks. We give
a negative result showing that Equitable2 cannot be Hk-competitive and use
o(k) bookmarks. Nonetheless, we show that it can trade competitiveness for
space: if it is allowed to be (Hk + t)-competitive, it requires k/(1+ t) bookmarks.

We propose Partition2 which is a modification of the Partition algorithm.
Partition2 improves the bookmark requirements of Partition from propor-
tional to input size to Θ(k/ log k) and thus proves the o(k) conjecture. For our
analysis we provide a constructive equivalent between the two representations of
the offset functions in [17] and [3]. Since offset functions are the key ingredient
for optimal competitive paging algorithms, this may be of independent interest.

2 Preliminaries

Offset Functions and Layer Representation. For the paging problem it is pos-
sible to track online the exact minimal cost using offset functions. For a fixed
input sequence σ and an arbitrary cache configuration C (i.e., a set of k pages),
the offset function ω assigns to C the difference between the minimal cost of
processing σ ending in configuration C and the minimal cost of processing σ.
A configuration is called valid iff ω(C) = 0. In [17] it was shown that the class
of valid configurations V determines the value of ω on any configuration C by
ω(C) = minX∈V{|C \X |}. We can assume that OPT is always in a valid con-
figuration. More precisely, if p is requested and there exists a valid configuration
containing p, then the cost of OPT is 0; otherwise OPT pays 1 to process p.

In [17] it was shown for the paging problem that the offset function can be rep-
resented as a partitioning of the pageset in k+1 disjoint sets L = (L0|L1| . . . |Lk),
denoted layers. An update rule for the layers when processing a page was also
provided. Initially, the first k pairwise distinct requested pages are stored in lay-
ers L1, . . . , Lk, one page per layer, and L0 contains the remaining pages. Upon
processing page p, let Lp be the partitioning after processing p; we have2:

– Lp = (L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

– Lp = (L0| . . . |Li−2|Li−1 ∪ Li \ {p}|Li+1| . . . |Lk|{p}), if p ∈ Li, i > 0

This layer representation can keep track of all valid configurations. More specif-
ically, a set C of k pages is valid iff |C ∩ Li| ≤ i holds for all 0 ≤ i ≤ k [17]. For
a given L, denote by support S(L) = L1 ∪ . . . ∪ Lk. Also, a layer containing a
single page is a singleton. Let r be the smallest index such that Lr, . . . , Lk are
singletons. The pages in Lr, . . . , Lk are denoted revealed, the pages in support

2 We use the layer representation introduced in [15], which is equivalent to the ones
in [13,17].
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which are not revealed are unrevealed, and the pages in L0 are denoted Opt-miss.
OPT faults on a request to p iff p ∈ L0 and all revealed pages are (independent
of the current request) in OPT’s cache. If L has only revealed pages it is denoted
a cone and we know the content of OPT’s cache. We define the signature χ(L) as
a k-dimensional vector χ = (x1, . . . , xk), with xi = |Li| − 1 for each i = 1, . . . , k.

Selection Process. In [15] we defined a priority-based selection process on L which
is guaranteed to construct any valid configuration. Assuming that support pages
have pairwise distinct priorities, we build a hierarchy of sets C0, . . . , Ck:

– C0 = ∅
– Ci has the i pages in Ci−1 ∪ Li having the highest priorities, for all i > 0.

Note that, by definition, when constructing Ci there are i + xi candidates and i
slots. Also, if Li is singleton we have xi = 0 and Ci = Ci−1 ∪ Li; for singleton
layers and only for singleton layers, all elements in both Ci−1 and Li make it
to Ci and we say that no competition occurs. The outcome Ck contains k pages
and is always a valid configuration.

Equitable, OnlineMin, and Forgiveness. The cache content of the Equitable
algorithms [13,14] is defined by a probability distribution over the set of valid
configurations. This distribution is achieved by OnlineMin using the previously
introduced priority-based selection process, when priorities are assigned to sup-
port pages such that each permutation of the ranks of these pages is equally
likely [15]. The cache content of OnlineMin is at all times the outcome Ck

of the selection process. Nonetheless, the resulting probability distribution on
cache configurations is the same as for Equitable [15], and in the rest of the
paper we refer to this distribution and the associated algorithm as Equitable.

Note that the support size increases only when pages in L0 are requested. As
the number of Opt-miss requests may be very large, the support size and together
with it the space usage of algorithms, such as Equitable, using it to decide
their cache content may also be arbitrarily large. To circumvent this problem,
the forgiveness mechanism is used. Intuitively, if the support size exceeds a given
threshold, then the adversary did not play optimally and we can afford to use
an approximation of the offset function with a layer representation bounded in
size.

3 Better Bounds for Equitable2

There are two Equitable algorithms, Equitable [13] and Equitable2 [14]3.
For a fixed offset function, they have the same distribution as previously intro-
duced. The difference between them is given by forgiveness mechanisms, which
are used to approximate the current offset functions. In this section we focus on
the Equitable2 algorithm using the forgiveness mechanism described in [14]

3 In [14] Equitable2 is denoted K Equitable. In this paper we use its original name.
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which works as follows. Whenever the support size reaches 3k and an Opt-miss
page is requested, the requested page is artificially inserted in L1 and processed
as a L1 page. All pages in L1 move to L0 and the support size never exceeds 3k.
We give a tighter analysis and show that using the same forgiveness the algo-
rithm uses less than k bookmarks and prove that o(k) bookmarks is not possible.
Finally, we show that it can trade competitiveness for space: if the algorithm
uses k/(1 + t) bookmarks, then it is (Hk + t)-competitive, for t ≥ 0.

To accommodate the selection process for OnlineMIN, all pages in support
have pairwise distinct priorities, such that each priority ordering of the support
pages is equally likely. We say that some page p has rank i in a set if its priority
is the i’th largest among the elements in the given set.

In [13] an elegant potential function, based only on the current offset function,
was introduced. Given the layer representation L, the potential Φ(L) is defined to
be the cost of a so-called lazy attack sequence, that is, a sequence of consecutive
requests to unrevealed pages until reaching a cone. The potential Φ is well defined
because in the case of the Equitable distribution, all lazy attack sequences have
the same overall cost for a given offset function [13].

Initially, we are in a cone and Φ = 0. Upon a request to a page p in support,
having cache miss probability pb(p), by definition we have that ΔΦ = −pb(p).
On lazy requests OPT does not fault and thus Δcost + ΔΦ = ΔcostOPT = 0.
Upon a request from L0 both Equitable and OPT have cost 1 and it was shown
that ΔΦ ≤ Hk − 1 [13,14]. We thus have:

Δcost + ΔΦ ≤ Hk ·ΔcostOPT .

If L is a cone, it is easy to verify that ΔΦ = Hk − 1 for a request in L0. If the
support size exceeds k, the difference in potential is smaller, i.e. ΔΦ < Hk − 1.
This means that the algorithm pays less than its allowed cost and thus it can
make savings, which can be tracked by a second potential function and pay for
the forgiveness step when the support is large enough. While Φ is very convenient
to use for requests in support, for arbitrary offset functions there is no known
closed form for its exact actual value or for its exact change upon a request in L0.

3.1 Approximation of Φ

The key ingredient to our analysis is to get a bound for ΔΦ that is as tight
as possible on requests in L0. A tighter bound for this value implies larger
savings, which in turn means that these savings can pay earlier (i.e. for a smaller
support size) for a forgiveness step, which in the end means fewer bookmarks.
We therefore analyze ΔΦ for requests to pages in L0 when no forgiveness step is
applied. Note that Φ depends only on the signature χ = (x1, . . . , xk) of the layer
representation. We use χ = 0 for the cone signature (0|0| . . . |0) and χ = ei for
the i-th unit vector (0| . . . |xi = 1| . . . |0). If χ = 0 we have Φ = 0. Otherwise, let i
be the largest index such that xi > 0. Since all lazy attack sequences have the
same cost, we consider Φ as the cost of i consecutive requests, each of them to
a page in the (current) first layer. For the layer representation L of the current
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offset function, we let cost1(L) denote the probability of cache miss for a page p
in L1, i.e. pb(p /∈ Ck) in the selection process.

We start with the case when all layers are singletons except some layer Li.
The potential Φ for this particular case is given in Lemma 1. For some arbitrary
values i, n, and γ, where 0 < i < γ ≤ k consider the signatures χ = n·ei and χ′ =
n ·ei +eγ−1; let L and L′ be their corresponding layer representations. We define
the difference in the cost for a request in L1: f(i, n, γ) = cost1(χ′)− cost1(χ). In
the special case γ = k it represents Δcost1 upon a request in L0. The value for
f(i, n, γ) can be computed exactly and is given in Lemma 2, and in Lemma 3 we
show that f(i, n, γ) is an upper bound on Δcost1 for a whole class of signatures.
Lemma 4 provides an identity for approximating ΔΦ for a request in L0. The
proofs for all these results are given in the full version.

Lemma 1. Let χ = n · ei be the signature of L, where n > 0 and 0 < i < k. We
have Φ(χ) = n · (Hi+n −Hn).

Lemma 2. It holds that f(i, n, γ) = 1
n+γ

∏γ−1
j=i

j
n+j .

Lemma 3. Consider a signature χ = (x1| . . . |xk), and let i be the minimal index
with xj = 0 for all j > i. Also, let χ′ = χ+eγ−1, i < γ ≤ k. For n = x1+· · ·+xi,
we have cost1(χ′)− cost1(χ) ≤ f(i, n, γ).

Lemma 4. It holds that
∑i

j=1 f(i− j + 1, 1, γ− j + 1) = Hγ −Hγ−i− i
γ+1 , for

any i and γ with i < γ.

Theorem 1. For a request to a page p ∈ L0 where no forgiveness is applied,
let i be the largest index with xi > 0; i = 0 if we are in a cone. We have that:

Hk−i −H1 ≤ ΔΦ ≤ Hk −H1 − i/(k + 1).

Proof. For i = 0, in a cone we have ΔΦ = Hk − 1 by Lemma 1. If i > 0, let
L and L′, and χ and χ′ = χ + ek−1 denote the layers and their corresponding
signatures before and after the request to p respectively. We consider the cost
of a sequence of i consecutive requests p1, . . . , pi, each of these to pages in the
current L1. For each j = 1, . . . , i let χj and χ′j denote the signatures before
processing pj . After the whole sequence is processed, we have χ = 0 with Φ = 0
and χ′ = ek−i−1 with Φ′ = Hk−i −H1 by Lemma 1. We get:

ΔΦ = Hk−i −H1 +
i∑

j=1

(
cost1(χ′

j
)− cost1(χj)

)
Since cost1(χ′

j
)− cost1(χj) is non-negative, the left inequality holds.

Now we bound cost1(χ′
j
)− cost1(χj) using Lemma 3. Before processing page

pj we have xj
i−j+1 > 0, xj

l = 0 for all indices l > i− j + 1 and χ′j = χj + eγ−1

with γ = k− j + 1 . Denoting nj = xj
1 + · · ·+ xj

i−j+1, and using the fact that f

is decreasing in n, nj > 0 for all j ≤ i, and the result in Lemma 4, we get:

ΔΦ ≤
i∑

j=1

f(i−j+1, nj, k−j+1)+Hk−i−H1 ≤ Hk−Hk−i−
i

k + 1
+Hk−i−H1 .
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3.2 Competitiveness and Bookmarks

Having obtained a tighter bound on ΔΦ for requests in L0, we get improved
savings using a second potential Ψ . To define Ψ(L), we first introduce the concept
of chopped signature. For some signature χ = (x1| . . . |xk), let i be the largest
index such that xi > 0. The chopped signature corresponding to χ is χ =
(x1| . . . |xk), where xi = xi − 1 and xj = xj for all j �= i. If we are in a cone

and χ = 0 we define χ = χ. We define Ψ as Ψ(L) = 1
k+1

∑k−1
i=1 i · xi. Note that

Ψ(L) = 0 if χ = 0 or χ = ei and otherwise we have Ψ(L) > 0.

Fact 1. For a request to page p ∈ Li, i > 0, we have ΔΨ = − 1
k+1

∑k−1
j=i xj .

To prove that Equitable2 is Hk-competitive, it suffices to show that for each
request cost + Φ + Ψ ≤ Hk · costOPT , as both Φ and Ψ are non-negative.

Lemma 5. If no forgiveness is done then Δcost + ΔΦ + ΔΨ ≤ Hk ·ΔcostOPT .

Proof. We first analyze the case for a request p ∈ Li, with i > 0. We have
Δcost + ΔΦ = 0 by the definition of Φ and ΔcostOPT = 0. By Fact 1 ΔΨ ≤ 0
and we are done. For requests to pages in L0, both the algorithm and OPT incur
a cost of one, and thus Δcost = 1 and ΔcostOPT = 1. It remains to show that
ΔΨ + ΔΦ ≤ Hk − 1. We analyze separately the case when we are in a cone. In
this case, by definition ΔΨ = 0, and by Lemma 1 we obtain ΔΦ = Hk−1. In the
following we assume we are not in a cone upon the L0 request. Let i be the largest
index with xi �= 0. By the update rule, we get that x′k−1 = xk−1 +1 and x′j = xj

for all j �= k − 1. For the chopped signature χ′ this implies x′j = xj for all j �= i

and x′i = xi+1, because i �= k as Lk is always singleton. It follows ΔΨ = i/(k+1).
On the other hand we have by Theorem 1 that ΔΦ ≤ Hk −H1 − i/(k + 1).

Theorem 2. Equitable2 is Hk-competitive and uses 2 +
√
5−1
2 · k bookmarks.

Proof. If the support size reaches the threshold k + x, i.e. x bookmarks, we
apply upon a request from L0 the forgiveness mechanism from [14]. Recall that
we move the requested page artificially into L1, and then we process it as if it
was requested from L1. We have Δcost = 1 and ΔcostOPT = 0. Like in [14], we
need to prove that 1 +ΔΦ+ΔΨ ≤ 0. Denote by χ the current signature, and let
x =

∑k
i=1 xi be the number of bookmarks used by the algorithm. We have that

ΔΦ = −cost1(χ). We get that 1 + ΔΦ is the probability that a page in L1 is in
the algorithm’s cache, which by the selection process of OnlineMin is at most
k/|S| = k/(x+k). Using the result in Fact 1 and the fact that

∑k−1
j=1 xj = x− 1,

we need to ensure that: k
x+k −

x−1
k+1 ≤ 0 . Solving this inequality, we get x is

at most
√
5−1
2 k + 2. Therefore, Equitable2 needs only

√
5−1
2 k + 2 ≈ 0.62k

bookmarks. The cases where no forgiveness occurs are covered by Lemma 5.

In Theorem 3 and Theorem 4 we show that Equitable2 cannot be both Hk-
competitive and use o(k) bookmarks, but that it can trade competitiveness for
bookmarks. The proofs of these results are provided in the full version.
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Theorem 3. If Equitable2 uses t ≤ k/4 bookmarks, it is not Hk-competitive.

Theorem 4. There exist implementations of Equitable2 that use k/(1 + c)
bookmarks and are (Hk + c)-competitive, for k > 1 and c ≥ 1.

4 Partition

In this section we prove the conjecture in [14] that there exists a strongly com-
petitive paging algorithm using o(k) bookmarks. We propose a variation of the
Partition algorithm [3], denoted Partition2, using Θ(k/ log k) bookmarks.
We also give a simple lower bound showing that for any Hk-competitive random-
ized paging algorithm, the number of pages having non-zero probability of being
in cache is at least k + k/Hk. This leads to a lower bound of k/Hk bookmarks
for all algorithms which store all non-zero probability pages, i.e. representation
of the approximated offset function, and have a deterministic forgiveness step.
Note that this bound holds for all known Hk-competitive algorithms.

4.1 Partition

We give a brief description of the Partition algorithm in [3]. A crucial difference
compared to Equitable is that while the distribution of the cache configurations
depends only on the current offset function for Equitable, Partition uses
a more detailed representation of the offset function, which we denote in the
following set-partition. It partitions the whole pageset into a sequence of disjoint
sets Sα, Sα+1, . . . , Sβ−1, Sβ and each set Si with i < β has a label ki. Initially
β = α + 1, Sβ contains the first k pairwise distinct pages, the remaining pages
are in Sα, and kα = 0. Throughout the computation Sβ contains all revealed
pages and Sα all Opt-miss pages. The set-partition is updated as follows:

– if p ∈ Sα: Sα = Sα \ {p}, Sβ+1 = {p}, kβ = k − 1, and β = β + 1.
– if p ∈ Si, with α < i < β: Si = Si \ {p}, Sβ = Sβ ∪ {p}, and kj = kj − 1,

(i ≤ j < β). Additionally, if there are labels which become zero, let j be the
largest index such that kj = 0; we set Sj = Sα ∪ · · · ∪ Sj and α = j.

– if p ∈ Sβ : nothing changes

In [3] it was shown that the following invariants on the labels hold: kα = 0 and
ki > 0 for all i > 0; kβ−1 = k − |Sβ |. Furthermore, it holds at all times that
ki = (ki−1 + |Si|) − 1. The probability distribution of the cache content can be
described as the outcome of the following selection process on the set-partition:

– Cα = ∅
– For α < i < β choose p uniformly at random from Ci−1 ∪ Si and then set
Ci = (Ci−1 ∪ Si) \ {p}

– Cβ = Cβ−1 ∪ Sβ .

Note that, whereas for the selection process of OnlineMIN it holds that |Ci| = i
(0 ≤ i ≤ k), for Partition we have that |Cj | = kj (α ≤ j ≤ β − 1).
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Lemma 6 ([3, Lemma 3]). If p is requested from Si, where α < i < β, the
probability that p is not in the cache of Partition is at most

∑
i≤j<β

1
kj+1 .

Apart from obeying the probability distribution, Partition must satisfy two
constraints: it must not evict pages upon a cache hit and it must not evict more
than one page upon a cache miss. For any set Ci, the membership of a page to Ci
is encoded with a marking system on pages as follows. If a page is in set Si, where
α < i < β, it has either no mark or a series of marks i, i+ 1, . . . , j− 1, j. If p has
no mark then p /∈ Ci and otherwise it is in the selection sets Ci, Ci+1, . . . , Cj−1, Cj .
The cache of Partition is at all times Cβ , with |Cβ | = k. For a page p ∈ Si it
suffices to store the value mp of the highest mark or i− 1 if p has no mark.

Initially there are only the two sets Sα and Sβ and thus no marks. If the
requested page p ∈ Sβ nothing changes. If p ∈ Sα first the set-partition is
updated, where β is increased by 1 and we have to determine Cβ−1. A page q is
chosen uniformly at random from the k elements Cβ−2∪Sβ−1 (the cache content
before the request), and this element is the only one not receiving a β− 1 mark.
The page q is replaced in the cache by the requested page p. We now turn to
the case p ∈ Si, where α < i < β. If p is in cache then mp = β − 1 and we are
done. Otherwise let j ≤ β − 1 be the lowest index such that p /∈ Cj. We choose
uniformly at random a page q ∈ Cj and set mp = mq and mq = j − 1, i.e. p
steals the marks of q. We repeat this until mp = β− 1. The page which loses its
β − 1 mark is replaced in cache by p. Afterwards the set-partition is updated.

4.2 Partition2

Partition2 is a variant of Partition which uses (deterministic) forgiveness
to reduce the space usage from arbitrarily high bookmarks to O(k/ log k) book-
marks. A lower bound is provided which shows that this bound is asymptotically
optimal for algorithms using deterministic forgiveness. Unlike previous works,
when a forgiveness step must be applied, we distinguish between two cases and
apply two distinct forgiveness rules accordingly. The first of them is the same
one used by Equitable2 and covers only a single request, and the second one is
a forgiveness phase which spans consecutive requests. To apply the forgiveness
step of Equitable2, we provide an embedding of the set-partition into the layer
representation of the offset function. Based on this embedding, we give a simple
potential function which depends only on the signature of the offset function.

Layer Embedding. We provide an embedding of the set-partition into the layer
representation of the offset functions, as used by Equitable. The layers become
ordered sets and contain pages and set identifiers, the latter of which we visualize
by  . The initialization does not change and no set identifiers are present. The
update rule changes mainly for the case p ∈ L0:

Lk−1 = (Lk−1, Lk,  ), Lk = {p}.

In the case p ∈ Li, upon the merge operation Li−1 ∪Li \ {p}, we remove p from
Li and concatenate Li−1 with Li without removing any set identifier. Upon
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merging L1 into L0 we delete all set identifiers from the resulting layer L0. The
following fact follows inductively.

Fact 2. For Li, with i > 0 and |Li| = 1+xi, it holds that Li contains exactly xi

set identifiers. Moreover, if xi > 0 then the last element in Li is a set identifier.

We describe how to obtain the sets of the set-representation. Let j be maximal
such that xj > 1. We have Sβ = Lj+1 ∪ · · · ∪ Lk and Sα = L0. A set Sα+j ,
where 1 < j < β − α consists of all pages between the (j − 1)-th and the j-
th set identifier; for j = 1, Sα+1 consists of all support pages until the first set
identifier. We say that each set Sα+j , 0 < j < β−α, is represented by the j’th set
identifier. As long as no pages are moved into Sα, the correspondence between the
layer representation and the set-partition follows immediately from the update
rules. Otherwise, by Lemma 7 and noticing that each Li with xi > 0 ends in
a set delimiter, we obtain that p is in L1 and moreover the pages moved to Sα

correspond to L1 \ {p}.
Lemma 7. Let Sa, Sa+1, . . . , Sb be the sets whose identifiers are in layer Li,
i ≥ 0. We have kb = i, ka+j ≥ i for 0 ≤ j < b− a.

Proof. Due to space limitations, the proof is provided in the full version.

Lemma 8. If p is requested from Li, where i > 0, the probability that p is not
in the cache of Partition is at most

∑
j≥i

xj

j+1 .

Proof. If p ∈ Sβ , then it is in a revealed layer Li and thus xj = 0 for all
j ≥ i and the result holds. Let Si∗ be the set with p ∈ Si∗ , α < i∗ < β.
Then by Lemma 6 we have the probability bounded by

∑
i∗≤j∗<β

1
kj∗+1 . All sets

S∗j , where i∗ ≤ j∗ < β have their identifier in some layer Lj with j ≥ i and

using Lemma 7 we obtain 1
kj∗+1 ≤

1
j+1 . Since each layer Lj contains exactly xj

identifiers the statement follows.

Forgiveness. Forgiveness is applied when the support size reaches a threshold
of k + 3t (we define t later) and a page in L0 is requested. Depending on the
support we have two kinds of forgiveness: regular forgiveness and an extreme
forgiveness mode. The regular forgiveness is applied if |L1|+ · · ·+ |Lt| > 2t and
is an adaptation of the forgiveness step of Equitable2. If a page p is requested
from L0 (equivalent to Sα), we first identify a page q satisfying that q ∈ Sα+1∩L1.
Note that there always exists such a page, since kα+1 ≥ 1 and |S1| = k1 + 1 and
at least one of them is in L1. We move q to L0 and replace it, together with
its marks, by p. Then we perform the set-partition and mark update where p is
requested from Sα+1. We stress that in terms of the layer representation (used
by e.g. Equitable), we replace the requested page with an existing page in L1,
and replacing q ∈ L1 by p and requesting p leads to the same offset function
when the forgiveness step in [14] is applied. This has a cost of 1 for Partition
and a cost of 0 for OPT. The support size decreases by |L1| − 1 ≥ 0.

The extreme forgiveness mode is applied if |L1| + · · ·+ |Lt| ≤ 2t. We simply
apply regular forgiveness for any page request in L0 starting with the current
one. This extreme forgiveness mode ends when reaching a cone.
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Competitive Ratio. We use Partition with the forgiveness rule for t = � k
ln k �

from the previous paragraph if k > 10 and denote the resulting algorithm Par-
tition2. For k ≤ 10 we use the regular forgiveness if the support size reaches 2k.

Theorem 5. Partition2 uses Θ( k
log k ) bookmarks and is Hk-competitive.

Proof. The space bound follows from the fact that the support size never exceeds
k + 3t for k > 10, where t = � k

ln k �. It remains to show that Partition2 is still
Hk-competitive. We use the following potential function on the layer embedding:

Φ =

k−1∑
j=1

xj · (Hj+1 − 1) .

We denote by cost the cost of Partition2 and by OPT the cost of the optimal
offline algorithm. We have to show that cost ≤ Hk ·OPT holds after each request.
In all cases except the extreme forgiveness we show that the following holds
before and after each request: Φ+cost ≤ Hk ·OPT . This leads to cost ≤ Hk ·OPT
since Φ ≥ 0. When applying the extreme forgiveness we assume that the potential
inequality holds before the phase and show that it holds at the end of the phase,
but not necessarily during the phase. For requests during the phase we argue
directly that it always holds cost ≤ Hk · OPT .

Let p be the requested page. If p ∈ L0 without forgiveness, ΔOPT = 1 and
xk−1 increases by 1, which implies that ΔΦ + Δcost = Hk − 1 + 1 = 1 ·Hk. If p
is from some layer Li, where 0 < i ≤ k, we use the bound on the cache miss
probability from Lemma 8

ΔΦ + Δcost ≤ −
∑
j≥i

xj

j + 1
+
∑
j≥i

xj

j + 1
≤ 0 ≤ Hk ·ΔOPT.

Now we analyze the cases where forgiveness occurs for k > 10. Assume that
|L1|+ · · ·+ |Lt| ≥ 2t+1 which implies that x1 + · · ·+xt ≥ t+1. We perform just
one forgiveness step, yielding Δcost = 1 and ΔOPT = 0. We show ΔΦ ≤ −1:

ΔΦ = −
k−1∑
j=1

xj

j + 1
≤ −

t∑
j=1

xj

t + 1
= − t + 1

t + 1
= −1.

Now assume that xt+1 + · · ·+xk−1 ≥ 2t. Before we start the extreme forgiveness

mode, we have that Φ ≥
∑k−1

j=t+1 xj(Hj+1−1) ≥ 2t(Ht+2−1). For t = � k
lnk � and

Hx ≥ lnx we obtain: Φ ≥ 2k
lnk (ln k − ln ln k − 1) ≥ k, if k > 10. Right before the

phase starts we have cost + Φ ≤ Hk · OPT , where Φ ≥ k which is equivalent to
cost ≤ Hk ·OPT − k. Reaching the next cone implies at most k − 1 unrevealed
requests and thus the cost during this phase is bounded by k − 1. This implies
that cost ≤ Hk · OPT holds. Since in a cone Φ = 0 we also have at the end of
the phase the invariant cost + Φ ≤ Hk · OPT .

For the case k ≤ 10 the analysis of the extreme forgiveness does not hold. In
this case we use only the regular forgiveness step if we have k bookmarks. Using
x1 + · · ·+ xk−1 = k the same argument as before leads to ΔΦ ≤ −1.
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Lemma 9. For any Hk-competitive algorithm A there exists an input such that
the maximal number of pages with non-zero probability of being in A’s cache is
at lest k + k/Hk.

Proof. Due to space limitations, the proof is provided in the full version.
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Abstract. In this paper we study the classical no-wait flowshop schedul-
ing problem with makespan objective (F |no−wait|Cmax in the standard
three-field notation). This problem is well-known to be a special case of
the asymmetric traveling salesman problem (ATSP) and as such has
an approximation algorithm with logarithmic performance guarantee.
In this work we show a reverse connection, we show that any polyno-
mial time α-approximation algorithm for the no-wait flowshop scheduling
problem with makespan objective implies the existence of a polynomial-
time α(1 + ε)-approximation algorithm for the ATSP, for any ε > 0.
This in turn implies that all non-approximability results for the ATSP
(current or future) will carry over to its special case. In particular, it
follows that no-wait flowshop problem is APX-hard, which is the first
non-approximability result for this problem.

1 Introduction

1.1 Problem Statement and Connection with ATSP

A flowshop is a multi-stage production process with the property that all jobs
have to pass through several stages. There are n jobs Jj , with j = 1, . . . , n,
where each job Jj is a chain of m operations Oj1, . . . , Ojm. Every operation Oji

is preassigned to the machine Mi. The operation Oji has to be processed for tji
time units at its stage; the value tji is called its processing time or its length. In a
feasible schedule for the n jobs, at any moment in time every job is processed by
at most one machine and every machine executes at most one job. For each job
Jj , operation Oji−1 always is processed before operation Oji, and each operation
is processed without interruption on the machine to which it was assigned.

In the no-wait flowshop problem (No-Wait-Flowshop) we require two ad-
ditional constraints to be satisfied:
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– There is no waiting time allowed between the execution of consecutive oper-
ations of the same job. Once a job has been started, it has to be processed
without interruption, operation by operation, until it is completed.

– Each machine processes the jobs in the same order (i.e. we only allow so-
called permutation schedules). Note that this applies to all jobs, not only
those with non-zero processing time on a given machine. In other words,
one should treat zero length operations as having an infinitely small, but
non-zero length.

Our goal is to find a permutation σ of jobs that minimizes the makespan (or
length) Cmax(σ) of the schedule, i.e., the maximum completion time among all
jobs. The minimum makespan among all feasible schedules is denoted by C∗max.

Consider two jobs Ji and Jj that are processed one after another in a no-wait
permutation schedule. Let δ(i, j) be the minimum time we need to wait to start
the job Jj after starting the job Ji. What is the value of δ(i, j)? Clearly we
need to wait at least ti1. But since job j cannot wait on the second machine, we
also need to wait at least ti1 + ti2 − tj1. Generalizing this leads to the following
expression

δ(i, j) = max
q=1,...,m

{
q∑

k=1

tik −
q−1∑
k=1

tjk

}
. (1)

Note that δ satisfies the triangle inequality, i.e. δ(i, j) ≤ δ(i, k) + δ(k, j) for any
jobs Ji, Jj , Jk. The easiest way to see this is by considering the ’waiting time’
intuition that led to its definition.

Let L(j) =
∑m

k=1 tjk be the total processing time (or length) of job Jj . Then
a no-wait schedule that processes the jobs in order σ has makespan

Cmax(σ) =

n−1∑
k=1

δ(σk, σk+1) + L(σn). (2)

In the asymmetric traveling salesman problem (ATSP), we are given a complete
directed graph G = (V,E) with arc weights d(u, v) for each u, v ∈ V . It is usually
assumed that the arc weights satisfy the semimetric properties, i.e. d(u, u) = 0 for
all u ∈ V and d(u, v) ≤ d(u,w) + d(w, v) for all u,w, v ∈ V . The goal is to find a
Hamiltonian cycle, i.e. a cycle that visits every vertex exactly once, of minimum
total weight. The asymmetric traveling salesman path problem (ATSPP) is
defined analogously, the only difference is that we are looking for a path that
starts and ends in arbitrary but distinct vertices and visits all other vertices
exactly once along the way. The distance function δ can be used to cast No-
Wait-Flowshop as ATSP by introducing a dummy job consisting of m zero
length operations, and modifying δ slightly by setting δ(i, i) = 0 for all i =
1, . . . , n. The role of the dummy job is to emulate the L(σn) term in (2).

The No-Wait-Flowshop was first defined in the 1960 by Piehler [11] who
also noticed this problem is a special case of the ATSP. This connection was
also later noticed by Wismer [17]. The No-Wait-Flowshop is usually denoted
F |no − wait|Cmax using the standard three-field scheduling notation (see e.g.
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Lawler et al. [9]). Although no-wait shop scheduling problems arise naturally in
many real-life scenarios (steel manufacturing, hot potato routing) they sometime
behave in a way uncommon for other scheduling problems, e.g. speeding up a
machine may actually increase the makespan [14].

1.2 Known Results

For the No-Wait-Flowshop with two machines, the distance matrix of the
corresponding ATSP has a very special combinatorial structure, and the famous
subtour patching technique of Gilmore and Gomory [5] yields an O(n log n) time
algorithm for this case. Röck [12] proves that the three-machine no-wait flowshop
is strongly NP-hard, refining the previous complexity result by Papadimitriou
and Kanellakis [10] for four machines. Hall and Sriskandarajah [6] provide a
thorough survey of complexity and algorithms for various no-wait scheduling
models.

We say that a solution to an instance I of a problem is ρ-approximate if its
value is at most ρ|OPT |, where |OPT | is the value of the optimum solution to
I. We say that an approximation algorithm has performance guarantee ρ for
some real ρ > 1, if it delivers ρ-approximate solutions for all instances. Such an
approximation algorithm is then called a ρ-approximation algorithm. A family
of polynomial time (1 + ε)-approximation algorithms over all ε > 0 is called a
polynomial time approximation scheme (PTAS).

For the No-Wait-Flowshop with fixed number of machines, i.e. Fm|no −
wait|Cmax in standard notation, there exists a polynomial time approximation
scheme [15]. The only known approximability results for the general case are
�m/2�-approximation algorithm from [13] or algorithms designed for the ATSP
with performance guarantees log2 n [4], 0.999 log2 n [2], 0.84 log2 n [7], 0.66 log2 n

[3], O
(

logn
log log n

)
[1].

We remark that the strongest known negative result for the general ATSP
with the triangle inequality is due to Karpinski et al. [8]. They prove that unless
P = NP , the ATSP with triangle inequality cannot have a polynomial time ap-
proximation algorithm with performance guarantee better than 75/74. We are
not aware of any known non-approximability results for the No-Wait-Flow-
shop.

1.3 Our Results and Organization of the Paper

In this paper we show that No-Wait-Flowshop is as hard to approximate as
ATSP, i.e. given an α-approximation algorithm for No-Wait-Flowshop one
can approximate ATSP with ratio arbitrarily close to α. In particular, this gives
APX-hardness for No-Wait-Flowshop. It is worth noting that No-Wait-
Flowshop has recently received increased interest, since it was viewed as a
(potentially) easy case of ATSP, and possibly a reasonable first step towards
resolving the general case. It is for this reason that it was mentioned by Shmoys
and Williamson [16] in their discussion of open problems in approximation al-
gorithms. Our results settle this issue.
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We also give an O(logm)-approximation algorithm for No-Wait-Flowshop.
On one hand, this can be seen as an improvement over the �m/2�-approximation
from [13]. But this result also shows that, unless we obtain an improved approx-
imation for ATSP, the number of machines used by any reduction from ATSP
to No-Wait-Flowshop has to be eΩ(logn/ log log n). In this sense our reduction,
which uses a number of machines polynomial in n, cannot be significantly im-
proved.

The paper is organized as follows. In Section 2 we give the reduction from
ATSP to No-Wait-Flowshop. We begin by showing in Subsection 2.1 that
instead of general ATSP instances, it is enough to consider instances of ATSPP
with integer edge weights that are small relative to |OPT | and polynomial in n.
We then proceed with the reduction. We start by showing in Subsection 2.2 that
any semi-metric can be represented as a No-Wait-Flowshop distance function
with only a small additive error. This already shows that No-Wait-Flowshop
distance functions are in no way “easier” than general semi-metrics. However,
this is not enough to reduce ATSPP to No-Wait-Flowshop, because of the
last term in the objective function (2). To make this last term negligible, we
blow-up the ATSPP instance without significantly increasing the size of the
corresponding No-Wait-Flowshop instance, by using a more efficient encod-
ing. This is done in Subsection 2.3.

Finally, in Section 3 we present the O(logm)-approximation algorithm for
No-Wait-Flowshop.

2 Non-approximability Results for No-Wait-Flowshop

2.1 Properties of the ATSP Instances

In the rest of the paper we will use OPT to denote an optimal solution of the
given ATSP instance and |OPT | the value of such an optimal solution.

Lemma 1. For any instance G = (V, d) of ATSP and any ε > 0, one can
construct in time poly(n, 1/ε) another instance G′ = (V ′, d′) of ATSP with
|V ′| = O(n/ε), such that:

1. all arc weights in G′ are positive integers and the maximal arc weight W ′ =

O
(

n log n
ε

)
(regardless of how large the original weights are);

2. W ′ ≤ ε|OPT ′|, where OPT ′ is an optimal solution to G′.

and given an α-approximate solution to G′ one can construct an α(1 + O(ε))-
approximate solution to G in time poly(n, 1/ε).

Proof. Given an instance G = (V, d) of ATSP, we first run the logn-
approximation algorithm for the ATSP from [4]. Let R be the value of the
approximate solution found by the algorithm. We know that |OPT | ≤ R ≤
logn · |OPT |.
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Then we add Φ = εR
n log2 n to each arc weight and round each arc weight up

to the closest multiple of Φ. Let d̄(u, v) be the new weight of the arc (u, v). We
claim that the triangle inequality is still satisfied for new edge weights. Indeed,
for any u,w, v ∈ V we have

d̄(u, v) ≤ d(u, v) + 2Φ ≤ d(u,w) + d(w, v) + 2Φ ≤ d̄(u,w) + d̄(w, v).

Moreover, the value of any feasible solution for the two arc weight functions d
and d̄ differs by at most 2εR/ logn ≤ 2ε · |OPT |. We now divide the arc weights

in the new instance by Φ. The resulting graph Ĝ = (V, d̂) has integral arc weights.
Moreover, they all have values at most O(n logn

ε ), since d(u, v) ≤ OPT for all

u, v ∈ V by triangle inequality. Finally, any α-approximate solution for Ĝ is also
an α(1 + O(ε))-approximate solution for G.

To guarantee the second property we apply the following transformation to
Ĝ. We take N = �2/ε� copies of Ĝ. Choose a vertex u in Ĝ arbitrarily and let
u1, . . . , uN be the copies of the vertex u in the copies of Ĝ. We define a new
graph G′ = (V ′, d′) that consists of N(n−1)+1 vertices by merging the vertices
u1, . . . , uN into a supervertex U , the remaining vertices of G′ consist of N copies
of V \ {u}.

If an arc of G′ connects two vertices of the same copy of Ĝ then it has the
same weight as the corresponding arc in Ĝ. If an arc (x′1, x

′
2) connects a copy

of a vertex x1 and a copy of a vertex x2 belonging to different copies of Ĝ then
we define d′(x′1, x

′
2) = d̂(x1, u) + d̂(u, x2), i.e. the weight is defined by the travel

distance from w1 to w2 through the special supervertex U . By definition the
maximal weight W ′ of an arc in G′ is at most 2Ŵ , where Ŵ is the maximum
weight of an arc in Ĝ, and so the first constraint holds for G′.

Moreover, we claim that the value of the optimal Hamiltonian cycle OPT ′ in
G′ is exactly N | ˆOPT |, where ˆOPT is an optimum solution for Ĝ. Indeed, it is
easy to see that there is a tour of length ≤ N | ˆOPT | obtained by concatenating
and short-cutting N optimal tours, one in each copy of Ĝ. On the other hand,
for any feasible tour T in G′ we can replace any arc of T that connects vertices
(say w1 and w2) in different copies of Ĝ by two arcs (w1, U) and (U,w2). Now we
have a walk T̂ through G′ of the same length as T . T̂ visits all the vertices of G′

exactly once except for the vertex U which is visited multiple times. Therefore,
T̂ consists of a set of cycles that cover all vertices except U exactly once and
vertex U is covered multiple times. We can reorder these cycles so that the walk
first visits all vertices of one copy then all vertices of the second copy and so on.
By applying short-cutting we obtain a collection of N Hamiltonian cycles, one
for each copy of Ĝ. Therefore, the original tour T in G′ cannot be shorter than
N | ˆOPT |, and so |OPT ′| = N | ˆOPT |.

We now have

W ′ ≤ 2Ŵ ≤ 2| ˆOPT | = 2|OPT ′|/N ≤ ε|OPT ′|,

so the second constraint is satisfied. The above argument is constructive, i.e.
given a Hamiltonian cycle of length L in G′, it produces a Hamiltonian cycle in
G of length at most L/N in time poly(n, 1/ε). ��
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Lemma 2. Let G = (V, d) be an instance of ATSP with |V | = n and d : V ×
V → {0, . . . ,W}. Then, one can construct in time O(n) an instance G′ = (V ′, d′)
of ATSPP with |V ′| = n+1 and d′ : V ×V → {0, . . . , 2W}, such that the optimal
values of the two instances are the same. Moreover, given a solution S′ of G′,
one can construct in time O(n) a solution of G with value at most the value of
S′.

Proof. We fix a vertex v ∈ V and define G′ as follows:

– V ′ = V \ {v} ∪ {vin, vout}, i.e. we split v into two vertices.

– For all pairs x, y ∈ V \ {v} we put d′(x, y) = d(x, y).

– For all x ∈ V \ {v} we put d′(vout, x) = d(v, x) and d′(x, vin) = d(x, v), i.e.
vin inherits the incoming arcs of v and vout inherits the outgoing arcs. We
also put d′(vout, vin) = 0.

– All the remaining arcs get length of 2W .

It is easy to verify that d′ satisfies the triangle inequality.
We now need to show that the shortest Hamiltonian tour in G has the same

length as the shortest Hamiltonian path in G′. Note that Hamiltonian tours in
G correspond to Hamiltonian paths in G′ starting in vout and ending in vin, and
that this correspondence maintains the total length. Using this observation, for
any tour in G, one can obtain a path in G′ of the same length.

In the opposite direction, let us consider a path S′ in G′. We will show how
to transform S′ without increasing its length, so that it begins in vout and ends
in vin. We proceed in two steps. First, if S′ does not begin in vout, we break
it before vout and swap the order of the two resulting subpaths. This does not
increase the length since any incoming arc of vout has length 2W .

Now, suppose that vin is not the last vertex on S′, i.e. it is visited between x
and y for some x, y ∈ V (vin cannot be the first vertex, since vout is). We remove
vin from S′ and append it on the end. The total change in the length of the path
is

Δ = d′(x, y) + d′(z, vin)− d′(x, vin)− d′(vin, y),

where z is the last vertex of the path. Using the definition of d′ we get

Δ ≤W + W − 0− 2W ≤ 0,

so this transformation does not increase the length of the path, which ends the
proof. ��

2.2 A Simple Embedding

In this section we show that jobs with the distance function δ in some sense
form a universal space for all semi-metrics (approximately). More precisely, let
Jm,T be the set of all m-machine jobs with all operations of length at most T ,
i.e. Jm,T = {0, 1, . . . , T }m. Then
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Theorem 1. For any n-point semi-metric (V, d), where d : V → {0, .., D}, there
exists a mapping f : V → J2nD,1, such that

δ(f(u), f(v)) = d(u, v) + 1 for all u, v ∈ V,

where δ is the distance function defined by (1).

Proof. First we define a collection of D + 1 jobs J (D) = {BD
0 , ..., BD

D} on 2D
machines with all operations of length either zero or one. Obviously, J (D) ⊆
J2D,1. The job BD

i consists of D−i zero length operations that must be processed
on machines M1, . . . ,MD−i, followed by D unit length operations that must be
processed on machines MD−i+1, . . . ,M2D−i. The last i operations have zero
length. By construction, L(BD

i ) = D for i = 0, . . . , D. Moreover, δ(BD
i , BD

j ) =
max(i − j + 1, 0).

In the following, we will use the symbol · to denote concatenation of se-
quences, and in particular sequences of jobs. Let ai ∈ J (D) and bi ∈ J (D)
for i = 1, . . . , k. Consider the job A = a1 · a2 · . . . · ak ∈ Jk2D,1 processed on
k2D machines M ′1, . . . ,M

′
k2D. That is, job A has the same operation length on

machine M ′(i−1)2D+r as job ai on machine Mr for r = 1, . . . , 2D. Analogously,
let B = b1 · b2 · . . . · bk ∈ Jk2D,1. Then

δ(A,B) = max{δ(a1, b1), . . . , δ(ak, bk)}. (3)

This is because by making job B start X time steps after job A, we ensure
that each sequence bi of operations starts X time steps after the sequence ai of
operations. Therefore, in any feasible schedule X ≤ max{δ(a1, b1), . . . , δ(ak, bk)}.
On the other side, starting job B exactly max{δ(a1, b1), . . . , δ(ak, bk)} time steps
after the start of the job A gives a feasible schedule.

Let V = {v1, ..., vn}. We define f(vi) = BD
d(vi,v1)

· . . . · BD
d(vi,vn)

. Then by (3)
we have

δ(f(vi), f(vj)) = max
k
{d(vi, vk)− d(vj , vk) + 1, 0} = d(vi, vj) + 1.

The last equality follows from the triangle inequality and the fact that d(vj , vj) =
0. ��

2.3 A More Efficient Embedding

Our main result concerning the relationship between ATSP and No-Wait-
Flowshop is the following.

Theorem 2. Let G = (V, d) be an instance of ATSP with |V | = n and let OPT
be the optimum TSP tour for G. Then, for any constant ε > 0, there exists an
instance I of No-Wait-Flowshop, such that given an α-approximate solution
to I, we can find a solution to G with length at most

α(1 + O(ε))|OPT |.

Both I and the solution to G can be constructed in time poly(n, 1/ε).
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Proof. We start by applying Lemma 1 to G and then Lemma 2 to the resulting
instance of ATSP. Finally, we scale all the distances up by a factor of �1/ε�. In
this way we obtain an instance G′ = (V ′, d′) of ATSPP, such that:

– n′ = |V ′| = O(n/ε).
– n′ ≤ εOPT ′ (this is due to scaling, since all arc weights are positive integers

before scaling).
– G′ has integral arc weights.
– W ′ = O(n log2 n/ε

2) and W ′ ≤ ε|OPT ′|, where W ′ and OPT ′ are the
maximum arc weight and the optimum solution for G′, respectively.

– Given an α-approximate solution to G′, one can obtain an α(1 + O(ε))-
approximate solution to G (using Lemma 1 and Lemma 2).

Note that one can simply encode G′ as a No-Wait-Flowshop instance using
Theorem 1. The problem with this approach is that the objective value in No-
Wait-Flowshop contains an additional term that is not directly related to the
distances in G′. If this term dominates the makespan, approximation algorithms
for No-Wait-Flowshop are useless for the original ATSPP instance.

To overcome this obstacle we first blow G′ up by creating N (to be chosen
later) copies of it. Let G1 = (Vi, di), . . . , GN = (VN , dN ) be these copies. We

join these copies into a single instance Ĝ = (V̂ , d̂) by putting edges of length
2W ′ between all pairs of vertices from different copies. Note that any TSP path
in Ĝ can be transformed into a path in which vertices of the same copy form a
subpath, without increasing its cost. Therefore

Observation 3. The cost of the optimum solution for Ĝ is N |OPT ′|+2W ′(N−
1). In the opposite direction, given a TSP path of cost C in Ĝ, one can obtain a

TSP path of cost C−2W ′(N−1)
N in G′.

We transform Ĝ into a No-Wait-Flowshop instance as follows. We apply the
construction of Theorem 1 to each Gi to obtain N identical jobsets J1, . . . , JN .
We then augment these jobs to enforce correct distances between jobs in different
Ji. To this end we introduce new gadgets.

Lemma 3. For any N ∈ N there exists a set of N jobs H1, . . . , HN , each of
the jobs using the same number of machines O(D logN) and of the same total
length O(D logN), such that δ(Hi, Hi) = 1 and δ(Hi, Hj) = D for i �= j.

Proof. We will use the following two jobs as building blocks: H0 = (10)2D and
H1 = 12D02D (xD here means a sequence constructed by repeating the symbol
x exactly D times). Note that they have the same total length of 2D, the same
number of machines 4D, and that δ(H0, H1) = δ(H0, H0) = δ(H1, H1) = 1 and
δ(H1, H0) = D.

Let k be smallest integer such that
(
2k
k

)
≥ N . Clearly k = O(logN). Consider

characteristic vectors of all k-element subsets of {1, . . . , 2k}, pick N such vectors
R1, . . . , RN . Now, construct Hi by substituting H0 for each 0 in Ri and H1

for each 1. Analogously to (3), we derive that the distances between Hi are as
claimed. Also, the claimed bounds on the sizes of Hi follow directly from the
construction. ��
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Using the above lemma it is easy to ensure correct distances for jobs in dif-
ferent Ji. Simply augment all jobs with gadgets described in Lemma 3, same
gadgets for the same Ji, different gadgets for different Ji. Here D = 2W ′+ 1, so
the augmentation only requires O(W ′ logN) extra machines and extra process-
ing time.

This ends the construction of the instance of No-Wait-Flowshop. The op-
timum solution in this instance has cost

N |OPT ′|+ 2W ′(N − 1) + (Nn′ − 1) + 2W ′n′ + O(W ′ logN).

The Nn′ − 1 term here comes from the additive error in Theorem 1, and the
2W ′n′+O(W ′ logN) term corresponds to the processing time of the last job in
the optimum solution.

Given an α-approximate solution to the flowshop instance, we can obtain a
TSP path ALGĜ for Ĝ with cost

|ALGĜ| ≤ α(N |OPT ′|+ 2W ′(N − 1) + (Nn′ − 1) + 2W ′n′ + O(W logN))

−(Nn′ − 1)− 2W ′n′ −O(W ′ logN),

which is just

α(N |OPT ′|+ 2W ′(N − 1)) + (α− 1)((Nn′ − 1) + 2W ′n′ + O(W ′ logN)).

As observed earlier, from this we can obtain a solution to G′ with value at most

|ALGĜ| − 2W ′(N − 1)

N

which is bounded by

αN |OPT ′|+ (α − 1)(2W ′(N − 1) + (Nn′ − 1) + 2W ′n′ + O(W ′ logN))

N
.

By taking N = n′ we can upper-bound this expression by

α|OPT ′|+ (α− 1)(2W ′ + n′) + 2W ′ + O

(
W ′ logN

N

)
.

Using the fact that max{W ′, n′} ≤ ε|OPT ′| we can upper-bound this by

α|OPT ′|+ O(αε)|OPT ′| = α(1 + O(ε))|OPT ′|.

As noted earlier, we can transform this α(1 + O(ε))-approximate solution to G′

into a α(1 + O(ε))-aproximate solution to G.
As for the running time, it is polynomial in the size of the No-Wait-Flow-

shop instance constructed. We have O(Nn′) = O(n2/ε2) jobs in this instance,
and O(W ′n′) + O(W ′ logN) = O(n2 logn/ε3) machines, so the running time is
poly(n, 1/ε). ��

Using the result of the Karpinski et al. [8] for the ATSP we derive

Theorem 4. No-Wait-Flowshop is not approximable with factor better than
75
74 , unless P = NP .
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3 An O(logm)-Approximation Algorithm for
No-Wait-Flowshop

Theorem 5. There exists an O(logm)-approximation algorithm for No-Wait-
Flowshop.

Proof. Consider any instance I of No-Wait-Flowshop. Let G = GI be the
ATSP instance resulting from a standard reduction from No-Wait-Flowshop
to ATSP, i.e. G is obtained by adding a dummy all-zero job to I and using δ as
the distance function.

Our algorithm is a refinement of the approximation algorithm of Frieze, Gal-
biati and Maffioli [4]. This algorithm starts by finding a minimum cost cycle
cover C0 in G. Since OPT is a cycle cover we know that |C0| ≤ |OPT |. Af-
ter that we choose a single vertex from each cycle – one that corresponds to
the shortest job (i.e. we choose a vertex j with smallest L(j)). We then take
G1 to be the subgraph of G induced by the selected vertices. As was noted in
[4] the optimal ATSP solution (OPT1) for G1 is at most as long as OPT , i.e.
|OPT1| ≤ |OPT |.

We now reiterate the above procedure: We find a minimum cycle cover C1

in G1. We again have |C1| ≤ |OPT1|. We choose a single vertex per cycle of
C1, again corresponding to the job with smallest length, define G2 to be the
subgraph of G1 induced by the selected vertices, and so on. In each iteration
we decrease the cardinality of the set of vertices by a factor of at least two. If
the cycle cover Ci consists of a single cycle for some i = 0, . . . , log2 m − 1, we
consider a subgraph of G that is the union of all the Ck for k = 0, . . . , i. This is an
Eulerian subgraph of G of cost at most log2 m · |OPT |, and can be transformed
into a feasible Hamiltonian cycle by the standard procedure of short-cutting.

Otherwise, the graph Glog2 m consists of more than one vertex. Let C =

∪log2 m−1
i=1 Ci be the subgraph of G that is the union of log2 m cycle covers Ck

for k = 0, . . . , log2 m− 1. Consider the subgraph G′ of G that is the union of C
and an arbitrary Hamiltonian cycle H ′ in Glog2 m. Each connected component
of C consists of at least m vertices. The vertex set of Glog2 m consists of vertices
corresponding to the shortest jobs in each of the connected components of C.
Let S be this set of jobs. We now claim that the length of H ′ is at most∑

j∈S
L(j) ≤ 1

m

n∑
j=1

L(j) ≤ 1

m
m · C∗max = C∗max.

The last inequality follows from the fact that sum of processing times of all
operations that must be processed on a single machine is a lower bound on the
value of the optimal makespan. It follows that the total weight of G′ is at most
log2 m + 1 times the optimal makespan. By shortcutting we can construct a
Hamiltonian cycle in G, which in turn gives us an approximate solution for the
original instance I of No-Wait-Flowshop. ��
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Abstract. The Fourier Entropy-Influence (FEI) conjecture of Friedgut
and Kalai [1] seeks to relate two fundamental measures of Boolean func-
tion complexity: it states that H[f ] ≤ C · Inf [f ] holds for every Boolean
function f , where H[f ] denotes the spectral entropy of f , Inf [f ] is its
total influence, and C > 0 is a universal constant. Despite significant
interest in the conjecture it has only been shown to hold for a few classes
of Boolean functions.

Our main result is a composition theorem for the FEI conjecture.
We show that if g1, . . . , gk are functions over disjoint sets of variables
satisfying the conjecture, and if the Fourier transform of F taken with
respect to the product distribution with biases E[g1], . . . ,E[gk] satisfies
the conjecture, then their composition F (g1(x

1), . . . , gk(x
k)) satisfies the

conjecture. As an application we show that the FEI conjecture holds for
read-once formulas over arbitrary gates of bounded arity, extending a
recent result [2] which proved it for read-once decision trees. Our tech-
niques also yield an explicit function with the largest known ratio of
C ≥ 6.278 between H[f ] and Inf [f ], improving on the previous lower
bound of 4.615.

1 Introduction

A longstanding and important open problem in the field of Analysis of Boolean
Functions is the Fourier Entropy-Influence conjecture made by Ehud Friedgut
and Gil Kalai in 1996 [1,3]. The conjecture seeks to relate two fundamental
analytic measures of Boolean function complexity, the spectral entropy and total
influence:

Fourier Entropy-Influence (FEI) Conjecture. There exists a universal con-
stant C > 0 such that for every Boolean function f : {−1, 1}n → {−1, 1}, it holds
that H[f ] ≤ C · Inf [f ]. That is,
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∑
S⊆[n]

f̂(S)2 log2

(
1

f̂(S)2

)
≤ C

∑
S⊆[n]

|S| · f̂(S)2.

Applying Parseval’s identity to a Boolean function f we get
∑

S⊆[n] f̂(S)2 =

E[f(x)2] = 1, and so the Fourier coefficients of f induce a probability distri-
bution Sf over the 2n subsets of [n] wherein S ⊆ [n] has “weight” (probability

mass) f̂(S)2. The spectral entropy of f , denoted H[f ], is the Shannon entropy of
Sf , quantifying how spread out the Fourier weight of f is across all 2n monomi-
als. The influence of a coordinate i ∈ [n] on f is Inf i[f ] = Pr[f(x) �= f(x⊕i)],1

where x⊕i denotes x with its i-th bit flipped, and the total influence of f is sim-
ply Inf [f ] =

∑n
i=1 Inf i[f ]. Straightforward Fourier-analytic calculations show

that this combinatorial definition is equivalent to the quantity ES∼Sf
[|S|] =∑

S⊆[n] |S| · f̂(S)2, and so total influence measures the degree distribution of the
monomials of f , weighted by the squared-magnitude of its coefficients. Roughly
speaking then, the FEI conjecture states that a Boolean function whose Fourier
weight is well “spread out” (i.e. has high spectral entropy) must have a signifi-
cant portion of its Fourier weight lying on high degree monomials (i.e. have high
total influence).2

In addition to being a natural question concerning the Fourier spectrum of
Boolean functions, the FEI conjecture also has important connections to several
areas of theoretical computer science and mathematics. Friedgut and Kalai’s
original motivation was to understand general conditions under which monotone
graph properties exhibit sharp thresholds, and the FEI conjecture captures the
intuition that having significant symmetry, hence high spectral entropy, is one
such condition. Besides its applications in the study of random graphs, the FEI
conjecture is known to imply the celebrated Kahn-Kalai-Linial theorem [4]:

KKL Theorem. For every Boolean function f there exists an i ∈ [n] such that

Inf i[f ] = Var[f ] ·Ω( log n
n ).

The FEI conjecture also implies Mansour’s conjecture [5]:

Mansour’s Conjecture. Let f be a Boolean function computed by a t-term
DNF formula. For any constant ε > 0 there exists a collection S ⊆ 2[n] of
cardinality poly(t) such that

∑
S∈S f̂(S)2 ≥ 1− ε.

Combined with recent work of Gopalan et al. [6], Mansour’s conjecture yields
an efficient algorithm for agnostically learning the class of poly(n)-term DNF

1 All probabilities and expectations are with respect to the uniform distribution unless
otherwise stated.

2 The assumption that f is Boolean-valued is crucial here, as the same conjecture
is false for functions f : {−1, 1}n → � satisfying

∑
S⊆[n] f̂(S)

2 = 1. The canoni-

cal counterexample is f(x) = 1√
n

∑n
i=1 xi which has total influence 1 and spectral

entropy log2 n.
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formulas from queries. This would resolve a central open problem in computa-
tional learning theory [7]. De et al. also noted that sufficiently strong versions of
Mansour’s conjecture would yield improved pseudorandom generators for depth-
2 AC0 circuits [8]. More generally, the FEI conjecture implies the existence of
sparse L2-approximators for Boolean functions with small total influence:

Sparse L2-approximators. Assume the FEI conjecture holds. Then for every
Boolean function f there exists a 2O(Inf [f ]/ε)-sparse polynomial p : �n → �

such that E[(f(x)− p(x))2] ≤ ε.

By Friedgut’s junta theorem [9], the above holds unconditionally with a weaker

bound of 2O(Inf [f ]2/ε2). This is the main technical ingredient underlying several
of the best known uniform-distribution learning algorithms [10,11].

For more on the FEI conjecture we refer the reader to Kalai’s blog post [3].

1.1 Our Results

Our research is motivated by the following question:

Question 1. Let F : {−1, 1}k → {−1, 1} and g1, . . . , gk : {−1, 1}� → {−1, 1}.
What properties do F and g1, . . . , gk have to satisfy for the FEI conjecture to
hold for the disjoint composition f(x1, . . . , xk) = F (g1(x1), . . . , gk(xk))?

Despite its simplicity this question has not been well understood. For example,
prior to our work the FEI conjecture was open even for read-once DNFs; these
are the disjoint compositions of F = OR and g1, . . . , gk = AND, perhaps two of
the most basic Boolean functions with extremely simple Fourier spectra. Indeed,
Mansour’s conjecture, a weaker conjecture than FEI, was only recently shown to
hold for read-once DNFs [12,8]. Besides being a fundamental question concerning
the behavior of spectral entropy and total influence under composition, Question
1 (and our answer to it) also has implications for a natural approach towards
disproving the FEI conjecture; we elaborate on this at the end of this section.

A particularly appealing and general answer to Question 1 that one may hope
for would be the following: “if H[F ] ≤ C1 · Inf [F ] and H[gi] ≤ C2 · Inf [gi] for
all i ∈ [k], then H[f ] ≤ max{C1, C2} · Inf [f ].” While this is easily seen to be
false3, our main result shows that this proposed answer to Question 1 is in
fact true for a carefully chosen sharpening of the FEI conjecture. To arrive at
a formulation that bootstraps itself, we first consider a slight strengthening of
the FEI conjecture which we call FEI+, and then work with a generalization
of FEI+ that concerns the Fourier spectrum of f not just with respect to the
uniform distribution, but an arbitrary product distribution over {−1, 1}n:

Conjecture 1 (FEI+ for product distributions). There is a universal constant
C > 0 such that the following holds. Let μ = 〈μ1, . . . , μn〉 be any sequence
of biases and f : {−1, 1}nμ → {−1, 1}. Here the notation {−1, 1}nμ means that

3 For example, by considering F = OR2, the 2-bit disjunction, and g1, g2 = AND2, the
2-bit conjunction.



A Composition Theorem for the Fourier Entropy-Influence Conjecture 783

we think of {−1, 1}n as being endowed with the μ-biased product probability

distribution in which Eμ[xi] = μi for all i ∈ [n]. Let {f̃(S)}S⊆[n] be the μ-biased
Fourier coefficients of f . Then

∑
S �=∅

f̃(S)2 log

(∏
i∈S(1− μ2

i )

f̃(S)2

)
≤ C · (Infμ[f ]−Var

μ
[f ]).

We write Hμ[f ] to denote the quantity
∑

S⊆[n] f̃(S)2 log
(∏

i∈S(1− μ2
i )/f̃(S)2

)
,

and so the inequality of Conjecture 1 can be equivalently stated as Hμ[f≥1] ≤
C · (Infμ[f ]−Varμ[f ]).

In Proposition 1 we show that Conjecture 1 with μ = 〈0, . . . , 0〉 (the uniform
distribution) implies the FEI conjecture. We say that a Boolean function f
“satisfies μ-biased FEI+ with factor C” if the μ-biased Fourier transform of
f satisfies the inequality of Conjecture 1. Our main result, which we prove in
Section 3, is a composition theorem for FEI+:

Theorem 1. Let f(x1, . . . , xk) = F (g1(x1), . . . , gk(xk)), where the domain of
f is endowed with a product distribution μ. Suppose g1, . . . , gk satisfy μ-biased
FEI+ with factor C1 and F satisfies η-biased FEI+ with factor C2, where η =
〈Eμ[g1], . . . ,Eμ[gk]〉. Then f satisfies μ-biased FEI+ with factor max{C1, C2}.

Theorem 1 suggests an inductive approach towards proving the FEI conjec-
ture for read-once de Morgan formulas: since the dictators ±xi trivially satisfy
uniform-distribution FEI+ with factor 1, it suffices to prove that both AND2 and
OR2 satisfy μ-biased FEI+ with some constant independent of μ ∈ [−1, 1]2. In
Section 4 we prove that in fact every F : {−1, 1}k → {−1, 1} satisfies μ-biased
FEI+ with a factor depending only on its arity k and not the biases μ1, . . . , μk.

Theorem 2. Every F : {−1, 1}k → {−1, 1} satisfies μ-biased FEI+ with factor
C = 2O(k) for any product distribution μ = 〈μ1, . . . , μk〉.

Together, Theorems 1 and 2 imply:

Theorem 3. Let f be computed by a read-once formula over the basis B and μ be
any sequences of biases. Then f satisfies μ-biased FEI+ with factor C, where C
depends only on the arity of the gates in B.

Since uniform-distribution FEI+ is a strengthening of the FEI conjecture, Theo-
rem 3 implies that the FEI conjecture holds for read-once formulas over arbitrary
gates of bounded arity. As mentioned above, prior to our work the FEI conjec-
ture was open even for the class of read-once DNFs, a small subclass of read-once
formulas over the de Morgan basis {AND2,OR2,NOT} of arity 2. Read-once for-
mulas over a rich basis B are a natural generalization of read-once de Morgan
formulas, and have seen previous study in concrete complexity (see e.g. [13]).
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Improved Lower Bound on the FEI Constant. Iterated disjoint composi-
tion is commonly used to achieve separations between complexity measures for
Boolean functions, and represents a natural approach towards disproving the
FEI conjecture. For example, one may seek a function F such that iterated com-
positions of F with itself achieves a super-constant amplification of the ratio
between H[F ] and Inf [F ], or consider variants such as iterating F with a dif-
ferent combining function G. Theorem 3 rules out as potential counterexamples
all such constructions based on iterated composition.

However, the tools we develop to prove Theorem 3 also yield an explicit func-
tion f achieving the best-known separation between H[f ] and Inf [f ] (i.e. the
constant C in the statement of the FEI conjecture). In Section 5 we prove:

Theorem 4. There exists an explicit family of functions fn : {−1, 1}n → {−1, 1}
such that

lim
n→∞

H[fn]

Inf [fn]
≥ 6.278.

This improves on the previous lower bound of C ≥ 60/13 ≈ 4.615 [2].

Previous Work. The first published progress on the FEI conjecture was by
Klivans et al. who proved the conjecture for random poly(n)-term DNF formulas
[12]. This was followed by the work of O’Donnell et al. who proved the conjecture
for the class of symmetric functions and read-once decision trees [2].

The FEI conjecture for product distributions was studied in the recent work
of Keller et al. [14], where they consider the case of all the biases being the same.
They introduce the following generalization of the FEI conjecture to these mea-
sures, and show via a reduction to the uniform distribution that it is equivalent
to the FEI conjecture:

Conjecture 2 (Keller-Mossel-Schlank). There is a universal constant C such that
the following holds. Let 0 < p < 1 and f : {−1, 1}n → {−1, 1}, where the domain
of f is endowed with the product distribution where Pr[xi = −1] = p for all

i ∈ [n]. Let {f̃(S)}S⊆[n] be the Fourier coefficients of f with respect to this
distribution. Then

∑
S⊆[n]

f̃(S)2 log2

(
1

f̃(S)2

)
≤ C · log(1/p)

1− p

∑
S⊆[n]

|S| · f̃(S)2.

Notice that in this conjecture, the constant on the right-hand side, C · log(1/p)
1−p ,

depends on p. By way of contrast, in our Conjecture 1 the right-hand side con-
stant has no dependence on p; instead, the dependence on the biases is built
into the definition of spectral entropy. We view our generalization of the FEI
conjecture to arbitrary product distributions (where the biases are not necessar-
ily identical) as a key contribution of this work, and point to our composition
theorem as evidence in favor of Conjecture 1 being a good statement to work
with.



A Composition Theorem for the Fourier Entropy-Influence Conjecture 785

2 Preliminaries

Notation. We will be concerned with functions f : {−1, 1}nμ → � where μ =
〈μ1, . . . , μn〉 ∈ [0, 1]n is a sequence of biases. Here the notation {−1, 1}nμ means
that we think of {−1, 1}n as being endowed with the μ-biased product probability
distribution in which Eμ[xi] = μi for all i ∈ [n]. We write σ2

i to denote variance
of the i-th coordinate Varμ[xi] = 1 − μ2

i , and ϕ : � → � as shorthand for the
function t �→ t2 log2(1/t2), adopting the convention that ϕ(0) = 0. All logarithms
in this paper are in base 2 unless otherwise stated.

Definition 1 (Fourier expansion). Let μ = 〈μ1, . . . , μn〉 be a sequence of
biases. The μ-biased Fourier expansion of f : {−1, 1}n → � is

f(x) =
∑
S⊆[n]

f̃(S)φμ
S(x), where φμ

S(x) =
∏
i∈S

xi − μi

σi
and f̃(S) = E

μ
[f(x)φμ

S(x)].

The μ-biased spectral support of f is the collection S ⊆ 2[n] of subsets S ⊆ [n]

such that f̃(S) �= 0. We write f≥k to denote
∑
|S|≥k f̃(S)φμ

S(x), the projection
of f onto its monomials of degree at least k.

Definition 2 (Influence). Let f : {−1, 1}nμ → �. The influence of variable
i ∈ [n] on f is Infμi [f ] = Eρ[Varμi [fρ]], where ρ is a μ-biased random restric-
tion to the coordinates in [n]\{i}. The total influence of f , denoted Infμ[f ], is∑n

i=1 Inf
μ
i [f ].

We recall a few basic Fourier formulas. The expectation of f is given by Eμ[f ] =

f̃(∅) and its variance Varμ[f ] =
∑

S �=∅ f̃(S)2. For each i ∈ [n], Infμi [f ] =∑
S"i f̃(S)2 and so Infμ[f ] =

∑
S⊆[n] |S| · f̃(S)2. We omit the sub- and su-

perscripts when μ = 〈0, . . . , 0〉 is the uniform distribution.
Recall that the i-th discrete derivative operator for f : {−1, 1}n → {−1, 1} is

defined to be Dxi(x) = (f(xi←1)− f(xi←−1))/2, and for S ⊆ [n] we write DxSf
to denote ◦i∈SDxif .

Definition 3 (Discrete derivative). The i-th discrete derivative operator Dφμ
i

with respect to the μ-biased product distribution on {−1, 1}n is defined by Dφμ
i

f(x) = σiDxif(x).

With respect to the μ-biased Fourier expansion of f : {−1, 1}nμ → � the operator

Dφμ
i

satisfies Dφμ
i
f =

∑
S"i f̃(S)φμ

S\{i}, and so for any S ⊆ [n] we have f̃(S) =

E[◦i∈SDφμ
i
f ] =

∏
i∈S σi Eμ[DxSf ]. The next proposition is a simple consequence

of the Poincaré inequality Inf [f ] ≥ Var[f ], and we defer its proof to the full
version of this paper.
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Proposition 1 (FEI+ implies FEI). Suppose f satisfies uniform-distribution
FEI+ with factor C. Then f satisfies the FEI conjecture with factor
max{C, 1/ ln 2}.

3 Composition Theorem for FEI+

We will be concerned with compositions of functions f = F (g1(x1), . . . , gk(xk))
where g1, . . . , gk are over disjoint sets of variables each of size 	. The domain of
each gi is endowed with a product distribution μi = 〈μi

1, . . . , μ
i
�〉, which induces

an overall product distribution μ = 〈μ1
1, . . . , μ

1
� , . . . , μ

k
1 , . . . , μ

k
� 〉 over the domain

of f : {−1, 1}k� → {−1, 1}. For notational clarity we will adopt the equivalent
view of g1, . . . , gk as functions over the same domain {−1, 1}k�μ endowed with
the same product distribution μ, with each gi depending only on 	 out of k	
variables.

Our first lemma gives formulas for the spectral entropy and total influence of
the product of functions Φ1, . . . , Φk over disjoint sets of variables. The lemma
holds for real-valued functions Φi; we require this level of generality as we will
not be applying the lemma directly to the Boolean-valued functions g1, . . . , gk in
the composition F (g1(x1), . . . , gk(xk)), but instead to their normalized variants
Φ(gi) = (gi −E[gi])/Var[gi]

1/2.

Lemma 1. Let Φ1, . . . , Φk : {−1, 1}k�μ → � where each Φi depends only on the
	 coordinates in {(i− 1)	 + 1, . . . , i	}. Then

Hμ[Φ1 · · ·Φk] =
k∑

i=1

Hμ[Φi]
∏
j 
=i

E
μ
[Φ2

j ] and Infμ[Φ1 · · ·Φk] =
k∑

i=1

Infμ[Φi]
∏
j 
=i

E
μ
[Φ2

j ].

Due to space considerations we defer the proof of Lemma 1 to the full ver-
sion of our paper. We note that this lemma recovers as a special case the
folklore observation that the FEI conjecture “tensorizes”: for any f if we de-
fine f⊕k(x1, . . . , xk) = f(x1) · · · f(xk) then H[f⊕k] = k ·H[f ] and Inf [f⊕k] =
k · Inf [f ]. Therefore H[f ] ≤ C · Inf [f ] if and only if H[f⊕k] ≤ C · Inf [f⊕k].

Our next proposition relates the basic analytic measures – spectral entropy,
total influence, and variance – of a composition f = F (g1(x1), . . . , gk(xk)) to
the corresponding quantities of the combining function F and base functions
g1, . . . , gk. As alluded to above, we accomplish this by considering f as a linear
combination of the normalized functions Φ(gi) = (gi − E[gi])/Var[gi]

1/2 and
applying Lemma 1 to each term in the sum. We mention that this proposition
is also the crux of our new lower bound of C ≥ 6.278 on the constant of the FEI
conjecture, which we present in Section 5.

Proposition 2. Let F : {−1, 1}k → �, and g1, . . . , gk : {−1, 1}k�μ → {−1, 1}
where each gi depends only on the 	 coordinates in {(i − 1)	 + 1, . . . , i	}.
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Let f(x) = F (g1(x), . . . , gk(x)) and {F̃ (S)}S⊆[k] be the η-biased Fourier coeffi-
cients of F where η = 〈Eμ[g1], . . . ,Eμ[gk]〉. Then

Hμ[f≥1] = Hη[F≥1] +
∑
S �=∅

F̃ (S)2
∑
i∈S

Hμ[g≥1i ]

Varμ[gi]
, (1)

Infμ[f ] =
∑
S �=∅

F̃ (S)2
∑
i∈S

Infμ[gi]

Varμ[gi]
, and (2)

Varμ[f ] =
∑
S �=∅

F̃ (S)2 = Varη[F ]. (3)

Proof. By the η-biased Fourier expansion of F : {−1, 1}kη → � and the definition
of η we have

F (y1, . . . , yk) =
∑
S⊆[k]

F̃ (S)
∏
i∈S

yi − ηi√
1− η2i

=
∑
S⊆[k]

F̃ (S)
∏
i∈S

yi −Eμ[gi]

Varμ[gi]1/2
,

and so F (g1(x), . . . , gk(x)) =
∑

S⊆[k] F̃ (S)
∏

i∈S Φ(gi(x)), where Φ(gi(x)) =

(gi(x)−Eμ[gi])/Varμ[gi]
1/2. Note that Φ normalizes gi such that Eμ[Φ(gi)] = 0

and Eμ[Φ(gi)
2] = 1. First we claim that

Hμ[f≥1] = Hμ

[∑
S �=∅

F̃ (S)
∏
i∈S

Φ(gi)

]
=

∑
S �=∅

Hμ
[
F̃ (S)

∏
i∈S

Φ(gi)
]
.

It suffices to show that for any two distinct non-empty sets S, T ⊆ [k], no mono-

mial φμ
U occurs in the μ-biased spectral support of both F̃ (S)

∏
i∈S Φ(gi) and

F̃ (T )
∏

i∈T Φ(gi). To see this recall that Φ(gi) is balanced with respect to μ (i.e.
Eμ[Φ(gi)] = Eμ[Φ(gi)φ

μ
∅ ] = 0), and so every monomial φμ

U in the support of

F̃ (S)
∏

i∈S Φ(gi) is of the form
∏

i∈S φμ
Ui

where Ui is a non-empty subset of the
relevant variables of gi (i.e. {(i − 1)	 + 1, . . . , i	}); likewise for monomials in

the support of F̃ (T )
∏

i∈T Φ(gi). In other words the non-empty subsets of [k]
induce a partition of the μ-biased Fourier support of f , where φμ

U is mapped to
∅ �= S ⊆ [k] if and only if U contains a relevant variable of gi for every i ∈ S and
none of the relevant variables of gj for any j /∈ S.

With this identity in hand we have

Hμ[f≥1] =
∑
S 
=∅

Hμ
[
F̃ (S)

∏
i∈S

Φ(gi)
]

=
∑
S 
=∅

ϕ(F̃ (S)) + F̃ (S)2
∑
i∈S

Hμ[Φ(gi)].

=
∑
S 
=∅

ϕ(F̃ (S)) + F̃ (S)2
∑
i∈S

(
Hμ[gi −Eμ[gi]]

Varμ[gi]
+ ϕ

(
1

Varμ[gi]1/2

)
Var

μ
[gi]

)

= Hη[F≥1] +
∑
S 
=∅

F̃ (S)2
∑
i∈S

Hμ[g≥1
i ]

Varμ[gi]
,
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where the second and third equalities are two applications of Lemma 1 (for the

second equality we view F̃ (S) as a constant function with Hμ[F̃ (S)] = ϕ(F̃ (S))).
By the same reasoning, we also have

Infμ[f ] =
∑
S �=∅

Infμ
[
F̃ (S)

∏
i∈S

Φ(gi(x
i))

]
=

∑
S �=∅

F̃ (S)2
∑
i∈S

Infμ[Φ(gi)]

=
∑
S �=∅

F̃ (S)2
∑
i∈S

Infμ[gi]

Varμ[gi]
.

Here the second equality is by Lemma 1, again viewing F̃ (S) as a constant func-

tion with Infμ[F̃ (S)] = 0, and the third equality uses the fact that Infμ[αf ] =
α2 · Infμ[f ] and Infμ[gi −Eμ[gi]] = Infμ[gi]. Finally we see that

Varμ[f ] =
∑
S �=∅

Varμ

[
F̃ (S)

∏
i∈S

Φ(gi)
]

=
∑
S �=∅

F̃ (S)2
∏
i∈S

Varμ[Φ(gi)] =
∑
S �=∅

F̃ (S)2,

where the last quantity is Varη[F ]. Here the second equality uses the fact that
the functions Φ(gi) are on disjoint sets of variables (and therefore statistically
independent when viewed as random variables), and the third equality holds
since Varμ[Φ(gi)] = E[Φ(gi)

2]−E[Φ(gi)]
2 = 1.

We are now ready to prove our main theorem:

Theorem 1. Let F : {−1, 1}k → �, and g1, . . . , gk : {−1, 1}k�μ → {−1, 1}
where each gi depends only on the 	 coordinates in {(i − 1)	 + 1, . . . , i	}. Let
f(x) = F (g1(x), . . . , gk(x)) and suppose C > 0 satisfies

1. Hμ[g≥1i ] ≤ C · (Infμ[gi]−Varμ[gi]) for all i ∈ [k].
2. Hη[F≥1] ≤ C · (Infη[F ]−Varη[F ]), where η = 〈Eμ[g1], . . . ,Eμ[gk]〉.
Then Hμ[f≥1] ≤ C · (Infμ[f ]−Varμ[f ]).

Proof. By our first assumption each gi satisfies Infμ[gi] ≥ 1
CHμ[g≥1]+Varμ[gi],

and so combining this with equation (2) of Proposition 2 we have

Infμ[f ] =
∑
S �=∅

F̃ (S)2
∑
i∈S

Infμ[gi]

Varμ[gi]
≥

∑
S �=∅

F̃ (S)2
∑
i∈S

(
Hμ[g≥1i ]

CVarμ[gi]
+ 1

)

= Infη[F ] +
1

C

∑
S �=∅

F̃ (S)2
∑
i∈S

Hμ[g≥1i ]

Varμ[gi]
. (4)

This along with equations (1) and (3) of Proposition 2 completes the proof:

Hμ[f≥1] = Hη[F≥1] +
∑
S �=∅

F̃ (S)2
∑
i∈S

Hμ[g≥1i ]

Varμ[gi]

≤ C · (Infη[F ]−Varη[F ]) +
∑
S �=∅

F̃ (S)2
∑
i∈S

Hμ[g≥1i ]

Varμ[gi]

≤ C · (Infμ[f ]−Varη[F ]) = C · (Infμ[f ]−Varμ[f ]).
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Here the first equality is by (1), the first inequality by our second assumption,
the second inequality by (4), and finally the last identity by (3).

4 Distribution-Independent Bound for FEI+

In this section we prove that μ-biased FEI+ holds for all Boolean functions
F : {−1, 1}kμ → {−1, 1} with factor C independent of the biases μ1, . . . , μk of
μ. When μ = 〈0, . . . 0〉 is the uniform distribution it is well-known that the
FEI conjecture holds with factor C = O(log k), and a bound of C ≤ 2k is
trivial since Inf [F ] is always an integer multiple of 2−k and H[F ] ≤ 1; neither
proofs carry through to the setting of product distributions. We remark that even
verifying the seemingly simple claim “there exists a universal constant C such
that Hμ[MAJ3] ≤ C · (Infμ[MAJ3] −Varμ[MAJ3]) for all product distributions
μ ∈ [0, 1]3”, where MAJ3 the majority function over 3 variables, turns out to be
technically cumbersome.

The high-level strategy is to bound each of the 2k − 1 terms of Hμ[F≥1]
separately; due to space considerations we defer the proof the main lemma to
the full version of our paper.

Lemma 2. Let F : {−1, 1}kμ → {−1, 1}. Let S ⊆ [k], S �= ∅, and suppose

F̃ (S) �= 0. For any j ∈ S we have

F̃ (S)2 log

(∏
i∈S σ2

i

F̃ (S)2

)
≤ 22k

ln 2
·Var

μ
[Dφμ

j
F ].

Theorem 2. Let F : {−1, 1}kμ → {−1, 1}. Then Hμ[F≥1] ≤ 2O(k) · (Infμ[F ]−
Varμ[F ]).

Proof. The claim can be equivalently stated as Hμ[F≥1] ≤ 2O(k)
∑n

i=1

Varμ[Dφμ
i
F ], since

n∑
i=1

Var[Dφ
μ
i
F ] =

∑
|S|≥2

|S| · F̃ (S)2 ≤ 2
∑
|S|≥2

(|S| − 1) · F̃ (S)2 = 2 · (Infμ[F ]−Varμ[F ]).

By Lemma 2, the contribution of each S �= ∅ to Hμ[F≥1] is 2O(k) Varμ[Dφμ
j
F ],

where j is any element of S. Summing over all 2k − 1 non-empty subsets S of
[k] completes the proof.

4.1 FEI+ for Read-Once Formulas

Finally, we combine our two main results so far, the composition theorem (Theo-
rem 1) and the distribution-independent universal bound (Theorem 2), to prove
Conjecture 1 for read-once formulas with arbitrary gates of bounded arity.
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Definition 4. Let B be a set of Boolean functions. We say that a Boolean func-
tion f is a formula over the basis B if f is computable by a formula with gates
belonging to B. We say that f is a read-once formula over B if every variable
appears at most once in the formula for f .

Corollary 1. Let C > 0 and B be a set of Boolean functions, and suppose
Hμ[F ] ≤ C · (Infμ[F ] − Varμ[F ]) for all F ∈ B and product distributions μ.
Let C be the class of read-once formulas over the basis B. Then Hμ[f ] ≤ C ·
(Infμ[f ]−Varμ[f ]) for all f ∈ C and product distributions μ.

Proof. We proceed by structural induction on the formula computing f . The
base case holds since the μ-biased Fourier expansion of the dictator x1 and anti-
dictator −x1 is ±(μ1 + σ1φ

μ
1 (x)) and so Hμ[f≥1] = f̃({1})2 log(σ2

1/f̃({1})2) =
σ2
1 log(σ2

1/σ
2
1) = 0.

For the inductive step, suppose f = F (g1, . . . , gk), where F ∈ B and g1, . . . , gk
are read-once formulas over B over disjoint sets of variables. Let μ be any prod-
uct distribution over the domain of f . By our induction hypothesis we have
Hμ[g≥1i ] ≤ C · (Infμ[gi] −Varμ[gi]) for all i ∈ [k], satisfying the first require-
ment of Theorem 1. Next, by our assumption on F ∈ B, we have Hη[F≥1] ≤
C · (Infη[F ] −Varη[F ]) for all product distributions η, and in particular, η =
〈Eμ[g1], . . . ,Eμ[gk]〉, satisfying the second requirement of Theorem 1. Therefore,
by Theorem 1 we conclude that Hμ[f ] ≤ C · (Infμ[f ]−Varμ[f ]).

By Theorem 2, for any set B of Boolean functions with maximum arity k and
product distribution μ, every F ∈ B satisfies Hμ[F ] ≤ 2O(k)·(Infμ[F ]−Varμ[F ]).
Combining this with Corollary 1 yields the following:

Theorem 3. Let B be a set of Boolean functions with maximum arity k, and
C be the class of read-once formulas over the basis B. Then Hμ[f ] ≤ 2O(k) ·
(Infμ[f ]−Varμ[f ]) for all f ∈ C and product distributions μ.

5 Lower Bound on the Constant of the FEI Conjecture

The tools we develop in this paper also yield an explicit function f achieving the
best-known ratio between H[f ] and Inf [f ] (i.e. a lower bound on the constant
C in the FEI conjecture). We will use the following special case of Proposition
2 on the behavior of spectral entropy and total influence under composition:

Lemma 3 (Amplification lemma). Let F : {−1, 1}k → {−1, 1} be a balanced
Boolean function. Let f0 = F , and define fm = F (fm−1(x1), . . . , fm−1(xk)) for
all m ≥ 1. Then

H[fm]

Inf [fm]
=

H[F ]

Inf [F ]
+

H[F ]

Inf [F ](Inf [F ]− 1)
− H[F ]

Inf [F ]m+1(Inf [F ]− 1)
.

Theorem 4. There exists an infinite family of functions fm : {−1, 1}6m →
{−1, 1} such that limm→∞H[fm]/Inf [fm] ≥ 6.278944.
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Proof. Let

g = (x1∧x2∧x3)∨(x1∧x2∧x4)∨(x1∧x2∧x5∧x6)∨(x1∧x2∧x3)∨(x1∧x2∧x4∧x5).

It can be checked that g is a balanced function with H[F ] ≥ 3.92434 and
Inf [F ] = 1.625. Applying Lemma 3 with F = g, we get

lim
m→∞

H[fm]

Inf [fm]
≥ 3.92434

1.625
+

3.92434

1.625× 0.625
= 6.278944.
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Abstract. In this paper we consider the classical maximum set packing
problem where set cardinality is upper bounded by a constant k. We show
how to design a variant of a polynomial-time local search algorithm with
performance guarantee (k+2)/3. This local search algorithm is a special
case of a more general procedure that allows to swap up to Θ(log n)
elements per iteration. We also design problem instances with locality
gap k/3 even for a wide class of exponential time local search procedures,
which can swap up to cn elements for a constant c. This shows that our
analysis of this class of algorithms is almost tight.

1 Introduction

In this paper, we consider the problem of maximum unweighted k-set packing. In
this problem, we are given a collection N of n distinct k-element subsets of some
ground set X , where k is a constant. We say that two sets A,B ∈ N conflict if
they share an element and call a collection of mutually non-conflicting sets from
N a packing. Then, the goal of the unweighted k-set packing problem is to find
a packing A ⊆ N of maximum cardinality. Here, we assume that each set has
cardinality exactly k. This assumption is without loss of generality, since we can
always add unique elements to each set of cardinality less than k to obtain such
an instance.

The maximum set packing problem is one the basic optimization problems.
It received a significant amount of attention from researchers in the last few
decades (see e.g. [8]). It is known that a simple local search algorithm that
starts with an arbitrary feasible solution and tries to add a constant number
of sets to the current solution while removing a constant number of conflicting
sets has performance guarantee arbitrarily close to k/2 [7]. It was also shown in
[7] that the analysis of such an algorithm is tight, i.e. there are maximum set
covering instances where the ratio between a locally optimal solution value and
the globally optimal solution value is arbitrarily close to k/2.

Surprisingly, Halldórsson[5] showed that if one increases the size of allowable
swap to Θ(log n) the performance guarantee can be shown to be at most (k+2)/3.
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Recently, Cygan, Grandoni and Mastrolilli [3] improved the guarantee for the
same algorithm to (k + 1)/3. This performance guarantee is the best currently
known for the maximum set packing problem. The obvious drawback of these
algorithms is that it runs in time O(nlog n) and therefore its running time is not
polynomial.

Both algorithms rely only on the subset of swaps of size Θ(log n) to be able to
prove their respective performance guarantees. The Halldórsson’s swaps are par-
ticularly well structured and have a straightforward interpretation in the graph
theoretic language. In section 4 we employ techniques from fixed-parameter
tractability to yield a procedure for finding well-structured improvements of size
O(log n) in polynomial time. Our algorithm is based on color coding technique
introduced by Alon, Yuster, and Zwick [1] and its extension by Fellows et al. [4],
and solves a dynamic program to locate an improvement if one exists. Combining
with Halldórsson’s analysis, we obtain a polynomial time k+2

3 -approximation al-
gorithm. In Section 6 we show that it is not possible to improve this result beyond
k
3 , even by choosing significantly larger improvements. Specifically, we construct
a family of instances in which the locality gap for a local search algorithm apply-
ing all improvements of size t remains at least k

3 even when t is allowed to grow
linearly with n. Our lower bound thus holds even for local search algorithms
that are allowed to examine some exponential number of possible improvements
at each stage.

2 A Quasi-Polynomial Time Local Search Algorithm

Let A be a packing. We define an auxiliary multigraph GA whose vertices cor-
respond to sets1 in A and whose edges correspond to sets in N \A that conflict
with at most 2 sets in A. That is, E(GA) contains a separate edge (S, T ) for
each set X ∈ N \ A that conflicts with exactly two sets S and T in A, and a
loop on S for each set X ∈ N that conflicts with exactly one set S in A. In
order to simplify our analysis, we additionally say that each set X ∈ A conflicts
with itself, and place such a loop on each set of A. Note that GA contains O(n)
vertices and O(n) edges, for any value of A.

Our local search algorithm uses GA to search for improvements to the current
solution A. Formally, we call a set I of t edges in GA a t-improvement if I covers
at most t− 1 vertices of GA and the sets of N \A corresponding to the edges in
I are mutually disjoint.

Note that if I is a t-improvement for a packing A, we can obtain a larger
packing by removing the at most t − 1 sets covered by I from A and then
adding the t sets corresponding to the edges of I to the result. We limit our
search for improvements in GA to those that exhibit the following particular
form: an improvement is a canonical improvement if it forms a connected graph
containing two distinct cycles. Then, a canonical improvement comprises either 2

1 To emphasize this correspondance, we shall use capital letters to refer to individual
vertices of GA.
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S

(a)

S T

(b)

S T

(c)

Fig. 1. Canonical Improvements

edge-disjoint cycles joined by a path, two edge-disjoint cycles that share a single
vertex, or two distinct vertices joined by 3 edge-disjoint paths (see Figure 1).2

Our algorithm, shown in Figure 2 proceeds by repeatedly calling the procedure
Improve(GA), which searches for a canonical (4 logn + 1)-improvement in the
graph GA. Before searching for a canonical improvement, we first ensure that A
is a maximal packing by greedily adding sets from N \A to A. If Improve(GA)
returns an improvement I, then I is applied to the current solution and the
search continues. Otherwise, the current solution A is returned.

In Section 3, we analyze the approximation performance of the local search
algorithm under the assumption that Improve(GA) always finds a canonical
(4 logn + 1)-improvement, whenever such an improvement exists. In Section 4,
we provide such an implementation Improve(GA) that runs in deterministic
polynomial time.

3 Locality Gap of the Algorithm

In this section we prove the following upper bound on the locality gap for our
algorithm. We consider an arbitrary instance N of k-set packing, and let A be
the packing in N produced by our local search algorithm and B be any other
packing in N .

2 It can be shown that every t-improvement must contain a canonical t-improvement,
and so we are not in fact restricting the search space at all by considering only
canonical improvements. However, this fact will not be necessary for our analysis.
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A← ∅
loop

for all S ∈ N \ A do
if S does not conflict with any set of A then
A ← A∪ {S}

end if
end for

Construct the auxiliary graph GA for A
I ← Improve(GA)
if I = ∅ then

return A
else
A ← (A \ V (I)) ∪E(I)

end if
end loop

Fig. 2. The General Local Search Procedure

Theorem 1. |B| ≤ k+2
3 |A|.

For the purpose of our analysis, we consider the subgraph HA,B of GA consisting
of only those edges of GA corresponding to sets in B. Then, every collection of
edges in HA,B is also present in GA. Moreover, because the edges of HA,B all
belong to the packing B, any subset of them must be mutually disjoint. Thus,
we can assume that no collection of at most 4 logn + 1 edges from HA,B form
any of the structures shown in Figure 1. Otherwise, the corresponding collection
of edges in GA would form a canonical (4 logn + 1)-improvement.

In order to prove Theorem 1, we make use of the following lemma of Berman
and Fürer [2], which gives conditions under which the multigraph HA,B must
contain a canonical improvement.3

Lemma 1 (Lemma 3.2 in [2]). Assume that |E| ≥ p+1
p |V | in a multigraph

H = (V,E), for some integer p. Then, H contains a canonical improvement with
at most 4p logn− 1 vertices.

It will also be necessary to bound the total number of loops in HA,B. In order to
do this, we shall make use of the following fact, which is implicit in the analysis
Halldórsson [5]. We consider a second auxiliary graph H ′A,B that is obtained from
HA,B in the following fashion:

Lemma 2. Let H = (V,E) be a multigraph and let H ′ = (V ′, E′) be obtained
from H by deleting all vertices of H with loops on them and, for each edge with
one endpoint incident to a deleted vertex, introducing a new loop on this edge’s
remaining vertex. Let t ≥ 3. Then, if H ′ contains a canonical t-improvement, H
contains a canonical (t + 2)-improvement.

3 Berman and Fürer call structures of the form shown in Figure 1 “binoculars.” Here,
we have rephrased their lemma in our own terminology.
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We now turn to the proof of Theorem 1. Every set in B must conflict with some
set in A, or else A would not be maximal. We partition the sets of B into three
collections of sets, depending on how many sets in A they conflict with. Let
B1,B2, and B3 be collections of those sets of B that conflict with, respectively,
exactly 1, exactly 2, and 3 or more sets in A (note that each set of A ∩ B is
counted in B1, since we have adopted the convention that such sets conflict with
themselves).

Because each set in A contains at most k elements and the sets in B are
mutually disjoint, we have the inequality

|B1|+ 2|B2|+ 3|B3| ≤ k|A|. (1)

We now bound the size of B1 and B2.
Let A1 be the collection of sets fromA that conflict with sets of B1. Then, note

that each set of B1 corresponds to a loop in HA,B and the sets of A1 correspond
to the vertices on which these loops occur. Any vertex of HA,B with two loops
would form an improvement of the form shown in Figure 1a. Thus, each vertex
in HA,B has at most 1 loop and hence

|B1| = |A1|. (2)

Now, we show that |B2| ≤ 2|A \ A1|. By way of contradiction, suppose that
|B2| ≥ 2|A\A1|. We construct an auxiliary graph H ′A,B from HA,B as in Lemma
2. The number of edges in this graph is exactly |B2| and the number of vertices
is exactly |A \ A1|. Thus, if |B2| ≤ 2|A \ A1|, then from Lemma 1 (with p = 1),
there is a canonical improvement in H ′A,B of size at most 4 logn− 1. But, from
Lemma 2 this means there must be a canonical improvement in HA,B of size at
most 4 logn + 1, contradicting the local optimality of A. Thus,

|B2| < 2|A \ A1| (3)

Adding (1), twice (2), and (3), we obtain

3|B1|+ 3|B2|+ 3|B3| ≤ k|A|+ 2|A1|+ 2|A \ A1|,

which implies that 3|B| ≤ (k + 2)|A|.

4 Finding Canonical Improvements

A näıve implementation of the local search algorithm described in Section 2
would run in only quasi-polynomial time, since at each step there are nΩ(logn)

possible improvements of size t = 4 logn+ 1. In contrast, we now show that it is
possible to find a canonical improvement of size t in polynomial time whenever
one exists.

We first give a randomized algorithm, using the color coding approach of Alon,
Yuster, and Zwick [1]. If some t-improvement exists, our algorithm finds it with
polynomially small probability. In Section 5, we show how to use this algorithm
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to implement a local search algorithm that succeeds with high probability, and
how to obtain a deterministic variant via derandomization.

We now describe the basic, randomized color coding algorithm. Again, con-
sider an arbitrary instance N of k-set packing and let X be the ground set of N .
Let K be a collection of kt colors. We assign each element of X a color from K
uniformly at random, and assign each k-set from N the set of all its elements’
colors. We say that a collection of sets A ⊆ N is colorful if no color appears
twice amongst the sets of A. We note that if a collection of sets A is colorful,
then A must form a packing, since no two sets in A can share an element.

We assign each edge of GA the same set of colors as its corresponding set in
N , and, similarly, say that a collection of edges is colorful if the corresponding
collection of sets from N is colorful. Now, we consider a subgraph of GA made
up of some set of at most t edges I. If this graph has the one of the forms shown
in Figure 1 and I is colorful, then I must be a canonical t-improvement. We now
show that, although the converse does not hold, our random coloring makes any
given canonical t-improvement colorful with probability only polynomially small
in n.

Consider a canonical improvement I of size 1 ≤ i ≤ t. The i sets corresponding
to the edges of I must be disjoint and so consist of ki separate elements. The
probability that I is colorful is precisely the probability that all of these ki
elements are assigned distinct colors. This probability can be estimated as(

kt
ki

)
(ki)!

(kt)ki
=

(kt)!

(kt− ki)!(kt)ki
≥ (kt)!

(kt)kt
> e−kt = e−4k log n−k = e−kn−8k, (4)

where in the last line, we have used the fact that elogn = elnn log e = nlog e < n2.
We now show how to use this random coloring to find canonical improvements

in GA. Our approach is based on finding colorful paths and cycles and employs
dynamic programming.

We give a dynamic program that, given a coloring for edges of GA, as described
above, finds a colorful path of length at most t in GA between each pair of vertices
S and T , if such a path exists. For each vertex S and T of GA, each value i ≤ t,
and each set C of ki colors from K, we have an entry D(S, T, i, C) that records
whether or not there is some colorful path of length i between S and T whose
edges are colored with precisely those colors in C. In our table, we explicitly
include the case that S = T .

We compute the entries of D bottom-up in the following fashion. We set
D(S, T, 0, C) = 0 for all pairs of vertices S, T , and C. Then, we compute the
entries D(S, T, i, C) for i > 0 as follows. We set D(S, T, i, C) = 1, if there is some
edge (V, T ) incident to vertex T in GA such that (V, T ) is colored with a set of
k distinct colors B ⊆ C and the entry D(S, V, i − 1, C \ B) = 1. Otherwise, we
set D(S, T, iC) = 0.

To determine if GA contains a colorful path of given length i ≤ t from S to
T , we simply check whether D(S, T, i, C) = 1 for some set of colors C. Similarly,
we can use our dynamic program to find colorful cycles of length j that include
some given vertex U by consulting D(U,U, j, C) for each set of colors C. The
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actual path or cycle can then be found by backtracking through the table D. We
note that while the cycles and paths found by this procedure are not necessarily
simple, they are edge-disjoint.

For each value of i, there are at most n2
(
kt
ki

)
entries in D(S, T, i, C). To com-

pute each such entry, we examine each edge (V, T ) incident to T , check if (V, T )
is colored with a set of k colors B ⊆ C and consult D(S, T, i, C \ B), all which
can be accomplished in time O(nki). Thus, the total time to compute D up to
i = t is of order

t∑
i=1

n3ki

(
kt

ki

)
≤ n4kt2kt.

In order to find a canonical t-improvement, we first compute the table D up
to i = t. Then, we search for improvements of each kind shown in Figure 1
by enumerating over all choices of S and T , and looking for an appropriate
collection of cycles or paths involving these vertices that use mutually disjoint
sets of colors. Specifically:

– To find improvements of the form shown in Figure 1a, we enumerate over
all n vertices S. For all disjoint sets of ka and kb colors Ca and Cb with
a + b ≤ t, we check if D(S, S, a, Ca) = 1 and D(S, S, b, Cb) = 1. This can be
accomplished in time

n

t∑
a=1

t−a∑
b=1

2ka2kbkt = O(nkt32kt).

– To find improvements of the form shown in Figure 1b we enumerate over
all distinct vertices S and T . For all disjoint sets of ka, kb, and kc colors
Ca,Cb,and Cc with |Ca| + |Cb| + |Cc| ≤ t, we check if D(S, S, a, Ca) = 1,
D(T, T, b, Cb) = 1, and D(S, T, c, Cc) = 1. This can be accomplished in time

n2
t∑

a=1

t−a∑
b=1

t−a−b∑
c=1

2ka2kb2kckt = O(n2kt42kt).

– To find improvements of the form shown in Figure 1c we again enumerate
over all distinct vertices S and T . For all disjoint sets of ka, kb, and kc colors
Ca,Cb,and Cc with |Ca| + |Cb| + |Cc| ≤ t, we check if D(S, T, a, Ca) = 1,
D(S, T, b, Cb) = 1, and D(S, T, c, Cc) = 1. This can be accomplished in time

n2
t∑

a=1

t−a∑
b=1

t−a−b∑
c=1

2ka2kb2kckt = O(n2kt42kt).

The total time spent searching for a canonical t-improvement is thus at most

O(n2kt2kt + nkt32kt + 2n2kt42kt) = O(n2kt42kt) = O(2kk · n4k+2 log4 n).
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5 The Deterministic, Large Neighborhood Local Search
Algorithm

The analysis of the local search algorithm in Section 3 supposed that every
call to Improve(GA) returns ∅ only when no canonical t-improvement exists in
GA. Under this assumption, the algorithm is a k+2

3 -approximation. In contrast,
the dynamic programming implementation given in Section 4 may fail to find a
canonical improvement I if the chosen random coloring does not make I colorful.
As we have shown in (4), this can happen with probability at most (1−e−kn−8k).

Suppose that we implement each call to Improve(GA) by running the al-
gorithm of Section 4 cN = cekn8k lnn times, each with a different random
coloring. We now show that the resulting algorithm is a polynomial time k+2

3 -
approximation with high probability 1− n1−c.

We note that each improvement found by our local search algorithm must
increase the size of the packing A, and so the algorithm makes at most n calls to
Improve(GA). We set N = ekn8k+1 lnn, and then implement each such call by
repeating the color coding algorithm of Section 4 cN times for some c > 1, each
with an new random coloring. The probability that any given call Improve(GA)
succeeds in finding a canonical t-improvement when one exists is then at least:

1− (1 − e−kn−8k)cN ≥ 1− exp{e−kn−8k · cekn8k lnn} = 1− n−c.

And so, the probability that all calls to Improve(GA) satisfy the assumptions
of Theorem 1 is at least

(1− n−c)n ≥ 1− n1−c

The resulting algorithm is therefore a k+2
3 -approximation with high probability.

It requires at most n calls to Improve(GA), each requiring total time

O(cN · 2kkn4k+2 log4 n) = O(c(2e)kkn12k+2 logn n lnn) = cnO(k)

Using the general approach described by Alon, Yuster, and Zwick [1], we can
in fact give a deterministic implementation of Improve(GA), which always suc-
ceeds in finding a canonical t-improvement in GA if such an improvement exists.
Rather than choosing a coloring of the ground set X at random, we use a col-
lection K of colorings (each of which is given as a mapping X → K) with the
property that every canonical t-improvement GA is colorful with respect to some
coloring in K. For this, it is sufficient to find a collection of K of colorings such
that for every set of at most kt elements in X , there is some coloring in K
that assigns these kt elements kt distinct colors from K. Then, we implement
Improve(GA) by running the dynamic programming algorithm of Section 5 on
each such coloring, and returning the first improvement found. Because every
canonical t-improvement contains at most kt distinct elements of the ground set,
every such improvement must be made colorful by some coloring in K, and so
Improve(GA) will always find a canonical t-improvement if one exists.

We now show how to construct the desired collection of colorings K by using a
kt-perfect family of hash functions from X → K. Briefly, a perfect hash function
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for a set S ⊆ A is a mapping from A to B that is one-to-one on S. A p-perfect
family is then collection of perfect hash functions, one for each set S ⊆ A of
size at most p. Building on work by Fredman, Komlós and Szemerédi [10] and
Schmidt and Siegal [9], Alon and Naor show (in Theorem 3 of [11]) how to
explicitly construct a perfect hash function from [m] to [p] for some S ⊂ [m]
of size p in time Õ(p logm). This hash function is described in O(p + log p ·
log logm) bits. The maximum size of a p-perfect family of such functions is
therefore 2O(p+log p·log logm). Moreover, the function can be evaluated in time
O(logm/ log p).

Then, we can obtain a deterministic, polynomial time k+2
3 approximation

as follows. Upon receiving the set packing instance N with ground set X , we
compute a kt-perfect family K of hash functions from X to a set of kt colors K.
Then, we implement each call to Improve(GA) as described, by enumerating
over the colorings in K. We note that since each set in N has size k, |X | ≤
|N |k = nk, so each improvement makes at most

2O(kt+log kt·log log kn) = 2O(k log n+log(k log n)·log log kn) = nO(k)

calls to the dynamic programming algorithm of Section 5 (one per coloring in K)
and each of these calls takes time at most nO(k) (including the time to evaluate
the coloring on each element of the ground set). Moreover, the initial construction
of K takes time at most 2ktÕ(kt log kn) = nO(k).

6 A Lower Bound

We now show that our analysis is almost tight. Specifically, we show that the
locality gap of t-local search is at least k

3 , even when t is allowed to grow on the
order of n.

Theorem 2. Let c = 9
2e5k and suppose that t ≤ cn for all sufficiently large n.

There, there exist 2 pairwise disjoint collections of k-sets S and O with |S| = 3n
and |O| = kn such that any collection of a ≤ t sets in O conflict with at least a
sets in S.
In order to prove Theorem 2 we make use of the following (random) construction.
Let X be a ground set of 3kn elements, and consider a collection S of 3n sets,
each containing k distinct elements of X . We construct a random collection R
of kn disjoint subsets of X , each containing 3 elements.

The number of distinct collections R generated by this procedure is equal to
the number of ways to partition the 3kn elements of X into kn disjoint 3-sets.
We define the quantity τ(m) to be the number of ways that m elements can be
divided into m/3 disjoint 3-sets:

τ(m) � m!

(3!)m/3(m/3)!
.

In order to verify the above formula, consider the following procedure for gen-
erating a random partition. We first arrange the m elements in some order and
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then make a 3-set from the elements at positions 3i, 3i− 1 and 3i− 2, for each
i ∈ [m3 ] (that is, we group each set of 3 consecutive elements in the ordering into
a triple). Now, we note that two permutations of the elements produce the same
partition if they differ only in the ordering of the 3 elements within each of the
m/3 triples or in the ordering of the m/3 triples themselves. Thus, any given
partition is generated by exactly (3!)m/3(m/3)! of the m! possible orderings.

The probability that any particular collection of a disjoint 3-sets occurs in R
is given by

p(a) � τ(3kn− 3a)

τ(3kn)
.

This is simply the number of ways to partition the remaining 3kn− 3a elements
into kn− a disjoint 3-sets, divided by the total number of possible partitions of
all 3kn elements.

We say that a collection A of a sets in S is unstable if there is some collection
B of at least a sets in R that conflict with only those sets in A. Note that there
is an improvement of size a for S only if there is some unstable collection A of
size a in S.4 We now derive an upper bound on the probability that our random
construction of R results in a given collection A in S becoming unstable.

Lemma 3. A collection of a sets in S is unstable with probability less than
( ka
3da)(

kn
da)

(3kn
3da)

.

Proof. A collection A of a k-sets from S is unstable precisely when there is a
collection B of a 3-sets in R that contain only those k(a− 1) elements appearing
in the sets of A. There are

(
ka
3a

)
ways to choose the 3a elements from which we

construct B. For each such choice, there are τ(3a) possible ways to partition the
elements into 3-sets, each occurring with probability p(3a) = τ(3kn−3a)/τ(3n).
Applying the union bound, the probability that A is unstable is then at most(

ka

3a

)
τ(3a)

τ(3kn− 3a)

τ(3kn)
=

(
ka

3a

)
(3a)!

(3!)aa!
· (3(kn− a))!

(3!)kn−a(kn− a)!
· (3!)kn(kn)!

(3kn)!

=

(
ka

3a

)
(3a)!(3(kn− a))!

(3kn)!

(kn)!

(kn− a)!a!

=

(
ka
3a

)(
kn
a

)(
3kn
3a

) .

��
Proof (Theorem 2). Let Ua be number of unstable collections of size a in S,
and consider E[Ua]. There are precisely

(
3n
a

)
such collections, and from Lemma

3, each occurs with probability less than
(ka
3a)(kn

a )
(3kn

3a )
. Thus:

E[Ua] <

(
3n
a

)(
ka
3a

)(
kn
a

)(
3kn
3a

) (5)

4 In fact, for an improvement to exist, there must be some collection B of at least a+1
such sets in R. This stronger condition is unnecessary for our bound, however.



802 M. Sviridenko and J. Ward

Applying the upper and lower bounds(n
k

)k

≤
(
n

k

)
≤

(en
k

)k

,

in the numerator and denominator, respectively, of (5), we obtain the upper
bound

(e3n)a

aa
· (eka)3a

(3a)3a
· (ekn)a

aa
· (3a)3a

(3kn)3a
=

(
e534k4a6n2

36k3a5n3

)a

=

(
e5ka

9n

)a

.

Then, the expected number of unstable collections in S of size at most t (and
hence the expected number of t-improvements for S) is less than

t∑
a=1

E[Ua] <

t∑
a=1

(
e5ka

9n

)a

. (6)

For all sufficiently large n, we have a ≤ t ≤ cn and so

t∑
a=1

(
e5ka

9n

)a

≤
t∑

a=1

(
e5kcn

9n

)a

=

t∑
a=1

(
e5k

9

9

2e5k

)a

=

t∑
a=1

(
1

2

)a

< 1.

Thus, there must exist some collection O in the support of R that creates no
unstable collections of size at most t in S. We add k−3 new, unique elements to
each of the 3-sets in O to obtain a collection of k-sets, noting that this does not
affect the stability of any collection in S. Then, O is a collection of kn pairwise
disjoint k-sets satisfying the conditions of the theorem. ��

7 Conclusion

We have given a polynomial time k+2
3 approximation algorithm for the problem

of k-set packing. Our algorithm is based on a simple local search algorithm, but
incorporates ideas from fixed parameter tractability to search large neighbor-
hoods efficiently, allowing us to achieve an approximation guarantee exceeding
the k/2 bound of Hurkens and Schrijver [7]. In contrast, our lower bound of
k/3 shows that local search algorithms considering still larger neighborhoods,
including neighborhoods of exponential size, can yield only slight improvements.

An interesting direction for future research would be to close the gap between
our k/3 lower bound and k+2

3 upper bound. Recently, Cygan, Grandoni, and
Mastrolilli [3] have given a quasi-polynomial time local search algorithm attain-
ing an approximation ratio of (k + 1)/3. Their analysis is also based on that of
Berman and Fürer [2] and Halldórsson[5], but their algorithm requires searching
for improvements with a more general structure than those that we consider,
and it is unclear how to apply similar techniques as ours in this case. Neverthe-
less, we conjecture that it is possible to attain an approximation ratio of k+1

3 in
polynomial time, although this will likely require more sophisticated techniques
than we consider here.
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In contrast to all known positive results, the best known NP-hardness result
for k-set packing is, due to Hazan, Safra, and Schwartz [6], is only O(k/ ln k). A
more general open problem is whether the gap between this result and algorith-
mic results can be narrowed.

Finally, we ask whether our results can be generalized to the independent set
problem in (k + 1)-claw free graphs. Most known algorithms for k-set packing,
including those given by Halldórsson [5] and Cygan, Grandoni, and Mastrolilli
[3] generalized trivially to this setting. However, this does not seem to be the
case for the color coding approach that we employ, as it relies on the set packing
representation of problem instances.

Acknowledgements. We would like to thank Oleg Pikhurko for extremely
enlightening discussion on random graphs.
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Abstract. Thapper and Živný [STOC’13] recently classified the com-
plexity of VCSP for all finite-valued constraint languages. However, the
complexity of VCSPs for constraint languages that are not finite-valued
remains poorly understood. In this paper we study the complexity of
two such VCSPs, namely Min-Cost-Hom and Min-Sol. We obtain a full
classification for the complexity of Min-Sol on domains that contain at
most three elements and for the complexity of conservative Min-Cost-
Hom on arbitrary finite domains. Our results answer a question raised
by Takhanov [STACS’10, COCOON’10].

1 Introduction

The valued constraint satisfaction problem (VCSP) is a very broad framework
in which many combinatorial optimisation problems can be expressed. A valued
constraint language is a fixed set of cost functions from powers of a finite do-
main. An instance of VCSP for some give constraint language is then a weighted
sum of cost functions from the language. The goal is to minimise this sum. On
the two-element domain the complexity of the problem is known for every con-
straint language [4]. Also for every language containing all {0, 1}-valued unary
cost functions the complexity is known [15]. In a recent paper Thapper and
Živný [21] managed to classify the complexity of VCSP for all finite-valued con-
straint languages. However, VCSPs with other types of languages remains poorly
understood.

In this paper we study the complexity of the (extended) minimum cost homo-
morphism problem (Min-Cost-Hom) and the minimum solution problem (Min-
Sol). These problems are both VCSPs with special types of languages in which
all non-unary cost-functions are crisp ({0,∞}-valued). Despite this rather se-
vere restriction the frameworks allow many natural combinatorial optimisation
problems to be expressed. Min-Sol does e.g. generalise a large class of bounded
integer linear programs. It may also be viewed as a generalisation of the prob-
lem Min-Ones [14] to larger domains. The problem Min-Cost-Hom is even more
general and contains Min-Sol as a special case.
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The problem Min-Sol has received a fair bit of attention in the literature and
has e.g. had its complexity fully classified for all graphs of size three [13] and
for all so-called homogeneous languages [9]. For more information about Min-Sol
see [11] and the references therein. The “unextended version” of Min-Cost-Hom
was introduced in [6] motivated by a problem in defence logistics. It was studied
in a series of papers before it was completely solved in [18]. The more general
version of the problem which we are interested in was introduced in [19].1

Methods and Results. We obtain a full classification of the complexity of
Min-Sol on domains that contain at most three elements. The tractable cases are
given by languages that can be solved by a certain linear programming formula-
tion [20] and a new class that is inspired by, and generalises, languages described
in [18,19]. A precise classification is given by Theorem 16. For conservative Min-
Cost-Hom (i.e. Min-Cost-Hom with languages containing all unary crisp cost
functions) an almost complete classification (for arbitrary finite domains) was
obtained by Takhanov [19]. We are able to remove the extra conditions needed
in [19] and provide a full classification for this problem. This answers a question
raised in [18,19]. The main mathematical tools used througout the paper are
from the so-called algebraic approach, see e.g. [2,7], and its extensions to optimi-
sation problems [3,5]. Following [21] we also make use of Motzkin’s Transposition
Theorem from the theory of linear equations.

The rest of the paper is organised as follows. Section 2 contains needed con-
cepts and results from the literature, Sect. 3 holds the description of our results
and Sects. 4, 5 and 6 contain proofs of some of the theorems stated in Sect. 3.

2 Preliminaries

For a set Γ of finitary relations on a finite set D (the domain), and a finite set Δ
(referred to as the domain valuations) of functions D → Q≥0 ∪ {∞}, we define
Min-Cost-Hom(Γ,Δ) as the following optimisation problem.

Instance: A triple (V,C,w) where
– V is a set of variables,
– C is a set of Γ -allowed constraints, i.e. a set of pairs (s,R) where the

constraint-scope s is a tuple of variables, and the constraint-relation R
is a member of Γ of the same arity as s, and

– w is a weight function V ×Δ→ Q≥0.
Solution: A function ϕ : V → D s.t. for every (s,R) ∈ C it holds that ϕ(s) ∈ R,

where ϕ is applied component-wise.
Measure: The measure of a solution ϕ is m(ϕ) =

∑
v∈V

∑
ν∈Δw(v, ν)ν(ϕ(v)).

The objective is to find a solution ϕ that minimises m(ϕ).

1 The definition in [19] is slightly more restrictive than the one we use. Also the
notation differs; what we denote Min-Cost-Hom(Γ,Δ) is in [19] referred to as
MinHomΔ(Γ ).
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The problem Min-Sol(Γ, ν), which we define only for injective functions ν :
D → Q≥0, is the problem Min-Cost-Hom(Γ, {ν}). The “regular” constraint satis-
faction problem (CSP) can also be defined through Min-Cost-Hom; an instance
of CSP(Γ ) is an instance of Min-Cost-Hom(Γ, ∅), and the objective is to deter-
mine if any solution exists.

We will call the pair (Γ,Δ) a language (or a Min-Cost-Hom-language). The
language (Γ, {ν}) is written (Γ, ν). For an instance I we use Opt(I) for the mea-
sure of an optimal solution (defined only if a solution exists), Sol(I) denotes
the set of all solutions and Optsol(I) the set of all optimal solutions. We define
0∞ = ∞ 0 = 0 and for all x ∈ Q≥0 ∪ {∞}, x ≤ ∞ and x +∞ = ∞ + x = ∞.
The i:th projection operation will be denoted pri. We define

(
A
2

)
= {{x, y} ⊆

A : x �= y}. O(m)
D is used for the set of all m-ary operations on D. For binary

operations f , g and h we define f through f(x, y) = f(y, x) and f [g, h] through
f [g, h](x, y) = f(g(x, y), h(x, y)). A k-ary operation f on D is called conservative
if f(x1, . . . , xk) ∈ {x1, . . . , xk} for every x1, . . . , xk ∈ D. A ternary operation m
on D is called arithmetical on B ⊆

(
D
2

)
if for every {a, b} ∈ B the function m

satisfies m(a, b, b) = m(a, b, a) = m(b, b, a) = a.

Polymorphisms. Let (Γ,Δ) be a language on the domain D. By Γ c we denote
Γ enriched with all constants, i.e. Γ∪{{c} : c ∈ D}. An operation f : Dm → D is
called a polymorphism of Γ if for every R ∈ Γ and every sequence t1, . . . , tm ∈ R
it holds that f(t1, . . . , tm) ∈ R where f is applied component-wise. The set of
all polymorphisms of Γ is denoted Pol(Γ ). A function ω : O(k)

D → Q≥0 is a k-ary
fractional polymorphism [3] of (Γ,Δ) if∑

g∈O(k)
D

ω(g) = 1 and
∑

g∈O(k)
D

ω(g)ν(g(x1, . . . , xk)) ≤ 1

k

k∑
i=1

ν(xi)

holds for every ν ∈ Δ and every x1, . . . , xk ∈ D, and ω(g) = 0 if g �∈ Pol(Γ ). For
a k-ary fractional polymorphism ω we let supp(ω) = {g ∈ O(k)

D : ω(g) > 0}. The
set of all fractional polymorphisms of (Γ,Δ) is denoted fPol(Γ,Δ).

Min-Cores. The language (Γ,Δ) is called a min-core [12] if there is no non-
surjective unary f ∈ Pol(Γ ) for which ν(f(x)) ≤ ν(x) holds for every x ∈ D and
ν ∈ Δ. The language (Γ ′, Δ′) is a min-core of (Γ,Δ) if (Γ ′, Δ′) is a min-core
and (Γ,Δ)|f(D) = (Γ ′, Δ′) for some unary f ∈ Pol(Γ ) satisfying ν(f(x)) ≤ ν(x)
for every x ∈ D and ν ∈ Δ. The reason why we care about min-cores is the
following result [12].2

Theorem 1. Let (Γ ′, Δ′) be a min-core of (Γ,Δ). If Min-Cost-Hom(Γ ′, Δ′) is
NP-hard (in PO), then Min-Cost-Hom(Γ,Δ) is NP-hard (in PO).

Expressive Power and Polynomial-Time Reductions. A relation R is said
to be weighted pp-definable in (Γ,Δ) if there is an instance I = (V,C,w) of
2 The results in [12] are stated for a slightly more restricted problem than ours. It is

however not hard to see that the results transfer to our setting.
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Min-Cost-Hom(Γ,Δ) s.t. R = {(ϕ(v1), . . . , ϕ(vn)) : ϕ ∈ Optsol(I)} for some
v1, . . . , vn ∈ V . We use 〈Γ,Δ〉w to denote the set of all relations that is weighted
pp-definable in (Γ,Δ). Similarly R is said to be pp-definable in Γ if there is
an instance I = (V,C) of CSP(Γ ) s.t. R = {(ϕ(v1), . . . , ϕ(vn)) : ϕ ∈ Sol(I)}
for some v1, . . . , vn ∈ V . 〈Γ 〉 is used to denote the set of all relations that are
pp-definable in Γ . A cost function ν : D → Q≥0 ∪ {∞} is called expressible in
(Γ,Δ) if there is an instance I = (V,C,w) of Min-Cost-Hom(Γ,Δ) and v ∈ V
s.t. ν(x) = min{m(ϕ) : ϕ ∈ Sol(I), ϕ(v) = x} if ν(x) < ∞ and min{m(ϕ) : ϕ ∈
Sol(I), ϕ(v) = x} = ∞ or {ϕ ∈ Sol(I) : ϕ(v) = x} = ∅ if ν(x) = ∞. The set of
all cost functions expressible in (Γ,Δ) is denoted 〈Γ,Δ〉e. What makes all these
closure operators interesting is the following result, see e.g. [3,4,10].

Theorem 2. Let Γ ′ ⊆ 〈Γ,Δ〉w and Δ′ ⊆ 〈Γ,Δ〉e be finite sets. Then, Min-Cost-
Hom(Γ ′, Δ′) is polynomial-time reducible to Min-Cost-Hom(Γ,Δ).

This of course also means that if Γ ′ ⊆ 〈Γ,Δ〉w is finite, then Min-Cost-Hom(Γ ′∪
Γ,Δ) is polynomial-time reducible to Min-Cost-Hom(Γ,Δ).

We will often use bipartite-graph-representations for relations, e.g. a
b��

b
c =

{(a, b), (a, c), (b, b)}. Finally we recall a classic result, see e.g. [17, p. 94], about
systems of linear equations that will be of great assistance.

Theorem 3 (Motzkin’s Transposition Theorem). For any A ∈ Qm×n,
B ∈ Qp×n, b ∈ Qm and c ∈ Qp, exactly one of the following holds:

– Ax ≤ b, Bx < c for some x ∈ Qn

– AT y + BT z = 0 and (bT y + cT z < 0 or bT y + cT z = 0 and z �= 0) for some
y ∈ Qm

≥0 and z ∈ Qp
≥0

3 Contributions

We let D denote the finite domain over which the language (Γ,Δ) is defined. To
describe our results we need to introduce some definitions.

Definition 4 ((a, b)-dominating). Let a, b ∈ D. A binary fractional polymor-
phism ω of (Γ,Δ) is called (a, b)-dominating if∑

g∈O(2)
D

ω(g)δa,g(a,b) ≥
1

2
>
∑

g∈O(2)
D

ω(g)δb,g(a,b).
3

The following is a generalisation of the concept of weak tournament pairs that
was introduced in [19].

Definition 5 (generalised weak tournament pair). Let A ⊆ B ⊆
(
D
2

)
. A

language (Γ,Δ) is said to admit a generalised weak tournament pair on (A,B)
if there is a pair of binary functions f1, f2 ∈ Pol(Γ ) s.t. the following holds.

3 Here δ denotes the Kronecker delta function, i.e. δi,j = 1 if i = j, otherwise δi,j = 0.
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– For every {a, b} ∈
(
D
2

)
;

1. if {a, b} �∈ B then f1|{a,b} and f2|{a,b} are projections, and
2. if {a, b} ∈ B \A then f1|{a,b} and f2|{a,b} are different idempotent, con-

servative and commutative operations.
– For any U ⊆ D s.t. U ∈ 〈Γ 〉 either no {x, y} ∈ A satisfies {x, y} ⊆ U , or

there is {a, b} ∈ A s.t. U \ {b} ∈ 〈Γ 〉 and (Γ,Δ) admits an (a, b)-dominating
binary fractional polymorphism.

The following definition is inspired by notation used in [18].

Definition 6. For a, b ∈ D we define
a
↑
b

= {f ∈ O(2)
D : f(a, b) = f(b, a) = a}

and
a
↓
b

= {f ∈ O(2)
D : f(a, b) = f(b, a) = b}. For x1, . . . , xm, y1, . . . , ym ∈ D and

♦1, . . . ,♦m ∈ {↑, ↓} we define
x1
♦1
y1

x2
♦2
y2

· · · xm
♦m
ym

=
x1
♦1
y1

∩ x2
♦2
y2

∩ · · · ∩ xm
♦m
ym

, e.g.
a
↑
b

c
↓
d

=
a
↑
b
∩ c
↓
d
.

We can now give names to some classes of languages that will be important.

Definition 7. We say that a language (Γ,Δ) over D is of type

– GWTP (generalised weak tournament pair) if there is A,B ⊆
(
D
2

)
s.t. (Γ,Δ)

admits a generalised weak tournament pair on (A,B) and, Pol(Γ ) contains
an idempotent ternary function m that is arithmetical on

(
D
2

)
\B and satisfies

m(x, y, z) ∈ {x, y, z} for every x, y, z ∈ D s.t. |{x, y, z}| = 3,
– BSM (bisubmodular, see e.g. [4]) if D = {a, b, c}, 2ν(b) ≤ ν(a) + ν(c) for

every ν ∈ Δ, and there are binary idempotent commutative operations �,� ∈
Pol(Γ ) s.t. � ∈ a

↓
b

c
↓
b
, � ∈ a

↑
b

c
↑
b

and a � c = a � c = b,

– GMC (generalised min-closed, see [9]) if there is f ∈ Pol(Γ ) s.t. for every
ν ∈ Δ the following is true. For all a, b ∈ D s.t. a �= b it holds that if
ν(f(a, b)) ≥ max(ν(a), ν(b)), then ν(f(b, a)) < min(ν(a), ν(b)), and for all
a ∈ D it holds that ν(f(a, a)) ≤ ν(a).

Solving instances of Min-Cost-Hom expressed in languages of type GWTP,
BSM and GMC can be done in polynomial time. This is demonstrated by
the following results. We note that the first result describes a new tractable
class while the following two are known cases.4 A proof of Theorem 8 is given in
Sect. 4.

Theorem 8. If there is S ⊆ 2D s.t. CSP(Γ c ∪ S) is in P and (Γ ∪ S,Δ) is
of type GWTP, then Min-Cost-Hom(Γ ∪ S,Δ) (and therefore also Min-Cost-
Hom(Γ,Δ)) is in PO.

Theorem 9 ([20, Corollary 6.1]). If (Γ,Δ) is of type BSM, then Min-Cost-
Hom(Γ,Δ) is in PO.

Theorem 10 ([9, Theorem 5.10]). If (Γ,Δ) is of type GMC, then Min-Cost-
Hom(Γ,Δ) is in PO.
4 [9, Theorem 5.10] is stated for a slightly more restricted problem than ours. It is

however not hard to see that the results transfer to our setting.
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Instances expressed using languages of type BSM can, as proved in [20], be
solved through a certain linear programming formulation. We note that this also
holds for languages of type GMC. It is known that any language of type GMC
must admit a min-set-function [16, Theorem 5.18]. From this it follows that also
a symmetric fractional polymorphism of every arity must be admitted, and the
claim follows from [20].

The tractability of languages of type GWTP on the other hand can not
directly be explained by the results in [20]. It can e.g. be checked that the
language ({ba��

b
a}, {a �→ 0, b �→ 1}) is of type GWTP. This language does not

admit any symmetric fractional polymorphism and is therefore not covered by
the results in [20].

Often (as e.g. demonstrated by Theorem 8) the fact that a language admits
an (a, b)-dominating binary fractional polymorphism can be useful for tractabil-
ity arguments. Also the converse fact, that a language does not admit such a
fractional polymorphism, can have useful consequences. An example of this is
the following proposition, which will be used in the proofs of our main results.

Proposition 11. Let a, b ∈ D, a �= b. If (Γ,Δ) does not admit a binary frac-
tional polymorphism that is (a, b)-dominating, then 〈Γ,Δ〉e contains a unary
function ν that satisfies ∞ > ν(a) > ν(b).

The proof is given in Sect. 5.

3.1 Conservative Languages

We call (Γ,Δ) conservative if 2D ⊆ Γ , i.e. if the crisp language contains all unary
relations. The complexity of Min-Cost-Hom(Γ,Δ) for conservative languages
(Γ,Δ) was classified in [19] under the restriction that Δ contains only finite-
valued functions, and that for each pair a, b ∈ D there exists some ν ∈ Δ s.t.
either ν(a) < ν(b) or ν(a) > ν(b). It was posted in [18,19] as an open problem
to classify the complexity of the problem also without restrictions on Δ. The
following theorem does just that.

Theorem 12. Let (Γ,Δ) be a conservative language on a finite domain. If
CSP(Γ ) is in P and (Γ,Δ) is of type GWTP, then Min-Cost-Hom(Γ,Δ) is
in PO, otherwise Min-Cost-Hom(Γ,Δ) is NP-hard.

We prove the theorem in Sect. 6.
Kolmogorov and Živný [15] completely classified the complexity of conserva-

tive VCSPs. Since every Min-Cost-Hom can be stated as a VCSP, one might
think that the classification provided here is implied by the results in [15]. This
is not the case. A VCSP-language is called conservative if it contains all unary
{0, 1}-valued cost functions. The conservative Min-Cost-Hom-languages on the
other hand correspond to VCSP-languages that contain every unary {0,∞}-
valued cost function. (Note however that far from all VCSP-languages that con-
tain every unary {0,∞}-valued cost function correspond to a Min-Cost-Hom-
language.)
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3.2 Min-Sol on the Three-Element Domain

In this section we fully classify the complexity of Min-Sol on the three-element
domain.

Theorem 13. Let (Γ, ν) be a language over a three-element domain D and ν :
D → Q≥0 be injective. If (Γ, ν) is a min-core and there is no S ⊆ 2D s.t. (Γ∪S, ν)
is of type GWTP, BSM or GMC, then Min-Sol(Γ, ν) is NP-hard.

The following two lemmas provide key assistance in the proof of Theorem 13.
The first of the two is a variation of Lemma 3.5 in [21].

Lemma 14. If a
b��

a
b �∈ 〈Γ,Δ〉w, then for every σ ∈ 〈Γ,Δ〉e there is ω ∈ fPol(Γ,Δ)

with f ∈ supp(ω) s.t. {f(a, b), f(b, a)} �= {a, b} and σ(f(a, b)) + σ(f(b, a)) ≤
σ(a) + σ(b).

Lemma 15. Let (Γ, ν) be a language over a three-element domain D and ν :
D → Q≥0 be injective. If (Γ, ν) is a min-core and not of type GMC, then
Γ c ⊆ 〈Γ, ν〉w.

The proof of Theorem 13 contains a somewhat lengthy case-analysis and will not
be presented in full. The interested reader can find it in the longer version of
this paper. The case-analysis splits the proof into cases depending on what unary
relations that are weighted pp-definable in (Γ, ν). In each case it is essentially
shown that, unless a two-element subset {x, y} ⊆ D is definable s.t. Min-Sol(Γ ∪
〈Γ, ν〉w ∩ O(2)

D , ν)|{x,y} is NP-hard, in which case also Min-Sol(Γ, ν) is NP-hard,
the language (Γ ∪ S, ν) is of type GMC, BSM or GWTP for some S ⊆ 2D.

If (Γ ∪S, ν) is a min-core and of type GWTP (and not of type GMC), then
from Lemma 15 it follows that CSP(Γ c ∪ S) ≤p Min-Sol(Γ c ∪ S, ν) ≤p Min-
Sol(Γ ∪S, ν). Since Min-Sol(Γ, ν) is a restricted variant of Min-Cost-Hom(Γ,Δ),
we therefore, from Theorems 8, 9 10 and 13, obtain the following.

Theorem 16. Let (Γ, ν) be a language over a three-element domain D and ν :
D → Q≥0 be injective. Min-Sol(Γ, ν) is in PO if (Γ, ν) has a min-core (Γ ′, ν′)
that is of type BSM or GMC, or if there is S ⊆ 2D s.t. CSP((Γ ′)c ∪ S) is in
P and (Γ ′ ∪ S, ν′) is of type GWTP. Otherwise Min-Sol(Γ, ν) is NP-hard.

The following provides an example of use of the classification. Jonsson, Nordh
and Thapper [13] classified the complexity of Min-Sol({R}, ν) for all valuations
ν and binary symmetric relations R (i.e. graphs) on the three-element domain.
One relation stood out among the others, namely: H5 = {(a, c), (c, a), (b, b),
(b, c), (c, b), (c, c)}, where ν(a) < ν(b) < ν(c). If ν(a) + ν(c) < 2ν(b) then
pr1(arg min(x,y)∈H5

(ν(x)+ν(y))) = {a, c} which means that the relation c
a��

c
a ∈

〈{H5}, ν〉w, and Min-Sol({H5}, ν) is NP-hard by a reduction from the maximum
independent set problem. Otherwise the problem is in PO. This was determined
in [13] by linking the problem with, and generalising algorithms for, the critical
independent set problem [22]. We note that �,� ∈ Pol({H5}), where �,� are
commutative idempotent binary operations s.t. � ∈ a

↓
b

c
↓
b
, � ∈ a

↑
b

c
↑
b
and a�c = a�c =

b. This means that ({H5}, ν) is of type BSM.
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4 Proof of Theorem 8

Let I = (V,C,w) be an instance of Min-Cost-Hom(Γ,Δ) with measure m. Since
CSP(Γ c) is in P we can, in polynomial-time, compute the reduced domain Dv =
{ϕ(v) : ϕ ∈ Sol(I)} for every v ∈ V . Note that Dv ∈ 〈Γ 〉.

Let f1, f2 be a generalised weak tournament pair on (A,B). If there for some
v ∈ V is some {x, y} ∈ A s.t. {x, y} ⊆ Dv, then we know that there is {a, b} ∈ A
so that Dv \ {b} ∈ 〈Γ 〉 and (Γ,Δ) admits an (a, b)-dominating binary fractional
polymorphism ω. Assume that ϕa and ϕb are s.t. m(ϕa) = min{m(ϕ) : ϕ ∈
Sol(I), ϕ(v) = a} and m(ϕb) = min{m(ϕ) : ϕ ∈ Sol(I), ϕ(v) = b}.

Certainly g(ϕa, ϕb) ∈ Sol(I) for every g ∈ supp(ω). Because ω ∈ fPol(Γ,Δ) it
follows that∑

g∈O(2)
D

ω(g)m(g(ϕa, ϕb)) =
∑

g∈O(2)
D

ω(g)
∑

x∈V,ν∈Δ
w(x, ν)ν(g(ϕa , ϕb)(x))

=
∑

x∈V,ν∈Δ
w(x, ν)

∑
g∈O(2)

D

ω(g)ν(g(ϕa(x), ϕb(x)))

≤
∑

x∈V,ν∈Δ
w(x, ν)

1

2
(ν(ϕa(x)) + ν(ϕb(x))) =

1

2
(m(ϕa) + m(ϕb)).

Since ω is (a, b)-dominating there are functions ", σ : O(2)
D → Q≥0 s.t. ω =

" + σ,
∑

g∈O(2)
D

"(g) =
∑

g∈O(2)
D

σ(g) = 1
2 , g(a, b) = a for every g ∈ supp("), and

f(a, b) �= b for some f ∈ supp(σ). This implies that

1

2
m(ϕa) +

∑
g∈O(2)

D

σ(g)m(g(ϕa, ϕb)) ≤
∑

g∈O(2)
D

ω(g)m(g(ϕa, ϕb)),

so
∑

g∈O(2)
D

2σ(g)m(g(ϕa, ϕb)) ≤ m(ϕb),

which in turn (since
∑

g∈O(2)
D

2σ(g) = 1 and f(a, b) �= b for some f ∈ supp(σ))
implies that there is ϕ∗ ∈ Sol(I) s.t. m(ϕ∗) ≤ m(ϕb) and ϕ∗(v) �= b. Hence b can
be removed from Dv without increasing the measure of an optimal solution. To
accomplish this the constraint (v,Dv \ {b}) is added.

We repeat this procedure until
(
Dv

2

)
∩ A = ∅ for every v ∈ V . Clearly this

takes at most |D| · |V | iterations.
Let f ′1 = f1[f1, f1] and f ′2 = f2[f2, f2]. Note that f ′1|{x,y} and f ′2|{x,y} are differ-

ent conservative, idempotent and commutative operations if {x, y} ∈ B \ A and
projections if {x, y} ∈

(
D
2

)
\ B. If f1|{x,y} = pr1 for some {x, y}, then f ′1|{x,y} =

f1|{x,y} = pr1, and if f1|{x,y} = pr2, then f ′1|{x,y} = f1|{x,y} = pr2 = pr1. So
f ′1|{x,y} = pr1 for every {x, y} ∈

(
D
2

)
\B. The same arguments apply also for f ′2.

Clearly f ′1|Dv and f ′2|Dv are conservative operations for every v ∈ V . Let g ∈
Pol(Γ ) be a ternary idempotent operation that is arithmetical on

(
D
2

)
\ B. De-

fine g′ through g′(x, y, z) = g(f ′1(x, f
′
1(y, z)), f ′1(y, f

′
1(x, z)), f ′1(z, f ′1(x, y))). Since

f ′1 = pr1 on
(
D
2

)
\ B also g′ is arithmetical on

(
D
2

)
\ B. Since f ′1 is conservative,
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commutative and idempotent on B \A we have f ′1(x, f ′1(x, y)) = f ′1(x, f ′1(y, x)) =
f ′1(y, f ′1(x, x)) ∈ {x, y} for every {x, y} ∈ B \ A, so g′ is conservative on

(
D
2

)
\ A.

Note that f ′1, f ′2, g′ ∈ Pol(Γ+) where Γ+ = Γ ∪ {S : S ⊆ Dv for some v ∈ V }).
This together with the fact that only a constant number of subsets of D exists
means that the modified instance I is easily turned into an instance of the multi-
sorted version of Min-Cost-Hom(Γ+,∇D), where ∇D is the set of all functions
D → IN, and is solvable in polynomial time [19, Theorem 23].

5 Proof of Proposition 11

Let Ω = O(2)
D ∩ Pol(Γ ), Ω1 = {f ∈ Ω : f(a, b) = a}, Ω2 = {f ∈ Ω : f(a, b) =

b} and Ω3 = Ω \ (Ω1 ∪ Ω2). The language (Γ,Δ) admits a binary fractional
polymorphism that is (a, b)-dominating if the following system has a solution
ug ∈ Q, g ∈ Ω.∑
g∈Ω

ugν(g(x, y)) ≤ 1

2
(ν(x) + ν(y)) for (x, y) ∈ D2, ν ∈ Δ, −ug ≤ 0 for g ∈ Ω,

∑
g∈Ω

ug ≤ 1, −
∑
g∈Ω

ug ≤ −1, −
∑
g∈Ω1

ug ≤ −
1

2
, and

∑
g∈Ω2

ug <
1

2

If the system is unsatisfiable, then, by Theorem 3, there are v(x,y),ν, og, w1, w2,
w3, z ∈ Q≥0 for (x, y) ∈ D2, ν ∈ Δ, g ∈ Ω s.t.∑

(x,y)∈D2,ν∈Δ

ν(g(x, y))v(x,y),ν − og + w1 − w2 − w3 = 0, g ∈ Ω1,

∑
(x,y)∈D2,ν∈Δ

ν(g(x, y))v(x,y),ν − og + w1 − w2 + z = 0, g ∈ Ω2,

∑
(x,y)∈D2,ν∈Δ

ν(g(x, y))v(x,y),ν − og + w1 − w2 = 0, g ∈ Ω3,

and
∑

(x,y)∈D2,ν∈Δ

1

2
(ν(x) + ν(y))v(x,y),ν + w1 − w2 −

1

2
w3 +

1

2
z = α,

where either α < 0 or α = 0 and z > 0. Hence, for every g ∈ Ω1 and h ∈ Ω2,∑
(x,y)∈D2,ν∈Δ

(ν(x) + ν(y))v(x,y),ν + og + oh =
∑

(x,y)∈D2,ν∈Δ

(ν(g(x, y)) + ν(h(x, y)))v(x,y),ν + α.

Note that since pr1 ∈ Ω1 and pr2 ∈ Ω2 we must have α = 0, opr1 = opr2 = 0,
and z > 0. This means that

min
g∈Ω1

∑
(x,y)∈D2,ν∈Δ

ν(g(x, y))v(x,y),ν =
∑

(x,y)∈D2,ν∈Δ

ν(pr1(x, y))v(x,y),ν = −w1 + w2 + w3

> −w1 + w2 − z =
∑

(x,y)∈D2,ν∈Δ

ν(pr2(x, y))v(x,y),ν = min
g∈Ω2

∑
(x,y)∈D2,ν∈Δ

ν(g(x, y))v(x,y),ν .
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Create an instance I of Min-Cost-Hom(Γ,Δ) with variables D2 and measure
m(ϕ) =

∑
(x,y)∈D2,ν∈Δ v(x,y),νν(ϕ(x, y)). Pick, for every g ∈ O(2)

D \Ω, a relation
Rg ∈ Γ s.t. g does not preserve Rg. Add for each pair of tuples t1, t2 ∈ Rg the con-
straint (((t11, t

2
1), . . . , (t1ar(Rg)

, t2ar(Rg)
)), Rg). This construction is essentially the

second order indicator problem [8].
A solution to I is a function ϕ : D2 → D that by construction is a binary

polymorphism of Γ , i.e. ϕ ∈ Ω. Clearly pr1 and pr2 satisfies all constraints
and are therefore solutions to I. Let ν(x) = ming∈Sol(I):g(a,b)=x m(g). Note that
ν ∈ 〈Γ,Δ〉e and ∞ > ν(a) > ν(b). This completes the proof.

6 Proof of Theorem 12

The proof follows the basic structure of the arguments given in [18]. A key
ingredient of our proof will be the use of Theorem 8 and Proposition 11.

Let Γ+ = Γ ∪ (2D ∪ 2D
2

) ∩ 〈Γ,Δ〉w. Note that if (Γ+, Δ) is of type GWTP,
then so is also (Γ,Δ). Since Min-Cost-Hom(Γ+, Δ) is polynomial-time reducible
to Min-Cost-Hom(Γ,Δ) we therefore assume that Γ+ ⊆ Γ . We also assume
{c} ∈ Γ for every c ∈ D. Obviously CSP(Γ ) is polynomial-time reducible to
Min-Cost-Hom(Γ,Δ). In what follows we therefore assume that CSP(Γ ) is in P.

Let B ⊆
(
D
2

)
be a minimal set s.t. for every {a, b} ∈

(
D
2

)
\B there is a ternary

operation in Pol(Γ ) that is arithmetical on {a, b} and all binary operations in
Pol(Γ ) are projections on {a, b}. Then, let A be a maximal subset of B s.t. for
every {a, b} ∈ A there is ω ∈ fPol(Γ,Δ) s.t. ω is either (a, b)-dominating or
(b, a)-dominating. Let T be the undirected graph (M,P ), where M = {(a, b) :

{a, b} ∈ Γ ∩B \A} and P = {((a, b), (c, d)) ∈M2 : Pol(Γ ) ∩ a
↓
b

c
↓
d

= ∅}.
By Proposition 11 we know that for every (a, b) ∈M , there are ν, τ ∈ 〈Γ,Δ〉e

s.t. ν(b) < ν(a) < ∞ and τ(a) < τ(b) < ∞. By the classification of Min-Cost-
Hom on two-element domains, see e.g. [18, Theorem 3.1], and by the fact that
if f,m ∈ Pol(Γ ) are idempotent, m is arithmetical on {{x, y}} and f ∈ x

↑
y
, then

m′(u, v) = m(u, f(u, v), v) satisfies m′ ∈ x
↓
y
, we have the following.

Lemma 17. Either; for every (a, b) ∈M there are f, g ∈ Pol(Γ ) s.t. f |{a,b} and
g|{a,b} are two different idempotent, conservative and commutative operations,
or Min-Cost-Hom(Γ,Δ) is NP-hard.

Lemma 18 ([18, Theorem 5.3]). If T is bipartite, then there are f, g ∈ Pol(Γ )
s.t. for every (a, b) ∈M , f |{a,b} and g|{a,b} are different idempotent conservative
and commutative operations, or Min-Cost-Hom(Γ,Δ) is NP-hard.

Lemma 19 ([18, Theorem 5.4]). Let C ⊆
(
D
2

)
. If C ⊆ Γ and for each {a, b} ∈

C there is a ternary operation m{a,b} ∈ Pol(Γ ) that is arithmetical on {{a, b}},
then there is m ∈ Pol(Γ ) that is arithmetical on C.

So, if T is bipartite and (Γ,Δ) is conservative, there is a generalised weak tourna-
ment pair on (A,B) and an arithmetical polymorphism on

(
D
2

)
\B. Here (Γ,Δ) is

of type GWTP, and by Theorem 8, we can conclude that Min-Cost-Hom(Γ,Δ)
is polynomial-time solvable.



814 H. Uppman

This following lemma finishes the proof of Theorem 12. A corresponding result,
for the case when Δ is the set of all functions D → IN, is also achieved in [18].
Our proof strategy is somewhat different from that in [18], though.

Lemma 20. If T is not bipartite, then Min-Cost-Hom(Γ,Δ) is NP-hard.

Proof. We will show that if T is not bipartite, then b
a��

b
a ∈ 〈Γ 〉 for some (a, b) ∈

M . From this it follows, using Lemma 17, that Min-Cost-Hom(Γ,Δ) is NP-hard.
We will make use of the following result.

Lemma 21 ([18, Lemma 4.2]). If ((a, b), (c, d)) ∈ P , then either a
b��

c
d ∈ 〈Γ 〉

or a
b��

c
d ∈ 〈Γ 〉.

Since Γ+ ⊆ Γ , and since there are functions ν, τ ∈ 〈Γ,Δ〉e s.t. ν(b) < ν(a) <∞
and τ(d) < τ(c) <∞, we immediately get the following.

Corollary 22. If ((a, b), (c, d)) ∈ P , then a
b��

c
d ∈ Γ .

Since T is not bipartite it must contain an odd cycle (a0, b0), (a1, b1), . . . ,
(a2k, b2k), (a0, b0). This means, according to Corollary 22, that Γ contains re-
lations "0,1, "1,2, . . . , "2k−1,2k, "2k,0 where "i,j = ai

bi��
aj

bj
. Since the cycle is odd

this means that "0,1 ◦ "1,2 ◦ · · · ◦ "2k−1,2k ◦ "2k,0 =
a0

b0��
a0

b0
∈ 〈Γ 〉. ��

7 Concluding Remarks

We have fully classified the complexity of Min-Sol on domains that contain at
most three elements and the complexity of conservative Min-Cost-Hom on arbi-
trary finite domains.

Unlike for CSP there is no widely accepted conjecture for the complexity of
VCSP. This makes the study of small-domain VCSPs an exciting and important
task. We believe that a promising approach for this project is to study Min-Cost-
Hom — it is interesting for its own sake and likely easier to analyse than the general
VCSP.

A natural continuation of the work presented in this paper would be to classify
Min-Cost-Hom on domains of size three. This probably is a result within reach
using known techniques. Another interesting question is what the complexity of
three-element Min-Sol is when the domain valuation is not injective (we note that
if the valuation is constant the problem collapses to a CSP whose complexity
has been classified by Bulatov [1], but situations where e.g. ν(a) = ν(b) < ν(c)
are not yet understood).

Acknowledgements. I am thankful to Peter Jonsson for rewarding discussions
and to Magnus Wahlström for helpful comments regarding the presentation of the
results. I am also grateful to the anonymous reviewers for their useful feedback.
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Abstract. We consider infinite duration alternating move games. These
games were previously studied by Roth, Balcan, Kalai and Mansour [10].
They presented an FPTAS for computing an approximate equilibrium,
and conjectured that there is a polynomial algorithm for finding an exact
equilibrium [9]. We extend their study in two directions: (1) We show that
finding an exact equilibrium, even for two-player zero-sum games, is poly-
nomial time equivalent to finding a winning strategy for a (two-player)
mean-payoff game on graphs. The existence of a polynomial algorithm
for the latter is a long standing open question in computer science. Our
hardness result for two-player games suggests that two-player alternat-
ing move games are harder to solve than two-player simultaneous move
games, while the work of Roth et al., suggests that for k ≥ 3, k-player
games are easier to analyze in the alternating move setting. (2) We show
that optimal equilibria (with respect to the social welfare metric) can be
obtained by pure strategies, and we present an FPTAS for computing a
pure approximated equilibrium that is δ-optimal with respect to the so-
cial welfare metric. This result extends the previous work by presenting
an FPTAS that finds a much more desirable approximated equilibrium.
We also show that if there is a polynomial algorithm for mean-payoff
games on graphs, then there is a polynomial algorithm that computes an
optimal exact equilibrium, and hence, (two-player) mean-payoff games
on graphs are inter-reducible with k-player alternating move games, for
any k ≥ 2.

1 Introduction

In this work, we investigate infinitely repeated games in which players alternate
making moves. This framework can model, for example, five telecommunication
providers competing for customers: each company can observe the price that is
set by the others, and it can update the price at any time. In the short term,
each company can benefit from undercutting its opponents price, but since the
game is repeated indefinitely, in some settings, it might be better to coordinate
prices with the other companies. Such examples motivate us to study equilibria
in alternating move games.

In this work, we study infinitely repeated k-player n-action games. In such
games, in every round, a player chooses an action, and the utility of each player

� A fuller version is available at http://arxiv.org/abs/1212.6632
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(for the current round) is determined according to the k-tuple of actions of the
players. Each player goal is to maximize his own long-run average utility as the
number of rounds tends to infinity.

These games were studied by Roth et al. in [10], and they showed an FPTAS
for computing an ε-equilibrium. Their result provided a theoretical separation
between the alternating move model and the simultaneous move model, since
for the latter, it is known that an FPTAS for computing approximate equilibria
does not exists for games with k ≥ 3 players unless P=PPAD. Their result was
obtained by a simple reduction to mean-payoff games on graphs. These games
were presented in [5], and they play an important rule in automata theory and
in economics. The computational complexity of finding an exact equilibrium for
such games is a long standing open problem, and despite many efforts [1–3,6,7,
12], there is no known polynomial solution for this problem.

We extend the work in [10] by investigating the complexity of an exact equi-
librium (which was stated as an open question in [10]), and by investigating
the computational complexity of finding an δ-optimal approximated equilibrium
with respect to the social welfare metric. Our main technical results are as fol-
lows:

– We show a reduction from mean-payoff games on graphs to two-player zero-
sum alternating move games, and thus we prove that k-player alternating
move games are computationally equivalent to mean-payoff games on graphs
for any k ≥ 2.

– We show that optimal equilibrium can be obtained by pure strategies, and
we show an FPTAS for computing an δ-optimal ε-equilibrium. In addition,
we show that computing an exact optimal equilibrium is polynomial time
equivalent to solving mean-payoff games on graphs.

We note that the first result may suggest that two-player alternating move games
are harder than two-player simultaneous move games, since a polynomial time
algorithm to solve the latter is known [8]. Hence, along with the result of [10],
we get that simultaneous move games are easier to solve with comparison to
alternating move games for two-player games, and are harder to solve for k ≥ 3
player games.

This paper is organized as following. In the next section we bring formal
definitions for alternating move games and mean-payoff games on graphs. In
Section 3, we show that alternating move games are at least as hard as mean-
payoff games on graphs. In Section 4 we investigate the properties of optimal
equilibria, and we present an FPTAS for computing an δ-optimal ε-equilibrium.
Due to lack of space, some of the proofs were omitted.

2 Definitions

In this section we bring the formal definitions for alternating move repeated
games and mean-payoff games on graphs. Alternating move games are presented
in Subsection 2.1, and mean-payoff games are presented in Subsection 2.2.
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2.1 Alternating Move Repeated Games

Actions, Plays and Utility Function. A k-player n-action game is defined
by an action set Ai for every player i, and by k utility functions, one for each
player, ui : A1 × . . . Ak → [−1, 1]. W.l.o.g we assume that the size of all action
set is the same, and we denote it by n. We note that any game can be rescaled
so its utilities are bounded in [−1, 1], however, the FPTAS that was presented
in [10], and our results in Subsection 4.4 crucially rely on the assumption that
the utilities are in the interval [−1, 1].

An alternating move game is played for infinitely many rounds. In round t player
j = 1 + (t mod k) plays action atj , and a vector of actions at = (a1, . . . , ak) is
produced, where ai ∈ Ai is the last action of player i. In every round t, player
i receives a utility ui(a

t), which depends only in the last action of each of the k
players (W.l.o.g the utility in the first k rounds is zero for all players). A sequence
of infinite rounds forms a play, and we characterize a play either by an infinite
sequence of actions or by the corresponding sequence of vectors of actions. The
utility of player i in a play a1a2 . . . atat+1 . . . is the limit average payoff, namely,
limn→∞

1
n

∑n
t=1 ui(a

t). When this limit does not exist, we define the utility of the
play for player i to be lim infn→∞

1
n

∑n
t=1 ui(a

t). We note that in the frame work
of [10], the utility of a play was undefined when the limit does not exist. The results
we present in this paper for the lim inf metric holds also for the framework of [10].
On the other hand, if we would take the lim sup value instead, then the problem is
much easier. An optimal equilibrium is obtained when all players join forces and
maximize player 1 + (i (mod k)) utility for 2i rounds (for i = 1, 2, . . . ,∞). Hence,
we can easily produce a polynomial algorithm to solve these games.

Strategies. A strategy is a recipe for player’s next action, based on the entire
history of previous actions. Formally, a (mixed) strategy for player i is a function
σi : (A1 × · · · × Ak)∗ × A1 × · · · × Ai−1 → Δ(Ai), where Δ(S) denotes the set
probability distribution over any finite set S. We say that σi is a pure strategy
if Δ is a degenerated distribution. A strategy profile is a vector σ = (σ1, . . . , σk)
that defines a strategy for every player. A profile of pure strategies uniquely
determines the action vector in every round and yields a utility vector for the
players. A profile of mixed strategies determines, for every round t in the play,
a distribution of sequences of action vectors, and the average payoff in round t
is the expected average payoff over the distribution of action vectors. Formally,
for a strategy profile σ we denote the average payoff of player i in round t by

Pi,t(σ) = Ea1a2...at∼σ[
ui(a

1) + · · ·+ ui(a
t)

t
]

and the utility of player i is lim inft→∞ Pi,t.

Equilibria, ε Equilibria and Optimal Equilibria. A strategy profile forms
an equilibrium if none of the players can strictly improve his utility (that is
induced by the profile) by unilaterally deviating from his strategy (that is defined
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by the profile). For every ε > 0, we say that a strategy profile forms an ε-
equilibrium if none of the players can improve his utility by more than ε by
unilaterally deviating from his strategy.

The social welfare of a strategy profile is the sum of the utilities of all players.
An equilibrium (resp. an ε-equilibrium) is called an optimal equilibrium (optimal
ε-equilibrium) if its social welfare is not smaller than the social welfare of any other
equilibrium (ε-equilibrium). For δ > 0, an equilibrium (resp. an ε-equilibrium) is
called an δ-optimal equilibrium if its social welfare is not smaller by more than δ
with comparison to the social welfare of any other equilibrium (ε-equilibrium).

2.2 Mean-Payoff Games on Graphs

Plays and Payoffs. A mean-payoff game on a graph is defined by a weighted
directed bipartite graph G = (V = V1 ∪ V2, E, w : E → Q) and an initial vertex
v0 ∈ V . The game consists of two players, namely, maximizer (who owns V1) and
minimizer (who owns V2). Initially, a pebble is place on the initial vertex, and in
every round, the player who owns the vertex in which the pebble resides, advance
the pebble into an adjacent vertex. This process is repeated forever and forms a
play. A play is characterized by a sequence of edges, and the average payoff of a
play ρ = e1 . . . et up to round t is denoted by Pt = 1

t

∑
i=1 w(ei). The value of a

play is the limit average payoff (mean-payoff), namely, lim inft→∞ Pt. (We note
that for games on graphs, the lim sup metric gives the same complexity results.)
The objective of the maximizer is to maximize the mean-payoff of a play, and
the minimizer aims to minimize the mean-payoff.

Strategies, Memoryless Strategies, Optimal Strategies and Winning
Strategies. In this work, we consider only pure strategies for games on graphs,
and it is well-known that randomization does not give better strategies for mean-
payoff games. A strategy for maximizer is a function σ : (V1 × V2)∗ × V1 → E
that decides the next move, and similarly, for the minimizer a strategy is a func-
tion τ : (V1×V2)∗ → E. A strategy is called memoryless if it depends only on the
current position of the pebble. Formally, a memoryless strategy for the maximizer
is a function σ : V1 → E and similarly a memoryless strategy for the minimizer is
a function τ : V2 → E.

A profile of strategies (σ, τ) uniquely determines the mean-payoff value of a
game. We say that a play π = e1e2 . . . en . . . is consistent with a maximizer strat-
egy σ if there exists a minimizer strategy τ such that π is formed by (σ, τ). We
say that the value of a maximizer strategy is p if it can assure a value of at least p
against any minimizer strategy. Analogously, we say that the value of a minimizer
strategy is p if it can assure a value of at most p against any maximizer strategy.

We say that a maximizer strategy is optimal if its value is maximal (with
respect to all possible maximizer strategies). Analogously, a minimizer strategy
is optimal if its value is minimal. For a given threshold, we say that a maximizer
strategy is a winning strategy if it assures mean-payoff value that is greater or
equal to the given threshold, and a minimizer strategy is winning if it assures
value that is strictly smaller than the given threshold.
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One-Player Games, and GamesAccording toMemoryless Strategies. A
special (and easier) case of games on graphs is when the out-degree is one for all the
vertices that are owned by a certain player. In this case, all the choices are done by
one player. For a two-player game on graph G, and a player-1 strategy σ, we define
the one-player game graph Gσ to be the game graph that is formed by removing,
for every player-1 vertex v, the out-edges that are not equal to σ(v).

Classical Results on Mean-Payoff Games. Mean-payoff games were intro-
duced in ’79 by Ehrenfeucht and Mycielski [5], and their main result was that op-
timal strategies (for both players) exist, and moreover, the optimal value can be
obtained by a memoryless strategy. The decision problem for mean-payoff games
is to determine if the maximizer has a winning strategy with respect to a given
threshold. The existence of optimal memoryless strategies almost immediately
proves that the decision problem for mean-payoff games is in NP∩coNP, and thus
it is unlikely to be NP-hard (or coNP-hard). Zwick and Paterson [12] introduced
the first pseudo-polynomial algorithm, which runs in polynomial time when the
weights of the edges are encoded in unary. They also provided a polynomial
algorithm for the special case of one-player mean-payoff games. A randomized
sub-exponential algorithm for mean-payoff games is also known [2], but despite
many efforts, the existence of a polynomial algorithm to solve mean-payoff games
remains an open question, and it is one of the rare problems in computer science
that is known to be in NP∩coNP but no polynomial algorithm is known.

We summarize the known results on mean-payoff games in the next theorems.
The first theorem states that optimal strategies exist and moreover, there exist
optimal strategies that are memoryless.

Theorem 1 ([5]). For every mean-payoff game there exists a maximizer mem-
oryless strategy σ and a minimizer memoryless strategy τ such that σ is optimal
for the maximizer and τ is optimal for the minimizer.

The next theorem shows that there is a polynomial algorithm that computes
optimal strategies if and only if there is a polynomial algorithm for the mean-
payoff games decision problem.

Theorem 2 ([12]). The following problems are polynomial time inter-reducible:
(i) Compute maximizer optimal memoryless strategy. (ii) Compute the optimal
value that maximizer can assure. (iii) Determine whether maximizer optimal
value is at least zero. (iv) Determine whether maximizer optimal value is greater
than zero.

3 Two-Player Zero-Sum (Alternating Move) Games Are
Inter-reducible with Mean-Payoff Games

In this section we prove that there is a polynomial algorithm that computes an
exact equilibrium for two-player zero-sum (alternating move) games if and only
if there exists a polynomial algorithm that solves mean-payoff games.
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The reduction from two-player zero-sum games to mean-payoff games is triv-
ial, for a two-player zero-sum game with actions A1, A2 and utility functions
u1 : A1×A2 → Q and u2 = −u1, we construct a complete bipartite game graph
G = (V = A1∪A2, E = (A1×A2)∪ (A2×A1), w : E → Q) such that the weight
of the transition from a1 ∈ A1 to a2 ∈ A2 is simply u1(a1, a2), and the weight of
the transition from a2 to a1 is also u1(a1, a2). It is a simple observation that a
pair of optimal strategies (for the maximizer and minimizer) in the mean-payoff
game induces an equilibrium strategy profile in the two-player zero-sum game
and vice versa.

The reduction for the converse direction is more complicated. For this purpose
we bring the notion of undirected game graph. A mean-payoff game graph is said
to be undirected if its edge relation is symmetric, and w(v1, v2) = w(v2, v1) for
every edge (v1, v2). (Basically, it is a game on an undirected graph.) The next
simple lemma shows a reduction from mean-payoff games on a complete bipartite
undirected graphs to two-player zero-sum game.

Lemma 1. There is a polynomial reduction from mean-payoff games on com-
plete bipartite undirected graphs to two-player zero-sum games.

Proof. The proof is straight forward. Let V1 and V2 be the maximizer and mini-
mizer (resp.) vertices in the mean-payoff game. We construct a two-player zero-
sum game in the following way. The set of action of player 1 is A1 = V2 and
the set of action for player 2 is A2 = V1. We denote by W the least value for
which all the weights in the undirected graphs are in [−W,+W ], and the utility

function of player 1 is u1(a1, a2) = w(a1,a2)
W = w(a2,a1)

W , and u2 = −u1. It is
trivial to observe that an equilibrium profile induces a pair of optimal strategies
for the mean-payoff game, and the proof follows. ��

Due to Lemma 1, all that is left is to prove that mean-payoff games on complete
bipartite undirected graphs are equivalent to mean-payoff games. A recent result
by Chatterjee, Henzinger, Krinninger and Nanongkai [4] gives us the first step
towards such proof.

Theorem 3 (Corollary 24 in [4]). Solving mean-payoff games on complete
bipartite (directed) graphs is as hard as solving mean-payoff games on arbitrary
graphs.

We use the above result as a black box and extend it to complete bipartite
undirected graphs. We note that the main difference between directed and undi-
rected graphs is that for undirected graphs the weight function is symmetric.
In the rest of this section we will describe a process that for a given complete
bipartite directed graph, generates a suitable symmetric weight function, and
the winner in the generated graph is the same as in the original graph.

We say that a directed game graph has a normalized weight function if it
assigns a positive weight to every out-edge of maximizer vertex, and a negative
weight for every out-edge of minimizer vertex. The next lemma shows that we
may assume w.l.o.g that a directed game graph has a normalized weight function.
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Lemma 2. Solving mean-payoff games on (directed) bipartite graphs is polyno-
mial time inter-reducible to solving mean-payoff games on (directed) bipartite
graphs with normalized weights.

Proof. Let G be a non-normalized graph and let us denote by W the heaviest
weight (in absolute value) that is assigned by its weight function w. We construct
a normalized graph G′ from G by defining a weight function w′ as:

w′(u, v) =

{
w(u, v) + (W + 1) if u is owned by maximizer
w(u, v) − (W + 1) otherwise (if u is owned by the minimizer)

Clearly, G′ is a normalized graph, and since G′ and G are bipartite, it is straight
forward to observe that for any finite path in π we have that |w(π) − w′(π)| ≤
W +1, and thus, for every infinite path ρ, we have that that mean-payoff value of
ρ according to w is identical to the mean-payoff of ρ according to w′. Therefore,
a maximizer winning (resp. optimal) strategy in graph G is a winning (optimal)
strategy also in G′ and vice versa, and the proof of the lemma follows. ��

In the next lemma we show that mean-payoff games on direct normalized bipar-
tite complete graphs are as hard as mean-payoff games on undirected normalized
bipartite complete graphs.

Lemma 3. The problem of determining whether maximizer has a winning strat-
egy for a threshold 0 for a mean-payoff games on a directed normalized bipartite
complete graph is as hard as the corresponding problem for mean-payoff games
on an undirected normalized bipartite complete graph

To conclude, by Lemma 1 we get that a polynomial algorithm for alternating
move two-player zero-sum games exists if and only if there exists a polynomial
algorithm for solving mean-payoff games on a complete bipartite undirected
graph, and by Lemmas 2, 1 and 3 and by Theorem 3 we get that the latter
exists if and only if there exists a polynomial algorithm for solving mean-payoff
games on arbitrary (directed) graphs. Hence, the main result of this section
follows.

Theorem 4. There exists a polynomial time algorithm for computing exact equi-
librium for two-player zero-sum (alternating move) games if and only if there
exists a polynomial time algorithm for solving mean-payoff games on graphs.

4 Complexity of Computing Optimal Equilibrium

In this section, we investigate the complexity of computing an optimal equilib-
rium. Our main results are summarized in the next theorem:

Theorem 5. 1. Optimal equilibrium can be obtained by a profile of pure strate-
gies.

2. If mean-payoff games are in P, then there is a polynomial algorithm for
computing an exact optimal equilibrium.
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3. If mean-payoff games are not in P, then there is no FPTAS that approximate
the social welfare of the optimal equilibrium.

4. There is an FPTAS to compute an ε-equilibrium that is δ-optimal. (Note
that it does not necessarily approximate the value of an exact optimal equi-
librium.)

We will prove Theorem 5 in the next four subsections: In Subsection 4.1 we show
the naive algorithm for computing an equilibrium that is based on Folk Theorem,
and we prove basic properties of equilibria in alternating move games. In Subsec-
tion 4.2 we prove Theorem 5(1). In Subsection 4.3 we investigate the complexity
of computing the social welfare of the optimal equilibrium, and prove Theo-
rem 5(2) and Theorem 5(3). Finally, in Subsection 4.4 we prove Theorem 5(4)
which is the main result of this section.

In this section, we will model n-action k-player alternating move games by a
multi-weighted graph, according to the following conventions: The vertices of the
graph are the vertices in the set V = (A1 ×A2 × · · · ×Ak)× {1, . . . , k}, and we
say that player i owns the vertex set Vi = (A1×A2×· · ·×Ak)×{i}. Intuitively,
a vertex is characterized by an action vector and by a player that owns it. The
pair (u, v) is in the edge relation if u is owned by player i, v is owned by player
i + 1 (where player k + 1 is player 1), and there is at most one difference in the
action vector of u and v and it is in position i. The weight of every edge is a
vector of size k that corresponds to the utility vector of the actions. Formally, if
u = (a1, i) and v = (a2, i + 1) then w(u, v) = (u1(a2), u2(a2), . . . , uk(a2)).

For an infinite path in the multi-weighted graph we define the dimension i of
mean-payoff vector of the path to be the mean-payoff value of the path according
to dimension i. It is an easy observation that every infinite path in the graph
corresponds to a play and its mean-payoff vector corresponds to the utility vector
of the play. We note that the size of the graph is k2 · nk which is polynomial
in the size of the encoding of the utility functions (which is k · nk), hence this
graph can be constructed in polynomial time.

4.1 Basic Properties of Equilibria

The Folk Theorem gives a conceptually simple (but inefficient) technique to
construct an equilibrium. Intuitively, an equilibrium is obtained when each of
the players play as if the goal of all the other players is to minimize its utility, and
if one of the players deviates from this strategy, then all the other players switch
to playing according to a strategy that will minimize the utility of the rebellious
player. Formally, let G be the corresponding k-player game graph that models
the alternating move game. For every player i, we consider a zero-sum two-player
mean-payoff game graph Gi in which the maximizer owns player i vertices and
the minimizer owns the other vertices. Let σi be an arbitrary optimal strategy
for the maximizer in graph Gi, let σi be an arbitrary optimal strategy for the
minimizer in Gi, and let νi be the value that is obtained by the strategy profile
(σi, σi). Then if every player i plays according to the strategy:
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If player j �= i deviated from σj , then play according to σj forever, and
otherwise play according to σi

an equilibrium is formed (since by definition, playing according to σi assures
utility at least νi, and deviating from σi assures utility at most νi).

In the next lemma, we extend the basic principle of Folk Theorem and get
a characterization of all the equilibria that are obtained by a profile of pure
strategies.

Lemma 4. Let (t1, t2, . . . , tk) be a utility vector such that ti ≥ νi (for every
player i), then there exists a pure equilibrium with utility exactly ti for every
player i if and only if there exists an infinite path π in the graph G with mean-
payoff vector (t1, t2, . . . , tk).

4.2 Optimal Equilibrium Can Be Obtained by Pure Strategies

In this subsection, we extend Lemma 4 also for the case of mixed strategies,
and as a consequence we get that optimal equilibrium can be obtained by pure
strategies. Intuitively, we wish to show that if a profile of (mixed) strategies yields
a utility vector (t1, . . . , tk), then there exists an infinite path in the graph with
mean-payoff vector that is greater or equal (in every dimension) to (t1, . . . , tk).
Then we get that if a utility vector is obtained by a profile of mixed strategies,
and then by Lemma 4 it is also obtained by a profile of pure strategies.

We formally prove the above by the next two lemmas.

Lemma 5. Let G be a multi-weighted graph that is strongly connected, and let
(t1, . . . , tk) be a vector. Then if for every α > 0 there exists a (finite) cyclic
path with average weight at least ti − α in every dimension, then there exists an
infinite path with mean-payoff vector at least (t1, . . . , tk).

Lemma 6. Let σ be a profile of (mixed) strategies with utility vector (t1, . . . , tk).
Then for every α > 0 there exists a cyclic path in the game graph with average
weight at least ti − α in every dimension.

We are now ready to prove that the utility vector of a mixed equilibrium can be
obtained by a pure equilibrium.

Proposition 1. Let σ be a profile of mixed strategies that induces a utility vector
(t1, . . . , tk). Then there exists a profile σ′ of pure strategies that induces exactly
the same utility vector. Moreover, if σ is an equilibrium, then so is σ′.

Proof. By Lemma 6 we get that for every α > 0 there is a cyclic path with
average weight at least ti−α in every dimension. Therefore, by Lemma 5 we get
that there is an infinite path in G with mean-payoff vector at least (t1, . . . , tk),
and by Lemma 4 we get that there is a profile of pure strategies that has utility
at least (t1, . . . , tk). If σ is an equilibrium we get that ti ≥ νi (since otherwise,
player i would deviate to strategy σi), and thus, by Lemma 4, we get that there
is a pure equilibrium that gives the same utility vector. ��

The next corollary immediately follows from Proposition 1.
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Corollary 1 (Theorem 5(1)). An optimal equilibrium can be obtained by a
profile of pure strategies.

4.3 The Complexity of Computing the Social Welfare of the
Optimal (Exact) Equilibrium

In this section we show that if there is a polynomial algorithm for mean-payoff
games, then there is a polynomial algorithm to compute an optimal equilibrium
in a k-player alternating move games. We also prove the converse direction, that
is, we show that if there is a polynomial algorithm that computes the social
welfare of the optimal equilibrium, then there is a polynomial algorithm that
solves mean-payoff games. We prove these two assertions in the next two lemmas.

Lemma 7. Suppose that mean-payoff games are in P, then there is a polynomial
algorithm that computes the social welfare of an optimal equilibrium.

Proof. Due to Corollary 1, it is enough to consider only pure strategies, and due
to Lemma 4 a vector of utilities (t1, . . . , tk) is obtained by a pure equilibrium if
and only if ti ≥ νi (for i = 1, . . . , k) and there is an infinite path in the game
graph with mean-payoff (t1, . . . , tk). Since we assume that there is a polynomial
algorithm for computing νi, our problem boils down to

Find the maximal value of
∑k

i=1 ti subject to
– ti ≥ νi; and
– there exists an infinite path with mean-payoff vector at least (t1, . . . , tk)

It was shown in [11] (in the proof of Theorem 18) that the problem of deciding
whether there exists an infinite path with mean-payoff vector at least (t1, . . . , tk)
can be reduced (in polynomial time) to a set of linear constraints. Moreover, the
generated set of constraints remain linear even when ti is a variable. Hence, we
can find a feasible threshold vector (t1, . . . , tk) (that is, a vector that is realizable

by an infinite path in the graph) that maximizes
∑k

i=1 ti by linear programming.
Therefore, if we have a polynomial algorithm that computes νi, then we can find
the social welfare of the optimal equilibrium in polynomial time. ��

Lemma 7 proves Theorem 5(2) and gives an upper bound to the complexity of
computing optimal equilibrium. In the next lemma we show that this bound is
tight, and that the social welfare of the optimal equilibrium cannot be approxi-
mated, unless mean-payoff games are in P.

Lemma 8 (Theorem 5(3)). There is no FPTAS that approximates the social
welfare of an optimal equilibrium, unless mean-payoff games are in P.

4.4 An FPTAS to Compute an ε-Equilibrium That Is δ-Optimal

In this subsection, we assume that the utilities of the players are scaled to ratio-
nals in [−1, 1], and we will describe an algorithm that computes an ε-equilibrium
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that is δ-optimal (with respect to all ε-equilibria) and runs in time complexity
that is polynomial in the input size and in 1

ε and 1
δ . Subsection 4.3 suggests

that in order to compute a δ-optimal ε-equilibrium we should approximate (by
some value) the values of ν1, . . . , νk and then compute the optimal infinite path
(with respect to the sum of utilities) that has utility for player i that is greater
than the approximation of νi. However, this approach would not work, since the
optimal social welfare is not a continuous function with respect to the values
ν1, . . . , νk.

We denote by OPT ε the social welfare of the optimal ε-equilibrium. We base
our solution on the next lemma, which gives two key properties of OPT ε.

Lemma 9. 1. If ε1 ≥ ε2, then OPT ε1 ≥ OPT ε2 .
2. For every α ∈ [0, 1] and ε1, ε2 > 0, let ε = αε1 + (1− α)ε2, then there exists

an ε-equilibrium with social welfare αOPT ε1 + (1− α)OPT ε2 .

Proof. The first item of the lemma is a trivial observation. In order to prove
the second item, we observe that by Lemma 4 (and since by Proposition 1 it is
enough to consider only pure equilibria) it is enough to prove that there is an
infinite path π with utility at least νi − ε in every dimension and with social
welfare αOPT ε1 + (1 − α)OPT ε2 . By Proposition 1, it is enough to show that
there is a profile σ of mixed strategies (that need not be an equilibrium) that
has a utility at least ν − ε in every dimension and has a social welfare at least
αOPT ε1 + (1−α)OPT ε2 . The construction of σ is trivial. For i = 1, 2, let σεi be
a profile of strategies that induces an εi-optimal equilibrium, then we construct
σ by playing according to σε1 with probability α and playing according to σε2

with probability 1− α. ��

Corollary 2. For every ζ ≤ εδ
4k we have OPT ε+ζ − δ

2 ≤ OPT ε ≤ OPT ε+ζ

By the above corollary, to approximate OPT ε, it is enough to approximate by
δ
2 the value of OPT ε+ζ for some ζ ≤ εδ

4k . For this purpose, we extend the notion
of ε-equilibrium also for k-dimensional vectors, and we say that a profile of
strategies is a β-equilibrium if player i cannot improve its utility by at least
βi. Let us denote by minβ and by maxβ the minimal and maximal element of
β (respectively). Then by definition, OPTmin β ≤ OPTβ ≤ OPTmaxβ , and by

Corollary 2 we get that OPTβ ≤ OPTmaxβ ≤ OPT β + (max β −min β) · 4kε .
We are now ready to present an FPTAS that computes a δ-approximation for

OPT ε: (1) Set ζ = εδ
4k , and compute a ζ approximation of νi for every player

i, and denote it by ri. (2) Compute the optimal path π (with respect to social
welfare) that has utility at least ri− (ε−ζ) for every player, and return its social
welfare.

We note that we can execute the first step of the algorithm in polynomial
time due to [10](Observation 3.1), and we can execute the second step in poly-
nomial time by solving the linear programming problem that we described in the
proof of Lemma 7. The next lemma proves the correctness of our approximation
algorithm.
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Lemma 10. Let S(π) be the social welfare of π. Then S(π)−δ ≤ OPT ε ≤ S(π)

Lemma 10 along with the complexity analysis that we provided, proves that there
is an FPTAS to compute an ε-equilibrium that is δ-optimal, and Theorem 5(4)
follows. We also note that our proof for Theorem 5(4) gives a constructive (and
polynomial) algorithm that computes a description of an actual ε-equilibrium
that is δ-optimal.
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requirements for the course Computational Game Theory that was given by
Prof. Amos Fiat in Tel Aviv University.
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Abstract. We present a (1 + ε)-approximation algorithm running in
O(f(ε) · n log4 n) time for finding the diameter of an undirected planar
graph with n vertices and with non-negative edge lengths.

1 Introduction

The diameter of a graph is the largest distance between two vertices. Computing
it is among the most fundamental algorithmic graph problems.

In general weighted graphs, as well as in planar graphs, the only known way
to compute the diameter is to essentially solve the (more general) All-Pairs
Shortest Paths (APSP) problem and then take the pair of vertices with the
largest distance.

In general weighted graphs with n vertices and m edges, solving APSP
(thus diameter) currently requires Õ(n3) time. The fastest algorithm to date is
O(n3(log logn)/ log2 n) by Han and Takaoka [10], or for sparse graphs O(mn +
n2 logn) by Johnson [13], with a small improvement to O(mn+n2 log logn) [18].

In weighted planar graphs, solving APSP can be done in O(n2) time by Fred-
erickson [9]. While this is optimal for APSP, it is not clear that it is optimal for
diameter. Currently, only a logarithmic factor improvement by Wulff-Nilsen [20]
is known for the diameter, running in O(n2(log logn)4/ logn) time. A long stand-
ing open problem [5] is to find the diameter in truly subquadratic O(n2−ε) time.
Eppstein [7] has shown that if the diameter in a planar graph is bounded by
a fixed constant, then it can be found in O(n) time. Fast algorithms are also
known for some simpler classes of graphs like outer-planar graphs [8], interval
graphs [17], and others [4,6].

In lack of truly subcubic-time algorithms for general graphs and truly sub-
quadratic time algorithms for planar graphs it is natural to seek faster algorithms
that approximate the diameter. It is easy to approximate the diameter within
a factor of 2 by simply computing a Single-Source Shortest Path (SSSP) tree
from any vertex in the graph and returning twice the depth of the deepest node
in the tree. This requires O(m + n logn) time for general graphs and O(n) time
for planar graphs [12]. For general graphs, Aingworth et al. [1] improved the
approximation factor from 2 to 3/2 at the cost of Õ(m

√
n + n2) running time,

� A full version of this paper can be found in Arxiv at http://arxiv.org/abs/1112.
1116

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 828–839, 2013.
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and Boitmanis et al. [3] gave an additive approximation factor of O(
√
n) with

Õ(m
√
n) running time. For planar graphs, the current best approximation is a

3/2-approximation by Berman and Kasiviswanathan running in O(n3/2) time [2].
We improve this to a (1 + ε)-approximation running in Õ(n) time for any fixed
0 < ε < 1. More precisely, we prove the following theorem:

Theorem 1. Given an undirected planar graph with n vertices, non-negative
edge lengths, and diameter d. For any ε > 0 we can compute an approximate
diameter d′ (where d ≤ d′ ≤ (1 + ε) · d) in time O(n log4 n/ε4 + n · 2O(1/ε)).

Summary of the Algorithm. A lemma of Lipton and Tarjan [16] states that,
for any SSSP tree T in a planar graph G, there is a non-tree edge e (where e
might possibly be a non-edge of the planar graph) such that the strict interior
and strict exterior of the unique simple cycle C in T ∪{e} each contains at most
2/3 · n vertices. The vertices of C therefore form a separator consisting of two
shortest paths with the same common starting vertex.

Let Gin (resp. Gout) be the subgraph of G induced by C and all interior
(resp. exterior) vertices to C. Let d(Gin, Gout, G) denote the largest distance in
the graph G between a marked vertex in V (Gin) and a marked vertex in V (Gout).
In the beginning, all vertices of G are marked and we seek the diameter which
is d(G,G,G). We use a divide and conquer algorithm that first approximates
d(Gin, Gout, G), then unmarks all vertices of C, and then recursively approxi-
mates d(Gin, Gin, G) and d(Gout, Gout, G) and takes the maximum of all three.
We outline this algorithm below. Before running it, we compute an SSSP tree
from any vertex using the linear-time SSSP algorithm of Henzinger et al. [12].
The depth of the deepest node in this tree already gives a 2-approximation to the
diameter d(G,G,G). Let x be the obtained value such that x ≤ d(G,G,G) ≤ 2x.

Reduce d(Gin, Gout, G) to d(Gin, Gout, Gt) in a tripartite graphGt: The separator
C is composed of two shortest paths P andQ emanating from the same vertex, but
that are otherwise disjoint. We carefully choose a subset of 16/ε vertices from C
called portals. The first (resp. last) 8/ε portals are all part of the prefix of P (resp.
Q) that is of length 8x. The purpose of the portals is to approximate a shortest u-
to-v path for u ∈ Gin and v ∈ Gout by forcing it to go through a portal. Formally,
we construct a tripartite graph Gt with vertices (V (Gin), portals, V (Gout)). The
length of edge (u ∈ V (Gin), v ∈ portals) or (u ∈ portals, v ∈ V (Gout)) in Gt

is the u-to-v distance in G. This distance is computed by running the SSSP algo-
rithm of [12] from each of the 16/ε portals. By the choice of portals, we show that
d(Gin, Gout, Gt) is a (1 + 2ε)-approximation of d(Gin, Gout, G).

Approximate d(Gin, Gout, Gt): If 	 is the maximum edge-length of Gt, then note
that d(Gin, Gout, Gt) is between 	 and 2	. This fact makes it possible to round
the edge-lengths of Gt to be in {1, 2, . . . , 1/ε} so that ε	 · d(Gin, Gout, Gt) after
rounding is a (1 + 2ε)-approximation to d(Gin, Gout, Gt) before rounding. For
any fixed ε we can assume without loss of generality that 1/ε is an integer.
This means that after rounding d(Gin, Gout, Gt) is bounded by some fixed inte-
ger. We give a linear-time algorithm to compute it exactly, thus approximating
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d(Gin, Gout, G). We then unmark all vertices of C and move on to recursively
approximate d(Gin, Gin, G) (the case of d(Gout, Gout, G) is symmetric).

Reduce d(Gin, Gin, G) to d(Gin, Gin, G
+
in) in a planar graph G+

in of size at most
2/3 · n: In order to apply recursion, we construct planar graphs G+

in and G+
out

(that is constructed similarly to G+
in). The size of each of these graphs will be

at most 2/3 · n and their total size n + o(n). We would like G+
in to be such that

d(Gin, Gin, G
+
in) is a (1 + ε/(2 logn))-approximation1 to d(Gin, Gin, G).

To construct G+
in, we first choose a subset of 256 logn/ε vertices from C

called dense portals. We then compute all O((256 logn/ε)2) shortest paths in
Gout between dense portals. The graph B′ obtained by the union of all these
paths has at most O((256 logn/ε)4) vertices of degree > 2. We contract vertices
of degree = 2 so that the number of vertices in B′ decreases to O((256 logn/ε)4).
Appending this small graph B′ (after unmarking all of its vertices) as an exterior
to Gin results in a graph G+

in that has |Gin| + O((256 logn/ε)4) vertices and
d(Gin, Gin, G

+
in) is a (1 + ε/(2 logn))-approximation of d(Gin, Gin, G).

The problem is still that the size of G+
in is not necessarily bounded by 2/3 ·

n. This is because C (that is part of G+
in) can be as large as n. We show

how to shrink G+
in to size roughly 2/3 · n while d(Gin, Gin, G

+
in) remains a

(1 + ε/(2 logn))-approximation of d(Gin, Gin, G). To achieve this, we shrink
the C part of G+

in so that it only includes the dense portals without changing
d(Gin, Gin, G

+
in).

Approximate d(Gin, Gin, G
+
in): Finally, once |G+

in| ≤ 2/3 · n we apply recursion
to d(Gin, Gin, G

+
in). In the halting condition, when |G+

in| ≤ (256 logn/ε)4, we
naively compute d(Gin, Gin, G

+
in) using APSP.

Related Work. The use of shortest-path separators and portals to approxi-
mate distances in planar graphs was first suggested in the context of approxi-
mate distance oracles. These are data structures that upon query u, v return a
(1 + ε)-approximation of the u-to-v distance. Thorup [19] presented an O(1/ε ·
n logn)-space oracle answering queries in O(1/ε) time on directed weighted pla-
nar graphs. Independently, Klein [15] achieved these same bounds for undirected
planar graphs.

In distance oracles, we need distances between every pair of vertices and each
vertex is associated with a possibly different set of portals. In our diameter
case however, since we know the diameter is between x and 2x, it is possible to
associate all vertices with the exact same set of portals. This fact is crucial in
our algorithm, both for its running time and for its use of rounding. Another
important distinction between our algorithm and distance oracles is that distance
oracles upon query (u, v) can inspect all recursive subgraphs that include both
u and v. We on the other hand must have that, for every (u, v), the shortest
u-to-v path exists (approximately) in the unique subgraph where u and v are
separated by C. This fact necessitated our construction of G+

in and G+
out.

1 log n = log2 n throughout the paper.
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2 The Algorithm

In this section we give a detailed description of an algorithm that approxi-
mates the diameter of an undirected weighted planar graph G = (V,E) in the
bounds of Theorem 1. The algorithm computes a (1 + ε)-approximation of the
diameter d = d(G,G,G) for G = G. This means it returns a value d′ where
d ≤ d′ ≤ (1 + ε) · d (recall that, before running the algorithm, we compute a
value x such that x ≤ d ≤ 2x by computing a single-source shortest-path tree
from an arbitrary vertex in G). We focus on approximating the value of the
diameter. An actual path of length d′ can be found in the same time bounds.
For simplicity we will assume that shortest paths are unique. This can always
be achieved by adding random infinitesimal weights to each edge, and can also
be achieved deterministically using lexicographic-shortest paths (see, e.g., [11]).
Also, to simplify the presentation, we assume that ε ≤ 0.1 and we describe a
(1 + 7ε)-approximation. (then just take ε′ = ε/7).

The algorithm is recursive and actually solves the more general problem of find-
ing the largest distance only between all pairs of marked vertices. In the beginning,
we mark all n = |V (G)| vertices of G = G and set out to approximate d(G,G,G)
(the largest distance in G between marked vertices in V (G)). Each recursive call
approximates the largest distance in a specific subset of marked vertices, and then
unmarks some vertices before the next recursive call. We make sure that whatever
the endpoints of the actual diameter are, their distance is approximated in some
recursive call. Finally, throughout the recursive calls, we maintain the invariant
that the distance between any two marked vertices in the graph G of the recursive
call is a (1 + ε)-approximation of their distance in the original graph G (there is no
guarantee on the marked-to-unmarked or the unmarked-to-unmarked distances).
We denote by δG(u, v) the u-to-v distance in the original graph G.

The recursion is applied according to a variant of the shortest-path separator
decomposition for planar graphs by Lipton and Tarjan [16]: We first pick any
marked vertex v1 and compute in linear time the SSSP tree from v1 in G. In this
tree, we can find in linear time two shortest paths P and Q (both emanating from
v1) such that removing the vertices of C = P ∪Q from G results in two disjoint
planar subgraphs A and B (i.e., there are no edges in V (A)×V (B)). The number
of vertices of C can be as large as n but it is guaranteed that |V (A)| ≤ 2/3 · n
and |V (B)| ≤ 2/3 · n. Notice that the paths P and Q might share a common
prefix. It is common to not include this shared prefix in C. However, in our case,
we must have the property that P and Q start at a marked vertex. So we include
in C the shared prefix as well. See Fig. 1 (left).

Let Gin (resp. Gout) be the subgraph of G induced by V (C) ∪ V (A) (resp.
V (C)∪ V (B)). In order to approximate d(G,G,G), we first compute a (1 + 5ε)-
approximation d1 of d(Gin, Gout, G) (the largest distance in G between the
marked vertices of V (Gin) and the marked vertices of V (Gout)). In particu-
lar, d1 takes into account all V (C)× V (G) distances. We can therefore unmark
all the vertices of C and move on to approximate d2 = d(Gin, Gin, G) (approxi-
mating d3 = d(Gout, Gout, G) is done similarly). We approximate d(Gin, Gin, G)
by applying recursion on d(Gin, Gin, G

+
in) where |V (G+

in)| ≤ 2/3 ·n. The marked
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vertices in G+
in and in Gin are the same and d(Gin, Gin, G

+
in) is a (1+ε/(2 logn))-

approximation of d(Gin, Gin, G). This way, the diameter grows by a multiplica-
tive factor of (1 + ε/(2 logn)) in each recursive call. Since the recursive depth is
O(log n) (actually, it is never more than 1.8 logn) we get a (1 + 5ε) · (1 + ε) ≤
(1 + 7ε)-approximation d2 to d(Gin, Gin, G). Finally, we return max{d1, d2, d3}.

2.1 Reduce d(Gin, Gout, G) to d(Gin, Gout, Gt)

Our goal is now to approximate d(Gin, Gout, G). For u ∈ Gin and v ∈ Gout, we
approximate a shortest u-to-v path in G by forcing it to go through a portal.
In other words, consider a shortest u-to-v path. It is is obviously composed of a
shortest u-to-c path in G concatenated with a shortest c-to-v path in G for some
vertex c ∈ C. We approximate the shortest u-to-v path by insisting that c is a
portal. The fact that we only need to consider u-to-v paths that are of length
between x and 2x makes it possible to choose the same portals for all vertices.

We now describe how to choose the portals in linear time. Recall that the
separator C is composed of two shortest paths P and Q emanating from the
same marked vertex v1. The vertex v1 is chosen as the first portal. Then, for
i = 2, 3, . . . we start from vi−1 and walk on P until we reach the first vertex v
whose distance from vi−1 via P is greater than εx. We designate v as the portal
vi and continue to i+1. We stop the process when we encounter a vertex v whose
distance from v1 is greater than 8x. This guarantees that at most 8/ε portals
are chosen from the shortest path P and they are all in a prefix of P of length
at most 8x. This might seem counterintuitive as we know that any shortest path
P in the original graph G is of length at most 2x. However, since one endpoint
of P is not necessarily marked, it is possible that P is a shortest path in G but
not even an approximate shortest path in the original graph G. We do the same
for Q, and we get a total of 16/ε portals. See Fig. 1 (right).

P Q

v1

Gin

Gout

P Q

v1

Gout

Gin

u
v

c

p(c)

≤ ε
x

≤ 8x

Fig. 1. Two illustrations of a weighted undirected planar graph G. On the left: The
black nodes constitute the shortest path separator C composed of two shortest paths
P and Q emanating from the same vertex v1. The subgraph of G induced by the white
(resp. gray) nodes is denoted A (resp. B). The graph Gin (resp. Gout) is the subgraph
induced by A ∪ C (resp. B ∪ C). On the right: The six circled vertices are the 16/ε
portals in the 8x prefixes of P and Q. The shortest path between u and v goes through
the separator vertex c and is approximated by the u-to-λ(c) and the λ(c)-to-v shortest
paths where λ(c) is the closest portal to c. The distance from c to λ(c) is at most εx.
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Once we have chosen the portals, we move on to construct a tripartite graph
Gt whose three vertex sets (or columns) are (V (Gin), portals, V (Gout)). The
length of edge (u ∈ V (Gin), v ∈ portals) or (u ∈ portals, v ∈ V (Gout)) is the
u-to-v distance in G. This distance is computed by running the linear-time SSSP
algorithm of Henzinger et al. [12] in G from each of the 16/ε portals in total
O(1/ε · |V (G)|) time. The following lemma states that our choice of portals
implies that d(Gin, Gout, Gt) is a good approximation of d(Gin, Gout, G).

Lemma 1. If d(Gin, Gout, G) ≥ x, then d(Gin, Gout, Gt) is a (1 + 2ε)-
approximation of d(Gin, Gout, G). Otherwise, d(Gin, Gout, Gt) ≤ (1 + 2ε)x.

Proof. The first thing to notice is that d(Gin, Gout, Gt) ≥ d(Gin, Gout, G). This
is because every shortest u-to-v path in Gt between a marked vertex u ∈ V (Gin)
of the first column and a marked vertex v ∈ V (Gout) of the third column corre-
sponds to an actual u-to-v path in G.

We now show that d(Gin, Gout, Gt) ≤ (1+2ε) ·d(Gin, Gout, G). We begin with
some notation. Let Pt denote the shortest path in Gt realizing d(Gin, Gout, Gt).
The path Pt is a shortest u-to-v path for some marked vertices u ∈ Gin and
v ∈ Gout. The length of the path Pt is δGt(u, v). Let PG denote the shortest
u-to-v path in G that is of length δG(u, v) and let PG denote the shortest u-to-v
path in the original graph G that is of length δG(u, v). Recall that we have the
invariant that in every recursive level for every pair of marked vertices δG(u, v) ≤
(1 + ε) · δG(u, v). We also have that δG(u, v) ≤ 2x and so δG(u, v) ≤ 2x · (1 + ε).
For the same reason, since v1 (the first vertex of both P and Q) is also marked,
we know that δG(v1, u) is of length at most 2x · (1 + ε).

The path PG must include at least one vertex c ∈ C. Assume without loss
of generality that c ∈ P . We claim that c must be a vertex in the prefix of P
of length 8x. Assume the converse, then the v1-to-c prefix of P is of length at
least 8x. Since P is a shortest path in G, this means that δG(v1, c) is at least
8x. However, consider the v1-to-c path composed of the v1-to-u shortest path (of
length δG(v1, u) ≤ 2x · (1 + ε)) concatenated with the u-to-c shortest path (of
length δG(u, c) ≤ δG(u, v) ≤ 2x · (1 + ε)). Their total length is 4x · (1 + ε) which
is less than 8x (since ε < 1) thus contradicting our assumption.

After establishing that c is somewhere in the 8x prefix of P , we now want to
show that δGt(u, v) ≤ (1 + 2ε) · δG(u, v). Let λ(c) denote a closest portal to c on
the path P . Notice that by our choice of portals and since c is in the 8x prefix
of P we have that δG(c, λ(c)) ≤ εx. By the triangle inequality we know that
δG(u, λ(c)) ≤ δG(u, c) + δG(c, λ(c)) ≤ δG(u, c) + εx and similarly δG(λ(c), v) ≤
δG(c, v) + εx. This means that d(Gin, Gout, Gt) = δGt(u, v) ≤ δG(u, λ(c)) +
δG(λ(c), v) ≤ δG(u, c) + δG(c, v) + 2εx = δG(u, v) + 2εx ≤ d(Gin, Gout, G) +
2εx ≤ (1 + 2ε) · d(Gin, Gout, G), where in the last inequality we assumed that
d(Gin, Gout, G) ≥ x. Note that if d(Gin, Gout, G) < x, then d(Gin, Gout, Gt) ≤
(1 + 2ε) · x. The lemma follows. ��

By Lemma 1, approximating d(Gin, Gout, G) when d(Gin, Gout, G) ≥ x reduces to
approximating d(Gin, Gout, Gt). The case of d(Gin, Gout, G) < x means that the
diameter d of the original graph G is not a (u ∈ Gin)-to-(v ∈ Gout) path. This is
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because d ≥ x > d(Gin, Gout, G) ≥ d(Gin, Gout,G). So d will be approximated in
a different recursive call (when the separator separates the endpoints of the diam-
eter). In the meanwhile, we will get that d(Gin, Gout, Gt) is at most (1+2ε) ·x and
so it will not compete with the correct recursive call when taking the maximum.

2.2 Approximate d(Gin, Gout, Gt)

In this subsection, we show how to approximate the diameter in the tripartite
graph Gt. We give a (1+2ε)-approximation for d(Gin, Gout, Gt). By the previous
subsection, this means we have a (1 + 2ε)(1 + 2ε) < (1 + 5ε)-approximation for
d(Gin, Gout, G). From the invariant that distances in G between marked vertices
are a (1 + ε)-approximation of these distances in the original graph G, we get a
(1 + 5ε)(1 + ε) < (1 + 7ε)-approximation for d(Gin, Gout,G) in G.

We now present our (1 + 2ε)-approximation for d(Gin, Gout, Gt) in the tri-
partite graph Gt. Recall that Pt denotes the shortest path in Gt that realizes
d(Gin, Gout, Gt). By the definition of Gt, we know that the path Pt is composed
of only two edges: (1) edge (u, p) between a marked vertex u of the first column
(i.e., u ∈ V (Gin)) and a vertex p of the second column (i.e., p corresponds to
some portal in G). (2) edge (p, v) between p and a marked vertex v of the third
column (i.e., v ∈ V (Gout)).

Let X (resp. Y ) denote the set of all edges in Gt adjacent to marked vertices
of the first (resp. third) column. Let 	 denote the maximum edge-length over all
edges in X ∪ Y . Notice that 	 ≤ d(Gin, Gout, Gt) ≤ 2	. We round up the lengths
of all edges in X ∪Y to the closest multiple of ε	. The rounded edge-lengths are
thus all in {ε	, 2ε	, 3ε	, . . . , 	}. We denote Gt after rounding as G′t. Notice that
d(Gin, Gout, G

′
t) is a (1 + 2ε)-approximation of d(Gin, Gout, Gt). This is because

the path Pt is of length at least 	 and is composed of two edges, each one of
them has increased its length by at most ε	.

We now show how to compute d(Gin, Gout, G
′
t) exactly in linear time. We

first divide all the edge-lengths of G′t by ε	 and get that G′t has edge-lengths
in {1, 2, 3, . . . , 1/ε}. After finding d(Gin, Gout, G

′
t) (which is now a constant) we

simply multiply the result by ε	. The following lemma states that when the
diameter is constant it is possible to compute it exactly in linear time. Note that
we can’t just use Eppstein’s [7] linear-time algorithm because it works only on
planar graphs and in our case we get a non-planar tripartite graph G′t.

Lemma 2. d(Gin, Gout, G
′
t) can be computed in time O(|V (G)|/ε + 2O(1/ε)).

Proof. Recall that in G′t we denote the set of all edges adjacent to marked vertices
of the first and third column as X and Y . The length of each edge in X ∪ Y is
in {1, 2, . . . , k} where k = 1/ε. The number of edges in X (and similarly in Y )
is at most 16k · |V (G)|. This is because the first column contains |Gin| ≤ |V (G)|
vertices and the second column contains j ≤ 16k vertices v1, v2, . . . , vj (the
portals). For every marked vertex v in the first (resp. third) column, we store a
j-tuple vX (resp. vY ) containing the edge lengths from v to all vertices of the
second column. In other words, the j-tuple vX = 〈δ(v, v1), δ(v, v2), . . . , δ(v, vj)〉
where every δ(v, vi) ∈ {1, 2, . . . , k} is the length of the edge (v, vi). The total
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number of tuples is O(k · |V (G)|) but the total number of different tuples is only
t = kO(k) since each tuple has O(k) entries and each entry is in {1, 2, . . . , k}.

We create two binary vectors VX and VY each of length t. The i’th bit of VX

(resp. VY ) is 1 iff the i’th possible tuple exists as some vX (reps. vY ). Creating
these vectors takes O(k · |V (G)|) = O(|V (G)|/ε) time. Then, for every 1 bit in
VX (corresponding to a tuple of vertex u in the first column) and every 1 bit in
VY (corresponding to a tuple of vertex v in the third column) we compute the
u-to-v distance in G′t using the two tuples in time O(16k). We then return the
maximum of all such (u, v) pairs. Notice that a 1 bit can correspond to several
vertices that have the exact same tuple. We arbitrarily choose any one of these.
There are t entries in VX and t entries in VY so there are O(t2) pairs of 1 bits.
Each pair is examined in O(16k) time for a total of O(kt2) = kO(k) time.

To complete the proof we now show that this last term O(kt2) is not only kO(k)

but actually 2O(k). For that we claim that the total number of different tuples
is t = 2O(k). We assume for simplicity (and w.l.o.g.) that all portals v1, . . . , vj
are on the separator P . We encode a j-tuple vX = 〈δ(v, v1), . . . , δ(v, vj)〉 by a
(2j − 1)-tuple v′X : The first entry of v′X is δ(v, v1). The next j − 1 entries are
|δ(v, vi+1)−δ(v, vi)| for i = 1, . . . , j−1. Finally, the last j−1 entries are single bits
where the i’th bit is 1 if δ(v, vi+1)− δ(v, vi) ≥ 0 and 0 if δ(v, vi+1)− δ(v, vi) < 0.

We will show that the number of different (2j − 1)-tuples v′X is 2O(k). There
are k options for the first entry of v′X and two options (0 or 1) for each of the
last j − 1 entries. We therefore only need to show that there are at most 2O(k)

possible (j − 1)-tuples 〈a1, a2, . . . , aj−1〉 where ai = |δ(v, vi+1) − δ(v, vi)|. First
notice that since δ(v, vi+1) and δ(v, vi) correspond to distances, by the triangle
inequality we have ai = |δ(v, vi+1) − δ(v, vi)| ≤ δ(vi, vi+1). We also know that
δ(v1, vj) ≤ 8x/ε	 since all portals lie on a prefix of P of length at most 8x and

we scaled the lengths by dividing by ε	. We get that
∑j−1

i=1 ai ≤ 8x/ε	 ≤ 16k.
In the last inequality we used the fact that x ≤ 2	, if x > 2	, then we ignore
this recursive call altogether (the diameter will be found in another recursive
call). To conclude, observe that the number of possible vectors 〈a1, a2, . . . , aj−1〉
where every ai is non-negative and

∑
ai ≤ 16k is at most 2O(k). ��

To conclude, we have so far seen how to obtain a (1 + 5ε)-approximation for
d(Gin, Gout, G) implying a (1 + 7ε)-approximation for d(Gin, Gout,G) in the
original graph G. The next step is to unmark all vertices of C and move on
to recursively approximate d(Gin, Gin, G) (and similarly d(Gout, Gout, G)).

2.3 Reduce d(Gin, Gin, G) to d(Gin, Gin, G
+
in)

In this subsection we show how to recursively obtain a (1 + 5ε)-approximation
of d(Gin, Gin, G) and recall that this implies a (1 + 7ε)-approximation of
d(Gin, Gin,G) in the original graph G since we will make sure to maintain our
invariant that, at any point of the recursion, distances between marked vertices
are a (1 + ε)-approximation of these distances in the original graph G.

It is important to note that our desired construction can be obtained with
similar guarantees using the construction of Thorup [19] for distance oracles.
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However, we present here a simpler construction than [19] since, as apposed to
distance oracles that require all-pairs distances, we can afford to only consider
distances that are between x and 2x.

There are two problems with applying recursion to solve d(Gin, Gin, G). The
first is that |V (Gin)| can be as large as |V (G)| and we need it to be at most
2/3 · |V (G)|. We do know however that the number of marked vertices in V (Gin)
is at most 2/3 · |V (G)| . The second problem is that it is possible that the u-to-v
shortest path in G for u, v ∈ Gin includes vertices of Gout. This only happens if
the u-to-v shortest path in G is composed of a shortest u-to-p path (p ∈ P ) in
Gin, a shortest p-to-q path (q ∈ Q) in Gout, and a shortest q-to-v path in Gin. To
overcome these two problems, we construct a planar graph G+

in that has at most
2/3 · |V (G)| vertices and d(Gin, Gin, G

+
in) is a (1 + ε/(2 logn))-approximation to

d(Gin, Gin, G).
Recall that the subgraph B of G induced by all vertices in the strict exterior

of the separator C is such that |B| ≤ 2/3 · |V (G)| and Gout = B ∪ C. The
construction of G+

in is done in two phases. In the first phase, we replace the
B part of G with a graph B′ of polylogarithmic size. In the second phase, we
contract the C part of G to polylogarithmic size.

Phase I: Replacing B with B′. To construct G+
in, we first choose a subset

of 256 logn/ε vertices from C called dense portals. The dense portals are chosen
similarly to the regular portals but there are more of them. The marked vertex
v1 (the first vertex of both P and Q) is chosen as the first dense portal. Then,
for i = 2, . . . , 128 logn/ε we start from vi−1 and walk on P until we reach the
first vertex whose distance from vi−1 via P is greater than εx/(16 logn). We set
this vertex as the dense portal vi and continue to i + 1. We do the same for Q,
for a total of 256 logn/ε dense portals.

After choosing the dense portals, we compute all O((256 logn/ε)2) shortest
paths in Gout between dense portals. This can be done using SSSP from each
portal in total O(|V (Gout)| · log n/ε) time. It can also be done using the Multiple
Source Shortest Paths (MSSP) algorithm of Klein [14] in total O(|V (Gout)| ·
logn + log2 n/ε2) time.

Let B′ denote the graph obtained by the union of all these dense portal
to dense portal paths in Gout. Notice that since these are shortest paths, and
since we assumed shortest paths are unique, then every two paths can share at
most one consecutive subpath. The endpoints of this subpath are of degree > 2.
There are only O((log n/ε)2) paths so this implies that the graph B′ has at most
O((log n/ε)4) vertices of degree > 2. We can therefore contract vertices of degree
= 2. The number of vertices of B′ then decreases to O((log n/ε)4), it remains a
planar graph, and its edge lengths correspond to subpath lengths.

We then unmark all vertices of B′ and append B′ to the infinite face of Gin.
In other words, we take the disjoint union of Gin and B′ and identify the dense
portals of Gin with the dense portals of B′. This results in a graph G+

in that has
|V (Gin)|+O((log n/ε)4) vertices. In Lemma 3 we will show that d(Gin, Gin, G

+
in)

can serve as a (1+ε/(2 logn))-approximation to d(Gin, Gin, G). But first we will
shrink G+

in so that the number of its vertices is bounded by 2/3 · |V (G)|.
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P Q

v1
v1

Fig. 2. On the left: The graph G+
in before shrinking. The white vertices are the vertices

of A, the black vertices are the vertices of C that are not dense portals, the six red
circled vertices are the dense portals, and the gray vertices are the vertices of B′ \ C
with degree > 2. On the right: The graph G+

in after shrinking. The edges adjacent to
vertices of C that are not dense portals are replaced with edges to dense portals.

Phase II: Shrinking G+
in. The problem with the current G+

in is still that
the size of V (G+

in) is not necessarily bounded by 2/3 · |V (G)|. This is because
C (that is part of V (G+

in)) can be as large as n. We now show how to shrink
V (G+

in) to size 2/3 · |V (G)| while d(Gin, Gin, G
+
in) remains a (1 + ε/(2 logn))-

approximation of d(Gin, Gin, G). To achieve this, we shrink the C part of V (G+
in)

so that it only includes the dense portals. We show how to shrink P , shrinking
Q is done similarly.

Consider two dense portals vi and vi+1 on P (i.e., vi is the closest portal to
vi+1 on the path P towards v1). We want to eliminate all vertices of P between
vi and vi+1. Denote these vertices by p1, . . . , pk. If vi is the last portal of P
(i.e., i = 128 logn), then p1, . . . , pk are all the vertices between vi and the end
of P . Recall that A is the subgraph of G induced by all vertices in the strict
interior of the separator C. Fix a planar embedding of G+

in. We perform the
following process as long as there is some vertex u in Q∪A which is a neighbor
of some pj , and which is on some face of the embedding that also contains vi.
We want to “force” any shortest path that goes through an edge (u, pj) to also
go through the dense portal vi. To this end, we delete all such edges (u, pj), and
instead insert a single edge (u, vi) of length minj{	(u, pj) + δG(pj , vi)}. Here,
	(u, pj) denotes the length of the edge (u, pj) (it may be that 	(u, pj) = ∞ if
(u, pj) is not an edge) and δG(pj , vi) denotes the length of the pj-to-vi subpath
of P . It is important to observe that the new edge (u, vi) can be embedded while
maintaining the planarity since we have chosen u to be on the same face as vi.
Observe that once the process ends, the vertices pj have no neighbors in Q∪A.

Finally, we replace the entire vi+1-to-vi subpath of P with a single edge
(vi+1, vi) whose length is equal to the entire subpath length. If vi is the last
dense portal in P , then we simply delete the entire subpath between vi and the
end of P . The entire shrinking process takes only linear time in the size of |V (G)|
since it is linear in the number of edges of G+

in (which is a planar graph).
The following Lemma asserts that after the shrinking phase d(Gin, Gin, G

+
in)

can serve as a (1 + ε/(2 logn))-approximation to d(Gin, Gin, G). The proof is
given in the full version of this paper.
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Lemma 3. d(Gin, Gin, G) ≤ d(Gin, Gin, G
+
in) ≤ d(Gin, Gin, G) + εx/(2 logn)

Corollary 1. If d(Gin, Gin, G) ≥ x, then d(Gin, Gin, G
+
in) is a (1+ε/(2 logn))-

approximation of d(Gin, Gin, G). If d(Gin, Gin, G) < x, then d(Gin, Gin, G
+
in) ≤

(1 + ε/(2 logn)) · x.
By the above corollary, approximating d(Gin, Gin, G) when d(Gin, Gin, G) ≥ x
reduces to approximating d(Gin, Gin, G

+
in). When d(Gin, Gin, G) < x it means

that the diameter of the original graph G is not a (u ∈ Gin)-to-(v ∈ Gin) path
and will thus be approximated in a different recursive call.

Finally, notice that indeed we maintain the invariant that the distance between
any two marked vertices in the recursive call to G+

in is a (1+ε)-approximation of
the distance in the original graph G. This is because, by the above corollary, every
recursive call adds a 1 + ε/(2 logn) factor to the approximation. Each recursive
call decreases the input size by a factor of (2/3+o(1))−1. Hence, the overall depth
of the recursion is at most log1.5−o(1) n < 1.8 logn. Since (1+ε/(2 logn))1.8 logn <

e0.9ε < 1+ε, the invariant follows (we assume in the last inequality that ε ≤ 0.1).
Together with the (1+5ε)-approximation for d(Gin, Gout,G) in the original graph
G, we get a (1 + 5ε) · (1 + ε) ≤ (1 + 7ε)-approximation of d(Gin, Gin,G) in G,
once we apply recursion to d(Gin, Gin, G

+
in).

We note that our recursion halts once |G+
in| ≤ (256 logn/ε)4 in which case we

naively compute d(Gin, Gin, G
+
in) using APSP in time O(|G+

in|2). Even at this
final point, the distances between marked vertices still obey the invariant.

2.4 Running Time

We now examine the total running time of our algorithm. Let n denote the
number of vertices in our original graph G and let V (G) denote the vertex set
of the graph G in the current invocation of the recursive algorithm. The current
invocation approximates d(Gin, Gout, Gt) as shown in subsection 2.2 in time
O(|V (G)|/ε+ 2O(1/ε)). It then constructs the subgraphs G+

in and G+
out as shown

in subsection 2.3, where we have that after shrinking, |V (G+
in)| = α|V (G)| +

O(log4 n/ε4) and |V (G+
out)| = β|V (G)| + O(log4 n/ε4), where α, β ≤ 2/3 and

α + β ≤ 1. The time to construct |V (G+
in)| and |V (G+

out)| is dominated by the
time required to compute SSSP for each dense portal, which requires O(|V (G)| ·
logn/ε). We then continue recursively to G+

in and to G+
out. Hence, if T (|V (G)|)

denotes the running time for G, then we get that T (|V (G)|) = O
(
|V (G))| ·

logn/ε + 2O(1/ε)
)

+ T
(
α|V (G)|+ O(log4 n/ε4)

)
+ T

(
β|V (G)|+ O(log4 n/ε4)

)
.

In the recursion’s halting condition, once we get to components of size |V (G)| =
(256 logn/ε)4, we naively run APSP. This takes O(|V (G)|2) time for each such
component, and there are O(n/|V (G)|) such components, so the total time is
O(n·|V (G)|) = O(n log4 n/ε4). It follows that T (n) = O(n log4 n/ε4+n·2O(1/ε)).
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Abstract. A function f : Fn
2 → {−1, 1} is called linear-isomorphic to

g if f = g ◦ A for some non-singular matrix A. In the g-isomorphism
problem, we want a randomized algorithm that distinguishes whether an
input function f is linear-isomorphic to g or far from being so.

We show that the query complexity to test g-isomorphism is essen-
tially determined by the spectral norm of g. That is, if g is close to
having spectral norm s, then we can test g-isomorphism with poly(s)
queries, and if g is far from having spectral norm s, then we cannot
test g-isomorphism with o(log s) queries. The upper bound is almost
tight since there is indeed a function g close to having spectral norm s
whereas testing g-isomorphism requires Ω(s) queries. As far as we know,
our result is the first characterization of this type for functions. Our
upper bound is essentially the Kushilevitz-Mansour learning algorithm,
modified for use in the implicit setting.

Exploiting our upper bound, we show that any property is testable
if it can be well-approximated by functions with small spectral norm.
We also extend our algorithm to the setting where A is allowed to be
singular.

1 Introduction

In this paper, we are concerned with property testing of Boolean functions. We
say that two Boolean functions f and f ′ : Fn

2 → {−1, 1} are ε-far if the distance
dist(f, f ′) := |{x ∈ Fn

2 | f(x) �= f ′(x)}|/2n between f and f ′ is at least ε, and
we call them ε-close otherwise. We say that a function f : Fn

2 → {−1, 1} is ε-far
from a property P if f is ε-far from every function f ′ satisfying P and ε-close
otherwise. A randomized query algorithm A with oracle access to an unknown
function f : Fn

2 → {−1, 1} is called an ε-tester for P if it accepts with probability
at least 2

3 when f satisfies P and rejects with probability at least 2
3 when f is

ε-far from P . The efficiency of a tester is measured by its query complexity, that
is, the number of queries made to the oracle. Here, we are chiefly interested in
testers that make a number of queries independent of n (although the number
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of queries can depend on some complexity measure); we refer to such testers as
making a constant number of queries.

Property testing was first introduced by Rubinfeld and Sudan [1] to test alge-
braic properties of a function. Goldreich, Goldwasser, and Ron [2] extended the
scope of this definition to graphs and other combinatorial objects. Since then,
the field of property testing has been very active. For an overview of recent
developments, we refer the reader to the surveys [3,4] and the book [5].

A notable achievement in the field of property testing is the complete char-
acterization of graph properties that are testable with a constant number of
queries [6]. An ambitious open problem is obtaining a similar characterization
for properties of Boolean functions. Recently there has been a lot of progress on
the restriction of this question to linear-invariant properties [7,8,9]. A property P
of Boolean functions Fn

2 → {−1, 1} is called linear-invariant if a function f satis-
fies P , then f ◦A is also in P for any square matrix A, where (f ◦A)(x) := f(Ax)
for any x ∈ Fn

2 . For a thorough discussion of linear-invariant properties, we refer
the reader to Sudan’s survey on the subject [10].

Despite much effort, we are still far from reaching a characterization of
constant-query testable linear-invariant properties with two-sided error. In this
paper, we consider function isomorphism testing, which in some sense is the
simplest possible linear-invariant property. Given a Boolean function g, the g-
isomorphism testing problem is to determine whether a function f is isomorphic
to g, that is, whether f = g ◦ A for some non-singular1 matrix A or far from
being so. A natural goal, and the focus of this paper, is to characterize the set
of functions for which isomorphism testing can be done with a constant number
of queries.

Our first contribution is revealing a parameter of functions that makes isomor-
phism testing easy. To state our result precisely, let us introduce several defini-
tions about Fourier analysis. Using characteristic functions χα(x) := (−1)〈α,x〉 =
(−1)

∑n
i=1 αixi , every Boolean function f : Fn

2 → {−1, 1} has a unique represen-

tation as f(x) =
∑

α∈Fn
2
f̂(α)χα(x). The coefficients f̂(α) are called the Fourier

coefficients of f . Then, the spectral norm of f is defined as ‖̂f ‖̂1 :=
∑

α∈Fn
2
|f̂(α)|.

We show that ‖̂g‖̂1 essentially determines the hardness of testing g-isomorphism:

Theorem 1 (Main theorem). Suppose that g : Fn
2 → {−1, 1} is ε

3 -close to

having ‖̂g‖̂1 ≤ s. Then, we can ε-test g-isomorphism with query complexity
poly(s, 1

ε ) queries.

Indeed, Theorem 1 is proved by giving a tolerant tester for the property of
having spectral norm at most s. That is, it accepts every function ε

2 -close to
having spectral norm at most s with probability at least 2

3 whereas it rejects
every function ε-far from having spectral norm at most s.

1 The definition of linear invariance allows for using matrices A that could be singular.
However, this definition does not induce an equivalence relation on the set of all
Boolean functions. Thus, we restrict A to be non-singular to focus on isomorphism.
As a corollary of our isomorphism work, we can handle the full linear-invariant case.
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In contrast to Theorem 1, if a function g is far from having small spectral norm,
then g-isomorphism becomes hard to test:

Theorem 2. Suppose that g : Fn
2 → {−1, 1} is ε-far from having ‖̂g‖̂1 ≤ s.

Then, ε-testing g-isomorphism requires Ω(log s) queries.

We note that Fischer obtained a similar result for graph isomorphism testing in
the dense graph model [11] using complexity of graphs instead of spectral norm.
Here, the complexity of a graph is the size of a partition needed to express the
graph, that is, an edge exists between two parts in the partition if and only
if all vertices between the two parts are adjacent. His result has been used as
an important tool to obtain the complete characterization of constant-query
testable graph properties [6,12]. Thus, we believe that our result will be also
useful to obtain a characterization for function properties.

Theorem 1 is close to tight as is shown in the following theorem.

Theorem 3. For any s > 0, there exists a function g with ‖̂g‖̂1 ≤ s such that
testing g-isomorphism requires Ω(s) queries.

For a function f : Fn
2 → {−1, 1}, Spec(f) := {α ∈ Fn

2 | f̂(α) �= 0} denotes
the spectrum of f . A function f is called r-sparse if |Spec(f)| ≤ r and having
Fourier dimension k if Spec(f) lies in an k-dimensional subspace of Fn

2 . It is
not hard to show that an r-sparse function has spectral norm at most

√
r and

an k-dimensional function has spectral norm at most 2k/2. Thus, as corollaries
of Theorem 1, we can test g-isomorphism with a constant number of queries
when g is close to being r-sparse for constant r or k-dimensional for constant k.
More generally, we can test any property that can be approximated by a set of
functions such that each function in the set has small spectral norm.

Theorem 4. Let P be a linear-invariant property. Suppose that every function

g ∈ P is ε
3 -close to having ‖̂g‖̂1 ≤ s. Then, we can ε-test P with query complexity

poly(s, 1
ε ).

For example, with this theorem, we can test whether an input function is a small
Boolean circuit in which each input is made by the parity of variables. It is shown
that r-sparsity and k-dimensionality are constant-query testable in [13]. As a
corollary of Theorem 4, these properties are tolerantly constant-query testable.

Further, we can extend Theorem 1 to the case where we alter the definition
of linear isomorphism to allow for singular linear transformations.

Proof Sketch of Theorem 1.1. We prove our main theorem in a similar manner to
the implicit learning method used in [14] and [13]. Similarly to [13], our algorithm
finds all the large Fourier coefficients of the unknown function f using an implicit
version of the Goldreich-Levin algorithm [15]; we call our algorithm Implicit Sieve.
Given a set of vectorsM, it outputs {〈χα1(x), . . . , χαk

(x), f(x)〉 | x ∈ M}, where
αi’s are (implicitly) chosen to cover large Fourier coefficients. The approach
in [13] works when f is k-dimensional; our algorithm Implicit Sieve gives correct
output with no assumptions about f .
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Once Implicit Sieve is run, rather than checking consistency as in [14] and [13],
our algorithm produces a sparse polynomial that approximates f . This can be
done by estimating f̂(αi) from the output of Implicit Sieve. To check isomorphism
to a given function g (or even multiple functions), the algorithm tries to “fit”
the Fourier mass of f into the Fourier mass of g. We note that checking this “fit”
requires no further queries. If the spectral norm of g is small, then this algorithm
will succeed, and in fact does so in a tolerant manner. We note the strong
connection of learning functions with small spectral norm due to Kushilevitz
and Mansour [16].

Finally, we show that tolerant isomorphism testing implies that we can test
properties that are well-approximated by functions with small spectral norm.

Related Work. Another natural setting of function isomorphism is that we regard
two functions f, f ′ : Fn

2 → {−1, 1} are isomorphic if they are the same up to
relabeling of bits. In this setting, it is known that g-isomorphism is constant-
query testable if g is a k-junta for constant k [17] or a symmetric function, and
the result was extended to (n− k)-symmetric functions [18,19]. Here, a function
is called a k-junta if it only depends on k bits in the input string and called
an (n − k)-symmetric function if there exist some k bits such that it becomes
a symmetric function for every fixed setting of the k bits. It is also conjectured
that the parameter k above is the parameter that determines the difficulty of
g-isomorphism in this setting as the spectral norm is the parameter in the linear
isomorphism setting [18,19].

In recent work, Grigorescu et al. [20] consider extremal examples of lower
bounds for testing linear isomorphism in the same sense considered here. In that
work, the authors show that there is a function that requires Ω(n2) queries for
testing linear isomorphism. The spectral norm of this function is exponential
in n, so this example is quite far away from what we consider here, since we
consider functions of “constant” complexity.

Very recently, [21] gave a characterization of affine-invariant properties that
are constant-query testable with one-sided error. Their work does not derive our
result since having small spectral norm and satisfying the condition they gave
are incomparable. Also, we consider two-sided error testability of linear-invariant
properties instead of one-sided error testability of affine-invariant properties.

In graph property testing, there are two major models, called the dense graph
model and the bounded-degree model. In the dense graph model, we have access
to the adjacency matrix and a graph G is called ε-far from a property P if we
must add or remove at least εn2 edges to make G satisfy P . As we already men-
tioned, [11] showed that the difficulty of testing H-isomorphism is determined
by the complexity of H . The gap between its upper and lower bounds on query
complexity in terms of the graph complexity was improved in [19]. [22] showed

that the query complexity to test H-isomorphism for general H is Θ̃(
√
n) with

two-sided error and Θ̃(n) with one-sided error. In the bounded-degree model with
a degree bound d, we only deal with graphs with maximum degree at most d.
We have access to the incidence list and a graph G is called ε-far from a prop-
erty P if we must add or remove at least εdn edges to make G satisfy P . [23]
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showed that we can test H-isomorphism in constant time when H is hyperfinite,
that is, for any ε > 0 we can decompose H into connected components of size
s = s(ε) by deleting εn edges. A notable example of hyperfinite graphs is pla-
nar graphs. Exploiting this result, [23] showed that every hyperfinite property is
constant-query testable.

Organization. In Section 2, we introduce definitions and useful facts used
throughout this paper. We introduce Implicit Sieve in Section 3 and proceed
to prove our main theorem in Section 4. In the full version of the paper, we ex-
tend our upper bounds to the linear-invariant case using our linear isomorphism
results (Theorem 4), and we prove a lower bound for testing linear isomorphism
to functions of small spectral norm.

2 Preliminaries

We use bold symbols to denote random variables. For a collection of vectors
A, we write wt2(A) =

∑
α∈A f̂(α)2 and wt4(A) =

∑
α∈A f̂(α)4. This notation

suppresses the dependence on f , but it will always be clear from the context.
For a subspace H ≤ Fn

2 and any vector r ∈ Fn
2 , the coset r + H is defined as

{α + r | α ∈ H}. Given a set of vectors C ⊆ Fn
2 , let PC(f) be the projection

function for C; PC(f)(x) =
∑

α∈C f̂(α)χα(x).
We show the following two lemmas in the full version of the paper.

Lemma 1. For a non-singular matrix A, f̂ ◦A(α) = f̂((A−1)Tα). In particu-

lar, ĝ(α) = f̂((A−1)Tα) when f = g ◦A.

Lemma 2. For any subspace H, any vector r, and any integer k ≥ 2, we can
estimate wt2(r + H) and wt4(r + H) to within ±τ with confidence 1 − δ using

O( log(1/δ)τ2 ) queries.

3 The Implicit Sieve

As a first step, we give a general algorithm for implicitly accessing the Fourier
coefficients of an unknown function f , which we call Implicit Sieve. The guarantee
of the algorithm is stated in the following lemma.

Lemma 3. Given a threshold value θ > 0 and a set M ⊆ Fn
2 with |M| =

m, there is an algorithm that uses poly(m, 1/θ) queries and returns, with high
probability, for some set S = {α1, α2, . . . , αk}, a labeled set of m examples of the
form {〈χα1(x), χα2(x), . . . , χαk

(x), f(x)〉 | x ∈M}, where

– Every vector α such that |f̂(α)| ≥ θ is in S.

– Every vector α ∈ S satisfies |f̂(α)| ≥ 1
2θ.
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Due to space limitations, all the proofs are deferred to the full version. Note that
the algorithm does not return the set S. The two guarantees here are similar
to the guarantee given by the Goldreich-Levin Theorem [15] (see also [16]). The
query complexity is independent of f .

We first introduce random t-coset structures.

Definition 1 ([13]). For an integer t, we define a random t-dimensional coset
structure (H, C) as follows: We choose vectors β1, . . . , βt ∈ Fn

2 independently and
uniformly at random and set H = span{β1, . . . , βt}⊥. For each b ∈ Ft

2 we define
the “bucket” C(b) = {α ∈ Fn

2 | 〈α, βi〉 = bi for all i}. We take C to be the multiset
of C(b)’s, which has cardinality 2t. In a random permuted t-dimensional coset
structure, we additionally choose a random z ∈ Ft

2 and rename C(b) by C(b+z).

In the (unlikely) case that βi’s are linearly dependent, some of C(b)’s will be
cosets in Fn

2/H and some of them will be empty. For the empty buckets C(b) we
define PC(b)f to be identically 0. Note that the zero vector always gets mapped
to the bucket C(0) in a random coset structure. To avoid technical issues caused
by this fact, we adopt random permuted coset structures.

Lemma 4. Let (H, C) be a random permuted t-dimensional coset structure,

where t ≥ 2 log 16
θ4 + log 100. Then for any set S of vectors α with |f̂(α)| ≥ θ2

4 ,
every vector in S gets mapped into a different bucket except with probability at
most 1

100 .

Our algorithm is given in Algorithm 1. A bucket is heavy if it contains some

α ∈ Fn
2 with |f̂(α)| ≥ θ2

4 . We now explain how Algorithm 1 works.
We first choose a random permuted coset structure (Step 1). Conditioning

on Lemma 4, for all the heavy buckets, there is a unique Fourier coefficient of

squared magnitude at least θ2

4 contained in that bucket. For any heavy bucket C,
let α(C) be this unique Fourier coefficient. Then, we can show that the Fourier
mass of a bucket C is dominated by α(C):

Lemma 5. Suppose t is such that 10 · 2−t/2 + 2−t ≤ ( θ3

3200m )2. Assume that the
condition of Lemma 4 holds. Then except with probability at most 2

100 , wt2(C) ≤
f̂(α(C))2 + ( θ3

3200m )2 for every heavy bucket C.

Next, by estimating wt2(C) and wt4(C), we discard buckets C ∈ C that are
judged to be non-heavy (Steps 2–7). Let L′ be the set of buckets we did not
discard. With high probability, we do not make any mistake and do not miss
any large Fourier coefficient:

Lemma 6. Except with probability at most 1
100 ,

– Find-Heavy-Buckets discards every bucket C with |f̂(α)| < θ2

4 for every α ∈
C.

– Find-Heavy-Buckets does not discard any bucket C with |f̂(α(C))| ≥ θ.

– |f̂(α(C))| ≥ θ
2 for every C ∈ L′.
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Algorithm 1. Implicit-Sieve

Parameters: θ, M with |M| = m, t = Ω(log m4

θ12
)

Output: A matrix Q and a vector F of implicit examples, where each row of Q and
the corresponding entry of F corresponds to a string in F

n
2 , and each column of Q

corresponds to some linear function χα evaluated at every string in M.
1: Choose a random permuted t-dimensional coset structure (H,C).
{Find-Heavy-Buckets}

2: for each bucket C ∈ C do
3: Estimate wt2(C) to within ± 1

4
θ2 with confidence 1− 1

200·2t . Call it w̃t2(C).

4: Discard any bucket where w̃t2(C) < 3
4
θ2.

5: for each surviving bucket C ∈ C do

6: Estimate wt4(C) to within ± θ4

4
w̃t2(C) with confidence 1− 1

200·2t . Call it w̃t4(C).

7: Discard any bucket where w̃t4(C) < 3
4
θ4. Let L′ be the set of survived buckets.

{Construct-Examples}
8: Let M = {x1, x2, . . . , xm}.
9: Define the length-m column vector F by setting Fx = f(x) for each x ∈M.
10: Draw a list M′ = {y1,y2, . . . ,ym} of m uniformly random strings from F

n
2 .

{Define m× |L′| matrices Q′,Q′′ and then Q as follows}
11: for each i ∈ [m] and C ∈ L′ do
12: Estimate PCf(yi) and PCf(xi+yi) to within ± 1

8
θ with confidence 1− 1

200|L′|m .

Set Q′
i,C and Q′′

i,C to be the sign of them, respectively.
13: Set Qi,C = Q′

i,C · Q′′
i,C .

From the last property, there are at most 4
θ2 many buckets in L′.

We proceed to analyze Construct-Examples (Steps 8–13). For each heavy
bucket C ∈ L′, define SC(f) to be the “small projection”: SC(f)(x) =∑

α∈C\{α(C)} f̂(α)χα(x).

Lemma 7. For each heavy bucket C, Prx[|SC(f)(x)| ≥ 1
4θ] ≤ θ2

800m .

Since PC(f)(x) = f̂(α(C))χα(C)(x) + SC(f)(x) and |f̂(α(C))| is much larger

than |SC(f)(x)| from Lemmas 6 and 7, we have that sgn(f̂(α(C))χα(x) is equal
to sgn(PC(f(x)) with high probability:

Lemma 8. For each heavy bucket C, Pr[|PC(f)(x)| < 1
4θ or sgn(PC(f)(x)) �=

sgn(f̂(α(C))χα(C)(x))] ≤ θ2

800m .

From Lemma 8, each of the at most 2|L′|m estimates are correct except with
probability 1

200|L′|m , so these estimations add at most 1
100 to the failure proba-

bility. Thus, each fixed entry of Q′ and Q′′ is correct except with probability at

most θ2

800m . We use basic self-correction to form the matrix Q; a fixed entry of

Q (a proposed value of χα(C)) is correct except with probability at most θ2

400m .

There are only 4
θ2 heavy buckets at most, so except with probability at most

1
100m , a fixed row of Q is correct on any specific example. Thus, if we draw a
set of at most m (implicit) examples, the entire matrix Q is correct except with
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Algorithm 2. Tolerant g-isomorphism testing to a function with small spectral
norm

Parameters: s, g : Fn
2 → {−1, 1} with ‖̂g‖̂1 ≤ s, ε

1: Run Algorithm 1 with θ = ε
6s
, m = Õ( s

2

ε2
), and M a uniformly random subset of

F
n
2 with |M| = m to get (Q,F).

2: for each C ∈ L′ do
3: Use (Q,F) to estimate f̂(α(C)) within ± ε

3s
with confidence 1− 1

100|L′| and call

it
˜̂
f(α(C)).

4: Set
˜̂
f(α) = 0 for all α ∈ F

n
2 \ α(L′).

5: Accept if there is a nonsingular linear transformation A such that∑
β∈Fn2

˜̂
f ◦A(β)ĝ(β) ≥ 1− ε, and reject otherwise.

probability at most 1
100 , assuming all the previous estimates were correct. Over-

all, the total failure probability is at most 1
100 + 2

100 + 1
100 + 1

100 + 1
100 = 6

100 as
claimed; this establishes Lemma 3.

Enumerate the buckets of L′ as {C1, C2, . . . , C|L′|}. Similar to how we define
α(C), let α(L′) = {α(C) | C ∈ L′}. The final matrix Q and vector F are, except
with probability at most 6

100 , of the following form:

(Q | F) C1 C2 . . . C|L′| f(x)
x1 χα(C1)(x1) χα(C2)(x1) . . . χα(C|L′|)(x1) f(x1)

x2 χα(C1)(x2) χα(C2)(x2) . . . χα(C|L′|)(x2) f(x2)
...

...
...

. . .
...

...
xm χα(C1)(xm) χα(C2)(xm) . . . χα(C|L′|)(xm) f(xm)

where M = {x1, x2, . . . , xm}.
The query complexity of this algorithm is dominated by the estimates in

Steps 2 and 3. Since the number of buckets is Ω(m4

θ12 ), we need Õ(m4

θ16 ) queries in

total to make one estimate to tolerance ± θ2

4 for each bucket.

4 Tolerantly Testing Isomorphism to Functions with
Small Spectral Norm

In order to talk about tolerantly testing g-isomorphism, say that f is (τ, g)-
isomorphic if f is τ -close to a g-isomorphic function. In this section, we show
the following tolerant tester for g-isomorphism.

Theorem 5. Let g : Fn
2 → {−1, 1} be a function with ‖̂g‖̂1 ≤ s. Then, there is

an algorithm with query complexity Õ((s/ε)24) such that, given a function f , it
accepts with probability at least 2

3 when f is ( ε
3 , g)-isomorphic and rejects with

probability at least 2
3 when f is not (2ε3 , g)-isomorphic.
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Our algorithm is given in Algorithm 2. We start by running Algorithm 1 with

θ = ε
6s and m = Õ( s

2

ε2 ), and then we run an extra step: we use the examples
to estimate each heavy Fourier coefficient to within ε

3s . We estimate every other
Fourier coefficient to be 0. Because we set θ = ε

6s , all estimates are correct to
within ε

3s , (except with probability at most 1
100 , if we draw enough examples)

because the small Fourier coefficients estimated to be 0 without any examples
have magnitude at most ε

6s . The probability that any of the |L′| estimates is
outside the stated interval is at most 1

100 .
We will assume that we have g given as a multilinear polynomial; g =∑
β∈Fn

2
ĝ(β)χβ . The algorithm tries to find the best match of the estimates of the

Fourier coefficients found to the Fourier coefficients of g. An issue here is that
we do not actually know α(C)’s and hence it is not immediate how to execute
Step 5. A key insight is that, to discuss linear transformations applied to these
heavy coefficients, it suffices to determine the linear relationships between the
coefficients. Proofs of the following lemmas are deferred to the full version.

Lemma 9. Let B = {C1, C2, . . . , Ck} ⊆ L′ be a minimal collection of buckets
such that α(L′) ⊆ span({α(C1), α(C2), . . . , α(Ck)}).

Suppose that M is chosen uniformly at random in Implicit Sieve. Then the
rows of Q are uniformly distributed when restricted to the columns in B, and
every other entry in a fixed row is determined by the setting of the bits in the
columns in B.

Lemma 10. Let S = {S | S ⊆ α(L′) and
∑

α∈S α = 0n}, where the sum is in
the Fn

2 sense. Except with probability at most 1
100 over the construction of Q, we

can find sets of buckets corresponding to S from Q.

Lemma 11. The algorithm is able to perform Step 5 by enumerating over all
linear transformations without using any further queries.

The following lemma shows that if f is close to g, then there is a very good
match between the Fourier coefficients of f and g.

Lemma 12. Let g : Fn
2 → {−1, 1} be a fixed function, and suppose f is ( ε

3 , g)-
isomorphic; further, let A be a linear transformation such that f ◦ A is ε

3 -close

to g. Then
∑

α∈supp(g) f̂ ◦A(α)ĝ(α) ≥ 1− 2ε
3 .

Proof. Because f ◦ A and g are {+1,−1}-valued, Prx[(f ◦ A)(x) �= g(x)] =
1
2 + 1

2 Ex[(f ◦ A)(x)g(x)]. It follows that if (f ◦ A) and g are ε
3 -close, then

Ex[(f ◦ A)(x)g(x)] ≥ 1 − 2ε
3 . But Ex[(f ◦ A)(x)g(x)] =

∑
α∈Fn

2
f̂ ◦A(α)ĝ(α),

finishing the proof.

Theorem 5 follows from the following two lemmas.

Lemma 13. Suppose that f is ( ε
3 , g)-isomorphic, where ‖̂g‖̂1 ≤ s. Then the

algorithm accepts with probability at least 2
3 .
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Proof. We assume that (Q,F) is found correctly, that estimates in Algorithm 2
are correct, and that all linear dependencies are discovered. The probability of
failing at least one of these is at most 6

100 + 1
100 + 1

100 = 8
100 .

Because f is ( ε
3 , g)-isomorphic, there is a nonsingular linear transformation A

such that f ◦A is ε
3 -close to g. By Lemma 12,

∑
β∈supp(g) f̂ ◦A(β)ĝ(β) ≥ 1− 2ε

3 .

We only have estimates for each f̂ ◦A(β), and each could be off by at most
ε
3s . Because ‖̂g‖̂1 ≤ s, using these estimates can reduce this “dot product” by at

most ε
3 . Thus

∑
β∈Fn

2

˜̂
f ◦A(β)ĝ(β) ≥ 1− 2ε

3 −
ε
3s ‖̂g‖̂1 ≥ 1− ε, so the algorithm

will accept. Thus, the algorithm accepts with probability at least 1− 8
100 > 2

3 .

Lemma 14. Suppose that the algorithm accepts with probability at least 1
3 . Then

f is (2ε3 , g)-isomorphic.

Proof. Again, we assume that (Q,F) is found correctly, that the estimates in
Algorithm 2 are correct, and that all linear dependencies are discovered. The
probability of failing at least one of these is at most 6

100 + 1
100 + 1

100 = 8
100 .

Suppose the algorithm accepts with probability at least 1
3 > 8

100 . Then, with
nonzero probability, the algorithm finds a linear transformation A such that∑

β∈Fn
2

˜̂
f ◦A(β)ĝ(β) is at least 1− ε. As in the previous claim, each estimate of

f̂ ◦A is within ε
3s of the true value, so

∑
β∈Fn

2
f̂ ◦A(β)ĝ(β) ≥ 1−ε− ε

3s ‖̂g‖̂1 ≥ 1−
4ε
3 . Then,

∑
β∈Fn

2
(f̂ ◦A(β)−ĝ(β))2 =

∑
β∈Fn

2
f̂ ◦A(β)2−2

∑
β∈Fn

2
f̂ ◦A(β)ĝ(β)+∑

β∈Fn
2
ĝ(β)2 ≤ 2 − 2(1 − 4ε

3 ) = 8ε
3 . It follows that Prx[(f ◦ A)(x) �= g(x)] =

1
4 Ex[((f ◦A)(x)− g(x))2] = 1

4

∑
β∈Fn

2
(f̂ ◦A(β)− ĝ(β))2 ≤ 1

4 ·
8ε
3 = 2ε

3 , and thus

f is (2ε3 , g)-isomorphic.

Proof (of Theorem 1). Suppose that g is ε
3 -close to a function h with ‖̂h‖̂1 ≤ s.

To test whether the input function f is isomorphic to g, we instead test ( ε
3 , h)-

isomorphism using Theorem 5. If f is isomorphic to g, then f is ε
3 -close to h, and

we accept with probability at least 2
3 from Lemma 13. Suppose that f is ε-far

from being isomorphic g. Then, f is 2ε
3 -far from being isomorphic to h from the

triangle inequality. Thus, we reject with probability at least 2
3 from Lemma 14.
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Demri, Stéphane II-162
Deniélou, Pierre-Malo II-174
Dereniowski, Dariusz II-520
Dhar, Amit Kumar II-162
Diakonikolas, Ilias I-376
Di Cosmo, Roberto II-187
Dietzfelbinger, Martin I-33
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Suchý, Ondřej II-594
Summers, Scott M. I-400
Sviridenko, Maxim I-135, I-769, I-792
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