
The SWAC Approach for Sharing a Web

Application’s Codebase Between
Server and Client

Markus Ast, Stefan Wild, and Martin Gaedke

Chemnitz University of Technology, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. A Web application’s codebase is typically split into a server-
side and a client-side with essential functionalities being implemented
twice, such as validation or rendering. For implementing the codebase
on the client, JavaScript, HTML and CSS are languages that all modern
Web browsers can interpret. As the counterpart, the server-side codebase
can be realized by plenty of programming languages, which provide facil-
ities to implement standardized communication interfaces. While recent
developments such as Node.js allow using JavaScript as a client-side pro-
gramming languages outside the browser in a simple and efficient way
also on the server-side, they lack offering a common codebase for the
entire Web application. We present a flexible approach to enable sharing
of presentation and business logic between server and client using the
same codebase. Our approach aims at reducing development efforts and
minimizing coding errors, while taking characteristic differences between
server and client into account. We show the impact of our solution during
an evaluation and in comparison to related work.

Keywords: Development Tools, HTML5 and Beyond, Web Standards
and Protocols.

1 Introduction

More and more of today’s dynamic Web applications imitate behavior, look and
feel of desktop applications by moving large parts of their business and presen-
tation logic from the server-side to the client-side1. This trend was accelerated
by the Internet’s increasing speed and coverage for mobile devices as well as
advances in standards, which made the Web more dynamic in the last couple
of years [1,5,13]. Development methodologies like progressive enhancement have
additionally blurred the line between desktop and Web applications. Progres-
sive enhancement focuses on Web applications that are universally accessible,
intuitive and usable by realizing all Web content and functionality only using se-
mantic Hypertext Markup Language (HTML). Enhancements such as advanced

1 While in our scenarios clients are mostly represented by browsers, other applications
e.g., Firefox OS or WebView Components in Android and iOS are also valid clients.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 84–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

{firstname.lastname}@informatik.tu-chemnitz.de

The SWAC Approach for Sharing a Web Application’s Codebase 85

Cascading Style Sheet (CSS) or JavaScript are layered unobtrusively on top
of HTML [12]. Web-enabled devices like search engines or gaming systems do
only provide limited or no support for further enhancements. By following this
development methodology, they are also enabled to access corresponding Web
applications. New devices like latest browsers benefit from this additional tech-
nological layer by improvements to style and interaction.

Progressive enhancement can be accomplished by duplication, i.e., realizing
parts of the application for both server and client. Duplicating the business and
presentation logic entirely, however, is inadequate as it decreases not only devel-
opment efficiency, but also makes the application more error-prone and harder
to maintain. Besides the problem of technically establishing a server/client com-
patible codebase2, we identified four key differences between both sides that have
to be treated separately: view, routing, data access and state transfer.

Unlike the view on the server-side that is commonly string-based and gener-
ated on-demand, the client-side view is based on the Document Object Model
(DOM). This difference also affects the routing because the view on server-side
is built from scratch on every request, i.e., on every route. In addition to this, the
business logic of routes cannot be reused for the client-side without further re-
gard. As the client-side is generally more vulnerable to malicious manipulations,
unveiling data exchange logic to the client-side has potential security issues. The
state established during the initial request consisting of data, view bindings and
precompiled fragments acts as origin and as basis for all further user interaction.
As a consequence, the state needs to be transferred from the server to the client
in order to continue on the client where left off on the server.

In this paper we present a framework providing both dynamic functionalities
and progressive enhancement without having to implement an application twice
on server and client. We focus on coping with characteristic client/server differ-
ences using a technically compatible codebase, supporting client- and server-side
generated views, implementing a server/client compatible routing as well as es-
tablishing mechanisms for data access and state transfer.

This paper is organized as follows: We begin in Section 2 with an example
demonstrating the features of our framework. Section 3 provides an overview
of our approach and describes the resulting framework. We detail the routing,
the view, the data access and the state transfer. In Section 4 we evaluate our
framework. We position our approach to related work in Section 5 and conclude
our work in Section 6.

2 Example

In this section we present an example for developing a simple task & document
management application. We apply our proposed framework and best practices
to implement a single codebase for the entire Web application and realize pro-
gressive enhancement.

2 The term ”codebase” refers to the whole source code of an application.

86 M. Ast, S. Wild, and M. Gaedke

Consider a simple application for managing tasks and documents as shown
in Figure 1. There are tasks, documents and projects. Tasks and documents
are both assigned to projects and each project can contain several tasks and
documents. There are five routes associated to these elements, i.e., one to the
project list, a second to a specific project, a third to the tasks associated to a
project, a fourth to the documents within a project, and another route acting
as an entry point for the application. Four separate views are rendered on the
basis of these routes, i.e., the layout, the project, the tasks and the documents.

Fig. 1. Screenshot of Sample Web application

Our framework enables developers of such a task & document management
application to combine these five distinct routes into one, which itself is split into
five hierarchical pieces, as shown in Figure 2. Therefore, we have consolidated
the business logic of these routes: (1) the root route rendering the layout, (2) the
projects route loading and rendering the list of projects, (3) the project route
loading a specific project and (4) tasks and documents routes to render all tasks
and documents of the selected project. That is, the tasks and documents routes
reuse logic introduced with the project route (1-3).

Render
Layout

Load & Render
Projects

/docs

/projects /:project/

/tasks
Load &
Render
Project's
Tasks/Docs

1 2

Load
Project

3

4

4

Fig. 2. Route Hierarchy of Sample Application

The SWAC Approach for Sharing a Web Application’s Codebase 87

On the client-side, this separation relieves us from the need to execute the
whole route once a project is selected. Furthermore, the separation enables mov-
ing through a route step by step to execute only the necessary parts of a route,
e.g., projects, tasks or documents. The presentation logic is responsible for re-
flecting changes based on the business logic addressed by these routes. To achieve
this without re-rendering, our framework allows splitting the view into pieces
called fragments. These fragments are used to construct the view step by step
or to update parts of the view once underlying data changes. As shown in Fig-
ure 3, the sample application consists of a fragment for the project list, the task
collection, the document collection and one for each project, task and document.

Layout / Application Container

Project
List

Task 1 Task 2Proj. 1 Task N

Task
Collection

Project
List

Layout/
Application
Container

Corresponding
View Fragmentation TreeView Fragmentation

...

Doc. 1 Doc. 2 Doc. N

Document
Collection

......

Proj. 2 Proj. N

Document
Collection

Document 1

Document 2

Document 3

Document N

...

Task
Collection

Task 1

Task 2

Task 3

Task N

...

Fig. 3. View Fragmentation of Sample Application

Having implemented the routes and the view as described, requesting the list
of projects from the server would be as follows: each route up to the projects
route is executed automatically by our framework, and the layout and the project
list are rendered accordingly. The result of this request not only contains the
rendered view composed of the layout and the project list. It also contains the
state consisting of the underlying data, the bindings, the fragment’s precompiled
templates3 and their positions inside the view. The bindings are established to re-
render fragments on data changes like creating, renaming or removing projects.

At this point in time, most of the application’s functionalities can be executed
decoupled from the server-side, i.e., only data access and manipulation opera-
tions have to involve server communication. It is important to note that in our
framework, the logic responsible for the data exchange with the database is not
shared with the client because of potential security concerns. As the data logic
remains on the server all the time, our framework automatically provides an

3 A precompiled template is a JavaScript function responsible for creating HTML for
the data provided in the fragment.

88 M. Ast, S. Wild, and M. Gaedke

appropriated API allowing client-side data access to be proxied through. In the
example, selecting a project on the client-side would work as follows: The client
makes an AJAX request to the server to get the tasks of the selected project. Ad-
ditionally, the client requests the precompiled fragments of the tasks template,
which are used for the appropriate rendering. The resulting fragments ensure
that the task items can be re-rendered once their underlying data changes, e.g.,
selecting another project results in the execution of the associated route part.
This would cause re-rendering view fragments of the task items.

Demonstration: This sample application created with the SWAC framework
is available at: http://vsr.informatik.tu-chemnitz.de/demo/swac/

3 Approach for Sharing a Web Application’s Codebase

Our approach for Sharing a Web Application’s Codebase (SWAC) establishes
server/client compatible Web application codebases and addresses the differ-
ences between server- and client-side. SWAC is designed to execute only nec-
essary parts of an application’s business logic by defining routes as a route
hierarchy. To update only the affected parts of a view on data changes, the
SWAC approach supports fragmentation of views into parts. These parts are
automatically updated once their underlying data changes. It achieves data se-
curity by an additional layer between the business logic and the logic responsible
for communicating with the database. For a seamless transition from server- to
client-execution of the Web application, SWAC enables to automatically transfer
the state from the server to the client. To technically establish a server/client
compatible codebase, SWAC is entirely implemented in JavaScript using Node.js
on the server-side. The following subsections detail both the theoretical back-
ground and the actual implementation of the SWAC approach.

3.1 Routing

A route hierarchy is an essential part of the business layer as it defines the
relationship of routes in an application to each other. SWAC utilizes such a route
hierarchy to determine the necessary parts to be executed for reflecting changes
between two user interactions. That is, it expects the URL to be hierarchical,
which is also considered a best practice [4]. There is no standalone business
logic for each complete route. Instead, the business logic is separated into parts,
where each part reflects the changes necessary to move from one route to an
immediately following one. This allows executing only the necessary parts to
reflect the changes required to navigate from one route to another on the client-
side. To handle scenarios of routes requiring logic that is incompatible to both
sides, e.g., logic provided by third-party frameworks like jQuery and Dojo, every
route can consist of an additional client-only part. While the client-only part is
optional, the server/client compatible part is always required.

The SWAC framework covers three different routing schemes, where each
schema is distinct in terms of handling the route hierarchy tree: 1) the route is

http://vsr.informatik.tu-chemnitz.de/demo/swac/

The SWAC Approach for Sharing a Web Application’s Codebase 89

executed on the server-side, 2) the client is initialized to take off the application
and 3) the client-side navigates through the route hierarchy tree. The following
terminology is applied to describe the routing algorithm: We define G(V,E) as a
directed graph representing the route hierarchy, u ∈ V as a route and (x, y) ∈ E
as a directed edge connecting dependent routes. Additionally, we define A(u) as
a subset of G, with each node x ∈ A being an ancestor of u. A node a ∈ A is
called a common ancestor of u and v if a is an ancestor of both of them, w(u, v)
is called the lowest common ancestor of u and v. In analogy to A(u), we define
D(u) as a subset of G, with each node x ∈ D being a descendent of u. We define
T (u) as a tree inside G with u ∈ T . Other trees like T (k) can also exist within
G(V,E). These definitions are illustrated in Figure 4.

T(u)

G(V, E)

T(k)

a A(u)

w

uv

D(u)

k

Fig. 4. Routing Terminology

Server-Side Execution. The server-side of our framework is stateless, i.e., a
request to the server always requires executing the whole logic responsible for
providing the desired result. Calling a route v on the server-side results in the
execution of v and all ancestors of v, i.e., all nodes being an element of A(v).
These routes are executed in the order they are specified in.

Client-Side Initialization. The initial request is always completely processed
on the server-side. Afterwards, our framework can execute most of the applica-
tion’s functionality decoupled from the server on the client-side. Therefore, the
client-only parts of the current route are executed. This is done by applying the
same method as used for the server-side execution with the difference of execut-
ing the client-only and not the server/client compatible part of the route.

Client-Side Execution. On the client-side, only the routes that are responsible
for the changes between two user interactions are executed. There are four sub-
scenarios for the client-side execution. They take different positions of the target
route into account. If the target route v is not an element of the tree T (u) of the
starting position u, the execution works the same way as on the server-side. That
is, v and all ancestors A(v) are executed in their appropriate order. Otherwise,
the target route v is an element of T (u). If v ∈ T (u), v could be an ancestor

90 M. Ast, S. Wild, and M. Gaedke

of u, i.e., v ∈ A(u), v could be a descendant of u, i.e., v ∈ D(u) or otherwise, v is
inside another branch of T (u). In case v is an ancestor of u, only v is executed. If
v being a descendant of u, every route from u down to v is executed. Otherwise,
every route from the lowest common ancestor w(u, v) down to v is executed.
R(u, v), as the set of routes to be executed, is built using the following method:

R(u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(v) ∪ {v} if v /∈ T (u),

v if v ∈ T (u) ∧ v ∈ A(u),

[A(v) ∩D(u)] ∪ {v} if v ∈ T (u) ∧ v ∈ D(u),

[A(v) ∩D(w(u, v))] ∪ {v} if v ∈ T (u) ∧ v /∈ A(u) ∧ v /∈ D(u).

Example. Consider the route from our sample application (Figure 2). There we
use a parameter (:project). The SWAC framework handles each parameter
as a distinct branch of the route hierarchy (cf. Figure 5). This is necessary for
correct routing. For instance, switching from one project tasks (u) to the tasks
of another project (v) requires executing the /projects/:project route again
for the new project. The routes that have to be executed in this scenario are
highlighted in green in Figure 5.

D(w(u, v))

A(v)

/docs

/projects

/

/tasks /docs /tasks /docs /tasks

/1 /2 /n

...

u v

w(u, v)

Fig. 5. Routing example T (u) (1)

Figure 6 covers two additional scenarios for this route hierarchy. On the left
hand side, target route v is an ancestor of the current route u. On the right hand
side, target route v is a descendant. As in the previous example, the highlighted
routes are executed.

3.2 View

The view on the client-side facilitates executing only the necessary presentation
logic instead of re-rendering the entire view on every data change. While every

The SWAC Approach for Sharing a Web Application’s Codebase 91

/docs

/projects/

/tasks /docs /tasks

/1 /2

u

v

/docs

/projects/

/tasks /docs /tasks

/1 /2

u

v

Fig. 6. Routing example T (u) (2)

single part of a view can be directly updated on the client-side via DOM, this
is impossible using a string-based template as normally done on the server-side.
Due to the fact that parsing the whole template is expensive, having a full-fledged
DOM on the server-side would negatively affect the performance [10].

As we are interested in creating an efficient and compact partition similar
to DOM for string-based templates on the server-side, we utilize embedded
JavaScript. We achieve the fragmentation by wrapping parts of the template
into an appropriated block expression, as exemplary shown below:

<div>
@fragment (func t i on () {

Se l f−updating fragment
})

</div>

The re-rendering of a fragment consists of three steps: 1) delete the fragment’s
content, 2) re-render the fragment and 3) reinsert it into the DOM. Step 1 and
3 require knowledge about the position of the fragment. For this reason, the
position of a fragment needs to be tracked. This could be easily accomplished
by wrapping fragments into HTML elements, which are identified and accessed
via IDs. However, this approach has several issues, e.g., HTML elements like
<title> do not support child nodes [2]. HTML table rows are another example
for elements, which do not allow container tags. Considering a collection, where
each item is represented through two HTML rows, there is no valid way to wrap
each of these two <tr> rows into their own container [2]. Only the comment
node, which is allowed to reside inside every HTML element, fits our purpose.
Since a comment cannot wrap content that should be rendered, they have to act
as start and end markers for a fragment, as exemplary shown below:

<div>
< !−− −{1 −−>

Se l f−updating fragment
< !−− −1} −−>

</div>

On the server-side, these comments are just parts of the rendered string and
they only share their syntax with a DOM comment. This requires initializing

92 M. Ast, S. Wild, and M. Gaedke

the fragment positions once the DOM is built on the client-side. That is, as soon
as the client builds the document, a method has to detect all relevant comments
and assigns them to their fragments. Such a simplified method is listed below:

var walker = document . createTreeWalker (
s ta r t , NodeFi l te r .SHOWCOMMENT)

while (walker . nextNode ()) {
i f (! isRelevantComment (walker . currentNode)) continue
// as s i gn comments to t h e i r fragments
fragment [i sStar tNode (walker . currentNode . nodeValue)
? ’ startNode ’ : ’ endNode ’] = walker . currentNode

}
The bindings ensure that fragments update themselves on appropriate data
changes. They have to be created once the data got accessed. To achieve this
without making the API inconvenient, properties used inside a fragment have
to be enabled to interact with the fragment they are accessed from. The SWAC
framework uses the JavaScript function’s caller property for this purpose. This
property points to the object which called the function the property was ac-
cessed from [8]. We achieved this by making each data property a getter that
binds itself to the fragment it is called from:

Object . de f i n ePrope r ty (model , prop , {
get : function get () {
i f (typeof get . c a l l e r . fragment !== ’ undef ined ’)
this . on (’ change . ’ + prop , get . c a l l e r . fragment . r e f r e s h)

return va lue
} , s e t : [. . .] , enumerable : t rue

})
Although this Function.caller property is not part of the ECMA standard [3],
it is currently supported by all major browsers (Firefox, Safari, Chrome, Opera
and Internet Explorer) [16].

3.3 Security

Since the goal of this framework is to reuse an application’s codebase between
server and client every part of the application’s logic is shared between server
and client unless it is explicitly declared as server-only logic. Nevertheless, the
communication between the business logic and the database is always executed
on the server-side. We achieved this by splitting the business tier into two layers:
the service layer and the business layer. The service layer provides the API for
the communication with the database and is never shared with the client, i.e.,
the client-side cannot directly access the database. However, both sides share
the same API. Data API calls executed on the client-side are proxied through
an automatically provided RESTful API on the server, as illustrated in Figure 7.
That is, authentication and authorization logic for data access is always executed
in a privileged environment on the server-side.

The SWAC Approach for Sharing a Web Application’s Codebase 93

Service Layer

Data Tier

Business Layer

Database

Data API Side?

Data Logic

serverside
Internet

RESTful API

clientside

Presentation Tier

se
rv

er
-s

id
e

client-side

Authorization

Fig. 7. Service Layer

Due to the fact that the actual authentication/authorization logic is not pre-
defined, the SWAC framework provides hooks for injecting custom logic. This
facilitates implementing such logic using already existing Node.js packages, e.g.,
for OAuth or OpenID. An exemplary API usage, which only allows update,
delete and read access to the user model by the owner, is shown below:

swac . Model . d e f i n e (’ User ’ , function () {
this . a l low ({

a l l : function (r equest , user) {
return r eque s t . user . id == user . id

} ,
post : function (r eque s t) {

return t rue
}

})
})

There are two options for establishing route security. First, avoiding route shar-
ing is the most secure way for routes referring to proprietary algorithms. We
suggest only using this option if absolutely necessary because the benefit of the
SWAC framework results from the ability of sharing code. Second, for shared
routes, the SWAC framework provides hooks for both authentication and au-
thorization logic. Executing this logic on the client-side is useless because of
vulnerability to malicious manipulations. SWAC enables developers to divide
applications into several areas, as shown in Figure 8. Since these areas are iso-
lated from each other, navigating between them triggers requests to the server. A
client requesting a route of such an area must pass the authentication/

94 M. Ast, S. Wild, and M. Gaedke

authorization logic attached. This is necessary for the client to obtain the area’s
bundle (the JavaScript files that contain the business logic of this area) and to
call the route at all.

Application

Admin Area

Authorization

Routes
JavaScript

Bundle

User Area

Authorization

Routes
JavaScript

Bundle

Public Area

Routes
JavaScript

Bundle

Fig. 8. Application Areas

An exemplary access control definition for such a route is listed below:

swac . area (dirname + ’ /app ’ , {
a l low : function (req) { return req . i sAuthent i ca t ed () }

})
These areas provide a way to support the separation of an application into differ-
ent security levels and enable responding to users who try to access application
parts they are not authorized to.

3.4 State Transfer

The initial request is processed and rendered completely on the server. Enabling
the client to take off the application’s execution requires making this state avail-
able to the client. The state includes the following information:

– data contained in models and collections
– fragment positions
– events and their listeners
– precompiled templates

Such state information is necessary to update the view on the client-side on data
changes caused by user interactions. Although the client can always retrieve data
from the server, it would be unnecessary to retrieve data twice - once on the
server-side and once the client takes off the application. Fragments can update
themselves on certain events, e.g., data changes. Bindings between fragments and
events are established once a fragment is rendered for the first time, i.e., on the
server-side. To automatically reflect data changes, bindings must be transferred
to the client. Since a fragment’s position and template are required for fragment
re-rendering, associated data is also transferred to the client. To avoid compiling
templates again on the client-side, they are transferred in a precompiled form.

Transferring the state requires serialization. Possible formats for this pur-
pose are textual ones, like the JavaScript Object Notation (JSON) and the Ex-
tensible Markup Language (XML), or binary ones, like the MessagePack4 and

4 http://msgpack.org/

http://msgpack.org/

The SWAC Approach for Sharing a Web Application’s Codebase 95

the Protocol Buffers5. There is no direct support for buffers in browser-based
JavaScript [9]. Deserializing a buffer format on the client-side would be slow and
error-prone. Therefore only textual formats are qualified for a server/client com-
patible serialization and deserialization. As JSON is supported by JavaScript
directly [3], it is the textual format we use.

Regardless of this format choice, serialization of complex objects asks for
additional logic to cope with circular references, functions as well as closures.
There is no built-in mechanism available that allows serialization of all kinds of
JavaScript objects [3]. The SWAC framework achieves sufficient object serializa-
tion by resolving circular references, avoiding closures and utilizing the service
locator pattern to restore object instances. SWAC resolves circular references
by tagging an object as visited on its first occurrence. This allows identifying
references to objects that are already part of the state. The framework replaces
further occurrences of objects with a JSONPath6 to their first occurrence. To
serialize functions we avoid closures and use string representations of functions
via their toString() method. For restoring objects created built using a con-
structor, we implement the service locator pattern. Constructors are registered
to the service locator and all objects created with such a registered constructor
are tagged appropriately. This enables restoring such objects on deserialization.
These approaches in combination are a powerful toolkit to deserialize/serialize
complex JavaScript objects.

4 Evaluation

In order to demonstrate the benefits of our solution, we made a small coding con-
test: the development of a simple single-page task application capable of adding,
removing, editing and changing the state of tasks. For this purpose, we compared
a combination of a common back-end and a common front-end framework with
the SWAC framework. As a challenge for our approach, we chose Rails7 as the
back-end framework, which facilitates the development of back-ends due to its
scaffolding functionalities. For front-end implementation, we used Backbone.js8.
Both Rails and Backbone.js are necessary to provide the features the imple-
mentation with SWAC provides. Although a Rails-only implementation using
its JavaScript Adapter would allow fast development, only a few functionalities
are supported. This might be sufficient for a simple application like this, but is
inappropriate for the use cases our framework is aiming at, e.g., execution of
business logic on the client-side or automatic view binding.

While developing the application with Rails/Backbone.js required an average
time of 52 minutes, the task was done on average in 22 minutes with SWAC. As
shown in Figure 9, the development of this simple task application is about 60%

5 http://code.google.com/p/protobuf/
6 http://goessner.net/articles/JsonPath/
7 http://rubyonrails.org/
8 http://backbonejs.org/

http://code.google.com/p/protobuf/
http://goessner.net/articles/JsonPath/
http://rubyonrails.org/
http://backbonejs.org/

96 M. Ast, S. Wild, and M. Gaedke

faster when SWAC is used in comparison to the use of different frameworks for
back- and front-end. As a result of Rails maturity and scaffolding functionalities,
the back-end only development is indeed faster than using SWAC.

600 5 10 15 20 25 30 35 40 45 50 55

minutes

Backbone.jsRails

Our Framework

Fig. 9. Time comparison for Rails/Backbone.js vs. SWAC framework

The comparison of the amount of source lines of code (SLOC) necessary to
implement the application shows a significant difference, as illustrated in Fig-
ure 10. While the implementation with SWAC only required about 60 SLOC,
Rails and Backbone.js required at least 190 SLOC (Rails: 75, Backbone.js: 115).

2000 20 40 60 80 100 120 140 160 180

lines of code

Backbone.jsRails

Our Framework

Fig. 10. SLOC comparison for Rails/Backbone.js vs. SWAC framework

The SWAC framework and Rails require nearly the same SLOC. However,
Backbone.js’ DOM based view updates needed some extra lines of code for their
implementation. Although the evaluation shows that the SWAC framework im-
proves the development efficiency of dynamic and ”progressively enhanced” Web
applications, both comparisons should only be considered as an orientation. This
is because time consumed as well as lines of code required for the development
depend on the knowledge and experience with a framework.

5 Related Work

In this section, we analyze the work related to our solution. This analysis fo-
cuses on frameworks that aim for creating dynamic Web applications through
establishing a technically compatible client/server codebase. The key differences
between server and client, we identified in Section 1, are used as main analysis
criteria. The analysis is based upon the following criteria:

– Technically compatible codebase
– Progressive enhancements
– State transfer from server- to client-side

The SWAC Approach for Sharing a Web Application’s Codebase 97

– Data logic separation and access control
– Business logic routing
– Intelligent presentation logic, e.g., automatically updating view fragments

Derby [14], as a WebSocket-based framework, focuses on real-time and collab-
orative applications. Despite its facility to completely render the result of the
first request, it is not progressively enhanced. Since Derby uses WebSockets for
all data manipulations, submitting data without WebSockets is impossible. A
Web application’s client-side implemented with Derby cannot be executed left-
off from the server because the state remains on the server. However, WebSockets
can be used to propagate state changes. Derby solves separation of data logic and
access control similar to our solution [11]. While business logic is only executed
on the server-side, Derby dynamically initiates routing from the client-side.

As another framework in this context, Meteor [6] can create technically com-
patible Web application codebases using JavaScript. However, Meteor does not
achieve complete compatibility between server- and client-side because the frame-
work lacks built-in routing functionalities, i.e., business logic is triggered through
DOM events. Meteor utilizes Fibers, i.e., one thread per request, to create syn-
chronous APIs. Even though this is good for simplicity, it breaks with Node.js
event-based characteristic. For protecting the data logic, sensitive functions can
be executed in a privileged environment on the server-side. Meteor supports ren-
dering via DOM simulation on the server-side [7] taking Google’s AJAX crawling
specification into account. While this is beneficial for search engines, for com-
mon visitors Meteor renders the Web application only on the client-side. That is,
Meteor is not suitable for developing progressively enhanced Web applications.
As Meteor Web applications are executed on client-side only, there is no state
to be transferred from the server-side.

Compared to the frameworks analyzed so far, the API of Yahoo! Mojito [15]
is quite different from familiar back-end frameworks in the sense that it does not
provide a homogenous data API for both the server- and client-side. Although
Mojito can be used to build technically compatible Web application codebases, it
lacks native support for client-side routing, i.e., HTML5 History [2] is not used.
Mojito presentation logic allows updating view fragments on data changes.

Although the analyzed frameworks allow sharing parts of the codebase be-
tween server and client, they do not offer facilities to automatically create pro-
gressively enhanced Web applications.

6 Conclusion

With the SWAC approach we provided a solution for sharing a Web application’s
codebase between server and client. Although we accomplished the technical
compatibility of the codebase on both server- and client-side using JavaScript,
the characteristic differences between server and client made it necessary to
create a business and presentation logic compatible to string- and DOM-based
views. This was realized by splitting routes into hierarchical parts. As a conse-
quence of this action, we had to adjust the presentation logic to be compatible,

98 M. Ast, S. Wild, and M. Gaedke

too. Therefore, we added a mechanism to split the view into fragments, which
are updated automatically once underlying data changes. In addition to these
contributions, we integrated a facility into our framework allowing the client to
seamlessly take over the application after the state was transferred automati-
cally from the server to the client. While the data exchange logic is not shared
by the SWAC framework because of security concerns, we enabled the client to
unobtrusively proxy its database calls through the server.

In future work, we intend to perform an evaluation with a larger set of frame-
works. We assume that the evaluation results will help to identify advantages as
well as shortcomings of our current solution that need to be addressed in further
contributions. We plan implementing modularity improvements, e.g., making
fragments compatible to third party template engines or enabling authoriza-
tion per data property. In addition to these enhancements, we will investigate
collaborative editing scenarios asking for facilities such as data push.

Acknowledgment. This work was funded by the European Commission
(project OMELETTE, contract 257635).

References

1. Belson, D., Leighton, T., Rinklin, B.: The State of the Internet, vol. 5(3) (2012)
2. Berjon, R., Leithead, T., Doyle Navara, E., O’Connor, E., Pfeiffer, S.: HTML5

Specification, Editor’s Draft 6 (October 2012)
3. Ecma International: ECMA-262 ECMAScript Language Specification 5.1 Edition

(2011)
4. Masinter, L., Berners-Lee, T., Fielding, R.T.: Uniform Resource Identifier (URI):

Generic Syntax (2005), http://tools.ietf.org/html/rfc3986
5. Meeker, M., Wu, L.: 2012 Internet Trends (2012)
6. Meteor Development Group: Meteor, http://docs.meteor.com/
7. Meteor Development Group: Meteor - Search engine optimization,

http://meteor.com/blog/2012/08/09/search-engine-optimization

8. Mozilla Developer Network: Function.caller
https://developer.mozilla.org/de/docs/

JavaScript/Reference/Global Objects/Function/caller

9. Mozilla Developer Network: JavaScript typed arrays,
https://developer.mozilla.org/en-US/docs/JavaScript_typed_arrays

10. Nicola, M., John, J.: XML Parsing: A Threat to Database Performance. In: Pro-
ceedings of the 12th International Conference on Information and Knowledge Man-
agement, pp. 175–178. ACM Press (2003)

11. Noguchi, B., Smith, N.: Racer Access Control,
https://github.com/codeparty/racer/tree/master/lib/accessControl

12. Parker, T., Jehl, S., Wachs, M.C., Toland, P.: Designing with Progressive Enhance-
ment: Building the Web that Works for Everyone. New Riders Publishing (2010)

13. Smith, A.: Cell Internet Use 2012 (2012)
14. Smith, N., Noguchi, B.: Derby, http://derbyjs.com/
15. Yahoo! Inc.: Yahoo! Mojito, http://developer.yahoo.com/cocktails/mojito/
16. Zaytsev, J.: ECMAScript extensions compatibility table,

http://kangax.github.com/es5-compat-table/

http://tools.ietf.org/html/rfc3986
http://docs.meteor.com/
http://meteor.com/blog/2012/08/09/search-engine-optimization
https://developer.mozilla.org/de/docs/JavaScript/Reference/Global_Objects/Function/caller
https://developer.mozilla.org/de/docs/JavaScript/Reference/Global_Objects/Function/caller
https://developer.mozilla.org/en-US/docs/JavaScript_typed_arrays
https://github.com/codeparty/racer/tree/master/lib/accessControl
http://derbyjs.com/
http://developer.yahoo.com/cocktails/mojito/
http://kangax.github.com/es5-compat-table/

	The SWAC Approach for Sharing a Web
Application’s Codebase Between
Server and Client

	1 Introduction
	2 Example
	3 Approach for Sharing a Web Application’s Codebase
	3.1 Routing
	3.2 View
	3.3 Security
	3.4 State Transfer

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

