Integrating Component-Based Web Engineering
into Content Management Systems

Stefania Leone®*, Alexandre de Spindler?, Moira C. Norrie?, and
Dennis McLeod!

! Semantic Information Research Laboratory, Computer Science Department, USC
Los Angeles, CA, 90089-0781, USA
{stefania.leone,mcleod}@usc.edu

2 Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland
{despindler,norrie}@inf.ethz.ch

Abstract. Popular content management systems such as WordPress
and Drupal offer a plug-in mechanism that allows users to extend the
platform with additional functionality. However, plug-ins are typically
isolated extensions defining their own data structures, application logic
and user interface, and are difficult to combine. We address the fact that
users may want to configure their applications more freely through the
composition of such extensions. We present an approach and model for
component-based web engineering based on the concept of components
and connectors between them, supporting composition at the level of
the schema and data, the application logic and the user interface. We
show how our approach can be used to integrate component-based web
engineering into platforms such as WordPress. We demonstrate the ben-
efits of the approach by presenting a composition plug-in that showcases
component composition through configurable connectors based on an
eCommerce application scenario.

Keywords: Component-based Web Engineering, Content Management
System, WordPress.

1 Introduction

Popular content management systems (CMS) such as WordPresd] and Drupaﬂ
greatly facilitate the task of designing and developing web applications for small
companies and individuals. These systems offer a graphical administrator inter-
face, where users can author content, upload media, customise the layout and
integrate a wide variety of plug-ins to extend the platform core with additional
functionality. The WordPress Plug-in Directoryﬁ hosts thousands of plug-ins

* Stefania Leone’s work is supported by the Swiss National Science Foundation (SNF)
grant PBEZP2 140049. The research has also been funded in part by the Integrated
Media Systems Center (IMSC) of the University of Southern California (USC).

! mttp://wordpress.org

2 http://drupal.org/

3 http://wordpress.org/extend/plugins/

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 37-BI] 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://wordpress.org
http://drupal.org/
http://wordpress.org/extend/plugins/

38 S. Leone et al.

developed by the community, providing functionality ranging from site access
statistic, over sophisticated photo galleries to eCommerce solutions. Plug-ins
may define their own data structure, application logic and user interface. Al-
though extremely powerful, plug-ins are simply extensions of the platform core.
They are typically isolated and it is difficult to compose them with other plug-
ins. For example, a company that runs their online shop based on a WordPress
eCommerce plug-in, such as VVooCommerceE7 might want to perform a customer
satisfaction survey by using a survey plug-in, e.g. WordPress Simple Surveyﬁ.
Ideally, for the participant profile data, the survey plug-in could directly make
use of the customer data managed as part of the eCommerce plug-in. However,
the current WordPress application model would require the user to familiarise
themself with the code of the eCommerce plug-in and to programatically extract
and map the customer data from the eCommerce plug-in to the participant for-
mat defined by the survey plug-in. This is a task that generally goes beyond the
skills of a typical, non-technical WordPress user.

In this paper, we present an approach and a well-defined component model
that supports end-users, both non-technical as well as more advanced ones, in
performing such composition scenarios. The presented work is in line with recent
research on end-user development, where they not only consider how to make
web information systems easy to use, but also easy to develop |1]. Our approach
enhances and generalises the application model of CMS such as WordPress to
support component-based web engineering. Our model is based on the concept
of components and explicit connectors between them. A component adheres to a
well-defined component structure exposing interfaces for component composition
at various levels. To build an application, components are composed through
configurable connectors between them. We introduce different connector types
to support composition at various levels, i.e. composition at the schema and data
level, at the level of the application logic, and at the level of the user interface.
We have realised our approach based on WordPress and present a composition
plug-in that supports component composition based on configurable connector
types. Finally, as proof of concept, we show how an eCommerce solution could
be extended and combined with other plug-ins using our composition plug-in.

This paper is structured as follows. We give an overview of the background in
Sect. Bl followed by our approach in Sect. Bl We introduce the component and
composition model in Sect.[dl Section [l presents the application of our approach
using WordPress, followed by the presentation of the composition plug-in in
Sect. [@ and the validation of our approach in Section[[l Concluding remarks are
given in Sect. Bl

2 Background

Over the years, numerous frameworks and approaches for designing and develop-
ing web information systems have been introduced. Model-driven web

4Thttp://wordpress.org/extend/plugins/woocommerce/
® http://wordpress.org/extend/plugins/wordpress-simple-survey/

http://wordpress.org/extend/plugins/woocommerce/
http://wordpress.org/extend/plugins/wordpress-simple-survey/

Integrating Component-Based Web Engineering into CMS 39

engineering approaches, e.g. [2, 3] offer systematic methodologies based on mod-
els describing the structural, navigational and presentation aspects of a Web
information system. Models are typically defined graphically and most method-
ologies offer a platform for application generation and deployment according
to the defined models. These solutions, however, were targeted at collaborating
groups of database architects, web developers and graphic designers, and explic-
itly supported the separation of concerns in terms of their roles by providing
separate models for the different levels of a web information system.

In parallel, CMS became a popular way for non-technical users, including indi-
viduals and small companies, to create websites and publish their content. Plat-
forms such as WordPress and Drupal provide graphical administrator interfaces,
which support the website design of content and structure in terms of general
publishing units and presentation styles. The extensibility mechanism inherent
to these platforms allows for the integration of arbitrary data and services to
support the creation of complex web information systems. The configuration and
use of plug-ins is typically also performed through the administrator interface.
However, as already stated, these extensions, while extremely powerful, cannot
easily be combined or mashed-up. Plug-ins are typically isolated units developed
by community members, and there is little control or conventions with respect
to the plug-in internals. In the case of WordPress, developing and composing
plug-ins requires knowledge of PHP as well as a detailed understanding of the
WordPress platform and its inner workings.

A number of approaches support web application development from reusable
components. With WebComposition [4], web applications are built through hier-
archical compositions of reusable application components. Similarly, web
mashups are composed through the orchestration of reusable, self-contained ser-
vices, which interact at the message level and may span multiple applications and
organisations. Various mashup editors offer graphical tools as an alternative to
programmatic interfaces to do the composition process, both for general, e.g. |5~
7] and domain-specific mashup creation, e.g. |8, 19]. While some mashup editors
help users to integrate information from distributed sources, others provide in-
frastructure for building new applications from reusable components. For exam-
ple MashArt [7] enables advanced users to create their own applications through
the composition of user interface, application and data components. The focus
is on supporting the integration of existing components based on event-based
composition, where components can react to events of other components.

We build on and extend these ideas for the CMS domain targeting non-
technical users. In contrast to previous work, our approach offers component-
based web engineering based on the definition and configuration of explicit
connectors that encapsulate the collaboration logic between components. As
stated in [10], one of the main challenges of modular system development lies
in the fact that modular units may not be compatible for composition. As a
consequence, our component model is inspired by the Architecture Description
Language (ADL) |11, 12], an approach to component-based software engineer-
ing, where the component model consists of components and explicit connectors

40 S. Leone et al.

between them. Through the definition of explicit connectors between compo-
nents, we circumvent the problem of component incompatibility. Connectors
encapsulate the composition logic, exhibiting functionality ranging from sim-
ple message passing, to complex collaboration logic, such as data transformation
operations, and, consequently, would allow for the composition of arbitrary com-
ponents. We introduce different types of connectors, which can be configured to
define the composition for a particular composition scenario. For example, a
schema connector type could be configured to support the structural composi-
tion of the eCommerce and survey plug-ins.

Our approach and model is not dissimilar to the application model introduced
by the Google Android platfornﬁ for developing and running mobile applications.
Their application model propagates the reuse of different types of application
components across applications, where applications are configured through so-
called intents that define the glue code between the various components. While
intents allow base values to be passed in the form of key-value pairs between
components, our connectors generalise this approach and may define arbitrary
complex collaboration logic between components.

3 Approach

We introduce a component-based approach to web engineering based on ideas of
ADL where applications are modelled based on reusable components and explicit
connectors between them. Components may provide arbitrary functionality and
define their own data structure, application logic and user interface.

Survey eCommerce Electronic Payment
User Interface User Igtgrfagg 777777 L @7 ___|_____ Userlnterface
Methods: Events: Methods: |Events: Bind: Methods: IEvents:
createsurvey(); onstart pr1nt0rder() onorderCreate | onordercreated, | invokePayment(); 'onPayment
startsurvey(Q; e @ \nnordercreated invokepayment(}| veri fycard() e

|
I

Survey Panlclpant}—-+:ustcmerw Order User
i Credentials

[y vl
G o] >
. item
Data

Data (B muray H"a"‘“@

Fig. 1. Composition Scenario

We will introduce our approach based on the example of a company that makes
use of a CMS extended with an eCommerce component for their online business.
Figure [1 gives an overview of the scenario. The eCommerce component, in the
centre, allows users to create and manage an online store, including product, cus-
tomer and order management. The component defines a schema that represents
the eCommerce application domain by means of entity types and relationships,

Shttp://developer.android.com/guide/

http://developer.android.com/guide/

Integrating Component-Based Web Engineering into CMS 41

Define Attribute Mappings
u Customer Attributes Participant Attributes

Create Specialisation CustomerAccounttlumber E| Paricipant Forename E|
Survey Entities Customer Accounthumber
eCommerce Entities y e .
; — CustomerLastname Add Mapping
Address []| []Parent Paricipant [v] []Farent CustometBirthday P
Address
Defined Mappings:
Product
Order 5
Order ltem [create speciatisation CustomerLastname = Participant Surname
Fig. 2. Specialisation Screenshot Fig. 3. Attribute Mapping Screenshot

and manages data structured accordingly. Furthermore, the component defines
application logic by means of methods and events, which implement the online
store functionality, and this functionality is made available to the user through
a graphical user interface.

To evaluate customer satisfaction, the company decides to perform a customer
satisfaction survey and they would like to make use of their customer data when
performing the survey. For this purpose, they have selected a survey component,
shown on the right, that offers the required functionality to define and run
surveys. The survey component, in turn, consists of a user interface, application
logic and a schema, and the component may manage data structured accordingly.
However, they want to avoid having two separate user entities and therefore
want to create a connection between the eCommerce customer and the survey
participants.

Connector @, on the left in Fig. [Il defines the composition between the two
components. It is a specialisation connector that defines an is-a relationship be-
tween the Customer entity of the eCommerce component and the Participant
entity of the survey component. Through this specialisation connector, the cus-
tomer data can automatically be used as participant data for the survey.

Figures 2 and Bl illustrate, based on screenshots, how a user configures a spe-
cialisation connector through a graphical composition wizard. We assume that
the user has already selected the components to be composed as well as the
connector type. Figure [2] shows how the user creates the actual is-a relation-
ship by selecting the customer entity of the eCommerce component and the
participant entity of the survey component. The user also defines that the
customer entity should become the parent entity by checking the parent check-
box. Next, the user has the possibility to define attribute mappings between
the matching/overlapping attributes of the two entity types. In our example,
both entities participant and customer define name attributes. Figure B shows
how such mappings are created. Here, the user is about to create a mapping
between the User.firstname and the Participant.forename attributes. At
the bottom of the figure, the list of defined mappings is shown, where the at-
tribute User.lastname was mapped to Participant.surname. With these map-
pings, the specialisation connector ensures that each time the name of a survey

42

S. Leone et al.

Bind Method to Event
eCommerce Events
onOrderCreated []

The event onOrderCreated is triggerd,

when an order has been created

Electronic Payment Methods

invokePayment(...) E|

The invokePayment method triggers
a payment process for the amount

Define Parameter Mappings

OnOrderCreated Event Attributes

price (number) El

[7] Define defaultvalue

InvokePayment Parameters

amuum(ﬂumber)El

Add Mapping ‘

and currency passed as argument

Continue
Event Object Order l:
Attributes: orderlD (number), date (date),

price (number), noltems {number}

Arguments: amount (number},
currency(USD, EUR, CHF, ..}

Create Binding

Defined Mappings:

InvokePayment.currency = USD

Fig. 4. Binding Creation Screenshot Fig. 5. Parameter Mapping Screenshot

participant is accessed, the corresponding customer name from the eCommerce
component is retrieved and displayed. Note that, in this example, the special-
isation does not require any data mappings, since the survey component does
not yet manage data. However, when composing two components with data, the
specialisation definition also requires the definition of a data mapping and a
conflict resolution strategy, also supported through our composition wizard.

While this is the basic functionality provided by the specialisation connector,
advanced users are free to extend the configured connector programatically. For
example, the connector could be extended to perform data mining by defining
queries that combine survey data with customer data to answer questions such
as “Do customers who selected answer (a) in question 4 buy similar products?”.

In a second step, the company decides to offer support for electronic pay-
ment, a functionality that is not provided by the eCommerce component. For
this composition, the eCommerce component is composed with an electronic
payment component, shown on the right of Fig. [l The event handler registra-
tion connector operates at the application logic level, based on events and
callback methods. Figure @ and Bl show the steps involved in configuring this
connector. Again, we assume that the user has already selected the components
to be composed and the connector type. Furthermore, the user has decided that
the electronic payment component should be invoked as a result of an event that
occurs in the eCommerce component. The screenshot in Fig. 4 shows how a user
defines that binding by selecting events and methods. In the current example,
the user has selected the onOrderCreated event from the survey component.
According to the description shown below the drop-down menu, the event gives
access to the created order and its attributes. On the left, the user has selected
the invokePayment method of the electronic payment component and the de-
scription of the method and its parameters is displayed, saying that the method
takes two parameters amount and currency.

After creating the basic binding, the user may define mappings between the
event object attributes and the method parameters, as shown in Fig. [0l In the
current example, the user intends to map the price attribute of the order to the
amount parameter of the invokePayment method. Also, at the bottom, a list of
created mappings is illustrated. The user has already created a static mapping
for the currency parameter by assigning it the default value “USD”. Note that

Integrating Component-Based Web Engineering into CMS 43

users are free to define such default values for parameters in cases where the
attributes and parameters do not match or are incompatible and we support
basic type transformation.

As these two composition examples illustrate, connectors provide the glue
between components and are configured by the user to adhere to a particular
composition scenario. We offer different types of connectors that support com-
position at various levels of a component. Figure [0 gives an overview of the
composition levels and shows, from left to right, that connectors may be used at
the data level, the schema level, the application logic level and the user inter-
face level. We provide connector types for all these levels and will present our
component model including the various connector types in the next section.

Data Level Schema Level Application Logic Level User Interface Level
User Interface User Interface User Interface User Interface User Interface User Interface User Interface User Interface
Logic ion Logic ication Logic ication Logic ion Logic ication Logic lication Logic ication Logic
Schema échema Schema échema Schema échema Schema échema
Data Data Data Data Data Data Data Data

Fig. 6. Composition Levels

4 Component Model

A component is an application providing arbitrary functionality to its users.
Components may be composed with other components using explicit connectors
between them to form more complex applications. The general component model
along with the composition interface is shown on the left in Fig. [, while the
eCommerce component introduced in Sect. [3]is shown on the right as an example
following this model.

Component Composition Interface

ul Ul Interface
getwidgets();

eCommerce

User Interface

Methods :
printorder();

Application Logic Interface

Application Logic: getEvents();

Methods, Events getMethods O ;
Schema Interface Customer @ Order @
Schema getEntities(); <.

(Entity Types & Relationships)| getrelationshipsO;

. . . tEntityData(...);
(Entities & Relationships) g:tRZAt?o:D;Ea(_?_);

’ Data Data Interface

Bill Murray }-P'aces. 2'23'52013

Fig. 7. Component Example

Formally, a component is defined as a tuple of the four elements

Component = (Schema, Data, Application Logic, User Interface)

44 S. Leone et al.

The Schema is a data model instance describing the component Data in terms of
a set of entity types {Ei,...,Ey} and relationships {Ri,...,Rn}.
The Application Logic includes a set of methods {m1(),...,my()} implementing
the application logic and events {eq,..., ey} related to these methods. Compo-
nents typically contain basic CRUD methods supporting the management of
their entity types and relationships, as well as higher-level methods providing
domain-specific functionality. Component developers are free to define an arbi-
trary number of events triggered by the execution of such methods. For example,
a component may define events marking the start and end of CRUD method
executions.

Finally, the User Interface defines the graphical user interface. In CMS, the
user interface is typically specified by layout themes defining the general presen-
tation of the provided publishing units for the complete web site. As part of the
user interface, components may define a set of widgets {W7,..., Wy} displaying
specific component data or providing component services to the users. Widgets
represent complete user interfaces including user interface controls, layout and
style templates. Note that components do not necessarily specify multiple or
all of these four elements. For example, while the eCommerce component speci-
fies Schema, Application Logic and Widgets elements, other components may for
example only specify Application Logic and Schema elements.

Components expose a composition interface which defines in which way they
may be composed with other components. In order to implement such an in-
terface, component developers need to specify which of the component elements
they wish to make available for composition. Component interfaces do not need
to expose component elements at all levels. At the schema-level, the interface
specifies the subset {E;,...} C {E1,...,En} of composable entity types and
the subset {R;,...} C {Ri,...,Rn} of composable relationships. The speci-
fication of the data available for composition consists of a query @ over the
composable schema elements. Similar to the schema interface definition, ap-
plication logic made available for composition is defined in terms of subsets
{mi(),...} € {m1(),...,my()} and {e;(),...} C {e1,...,ev}. Finally, user in-
terface widgets are exposed in terms of the subset {W;,...} C{Wy,...,Wn}.

In Figure [a programmatic representation of the composition interface is
shown, with getter methods to access the defined subsets of composable widgets,
methods, events, schema elements and data.

Connectors specify how components are connected and at which level. For
example, the specialisation connector presented in Sect. [3] defines an is-a re-
lationship at the schema level, and the event handler registration component
binds a callback function to an event at the application logic level. Figure [{
shows the basic types of connectors—categorised based on the composition level.
The widget connector, shown at the top, supports composition at the Ul level
through the integration of widgets between components. The connector forms
the union of widgets defined as User Interface := {W1,...} C UserInterfacesU
UserInter facep. In the example in Fig.[§ the connector integrates a widget of
component A into the user interface of component B.

Integrating Component-Based Web Engineering into CMS 45

Widget Connector

—_ Ul Component A } y } Ul Component B
) | N\
2 W 4 AN A
= e | e i Le] Mhw [in
2 | |
© Event Handler Registration Connector
(=2 C tA 1 Component B
] : :
CI — } Connector }
o g Instance A ! ! Instance B
=] |
g~ ; register ! ;
2 —t
B | noty | - | |
Q I I invoke | |
< ' | I
g Association Connector Specialisation Connector
[! | |
- Component A } | Component B ComponentA | | Component B
© | ; | |
g Ao - R
)
< | T | |
s : ! ‘ :
w | O 4 b
Map Connector Reduce Connector
—_ ComponentA Component B Component A | | Component B
° i i
> | ! !
] 7 i ! !
| ! | i
| |

£ — | (2). | (59)
a | | 1 reduce

! ! | |

,,

Fig. 8. Basic Connector Types and Composition Scenarios

At the application logic level, Fig. [l illustrates the Event Registration Con-
nector based on a UML sequence diagram that reflects the collaboration between
components and connectors in an event-based setting. The connector is speci-
fied as Application Logic :== {m1(){e; = m;()},...} defining functions binding
events from one component to methods of another component.

Schema-level connectors compose components based on schema elements, such
as specialisation and associations [13]. As shown in Fig. [a specialisation con-
nector defines an is-a relationship establishing a specialisation relationship
among entity types from different component schemata and an association con-
nector defines a relationship between two entity types from different components.
More generally, a schema connector may define arbitrary schema elements among
component entities Schema := {{E1,...},{R1,...}}.

Finally, data connectors allow data from one component to be reused by an-
other component. As shown in Fig. Bl data reuse may be defined by a mapping
connector that maps the schema of one component to the schema of
another component, or by a reduce connector that transforms data from one
component to a format specified by another component. Generally, data connec-
tors may be defined as combinations of map and reduce functions of the form
Application Logic := {map(){E;.a; <+ reduce(Eg.an, Ej.am)},...}. Such map
and reduce functions may in turn be bound to data mapping connector events
to define whether the mappings should occur once, multiple times or periodically.

Note that we have given a minimal specification of the various connector types,
but they may define richer functionality. For example, the association connec-
tor may also define application logic in the form of CRUD methods to create

46 S. Leone et al.

associations, as well as a widget that allows new associations to be graphically
created and viewed. Similarly, a reduce connector may define a user interface,
where the reduce function could be configured.

As seen with these examples, connectors consist of the same building block as
general components and, therefore, can be seen as a special type of components,
where the functionality is not targeted at the application domain, but rather at
the composition of domain-specific application units. Figure [shows the meta-
model of our component model. A component defines a user interface, application
logic, schema and data, and, depending on the implementation technology, these
elements may be realised in different ways. A connector is a sub-type of com-
ponent, and therefore, they can in turn be composed. Connectors are classified
according to their supported composition level, which defines the access points
of a connector. A concrete connector is an instance of such a connector type and
is instantiated with values that are particular to a composition scenario. For ex-
ample, a specialisation connector will be instantiated with an is-a relationship
between two entity types.

Widget ul
Connector @ Connector
Event Application

Registration 7 Logic

Connector Connector
Association
Connector

Compose;

K(1s-a >—| Connector

Schema
Connector

Data
Connector

Fig. 9. Component Metamodel

Connector

Map
Connector

Reduce
Connector

5 WordPress Extension

We have extended WordPress with our approach and component model to sup-
port component-based web engineering. We will first give a short introduction
to the WordPress plug-in mechanism before presenting our extension.

The WordPress plug-in mechanism allows the original blogging model to be
extended in terms of data structure, application logic and user interface wid-
gets by hooking into the WordPress core. A number of such hooks are provided,
which allow plug-ins to inject additional functionality, data structures and pre-
sentation into the WordPress core execution environment. Hooks may represent
plug-in lifecycle events such as their installation or uninstallation, as well as
administrative or end-user activities including the creation, manipulation, re-
trieval, selection, display and deletion of posts, pages or plug-in-specific data.
Typically, the plug-in code includes functions for creating and deleting database
tables, for inserting and selecting table data and the assignment of these func-
tions to particular hooks. Users are free to define their own hooks, which allows

Integrating Component-Based Web Engineering into CMS 47

plug-ins to react to events of other plug-ins. For the user interface, plug-ins rely
on the WordPress publishing process and themes that define the structure and
layout of the complete web site. A plug-in may, however, define widgets that can
be placed in various places of the user interface. To install a plug-in, the files
containing the plug-in code, typically one or more PHP files and JavaScript, are
uploaded into the target WordPress platform through the WordPress adminis-
trator dashboard and can be activated and deactivated. Upon activation, the
additional functionality, data structures and presentation facilities become part
of WordPress and are available for immediate use.

We have extended the WordPress plug-in model to adhere to our approach.
On the level of the application logic and user interface, the WordPress plug-in
model matches our component model. At the level of the user interface, plug-ins
may define widgets and the WordPress core handles the generation of the user
interface from themes including the placement of such widgets. Application logic
is represented by PHP functions and events. At the data and schema level, how-
ever, WordPress only supports a basic notion of types and data may be stored
in any possible way and format. Also, plug-ins do not define a composition API,
as defined by our approach. We therefore build on our previous work [14] where
we introduced DataPress, a WordPress plug-in which supports the generation
of tailored WordPress plug-ins from user-defined ER models. With DataPress, a
user graphically defines an application domain by means of ER models through
the dashboard and DataPress automatically generates a plug-in that allows data
to be managed accordingly. For each defined entity type and relationship, Data-
Press generates data structures, CRUD methods and user interface components
to create and manage the data.

By building on this approach, we not only gain support for ER modelling,
but we could also extend the automatic generation of plug-ins to conform to our
component model. We additionally generate two hooks for each of the generated
CRUD operations—a before and after hook. For example, for the creation of an
order entity, the two hooks onOrderCreate and onOrderCreated are generated.
Also, we generate a configuration file that represents the composition API that
gives access to the composable plug-in elements. The file lists the names of the
entities, relationships, methods, events and widgets defined by a plug-in and the
user can simply remove elements that should not be offered for composition. The
configuration of a connector for a particular composition scenario is based on
these names defined in the respective plug-in configuration files.

6 Composition Plug-in

To support composition by non-technical users, we provide a composition plug-in
that supports the composition process graphically, as illustrated in the screen-
shots in Sect. Bl Figure [I0 gives an overview of the composition plug-in archi-
tecture. The composition plug-in, shown in the centre, is a regular WordPress
plug-in that is integrated into the dashboard. It provides access to locally in-
stalled plug-ins, shown on the left, and the connector type plug-ins, shown on the

48 S. Leone et al.

Plug-in Directory

_ Composition Relationship Plug-in
Rating) Plug-in

@amEaa - Data Mapping Plug-in I
—_pe Event Registration Plug-in
~ eCommere Survey DataPrless
Component Component Plugin

Currency =
Converter
Component

Association Plug-in

Wordpress Core ‘

Fig. 10. Composition Plug-in Architecture

right. It builds on an extended version of DataPress and supports the generation
of plug-ins from user-defined ER models structured according to our component
model. Using the composition plug-in, new plug-ins can be composed with the in-
stalled ones by configuring one of the provided connector types. Assuming that
all plug-ins would be structured according to our approach, a user could also
download, install and compose plug-ins from the Wordpress Plug-in directory,
shown on the left.

Each connector type has been realised as parameterised plug-in, which gets
“instantiated” upon composition. The composition plug-in automatically gen-
erates and installs the configured connector plug-ins. Below, we show a con-
figured version of the event handler registration connector that corresponds to
the configuration shown in Figs. @ and Bl Through the configuration process,
the connector has been named Payment Connector and the event and method
names to be bound, have been injected into the plug-in template. In WordPress,
the add action method registers a specific hook with a specific method. The
add action method further defines the priority of the method invocation, as
well as the numbers of arguments that are passed from the event to the method.
While WordPress assumes that the number and types of attributes provided by
the hook match the parameters of the callback method, we have generalised this
approach by giving the user the possibility to define attribute-parameter map-
pings, as shown in Fig. Bl In this example, the event onOrderCreated defines
four attributes while the method invokePayment only takes two parameters.

/* Plug-in Name: PaymentConnectorx*/

add_action(‘onOrderCreated’, ‘invokePaymentTemp’, 1, 4);
add_action(‘onPayedElectronically’, ‘redirectToShop’);

function invokePaymentTemp($orderID, $date, $price, $noltems){
$currency=‘‘USD’’;
invokePayment ($price, $currency);

}
function redirectToShop(){...}

The mappings are reflected in the connector code. Upon onOrderCreated, a
helper method invokePaymentTemp method is invoked, accepting the four at-
tributes defined by the onOrderCreated event as parameters. The method re-
alises the defined attribute mappings and invokes the actual payment method

Integrating Component-Based Web Engineering into CMS 49

using these mappings. Here, the attribute $price from onOrderCreated, and
the attribute currency set to the default value “USD” are used as parameters.

Note that more advanced users are free to extend a configured connector
plug-in with additional code. In the current example, the user has also defined a
second binding, which, upon completion of the electronic payment, invokes the
locally defined method redirectToShop to automatically redirect the customer
back to the eCommerce component.

While the configured event registration connector plug-in only defines appli-
cation logic between two components, other connectors also define schema, data
and widgets. For example, the association connector creates a database table
as part of its installation process where associated pairs of entities are stored.
Furthermore, it also defines a widget allowing users to graphically create associ-
ations and, as part of the connector configuration, the user decides whether the
widget may be visible along with one or both composed components as part of a
dynamic sidebar injected into the layout theme, or as part of the dashboard. The
widget connector is realised in a similar way: A configured widget connector in-
jects a widget from one component into the user interface of another component,
based on a user’s configuration, by placing them in a dynamic sidebar.

7 Scenario

We have used the composition plug-in to compose an extended eCommerce ap-
plication from various components. Figure[IT] illustrates the various composition
scenarios. As a first step @, the eCommerce component has been composed
with the survey component through a specialisation connector as described in
Sect. [l On the left, the specialisation is defined by means of an is-a relationship
and the two attribute mappings.

In a second step, the eCommerce component has been composed with a review
component to allow products to be reviewed by customers. The composition is
based on an association connector, shown in @ The connector defines the
association between the product and the review entity including the cardinality
constraints. A product may have 0 or n reviews and a review is for exactly one
product. The connector also defines a widget, illustrated by the editor icon on
the left. The connector is configured in such a way that the widget is displayed
alongside the product view, allowing customers to write and view reviews while
browsing products. Next, the eCommerce component is extended with electronic
payment support, by composing it with an electronic payment component at the
level of the application logic, shown in @ The connector configuration defines
the binding of the onOrderCreate event with the invokePayment method.

As the customer base of the company becomes more international, the com-
pany decides to make use of a currency converter component. In @ the com-
position of the eCommerce component with a currency converter component is
shown. The composition takes place at the user interface level: the connector de-
fines that the currency converter widget is to be displayed along with products
and orders, so that customers can make use of it when browsing products or to
convert the price of an order.

50 S. Leone et al.

Survey Specialisation Connector Configuration

| |
| | isA(Customer, Participant)
@ eCommerce Survey F o>
Component Component ! ! map (Customer.firstname, Participant.forename)

map (Customer.lastname, Participant.name)

Association Specification

i h, P. , R .
eCommerce Reviews as (Product, Review)

| |
1 1
@ eCommerce Review ;; min(Product, received)
max (Product, received)
Component Component ! } H
(

! min (Review, received)
max (Review, received)

0 i

* i

1
1

eCommercs-- Electronic add_action ('onOrderCreated', 'invokePayment');
Component IPE
P Component
—-— Ul Component B ‘ Ul Component B
@ eCommerce gurrer:;:y <div id="sidebar-custom" class="sidebar">
onverter <?php dynamic_sidebar('custome'); ?> &
Component Component @ </div>

Spreadsheet Attribute Mappings
Answers.value = Cell.value
Answers.no = Row.no

@ Survey Spreadsheet
Component Component

Fig. 11. Scenario Application

Finally, the company would like to evaluate the outcome of the survey using a
spreadsheet component. To do so, the data of the survey component is mapped to
the data format of the spreadsheet component, as shown in @ The mapping is
specified by a number of attribute mappings between the entities of the survey
component and the entities of the spreadsheet component, where the survey
questions and answers are mapped to the spreadsheet format.

8 Conclusion

Our approach, model and implementation is a practical solution to enhance
today’s content-management systems with support for component-based web
engineering. By defining components and explicit connectors between them, we
not only circumvent possible incompatibilities between components, but we also
make sure that composed systems are resilient to plug-in updates, since the
composition logic is completely encapsulated within the connector code.

We see our work as a further step towards providing systems that are easy to
develop. While we target non-technical end-users and support the composition
process through graphical user interfaces, this approach is clearly more limited
than the programmatic definition and extensions of connectors, as can be done
by more experienced users. However, the presented scenario has shown that a
small set of relatively simple connector types covers a wide range of composi-
tion scenarios allowing for the design of relatively complex applications through
graphical user interfaces. As a next step, we plan to conduct a user study to

Integrating Component-Based Web Engineering into CMS 51

further validate and refine our approach. We also note that our approach is
extensible, and new connector types could be added at any level.

References

10.

11.

12.

13.

14.

Lieberman, H., Paterno, F. (eds.): End User Development. Human-Computer In-
teraction Series. Springer (2006)

Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling
Language For Designing Web Sites. Computer Networks 33(1-6) (2000)

Vdovjék, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. Journal of Web Engineering 1(1-2) (2003)
Gellersen, HW., Wicke, R., Gaedke, M.: Webcomposition: An object-oriented
support system for the web engineering lifecycle. Computer Networks 29(8-13),
1429-1437 (1997)

Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P.: Intel Mash Maker:
Join the Web. ACM SIGMOD Record 36(4), 27-33 (2007)

Murthy, S., Maier, D., Delcambre, L.: Mash-o-Matic. In: Proc. ACM Symposium
on Document Engineering (DocEng 2006) (2006)

Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829,
pp. 428-443. Springer, Heidelberg (2009)

Imran, M., Soi, S., Kling, F., Daniel, F., Casati, F., Marchese, M.: On the System-
atic Development of Domain-Specific Mashup Tools for End Users. In: Brambilla,
M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 291-298.
Springer, Heidelberg (2012)

Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Ferndndez-Villamor, J.I.,
Chepegin, V.1., Fornas, J.A., Wilson, S., Kogler, C., Chang, H.: End-user-oriented
Telco Mashups: The OMELETTE Approach. In Proc. World Wide Web Conf.
(WWW 2012) (Companion Volume) (2012)

Shaw, M.: Modularity for the Modern World: Summary of Invited Keynote. In:
Proc. Intl. Conf. on Aspect-Oriented Software Development (AOSD 2011) (2011)
Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Trans. Softw. Eng. 26(1),
70-93 (2000)

Clements, P.C.: A Survey of Architecture Description Languages. In: Proc. Intl.
Workshop on Software Specification and Design (IWSSD 1996) (1996)

Leone, S., Norrie, M.C.: Building eCommerce Systems from Shared Micro-Schemas.
In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi,
B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania,
M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 284-301. Springer, Heidelberg
(2011)

Leone, S., de Spindler, A., Norrie, M.C.: A Meta-Plugin for Bespoke Data Man-
agement in WordPress. In: Wang, X.S., Cruz, L., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 580-593. Springer, Heidelberg (2012)

	Integrating Component-Based Web Engineering
into Content Management Systems

	1 Introduction
	2 Background
	3 Approach
	4 Component Model
	5 WordPress Extension
	6 Composition Plug-in
	7 Scenario
	8 Conclusion
	References

