

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 22–36, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Semantic Data Driven Interfaces for Web Applications

Vagner Nascimento and Daniel Schwabe

Department of Informatics, PUC-Rio,
Rua Marques de Sao Vicente, 225. Rio de Janeiro, RJ 22453-900, Brazil

{vnascimento,dschwabe}@inf.puc-rio.br

Abstract. Modern day interfaces must deal with a large number of
heterogeneity factors, such as varying user profiles and runtime hardware and
software platforms. These conditions require interfaces that can adapt to the
changes in the <user, platform, environment> triad. The Model-Based User
Interface approach has been proposed as a way to deal with these requirements.
In this paper we present a data-driven, rule-based interface definition model
capable of taking into account the semantics of the data it is manipulating,
especially in the case of Linked Data. An implementation architecture based on
the Synth environment supporting this model is presented.

Keywords: SHDM, HCI, Interface, Adaptation, Semantic Web, Data-driven
design.

1 Introduction

The design and implementation of the interface component of applications, and in
particular Web applications, consumes over 50% of the development effort, as first
reported by, Myers and Rosson in the nineties [11]. Since then, their figures have
surely increased, due to the evolution of the computing platforms, the advent of the
Internet and the Web, and the now popular gestural and vocal interface modalities.
Sources of heterogeneity affecting application development include:

• Different computing platforms – desktops, laptops, tablets, smartphones,
embedded devices - affording a variety of interaction modalities – typing, voice,
motion sensing, (multi)touch - and diverse input/output capabilities - keyboard,
mouse, (multi)touch sensitive surfaces, motion sensors, cameras, even head-
mounted displays/cameras;

• Multiple, often dynamically varying contexts of use, be it at a desktop with a
wired network or a smartphone or Google Glass-like device on the go, wirelessly
connected in a variety of underlying network infrastructures. These contexts also
includ diverse working environments, that may have high degree of noise, and
sometimes restricted bandwidth;

• Multiple, ever evolving set of tasks that must be supported, derived from an
increasing number of different workflows that users adopt and must be
supported by the application;

 Semantic Data Driven Interfaces for Web Applications 23

• Highly diverse types and profiles of end users, ranging from very novice to
experts, being from many different cultures and speaking a multitude of
languages,

Not only these sources of heterogeneity exist, but often the context of use, i.e., each
component of the triad <user, platform, environment> (the context) changes
dynamically while the application is being used, which calls for so-called Plastic UIs
[3], capable of adapting while preserving the “user experience” while the user is
engaged with the application.

The Model-Based User Interface (MBUI) development approach has been used to
address these challenges and maintain or decrease the level of effort necessary to
develop applications, and more specifically, user interfaces, under these conditions.

The Cameleon Reference Model is a current reference framework for User
Interfaces gaining adoption [2], the result of several years of research of a major
European research project, which proposes four abstraction levels for modeling UIs:
Task and Domain, Abstract Interface, Concrete Interface, Final User Interface.

The Domain model describes the domains of the application, and the Task model
describes the sequence of steps needed to perform the tasks (with respect to
interactions with the User Interface).

The Abstract Interface model describes the composition of interface units in an
implementation and modality independent way.

The Concrete Interface model describes the interface in terms of platform-
dependent widgets, but still modality- and implementation language independent.

The Final User Interface is the actual running code that the end user accesses when
interacting with the application.

A more recent trend has been the dissemination of the Semantic Web, and the
availability of data sources expressed in its formalisms – RDF, RDFS, OWL, in
particular the Linked Data Initiative (LOD)1, and the emergence of Linked Data
Applications (LDAs for short), that access, enrich and manipulate linked data. There
are some proposals of development environments or frameworks for supporting the
development of LDAs, such as CubicWeb2, the LOD2 Stack3, and the Open Semantic
Framework4. In addition, semantic wiki-based environment such as Ontowiki5, Kiwi6,
and Semantic Media Wiki7 have also been used as platforms for application
development over Linked Data.

While useful, they do not present a set of integrated models that allow the
specification of an LDA, and the synthesis of its running code from these models.
Therefore, much of the application semantics, in its various aspects, remains
represented only in the running implementation code.

1 http://linkeddata.org
2 http://www.cubicweb.org
3 http://lod2.eu/WikiArticle/TechnologyStack.html
4 http://openstructs.org/open-semantic-framework
5 http://ontowiki.net/Projects/OntoWiki
6 http://www.kiwi-project.eu
7 http://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki

24 V. Nascimento and D. Schwabe

We have been working in the past years in the Semantic Hypermedia Design
Method (SHDM) [6] and its implementation environment Synth [1], which aims to
allow Model-Based development of Linked Data Applications. While SHDM
includes a proposed Abstract Interface Model, it lacks more refined models capable of
dealing with the complexities of UIs as outlined above.

In this paper we present a new set of User Interface models and its implementation
architecture similar to the Cameleon Framework proposal, addressing some of the
challenges outlined earlier.

We present our approach in this paper as follows. After describing the example we
are going to use through the paper in Section 2, we present our approach for interface
modeling in Section 3. We discuss the implementation in Section 4. Section 5
presents the related work and with Section 6 we draw some conclusions and discuss
future work.

2 Running Example

To help illustrate the concepts discussed in the paper, we use a running example of a
fictitious online hotel-booking site. Suppose the user navigated to a given hotel’s
page, but has not yet entered the date, then the page should include fields to allow
her/him to enter the desired dates, as shown in Fig. 1 and Fig. 2.

When the dates have been informed, the application must show the rates for each
type of room, their availability, and a warning is there is low availability for a certain
type of room.

Notice that these conditions depend both on Domain Model information, and on
the interaction state. The actual screen layout and interaction options depend also on
the device; Fig. 1 and Fig. 2 show here the interface meant for desktop computers.

Fig. 3 shows the same application when accessed from a mobile device, with a
different layout and different interaction capabilities (e.g., scrolling through swiping
across the screen).

Fig. 1. Example hotel details page, with fields to inform check-in and checkout dates

 Semantic Data Driven Interfaces for Web Applications 25

Fig. 2. – Details of available hotel rooms if the dates have been provided

Fig. 3. – Mobile device version of the hotel-booking example interfaces

3 A Semantic Interface Model

In this section we present the new set of models for specifying interface in SHDM8.
As mentioned earlier, SHDM follows the basic abstraction levels of the Cameleon
Reference Model. The Domain Model, in SHDM is simply a set of RDF triples,
which form a graph, and may include RDFS or OWL definitions. It is often the case

8 A video illustrating the use of these models in Synth is available in
 http:://www.tecweb.inf.puc-rio.br/synth

26 V. Nascimento and D. Schwabe

that there does not exist any schema definitions in the Domain Model, only instances
of resources representing information items.

The Abstract Interface Model [14] focuses on the roles played by each interface
widget in the information exchange between the application and the outside world,
including the user. It is abstract in the sense that it does not capture the look and feel,
or any information dependent on the runtime environment. The Concrete Interface
model is responsible for the latter.

Summarizing the Abstract Interface meta-model, an abstract interface is a composition
of abstract interface elements (widgets). These in turn can be an ElementExhibitor,
which is able to show values; an IndefiniteVariable, which is able to capture an
arbitrary input string; a DefinedVariable, which is able to capture input values (one or
several) from a known set of alternatives; and a SimpleActivator, which is able to react
to an external event and signal it to the application.

Consider the interfaces shown in Fig. 1-Fig. 3. From them we can see that a hotel
page has

• A header with a title and an anchor to the login operation;
• Hotel data, including name, address, category, description;
• A set of hotel images;
• A table of room types and respective rates, their availability, and an anchor to

book it;
• A form to input check-in and checkout dates.

The corresponding abstract interface describing this is (as a nested list of attribute-
value pairs)

{name: "main_page", widget_type: "AbstractInterface", children:[
 {name: "header", widget_type: "CompositeInterfaceElement",
children: [
 {name: "title", widget_type: "ElementExhibitor"},
 {name: "account_anchor", widget_type: "SimpleActivator"},
] },
 {name: "content", widget_type: "CompositeInterfaceElement",
children:[
 {name: "hotel_name", widget_type: "ElementExhibitor"},
 {name: "hotel_images", widget_type:
"CompositeInterfaceElement", repeatable: true, children: [
 {name: "hotel_image", widget_type: "ElementExhibitor"}
]},
 {name: "hotel_category", widget_type: "ElementExhibitor"},
 {name: "hotel_address", widget_type: "ElementExhibitor"},
 {name: "hotel_description", widget_type:
"ElementExhibitor"},
 {name: "rates", widget_type: "CompositeInterfaceElement",
children: [
 {name: "rates_title", widget_type: "ElementExhibitor"},
 {name: "rates_by_room", widget_type:
"CompositeInterfaceElement", repeatable: true,

 Semantic Data Driven Interfaces for Web Applications 27

 children: [
 {name: "room", widget_type:
"CompositeInterfaceElement", children: [
 {name: "room_type", widget_type:
"ElementExhibitor"},
 {name: "price", widget_type: "ElementExhibitor"},
 {name: "availability", widget_type:
"ElementExhibitor"},
 {name: "book", widget_type: "SimpleActivator"}
]},
]},
]},
 {name: "search_rates", widget_type:
"CompositeInterfaceElement", children: [
 {name: "search_rates_title", widget_type:
"ElementExhibitor"},
 {name: "label_checkin", widget_type: "ElementExhibitor"},
 {name: "checkin", widget_type: "IndefiniteVariable"},
 {name: "label_checkout", widget_type: "ElementExhibitor"},
 {name: "checkout", widget_type: "IndefiniteVariable"},
 {name: "search", widget_type: "SimpleActivator"}

]}
]}
]}

Fig. 4. - Abstract Interface specification of the Interfaces in Fig. 1-Fig. 3

Notice that this Abstract Interface represents both interfaces; each specific one can
be seen as a special case of this one, where some elements have been omitted. The
Abstract Interface also adds the widget types, indicating their role in the information
flow.

A mapping specification made by the designer determines how each abstract
widget will be mapped onto one or more Concrete Interface elements, and onto which
Operations. The latter are the primitives in SHDM used to specify the business logic
i.e., the application behavior to achieve the desired tasks.

Here we start introducing the new features in the existing model. Previously, the
designer would determine, for each operation, which abstract interface would be used
to exhibit its results. Furthermore, the composition of widgets in each abstract
interface was specified statically at design time, the same being true for its mapping to
concrete interfaces.

The new model instead uses rules to determine each of these aspects. Thus, instead
of statically defining which abstract interface should be used, how that interface is
composed, and how it is mapped onto the concrete interface, the designer now
establishes rules, which, in a model- (and data-) driven fashion will assemble the final
user interface that will be used. Fig. 5 shows how the Interface Models are related to
each other, and how the actual interface is defined.

28 V. Nascimento and D. Schwabe

Fig. 5. – Relation between Interface Models in SHDM

The first step is the selection of the abstract interface, determined by its own set of
rules. The result of executing these rules is a ranked list of candidate Abstract
Interfaces, based on a weighting function defined by the UI designer.

The highest-ranking Abstract Interface is then chosen. Its own composition is again
determined by executing another set of rules, which may include or exclude widgets
from the initial base Abstract Interface composition defined by the designer.

Next, a third set of rules is executed to determine how each Abstract Interface
widget will be mapped onto concrete interface widgets, and in some cases also extend
the concrete widget compositions to allow interaction between them.

This rule-driven approach has several advantages:

1. It allows taking into account actual runtime data and context information in
determining which interface should be used. Since the rules can refer to actual
input data to be exhibited through it, as well as to the Domain Model, it is fair to
say that the interface definition is now Semantic, in the sense of being aware of
the data types and values of the data it is exposing;

2. It allows adapting the interface to both the user and to the execution environment,
allowing a user experience that is in tune with the user’s device and environment
capabilities. Once again, such rules may take into account the semantics of the
user or context model to alter the concrete interface.

3. It becomes a design choice whether the adaptation process will be run only at
design time, or also during runtime. Running them during the application
execution provides maximum flexibility, as the interface can change dynamically
in reaction to several context changes, such as change of device, reduced
bandwidth, loss of modality due to either circumstantial reasons (e.g., no visual
access during driving) or due to hardware failure (e.g., display failure).

3.1 Rules and Interface Definition Parameters

Before going into more detail on how each part of the Interface Model is specified, it
is useful to summarize the different types of information that are the input parameters
for the definition.

• Rules follow the Condition-Action format. The conditions can reference
o Any of the other models in SHDM, namely, Domain, Hypertextual

Navigation, and Operations. For instance, it can test the type and value of
a data item, or whether the element being exhibited is a hypertextual link;

 Semantic Data Driven Interfaces for Web Applications 29

o Hypertextual parameters received in an http request;
o Browser header information, including browser, platform, operating

system, etc.
o Environment variables, e.g., date and time of day, location

• Mapping specifications are a different type of rule, which use data both to
establish the concrete interface to be activated, and to pass rendering
parameters as needed. These include hypertextual navigation information,
including sets of values to be iterated over.

All this information is converted into <object, property, value> triples which are input
to the rules facts database. The pre-condition of each rule simply tests the presence or
absence of a triple pattern in the facts database.

When an Operation (a behavior specification in SHDM) activates the Interface
Engine to render its results, it also passes parameters needed for the rendition. Such
parameters typically include the Domain Model data values and any input parameters
it has received itself.

We next discuss each type of rule, illustrating it with the running example.

3.2 Abstract Interface Selection Rules

The first step in defining the Interface is establishing the selection rules for the
Abstract Interface. The pre-condition in these rules define when each Abstract
Interface is applicable, allowing, for instance, to

• Select the interface only if the user is logged in;
• Select the interface only if the application is being accessed from a mobile

device;
• Select the interface only for certain types of data passed as input during runtime.

Notice that this is often necessary if one wants to deal with “raw” data in RDF,
which may not have any schema or vocabulary information associated with it.

In our example, the Abstract Interface selection rules are

set{
 has "params", "action", "hotel"
 has "params", "id", :_
}

The first line in the set tests whether we are exhibiting a hotel page; the second tests
whether a specific hotel (i.e., id has some value) was passed as a parameter.

3.3 Abstract Interface Element Selection Rules

The Abstract Interface is a composition of elements. Each element may have rules
associated to it, which determine if that element will be included in the final Abstract
Interface composition or not.

Consider the rates element in the Abstract Interface shown in Fig. 4. It should be
shown only if the check-in and checkout dates have been defined; conversely, the input
fields for those dates (the search_rates element) should be shown if they have not been
defined. The following rules capture this. The neg condition is the same as not has.

30 V. Nascimento and D. Schwabe

set "rates" do
 has "params", "checkin", :_
 has "params", "checkout", :_
end

set "search_rates" do
 neg "params", "checkin", :_
 neg "params", "checkout", :_
end

3.4 Concrete Interface Mapping Rules

For each Abstract Interface widget, there is a mapping rule that determines how it is
mapped onto concrete widgets. Below we show some of the rules that map the
Abstract Interface in Fig. 4 onto the concrete interfaces of Fig. 1-Fig. 3.

Each rule starts with maps-to, includes the name of the abstract widget it applies
to; the concrete widget to which it maps; parameters needed by the concrete widget;
and a rule block delimited by do-end used to determine under which conditions the
mapping is applicable. Rules are applied in order; once a rule has been applied to an
element, other subsequent rules applying to that same element are ignored.

1. maps_to abstract: "main_page", concrete_widget: "HTMLPage" ,
params: { title: "myLogdings.com - #{hotel[:name]}",
include_css: "/stylesheets/hotel_mob.css" }do

2. has "user_agent", "mobile", true end
3. maps_to abstract: "main_page", concrete_widget: "HTMLPage" ,

params: { title: "myLogdings.com - #{hotel[:name]}",
include_css: "/stylesheets/hotel.css" }

Header block

4. maps_to abstract: "header", concrete_widget:
"HTMLComposition"

5. maps_to abstract: "title", concrete_widget: "HTMLHeading",
params: { content: "MyLogdings" }

6. maps_to abstract: "account_anchor", concrete_widget:
"HTMLAnchor", params: { content: "Sign in to manage your
account", url: "/signin" }

7. maps_to abstract: "content", concrete_widget:
"HTMLComposition"

Hotel Data

8. maps_to abstract: "hotel_name", concrete_widget:
"HTMLHeading", params: { size: 2, content: hotel[:name] }

Images slider

9. maps_to abstract: "hotel_images", concrete_widget:
"JQueryAnythingSlider", params: { collection:
hotel[:images], as: :hotel_image }

10. maps_to abstract: "hotel_image", concrete_widget:
"HTMLImage", params: { content: hotel_image }

…

Rates

 Semantic Data Driven Interfaces for Web Applications 31

11. maps_to abstract: "rates", concrete_widget:
"HTMLComposition"

…

#== Availability

12. maps_to abstract: "availability", concrete_widget:
"HTMLSpan", params: {content: "Sold out", css_class:
"highlight"}do

13. equal room[:status], 'sold-out' end
14. maps_to abstract: "availability", concrete_widget:

"HTMLSpan", params: { content:
"Only #{room[:rooms_available]} left!", css_class:
"highlight"}do

15. equal room[:status], "few-rooms" end
16. maps_to abstract: "availability", concrete_widget:

"HTMLSpan", params: {content: "Available", css_class: "col3"
}

17. maps_to abstract: "book", concrete_widget:
"HTMLFormButton", params: {content: "Book", css_class:
"col4"} do

18. diff room[:status], "sold-out"
19. has "user_agent", "mobile", true end
20. maps_to abstract: "book", concrete_widget:

"HTMLFormButton", params: {content: "Book Now", css_class:
"col4"} do

21. neg "user_agent", "mobile"
22. diff room[:status], "sold-out" end

Search rates

23. maps_to abstract: "search_rates", concrete_widget:
"HTMLForm", params: {method: "get" }

24. maps_to abstract: "search_rates_title", concrete_widget:
"HTMLHeading", params: {size: 2, content: "When would you
like to stay at #{hotel[:name]}?"}

25. maps_to abstract: "label_checkin", concrete_widget:
"HTMLLabel", params: {content: 'Check-in' }

26. maps_to abstract: "checkin", concrete_widget:
"JQueryDatePickerInput" , params: {date_format: "d M, y",
min_date: 0 }

27. maps_to abstract: "label_checkout", concrete_widget:
"HTMLLabel", params: {content: 'Check-out' }

28. maps_to abstract: "checkout", concrete_widget:
"JQueryDatePickerInput" , params: {date_format: "d M, y",
min_date: 0 }

29. maps_to abstract: "search", concrete_widget:
"HTMLFormButton", params: {content: "Check" }

32 V. Nascimento and D. Schwabe

Some concrete widgets, such as HTMLHeading, HTMLSpan, HTMLForm, etc…
correspond directly to their counterparts in HTML. We make additional comments
highlighting the interesting uses of the rules.

• Lines 1 and 3 show two possible mappings for the main page. The first is
selected when the user agent is a mobile device, tested in line 2. Otherwise, the
mapping in line 3 applies. This is how the proper choice for generating of the
interfaces in Fig. 1- Fig. 3 is made.

• The expression #{hotel[:name]} in line 1 retrieves the value of the “name”
property of the hotel instance being shown;

• The expression url: "/signin" in line 6 generates a (REST) call to the
signing Operation, defined in the Behavior Model (not shown);

• Line 9 shows the use of a Javascript component. JQueryAnythingSlider,
capable of exhibiting a set of elements, including images. The actual set of
elements is passed as a parameter, the result of the expression collection:
hotel[:images] that retrieves from the Domain Model the set of image
values associated with the hotel being exhibited. Lines 26 and 28 map the input
form fields for the check-in and checkout dates to a library component,
JQueryDatePickerInput.

• Line 12 shows a conditional element. If the value of the room[:status]
property is “sold out”, this element (a warning text “Sold out”) will be
shown, with a CSS style “highlight”.

• Lines 14-15 show another conditional element. If the value of the status
property of room is “few-rooms”, a highlighted warning showing the number
of rooms left ("Only #{room[:rooms_available]} left!") is shown;
otherwise it is omitted.

• The book element defined in Line 17 is only included if there are rooms
available, as specified in the condition in line 18. There are two different CSS
styles used, one when the user agent is a mobile device (tested in line 19), the
other when it is not (tested in line 21).

An interesting point is raised by the flexibility of the mapping rule language. Since any
valid DSL expression (see [12] for a discussion on the embedded DSL offered by
Synth) can be used in the test clause of the condition, we could have inserted the test for
low availability in the rule itself, e.g., {room[:rooms_available]} < 3}. This,
however, would imply including parts of the Business Logic in the interface, which is
undesirable. Rather, this condition is actually implemented as an inference rule in the
Domain Model, which concludes the fact <"room", "status", "few-rooms">
from the number of rooms available, according to the application’s Business Rules.

In addition to these mapping rules, it is sometimes necessary to define Extensions
to the Concrete Interface Model to allow interactions between concrete widgets. A
common example is when the value set to one widget must be used as an input to
another widget.

Consider the check-in and checkout date widgets specified in lines 26 and 28. It
would be user-friendlier (and semantically correct) that once the check-in date has
been filled, the checkout date should be a date at least one day later. The extension
shown below encapsulates this behavior:

 Semantic Data Driven Interfaces for Web Applications 33

extend nodes: ['checkin'], extension: 'JQueryCopyDateTo',
params: { target: "checkout", string_format: "d MMM, yy",
add_days: 1 }

Extensions are wrappers around Concrete Interface elements. Typically, they will call
Domain model operations to determine Domain-dependent integrity constraints
normally enforced by these communications between widgets.

3.5 Concrete Widgets Definitions

As seen from the examples in the mapping rules, concrete widgets are treated as
software components outside the model itself; different concrete widgets should be
defined for different runtime platforms. In this sense, we diverge from the Cameleon
model, as Concrete Widgets are rendered directly to the Final User Interface.

A Concrete Widget should be self-contained, and capable of self-rendering
based only on their input parameters. Any potential dependencies they may have
with other widgets should be parameterized as well. For example, the
JQueryDatePickerInput is capable of receiving an initial date, as used by the
extension discussed above in the case of check-in and checkout dates.

Concrete Widgets are described in Manifest declarations, containing their name;
version; description; list of compatible abstract widgets (i.e., abstract widgets that can
be mapped to it); list of other widgets it depends on; list of parameter; and a text with
examples of use.

4 Implementation Architecture

The conceptual architecture that integrates the models defined in Section 3 is show in
Fig. 6.

Fig. 6. – The conceptual implementation architecture for Interfaces

34 V. Nascimento and D. Schwabe

The Facts Convertor component is responsible for extracting the model definitions
from the knowledge base, and converts them into facts - <object, property, value>
triples - that will be used by the rules engine. The Interface Selector runs the Selection
rules, returning a ranked list of interfaces. The Abstract Evaluator runs the
composition rules, resulting in the actual Abstract Interface to be used; abstract
widgets without associated rules are included by default. The Concrete Evaluator runs
the mapping rules to generate the concrete interfaces, adding applicable extensions,
and the results are interpreted using the concrete widget definitions to generate the
final running interface.

The Concrete Interface Interpreter receives a composition tree of concrete widget
specifications, including their parameters and extensions. It does a depth-first
traversal of the tree, and for each node instantiates (i.e., generates the code) for the
corresponding concrete widget.

Fig. 7 shows the actual sequence of events within the Interface Engine in Synth.

Fig. 7. – Sequence of events in the implementation of the Interface Engine in Synth

The Interface Engine is implemented in Ruby, as is the Synth environment. The
rules engine used is Wongi-Engine9, implementing the classical RETE algorithm.

5 Discussion and Conclusions

We have described a data- and model-driven rule based model and runtime
architecture. It is data-driven since the actual interface is self-assembled as a result of

9 https://github.com/ulfurinn/wongi-engine

 Semantic Data Driven Interfaces for Web Applications 35

the execution of the various rule-sets that use the instance data in the various models
in SHDM (Domain, Hypertextual Navigation, Behavior) to determine the final
interface. It is model-driven because all Synth models are available as data as well (as
discussed in [1]). For example, a rule can determine the inclusion of an abstract
widget if the data item being exhibited is of a certain type, and/or if it has a certain
property, e.g., “it is of any Class that has a Discount property”.

The work presented here is related to a very large number of models and
approaches that have been proposed in the literature (see, for example, [10]); it would
be beyond the scope of this paper to make a comparison with every one of them.
Several of the Interface Models in SHDM, e.g., the Abstract Interface and the
Concrete, have counterparts in the many proposed models, e.g., Maria [13], UsiXML
[9], UIML [7], among many, as well as those in Hera [5], UWE [8] and WebML [4],
differing mostly in the level of abstraction and on the underlying formalism (e.g.,
XML vs RDF). Each has advantages and disadvantages, a discussion of which would
require another paper altogether. A similar observation can be made regarding the use
of rules (e.g. [15], the difference still remaining in the underlying models.

The major distinguishing original contribution is the use of data- and model-driven
rules integrated seamlessly with the various other models within the SHDM approach,
directly supported by an implementation environment. Our approach leads to
explicating design decisions associated to the various levels of abstraction, as they
become explicit in the rules, as opposed to embedded in the interface code.

As an example, consider the problem of adapting the hotel-booking interface to a
mobile environment. The designer has some choices to make: The first is to define
a different Abstract Interface altogether for each device family; the second is to define
a generic interface, and specialize it for each device family; and the third is a
combination of both – define intermediary abstract interfaces for groups of families of
devices based on common properties, and specialize one of them for each specific
family. Our approach allows all three alternatives, allowing a better comparison
among them, e.g., based on the complexity of the models used for each approach.

One frequent concern with rule-based architectures is performance. We are now in
the process of systematically evaluating the performance overhead introduced by our
approach. Nevertheless, within the Synth architecture10, we have already observed
that the overall application performance is not significantly affected by this interface
architecture, because of the much larger performance hit caused by database access
and inferencing while executing the business logic operations.

We are continuing this work in several directions. The first is to continue the
evaluation of the approach, both in terms of performance, but also in terms of its
expressivity and usability for developers. Second, we want to explore the design
trade-offs for multi-platform applications, along the lines discussed in this section.
Finally, we plan to extend the rule-based adaptation engine to encompass all models
in SHDM besides the Interface Model, to achieve fully adaptive applications.

Acknowledgments. Daniel Schwabe was partially supported by CNPq (WebScience
INCT).

10 Synth currently uses the BigOWLIM RDF store.

36 V. Nascimento and D. Schwabe

References

1. de Souza Bomfim, M.H., Schwabe, D.: Design and Implementation of Linked Data
Applications Using SHDM and Synth. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.)
ICWE 2011. LNCS, vol. 6757, pp. 121–136. Springer, Heidelberg (2011)

2. Calvary, G., et al.: The CAMELEON Reference Framework, CAMELEON Project
(September 2002),
http://giove.isti.cnr.it/projects/cameleon/pdf/
CAMELEON%20D1.1RefFramework.pdf

3. Coutaz, J., Calvary, G.: HCI and Software Engineering for User Interface Plasticity. In:
Jacko, J. (ed.) Human Computer Handbook: Fundamentals, Evolving Technologies, and
Emerging Applications, 3rd edn. Taylor and Francis Group Ltd. (May 2012)

4. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. In: Proc. of the WWW9 Conf., Amsterdam (May 2000)

5. Frasincar, F., Houben, G.J., Barna, P.: Hypermedia Presentation Generation in Hera,
Information Systems, vol. 35(1), pp. 23–55. Elsevier Science Ltd., Oxford (2010)

6. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. In: Proceedings of
LA-Web 2003, Santiago, Chile, pp. 93–102. IEEE Press (November 2003)

7. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M., Coyette, A.,
Vanderdonckt, J.: Human-Centered Engineering with the User Interface Markup
Language, Human-Centered Software Engineering, ch. 7, pp. 141–173. Springer, London
(2009)

8. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based Web Engineering: An
Approach based on Standards (book chapter). In: Rossi, G., Pastor, O., Schwabe, D.,
Olsina, L. (eds.) Web Engineering: Modelling and Implementing Web Applications, ch. 7,
pp. 157–191. Springer, HCI (2008)

9. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML:
A Language Supporting Multi-path Development of User Interfaces. In: Feige, U., Roth, J.
(eds.) EHCI-DSV-IS 2004. LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005)

10. Meixner, G., Paternó, F., Vanderdonckt, J.: Past, Present, and Future of Model-Based User
Interface Development. i-com 10(3), 2–11 (2011)

11. Myers, B., Rosson, M.B.: Survey on User Interface Programming. In: Proc. 10th Annual
ACM CHI Conference on Human Factors in Computing Systems, pp. 195–202 (2000)

12. Nunes, D.A., Schwabe, D.: Rapid prototyping of web applications combining domain
specific languages and model driven design. In: Proc. 6th International Conference on Web
Engineering (ICWE 2006), pp. 153–160. ACM (2006) ISBN 1-59593-352-2

13. Paterno, F., Santoro, C., Spano, L.D.: Maria:A Universal, Declarative, Multiple
Abstraction Level Language for Service-Oriented Applications in Ubiquitous
Environment. ACM Transactions on Computer-Human Interaction (TOCHI) 16(4)
(November 2009)

14. Silva de Moura, S., Schwabe, D.: Interface development for hypermedia applications in the
semantic web. In: Proc. WebMedia and LA-Web, Ribeirão Preto, Brazil, pp. 106–113.
IEEE Press (October 2004)

15. Virgilio, R., Torlone, R., Houben, G.J.: Rule-based Adaptation of Web Information
Systems. In: Proc. 7th International Conference on Mobile Data Management (MDM
2006), Nara, Japan, May 10-12. Springer Science (2006)

	Semantic Data Driven Interfaces for Web Applications

	1 Introduction
	2 Running Example
	3 A Semantic Interface Model
	3.1 Rules and Interface Definition Parameters
	3.2 Abstract Interface Selection Rules
	3.3 Abstract Interface Element Selection Rules
	3.4 Concrete Interface Mapping Rules
	3.5 Concrete Widgets Definitions

	4 Implementation Architecture
	5 Discussion and Conclusions
	References

