
Inter-Widget Communication by Demonstration

in User Interface Mashups

Olexiy Chudnovskyy1, Christian Fischer1, Martin Gaedke1,
and Stefan Pietschmann2

1 Chemnitz University of Technology, Germany
{olexiy.chudnovskyy,christian.fischer,gaedke}@informatik.tu-chemnitz.de

2 Technische Universität Dresden, Germany
stefan.pietschmann@tu-dresden.de

Abstract. User Interface Mashups have become increasingly popular,
as they allow end users with little programming skills to create situ-
ational Web applications on their own. Those are built by composing
interactive components, so-called widgets, whose integration is achieved
by the means of “inter-widget communication” (IWC). Since widgets
are built by different vendors and rely on different data models, IWC
rarely works “out of the box”, which leaves users with the tedious task
of manual wiring and limited functionality.

This paper presents a semi-automatic, end-user friendly approach to
extend widgets with IWC capabilities by employing the programming by
demonstration paradigm. The solution is demonstrated using an exten-
sion of Apache Rave, an open-source widget composition platform.

Keywords: mashup, inter-widget communication, programming by
demonstration.

1 Introduction

User Interface Mashups (UI Mashups) facilitate the aggregation of several wid-
gets on a canvas or “workspace” to create situational applications. The integra-
tion of functionality and data offered by widgets is achieved by the so-called
Inter-Widget Communication (IWC). The corresponding messaging infrastruc-
ture provided by many platforms allows for synchronization and message transfer
between widgets which lets them act as one integrated solution with significantly
improved user experience [3,4,2]. Many of the widgets currently available on the
Web do not make use of IWC. Some of them are simply not designed to be used
in compositions. Others rely on component models unaware of IWC mechanisms,
such as W3C widgets. Finally, IWC-enabled widgets developed by different par-
ties suffer from compatibility problems with regard to communication models
and data formats. As result, users often have to input the same data multiple
times and synchronize views manually.

In prior work [1] we have proposed a semi-automatic context-independent ap-
proach for extending widgets with IWC capabilities. It is targeted at domain

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 502–505, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



IWC by Demonstration in UI Mashups 503

experts and skilled users, as a basic understand of data types is required. The
work presented here addresses users with little or no programming skills and
provides the following major contributions: First, we show how Web-based wid-
gets can be extended towards IWC capabilities on the graphical user interface
(GUI) level automatically; Second, we demonstrate how IWC configuration can
be done using the programming by demonstration (PBD) technique; Finally, we
demonstrate how this approach has been integrated and tested with several open
source projects.

The rest of the paper is structured as follows. After giving an overview of
related works in the next section, Sect. 3 presents the proposed solution for end-
user friendly IWC configuration. Finally, Sect. 4 concludes the paper and gives
an outlook on future work.

2 Related Work

Building mashups by demonstration has been explored in the Karma project [6].
The project focused on so called data mashups, i.e. ones, which extract, integrate
and display data from different sources. Users apply PBD technique to specify,
how data from Web pages is extracted, normalized and combined together. In
contrast, the focus of this work lies on widget-based mashups and thus requires
further techniques to configure GUI-level IWC between widgets.

Geppeto project introduced the idea of programming on the GUI level and ap-
plied it the context of widget-based dashboards [5]. Using several special-purpose
widgets and the PBD technique users are able to define workflows consisting of
multiple GUI actions across different widgets. However, the recorded workflows
can only be triggered by user or by pre-defined system events and not by widgets
themselves.

Several research projects have focused on end-user friendly IWC configuration.
Within the CRUISE project [4] users can establish connections between widgets
by means of the drag&drop technique. However, widgets need to be designed
this way and rely on semantically compatible data types. The solution presented
in this paper is more generic, as widgets do not need to be IWC aware or to
comply with any particular interface.

3 End-User Friendly IWC Configuration

The proposed concept is applied in the context of so-called choreographed UI
mashups [7]. Therein, communication emerges without an explicit data flow
definition: Widgets send and receive messages based on the publish-subscribe
(pub/sub) messaging pattern. To be semantically compatible they utilize a ref-
erence ontology describing the data concepts shared. Widgets themselves are
treated as black boxes with public interfaces exposing publications and sub-
scriptions to certain topics and the data types involved.

Implementations of this model predominantly support application-level events
and operations. GUI changes and interactions are usually not communicated via



504 O. Chudnovskyy et al.

pub/sub. Naturally, if widgets do not expose application-level interfaces or the
concepts are incompatible (e.g., by not using a common reference ontology),
IWC becomes impossible. Our approach addresses this problem by enriching
the widget interface with events and operations at the presentation layer. These
can be employed to orchestrate widget GUIs – guided by the user – thereby
establishing connections between widgets.

To enrich widgets with the new interface we have extended the widget con-
tainers Apache Wookie1 and Shindig2 so that DOM-event listeners are automat-
ically added to the source code of instantiated widgets, e. g., for HTML inputs,
select boxes, buttons, and anchors. These extension mechanisms allow for an
easy monitoring and invocation of state changes for the above-mentioned ele-
ments. To establish a “connection” between widgets, users perform GUI actions
in one widget, which should lead to the message transfer, and actions in another
widget, which should be executed after the message transfer. A learning system
then detects correlations in recorded action sequences indicating possible data
flow. One correlation currently supported in our prototype is the reoccurance
of text in different HTML input elements. If a user searches for “London” in
a weather forecast widget and right after that selects the same city in a map
widget, the platform will detect this repeated input and derive a “connection”
between the GUI elements. Fig. 1 illustrates this example workflow.

Fig. 1. Configuration of IWC using Programming by Demonstration

From then on, whenever a user starts a similar interaction with the source
widget, the system will automatically complete the corresponding interaction
in the target widget with the help of the automatically integrated code. The
configuration is stored per workspace and user so that widgets can be reused in
different contexts without prior source code modifications.

In the demo session we plan to showcase the above-mentioned trip planning
scenario. First, we demonstrate how a map, a weather forecast, and a Wikipedia

1 http://wookie.apache.org/
2 http://shindig.apache.org

http://wookie.apache.org/
http://shindig.apache.org


IWC by Demonstration in UI Mashups 505

widget can be automatically extended towards IWC capabilities. Then, we show
how the desired data flow can be configured by simply interacting with the aggre-
gated widgets. Finally, we present the derived IWC configuration and automatic
re-execution of the recorded actions.

A screencast of the planned demonstration and a running prototype based on
Apache Rave3 are available at http://vsr.cs.tu-chemnitz.de/demo/iwc-pbd.

4 Conclusions

This paper describes an approach to extend stand-alone widgets with IWC func-
tionality in an end-user friendly fashion. To achieve this, widgets are automati-
cally equipped with GUI-level observers, which allow for the deduction of logical
connections by monitoring user interactions. As a result, widget integration does
not require any programming skills. Users apply the same techniques as they do
while naturally interacting with their Web applications.

The approach is currently limited to simple patterns of user interactions with a
focus on Web-based forms. Future work will explore how to detect and transfer
complex data between widgets. Further, we plan to conduct a user study to
improve on the usability and scrutability of the approach.

Acknowledgment. This work was supported by the European Commission
(project OMELETTE, contract 257635).

References

1. Chudnovskyy, O., Müller, S., Gaedke, M.: Extending web standards-based widgets
towards inter-widget communication. In: 4th Intl. Workshop on Lightweight Inte-
gration on the Web, pp. 93–96 (2012)

2. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Ignacio, J.: End-User-
Oriented Telco Mashups: The OMELETTE Approach. In: WWW 2012 Companion
Volume, pp. 235–238 (2012)

3. Lizcano, D., Soriano, J., Reyes, M., Hierro, J.J.: Ezweb/fast: Reporting on a suc-
cessful mashup-based solution for developing and deploying composite applications
in the upcoming ubiquitous soa. In: Proc. of the 2nd Intl. Conf. on Mobile Ubiqui-
tous Computing Systems, Services and Technologies, pp. 488–495. IEEE (September
2008)

4. Pietschmann, S., Voigt, M., Meißner, K.: Rich communication patterns for mashups.
In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387,
pp. 315–322. Springer, Heidelberg (2012)

5. Skrobo, D.: Widget-Oriented Consumer Programming. AUTOMATIKA: Journal
for Control, Measurement, Electronics, Computing and Communications 50(3-4),
252–264 (2009)

6. Tuchinda, R., Knoblock, C.A., Szekely, P.: Building Mashups by Demonstration.
ACM Transactions on the Web 5(3), 1–45 (2011)

7. Wilson, S., Daniel, F., Jugel, U., Soi, S.: Orchestrated User Interface Mashups Using
W3C Widgets. In: Harth, A., Koch, N. (eds.) ICWE 2011. LNCS, vol. 7059, pp. 49–
61. Springer, Heidelberg (2012)

3 http://rave.apache.org

http://vsr.cs.tu-chemnitz.de/demo/iwc-pbd
http://rave.apache.org

	Inter-Widget Communication by Demonstration
in User Interface Mashups

	1 Introduction
	2 Related Work
	3 End-User Friendly IWC Configuration
	4 Conclusions
	References




