CapView — Functionality-Aware Visual Mashup
Development for Non-programmers

Carsten Radeck, Gregor Blichmann, and Klaus Meifiner

Technische Universitdt Dresden, Germany
{carsten.radeck,gregor.blichmann,klaus.meissner }@tu-dresden.de

Abstract. Building mashup applications from existing web resources
becomes increasingly popular, and, in theory, accessible even for end
users without programming skills. Current proposals for end user devel-
opment of mashups mainly focus on visual wiring of component interfaces
supplemented by recommendations on composition steps and a certain
degree of automation. However, it is still a major challenge to provide
an appropriate level of functional abstraction in order to visualize the
functionality of a mashup and its components, and for composing on a
functional level instead of merely assembling structural units. This be-
comes crucial, especially when non-programmers are the intended target
group. In this paper, we propose CapView, a novel functionality-aware
development view on running composite applications. CapView is part of
the EDYRA platform and provides a functional overview of the mashup
by abstracting from interface and wiring details. It enables users to un-
derstand mashup development as an assembly process that is centered
on the capabilities of components and mashup fragments. We evaluate
the concepts in a user study and present lessons learned.

Keywords: mashup, end user development, non-programmers.

1 Introduction

Powered by the growth of available web resources and application programming
interfaces, the emerging mashup paradigm enables loosely coupled components
to be reused in a broad variety of application scenarios to fulfil the long tail
of user needs. Thus, mashups and end user development (EUD) complement
each other quite well. However, when supporting non-programmers, their limited
understanding of technical concepts and experience on development practices
have to be considered. In addition, it is hard for non-programmers to map their
problem, for which they probably know a solution in terms of necessary tasks or
activities, to a composition of components.

In order to empower non-programmers to build applications on their own,
EUD tools have to fulfil several essential requirements as pointed out in the
literature, e.g., [0/4]. Technical details, concepts and terminology have to be
hidden from the user. Furthermore, there is a need for user guidance and au-
tomation throughout the composition procedure, for instance, recommendations

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 140-[[55] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

CapView — Functionality-Aware Visual Mashup Development 141

on composition steps and support for correctly connecting components when
solving heterogeneity issues. In addition, there should be immediate feedback on
a user’s composition actions and, as proposed by [9], task-oriented user interfaces
should be applied instead of technology-led ad hoc visualizations.

However, prevalent mashup solutions mostly build up on purely wiring com-
ponent interfaces. With respect to the requirements above, we argue, that this
technical view is still too complicated for end users without programming know-
ledge. Although wirings allow to retrace data flow, understanding what actually
happens in a mashup, or what functionality recommendations offer, requires
manual investigation by the user or depends on community-provided documen-
tation. Therefore, a more abstract way of building mashup applications is re-
quired, which focuses on the functionality to achieve rather than the technical
solution in terms of component interfaces and composition glue.

Thus, we propose CapView, a novel functionality-aware development view
on (running) composite applications. It is part of the EDYRA platform, which
extends CRUISe [I2] concepts and allows for live sophistication of mashups.
Thereby, the mashup runtime environment becomes the authoring tool, seam-
lessly interweaving mashup design and usage, to provide for instant feedback for
end user’s development actions [I5]. CapView provides a functional overview of
the mashup abstracting from interface and wiring details.

The CapView essentially helps non-programmers to (1) realize “components”
as task-solving entities, (2) investigate functionalities provided by a mashup,
by its components and by recommendations, and (3) to manipulate a mashup
through visually composing component functionalities.

The contribution of this work are manifold:

— We present capabilities, a semantic description of component functionality,
and define generic rules for deriving natural language labels from capabilities.
— We introduce the CapView supporting non-programmers with a functional
abstraction of composition details when developing a mashup independently.
— We evaluate the efficiency of the CapView via a user study.

The remaining paper is structured as follows. First, we discuss related approaches
in Sect. @l Then, Sect. Bl describes the conceptual foundation of our work. We
introduce CapView in Sect. dl and show the results of our evaluation in Sect. Bl
Finally, Sect. [0l summarizes the paper and outlines future work.

2 Related Work

Similar to our approach, Yahoo Pipefﬂ uses a mainly data flow oriented vi-
sual wiring paradigm via drag&drop in conjunction with highlighting possible
connections while creating a pipe. However, there is a hard break between devel-
opment and usage, and the user has to understand data structures and technical

!http://pipes.yahoo.com/pipes/

http://pipes.yahoo.com/pipes/

142 C. Radeck, G. Blichmann, and K. Meifiner

concepts. IBM mashup center allows to combine building blocks, including wid-
gets, and to use the mashup while developing it. Connections are created through
dialogues and are shown in a dedicated view, but functionality provided by com-
ponents or compositions cannot be explored. Similarly, in Jackbe Presto wiring
takes place via drag&drop, but the user is not supported in establishing correct
or even useful connections, and in identifying transitive connections. A drawback
is the required knowledge about technical interfaces of blocks and data types.
In academia, several projects have addressed some of the identified challenges
of EUD for non-programmers. Similar to our approach, mashart [7] utilizes uni-
versal composition and a component model, but neglects semantic annotations.
At development time, the components, their event-based composition and layout
can be defined using drag&drop metaphors. Despite a preview, there is a sepa-
ration between development time and run time, and the user is not supported
by recommendations. ResEval Mash [§] is a mashup platform dedicated to the
research evaluation domain. In a data flow oriented way, components of different
type like sources or visualizations are coupled. A domain-specific appearance
of those types on the modelling canvas may indicate implicit functionality, but
there is no activity-based abstraction. The ServFace Builder [I0] enables users
to visually compose web services. Thereby, form-based front ends are generated
from service descriptions. The data flow can be defined using drag&drop at de-
velopment time, and is visible to the user. Again, only a technical view on the
resulting application is provided. In MyCocktai]ﬁ forms serve for configuration
of components at design time, but there is no support regarding correctness
while establishing connections. Understanding the functional interplay of the
components is impeded by missing visualization of connections. Similar to our
conceptual foundation, the FAST platform [2] utilizes semantically described
components which are assembled to gadgets, so called screens. The latter can
again be combined to screenflows using input/outputs. The functionality of gad-
gets is expressed by pre- and postconditions, rather concerning input and out-
put than the activities provided. Yet, it lacks a smooth transition between run
time and design time and the user has to be familiar with interface concepts.
The Omlette Live Environment [I7] provides interwoven runtime and develop-
ment time. The user is supported with advice on patterns mined from existing
mashups, and by automated integration of selected patterns. However, there is
nothing comparable to our abstracting view and the recommended pattern are
mainly visualized by the incorporated components. In line with our approach,
DashMash [5] allows for manipulating a mashup during usage, and addresses
similar users. However, to understand the data flow of a mashup, users have to
inspect a dialog listing connections for a certain component, and establishing
connections takes place on interface level. EnglishMash [I] shares a similar basic
idea: abstracting from technical details through natural language. However, it
provides restricted means for exploration of components’ functionalities and no
formal component model. DEMISA [I6] proposes a task-oriented methodology to

2 http://www. jackbe . com
3http://www.ict-romulus.eu/web/mycocktail/home

http://www.jackbe.com
http://www.ict-romulus.eu/web/mycocktail/home

CapView — Functionality-Aware Visual Mashup Development 143

develop mashups. A task model has to be defined first which is semi-automatically
transformed to an executable mashup composition. However, due to the top-
down approach, there is a hard break between development and usage. Recently
several proposals focus on semantic annotations, e.g. [3], and mediation, e.g.
[11], for mashups. Therein, recommendations can be achieved based on semantic
matching of annotations. Further, community-driven recommender systems, e. g.
[6], have been proposed. We build up on similar techniques, but focus explicitly
on functionality-centered visualization of recommendations.

To sum up, in current proposals, understanding the provided functionality
of recommendations, components or even the mashup highly depends on mean-
ingful naming and descriptions of interfaces, and is further impeded by missing
highlighting of connections. Current tooling lacks task-oriented visualization and
composition metaphors for running mashups. It is too interface-oriented, and,
thus, features no sufficient level of abstraction for non-programmers.

3 Preliminaries

Within the EDYRA project we adhere to universal composition, which allows
for platform and technology independent composition of arbitrary web resources
and services [12]. This section outlines the underlying concepts of the CapView.

A declarative composition model defines all aspects of a mashup: compo-
nents or templates for context-sensitive selection of matching components, their
configuration, event-based communication, and layout [12]. For inter-component
data exchange, several types of communication patterns are applicable: fire-and-
forget according to the publish-subscribe paradigm via Links, request-response
via BackLinks, and synchronization of properties using PropertyLinks [13].

In our semantic component model, web resources are encapsulated by
black-box components. Furthermore, components with or without a UT (service
components) are characterized by three abstractions, namely parametrized op-
erations and events as well as properties. As a declarative descriptor implement-
ing the component model, we use the Semantic Mashup Component Description
Language (SMCDL) [II]. SMCDL covers non-functional properties, like qual-
ity aspects and authors, and the public component interface consisting of the
abstractions mentioned above, see Fig. [Il In order to specify data semantics of
those interface parts, references to ontology concepts, like classes and object-
properties, are annotated. Thereby, we can leverage semantic matching and me-
diation techniques. To describe functional semantics in a formal, yet simple way,
we have extended SMCDL with Capabilities. Basically, a capability is a tuple

<activity, entity, requiresInteraction>

and can be defined at component and operation/event level. In the latter case,
capabilities complement the input and output parameters. Activity and entity
refer to ontology concepts, for example act:Contact foaf:Person and, com-
bined, express which action is performed on a domain object. If the user is
involved in the activity, this is stated by requiresInteraction. This way we get

144 C. Radeck, G. Blichmann, and K. Meifiner
4 N\
domain models <-| activity and entity I—{ capabilities %
I
<_| non functional { meta¥atu ‘
qualities
4—' property type property, %)
A 8
o 5
oo NFp activities al dependsOn =)
g parameter types
@0 i operationy
interaction <> ™ 4.[activity and entity capabilities Interface
(. J [

Fig. 1. Overview of the SMCDL

a tag-like descriptor of component functionality, backed by clear semantics to
overcome ambiguity of tagging approaches. While the concepts referenced by en-
tity and activity are typically domain-specific, we build up on an upper ontology
for activities including generic concepts like Calculate, Create, and Display.

To express intra-component functional dependencies, events reference the ca-
pabilities that cause their occurrence using dependsOn. For sake of simplicity,
or-semantics applies in case of several referenced capabilities. For instance, an
event publishing results of an operation call refers to the operation’s capability.

Two capabilities are connectible if the parameters of the underlying interface
parts are semantically compatible. This either means that annotated concepts
match perfectly (e.g. location — location) or can be mediated (e.g. latitude +
longitude — location). Suitable mediation techniques are not in the scope of this
paper, but we extend our work proposed earlier [11]. Connectibility of properties
is more restrictive and requires equal or identical semantic types.

4 A Capability-Centered View for Non-programmers

The overall architecture of our platform is illustrated by Fig.[2l There are several
repositories, depicted on the right. Components are managed by their SMCDL,
whole mashups are represented by composition models. Certain composition
fragments are mined from existing mashups or determined on the fly based
on semantic annotations. Such composition fragments, like a coupling of two
components or a more complex part of a composition model, are reactively or
proactively queried and filtered by the recommendation manager, as part of the
runtime environment [I4]. Then, the fragments are presented to the end user,
and, after selection, woven into the running mashup by the adaptation system.

There are different views on the mashup. The LiveView presents the run-
ning UI components integrated in the mashup while channels are hidden. For
users with the necessary skills, the ProfessionalView provides a state-of-the-art
wiring view which overlaps the first. The novel CapView is focused on capa-
bilities in order to abstract from technical details. As with all views, CapView

CapView — Functionality-Aware Visual Mashup Development 145

incorporates recommendations. Providing proper functionality-centered presen-
tation for recommendations and for composition logic, CapView utilizes a label
generator, which derives descriptions from semantic annotations of components
and, thus, composition fragments. Every necessary mapping to the technical im-
plementation in terms of the composition model is automatically performed by
the runtime environment and completely hidden from the user.

[labelgenerator recommendation I
© | ‘ : manage‘r | pattern
g)
S Prof. | CapView adaptation repository =
§ Vlemll_iveView system QEJ
(dictionary) S \ context service | g
" S
s (compos:ﬁtjoriw"’model) g
S oy component &
‘é (composite application Q) mashup .
! g runtime environment repository
; S o -]
=.bind register -
annotated by~ universal description (SMCDL)]
T - Y 2
QEEIND o] °
web services, feeds, widgets, databases, APIs ... Iy

Fig. 2. Architectural overview of the EDYRA platform

4.1 Overview

In contrast to the ProfessionalView, the CapView does not explicitly display the
operations and events of components. Instead, based on annotated capabilities,
tasks that can be fulfilled using the component are clustered and visualized.
To ease the correlation between LiveView and CapView, those tasks overlay the
corresponding components. Our basic assumption is, that a mashup and its com-
ponents are offering a set of functionalities. For execution, these functionalities
may require inputs or produce outputs, which can be provided or consumed by
other functionalities in a data flow based manner. This reflects the underlying
component model (c.f. Sect. B) and leads to tuples <<A, E, iR>,P;y,,Pous >
where <A, E, iR> denotes a capability as defined in Sect. Bl P, |5, are optional
sets of the parameters of the operation or event, which correspond to the capa-
bility. Besides capabilities, components’ properties are part of CapView, since
we argue, that it is intuitive that objects are characterized by attributes.

An overview is shown in Fig.[Bl The main part shows the overlaying CapView
that lists capabilities and properties of components in the mashup, as well as
connections. On the right is the recommendation menu, giving advice on
composition fragments represented by the capabilities they offer.

146 C. Radeck, G. Blichmann, and K. Meifiner

RECOMMENDATION

Event Planner Flight Search %%

| Select an event O - R

[start point
Starttime k.4

Google Map %% Weather Panel %
© .ascurentlocaton O Q defaultweatherlocation

..todisplay the weather ...

Q.. todisplay the location of an event © ..bythelocation of a selected event

Fig. 3. Exemplified overview of the CapView

4.2 Visual Exploration of a Mashup’s Functionality

As exemplified in Fig. Bl we conceptually utilize several colors in order to dis-
tinguish the representation of capabilities and properties. Representations for
a certain component can be collapsed and expanded by the user. Further, to
couple components implicitly by connecting representations, the latter can have
ports as interaction elements corresponding to the inputs required and/or out-
puts provided. In addition, natural language labels are provided throughout the
CapView, derived from semantic annotations. Thereby, several generic rules ap-
ply in order to label capabilities and properties. We go in more detail on the
rules in Sect. including examples.

Capabilities at component level are grayed out and carry no connection ports
if no event refers to them via dependsOn. This way, the user is aware of the
component’s capability and the fact that it cannot be coupled. Otherwise the
capability is colored according to the requiresInteraction (blue in Fig. Blif true,
else orange) and has an output port. Capabilities at operation level adhere to
the same coloring scheme. Input ports are always visible, and their counterparts
appear if at least one event refers to the capability. Properties are always colored
uniformly (green in Fig. B]) and can have input and output ports.

A user can select a capability or property, denoted representation ry. The
1-layer L is defined as the set of all connectible capabilities or properties in the
CapView that can directly provide input (S C L) for or handle output (T' C L) of
a representation. In order to avoid cycles, we assume that a certain representation
cannot be in S and T of rg. Self-connections of a component are prohibited,
i.e., there is no r belonging to its own 1-layer. Established connections between
representations are visualized, too. The appearance differs depending on 7.

When selecting rg, all r; € Lg are highlighted and renamed, see Fig.[Blwhere rg
is Select an event. The renamed labels are visually highlighted as well for several
seconds to allow for awareness. Channels not connected to rg are grayed out
in order to improve clarity. In addition to direct channels, indirect connections
are highlighted as well in a less bright appearance. This way, a user can follow
transitive data flow easier. For instance, if a compatible r; € Ty is not yet

CapView — Functionality-Aware Visual Mashup Development 147

connected with ro but with an r, € Tj, transitive highlighting r; — r, also
applies. However, label adaptation exclusively changes the 1-layer.

Highlighting possible ports can be understood as a seamless visualization of
recommendations. Besides this inline presentation, the recommendation menu
lists capabilities of components not part of the mashup yet. In any case, we
utilize stars to emphasize the three best rated recommendations.

4.3 Context-Sensitive Label Generation

How labels for representations are derived is subject of this section. The notion
used thereby incorporates functions and indices, which we briefly explain now.

— dLabel() and aLabel() return a human readable description of an annotated
property type or capability entity respectively activity. Thereby, either the
name of the concept, extracted from its URI, or its rdfs:label is used.

— art() inserts a correct article

— index pp denotes the past participle, queried from the dictionary

— index norm indicates the “normalized” concept, i.e. rdfs:range of an object
property, else the concept itself

— As part of recommended composition fragments, there is always a mapping
definition mapp, —, p, that defines how interfaces have to be coupled possibly
incorporating mediation techniques. For more complex fragments, there can
of course be multiple definitions, one per channel in the fragment.

The generation process distinguishes essentially two cases. First, the basic case
where nothing is selected by the user. The basic configuration for properties
leverages the label or the name of the ontology concept annotated as type. To
ease understanding for the user, the current value of the property is shown as well
if it is set. A capability <A, FE, iR> is displayed utilizing the human-readable
labels given for A and F, e. g. search a route, following the scheme:

aLabel(A) art() dLabel(E)

Secondly, labels are adapted to the user selection which serves for clarifying cause
and effect. The algorithm built upon a generic rule set takes the 1-layer of rg
and determines the label for representations on the 1-layer rather than rg itself.
Thereby, r; € S and r; € T are treated differently. Further, dots are appended
or prefixed to clarify the reading direction.

A Property Is Focused. When selecting rg, re-labelling the 1-layer of a prop-
erty distinguishes properties and capabilities.

rj € S orry €T is a property. When connecting two properties is possible, it
depends on whether rq is the target or source of the connection. In the first case
a r; € S is renamed according to the scheme

Use dLabel(Vall, | Typel,,,) as ...

148 C. Radeck, G. Blichmann, and K. Meifiner

where T'ypeprop denotes the type concept and Valp,op the currently set value of
a property. In the other case, the rule slightly differs, and a r; € T is labeled:

Use dLabel(Vald,, | Typed,,,) as dLabel(Typel,.,)

prop
For illustration, consider the examples listed in the following table.

TjES T0 rieT

Typeprop = Location Typeprop = hasCenter Typeprop = Location
Use location (Dresden) as ... Center Use center as location

r; € T is a capability. The selected property o can serve as input for a represen-
tation r; = << A%, E*, iR"> P} P! . >, where Maprype,,,,—Pi. 1S a injection
and Typeparem denotes the single matched parameter’s type. Hereby, we dis-
tinguish whether the normalized entity and the normalized type of the single
parameter are mediable. If not and if the Typeparam norm is equal to or super-

concept of T'ypeprop norm, we utilize the following scheme:
aLabel(AY) art() dLabel(E") using art() dLabel(Typeprop)

Another option is, that T'ypepqram is part of the concept Typeprop norm and can
be queried from instance data at runtime (SplitRule).

aLabel(A") art() dLabel(E?) using art() dLabel(Typeparam) of art()

dLabel(Typeprop)
0 r, €T
Typeprop = hasCurrentLocation <<Search, Hotel, L >, {Location, Time} >
Current location Search a hotel using the current location
Typeprop = Event <<Display, Hotel, T >, {Location, Time} >
Event Search a hotel using the location of the event

Contrary, if entity and parameter are mediable, a shorter rule applies to provide
more compact labels (CompRule). Analogously, the SplitRule is used.

aLabel(AY) art() dLabel(Typeprop)

To ri €T
Typeprop = hasCenter <<Display, Location, T >, Location >
Center location Display the center location
Typeprop = Event <<Display, Location, T >, Location >
Event Display the location of the event

If the capability represented by 7; offers multiple parameters (| P}, | > 1), there
may of course be several possible mappings between the property and those
parameters. Then, the options are declared via the suffix (SuffixRule):

as dLabel(Typeparam)

To ri €T
Typeprop = hasCenter <<Search, Route, L >, {hasStart, hasDest} >
Center Search a route using the center as start

Search a route using the center as destination

CapView — Functionality-Aware Visual Mashup Development 149

r; € S is a capability. The selected property ro can consume the output of a
representation r; = << A, EJ iR/> P! P’

1 Pout >, where MaPpi L pype, 18

injection and Typeparam denotes the single matched parameter’s type.

a

Use art() aLabel(A7),, dLabel(E7) as art() ...

Use art() dLabel(Typeyrop) of art() aLabel(A%),, dLabel(E?) as art() ...

r; €8 To
<<Select, Location, T >, Location > Typeprop = hasCenter
Use the selected location as the ... center location
<<Select, Event, T >, Event > Typeprop = hasCenter
Use the location of the selected event as the ... center location

It is possible that not all p € Pipn|ousy Of a representation are covered. However,
this is not subject to the label generation, but visualized via an exclamation-
mark at the connection after the latter has been established.

A Capability Is Focused. If a r; € S or a r; € T is a property, the rules
presented previously apply. Thus, only the case of coupling two capabilities is
discussed in detail now. As with properties, we check whether the condition for
CompRule holds. To this end, both entities have to be equal, identical or in
inheritance relation. The same condition is checked for the mapped parameters’
types. The resulting pattern is:

...to aLabel(A") art() aLabel(A®),, dLabel(E")

To r; €T
<<Select, Location, T >, Location > <<Display, Location, T >, Location >
Select a location ...to display the selected location

In the case CompRule is not applicable, the scheme shown below is used, and
SplitRule and SuffixRule are utilized as required. In principle, depending on the
mapping definition, there may be n by- and k as-parts (the latter are omitted
if kK = 1) in the resulting label, where n and k are the number of matched
parameters in PJ,, respectively in Py .

...to aLabel(A?) art() dLabel(E") (by art() { dLabel(Typed.,,.,) of art()]

param

aLabel(A°),, dLabel(E°) [as dLabel (TypeLE..) L)
n

For some examples, consider the following table.

150 C. Radeck, G. Blichmann, and K. Meifiner

o ri €T
<<Select, Location, T >, Location > <<Search, Hotel, | >, Location >
Select a location ...to search a hotel by the selected location
<<Select, Event, T >, Event > <<Search, Hotel, 1 >, Location >
Select an event ...to search a hotel by the location of the

selected event

<<Select, Location, T >, Location > <<Search, Route, L >, {hasStart, hasDest} >
Select a location ...to search a route by the selected location as
start

Similarly, capability representations providing input for ¢ are handled, where n
and k are the number of matched parameters in Py, ; respectively in Py, g.

param

(.. by art() [dLabel(Typel™. ... of art() } aLabel (A7), dLabel(E7)

|: as dLab@l(Typegh]iam)]k)

ri € S T0
<<Select, Location, T >, Location > <<Display, Location, T >, Location >
... by a selected location Display location

<<Select, Event, T >, Location > <<Search, Hotel, L >, Location >
... by the location of a selected event Search a hotel

Analogously to property rules, if there are parameters of the underlying interface
part that are not covered yet, a hint is shown to the user.

4.4 Interaction Mechanisms to Establish Connections

Creating connections between two representations requires an active selection 7.
The procedure can be started by selecting the input or the output port to activate
it. For convenience, if there is exactly one port, it is directly activated. Then,
recommended connections are further restricted according to S or T of 7.
Since there may exist several similar capabilities whose only difference is the
parameter signature of the underlying operation or event, clustering takes
place. Thereby, all representations for a particular component with the same
activity and entity are grouped. The weather panel, see Fig.[3] offers two opera-
tions annotated with capability < Display, Weather, T >. One requires a location
parameter and the second an additional date. Different outputs, i.e., events of
a clustered capability are transparently handled for the user and are not shown
explicitly. When determining recommendations the events are investigated sep-
arately, and the correct one is chosen before implementing the channel in the
mashup. A major advantage of our approach is this possibility to abstract from
interface details, like heterogeneous signatures and overloaded operations.
When clustering is required, the user has to choose the alternative he desires.
Furthermore, in case there is no unambiguous parameter mapping possible, the

CapView — Functionality-Aware Visual Mashup Development 151

user has to confirm or adapt it. To this end, as introduced in Sect 3] different by-
and as-parts are determined by the label generator. Those options are displayed
and set to a probable configuration as delivered by a recommendation. However,
due to space limitations and in order to preserve spatial correlation, instead of
revealing the complete label, representations hide details in a collapsed state at
first. Therein, only the essential part of the label is shown, and on mouse-over,
the representation expands. Consider the represented capability with label ... to
search flights. .. in Fig.[Bl where the expanded state is illustrated. It shows several
ports for each matching parameter of rg, and options for the corresponding
parameters of the target capability. In the collapsed state, the label would be a
concise . . . to search flights and no options would be visible. Similarly, capability
representations r; € S are handled.

After clicking the desired port or via drag&drop, the data flow oriented con-
nection is created. Subsequently, the platform checks whether the new connection
is “sufficient”. If, for example, a parameter of the underlying operation is not
assigned, an exclamation mark appears (c.f. Fig.) and provides general hints
and the possibility to request recommendations. When cancelling the current
selection, all labels are reset to their base configuration.

5 Evaluation

5.1 Methodology

We conducted a user study utilizing the think aloud protocol. 10 users in the
age of 22 — 37 participated and were asked to fill a questionnaire to gather de-
mographic and skill-related data. They are students from different fields like
mechanical or electrical engineering, media and computer science, and logic.
The participants had no or very basic knowledge about mashups, but frequently
use web applications. 5 users described their programming skills as average, so
that we could evaluate the suitability of CapView not only for non-programmers.

After a short introduction to mashups and the CapView, two scenarios of
increasing complexity in the travel planning domain, each comprising five tasks,
were presented by the interviewer. Based on a click prototype similar to Fig. Bl
covering core Ul and interaction concepts, each scenario includes a mashup ap-
plication with Ul and service components. In the first scenario, comprising four
UI and one service component, the basic understanding of the exploration and
interaction mechanisms was checked. Thereby, task like identifying which compo-
nents can help to search flights, and connecting capabilities so that it is possible
to search and book hotels had to be solved. The second scenario focused on the
concepts for creating and manipulating connections using parameter mappings
and extends the first scenario to confront the participants with a non-trivial
mashup. Participants were asked to extend the mashup to be able to find events
in the target location, search public transportation from the hotel to the event
location and display the weather. Thereby, users had to reconfigure connections
and handle multiple parameters. According to the think aloud protocol, while
task solving, they were encouraged to express what they are doing and why,

152 C. Radeck, G. Blichmann, and K. Meifiner

and what system behavior they expect. The interviewer observed and supported
them if necessary. We were interested in whether participants are able to solve
the tasks. Additionally, after completing their tasks, users were asked to fill
out a questionnaire about their perceived task load and their assessment of the
CapView’s suitability using the System Usability Scale (SUS). Further, users
were encouraged to comment on things they liked or disliked.

5.2 Results

As an important result, all participants were able to solve the tasks. Speed and
efficiency differs depending on the user’s background. In general, key concepts
of CapView were perceived very positive. The basic idea of CapView to provide
a functional abstraction for non-programmers was approved by all participants.
Since CapView overlays the LiveView, the spatial correlation to live components
is facilitated and eased the understanding of component functionality.

Further, natural language labels of capabilities were considered sufficiently
intuitive (70%) to understand the functionality of components and to realize a
mashup as a task-solving entity. 80% of the participants found highlighting con-
nectible ports very helpful and even stated that they would not have been able to
succeed without it. In line with this, the proposed context-sensitive adaptation
of labels supported the understanding of connectibility. The combination of all
exploration means (focusing, highlighting, label generation, appending or pre-
fixing dots to build sentences, component name) eased the hurdles significantly.
Due to reduced complexity and to improved clarity, 80% of the participants liked
the overview and detail metaphor of expanding and collapsing representations.

We observed, that users used both approaches the concept offers to establish
connections, i. e., starting with input respectively output ports. This underlines
the necessity to provide both approaches to not constraint the user.

However, we discovered that users repeatedly faced the following difficulties.
First, it is hard for non-programmers to understand the concept of service com-
ponents. This lead to misinterpretations of capabilities, for example, a user as-
sumed that search flights (see Fig. B]) directly displays the results as well. Thus,
those details should be appropriately abstracted as well in future work.

In addition, it became evident that the expectations on components’ function-
alities are highly influenced by the users’ experience with web applications like
Google Maps. As a consequence, meaningful capabilities have to be provided. In
this regard, we found that users interpreted input and output ports differently:
In a more human-centered perspective, they expected that, for example, select
an event only has an input. This partly contradicted with the system-oriented
perspective we used when annotating components, where select an event provides
output. However, after a short time they grew familiar with our perspective. Few
users had problems to realize that CapView abstracts from instance data. Thus,
LiveView and CapView should be stronger interwoven.

CapView — Functionality-Aware Visual Mashup Development 153

To get a widely-accepted evaluation scale, we additionally surveyed the SUS
score as well as the Task Load Index. The average SUS score equals 78.5, with
a maximum of 92.5 and a minimum of 70. We consider this as a good result
with regard to the preliminary status of our prototype. In more detail, 80% of
the participants would like to use the system frequently in their daily life. The
system’s complexity was stated as low by 90%. 90% found it easy to use, too,
and 70% attested a quick learnability. The positive user feedback was confirmed
by the Task Load Index. For instance, mental demand and effort was assessed
between low and medium and the frustration level as very low. With regard
to their overall performance, users were very content. Due to the nature of our
study, physical and temporal demand have limited significance.

6 Conclusion and Future Work

Today, the mashup paradigm is widely-accepted as promising approach for end
user development of web applications. However, prevalent solutions only partly
meet the strict requirements of non-programmers. Mostly, interface-oriented
wiring is used, requiring technical understanding of the application. In this
paper, we propose CapView, a novel functionality-aware development view on
running mashups. It provides an overview of the capabilities and properties of
components and recommended composition fragments. CapView abstracts from
composition and implementation details.

Natural language labels for capabilities are derived and adapted with respect
to the current selection of the user. Thereby, short sentences are formed in or-
der to emphasize the functional interplay of components. This approach causes
stronger dependency on useful annotations, and may be less precise than a
extensive textual description. However, in our opinion the main advantage is
genericity. Even unforeseen constellations of components can comprehensively
be covered, which is important to meet the long tail of user needs. Further, the
dependency on human-provided documentation of every component or recom-
mendation lessens since ontological knowledge can be reused.

Consequently, non-programmers are empowered to explore the functionality
of a mashup and its building blocks, and to manipulate the mashup through
visually composing capabilities. We evaluate the CapView via a user study, and
outline the results as well as identified future challenges.

Based on the concepts introduced in this paper and the lessons learned from
the user study, we are working on stronger interweaving CapView and LiveView.
Using the CapView’s level of abstraction, we strive for an intuitive way for
the user to express his/her goal. Further, we want to derive capabilities and
their relationships from more complex composition fragments, and elaborate
functionality-based visualization of recommendations in LiveView and CapView.

Finally, after finishing the integration of the CapView in our demo prototype,
we plan to conduct an extensive user study to evaluate the overall platform in
comparison to existing mashup platforms.

154 C. Radeck, G. Blichmann, and K. Meifiner

Acknowledgments. Funding for the EDYRA project is provided by the Free
State of Saxony and the European Union within the European Social Funds
program (ESF-080951805).

References

1. Aghaee, S., Pautasso, C.: Englishmash: Usability design for a natural mashup com-
position environment. In: Grossniklaus, M., Wimmer, M. (eds.) ICWE Workshops
2012. LNCS, vol. 7703, pp. 109-120. Springer, Heidelberg (2012)

2. Alonso, F.; Lizcano, D., Lopez, G., Soriano, J.: End-user development success fac-
tors and their application to composite web development environments. In: Sixth
Intl. Conf. on Systems (ICONS 2011) (2011)

3. Bianchini, D., Antonellis, V.D., Melchiori, M.: A recommendation system for se-
mantic mashup design. In: DEXA Workshops, pp. 159-163. IEEE (2010)

4. Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M.: Enabling end user de-
velopment through mashups: Requirements, abstractions and innovation toolkits.
In: Piccinno, A. (ed.) IS-EUD 2011. LNCS, vol. 6654, pp. 9-24. Springer, Heidel-
berg (2011)

5. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: Dashmash: A mashup environment for end user development. In: Auer, S.,
Diaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152-166.
Springer, Heidelberg (2011)

6. Roy Chowdhury, S., Daniel, F., Casati, F.: Efficient, interactive recommendation
of mashup composition knowledge. In: Kappel, G., Maamar, Z., Motahari-Nezhad,
H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 374-388. Springer,
Heidelberg (2011)

7. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted universal composition:
Models, languages and infrastructure in mashart. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829,
pp. 428-443. Springer, Heidelberg (2009)

8. Imran, M., Kling, F., Soi, S., Daniel, F., Casati, F., Marchese, M.: Reseval mash:
a mashup tool for advanced research evaluation. In: 21st Intl. Conf. companion on
World Wide Web (WWW 2012), pp. 361-364. ACM (2012)

9. Namoun, A., Wajid, U., Mehandjiev, N.: Service composition for everyone: A
study of risks and benefits. In: Dan, A., Gittler, F., Toumani, F. (eds.) IC-
SOC/ServiceWave 2009. LNCS, vol. 6275, pp. 550-559. Springer, Heidelberg (2010)

10. Nestler, T., Feldmann, M., Hiibsch, G., Preufiner, A., Jugel, U.: The servface
builder - a wysiwyg approach for building service-based applications. In: Bena-
tallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189,
pp. 498-501. Springer, Heidelberg (2010)

11. Pietschmann, S., Radeck, C., Meifiner, K.: Semantics-based discovery, selection and
mediation for presentation-oriented mashups. In: 5th Intl. Workshop on Web APIs
and Service Mashups (Mashups), pp. 1-8. ACM (2011)

12. Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., Meifiner, K.: A
metamodel for context-aware component-based mashup applications. In: iiWAS
2010, pp. 413-420. ACM (2010)

13. Pietschmann, S., Voigt, M., Meifiner, K.: Rich communication patterns and end-
user coordination for mashups. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.)
ICWE 2012. LNCS, vol. 7387, pp. 315-322. Springer, Heidelberg (2012)

14.

15.

16.

17.

CapView — Functionality-Aware Visual Mashup Development 155

Radeck, C., Lorz, A., Blichmann, G., Meifiner, K.: Hybrid recommendation of
composition knowledge for end user development of mashups. In: ICIW 2012,
pp. 30-33. XPS (2012)

Riimpel, A., Radeck, C., Blichmann, G., Lorz, A., Meifiner, K.: Towards do-it-
yourself development of composite web applications. In: Proceedings of the Intl.
Conf. on Internet Technologies & Society 2011 (ITS 2011), pp. 231-235 (2011)
Tietz, V., Pietschmann, S., Blichmann, G., Meifiner, K., Casall, A., Grams,
B.: Towards task-based development of enterprise mashups. In: iiWAS 2011,
pp. 325-328. ACM (2011)

Wilson, S.: D3.3 prototype implementation of the omelette live environment: Phase
1. Tech. rep., ICT Omelette (2012)

	CapView – Functionality-Aware Visual Mashup
Development for Non-programmers

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 A Capability-Centered View for Non-programmers
	4.1 Overview
	4.2 Visual Exploration of a Mashup’s Functionality
	4.3 Context-Sensitive Label Generation
	4.4 Interaction Mechanisms to Establish Connections
	clustering

	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusion and Future Work
	References

