Performance-Aware Design
of Web Application Front-Ends

Dennis Westermann®, Jens Happe!,
Petr Zdrahal?, Martin Moser?, and Ralf Reussner®

! SAP Research, Karlsruhe, Germany
{dennis.westermann, jens.happe}@sap.com
2 SAP AG, Walldorf, Germany
{petr.zdrahal ,martin.moser }@sap.com
3 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
reussner@kit.edu

Abstract. The responsiveness of web applications directly affects cus-
tomer satisfaction and, as a consequence, business-critical metrics like
revenue and conversion rates. However, building web applications with
low response times is a challenging task. The heterogeneity of browsers
and client devices as well as the complexity of today’s web applications
lead to high development and test efforts. Measuring front-end perfor-
mance requires a deep understanding of measurement tools and tech-
niques as well as a lot of manual effort. With our approach, developers
and designers can assess front-end performance for different scenarios
without measuring. We use prediction models derived by a series of au-
tomated, systematic experiments to give early feedback about the ex-
pected performance. Our approach predicts the front-end performance
of real-world web applications with an average error of 11% across all
major browsers.

1 Introduction

Recent industrial studies [4] show that the responsiveness of web applications di-
rectly affects customer satisfaction and, as a consequence, business-critical met-
rics like revenue and conversion rates. Guidelines on how to optimize front-end
performance, such as those published in the books of Steve Souders [7l§], are very
popular among web developers. Also, tools like WebPageTest [2] or YSlow [3]
are more and more adopted to support the implementation of performance best
practices and to help identifying performance problems. For the development of
web-based enterprise applications, companies often rely on JavaScript libraries
that provide a uniform appearance, as well as a set of Ul elements and utility
functions commonly used in this kind of applications. Besides the classical chal-
lenges addressed by the guidelines and tools mentioned before, Ul developers
and designers need to evaluate the impact of the design of a screen on front-
end performance. This involves questions like ,How many columns and rows
can I add to a table of type X in my web application without violating perfor-
mance requirements?“or ,What is the impact of backend call Y on front-end

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 132-[[39] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Performance-Aware Design of Web Application Front-Ends 133

performance?“. Theoretically, these questions could also be answered with the
existing performance measurement and analysis tools. However, practically the
effort for applying measurement-based approaches to these kind of questions is
too high, which hinders the flexible, performance-aware construction and evalu-
ation of screen designs. Moreover, the development of a screen’s design is usually
conducted before the screen is actually implemented (e.g., using wireframe or
mockup tools). As a consequence, early performance feedback (prior to imple-
mentation) is essential to drive the deployment of fast web applications [5].

In this paper, we present an approach that enables performance-aware design
of web application front-ends. Our main contribution is a methodology that
allows performance experts to efficiently derive prediction models for UT libraries.
These models can, for example, be integrated in design tools in order to give early
performance feedback to the large amount of designers and developers that use
the library. To get the early feedback about the expected front-end performance
of their design, developers neither need to implement the web application, nor
do they need to conduct performance measurements.

The main challenge in deriving the performance prediction models is to deal
with the huge design space that is spanned by a UI library. To overcome this
challenge, we build on the results of our previous research on automated per-
formance evaluation experiments [9JI0] and propose an experiment-based pre-
diction model construction process. In our case study, we evaluated the impact
of different screen design alternatives on front-end performance for applications
developed with the JavaScript library SAP UI5 [I]. Based on the experiment re-
sults, we derived a set of assumptions and heuristics and developed a prediction
model that allows estimating the impact of screen designs on performance for
three major browsers (Internet Explorer, Chrome, and Firefox). While the ex-
periment results and the prediction model are specific for the SAP UI5 library,
we also describe our systematic process that can be applied for the efficient
construction of such prediction models in other scenarios.

We validate our approach by comparing predictions to measurements using
screens of two real-world enterprise web applications. Both have been developed
with the SAP UI5 library. The results show that we can predict the front-end
performance for the screens of these applications with an average prediction error
of 11% across all studied browsers.

2 Prediction Model

The performance prediction model introduced in this section quantifies the rela-
tionship between the construction of SAP UI5 based web application screens and
the browser CPU time consumed by the screens in different browsers. Moreover,
we outline a process that allows to derive such a model efficiently.

Based on the results of a set of upstream experiments, we define the following
assumptions and heuristics:

134 D. Westermann et al.

— The browser CPU time is a stable metric to describe front-end performance
costs of a web application. Moreover it abstracts from influences that are
hard to control such as network latency.

— The browser CPU time consumed to process different Ul element types is
additive (i.e., there is no interdependency between control types).

— The browser CPU time differs significantly between different UI element
types.

— The properties of complex control types can significantly contribute to the
browser CPU time consumed to process a Ul element.

— The placement of Ul elements on a screen does not have a significant effect
on CPU time (at least if the nesting level stays in a reasonable range).

Utilizing these assumptions and heuristics, we define a performance prediction
model as well as a process to derive a concrete instance of this prediction model
for SAP UIb.

If a screen S of a web application consists of the Ul elements ey, ..., e,, we
write: S = e - ... - e, where - denotes the composition of Ul elements (e.g.
a screen that consists of tables, buttons, and text fields). Hence, when a UI
developer creates a screen .S, he evaluates e -...-e,. We assume this composition
as associative and commutative (i.e., the UI elements can be arbitrarily placed
on the screen).

Furthermore, we define ¢(S) as the front-end performance of screen S which
is in our case expressed as the browser CPU time consumed to load the full
screen. Following the additivity and placement assumptions, we state that the
performance of the Ul element composition is the sum of the performance values
of the individual UI elements (¢(eq), ..., ¢(e,)) and a constant offset (eg).

¢(S) = ¢(61 Cee 6n) + €5 = ¢(€1) + ...+ ¢(€n) + €g (1)

The offset €g describes the browser CPU time consumed to load an empty screen.
This includes for example the CPU time required to load the UI libraries and
the CSS files (i.e. all components of a screen that are independent of a certain
UT element).

Depending on its properties p1, ..., px (e.g., number of columns and rows of a
table), a Ul element e yields different front-end performance characteristics. We
estimate the performance value of Ul element e as

(rbtype(pla"'apk) (2)

In order to derive an instance of such a prediction model for the SAP UI5 library
and the three major browsers, we developed a systematic process. The process is
implemented in a set of automatically executable experiments. Having this set of
automatically executable experiments has the benefits that (i) the manual effort
to create a model instance is limited to a minimum (i) the model instance can
be easily updated for new browser or Ul library versions and (iii) the procedure
can be reused to derive model instances in similar setups.

In the following, we give a detailed description of the process and demonstrate
how we implemented this process.

Performance-Aware Design of Web Application Front-Ends 135

Deriving the Screen Offset (es): As a first step, we determine the CPU
time consumed by the browser to process the basic screen layout in which we
place the different Ul element types for our experiments. Therefore, we define
and run an experiment that measures an empty screen. As a result we get the
es for the three browsers: €g., = 300ms | e€sp, =420ms | eg,, = 290ms

Analyzing UI Element Types: To deal with the vast amount of Ul element
types, we group them in simple types and complex types. As simple types we
define those UI elements with a performance cost per instance of less than 5 ms.
For these elements, we do not conduct a detailed evaluation of the properties.
Instead, we just determine a general fixed performance value for each instance
of a Ul element type that is considered as simple. Examples for such simple Ul
element types in our study are buttons, text views, or labels and the performance
value per instance that we assigned to this group is 2 ms. Hence, we estimate
the performance value of a simple Ul element with the function: @gsimpie() =
2 x #simpleUlelements. That value is approximated based on a small set of
experiments. We use the same value for all three browsers as we did not observe
a significant difference between the browsers for processing these kind of UI
elements.

The complex Ul element types are those that significantly contribute to the
browser CPU time when added to a screen. Examples for such Ul element types
are tables, service calls and row repeaters. For these Ul element types, we run two
experiment series. In the first series of experiments, we determine which prop-
erty of the Ul element significantly influences the browser CPU time. And in the
second series, we derive @ype(p1,-..,pr) for those properties that are consid-
ered as performance-relevant. To determine the performance-relevant properties
in the first series of experiments, we apply standard statistical designs such as
One-at-a-Time or Plackett-Burman designs in combination with statistical cor-
relation analysis methods. The selection of the actual design is based on the size
of the parameter space spanned by the number of Ul element properties and their
potential values. As an example, for the table Ul element type, the number of
columns (#cols) and rows (#rows) have been identified as the only performance-
relevant properties. With the second series of experiments we aim at quantifying
the relationship between the different manifestations of a table (combinations
of #cols and #rows), and the browser CPU time (CPUtime). If we set the
possible value ranges for the two variables in this example to #rows : 1..20
and #cols : 1..20, we run into the curse of dimensionality and even for this
small example it would take 20 % 20 = 400 experiments to measure the complete
space. In our setup, this would mean that we would have to measure one week
to determine only this relationship for the three browsers. To reduce the number
of required experiments we apply advanced statistical inference approaches [10]
that automatically determine which experiments to execute in order to get an
accurate prediction function. As a result we get a multi-dimensional regression
function such as the one outlined below (derived for Firefox).

136 D. Westermann et al.

CPUtimepp = 584 + 30 * max(0; #cols — 5) — 33 x max(0; 5 — #cols)
+ 25 * max(0; #rows — 5) — 29 x max(0;5 — #rows) (3)

Deriving this function for a single browser takes approx. 2-8 hours depending on
the complexity of the underlying function. Limiting the number of experiments
by manually restricting the potential space is also a possible approach that
can be sufficient for simple functions but implies a higher risk that important
combinations have not been measured [10].

In order to predict any combination of table manifestations on a screen, we
proceed as follows: We subtract the offset of a blank screen (eg,., = 420) from the
function outlined in Equationdlin order to remove this offset from the estimation.
We use the resulting function as the implementation of ¢sype(p1,. .., pr). Thus,
we estimate the Firefox browser CPU time for the UI element type table with
the following function:

Oravie (#cols, #rows) pp = 164+30xmax(0; #cols;—5)—33xmax(0; 5—F#cols;)
+ 25 x max(0; #rows; — 5) — 29 x max(0;5 — #rows;) (4)

Construct Prediction Model Instance. Once all components of the predic-
tion model instance are determined they can be composed according to Equation
[in order to predict the browser CPU time for a screen S. For example:

¢(S)FF =e€s5+ ¢sz’mple()FF
+ Grabic (Fcols, #rows) pr + Gjsoncan (datasize)pp + ... (5)

For our study, we derived a prediction model that contains most of the simple and
complex Ul element types used in enterprise applications built with SAP UI5.

Validate Prediction Model. The constructed prediction model instance is
an abstraction of the real behaviour that is based on assumptions, heuristics and
statistical inference. Hence, it has to be validated that the estimated performance
values sufficiently reflect the behaviour of the real screens. In the following sec-
tion, we validate our prediction model as well as the prediction model instances
that we derived for the SAP UI5 library and the three browsers.

3 Validation and Discussion

The goal of our validation is to judge prediction accuracy and thus the utility
of our heuristics and the practicability of our approach. Therefore, we compare
our predictions with actual performance measurements. We selected twelve real-
world pages built with the SAP UI5 library. Six pages are taken from demo
applications. These pages cover a broad spectrum of different manifestations of
the two most important control types in business applications. The other six
pages are taken from a real application called Networking Lunch which is a
social enterprise application where people can search for other people interested
in the same topic and setup a joint lunch meeting.

Performance-Aware Design of Web Application Front-Ends 137

3.1 Results

In Figure we show the results for the twelve validation screens. The average
prediction error across all screens and browsers is 11%. For 72% of the predic-
tions, the relative prediction error is less than 15% and there is only one real
outlier with an error higher than 30%. The predictions for Chrome (8% average
error) and Firefox (7% average error) have been better than those for Internet
Explorer (18% average error). Between the two applications, we could not ob-
serve a general difference with respect to prediction accuracy (average error for
both applications is 11%).

Chrome Firefox InternetExplorer
Page Measured Predicted Abs. Error Rel. Error| Measured Predicted Abs. Error Rel. Error| Measured Predicted Abs. Error Rel. Error
nwlunchl 944 ms 1024 ms 80ms 8%| 905ms 983 ms 78 ms 9%| 663ms 733ms 70 ms 10%
nwlunch2 1107 ms 1147 ms 40 ms 4%| 1060ms 1135ms 75ms 7%| 8llms 805ms -6ms 1%
nwlunch3 1233ms 1119ms -114ms 9%| 1178 ms 1129 ms -49 ms 4%| 1357 ms 794ms -563 ms 41%
nwlunch4 960 ms 1034 ms 74 ms 8% 874 ms 984 ms 110 ms 13% 788 ms 764 ms -24 ms 3%
nwlunch5 763ms 938ms 175ms 23%| 764ms 888ms 124ms 16%| 608ms 603 ms -5ms 1%
nwlunché 951ms 1069 ms 118 ms 12% 960 ms 1079 ms 119 ms 12% 913 ms 729ms -184ms 20%
demol 485ms 463 ms -22ms 5% 780 ms 740 ms -40 ms 5% 453ms 487 ms 34ms 8%
demo2 874 ms 875 ms 1ms 0%| 1295ms 1315ms 20 ms 2% 780ms 1013 ms 233 ms 30%
demo3 888 ms 880 ms -8 ms 1%| 1356ms 1282 ms -74 ms 5% 803ms 1039 ms 236 ms 29%
demo4 491 ms 502 ms 11ms 2% 811ms 810 ms -1ms 0%| 468 ms 584 ms 116 ms 25%
demo5 1591 ms 1858 ms 267 ms 17%| 2348 ms 2641ms 293 ms 13%| 2340ms 2900 ms 560 ms 24%
demo6 1373 ms 1460 ms 87 ms 6%| 1973 ms 2009 ms 36 ms 2%| 1638ms 2079ms 441ms 27%

(a) Validation results.

The highest error is 41% for screen 3 of the Networking Lunch application in
Internet Explorer. Although this screen has nearly the same characteristics as
screen 4 (for which the error is only 3%), we underestimate the browser CPU
time by 563ms. We could not yet figure out the root cause of this difference. It
is interesting that we did not observe such a large deviation for this screen in
the other browsers. The weaknesses in the predictions for the Internet Explorer
is also visible for the demo application screens. However, for these screens we
overestimate the browser CPU time. This overestimation is most likely caused
by the estimation function for the odata service calls as these contribute largely
to the estimated overall CPU time for the screens. Hence, we have to run fur-
ther experiments to improve the regression function for odata calls in Internet
Explorer.

In general, the results demonstrate that our assumptions are valid and that
the introduced abstractions and heuristics do not significantly compromise the
prediction accuracy.

3.2 Threats to Validity

The results presented in Section B.I] demonstrate that our approach can accu-
rately predict the front-end performance of enterprise web applications. However,
it is important to note the threats to validity of our approach in order to un-
derstand its applicability in practice. The main restrictions we currently see are:

138 D. Westermann et al.

Small Validation Set. The screens evaluated in Section [3.1] are only part of two
web applications. However, both are very different in type and front-end perfor-
mance. One represents a typical enterprise web application for processing data,
the other a social enterprise application. Even though the predictions complied
to measurement for the case studies presented in Section Bl a broader set of
validation scenarios is required, to ensure its general applicability.

Single Library. In our industrial case study at SAP, developers of web applica-
tions usually use only the SAP UI5 library to build a web application front-end.
The library encapsulates other common JavaScript libraries. In other develop-
ment environments, especially non-enterprise web application development, it
is often the case that multiple libraries are combined to develop the front-end
code. Moreover, additional style definitions can affect front-end performance in
standard web sites [7] which could have been neglected for the enterprise web
applications developed with the SAP UI5 library and the corresponding pre-
defined styles. However, the experiment-based evaluation process presented in
this paper, as well as the experiment automation tooling [6] can be used to
efficiently derive prediction models for other libraries.

Custom JavaScript Code. Our prediction focuses on the influence of Ul elements
and service calls on front-end performance. This is a reasonable assumption for
typical enterprise applications. However, developers often add custom JavaScript
code to process data, to create new controls or to change configuration. This cus-
tom code will add to the browser CPU time and thus to front-end performance.
While such custom code played only a minor role in the case studies presented
in Section Bl it may have huge effects on front-end performance in other cases.
However, our goal is to give early feedback on front-end performance, thus, we
cannot consider such effects in our prediction.

Effort. The efforts necessary to implement the approach, i.e., to create and
maintain the prediction models are a crucial factor for the practical applicability
of the approach. These tasks should be performed by a small team of Ul library
and performance experts. Our experiment automation tooling [6] supports and
guides the team in the course of the prediction model construction process which
limits the efforts to a minimum. The decision if a software vendor wants to invest
the efforts in constructing a prediction model for his libraries depends on the
number of designers and developers that can benefit from the feedback provided
by the models.

4 Conclusions

In this paper, we presented an approach that shifts performance evaluation ef-
forts to a small team of Ul library and performance experts. We introduced a
methodology that enables the expert team to efficiently derive prediction models
for UI libraries used by the development groups. The bulk of developers and de-
signers in an organisation benefit from the model by getting early performance
feedback that is, for example, integrated in design tools. The feedback allows

Performance-Aware Design of Web Application Front-Ends 139

designers and developers to evaluate the front-end performance of web applica-
tions prior to implementation. They can assess different design alternatives and
chose the one with the best trade off between performance and user experience
(which does not necessarily have to be a trade off).

We applied the approach at SAP by creating a prediction model for the SAP
UI5 library and validated the accuracy of the model by comparing the predictions
to measurements of real web application screens. We integrated the derived pre-
diction model in an easy-to-use tool that is used by SAP UI5 developers to easily
evaluate the performance of their screen designs and by performance trainers to
raise the performance-awareness in developer training sessions.

In our future work, we are going to derive prediction models for web applica-
tion screens that run on mobile devices. Moreover, we plan to investigate other
popular JavaScript libraries.

References

1. Sap ui5: Ui development toolkit for html5,
http://scn.sap.com/community/developer-center/front-end
(last visited March 2013)
2. Webpagetest, http://www.webpagetest.org/| (last visited March 2013)
Yslow, http://developer.yahoo.com/yslow/| (last visited March 2013)

4. Bixby, J.: Web performance today,
http://www.webperformancetoday.com/2010/07/01/
the-best-graphs-of-velocity/

(last visited March 2013)

5. Brad Frost. Performance as design (2013),
http://bradfrostweb.com/blog/post/performance-as-design/
(last visited March 2013)

6. sopeco.org. Software performance cockpit, sopeco (2013), http://sopeco.org| (last
visited March 2013)

7. Souders, S.: High Performance Web Sites: 14 Steps to Faster-Loading Web Sites.
O’Reilly (2007)

8. Souders, S.: Even Faster Web Sites: Performance Best Practices for Web Develop-
ers. O’Reilly (2009)

9. Westermann, D., Happe, J., Hauck, M., Heupel, C.: The Performance Cockpit
Approach: A Framework for Systematic Performance Evaluations. In: 36th EU-
ROMICRO SEAA Conf., pp. 31-38. IEEE CS (2010)

10. Westermann, D., Happe, J., Krebs, R., Farahbod, R.: Automated inference of goal-
oriented performance prediction functions. In: 27th IEEE/ACM Int. Conf. on Au-
tomated Software Engineering, ASE 2012, pp. 190-199. ACM, New York (2012)

w

http://scn.sap.com/community/developer-center/front-end
http://www.webpagetest.org/
http://developer.yahoo.com/yslow/
http://www.webperformancetoday.com/2010/07/01/the-best-graphs-of-velocity/
http://www.webperformancetoday.com/2010/07/01/the-best-graphs-of-velocity/
http://bradfrostweb.com/blog/post/performance-as-design/
http://sopeco.org

	Performance-Aware Design
of Web Application Front-Ends

	1 Introduction
	2 PredictionModel
	3 Validation and Discussion
	3.1 Results
	3.2 Threats to Validity

	4 Conclusions
	References

