Awareness and Control for Inter-Widget
Communication: Challenges and Solutions

Olexiy Chudnovskyy!, Stefan Pietschmann?, Matthias Niederhausen?,
Vadim Chepegin®, David Griffiths?, and Martin Gaedke!

! Chemnitz University of Technology, Germany
{olexiy.chudnovskyy,gaedke}@informatik.tu-chemnitz.de
2 Technische Universitdt Dresden, Germany
stefan.pietschmann@tu-dresden.de
3 T-Systems Multimedia Solutions GmbH, Germany
matthias.niederhausen@t-systems—mms.com
4 University of Bolton, UK
d.e.griffiths@bolton.ac.uk
5 TIE Nederland B.V., the Netherlands
vadim.chepegin@tiekinetix.com

Abstract. Recently, widget-based Web applications, i. e., mashups have
gained momentum, as they make it possible to address the “long tail” of
software needs. By enabling data and control flow among widgets — inter-
widget communication (IWC) — integration of data and functionality can
be defined by the end users themselves. However, IWC entails several
problems that may reduce the overall user confidence in a system. Based
on the results of user studies on the OMELETTE mashup platform,
this paper analyzes the problem space and evaluates possible solutions
to improve user perception of IWC. Further, a discussion of promising
techniques is offered and pending challenges are identified.

Keywords: mashup, widget, inter-widget communication.

1 Introduction

The vision of users who drag-and-drop and combine applications from any loca-
tion on the Web, local drive, or cloud storage, in their own workspaces has never
been so close to becoming a reality. The modern Web offers powerful mashup
platforms which enable end users to create their own situational applications on
the fly without the intervention of developers. Research on such User Interface
Mashups (UI Mashups) has made significant progress towards this vision. One of
the most important concepts in this field is that of widgets — interactive compo-
nents which provide the end user with access to data, services, and application
logic. A number of initiatives have been proposed, addressing the emerging need
for simple, flexible, and powerful composition environments, e.g. [RI12].

Their main goal is to enable end users to aggregate data and functionality
from various sources on one screen or workspace. One of the key features of

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 114-[[22] 2013.
(© Springer-Verlag Berlin Heidelberg 2013


matthias.niederhausen@t-systems-mms.com
d.e.griffiths@bolton.ac.uk
vadim.chepegin@tiekinetix.com

Awareness and Control for IWC 115

these platforms, inter-widget communication (IWC), allows widgets to exchange
events and data. Depending on the communication paradigm, solutions differ in
their degree of automation (manual effort may be required to establish connec-
tions), end user suitability (usability and complexity of IWC configuration vary)
and generality of the approach (e. g., compatibility between widgets of different
vendors is not guaranteed).

The success of IWC-aware platforms is highly dependent on the degree to
which they support the above characteristics. Although all of them are significant
and desirable from the end users’ point of view, in practice it is hard to optimize
all three simultaneously. Moreover, recent research on domain specific mashups
shows that, to some extent, generality contradicts end user suitability [4].

The OMELETTE project [2] has been working on finding an appropriate trade-
off between the first two aspects, namely automation and end user suitability. The
results of this work were incorporated into a mashup environment with IWC im-
plemented by means of a publish-subscribe messaging pattern (pub/sub). A recent
user study [13] conducted with 44 participants in Germany and China revealed a
number of issues, some of which are the result of the underlying mashup approach.
The goal of this paper is to elaborate on these findings by presenting a survey of
approaches in which similar problems have been tackled and discussing the most
promising techniques in the context of mashup platforms.

2 Towards End-User Friendly IWC: Existing Challenges

In contrast to other approaches, in which mashup developers have to deal with
abstract control flow and data flow models, in OMELETTE there is no differ-
ence from a user perspective between design and execution. Mashup composition
takes place at run-time and its results are immediately evident to users. A dis-
tinct feature of OMELETTE is that users are not required to establish explicit
connections between widgets. Communication, i. e., data flow emerges as soon as
widgets are placed together within a workspace. This is achieved by means of the
messaging bus: widgets subscribe and publish messages on different communica-
tion channels, known as topics. The decision to apply pub/sub was motivated by
recent findings, which highlighted the importance of working “out-of-the-box”
[5] and the usability issues of wiring approaches for end users [10].

Thus the OMELETTE solution implies that the complex issues of composition
and wiring widgets are best left to skilled developers of widgets. This, however,
implies a lack of awareness and control by end users — an implication which was
confirmed in the interviews and observations during the user studies. Thus, the
focus of this paper is on challenges and problems from an end user perspective.

2.1 Problem Space: Awareness

The first problem space comprises the challenges that users face when interacting
with a pre-defined workspace. It may be split into the following sub-categories:

Cold Start Problem. Upon opening a workspace, end users do not know which
of the widgets are actually inter-connected. Users have to learn the data and



116 O. Chudnovskyy et.al.

control flows as they use a mashup and explore it. While in general this may
merely frustrate users, such “exploratory” interaction can also affect live data,
causing undesired side effects.

IWC Transitivity. Similarly, it is very hard for users to distinguish direct and
transitive connections between widgets. The latter occur when one widget trig-
gers action in another, which in turn triggers a third widget. While this behavior
may be intended, it can negatively affect users in their understanding of the re-
sulting functionality: First, users may see relationships when there are none,
and misinterpret their findings. Second, widget reuse and workspace refactoring
will result in unpredictable behavior, e. g., the loss of functionality whenever the
“linking” widget is missing.

Data Ignorance. Users typically do not see the data being transferred between
widgets. Instead, they only perceive the effects of their transfer, i.e., that a re-
ceiving widget is updated with new data. While one can argue that providing this
information may overburden users, data ignorance still leads to three problems:
users can only guess which widgets are compatible and work together; mistaken
expectations of the data transferred lead to misinterpretations of the applica-
tion behavior; possibly untrusted widgets might receive sensitive data without
the user’s consent.

2.2 Problem Space: Control

The second set of problems stems from the need of users to modify how
a mashup works. IWC connections established implicitly, i.e., based on the
pub/sub paradigm, greatly simplify the start of work with a mashup but also
lead to a loss of control.

Lack of Extensibility. Users cannot explicitly establish new connections between
widgets. Due to the potentially large number of widgets developed by indepen-
dent parties, it is both impossible to foresee all valid widget combinations and
impractical to try and guarantee their interoperability. Thus, users will often
want previously unconnected widgets to work together and to establish a link
between them manually.

Rigidity. In pre-configured workspaces, it may be necessary to change the con-
trol or data flow, i.e., the way widgets are connected by default. This can be
supported in its full complexity, as with wiring tools, or by offering more subtle
actions, such as allowing users to isolate widgets as senders or receivers of data.
There are many possible reasons for this, e.g., because a widget is untrusted,
does not work as expected, or simply because it should hold an intermediary
result to be saved for later.

Clunkiness. Establishing a temporary data flow can be desirable and more con-
venient than setting up a permanent connection. The studies revealed that many
end users intuitively work with the data in the widgets by trying to drag-and-
drop from source to receiver. This user-triggered temporary data flow is usually



Awareness and Control for IWC 117

not foreseen by IWC mechanisms — be they wiring or pub/sub approaches — and
platforms.

Addressing these challenges is crucial in order to boost end user acceptance
and to promote the use of widget mashups in business environments. The next
section will evaluate possible solutions.

3 Analysis of Existing Approaches

The following survey presents state-of-the-art techniques from the End User
Development domain (EUD) in the context of the above problem spaces. The
approaches are compared based on the degree of technical skill required by end
users to employ them in mashups.

3.1 Solutions for Problem Space: Awareness

Self-Descriptive Design (SDD). Systems employing SDD mechanisms try to
make users aware of functional dependencies between widgets at the applica-
tion layer by the means of annotations or visual markup. Whenever users are
confronted with new (e.g., shared) mashups, looking at individual widgets very
often does not provide the “big picture”, i.e., the overall functionality. SDD-
based approaches address this problem by making mashups as self-explanatory
as possible. Therefore, they provide annotation tools to be used in the phase of
mashup creation. In [3], the authors suggest to make internal knowledge explicit
by usage of implicit, explicit and literate annotations.

Additive Views (AV). One of the common practices for increasing user awareness
in software systems is to provide various views on the application. Using suitable
metaphors, these views enable users to explore the internal characteristics of the
application, i.e., structure, components, data and control flows. Additive views
are usually implemented either in an integrated or in a separated fashion. Inte-
grated views try to avoid the “break” between usage and programming modes. In
the EDYRA mashup environment [I2], a running mashup can be augmented by
dedicated overlays. Users are also able to highlight direct and transitive connec-
tions between components, raising the overall awareness of IWC in the mashup.

Surprise-Explain-Reward Strategy (SER). A surprise-explain-reward strategy
aims at communicating non-obvious behavior of a system to end users and letting
them engage in further exploration activities [14]. Information about inscrutable
activities appears in ways that grab users’ attention (surprise) and entice them
to learn more about the causes. An appropriate help system supports the learning
process and opens new perspectives on the possibilitites of the system (explain).
Having applied the newly learned technique, users benefit from advanced plat-
form capabilities (reward). In the Forms/3 project [I], this idea has been applied
to ensure data integrity in end-user-created spreadsheets.

Question Asking Strategy (QA). This strategy is applied to find the causes of
unexpected or non-obvious application behavior. Based on explicit knowledge



118 O. Chudnovskyy et.al.

about the structure of an application, the system is able to provide answers
to specific types of user inquires. A dialog often takes place in natural language
and does not require the user to learn any programming formalisms or debugging
techniques. The WhyLine tool [6] applies this technique to enable unskilled devel-
opers to test their algorithms. Using menus and pictograms of objects involved,
users can construct “why did” and “why did not” questions in order to explore
the system’s behavior. A user study showed that developers were more efficient
with this system than with traditional debugging tools. The HANDS project [9]
conducted several user studies in order to understand how people without pro-
gramming skills think of and express software design. After implementing their
findings using natural language in question building and answering, the authors
claimed that even ten-year-olds were able to create meaningful programs.

3.2 Solutions for Problem Space: Control

Parametrization (PAR). Along with interface customization, parametrization is
one of the simplest and most common forms of EUD. It assumes that software is
designed in a way that enables modification of its behavior by changing the values
of a pre-defined set of parameters, e.g. the location of a news feed. Netvibes and
iGoogle successfully employ the mechanism in widget-based dashboards. The
way in which the parametrization view is exposed differs: it can be offered by
widget developers or by the composition platform. The latter is done by portals
based on explicit parameter declarations in widget descriptors. Netvibes and
iGoogle support both parametrization modes.

Programming by Demonstration (PBD). This is a well-proven technique that
enables end users to specify desired functionality by providing examples of its
behavior [7]. Based on demonstrated activities and data samples, a PBD system
tries to generalize user actions and to derive an algorithm. One of the open
challenges facing PBD systems is how to represent the captured algorithm and to
facilitate its future adaptation by end users. The CRUISe project [11] proposes
an extension to the interface between widgets and mashup platform. Widget
authors can notify the platform of user interactions, e. g., when users drag data
beyond a widget’s perimeters. The platform monitors further user interactions,
e.g., the data being dropped onto other widgets. This way, users can implement
ad hoc data exchange and also establish permanent connections.

Programming by Specification (PBS). This comprises EUD approaches that en-
able users to create mashups by defining the data/control flow themselves. This
process of EUD is predominantly based on wvisual programming languages involv-
ing metaphors such as “Lego” constructors or electrical circuits. Similar tech-
niques are used in the majority of mashup platforms, such as Yahoo Pipe or
JackBe Prestdd. In [4], the authors propose sacrificing the generality of mashup
tools in favor of simplicity and comprehensiveness of the system by applying

!http://pipes.yahoo.com
2 http://mdc. jackbe.com/products/mashboard . php


http://pipes.yahoo.com
http://mdc.jackbe.com/products/mashboard.php

Awareness and Control for IWC 119

domain-specific composition tools. A user study of the ResEval platform has
confirmed this assumption, showing that end users understand the composition
paradigm and can master the development of mashups if they are focused on
single domains and unburdened from data transformation issues.

4 Comparison of Approaches and Drawn Guidelines

Table [I] presents a comparison of the previously discussed techniques based on
the expert evaluation.

Table 1. Applicability of EUD techniques to the widget mashup domain

Criteria/Approach SDD AV SER QA PAR PBD PBS
Cold Start Problem 0o ° - ' — - -

IWC Transitivity 0o ° oo oo - - -

Data Ignorance 0o 00 oo oo - - -
Rigidity - - - - oo o e
Clunkiness - - - - - e o

Lack of Extensibility - - - - - e o

ee — applicable without deep understanding of data types and control flows,
e — applicable with basic knowledge on data types and control flows,

oo — limited applicability without deep understanding of data types and control flows,
o — limited applicability with basic knowledge on data types and control flows,
— — not applicable

The Surprise-Ezrplain-Reward strategy differs from the Question-Asking ap-
proach in that users are notified about internal mashup activities right before
or right after they happened. This implies that the cold start problem is not ad-
dressed appropriately, i. e., users are unable to explore connections or exchanged
data before the real communication takes place. This disadvantage can be crucial
for cost- or load-causing widgets. The approach requires the platform to include
appropriate notification mechanisms and an explicit declaration of the mashup
structure including widget capabilities and IWC configuration.

Additive Views can address all of the awareness-related problems by enabling
end users to explore the internals of a mashup at any time. The main challenge
here is to find a compromise between complexity and usability, i.e., to identify
suitable abstractions and to adjust the view according to user skills. Recent
research proposes to implement overlay views to lower the cognitive load while
working with alternative mashup representations [I2]. Some familiarity with the
“wiring” concept is required to understand connections. To facilitate AV, the
platform needs to access mashup configuration and widget interface descriptions.

The applicability of Self-descriptive Design is constrained as it is hard to de-
sign descriptive graphics for a mashup if the screen size is not fixed. Accordingly,
the layout of mashups is not completely consistent between platforms, and it is
not possible to predict the degree to which users can change the position of wid-
gets. The adoption of this approach implies (a) that the container makes design



120 O. Chudnovskyy et.al.

tools available to the author, (b) that the design of the container needs to be
considered at the same time as the design of mashup functionality, and (c) that
this work will need to be repeated whenever the mashup is deployed in a new
container.

Within the Control problem space, Parametrization is the most promising
approach with a focus on end users. Although it does not cover the lack of
extensibility and clunkiness of a mashup, the rigidity of composition can be in-
fluenced if the IWC capabilities of a component are configurable. This, however,
goes at the expense of simplicity for the user. To lower the learning curve, all
configuration options should be exposed in a uniform manner, e.g., by avoiding
all widget-internal configuration dialogs.

Programming by Demonstration addresses the lack of extensibility and clunk-
iness problems and enables the definition of new communication paths in an
end-user-friendly way. Drag-and-drop has been successfully applied in many in-
stances and is well understood by end users. Also, observation of user interaction
with a mashup can be utilized to derive new connections between widgets. In
the context of the rigidity problem, PBD poses new challenges, such as end-user-
friendly representations of generalized algorithms and appropriate modification
facilities. Additionally, user interactions with widgets have to be made explicit,
e. g., by notifying the observation engine about starting drag’n’drop operations.

Programming by Specification strives to enable end users to design and mod-
ify existing software artifacts. However, in targeting all three problems from the
Control problem space, it assumes that users are able to write behavior specifica-
tions and are familiar with basic programming concepts. Projects which utilized
this technique have achieved varying degrees of usability. Environments based
on natural languages and domain specific vocabularies were more efficient and
comprehensive for end users than general purpose composition tools. To apply
PBS efficiently, supportive EUD techniques such as instant feedback, decision
support and integrity checks should be incorporated into the system.

Based on the above analysis, the following suggestions are made regarding the
combination of techniques to address the identified problems:

Cold Start Problem. Provide overlay views on the widget composition, visual-
izing possible communication paths (AV). These views can be layered (one layer
per widget) to use the screen estate efficiently. A help system can also be pro-
vided, enabling the user to explore the composition through questions in natural
language (QA).

IWC Transitivity. In the overlay view, enable users to discern the direction
of communication paths. During data transfer between widgets, visualize active
communication paths and enable their exploration and configuration (SER).
Empower the help system to answer questions in natural language regarding
directions of IWC paths (QA).

Data Ignorance. Enable users to explore possible data flows within the IWC
overlay view (AV). During active communication, notify users about ongoing
data exchange and enable exploration or modification of this communication



Awareness and Control for IWC 121

path (SER). Extend the help system to answer questions regarding data being
transferred between widgets (QA).

Lack of Extensibility. Use observation of user-widget interactions to derive
new possible connections between widgets (PBD).

Rigidity. Provide enable/disable parametrization of communication paths and
the possibility of isolating widgets from IWC (PAR).

Clunkiness. Provide a drag-and-drop infrastructure to enable one-time com-
munication between widgets (PBD).

5 Conclusions

This paper demonstrates that end-user friendly IWC is needed, but is also diffi-
cult to achieve. To tackle this problem, the typical challenges for IWC solutions
were derived from user studies conducted within the OMELETTE project and
literature review. Based on the findings, the next steps will be to implement
the chosen IWC mechanisms using as a basis the open source OMELETTE
platform and to evaluate the new features with end users.

Acknowledgment. This work was supported by the European Commission
(project OMELETTE, contract 257635).

References

1. Burnett, M., Atwood, J., Walpole Djang, R., Reichwein, J., Gottfried, H., Yang, S.:
Forms/3: A first-order visual language to explore the boundaries of the spreadsheet
paradigm. Journal of Functional Programming 11(2), 155-206 (2001)

2. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Ignacio, J.: End-User- Ori-
ented Telco Mashups: The OMELETTE Approach. In: WWW 2012 Companion,
pp. 235-238 (2012)

3. Dinmore, M.: Documenting problem-solving knowledge: Proposed annotation de-
sign guidelines and their application to spreadsheet tools. In: Proceedings of Eu-
SpRIG 2009, pp. 57-68 (2009)

4. Imran, M., Soi, S., Kling, F., Daniel, F., Casati, F., Marchese, M.: On the sys-
tematic development of domain-specific mashup tools for end users. In: Brambilla,
M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 291-298.
Springer, Heidelberg (2012)

5. Isaksson, E., Palmer, M.: Usability and inter-widget communication in PLEs. In:
Proceedings of MUPPLE 2010 (2010)

6. Ko, A., Myers, B.: Designing the whyline: a debugging interface for asking questions
about program behavior. In: Proceedings of CHI 2004, vol. 6, pp. 151-158 (2004)

7. Lieberman, H.: Your Wish is My Command: Programming By Example (Interac-
tive Technologies). Morgan Kaufmann (2001)

8. Lizcano, D., Soriano, J., Reyes, M., Hierro, J.J.: A user-centric approach for de-
veloping and deploying service front-ends in the future internet of services. In-
ternational Journal of Web and Grid Services 5, 155-191 (2009)

9. Myers, B., Pane, J., Ko, A.: Natural Programming Languages and Environments.
Communications of the ACM 47(9), 47-52 (2004)



122

10.

11.

12.

13.

14.

O. Chudnovskyy et.al.

Namoun, A., Nestler, T., De Angeli, A.: Service Composition for Nonprogrammers:
Prospects, Problems, and Design Recommendations. In: Proceedings of ECOWS
2010, pp. 123-130. IEEE (December 2010)

Pietschmann, S., Voigt, M., Meifiner, K.: Rich communication patterns for
mashups. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS,
vol. 7387, pp. 315-322. Springer, Heidelberg (2012)

Riimpel, A., Radeck, C., Blichmann, G., Lorz, A., Meifiner, K.: Towards do-
ityourself development of composite web applications. In: Proceedings of I'TS 2011,
pp. 330-332 (2011)

The OMELETTE Project (FP7/2010-2013 GA n 257635). D7.4 - evaluations of
demonstrators report. Public deliverable (2013), http://goo.gl/o0JFG

Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C.,
Durham, M., Rothermel, G.: Harnessing curiosity to increase correctness in end-
user programming. In: Proceedings of CHI 2003, pp. 305-312 (2003)


http://goo.gl/o0JFG

	Awareness and Control for Inter-Widget
Communication: Challenges and Solutions

	1 Introduction
	2 Towards End-User Friendly IWC: Existing Challenges
	2.1 Problem Space: Awareness
	2.2 Problem Space: Control

	3 Analysis of Existing Approaches
	3.1 Solutions for Problem Space: Awareness
	3.2 Solutions for Problem Space: Control

	4 Comparison of Approaches and Drawn Guidelines
	5 Conclusions
	References




