DireWolf - Distributing and Migrating User
Interfaces for Widget-Based Web Applications

Dejan Kovachev, Dominik Renzel, Petru Nicolaescu, and Ralf Klamma

Advanced Community Information Systems (ACIS) Group,
RWTH Aachen University,
Ahornstr. 55, 52056 Aachen, Germany
{kovachev,renzel ,nicolaescu,klamma}@dbis.rwth-aachen.de,
http://dbis.rwth-aachen.de

Abstract. Web applications have overcome traditional desktop appli-
cations especially in collaborative settings. However, the bulk of Web
applications still follow the “single user on a single device” computing
model. Therefore, we created the DireWolf framework for rich Web appli-
cations with distributed user interfaces (DUIs) over a federation of het-
erogeneous commodity devices supporting modern Web browsers such as
laptops, smart phones and tablet computers. The DUIs are based on wid-
get technology coupled with cross-platform inter-widget communication
and seamless session mobility. Inter-widget communication technologies
connect the widgets and enable real-time collaborative applications as
well as runtime migration in our framework. We show that the Dire-
Wolf framework facilitates the use case of collaborative semantic video
annotation. For a single user it provides more flexible control over dif-
ferent parts of an application by enabling the simultaneous use of smart
phones, tablets and computers. The work presented opens the way for
creating distributed Web applications which can access device specific
functionalities such as multi-touch, text input, etc. in a federated and
usable manner.

1 Introduction

People increasingly interact with a collection of heterogeneous computing devices
attached to their daily lives. However, most Web applications fail to combine de-
vices’ features into a cohesive symbiotic way to convey a single user task in a
collaborative fashion. One of the reasons behind this failure is the lack of tools
and methodologies required to develop applications spreading user interfaces
across multiple devices available to a particular user or group of users. Personal
computing is no longer confined to a single device. PCs together with commod-
ity smartphones, tablets, eBook readers, gaming consoles and interactive TVs
can be federated over the Internet to create collaborative multi-device interac-
tive systems which can benefit from the diverse device capabilities. An individ-
ual can interact in different ways with such symbiotic computing environments,
consisting of personal devices.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 99-[[T3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://dbis.rwth-aachen.de

100 D. Kovachev et al.

As a consequence, monolithic single-device user interfaces (UI) devolve to
Distributed User Interfaces (DUI). DUIs separate, migrate and merge seamlessly
between devices. Additionally, they can adapt to different platforms [I] and
account for changes in device availability to achieve a continuous application
experience [2].

Developing distributed user interfaces is challenging [3]. From the user per-
spective, two challenges are salient. First, users should be supported to adapt
the distribution to their needs. Second, users should experience seamless UI mi-
gration. Migrated Ul components preserve state and remain consistent with the
whole application context. Concerning the use of multiple devices, current Web
applications can be well rendered on different platforms. However, most of them
ignore the possibility of using multiple personal computing devices. Coopera-
tion between such devices related to distributed interfaces is scarce and mostly
limited to device-specific static interface separation.

B Y B ROLE - sevianno21. P w | N
€ € [} role-sandbox.eu/spaces/sevianno2.1

= mrE

SEviANNO [Search) S o

Choose Video (28 available) SemanticPaRussa 00:14 00:15
~ SemanticPl Gemmany 00:25 0026
2| ||concept RwTHAactoo:2s 0026

Login as user sevianno was successfull S| |lcemantcpbamyan. 0039 0040
AgentObjec Michael Jan< 00:45 00:46

AgentObjec Michael Jans 00:49 00:50

\ SemanticPl ShahidiHas: 00:52 00:53

“ v Object. Early repres 00:54 00:55

Gandhara RWTH Object Relef 00:58 00559
Uplnaced by Fadmin Object Steinrelef 01:00 01:01
= Object Greek Gods 01:26 01:27 -

S iR T
) S Gt RATH
© Descrpton
(8] RWTH Aachen University about Gandhara
'S E);},ﬂb\lmw at Bundeskunsthalle, Bonn.
]
9 R
< Rechon Gandrars Bonn Extiiion Bundeskurs| i
K] by Sl =l
)
.% e) [(o
o]
-
Q
3
>
i)
=
=
)
©
)
L
3 Smartphones:
° Tablets: on-site vigieo capture,
-5) i . eo-tagging on maps
= video players with Laptops and PCs: agnd vidgego agnnotatign
§ multi-touch interaction text editing [

Fig.1. An example of distribution of user interface components (widgets) to diverse
(mobile) computing devices

To address these challenges, we present DireWolf, a framework for distributed
Web applications based on widgets. We have chosen to work with Web wid-
gets because they represent interface components with limited, but clear-cut

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 101

functionality, dedicated to smaller tasks. Widgets can be shared, reused, mashed
up and personalized between applications. By splitting the interface into separate
widgets and enabling them to exchange information, customizable Web applica-
tions can be developed. Whereas previous work [45] on widget applications and
mashups considers single-end devices only, we examine the concept of widget-
based Web applications combined with device awareness, session mobility and
cross-device cooperation.

To illustrate the concept, we shortly describe a semantic video annotation ap-
plication (cf. Figure[Il). This application was transformed from a typical Web ap-
plication into a widget-based one, thus validating the feasibility of our approach.
A semantic video annotation application is an ideal candidate for extended UI
interactions: users watch videos, annotate them at certain time points or for spe-
cific time intervals and navigate through a video using the annotations. Various
types of available semantic annotations (agent, time, concept, object type) can
be added using text input and interacting with a video player. Place annotations
can be pinpointed on a map. However, e.g. full screen mode of the video player
hides all other UI controls on one device. In an annotation scenario, distributing
the UI enhances user experience. Users can play the video in full screen on one
device and can use additional devices to annotate it or to browse through the
video. Moreover, they can use device-specific features for each of the Ul elements,
e.g. multi-touch on a smartphone for interacting with a digital map. Preserving
UT state across devices is also required for such a scenario, e.g. resume at current
position instead of restart after migration of a video player, continue annotating,
etc. Our paper brings forward the following contributions:

— a framework for easy browser-based distribution of Web widgets between
multiple devices

— facilitation of extended multi-modal real-time interactions on a federation of
personal computing devices

— provision of continuous state-preserving widget migration

DireWolf helps managing a set of devices and handles communication and control
of distributed parts of the Web application. The conceptual and implementation
details of the DireWolf framework, together with the possibility of integration
into existing widget platforms is detailed in the next sections.

The rest of the paper is structured as follows. In Section 2], relevant literature
related to our approach is presented. In Section Bl we introduce current widget-
based Web applications as a starting point for our DUI framework. Sections M
presents the DireWolf framework in detail with a focus on the framework concept
and continuous widget migration. Section [l provides implementation details.
Evaluation results are discussed in Section [l Section [1] concludes this work and
provides an outlook to future research.

102 D. Kovachev et al.

2 Related Work

Our DUI approach is related to work in two research domains, namely mecha-
nisms for distributing and migrating Web UI, and frameworks for using multiple
personal computing devices to perform a single user task.

Distributing Web Uls means ungrouping Web document elements and pre-
senting them separately without compromising application functionality. The
granularity of UI splitting can range from arbitrary partitions to pre-defined Ul
blocks. Ghiani et al. [6] provide a mechanism to select a part of a Web page
which can be migrated and shown on a mobile device. However, this approach
is only feasible for the adaptation of Web pages and does not support presen-
tation of different Ul components on multiple devices at the same time. Model-
based approaches [2I7I8] define different abstract Ul configurations at design
time and generate concrete Ul presentations at runtime. These works demon-
strate dynamic distribution of Web interfaces among heterogeneous platforms.
But reusability and extensibility of sub-services/components are major short-
comings in these approaches. A new Ul schema needs to be fixed for a complete
application. Sub-service definitions cannot be separated. Consequently, the ser-
vices of an application cannot be ported with ease. Learning to use the schema
for an application induces additional development effort. Moreover, if a new ap-
plication joins the system, new UI schema files must be written, and the root UI
schema must be modified. In contrast, we consider Web applications composed
of widgets using open Web standards.

Dynamic DUIs should support runtime component migration. Necessary steps
for a successful migration are presented in the Roam project [9]. Roam preserves
the application execution state information such as heap, stack, network sockets,
etc. at the start of the migration and restores them after migration. For con-
tinuous Web browsing, Alapetite et al. [I0] migrate Web sessions across mobile
devices using 2D-barcodes captured by cameras. A dedicated State Mapper is
also developed in [II] for state recovery during UI migration between mobile
phones and digital TVs. Inspired by these approaches, our framework realizes
complete continuous migration tailored to Web widgets.

Multi-device collaboration means that multiple devices can join the same
application scope and that these devices can complete tasks together. Early ap-
proaches have focused on supporting desktop applications with devices such as
PDAs and handheld computers over wired or wireless connections. Pebbles [12]
extends computing and I/O functionalities by involving heterogeneous devices.
The extended Uls are native applications specially tailored for each comput-
ing platform and each functionality. Thus, multi-device Ul are tightly coupled
with the computing hardware. Melchior et al. [I3] present a P2P framework
that helps deploy distributed graphical user interfaces. All devices must install
the framework before they can create components or import remote components
directly from other devices. Many projects consider one-to-one mappings be-
tween users and devices, which is more applicable for collaborative scenarios.
MarcoFlow [14J5] uses modular UTI to represent the relevant controls and in-
formation to the user, but it focuses on the orchestration of business processes

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 103

involving multiple users with different data views. Pierce and Nichols [15] use the
idea of ownership to address personal computing devices and to enable seamless
user experience over multiple devices. Their prototype simplifies the develop-
ment of applications that are aware of a user’s devices but it does not support
UI migration. The DireWolf framework supports any device with an available
modern Web browser. There is no need for pre-installed components or config-
urations. In the following, we first introduce Widget-based Web applications to
clarify the context in which DireWolf was developed.

3 Widget-Based Web Applications

Important prerequisites for distributing individual elements of complete Web
applications are a clear separation into conceptual and functional units, a context
for managing separation, and cross-device communication between these units.
In this section we briefly introduce widget-based Web applications and discuss
why they fulfill the above prerequisites and thus served as foundation for the
DireWolf framework.

The basic building block is a widget. Conceptually, a widget is a self-contained
mini-application with limited, however clean-cut functionality. Widgets are usu-
ally designed to accomplish small stand-alone tasks, which may recur in multiple
different applications. Furthermore, widgets are usually designed with limited
display size, such that multiple widgets fit on one desktop browser screen or
single widgets fit on limited-size mobile device screens. By design, widgets are
reusable for multiple purposes in different applications. As such, widgets strongly
resemble mobile applications. Technically speaking, existing widget standard
specifications define widgets as packaged Web applications including means of
configuration and access to dedicated widget application programming inter-
faces. Principally, any existing Web application can be “widgetized”. However,
the form factor of limited display size often requires an adapted design. In prac-
tice, widgets usually serve as minimal frontends to more complex Web services.
For our work, widgets perfectly serve as the functional units to be migrated
across devices.

Complex applications can be achieved by orchestrating multiple widgets in a
dashboard fashion in widget containers. Research towards the effective integra-
tion of widgets to complete collaborative Web applications resulted in additional
layers on top of widget containers that make use of the DireWolf framework, i.e.
widget spaces and inter-widget communication.

First, combinations of multiple widgets require a working context and techni-
cal support to manage such contexts. In our work, we employ the concept of a
widget space [4] as working context. A widget space is a collaboration context,
in which multiple users collaboratively manage and operate sets of widgets and
additional resources to create custom applications for different purposes. For this
work, we extended widget spaces by the additional notion of multiple devices
per user.

104 D. Kovachev et al.

Second, the integration of multiple widgets to complete applications requires
an interoperable communication mechanism between widgets, referred to as
Inter-widget Communication (IWC). With such a usually publish-subscribe-
based mechanism, messages can be broadcasted from any widget and possibly
dispatched by other widgets, thus allowing the orchestration [16] and tighter in-
tegration of multiple widgets to complete applications. Most existing approaches
only support local IWC, i.e. communication between widgets within one single
browser instance. An additional feature of our complete IWC approach includes
remote communication between widgets across different browser instances and
users [17]. For this work, we use both forms of IWC as carrier for message ex-
change between different parts of our DUI framework within and across devices.

Figure 2al depicts the initial setting from which this work departed. In the fol-
lowing section we elaborate on the extensions contributed by our DUI framework
in detail, thus leading to the situation in Figure 2bl

4 DireWolf Framework

Based on the state-of-the-art in widget-based Web applications discussed in the
previous section, we now introduce the DireWolf framework. First, we discuss
the particular requirements for such a framework, which are not yet covered by
existing widget-based Web application frameworks.

The DUI framework is involved in every layer of the widget-based Web appli-
cation. As shown in Figure 2B components should be created for widgets, client
browsers, backend services as well as the data storage. Framework client com-
ponents are included in the widget application document rendered in the Web
browser. They manage communication and synchronization between widgets on
one device but also between widgets on other devices. The framework server
components extend the functionality of common widget spaces with services for
data persistence, user device profiles and shared application state.

The DUI framework provides management services for device profiles and
widgets when the user owns multiple devices. The inner workings of a widget
are out of concern of the DUI framework. A requirement is that a mobile device
needs to host some modern Web browser such as those found on most commodity

widget-based web app.

{ . i[other 1
! Space T gy
! I lservices |

(a) Traditional (non- (b) DUI approach
distributed) approach

Fig. 2. Widget-based Web applications

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 105

Manage Distribution & Migration

Manage Device Ownership Manage Application State
device list context
device instance ‘ application state ‘
A A
connectivity ‘ location ‘
profile ‘ internal state ‘
Manage Device Information Manage Widget State

Fig. 3. Requirements to a dynamic widget-based DUI framework

smartphones and tablets. The use cases focus on creating, getter/setter and
operating on resources (widgets).

4.1 Requirements Analysis

As a first step, we performed a requirements analysis with the goal of improving
deficiencies found in existing work on DUISs (cf. Section[2), thereby taking into ac-
count the current state-of-the-art in widget-based Web applications (cf. Section[3).
Figure Bl provides a high-level overview of the main identified requirements for a
DUI framework, grouped into four interrelated categories: device information, de-
vice ownership, distribution € migration, application state and widget handling.

A DUI framework must enable the management of general and context-specific
device information. General information includes information on device connec-
tivity and profile. A device profile captures information on device type (e.g. smart-
phone, tablet, laptop) and capabilities (e.g. operating system, display size, in/
output modalities, browser type) required for device recognition and adaptation
purposes. Device connectivity describes the current availability of the device for
collaboration and should be updated in real time. Context-specific information in-
cludes device location, i.e. in which context the device is currently active and dis-
played widgets, i.e. which widgets are displayed on the device in the current context.

Furthermore, a DUI framework must dynamically capture and manage device
ownership. With the ever dropping prices of mobile devices, a person’s device
portfolio is likely to change often. Each user should thus be enabled to dynam-
ically manage a personal device list. Thereby, each device instance describes a
virtual device which can be bound to a real device. The introduction of virtual
devices provides additional flexibility, i.e. multiple configurations for a single
device and switching between real devices.

Obviously, a DUI framework must support distribution and migration of wid-
gets across devices within a given context. In its simplest form, migration is

106 D. Kovachev et al.

a synchronized procedure controlled by the framework, where a widget is first
removed from a source device and then created on a target device. However,
constellations of widget distributions must be persistent. Thus, a DUI frame-
work must be enabled to manage, store and synchronize application state within
a given working context. For simple migration, application state must include
information on the context and on widget locations, i.e. which widgets are cur-
rently residing on which device for which person. However, simple migration does
not guarantee a seamless working experience. Although general widget configu-
ration parameters are persistently managed by current standard widget engines,
a widget will lose its internal state during the migration procedure. For some
widgets this is not an issue (e.g. a clock widget), for some it is. Thus, a DUI
framework must support the management, storage and synchronization of inter-
nal widget state. With such measures, a DUI framework is enabled to support
continuous migration, i.e. a widget stores a snapshot of its internal state before
removal from a source device and restores internal state after its creation on the
target device.

4.2 Framework Design

Figure @ depicts the key architecture features of the DireWolf framework. As
mentioned in Sec. Bl the DUI framework requires a real-time communication
mechanism to “glue” all distributed UI components into one cohesive application.
The Message Router server component provides bi-directional asynchronous
message exchange between the client components and the server.

DUI Client is a widget helper component to be included as a JavaScript library
in the widget namespace. DUI Client usage in widgets is optional (e.g. legacy
widgets). These widgets can still be distributed and migrated. However, the DUT
Client enhances DUI-related features for the widget and provides an API to
interpret and create framework messages and events. DUI Client has additional
methods to store widget state as part of application state at the server-side
service component. It sends requests, and server components send back responses
as well as broadcast notifications to all other Web clients if necessary.

DUI Manager is the central DUI component on the client browser. All fea-
tures/functionalities are directly or indirectly related to it. DUI Manager
connects to other components of the framework in three ways: request-response
communication, local and remote IWC. For example, DUI Manager uses requests-
response communication to retrieve user profile and space information from
server-side services. Local IWC is used for communicating with widgets run-
ning in the same browser context. Remote IWC provides the message-exchange
mechanism for widgets and DUI Managers located at different devices.

At start, the DUI manager fetches the user profile which contains the device
list and the device profiles. The connectivity of a user’s devices is monitored
constantly after the DUI manager is activated. The user can choose one vir-
tual device per real device. If a device is not listed, the framework attempts to
recognize it by using cookies, HTTP User-Agent headers and user input.

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 107

device server device

: : '
DUI Responder
I DUIClient DUIClient DUIClient
LIWC

] 5| message |

DUI Manager (<€ > <
RIWC router RIWC

User

l Space

DUI Manager

Y

RIWC - Remote inter-widget communication
LIWC - Local inter-widget communication

Fig. 4. Abstract architecture of the DUI framework

DUI Responder is the server-side central DUI component. All DUI relevant
requests are redirected to this component. The main tasks of DUI Responder
are to maintain DUI-relevant data and keep all DUI managers on client browsers
synchronized.

4.3 Widget Migration

By using a widget approach, the dynamic transition of Ul components from
desktop to mobile devices is simpler. Widgets resemble mobile device screen
sizes by design. Rendering a widget on smartphone or a tablet only requires
adaptation of the widget containing element.

Considering the failover, since mobile devices can go offline unexpectedly, wid-
gets can become inactive. The DUI Responder considers a widget to be inactive
if it cannot find an active device displaying the widget. Different procedures are
provided to inactive widgets and active widgets. Figure [illustrates the case of
continuous migration. When a DUI Manager initiates a widget migration on any
device, the DUT Responder looks for the widgets on all devices of the requesting
user. If the widget is found to be inactive, the DUI Responder switches the wid-
get location from no device or an inactive device to the migration target device.
Then, it sends out a message to perform the migration procedure on all DUI
Managers.

During continuous migrations, widget state is saved right before migration.
The widget can retrieve state as a snapshot for continuing the task. DUI-
supported widgets can be either inactive or active. DUI Manager tries to restore
the state for inactive widgets and guarantees the continuity for active widgets.
For inactive widgets, the steps are the same as the non-continuous migration
of inactive widgets, except that DUI Manager sends the last saved state of the
widget.

For continuous migration of active widgets, DUI Manager asks the widget’s
DUI Client to collect the widget state for the incoming migration. On receiving

108 D. Kovachev et al.

the command for migration, DUI Manager on the source device informs the DUI
Client to prepare the widget removal. DUI Manager on the target device extracts
information from the command. DUI Client is then guided by DUI Manager to
run several steps to finish the migration.

DUI client DUI manager bul DUI manager DUI client
the source responder the target

3,,l ,,,,,,,,,,, i —

initiate migration

widget
,,,,,,,,,,,,,, active
! init migration —
Initiate migration is DUI widget init migration
CCCFCCIITIIGTTIITIICIIITIIEICIICIE]
1 = i
! prepare
v : migration
N i
Save widget state --4 collect
3 state
|
|

states

Y
. " change widget | change [T
Change widget 2 Tocation widget

location ! location
T : ‘ erform .
: ; prepare removal ‘W perform

migration

! i
v :
' on removal DUI migration
Create/remove R P display widget|
A -
widget ; done update meta-Ul__ 1 o 1nect to DUI
remove e doorecod Lo L
widget | | | Widget state

"""""""" >| finish migration

H
; '
meta-Ul |
Update widget state |[----- ""”f””f”""ﬂ: app. state]

i
'
i
finish migration [] 1

Fig. 5. Sequence diagram for continuous migration of active widgets

5 Implementation

The implementation of the DireWolf framework builds upon the Open Source
Java-based ROLE SDK[] including a platform for hosting and managing Widget-
based Web applications as described in Section Bl As basic widget engine, the
ROLE platform employs the standard OpenSocial [I8] container Apache
Shindigq. On top of Shindig, the platform implements a set of RESTful ser-
vices for user management and personal and collaborative widget space manage-
ment. It should be noted that the space concept is currently standardized in the
OpenSocial 3.0 specification. Consequently, it will be implemented in Shindig
and will possibly become part of other Shindig-based widget platforms such as
Apache Ravdl. Furthermore, the platform supports secure authentication and

! mttp://sourceforge.net/projects/role-project/
2 http://shindig.apache.org/
3http://rave.apache.org

http://sourceforge.net/projects/role-project/
http://shindig.apache.org/
http://rave.apache.org

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 109

authorization by employing OpenID and OAuth. A real-time service realizes the
integration with a standard XMPP [19] server providing support for multi-user
chat conversations in widget spaces and publish-subscribe support for remote
IWC. Associations between modules are realized by injection. For our work we
strongly employ IWC, using HTML5 Web Messaging [20] for local IWC. An
additional feature of our complete IWC approach includes remote communica-
tion between widgets across different browser instances and users [I7] using the
XMPP protocol [19] and its publish-subscribe extension [2I]. We use both forms
of IWC as a carrier for message exchange between different parts of our DUI
framework within and across devices.

On client side, the platform provides an AJAX browser frontend based on
HTML/JavaScript/CSS and 'Queryﬁ. For client-side real-time support the ROLE
platform employs strophe.js?, a robust XMPP library for JavaScript including
support for XMPP over WebSocket [22] in modern browsers. Widget spaces are
used as context for IWC. In collaboration with user and space management ser-
vices, the platform real-time service manages one dedicated publish-subscribe
channel per space for IWC including whitelist-based access control. On client
side, every widget space is instrumented with a DUI Manager including an IWC
prozy, which routes outgoing IWC messages to the affiliated XMPP server via
the strophe-based XMPP connection and incoming messages to all widgets in the
space via HTML5 Web Messaging [20]. Widgets can be equipped with IWC sup-
port by simply importing a small IWC client library and implementing functions
for publishing and processing IWC messages. The DUI Client library extends the
plain IWC library by a set of functions related to storage and retrieval of internal
widget state.

Given that many technical prerequisites for DireWolf were already fulfilled by
the ROLE platform, we chose an integration approach. In its current version,
DireWolf is an extension of the existing ROLE platform and its components.
The DUI Responder is realized as an additional RESTful service for managing
device migration-specific data such as personal device lists, device profiles, and
user and space-related application states. Client side components such as DUI
Manager and DUI Client communicate application state and initiate widget mi-
gration by simple HTTP requests to the DUI Responder, which in turn controls
the synchronization process and initiates real-time synchronization necessary for
migration. All migration-related communication between individual components
(Message Router, DUI Manager, DUI Clients) is handled via ROLE IWC over a
separate publish-subscribe channel to avoid interference with regular developer-
defined TWC messages.

For convenient control of widget distribution and device registration DireWolf
provides a set of user interface components as frontend to the DUI Manager.
Figure [0 shows the main component integrated into the side panel of a wid-
get space’s view in the overall ROLE platform user interface . The upper Device
Manager button bar provides shortcuts to a device manager console for personal

4http://jquery.com/
® http://strophe.im/strophejs

http://jquery.com/
http://strophe.im/strophejs

110 D. Kovachev et al.

Devices

Device Nanager

L ke -
— Current Device -
L B
Armotate
Semantic Annotations
Login

Tideo List

— Remote Devices -

@ ipad
Sevianno Player
iphone

Place Annotations

@ nac

Fig. 6. DUI manager user interface in a widget space sidebar panel

device management including detailed configuration and debugging options. The
Current Device resp. Remote Devices sections list all widgets displayed on the
current device resp. remote devices along with device connectivity. In the exam-
ple in Figure[fll the current widget space contains six widgets, distributed to four
devices with different profiles (PC, iPad, iPhone and Mac). Only two devices are
currently active, indicated by the green circle next to the device name. Thus,
only five widgets are currently visible. One widget was previously migrated to
the user’s iPhone, which is currently disconnected, indicated by a grey marker.
By using drag and drop, widgets can be (re-)distributed between active devices.

6 Evaluation

The focus of our experiments was to research how distributing widget-based
user interfaces in Web applications across different personal user devices can
be achieved. In this section, we briefly present performance evaluation results
regarding widget migration.

The migration component of the DireWolf framework was tested on a wireless
local area network, simulating the home or office conditions. The ping latency
of the network (of 6ms) was considered negligible. Two setups were considered.
The first setup measured migration between two desktop machines (Mac OS,
Windows 7), using the Google Chrome browser (version 23). The second setup
measured migration between desktop machines and an iPad 1 with iOS 5.0, using
the Safari Web browser.

Tests were conducted with widgets with simple functionality, measuring the
time between two consecutive migrations across two devices. In order to avoid
noise induced by local time inconsistencies between devices, a reverse operation
was automatically executed after initial migration, and total round-trip time

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 111

was recorded. For consistency reasons, two kinds of migrations - simple migra-
tion (non-state-preserving) and continuous migration (state-preserving) - were
evaluated. Round trip times for 100 migrations (i.e. 50 rounds) were measured.

Overall, our prototype achieved good performance results. Average migration
time for simple migration was around 362.6 ms for a “hello world” widget with
a standard deviation of 48.9 ms. Continuous migration requires two more steps
than simple migration, i.e. storing widget state and rendering the widget with
the Apache Shindig rendering engine. Average time for continuous migration
between the MacBook and the desktop computer was 1305 ms, with a standard
deviation of 147.2 ms. The results show higher average migration time between
the MacBook and the iPad, i.e. an average time of 2069 ms and the standard de-
viation of 222.6 ms. This is due to the hardware differences and the time needed
to load all the dependencies. By decomposing the time necessary for the migra-
tion and observing the interval needed by each component of our framework, the
results show that the initiation and the widget rendering process take more time
than the migration itself. The Shindig server’s Javascript library loading and
the widget rendering steps require approximatively 69% of the time. In contrast,
the loading time needed by the DUI components is less than 25% of the overall
time.

The presented evaluation is limited to technical properties of the widget mi-
gration feature. However, we conducted an extensive user study for assessing
the usability of the DireWolf framework, which due to space limitations could
not be discussed in this paper. In addition, DireWolf is currently being tested
on a bigger range of devices. Even though DireWolf has been derived from the
existing ROLE Widget SDK, as described in Section[] it is not yet included into
an existing official SDK release. Encouraged by the small overhead and latency
that the framework introduces, the next step is to integrate DireWolf into the
future versions of the SDK.

7 Conclusions and Future Work

In this paper, we try to leverage the lack of dynamic interactive environments
based on Web technologies which can take advantage of the various personal
devices used by an individual. We provide a framework that can facilitate user
interactions on a federation of personal computing devices, by making use of dis-
tributed user interfaces. Furthermore, we believe that a widget-based approach to
encapsulate Uls and application functionalities benefits Web developer commu-
nities already familiar with this programming model. Apache Rave and Shindig
are examples of such open-source communities. Since widgets can be grouped,
shared, reused and personalized, our approach ensures unique user experiences
with DUI applications. Our framework also provides features for distributing
and migrating widgets, at the same time hiding the complexity of device aware-
ness, communication and session mobility. As initial evaluation indicates, the
framework adds only small overhead to the overall widget rendering process.
The framework we present here paves the way for many interesting experi-
ments. We are already testing complex interaction modalities within the semantic

112 D. Kovachev et al.

video annotation application illustrated in Figure [l Furthermore, we envision
our framework in the domains of technology-enhanced learning and interactive
smart television. We also consider using the emerging WebRTC projectﬁ for
real-time browser-to-browser communication without a server intermediate. As
a next step beyond the personal multi-device distributed computing environ-
ment, we will extend DireWolf to support multi-device multi-user collaboration.
Further research must address security and privacy issues in message exchange
across devices and users. We are committed to open source development and we
aim to integrate the IWC and DireWolf within an open source project, such as
Apache Rave. We plan to provide tutorials, Web casts and code snippets with
intention to form a sustainable developer community around our solution.

Acknowledgements. The research leading to these results has received funding
from the European Commission’s Seventh Framework Programme (FP7/2007-
2013) under grant agreements no 231396 - Responsive Open Learning
Environments (ROLE) project and no 318209 - Learning Layers: Scaling up
Technologies for Informal Learning in SME Clusters and the Excellence Initia-
tive of German National Science Foundation (DFG) within the research cluster
Ultra High-Speed Mobile Information and Communication (UMIC). We thank
Ke Li for his framework implementation.

References

1. Lopez-Espin, J.J., Gallud, J.A., Lazcorreta, E., Penialver, A., Botella, F.: A For-
mal View of Distributed User Interfaces. In: Distributed User Interfaces CHI 2011
Workshop, University of Castilla-La Mancha, Spain, pp. 97-100 (2011)

2. Vandervelpen, C., Vanderhulst, G., Luyten, K., Coninx, K.: Light-Weight Dis-
tributed Web Interfaces: Preparing the Web for Heterogeneous Environments. In:
Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 197-202. Springer,
Heidelberg (2005)

3. Blumendorf, M., Roscher, D., Albayrak, S.: Distributed User Interfaces for Smart
Environments: Characteristics and Challenges. In: Distributed User Interfaces CHI
2011 Workshop, University of Castilla-La Mancha, Spain, pp. 25-28 (2011)

4. Bogdanov, E., Salzmann, C., Gillet, D.: Contextual Spaces with Functional Skins
as OpenSocial Extension. In: The Fourth International Conference on Advances in
Computer-Human Interactions, ACHI 2011, pp. 158-163 (2011)

5. Daniel, F.; Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: Distributed
Orchestration of User Interfaces. Information Systems 37(6), 539-556 (2012)

6. Ghiani, G., Paterno, F., Santoro, C.: On-demand Cross-Device Interface Com-
ponents Migration. In: Proceedings of the 12th International Conference on Hu-
man Computer Interaction with Mobile Devices and Services (MobileHCI 2010),
pp. 299-308. ACM Press (2010)

7. Baillie, L., Schatz, R., Simon, R., Anegg, H., Wegscheider, F., Niklfeld, G., Gassner,
A.: Designing Mona: User Interactions with Multimodal Mobile Applications. In:
Proceedings of 11th International Conference on Human-Computer Interaction
(HCI International), pp. 22—-27. Lawrence Erlbaum Associates (2005)

Shttp://www.webrtc.org/

http://www.webrtc.org/

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 113

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Luyten, K., Coninx, K.: Distributed User Interface Elements to support Smart
Interaction Spaces. In: Proceedings of the Seventh IEEE International Symposium
on Multimedia, ISM 2005, pp. 277-286. IEEE Computer Society (2005)

Chu, H.H., Song, H., Wong, C., Kurakake, S., Katagiri, M.: Roam, a Seamless
Application Framework. Journal of Systems and Software 69(3), 209226 (2004)
Alapetite, A.: Dynamic 2D-barcodes for Multi-Device Web Session Migration In-
cluding Mobile Phones. Personal Ubiquitous Computing 14(1), 45-52 (2010)
Paterno, F., Santoro, C., Scorcia, A.: User Interface Migration Between Mobile
Devices and Digital T'V. In: Forbrig, P., Paterno, F. (eds.) HCSE/TAMODIA 2008.
LNCS, vol. 5247, pp. 287-292. Springer, Heidelberg (2008)

Myers, B.A.: Using Handhelds and PCs Together. Communications of the
ACM 44(11), 34-41 (2001)

Melchior, J., Grolaux, D., Vanderdonckt, J., van Roy, P.: A Toolkit for Peer-to-
peer Distributed User Interfaces: Concepts, Implementation, and Applications. In:
Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, pp. 69-78. ACM Press (2009)

Daniel, F., Soi, S., Tranquillini, S., Casati, F., Chang, H., Li, Y.: MarcoFlow:
Modeling, Deploying, and Running Distributed User Interface Orchestrations. In:
Proceedings of the 8th International Conference on Business Process Management
Demo Track, pp. 23-27. Springer (2010)

Pierce, J.S., Nichols, J.: An Infrastructure for Extending Applications’ User Expe-
riences Across Multiple Personal Devices. In: Proceedings of the 21st Annual ACM
Symposium on User Interface Software and Technology (UIST 2008), pp. 101-110.
ACM Press (2008)

Zuzak, 1., Ivankovic, M., Budiselic, I.: A Classification Framework for Web Browser
Cross-Context Communication. CoRR abs/1108.4770 (2011)

Govaerts, S., Verbert, K., Dahrendorf, D., Ullrich, C., Schmidt, M., Werkle, M.,
Chatterjee, A., Nussbaumer, A., Renzel, D., Scheffel, M., Friedrich, M., Santos,
J.L., Duval, E., Law, E.L.-C.: Towards responsive open learning environments:
the ROLE interoperability framework. In: Kloos, C.D., Gillet, D., Crespo Garcia,
R.M., Wild, F., Wolpers, M. (eds.) EC-TEL 2011. LNCS, vol. 6964, pp. 125-138.
Springer, Heidelberg (2011)

OpenSocial and Gadgets Specification Group: OpenSocial Specification 2.5.0,
http://opensocial-resources.googlecode.com/svn/spec/2.5/

(Online: last accessed March 2013)

Saint-Andre, P.: RFC 6121: Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence. Technical report, XMPP Standards Foundation
(2011)

Hickson, I.: HTML5 Web Messaging. Working draft, W3C (2011)

Millard, P., Saint-Andre, P., Meijer, R.: XEP-0060: Publish-Subscribe Version 1.13,
Draft. Technical report, XMPP Standards Foundation (2010)

Hickson, I.: The WebSocket API. Editor’s draft, W3C (2013)

http://opensocial-resources.googlecode.com/svn/spec/2.5/

	DireWolf - Distributing and Migrating User
Interfaces for Widget-Based Web Applications

	1 Introduction
	2 Related Work
	3 Widget-Based Web Applications
	4 DireWolf Framework
	4.1 Requirements Analysis
	4.2 Framework Design
	4.3 Widget Migration

	5 Implementation
	6 Evaluation
	7 Conclusions and Future Work
	References

