
Florian Daniel
Peter Dolog
Qing Li (Eds.)

 123

LN
CS

 7
97

7

13th International Conference, ICWE 2013
Aalborg, Denmark, July 2013
Proceedings

Web Engineering

Lecture Notes in Computer Science 7977
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Florian Daniel Peter Dolog Qing Li (Eds.)

Web Engineering
13th International Conference, ICWE 2013
Aalborg, Denmark, July 8-12, 2013
Proceedings

13

Volume Editors

Florian Daniel
University of Trento
Department of Information Engineering and Computer Science
Via Sommarive 5, 38123 Povo, Italy
E-mail: daniel@disi.unitn.it

Peter Dolog
Aalborg University
Department of Computer Science
Selma Lagerloefs Vej 300, 9220 Aalborg, Denmark
E-mail: dolog@cs.aau.dk

Qing Li
City University of Hong Kong
Department of Computer Science
83 Tat Chee Ave., Kowloon, Hong Kong, China
E-mail: itqli@cityu.edu.hk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39199-6 e-ISBN 978-3-642-39200-9
DOI 10.1007/978-3-642-39200-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013941133

CR Subject Classification (1998): H.3.5, H.3.3, H.3, H.4, D.2.1, D.2, J.1, H.5.3, H.5,
H.2.8, I.2.6

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume collects the research articles, tool demonstrations, posters, tutorials,
and keynote speeches presented at the 13th International Conference on Web
Engineering (ICWE 2013). The discipline of Web engineering is a special branch
of the broader area of software engineering that specifically focuses on the World
Wide Web and the Internet. The year 2013, in this respect, is an important
year: it’s the 30th birthday of the Internet! In fact, its official launch dates back
to the year 1983, in which the Advanced Research Projects Agency Network
(ARPANET) officially adopted the so-called TCP/IP stack of protocols with
the Transmission Control Protocol (TCP) and Internet Protocol (IP) at its core,
turning into what became the Internet. The second enabler of Web engineering,
the World Wide Web, is only slightly younger: it dates back to the year 1989,
in which the physicist Tim Berners-Lee at CERN, Switzerland, founded the
World Wide Web with its HyperText Transfer Protocol (HTTP) able to transmit
interlinked hypertext documents over a network. Since then, both the Web and
the Internet have experienced tremendous adoption and evolution, with Web
3.0, the Semantic Web, IPv6, Internet of Things, and Cloud Computing being
only some of the latest buzzwords produced by the unstoppable fermentation
that characterizes the biggest network of our planet.

In this context, the International Conference on Web Engineering (ICWE)
aims to be a premier fair and discussion forum of the latest developments, con-
cerns, and challenges that occupy industry and academia alike. ICWE specifically
aims to promote scientific and practical excellence in Web Engineering and to
bring together researchers and practitioners working on all aspects regarding
the engineering of Web-based software systems. The conference contributes to
the advancement of the state of the art of technologies, methodologies, program-
ming languages, algorithms, models, protocols, tools, and metrics and specifically
looks for excellent research contributions, cutting-edge engineering practices, and
empirical insights.

ICWE 2013 was held during July 8–12 in Aalborg, Denmark. It was the 13th
edition of the conference series, following prior editions held in Berlin, Germany
(2012); Pahpos, Cyprus (2011); Vienna, Austria (2010); San Sebastian, Spain
(2009); Yorktown Heights, NY, USA (2008); Como, Italy (2007); Palo Alto, CA,
USA (2006); Sydney, Australia (2005); Munich, Germany (2004); Oviedo, Spain
(2003); Santa Fe, Argentina (2002); and Caceres, Spain (2001).

This year’s calls for research and industry papers jointly attracted 92 sub-
missions from 31 countries, covering a wide spectrum of topics, such as, among
others: Web mining and knowledge extraction, semantic and linked data man-
agement, crawling and Web search, model-driven Web engineering, component-
based Web engineering, Rich Internet Applications (RIAs) and client-side
programming, Web services, and end-user development. All submissions were

VI Preface

carefully reviewed by the Program Committee, consisting of renowned experts
and practitioners in the field of Web engineering coming from 20 different coun-
tries. As a result, 21 submissions were accepted as full research papers and four
as industry papers, resulting in a 24.7% acceptance rate for full research papers
and a 27.2% overall acceptance rate of full papers. In addition to full papers, 11
submissions were accepted as short papers with an extra 12.9% rate for short
papers. The scientific program was completed with seven workshops, six demon-
strations and posters, as well as with four tutorials and three keynote talks by
Wil van der Aalst (Technische Universiteit Eindhoven, The Netherlands), Sean
Wang (Fudan University, Shanghai, China), and Jan Borchers (RWTH Aachen,
Germany).

Of course, such a rich program would not have been possible without the
collaboration of a large number of people. First of all, we would like to thank
the 250 authors who submitted their work to ICWE 2013 for evaluation. They are
the very reason for this conference to exist. Then, we would like to thank all the
ProgramCommittee members and external reviewers, who provided valuable and
constructive feedback to the authors and important assessments to the Program
Chairs for the selection of papers. We would like to thank the Workshop Chairs,
Industry Track Chairs, Demo/Poster Chairs, Tutorial Chairs, PhD Symposium
Chairs, and local organizers for their professional work. We would like to express
our gratitude to the keynote speakers for their availability and insights, as well
as to Geert-Jan Houben, who acted as liaison to ISWE and the ICWE Steering
Committee. The final thanks go to Aalborg University and all the ICWE 2013
sponsors that contributed to making this event happen.

July 2013 Florian Daniel
Peter Dolog

Qing Li

Organization

The ICWE 2013 edition was organized by the Intelligent Web and Information
Systems Group at the Computer Science Department of Aalborg University in
cooperation with Visit Aalborg.

General Chair

Peter Dolog Aalborg University, Denmark

Program Chairs

Florian Daniel University of Trento, Italy
Qing Li City University of Hong Kong SAR, China

Industry Track Chairs

Erik Wilde EMC Corporation, USA
Cesare Pautasso University of Lugano, Switzerland

Workshop Chairs

Michael Sheng The University of Adelaide, Australia
Jesper Kjeldskov Aalborg University, Denmark

Tutorial Chairs

Maristella Matera Politecnico di Milano, Italy
Benjamin Satzger Microsoft, USA

Demo and Poster Chairs

Marcos Baez University of Trento, Italy
Alessandro Bozzon TU Delft, The Netherlands

PhD Symposium Chairs

Oscar Diaz University of the Basque Country, Spain
Marco Winckler ICS-IRIT, Paul Sabatier University, France

VIII Organization

ICWE Steering Committee Liaison

Geert-Jan Houben TU Delft, The Netherlands

Local Arangements Chair

Hanne Christiansen Visit Aalborg, Denmark

Program Committee

Silvia Abrahão Polytechnic University of Valencia, Spain
Marcos Báez University of Trento, Italy
Ladjel Bellatreche LIAS/ISAE-ENSMA, France
Boualem Benatallah University of New South Wales, Australia
Davide Bolchini University of Indiana, USA
Niels Olof Bouvin Aarhus University, Denmark
Alessandro Bozzon Politecnico di Milano, Italy
Marco Brambilla Politecnico di Milano, Italy
Jordi Cabot INRIA, Nantes, France
Yi Cai South China University of Technology, China
Coral Calero University of Castilla-La Mancha, Spain
Cinzia Cappiello Politecnico di Milano, Italy
Fabio Casati University of Trento, Italy
Sven Casteleyn Polytechnic University of Valencia, Spain
Wei Chen Beijing Institute of Technology, China
Dickson Chiu Dickson Computer Systems, Hong Kong SAR,

China
Antonella De Angeli University of Trento, Italy
Olga De Troyer Vrije Universiteit Brussel, Belgium

Óscar Dı́az University of the Basque Country, Spain
Damiano Distante Università Telematica TELMA, Italy
Schahram Dustdar Vienna University of Technology, Austria
Federico M. Facca CREATE-NET, Italy
Flavius Frasincar Erasmus University Rotterdam,

The Netherlands
Piero Fraternali Politecnico di Milano, Italy
Martin Gaedke Chemnitz University of Technology, Germany
Yunjun Gao Zhejiang University, China
Irene Garrigos University of Alicante, Spain
Dragan Gasevic Athabasca University, Canada
Athula Ginige University of Western Sydney, Australia
Kaj Groenbaek Aarhus University, Denmark
Michael Grossniklaus Portland State University, USA
Volker Gruhn Universität Duisburg-Essen, Germany
Han Hao National Institute of Informatics, Japan

Organization IX

Simon Harper University of Manchester, UK
Olaf Hartig Humboldt-Universität zu Berlin, Germany
Bernhard Haslhofer Cornell University, NY, USA
Martin Hepp Universität der Bundeswehr München,

Germany
Geert-Jan Houben Delft University of Technology,

The Netherlands
Patrick Hung University of Ontario Institute of Technology,

Canada
Jesper Kjeldskov Aalborg Universtity, Denmark
In-Young Ko Advanced Institute of Science and Technology,

Korea
Nora Koch LMU Munich, Germany
Frank Leymann University of Stuttgart, Germany
An Liu University of Science and Technology of China
Steffen Lohmann University of Stuttgart, Germany
Xiangfeng Luo Shanghai University, China
Maristella Matera Politecnico di Milano, Italy
Nikolay Mehandjiev University of Manchester, UK
Santiago Meliá University of Alicante, Spain
Anders Møller Aarhus University, Denmark
Hamid Motahari HP Labs Palo Alto, USA
Wolfgang Nejdl University of Hannover, Germany
Tobias Nestler SAP Research Dresden, Germany
Axel-Cyrille Ngonga University of Leipzig, Germany
Moira Norrie ETH Zurich, Switzerland
Luis Olsina National University of La Pampa, Argentina
Satoshi Oyama Hokkaido University, Japan
George Pallis University of Cyprus, Cyprus
Oscar Pastor Polytechnic University of Valencia, Spain
Fabio Paternò ISTI-C.N.R., Italy
Cesare Pautasso University of Lugano, Switzerland
Vicente Pelechano Polytechnic University of Valencia, Spain
Alfonso Pierantonio University of L’Aquila, Italy
Xiaojun Quan City University of Hong Kong SAR,

China
I.V. Ramakrishnan Stony Brook University, USA
Florian Rosenberg IBM T.J. Watson Research Center, NY, USA
Gustavo Rossi UNLP, Argentina
Fernando Sánchez-Figueroa Universidad de Extremadura, Spain
Daniel Schwabe PUC-RIO, Brazil
Quan Z. Sheng University of Adelaide, Australia
Sören Auer Universität Leipzig, Germany
Giovanni Toffetti-Carughi IBM Haifa Research, Israel
Takehiro Tokuda Tokyo Institute of Technology, Japan
Riccardo Torlone Roma Tre University, Italy

X Organization

Jean Vanderdonckt Université Catholique de Louvain, Belgium
Xiao Wei Shanghai University, China
Shiting Wen Ningbo Technological Institute of Zhejiang

University, China
Marco Winckler Paul Sabatier University, France
Bin Xu Tsinghua University, China
Yi Zhuang Zhejiang Gongshang University, China
Qingguo Zhou Lanzhou University, China

Poster/Demo Track Program Committee

Fabio Casati University of Trento, Italy
Sven Casteleyn Universidad Politécnica de Valencia, Spain
Alessio Gambi Università Della Svizzera Italiana, Switzerland
Andrea Mauri Politecnico di Milano, Italy
Santiago Meliá Universidad de Alicante, Spain
Maristella Matera Politecnico di Milano, Italy
Marcello Leida Khalifa University of Science, Technology and

Research, United Arab Emirates
Nora Koch Ludwig Maximilians University of Munich,

Germany
Marco Brambilla Politecnico di Milano, Italy
Stefan Pietschmann TU Dresden, Germany
Devis Bianchini University of Brescia, Italy
William Van Woensel Vrije Universiteit Brussel, Belgium
Javier Luis Cnovas Izquierdo INRIA, Ecole des Mines de Nantes, France
Gustavo Rossi University of La Plata, Argentina
Richard Chbeir University of Bourgogne, France
Fernando Sánchez Figueroa Universidad de Extremadura, Spain
Flavius Frasincar Erasmus University of Rotterdam,

The Netherlands

External Reviewers

Saeed Aghaee University of Lugano, Switzerland
Jose Alfonso Aguilar University of Alicante, Spain

Calderón
Liaqat Ali Athabasca University, Canada
Cristobal Arellano The University of the Basque Country, Spain
Mohsen Asadi Athabasca University, Canada
Vikas Ganjigunte Ashok Stony Brook University, USA
Moshe Chai Barukh University of New South Wales, Australia
Seyed-Mehdi-Reza Beheshti University of New South Wales, Australia
Sebastian Bress LIAS/ISAE-ENSMA, France
Hugo Brunelière INRIA, Nantes, France

Organization XI

Javier Luis Canovas INRIA, Nantes, France
Izquierdo

Olexiy Chudnovskyy Chemnitz University of Technology, Germany
Jose Maria Conejero Universidad de Extremadura, Spain
Adrin Fernández Polytechnic University of Valencia, Spain
Marco Fisichella University of Hannover, Germany
Miriam Gil Polytechnic University of Valencia, Spain
Allel Hadjali LIAS/ISAE-ENSMA, France
Matthias Heinrich Chemnitz University of Technology, Germany
Michael Krug Chemnitz University of Technology, Germany
Angel Lagares University of New South Wales, Australia
Marino Linaje Universidad de Extremadura, Spain
Jose-Norberto Mazón University of Alicante, Spain
Salvador Martnez INRIA, Nantes, France
Sujith Mathew University of Adelaide, Australia
Bardia Mohabbati Athabasca University, Canada
Hernan Molina GIDIS Web, Universidad Nacional de La

Pampa, Argentina
Rober Morales-Chaparro Universidad de Extremadura, Spain
Abdallah Namoun University of Manchester, UK
Arun Nampally Stony Brook University, USA
Stefan Negru University of Stuttgart, Germany
Talal H. Noor University of Adelaide, Australia
Andreas Papadopoulos University of Cyprus, Cyprus
Yury Puzis Stony Brook University, USA
Yongrui Qin University of Adelaide, Australia
Bene Universität der Bundeswehr München,

Rodriguez-Castro Germany
Roberto Universidad de Extremadura, Spain

Rodŕıguez-Echeverŕıa
Seung Ryu University of New South Wales, Australia
Melody Siadaty Athabasca University, Canada
Stalo Sofokleous University of Cyprus, Cyprus
Jean Stéphane LIAS/ISAE-ENSMA, France
Alex Stolz Universität der Bundeswehr München,

Germany
László Török Universität der Bundeswehr München,

Germany

Stefano Tranquillini University of Trento, Italy
Demetris Trihinas University of Cyprus, Cyprus
William Van Woensel Vrije Universiteit Brussel, Belgium
Stefan Wild Chemnitz University of Technology, Germany
Yang Yang Ningbo Technological Institute of Zhejiang

University, China
Lina Yao University of Adelaide, Australia
Yong Xu University of Adelaide, Australia

XII Organization

Sponsoring Institutions

Otto Monsted Fond, Denmark,
Det Obelske Famieliefond, Denmark

Table of Contents

Keynotes

Challenges in Service Mining: Record, Check, Discover 1
Wil M.P. van der Aalst

How to Share Data Securely . 5
X. Sean Wang

An Internet of Custom-Made Things: From 3D Printing and Personal
Fabrication to Personal Design of Interactive Devices 6

Jan Borchers

Web Application Engineering

MockAPI: An Agile Approach Supporting API-first Web Application
Development . 7

José Mat́ıas Rivero, Sebastian Heil, Julián Grigera,
Martin Gaedke, and Gustavo Rossi

Semantic Data Driven Interfaces for Web Applications 22
Vagner Nascimento and Daniel Schwabe

Integrating Component-Based Web Engineering into Content
Management Systems . 37

Stefania Leone, Alexandre de Spindler, Moira C. Norrie, and
Dennis McLeod

Client-Server Programming

Hidden-Web Induced by Client-Side Scripting: An Empirical Study 52
Zahra Behfarshad and Ali Mesbah

Discovering Implicit Schemas in JSON Data . 68
Javier Luis Cánovas Izquierdo and Jordi Cabot

The SWAC Approach for Sharing a Web Application’s Codebase
Between Server and Client . 84

Markus Ast, Stefan Wild, and Martin Gaedke

XIV Table of Contents

Component-Based User Interfaces

DireWolf - Distributing and Migrating User Interfaces for Widget-Based
Web Applications . 99

Dejan Kovachev, Dominik Renzel, Petru Nicolaescu, and
Ralf Klamma

Awareness and Control for Inter-Widget Communication: Challenges
and Solutions . 114

Olexiy Chudnovskyy, Stefan Pietschmann, Matthias Niederhausen,
Vadim Chepegin, David Griffiths, and Martin Gaedke

Heuristic Role Detection of Visual Elements of Web Pages 123
M. Elgin Akpınar and Yeliz Yeşilada

Performance-Aware Design of Web Application Front-Ends 132
Dennis Westermann, Jens Happe, Petr Zdrahal, Martin Moser, and
Ralf Reussner

Mashups and End-User Development

CapView – Functionality-Aware Visual Mashup Development for
Non-programmers . 140

Carsten Radeck, Gregor Blichmann, and Klaus Meißner

Social Spreadsheet . 156
Juan José Jara Laconich, Fabio Casati, and Maurizio Marchese

User-Driven Automation of Web Form Filling . 171
Oscar Diaz, Itziar Otaduy, and Gorka Puente

Navigation Analysis and Collaboration

Generating Feature Usage Scenarios in Client-Side Web Applications . . . 186
Josip Maras, Maja Štula, and Jan Carlson

Supporting Customized Views for Enforcing Access Control Constraints
in Real-Time Collaborative Web Applications . 201

Patrick Gaubatz, Waldemar Hummer, Uwe Zdun, and
Mark Strembeck

Towards Simulation-Based Similarity of End User Browsing
Processes . 216

Sudhir Agarwal and Martin Junghans

A Domain Specific Language for Orchestrating User Tasks Whilst
Navigation Web Sites . 224

Sérgio Firmenich, Gustavo Rossi, and Marco Winckler

Table of Contents XV

Web Information Retrieval

Tag Cloud Generation for Results of Multiple Keywords Queries 233
Martin Leginus, Peter Dolog, and Ricardo Gomez Lage

Summaries on the Fly: Query-Based Extraction of Structured
Knowledge from Web Documents . 249

Besnik Fetahu, Bernardo Pereira Nunes, and Stefan Dietze

Mining Taxonomies from Web Menus: Rule-Based Concepts and
Algorithms . 265

Matthias Keller and Hannes Hartenstein

Evaluation of Personalized Social Ranking Functions of Information
Retrieval . 283

Mohamed Reda Bouadjenek, Amyn Bennamane, Hakim Hacid, and
Mokrane Bouzeghoub

Crawling and Revisitation

Building Rich Internet Applications Models: Example of a Better
Strategy . 291

Suryakant Choudhary, Mustafa Emre Dincturk, Seyed M. Mirtaheri,
Guy-Vincent Jourdan, Gregor v. Bochmann, and Iosif Viorel Onut

Intelligent and Adaptive Crawling of Web Applications for Web
Archiving . 306

Muhammad Faheem and Pierre Senellart

Enhancing Web Revisitation by Contextual Keywords 323
Tangjian Deng, Liang Zhao, and Ling Feng

Semantic Data Search and Interlinking

A Linear and Monotonic Strategy to Keyword Search over
RDF Data . 338

Roberto De Virgilio, Antonio Maccioni, and Paolo Cappellari

Identifying Candidate Datasets for Data Interlinking 354
Luiz André P. Paes Leme, Giseli Rabello Lopes,
Bernardo Pereira Nunes, Marco Antonio Casanova, and
Stefan Dietze

Discovering Links between Political Debates and Media 367
Damir Juric, Laura Hollink, and Geert-Jan Houben

XVI Table of Contents

Assisting User Browsing over Linked Data: Requirements Elicitation
with a User Study . 376

Dhavalkumar Thakker, Vania Dimitrova, Lydia Lau,
Fan Yang-Turner, and Dimoklis Despotakis

Web Services and Cloud Computing

A Framework for Migrating Web Applications to Web Services 384
Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and
Thomas R. Dean

Automatic Refinement of Service Compositions . 400
Umberto S. Costa, Mirian Halfeld Ferrari,
Martin A. Musicante, and Sophie Robert

A Generative Approach for the Adaptive Monitoring of SLA in Service
Choreographies . 408

Antonia Bertolino, Antonello Calabrò, and Guglielmo De Angelis

Detecting Occasional Reputation Attacks on Cloud Services 416
Talal H. Noor, Quan Z. Sheng, and Abdullah Alfazi

Industry Papers

Multi-tenancy Performance Benchmark for Web Application
Platforms . 424

Rouven Krebs, Alexander Wert, and Samuel Kounev

Agile Software Development with Open Source Software in a Hospital
Environment – Case Study of an eCRF-System for Orthopaedical
Studies . 439

Tünay Özcan, Semra Kocak, and Philipp Brune

USTO.RE: A Private Cloud Storage Software System 452
Frederico Durão, Rodrigo Assad, Anderson Fonseca, José Fernando,
Vińıcius Garcia, and Fernando Trinta

Market Intelligence: Linked Data-driven Entity Resolution for Customer
and Competitor Analysis . 467

Ulli Waltinger, Dan Tecuci, Florin Picioroaga,
Cosmin Grigoras, and Sean Sullivan

Demonstrations and Posters

GAwI: A Comprehensive Workspace Awareness Library for
Collaborative Web Applications . 482

Matthias Heinrich, Franz Josef Grüneberger, Thomas Springer,
Philipp Hauer, and Martin Gaedke

Table of Contents XVII

On Weighted Hybrid Track Recommendations . 486
Simon Franz, Thomas Hornung, Cai-Nicolas Ziegler,
Martin Przyjaciel-Zablocki, Alexander Schätzle, and
Georg Lausen

A Hybrid B2B App Recommender System . 490
Alexandru Oprea, Thomas Hornung, Cai-Nicolas Ziegler,
Holger Eggs, and Georg Lausen

PEUDOM: A Mashup Platform for the End User Development of
Common Information Spaces . 494

Maristella Matera, Matteo Picozzi, Michele Pini, and Marco Tonazzo

Customized Views on Profiles in WebID-Based Distributed Social
Networks . 498

Stefan Wild, Olexiy Chudnovskyy, Sebastian Heil, and Martin Gaedke

Inter-Widget Communication by Demonstration in User Interface
Mashups . 502

Olexiy Chudnovskyy, Christian Fischer, Martin Gaedke, and
Stefan Pietschmann

A Linked Data Perspective for Effective Exploration of Web APIs
Repositories . 506

Devis Bianchini, Valeria De Antonellis, and Michele Melchiori

Tutorials

Responsive Design and Development: Methods, Technologies and
Current Issues . 510

Michael Nebeling and Moira C. Norrie

An Introduction to Human Computation and Games with a Purpose . . . 514
Alessandro Bozzon and Luca Galli

Current Challenges in Web Crawling . 518
Denis Shestakov

Enterprise Application Integration – The Cloud Perspective 522
Jörg Lässig and Markus Ullrich

Author Index . 527

Heuristic Role Detection of Visual Elements of Web Pages
M. Elgin Akpınar and Yeliz Yeşilada

Erratum

E1

Challenges in Service Mining:

Record, Check, Discover

Wil M.P. van der Aalst1,2

1 Architecture of Information Systems, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

w.m.p.v.d.aalst@tue.nl
2 International Laboratory of Process-Aware Information Systems, National

Research University Higher School of Economics (HSE),
33 Kirpichnaya Str., Moscow, Russia

Abstract. Process mining aims to discover, monitor and improve real
processes by extracting knowledge from event logs abundantly available
in today’s information systems. Although process mining has been ap-
plied in hundreds of organizations and process mining techniques have
been embedded in a variety of commercial tools, to date these techniques
have rarely been used for analyzing web services. One of the obvious
reasons is that cross-organizational event data cannot be shared easily.
However, (1) messages exchanged between services tend to be structured,
(2) service-orientation continues to be the predominant implementation
paradigm, and (3) the most substantial efficiency gains can often only be
achieved across different organizations. Hence, there are many possible
applications for service mining, i.e., applying process mining techniques
to services. If messages are recorded, then one can discover a process
describing interactions between services. If, in addition, descriptive or
normative models are available, one can use process mining to check con-
formance and highlight performance problems. This extended abstract
aims to provide pointers to ongoing work on service mining and lists
some of the main challenges in this emerging field.

1 From Process Mining to Service Mining

Process mining is an enabling technology for service mining. Process mining can
be used to discover processes from raw event data, check the conformance of ob-
served and modeled behavior, enhance models by improving or extending them
with knowledge extracted from event logs [2]. The uptake of process mining is
not only illustrated by the growing number of papers, but also by commercial
analysis tools providing process mining capabilities, cf. Disco (Fluxicon), Percep-
tive Process Mining (Perceptive Software, before Futura Reflect and BPMone
by Pallas Athena), ARIS Process Performance Manager (Software AG), Pro-
cessAnalyzer (QPR), Interstage Process Discovery (Fujitsu), Discovery Analyst
(StereoLOGIC), and XMAnalyzer (XMPro).

Web services have become one of the main paradigms for architecting and im-
plementing business collaborations within and across organizational boundaries

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 1–4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 W.M.P. van der Aalst

[10,20]. The functionality provided by many of today’s business applications is
encapsulated within web services, i.e., software components described at a se-
mantic level, which can be invoked by application programs or by other services
through a stack of Internet standards including HTTP, XML, SOAP, WSDL and
UDDI [10,20]. Once deployed, web services provided by various organizations
can be inter-connected in order to implement business collaborations, leading to
composite web services.

In the context of web services, typically all kinds of events are being recorded.
It is possible to record events related to activities inside services or interactions
between services (e.g., messages) [6,8,9]. The autonomous nature of services and
the fact that they are loosely coupled makes it important to monitor and analyze
their behavior. In this paper, we will refer to this as service mining.

Starting point for process mining is an event log. Each event in such a log
refers to an activity (i.e., a well-defined step in some process) and is related to
a particular case (i.e., a process instance). The events belonging to a case are
ordered and describe one “run” of the process. Event logs may store additional
information about events. In fact, whenever possible, process mining techniques
use supplementary information such as the resource (i.e., person, device, or soft-
ware component) executing or initiating the activity, the timestamp of the event,
and other data attributes (e.g., the size of an order). As mentioned before, three
types of process mining can be distinguished: (1) process discovery, (2) confor-
mance checking, and (3) model enhancement. See [2] for an introduction to the
corresponding techniques.

The correlation of messages is a particular challenge for service mining [3].
Process models always describe the behavior of cases, also referred to as process
instances. Without correlating messages, it is impossible to discover causalities.
Another challenge is to use additional information provided by such messages.
In case of asynchronous messages with sender and receiver information we can
exploit knowledge about distributed processes, e.g., choices need to be communi-
cated. For example, service x cannot expect the service y to take action because
x did not send a message to y. Thus far, these insights are not used in process
discovery [16].

2 Related Work on Service Mining

In this section, we provide some pointers to papers on services mining and related
topics. Given space restrictions, we do not aim to be complete. For additional
references we refer the interested reader to [3].

In [9] a concrete application of process mining to web services is described.
IBM’s WebSphere product is used as a reference system and its CEI (Common
Event Infrastructure) logs are analyzed using ProM.

An approach to check the conformance of web services was described in [6].
The paper includes a description of various experiments using Oracle BPEL.
The token-based replay techniques presented in [18] were used to measure
conformance.

Challenges in Service Mining 3

In [8] an LTL-based approach to check conformance was proposed. This ap-
proach uses a graphical declarative language to describe the normative behavior
of services. Rather than modeling a detailed process, this approach allows for
checking graphically specified constraints such as “a payment should always be
confirmed”.

The topic of event correlation has been investigated in the context of system
specification, system development, and services analysis. In [7] and [11] various
interaction and correlation patterns are described. In [17] a technique is presented
for correlating messages with the goal to visualize the execution of web services.
In [16] so-called operating guidelines are exploited for conformance checking.

Dustdar et al. [12,14] proposed techniques for services interaction mining, i.e.,
applying process mining techniques to the analysis of service interactions.

Nezhad et al. [15] developed techniques for event correlation and process dis-
covery from web service interaction logs. The authors introduce the notion of
a “process view” which is the result of a particular event correlation. However,
they argue that correlation is subjective and that multiple views are possible. A
collection of process views is called the “process space”.

In [19], Simmonds et al. propose a technique for the run-time monitoring of
web service conversations. The authors monitor conversations between partners
at runtime as a means of checking behavioral correctness of the entire web service
system. This is related to the earlier work on conformance checking [4,6,18]
mentioned before.

Within the ACSI project the focus is on many-to-many relationships between
instances. So-called “proclets” [5] are used to model artifact centric models. A
conformance checking approach for such models is presented in [13] and imple-
mented in ProM.

In [1] the topic of “cross-organizational mining” was introduced. Here the goal
is not to analyze interacting services but to compare services that are variants
of one another. Cross-organizational mining can be used for benchmarking and
reference modeling.

Acknowledgements. This work was supported by the Basic Research Program
of the National Research University Higher School of Economics (HSE).

References

1. van der Aalst, W.M.P.: Configurable Services in the Cloud: Supporting Variability
While Enabling Cross-Organizational Process Mining. In: Meersman, R., Dillon,
T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 8–25. Springer, Heidelberg
(2010)

2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Berlin (2011)

3. van der Aalst, W.M.P.: Service Mining: Using Process Mining to Discover, Check,
and Improve Service Behavior. IEEE Transactions on Services Computing (in print,
2013), http://doi.ieeecomputersociety.org/10.1109/TSC.2012.25

http://doi.ieeecomputersociety.org/10.1109/TSC.2012.25

4 W.M.P. van der Aalst

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on
Process Models for Conformance Checking and Performance Analysis. WIREs Data
Mining and Knowledge Discovery 2(2), 182–192 (2012)

5. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A Frame-
work for Lightweight Interacting Workflow Processes. International Journal of Co-
operative Information Systems 10(4), 443–482 (2001)

6. van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.M.W.:
Conformance Checking of Service Behavior. ACM Transactions on Internet Tech-
nology 8(3), 29–59 (2008)

7. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction: Pat-
terns, Formalization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

8. van der Aalst, W.M.P., Pesic, M.: Test and Analysis of Web Services. In: Speci-
fying and Monitoring Service Flows: Making Web Services Process-Aware, ch. 2,
pp. 11–56. Springer, Berlin (2007)

9. van der Aalst, W.M.P., Verbeek, H.M.W.: Process Mining in Web Services: The
WebSphere Case. IEEE Bulletin of the Technical Committee on Data Engineer-
ing 31(3), 45–48 (2008)

10. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures and Applications. Springer, Berlin (2004)

11. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-
Oriented Architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 245–259. Springer, Heidelberg (2007)

12. Dustdar, S., Gombotz, R.: Discovering Web Service Workflows Using Web Ser-
vices Interaction Mining. International Journal of Business Process Integration
and Management 1(4), 256–266 (2006)

13. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Conformance
Checking of Interacting Processes with Overlapping Instances. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 345–361. Springer,
Heidelberg (2011)

14. Gombotz, R., Dustdar, S.: On Web Services Workflow Mining. In: Bussler, C.J.,
Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 216–228. Springer, Heidelberg
(2006)

15. Montahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event Correla-
tion for Process Discovery fromWeb Service Interaction Logs. VLBD Journal 20(3),
417–444 (2011)

16. Müller, R., van der Aalst, W.M.P., Stahl, C.: Conformance Checking of Services
Using the Best Matching Private View. In: Lohmann, N. (ed.) WS-FM 2012. LNCS,
vol. 7843, pp. 49–68. Springer, Heidelberg (2013)

17. De Pauw, W., Lei, M., Pring, E., Villard, L., Arnold, M., Morar, J.F.: Web Services
Navigator: Visualizing the Execution of Web Services. IBM Systems Journal 44(4),
821–845 (2005)

18. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on
Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)

19. Simmonds, J., Gan, Y., Chechik, M., Nejati, S., Farrell, B., Litani, E., Water-
house, J.: Runtime Monitoring of Web Service Conversations. IEEE Transactions
on Services Computing 2(3), 223–244 (2009)

20. Zhang, L.J., Zhang, J., Cai, H.: Services Computing, Core Enabling Technology of
the Modern Services Industry. Springer, Berlin (2007)

How to Share Data Securely

X. Sean Wang

School of Computer Science, Fudan University, Shanghai, China
xywangCS@fudan.edu.cn

Data is increasingly available in a digital form, and data about us is being
continuously collected. Such data has made possible many interesting and useful
applications, and in essense made it possible for the Web to exist in the current
form. Sharing this data makes a lot of sense for many reasons. However, personal
privacy has become a concern. In this talk, I will touch upon a recent study of
the privacy data leakage problem of mobile apps in China, and discuss various
ways to protect user data.

However, completely locking up data is neither desirable nor necessary. How
to share our data in a secure way becomes an interesting question. Privacy
protection of data has been a research problem for decades, with many interesting
results emerging in the last 15 or so years. In this talk, I will discuss a framework
for secure data sharing, linking many of the existing solutions under a unified
principle. The hope is to develop new insights and better data sharing methods.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, p. 5, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Internet of Custom-Made Things: From 3D

Printing and Personal Fabrication to Personal
Design of Interactive Devices

Jan Borchers

Media Computing Group, RWTH Aachen University, Aachen, Germany
borchers@cs.rwth-aachen.de

In the homes of bleeding-edge tinkerers around the world, a revolution is hap-
pening that, as many predict, will overshadow the PC and internet revolutions
that began with home computers in the 70’s: Personal Fabrication. Sub-$1000
3D printers are a reality, and other computer-controlled digital fabrication tools
such as lasercutters are close behind. Research labs are printing anything from
molecules to entire houses, and Fab Labs around the world are introducing the
public to the possibilities and dangers of this new era in production.

On the one hand, these tools are bringing exciting changes to the way we
teach and do ubicomp and HCI research: Instead of merely creating on-screen
prototypes, students are now able to rapidly create actual working, networked
hardware prototypes with little effort, driving home the message that success-
ful interactive products today require software and hardware design to go hand
in hand. As personal fabrication technologies evolve to include multiple mate-
rials and even electronics in custom-made objects, their interface will likely be
mediated via online services, leading to new challenges for how to create the ap-
propriate web-based architectures for an Internet of Custom-Made Things. On
the other hand, it is still largely unclear how users at home should create those
3D models to print or otherwise fabricate on their desktop factory of the near
future: For example, will they download and customize online designs, specifying
their search queries for object models via hand shape gestures in mid-air? This is
a major challenge for HCI that calls for radically new user interface approaches,
paradigms and interaction techniques for what I call ”Personal Design”, before
we’ll arrive at something like the MacPaint of Digital Fabricationp

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, p. 6, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 7–21, 2013.
© Springer-Verlag Berlin Heidelberg 2013

MockAPI: An Agile Approach Supporting API-first Web
Application Development

José Matías Rivero1, Sebastian Heil2, Julián Grigera1,
Martin Gaedke2, and Gustavo Rossi1

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{mrivero,julian.grigera,gustavo}@lifia.info.unlp.edu.ar
2 Department of Computer Science, Chemnitz University of Technology, Germany
{sebastian.heil,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. In the last years, agile development methodologies have been widely
adopted. However, they still lack support for API requirements while, at the
same time, public RESTful APIs are fueling a rapid growth of web applications
providing services built on other services. On the other hand, whereas Model-
Driven Development techniques successfully increase the productivity in the
development of data-intensive web applications, they lack the agility required
when developing heterogeneous web applications with frequent requirement
changes. In this paper we introduce MockAPI, an approach based on annotating
user interface mockups that combines the advantages of agile approaches and
Model-Driven Development. We introduce a metamodel for annotations and
demonstrate how to derive running API prototypes as starting point for agile
development. RESTful API best practices and API-first development are intro-
duced into the agile process. The MockAPI approach defines a set of constraints
to accelerate the development of web applications. We also show the results of
a brief validation applying MockAPI to popular web sites.

Keywords: API, Model-Driven Development, Agile Development, Prototyping.

1 Introduction

Agile development methodologies have shown a massive adoption [1] because they
allow to adapt quickly to changing requirements, effectively shorten the development
cycle and include end-users more intensively in the development process, in order to
reduce risks during projects. However, these development approaches are lacking
support for API-related requirements (i.e. stating what the applications should provide
as a service and how), since their advantages are not efficiently applied when gather-
ing and implementing requirements that are not strictly related to user interaction (like
user interface or business logic), i.e. not related to what the user can see [2].

Infrastructure-as-a-Service (IaaS) and Software-as-a-Service (SaaS) are transform-
ing the way of providing services in the Cloud, and at the same time dropping the
costs. On the one hand, IaaS provides a fast, easy and cost effective way of requesting
infrastructure (processing, storage, data transfer, etc.) as needed to implement and

8 J.M. Rivero et al.

scale applications. On the other hand, SaaS provides working software over the Cloud
at a low cost, avoiding higher cost of deployment and maintenance associated with
custom on-site installations. In this way, IaaS is providing an important cost reduction
for software developers while SaaS is providing a similar reduction for software end-
users. As a consequence, since both trends are intended to avoid an on-site installation
of infrastructure and software, they provide APIs to facilitate critical operations like
servers instantiations, storage increment requests (IaaS), data exportation/importation
or special data operations (SaaS) [3].

On the application level, APIs are commonly used for different purposes. A com-
mon API layer is usually built to fulfill the business requirements of applications that
run on different platforms and front-ends (web, desktop, mobile, etc.). Besides, mak-
ing APIs publicly available is a well-known way of extending the impact and use of
popular applications. Main examples of this approach are Facebook through its Face-
book Graph API1, and Twitter2.

The development of APIs is getting more attention because they speed up the de-
velopment process allowing reusing already existing software and infrastructural
power to deliver software faster through integration of existing components. As the
API becomes more important from the strategy and technology point of view and is
part of the requirements, the challenge is to either help the end-users understand the
concept and hidden complexity of distributed systems, or to provide a way for retriev-
ing the necessary information for the API design with common requirement gathering
techniques. Current agile methodologies do not provide a way of gathering and struc-
turing this kind of requirements. Agile methodologies leave all the APIs definition
work for developers without any guidance. Since in API-First3 development the im-
plementation of a core API is a blocking task delaying other tasks like frontend
development, the entire development process is slowed down.

In this paper we provide a structured way of dealing with the definition of APIs,
from requirements gathering to implementation. In addition to textual user stories,
we use annotated user interface sketches (mockups) of the different front-ends of
the application. We do so in order to gather a general overview of the underlying
API of the application being built. The annotations placed over mockups can be
easily applied to textual user stories as well, working as a story stereotyping
strategy.

The rest of the paper is organized as follows: in Section 2 we analyze related work
and background of the fundamental concepts used in our proposal, Section 3 details
the core features of our approach including procedural and technical features. In Sec-
tion 4 we explain implementation details and Section 5 summarizes the results of a
validation experiment featuring popular real-world web sites. Finally, in Section 6 we
conclude the paper and envision future work.

1 Facebook Graph API - https://developers.facebook.com/docs/reference/
api/, last accessed on 06-March-2013.

2 Twitter Developers - https://dev.twitter.com, last accessed on 23-Feb-2013.
3 API-First development - http://www.api-first.com

 MockAPI: An Agile Approach Supporting API-first Web Application Development 9

2 Background and Related Work

2.1 State of the Art in Web Applications Development

When developing software through direct coding, extensive tool support and well-
known practices are often available to make the development process faster and less
error prone for developers. Dependency management tools, Integrated Development
Environments (IDEs), build and deployment environments among many other re-
markable tools are available to assist the development team daily. In the same sense, a
plethora of technologies, patterns, practices and processes have been defined to cope
with complexities in software development like Design Patterns, Aspect-Oriented
Programming, Test-Driven Development, etc. However, while they substantially help
developers in the process, there are still many challenges related to coding software
by hand: writing it syntactically and semantically correct according to the elicited
requirements, writing tests to check whether the application meets them, use the same
patterns, practices, programming style and frameworks in the correct way, etc. To
make things worse, integration between newly developed software and SaaS applica-
tions (from social networking like Facebook or Twitter to infrastructural services as
provided by Amazon4, Microsoft5 or Google6) are becoming increasingly required in
industry. This introduces the problem of interacting with other software using
particular communication channels and data formats.

Not specifically focused on APIs, Model-Driven Development (MDD) [4] solu-
tions have been defined to cope with such challenges. In MDD, software is defined as
a set of high-level models and derived automatically using code generators, respecting
a previously agreed architecture, patterns and platform defined by the software archi-
tects or developers. The main problem in MDD is that it only allows specifying soft-
ware features by concepts included in the high-level language. When a special feature
has to be included in the application, either the language has to be extended in order
to express and further derive this features or the generated code has to be modified
manually. MDD can be suitable for specific types of development such as
data-intensive web applications [5]. However, MDD is less applicable for developing
heterogeneous applications. This is due to the cost of personalizing the MDD infra-
structure to cope with detailed and rapidly changing requirements and implementa-
tions. In a previous work we explore the possibility of bringing an agile approach to
MDD [6], starting from mockups to gather requirements and generating prototypes.

On the other hand, software scaffolding solutions like Ruby on Rails7 propose an
intermediate solution: they allow generating the structural parts of the applications
expressed in some simplistic specification language (sometimes using standards like
XML or YAML). Once generated, they have to be manually refined by developers,

4 Amazon Web Services - http://aws.amazon.com/, last accessed 23-Feb-2013.
5 Windows Azure - http://www.windowsazure.com/en-us/, last accessed 23-Feb-

2013.
6 Google App Engine - https://developers.google.com/appengine/, last

accessed 23-Feb-2013.
7 Ruby on Rails - http://rubyonrails.org/, accessed on 28-Feb-2013.

10 J.M. Rivero et al.

discarding the initial specifications. Such approaches force a specific platform and
architecture with the advantages of automatic code generation to speed-up the initial
stages of the development. Similar to scaffolding approaches, user interface prototype
annotations like Canonical Abstract Prototypes [7] intend to model common UI pat-
terns and propose a semi-automatic code generation. However, since they focus on
user interface implementation – that is inherently complex – they only allow generat-
ing a limited subset of features, leaving the task of dealing with the generated UI code
to the programmer.

An additional issue in all three approaches is the need to manually translate re-
quirements (expressed usually as user stories, use cases, natural language narratives,
etc.) to code or models only observing the requirements artifacts; that is, no assistance
is provided to guide this process. In this work, we present a Model-Driven process
that allows defining and quickly generating an initial API for a Web Application to
speed-up the initial iterations in the development. This allows developing the applica-
tion frontend that uses the API through direct coding speedily in order to obtain a
fully functional running version of the application that can be tested with end-users as
soon as possible. Finally, the generated API can be further partially or totally imple-
mented as necessary in the following iterations. Thus, our approach intends to com-
bine classic code-based development with Model-Driven and Scaffolding processes.

2.2 Agile Development Style Meets Service-Oriented Architecture

In agile development, the focus on a rapid implementation of functionality that yields
a visible business value can be unfavorable in the context of service-oriented architec-
ture [8]. While user stories are customer-oriented, architectural aspects like identifica-
tion and modeling of services, data resources or API design are not covered in agile
development [9–11]. Though there are proposals to tackle service related features in
the early requirements gathering stage, e.g., using use cases [12], they do not use re-
quirement artifacts fully understandable for end-users, which are at the same time,
unambiguous and technically sound for developers [13]. Approaches like [11] advo-
cate using architectural knowledge bases for decision making and evaluation, howev-
er, they do not focus on accelerating the process to create early running versions.

Advantages of the API-first paradigm cannot be fully leveraged. Ideally, common
functionality and resources for different application platforms are consolidated at the
service layer. This enables independent parallel development of applications for dif-
ferent devices and facilitates serendipity through the development of third-party ap-
plications benefiting from the exposed service layer [14].

As API development requires a lot of experience and knowledge about best prac-
tices [15], API quality in agile development is highly dependent on the developer
team's skill level. There is no process-intrinsic guidance or widely accepted concept
available that supports agile developers in using best practices.

Agile development teams encounter difficulties when applying a service-oriented
architecture style. Particularly, there is a gap between requirements represented by
customer-oriented stories and application architecture, which can produce poorly
designed APIs. Application of best practices for a clean, usable API is highly depen-
dent on the experience of the development team as there is no further guidance

 MockAPI: An Agile Approach Supporting API-first Web Application Development 11

provided. For better support of applying service-oriented architecture style in agile
development, a refined approach is required bridging the gap between requirements
and architecture by combining the most promising elements of various development
approaches employed today and providing enhanced guidance regarding API best
practices to the agile developer.

3 The MockAPI Approach

In this section we describe motivation, procedural and technical aspects of our ap-
proach that allows quickly specifying and generating APIs using requirement artifacts
that are easily understood by both developers and customers: user interface mockups.

3.1 The Approach in a Nutshell

To overcome the issues mentioned in Section 2, we proposed an approach called
MockAPI. MockAPI aims at helping developers in an agile environment to design
service-oriented applications. The proposed process starts by eliciting requirements
through user stories and their related user interface mockups. Such mockups represent
an intermediate language between developers and customers, being technically sound
to developers and fully understandable by customers [13]. Mockups are then anno-
tated with simple but formal specifications that we use to automatically generate a
first API implementation. This API is intended to help building the first iterations of
the different application front-ends, reducing the requirements-to-software time and
effort, though it might be later replaced by the definitive one. In this paper we focus
on generating APIs for service-backed web applications, however, the same annota-
tion approach can be used to generate other artifacts like interaction descriptions re-
lated to mockups (that can be checked by end-users) or data layer schemas and
configurations.

3.2 MockAPI Process

To exemplify the approach within an agile methodology we chose Scrum, since it is
one of the most widely adopted in industry [1]. The Scrum process starts with the
construction of a Product Backlog, listing Stories, ordered by value delivered to the
customer. Then, the product is built iteratively in Sprints. Every Sprint starts with a
Planning Meeting in which Stories are selected from the Product Backlog according
to their priority and broken down into Tasks, forming the Sprint Backlog. A short
Daily Meeting is held every work day to gain awareness of work progress/problems.
At the end of each Sprint, a potentially shippable application is demonstrated to the
Product Owner and customer [16].

The MockAPI Scrum process in Fig. 1 proposes using mockups in all steps. Since
a mockup represents the user interface/interaction required to satisfy a story, mockups
form an intermediate tool between abstract stories and concrete tasks. Therefore, we
propose to add mockups to the Sprint Backlog. Mockups must be built and annotated
with stakeholder participation; developers can explain semantics if needed.

12 J.M. Rivero et al.

Fig. 1. An overview of the MockAPI Scrum process

The developer team starts with coding the application front-end. An initial API im-
plementation can be derived from annotated mockups to speed-up the process. Thus,
in early iterations, the development team can focus on interaction and presentation
allowing for early feedback. Front-ends for different devices (e.g. cellphones, tablets,
PCs) can be built in parallel with API support from the outset.

Although changes in mockups are frequent, they do not require strong re-
implementation effort: the API can be re-generated from updated annotations.

3.3 Mockup Building and Annotation

MockAPI relies on annotating mockups to discover and specify features related to the
required API. Annotations can serve both as requirements and implementation speci-
fication. In the following subsections we describe the structure of the annotations
MockAPI defines to specify API-related features.

3.3.1 Dealing with Content
One of the basic specifications required to define an API is its content (in terms of
types and relationships) and the way it is accessed. To deal with these concerns,
MockAPI proposes the following annotation types, depicted in Fig. 2 over sample
mockups for a conference management system:

List(ItemName): describes a list of items in a mockup, of the type ItemName. For
instance, the List(conference) tag in the leftmost mockup from Fig. 2 denotes a
list of conference objects. From these tags, we can infer the existence of resources
called ItemName (objects of type ItemName) aggregated in a list.

Item(ElementName): expresses that the annotated mockup shows a user interface
containing representation of a single item called ElementName. A mockup showing
the details of a conference is annotated with Item(conference).

Viewing/Editing: describe access type to resources; we identified two basic resource
access patterns: viewing and editing. Both are included as tags in MockAPI.
viewing represents read-only access, editing represents Create, Read, Update,
Delete functionality.

 MockAPI: An Agile Approach Supporting API-first Web Application Development 13

Fig. 2. Sample annotated mockups for a conference management system

Although there are other combinations of CRUD actions, in order to keep our ap-
proach simple, the two combinations described by our resource access patterns cover
most actions used in web applications. If other particular combinations are required, a
user story is added and the respective API has to be manually configured. Used with
Item, viewing implies the content cannot be changed, while editing allows creat-
ing new instances, updating their content and deleting them. Used with List, edit-
ing additionally allows removing/reordering elements.

Associations. Since the structure of mockups can be arbitrarily complex, several con-
tent annotations can be present in a single mockup. Thus, MockAPI allows defining
and relating different Item or List annotations. For this purpose, we introduce the con-
cept of Associations. Each Association represents a directed relationship between two
content annotations in the mockup and is graphically expressed by an arrow
connecting them.

Sorting, Ordering, Filtering, Selection and Pagination. These 5 tags can only be
applied to List to indicate it supports element sorting (e.g. by price), ordering (e.g.
list prioritization using drag & drop), filtering elements (e.g. filtering by name),
selecting elements (e.g. to apply some operation like deleting them) or pagination.

3.3.2 Dealing with Navigation
Navigation is another important aspect to define in web applications. It defines how
interaction and data from the UI is fractioned and simplified in presentation units like
pages, windows or menus, which can have an indirect impact in the API. For instance,
a complex UI that displays a lot of data will be presented faster to the end-user if the
API supports to get all the required information in a single request instead of many.
This kind of relationship may be directly specified from one annotation to the other
within the same mockup, as illustrated in Fig. 3a, where selecting a specific confe-
rence produces the tracks list to update. To relate data across two different mockups
instead, an indirect navigation relationship can be defined between them, as shown in
figure 3.b. To specify these navigations MockAPI includes the following annotation:

Navigation(DestinationMockupName). Indicates an element in the present mockup
navigates to another mockup identified by DestinationMockupName, as seen in Fig.3b
from mockup1 to mockup2. Depending on the tooling used, the destination mockup
can be identified by its name using different strategies like its filename.

14 J.M. Rivero et al.

Fig. 3. Expressing relationships in annotations (directly or through a navigation)

3.3.3 Dealing with Custom Behavior
Features beyond manipulation of data objects and navigation are also considered in
the approach. The underlying functionality cannot be generated automatically, but
they can be modeled and added to the mockup to be implemented as separated user
stories to be coded later, without breaking the annotation abstraction and requiring to
make extensive language and code generation improvements. This kind of features
can be introduced with the SpecialFeature() tag:

SpecialFeature(Description). Represents a complex feature that must be imple-
mented in the API through direct coding, described in plain text (Description).

3.3.4 The MockAPI Metamodel
In order to abstract the structure of MockAPI annotations from their representations,
we defined a detailed metamodel which structure can be observed in Fig. 4.

Fig. 4. Structure of the MockAPI metamodel

A MockAPI model (MockAPIModel) is composed by a list of annotations (Mock-
APIAnnotations) and associations (Association). An annotation is composed by
a list of tags (Tag), which can be of type content (ContentTag), navigation (Navi-
gationTag) or a special feature (SpecialFeatureTag) according to the types pre-
viously introduced. A ContentTag can be a List or Item and can have a specific
AccessType (Viewing or Writing). In addition, a list can feature sorting (Sort-
ing), selection (Selection), etc. A NavigationTag stores the id of the destination
mockup and SpecialFeatureTag includes the description of the special behaviour
to be implemented. Though not directly expressed in the metamodel, MockAPIAnno-
tation can only contain one instance of each Tag type but SpecialFeatureTag.

 MockAPI: An Agile Approach Supporting API-first Web Application Development 15

In 3.4 we describe how to generate API prototypes for set-based resources by analyz-
ing content annotations, i.e. instances of the metamodel. The tags detailed in this
section can be combined to form annotations placed over mockups. Fig. 5. shows a
sample mockup of a conference manager with editable data of a conference, its edita-
ble and selectable tracks and read-only papers per tracks. Papers can be sorted and
paginated. Clicking a paper navigates to another mockup called trackDetails.

Fig. 5. Annotated conference manager mockup

3.4 Generating APIs from MockAPI

The MockAPI approach focuses on CRUD features of applications based on RESTful
Web services; therefore, it constrains the supported design space. Providing guidance
for these basic aspects supports agile developers in a frequent and time-consuming yet
important part of work. Martin Fowler argues that “[d]isappointing as it is, many of
the use cases in an enterprise application are fairly boring ‘CRUD’ (create, read, up-
date, delete) use cases on domain objects” [17]. Any functionality beyond CRUD
access to API resources, e.g., calculations, complex queries and statistical report gen-
eration, is handled in the usual agile way by creating a corresponding story. MockAPI
simply sets the stage for developers to start implementing the missing functionality.

From an instance of our metamodel, the basic outline of the RESTful API can be
inferred. Best practices for RESTful Web services [15] and the set-based navigation
pattern [18] are applied to the modeling. The two central tags regarding content are
List and Item. List tags are used to identify API resources and corresponding
URIs. In the example shown in Fig. 5 List(track) implies the existence of:

/tracks

following the “Plural nouns and concrete names” principle described in [15]. Fur-
thermore, tags defining user interaction aspects such as Selection and Ordering
also influence the API. For instance adding a Selection tag in addition to the pre-
vious List(track) tag defines the items of the list, i.e. single tracks, to be indivi-
dually selectable elements. Inferring resource URIs would additionally yield:

/track/<id>

16 J.M. Rivero et al.

This allows for access to the entire list as well as to a single item of the list identified
by its id [15]. Although the same API can be achieved with List(track) and
Item(track) – because to display a single list item it has to be identifiable in the
API – the Selection tag additionally documents the user interaction requirement of
selecting items from the list. The same applies to Ordering, which, only considering
the API, is implied by List(conference) with access pattern editing as allowing
update of a list implicitly enables reordering of its items. However, Ordering also
specifies implementing list ordering at the application frontend e.g. by drag & drop.

Associations between content annotations are used to identify resource relation-
ships explicitly visible in the UI mockups. For instance in Fig. 5, from
Item(conference) and List(track) along with the association, i.e. the arrow
from Item(conference) to List(track), the following resource URIs can be
inferred:

/tracks

/tracks/<id>

/conferences/<id>/track

It is important to note that MockAPI assumes a one-to-many relationship by default
when Item and List are related. However, if an inverse one-to-many relationship is
found in another mockup, the entire relationship is interpreted as many-to-many. Re-
lationships between Lists are always assumed as many-to-many.

Further associations can be inferred even between annotations in separate mock-
ups, using the Navigation tags. For instance, if an Item(conference) defines a
navigation to a List(track) in a different mockup, a relationship between confe-
rences and tracks will be inferred. In general, when annotations specify navigation to
other mockups, the root content annotation is identified and an association is created
between both content elements. The root content annotation of a mockup is an annota-
tion with no incoming associations. If only one root annotation is present, the associa-
tion is inferred automatically; otherwise it has to be refined manually.

4 Implementation

To assist the process, we devised tools that help through the main steps, as depicted in
Fig. 6, starting from bare mockups to the generated API prototype.

Fig. 6. MockAPI process with tooling support

In the following we explain process and tools for annotation automatic generation.

 MockAPI: An Agile Approach Supporting API-first Web Application Development 17

4.1 The Interactive Annotation Tool

While the structured annotations previously introduced can be applied manually over
physical mockups to add semantics to the plain UI structure that they represent, semi-
automatic API generation is not possible directly from them. To assist the annotation
process and also to have a digital representation of the proposed annotations that can
be used to generate the API, we developed a web annotation tool8. This tool allows
importing any mockup image – e.g. hand-drawn or from image export capabilities
present in mockup tools like Balsamiq9 – and allows adding annotations over it. Fig.
7 shows a screenshot of the tool. During annotation, the tool parses the annotations to
validate their structure and generates the underlying MockAPI model concepts.

Fig. 7. Annotating a hand-drawn mockup with the MockAPI annotating tool

Once mockups have been correctly annotated, the tool provides a way of exporting
an XML representation of the MockAPI model represented by the annotations. This
model is used to further derive and configure the API automatically. Thus, the annota-
tion tool works as the initial stage in the semi-automatic annotation-to-API process.

4.2 Generating APIs from MockAPI

In the following section we describe the implementation of a supporting tool that
automatically generates a running API prototype from a set of annotated mockups by
processing the XML representation of a MockAPI model. This tool applies the rules
described in 3.4 to infer involved resources, access patterns and relationships.

4.2.1 WebComposition/DataGridService
In order to transform annotated mockups into a running API prototype, we employ the
WebComposition/DataGridService (DGS) [19], which allows defining, creating and
configuring resources at runtime and access via a RESTful interface. Our API Gene-
rator sets up the API prototype by configuring DGS XML resources.

8 Available at: http://agilemdd.lifia.info.unlp.edu.ar/mockapi/
9 Balsamiq Mockups - http://www.balsamiq.com/, last accessed 23-Feb-2013.

18 J.M. Rivero et al.

HTTP methods GET, POST, PUT and DELETE are supported on both resource
and item level. Child elements of the XML root of the resource are treated as items of
this resource, facilitating full read/write access to each of them separately. Additional-
ly, DGS provides service and resource metadata maintained as RDF10. Configuration
of the DGS and its resources is available through adding RDF statements to the meta-
data of the service or resource. Configuration on resource level includes the possibili-
ty to blacklist HTTP methods defining resource access policy. XML schema can be
declared per resource to provide validation when HTTP-Requests attempt to modify
the resource. On service level, relationships between resources can be declared con-
sisting of source and target resource, a predicate, optionally an inverse predicate,
source and target alias. Predicate is the RDF predicate to represent the relationship
between items of source and target resource. Using inverse predicates, we leverage
the benefits of RDF allowing DGS to automatically infer inverse relationships be-
tween items of resources related via (forward) predicates. To query items of target
resource related to an item of source resource, target alias is appended to the source
item path. Source alias works in the same way for inverse relationships.

Using the above set of DGS features we create a running API prototype at runtime.

4.2.2 API Generation
As shown in Fig. 8, API Generation consists of two phases: resource identification (1-
5) and resource configuration (7-14). All types along with their access patterns are
collected from items and lists defined in the MockAPI model (2-3). Relationships are
identified processing associations and cardinality is determined as described in
3.4 (5).

Processing the derived set of types with access pattern information, the correspond-
ing resources are created in the DGS, one per type (08). We pursue a set-based ap-
proach declaring the resources assuming containers of elements of the identified type.
The container resource name follows the scheme <TypeName>s. While any occur-
rence of access pattern editing causes a type to be defined editable, only those types
with all occurrences of viewing across all mockups are considered read-only. For
each type identified read-only we configure DGS to restrict access to the correspond-
ing resource accordingly denying HTTP methods POST, PUT and DELETE (10).

A default XML Schema is created per list (11) defining the root element matching
the above name scheme and its content as sequence of elements named after the type,
zero to unbounded occurrences. Currently, the content of the list elements is specified
as xs:any, zero to unbounded, in order to allow for arbitrary data structures. However,
the XML Schema can be easily adapted to incorporate specification of concrete data
structures in future. For instance, a semi-natural language approach with statements
like “A conference consists of name, location, startDate and endDate” is desirable.

Following the rules described in 3.4 relationships between resources are configured
(14). Predicate names are created from a combination of resource names, e.g.
mkapi:ConferenceHasTracks or mkapi:TrackBelongsToConference.

10 RDF Primer - http://www.w3.org/TR/rdf-primer/, last accessed 29-Apr-2013.

 MockAPI: An Agile Approach Supporting API-first Web Application Development 19

Fig. 8. API Generation

Source and target alias are set to the resource name of the forward/inverse related
resources. For instance /conferences/<cid>/tracks yields all tracks related to
the conference with id <cid> via the mkapi:ConferenceHasTracks predicate.
For the inverse relationship using mkapi:TrackBelongsToConference the gener-
ated URI path is /tracks/<tid>/conference.

5 Validation

In order to evaluate our proposed approach and identify potential shortcomings we
conducted a brief validation. We tested the applicability of MockAPI in state-of-the-
art websites by creating mockups for the most relevant user interfaces of 10 of the
most popular websites based on the Alexa ranking [20]. To demonstrate the versatility
of MockAPI, we used pen and paper mockups as well as digital mockup tools. The
resulting mockups have been annotated using our interactive annotation tool and API
prototypes have been generated using the MockAPI DGS API Generator.

MockAPI does not claim to create complete and mature APIs ready for productive
use. Instead, we aim at providing a starting point for agile development by creating
functional API prototypes. Therefore, an indirect metric is employed to evaluate our
approach. We call this metric coverage metric and define it as follows:

Let be a mockup and () = the set of panels of which provide
user interface functionality. () can be subdivided into , the set of panels which
are static, and , the set of dynamic panels. For instance, includes navigation
menus and buttons triggering predefined actions and includes panels that dynami-
cally depend on content or calculations such as lists of breaking news or displays of

current time. Let be the set of annotations added to . Then () = | || | is the

coverage metric of . In other words, the coverage metric is the ratio of

01 foreach type Type with access Access in mockups
02 Types.Add Type
03 Accesses.Add (Type, Access)
04 foreach association (Source, Target) in mockups
05 Relationships.AddOrUpdate (Source, Target)
06

07 foreach type Type in Types
08 resource = DGS.CreateResource Type
09 if not Accesses.Contains (Type, "Editing")
10 resource.Deny [POST,PUT,DELETE]
11 resource.SetSchema DefaultXMLSchema(Type)
12 foreach relationship (Source, Target, Card)
13 in Relationships

14 DGS.DefineRelationship (Source, Target, Card)

20 J.M. Rivero et al.

coverage of dynamic panels with MockAPI annotations. The main motivation behind
this metric is to validate how much of the dynamic content can be modeled and fur-
ther API generated automatically using the MockAPI infrastructure. Static content
() is excluded from the evaluation as it is rendered directly, without making use of
any API. Since some sites adjust static content to user preferences, we checked that
panels remain the same for at least 3 different users to consider them as truly static.

We calculated for each mockup of the popular websites used for validation. For
the top 10 sites according to Alexa, we created 38 mockups and identified 150 dy-
namic data panels11. 134 of these panels could be covered by our annotations, which
results in an average coverage metric of 89%. This indicates that the majority of dy-
namic panels in the most popular websites can be described using MockAPI annota-
tions. Among those that could not be cover we identified 4 recurring groups: (1)
results of calculations such as counting views, converting units etc., (2) results of
foreign Web Service invocations such as weather information etc., (3) trending enti-
ties that are results of activity monitoring and access statistics such as trending news,
tweets, hashtags etc. and (4) related entities that are results of similarity heuristics
such as related articles, searches, news etc.

The high coverage for the rest of the panels shows that most features in the eva-
luated web applications can be specified as API operations. We found generated APIs
to be surprisingly simple in comparison to the API and infrastructure of real web sites.
However, since MockAPI is meant to speed up the development process, we argue
that the functionality automatically generated from mockups is enough for the devel-
opment team to start creating the application’s front-end without wasting time coding
the operations that the API must implement.

6 Conclusions and Future Work

We presented MockAPI, an approach based on mockup annotations which combines
the advantages of agile and Model-Driven Development and demonstrated how to
derive running API prototypes as starting point for agile development using our anno-
tation metamodel. The brief validation indicated that MockAPI can cover most of the
functionality found in the user interfaces of popular web sites.

In future work, we will focus on improving the ease of use and expressivity of our
annotations. For instance, while currently annotations are simple lists of keywords,
the proposed approach is a first step towards documentation and agile development
support for technically less experienced stakeholders. Therefore, we want to evolve
the annotation syntax to facilitate a semi-natural language description of UI elements
and content in general and the structure of data in particular.

Moreover, we plan to extend the approach to cover additional aspects such as navi-
gation, security or user interaction and consolidate the idea of constraint-based
development with recent advances in mashup research to provide an environment for
rapid development of web applications based on re-usable components.

11 Analyzed data is available at http://agilemdd.lifia.info.unlp.edu.ar/

mockapi/validation

 MockAPI: An Agile Approach Supporting API-first Web Application Development 21

Acknowledgments. This project is partially supported by the DAAD – MINCYT
project 54367460 / DA/11/11.

References

1. VersionOne Inc.: State of Agile Survey (2011)
2. Rodríguez, P., Yagüe, A.: Some findings concerning requirements in Agile methodologies.

Product-Focused Software Process Improvement 32, 171–184 (2009)
3. Leymann, F., Fritsch, D.: Cloud computing: The next revolution in IT. In: Proceedings of

the 52th Photogrammetric Week (2009)
4. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation.

Wiley-IEEE Computer Society (2008)
5. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling lan-

guage for designing Web sites. Computer Networks 33, 137–157 (2000)
6. Rivero, J., Grigera, J., Rossi, G., Luna, E., Koch, N.: Improving agility in model-driven

web engineering. In: CAiSE Forum (2011)
7. Constantine, L.L.: Canonical Abstract Prototypes for Abstract Visual and Interaction De-

sign. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS,
vol. 2844, pp. 1–15. Springer, Heidelberg (2003)

8. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State of the Art and Research Challenges. Computer 40, 38–45 (2007)

9. Kruchten, P.: Software architecture and agile software development. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010,
pp. 497–498. ACM Press, New York (2010)

10. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and Architecture: Can They Coexist?
IEEE Software 27, 16–22 (2010)

11. Eloranta, V.-P., Koskimies, K.: Aligning architecture knowledge management with Scrum.
In: Proceedings of the WICSA/ECSA 2012 Companion Volume on - WICSA/ECSA 2012,
p. 112. ACM Press, New York (2012)

12. Millard, D.E., Davis, H.C., Howard, Y., Gilbert, L., Walters, R.J., Abbas, N., Wills, G.B.:
The Service Responsibility and Interaction Design Method: Using an Agile Approach for
Web Service Design. In: Fifth European Conference on Web Services (ECOWS 2007),
pp. 235–244. IEEE, Halle (2007)

13. Mukasa, K.S., Kaindl, H.: An Integration of Requirements and User Interface Specifica-
tions. In: 6th IEEE International Requirements Engineering Conference, pp. 327–328.
IEEE Computer Society, Barcelona (2008)

14. Medrano, R.: Welcome To The API Economy. Forbes Online: CIO Network (2012)
15. Mulloy, B.: Web API Design: Crafting Interfaces that Developers Love. Apigee (2012)
16. Schwaber, K.: Scrum development process. In: Proceedings of the Workshop on Business

Object Design and Implementation at the 10th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA 1995) (1995)

17. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley (2012)
18. Rossi, G., Schwabe, D., Lyardet, F.: Improving Web information systems with navigation-

al patterns. Computer Networks 31, 1667–1678 (1999)
19. Chudnovskyy, O., Gaedke, M.: Development of Web 2.0 Applications using WebCompo-

sition/Data Grid Service. In: The Second International Conferences on Advanced Service
Computing (Service Computation 2010), pp. 55–61. Xpert Publishing Services (2010)

20. Alexa: Alexa Top Sites, http://www.alexa.com/topsites

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 22–36, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Semantic Data Driven Interfaces for Web Applications

Vagner Nascimento and Daniel Schwabe

Department of Informatics, PUC-Rio,
Rua Marques de Sao Vicente, 225. Rio de Janeiro, RJ 22453-900, Brazil

{vnascimento,dschwabe}@inf.puc-rio.br

Abstract. Modern day interfaces must deal with a large number of
heterogeneity factors, such as varying user profiles and runtime hardware and
software platforms. These conditions require interfaces that can adapt to the
changes in the <user, platform, environment> triad. The Model-Based User
Interface approach has been proposed as a way to deal with these requirements.
In this paper we present a data-driven, rule-based interface definition model
capable of taking into account the semantics of the data it is manipulating,
especially in the case of Linked Data. An implementation architecture based on
the Synth environment supporting this model is presented.

Keywords: SHDM, HCI, Interface, Adaptation, Semantic Web, Data-driven
design.

1 Introduction

The design and implementation of the interface component of applications, and in
particular Web applications, consumes over 50% of the development effort, as first
reported by, Myers and Rosson in the nineties [11]. Since then, their figures have
surely increased, due to the evolution of the computing platforms, the advent of the
Internet and the Web, and the now popular gestural and vocal interface modalities.
Sources of heterogeneity affecting application development include:

• Different computing platforms – desktops, laptops, tablets, smartphones,
embedded devices - affording a variety of interaction modalities – typing, voice,
motion sensing, (multi)touch - and diverse input/output capabilities - keyboard,
mouse, (multi)touch sensitive surfaces, motion sensors, cameras, even head-
mounted displays/cameras;

• Multiple, often dynamically varying contexts of use, be it at a desktop with a
wired network or a smartphone or Google Glass-like device on the go, wirelessly
connected in a variety of underlying network infrastructures. These contexts also
includ diverse working environments, that may have high degree of noise, and
sometimes restricted bandwidth;

• Multiple, ever evolving set of tasks that must be supported, derived from an
increasing number of different workflows that users adopt and must be
supported by the application;

 Semantic Data Driven Interfaces for Web Applications 23

• Highly diverse types and profiles of end users, ranging from very novice to
experts, being from many different cultures and speaking a multitude of
languages,

Not only these sources of heterogeneity exist, but often the context of use, i.e., each
component of the triad <user, platform, environment> (the context) changes
dynamically while the application is being used, which calls for so-called Plastic UIs
[3], capable of adapting while preserving the “user experience” while the user is
engaged with the application.

The Model-Based User Interface (MBUI) development approach has been used to
address these challenges and maintain or decrease the level of effort necessary to
develop applications, and more specifically, user interfaces, under these conditions.

The Cameleon Reference Model is a current reference framework for User
Interfaces gaining adoption [2], the result of several years of research of a major
European research project, which proposes four abstraction levels for modeling UIs:
Task and Domain, Abstract Interface, Concrete Interface, Final User Interface.

The Domain model describes the domains of the application, and the Task model
describes the sequence of steps needed to perform the tasks (with respect to
interactions with the User Interface).

The Abstract Interface model describes the composition of interface units in an
implementation and modality independent way.

The Concrete Interface model describes the interface in terms of platform-
dependent widgets, but still modality- and implementation language independent.

The Final User Interface is the actual running code that the end user accesses when
interacting with the application.

A more recent trend has been the dissemination of the Semantic Web, and the
availability of data sources expressed in its formalisms – RDF, RDFS, OWL, in
particular the Linked Data Initiative (LOD)1, and the emergence of Linked Data
Applications (LDAs for short), that access, enrich and manipulate linked data. There
are some proposals of development environments or frameworks for supporting the
development of LDAs, such as CubicWeb2, the LOD2 Stack3, and the Open Semantic
Framework4. In addition, semantic wiki-based environment such as Ontowiki5, Kiwi6,
and Semantic Media Wiki7 have also been used as platforms for application
development over Linked Data.

While useful, they do not present a set of integrated models that allow the
specification of an LDA, and the synthesis of its running code from these models.
Therefore, much of the application semantics, in its various aspects, remains
represented only in the running implementation code.

1 http://linkeddata.org
2 http://www.cubicweb.org
3 http://lod2.eu/WikiArticle/TechnologyStack.html
4 http://openstructs.org/open-semantic-framework
5 http://ontowiki.net/Projects/OntoWiki
6 http://www.kiwi-project.eu
7 http://www.semantic-mediawiki.org/wiki/Semantic_MediaWiki

24 V. Nascimento and D. Schwabe

We have been working in the past years in the Semantic Hypermedia Design
Method (SHDM) [6] and its implementation environment Synth [1], which aims to
allow Model-Based development of Linked Data Applications. While SHDM
includes a proposed Abstract Interface Model, it lacks more refined models capable of
dealing with the complexities of UIs as outlined above.

In this paper we present a new set of User Interface models and its implementation
architecture similar to the Cameleon Framework proposal, addressing some of the
challenges outlined earlier.

We present our approach in this paper as follows. After describing the example we
are going to use through the paper in Section 2, we present our approach for interface
modeling in Section 3. We discuss the implementation in Section 4. Section 5
presents the related work and with Section 6 we draw some conclusions and discuss
future work.

2 Running Example

To help illustrate the concepts discussed in the paper, we use a running example of a
fictitious online hotel-booking site. Suppose the user navigated to a given hotel’s
page, but has not yet entered the date, then the page should include fields to allow
her/him to enter the desired dates, as shown in Fig. 1 and Fig. 2.

When the dates have been informed, the application must show the rates for each
type of room, their availability, and a warning is there is low availability for a certain
type of room.

Notice that these conditions depend both on Domain Model information, and on
the interaction state. The actual screen layout and interaction options depend also on
the device; Fig. 1 and Fig. 2 show here the interface meant for desktop computers.

Fig. 3 shows the same application when accessed from a mobile device, with a
different layout and different interaction capabilities (e.g., scrolling through swiping
across the screen).

Fig. 1. Example hotel details page, with fields to inform check-in and checkout dates

 Semantic Data Driven Interfaces for Web Applications 25

Fig. 2. – Details of available hotel rooms if the dates have been provided

Fig. 3. – Mobile device version of the hotel-booking example interfaces

3 A Semantic Interface Model

In this section we present the new set of models for specifying interface in SHDM8.
As mentioned earlier, SHDM follows the basic abstraction levels of the Cameleon
Reference Model. The Domain Model, in SHDM is simply a set of RDF triples,
which form a graph, and may include RDFS or OWL definitions. It is often the case

8 A video illustrating the use of these models in Synth is available in
 http:://www.tecweb.inf.puc-rio.br/synth

26 V. Nascimento and D. Schwabe

that there does not exist any schema definitions in the Domain Model, only instances
of resources representing information items.

The Abstract Interface Model [14] focuses on the roles played by each interface
widget in the information exchange between the application and the outside world,
including the user. It is abstract in the sense that it does not capture the look and feel,
or any information dependent on the runtime environment. The Concrete Interface
model is responsible for the latter.

Summarizing the Abstract Interface meta-model, an abstract interface is a composition
of abstract interface elements (widgets). These in turn can be an ElementExhibitor,
which is able to show values; an IndefiniteVariable, which is able to capture an
arbitrary input string; a DefinedVariable, which is able to capture input values (one or
several) from a known set of alternatives; and a SimpleActivator, which is able to react
to an external event and signal it to the application.

Consider the interfaces shown in Fig. 1-Fig. 3. From them we can see that a hotel
page has

• A header with a title and an anchor to the login operation;
• Hotel data, including name, address, category, description;
• A set of hotel images;
• A table of room types and respective rates, their availability, and an anchor to

book it;
• A form to input check-in and checkout dates.

The corresponding abstract interface describing this is (as a nested list of attribute-
value pairs)

{name: "main_page", widget_type: "AbstractInterface", children:[
 {name: "header", widget_type: "CompositeInterfaceElement",
children: [
 {name: "title", widget_type: "ElementExhibitor"},
 {name: "account_anchor", widget_type: "SimpleActivator"},
] },
 {name: "content", widget_type: "CompositeInterfaceElement",
children:[
 {name: "hotel_name", widget_type: "ElementExhibitor"},
 {name: "hotel_images", widget_type:
"CompositeInterfaceElement", repeatable: true, children: [
 {name: "hotel_image", widget_type: "ElementExhibitor"}
]},
 {name: "hotel_category", widget_type: "ElementExhibitor"},
 {name: "hotel_address", widget_type: "ElementExhibitor"},
 {name: "hotel_description", widget_type:
"ElementExhibitor"},
 {name: "rates", widget_type: "CompositeInterfaceElement",
children: [
 {name: "rates_title", widget_type: "ElementExhibitor"},
 {name: "rates_by_room", widget_type:
"CompositeInterfaceElement", repeatable: true,

 Semantic Data Driven Interfaces for Web Applications 27

 children: [
 {name: "room", widget_type:
"CompositeInterfaceElement", children: [
 {name: "room_type", widget_type:
"ElementExhibitor"},
 {name: "price", widget_type: "ElementExhibitor"},
 {name: "availability", widget_type:
"ElementExhibitor"},
 {name: "book", widget_type: "SimpleActivator"}
]},
]},
]},
 {name: "search_rates", widget_type:
"CompositeInterfaceElement", children: [
 {name: "search_rates_title", widget_type:
"ElementExhibitor"},
 {name: "label_checkin", widget_type: "ElementExhibitor"},
 {name: "checkin", widget_type: "IndefiniteVariable"},
 {name: "label_checkout", widget_type: "ElementExhibitor"},
 {name: "checkout", widget_type: "IndefiniteVariable"},
 {name: "search", widget_type: "SimpleActivator"}

]}
]}
]}

Fig. 4. - Abstract Interface specification of the Interfaces in Fig. 1-Fig. 3

Notice that this Abstract Interface represents both interfaces; each specific one can
be seen as a special case of this one, where some elements have been omitted. The
Abstract Interface also adds the widget types, indicating their role in the information
flow.

A mapping specification made by the designer determines how each abstract
widget will be mapped onto one or more Concrete Interface elements, and onto which
Operations. The latter are the primitives in SHDM used to specify the business logic
i.e., the application behavior to achieve the desired tasks.

Here we start introducing the new features in the existing model. Previously, the
designer would determine, for each operation, which abstract interface would be used
to exhibit its results. Furthermore, the composition of widgets in each abstract
interface was specified statically at design time, the same being true for its mapping to
concrete interfaces.

The new model instead uses rules to determine each of these aspects. Thus, instead
of statically defining which abstract interface should be used, how that interface is
composed, and how it is mapped onto the concrete interface, the designer now
establishes rules, which, in a model- (and data-) driven fashion will assemble the final
user interface that will be used. Fig. 5 shows how the Interface Models are related to
each other, and how the actual interface is defined.

28 V. Nascimento and D. Schwabe

Fig. 5. – Relation between Interface Models in SHDM

The first step is the selection of the abstract interface, determined by its own set of
rules. The result of executing these rules is a ranked list of candidate Abstract
Interfaces, based on a weighting function defined by the UI designer.

The highest-ranking Abstract Interface is then chosen. Its own composition is again
determined by executing another set of rules, which may include or exclude widgets
from the initial base Abstract Interface composition defined by the designer.

Next, a third set of rules is executed to determine how each Abstract Interface
widget will be mapped onto concrete interface widgets, and in some cases also extend
the concrete widget compositions to allow interaction between them.

This rule-driven approach has several advantages:

1. It allows taking into account actual runtime data and context information in
determining which interface should be used. Since the rules can refer to actual
input data to be exhibited through it, as well as to the Domain Model, it is fair to
say that the interface definition is now Semantic, in the sense of being aware of
the data types and values of the data it is exposing;

2. It allows adapting the interface to both the user and to the execution environment,
allowing a user experience that is in tune with the user’s device and environment
capabilities. Once again, such rules may take into account the semantics of the
user or context model to alter the concrete interface.

3. It becomes a design choice whether the adaptation process will be run only at
design time, or also during runtime. Running them during the application
execution provides maximum flexibility, as the interface can change dynamically
in reaction to several context changes, such as change of device, reduced
bandwidth, loss of modality due to either circumstantial reasons (e.g., no visual
access during driving) or due to hardware failure (e.g., display failure).

3.1 Rules and Interface Definition Parameters

Before going into more detail on how each part of the Interface Model is specified, it
is useful to summarize the different types of information that are the input parameters
for the definition.

• Rules follow the Condition-Action format. The conditions can reference
o Any of the other models in SHDM, namely, Domain, Hypertextual

Navigation, and Operations. For instance, it can test the type and value of
a data item, or whether the element being exhibited is a hypertextual link;

 Semantic Data Driven Interfaces for Web Applications 29

o Hypertextual parameters received in an http request;
o Browser header information, including browser, platform, operating

system, etc.
o Environment variables, e.g., date and time of day, location

• Mapping specifications are a different type of rule, which use data both to
establish the concrete interface to be activated, and to pass rendering
parameters as needed. These include hypertextual navigation information,
including sets of values to be iterated over.

All this information is converted into <object, property, value> triples which are input
to the rules facts database. The pre-condition of each rule simply tests the presence or
absence of a triple pattern in the facts database.

When an Operation (a behavior specification in SHDM) activates the Interface
Engine to render its results, it also passes parameters needed for the rendition. Such
parameters typically include the Domain Model data values and any input parameters
it has received itself.

We next discuss each type of rule, illustrating it with the running example.

3.2 Abstract Interface Selection Rules

The first step in defining the Interface is establishing the selection rules for the
Abstract Interface. The pre-condition in these rules define when each Abstract
Interface is applicable, allowing, for instance, to

• Select the interface only if the user is logged in;
• Select the interface only if the application is being accessed from a mobile

device;
• Select the interface only for certain types of data passed as input during runtime.

Notice that this is often necessary if one wants to deal with “raw” data in RDF,
which may not have any schema or vocabulary information associated with it.

In our example, the Abstract Interface selection rules are

set{
 has "params", "action", "hotel"
 has "params", "id", :_
}

The first line in the set tests whether we are exhibiting a hotel page; the second tests
whether a specific hotel (i.e., id has some value) was passed as a parameter.

3.3 Abstract Interface Element Selection Rules

The Abstract Interface is a composition of elements. Each element may have rules
associated to it, which determine if that element will be included in the final Abstract
Interface composition or not.

Consider the rates element in the Abstract Interface shown in Fig. 4. It should be
shown only if the check-in and checkout dates have been defined; conversely, the input
fields for those dates (the search_rates element) should be shown if they have not been
defined. The following rules capture this. The neg condition is the same as not has.

30 V. Nascimento and D. Schwabe

set "rates" do
 has "params", "checkin", :_
 has "params", "checkout", :_
end

set "search_rates" do
 neg "params", "checkin", :_
 neg "params", "checkout", :_
end

3.4 Concrete Interface Mapping Rules

For each Abstract Interface widget, there is a mapping rule that determines how it is
mapped onto concrete widgets. Below we show some of the rules that map the
Abstract Interface in Fig. 4 onto the concrete interfaces of Fig. 1-Fig. 3.

Each rule starts with maps-to, includes the name of the abstract widget it applies
to; the concrete widget to which it maps; parameters needed by the concrete widget;
and a rule block delimited by do-end used to determine under which conditions the
mapping is applicable. Rules are applied in order; once a rule has been applied to an
element, other subsequent rules applying to that same element are ignored.

1. maps_to abstract: "main_page", concrete_widget: "HTMLPage" ,
params: { title: "myLogdings.com - #{hotel[:name]}",
include_css: "/stylesheets/hotel_mob.css" }do

2. has "user_agent", "mobile", true end
3. maps_to abstract: "main_page", concrete_widget: "HTMLPage" ,

params: { title: "myLogdings.com - #{hotel[:name]}",
include_css: "/stylesheets/hotel.css" }

Header block

4. maps_to abstract: "header", concrete_widget:
"HTMLComposition"

5. maps_to abstract: "title", concrete_widget: "HTMLHeading",
params: { content: "MyLogdings" }

6. maps_to abstract: "account_anchor", concrete_widget:
"HTMLAnchor", params: { content: "Sign in to manage your
account", url: "/signin" }

7. maps_to abstract: "content", concrete_widget:
"HTMLComposition"

Hotel Data

8. maps_to abstract: "hotel_name", concrete_widget:
"HTMLHeading", params: { size: 2, content: hotel[:name] }

Images slider

9. maps_to abstract: "hotel_images", concrete_widget:
"JQueryAnythingSlider", params: { collection:
hotel[:images], as: :hotel_image }

10. maps_to abstract: "hotel_image", concrete_widget:
"HTMLImage", params: { content: hotel_image }

…

Rates

 Semantic Data Driven Interfaces for Web Applications 31

11. maps_to abstract: "rates", concrete_widget:
"HTMLComposition"

…

#== Availability

12. maps_to abstract: "availability", concrete_widget:
"HTMLSpan", params: {content: "Sold out", css_class:
"highlight"}do

13. equal room[:status], 'sold-out' end
14. maps_to abstract: "availability", concrete_widget:

"HTMLSpan", params: { content:
"Only #{room[:rooms_available]} left!", css_class:
"highlight"}do

15. equal room[:status], "few-rooms" end
16. maps_to abstract: "availability", concrete_widget:

"HTMLSpan", params: {content: "Available", css_class: "col3"
}

17. maps_to abstract: "book", concrete_widget:
"HTMLFormButton", params: {content: "Book", css_class:
"col4"} do

18. diff room[:status], "sold-out"
19. has "user_agent", "mobile", true end
20. maps_to abstract: "book", concrete_widget:

"HTMLFormButton", params: {content: "Book Now", css_class:
"col4"} do

21. neg "user_agent", "mobile"
22. diff room[:status], "sold-out" end

Search rates

23. maps_to abstract: "search_rates", concrete_widget:
"HTMLForm", params: {method: "get" }

24. maps_to abstract: "search_rates_title", concrete_widget:
"HTMLHeading", params: {size: 2, content: "When would you
like to stay at #{hotel[:name]}?"}

25. maps_to abstract: "label_checkin", concrete_widget:
"HTMLLabel", params: {content: 'Check-in' }

26. maps_to abstract: "checkin", concrete_widget:
"JQueryDatePickerInput" , params: {date_format: "d M, y",
min_date: 0 }

27. maps_to abstract: "label_checkout", concrete_widget:
"HTMLLabel", params: {content: 'Check-out' }

28. maps_to abstract: "checkout", concrete_widget:
"JQueryDatePickerInput" , params: {date_format: "d M, y",
min_date: 0 }

29. maps_to abstract: "search", concrete_widget:
"HTMLFormButton", params: {content: "Check" }

32 V. Nascimento and D. Schwabe

Some concrete widgets, such as HTMLHeading, HTMLSpan, HTMLForm, etc…
correspond directly to their counterparts in HTML. We make additional comments
highlighting the interesting uses of the rules.

• Lines 1 and 3 show two possible mappings for the main page. The first is
selected when the user agent is a mobile device, tested in line 2. Otherwise, the
mapping in line 3 applies. This is how the proper choice for generating of the
interfaces in Fig. 1- Fig. 3 is made.

• The expression #{hotel[:name]} in line 1 retrieves the value of the “name”
property of the hotel instance being shown;

• The expression url: "/signin" in line 6 generates a (REST) call to the
signing Operation, defined in the Behavior Model (not shown);

• Line 9 shows the use of a Javascript component. JQueryAnythingSlider,
capable of exhibiting a set of elements, including images. The actual set of
elements is passed as a parameter, the result of the expression collection:
hotel[:images] that retrieves from the Domain Model the set of image
values associated with the hotel being exhibited. Lines 26 and 28 map the input
form fields for the check-in and checkout dates to a library component,
JQueryDatePickerInput.

• Line 12 shows a conditional element. If the value of the room[:status]
property is “sold out”, this element (a warning text “Sold out”) will be
shown, with a CSS style “highlight”.

• Lines 14-15 show another conditional element. If the value of the status
property of room is “few-rooms”, a highlighted warning showing the number
of rooms left ("Only #{room[:rooms_available]} left!") is shown;
otherwise it is omitted.

• The book element defined in Line 17 is only included if there are rooms
available, as specified in the condition in line 18. There are two different CSS
styles used, one when the user agent is a mobile device (tested in line 19), the
other when it is not (tested in line 21).

An interesting point is raised by the flexibility of the mapping rule language. Since any
valid DSL expression (see [12] for a discussion on the embedded DSL offered by
Synth) can be used in the test clause of the condition, we could have inserted the test for
low availability in the rule itself, e.g., {room[:rooms_available]} < 3}. This,
however, would imply including parts of the Business Logic in the interface, which is
undesirable. Rather, this condition is actually implemented as an inference rule in the
Domain Model, which concludes the fact <"room", "status", "few-rooms">
from the number of rooms available, according to the application’s Business Rules.

In addition to these mapping rules, it is sometimes necessary to define Extensions
to the Concrete Interface Model to allow interactions between concrete widgets. A
common example is when the value set to one widget must be used as an input to
another widget.

Consider the check-in and checkout date widgets specified in lines 26 and 28. It
would be user-friendlier (and semantically correct) that once the check-in date has
been filled, the checkout date should be a date at least one day later. The extension
shown below encapsulates this behavior:

 Semantic Data Driven Interfaces for Web Applications 33

extend nodes: ['checkin'], extension: 'JQueryCopyDateTo',
params: { target: "checkout", string_format: "d MMM, yy",
add_days: 1 }

Extensions are wrappers around Concrete Interface elements. Typically, they will call
Domain model operations to determine Domain-dependent integrity constraints
normally enforced by these communications between widgets.

3.5 Concrete Widgets Definitions

As seen from the examples in the mapping rules, concrete widgets are treated as
software components outside the model itself; different concrete widgets should be
defined for different runtime platforms. In this sense, we diverge from the Cameleon
model, as Concrete Widgets are rendered directly to the Final User Interface.

A Concrete Widget should be self-contained, and capable of self-rendering
based only on their input parameters. Any potential dependencies they may have
with other widgets should be parameterized as well. For example, the
JQueryDatePickerInput is capable of receiving an initial date, as used by the
extension discussed above in the case of check-in and checkout dates.

Concrete Widgets are described in Manifest declarations, containing their name;
version; description; list of compatible abstract widgets (i.e., abstract widgets that can
be mapped to it); list of other widgets it depends on; list of parameter; and a text with
examples of use.

4 Implementation Architecture

The conceptual architecture that integrates the models defined in Section 3 is show in
Fig. 6.

Fig. 6. – The conceptual implementation architecture for Interfaces

34 V. Nascimento and D. Schwabe

The Facts Convertor component is responsible for extracting the model definitions
from the knowledge base, and converts them into facts - <object, property, value>
triples - that will be used by the rules engine. The Interface Selector runs the Selection
rules, returning a ranked list of interfaces. The Abstract Evaluator runs the
composition rules, resulting in the actual Abstract Interface to be used; abstract
widgets without associated rules are included by default. The Concrete Evaluator runs
the mapping rules to generate the concrete interfaces, adding applicable extensions,
and the results are interpreted using the concrete widget definitions to generate the
final running interface.

The Concrete Interface Interpreter receives a composition tree of concrete widget
specifications, including their parameters and extensions. It does a depth-first
traversal of the tree, and for each node instantiates (i.e., generates the code) for the
corresponding concrete widget.

Fig. 7 shows the actual sequence of events within the Interface Engine in Synth.

Fig. 7. – Sequence of events in the implementation of the Interface Engine in Synth

The Interface Engine is implemented in Ruby, as is the Synth environment. The
rules engine used is Wongi-Engine9, implementing the classical RETE algorithm.

5 Discussion and Conclusions

We have described a data- and model-driven rule based model and runtime
architecture. It is data-driven since the actual interface is self-assembled as a result of

9 https://github.com/ulfurinn/wongi-engine

 Semantic Data Driven Interfaces for Web Applications 35

the execution of the various rule-sets that use the instance data in the various models
in SHDM (Domain, Hypertextual Navigation, Behavior) to determine the final
interface. It is model-driven because all Synth models are available as data as well (as
discussed in [1]). For example, a rule can determine the inclusion of an abstract
widget if the data item being exhibited is of a certain type, and/or if it has a certain
property, e.g., “it is of any Class that has a Discount property”.

The work presented here is related to a very large number of models and
approaches that have been proposed in the literature (see, for example, [10]); it would
be beyond the scope of this paper to make a comparison with every one of them.
Several of the Interface Models in SHDM, e.g., the Abstract Interface and the
Concrete, have counterparts in the many proposed models, e.g., Maria [13], UsiXML
[9], UIML [7], among many, as well as those in Hera [5], UWE [8] and WebML [4],
differing mostly in the level of abstraction and on the underlying formalism (e.g.,
XML vs RDF). Each has advantages and disadvantages, a discussion of which would
require another paper altogether. A similar observation can be made regarding the use
of rules (e.g. [15], the difference still remaining in the underlying models.

The major distinguishing original contribution is the use of data- and model-driven
rules integrated seamlessly with the various other models within the SHDM approach,
directly supported by an implementation environment. Our approach leads to
explicating design decisions associated to the various levels of abstraction, as they
become explicit in the rules, as opposed to embedded in the interface code.

As an example, consider the problem of adapting the hotel-booking interface to a
mobile environment. The designer has some choices to make: The first is to define
a different Abstract Interface altogether for each device family; the second is to define
a generic interface, and specialize it for each device family; and the third is a
combination of both – define intermediary abstract interfaces for groups of families of
devices based on common properties, and specialize one of them for each specific
family. Our approach allows all three alternatives, allowing a better comparison
among them, e.g., based on the complexity of the models used for each approach.

One frequent concern with rule-based architectures is performance. We are now in
the process of systematically evaluating the performance overhead introduced by our
approach. Nevertheless, within the Synth architecture10, we have already observed
that the overall application performance is not significantly affected by this interface
architecture, because of the much larger performance hit caused by database access
and inferencing while executing the business logic operations.

We are continuing this work in several directions. The first is to continue the
evaluation of the approach, both in terms of performance, but also in terms of its
expressivity and usability for developers. Second, we want to explore the design
trade-offs for multi-platform applications, along the lines discussed in this section.
Finally, we plan to extend the rule-based adaptation engine to encompass all models
in SHDM besides the Interface Model, to achieve fully adaptive applications.

Acknowledgments. Daniel Schwabe was partially supported by CNPq (WebScience
INCT).

10 Synth currently uses the BigOWLIM RDF store.

36 V. Nascimento and D. Schwabe

References

1. de Souza Bomfim, M.H., Schwabe, D.: Design and Implementation of Linked Data
Applications Using SHDM and Synth. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.)
ICWE 2011. LNCS, vol. 6757, pp. 121–136. Springer, Heidelberg (2011)

2. Calvary, G., et al.: The CAMELEON Reference Framework, CAMELEON Project
(September 2002),
http://giove.isti.cnr.it/projects/cameleon/pdf/
CAMELEON%20D1.1RefFramework.pdf

3. Coutaz, J., Calvary, G.: HCI and Software Engineering for User Interface Plasticity. In:
Jacko, J. (ed.) Human Computer Handbook: Fundamentals, Evolving Technologies, and
Emerging Applications, 3rd edn. Taylor and Francis Group Ltd. (May 2012)

4. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. In: Proc. of the WWW9 Conf., Amsterdam (May 2000)

5. Frasincar, F., Houben, G.J., Barna, P.: Hypermedia Presentation Generation in Hera,
Information Systems, vol. 35(1), pp. 23–55. Elsevier Science Ltd., Oxford (2010)

6. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. In: Proceedings of
LA-Web 2003, Santiago, Chile, pp. 93–102. IEEE Press (November 2003)

7. Helms, J., Schaefer, R., Luyten, K., Vermeulen, J., Abrams, M., Coyette, A.,
Vanderdonckt, J.: Human-Centered Engineering with the User Interface Markup
Language, Human-Centered Software Engineering, ch. 7, pp. 141–173. Springer, London
(2009)

8. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based Web Engineering: An
Approach based on Standards (book chapter). In: Rossi, G., Pastor, O., Schwabe, D.,
Olsina, L. (eds.) Web Engineering: Modelling and Implementing Web Applications, ch. 7,
pp. 157–191. Springer, HCI (2008)

9. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML:
A Language Supporting Multi-path Development of User Interfaces. In: Feige, U., Roth, J.
(eds.) EHCI-DSV-IS 2004. LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005)

10. Meixner, G., Paternó, F., Vanderdonckt, J.: Past, Present, and Future of Model-Based User
Interface Development. i-com 10(3), 2–11 (2011)

11. Myers, B., Rosson, M.B.: Survey on User Interface Programming. In: Proc. 10th Annual
ACM CHI Conference on Human Factors in Computing Systems, pp. 195–202 (2000)

12. Nunes, D.A., Schwabe, D.: Rapid prototyping of web applications combining domain
specific languages and model driven design. In: Proc. 6th International Conference on Web
Engineering (ICWE 2006), pp. 153–160. ACM (2006) ISBN 1-59593-352-2

13. Paterno, F., Santoro, C., Spano, L.D.: Maria:A Universal, Declarative, Multiple
Abstraction Level Language for Service-Oriented Applications in Ubiquitous
Environment. ACM Transactions on Computer-Human Interaction (TOCHI) 16(4)
(November 2009)

14. Silva de Moura, S., Schwabe, D.: Interface development for hypermedia applications in the
semantic web. In: Proc. WebMedia and LA-Web, Ribeirão Preto, Brazil, pp. 106–113.
IEEE Press (October 2004)

15. Virgilio, R., Torlone, R., Houben, G.J.: Rule-based Adaptation of Web Information
Systems. In: Proc. 7th International Conference on Mobile Data Management (MDM
2006), Nara, Japan, May 10-12. Springer Science (2006)

Integrating Component-Based Web Engineering

into Content Management Systems

Stefania Leone1,�, Alexandre de Spindler2, Moira C. Norrie2, and
Dennis McLeod1

1 Semantic Information Research Laboratory, Computer Science Department, USC
Los Angeles, CA, 90089-0781, USA
{stefania.leone,mcleod}@usc.edu

2 Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{despindler,norrie}@inf.ethz.ch

Abstract. Popular content management systems such as WordPress
and Drupal offer a plug-in mechanism that allows users to extend the
platform with additional functionality. However, plug-ins are typically
isolated extensions defining their own data structures, application logic
and user interface, and are difficult to combine. We address the fact that
users may want to configure their applications more freely through the
composition of such extensions. We present an approach and model for
component-based web engineering based on the concept of components
and connectors between them, supporting composition at the level of
the schema and data, the application logic and the user interface. We
show how our approach can be used to integrate component-based web
engineering into platforms such as WordPress. We demonstrate the ben-
efits of the approach by presenting a composition plug-in that showcases
component composition through configurable connectors based on an
eCommerce application scenario.

Keywords: Component-based Web Engineering, Content Management
System, WordPress.

1 Introduction

Popular content management systems (CMS) such as WordPress1 and Drupal2

greatly facilitate the task of designing and developing web applications for small
companies and individuals. These systems offer a graphical administrator inter-
face, where users can author content, upload media, customise the layout and
integrate a wide variety of plug-ins to extend the platform core with additional
functionality. The WordPress Plug-in Directory3 hosts thousands of plug-ins

� Stefania Leone’s work is supported by the Swiss National Science Foundation (SNF)
grant PBEZP2 140049. The research has also been funded in part by the Integrated
Media Systems Center (IMSC) of the University of Southern California (USC).

1 http://wordpress.org
2 http://drupal.org/
3 http://wordpress.org/extend/plugins/

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 37–51, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://wordpress.org
http://drupal.org/
http://wordpress.org/extend/plugins/

38 S. Leone et al.

developed by the community, providing functionality ranging from site access
statistic, over sophisticated photo galleries to eCommerce solutions. Plug-ins
may define their own data structure, application logic and user interface. Al-
though extremely powerful, plug-ins are simply extensions of the platform core.
They are typically isolated and it is difficult to compose them with other plug-
ins. For example, a company that runs their online shop based on a WordPress
eCommerce plug-in, such as WooCommerce4, might want to perform a customer
satisfaction survey by using a survey plug-in, e.g. WordPress Simple Survey5.
Ideally, for the participant profile data, the survey plug-in could directly make
use of the customer data managed as part of the eCommerce plug-in. However,
the current WordPress application model would require the user to familiarise
themself with the code of the eCommerce plug-in and to programatically extract
and map the customer data from the eCommerce plug-in to the participant for-
mat defined by the survey plug-in. This is a task that generally goes beyond the
skills of a typical, non-technical WordPress user.

In this paper, we present an approach and a well-defined component model
that supports end-users, both non-technical as well as more advanced ones, in
performing such composition scenarios. The presented work is in line with recent
research on end-user development, where they not only consider how to make
web information systems easy to use, but also easy to develop [1]. Our approach
enhances and generalises the application model of CMS such as WordPress to
support component-based web engineering. Our model is based on the concept
of components and explicit connectors between them. A component adheres to a
well-defined component structure exposing interfaces for component composition
at various levels. To build an application, components are composed through
configurable connectors between them. We introduce different connector types
to support composition at various levels, i.e. composition at the schema and data
level, at the level of the application logic, and at the level of the user interface.
We have realised our approach based on WordPress and present a composition
plug-in that supports component composition based on configurable connector
types. Finally, as proof of concept, we show how an eCommerce solution could
be extended and combined with other plug-ins using our composition plug-in.

This paper is structured as follows. We give an overview of the background in
Sect. 2, followed by our approach in Sect. 3. We introduce the component and
composition model in Sect. 4. Section 5 presents the application of our approach
using WordPress, followed by the presentation of the composition plug-in in
Sect. 6 and the validation of our approach in Section 7. Concluding remarks are
given in Sect. 8.

2 Background

Over the years, numerous frameworks and approaches for designing and develop-
ing web information systems have been introduced. Model-driven web

4 http://wordpress.org/extend/plugins/woocommerce/
5 http://wordpress.org/extend/plugins/wordpress-simple-survey/

http://wordpress.org/extend/plugins/woocommerce/
http://wordpress.org/extend/plugins/wordpress-simple-survey/

Integrating Component-Based Web Engineering into CMS 39

engineering approaches, e.g. [2, 3] offer systematic methodologies based on mod-
els describing the structural, navigational and presentation aspects of a Web
information system. Models are typically defined graphically and most method-
ologies offer a platform for application generation and deployment according
to the defined models. These solutions, however, were targeted at collaborating
groups of database architects, web developers and graphic designers, and explic-
itly supported the separation of concerns in terms of their roles by providing
separate models for the different levels of a web information system.

In parallel, CMS became a popular way for non-technical users, including indi-
viduals and small companies, to create websites and publish their content. Plat-
forms such as WordPress and Drupal provide graphical administrator interfaces,
which support the website design of content and structure in terms of general
publishing units and presentation styles. The extensibility mechanism inherent
to these platforms allows for the integration of arbitrary data and services to
support the creation of complex web information systems. The configuration and
use of plug-ins is typically also performed through the administrator interface.
However, as already stated, these extensions, while extremely powerful, cannot
easily be combined or mashed-up. Plug-ins are typically isolated units developed
by community members, and there is little control or conventions with respect
to the plug-in internals. In the case of WordPress, developing and composing
plug-ins requires knowledge of PHP as well as a detailed understanding of the
WordPress platform and its inner workings.

A number of approaches support web application development from reusable
components. With WebComposition [4], web applications are built through hier-
archical compositions of reusable application components. Similarly, web
mashups are composed through the orchestration of reusable, self-contained ser-
vices, which interact at the message level and may span multiple applications and
organisations. Various mashup editors offer graphical tools as an alternative to
programmatic interfaces to do the composition process, both for general, e.g. [5–
7] and domain-specific mashup creation, e.g. [8, 9]. While some mashup editors
help users to integrate information from distributed sources, others provide in-
frastructure for building new applications from reusable components. For exam-
ple MashArt [7] enables advanced users to create their own applications through
the composition of user interface, application and data components. The focus
is on supporting the integration of existing components based on event-based
composition, where components can react to events of other components.

We build on and extend these ideas for the CMS domain targeting non-
technical users. In contrast to previous work, our approach offers component-
based web engineering based on the definition and configuration of explicit
connectors that encapsulate the collaboration logic between components. As
stated in [10], one of the main challenges of modular system development lies
in the fact that modular units may not be compatible for composition. As a
consequence, our component model is inspired by the Architecture Description
Language (ADL) [11, 12], an approach to component-based software engineer-
ing, where the component model consists of components and explicit connectors

40 S. Leone et al.

between them. Through the definition of explicit connectors between compo-
nents, we circumvent the problem of component incompatibility. Connectors
encapsulate the composition logic, exhibiting functionality ranging from sim-
ple message passing, to complex collaboration logic, such as data transformation
operations, and, consequently, would allow for the composition of arbitrary com-
ponents. We introduce different types of connectors, which can be configured to
define the composition for a particular composition scenario. For example, a
schema connector type could be configured to support the structural composi-
tion of the eCommerce and survey plug-ins.

Our approach and model is not dissimilar to the application model introduced
by the Google Android platform6 for developing and running mobile applications.
Their application model propagates the reuse of different types of application
components across applications, where applications are configured through so-
called intents that define the glue code between the various components. While
intents allow base values to be passed in the form of key-value pairs between
components, our connectors generalise this approach and may define arbitrary
complex collaboration logic between components.

3 Approach

We introduce a component-based approach to web engineering based on ideas of
ADL where applications are modelled based on reusable components and explicit
connectors between them. Components may provide arbitrary functionality and
define their own data structure, application logic and user interface.

eCommerce

User Interface

Events:
onOrderCreate

...

Survey

User Interface

Customer OrderplacesSurvey

Question providesHas

Has Participant

...

Is-a

Electronic Payment

Methods

verifyCard();
...

User
Credentials

User Interface

1

2

Methods:
printOrder();
...

Events:
onPayment
...

...

Data

... ...

...
Data Bill Murray

2-23-2013
45$

places

has

Order
Item

...

Methods:
createSurvey();
startSurvey();
...

Events:
onStart
...

Fig. 1. Composition Scenario

We will introduce our approach based on the example of a company that makes
use of a CMS extended with an eCommerce component for their online business.
Figure 1 gives an overview of the scenario. The eCommerce component, in the
centre, allows users to create and manage an online store, including product, cus-
tomer and order management. The component defines a schema that represents
the eCommerce application domain by means of entity types and relationships,

6 http://developer.android.com/guide/

http://developer.android.com/guide/

Integrating Component-Based Web Engineering into CMS 41

Fig. 2. Specialisation Screenshot Fig. 3. Attribute Mapping Screenshot

and manages data structured accordingly. Furthermore, the component defines
application logic by means of methods and events, which implement the online
store functionality, and this functionality is made available to the user through
a graphical user interface.

To evaluate customer satisfaction, the company decides to perform a customer
satisfaction survey and they would like to make use of their customer data when
performing the survey. For this purpose, they have selected a survey component,
shown on the right, that offers the required functionality to define and run
surveys. The survey component, in turn, consists of a user interface, application
logic and a schema, and the component may manage data structured accordingly.
However, they want to avoid having two separate user entities and therefore
want to create a connection between the eCommerce customer and the survey
participants.

Connector 1 , on the left in Fig. 1, defines the composition between the two
components. It is a specialisation connector that defines an is-a relationship be-
tween the Customer entity of the eCommerce component and the Participant
entity of the survey component. Through this specialisation connector, the cus-
tomer data can automatically be used as participant data for the survey.

Figures 2 and 3 illustrate, based on screenshots, how a user configures a spe-
cialisation connector through a graphical composition wizard. We assume that
the user has already selected the components to be composed as well as the
connector type. Figure 2 shows how the user creates the actual is-a relation-
ship by selecting the customer entity of the eCommerce component and the
participant entity of the survey component. The user also defines that the
customer entity should become the parent entity by checking the parent check-
box. Next, the user has the possibility to define attribute mappings between
the matching/overlapping attributes of the two entity types. In our example,
both entities participant and customer define name attributes. Figure 3 shows
how such mappings are created. Here, the user is about to create a mapping
between the User.firstname and the Participant.forename attributes. At
the bottom of the figure, the list of defined mappings is shown, where the at-
tribute User.lastnamewas mapped to Participant.surname.With these map-
pings, the specialisation connector ensures that each time the name of a survey

42 S. Leone et al.

Fig. 4. Binding Creation Screenshot Fig. 5. Parameter Mapping Screenshot

participant is accessed, the corresponding customer name from the eCommerce
component is retrieved and displayed. Note that, in this example, the special-
isation does not require any data mappings, since the survey component does
not yet manage data. However, when composing two components with data, the
specialisation definition also requires the definition of a data mapping and a
conflict resolution strategy, also supported through our composition wizard.

While this is the basic functionality provided by the specialisation connector,
advanced users are free to extend the configured connector programatically. For
example, the connector could be extended to perform data mining by defining
queries that combine survey data with customer data to answer questions such
as “Do customers who selected answer (a) in question 4 buy similar products?”.

In a second step, the company decides to offer support for electronic pay-
ment, a functionality that is not provided by the eCommerce component. For
this composition, the eCommerce component is composed with an electronic
payment component, shown on the right of Fig. 1. The event handler registra-
tion connector 2 operates at the application logic level, based on events and
callback methods. Figure 4 and 5 show the steps involved in configuring this
connector. Again, we assume that the user has already selected the components
to be composed and the connector type. Furthermore, the user has decided that
the electronic payment component should be invoked as a result of an event that
occurs in the eCommerce component. The screenshot in Fig. 4 shows how a user
defines that binding by selecting events and methods. In the current example,
the user has selected the onOrderCreated event from the survey component.
According to the description shown below the drop-down menu, the event gives
access to the created order and its attributes. On the left, the user has selected
the invokePayment method of the electronic payment component and the de-
scription of the method and its parameters is displayed, saying that the method
takes two parameters amount and currency.

After creating the basic binding, the user may define mappings between the
event object attributes and the method parameters, as shown in Fig. 5. In the
current example, the user intends to map the price attribute of the order to the
amount parameter of the invokePayment method. Also, at the bottom, a list of
created mappings is illustrated. The user has already created a static mapping
for the currency parameter by assigning it the default value “USD”. Note that

Integrating Component-Based Web Engineering into CMS 43

users are free to define such default values for parameters in cases where the
attributes and parameters do not match or are incompatible and we support
basic type transformation.

As these two composition examples illustrate, connectors provide the glue
between components and are configured by the user to adhere to a particular
composition scenario. We offer different types of connectors that support com-
position at various levels of a component. Figure 6 gives an overview of the
composition levels and shows, from left to right, that connectors may be used at
the data level, the schema level, the application logic level and the user inter-
face level. We provide connector types for all these levels and will present our
component model including the various connector types in the next section.

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data

Application
Logic

UI Interface

Schema

Application Logic

User Interface

Data Level Schema Level Application Logic Level User Interface Level

Fig. 6. Composition Levels

4 Component Model

A component is an application providing arbitrary functionality to its users.
Components may be composed with other components using explicit connectors
between them to form more complex applications. The general component model
along with the composition interface is shown on the left in Fig. 7, while the
eCommerce component introduced in Sect. 3 is shown on the right as an example
following this model.

Component

UI

Application Logic:
Methods, Events

Data
(Entities & Relationships)

Schema
(Entity Types & Relationships)

Composition Interface

Schema Interface
getEntities();
getRelationships();

Application Logic Interface
getEvents();
getMethods();

UI Interface
getWidgets();

Data Interface
getEntityData(...);
getRelationData(...);

eCommerce

User Interface

Customer Orderplaces

Methods:
printOrder();
...

...
...

Bill Murray
2-23-2013

45$
places

has

...

...

Fig. 7. Component Example

Formally, a component is defined as a tuple of the four elements

Component = 〈Schema,Data,Application Logic,User Interface〉

44 S. Leone et al.

The Schema is a data model instance describing the component Data in terms of
a set of entity types {E1, . . . , EM} and relationships {R1, . . . , RN}.
The Application Logic includes a set of methods {m1(), . . . ,mU ()} implementing
the application logic and events {e1, . . . , eV } related to these methods. Compo-
nents typically contain basic CRUD methods supporting the management of
their entity types and relationships, as well as higher-level methods providing
domain-specific functionality. Component developers are free to define an arbi-
trary number of events triggered by the execution of such methods. For example,
a component may define events marking the start and end of CRUD method
executions.

Finally, the User Interface defines the graphical user interface. In CMS, the
user interface is typically specified by layout themes defining the general presen-
tation of the provided publishing units for the complete web site. As part of the
user interface, components may define a set of widgets {W1, . . . ,WN} displaying
specific component data or providing component services to the users. Widgets
represent complete user interfaces including user interface controls, layout and
style templates. Note that components do not necessarily specify multiple or
all of these four elements. For example, while the eCommerce component speci-
fies Schema, Application Logic and Widgets elements, other components may for
example only specify Application Logic and Schema elements.

Components expose a composition interface which defines in which way they
may be composed with other components. In order to implement such an in-
terface, component developers need to specify which of the component elements
they wish to make available for composition. Component interfaces do not need
to expose component elements at all levels. At the schema-level, the interface
specifies the subset {Ei, . . .} ⊆ {E1, . . . , EM} of composable entity types and
the subset {Rj , . . .} ⊆ {R1, . . . , RN} of composable relationships. The speci-
fication of the data available for composition consists of a query Q over the
composable schema elements. Similar to the schema interface definition, ap-
plication logic made available for composition is defined in terms of subsets
{mk(), . . .} ⊆ {m1(), . . . ,mU ()} and {el(), . . .} ⊆ {e1, . . . , eV }. Finally, user in-
terface widgets are exposed in terms of the subset {Wi, . . .} ⊆ {W1, . . . ,WN}.

In Figure 7, a programmatic representation of the composition interface is
shown, with getter methods to access the defined subsets of composable widgets,
methods, events, schema elements and data.

Connectors specify how components are connected and at which level. For
example, the specialisation connector presented in Sect. 3 defines an is-a re-
lationship at the schema level, and the event handler registration component
binds a callback function to an event at the application logic level. Figure 8
shows the basic types of connectors—categorised based on the composition level.
The widget connector, shown at the top, supports composition at the UI level
through the integration of widgets between components. The connector forms
the union of widgets defined as User Interface := {W1, . . .} ⊆ UserInterfaceA∪
UserInterfaceB. In the example in Fig. 8, the connector integrates a widget of
component A into the user interface of component B.

Integrating Component-Based Web Engineering into CMS 45

S
c
h

e
m

a
 L

e
v
e
l

Component A Component B

Order
Item

Order

Has

Open
Order

Deliver
ed

Order

Is-
a

map Order
Item

Order

Has

U
I

L
e

v
e

l

Widget Connector

UI Component BUI Component A

D
a

ta
 L

e
v

e
l

A
p

p
li
c
a
ti

o
n

 L
o

g
ic

L

e
v
e
l

Component A Component B

Event Handler Registration Connector

Instance A Instance B

Association Connector

...... ...

Component A Component B

... ...

Specialisation Connector

...

Component A

...

Component B

...

Map Connector

Connector

register

notify
invoke

Reduce Connector

243
243

243
55.5

reduce

Component BComponent A

Fig. 8. Basic Connector Types and Composition Scenarios

At the application logic level, Fig. 8 illustrates the Event Registration Con-
nector based on a UML sequence diagram that reflects the collaboration between
components and connectors in an event-based setting. The connector is speci-
fied as Application Logic := {m1(){ei → mj()}, . . .} defining functions binding
events from one component to methods of another component.

Schema-level connectors compose components based on schema elements, such
as specialisation and associations [13]. As shown in Fig. 8, a specialisation con-
nector defines an is-a relationship establishing a specialisation relationship
among entity types from different component schemata and an association con-
nector defines a relationship between two entity types from different components.
More generally, a schema connector may define arbitrary schema elements among
component entities Schema := {{E1, . . .}, {R1, . . .}}.

Finally, data connectors allow data from one component to be reused by an-
other component. As shown in Fig. 8, data reuse may be defined by a mapping
connector that maps the schema of one component to the schema of
another component, or by a reduce connector that transforms data from one
component to a format specified by another component. Generally, data connec-
tors may be defined as combinations of map and reduce functions of the form
Application Logic := {map(){Ei.aj ← reduce(Ek.an, El.am)}, . . .}. Such map
and reduce functions may in turn be bound to data mapping connector events
to define whether the mappings should occur once, multiple times or periodically.

Note that we have given a minimal specification of the various connector types,
but they may define richer functionality. For example, the association connec-
tor may also define application logic in the form of CRUD methods to create

46 S. Leone et al.

associations, as well as a widget that allows new associations to be graphically
created and viewed. Similarly, a reduce connector may define a user interface,
where the reduce function could be configured.

As seen with these examples, connectors consist of the same building block as
general components and, therefore, can be seen as a special type of components,
where the functionality is not targeted at the application domain, but rather at
the composition of domain-specific application units. Figure 9 shows the meta-
model of our component model. A component defines a user interface, application
logic, schema and data, and, depending on the implementation technology, these
elements may be realised in different ways. A connector is a sub-type of com-
ponent, and therefore, they can in turn be composed. Connectors are classified
according to their supported composition level, which defines the access points
of a connector. A concrete connector is an instance of such a connector type and
is instantiated with values that are particular to a composition scenario. For ex-
ample, a specialisation connector will be instantiated with an is-a relationship
between two entity types.

Component

Application
Logic

Schemadefines

Datadefines

conforms

defines

Connector

defines
User

Interface

Is-a

compose

defines

Component
Interface

Schema
Connector

Application
Logic

Connector

UI
Connector

Is-a

Is-a

Map
Connector

Association
Connector

Data
Connector

Specialisation
Connector

Is-a

Is-a
Event

Registration
Connector

Widget
Connector Is-a

Reduce
Connector

Fig. 9. Component Metamodel

5 WordPress Extension

We have extended WordPress with our approach and component model to sup-
port component-based web engineering. We will first give a short introduction
to the WordPress plug-in mechanism before presenting our extension.

The WordPress plug-in mechanism allows the original blogging model to be
extended in terms of data structure, application logic and user interface wid-
gets by hooking into the WordPress core. A number of such hooks are provided,
which allow plug-ins to inject additional functionality, data structures and pre-
sentation into the WordPress core execution environment. Hooks may represent
plug-in lifecycle events such as their installation or uninstallation, as well as
administrative or end-user activities including the creation, manipulation, re-
trieval, selection, display and deletion of posts, pages or plug-in-specific data.
Typically, the plug-in code includes functions for creating and deleting database
tables, for inserting and selecting table data and the assignment of these func-
tions to particular hooks. Users are free to define their own hooks, which allows

Integrating Component-Based Web Engineering into CMS 47

plug-ins to react to events of other plug-ins. For the user interface, plug-ins rely
on the WordPress publishing process and themes that define the structure and
layout of the complete web site. A plug-in may, however, define widgets that can
be placed in various places of the user interface. To install a plug-in, the files
containing the plug-in code, typically one or more PHP files and JavaScript, are
uploaded into the target WordPress platform through the WordPress adminis-
trator dashboard and can be activated and deactivated. Upon activation, the
additional functionality, data structures and presentation facilities become part
of WordPress and are available for immediate use.

We have extended the WordPress plug-in model to adhere to our approach.
On the level of the application logic and user interface, the WordPress plug-in
model matches our component model. At the level of the user interface, plug-ins
may define widgets and the WordPress core handles the generation of the user
interface from themes including the placement of such widgets. Application logic
is represented by PHP functions and events. At the data and schema level, how-
ever, WordPress only supports a basic notion of types and data may be stored
in any possible way and format. Also, plug-ins do not define a composition API,
as defined by our approach. We therefore build on our previous work [14] where
we introduced DataPress, a WordPress plug-in which supports the generation
of tailored WordPress plug-ins from user-defined ER models. With DataPress, a
user graphically defines an application domain by means of ER models through
the dashboard and DataPress automatically generates a plug-in that allows data
to be managed accordingly. For each defined entity type and relationship, Data-
Press generates data structures, CRUD methods and user interface components
to create and manage the data.

By building on this approach, we not only gain support for ER modelling,
but we could also extend the automatic generation of plug-ins to conform to our
component model. We additionally generate two hooks for each of the generated
CRUD operations—a before and after hook. For example, for the creation of an
order entity, the two hooks onOrderCreate and onOrderCreated are generated.
Also, we generate a configuration file that represents the composition API that
gives access to the composable plug-in elements. The file lists the names of the
entities, relationships, methods, events and widgets defined by a plug-in and the
user can simply remove elements that should not be offered for composition. The
configuration of a connector for a particular composition scenario is based on
these names defined in the respective plug-in configuration files.

6 Composition Plug-in

To support composition by non-technical users, we provide a composition plug-in
that supports the composition process graphically, as illustrated in the screen-
shots in Sect. 3. Figure 10 gives an overview of the composition plug-in archi-
tecture. The composition plug-in, shown in the centre, is a regular WordPress
plug-in that is integrated into the dashboard. It provides access to locally in-
stalled plug-ins, shown on the left, and the connector type plug-ins, shown on the

48 S. Leone et al.

Wordpress Core

Composition
Plug-in

Relationship Plug-in

Data Mapping Plug-in

DataPress
Plugin

Event Registration Plug-in

Association Plug-in

...

Plug-in Directory

Currency
Converter

Component

Survey
Component

eCommere
Component

Rating
Component

...

Fig. 10. Composition Plug-in Architecture

right. It builds on an extended version of DataPress and supports the generation
of plug-ins from user-defined ER models structured according to our component
model. Using the composition plug-in, new plug-ins can be composed with the in-
stalled ones by configuring one of the provided connector types. Assuming that
all plug-ins would be structured according to our approach, a user could also
download, install and compose plug-ins from the Wordpress Plug-in directory,
shown on the left.

Each connector type has been realised as parameterised plug-in, which gets
“instantiated” upon composition. The composition plug-in automatically gen-
erates and installs the configured connector plug-ins. Below, we show a con-
figured version of the event handler registration connector that corresponds to
the configuration shown in Figs. 4 and 5. Through the configuration process,
the connector has been named Payment Connector and the event and method
names to be bound, have been injected into the plug-in template. In WordPress,
the add action method registers a specific hook with a specific method. The
add action method further defines the priority of the method invocation, as
well as the numbers of arguments that are passed from the event to the method.
While WordPress assumes that the number and types of attributes provided by
the hook match the parameters of the callback method, we have generalised this
approach by giving the user the possibility to define attribute-parameter map-
pings, as shown in Fig. 5. In this example, the event onOrderCreated defines
four attributes while the method invokePayment only takes two parameters.

/* Plug-in Name: PaymentConnector*/

...

add_action(‘onOrderCreated’, ‘invokePaymentTemp’, 1, 4);

add_action(‘onPayedElectronically’, ‘redirectToShop’);

function invokePaymentTemp($orderID, $date, $price, $noItems){

$currency=‘‘USD’’;

invokePayment($price, $currency);

}

function redirectToShop(){...}

The mappings are reflected in the connector code. Upon onOrderCreated, a
helper method invokePaymentTemp method is invoked, accepting the four at-
tributes defined by the onOrderCreated event as parameters. The method re-
alises the defined attribute mappings and invokes the actual payment method

Integrating Component-Based Web Engineering into CMS 49

using these mappings. Here, the attribute $price from onOrderCreated, and
the attribute currency set to the default value “USD” are used as parameters.

Note that more advanced users are free to extend a configured connector
plug-in with additional code. In the current example, the user has also defined a
second binding, which, upon completion of the electronic payment, invokes the
locally defined method redirectToShop to automatically redirect the customer
back to the eCommerce component.

While the configured event registration connector plug-in only defines appli-
cation logic between two components, other connectors also define schema, data
and widgets. For example, the association connector creates a database table
as part of its installation process where associated pairs of entities are stored.
Furthermore, it also defines a widget allowing users to graphically create associ-
ations and, as part of the connector configuration, the user decides whether the
widget may be visible along with one or both composed components as part of a
dynamic sidebar injected into the layout theme, or as part of the dashboard. The
widget connector is realised in a similar way: A configured widget connector in-
jects a widget from one component into the user interface of another component,
based on a user’s configuration, by placing them in a dynamic sidebar.

7 Scenario

We have used the composition plug-in to compose an extended eCommerce ap-
plication from various components. Figure 11 illustrates the various composition
scenarios. As a first step 1 , the eCommerce component has been composed
with the survey component through a specialisation connector as described in
Sect. 3. On the left, the specialisation is defined by means of an is-a relationship
and the two attribute mappings.

In a second step, the eCommerce component has been composed with a review
component to allow products to be reviewed by customers. The composition is
based on an association connector, shown in 2 . The connector defines the
association between the product and the review entity including the cardinality
constraints. A product may have 0 or n reviews and a review is for exactly one
product. The connector also defines a widget, illustrated by the editor icon on
the left. The connector is configured in such a way that the widget is displayed
alongside the product view, allowing customers to write and view reviews while
browsing products. Next, the eCommerce component is extended with electronic
payment support, by composing it with an electronic payment component at the
level of the application logic, shown in 3 . The connector configuration defines
the binding of the onOrderCreate event with the invokePayment method.

As the customer base of the company becomes more international, the com-
pany decides to make use of a currency converter component. In 4 the com-
position of the eCommerce component with a currency converter component is
shown. The composition takes place at the user interface level: the connector de-
fines that the currency converter widget is to be displayed along with products
and orders, so that customers can make use of it when browsing products or to
convert the price of an order.

50 S. Leone et al.

Customer Is-a User

eCommerce Survey Specialisation Connector Configuration
isA(Customer, Participant)

map(Customer.firstname, Participant.forename)
map(Customer.lastname, Participant.name)

Product Reviewhas

ReviewseCommerce

Association Specification
has(Product, Review)

min(Product, received) = 0
max(Product, received) = *
min(Review, received) = 1
max(Review, received) = 1

Survey
Component

eCommerce
Component

Review
Component

eCommerce
Component

Electronic
Payment

Component

eCommerce
Component

Currency
Converter

Component

eCommerce
Component

Spreadsheet
Component

Survey
Component

Answers map

Answers.value = Cell.value
Answers.no = Row.no
...

Attribute Mappings

Column Has

CellHasRow

UI Component B

1

3

2

4

5

UI Component B

Survey Spreadsheet

...
<div id="sidebar-custom" class="sidebar">

<?php dynamic_sidebar('custome'); ?>
</div>
...

add_action('onOrderCreated', 'invokePayment');

eCommerce Electronic Payment

Order Payment
Connector

register

notify
invoke

Question

Has

...

Fig. 11. Scenario Application

Finally, the company would like to evaluate the outcome of the survey using a
spreadsheet component. To do so, the data of the survey component is mapped to
the data format of the spreadsheet component, as shown in 5 . The mapping is
specified by a number of attribute mappings between the entities of the survey
component and the entities of the spreadsheet component, where the survey
questions and answers are mapped to the spreadsheet format.

8 Conclusion

Our approach, model and implementation is a practical solution to enhance
today’s content-management systems with support for component-based web
engineering. By defining components and explicit connectors between them, we
not only circumvent possible incompatibilities between components, but we also
make sure that composed systems are resilient to plug-in updates, since the
composition logic is completely encapsulated within the connector code.

We see our work as a further step towards providing systems that are easy to
develop. While we target non-technical end-users and support the composition
process through graphical user interfaces, this approach is clearly more limited
than the programmatic definition and extensions of connectors, as can be done
by more experienced users. However, the presented scenario has shown that a
small set of relatively simple connector types covers a wide range of composi-
tion scenarios allowing for the design of relatively complex applications through
graphical user interfaces. As a next step, we plan to conduct a user study to

Integrating Component-Based Web Engineering into CMS 51

further validate and refine our approach. We also note that our approach is
extensible, and new connector types could be added at any level.

References

1. Lieberman, H., Paterno, F. (eds.): End User Development. Human-Computer In-
teraction Series. Springer (2006)

2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling
Language For Designing Web Sites. Computer Networks 33(1-6) (2000)

3. Vdovják, R., Frăsincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. Journal of Web Engineering 1(1-2) (2003)

4. Gellersen, H.W., Wicke, R., Gaedke, M.: Webcomposition: An object-oriented
support system for the web engineering lifecycle. Computer Networks 29(8-13),
1429–1437 (1997)

5. Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P.: Intel Mash Maker:
Join the Web. ACM SIGMOD Record 36(4), 27–33 (2007)

6. Murthy, S., Maier, D., Delcambre, L.: Mash-o-Matic. In: Proc. ACM Symposium
on Document Engineering (DocEng 2006) (2006)

7. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829,
pp. 428–443. Springer, Heidelberg (2009)

8. Imran, M., Soi, S., Kling, F., Daniel, F., Casati, F., Marchese, M.: On the System-
atic Development of Domain-Specific Mashup Tools for End Users. In: Brambilla,
M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 291–298.
Springer, Heidelberg (2012)

9. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Fernández-Villamor, J.I.,
Chepegin, V.I., Fornas, J.A., Wilson, S., Kögler, C., Chang, H.: End-user-oriented
Telco Mashups: The OMELETTE Approach. In Proc. World Wide Web Conf.
(WWW 2012) (Companion Volume) (2012)

10. Shaw, M.: Modularity for the Modern World: Summary of Invited Keynote. In:
Proc. Intl. Conf. on Aspect-Oriented Software Development (AOSD 2011) (2011)

11. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Trans. Softw. Eng. 26(1),
70–93 (2000)

12. Clements, P.C.: A Survey of Architecture Description Languages. In: Proc. Intl.
Workshop on Software Specification and Design (IWSSD 1996) (1996)

13. Leone, S., Norrie, M.C.: Building eCommerce Systems from Shared Micro-Schemas.
In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi,
B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania,
M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 284–301. Springer, Heidelberg
(2011)

14. Leone, S., de Spindler, A., Norrie, M.C.: A Meta-Plugin for Bespoke Data Man-
agement in WordPress. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 580–593. Springer, Heidelberg (2012)

Hidden-Web Induced by Client-Side Scripting:

An Empirical Study

Zahra Behfarshad and Ali Mesbah

University of British Columbia,
Vancouver, BC, Canada

{janab,amesbah}@ece.ubc.ca

Abstract. Client-side JavaScript is increasingly used for enhancing web
application functionality, interactivity, and responsiveness. Through the
execution of JavaScript code in browsers, the DOM tree representing a
webpage at runtime, can be incrementally updated without requiring a
URL change. This dynamically updated content is hidden from general
search engines. In this paper, we present the first empirical study on mea-
suring and characterizing the hidden-web induced as a result of client-
side JavaScript execution. Our study reveals that this type of hidden-web
content is prevalent in online web applications today: from the 500 web-
sites we analyzed, 95% contain client-side hidden-web content; On those
websites that contain client-side hidden-web content, (1) on average, 62%
of the web states are hidden, (2) per hidden state, there is an average of
19 kilobytes of data that is hidden from which 0.6 kilobytes contain tex-
tual content, (3) the DIV element is the most common clickable element
used (61%) to initiate this type of hidden-web state transition, and (4)
on average 25 minutes is required to dynamically crawl 50 DOM states.
Further, our study indicates that there is a correlation between DOM
tree size and hidden-web content, but no correlation exists between the
amount of JavaScript code and client-side hidden-web.

1 Introduction

General web search engines cover only a portion of the web, called the visi-
ble or indexable web, which consists of the set of web pages reachable purely
by following URL-based links. There is, however, a large body of valuable web
content that is not accessible by simply following hypertext links. Well-known
examples include dynamic server-side content behind web forms [3,19] reach-
able through application-specific queries. This portion of the web, not reachable
through search engines, is generally referred to as the invisible or hidden web,
which, in 2001, was estimated to be 500 times larger than the visible web [4].
More recently, form-based hidden web content has been estimated at several
millions of pages [3,12].

With the wide adoption of client-side programming languages such as
JavaScript and Ajax techniques to create responsive web applications, there
is a new type of hidden-web that is growing rapidly. Although there has been

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 52–67, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Hidden-Web Induced by Client-Side Scripting: An Empirical Study 53

extensive research on detecting [3,14,19] and measuring [4,11] hidden-web con-
tent behind web forms, hidden-web induced as a result of client-side scripting
has gained limited attention so far.

JavaScript is the dominant language for implementing dynamic web appli-
cations. Today, as many as 97 of the top 100 most visited websites [1], have
client-side JavaScript [20], often consisting of thousands of lines of code per ap-
plication. JavaScript is increasingly used for offloading core functionality to the
client-side and achieving rich web interfaces. JavaScript code interacts with and
incrementally updates the Document Object Model (DOM) in an event-based
style. Changes made dynamically to the structure, contents or styles of the DOM
elements are directly manifested in the browser’s display. This event-based style
of interaction is substantially different from the traditional URL-based page
transitions through hyperlinks, where the entire DOM is repopulated with a
new HTML page from the server for every user-initiated state change.

The goal of our paper is to measure the pervasiveness and characterize the
nature of hidden-web content induced by client-side JavaScript in today’s web
applications. For simplicity, we will refer to this type of hidden-web content as
client-side hidden-web throughout this paper. To the best of our knowledge,
we are the first to conduct an empirical study on this topic. Our empirical data
shows that as high as 95% of the 500 websites we analyzed contain hidden-web
content, and on average 62% of the 50 states we crawled for each website are
hidden due to client-side scripting.

2 Background and Motivation

Client-Side Hidden-Web Content. Client-side scripting empowers achiev-
ing dynamic and responsive web interfaces in today’s web applications. Through
JavaScript, the client-side runtime DOM tree of asear web application can be
dynamically updated with new structure and content. These updates are com-
monly initiated through event-listeners, Ajax callbacks, and timeouts. The new
content, either originated from the server-side or created on the client-side, is
then injected into the DOM through JavaScript to represent the new state of
the application.

Although DOM manipulation through JavaScript increases responsiveness of
web applications, these dynamically mutated states end up in the hidden-web
portion of the web. The main reason is that crawling such dynamic content is
fundamentally more challenging and costly than crawling classical multi-page
web applications, where states are explicit and correspond to pages that have a
unique URL assigned to them.

Client-side state is determined dynamically through changes in the DOM
that are only visible after executing the corresponding JavaScript code. The
major search giants have currently little or no support for dynamic analysis
of JavaScript code due to scalability and security issues. They merely extract
hypertext links and index the resulting HTML code recursively.

54 Z. Behfarshad and A. Mesbah

1 $(document).ready(function () {

2 $('div.update ').click(function () {

3 var updateID = $(this).attr('rel');
4 $.get('/news/', { ref:updateID },

5 function (data) {

6 $(updateID +'Container').append(data); }); }) });

Fig. 1. JavaScript code for updating the DOM after a click event

<body><h1>Sports News</h1>
<p></p>
<div class="update" rel="sports">Update!</div>

</body>

Fig. 2. The initial DOM state

Hidden-Content Example. We present a simple example of how JavaScript
code can induce hidden-web content by dynamically changing the DOM tree.
Figure 1 depicts a JavaScript code snippet using the popular jQuery library.1

Figure 2 illustrates the initial state of the DOM before any modification has
occurred. Once the page is loaded (line 1 in Figure 1), the JavaScript code at-
taches an onclick event-listener to the DIV DOM element with class attribute
‘update’ (line 2). When a user clicks on this DIV element, the anonymous func-
tion associated with the event-listener is executed (lines 2–8). The function then
sends an asynchronous call to the server (line 4), passing a parameter read from
the DIV element (i.e., ‘sports’) (line 3). On the callback, the response content
from the server is injected into the DOM element with ID ‘sportsContainer’

(line 6). The resulting updated DOM state is shown in Figure 3. All the data
retrieved and injected into the DOM this way will be hidden content as it is
not indexed by search engines. Although the effect of client-side scripting on the
hidden-web is clear, there is currently a lack of comprehensive investigation and
empirical data in this area.

3 Related Work

Crawling the Hidden-Web. Crawling techniques have been studied since
the advent of the Web itself. Web crawlers find and index millions of HTML
pages daily by searching for hyperlinks. Yet a large amount of data is hidden
behind web queries and therefore, extensive research has been conducted towards
finding and analyzing the hidden-web – also called deep-web – behind web forms
[3,7,8,14,15,19]. The main focus in this line of research is on exploring ways of
detecting query interfaces and accessing the content in online databases, which
is usually behind HTML forms. This line of research is merely concerned with
server-side hidden-web content (i.e., in databases).

On the contrary, exploring the hidden-web induced as a result of client-side
scripting has gained very little attention so far. Alvarez et al. [2] discussed the

1 http://jquery.com

http://jquery.com

Hidden-Web Induced by Client-Side Scripting: An Empirical Study 55

<body>
<h1>Sports News</h1>
<p>

<h3>US GP: Vettel fastest in Austin second practice </h3>
<p>Vettel produced an ominous performance</p></p>

<div class="update" rel="sports">Update!</div>
</body>

Fig. 3. The updated DOM tree after clicking on ‘Update!’

importance and challenges of crawling client-side hidden-web. Mesbah et al.
[17] proposed an automated crawler, called Crawljax, for Ajax-based web
applications. Duda et al. [9] presented how DOM states can be indexed. The
authors proposed a crawling and indexing algorithm for client-side state changes.

Measuring the Hidden-Web. Researchers have reported their results of mea-
suring the hidden-web behind forms. In 2001, Bergman [4] reported a study
indicating that the hidden-web was about 500 times larger than the visible web.
In 2004, Chang et al. [5] measured hidden-web content in online databases using
a random IP-sampling approach, and found that the majority of the data in such
databases is structured. In 2007, He et al. [11] conducted a study using an over-
lap analysis technique between some of the most common search engines such
as Yahoo!, Google, and MSN and discovered that 43,000-96,000 deep websites
existed. They presented an informal estimate of 7,500 terabytes of hidden data,
which was 500 times larger than the visible web, which supported the earlier
results by Bergman.

All this related work focuses on measuring server-side hidden-web behind
forms. To the best of our knowledge, we are the first to study and measure
client-side hidden-web.

4 Methodology

Our main objective is to gain an understanding of how much dynamic client-
side content is unsearchable for end-users on the Web. To that end, we conduct
a quantitative empirical study to measure the pervasiveness and characterize
the nature of hidden-web content induced by client-side scripting. Our research
questions are formulated as follows:

RQ1 How pervasive is client-side hidden-web in today’s web applications?
RQ2 How much content is typically hidden due to client-side scripting?
RQ3 Which clickable elements contribute most to client-side hidden-web con-

tent?
RQ4 Are there any correlations between the degree of client-side hidden-web

and a web application’s characteristics?

4.1 Experimental Objects

In this study, we analyze 500 unique websites in total. To obtain a representa-
tive pool of websites, similar to other researchers [13,20], we select 400 unique

56 Z. Behfarshad and A. Mesbah

websites from Alexa’s Top Sites [1] (henceforth referred to as Alexa). For mul-
tiple instances of the same domain on Alexa’s top list (e.g., www.google.com,
www.google.fr), we only include and count one instance in our 400 objects list.
In addition, we gather another 100 random websites using Yahoo! random link
generator (henceforth referred to as Random), which is also used in other stud-
ies [6,16]. All the 500 websites (henceforth referred to as Total) were crawled
and analyzed throughout February-March 2013.

4.2 Experimental Design

To investigate the pervasiveness of hidden content due to client-side scripting
(RQ1), we examine all the 500 websites and count the percentage of websites
that exhibit client-side hidden-web content. In addition, for each of the websites
that contains hidden-web content, we measure what portion of the crawled (50)
states is client-side hidden-web. To measure the amount of content that is hidden
(RQ2), we compute the total and average in terms of textual differences between
each hidden state and its previous state. To address RQ3, we classify the type of
clickable elements, which clicking them results in a hidden state in our analysis.
We assess what type of DOM elements are commonly used in practice by web
developers that induce this type of dynamic JavaScript-driven state change. In
order to answer RQ4, we analyze possible correlations between the client-side
hidden-web content and the average DOM size and custom JavaScript code
of each website examined, for 100 websites randomly chose from our pool of
500 websites. In the next section, technical details of our analysis approach are
presented.

5 Client-Side Hidden-Web Analysis

We have implemented our client-side hidden-web analysis approach in a tool
called Javis, which is available for download, along with all our empirical data.2

Figure 4 depicts our client-side hidden-web content analysis technique which
is composed of three main steps: (1) dynamically crawling each given website, (2)
classifying the detected state changes into visible and hidden categories, and (3)
conducting characterization analyses of the hidden states. Each step is described
in the subsequent subsections.

5.1 Event-Driven Dynamic Crawling

State Exploration. Our approach for automatically exploring a web applica-
tion’s state space is based on our Crawljax [17] work. Crawljax is a crawler
capable of automatically exploring JavaScript-induced DOM state changes
through an event-driven dynamic crawling technique. It exercises client-side
code, detects and executes clickables that lead to various dynamic states of Web

2 http://salt.ece.ubc.ca/content/javis/

http://salt.ece.ubc.ca/content/javis/

Hidden-Web Induced by Client-Side Scripting: An Empirical Study 57

Generate
event

GetURL

ServerBrowser

(1)
Crawl

Graph

RandomAlexa

Analyze
DOM

(2)
Classify

click

DOM
changed

update

Visible
States

Hidden
States

(3)
Characterize

Fig. 4. Overview of our client-side hidden-web analysis

2.0 Ajax-based web applications. By firing events on the web elements and an-
alyzing the effects on the dynamic DOM tree in a real browser before and after
the event, the crawler incrementally builds a state-flow graph (SFG) capturing
the client-side states and possible event-based transitions between them. This
state-flow graph is defined as follows:

Definition 1. A state-flow graph SFG for an Ajax-based website A is a
labeled, directed graph, denoted by a 4 tuple < r,V ,E,L > where:
1. r is the root node (called Index) representing the initial state when A has

been fully loaded into the browser.
2. V is a set of vertices representing the states. Each v ∈ V represents a

runtime DOM state in A.
3. E is a set of (directed) edges between vertices. Each (v1,v2) ∈ E represents a

clickable c connecting two states if and only if state v2 is reached by executing
c in state v1.

4. L is a labelling function that assigns a label, from a set of event types and
DOM element properties, to each edge.

5. SFG can have multi-edges and be cyclic.

Crawljax is also capable of crawling traditional URL-based websites. It is fully
configurable in terms of the type of elements that should be examined or ignored
during the crawling process. For more details about the architecture, algorithms
or capabilities of Crawljax the interested reader is referred to [17,18].3

Crawling Configuration. We have extended, modified, and configured
Crawljax for this study as follows:

Maximum states. Dynamic crawling is quite expensive and time consuming.
To constrain the state space and still acquire a representative sample for
our analysis in a timely manner, we define an upper limit on the number of
states to dynamically crawl for each website, namely, 50 unique DOM states.

3 http://crawljax.com

http://crawljax.com

58 Z. Behfarshad and A. Mesbah

Crawling depth. Similar to other studies [11], we set the maximum crawling
depth to 3 levels.

Candidate clickables. Traditionally, forms and anchor tags pointing to valid
URLs were the only clickables capable of changing the state (i.e., by retriev-
ing a new HTML page from the server after the click). However, in modern
websites, web developers can potentially make any HTML element to act as
a clickable by attaching an event-listener (e.g., onclick) to that element.
Such clickables are capable of initiating DOM mutations through JavaScript
code. In our analysis, we include the most commonly used clickable elements,
namely: A, DIV, SPAN, IMG, INPUT and BUTTON.

Event type. We specify the event type to be click. This means the crawler
will generate click events on DOM elements that are spotted as candidate
clickables, i.e., elements potentially capable of changing the DOM state. Note
that there are other types of events (e.g., onmouseover) that can generate
hidden-web content. Our study is currently targeted towards the click event,
which is the mostly commonly used event-type in web applications.

Randomized crawling. In order to get a simple random sample, we randomize
the crawling behaviour in terms of selecting the next candidate clickable
for exploration. Hence, the crawler clicks on any of the defined candidate
clickable types (e.g., DIV, A, etc) randomly while crawling.

Once the tool is configured, we automatically select and crawl each website, and
save the resulting state-flow graph containing the detected states (DOM trees)
and transitional edges (clickables).

5.2 Classification

As shown in Figure 4, for each website crawled, we classify the detected states
into two categories: visible and hidden. Our client-side hidden-web analysis is
largely based on the following two assumptions:

1. A valid URL-based state transition can be crawled and indexed by general
search engines and, therefore, it is visible;

2. A non-URL-based state transition is not crawled nor indexed by general
search engines and thus, it ends up in the hidden-web; For instance, the
DOM update presented in Figure 3, as a result of clicking on the DIV element
of Figure 2, is hidden.

To classify the crawled states into the visible or hidden group, we traverse the
inferred state-flow graph of each website. For each state, we analyze all the
incoming edges (i.e., clickables). If the incoming edges is a valid URL-based
transition, we consider that state to be visible, otherwise it is hidden.

Each edge contains information about the type of clickable element that
caused a state change. Our classification uses that information to decide which
resulting states are hidden as follows:

Hidden-Web Induced by Client-Side Scripting: An Empirical Study 59

Anchor tag (A). The anchor tag can produce both visible and hidden states,
depending on the presence and URL validity of the value of its HREF at-
tribute. For instance, clicking on results in
a visible state, whereas can pro-
duce a hidden state.

IMG. The image tag is also interesting since it can result in a visible state when
embodied in an anchor tag with a valid URL; For every edge of IMG type,
we retrieve the parent element from the corresponding DOM state. If the
parent element is an anchor tag with a valid URL, then we categorize the
resulting state as visible, otherwise the state is hidden.

Other element types. Per definition, DIV, SPAN, INPUT, and BUTTON do not
have attributes that can point to URLs, and thus, the resulting state changes
are all categorized as hidden.

5.3 Characterization Analysis

Hidden-Web Quantity. Once the explored states are categorized, we annotate
the hidden states on the state-flow graph to measure the amount of hidden-web
data in those states. We traverse the annotated state-flow graph, starting from
Index, and for each annotated hidden state, we compute the differences between
the previous state (which could be a visible or hidden state) and the annotated
hidden state using a differencing engine. To measure the amount of data that
can be hidden, the differencing method computes merely the additions in the
target (hidden) state. For each website, Javis saves all the differences in a file
and measures the total size in bytes. We also compute the pure textual content
in the total differences.

Clickable Types. To investigate which clickable type (i.e., A, DIV, SPAN, IMG,
INPUT and BUTTON) contributes most to inducing hidden-web content in prac-
tice, Javis examines the annotated state-flow graph and gathers the edges that
result in hidden states. It then calculates, for each element type, the mean of its
contribution portion to the hidden-web percentage.

Correlations. Further, we measure the average DOM string size as well as the
custom JavaScript code (excluding common libraries such as jQuery, Dojo, Ext,
etc) of each website. To examine the relationship between these measurements
and the client-side hidden-web content, we use R [10] to calculate the non-
parametric Spearman correlation coefficients (r) as well as the p-values (p), and
plot the graphs.

6 Results

Table 1 provides a representative small sample (20 websites) of the kind of
websites we have crawled and the type of data we have gathered, measured,
and analyzed in this study. These websites are randomly selected from our total
pool of 500 websites. The first 10 are taken from Alexa and the second 10 from

60 Z. Behfarshad and A. Mesbah

Table 1. Hidden-web Analysis Results. The first 10 are from Alexa, and the remaining
10 from Random.

Clickables Clickable Types Size Hidden

ID Site Name S
ta

te
s
(#

)

T
o
ta

l

V
is
ib

le

H
id

d
e
n

A
(V

is
ib

le
)

A
(H

id
d
e
n
)

D
iv

S
p
a
n

Im
g

(V
is
ib

le
)

Im
g

(H
id

d
e
n
)

In
p
u
t

B
u
t
t
o
n

J
a
v
a
S
c
r
ip

t
(K

B
)

D
O
M

(K
B
)

S
ta

te
s
(%

)

T
o
ta

l
(K

B
)

T
o
ta

l
C
o
n
te

n
t
(K

B
)

A
v
e
r
a
g
e

(K
B
)

T
im

e
E
la
p
s
e
d

(S
)

1 Google 50 49 3 46 3 0 29 16 0 1 0 0 329 210 94 906 13 18 228
2 ESPN 50 49 12 37 6 0 26 2 6 9 0 0 161 196 75 4358 120 89 7565
3 AOL 50 49 8 41 5 1 18 22 3 0 0 0 203 170 82 4626 140 64 4727
4 Youtube 50 49 7 42 7 0 7 17 0 7 0 17 286 153 84 4230 153 86 530
5 Aweber 50 49 24 25 16 1 20 0 8 4 0 0 41 31 65 38 0 0.78 740
6 Samsung 50 49 3 46 2 0 42 3 1 0 0 1 96 267 92 1381 21 28 1274
7 USPS 50 49 8 41 5 1 33 7 3 0 0 0 200 258 82 563 6 11.5 317
8 BBC 50 49 41 8 25 0 3 3 16 2 0 0 142 112 16 293 6 6 794
9 Alipay 50 49 2 47 2 7 33 7 0 0 0 0 200 72 94 77 0 1.5 828
10 Renren 50 49 0 49 0 0 49 0 0 0 0 0 100 47 100 1613 3 33 152
11 EdwardRobertson 50 49 1 48 1 2 45 1 0 0 0 0 120 64 98 154 7 3.14 161
12 Rayzist 50 49 31 18 31 1 16 0 0 1 0 0 329 54 37 257 38 5.2 976
13 Metmuseum 50 49 3 46 3 0 2 0 0 44 0 0 54 87 94 935 68 19 364
14 JiveDesign 50 49 0 49 0 0 49 0 0 0 0 0 241 202 100 369 0 7.5 322
15 MTV 50 49 0 49 0 0 19 0 0 30 0 0 242 200 100 530 14 10.8 417
16 Challengeair 50 49 0 49 0 0 49 0 0 0 0 0 176 28 100 22 0 0.45 145
17 Mouchel 50 52 52 0 51 0 0 0 1 0 0 0 20 60 0 0 0 0 535
18 Sacklunch 50 49 45 4 3 0 3 0 42 1 0 0 121 83 8 166 6 3.39 236
19 Pongo 50 49 3 46 3 0 46 0 0 0 0 0 61 463 94 4229 58 83.3 713
20 MuppetCentral 50 49 17 32 8 0 32 0 9 0 0 0 254 224 65 4807 272 98.1 966

Random. The complete set of our empirical data is available for download.4 It
should be noted that Total column in the table refers to both the hidden DOM
structure and the textual content while the Total Content only refers to the
hidden textual content. The Average is the average hidden content and DOM
structure per state.

6.1 Pervasiveness (RQ1)

95% (476/500) of the websites we analyzed exhibit some degree of client-side
hidden-web content, i.e., they have at least one or more client-side hidden states.

To gain deeper knowledge of what percentage of the 50 states crawled from
each of these websites actually contain hidden-web content, each web application
is analyzed individually. Figure 5 presents three box plots illustrating the hidden-
web state percentages for Alexa, Random, and Total.

Alexa. For the 400 websites from Alexa, on average 65.63% of the 50 states
we analyzed were client-side hidden-web. This high number can be explained by
the nature of such websites perhaps. They are among the top most visited sites
in the world. As such, developers of many of these websites use the latest Web

4 http://salt.ece.ubc.ca/content/javis/

http://salt.ece.ubc.ca/content/javis/

Hidden-Web Induced by Client-Side Scripting: An Empirical Study 61

Alexa Random Total

0
20

40
60

80
10

0

Resources

H
id

de
n−

W
eb

 (%
)

Fig. 5. Box plots of the percentage of client-side hidden-web states in Alexa,Random,
and Total. 50 states (pages) are crawled from each website.

Table 2. Descriptive statistics of the average hidden-web content for all states and per
state

Textual hidden content (KB) All hidden content (KB)
Hidden-Web Min Mean Max Min Mean Max

Per State 0 0.60 11.65 0 18.91 286.4
All States 0 27.6 536 0 869.7 13170

2.0 technologies, such as JavaScript, DOM, Ajax, and HTML5, to provide high
quality features that come with rich interaction and responsiveness. As we have
discussed in Section 2, these Web 2.0 techniques contribute enormously to the
creation of client-side hidden-web.

Random. An average of 50.6% of the states from the Random websites consti-
tute hidden states. These websites were purely randomly chosen on the web. In
other words, we do not know about their rankings nor their popularity among
end users. The lower percentage is perhaps due to the fact that many websites
on the web might still are quite classical in nature, meaning they use more URL-
based links for state transitions, rather than using JavaScript. However, although
the percentage is not as high as the websites on Alexa, the rather high 50.6%
in the wild still points to the pervasiveness of client-side hidden-web on the web.

Total. When the results of Alexa and Random are combined in Total, the
total hidden-web state percentage is 62.52%. It should be noted that bothAlexa
and Random contain websites that have as low as 0% and as high as 100%
hidden-web states, regardless of any rankings.

On average, per website 25 minutes was required to dynamically crawl 50
states. It took Javis 211 hours (≈ 8.8 days) to crawl and classify all the 500
websites (each with 50 states).

62 Z. Behfarshad and A. Mesbah

A_INVIS DIV SPAN IMG_INVIS INPUT BUTTON

Clickable Types

H
id

de
n−

W
eb

 S
ta

te
s

(%
)

0
10

20
30

40
50

60
70

6.9

61.0

16.8 14.7

0.1 0.5

Fig. 6. Barplot of hidden-web percentage behind different types of clickables. ‘A INVIS’
represents anchor tags without a (valid) URL. ‘MG INVIS’ represents IMG elements not
embedded in an anchor tag with a (valid) URL.

6.2 Quantity (RQ2)

In order to gain an understanding of the quantity of content in the client-side
hidden-web states, we measured the amount of hidden data as described in Sec-
tion 5.3. Table 2 shows the amount of client-side hidden-web content for all of
the crawled hidden-web states, and per hidden-web state. It shows descriptive
statistics for all the hidden content including DOM structures and textual con-
tent as well as only textual, natural language content, extracted from the DOM
elements.

Per Hidden-Web State. Per hidden-web state, on average 19 kilobytes of
DOM and textual content exist while 0.6 kilobytes was only textual content.
Some states have as high as 286 kilobytes of hidden content.

All Hidden-Web States. For all the states crawled together, we measured an
average of 870 kilobytes of client-side hidden-web content including both DOM
and textual content while the textual content was around 27.6 KB. The minimum
and maximum are 0, 13170 kilobytes, and 0 and 536 kilobytes respectively.

We manually examined some of the hidden textual content to understand
why type of information would be hidden to end-users. The nature of the hidden
textual content is a combination of singular words, numbers, short messages
or whole sentences. The short messages are mostly informative descriptions of
the websites or advertisements. The larger sentences range from descriptions of
a particular subject, questions/answers, news items, and discussions in various
domains such as health, science, animals, videos and images, actors and stars,
sports and so on.

Hidden-Web Induced by Client-Side Scripting: An Empirical Study 63

●
●

●
●

●

●● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●
●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●● ●●

●● ●
● ●

●
●

●
●

●
●

● ●
●

●

● ●
●

●

● ● ●
● ●●

●

●

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0

r= 0.4 , p= 0

Hidden−Web States (%)

D
O

M
 S

iz
e

(K
B

)

●
●

●
●

●

●●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●●
●●

●●●
● ●

●
●

●
●

●
●
●●
●

●

●●
●

●

●●●
●●●

●

●

0 500 1000 1500 2000 2500 3000

0
20

0
40

0
60

0
80

0

r= 0.65 , p= 0

Differences (KB)

D
O

M
 S

iz
e

(K
B

)

(a) DOM Size.

●
●

●
●

●

●●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●●
●●

●●●
● ●

●
●

●
●

●
●
●●
●

●

●●
●

●

●●●
●●●

●

●

0 500 1000 1500 2000 2500 3000

0
20

0
40

0
60

0
80

0

r= 0.32 , p= 0

Hidden−Web States (%)

Ja
va

S
cr

ip
t S

iz
e

(K
B

)

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●●
●●

●●●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●●
●

●

● ●

●●

●
●

●
●

●

●
●

●●
● ●

●●● ●
●

●

●

●
●

●

●●
●●
●
●

●

●●● ●

●

0 500 1000 1500 2000 2500 3000

0
10

0
20

0
30

0
40

0
50

0
60

0

r= 0.29 , p= 0

Differences (KB)

Ja
va

S
cr

ip
t S

iz
e

(K
B

)

(b) JavaScript Size.

Fig. 7. Scatter plots of the average DOM and JavaScript size versus the hidden-web
state percentage and content. r represents the Spearman correlation coefficient and p
is the p-value.

6.3 Induction (RQ3)

To better understand what type of clickable elements web developers use in
today’s websites that induce state changes in the browser, we analyzed how much
each clickable type contributes to the measured hidden-web state percentage.

As discussed in Section 5.3, the anchor tag (A) and the image element (IMG)
can induce both visible and hidden states; For this part, we only consider the ones
that cause hidden-states in our analysis. Figure 6 depicts a barplot of the different
clickable types versus the associated hidden-web state percentage. We can see
that the DIV has the highest contribution to the hidden-web state percentage
(61%), followed by SPAN (16.8%). Interestingly, the IMG and A element types are
also used quite often to induce client-side hidden content, with 14.7% and 6.9%
each, respectively. Finally, BUTTON and INPUT contribute to less than one percent
of the hidden-web states. This shows that while crawling, it is not sufficient to
simply focus on the anchor tags of a website, any longer.

64 Z. Behfarshad and A. Mesbah

6.4 Correlations (RQ4)

DOM and JavaScript Size. We conducted a correlation analysis of the degree
of hidden-web with respect to (1) average DOM size, taken over all the crawled
states, and (2) JavaScript custom code size. Figure 7 depicts the scatter plots of
these two measurements against the hidden-web state percentage and content.

For the DOM size, Figure 7(a)-Left indicates a weak correlation (r = 0.4)
with the hidden-web state percentage while 7(a)-Right shows a strong correlation
(r = 0.65) with the amount of hidden-web content. This comes as no surprise,
because the larger the DOM tree, the more visible and hidden content there will
be in a website.

For the JavaScript size, both Figures of 7(b) indicate a weak monotonic cor-
relation with the percentage and amount of client-side hidden-web. We expected
to see a stronger correlation, because after all, it is JavaScript code that is the
root cause of client-side hidden-web content. However, this behaviour can be ex-
plained using a simple example as the one used in Section 2: Figure 1 is a piece
of JavaScript code that can cause many hidden-web states and much hidden-web
content, although the amount of code is relatively small; In this simple example
all the state updates are retrieved in small HTML deltas from the server, and
injected into the DOM tree through a small piece of JavaScript code. In fact,
we have witnessed this kind of behaviour in many of the examined websites that
have client-side hidden-web characteristics.

7 Discussion

In this section, we discuss some of the threats to validity, limitations, and impli-
cations of our findings.

Client-Side Scripting. Plugin-based Rich Internet Applications (RIA) such as
Adobe Flash and Silverlight have their own client-side scripting languages that
induce hidden-web content. The main focus of our work, however, was standard-
based technologies and therefore we limited our study to only JavaScript initiated
client-side hidden-web content.

Clickable Types. Through JavaScript event-driven programming any HTML
element can potentially become a clickable item. In this study, we included six
of the most common HTML elements used as clickables. We made our selection
based on a small pilot study we conducted on ten Alexa websites. Other clickable
types (e.g., P, TD) could also potentially induce client-side hidden-web content,
which we have not analyzed. The inclusion of other clickable types can probably
marginally increase the hidden-web percentage.

Crawler. We extended and used Crawljax [17] to crawl client-side hidden-web
content. Using a different crawler could result in different outcomes. However,
to the best of our knowledge, Crawljax is currently the only available open
source tool capable of crawling JavaScript-based applications.

Event Types. Our study is constrained to the click event type. We believe
this is the most commonly used event type in practice for making event-driven

Hidden-Web Induced by Client-Side Scripting: An Empirical Study 65

transitions in Web 2.0 apps. However, the DOM event model has many other
event types, e.g.,mouseover, drag and drop, which can potentially lead to hidden-
web states. This is part of our future work.

Number of States Examined. To be able to have a fair analysis in a timely
manner, we constrained the maximum number of states to crawl for each website
to 50. There were a few websites that did not have that many states to crawl. In
those cases, we analyzed the websites according to the number of states available.
Choosing a different maximum number could theoretically impact our evaluation
results, although we do not have any evidence that that would be the case
(because of the randomization).

Representativeness. We have collected data for 500 websites. To obtain a
representative sample and minimize selection bias, we collected 400 URLs from
Alexa and 100 randomly from the wild. For the same reason, we randomized
the candidate clickable selection while crawling, to make the state exploration
of each website unbiased.

Reproducibility. Our tool implementation, Javis, the list of all websites used
in our study, as well as all the empirical data are available for download, making
the study fully replicable.

Implications. Our study shows that there is a considerable amount of data that
is hidden due to client-side scripting. The hidden content is increasing rapidly as
more developers adopt modern Web 2.0 techniques to implement their web ap-
plications. We believe more research is needed to support better understanding,
analysis, crawling, indexing, and searching this new type of hidden-web content.
In addition, web developers need to realize that by using modern techniques
(e.g., JavaScript, Ajax, HTML5), a large portion of their content becomes hid-
den, and thus unsearchable for their potential users on the web.

8 Conclusion

With the advent of Web 2.0 technologies, an increasing amount of the web ap-
plication state is being offloaded to the client-side browser to improve respon-
siveness and user interaction. Through the execution of JavaScript code in the
browser, the DOM tree representing a webpage at runtime, is incrementally mu-
tated without requiring a URL change. This dynamically updated content is
inaccessible through general search engines, and as a results it becomes part of
the hidden-web portion of the Web.

In this paper, we presented the first empirical study on measuring and char-
acterizing the hidden-web induced as a result of client-side scripting. Our study
shows that client-side hidden-web is omnipresent on the web. From the 500
websites we analyzed, 476 (95%) contained some degree of hidden-web content.
In those websites, on average 63% of the states were hidden, and per hidden
state, we measured an average of 19 kilobytes of hidden content from which 0.60
kilobytes is pure textual content. The DIV element is the most commonly used
clickable to induce client-side hidden-web content, followed by the SPAN element.

66 Z. Behfarshad and A. Mesbah

This points to the importance of including the examination of such elements in
modern crawling engines and going beyond link analysis in anchor tags.

In future work, we will expand the list of websites in our analysis. We also
intend to study the effects of other event-types (e.g., mouseover) and HTML5
(e.g., canvas) on the amount of client-side hidden-web content.

References

1. Alexa top sites, http://www.alexa.com/topsites/
2. Alvarez, M., Pan, A., Raposo, J., Vina, A.: Client-side deep web data extraction.

In: Proc. of the Int. Conf. on E-Commerce Technology for Dynamic E-Business,
pp. 158–161. IEEE Computer Society (2004)

3. Barbosa, L., Freire, J.: An adaptive crawler for locating hidden-web entry points.
In: Proc. of the 16th Int. Conf. on World Wide Web (WWW), pp. 441–450. ACM
(2007)

4. Bergman, M.: White paper: the deep web: surfacing hidden value. Journal of Elec-
tronic Publishing 7(1) (2001)

5. Chang, K.C.-C., He, B., Li, C., Patel, M., Zhang, Z.: Structured databases on the
web: observations and implications. SIGMOD Rec. 33(3), 61–70 (2004)

6. Choudhary, S.R., Versee, H., Orso, A.: WebDiff: Automated identification of cross-
browser issues in web applications. In: Proc. of the 26th IEEE Int. Conf. on Softw.
Maintenance (ICSM 2010), pp. 1–10 (2010)

7. Dasgupta, A., Ghosh, A., Kumar, R., Olston, C., Pandey, S., Tomkins, A.: The
discoverability of the web. In: Proc. of the Int. Conf. on World Wide Web (WWW),
pp. 421–430. ACM (2007)

8. de Carvalho, A.F., Silva, F.S.: Smartcrawl: a new strategy for the exploration of
the hidden web. In: Procs. of the ACM Int. Workshop on Web information and
Data Management, pp. 9–15. ACM (2004)

9. Duda, C., Frey, G., Kossmann, D., Matter, R., Zhou, C.: Ajax crawl: making Ajax
applications searchable. In: Proc. Int. Conf. on Data Engineering (ICDE 2009),
pp. 78–89 (2009)

10. Gentleman, R., Ihaka, R.: The R project for statistical computing,
http://www.r-project.org

11. He, B., Patel, M., Zhang, Z., Chang, K.: Accessing the deep web. Communications
of the ACM 50(5), 94–101 (2007)

12. Hsieh, W., Madhavan, J., Pike, R.: Data management projects at Google. In: Proc.
of the Int. Conf. on Management of Data (SIGMOD), pp. 725–726 (2006)

13. Krishnamurthy, B., Wills, C.: Cat and mouse: content delivery tradeoffs in web
access. In: Proc. of WWW, pp. 337–346. ACM (2006)

14. Lage, J.P., da Silva, A.S., Golgher, P.B., Laender, A.H.F.: Automatic generation of
agents for collecting hidden web pages for data extraction. Data Knowl. Eng. 49(2),
177–196 (2004)

15. Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., Halevy, A.: Google’s
deep web crawl. Proc. VLDB Endow. 1(2), 1241–1252 (2008)

16. Mesbah, A., Mirshokraie, S.: Automated analysis of CSS rules to support style
maintenance. In: Proc. of the 34th ACM/IEEE Int. Conf. on Softw. Eng. (ICSE),
pp. 408–418. IEEE Computer Society (2012)

http://www.alexa.com/topsites/
http://www.r-project.org

Hidden-Web Induced by Client-Side Scripting: An Empirical Study 67

17. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling Ajax-based web applications
through dynamic analysis of user interface state changes. ACM Transactions on
the Web (TWEB) 6(1), 3:1–3:30 (2012)

18. Mesbah, A., van Deursen, A., Roest, D.: Invariant-based automatic testing of mod-
ern web applications. IEEE Trans. on Softw. Eng. (TSE) 38(1), 35–53 (2012)

19. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. In: Proc. of the Int.
Conf. on Very Large Data Bases (VLDB), pp. 129–138 (2001)

20. Yue, C., Wang, H.: Characterizing insecure JavaScript practices on the web. In:
Proc. of the Int. World Wide Web Conf (WWW), pp. 961–970. ACM (2009)

Discovering Implicit Schemas in JSON Data�

Javier Luis Cánovas Izquierdo and Jordi Cabot

AtlanMod, École des Mines de Nantes – INRIA – LINA, Nantes, France
{javier.canovas,jordi.cabot}@inria.fr

Abstract. JSON has become a very popular lightweigth format for data ex-
change. JSON is human readable and easy for computers to parse and use. How-
ever, JSON is schemaless. Though this brings some benefits (e.g., flexibility in
the representation of the data) it can become a problem when consuming and in-
tegrating data from different JSON services since developers need to be aware
of the structure of the schemaless data. We believe that a mechanism to discover
(and visualize) the implicit schema of the JSON data would largely facilitate the
creation and usage of JSON services. For instance, this would help developers to
understand the links between a set of services belonging to the same domain or
API. In this sense, we propose a model-based approach to generate the underlying
schema of a set of JSON documents.

1 Introduction

With the emergence of the Web 2.0, asynchronous-based web technologies are becom-
ing mainstream mainly thanks to their ability to provide richer, faster and more inter-
active web experiences [1]. AJAX-based web applications (e.g., Google Maps, Gmail
or Facebook to cite some popular ones) are good examples of such technology. For a
long time, these applications have been using XML as interchange format, however,
in the last years the JavaScript Object Notation (JSON1) has been gaining in popular-
ity since it provides a lightweigth data exchange format with a significant performance
improvement [2].

JSON is a human readable format consisting in sets of objects (i.e., types or concepts)
described by name/value pairs (i.e., fields or attributes). JSON is schemaless, i.e., there
is no a schema specifying the internal structure of JSON objects, instead the schema is
implicit. Schemaless data is particularly interesting in cases dealing with non-uniform
data (e.g., non-uniform types or custom fields) or in schema migration [3], however, it
can become a burden in data integration scenarios (e.g., consuming JSON-based APIs)
where it becomes necessary to discover at least partially the underlying structure in
order to properly process the data.

Therefore, web developers must often interact with APIs publishing a set of JSON-
based services and face the problems of undertanding and managing the JSON doc-
uments returned by those services. The problem gets worse when developers need to

� This work has been supported by the European Commission under the ICT Policy Support
Programme, grant no. 317859.

1 www.json.org

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 68–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.json.org

Discovering Implicit Schemas in JSON Data 69

compose several JSON-based services since their implicit structure can differ. For in-
stance, digesting the data returned by a query service to call another service later on.

A first attempt to formalize JSON data is being performed by the JSON schema ini-
tiative [4], but it is still far from a wide adoption. So far, most APIs are only documented
by means of natural language explanations and a few use case examples. Thus, devel-
opers must invest a lot of time to grasp the kind of information an API provides and
how to use the API services to get that information. We believe that a mechanism able
to provide a (visual) higher-level view of the data provided by the API services would
be a significant improvement.

In this sense, this paper proposes a discovery process for JSON-based services.
Given a set of JSON documents, our approach returns a model describing their im-
plicit schema. We follow an iterative process where new JSON documents (from the
same or different services within the API) contribute to enrich the generated model.
The model helps to both understand single services and to infer possible relationships
between them, thus suggesting possible compositions and providing an overall view
of the application domain. The use of a model-based approach enables to reuse the
plethora of existing model-driven engineering techniques for further processing of the
JSON model. An implementation of the approach is also provided.

The paper is organized as follows. Section 2 motivates the problem and presents a
running example. Sections 3 and 4 describes the approach and its application to discover
service dependencies, respectively. Section 5 describes the implemented tool. Finally,
Section 6 presents the related work and Section 7 ends the paper.

2 What is Behind JSON Data

Nowadays, a considerable number of web applications provide an external API con-
sisting in a set of JSON-based services (more than 40% of the APIs included in Pro-
grammableWeb2 return JSON data) where all services are interrelated. Indeed, each
service gives access to a subset of the application domain and developers must combine
them to build any kind of non-trivial functionality on top of that API. Since JSON data
is a schemaless format, deducing the right way of combining those services is not a
trivial task. Next we will illustrate this problem with the TAN running example that we
will use along this paper.

TAN is the public transportation entity of the city of Nantes, France, and provides
a REST API composed of a set of JSON-based services to query the bus/tram trans-
portation system (e.g., the nearest bus stop to a given geolocation, which buses stop
in a bus stop, etc.). Figure 1 shows the JSON output obtained when querying two of
services of the TAN API (meaningful strings have been translated into English for the
sake of comprehension). Figure 1a shows the JSON document coming from the first
service, which returns the bus/tram stops close to a position (i.e., latitude/longitude)
given as input. On the other hand, Figure 1b shows the JSON document coming from
the second service, which returns the waiting times for a particular bus/tram stop given
as input. To simplify, we will refer to the first service as closeStop and the second one
as waitingTime.

2 http://www.programmableweb.com/

http://www.programmableweb.com/

70 J.L. Cánovas Izquierdo and J. Cabot

Fig. 1. JSON documents from two TAN API services: (a) the closeStop service, which returns the
closest bus/tram stops to a geolocation, and (b) the waitingTime service, which returns waiting
times for a particular bus/tram stop

By looking at the JSON data we can quickly identify some concepts and relation-
ships of the domain, that is, the implicit structure of the data returned by each service.
Regarding the closeStop service, the returned data includes an array composed of sev-
eral objects (list of elements inside the square brackets surrounded by curly braces) with
a set of name/value pairs. Each object represents a bus/tram stop and includes a code
(see placeCode), a tag (see tag), the distance to the stop (see distance) from the
position given as input to the service and a set of bus/tram lines (see line) passing by
such a stop, which is a complex value composed by a set of objects, each one represent-
ing a line number (see lineNum). The waitingTime service returns an array of objects
describing the waiting time, expressed by means of a sequence of buses/trams passing
by the stop. Thus, each object describes a transport line (see line) and the time re-
maining (see time). For the sake of simplicity, we do not comment all the name/value
pairs. On the other hand, since the two service calls are part of the same application, it
is also possible to identify some relationships between the returned JSON objects. For
instance, both services include information about bus/tram lines (see line).

Discovering Implicit Schemas in JSON Data 71

However, the concepts and relationships previously identified are only a partial view
of the underlying structure. Each call to a service provides some useful insight on that
structure and only by combining them we can get an approximation to the complete
picture of the application domain exposed through the API. For instance, one may think
that for each stop there is a single bus line passing by (if this happens to be the case
for the specific stop passed as input for the service call) while later calls may prove
this assumption wrong (see line in closeStop service). A similar thing happens with
the data type of the time value in the waitingTime service, which may look like as
an integer value until one call returns closest as a (string) value. Moreover, dealing
with several JSON documents is crucial to discover relationships between matching
concepts across different services. Different names in name/value pairs from two calls
may suggest unrelated concepts but a closer look may reveal that in fact those names
hold always an overlapping set of values. For instance, this happens with the stop code,
which is represented either as placeCode in the closeStop service or stopCode in
the waitingTime service.

Clearly, an automated discovery process is needed to reveal the whole domain model
behind the application. In the following sections we will describe such automatic pro-
cess and the benefits the generated model can bring to the developers interested in work-
ing with the API.

3 Schema Discovery in JSON

To discover the schema information from JSON documents we propose a model-based
process composed of three phases: (1) pre-discovery phase extracting low-level JSON
models out of JSON documents, (2) single-service discovery phase aimed at obtaining
the schema information for a concrete service (inferred from a set of low-level JSON
models output of different consecutive calls to the service), and (3) multi-service dis-
covery phase in charge of composing the schema information obtained in the previous
phase in order to get an overall view of the application domain.

This schema information will be represented as a class diagram representing the
concepts (i.e., classes) and relationships (i.e., attributes and associations) of the do-
main. In particular, we will use the EMF framework3, which allows representing such
elements by means of Ecore models. Ecore models conform to the Ecore metamodel,
where concepts are represented as EClass elements while features are represented
as StructuralFeature elements, which can be either attributes (EAttribute
elements) or references (EReference elements).

Figure 2 illustrates the proposed process. Given an application with one or more
JSON-based services, the pre-discovery and single-service processes are applied to each
set of JSON documents returned by the services. The pre-discovery phase works at the
sintactical level, changing the representation format so that JSON documents can be
dealt as models, which are then analyzed by the single-service discoverer to obtain new
models describing the domain. Next, the multi-service discoverer takes those domain
models as input and combines them to obtain the application domain model. During the
process, the discovery phases (i.e., single-service and multi-service) are performed by

3 http://www.eclipse.org/emf

http://www.eclipse.org/emf

72 J.L. Cánovas Izquierdo and J. Cabot

Fig. 2. Process of discovering schema information from JSON documents

means of model transformations. In the following sections, we describe in detail each
phase of the process.

3.1 Pre-discovery Phase

The pre-discovery phase can be seen as a bridge between the two involved technologies.
On the one hand, JSON documents conform to the JSON grammar (i.e., grammarware
technical space). On the other hand, models conform to metamodels, which represent
the modelware technical space. Thus, to obtain models out of JSON documents it is
required to build a bridge between the grammarware and the modelware spaces.

To build this bridge, we used Xtext4, which allows defining textual DSLs. From a
Xtext grammar-based language definition the tool automatically generates its meta-
model (i.e., the abstract syntax of the language) and the tooling required to obtain
models conforming to such metamodel (i.e., the injector) from a language instance.
Therefore, Xtext can take textual documents (conforming to a grammar G) as input and
generate models (conforming to a metamodel M which is derived from the grammar G)
representing those documents as output.

We have defined the JSON grammar in Xtext, which is shown in Figure 3a. As can
be seen, a JSON document (see Document rule) can be composed of either an object
or an array of objects. An object (see Object rule) is composed of name/value pairs
(see Pair rule). A name/value pair has a name (see Name rule) and the a value (see
Value rule) that can be either of primitive type (i.e., string, number, boolean or null)
or complex (i.e., array or object). The grammar rules also include annotations to guide
the generation of the language metamodel. Thus, from this grammar definition, the
corresponding metamodel of the language (see Figure 3b) and the JSON model injector
have been generated. Figure 3c illustrates the pre-discovery phase, where JSON models
conforming to the JSON metamodel are injected from JSON documents conforming
to the JSON grammar. From now on, any JSON document can be dealt as a model
whose elements conform to the JSON metamodel elements, which actually resemble
the JSON grammar elements. We will use the term “JSON document” to refer to both
the grammar-based view and the model-based view of the document indistinctely.

4 http://www.eclipse.org/xtext

http://www.eclipse.org/xtext

Discovering Implicit Schemas in JSON Data 73

Fig. 3. (a) Excerpt of the JSON grammar defined in Xtext. (b) Metamodel generated by Xtext. (c)
Pre-discovery process.

3.2 Single-Service Discoverer

JSON documents include both metadata (i.e., the name of the object name/value pair
elements) and data (i.e., their value). Note that, however, two objects in the same or dif-
ferent JSON documents generated by a call to the same service do not necessarily have
the same exact structure, e.g., it is possible that some of them include only a subset of
the metadata/data, thus removing some name/value pairs (e.g., to reduce network traf-
fic). Therefore, the accuracy of the single-service discovery increases when a number
of JSON Object elements to infer their common structure are analyzed.

The single-service discovery process is therefore launched for each JSON Object
element and has two execution modes: creation and refinement. The former creates a
root concept from an Object representing a concept not yet existing in the service
schema created so far whereas the latter enriches/refines an already existing concept
with information coming from new Object elements representing such concept.

74 J.L. Cánovas Izquierdo and J. Cabot

When a JSON Object element representing a new concept is considered, the fol-
lowing creation rules are applied to build the corresponding elements in the service
domain model:

C1 A JSON Object element included in a JSON Definition element generates
an Ecore EClass element. The EClass element is named after the JSON service
name. The structural features of the EClass element are created from the Pair
elements included in the Object element according to rules C3, C4 and C5.

C2 A JSON Object element included in a JSON Pair element generates an Ecore
EClass element. The EClass element is named after the name attribute of the
Pair element. The structural features of the EClass element are created from
the Pair elements included in the Object element according to rules C3, C4 and
C5.

C3 A JSON Pair element with a JSON Value element representing a primitive type
(i.e., String, Number or Boolean elements) generates an Ecore EAttribute
element. The name of the attribute is obtained from the name attribute of the Pair
element and the type is the Ecore one corresponding to the primitive type (i.e.,
EString corresponds to String, EInt corresponds to Number and
EBoolean corresponds to Boolean).

C4 A JSON Pair element with a JSON ValueObject element generates an Ecore
single-valued EReference element. The name of the reference is obtained from
the name attribute of the Pair element. If the JSON object referred by ValueObj
ect represents a new concept, the reference type will be the one resulting from
mapping the object reference by applying rule C2. Otherwise, the Object el-
ement has been previously mapped and the resulting EClass element must be
refined (see refining rules R1-R3 below).

C5 A JSON Pair element with a JSON Value element representing an array (i.e.,
JSON Array element) generates a multivalued structural feature applying the rules
C3 and C4 for the elements of the values reference.

Figure 4 shows the service domain models resulting from applying the previous map-
pings to the injected models from the JSON documents provided by the two services
of the running example. For the sake of clarity and conciseness, we show the JSON
document textually (instead of showing the injected JSON model) for the closeStop
service. In the closeStop service, the single-service discoverer receives the first JSON
Object of the resulting array as input (see Figure 1). As it is a new concept which is
included in a Document element (i.e., included in the root of the JSON document),
the rule C1 is applied, thus generating the Stop element. Next, each Pair element
of the Object is considered. The first three Pair elements generate the attributes
placeCode, tag, distance, all of them typed as String, according to rule C3. The
last Pair element includes a JSON ValueObject element so the rule C4 is applied,
thus generating a new reference called line. Since the JSON object referred by the
ValueObject element represents a new concept and is included in a pair, rule C2 is
applied, thus generating the element Line. Finally, each pair element of the object in-
cluded in the line pair is considered. In this case, there is only one pair, for which the
rule C3 is applied, thus generating the string-based attribute lineNum in the element

Discovering Implicit Schemas in JSON Data 75

Fig. 4. Ecore models created by the single-service discovery process from the JSON documents
shown in Figure 1

Line. Figure 4 also includes the model created from the JSON document coming from
the waitingTime service, which will be used later in Section 3.3.

When a JSON Object element represens a concept already created, the correspond-
ing concept (i.e., the EClass element) is recovered and enriched according to the fol-
lowing refining rules:

R1 A JSON Pair element with a JSON Value element representing a primitive type
(i.e., String, Number or Boolean elements) refines the EAttribute named
after the name value of the Pair element. If the EAttribute does not exists in
the EClass element, it is included according to rule C3. If the EClass element
already includes an attribute with the same name, the specified attribute type is
compared with the one for the current object, if they do not match, the type of the
attribute will be refined to EString (the most generic type), otherwise nothing is
changed.

R2 A JSON Pair element contained in a JSON Object element with a JSON Value
Object element refines the EReference named after the name value of the
Pair element in the EClass obtained from such Object. If the EReference
already exists, do nothing. Otherwise the EReference is included into the
EClass definition according to rule C4.

R3 A JSON Pair element contained in a JSON Object element with a JSON Array
element refines a multivaluated feature, following the rules R1 and R2. If the feature
is already included in the EClass, the cardinality is updated to be multivaluated.
Otherwise, a new feature is created according to rules C3 and C4.

Figure 5 shows the refined models for the running example. As done before, we show
the JSON text for the first service. In the closeStop service, the single-service discov-
erer receives the second JSON Object of the resulting array as input (see Figure 1).
As the object represents a concept already considered in the process, it is used to re-
fine the existing concept. The element Stop is retrieved and the Pair elements of the

76 J.L. Cánovas Izquierdo and J. Cabot

Fig. 5. Ecore models refined by the single-service discovery process from the JSON documents
shown in Figure 1. Changes are highlighted in bold.

Object are traversed to refine the concept. The first three Pair elements trigger the
rule R1, but no change is done because the attribute types match with the type of the
existing EAttributes. The last Pair element triggers the rule R3, which refines the
reference line to be multivaluated and retrieves the Line element to be refined. Rule
R1 is triggered for each lineNum pair element, but no change is done because the at-
tribute type matches with the type of the existing EAttribute. Figure 5 also includes
the refined metamodel for the waitingTime service, in which the type of the attribute
time of the class WaitingTime is refined to EString according to rule R1. Thus,
the refined version of these models complies with the data and metadata described in
the JSON documents. With these models, developers can see and understand easily the
domain accessible from each service.

3.3 Multi-service Discoverer

As commented before, many applications provide a complete JSON-based API, includ-
ing several complementary services, each one offering a distinct viewpoint on the appli-
cation data. In the previous section we described the process to discover the structural
information (represented as Ecore models) regarding a single service. In this section
we will show how to obtain a composite model including each single service view-
point. The resulting model will therefore provide a general overview of the application
domain.

To be able to compose a set of models coming from different services, it is necessary
that such models share some elements, thus allowing establishing semantic relation-
ships among them.

The discovery of differences and similaritires (i.e., correspondences) between mod-
els is not an easy task since it relies on model matching, which can be reduced to
the problem of finding correspondences between two graphs (i.e., graph isomorphism).
This problem has been proved as NP-hard [5] and the available approaches can only

Discovering Implicit Schemas in JSON Data 77

approximate the exact solution (several model matching approaches have been pro-
posed in [6]). However, in the context of this work, since we are dealing with services
defined in the same application domain, it is expected that the number of similarities
(i.e., concept, attributes and reference names matching) to be high, thus decreasing the
complexity of the process.

The multi-service discovery process starts by first creating a new model being the
union of all the service-specific models. From there, the following rules try to link/merge
the different submodels:

M1 Two classes c1 and c2 contained in different submodels represent the same concept
if c1.name = c2.name. The classes will be merged into a new one called c where
c.name = c1.name. The structural features of c will initially be the union of the
structural features of c1 and c2 (further matching rules on them may apply).

M2 Two attributes a1 and a2 are defined to be the same if they are contained in an
EClass representing the same concept (see rule M1) and a1.name = a2.name. The
two attributes will be merged into a new one called a where a.name = a1.name.
The type of a will be a1.type if a1.type = a2.type, or the more general other-
wise. Regarding the cardinality of a, the lower bound will be set to the lowest
of a1.lowerCardinality and a2.lowerCardinality while the upper bound will be set
to the highest of a1.upperCardinality and a2.upperCardinality.

M3 Two attributes a1 and a2, where a.name <> a1.name, are considered the same
if they are contained in an EClass representing the same concept (see rule M1)
and there are matching values in the JSON value/pair elements. The two attributes
will merged into a single one a where a.name = a1.name and both the type and
cardinality will be inferred as done in rule M2.

M4 Two references r1 and r2 are considered the same if they are contained in an
EClass representing the same concept (see rule M1) and r1.name = r2.name. The
type of r will be r1.type if r1.type = r2.type, otherwise an error will be raised. Re-
garding the cardinality of r, the lower bound will be set to the lowest of r1.lowerCar
dinality and r2.lowerCardinality while the upper bound will be set to the highest of
r1.upperCardinality and r2.upperCardinality.

Note that these rules apply merging heuristics and therefore may be manually adapted
to each specific scenario.

Figure 6 shows in the center the resulting model after applying the rules to the mod-
els obtained in the previous phase (shown on the sides of the figure). The multi-service
discovery process begins with a model containing all the elements of the models ob-
tained from the single-service phase, thus repetitions may occur (e.g., Stop and Line
elements). The mapping rules are applied then, forcing some elements to merge. For
instance, Line elements are merged according to rule M1, the lineNum attribute is
merged according to rule M2 whereas the lineType attribute is simply added. Stop
elements are merged according to rule M1 while placeCode and stopCode are
merged according to rule M3 (some values of these attributes match in the JSON doc-
ument, as can be seen in Figure 1), and tag and distance attributes, and line
reference are added.

We refer to the resulting model as application domain model since it offers a clear
view of the domain accessible by the two JSON services of the running example.

78 J.L. Cánovas Izquierdo and J. Cabot

Fig. 6. The multi-service discovery process where the Application Domain model is obtained
from the closeStop and waitingTime service domain models

As can be expected, these matching rules do not cover all the possible cases and may
be improved by other model matching approaches, as commented in Section 6. Note
that individual JSON documents can now be represented as instances of the application
domain model, thus promoting the integration of JSON with model-based applications.

4 Discovering Service Dependencies

We believe the generated application domain model offers a valuable and helpful view
to understand the information managed through and reachable from a set of JSON ser-
vices, thus facilitating the creation of applications and other services on top of them.

Nevertheless, this data-centric view is only part of the solution. Once developers
know what data is available the next question is how to query the services to get it. To
help in this task, we add coverage information to the application domain model. This
coverage information highlights the elements in the application domain model returned
by each services. Therefore, a developer could quickly identify the set of services that
could be potentially used to get the data he/she is interested in.

Furthermore, coverage models can be manually annotated to visualize not only the
output of the service but also the input parameters required to call them, when those
parameters are also part of the application domain model. This helps to automatically
discover dependencies between the services, for instance, possible execution chains (if
the input of a service X is covered by the output of a service Y, then they can be exe-
cuted in sequence). For instance, Figures 7a and 7b show in grey the coverage for the
two services of the running example. Figure 7b also highlights the input element of
the waitingTime service, which is the attribute placeCode of the class Stop. As can
be seen, there is an overlapping in the inputs/outputs of the services: the output of the
closeStop service includes the placeCode attribute, which is the input of the waiting-
Time service. Thus, it could be possible to chain both services by using the closeStop
service to find the closest stop to our position and then use the returned placeCode as
input of the waitingTime service to get the waiting time for that stop.

Discovering Implicit Schemas in JSON Data 79

���

������	
���
���������������
�����������������	
����������������������
�������������	

����
����������������	
����
����������

����
�����!�����������	
��	��������	
���������������	

"##$ ���� "##$ ����

"##& ����

�'�

������	
���
���������������
�����������������	
����������������������
�������������	

����
����������������	
����
����������

����
�����!�����������	
��	��������	
���������������	

"##$ ���� "##$ ����

"##& ����

��������	����*���
�������������*���

����
����������������	

����
�����!�����������	
��	��������	
���������������	"##& ����

�

������	
���
���������������
�����������������	
����������������������
�������������	

����
����������������	
����
����������

����
�����!�����������	

"##$ ���� "##$ ����

Fig. 7. Coverage model for the (a) closeStop and (b) WaitingTime services

Service dependencies could even be used to create a dependency graph to identify,
given a set of available input data and a target output information, which is the shortest
path (i.e., the least number of chained service calls) to reach that output. The initial
candidate services would be those that can be executed using the starting input data and
from there the overlappings (the edges in the graph) would be taken into account to
calculate which services can be executed next.

5 Implementation

Our approach has been implemented in Java and distributed as an open source Eclipse
plug-in5. The tool includes both the pre-discoverer developed in Xtext and the two
discoverers (single and multi-service) mentioned in Section 3. Furthermore, the tool
can also instantiate the discovered models by using the set of initial JSON documents.

This plugin has been contributed to MoDisco6, an official Eclipse project aimed at
providing a common framework for Model-Driven Reverse Engineering (MDRE) pro-
cesses and tools. MoDisco includes a set of discoverers to obtain models from different
software artefacts such as Java or XML files. Our tool has therefore been incorporated
as a new type of discoverer dealing with JSON files. Figure 8 shows a snapshot of the
enviroment including the metamodels of the closeStop and waitingTime service, and the
application domain model.

Our implementation also supports the notion of coverage models (Section 4). Cover-
age models have been defined as a new type of models consisting in a set of links that
relate the service domain model with the whole application domain model as a way to
know how the service contributed to the composed model. This is also useful to then
analyze the relationships among the different services, e.g., allowing inferring possible
services chain uses, as comented in Section 4.

Coverage models conform to the coverage metamodel, shown in Figure 9a. The cov-
erage of a service (Coverage metaclass and its service attribute) is defined by

5 https://code.google.com/a/eclipselabs.org/p/json-discoverer
6 http://www.eclipse.org/MoDisco

https://code.google.com/a/eclipselabs.org/p/json-discoverer
http://www.eclipse.org/MoDisco

80 J.L. Cánovas Izquierdo and J. Cabot

Fig. 8. Snapshot of the developed tool

a set of coverage mappings (CoverageMapping metaclass), which link attributes
(AttMapping metaclass), references (RefMapping metaclass) and concepts (i.e.,
classes) (ConceptMapping metaclass) between the application domain model and
the service model. Optionally, the input of the service can also be represented (input
reference) regardless this input is part or not of the output JSON data itself.

Figure 9 shows the model representing the coverage of the closeStop service (i.e.,
illustrated in Figure 7a). For the sake of simplicity, Ecore models are represented as
class diagrams and not as instances of Ecore metamodel.

6 Related Work

JSON schema discovery is related to works aimed at the general problem of obtaining
structured information from unstructured data, such as [7]. Some of their ideas have
been integrated in our approach.

In the field of web engineering, there are a number of approaches to extract the
structure (e.g., navigational model, MVC pattern elements, etc.) from web sites [8–
11] but none of them focuses on the discovering/representing the structure of the data
those applications exchange with external services. Our tool could be integrated in these
approaches to improve their support for JSON-based data. Trang7 follows a similar
approach to ours but is restricted to XML documents.

On the pure modeling side, there are some tools such as Texo8, and the emfjson9 and
xmi-to-json10 GitHub projects, that provide a bridge between the two technical spaces,

7 https://code.google.com/p/jing-trang/
8 wiki.eclipse.org/Texo
9 www.github.com/dsevilla/xmi-to-json

10 www.github.com/ghillairet/emfjson

https://code.google.com/p/jing-trang/
wiki.eclipse.org/Texo
www.github.com/dsevilla/xmi-to-json
www.github.com/ghillairet/emfjson

Discovering Implicit Schemas in JSON Data 81

Fig. 9. (a) Metamodel to represent coverage information. (b) Coverage links between the appli-
cation domain model and the closeStop service model.

thus allowing exporting models as JSON documents and viceversa. The functionality
provided by these tools correspond to our pre-discovery phase, i.e., the mapping is
always a one-to-one mapping applied on single elements, there is no attempt to infer
more complex data structures.

Finally, several works [12–17] cover the automatic matching of modeling elements.
These works could help us to improve our multi-service process discovery phase, en-
riching our set of heuristics to deal with very complex scenarios.

7 Conclusion and Future Work

Many web applications consume/publish JSON data coming from different sources. In-
tegrating such JSON services is a challenging task mainly due to the schemaless nature
of JSON which forces developers to peruse the (generally poor and little) available doc-
umentation to guess the best way to extract from those documents the data they need.

To improve this situation, we have presented an approach to automatically discover
an implicit schema from a set of JSON documents coming from the same or different
providers. We use model-driven techniques to devise a process where initial schema
excerpts are discovered from each individual service and then are combined to obtain
a composite model describing the underlying domain model of the application, which
facilitates the understanding of the JSON-based services to interact with. The approach
has been implemented in Java and contributed to the MoDisco open source Eclipse
reverse engineering framework.

82 J.L. Cánovas Izquierdo and J. Cabot

As future work, we plan to improve the quality and precision of the generated mod-
els by means of allowing developers to enrich the partial schemas (e.g., by manually
adding links among them to be taken into account in the multi-service discovery phase)
and by reusing some ideas from database normalization theory (i.e., to evalute the rela-
tionships between the model elements) and from XML schema discovery approaches.
We find also interesting to define metrics to evaluate the discovery process (e.g., effec-
tiveness, coverage, etc.). Finally, we would like to explore additional applications of
the discovered schemas, e.g., by using them as basis for the generation of new service
mash-ups based on the discovered links between the services. In this context, our work
could complement existing approaches on API usage patterns [18–20].

References

1. Ying, M., Miller, J.: Refactoring legacy AJAX applications to improve the efficiency of the
data exchange component. Syst. Soft. 86(1), 72–88 (2013)

2. Nurseitov, N., Paulson, M.: Comparison of JSON and XML data interchange formats: A case
study. In: CAINE Conf., pp. 157–162 (2009)

3. Fowler, M.: Schemaless data structures,
http://martinfowler.com/articles/schemaless

4. IETF: A json media type for describing the structure and meaning of json documents. Stan-
dard Draft v3

5. Lin, Y., Gray, J., Jouault, F.: DSMDiff: a differentiation tool for domain-specific models.
Europ. Inf. Syst. 16(4), 349–361 (2007)

6. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for model match-
ing: An analysis of approaches to support model differencing. In: CVSM Conf., pp. 1–6
(2009)

7. Nestorov, S., Abiteboul, S., Motwani, R.: Inferring structure in semistructured data. ACM
SIGMOD Record 26(4), 39–43 (1997)

8. Chang, C., Kayed, M.: A survey of web information extraction systems. IEEE Trans. Knowl.
Data Eng. 18(10), 1411–1428 (2006)

9. Arasu, A., Garcia-Molina, H., University, S.: Extracting structured data from Web pages. In:
SIGNMOD Conf., p. 337. ACM Press (2003)

10. Crescenzi, V., Mecca, G.: Automatic information extraction from large websites. Journal of
the ACM 51(5), 731–779 (2004)

11. Hernández, I., Rivero, C.R., Ruiz, D., Corchuelo, R.: Towards Discovering Conceptual Mod-
els behind Web Sites. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532,
pp. 166–175. Springer, Heidelberg (2012)

12. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams. In: ACM
SIGSOFT Conf., pp. 227–236 (2003)

13. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle, J., Booch,
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

14. Melnik, S., Garcia-molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching
Algorithm. In: DE Conf., pp. 117–128 (2002)

15. Selonen, P., Kettunen, M.: Metamodel-Based Inference of Inter-Model Correspondence. In:
CSMR Conf., pp. 71–80 (2007)

16. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large models. In:
ESEC/FSE Conf., p. 295 (2007)

http://martinfowler.com/articles/schemaless

Discovering Implicit Schemas in JSON Data 83

17. Whang, S.E., Garcia-Molina, H.: Joint entity resolution. In: ICDE Conf., pp. 294–305 (2012)
18. Xie, T., Pei, J.: MAPO: Mining API usages from open source repositories. In: MSR Work-

shop, pp. 54–57 (2006)
19. Robillard, M.P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.: Automated API Prop-

erty Inference Techniques. IEEE Trans. Soft. Eng., 1–1 (2012)
20. Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion

systems. In: ESEC/FSE Conf., pp. 213–222 (2009)

The SWAC Approach for Sharing a Web

Application’s Codebase Between
Server and Client

Markus Ast, Stefan Wild, and Martin Gaedke

Chemnitz University of Technology, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. A Web application’s codebase is typically split into a server-
side and a client-side with essential functionalities being implemented
twice, such as validation or rendering. For implementing the codebase
on the client, JavaScript, HTML and CSS are languages that all modern
Web browsers can interpret. As the counterpart, the server-side codebase
can be realized by plenty of programming languages, which provide facil-
ities to implement standardized communication interfaces. While recent
developments such as Node.js allow using JavaScript as a client-side pro-
gramming languages outside the browser in a simple and efficient way
also on the server-side, they lack offering a common codebase for the
entire Web application. We present a flexible approach to enable sharing
of presentation and business logic between server and client using the
same codebase. Our approach aims at reducing development efforts and
minimizing coding errors, while taking characteristic differences between
server and client into account. We show the impact of our solution during
an evaluation and in comparison to related work.

Keywords: Development Tools, HTML5 and Beyond, Web Standards
and Protocols.

1 Introduction

More and more of today’s dynamic Web applications imitate behavior, look and
feel of desktop applications by moving large parts of their business and presen-
tation logic from the server-side to the client-side1. This trend was accelerated
by the Internet’s increasing speed and coverage for mobile devices as well as
advances in standards, which made the Web more dynamic in the last couple
of years [1,5,13]. Development methodologies like progressive enhancement have
additionally blurred the line between desktop and Web applications. Progres-
sive enhancement focuses on Web applications that are universally accessible,
intuitive and usable by realizing all Web content and functionality only using se-
mantic Hypertext Markup Language (HTML). Enhancements such as advanced

1 While in our scenarios clients are mostly represented by browsers, other applications
e.g., Firefox OS or WebView Components in Android and iOS are also valid clients.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 84–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

{firstname.lastname}@informatik.tu-chemnitz.de

The SWAC Approach for Sharing a Web Application’s Codebase 85

Cascading Style Sheet (CSS) or JavaScript are layered unobtrusively on top
of HTML [12]. Web-enabled devices like search engines or gaming systems do
only provide limited or no support for further enhancements. By following this
development methodology, they are also enabled to access corresponding Web
applications. New devices like latest browsers benefit from this additional tech-
nological layer by improvements to style and interaction.

Progressive enhancement can be accomplished by duplication, i.e., realizing
parts of the application for both server and client. Duplicating the business and
presentation logic entirely, however, is inadequate as it decreases not only devel-
opment efficiency, but also makes the application more error-prone and harder
to maintain. Besides the problem of technically establishing a server/client com-
patible codebase2, we identified four key differences between both sides that have
to be treated separately: view, routing, data access and state transfer.

Unlike the view on the server-side that is commonly string-based and gener-
ated on-demand, the client-side view is based on the Document Object Model
(DOM). This difference also affects the routing because the view on server-side
is built from scratch on every request, i.e., on every route. In addition to this, the
business logic of routes cannot be reused for the client-side without further re-
gard. As the client-side is generally more vulnerable to malicious manipulations,
unveiling data exchange logic to the client-side has potential security issues. The
state established during the initial request consisting of data, view bindings and
precompiled fragments acts as origin and as basis for all further user interaction.
As a consequence, the state needs to be transferred from the server to the client
in order to continue on the client where left off on the server.

In this paper we present a framework providing both dynamic functionalities
and progressive enhancement without having to implement an application twice
on server and client. We focus on coping with characteristic client/server differ-
ences using a technically compatible codebase, supporting client- and server-side
generated views, implementing a server/client compatible routing as well as es-
tablishing mechanisms for data access and state transfer.

This paper is organized as follows: We begin in Section 2 with an example
demonstrating the features of our framework. Section 3 provides an overview
of our approach and describes the resulting framework. We detail the routing,
the view, the data access and the state transfer. In Section 4 we evaluate our
framework. We position our approach to related work in Section 5 and conclude
our work in Section 6.

2 Example

In this section we present an example for developing a simple task & document
management application. We apply our proposed framework and best practices
to implement a single codebase for the entire Web application and realize pro-
gressive enhancement.

2 The term ”codebase” refers to the whole source code of an application.

86 M. Ast, S. Wild, and M. Gaedke

Consider a simple application for managing tasks and documents as shown
in Figure 1. There are tasks, documents and projects. Tasks and documents
are both assigned to projects and each project can contain several tasks and
documents. There are five routes associated to these elements, i.e., one to the
project list, a second to a specific project, a third to the tasks associated to a
project, a fourth to the documents within a project, and another route acting
as an entry point for the application. Four separate views are rendered on the
basis of these routes, i.e., the layout, the project, the tasks and the documents.

Fig. 1. Screenshot of Sample Web application

Our framework enables developers of such a task & document management
application to combine these five distinct routes into one, which itself is split into
five hierarchical pieces, as shown in Figure 2. Therefore, we have consolidated
the business logic of these routes: (1) the root route rendering the layout, (2) the
projects route loading and rendering the list of projects, (3) the project route
loading a specific project and (4) tasks and documents routes to render all tasks
and documents of the selected project. That is, the tasks and documents routes
reuse logic introduced with the project route (1-3).

Render
Layout

Load & Render
Projects

/docs

/projects /:project/

/tasks
Load &
Render
Project's
Tasks/Docs

1 2

Load
Project

3

4

4

Fig. 2. Route Hierarchy of Sample Application

The SWAC Approach for Sharing a Web Application’s Codebase 87

On the client-side, this separation relieves us from the need to execute the
whole route once a project is selected. Furthermore, the separation enables mov-
ing through a route step by step to execute only the necessary parts of a route,
e.g., projects, tasks or documents. The presentation logic is responsible for re-
flecting changes based on the business logic addressed by these routes. To achieve
this without re-rendering, our framework allows splitting the view into pieces
called fragments. These fragments are used to construct the view step by step
or to update parts of the view once underlying data changes. As shown in Fig-
ure 3, the sample application consists of a fragment for the project list, the task
collection, the document collection and one for each project, task and document.

Layout / Application Container

Project
List

Task 1 Task 2Proj. 1 Task N

Task
Collection

Project
List

Layout/
Application
Container

Corresponding
View Fragmentation TreeView Fragmentation

...

Doc. 1 Doc. 2 Doc. N

Document
Collection

......

Proj. 2 Proj. N

Document
Collection

Document 1

Document 2

Document 3

Document N

...

Task
Collection

Task 1

Task 2

Task 3

Task N

...

Fig. 3. View Fragmentation of Sample Application

Having implemented the routes and the view as described, requesting the list
of projects from the server would be as follows: each route up to the projects
route is executed automatically by our framework, and the layout and the project
list are rendered accordingly. The result of this request not only contains the
rendered view composed of the layout and the project list. It also contains the
state consisting of the underlying data, the bindings, the fragment’s precompiled
templates3 and their positions inside the view. The bindings are established to re-
render fragments on data changes like creating, renaming or removing projects.

At this point in time, most of the application’s functionalities can be executed
decoupled from the server-side, i.e., only data access and manipulation opera-
tions have to involve server communication. It is important to note that in our
framework, the logic responsible for the data exchange with the database is not
shared with the client because of potential security concerns. As the data logic
remains on the server all the time, our framework automatically provides an

3 A precompiled template is a JavaScript function responsible for creating HTML for
the data provided in the fragment.

88 M. Ast, S. Wild, and M. Gaedke

appropriated API allowing client-side data access to be proxied through. In the
example, selecting a project on the client-side would work as follows: The client
makes an AJAX request to the server to get the tasks of the selected project. Ad-
ditionally, the client requests the precompiled fragments of the tasks template,
which are used for the appropriate rendering. The resulting fragments ensure
that the task items can be re-rendered once their underlying data changes, e.g.,
selecting another project results in the execution of the associated route part.
This would cause re-rendering view fragments of the task items.

Demonstration: This sample application created with the SWAC framework
is available at: http://vsr.informatik.tu-chemnitz.de/demo/swac/

3 Approach for Sharing a Web Application’s Codebase

Our approach for Sharing a Web Application’s Codebase (SWAC) establishes
server/client compatible Web application codebases and addresses the differ-
ences between server- and client-side. SWAC is designed to execute only nec-
essary parts of an application’s business logic by defining routes as a route
hierarchy. To update only the affected parts of a view on data changes, the
SWAC approach supports fragmentation of views into parts. These parts are
automatically updated once their underlying data changes. It achieves data se-
curity by an additional layer between the business logic and the logic responsible
for communicating with the database. For a seamless transition from server- to
client-execution of the Web application, SWAC enables to automatically transfer
the state from the server to the client. To technically establish a server/client
compatible codebase, SWAC is entirely implemented in JavaScript using Node.js
on the server-side. The following subsections detail both the theoretical back-
ground and the actual implementation of the SWAC approach.

3.1 Routing

A route hierarchy is an essential part of the business layer as it defines the
relationship of routes in an application to each other. SWAC utilizes such a route
hierarchy to determine the necessary parts to be executed for reflecting changes
between two user interactions. That is, it expects the URL to be hierarchical,
which is also considered a best practice [4]. There is no standalone business
logic for each complete route. Instead, the business logic is separated into parts,
where each part reflects the changes necessary to move from one route to an
immediately following one. This allows executing only the necessary parts to
reflect the changes required to navigate from one route to another on the client-
side. To handle scenarios of routes requiring logic that is incompatible to both
sides, e.g., logic provided by third-party frameworks like jQuery and Dojo, every
route can consist of an additional client-only part. While the client-only part is
optional, the server/client compatible part is always required.

The SWAC framework covers three different routing schemes, where each
schema is distinct in terms of handling the route hierarchy tree: 1) the route is

http://vsr.informatik.tu-chemnitz.de/demo/swac/

The SWAC Approach for Sharing a Web Application’s Codebase 89

executed on the server-side, 2) the client is initialized to take off the application
and 3) the client-side navigates through the route hierarchy tree. The following
terminology is applied to describe the routing algorithm: We define G(V,E) as a
directed graph representing the route hierarchy, u ∈ V as a route and (x, y) ∈ E
as a directed edge connecting dependent routes. Additionally, we define A(u) as
a subset of G, with each node x ∈ A being an ancestor of u. A node a ∈ A is
called a common ancestor of u and v if a is an ancestor of both of them, w(u, v)
is called the lowest common ancestor of u and v. In analogy to A(u), we define
D(u) as a subset of G, with each node x ∈ D being a descendent of u. We define
T (u) as a tree inside G with u ∈ T . Other trees like T (k) can also exist within
G(V,E). These definitions are illustrated in Figure 4.

T(u)

G(V, E)

T(k)

a A(u)

w

uv

D(u)

k

Fig. 4. Routing Terminology

Server-Side Execution. The server-side of our framework is stateless, i.e., a
request to the server always requires executing the whole logic responsible for
providing the desired result. Calling a route v on the server-side results in the
execution of v and all ancestors of v, i.e., all nodes being an element of A(v).
These routes are executed in the order they are specified in.

Client-Side Initialization. The initial request is always completely processed
on the server-side. Afterwards, our framework can execute most of the applica-
tion’s functionality decoupled from the server on the client-side. Therefore, the
client-only parts of the current route are executed. This is done by applying the
same method as used for the server-side execution with the difference of execut-
ing the client-only and not the server/client compatible part of the route.

Client-Side Execution. On the client-side, only the routes that are responsible
for the changes between two user interactions are executed. There are four sub-
scenarios for the client-side execution. They take different positions of the target
route into account. If the target route v is not an element of the tree T (u) of the
starting position u, the execution works the same way as on the server-side. That
is, v and all ancestors A(v) are executed in their appropriate order. Otherwise,
the target route v is an element of T (u). If v ∈ T (u), v could be an ancestor

90 M. Ast, S. Wild, and M. Gaedke

of u, i.e., v ∈ A(u), v could be a descendant of u, i.e., v ∈ D(u) or otherwise, v is
inside another branch of T (u). In case v is an ancestor of u, only v is executed. If
v being a descendant of u, every route from u down to v is executed. Otherwise,
every route from the lowest common ancestor w(u, v) down to v is executed.
R(u, v), as the set of routes to be executed, is built using the following method:

R(u, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A(v) ∪ {v} if v /∈ T (u),

v if v ∈ T (u) ∧ v ∈ A(u),

[A(v) ∩D(u)] ∪ {v} if v ∈ T (u) ∧ v ∈ D(u),

[A(v) ∩D(w(u, v))] ∪ {v} if v ∈ T (u) ∧ v /∈ A(u) ∧ v /∈ D(u).

Example. Consider the route from our sample application (Figure 2). There we
use a parameter (:project). The SWAC framework handles each parameter
as a distinct branch of the route hierarchy (cf. Figure 5). This is necessary for
correct routing. For instance, switching from one project tasks (u) to the tasks
of another project (v) requires executing the /projects/:project route again
for the new project. The routes that have to be executed in this scenario are
highlighted in green in Figure 5.

D(w(u, v))

A(v)

/docs

/projects

/

/tasks /docs /tasks /docs /tasks

/1 /2 /n

...

u v

w(u, v)

Fig. 5. Routing example T (u) (1)

Figure 6 covers two additional scenarios for this route hierarchy. On the left
hand side, target route v is an ancestor of the current route u. On the right hand
side, target route v is a descendant. As in the previous example, the highlighted
routes are executed.

3.2 View

The view on the client-side facilitates executing only the necessary presentation
logic instead of re-rendering the entire view on every data change. While every

The SWAC Approach for Sharing a Web Application’s Codebase 91

/docs

/projects/

/tasks /docs /tasks

/1 /2

u

v

/docs

/projects/

/tasks /docs /tasks

/1 /2

u

v

Fig. 6. Routing example T (u) (2)

single part of a view can be directly updated on the client-side via DOM, this
is impossible using a string-based template as normally done on the server-side.
Due to the fact that parsing the whole template is expensive, having a full-fledged
DOM on the server-side would negatively affect the performance [10].

As we are interested in creating an efficient and compact partition similar
to DOM for string-based templates on the server-side, we utilize embedded
JavaScript. We achieve the fragmentation by wrapping parts of the template
into an appropriated block expression, as exemplary shown below:

<div>
@fragment (func t i on () {

Se l f−updating fragment
})

</div>

The re-rendering of a fragment consists of three steps: 1) delete the fragment’s
content, 2) re-render the fragment and 3) reinsert it into the DOM. Step 1 and
3 require knowledge about the position of the fragment. For this reason, the
position of a fragment needs to be tracked. This could be easily accomplished
by wrapping fragments into HTML elements, which are identified and accessed
via IDs. However, this approach has several issues, e.g., HTML elements like
<title> do not support child nodes [2]. HTML table rows are another example
for elements, which do not allow container tags. Considering a collection, where
each item is represented through two HTML rows, there is no valid way to wrap
each of these two <tr> rows into their own container [2]. Only the comment
node, which is allowed to reside inside every HTML element, fits our purpose.
Since a comment cannot wrap content that should be rendered, they have to act
as start and end markers for a fragment, as exemplary shown below:

<div>
< !−− −{1 −−>

Se l f−updating fragment
< !−− −1} −−>

</div>

On the server-side, these comments are just parts of the rendered string and
they only share their syntax with a DOM comment. This requires initializing

92 M. Ast, S. Wild, and M. Gaedke

the fragment positions once the DOM is built on the client-side. That is, as soon
as the client builds the document, a method has to detect all relevant comments
and assigns them to their fragments. Such a simplified method is listed below:

var walker = document . createTreeWalker (
s ta r t , NodeFi l te r .SHOWCOMMENT)

while (walker . nextNode ()) {
i f (! isRelevantComment (walker . currentNode)) continue
// as s i gn comments to t h e i r fragments
fragment [i sStar tNode (walker . currentNode . nodeValue)
? ’ startNode ’ : ’ endNode ’] = walker . currentNode

}
The bindings ensure that fragments update themselves on appropriate data
changes. They have to be created once the data got accessed. To achieve this
without making the API inconvenient, properties used inside a fragment have
to be enabled to interact with the fragment they are accessed from. The SWAC
framework uses the JavaScript function’s caller property for this purpose. This
property points to the object which called the function the property was ac-
cessed from [8]. We achieved this by making each data property a getter that
binds itself to the fragment it is called from:

Object . de f i n ePrope r ty (model , prop , {
get : function get () {
i f (typeof get . c a l l e r . fragment !== ’ undef ined ’)
this . on (’ change . ’ + prop , get . c a l l e r . fragment . r e f r e s h)

return va lue
} , s e t : [. . .] , enumerable : t rue

})
Although this Function.caller property is not part of the ECMA standard [3],
it is currently supported by all major browsers (Firefox, Safari, Chrome, Opera
and Internet Explorer) [16].

3.3 Security

Since the goal of this framework is to reuse an application’s codebase between
server and client every part of the application’s logic is shared between server
and client unless it is explicitly declared as server-only logic. Nevertheless, the
communication between the business logic and the database is always executed
on the server-side. We achieved this by splitting the business tier into two layers:
the service layer and the business layer. The service layer provides the API for
the communication with the database and is never shared with the client, i.e.,
the client-side cannot directly access the database. However, both sides share
the same API. Data API calls executed on the client-side are proxied through
an automatically provided RESTful API on the server, as illustrated in Figure 7.
That is, authentication and authorization logic for data access is always executed
in a privileged environment on the server-side.

The SWAC Approach for Sharing a Web Application’s Codebase 93

Service Layer

Data Tier

Business Layer

Database

Data API Side?

Data Logic

serverside
Internet

RESTful API

clientside

Presentation Tier

se
rv

er
-s

id
e

client-side

Authorization

Fig. 7. Service Layer

Due to the fact that the actual authentication/authorization logic is not pre-
defined, the SWAC framework provides hooks for injecting custom logic. This
facilitates implementing such logic using already existing Node.js packages, e.g.,
for OAuth or OpenID. An exemplary API usage, which only allows update,
delete and read access to the user model by the owner, is shown below:

swac . Model . d e f i n e (’ User ’ , function () {
this . a l low ({

a l l : function (r equest , user) {
return r eque s t . user . id == user . id

} ,
post : function (r eque s t) {

return t rue
}

})
})

There are two options for establishing route security. First, avoiding route shar-
ing is the most secure way for routes referring to proprietary algorithms. We
suggest only using this option if absolutely necessary because the benefit of the
SWAC framework results from the ability of sharing code. Second, for shared
routes, the SWAC framework provides hooks for both authentication and au-
thorization logic. Executing this logic on the client-side is useless because of
vulnerability to malicious manipulations. SWAC enables developers to divide
applications into several areas, as shown in Figure 8. Since these areas are iso-
lated from each other, navigating between them triggers requests to the server. A
client requesting a route of such an area must pass the authentication/

94 M. Ast, S. Wild, and M. Gaedke

authorization logic attached. This is necessary for the client to obtain the area’s
bundle (the JavaScript files that contain the business logic of this area) and to
call the route at all.

Application

Admin Area

Authorization

Routes
JavaScript

Bundle

User Area

Authorization

Routes
JavaScript

Bundle

Public Area

Routes
JavaScript

Bundle

Fig. 8. Application Areas

An exemplary access control definition for such a route is listed below:

swac . area (dirname + ’ /app ’ , {
a l low : function (req) { return req . i sAuthent i ca t ed () }

})
These areas provide a way to support the separation of an application into differ-
ent security levels and enable responding to users who try to access application
parts they are not authorized to.

3.4 State Transfer

The initial request is processed and rendered completely on the server. Enabling
the client to take off the application’s execution requires making this state avail-
able to the client. The state includes the following information:

– data contained in models and collections
– fragment positions
– events and their listeners
– precompiled templates

Such state information is necessary to update the view on the client-side on data
changes caused by user interactions. Although the client can always retrieve data
from the server, it would be unnecessary to retrieve data twice - once on the
server-side and once the client takes off the application. Fragments can update
themselves on certain events, e.g., data changes. Bindings between fragments and
events are established once a fragment is rendered for the first time, i.e., on the
server-side. To automatically reflect data changes, bindings must be transferred
to the client. Since a fragment’s position and template are required for fragment
re-rendering, associated data is also transferred to the client. To avoid compiling
templates again on the client-side, they are transferred in a precompiled form.

Transferring the state requires serialization. Possible formats for this pur-
pose are textual ones, like the JavaScript Object Notation (JSON) and the Ex-
tensible Markup Language (XML), or binary ones, like the MessagePack4 and

4 http://msgpack.org/

http://msgpack.org/

The SWAC Approach for Sharing a Web Application’s Codebase 95

the Protocol Buffers5. There is no direct support for buffers in browser-based
JavaScript [9]. Deserializing a buffer format on the client-side would be slow and
error-prone. Therefore only textual formats are qualified for a server/client com-
patible serialization and deserialization. As JSON is supported by JavaScript
directly [3], it is the textual format we use.

Regardless of this format choice, serialization of complex objects asks for
additional logic to cope with circular references, functions as well as closures.
There is no built-in mechanism available that allows serialization of all kinds of
JavaScript objects [3]. The SWAC framework achieves sufficient object serializa-
tion by resolving circular references, avoiding closures and utilizing the service
locator pattern to restore object instances. SWAC resolves circular references
by tagging an object as visited on its first occurrence. This allows identifying
references to objects that are already part of the state. The framework replaces
further occurrences of objects with a JSONPath6 to their first occurrence. To
serialize functions we avoid closures and use string representations of functions
via their toString() method. For restoring objects created built using a con-
structor, we implement the service locator pattern. Constructors are registered
to the service locator and all objects created with such a registered constructor
are tagged appropriately. This enables restoring such objects on deserialization.
These approaches in combination are a powerful toolkit to deserialize/serialize
complex JavaScript objects.

4 Evaluation

In order to demonstrate the benefits of our solution, we made a small coding con-
test: the development of a simple single-page task application capable of adding,
removing, editing and changing the state of tasks. For this purpose, we compared
a combination of a common back-end and a common front-end framework with
the SWAC framework. As a challenge for our approach, we chose Rails7 as the
back-end framework, which facilitates the development of back-ends due to its
scaffolding functionalities. For front-end implementation, we used Backbone.js8.
Both Rails and Backbone.js are necessary to provide the features the imple-
mentation with SWAC provides. Although a Rails-only implementation using
its JavaScript Adapter would allow fast development, only a few functionalities
are supported. This might be sufficient for a simple application like this, but is
inappropriate for the use cases our framework is aiming at, e.g., execution of
business logic on the client-side or automatic view binding.

While developing the application with Rails/Backbone.js required an average
time of 52 minutes, the task was done on average in 22 minutes with SWAC. As
shown in Figure 9, the development of this simple task application is about 60%

5 http://code.google.com/p/protobuf/
6 http://goessner.net/articles/JsonPath/
7 http://rubyonrails.org/
8 http://backbonejs.org/

http://code.google.com/p/protobuf/
http://goessner.net/articles/JsonPath/
http://rubyonrails.org/
http://backbonejs.org/

96 M. Ast, S. Wild, and M. Gaedke

faster when SWAC is used in comparison to the use of different frameworks for
back- and front-end. As a result of Rails maturity and scaffolding functionalities,
the back-end only development is indeed faster than using SWAC.

600 5 10 15 20 25 30 35 40 45 50 55

minutes

Backbone.jsRails

Our Framework

Fig. 9. Time comparison for Rails/Backbone.js vs. SWAC framework

The comparison of the amount of source lines of code (SLOC) necessary to
implement the application shows a significant difference, as illustrated in Fig-
ure 10. While the implementation with SWAC only required about 60 SLOC,
Rails and Backbone.js required at least 190 SLOC (Rails: 75, Backbone.js: 115).

2000 20 40 60 80 100 120 140 160 180

lines of code

Backbone.jsRails

Our Framework

Fig. 10. SLOC comparison for Rails/Backbone.js vs. SWAC framework

The SWAC framework and Rails require nearly the same SLOC. However,
Backbone.js’ DOM based view updates needed some extra lines of code for their
implementation. Although the evaluation shows that the SWAC framework im-
proves the development efficiency of dynamic and ”progressively enhanced” Web
applications, both comparisons should only be considered as an orientation. This
is because time consumed as well as lines of code required for the development
depend on the knowledge and experience with a framework.

5 Related Work

In this section, we analyze the work related to our solution. This analysis fo-
cuses on frameworks that aim for creating dynamic Web applications through
establishing a technically compatible client/server codebase. The key differences
between server and client, we identified in Section 1, are used as main analysis
criteria. The analysis is based upon the following criteria:

– Technically compatible codebase
– Progressive enhancements
– State transfer from server- to client-side

The SWAC Approach for Sharing a Web Application’s Codebase 97

– Data logic separation and access control
– Business logic routing
– Intelligent presentation logic, e.g., automatically updating view fragments

Derby [14], as a WebSocket-based framework, focuses on real-time and collab-
orative applications. Despite its facility to completely render the result of the
first request, it is not progressively enhanced. Since Derby uses WebSockets for
all data manipulations, submitting data without WebSockets is impossible. A
Web application’s client-side implemented with Derby cannot be executed left-
off from the server because the state remains on the server. However, WebSockets
can be used to propagate state changes. Derby solves separation of data logic and
access control similar to our solution [11]. While business logic is only executed
on the server-side, Derby dynamically initiates routing from the client-side.

As another framework in this context, Meteor [6] can create technically com-
patible Web application codebases using JavaScript. However, Meteor does not
achieve complete compatibility between server- and client-side because the frame-
work lacks built-in routing functionalities, i.e., business logic is triggered through
DOM events. Meteor utilizes Fibers, i.e., one thread per request, to create syn-
chronous APIs. Even though this is good for simplicity, it breaks with Node.js
event-based characteristic. For protecting the data logic, sensitive functions can
be executed in a privileged environment on the server-side. Meteor supports ren-
dering via DOM simulation on the server-side [7] taking Google’s AJAX crawling
specification into account. While this is beneficial for search engines, for com-
mon visitors Meteor renders the Web application only on the client-side. That is,
Meteor is not suitable for developing progressively enhanced Web applications.
As Meteor Web applications are executed on client-side only, there is no state
to be transferred from the server-side.

Compared to the frameworks analyzed so far, the API of Yahoo! Mojito [15]
is quite different from familiar back-end frameworks in the sense that it does not
provide a homogenous data API for both the server- and client-side. Although
Mojito can be used to build technically compatible Web application codebases, it
lacks native support for client-side routing, i.e., HTML5 History [2] is not used.
Mojito presentation logic allows updating view fragments on data changes.

Although the analyzed frameworks allow sharing parts of the codebase be-
tween server and client, they do not offer facilities to automatically create pro-
gressively enhanced Web applications.

6 Conclusion

With the SWAC approach we provided a solution for sharing a Web application’s
codebase between server and client. Although we accomplished the technical
compatibility of the codebase on both server- and client-side using JavaScript,
the characteristic differences between server and client made it necessary to
create a business and presentation logic compatible to string- and DOM-based
views. This was realized by splitting routes into hierarchical parts. As a conse-
quence of this action, we had to adjust the presentation logic to be compatible,

98 M. Ast, S. Wild, and M. Gaedke

too. Therefore, we added a mechanism to split the view into fragments, which
are updated automatically once underlying data changes. In addition to these
contributions, we integrated a facility into our framework allowing the client to
seamlessly take over the application after the state was transferred automati-
cally from the server to the client. While the data exchange logic is not shared
by the SWAC framework because of security concerns, we enabled the client to
unobtrusively proxy its database calls through the server.

In future work, we intend to perform an evaluation with a larger set of frame-
works. We assume that the evaluation results will help to identify advantages as
well as shortcomings of our current solution that need to be addressed in further
contributions. We plan implementing modularity improvements, e.g., making
fragments compatible to third party template engines or enabling authoriza-
tion per data property. In addition to these enhancements, we will investigate
collaborative editing scenarios asking for facilities such as data push.

Acknowledgment. This work was funded by the European Commission
(project OMELETTE, contract 257635).

References

1. Belson, D., Leighton, T., Rinklin, B.: The State of the Internet, vol. 5(3) (2012)
2. Berjon, R., Leithead, T., Doyle Navara, E., O’Connor, E., Pfeiffer, S.: HTML5

Specification, Editor’s Draft 6 (October 2012)
3. Ecma International: ECMA-262 ECMAScript Language Specification 5.1 Edition

(2011)
4. Masinter, L., Berners-Lee, T., Fielding, R.T.: Uniform Resource Identifier (URI):

Generic Syntax (2005), http://tools.ietf.org/html/rfc3986
5. Meeker, M., Wu, L.: 2012 Internet Trends (2012)
6. Meteor Development Group: Meteor, http://docs.meteor.com/
7. Meteor Development Group: Meteor - Search engine optimization,

http://meteor.com/blog/2012/08/09/search-engine-optimization

8. Mozilla Developer Network: Function.caller
https://developer.mozilla.org/de/docs/

JavaScript/Reference/Global Objects/Function/caller

9. Mozilla Developer Network: JavaScript typed arrays,
https://developer.mozilla.org/en-US/docs/JavaScript_typed_arrays

10. Nicola, M., John, J.: XML Parsing: A Threat to Database Performance. In: Pro-
ceedings of the 12th International Conference on Information and Knowledge Man-
agement, pp. 175–178. ACM Press (2003)

11. Noguchi, B., Smith, N.: Racer Access Control,
https://github.com/codeparty/racer/tree/master/lib/accessControl

12. Parker, T., Jehl, S., Wachs, M.C., Toland, P.: Designing with Progressive Enhance-
ment: Building the Web that Works for Everyone. New Riders Publishing (2010)

13. Smith, A.: Cell Internet Use 2012 (2012)
14. Smith, N., Noguchi, B.: Derby, http://derbyjs.com/
15. Yahoo! Inc.: Yahoo! Mojito, http://developer.yahoo.com/cocktails/mojito/
16. Zaytsev, J.: ECMAScript extensions compatibility table,

http://kangax.github.com/es5-compat-table/

http://tools.ietf.org/html/rfc3986
http://docs.meteor.com/
http://meteor.com/blog/2012/08/09/search-engine-optimization
https://developer.mozilla.org/de/docs/JavaScript/Reference/Global_Objects/Function/caller
https://developer.mozilla.org/de/docs/JavaScript/Reference/Global_Objects/Function/caller
https://developer.mozilla.org/en-US/docs/JavaScript_typed_arrays
https://github.com/codeparty/racer/tree/master/lib/accessControl
http://derbyjs.com/
http://developer.yahoo.com/cocktails/mojito/
http://kangax.github.com/es5-compat-table/

DireWolf - Distributing and Migrating User

Interfaces for Widget-Based Web Applications

Dejan Kovachev, Dominik Renzel, Petru Nicolaescu, and Ralf Klamma

Advanced Community Information Systems (ACIS) Group,
RWTH Aachen University,

Ahornstr. 55, 52056 Aachen, Germany
{kovachev,renzel,nicolaescu,klamma}@dbis.rwth-aachen.de,

http://dbis.rwth-aachen.de

Abstract. Web applications have overcome traditional desktop appli-
cations especially in collaborative settings. However, the bulk of Web
applications still follow the “single user on a single device” computing
model. Therefore, we created the DireWolf framework for rich Web appli-
cations with distributed user interfaces (DUIs) over a federation of het-
erogeneous commodity devices supporting modern Web browsers such as
laptops, smart phones and tablet computers. The DUIs are based on wid-
get technology coupled with cross-platform inter-widget communication
and seamless session mobility. Inter-widget communication technologies
connect the widgets and enable real-time collaborative applications as
well as runtime migration in our framework. We show that the Dire-
Wolf framework facilitates the use case of collaborative semantic video
annotation. For a single user it provides more flexible control over dif-
ferent parts of an application by enabling the simultaneous use of smart
phones, tablets and computers. The work presented opens the way for
creating distributed Web applications which can access device specific
functionalities such as multi-touch, text input, etc. in a federated and
usable manner.

1 Introduction

People increasingly interact with a collection of heterogeneous computing devices
attached to their daily lives. However, most Web applications fail to combine de-
vices’ features into a cohesive symbiotic way to convey a single user task in a
collaborative fashion. One of the reasons behind this failure is the lack of tools
and methodologies required to develop applications spreading user interfaces
across multiple devices available to a particular user or group of users. Personal
computing is no longer confined to a single device. PCs together with commod-
ity smartphones, tablets, eBook readers, gaming consoles and interactive TVs
can be federated over the Internet to create collaborative multi-device interac-
tive systems which can benefit from the diverse device capabilities. An individ-
ual can interact in different ways with such symbiotic computing environments,
consisting of personal devices.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 99–113, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://dbis.rwth-aachen.de

100 D. Kovachev et al.

As a consequence, monolithic single-device user interfaces (UI) devolve to
Distributed User Interfaces (DUI). DUIs separate, migrate and merge seamlessly
between devices. Additionally, they can adapt to different platforms [1] and
account for changes in device availability to achieve a continuous application
experience [2].

Developing distributed user interfaces is challenging [3]. From the user per-
spective, two challenges are salient. First, users should be supported to adapt
the distribution to their needs. Second, users should experience seamless UI mi-
gration. Migrated UI components preserve state and remain consistent with the
whole application context. Concerning the use of multiple devices, current Web
applications can be well rendered on different platforms. However, most of them
ignore the possibility of using multiple personal computing devices. Coopera-
tion between such devices related to distributed interfaces is scarce and mostly
limited to device-specific static interface separation.

Tablets:
video players with

multi-touch interaction
Laptops and PCs:

text editing

Si
ng

le
-d

ev
ic

e
U

I
M

ul
ti-

de
vi

ce
 d

ist
rib

ut
ed

 U
I

Smartphones:
on-site video capture,
geo-tagging on maps
and video annotation

Fig. 1. An example of distribution of user interface components (widgets) to diverse
(mobile) computing devices

To address these challenges, we present DireWolf, a framework for distributed
Web applications based on widgets. We have chosen to work with Web wid-
gets because they represent interface components with limited, but clear-cut

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 101

functionality, dedicated to smaller tasks. Widgets can be shared, reused, mashed
up and personalized between applications. By splitting the interface into separate
widgets and enabling them to exchange information, customizable Web applica-
tions can be developed. Whereas previous work [4,5] on widget applications and
mashups considers single-end devices only, we examine the concept of widget-
based Web applications combined with device awareness, session mobility and
cross-device cooperation.

To illustrate the concept, we shortly describe a semantic video annotation ap-
plication (cf. Figure 1). This application was transformed from a typical Web ap-
plication into a widget-based one, thus validating the feasibility of our approach.
A semantic video annotation application is an ideal candidate for extended UI
interactions: users watch videos, annotate them at certain time points or for spe-
cific time intervals and navigate through a video using the annotations. Various
types of available semantic annotations (agent, time, concept, object type) can
be added using text input and interacting with a video player. Place annotations
can be pinpointed on a map. However, e.g. full screen mode of the video player
hides all other UI controls on one device. In an annotation scenario, distributing
the UI enhances user experience. Users can play the video in full screen on one
device and can use additional devices to annotate it or to browse through the
video. Moreover, they can use device-specific features for each of the UI elements,
e.g. multi-touch on a smartphone for interacting with a digital map. Preserving
UI state across devices is also required for such a scenario, e.g. resume at current
position instead of restart after migration of a video player, continue annotating,
etc. Our paper brings forward the following contributions:

– a framework for easy browser-based distribution of Web widgets between
multiple devices

– facilitation of extended multi-modal real-time interactions on a federation of
personal computing devices

– provision of continuous state-preserving widget migration

DireWolf helps managing a set of devices and handles communication and control
of distributed parts of the Web application. The conceptual and implementation
details of the DireWolf framework, together with the possibility of integration
into existing widget platforms is detailed in the next sections.

The rest of the paper is structured as follows. In Section 2, relevant literature
related to our approach is presented. In Section 3 we introduce current widget-
based Web applications as a starting point for our DUI framework. Sections 4
presents the DireWolf framework in detail with a focus on the framework concept
and continuous widget migration. Section 5 provides implementation details.
Evaluation results are discussed in Section 6. Section 7 concludes this work and
provides an outlook to future research.

102 D. Kovachev et al.

2 Related Work

Our DUI approach is related to work in two research domains, namely mecha-
nisms for distributing and migrating Web UI, and frameworks for using multiple
personal computing devices to perform a single user task.

Distributing Web UIs means ungrouping Web document elements and pre-
senting them separately without compromising application functionality. The
granularity of UI splitting can range from arbitrary partitions to pre-defined UI
blocks. Ghiani et al. [6] provide a mechanism to select a part of a Web page
which can be migrated and shown on a mobile device. However, this approach
is only feasible for the adaptation of Web pages and does not support presen-
tation of different UI components on multiple devices at the same time. Model-
based approaches [2,7,8] define different abstract UI configurations at design
time and generate concrete UI presentations at runtime. These works demon-
strate dynamic distribution of Web interfaces among heterogeneous platforms.
But reusability and extensibility of sub-services/components are major short-
comings in these approaches. A new UI schema needs to be fixed for a complete
application. Sub-service definitions cannot be separated. Consequently, the ser-
vices of an application cannot be ported with ease. Learning to use the schema
for an application induces additional development effort. Moreover, if a new ap-
plication joins the system, new UI schema files must be written, and the root UI
schema must be modified. In contrast, we consider Web applications composed
of widgets using open Web standards.

Dynamic DUIs should support runtime component migration. Necessary steps
for a successful migration are presented in the Roam project [9]. Roam preserves
the application execution state information such as heap, stack, network sockets,
etc. at the start of the migration and restores them after migration. For con-
tinuous Web browsing, Alapetite et al. [10] migrate Web sessions across mobile
devices using 2D-barcodes captured by cameras. A dedicated State Mapper is
also developed in [11] for state recovery during UI migration between mobile
phones and digital TVs. Inspired by these approaches, our framework realizes
complete continuous migration tailored to Web widgets.

Multi-device collaboration means that multiple devices can join the same
application scope and that these devices can complete tasks together. Early ap-
proaches have focused on supporting desktop applications with devices such as
PDAs and handheld computers over wired or wireless connections. Pebbles [12]
extends computing and I/O functionalities by involving heterogeneous devices.
The extended UIs are native applications specially tailored for each comput-
ing platform and each functionality. Thus, multi-device UI are tightly coupled
with the computing hardware. Melchior et al. [13] present a P2P framework
that helps deploy distributed graphical user interfaces. All devices must install
the framework before they can create components or import remote components
directly from other devices. Many projects consider one-to-one mappings be-
tween users and devices, which is more applicable for collaborative scenarios.
MarcoFlow [14,5] uses modular UI to represent the relevant controls and in-
formation to the user, but it focuses on the orchestration of business processes

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 103

involving multiple users with different data views. Pierce and Nichols [15] use the
idea of ownership to address personal computing devices and to enable seamless
user experience over multiple devices. Their prototype simplifies the develop-
ment of applications that are aware of a user’s devices but it does not support
UI migration. The DireWolf framework supports any device with an available
modern Web browser. There is no need for pre-installed components or config-
urations. In the following, we first introduce Widget-based Web applications to
clarify the context in which DireWolf was developed.

3 Widget-Based Web Applications

Important prerequisites for distributing individual elements of complete Web
applications are a clear separation into conceptual and functional units, a context
for managing separation, and cross-device communication between these units.
In this section we briefly introduce widget-based Web applications and discuss
why they fulfill the above prerequisites and thus served as foundation for the
DireWolf framework.

The basic building block is a widget. Conceptually, a widget is a self-contained
mini-application with limited, however clean-cut functionality. Widgets are usu-
ally designed to accomplish small stand-alone tasks, which may recur in multiple
different applications. Furthermore, widgets are usually designed with limited
display size, such that multiple widgets fit on one desktop browser screen or
single widgets fit on limited-size mobile device screens. By design, widgets are
reusable for multiple purposes in different applications. As such, widgets strongly
resemble mobile applications. Technically speaking, existing widget standard
specifications define widgets as packaged Web applications including means of
configuration and access to dedicated widget application programming inter-
faces. Principally, any existing Web application can be “widgetized”. However,
the form factor of limited display size often requires an adapted design. In prac-
tice, widgets usually serve as minimal frontends to more complex Web services.
For our work, widgets perfectly serve as the functional units to be migrated
across devices.

Complex applications can be achieved by orchestrating multiple widgets in a
dashboard fashion in widget containers. Research towards the effective integra-
tion of widgets to complete collaborative Web applications resulted in additional
layers on top of widget containers that make use of the DireWolf framework, i.e.
widget spaces and inter-widget communication.

First, combinations of multiple widgets require a working context and techni-
cal support to manage such contexts. In our work, we employ the concept of a
widget space [4] as working context. A widget space is a collaboration context,
in which multiple users collaboratively manage and operate sets of widgets and
additional resources to create custom applications for different purposes. For this
work, we extended widget spaces by the additional notion of multiple devices
per user.

104 D. Kovachev et al.

Second, the integration of multiple widgets to complete applications requires
an interoperable communication mechanism between widgets, referred to as
Inter-widget Communication (IWC). With such a usually publish-subscribe-
based mechanism, messages can be broadcasted from any widget and possibly
dispatched by other widgets, thus allowing the orchestration [16] and tighter in-
tegration of multiple widgets to complete applications. Most existing approaches
only support local IWC, i.e. communication between widgets within one single
browser instance. An additional feature of our complete IWC approach includes
remote communication between widgets across different browser instances and
users [17]. For this work, we use both forms of IWC as carrier for message ex-
change between different parts of our DUI framework within and across devices.

Figure 2a depicts the initial setting from which this work departed. In the fol-
lowing section we elaborate on the extensions contributed by our DUI framework
in detail, thus leading to the situation in Figure 2b.

4 DireWolf Framework

Based on the state-of-the-art in widget-based Web applications discussed in the
previous section, we now introduce the DireWolf framework. First, we discuss
the particular requirements for such a framework, which are not yet covered by
existing widget-based Web application frameworks.

The DUI framework is involved in every layer of the widget-based Web appli-
cation. As shown in Figure 2b, components should be created for widgets, client
browsers, backend services as well as the data storage. Framework client com-
ponents are included in the widget application document rendered in the Web
browser. They manage communication and synchronization between widgets on
one device but also between widgets on other devices. The framework server
components extend the functionality of common widget spaces with services for
data persistence, user device profiles and shared application state.

The DUI framework provides management services for device profiles and
widgets when the user owns multiple devices. The inner workings of a widget
are out of concern of the DUI framework. A requirement is that a mobile device
needs to host some modern Web browser such as those found on most commodity

(a) Traditional (non-
distributed) approach

(b) DUI approach

Fig. 2. Widget-based Web applications

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 105

Fig. 3. Requirements to a dynamic widget-based DUI framework

smartphones and tablets. The use cases focus on creating, getter/setter and
operating on resources (widgets).

4.1 Requirements Analysis

As a first step, we performed a requirements analysis with the goal of improving
deficiencies found in existing work on DUIs (cf. Section 2), thereby taking into ac-
count the current state-of-the-art in widget-basedWeb applications (cf. Section 3).
Figure 3 provides a high-level overview of the main identified requirements for a
DUI framework, grouped into four interrelated categories: device information, de-
vice ownership, distribution & migration, application state and widget handling.

A DUI framework must enable the management of general and context-specific
device information. General information includes information on device connec-
tivity and profile. A device profile captures information on device type (e.g. smart-
phone, tablet, laptop) and capabilities (e.g. operating system, display size, in/
output modalities, browser type) required for device recognition and adaptation
purposes. Device connectivity describes the current availability of the device for
collaboration and should be updated in real time. Context-specific information in-
cludes device location, i.e. in which context the device is currently active and dis-
playedwidgets, i.e. whichwidgets are displayed on the device in the current context.

Furthermore, a DUI framework must dynamically capture and manage device
ownership. With the ever dropping prices of mobile devices, a person’s device
portfolio is likely to change often. Each user should thus be enabled to dynam-
ically manage a personal device list. Thereby, each device instance describes a
virtual device which can be bound to a real device. The introduction of virtual
devices provides additional flexibility, i.e. multiple configurations for a single
device and switching between real devices.

Obviously, a DUI framework must support distribution and migration of wid-
gets across devices within a given context. In its simplest form, migration is

106 D. Kovachev et al.

a synchronized procedure controlled by the framework, where a widget is first
removed from a source device and then created on a target device. However,
constellations of widget distributions must be persistent. Thus, a DUI frame-
work must be enabled to manage, store and synchronize application state within
a given working context. For simple migration, application state must include
information on the context and on widget locations, i.e. which widgets are cur-
rently residing on which device for which person. However, simple migration does
not guarantee a seamless working experience. Although general widget configu-
ration parameters are persistently managed by current standard widget engines,
a widget will lose its internal state during the migration procedure. For some
widgets this is not an issue (e.g. a clock widget), for some it is. Thus, a DUI
framework must support the management, storage and synchronization of inter-
nal widget state. With such measures, a DUI framework is enabled to support
continuous migration, i.e. a widget stores a snapshot of its internal state before
removal from a source device and restores internal state after its creation on the
target device.

4.2 Framework Design

Figure 4 depicts the key architecture features of the DireWolf framework. As
mentioned in Sec. 3, the DUI framework requires a real-time communication
mechanism to “glue” all distributed UI components into one cohesive application.
The Message Router server component provides bi-directional asynchronous
message exchange between the client components and the server.

DUI Client is a widget helper component to be included as a JavaScript library
in the widget namespace. DUI Client usage in widgets is optional (e.g. legacy
widgets). These widgets can still be distributed and migrated. However, the DUI
Client enhances DUI-related features for the widget and provides an API to
interpret and create framework messages and events. DUI Client has additional
methods to store widget state as part of application state at the server-side
service component. It sends requests, and server components send back responses
as well as broadcast notifications to all other Web clients if necessary.

DUI Manager is the central DUI component on the client browser. All fea-
tures/functionalities are directly or indirectly related to it. DUI Manager
connects to other components of the framework in three ways: request-response
communication, local and remote IWC. For example, DUI Manager uses requests-
response communication to retrieve user profile and space information from
server-side services. Local IWC is used for communicating with widgets run-
ning in the same browser context. Remote IWC provides the message-exchange
mechanism for widgets and DUI Managers located at different devices.

At start, the DUI manager fetches the user profile which contains the device
list and the device profiles. The connectivity of a user’s devices is monitored
constantly after the DUI manager is activated. The user can choose one vir-
tual device per real device. If a device is not listed, the framework attempts to
recognize it by using cookies, HTTP User-Agent headers and user input.

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 107

Fig. 4. Abstract architecture of the DUI framework

DUI Responder is the server-side central DUI component. All DUI relevant
requests are redirected to this component. The main tasks of DUI Responder
are to maintain DUI-relevant data and keep all DUI managers on client browsers
synchronized.

4.3 Widget Migration

By using a widget approach, the dynamic transition of UI components from
desktop to mobile devices is simpler. Widgets resemble mobile device screen
sizes by design. Rendering a widget on smartphone or a tablet only requires
adaptation of the widget containing element.

Considering the failover, since mobile devices can go offline unexpectedly, wid-
gets can become inactive. The DUI Responder considers a widget to be inactive
if it cannot find an active device displaying the widget. Different procedures are
provided to inactive widgets and active widgets. Figure 5 illustrates the case of
continuous migration. When a DUI Manager initiates a widget migration on any
device, the DUI Responder looks for the widgets on all devices of the requesting
user. If the widget is found to be inactive, the DUI Responder switches the wid-
get location from no device or an inactive device to the migration target device.
Then, it sends out a message to perform the migration procedure on all DUI
Managers.

During continuous migrations, widget state is saved right before migration.
The widget can retrieve state as a snapshot for continuing the task. DUI-
supported widgets can be either inactive or active. DUI Manager tries to restore
the state for inactive widgets and guarantees the continuity for active widgets.
For inactive widgets, the steps are the same as the non-continuous migration
of inactive widgets, except that DUI Manager sends the last saved state of the
widget.

For continuous migration of active widgets, DUI Manager asks the widget’s
DUI Client to collect the widget state for the incoming migration. On receiving

108 D. Kovachev et al.

the command for migration, DUI Manager on the source device informs the DUI
Client to prepare the widget removal. DUI Manager on the target device extracts
information from the command. DUI Client is then guided by DUI Manager to
run several steps to finish the migration.

widget
active

initiate migration

DUI
responder

DUI manager
the target

init migration

change
widget

location

DUI manager
the source

init migration

change widget
location

perform
migration perform

migration

DUI client DUI client

prepare
migration

states

is DUI widget

collect
state

set widget state

DUI migration
display widget

update meta-UI

connect to DUI

record
widget state

app. state
finish migration

finish migration

prepare removal

on removal

done

remove
widget
update
meta-UI

widget
active

initiate migration

init migration
init migis DUI widgetInitiate migration

Save widget state

Update widget state

Create/remove
widget

Change widget
location

Fig. 5. Sequence diagram for continuous migration of active widgets

5 Implementation

The implementation of the DireWolf framework builds upon the Open Source
Java-based ROLE SDK1 including a platform for hosting and managing Widget-
based Web applications as described in Section 3. As basic widget engine, the
ROLE platform employs the standard OpenSocial [18] container Apache
Shindig2. On top of Shindig, the platform implements a set of RESTful ser-
vices for user management and personal and collaborative widget space manage-
ment. It should be noted that the space concept is currently standardized in the
OpenSocial 3.0 specification. Consequently, it will be implemented in Shindig
and will possibly become part of other Shindig-based widget platforms such as
Apache Rave3. Furthermore, the platform supports secure authentication and

1 http://sourceforge.net/projects/role-project/
2 http://shindig.apache.org/
3 http://rave.apache.org

http://sourceforge.net/projects/role-project/
http://shindig.apache.org/
http://rave.apache.org

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 109

authorization by employing OpenID and OAuth. A real-time service realizes the
integration with a standard XMPP [19] server providing support for multi-user
chat conversations in widget spaces and publish-subscribe support for remote
IWC. Associations between modules are realized by injection. For our work we
strongly employ IWC, using HTML5 Web Messaging [20] for local IWC. An
additional feature of our complete IWC approach includes remote communica-
tion between widgets across different browser instances and users [17] using the
XMPP protocol [19] and its publish-subscribe extension [21]. We use both forms
of IWC as a carrier for message exchange between different parts of our DUI
framework within and across devices.

On client side, the platform provides an AJAX browser frontend based on
HTML/JavaScript/CSS and jQuery4. For client-side real-time support the ROLE
platform employs strophe.js5, a robust XMPP library for JavaScript including
support for XMPP over WebSocket [22] in modern browsers. Widget spaces are
used as context for IWC. In collaboration with user and space management ser-
vices, the platform real-time service manages one dedicated publish-subscribe
channel per space for IWC including whitelist-based access control. On client
side, every widget space is instrumented with a DUI Manager including an IWC
proxy, which routes outgoing IWC messages to the affiliated XMPP server via
the strophe-based XMPP connection and incoming messages to all widgets in the
space via HTML5 Web Messaging [20]. Widgets can be equipped with IWC sup-
port by simply importing a small IWC client library and implementing functions
for publishing and processing IWC messages. The DUI Client library extends the
plain IWC library by a set of functions related to storage and retrieval of internal
widget state.

Given that many technical prerequisites for DireWolf were already fulfilled by
the ROLE platform, we chose an integration approach. In its current version,
DireWolf is an extension of the existing ROLE platform and its components.
The DUI Responder is realized as an additional RESTful service for managing
device migration-specific data such as personal device lists, device profiles, and
user and space-related application states. Client side components such as DUI
Manager and DUI Client communicate application state and initiate widget mi-
gration by simple HTTP requests to the DUI Responder, which in turn controls
the synchronization process and initiates real-time synchronization necessary for
migration. All migration-related communication between individual components
(Message Router, DUI Manager, DUI Clients) is handled via ROLE IWC over a
separate publish-subscribe channel to avoid interference with regular developer-
defined IWC messages.

For convenient control of widget distribution and device registration DireWolf
provides a set of user interface components as frontend to the DUI Manager.
Figure 6 shows the main component integrated into the side panel of a wid-
get space’s view in the overall ROLE platform user interface . The upper Device
Manager button bar provides shortcuts to a device manager console for personal

4 http://jquery.com/
5 http://strophe.im/strophejs

http://jquery.com/
http://strophe.im/strophejs

110 D. Kovachev et al.

Fig. 6. DUI manager user interface in a widget space sidebar panel

device management including detailed configuration and debugging options. The
Current Device resp. Remote Devices sections list all widgets displayed on the
current device resp. remote devices along with device connectivity. In the exam-
ple in Figure 6, the current widget space contains six widgets, distributed to four
devices with different profiles (PC, iPad, iPhone and Mac). Only two devices are
currently active, indicated by the green circle next to the device name. Thus,
only five widgets are currently visible. One widget was previously migrated to
the user’s iPhone, which is currently disconnected, indicated by a grey marker.
By using drag and drop, widgets can be (re-)distributed between active devices.

6 Evaluation

The focus of our experiments was to research how distributing widget-based
user interfaces in Web applications across different personal user devices can
be achieved. In this section, we briefly present performance evaluation results
regarding widget migration.

The migration component of the DireWolf framework was tested on a wireless
local area network, simulating the home or office conditions. The ping latency
of the network (of 6ms) was considered negligible. Two setups were considered.
The first setup measured migration between two desktop machines (Mac OS,
Windows 7), using the Google Chrome browser (version 23). The second setup
measured migration between desktop machines and an iPad 1 with iOS 5.0, using
the Safari Web browser.

Tests were conducted with widgets with simple functionality, measuring the
time between two consecutive migrations across two devices. In order to avoid
noise induced by local time inconsistencies between devices, a reverse operation
was automatically executed after initial migration, and total round-trip time

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 111

was recorded. For consistency reasons, two kinds of migrations - simple migra-
tion (non-state-preserving) and continuous migration (state-preserving) - were
evaluated. Round trip times for 100 migrations (i.e. 50 rounds) were measured.

Overall, our prototype achieved good performance results. Average migration
time for simple migration was around 362.6 ms for a “hello world” widget with
a standard deviation of 48.9 ms. Continuous migration requires two more steps
than simple migration, i.e. storing widget state and rendering the widget with
the Apache Shindig rendering engine. Average time for continuous migration
between the MacBook and the desktop computer was 1305 ms, with a standard
deviation of 147.2 ms. The results show higher average migration time between
the MacBook and the iPad, i.e. an average time of 2069 ms and the standard de-
viation of 222.6 ms. This is due to the hardware differences and the time needed
to load all the dependencies. By decomposing the time necessary for the migra-
tion and observing the interval needed by each component of our framework, the
results show that the initiation and the widget rendering process take more time
than the migration itself. The Shindig server’s Javascript library loading and
the widget rendering steps require approximatively 69% of the time. In contrast,
the loading time needed by the DUI components is less than 25% of the overall
time.

The presented evaluation is limited to technical properties of the widget mi-
gration feature. However, we conducted an extensive user study for assessing
the usability of the DireWolf framework, which due to space limitations could
not be discussed in this paper. In addition, DireWolf is currently being tested
on a bigger range of devices. Even though DireWolf has been derived from the
existing ROLE Widget SDK, as described in Section 5, it is not yet included into
an existing official SDK release. Encouraged by the small overhead and latency
that the framework introduces, the next step is to integrate DireWolf into the
future versions of the SDK.

7 Conclusions and Future Work

In this paper, we try to leverage the lack of dynamic interactive environments
based on Web technologies which can take advantage of the various personal
devices used by an individual. We provide a framework that can facilitate user
interactions on a federation of personal computing devices, by making use of dis-
tributed user interfaces. Furthermore, we believe that a widget-based approach to
encapsulate UIs and application functionalities benefits Web developer commu-
nities already familiar with this programming model. Apache Rave and Shindig
are examples of such open-source communities. Since widgets can be grouped,
shared, reused and personalized, our approach ensures unique user experiences
with DUI applications. Our framework also provides features for distributing
and migrating widgets, at the same time hiding the complexity of device aware-
ness, communication and session mobility. As initial evaluation indicates, the
framework adds only small overhead to the overall widget rendering process.

The framework we present here paves the way for many interesting experi-
ments. We are already testing complex interaction modalities within the semantic

112 D. Kovachev et al.

video annotation application illustrated in Figure 1. Furthermore, we envision
our framework in the domains of technology-enhanced learning and interactive
smart television. We also consider using the emerging WebRTC project6 for
real-time browser-to-browser communication without a server intermediate. As
a next step beyond the personal multi-device distributed computing environ-
ment, we will extend DireWolf to support multi-device multi-user collaboration.
Further research must address security and privacy issues in message exchange
across devices and users. We are committed to open source development and we
aim to integrate the IWC and DireWolf within an open source project, such as
Apache Rave. We plan to provide tutorials, Web casts and code snippets with
intention to form a sustainable developer community around our solution.

Acknowledgements. The research leading to these results has received funding
from the European Commission’s Seventh Framework Programme (FP7/2007-
2013) under grant agreements no 231396 - Responsive Open Learning
Environments (ROLE) project and no 318209 - Learning Layers: Scaling up
Technologies for Informal Learning in SME Clusters and the Excellence Initia-
tive of German National Science Foundation (DFG) within the research cluster
Ultra High-Speed Mobile Information and Communication (UMIC). We thank
Ke Li for his framework implementation.

References

1. Lòpez-Espin, J.J., Gallud, J.A., Lazcorreta, E., Peñalver, A., Botella, F.: A For-
mal View of Distributed User Interfaces. In: Distributed User Interfaces CHI 2011
Workshop, University of Castilla-La Mancha, Spain, pp. 97–100 (2011)

2. Vandervelpen, C., Vanderhulst, G., Luyten, K., Coninx, K.: Light-Weight Dis-
tributed Web Interfaces: Preparing the Web for Heterogeneous Environments. In:
Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 197–202. Springer,
Heidelberg (2005)

3. Blumendorf, M., Roscher, D., Albayrak, S.: Distributed User Interfaces for Smart
Environments: Characteristics and Challenges. In: Distributed User Interfaces CHI
2011 Workshop, University of Castilla-La Mancha, Spain, pp. 25–28 (2011)

4. Bogdanov, E., Salzmann, C., Gillet, D.: Contextual Spaces with Functional Skins
as OpenSocial Extension. In: The Fourth International Conference on Advances in
Computer-Human Interactions, ACHI 2011, pp. 158–163 (2011)

5. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: Distributed
Orchestration of User Interfaces. Information Systems 37(6), 539–556 (2012)

6. Ghiani, G., Paternò, F., Santoro, C.: On-demand Cross-Device Interface Com-
ponents Migration. In: Proceedings of the 12th International Conference on Hu-
man Computer Interaction with Mobile Devices and Services (MobileHCI 2010),
pp. 299–308. ACM Press (2010)

7. Baillie, L., Schatz, R., Simon, R., Anegg, H., Wegscheider, F., Niklfeld, G., Gassner,
A.: Designing Mona: User Interactions with Multimodal Mobile Applications. In:
Proceedings of 11th International Conference on Human-Computer Interaction
(HCI International), pp. 22–27. Lawrence Erlbaum Associates (2005)

6 http://www.webrtc.org/

http://www.webrtc.org/

DireWolf - Distributing User Interfaces for Widget-Based Web Applications 113

8. Luyten, K., Coninx, K.: Distributed User Interface Elements to support Smart
Interaction Spaces. In: Proceedings of the Seventh IEEE International Symposium
on Multimedia, ISM 2005, pp. 277–286. IEEE Computer Society (2005)

9. Chu, H.H., Song, H., Wong, C., Kurakake, S., Katagiri, M.: Roam, a Seamless
Application Framework. Journal of Systems and Software 69(3), 209–226 (2004)

10. Alapetite, A.: Dynamic 2D-barcodes for Multi-Device Web Session Migration In-
cluding Mobile Phones. Personal Ubiquitous Computing 14(1), 45–52 (2010)

11. Paternò, F., Santoro, C., Scorcia, A.: User Interface Migration Between Mobile
Devices and Digital TV. In: Forbrig, P., Paternò, F. (eds.) HCSE/TAMODIA 2008.
LNCS, vol. 5247, pp. 287–292. Springer, Heidelberg (2008)

12. Myers, B.A.: Using Handhelds and PCs Together. Communications of the
ACM 44(11), 34–41 (2001)

13. Melchior, J., Grolaux, D., Vanderdonckt, J., van Roy, P.: A Toolkit for Peer-to-
peer Distributed User Interfaces: Concepts, Implementation, and Applications. In:
Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, pp. 69–78. ACM Press (2009)

14. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Chang, H., Li, Y.: MarcoFlow:
Modeling, Deploying, and Running Distributed User Interface Orchestrations. In:
Proceedings of the 8th International Conference on Business Process Management
Demo Track, pp. 23–27. Springer (2010)

15. Pierce, J.S., Nichols, J.: An Infrastructure for Extending Applications’ User Expe-
riences Across Multiple Personal Devices. In: Proceedings of the 21st Annual ACM
Symposium on User Interface Software and Technology (UIST 2008), pp. 101–110.
ACM Press (2008)

16. Zuzak, I., Ivankovic, M., Budiselic, I.: A Classification Framework for Web Browser
Cross-Context Communication. CoRR abs/1108.4770 (2011)

17. Govaerts, S., Verbert, K., Dahrendorf, D., Ullrich, C., Schmidt, M., Werkle, M.,
Chatterjee, A., Nussbaumer, A., Renzel, D., Scheffel, M., Friedrich, M., Santos,
J.L., Duval, E., Law, E.L.-C.: Towards responsive open learning environments:
the ROLE interoperability framework. In: Kloos, C.D., Gillet, D., Crespo Garćıa,
R.M., Wild, F., Wolpers, M. (eds.) EC-TEL 2011. LNCS, vol. 6964, pp. 125–138.
Springer, Heidelberg (2011)

18. OpenSocial and Gadgets Specification Group: OpenSocial Specification 2.5.0,
http://opensocial-resources.googlecode.com/svn/spec/2.5/

(Online: last accessed March 2013)
19. Saint-Andre, P.: RFC 6121: Extensible Messaging and Presence Protocol (XMPP):

Instant Messaging and Presence. Technical report, XMPP Standards Foundation
(2011)

20. Hickson, I.: HTML5 Web Messaging. Working draft, W3C (2011)
21. Millard, P., Saint-Andre, P., Meijer, R.: XEP-0060: Publish-Subscribe Version 1.13,

Draft. Technical report, XMPP Standards Foundation (2010)
22. Hickson, I.: The WebSocket API. Editor’s draft, W3C (2013)

http://opensocial-resources.googlecode.com/svn/spec/2.5/

Awareness and Control for Inter-Widget

Communication: Challenges and Solutions

Olexiy Chudnovskyy1, Stefan Pietschmann2, Matthias Niederhausen3,
Vadim Chepegin5, David Griffiths4, and Martin Gaedke1

1 Chemnitz University of Technology, Germany
{olexiy.chudnovskyy,gaedke}@informatik.tu-chemnitz.de

2 Technische Universität Dresden, Germany
stefan.pietschmann@tu-dresden.de

3 T-Systems Multimedia Solutions GmbH, Germany
matthias.niederhausen@t-systems-mms.com

4 University of Bolton, UK
d.e.griffiths@bolton.ac.uk

5 TIE Nederland B.V., the Netherlands
vadim.chepegin@tiekinetix.com

Abstract. Recently, widget-based Web applications, i. e., mashups have
gained momentum, as they make it possible to address the “long tail” of
software needs. By enabling data and control flow among widgets – inter-
widget communication (IWC) – integration of data and functionality can
be defined by the end users themselves. However, IWC entails several
problems that may reduce the overall user confidence in a system. Based
on the results of user studies on the OMELETTE mashup platform,
this paper analyzes the problem space and evaluates possible solutions
to improve user perception of IWC. Further, a discussion of promising
techniques is offered and pending challenges are identified.

Keywords: mashup, widget, inter-widget communication.

1 Introduction

The vision of users who drag-and-drop and combine applications from any loca-
tion on the Web, local drive, or cloud storage, in their own workspaces has never
been so close to becoming a reality. The modern Web offers powerful mashup
platforms which enable end users to create their own situational applications on
the fly without the intervention of developers. Research on such User Interface
Mashups (UI Mashups) has made significant progress towards this vision. One of
the most important concepts in this field is that of widgets – interactive compo-
nents which provide the end user with access to data, services, and application
logic. A number of initiatives have been proposed, addressing the emerging need
for simple, flexible, and powerful composition environments, e.g. [8,12].

Their main goal is to enable end users to aggregate data and functionality
from various sources on one screen or workspace. One of the key features of

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 114–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

matthias.niederhausen@t-systems-mms.com
d.e.griffiths@bolton.ac.uk
vadim.chepegin@tiekinetix.com

Awareness and Control for IWC 115

these platforms, inter-widget communication (IWC), allows widgets to exchange
events and data. Depending on the communication paradigm, solutions differ in
their degree of automation (manual effort may be required to establish connec-
tions), end user suitability (usability and complexity of IWC configuration vary)
and generality of the approach (e. g., compatibility between widgets of different
vendors is not guaranteed).

The success of IWC-aware platforms is highly dependent on the degree to
which they support the above characteristics. Although all of them are significant
and desirable from the end users’ point of view, in practice it is hard to optimize
all three simultaneously. Moreover, recent research on domain specific mashups
shows that, to some extent, generality contradicts end user suitability [4].

TheOMELETTE project [2] has been working on finding an appropriate trade-
off between the first two aspects, namely automation and end user suitability. The
results of this work were incorporated into a mashup environment with IWC im-
plemented bymeans of a publish-subscribemessaging pattern (pub/sub). A recent
user study [13] conducted with 44 participants in Germany and China revealed a
number of issues, some of which are the result of the underlying mashup approach.
The goal of this paper is to elaborate on these findings by presenting a survey of
approaches in which similar problems have been tackled and discussing the most
promising techniques in the context of mashup platforms.

2 Towards End-User Friendly IWC: Existing Challenges

In contrast to other approaches, in which mashup developers have to deal with
abstract control flow and data flow models, in OMELETTE there is no differ-
ence from a user perspective between design and execution. Mashup composition
takes place at run-time and its results are immediately evident to users. A dis-
tinct feature of OMELETTE is that users are not required to establish explicit
connections between widgets. Communication, i. e., data flow emerges as soon as
widgets are placed together within a workspace. This is achieved by means of the
messaging bus: widgets subscribe and publish messages on different communica-
tion channels, known as topics. The decision to apply pub/sub was motivated by
recent findings, which highlighted the importance of working “out-of-the-box”
[5] and the usability issues of wiring approaches for end users [10].

Thus theOMELETTE solution implies that the complex issues of composition
and wiring widgets are best left to skilled developers of widgets. This, however,
implies a lack of awareness and control by end users – an implication which was
confirmed in the interviews and observations during the user studies. Thus, the
focus of this paper is on challenges and problems from an end user perspective.

2.1 Problem Space: Awareness

The first problem space comprises the challenges that users face when interacting
with a pre-defined workspace. It may be split into the following sub-categories:

Cold Start Problem. Upon opening a workspace, end users do not know which
of the widgets are actually inter-connected. Users have to learn the data and

116 O. Chudnovskyy et.al.

control flows as they use a mashup and explore it. While in general this may
merely frustrate users, such “exploratory” interaction can also affect live data,
causing undesired side effects.

IWC Transitivity. Similarly, it is very hard for users to distinguish direct and
transitive connections between widgets. The latter occur when one widget trig-
gers action in another, which in turn triggers a third widget. While this behavior
may be intended, it can negatively affect users in their understanding of the re-
sulting functionality: First, users may see relationships when there are none,
and misinterpret their findings. Second, widget reuse and workspace refactoring
will result in unpredictable behavior, e. g., the loss of functionality whenever the
“linking” widget is missing.

Data Ignorance. Users typically do not see the data being transferred between
widgets. Instead, they only perceive the effects of their transfer, i. e., that a re-
ceiving widget is updated with new data. While one can argue that providing this
information may overburden users, data ignorance still leads to three problems:
users can only guess which widgets are compatible and work together; mistaken
expectations of the data transferred lead to misinterpretations of the applica-
tion behavior; possibly untrusted widgets might receive sensitive data without
the user’s consent.

2.2 Problem Space: Control

The second set of problems stems from the need of users to modify how
a mashup works. IWC connections established implicitly, i. e., based on the
pub/sub paradigm, greatly simplify the start of work with a mashup but also
lead to a loss of control.

Lack of Extensibility. Users cannot explicitly establish new connections between
widgets. Due to the potentially large number of widgets developed by indepen-
dent parties, it is both impossible to foresee all valid widget combinations and
impractical to try and guarantee their interoperability. Thus, users will often
want previously unconnected widgets to work together and to establish a link
between them manually.

Rigidity. In pre-configured workspaces, it may be necessary to change the con-
trol or data flow, i. e., the way widgets are connected by default. This can be
supported in its full complexity, as with wiring tools, or by offering more subtle
actions, such as allowing users to isolate widgets as senders or receivers of data.
There are many possible reasons for this, e. g., because a widget is untrusted,
does not work as expected, or simply because it should hold an intermediary
result to be saved for later.

Clunkiness. Establishing a temporary data flow can be desirable and more con-
venient than setting up a permanent connection. The studies revealed that many
end users intuitively work with the data in the widgets by trying to drag-and-
drop from source to receiver. This user-triggered temporary data flow is usually

Awareness and Control for IWC 117

not foreseen by IWC mechanisms – be they wiring or pub/sub approaches – and
platforms.

Addressing these challenges is crucial in order to boost end user acceptance
and to promote the use of widget mashups in business environments. The next
section will evaluate possible solutions.

3 Analysis of Existing Approaches

The following survey presents state-of-the-art techniques from the End User
Development domain (EUD) in the context of the above problem spaces. The
approaches are compared based on the degree of technical skill required by end
users to employ them in mashups.

3.1 Solutions for Problem Space: Awareness

Self-Descriptive Design (SDD). Systems employing SDD mechanisms try to
make users aware of functional dependencies between widgets at the applica-
tion layer by the means of annotations or visual markup. Whenever users are
confronted with new (e.g., shared) mashups, looking at individual widgets very
often does not provide the “big picture”, i. e., the overall functionality. SDD-
based approaches address this problem by making mashups as self-explanatory
as possible. Therefore, they provide annotation tools to be used in the phase of
mashup creation. In [3], the authors suggest to make internal knowledge explicit
by usage of implicit, explicit and literate annotations.

Additive Views (AV). One of the common practices for increasing user awareness
in software systems is to provide various views on the application. Using suitable
metaphors, these views enable users to explore the internal characteristics of the
application, i.e., structure, components, data and control flows. Additive views
are usually implemented either in an integrated or in a separated fashion. Inte-
grated views try to avoid the “break” between usage and programming modes. In
the EDYRA mashup environment [12], a running mashup can be augmented by
dedicated overlays. Users are also able to highlight direct and transitive connec-
tions between components, raising the overall awareness of IWC in the mashup.

Surprise-Explain-Reward Strategy (SER). A surprise-explain-reward strategy
aims at communicating non-obvious behavior of a system to end users and letting
them engage in further exploration activities [14]. Information about inscrutable
activities appears in ways that grab users’ attention (surprise) and entice them
to learn more about the causes. An appropriate help system supports the learning
process and opens new perspectives on the possibilitites of the system (explain).
Having applied the newly learned technique, users benefit from advanced plat-
form capabilities (reward). In the Forms/3 project [1], this idea has been applied
to ensure data integrity in end-user-created spreadsheets.

Question Asking Strategy (QA). This strategy is applied to find the causes of
unexpected or non-obvious application behavior. Based on explicit knowledge

118 O. Chudnovskyy et.al.

about the structure of an application, the system is able to provide answers
to specific types of user inquires. A dialog often takes place in natural language
and does not require the user to learn any programming formalisms or debugging
techniques. The WhyLine tool [6] applies this technique to enable unskilled devel-
opers to test their algorithms. Using menus and pictograms of objects involved,
users can construct “why did” and “why did not” questions in order to explore
the system’s behavior. A user study showed that developers were more efficient
with this system than with traditional debugging tools. The HANDS project [9]
conducted several user studies in order to understand how people without pro-
gramming skills think of and express software design. After implementing their
findings using natural language in question building and answering, the authors
claimed that even ten-year-olds were able to create meaningful programs.

3.2 Solutions for Problem Space: Control

Parametrization (PAR). Along with interface customization, parametrization is
one of the simplest and most common forms of EUD. It assumes that software is
designed in a way that enables modification of its behavior by changing the values
of a pre-defined set of parameters, e.g. the location of a news feed. Netvibes and
iGoogle successfully employ the mechanism in widget-based dashboards. The
way in which the parametrization view is exposed differs: it can be offered by
widget developers or by the composition platform. The latter is done by portals
based on explicit parameter declarations in widget descriptors. Netvibes and
iGoogle support both parametrization modes.

Programming by Demonstration (PBD). This is a well-proven technique that
enables end users to specify desired functionality by providing examples of its
behavior [7]. Based on demonstrated activities and data samples, a PBD system
tries to generalize user actions and to derive an algorithm. One of the open
challenges facing PBD systems is how to represent the captured algorithm and to
facilitate its future adaptation by end users. The CRUISe project [11] proposes
an extension to the interface between widgets and mashup platform. Widget
authors can notify the platform of user interactions, e. g., when users drag data
beyond a widget’s perimeters. The platform monitors further user interactions,
e. g., the data being dropped onto other widgets. This way, users can implement
ad hoc data exchange and also establish permanent connections.

Programming by Specification (PBS). This comprises EUD approaches that en-
able users to create mashups by defining the data/control flow themselves. This
process of EUD is predominantly based on visual programming languages involv-
ing metaphors such as “Lego” constructors or electrical circuits. Similar tech-
niques are used in the majority of mashup platforms, such as Yahoo Pipes1 or
JackBe Presto2. In [4], the authors propose sacrificing the generality of mashup
tools in favor of simplicity and comprehensiveness of the system by applying

1 http://pipes.yahoo.com
2 http://mdc.jackbe.com/products/mashboard.php

http://pipes.yahoo.com
http://mdc.jackbe.com/products/mashboard.php

Awareness and Control for IWC 119

domain-specific composition tools. A user study of the ResEval platform has
confirmed this assumption, showing that end users understand the composition
paradigm and can master the development of mashups if they are focused on
single domains and unburdened from data transformation issues.

4 Comparison of Approaches and Drawn Guidelines

Table 1 presents a comparison of the previously discussed techniques based on
the expert evaluation.

Table 1. Applicability of EUD techniques to the widget mashup domain

Criteria/Approach SDD AV SER QA PAR PBD PBS

Cold Start Problem ◦◦ • – •• – – –
IWC Transitivity ◦◦ • •• •• – – –
Data Ignorance ◦◦ ◦◦ •• •• – – –
Rigidity – – – – •• ◦ •
Clunkiness – – – – – •• •
Lack of Extensibility – – – – – •• •
•• – applicable without deep understanding of data types and control flows,
• – applicable with basic knowledge on data types and control flows,
◦◦ – limited applicability without deep understanding of data types and control flows,
◦ – limited applicability with basic knowledge on data types and control flows,
— – not applicable

The Surprise-Explain-Reward strategy differs from the Question-Asking ap-
proach in that users are notified about internal mashup activities right before
or right after they happened. This implies that the cold start problem is not ad-
dressed appropriately, i. e., users are unable to explore connections or exchanged
data before the real communication takes place. This disadvantage can be crucial
for cost- or load-causing widgets. The approach requires the platform to include
appropriate notification mechanisms and an explicit declaration of the mashup
structure including widget capabilities and IWC configuration.

Additive Views can address all of the awareness-related problems by enabling
end users to explore the internals of a mashup at any time. The main challenge
here is to find a compromise between complexity and usability, i. e., to identify
suitable abstractions and to adjust the view according to user skills. Recent
research proposes to implement overlay views to lower the cognitive load while
working with alternative mashup representations [12]. Some familiarity with the
“wiring” concept is required to understand connections. To facilitate AV, the
platform needs to access mashup configuration and widget interface descriptions.

The applicability of Self-descriptive Design is constrained as it is hard to de-
sign descriptive graphics for a mashup if the screen size is not fixed. Accordingly,
the layout of mashups is not completely consistent between platforms, and it is
not possible to predict the degree to which users can change the position of wid-
gets. The adoption of this approach implies (a) that the container makes design

120 O. Chudnovskyy et.al.

tools available to the author, (b) that the design of the container needs to be
considered at the same time as the design of mashup functionality, and (c) that
this work will need to be repeated whenever the mashup is deployed in a new
container.

Within the Control problem space, Parametrization is the most promising
approach with a focus on end users. Although it does not cover the lack of
extensibility and clunkiness of a mashup, the rigidity of composition can be in-
fluenced if the IWC capabilities of a component are configurable. This, however,
goes at the expense of simplicity for the user. To lower the learning curve, all
configuration options should be exposed in a uniform manner, e.g., by avoiding
all widget-internal configuration dialogs.

Programming by Demonstration addresses the lack of extensibility and clunk-
iness problems and enables the definition of new communication paths in an
end-user-friendly way. Drag-and-drop has been successfully applied in many in-
stances and is well understood by end users. Also, observation of user interaction
with a mashup can be utilized to derive new connections between widgets. In
the context of the rigidity problem, PBD poses new challenges, such as end-user-
friendly representations of generalized algorithms and appropriate modification
facilities. Additionally, user interactions with widgets have to be made explicit,
e. g., by notifying the observation engine about starting drag’n’drop operations.

Programming by Specification strives to enable end users to design and mod-
ify existing software artifacts. However, in targeting all three problems from the
Control problem space, it assumes that users are able to write behavior specifica-
tions and are familiar with basic programming concepts. Projects which utilized
this technique have achieved varying degrees of usability. Environments based
on natural languages and domain specific vocabularies were more efficient and
comprehensive for end users than general purpose composition tools. To apply
PBS efficiently, supportive EUD techniques such as instant feedback, decision
support and integrity checks should be incorporated into the system.

Based on the above analysis, the following suggestions are made regarding the
combination of techniques to address the identified problems:

Cold Start Problem. Provide overlay views on the widget composition, visual-
izing possible communication paths (AV). These views can be layered (one layer
per widget) to use the screen estate efficiently. A help system can also be pro-
vided, enabling the user to explore the composition through questions in natural
language (QA).

IWC Transitivity. In the overlay view, enable users to discern the direction
of communication paths. During data transfer between widgets, visualize active
communication paths and enable their exploration and configuration (SER).
Empower the help system to answer questions in natural language regarding
directions of IWC paths (QA).

Data Ignorance. Enable users to explore possible data flows within the IWC
overlay view (AV). During active communication, notify users about ongoing
data exchange and enable exploration or modification of this communication

Awareness and Control for IWC 121

path (SER). Extend the help system to answer questions regarding data being
transferred between widgets (QA).

Lack of Extensibility. Use observation of user-widget interactions to derive
new possible connections between widgets (PBD).

Rigidity. Provide enable/disable parametrization of communication paths and
the possibility of isolating widgets from IWC (PAR).

Clunkiness. Provide a drag-and-drop infrastructure to enable one-time com-
munication between widgets (PBD).

5 Conclusions

This paper demonstrates that end-user friendly IWC is needed, but is also diffi-
cult to achieve. To tackle this problem, the typical challenges for IWC solutions
were derived from user studies conducted within the OMELETTE project and
literature review. Based on the findings, the next steps will be to implement
the chosen IWC mechanisms using as a basis the open source OMELETTE
platform and to evaluate the new features with end users.

Acknowledgment. This work was supported by the European Commission
(project OMELETTE, contract 257635).

References

1. Burnett, M., Atwood, J., Walpole Djang, R., Reichwein, J., Gottfried, H., Yang, S.:
Forms/3: A first-order visual language to explore the boundaries of the spreadsheet
paradigm. Journal of Functional Programming 11(2), 155–206 (2001)

2. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Ignacio, J.: End-User- Ori-
ented Telco Mashups: The OMELETTE Approach. In: WWW 2012 Companion,
pp. 235–238 (2012)

3. Dinmore, M.: Documenting problem-solving knowledge: Proposed annotation de-
sign guidelines and their application to spreadsheet tools. In: Proceedings of Eu-
SpRIG 2009, pp. 57–68 (2009)

4. Imran, M., Soi, S., Kling, F., Daniel, F., Casati, F., Marchese, M.: On the sys-
tematic development of domain-specific mashup tools for end users. In: Brambilla,
M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 291–298.
Springer, Heidelberg (2012)

5. Isaksson, E., Palmer, M.: Usability and inter-widget communication in PLEs. In:
Proceedings of MUPPLE 2010 (2010)

6. Ko, A., Myers, B.: Designing the whyline: a debugging interface for asking questions
about program behavior. In: Proceedings of CHI 2004, vol. 6, pp. 151–158 (2004)

7. Lieberman, H.: Your Wish is My Command: Programming By Example (Interac-
tive Technologies). Morgan Kaufmann (2001)

8. Lizcano, D., Soriano, J., Reyes, M., Hierro, J.J.: A user-centric approach for de-
veloping and deploying service front-ends in the future internet of services. In-
ternational Journal of Web and Grid Services 5, 155–191 (2009)

9. Myers, B., Pane, J., Ko, A.: Natural Programming Languages and Environments.
Communications of the ACM 47(9), 47–52 (2004)

122 O. Chudnovskyy et.al.

10. Namoun, A., Nestler, T., De Angeli, A.: Service Composition for Nonprogrammers:
Prospects, Problems, and Design Recommendations. In: Proceedings of ECOWS
2010, pp. 123–130. IEEE (December 2010)

11. Pietschmann, S., Voigt, M., Meißner, K.: Rich communication patterns for
mashups. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS,
vol. 7387, pp. 315–322. Springer, Heidelberg (2012)

12. Rümpel, A., Radeck, C., Blichmann, G., Lorz, A., Meißner, K.: Towards do-
ityourself development of composite web applications. In: Proceedings of ITS 2011,
pp. 330–332 (2011)

13. The OMELETTE Project (FP7/2010-2013 GA n 257635). D7.4 - evaluations of
demonstrators report. Public deliverable (2013), http://goo.gl/o0JFG

14. Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C.,
Durham, M., Rothermel, G.: Harnessing curiosity to increase correctness in end-
user programming. In: Proceedings of CHI 2003, pp. 305–312 (2003)

http://goo.gl/o0JFG

Heuristic Role Detection
of Visual Elements of Web Pages

M. Elgin Akpınar1 and Yeliz Yeşilada2

1 Middle East Technical University, Ankara, Turkey
2 Middle East Technical University Northern Cyprus Campus,

Kalkanlı, Güzelyurt, Mersin 10, Turkey
{elgin.akpinar,yyeliz}@metu.edu.tr

Abstract. Web pages are typically designed for visual interaction – they include
many visual elements to guide the reader. However, when they are accessed in
alternative forms such as in audio, these elements are not available and therefore
they become inaccessible. This paper presents our ontology-based heuristic ap-
proach that automatically identifies visual elements of web pages and their roles.
Our architecture has three major components: 1. automatic identification of vi-
sual elements of web pages, 2. automatic generation of heuristics as Jess rules
from an ontology and 3. application of these heuristic rules to web pages for au-
tomatic annotation of visual elements and their roles. This paper first explains
our architecture in detail and then presents our both technical and user evalua-
tions of the proposed approach and architecture. Our technical evaluation shows
that complexity is an important performance factor in role detection and our user
evaluation shows that our proposed system has around 80% receptive accuracy,
but the proposed knowledge base could be further improved for better accuracy.

Keywords: Web Accessibility, Knowledge Engineering, Ontology, Heuristics,
Rule Engine, User Study.

1 Introduction

Web pages are typically designed for visual interaction, including many visual elements
to guide the reader. As web technologies develop, they enable developers to create more
unique and technically sophisticated web pages. However, far too little attention has
been paid to accessibility issues. When pages are accessed in alternative forms such as
in audio with assistive technologies, these visual elements are not available and there-
fore web pages become inaccessible.

In order to provide better accessibility, having deep understanding of the structure of
web pages along with the role of visual elements is important. Once we identify the role
of visual elements, these roles can be used to transcode the page by removing unnec-
essary elements or reorganise the page structure to improve the accessibility not only
for disabled people but also for small screen device users. Furthermore, such under-
standing could also be used in improving the accuracy of information retrieval and data
mining [1], better presenting pages for small screen devices [2, 3], or designing better
intelligent user interfaces [4]. However, due to the flexible syntax of HTML and CSS,

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 123–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

124 M.E. Akpınar and Y. Yeşilada

developers can create the same visual layout with different underlying coding, which
means automating the role identification can be a challenging task [5]. There exist stud-
ies that propose a range of roles for visual elements, but the approaches tend to be
simplistic and there is no work that provides a deep understanding of visual elements
(Section 2). Some standards such as ARIA from W3C [6], and HTML5 do provide
much stronger and better list of roles, but they still do not cover deep understanding of
the visual elements of web pages.

This paper presents our ontology-based heuristic approach that automatically iden-
tifies visual elements of web pages and their roles (Section 3). It proposes an ontology
that captures detailed knowledge about visual elements and presents an architecture
with three main components. First of all, visual elements are automatically identified
by using both the visual rendering and the underlying source code and a visual elements
tree is generated. Then, heuristics are generated as rules from our ontology. Due to the
flexible nature of HTML and CSS, we cannot fully and absolutely describe objects and
their definite properties and do direct reasoning with the ontology over the visual el-
ements. To address this problem, a probabilistic approach was constructed, in which,
a visual element may accomplish all of the requirements of a heuristic role, or it may
satisfy a set of properties of the role. The more attributes of a role a visual element
satisfies, the more likely that the visual element has the corresponding role. Therefore,
the proposed ontology describes the roles and their properties, which is then converted
to rules. Finally, these heuristic-based rules are applied to visual elements for auto-
matic annotation of their roles, generating a visual element tree with role assignments.
Technical and user evaluations are also produced to validate the proposed approach and
architecture (Section 4).

2 Related Work

There are different approaches for automatically identifying visual elements (some
refers to them as segments or blocks) and discovering their roles [5] in different fields
to serve different purpose.

Role identification has been proposed to better adapt web pages for small screen de-
vices [2, 3, 7, 8]. Proposed roles tend to be simple lists which include roles such as lists
content, related links, navigation and support, advertisement, etc. As opposed to these
simple lists, Chen et al. [9] introduce a very comprehensive model called Function-
Based Object model which hierarchically categorises objects as basic and composite
objects. Even though the proposed model is very comprehensive, it does not take into
account how an end-user would understand and use a web page.

Creating intelligent user interfaces also require good understanding of web page
structures, meaning that it can more intelligently displayed on different devices and
systems. Xiang and Shi [4] only proposes two kinds of visual elements: nontext blocks
(buttons, images, inputs, etc) and text blocks. This simplistic approach does not provide
a deep understanding of web page elements.

Role detection has also been explored for information retrieval and web data min-
ing [1, 10–13]. Proposed roles include informative and redundant content blocks, head-
ing, subtitle, paragraph, data, etc. Web accessibility is another field where role identifi-
cation has been explored. Takagi et al. [14] proposes the following roles for

Heuristic Role Detection of Visual Elements of Web Pages 125

Fig. 1. The Home Page of ACTF

fragments: proper content, updated index, general index, norole, header, footer, adver-
tisement, delete, layout table. Even though this looks like a comprehensive list, there
still some roles that are missing. These roles also give the impression they were created
to only guide the transcoding rather than semantically describing a web page.

In brief, discovering roles of visual elements of web pages is an important task in
many fields. Even though, different research refers to different roles of visual elements,
unfortunately, existing research typically focus on a small set of roles and there is no
work that provides a deep understanding of visual elements.

3 Ontology Based Heuristic Role Detection

Our work aims to address the shortcomings and limitations of the existing work and
provide a knowledge base that includes detailed information about visual elements of
web pages and their properties. In our previous work, an ontology was created called
”WAfA (Web Authoring for Accessibility)” [15] to capture knowledge about visual
elements which has been mainly used to annotate web pages manually [16] such that
it can be used to re-engineer web pages for better accessibility for visually disabled
people [17, 18]. However, there has been no work on automatically processing a web
page to identify the roles specified in WAfA Ontology. The overall architecture of our
proposed system to automate the process has the following components:

1. Visual element identifier takes a web page and uses its visual presentation and
source code to automatically divide it into visual elements in a tree structure.

2. Rule generator component takes our knowledge base, implemented in an OWL
ontology and generates heuristic rules for visual elements.

3. Role detector component takes rules and tree of visual elements, generated by our
first component and returns a labeled tree of visual elements.

Our system has been implemented on the Accessibility Tools Framework (ACTF) of
Eclipse Foundation1.

1 http://www.eclipse.org/actf/

http://www.eclipse.org/actf/

126 M.E. Akpınar and Y. Yeşilada

3.1 Visual Element Identifier

In order to discover the roles of visual elements in a web page, we need to first divide
a given web page into meaningful blocks to represent visual elements. There are many
web page segmentation algorithms created for different purposes [5, 19–21]. In order
to automatically segment a page, we have used and extended the Vision Based Page
Segmentation Algorithm (VIPS) [5]. Compared to other approaches, VIPS uses both the
underlying source code and visual cues which include font, size, color and tag attributes
of the nodes. The segmentation task is processed in three main steps which are: visual
block extraction, visual block separation and content structure construction [5]. We have
implemented our extended VIPS algorithm on the ACTF platform. Once a web page is
processed by our VIPS implementation, it produces a visual block tree (Figure 1 part b
- “block structure”). The page is first divided into large blocks and then these blocks are
further divided into a smaller blocks. In our implementation, the visual element identifier
generates a tree visual elements and for each visual element an XPATH is also created.

3.2 Rule Generator

WAfA Ontology was created to capture shared understanding of visual elements of
web pages [15]. Even though, WAfA is a very rich knowledge resource, our initial
experiments with WAfA showed that, the characteristics of the concepts described in
WAfA are too specific; therefore, automating the process based on such definitions
may have resulted in false positive role assignments. Therefore, WAfA Ontology was
selected as the base ontology and a new ontology, named as eMine Ontology 2, has been
developed to be used for automated role detection.

Knowledge Representation. In order to systematically characterise the roles of vi-
sual elements and their properties, popular web pages, long-tail pages and also popular
web pages from different genres listed in Alexa have been investigated and analysed. In
these investigations, it was observed that the following properties are affecting how vi-
sual elements are used and presented: 1. underlying tag (HTML/HTML5 or ARIA [6]),
2. children and parent elements in the underlying DOM tree, size of the element, 3. bor-
der and background color of the element, 4. position of the element, 5. some attributes
including onclick, for, onmouseover, etc., 6. CSS Styles (font-size, color, etc.) of the
elements, 7. some specific keywords which appear in the textual content and in the id,
class, src, background-image attributes of the element. In Figure 1, VB.1.1.1 represents
a Header block. Header blocks are generally placed at the top of the page and contains
a Logo, Search Engine or Menu block. In general use, HTML tag of a Header block
is either header or div. Also some specific keywords such as ’header’ or ’hdr’ occur in
their id or class attributes. It is possible to extend these characteristics.

The eMine ontology consists of two main classes: atom and chunk. All roles are
defined as subclasses of either atom or chunk classes. In order to extend the coverage
of the roles given originally in WAfA, eMine Ontology was also compared to ARIA
Ontology [6], and similarities and differences between them were identified. After this
analysis, some concepts were also introduced to eMine Ontology from ARIA.

2 http://emine.ncc.metu.edu.tr/ontology/emine.owl

http://emine.ncc.metu.edu.tr/ontology/emine.owl

Heuristic Role Detection of Visual Elements of Web Pages 127

We mainly followed an iterative approach to develop this ontology. With the initial
experiments, we have noticed that object properties are required to be classified. This
classification takes in two parts. The first classification is between the object proper-
ties, so that, object properties which affect the decision more than other properties have
higher factor values. The second classification is in the values of object properties. In
this classification, three levels of object properties for each attribute are defined. For
example, must have tag, has tag and may have tag were required where must have tag
has the highest factor value and may have tag has the lowest factor. In manual evalua-
tion, it was observed that this kind of enhancement gave more accurate results.

The ontology was parsed and processed to construct heuristic rules to apply on visual
elements. After retrieving all roles and their properties from the ontology, they were
converted to Jess rules in appropriate syntax and saved in a local CLP file for later use
in role detection [22].

3.3 Role Detector

For detecting the roles of visual elements, Jess which is a Java based rule engine and
scripting environment, is used [22]. The reason of using Jess is that it provides a rule
engine to assert the visual elements and fire a set of rules on asserted elements. After a
web page is segmented to its visual elements, each element in the tree was accepted as
an individual. Each individual visual element was converted to facts in Jess rule engine.
The collection of the facts, is called working memory. Every fact has a template, which
defines its name and the set of its slots. These slots keep the attributes of a fact, in this
case, the visual element attributes corresponding to the object properties in the ontology.

In order to detect the heuristic role of a visual element, following process is applied:
First of all, a rule engine object is created. By loading the CLP file into the working
memory of the engine, block template for facts and likelihood scores for each role
were constructed in the memory. Likelihood scores are defined as global variables, and
initially set to 0. Then, a set of heuristic rules, which are called defrules, are defined.
These rules are based on the object properties of roles in ontology. Following statement
illustrates a rule definition for the role given for a Header block:

(defrule Header00 (block (has_child $? /.*logo.*/ $?))
=> (bind ?*Header* (+ "2" ?*Header*)))

The first part after rule name denotes which object type the rule applies and in which
condition it is fired. In this example, rule is applied on block objects and it is fired if
visual element contains a Logo. Second part, which comes after ’=>’ operator, denotes
the action if the visual element satisfies the required condition in the first part. In this
example, the likelihood score for Header is incremented by 2, which is the value of
factor annotation for this rule.

Template definition, global variables and defrules are stored in the CLP file and they
are all generated by using the eMine ontology. Facts which will be asserted to the rule
engine, are based on the visual elements of segmented web pages and they are con-
structed in each program execution. This assertion and firing process is repeated for
each block in the web page. After each iteration, visual element tree is updated to rep-
resent assigned role to visual elements. Figure 1 (part c - ”role assignments”) shows

128 M.E. Akpınar and Y. Yeşilada

how the tree of visual element is annotated with the roles. For example, VB.1.1.1 is
labelled as Header.

4 Evaluation
In order to validate our proposed approach, we have conducted both technical and user
evaluations. Technical evaluation mainly investigates the performance and the user eval-
uation investigates how people perceive the role of visual elements, and how good is our
system in identifying the perceived roles automatically.

User Evaluation. Our user evaluation3 was conducted online to reach more with di-
verse backgrounds. The procedure followed in the survey included four main parts:
1. included an overview page with some information about the anonymity and the tasks
to be completed. 2. collected some demographics information about participants, e.g.,
gender, experience in web design, education, age range, etc. 3. included a web page
in different levels of segmentation, and participants were asked to rate and rank these
levels. 4. Based on the best level they have chosen, they were asked to assign roles to
the visual segments in that level. The participants were provided a list of roles in our
knowledge base; however, if the participants could not find the proper role in the list,
they also had the chance of entering the role in free form text. In overall, the survey
application was designed to repeat the last two steps for randomly selected nine pages.

Table 1. Accuracy and Performance Results

Complexity
Group

System-Expert
Evaluation (%)

Receptive Evalu-
ation (%)

Total Memory
(KB)

Total Time
(ms)

Avr. Memory per
Block (KB)

Avr. Time per
Block (ms)

Block
Count

Low Comp. 79.82 73.68 8,369 6,576 244.29 102.29 65
Medium Comp. 88.28 79.77 7,013 23,799 36.44 102.12 237
High Comp. 88.47 85.53 9,165 54,837 34.28 101.95 569
Overall 86.83 80.82 8,176 29,157 100.20 102.11 298

The complete survey was designed to include nine randomly chosen web pages from
a group of 30. In order to choose these 30 pages, we have investigated the complexity
of top 100 web from Alexa by using the Visual Complexity Rankings and Accessibility
Metrics (VICRAM) framework [23], which assigns a Visual Complexity Score (VCS)
for a given page. For 100 pages, we calculated their VCS and grouped these pages into
three: low complexity (VCS < 3); medium complexity (3 ≤ V CS ≤ 7); and high
complexity (VCS > 7). We randomly selected 10 pages from each complexity level by
grouping these pages based on their VCS. Moreover, ramdom page selection algorithm
was designed to select at least one page from all complexity levels in three pages.

Technical Evaluation. With a technical evaluation, we have mainly investigated the
technical feasibility of the proposed approach and implementation in the ACTF plat-
form. We checked the performance characterised in terms of total memory usage, time
elapsed for role detection of complete pages and total number of blocks calculated.
The technical evaluation has been performed on a machine which has following fea-
tures: Intel R©CoreTM2 Duo CPU T9600 @ 2.80 GHz processor, 2.071.34 MB memory,
NVIDIA GeForce GT 220M videocard and Windows 7 32 Bit operating system.

3 http://emine.ncc.metu.edu.tr/eval/survey/

http://emine.ncc.metu.edu.tr/eval/survey/

Heuristic Role Detection of Visual Elements of Web Pages 129

4.1 Results

In this section, we present the preliminary analysis of our results based on the data
collected in two weeks after the survey was announced. In overall, of 220 participants,
only 25 of them have completed at least three pages, provided that, they evaluated at
least one page from each complexity level. Of our 25 participants, 10 were female and
15 were male. 7 participants were aged between 18-24, 8 of them were 25-34, 8 of them
were 25-54 and 2 of them were aged over 55. 5 participants completed high/secondary
school, 2 completed associate’s degree, 6 completed bachelor’s degree, 7 completed
master’s degree and 5 completed doctorate. 18 participants have worked in web design
and development, 4 of them studied this subject and 3 of them are interested in web
design as a hobby. 7 participants describe their level of expertise in web design and
development as professional, 13 as intermediate and 5 as novice/beginner. All of the
participants use internet daily.

In overall, 1,946 role assignments have been made and 1,458 were considered in
our evaluation as valid assignments since their assigners satisfied the minimum require-
ment of labelling at least three pages. 232 roles assigned to low complexity pages, 580
to medium complexity pages and 646 to high complexity pages. Analyzing the assign-
ments, we have noticed that there were disagreements between our participants. In order
to eliminate this, we have applied majority rule to decide about the role assigned. When
majority rule applied, %32.58 of the assignments had more than %50 of agreement.

Table 1 presents both performance results and accuracy results obtained from the
preliminary analysis of the data collected from the participants. The success rate of
each complexity group and overall result was calculated proportional to the number
of visual segments evaluated in each page. System - Expert evaluation consists of the
comparison of the system results and expert responses with respect to the concept de-
scribed in the ontology. As can be seen from this table, in overall the system has an
accuracy of 86.83% accuracy. Strict string comparison between the roles assigned by
the system and participants gave us an average of 28.86% (low complexity pages -
26.32%, medium complexity - 28.99% and high complexity - 29.92%) accuracy. This
is mainly because participants use slightly different versions of the role text to label
visual elements. Therefore, we have manually analyzed the role assignments given by
our participants and compared them with our system assignments. These results shown
as ”receptive evaluation” in Table 1. In overall, the accuracy rate is 80.82%.

Although, performance results presented in Table 1 is specific to our configuration of
test machine, they still provide significant information about the overall performance.
Total memory usage and time elapsed in role detection process of a whole page and a
single block are given with the average block count for each complexity level.

4.2 Discussion

Our receptive evaluation shows that our proposed system has more than 80% accuracy
rate; however, when we do strict string comparison this accuracy becomes around 30%.
Moreover, majority rule application to the data collected from participants shows that,
only %32.58 of the role assignments have the majority of participants’ agreements.This
could be explained by different reasons. First of all, people were not asked to complete

130 M.E. Akpınar and Y. Yeşilada

tasks and they were just shown screenshots. Task specification could affect the role
assignments. Furthermore, in our survey, we have explicitly asked participants to check
the underlying source code of web pages and associated CSS files by providing links
to the pages. Nevertheless, participants may not have analysed the DOM structure or
interacted with segments; their overall assessment may have been formed only on the
visual representation of the segments. One unanticipated finding from this evaluation
was that, although we asked participants to choose only one role in our survey, some
blocks have more than one role in page layout or they are combinations of different sub-
blocks which have different roles. While some participants tend to assign multiple roles,
many of them selected only one of them, omitting the remaining meaningful roles.

Average time elapsed for role detection of a single block has close values in each
complexity level and total time is proportional to the number of blocks in the page. Total
memory consumed for a page has close values for each complexity group, showing
that, larger amount of the memory consumed for shared resources. Therefore, average
memory consumed decreases while the number of blocks increases.

In summary, the results of this study suggest that, the roles of visual segments in
web pages may differ with respect to the aim of usage and user point of view, since, the
majority rule applies only on a small portion of the role assignments. Moreover, this
study can be used to improve our knowledge base, by extending the role set according
to responses of the participants.

5 Conclusion
This paper presented an ontology-based heuristic approach to automatically identify
visual elements in a web page and their roles. This approach relies on a probabilistic
model, in which, the role of the visual element is detected based on the number of its
attributes which satisfy the requirements of a role. The proposed system consists of a
visual element identifier, a knowledge base and a role detector module.

The proposed approach was evaluated with technical performance and user evalua-
tions. According to results in performance evaluation, response time is related to the
complexity of the page, while memory consumption is independent of the complexity
if shared resources are used. In order to measure the accuracy of the system, an online
survey based user evaluation was performed which shows that our proposed system
has around 80% receptive accuracy; however, the proposed knowledge base could be
further improved for better accuracy.

In conclusion, the research presented in this paper contributes an effective method for
detecting roles of visual elements in web pages automatically by using heuristics. The
findings of this research can be used in different fields including information retrieval,
web accessibility, intelligent web user interfaces, web page transcoding or data mining.
Proposed approach also provides a modifiable knowledge base to adapt changing web
design trends and task specific applications.

References

1. Kovacevic, M., Diligenti, M., Gori, M., Milutinovic, V.: Recognition of common areas in a
web page using visual information: a possible application in a page classification. In: ICDM
2002, pp. 250–257. IEEE Computer Society, Washington, DC (2002)

Heuristic Role Detection of Visual Elements of Web Pages 131

2. Yin, X., Lee, W.S.: Understanding the function of web elements for mobile content delivery
using random walk models. In: WWW 2005, pp. 1150–1151. ACM (2005)

3. Chen, Y., Xie, X., Ma, W.Y., Zhang, H.J.: Adapting web pages for small-screen devices.
IEEE Internet Computing 9(1), 50–56 (2005)

4. Xiang, P., Shi, Y.: Recovering semantic relations from web pages based on visual cues. In:
IUI 2006, pp. 342–344. ACM (2006)

5. Cai, D., Yu, S., Wen, J.R., Ma, W.Y.: Vips: a vision based page segmentation algorithm,
MSR-TR-2003-79, Microsoft Research (2003)

6. Craig, J., Cooper, M.: Accessible rich internet applications (WAI-ARIA) 1.0 (2010),
http://www.w3.org/TR/2010/WD-wai-aria-20100916/complete
(retrieved on January 15, 2013)

7. Ahmadi, H., Kong, J.: Efficient web browsing on small screens. In: AVI 2008, pp. 23–30.
ACM (2008)

8. Xiao, Y., Tao, Y., Li, W.: A dynamic web page adaptation for mobile device based on web2.0.
In: ASEA 2008, pp. 119–122. IEEE Computer Society, USA (2008)

9. Chen, J., Zhou, B., Shi, J., Zhang, H., Fengwu, Q.: Function-based object model towards
website adaptation. In: WWW 2001, pp. 587–596. ACM (2001)

10. Lin, S.H., Ho, J.M.: Discovering informative content blocks from web documents. In:
SIGKDD 2002, pp. 588–593. ACM (2002)

11. Burget, R., Rudolfova, I.: Web page element classification based on visual features. In: ACI-
IDS 2009, pp. 67–72 (April 2009)

12. Liu, B., Chin, C.W., Ng, H.T.: Mining topic-specific concepts and definitions on the web. In:
WWW 2003, pp. 251–260. ACM (2003)

13. Yi, L., Liu, B., Li, X.: Eliminating noisy information in web pages for data mining. In:
SIGKDD 2003, pp. 296–305. ACM (2003)

14. Takagi, H., Asakawa, C., Fukuda, K., Maeda, J.: Site-wide annotation: reconstructing exist-
ing pages to be accessible. In: SIGACCESS 2002, pp. 81–88. ACM (2002)

15. Harper, S., Yesilada, Y.: Web authoring for accessibility (WAfA). JWS 5(3), 175–179 (2007)
16. Yesilada, Y., Harper, S., Goble, C., Stevens, R.: Screen readers cannot see. In: Koch, N.,

Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp. 445–458. Springer, Hei-
delberg (2004)

17. Plessers, P., Casteleyn, S., Yesilada, Y., Troyer, O.D., Stevens, R., Harper, S., Goble, C.:
Accessibility: A web engineering approach. In: WWW 2005, Chiba, Japan, pp. 353–362
(2005)

18. Yesilada, Y., Stevens, R., Harper, S., Goble, C.: Evaluating DANTE: Semantic transcoding
for visually disabled users. ACM TOCHI 14(3) (2007)

19. Alcic, S., Conrad, S.: Page segmentation by web content clustering. In: WIMS 2011,
pp. 24:1–24:9. ACM (2011)

20. Kohlschütter, C., Nejdl, W.: A densitometric approach to web page segmentation. In: CIKM
2008, pp. 1173–1182. ACM (2008)

21. Yu, S., Cai, D., Wen, J.R., Ma, W.Y.: Improving pseudo-relevance feedback in web informa-
tion retrieval using web page segmentation. In: WWW 2003, pp. 11–18. ACM (2003)

22. Friedman-Hill, E.: Jess the rule engine for the java platform (2008),
http://herzberg.ca.sandia.gov/ (retrieved on November 27, 2012)

23. Michailidou, E.: ViCRAM: Visual Complexity Rankings and Accessibility Metrics. PhD
thesis (2010)

http://www.w3.org/TR/2010/WD-wai-aria-20100916/complete
http://herzberg.ca.sandia.gov/

Performance-Aware Design

of Web Application Front-Ends

Dennis Westermann1, Jens Happe1,
Petr Zdrahal2, Martin Moser2, and Ralf Reussner3

1 SAP Research, Karlsruhe, Germany
{dennis.westermann,jens.happe}@sap.com

2 SAP AG, Walldorf, Germany
{petr.zdrahal,martin.moser}@sap.com

3 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
reussner@kit.edu

Abstract. The responsiveness of web applications directly affects cus-
tomer satisfaction and, as a consequence, business-critical metrics like
revenue and conversion rates. However, building web applications with
low response times is a challenging task. The heterogeneity of browsers
and client devices as well as the complexity of today’s web applications
lead to high development and test efforts. Measuring front-end perfor-
mance requires a deep understanding of measurement tools and tech-
niques as well as a lot of manual effort. With our approach, developers
and designers can assess front-end performance for different scenarios
without measuring. We use prediction models derived by a series of au-
tomated, systematic experiments to give early feedback about the ex-
pected performance. Our approach predicts the front-end performance
of real-world web applications with an average error of 11% across all
major browsers.

1 Introduction

Recent industrial studies [4] show that the responsiveness of web applications di-
rectly affects customer satisfaction and, as a consequence, business-critical met-
rics like revenue and conversion rates. Guidelines on how to optimize front-end
performance, such as those published in the books of Steve Souders [7,8], are very
popular among web developers. Also, tools like WebPageTest [2] or YSlow [3]
are more and more adopted to support the implementation of performance best
practices and to help identifying performance problems. For the development of
web-based enterprise applications, companies often rely on JavaScript libraries
that provide a uniform appearance, as well as a set of UI elements and utility
functions commonly used in this kind of applications. Besides the classical chal-
lenges addressed by the guidelines and tools mentioned before, UI developers
and designers need to evaluate the impact of the design of a screen on front-
end performance. This involves questions like

”
How many columns and rows

can I add to a table of type X in my web application without violating perfor-
mance requirements?“or

”
What is the impact of backend call Y on front-end

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 132–139, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Performance-Aware Design of Web Application Front-Ends 133

performance?“. Theoretically, these questions could also be answered with the
existing performance measurement and analysis tools. However, practically the
effort for applying measurement-based approaches to these kind of questions is
too high, which hinders the flexible, performance-aware construction and evalu-
ation of screen designs. Moreover, the development of a screen’s design is usually
conducted before the screen is actually implemented (e.g., using wireframe or
mockup tools). As a consequence, early performance feedback (prior to imple-
mentation) is essential to drive the deployment of fast web applications [5].

In this paper, we present an approach that enables performance-aware design
of web application front-ends. Our main contribution is a methodology that
allows performance experts to efficiently derive prediction models for UI libraries.
These models can, for example, be integrated in design tools in order to give early
performance feedback to the large amount of designers and developers that use
the library. To get the early feedback about the expected front-end performance
of their design, developers neither need to implement the web application, nor
do they need to conduct performance measurements.

The main challenge in deriving the performance prediction models is to deal
with the huge design space that is spanned by a UI library. To overcome this
challenge, we build on the results of our previous research on automated per-
formance evaluation experiments [9,10] and propose an experiment-based pre-
diction model construction process. In our case study, we evaluated the impact
of different screen design alternatives on front-end performance for applications
developed with the JavaScript library SAP UI5 [1]. Based on the experiment re-
sults, we derived a set of assumptions and heuristics and developed a prediction
model that allows estimating the impact of screen designs on performance for
three major browsers (Internet Explorer, Chrome, and Firefox). While the ex-
periment results and the prediction model are specific for the SAP UI5 library,
we also describe our systematic process that can be applied for the efficient
construction of such prediction models in other scenarios.

We validate our approach by comparing predictions to measurements using
screens of two real-world enterprise web applications. Both have been developed
with the SAP UI5 library. The results show that we can predict the front-end
performance for the screens of these applications with an average prediction error
of 11% across all studied browsers.

2 Prediction Model

The performance prediction model introduced in this section quantifies the rela-
tionship between the construction of SAP UI5 based web application screens and
the browser CPU time consumed by the screens in different browsers. Moreover,
we outline a process that allows to derive such a model efficiently.

Based on the results of a set of upstream experiments, we define the following
assumptions and heuristics:

134 D. Westermann et al.

– The browser CPU time is a stable metric to describe front-end performance
costs of a web application. Moreover it abstracts from influences that are
hard to control such as network latency.

– The browser CPU time consumed to process different UI element types is
additive (i.e., there is no interdependency between control types).

– The browser CPU time differs significantly between different UI element
types.

– The properties of complex control types can significantly contribute to the
browser CPU time consumed to process a UI element.

– The placement of UI elements on a screen does not have a significant effect
on CPU time (at least if the nesting level stays in a reasonable range).

Utilizing these assumptions and heuristics, we define a performance prediction
model as well as a process to derive a concrete instance of this prediction model
for SAP UI5.

If a screen S of a web application consists of the UI elements e1, ..., en, we
write: S = e1 · ... · en where · denotes the composition of UI elements (e.g.
a screen that consists of tables, buttons, and text fields). Hence, when a UI
developer creates a screen S, he evaluates e1 · ... ·en. We assume this composition
as associative and commutative (i.e., the UI elements can be arbitrarily placed
on the screen).

Furthermore, we define φ(S) as the front-end performance of screen S which
is in our case expressed as the browser CPU time consumed to load the full
screen. Following the additivity and placement assumptions, we state that the
performance of the UI element composition is the sum of the performance values
of the individual UI elements (φ(e1), ..., φ(en)) and a constant offset (εS).

φ(S) = φ(e1 · ... · en) + εS = φ(e1) ++ φ(en) + εS (1)

The offset εS describes the browser CPU time consumed to load an empty screen.
This includes for example the CPU time required to load the UI libraries and
the CSS files (i.e. all components of a screen that are independent of a certain
UI element).

Depending on its properties p1, . . . , pk (e.g., number of columns and rows of a
table), a UI element e yields different front-end performance characteristics. We
estimate the performance value of UI element e as

φtype(p1, . . . , pk) (2)

In order to derive an instance of such a prediction model for the SAP UI5 library
and the three major browsers, we developed a systematic process. The process is
implemented in a set of automatically executable experiments. Having this set of
automatically executable experiments has the benefits that (i) the manual effort
to create a model instance is limited to a minimum (i) the model instance can
be easily updated for new browser or UI library versions and (iii) the procedure
can be reused to derive model instances in similar setups.

In the following, we give a detailed description of the process and demonstrate
how we implemented this process.

Performance-Aware Design of Web Application Front-Ends 135

Deriving the Screen Offset (εS): As a first step, we determine the CPU
time consumed by the browser to process the basic screen layout in which we
place the different UI element types for our experiments. Therefore, we define
and run an experiment that measures an empty screen. As a result we get the
εS for the three browsers: εSCH = 300ms | εSFF = 420ms | εSIE = 290ms

Analyzing UI Element Types: To deal with the vast amount of UI element
types, we group them in simple types and complex types. As simple types we
define those UI elements with a performance cost per instance of less than 5 ms.
For these elements, we do not conduct a detailed evaluation of the properties.
Instead, we just determine a general fixed performance value for each instance
of a UI element type that is considered as simple. Examples for such simple UI
element types in our study are buttons, text views, or labels and the performance
value per instance that we assigned to this group is 2 ms. Hence, we estimate
the performance value of a simple UI element with the function: φsimple() =
2 × #simpleUIelements. That value is approximated based on a small set of
experiments. We use the same value for all three browsers as we did not observe
a significant difference between the browsers for processing these kind of UI
elements.

The complex UI element types are those that significantly contribute to the
browser CPU time when added to a screen. Examples for such UI element types
are tables, service calls and row repeaters. For these UI element types, we run two
experiment series. In the first series of experiments, we determine which prop-
erty of the UI element significantly influences the browser CPU time. And in the
second series, we derive φtype(p1, . . . , pk) for those properties that are consid-
ered as performance-relevant. To determine the performance-relevant properties
in the first series of experiments, we apply standard statistical designs such as
One-at-a-Time or Plackett-Burman designs in combination with statistical cor-
relation analysis methods. The selection of the actual design is based on the size
of the parameter space spanned by the number of UI element properties and their
potential values. As an example, for the table UI element type, the number of
columns (#cols) and rows (#rows) have been identified as the only performance-
relevant properties. With the second series of experiments we aim at quantifying
the relationship between the different manifestations of a table (combinations
of #cols and #rows), and the browser CPU time (CPUtime). If we set the
possible value ranges for the two variables in this example to #rows : 1..20
and #cols : 1..20, we run into the curse of dimensionality and even for this
small example it would take 20 ∗ 20 = 400 experiments to measure the complete
space. In our setup, this would mean that we would have to measure one week
to determine only this relationship for the three browsers. To reduce the number
of required experiments we apply advanced statistical inference approaches [10]
that automatically determine which experiments to execute in order to get an
accurate prediction function. As a result we get a multi-dimensional regression
function such as the one outlined below (derived for Firefox).

136 D. Westermann et al.

CPUtimeFF = 584 + 30 ∗max(0;#cols− 5)− 33 ∗max(0; 5−#cols)

+ 25 ∗max(0;#rows − 5)− 29 ∗max(0; 5−#rows) (3)

Deriving this function for a single browser takes approx. 2-8 hours depending on
the complexity of the underlying function. Limiting the number of experiments
by manually restricting the potential space is also a possible approach that
can be sufficient for simple functions but implies a higher risk that important
combinations have not been measured [10].

In order to predict any combination of table manifestations on a screen, we
proceed as follows: We subtract the offset of a blank screen (εSFF = 420) from the
function outlined in Equation 4 in order to remove this offset from the estimation.
We use the resulting function as the implementation of φtype(p1, . . . , pk). Thus,
we estimate the Firefox browser CPU time for the UI element type table with
the following function:

φtable(#cols,#rows)FF = 164+30∗max(0;#colsi−5)−33∗max(0; 5−#colsi)

+ 25 ∗max(0;#rowsi − 5)− 29 ∗max(0; 5−#rowsi) (4)

Construct Prediction Model Instance. Once all components of the predic-
tion model instance are determined they can be composed according to Equation
1 in order to predict the browser CPU time for a screen S. For example:

φ(S)FF = εS + φsimple()FF

+ φtable(#cols,#rows)FF + φjsoncall(datasize)FF + ... (5)

For our study, we derived a prediction model that contains most of the simple and
complex UI element types used in enterprise applications built with SAP UI5.

Validate Prediction Model. The constructed prediction model instance is
an abstraction of the real behaviour that is based on assumptions, heuristics and
statistical inference. Hence, it has to be validated that the estimated performance
values sufficiently reflect the behaviour of the real screens. In the following sec-
tion, we validate our prediction model as well as the prediction model instances
that we derived for the SAP UI5 library and the three browsers.

3 Validation and Discussion

The goal of our validation is to judge prediction accuracy and thus the utility
of our heuristics and the practicability of our approach. Therefore, we compare
our predictions with actual performance measurements. We selected twelve real-
world pages built with the SAP UI5 library. Six pages are taken from demo
applications. These pages cover a broad spectrum of different manifestations of
the two most important control types in business applications. The other six
pages are taken from a real application called Networking Lunch which is a
social enterprise application where people can search for other people interested
in the same topic and setup a joint lunch meeting.

Performance-Aware Design of Web Application Front-Ends 137

3.1 Results

In Figure 1(a) we show the results for the twelve validation screens. The average
prediction error across all screens and browsers is 11%. For 72% of the predic-
tions, the relative prediction error is less than 15% and there is only one real
outlier with an error higher than 30%. The predictions for Chrome (8% average
error) and Firefox (7% average error) have been better than those for Internet
Explorer (18% average error). Between the two applications, we could not ob-
serve a general difference with respect to prediction accuracy (average error for
both applications is 11%).

Page Measured Predicted Abs. Error Rel. Error Measured Predicted Abs. Error Rel. Error Measured Predicted Abs. Error Rel. Error
nwlunch1 944 ms 1024 ms 80 ms 8% 905 ms 983 ms 78 ms 9% 663 ms 733 ms 70 ms 10%
nwlunch2 1107 ms 1147 ms 40 ms 4% 1060 ms 1135 ms 75 ms 7% 811 ms 805 ms 6 ms 1%
nwlunch3 1233 ms 1119 ms 114 ms 9% 1178 ms 1129 ms 49 ms 4% 1357 ms 794 ms 563 ms 41%

Chrome Firefox InternetExplorer

nwlunch3 1233 ms 1119 ms 114 ms 9% 1178 ms 1129 ms 49 ms 4% 1357 ms 794 ms 563 ms 41%
nwlunch4 960 ms 1034 ms 74 ms 8% 874 ms 984 ms 110 ms 13% 788 ms 764 ms 24 ms 3%
nwlunch5 763 ms 938 ms 175 ms 23% 764 ms 888 ms 124 ms 16% 608 ms 603 ms 5 ms 1%
nwlunch6 951 ms 1069 ms 118 ms 12% 960 ms 1079 ms 119 ms 12% 913 ms 729 ms 184 ms 20%
demo1 485 ms 463 ms 22 ms 5% 780 ms 740 ms 40 ms 5% 453 ms 487 ms 34 ms 8%
d 2 874 875 1 0% 1295 1315 20 2% 780 1013 233 30%demo2 874 ms 875 ms 1 ms 0% 1295 ms 1315 ms 20 ms 2% 780 ms 1013 ms 233 ms 30%
demo3 888 ms 880 ms 8 ms 1% 1356 ms 1282 ms 74 ms 5% 803 ms 1039 ms 236 ms 29%
demo4 491 ms 502 ms 11 ms 2% 811 ms 810 ms 1 ms 0% 468 ms 584 ms 116 ms 25%
demo5 1591 ms 1858 ms 267 ms 17% 2348 ms 2641 ms 293 ms 13% 2340 ms 2900 ms 560 ms 24%
demo6 1373 ms 1460 ms 87 ms 6% 1973 ms 2009 ms 36 ms 2% 1638 ms 2079 ms 441 ms 27%

(a) Validation results.

The highest error is 41% for screen 3 of the Networking Lunch application in
Internet Explorer. Although this screen has nearly the same characteristics as
screen 4 (for which the error is only 3%), we underestimate the browser CPU
time by 563ms. We could not yet figure out the root cause of this difference. It
is interesting that we did not observe such a large deviation for this screen in
the other browsers. The weaknesses in the predictions for the Internet Explorer
is also visible for the demo application screens. However, for these screens we
overestimate the browser CPU time. This overestimation is most likely caused
by the estimation function for the odata service calls as these contribute largely
to the estimated overall CPU time for the screens. Hence, we have to run fur-
ther experiments to improve the regression function for odata calls in Internet
Explorer.

In general, the results demonstrate that our assumptions are valid and that
the introduced abstractions and heuristics do not significantly compromise the
prediction accuracy.

3.2 Threats to Validity

The results presented in Section 3.1 demonstrate that our approach can accu-
rately predict the front-end performance of enterprise web applications. However,
it is important to note the threats to validity of our approach in order to un-
derstand its applicability in practice. The main restrictions we currently see are:

138 D. Westermann et al.

Small Validation Set. The screens evaluated in Section 3.1 are only part of two
web applications. However, both are very different in type and front-end perfor-
mance. One represents a typical enterprise web application for processing data,
the other a social enterprise application. Even though the predictions complied
to measurement for the case studies presented in Section 3.1, a broader set of
validation scenarios is required, to ensure its general applicability.

Single Library. In our industrial case study at SAP, developers of web applica-
tions usually use only the SAP UI5 library to build a web application front-end.
The library encapsulates other common JavaScript libraries. In other develop-
ment environments, especially non-enterprise web application development, it
is often the case that multiple libraries are combined to develop the front-end
code. Moreover, additional style definitions can affect front-end performance in
standard web sites [7] which could have been neglected for the enterprise web
applications developed with the SAP UI5 library and the corresponding pre-
defined styles. However, the experiment-based evaluation process presented in
this paper, as well as the experiment automation tooling [6] can be used to
efficiently derive prediction models for other libraries.

Custom JavaScript Code. Our prediction focuses on the influence of UI elements
and service calls on front-end performance. This is a reasonable assumption for
typical enterprise applications. However, developers often add custom JavaScript
code to process data, to create new controls or to change configuration. This cus-
tom code will add to the browser CPU time and thus to front-end performance.
While such custom code played only a minor role in the case studies presented
in Section 3.1, it may have huge effects on front-end performance in other cases.
However, our goal is to give early feedback on front-end performance, thus, we
cannot consider such effects in our prediction.

Effort. The efforts necessary to implement the approach, i.e., to create and
maintain the prediction models are a crucial factor for the practical applicability
of the approach. These tasks should be performed by a small team of UI library
and performance experts. Our experiment automation tooling [6] supports and
guides the team in the course of the prediction model construction process which
limits the efforts to a minimum. The decision if a software vendor wants to invest
the efforts in constructing a prediction model for his libraries depends on the
number of designers and developers that can benefit from the feedback provided
by the models.

4 Conclusions

In this paper, we presented an approach that shifts performance evaluation ef-
forts to a small team of UI library and performance experts. We introduced a
methodology that enables the expert team to efficiently derive prediction models
for UI libraries used by the development groups. The bulk of developers and de-
signers in an organisation benefit from the model by getting early performance
feedback that is, for example, integrated in design tools. The feedback allows

Performance-Aware Design of Web Application Front-Ends 139

designers and developers to evaluate the front-end performance of web applica-
tions prior to implementation. They can assess different design alternatives and
chose the one with the best trade off between performance and user experience
(which does not necessarily have to be a trade off).

We applied the approach at SAP by creating a prediction model for the SAP
UI5 library and validated the accuracy of the model by comparing the predictions
to measurements of real web application screens. We integrated the derived pre-
diction model in an easy-to-use tool that is used by SAP UI5 developers to easily
evaluate the performance of their screen designs and by performance trainers to
raise the performance-awareness in developer training sessions.

In our future work, we are going to derive prediction models for web applica-
tion screens that run on mobile devices. Moreover, we plan to investigate other
popular JavaScript libraries.

References

1. Sap ui5: Ui development toolkit for html5,
http://scn.sap.com/community/developer-center/front-end

(last visited March 2013)
2. Webpagetest, http://www.webpagetest.org/ (last visited March 2013)
3. Yslow, http://developer.yahoo.com/yslow/ (last visited March 2013)
4. Bixby, J.: Web performance today,

http://www.webperformancetoday.com/2010/07/01/

the-best-graphs-of-velocity/

(last visited March 2013)
5. Brad Frost. Performance as design (2013),

http://bradfrostweb.com/blog/post/performance-as-design/

(last visited March 2013)
6. sopeco.org. Software performance cockpit, sopeco (2013), http://sopeco.org (last

visited March 2013)
7. Souders, S.: High Performance Web Sites: 14 Steps to Faster-Loading Web Sites.

O’Reilly (2007)
8. Souders, S.: Even Faster Web Sites: Performance Best Practices for Web Develop-

ers. O’Reilly (2009)
9. Westermann, D., Happe, J., Hauck, M., Heupel, C.: The Performance Cockpit

Approach: A Framework for Systematic Performance Evaluations. In: 36th EU-
ROMICRO SEAA Conf., pp. 31–38. IEEE CS (2010)

10. Westermann, D., Happe, J., Krebs, R., Farahbod, R.: Automated inference of goal-
oriented performance prediction functions. In: 27th IEEE/ACM Int. Conf. on Au-
tomated Software Engineering, ASE 2012, pp. 190–199. ACM, New York (2012)

http://scn.sap.com/community/developer-center/front-end
http://www.webpagetest.org/
http://developer.yahoo.com/yslow/
http://www.webperformancetoday.com/2010/07/01/the-best-graphs-of-velocity/
http://www.webperformancetoday.com/2010/07/01/the-best-graphs-of-velocity/
http://bradfrostweb.com/blog/post/performance-as-design/
http://sopeco.org

CapView – Functionality-Aware Visual Mashup

Development for Non-programmers

Carsten Radeck, Gregor Blichmann, and Klaus Meißner

Technische Universität Dresden, Germany
{carsten.radeck,gregor.blichmann,klaus.meissner}@tu-dresden.de

Abstract. Building mashup applications from existing web resources
becomes increasingly popular, and, in theory, accessible even for end
users without programming skills. Current proposals for end user devel-
opment of mashups mainly focus on visual wiring of component interfaces
supplemented by recommendations on composition steps and a certain
degree of automation. However, it is still a major challenge to provide
an appropriate level of functional abstraction in order to visualize the
functionality of a mashup and its components, and for composing on a
functional level instead of merely assembling structural units. This be-
comes crucial, especially when non-programmers are the intended target
group. In this paper, we propose CapView, a novel functionality-aware
development view on running composite applications. CapView is part of
the EDYRA platform and provides a functional overview of the mashup
by abstracting from interface and wiring details. It enables users to un-
derstand mashup development as an assembly process that is centered
on the capabilities of components and mashup fragments. We evaluate
the concepts in a user study and present lessons learned.

Keywords: mashup, end user development, non-programmers.

1 Introduction

Powered by the growth of available web resources and application programming
interfaces, the emerging mashup paradigm enables loosely coupled components
to be reused in a broad variety of application scenarios to fulfil the long tail
of user needs. Thus, mashups and end user development (EUD) complement
each other quite well. However, when supporting non-programmers, their limited
understanding of technical concepts and experience on development practices
have to be considered. In addition, it is hard for non-programmers to map their
problem, for which they probably know a solution in terms of necessary tasks or
activities, to a composition of components.

In order to empower non-programmers to build applications on their own,
EUD tools have to fulfil several essential requirements as pointed out in the
literature, e. g., [9,4]. Technical details, concepts and terminology have to be
hidden from the user. Furthermore, there is a need for user guidance and au-
tomation throughout the composition procedure, for instance, recommendations

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 140–155, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

CapView – Functionality-Aware Visual Mashup Development 141

on composition steps and support for correctly connecting components when
solving heterogeneity issues. In addition, there should be immediate feedback on
a user’s composition actions and, as proposed by [9], task-oriented user interfaces
should be applied instead of technology-led ad hoc visualizations.

However, prevalent mashup solutions mostly build up on purely wiring com-
ponent interfaces. With respect to the requirements above, we argue, that this
technical view is still too complicated for end users without programming know-
ledge. Although wirings allow to retrace data flow, understanding what actually
happens in a mashup, or what functionality recommendations offer, requires
manual investigation by the user or depends on community-provided documen-
tation. Therefore, a more abstract way of building mashup applications is re-
quired, which focuses on the functionality to achieve rather than the technical
solution in terms of component interfaces and composition glue.

Thus, we propose CapView, a novel functionality-aware development view
on (running) composite applications. It is part of the EDYRA platform, which
extends CRUISe [12] concepts and allows for live sophistication of mashups.
Thereby, the mashup runtime environment becomes the authoring tool, seam-
lessly interweaving mashup design and usage, to provide for instant feedback for
end user’s development actions [15]. CapView provides a functional overview of
the mashup abstracting from interface and wiring details.

The CapView essentially helps non-programmers to (1) realize “components”
as task-solving entities, (2) investigate functionalities provided by a mashup,
by its components and by recommendations, and (3) to manipulate a mashup
through visually composing component functionalities.

The contribution of this work are manifold:

– We present capabilities, a semantic description of component functionality,
and define generic rules for deriving natural language labels from capabilities.

– We introduce the CapView supporting non-programmers with a functional
abstraction of composition details when developing a mashup independently.

– We evaluate the efficiency of the CapView via a user study.

The remaining paper is structured as follows. First, we discuss related approaches
in Sect. 2. Then, Sect. 3 describes the conceptual foundation of our work. We
introduce CapView in Sect. 4 and show the results of our evaluation in Sect. 5.
Finally, Sect. 6 summarizes the paper and outlines future work.

2 Related Work

Similar to our approach, Yahoo Pipes1 uses a mainly data flow oriented vi-
sual wiring paradigm via drag&drop in conjunction with highlighting possible
connections while creating a pipe. However, there is a hard break between devel-
opment and usage, and the user has to understand data structures and technical

1 http://pipes.yahoo.com/pipes/

http://pipes.yahoo.com/pipes/

142 C. Radeck, G. Blichmann, and K. Meißner

concepts. IBM mashup center2 allows to combine building blocks, including wid-
gets, and to use the mashup while developing it. Connections are created through
dialogues and are shown in a dedicated view, but functionality provided by com-
ponents or compositions cannot be explored. Similarly, in Jackbe Presto wiring
takes place via drag&drop, but the user is not supported in establishing correct
or even useful connections, and in identifying transitive connections. A drawback
is the required knowledge about technical interfaces of blocks and data types.

In academia, several projects have addressed some of the identified challenges
of EUD for non-programmers. Similar to our approach, mashart [7] utilizes uni-
versal composition and a component model, but neglects semantic annotations.
At development time, the components, their event-based composition and layout
can be defined using drag&drop metaphors. Despite a preview, there is a sepa-
ration between development time and run time, and the user is not supported
by recommendations. ResEval Mash [8] is a mashup platform dedicated to the
research evaluation domain. In a data flow oriented way, components of different
type like sources or visualizations are coupled. A domain-specific appearance
of those types on the modelling canvas may indicate implicit functionality, but
there is no activity-based abstraction. The ServFace Builder [10] enables users
to visually compose web services. Thereby, form-based front ends are generated
from service descriptions. The data flow can be defined using drag&drop at de-
velopment time, and is visible to the user. Again, only a technical view on the
resulting application is provided. In MyCocktail3 forms serve for configuration
of components at design time, but there is no support regarding correctness
while establishing connections. Understanding the functional interplay of the
components is impeded by missing visualization of connections. Similar to our
conceptual foundation, the FAST platform [2] utilizes semantically described
components which are assembled to gadgets, so called screens. The latter can
again be combined to screenflows using input/outputs. The functionality of gad-
gets is expressed by pre- and postconditions, rather concerning input and out-
put than the activities provided. Yet, it lacks a smooth transition between run
time and design time and the user has to be familiar with interface concepts.
The Omlette Live Environment [17] provides interwoven runtime and develop-
ment time. The user is supported with advice on patterns mined from existing
mashups, and by automated integration of selected patterns. However, there is
nothing comparable to our abstracting view and the recommended pattern are
mainly visualized by the incorporated components. In line with our approach,
DashMash [5] allows for manipulating a mashup during usage, and addresses
similar users. However, to understand the data flow of a mashup, users have to
inspect a dialog listing connections for a certain component, and establishing
connections takes place on interface level. EnglishMash [1] shares a similar basic
idea: abstracting from technical details through natural language. However, it
provides restricted means for exploration of components’ functionalities and no
formal component model. DEMISA [16] proposes a task-oriented methodology to

2 http://www.jackbe.com
3 http://www.ict-romulus.eu/web/mycocktail/home

http://www.jackbe.com
http://www.ict-romulus.eu/web/mycocktail/home

CapView – Functionality-Aware Visual Mashup Development 143

develop mashups. A task model has to be defined first which is semi-automatically
transformed to an executable mashup composition. However, due to the top-
down approach, there is a hard break between development and usage. Recently
several proposals focus on semantic annotations, e. g. [3], and mediation, e. g.
[11], for mashups. Therein, recommendations can be achieved based on semantic
matching of annotations. Further, community-driven recommender systems, e. g.
[6], have been proposed. We build up on similar techniques, but focus explicitly
on functionality-centered visualization of recommendations.

To sum up, in current proposals, understanding the provided functionality
of recommendations, components or even the mashup highly depends on mean-
ingful naming and descriptions of interfaces, and is further impeded by missing
highlighting of connections. Current tooling lacks task-oriented visualization and
composition metaphors for running mashups. It is too interface-oriented, and,
thus, features no sufficient level of abstraction for non-programmers.

3 Preliminaries

Within the EDYRA project we adhere to universal composition, which allows
for platform and technology independent composition of arbitrary web resources
and services [12]. This section outlines the underlying concepts of the CapView.

A declarative composition model defines all aspects of a mashup: compo-
nents or templates for context-sensitive selection of matching components, their
configuration, event-based communication, and layout [12]. For inter-component
data exchange, several types of communication patterns are applicable: fire-and-
forget according to the publish-subscribe paradigm via Links, request-response
via BackLinks, and synchronization of properties using PropertyLinks [13].

In our semantic component model, web resources are encapsulated by
black-box components. Furthermore, components with or without a UI (service
components) are characterized by three abstractions, namely parametrized op-
erations and events as well as properties. As a declarative descriptor implement-
ing the component model, we use the Semantic Mashup Component Description
Language (SMCDL) [11]. SMCDL covers non-functional properties, like qual-
ity aspects and authors, and the public component interface consisting of the
abstractions mentioned above, see Fig. 1. In order to specify data semantics of
those interface parts, references to ontology concepts, like classes and object-
properties, are annotated. Thereby, we can leverage semantic matching and me-
diation techniques. To describe functional semantics in a formal, yet simple way,
we have extended SMCDL with Capabilities. Basically, a capability is a tuple

<activity, entity, requiresInteraction>

and can be defined at component and operation/event level. In the latter case,
capabilities complement the input and output parameters. Activity and entity
refer to ontology concepts, for example act:Contact foaf:Person and, com-
bined, express which action is performed on a domain object. If the user is
involved in the activity, this is stated by requiresInteraction. This way we get

144 C. Radeck, G. Blichmann, and K. Meißner

SM
CD

L

 Interface

operationk

eventm

propertyn

meta data

domain models

NFP

property type

non functional
qualities

activity and entity

parameter types
dependsOn

interaction
travel

geo

...

activities

capabilities

activity and entity capabilities

Fig. 1. Overview of the SMCDL

a tag-like descriptor of component functionality, backed by clear semantics to
overcome ambiguity of tagging approaches. While the concepts referenced by en-
tity and activity are typically domain-specific, we build up on an upper ontology
for activities including generic concepts like Calculate, Create, and Display.

To express intra-component functional dependencies, events reference the ca-
pabilities that cause their occurrence using dependsOn. For sake of simplicity,
or-semantics applies in case of several referenced capabilities. For instance, an
event publishing results of an operation call refers to the operation’s capability.

Two capabilities are connectible if the parameters of the underlying interface
parts are semantically compatible. This either means that annotated concepts
match perfectly (e. g. location → location) or can be mediated (e. g. latitude +
longitude → location). Suitable mediation techniques are not in the scope of this
paper, but we extend our work proposed earlier [11]. Connectibility of properties
is more restrictive and requires equal or identical semantic types.

4 A Capability-Centered View for Non-programmers

The overall architecture of our platform is illustrated by Fig. 2. There are several
repositories, depicted on the right. Components are managed by their SMCDL,
whole mashups are represented by composition models. Certain composition
fragments are mined from existing mashups or determined on the fly based
on semantic annotations. Such composition fragments, like a coupling of two
components or a more complex part of a composition model, are reactively or
proactively queried and filtered by the recommendation manager, as part of the
runtime environment [14]. Then, the fragments are presented to the end user,
and, after selection, woven into the running mashup by the adaptation system.

There are different views on the mashup. The LiveView presents the run-
ning UI components integrated in the mashup while channels are hidden. For
users with the necessary skills, the ProfessionalView provides a state-of-the-art
wiring view which overlaps the first. The novel CapView is focused on capa-
bilities in order to abstract from technical details. As with all views, CapView

CapView – Functionality-Aware Visual Mashup Development 145

incorporates recommendations. Providing proper functionality-centered presen-
tation for recommendations and for composition logic, CapView utilizes a label
generator, which derives descriptions from semantic annotations of components
and, thus, composition fragments. Every necessary mapping to the technical im-
plementation in terms of the composition model is automatically performed by
the runtime environment and completely hidden from the user.

context service

bind
runtime environment

composite application

co
m

po
sit

io
n

an
d

us
ag

e

se
rv

ice
s

web services, feeds, widgets, databases, APIs ...

annotated by

component &
mashup

repository

register

universal description (SMCDL)

pattern
repository

recommendation
managerlabel generator

composition model

ontologies

dictionary

adaptation
system

Prof.
View CapView

LiveView

m
an

ag
em

en
t

Fig. 2. Architectural overview of the EDYRA platform

4.1 Overview

In contrast to the ProfessionalView, the CapView does not explicitly display the
operations and events of components. Instead, based on annotated capabilities,
tasks that can be fulfilled using the component are clustered and visualized.
To ease the correlation between LiveView and CapView, those tasks overlay the
corresponding components. Our basic assumption is, that a mashup and its com-
ponents are offering a set of functionalities. For execution, these functionalities
may require inputs or produce outputs, which can be provided or consumed by
other functionalities in a data flow based manner. This reflects the underlying
component model (c. f. Sect. 3) and leads to tuples <<A, E, iR>,Pin,Pout >
where <A, E, iR> denotes a capability as defined in Sect. 3. Pin|out are optional
sets of the parameters of the operation or event, which correspond to the capa-
bility. Besides capabilities, components’ properties are part of CapView, since
we argue, that it is intuitive that objects are characterized by attributes.

An overview is shown in Fig. 3. The main part shows the overlaying CapView
that lists capabilities and properties of components in the mashup, as well as
connections. On the right is the recommendation menu, giving advice on
composition fragments represented by the capabilities they offer.

146 C. Radeck, G. Blichmann, and K. Meißner

Fig. 3. Exemplified overview of the CapView

4.2 Visual Exploration of a Mashup’s Functionality

As exemplified in Fig. 3, we conceptually utilize several colors in order to dis-
tinguish the representation of capabilities and properties. Representations for
a certain component can be collapsed and expanded by the user. Further, to
couple components implicitly by connecting representations, the latter can have
ports as interaction elements corresponding to the inputs required and/or out-
puts provided. In addition, natural language labels are provided throughout the
CapView, derived from semantic annotations. Thereby, several generic rules ap-
ply in order to label capabilities and properties. We go in more detail on the
rules in Sect. 4.3 including examples.

Capabilities at component level are grayed out and carry no connection ports
if no event refers to them via dependsOn. This way, the user is aware of the
component’s capability and the fact that it cannot be coupled. Otherwise the
capability is colored according to the requiresInteraction (blue in Fig. 3 if true,
else orange) and has an output port. Capabilities at operation level adhere to
the same coloring scheme. Input ports are always visible, and their counterparts
appear if at least one event refers to the capability. Properties are always colored
uniformly (green in Fig. 3) and can have input and output ports.

A user can select a capability or property, denoted representation r0. The
1-layer L is defined as the set of all connectible capabilities or properties in the
CapView that can directly provide input (S ⊆ L) for or handle output (T ⊆ L) of
a representation. In order to avoid cycles, we assume that a certain representation
cannot be in S and T of r0. Self-connections of a component are prohibited,
i. e., there is no r belonging to its own 1-layer. Established connections between
representations are visualized, too. The appearance differs depending on r0.

When selecting r0, all ri ∈ L0 are highlighted and renamed, see Fig. 3 where r0
is Select an event. The renamed labels are visually highlighted as well for several
seconds to allow for awareness. Channels not connected to r0 are grayed out
in order to improve clarity. In addition to direct channels, indirect connections
are highlighted as well in a less bright appearance. This way, a user can follow
transitive data flow easier. For instance, if a compatible rj ∈ T0 is not yet

CapView – Functionality-Aware Visual Mashup Development 147

connected with r0 but with an rq ∈ Tj, transitive highlighting rj → rq also
applies. However, label adaptation exclusively changes the 1-layer.

Highlighting possible ports can be understood as a seamless visualization of
recommendations. Besides this inline presentation, the recommendation menu
lists capabilities of components not part of the mashup yet. In any case, we
utilize stars to emphasize the three best rated recommendations.

4.3 Context-Sensitive Label Generation

How labels for representations are derived is subject of this section. The notion
used thereby incorporates functions and indices, which we briefly explain now.

– dLabel() and aLabel() return a human readable description of an annotated
property type or capability entity respectively activity. Thereby, either the
name of the concept, extracted from its URI, or its rdfs:label is used.

– art() inserts a correct article
– index pp denotes the past participle, queried from the dictionary
– index norm indicates the “normalized” concept, i. e. rdfs:range of an object

property, else the concept itself
– As part of recommended composition fragments, there is always a mapping

definitionmapP1→P2 that defines how interfaces have to be coupled possibly
incorporating mediation techniques. For more complex fragments, there can
of course be multiple definitions, one per channel in the fragment.

The generation process distinguishes essentially two cases. First, the basic case
where nothing is selected by the user. The basic configuration for properties
leverages the label or the name of the ontology concept annotated as type. To
ease understanding for the user, the current value of the property is shown as well
if it is set. A capability <A, E, iR> is displayed utilizing the human-readable
labels given for A and E, e. g. search a route, following the scheme:

aLabel(A) art() dLabel(E)

Secondly, labels are adapted to the user selection which serves for clarifying cause
and effect. The algorithm built upon a generic rule set takes the 1-layer of r0
and determines the label for representations on the 1-layer rather than r0 itself.
Thereby, rj ∈ S and ri ∈ T are treated differently. Further, dots are appended
or prefixed to clarify the reading direction.

A Property Is Focused. When selecting r0, re-labelling the 1-layer of a prop-
erty distinguishes properties and capabilities.

rj ∈ S or ri ∈ T is a property. When connecting two properties is possible, it
depends on whether r0 is the target or source of the connection. In the first case
a rj ∈ S is renamed according to the scheme

Use dLabel(V aljprop|Typejprop) as . . .

148 C. Radeck, G. Blichmann, and K. Meißner

where Typeprop denotes the type concept and V alprop the currently set value of
a property. In the other case, the rule slightly differs, and a ri ∈ T is labeled:

Use dLabel(V al0prop|Type0prop) as dLabel(Typeiprop)
For illustration, consider the examples listed in the following table.

rj ∈ S r0 ri ∈ T

Typeprop = Location Typeprop = hasCenter Typeprop = Location

Use location (Dresden) as . . . Center Use center as location

ri ∈ T is a capability. The selected property r0 can serve as input for a represen-
tation ri = << Ai, Ei, iRi>,P i

in,P
i
out >, where mapTypeprop→P i

in
is a injection

and Typeparam denotes the single matched parameter’s type. Hereby, we dis-
tinguish whether the normalized entity and the normalized type of the single
parameter are mediable. If not and if the Typeparam,norm is equal to or super-
concept of Typeprop,norm, we utilize the following scheme:

aLabel(Ai) art() dLabel(Ei) using art() dLabel(Typeprop)

Another option is, that Typeparam is part of the concept Typeprop,norm and can
be queried from instance data at runtime (SplitRule).

aLabel(Ai) art() dLabel(Ei) using art() dLabel(Typeparam) of art()
dLabel(Typeprop)

r0 ri ∈ T

Typeprop = hasCurrentLocation <<Search, Hotel, ⊥ >, {Location, Time} >

Current location Search a hotel using the current location

Typeprop = Event <<Display, Hotel, � >, {Location, Time} >

Event Search a hotel using the location of the event

Contrary, if entity and parameter are mediable, a shorter rule applies to provide
more compact labels (CompRule). Analogously, the SplitRule is used.

aLabel(Ai) art() dLabel(Typeprop)

r0 ri ∈ T

Typeprop = hasCenter <<Display, Location, � >, Location >

Center location Display the center location

Typeprop = Event <<Display, Location, � >, Location >

Event Display the location of the event

If the capability represented by ri offers multiple parameters (|P i
in| > 1), there

may of course be several possible mappings between the property and those
parameters. Then, the options are declared via the suffix (SuffixRule):

as dLabel(Typeparam)

r0 ri ∈ T

Typeprop = hasCenter <<Search, Route, ⊥ >, {hasStart, hasDest} >

Center Search a route using the center as start

Search a route using the center as destination

CapView – Functionality-Aware Visual Mashup Development 149

rj ∈ S is a capability. The selected property r0 can consume the output of a

representation rj = << Aj , Ej , iRj>,P j
in,P

j
out >, where mapP j

out→Typeprop
is a

injection and Typeparam denotes the single matched parameter’s type.

Use art() aLabel(Aj)pp dLabel(Ej) as art() . . .

Use art() dLabel(Typeprop) of art() aLabel(A
j)pp dLabel(Ej) as art() . . .

rj ∈ S r0

<<Select, Location, � >, Location > Typeprop = hasCenter

Use the selected location as the . . . center location

<<Select, Event, � >, Event > Typeprop = hasCenter

Use the location of the selected event as the . . . center location

It is possible that not all p ∈ P{in|out} of a representation are covered. However,
this is not subject to the label generation, but visualized via an exclamation-
mark at the connection after the latter has been established.

A Capability Is Focused. If a rj ∈ S or a ri ∈ T is a property, the rules
presented previously apply. Thus, only the case of coupling two capabilities is
discussed in detail now. As with properties, we check whether the condition for
CompRule holds. To this end, both entities have to be equal, identical or in
inheritance relation. The same condition is checked for the mapped parameters’
types. The resulting pattern is:

. . . to aLabel(Ai) art() aLabel(A0)pp dLabel(E0)

r0 ri ∈ T

<<Select, Location, � >, Location > <<Display, Location, � >, Location >

Select a location . . . to display the selected location

In the case CompRule is not applicable, the scheme shown below is used, and
SplitRule and SuffixRule are utilized as required. In principle, depending on the
mapping definition, there may be n by- and k as-parts (the latter are omitted
if k = 1) in the resulting label, where n and k are the number of matched
parameters in P 0

out respectively in P i
in.

. . . to aLabel(Ai) art() dLabel(Ei)

(
by art()

[
dLabel(Type0,nparam) of art()

]
aLabel(A0)pp dLabel(E0)

[
as dLabel(Typei,kparam)

]
k

)
n

For some examples, consider the following table.

150 C. Radeck, G. Blichmann, and K. Meißner

r0 ri ∈ T

<<Select, Location, � >, Location > <<Search, Hotel, ⊥ >, Location >

Select a location . . . to search a hotel by the selected location

<<Select, Event, � >, Event > <<Search, Hotel, ⊥ >, Location >

Select an event . . . to search a hotel by the location of the
selected event

<<Select, Location, � >, Location > <<Search, Route, ⊥ >, {hasStart, hasDest} >

Select a location . . . to search a route by the selected location as
start

Similarly, capability representations providing input for r0 are handled, where n
and k are the number of matched parameters in Pout,j respectively in Pin,0.(

. . . by art()
[
dLabel(Typej,nparam) of art()

]
aLabel(Aj)pp dLabel(Ej)[

as dLabel(Type0,kparam)
]
k

)
n

rj ∈ S r0

<<Select, Location, � >, Location > <<Display, Location, � >, Location >

. . . by a selected location Display location

<<Select, Event, � >, Location > <<Search, Hotel, ⊥ >, Location >

. . . by the location of a selected event Search a hotel

Analogously to property rules, if there are parameters of the underlying interface
part that are not covered yet, a hint is shown to the user.

4.4 Interaction Mechanisms to Establish Connections

Creating connections between two representations requires an active selection r0.
The procedure can be started by selecting the input or the output port to activate
it. For convenience, if there is exactly one port, it is directly activated. Then,
recommended connections are further restricted according to S or T of r0.

Since there may exist several similar capabilities whose only difference is the
parameter signature of the underlying operation or event, clustering takes
place. Thereby, all representations for a particular component with the same
activity and entity are grouped. The weather panel, see Fig. 3, offers two opera-
tions annotated with capability <Display, Weather, �>. One requires a location
parameter and the second an additional date. Different outputs, i. e., events of
a clustered capability are transparently handled for the user and are not shown
explicitly. When determining recommendations the events are investigated sep-
arately, and the correct one is chosen before implementing the channel in the
mashup. A major advantage of our approach is this possibility to abstract from
interface details, like heterogeneous signatures and overloaded operations.

When clustering is required, the user has to choose the alternative he desires.
Furthermore, in case there is no unambiguous parameter mapping possible, the

CapView – Functionality-Aware Visual Mashup Development 151

user has to confirm or adapt it. To this end, as introduced in Sect 4.3, different by-
and as-parts are determined by the label generator. Those options are displayed
and set to a probable configuration as delivered by a recommendation. However,
due to space limitations and in order to preserve spatial correlation, instead of
revealing the complete label, representations hide details in a collapsed state at
first. Therein, only the essential part of the label is shown, and on mouse-over,
the representation expands. Consider the represented capability with label . . . to
search flights. . . in Fig. 3, where the expanded state is illustrated. It shows several
ports for each matching parameter of r0, and options for the corresponding
parameters of the target capability. In the collapsed state, the label would be a
concise . . . to search flights and no options would be visible. Similarly, capability
representations rj ∈ S are handled.

After clicking the desired port or via drag&drop, the data flow oriented con-
nection is created. Subsequently, the platform checks whether the new connection
is “sufficient”. If, for example, a parameter of the underlying operation is not
assigned, an exclamation mark appears (c. f. Fig. 3) and provides general hints
and the possibility to request recommendations. When cancelling the current
selection, all labels are reset to their base configuration.

5 Evaluation

5.1 Methodology

We conducted a user study utilizing the think aloud protocol. 10 users in the
age of 22 – 37 participated and were asked to fill a questionnaire to gather de-
mographic and skill-related data. They are students from different fields like
mechanical or electrical engineering, media and computer science, and logic.
The participants had no or very basic knowledge about mashups, but frequently
use web applications. 5 users described their programming skills as average, so
that we could evaluate the suitability of CapView not only for non-programmers.

After a short introduction to mashups and the CapView, two scenarios of
increasing complexity in the travel planning domain, each comprising five tasks,
were presented by the interviewer. Based on a click prototype similar to Fig. 3
covering core UI and interaction concepts, each scenario includes a mashup ap-
plication with UI and service components. In the first scenario, comprising four
UI and one service component, the basic understanding of the exploration and
interaction mechanisms was checked. Thereby, task like identifying which compo-
nents can help to search flights, and connecting capabilities so that it is possible
to search and book hotels had to be solved. The second scenario focused on the
concepts for creating and manipulating connections using parameter mappings
and extends the first scenario to confront the participants with a non-trivial
mashup. Participants were asked to extend the mashup to be able to find events
in the target location, search public transportation from the hotel to the event
location and display the weather. Thereby, users had to reconfigure connections
and handle multiple parameters. According to the think aloud protocol, while
task solving, they were encouraged to express what they are doing and why,

152 C. Radeck, G. Blichmann, and K. Meißner

and what system behavior they expect. The interviewer observed and supported
them if necessary. We were interested in whether participants are able to solve
the tasks. Additionally, after completing their tasks, users were asked to fill
out a questionnaire about their perceived task load and their assessment of the
CapView’s suitability using the System Usability Scale (SUS). Further, users
were encouraged to comment on things they liked or disliked.

5.2 Results

As an important result, all participants were able to solve the tasks. Speed and
efficiency differs depending on the user’s background. In general, key concepts
of CapView were perceived very positive. The basic idea of CapView to provide
a functional abstraction for non-programmers was approved by all participants.
Since CapView overlays the LiveView, the spatial correlation to live components
is facilitated and eased the understanding of component functionality.

Further, natural language labels of capabilities were considered sufficiently
intuitive (70%) to understand the functionality of components and to realize a
mashup as a task-solving entity. 80% of the participants found highlighting con-
nectible ports very helpful and even stated that they would not have been able to
succeed without it. In line with this, the proposed context-sensitive adaptation
of labels supported the understanding of connectibility. The combination of all
exploration means (focusing, highlighting, label generation, appending or pre-
fixing dots to build sentences, component name) eased the hurdles significantly.
Due to reduced complexity and to improved clarity, 80% of the participants liked
the overview and detail metaphor of expanding and collapsing representations.

We observed, that users used both approaches the concept offers to establish
connections, i. e., starting with input respectively output ports. This underlines
the necessity to provide both approaches to not constraint the user.

However, we discovered that users repeatedly faced the following difficulties.
First, it is hard for non-programmers to understand the concept of service com-
ponents. This lead to misinterpretations of capabilities, for example, a user as-
sumed that search flights (see Fig. 3) directly displays the results as well. Thus,
those details should be appropriately abstracted as well in future work.

In addition, it became evident that the expectations on components’ function-
alities are highly influenced by the users’ experience with web applications like
Google Maps. As a consequence, meaningful capabilities have to be provided. In
this regard, we found that users interpreted input and output ports differently:
In a more human-centered perspective, they expected that, for example, select
an event only has an input. This partly contradicted with the system-oriented
perspective we used when annotating components, where select an event provides
output. However, after a short time they grew familiar with our perspective. Few
users had problems to realize that CapView abstracts from instance data. Thus,
LiveView and CapView should be stronger interwoven.

CapView – Functionality-Aware Visual Mashup Development 153

To get a widely-accepted evaluation scale, we additionally surveyed the SUS
score as well as the Task Load Index. The average SUS score equals 78.5, with
a maximum of 92.5 and a minimum of 70. We consider this as a good result
with regard to the preliminary status of our prototype. In more detail, 80% of
the participants would like to use the system frequently in their daily life. The
system’s complexity was stated as low by 90%. 90% found it easy to use, too,
and 70% attested a quick learnability. The positive user feedback was confirmed
by the Task Load Index. For instance, mental demand and effort was assessed
between low and medium and the frustration level as very low. With regard
to their overall performance, users were very content. Due to the nature of our
study, physical and temporal demand have limited significance.

6 Conclusion and Future Work

Today, the mashup paradigm is widely-accepted as promising approach for end
user development of web applications. However, prevalent solutions only partly
meet the strict requirements of non-programmers. Mostly, interface-oriented
wiring is used, requiring technical understanding of the application. In this
paper, we propose CapView, a novel functionality-aware development view on
running mashups. It provides an overview of the capabilities and properties of
components and recommended composition fragments. CapView abstracts from
composition and implementation details.

Natural language labels for capabilities are derived and adapted with respect
to the current selection of the user. Thereby, short sentences are formed in or-
der to emphasize the functional interplay of components. This approach causes
stronger dependency on useful annotations, and may be less precise than a
extensive textual description. However, in our opinion the main advantage is
genericity. Even unforeseen constellations of components can comprehensively
be covered, which is important to meet the long tail of user needs. Further, the
dependency on human-provided documentation of every component or recom-
mendation lessens since ontological knowledge can be reused.

Consequently, non-programmers are empowered to explore the functionality
of a mashup and its building blocks, and to manipulate the mashup through
visually composing capabilities. We evaluate the CapView via a user study, and
outline the results as well as identified future challenges.

Based on the concepts introduced in this paper and the lessons learned from
the user study, we are working on stronger interweaving CapView and LiveView.
Using the CapView’s level of abstraction, we strive for an intuitive way for
the user to express his/her goal. Further, we want to derive capabilities and
their relationships from more complex composition fragments, and elaborate
functionality-based visualization of recommendations in LiveView and CapView.

Finally, after finishing the integration of the CapView in our demo prototype,
we plan to conduct an extensive user study to evaluate the overall platform in
comparison to existing mashup platforms.

154 C. Radeck, G. Blichmann, and K. Meißner

Acknowledgments. Funding for the EDYRA project is provided by the Free
State of Saxony and the European Union within the European Social Funds
program (ESF-080951805).

References

1. Aghaee, S., Pautasso, C.: Englishmash: Usability design for a natural mashup com-
position environment. In: Grossniklaus, M., Wimmer, M. (eds.) ICWE Workshops
2012. LNCS, vol. 7703, pp. 109–120. Springer, Heidelberg (2012)

2. Alonso, F., Lizcano, D., Lopez, G., Soriano, J.: End-user development success fac-
tors and their application to composite web development environments. In: Sixth
Intl. Conf. on Systems (ICONS 2011) (2011)

3. Bianchini, D., Antonellis, V.D., Melchiori, M.: A recommendation system for se-
mantic mashup design. In: DEXA Workshops, pp. 159–163. IEEE (2010)

4. Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M.: Enabling end user de-
velopment through mashups: Requirements, abstractions and innovation toolkits.
In: Piccinno, A. (ed.) IS-EUD 2011. LNCS, vol. 6654, pp. 9–24. Springer, Heidel-
berg (2011)

5. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: Dashmash: A mashup environment for end user development. In: Auer, S.,
Dı́az, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166.
Springer, Heidelberg (2011)

6. Roy Chowdhury, S., Daniel, F., Casati, F.: Efficient, interactive recommendation
of mashup composition knowledge. In: Kappel, G., Maamar, Z., Motahari-Nezhad,
H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 374–388. Springer,
Heidelberg (2011)

7. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted universal composition:
Models, languages and infrastructure in mashart. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829,
pp. 428–443. Springer, Heidelberg (2009)

8. Imran, M., Kling, F., Soi, S., Daniel, F., Casati, F., Marchese, M.: Reseval mash:
a mashup tool for advanced research evaluation. In: 21st Intl. Conf. companion on
World Wide Web (WWW 2012), pp. 361–364. ACM (2012)

9. Namoun, A., Wajid, U., Mehandjiev, N.: Service composition for everyone: A
study of risks and benefits. In: Dan, A., Gittler, F., Toumani, F. (eds.) IC-
SOC/ServiceWave 2009. LNCS, vol. 6275, pp. 550–559. Springer, Heidelberg (2010)

10. Nestler, T., Feldmann, M., Hübsch, G., Preußner, A., Jugel, U.: The servface
builder - a wysiwyg approach for building service-based applications. In: Bena-
tallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189,
pp. 498–501. Springer, Heidelberg (2010)

11. Pietschmann, S., Radeck, C., Meißner, K.: Semantics-based discovery, selection and
mediation for presentation-oriented mashups. In: 5th Intl. Workshop on Web APIs
and Service Mashups (Mashups), pp. 1–8. ACM (2011)

12. Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., Meißner, K.: A
metamodel for context-aware component-based mashup applications. In: iiWAS
2010, pp. 413–420. ACM (2010)

13. Pietschmann, S., Voigt, M., Meißner, K.: Rich communication patterns and end-
user coordination for mashups. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.)
ICWE 2012. LNCS, vol. 7387, pp. 315–322. Springer, Heidelberg (2012)

CapView – Functionality-Aware Visual Mashup Development 155

14. Radeck, C., Lorz, A., Blichmann, G., Meißner, K.: Hybrid recommendation of
composition knowledge for end user development of mashups. In: ICIW 2012,
pp. 30–33. XPS (2012)

15. Rümpel, A., Radeck, C., Blichmann, G., Lorz, A., Meißner, K.: Towards do-it-
yourself development of composite web applications. In: Proceedings of the Intl.
Conf. on Internet Technologies & Society 2011 (ITS 2011), pp. 231–235 (2011)

16. Tietz, V., Pietschmann, S., Blichmann, G., Meißner, K., Casall, A., Grams,
B.: Towards task-based development of enterprise mashups. In: iiWAS 2011,
pp. 325–328. ACM (2011)

17. Wilson, S.: D3.3 prototype implementation of the omelette live environment: Phase
1. Tech. rep., ICT Omelette (2012)

Social Spreadsheet

Juan José Jara Laconich, Fabio Casati, and Maurizio Marchese

University of Trento, Dept. of Information Engineering and Computer Science Via
Sommarive 5, 38123 Povo (TN), Italy

{juan.jara,casati}@disi.unitn.it, maurizio.marchese@unitn.it

Abstract. Social media data is growing exponentially, to the point
where it is already hard to analyze. Consequently, there is a need to
increase the number of people analyzing this data, to make sense out of
it and, if possible, react to it. However, accessing this data is not simple
because it is behind a knowledge barrier, which can only be overcome
either with learning or with money. To considerably lower this barrier,
we implemented the Social Spreadsheet, which is a spreadsheet template
that we extended with functions that make simple the retrieval of so-
cial media data. Moreover, the collected data is ready to be analyzed
by end-users, who can use formulas, custom functions, charts, and other
commonly known spreadsheet features to create visualizations similar to
the ones offered by commercial applications. To validate our work, we
demonstrate how end-users can easily implement the same dashboards
as the ones offered by popular social media analysis tools.

Keywords: Spreadsheet-based Applications, Social Media Analysis,
End-user Programming.

1 Introduction

The adoption of smartphones exploded and, with it, the use of social networks,
which in turn caused an exponential growth of the already available social media
data. Social media data is the data that is obtained from the different social net-
works like Facebook, Twitter, YouTube and others. The types of social media
data that are most used are the ones that indicate demographic information,
location, interactions and user preferences.1 People from different fields (mar-
keting, health, sociology, etc.) are looking forward to access this data, to analyze
it and use it for different purposes like performing prediction analysis, improv-
ing advertising campaigns, getting feedback for a service or product, obtaining
communities insights and so on.

Currently, the people interested in accessing to social media data have to
choose between two options to get it. The first option is to get the data through
one of the multiple available web applications like Simply Measured [1], Social
Bakers [2], Sprout Social [3] or other social media analytics web applications.

1 http://www.emarketer.com/Article/

Marketers-Use-Social-Media-Data-Drive-Campaigns/1009682

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 156–170, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.emarketer.com/Article/Marketers-Use-Social-Media-Data-Drive-Campaigns/1009682
http://www.emarketer.com/Article/Marketers-Use-Social-Media-Data-Drive-Campaigns/1009682

Social Spreadsheet 157

The problem is that these applications usually charge a fee for the data or put
some constraints to the request or to the provided data. The second option is to
develop an application that will get directly the data from the social network.
The problem with this option is that is available only to the people with pro-
gramming knowledge and, moreover, most social networks (like Facebook) do
not allow data extraction for personal use.

There are a few applications for social network analysis that get data for free
from social networks, like NodeXL [4]; unfortunately, this data is specifically for
social network analysis and thus, is of little use for doing other types of analysis.

In this context, we implemented the Social Spreadsheet, which is our approach
to provide a user-friendly environment for working with social media data.

In order to meet our objectives, we need to overcome some challenges:

– The representation of social network entities in the spreadsheet tabular lay-
out: A social networks entity is a complex data, it can have single-valued
attributes (like name, gender or birthday), multi-valued attributes (like spo-
ken languages or interests) and it can be related to other entities (e.g., a
user has friends, photos, etc.). The challenge here is defining a mapping for
these complex entities into the simple typed cells (string, number, date) of
the spreadsheet and its tabular layout.

– Abstract the social network API (Application Programming Interface) model
into the spreadsheet function model: we need to use spreadsheet functions
to connect to social networks APIs and get data from them. Some of the
characteristics of spreadsheet functions (like cell referencing or automatic re-
fresh) can affect negatively the user experience (like unnecessary or unwanted
calls to the social networks APIs). The challenge here is in deciding which
characteristics we want to keep, change or avoid to provide a user-friendly
experience without deviating too much from the spreadsheet paradigm.

In our proposal, we define custom functions that abstract from the users the
calls to the social networks APIs. These functions, which are common to the
spreadsheet paradigm, provide to users a familiar method to access social media
data. The combination of these functions and the spreadsheet features creates
an environment where users can create visualizations similar to the ones found
in the market. More specifically, with the Social Spreadsheet we provide:

– A conceptual model for representing the entities for which we can get data
from the social networks,

– A set of functions that abstract the social network API model and that
offer to spreadsheet users a more familiar method for getting social media
data, and

– A process for providing extra-features that support the reuse of
user-designed visualizations and creation of time series reports and charts.

We provide all the above in the well-known spreadsheet environment. Spread-
sheets are intuitive, easy to use and are specifically designed for the manipulation
and visualization of data.

158 J.J. Jara Laconich, F. Casati, and M. Marchese

The remainder of this paper is organized as follows. In the next section we
explain our motivation for doing this work. In Section 3, we explain the state of
the art on obtaining data from social networks and presenting it on spreadsheets.
In Section 4, we present our proposal for a Social Spreadsheet. In Section 5, we
describe how we implemented our proposal. In Section 6, we introduce some
related work and compare them to our proposal. In Section 7, we validate our
approach by implementing data visualizations similar to the ones offered by
commercial applications for social media analysis. In Section 8 we discuss future
works.

2 Background and Design Principles

People working in health, sociology, marketing and other fields need to constantly
analyze data related to their respective target groups and communities [5,6,7].
The source of this data is usually the result of census, surveys, questionnaires
or other similar sources which gather the data manually. Lately, with the boom
of social networks, the people who analyze social data noticed that the data
gathered by social networks in months was far richer than the data gathered by
their usual sources in years.

At this point, it was evident that the interesting data was in the hand of
businesses, and therefore, the people interested in working with it had to use the
tools provided by these businesses. Sometimes, this situation resulted in people
using a tool for doing one type of work when the tool was designed for doing
another type, e.g., using a social network analysis tool for doing social media
analysis.

Among the most popular tools for the manipulation and analysis of data
are the spreadsheet applications. In fact, the characteristics of the spreadsheet
paradigm make the spreadsheet an environment where is easy and intuitive for
users to view and interact with data [8,9,10,11]. Among the spreadsheet charac-
teristics defined in [8], the most important are:

– The tabular layout that makes easy to visualize and manipulate collections
of entities,

– The operators for creating or modifying cell contents, which can be applied
to a single cell or to a range of cells (such as an entire row), and

– The dependencies between cells that manage the propagation of changes
between referenced cells, i.e., when a cell is modified, the content of its
dependent cells will be updated automatically.

The work in [12] estimates that by 2012 there will be approximately 55 million
spreadsheet users, and this is only in the United States. This does not mean that
all these people will benefit from our proposal, but for the ones that will work
doing social media analysis, our proposal will be of great help and will lower the
entrance barrier to the field of social media analysis.

Spreadsheets are one of the most successful end-user programming applica-
tions. For example, a user creates a spreadsheet and uses formulas to solve some

Social Spreadsheet 159

calculations. Later, the user can reuse the spreadsheet for new calculations just
by changing the values of the input cells, that is, the user is able to abstract the
algorithm from the data.

On the basis of the above considerations, in our work we focused our attention
on the spreadsheet paradigm. Our goal is to give users the ability to create
spreadsheet reports, charts and visualizations similar to the ones available in
the commercial tools by facilitating to these users the access to the data that
they need (social media data) in a spreadsheet environment (considered the most
suitable environment for doing data manipulation and analysis).

3 State of the Art

In this section we explain the works and proposals that we found related to the
retrieval of social media data from social networks and the presentation of this
data on spreadsheets. We start explaining the methods for representing social
media data in the tabular layout of the spreadsheets and then, the different
approaches for using custom functions to call social networks APIs.

3.1 Represent Social Media Data in Spreadsheets

To copy data from social networks to spreadsheets, we need to define a map-
ping that indicates to the application how to put the obtained data into the
spreadsheet cells. We found two approaches for defining these mappings in the
applications and proposals that we studied:

– The first approach defines a straightforward mapping of the entities to the
spreadsheet cells, i.e., each entity attribute is mapped to one cell. If the
entity has an attribute that represents a collection, the attribute is mapped
as a new entity and printed separately (usually in a different sheet). Most of
the tools and proposals that we found use this approach, e.g., [4,1].

– The second approach defines a mapping where a single cell contains the
representation of a whole entity (with its instances). The data of the entity
can be accessed using a formula language that allows a cell to reference a
specific attribute of a specific instance of the entity. A detailed explanation
of this approach can be found in [11,13].

3.2 Call APIs with Spreadsheet Custom Functions

In the spreadsheet paradigm, a formula or function can take as input the refer-
ence to a cell or to a range of cells (this is besides the normal parameters that
are usually passed to the function). The result or output of the function has a
similar behavior; the result can be a single value that will be printed in the same
cell where the function is defined or, the result can be a set of values that will be
printed in the cell where the function is defined plus the cells to its bottom and
its right (depending on the range of the result). In some of the analyzed works,

160 J.J. Jara Laconich, F. Casati, and M. Marchese

we found interesting proposals for custom functions that combine the previous
input/output options with the interconnection to other applications APIs.

In [10], the authors define (single cell input and single cell output) custom
functions that use the cell value to call applications APIs. The authors then
propose to define data flows between services by making custom functions ref-
erence cells that contains other custom functions and thus, allowing users to
easily construct service mashups. If the input of the first function in the data
flow is modified, the rest of the values in the data flow will be updated automat-
ically due to the dependency between cells, a well-known characteristic of the
spreadsheet paradigm.

The work in [11] allows users to associate a function with a web data service
(the data service represents a single entity). Each time the function is used it
will get from its related source a collection of entities (a function with no cell
input but a multi cell output). The entity attributes, the number of items in the
collection and how the data will be visualized are configured by the user. What
is interesting from this approach is the implementation of a framework that
supports the update of the data on the spreadsheet whenever the data in the
source changes. The framework also supports the update in the other direction,
i.e., when the data in the spreadsheet is modified by the user, the corresponding
data in the source is also updated, when possible.

The functions in both cases take into account the active cell when they print
their results and thus, they follow the standard behavior of functions of the
spreadsheet paradigm. The work in [4] implements functions that do not follow
this standard behavior. These functions get data from applications APIs and
print their results in cells predefined by the functions algorithms without taking
into account the active cell position.

4 Social Spreadsheet

Our proposal consists of extending spreadsheet-based applications with custom
functions for accessing social media data. We think that the combination of
these functions with the characteristics of the spreadsheet paradigm creates a
user-friendly environment for the design and creation of social media data visu-
alizations.

We start with the presentation of a conceptual model for representing the so-
cial media data that we get from social networks. Then, we present the functions
that connect the entities from our model with the social network APIs. Finally,
we introduce two special templates; one for recording the execution of functions
in a script that can be executed later to produce the same layout using different
data sources; the other for computing periodically metrics that will allow users
to easily create time series charts and reports.

4.1 Social Media Conceptual Model

In this section we focus on the creation of visualizations for social media analysis,
and thus, we limit the data that we get from social networks to the data that is

Social Spreadsheet 161

most useful for this type of analysis. We designed our conceptual model based
on the Facebook API model2 because at the moment Facebook is the most used
social network.

We show our social media conceptual model in Fig. 1. The entities that we
abstracted are the following:

– User: this entity represents the current user (the user that is using the tool).
Some of the attributes that we get for the current user (if available) are its
name, gender, current location, birthday, relationship status, etc. The user
can have friends, albums, photos and posts.

– Friends: this entity represents a social network user that has a friend con-
nection with the current user. The attributes that we get for friends are
the same attributes that we get for the current user. The friends can have
albums, photos and posts.

– Pages: this entity represents a business or brand profile in a social network.
Some of the attributes that we get for pages (if available) are their name, page
link, page category, and business website. Moreover, we get two attributes
that are very popular in the social media analysis field, the likes count and
the people talking about this count.3 The page can have albums, photos and
posts.

– Albums: this entity represents a photo album defined by a user or page.
Some of the attributes that we get for albums (if available) are their name,
photo count, description, link, cover photo, etc. An album can contain
photos.

– Photos: this entity represents a photo uploaded to the social network by a
user or page. Some of the attributes that we get for photos (if available) are
their name, link, time of upload, etc.

– Posts: this entity represents a message post created by a user or page.
Some of the attributes that we get for posts (if available) are their name,
type, message, link, etc.

Figure 1 shows the entities that we model from social networks and how they
relate to each other. We consider these relations when we define the spreadsheet
functions that we present in the next section. We do not do a complex mapping
of the entity with the spreadsheet cells like in [11], we just map each entity
attribute to one cell.

The conceptual model was designed based on the Facebook entities but it
could be used to some extent to get the entities of other social networks. For
example, social networks like twitter and Google+ have the user entities which
are similar to our user entity and the attributes of these entities can be mapped
to the attributes of our model. Also, our post entity is similar to the activities
entity of Google+ or the Tweets entity of Twitter. For the friends entity we
need to extend the model because in Twitter and Google+ this relationship is

2 http://developers.facebook.com/docs/reference/api/
3 For more details about these attributes check
http://developers.facebook.com/docs/reference/api/page/

162 J.J. Jara Laconich, F. Casati, and M. Marchese

Fig. 1. The social media conceptual model

asymmetrical (if user A is a friend of user B it does not mean that user B is a
friend of user A).

4.2 Spreadsheet Social Functions

We defined two types of custom functions for getting data from social networks
into spreadsheets. The data functions, which are functions used to get the in-
stances of an entity from the social network, and the metric functions, which are
functions that computes a metric for an instance of an entity.

Figure 2(a) shows a generic form of a data function. The characteristics of
this type of functions are the following:

– Name: the name of the function indicates the type of the retrieved instances,
e.g., friends, photos, albums, etc. The entities available for retrieval are the
ones that are present in the conceptual model.

– Input: this type of functions takes one input parameter that represents the
id of the owner of the retrieved instances, e.g., in Fig. 2(b) the function will
get all the photos for the user which id is 112233. If the id is null or empty
the function will get the instances that belong to the current user.

– Output: this type of functions produces a multi-valued result. The range of
the result depends on the number of attributes (one column per attribute)
and the number of instances (one row per instance) that is retrieved.

Social Spreadsheet 163

– Cell dependency: cell dependency is not activated for this type of func-
tions, i.e., the API to get the instances will be called only one time, if the
input parameter changes the API will not be called again and the results
will still correspond to the old input.

Figure 2(c) shows a generic form of a metric function. The characteristics of this
type of functions are the following:

– Name: the name of the function indicates the metric that will be computed,
e.g., number of likes, number of comments, number of female friends, etc. The
available metrics were implemented according to the most popular metrics
found in several social analysis tools.

– Input: this type of functions takes one input parameter that represents the
id of the instance for which the metric will be computed, e.g., in Fig. 2(d)
the function will get number of likes for the photo which id is 446677.

– Output: this type of functions produces a single-valued result.
– Cell dependency: cell dependency is activated for this type of functions,

i.e., the metric will be computed each time the input value changes.

Fig. 2. (a) Generic data function. (b) Data function that gets the list of photos for the
friend with id=112233. (c) Generic metric function. (d) Metric function that counts
the number of likes for the photo with id=446677.

4.3 Special Purpose Templates

As examples on how to support the users in the manipulation and visualization of
social media data we designed two sheet templates; one to support the automatic
creation and reuse of user visualizations and, the other to support the creation
of time series reports and charts.

The template that supports the creation and reuse of user visualizations uses
the first and second column of sheet. The first column is used to record all the
user actions (which include data manipulation and execution of functions) and
the second column is used to store the position where the action occurred. Figure
3 shows an example of this template. The purpose of this template is to create a
script that describes the process of creation of a visualization layout. The script
can be used later to generate the same layout but using a different data source,
this is done by changing either the executed function or the function parameter.
This feature can be used to compensate the lack of cell dependency of the data
functions.

164 J.J. Jara Laconich, F. Casati, and M. Marchese

Fig. 3. Template for recording and executing action scripts

The template that supports the creation of time series reports and charts uses
the first row and, the first to third columns. The first column is used to store
the ids of the entity instances for which a metric will be computed. The second
column is used to store the description of the entity instances whose ids are in
the first column, this will save time to the user that will not need to search all
over the spreadsheet to which instances correspond the ids in the first column.
The third column is used to store the metrics that will be computed for the
entity instances of their corresponding rows. This template has an associated
function that is executed periodically (the interval is defined by the user). The
periodic function, on each execution, gets the first not used column and prints the
current timestamp on the first row of that column. Then, for each row, executes
the metric function specified in the third column using as input parameter the
id specified in the first column. Finally, the result of the metric computation is
printed on the column where the last timestamp was stamped. Figure 4 shows
an example of this template. After some executions of the periodic function the
template will have the necessary data for the creation of time series reports and
charts.

5 Implementation

We implemented the Social Spreadsheet by extending a Google spreadsheet with
the functions described in Sec. 4.2 using the Google App Script scripting lan-
guage. The spreadsheet is public and can be used by anyone with a Google
account.

We published the Social Spreadsheet in the Google template gallery4. The
template can be found by typing Facebook Analytics Template in the search
template box. To use the template, users need to get an access token from our
application website5. In the next section we explain how to get the access token
and why it is needed.

4 https://drive.google.com/templates
5 https://comealong.me/fb/sp/socialspreadsheet/

Social Spreadsheet 165

Fig. 4. Template for computing metrics periodically

5.1 Authentication with Social Networks

In order to interact with social networks, applications need to authenticate them-
selves with the social networks. If the authentication process is successful, the
social network gives an access token to the authenticated application. The ap-
plication can now interact with the social network passing with each request the
given access token.

In our implementation, the authentication process is implemented outside of
the spreadsheet. We did not include the authentication process in the spreadsheet
due to a limitation of the scripting language at the moment of the implementa-
tion of the Social Spreadsheet. We continuously monitor the language updates
to check if this limitation has been removed.

To get the access token to make the spreadsheet functional, users need to go
to the application website and do the authentication process there, at the end of
the process they will get the access token for the spreadsheet. The token expires
after two months, after that it can be refreshed just by visiting the application
website.

5.2 Google Spreadsheet vs. Excel

Why we choose Google Spreadsheet instead of Excel for the implementation of
the Social Spreadsheet? We actually started to implement the Social Spread-
sheet for Excel because we consider Excel as a more mature and more complete
spreadsheet tool than Google Spreadsheet. However, we found that some critical
functions that were available for the Windows version of Excel were missing for
the Mac version of Excel. For this reason we changed the implementation tool
to Google Spreadsheet.

166 J.J. Jara Laconich, F. Casati, and M. Marchese

Implementing the Social Spreadsheet for Google Spreadsheet has its advan-
tages with respect to Excel. The main advantages are that it is free for anyone
with a Google account and that it has more portability because Google Spread-
sheet is a web application and is available to anyone with an internet connection
and a compatible web browser.

Either way, for users that feel more comfortable working with Excel, they
can use the Social Spreadsheet to get the all social media data that they need
and export it to Excel from the Google Spreadsheet. Then, they can continue
working with the data in Excel but without the added support of the Social
Spreadsheet functions.

6 Related Work

Social media data is continuously growing with the constant flow of new posts,
comments, tweets and likes; all these data is drawing the attention of more and
more marketers that want to analyze it for getting consumer insights among
other information. This growing interest in social media data did not go unno-
ticed by the software market, which increased its offer on applications for content
analysis, dashboards and reports based on the analysis of social media data.

There is an extensive list of web applications for social media analysis. We
selected and investigated some of the applications that are considered the most
interesting according to a few blogs and articles that we found on the web.678

From the applications that we investigated, the following are the ones that we
consider most relevant: Simply Measured [1], Social Bakers [2], Inside Network
[14], Sprout Social [3] and Page Lever [15]. All of them offer several reports,
charts and dashboards. Table 1 shows the classification of these tools according
to the following features:

– Data provision capability: indicates to what extent they provide social
media data on spreadsheets. The possible values are:

• None, which means that they do not provide data at all;
• Limited, which means that they provide data but limited with constraints
to the request or to the provided data and;

• Full, which means that they provide all the requested data.

– Pricing: indicates under what payment model the data is being provided.
The possible values are:

• Free, which means that no money is paid for getting the data and;
• Subscription, which means that a periodic fee is paid for getting the data.

6 http://www.convinceandconvert.com/social-media-tools/

the-39-social-media-tools-ill-use-today/
7 http://thenextweb.com/socialmedia/2011/09/02/

the-best-new-social-media-analytics-tools-of-the-year-so-far/
8 http://thenextweb.com/socialmedia/2012/03/18/

50-mostly-free-social-media-tools-you-cant-live-without-in-2012/

http://www.convinceandconvert.com/social-media-tools/the-39-social-media-tools-ill-use-today/
http://www.convinceandconvert.com/social-media-tools/the-39-social-media-tools-ill-use-today/
http://thenextweb.com/socialmedia/2011/09/02/the-best-new-social-media-analytics-tools-of-the-year-so-far/
http://thenextweb.com/socialmedia/2011/09/02/the-best-new-social-media-analytics-tools-of-the-year-so-far/
http://thenextweb.com/socialmedia/2012/03/18/50-mostly-free-social-media-tools-you-cant-live-without-in-2012/
http://thenextweb.com/socialmedia/2012/03/18/50-mostly-free-social-media-tools-you-cant-live-without-in-2012/

Social Spreadsheet 167

Table 1. Classification of social media analysis tools according to their data provision
capability and payment model

Currently, the Social Spreadsheet does not provide all the complex charts and
reports as the previous classified tools. Instead, the Social Spreadsheet provides
the needed data in a suitable and user-friendly environment for the creation of
similar visualizations and for free.

We found other related works that get data from the web to spreadsheets
using spreadsheet functions but the scope of these works are different than ours:

– NodeXL [4], which is an Excel template that gets data from social networks
but with the only scope of doing social network analysis. Moreover, the
entities that can be obtained are fixed; users can only choose the entity
attributes they want to get.

– In [10], the authors propose the creation of service mashups by concatenat-
ing spreadsheet functions using the cell dependency characteristic of spread-
sheets. The defined functions get data from public APIs that do not require
authentication and, take a single-valued input and produce a single-valued
output.

– Finally, in [11], the authors also propose the creation of mashups using
spreadsheet functions. The authors propose spreadsheet functions that get
data from public APIs that do not require authentication, take none or a
single-valued input and produce a multi-valued output and, propagates data
changes between the data source and the spreadsheet (the propagation can
be bidirectional if it is allowed by the source).

7 Validation

In this section we validate our proposal by implementing one data visualization
that is similar to the ones offered by commercial applications (like the ones
mentioned in the previous section).

In this example, we show the process for building a bar chart visualization for
comparing two popular soda brands using two metrics, the likes count and the
people talking about this count. Figure 5 shows all the data necessary to build
the visualization and the resulting chart. Each step of the explanation will use
as reference the data shown in Fig. 5:

168 J.J. Jara Laconich, F. Casati, and M. Marchese

Fig. 5. Bar chart for comparing two soda brands using the likes count and the people
talking about this count metrics

1. We copy the links of the Facebook pages of the desired brands in the first
row.

2. We get the data for each page by positioning the active cell on the cell
where the page link is and then we select the menu item Get Page under
the Facebook functions menu. The page data will be copied under the cells
where the page link is (as shown by Fig. 5).

3. We put the data in a format that is accepted by the bar chart. We need to
put all the brand names as row headers and the metric names as column
headers (columns A, B, C and rows 11- 13 of Fig. 5).

4. We select the range of the table created in step 3 and select the option to
add a bar chart. The result should be similar to the observed in Fig. 5.

The above 4 steps illustrate how simple is to create one of the most popular
visualizations. More examples can be found in our application website9.

8 Conclusion and Future Work

With our proposal we demonstrated how end-users can create visualizations
similar to the ones offered by commercial tools. This also served to demonstrate
the great potential of spreadsheet applications as end-user programming tools.

9 https://comealong.me/fb/sp/socialspreadsheet/

Social Spreadsheet 169

Spreadsheet applications can be easily extended by the addition of custom
functions. However, if the targets of the extended application are end-users, the
functionality added should be minimal and, if possible, comply with the char-
acteristics of the spreadsheet paradigm. This is to maintain the simplicity and
familiarity that end-users are accustomed to find when working with spread-
sheets.

The proposed conceptual model is based on the Facebook data model. As a
part of our future research we need to study how to abstract or extend more
the conceptual model to comply with the data models of other popular social
networks like Twitter or Google+. Furthermore, we want to conduct a usability
study to evaluate how actual end-users perceive our proposal and to receive
feedback of features or functionality that we could have omitted.

Acknowledgments. This work was supported by funds from the BPM4People
project (http://www.bpm4people.org) of the EU FP7 Capacities program.

References

1. Social Media Analytics, From Data to Deliverables, http://simplymeasured.com/

2. Socialbakers: Social Media Marketing, Statistics & Monitoring Tools,
http://www.socialbakers.com/

3. Sprout Social: Social Media Management, Social CRM for Business,
http://sproutsocial.com/

4. NodeXL: Network Overview, Discovery and Exploration for Excel,
http://nodexl.codeplex.com/

5. Mackay, H.: Information and the Transformation of Sociology: Interactivity and
Social Media Monitoring. tripleC-Cognition, Communication, Co-operation 11(1),
117–126 (2012)

6. Hansen, D.L., Rotman, D., Bonsignore, E., Milić-frayling, N., Rodrigues, E.M.,
Smith, M., Shneiderman, B., Capone, T.: Do You Know the Way to SNA?: A
Process Model for Analyzing and Visualizing Social Media Data. Group 56(3),
1–10 (2009)

7. Thackeray, R., Neiger, B.L., Hanson, C.L., McKenzie, J.F.: Enhancing promotional
strategies within social marketing programs: use of Web 2.0 social media. Health
Promotion Practice 9(4), 338–343 (2008)

8. Chi, E.H., Riedl, J., Barry, P., Konstan, J.A.: Principles for information visualiza-
tion spreadsheets (1998)

9. Ballinger, D., Biddle, R., Noble, J.: Spreadsheet visualisation to improve end-user
understanding. In: Proceedings of the Asia Pacific Symposium on Information Vi-
sualisatio, vol. 24, pp. 99–109. Australian Computer Society, Inc. (2003)

10. Hoang, D.D., Paik, H.Y., Benatallah, B.: An analysis of spreadsheet-based services
mashup. In: Proceedings of the Twenty-First Australasian Conference on Database
Technologies, ADC 2010, vol. 104, pp. 141–150. Australian Computer Society, Inc.,
Darlinghurst (2010)

11. Kongdenfha, W., Benatallah, B., Vayssière, J., Saint-Paul, R., Casati, F.: Rapid
development of spreadsheet-based web mashups. In: Proceedings of the 18th Inter-
national Conference on World Wide Web, WWW 2009, pp. 851–860 (2009)

http://www.bpm4people.org
http://simplymeasured.com/
http://www.socialbakers.com/
http://sproutsocial.com/
http://nodexl.codeplex.com/

170 J.J. Jara Laconich, F. Casati, and M. Marchese

12. Scaffidi, C., Shaw, M., Myers, B.: The 55M End-User Programmers Estimate Re-
visited. Technical Report February, Carnegie Mellon University (2005)

13. Saint-Paul, R., Benatallah, B., Vayssière, J.: Data services in your spreadsheet? In:
Proceedings of the 11th International Conference on Extending Database Technol-
ogy: Advances in Database Technology, pp. 690–694. ACM (2008)

14. Research and Analysis of the Facebook & Mobile App Ecosystems,
http://research.insidenetwork.com

15. PageLever: Analytics & Social Marketing Tools for Facebook Pages,
http://pagelever.com/

http://research.insidenetwork.com
http://pagelever.com/

User-Driven Automation of Web Form Filling

Oscar Diaz, Itziar Otaduy, and Gorka Puente

Onekin Research Group, University of the Basque Country (UPV/EHU),
San Sebastián, Spain

{oscar.diaz,itziar.otaduy,gorka.puente}@ehu.es

Abstract. Form-intensive Web applications are common among insti-
tutions that collect bulks of data in a piecemeal fashion. European fund-
ing programs or income tax return illustrate these scenarios. Very often,
most of this data is already digitalized in terms of documents, spread-
sheets or databases. The task of manually filling Web forms out of these
resources is not only cumbersome but also prone to typos. It does not
benefit from the fact that the data is already in electronic format. Alter-
natively, externally-fed autofilling scripts can be programmed (e.g. using
iMacros and Visual Basic) to code once, and enact many times. Unfor-
tunately, this approach is programming intensive and fragile upon up-
grades in either the website or the structure of the external source. This
moves these tools away from users with scarce programming skills. We
strive to empower these users by abstracting the way feeding solutions
are realised. Since external sources tend to be structured, they offer the
chance to be abstracted in terms of models. Autofilling scripts can then
be generated as weavings between the external data model and the web-
site model. We describe WebFeeder, a plugin for iMacros that introduces
autofilling-script models as first-class artifacts in iMacros. The synthesis,
enactment and maintenance of these script models are handled without
leaving iMacros, minimizing users’ cognitive load and involvement.

Keywords: autofilling, MDE, web forms, iMacros.

1 Introduction

Websites can be classified based on the quantity of data they request. If the
requested data is mainly personal and limited, autofilling mechanisms are avail-
able to alleviate the tiresome task of periodically providing this information
(card holder, visa number, etc.) [1,2]. On the other side of the spectrum, some
institutional websites request a large quantity of data. We qualified websites
as “form-intensive” when they account for numerous web forms spread along
several pages. In these scenarios, the manual approach is not only cumbersome
but also prone to typos. Neither does it help the use of traditional autofilling
mechanisms (e.g. Firefox autofill) where the filling data comes from previously
filled forms but they do not benefit from external data sources. Indeed, it is very
common in these scenarios for the required data to be already available within
the organization. As an example, consider the application for R&D projects.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 171–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

172 O. Diaz, I. Otaduy, and G. Puente

The schedule, personnel, budget, etc, are all data that might well be prepared
in advance and stored as spreadsheets, documents or databases (e.g. if a wiki or
a document management system is used). In addition, the same institution (e.g.
a university) might present different projects to the same funding agency, which
results in navigating the same website many times.

So far, only script-based approaches offer a solution. Scripts can be pro-
grammed using ad hoc languages (e.g. iMacros [3], Selenium [6]). These tools
act like a record-replay device recording the interactions of the user during a
session in terms of a script. This script can next be replayed at user’s will. For
external sources, the strategy rests on creating a program that consults the ex-
ternal source (e.g. a spreadsheet), assigning the returned values to variables, and
next, enacting the script which was previously parametrized with these variables.
This permits to tap into existing data sources while automatizing repetitive data
entries.

For form-intensive websites, this approach offers a great potential. However,
its benefits are hindered by:

– requiring an important upfront investment. Form-intensive websites neces-
sarily lead to large scripts. This increases the chances of being affected by
upgrades. Script development is programming intensive. The user has to
code both the access to the external sources and the script using general-
programming languages. In addition, this code shows external dependencies
with the structure of both the external sources and the HTML pages. If up-
grades are made on the structure on either the data source or the website,
this code risks to fall apart,

– affordability. Form filling is a clerical work. Clerks manage the documents,
spreadsheets and database applications that contain the data that will even-
tually feed the website. They know the site map, the possible flows for in-
troducing the information as well as any directive concerning the feeding
process. They are the domain experts as far as the feeding process is con-
cerned. Unfortunately, clerks do not usually have programming skills, so
current scripting tools are not affordable enough for this type of users.

This paper addresses the empowering of end users to create externally-
fed autofilling scripts (hereafter just “scripts”). The approach rests on ab-
stracting scripts from code to models. This stands for a decrease in human error
and misunderstanding while improving efficiency and affordability. As a proof
of concept, the paper describes how iMacros has been leveraged from managing
script code to script models. Moving to the model realm improves iMacros af-
fordability so that end users can now synthesise, run and maintain script models
without requiring programming skills.

The paper starts by revising the related work and giving a brief about iMacros.
Section 4 outlines the approach to abstract from script code to script models,
which is later detailed throughout Sections 5, 6 and 7. Section 8 focuses on
upgrades. Conclusions end the paper.

User-Driven Automation of Web Form Filling 173

2 Related Work

Autofilling is defined as a feature of a computer program that allows filling in
forms without requiring user intervention. Aside from providing personal infor-
mation, the autofilling feature can be useful in a large number of scenarios [14].
Table 1 compares different solutions along four dimensions: mapping approach,
data origin, user involvement and process concerns.

Mapping Approach. Autofilling implies a mapping between the data and the
form fields. Three main solutions stand out to automatically infer this mapping.
First, string matching based on HTML field attributes (e.g. name, label or id).
This approach is illustrated by Google Toolbar [2] or Firefox Autofill Forms [1].
Second, semantic annotation e.g. using Microformats [4]. Microformats can make
a website machine-readable by adding special markup to mark recognizable data
items (such as events, contact details or geographical locations). Firmenich et al.
propose the use of Microformats to set up the mapping between HTML rendered
elements and the data source [12]. A similar approach but using HTML5 features
rather than Microformats is introduced in [13]. Third, conceptual mapping. Un-
like the previous techniques, now the mapping is achieved at the conceptual level.
Form clues (e.g. id, label) are mapped to lexical words which are next compared
with ontologies that contain synonyms and abbreviations, such as WordNet or
DBpedia. Carbon [7] is a case in point. This application is “able to extract rele-
vant metadata from the previously filled forms, semantically enrich it, and use
it for aligning fields between web forms”. Four, script-based mapping. Previous
approaches trade accuracy for user involvement. That is, they reduce the en-
gagement of the user at the expense of less precise results. If user collaboration
is possible, the mapping can be recorded as a client-side script using tools such
as iMacros [3] or Selenium [6]. These tools act like a record-replay device. Once
recorded, the script can replay the interactions at user’s will. This is useful if the
user wants to fill out one form with different values (i.e. distinct replays) but it
does not serve to automatically fill out new forms.

Data Origin. Feeding data can be obtained from previous feeding processes or
existing documentation. The former is illustrated by Google Toolbar or Firefox

Table 1. Autofilling approaches

Mapping
Approach Data Origin User

Involv. Process Concerns

Firefox
Autofill string matching previous fillings none filling

Carbon conceptual
mapping previous fillings none filling

iMacros script-based external sources high filling & navigation
WebFeeder script-based external sources high filling & navigation

174 O. Diaz, I. Otaduy, and G. Puente

Autofill Forms. Alternatively, forms can be filled out from external sources. For
example, Safari permits to tap into the Address Book [5] while CoScripter Tables
[9] uses spreadsheets. In the commercial side, both iMacros and Selenium permit
populating web forms from databases and text files.

User Involvement. This dimension admits three values based on the contri-
bution of the user: (1) no-involvement : no additional effort is required from the
user as data is automatically collected from the filling of other forms (e.g. Google
Toolbar), (2) low involvement : the user provides an example that is later used
to fill out similar forms, and (3), high involvement : the user facilitates a script
that can be parametrized and replay with different values.

Process Concerns. The filling process can tackle different concerns. It can
only focus on the filling, include data validation, or allow to be extended along
different pages then, addressing page navigation as well. Most autofilling appli-
cations concentrate on form filling, though iMacros and Selenium also support
navigation.

Table 1 frames our approach to related work. We focus on form-intensive
websites. In this setting, feeding scripts from external sources offers an attractive
solution to tap into existing resources within the organization. In addition, user
involvement should be reduced on the search for making clerks self-sufficient.
This rules out the manual programming of the scripts. Moreover, automatically
obtaining the mapping using semantic closeness also turned out to be difficult
when addressing a whole website. The main insight of this work is to tap into the
information structure of the external sources to abstract and guide the mapping
process so as to make it affordable to clerks. Therefore, the challenge is not
so much about feasibility but affordability. Before delving into the details, we
provide a brief on iMacros, the framework that underpins our approach.

3 A Brief on iMacros

Figure 1 depicts a web form for project application at the CDTI website, a
Spanish funding body. Let us consider a scenario where: (1) the data has already
been digitalized in terms of databases or spreadsheets, and (2) the organization
(e.g. a university) applies for different projects, and hence, the very same forms
need to be filled out over and over again. As in other software settings, repetitive
tasks are worth being automatized through macros.

iMacros is an extension for the main web browsers which adds record and re-
play functionality for a web session. The autofilling life cycle is conducted along
two steps: (1) record the autofilling script as the user navigates throughout the
site; and (2), replay the script at wish. Broadly, iMacros scripts are a sequence
of navigation commands (e.g. the URL command opens a new webpage) and
automated interactions on the current page (e.g. the TAG command performs
some action on a web element). Autofilling wise, iMacros admits three strategies:
(1) the data is provided at recording time as a script constant; (2) the data is
provided at replaying time by prompting the user; and (3), the data is obtained

User-Driven Automation of Web Form Filling 175

VERSION BUILD=7401110
TAB T=1
URL GOTO=https://solicitudes.cdti.es/
 GestionSolicitudes/Direcciones.aspx
TAG POS=1 TYPE=INPUT:RADIO ATTR=ID:Desarrollo_rbDirParticular
TAG POS=1 TYPE=SELECT ATTR=ID:Desarrollo_cboTipoVia
 CONTENT=%178
TAG POS=1 TYPE=INPUT:TEXT
 ATTR=ID:Desarrollo_txtDireccion
 CONTENT={{STREET}}
TAG POS=1 TYPE=INPUT:TEXT
 ATTR=ID:Desarrollo_ucLocalidadLugar_ltxtCodPostal
 CONTENT={{ZIP}}
TAG POS=1 TYPE=SELECT
 ATTR=ID:Desarrollo_ucLocalidadLugar_ldropProvincias
 CONTENT=${{STATE}}
TAG POS=1 TYPE=INPUT:IMAGE
 ATTR=ID:Desarrollo_ucLocalidadLugar_btnBuscar
TAG POS=1 TYPE=SELECT
 ATTR=ID:Desarrollo_ucLocalidadLugar_ldropLocalidad
 CONTENT=${{CITY}}
TAG POS=1 TYPE=INPUT:TEXT
 ATTR=ID:Desarrollo_txtTelefono CONTENT={{PHONE}}

1
2
3
-
4
5
-
6
-
-
7
-
-
8
-
-
9
-

10
-
-

11
-

iMacros script

sql = "select * from PROJECT inner join COMPANY on
 PROJECT.main_company = COMPANY.id where PROJECT.id = 1"
set rs = rs.Execute(sql)
set iim1= CreateObject ("imacros")
iret = iim1.iimOpen("")
do until rs.eof
 'Set the variable
 iret = iim1.iimSet("STREET", rs.fields("street"))
 iret = iim1.iimSet("ZIP", rs.fields("zip"))
 iret = iim1.iimSet("STATE", rs.fields("state"))
 iret = iim1.iimSet("CITY", rs.fields("city"))
 set phone_number = Mid(rs.fields("tlf1"),1, 3)+"-"+
 Mid(rs.fields("tlf1"),4, 3)+"-"+
 Mid(rs.fields("tlf1"),7, 3)
 iret = iim1.iimSet("PHONE", phone_number)
 iret = iim1.iimPlay(mypath & "Macros\add_address.iim")
 If iret < 0 Then
 MsgBox "Error code: "+cstr(iret) + VbCrLf
 End If
 rs.movenext
loop

1
-
2
3
4
5
6
7
8
9

10
11
-
-

12
13
14
15
16
17
18 Visual Basic Script

Fig. 1. CDTI form example. Parametrized iMacros script (top) and its VBS script
configuration counterpart (bottom).

at replaying time by querying external sources. If data is provided at recording
time, the autofilling follows the life cycle: “record > play”. If data is to be ob-
tained from external sources, the life cycle is enlarged with two additional steps:
“record > parametrize > configure > play”. Parametrize basically means to turn
values for data input into variables. Configuration implies to code a program
that instantiates these variables.

Figure 1 shows an example for the CDTI form sample. At the top, the iMacros
script once parametrized as denoted by the expressions {{variable}}. At the bot-
tom, the configuration step which is realized through Visual Basic Script (VBS)
code. Configuration mainly involves four concerns: querying the database (line
1), validating the data format (line 11), establishing database-to-script variable
mappings (lines 7-10, 12) and enacting the iMacros script (line 13). By far,

176 O. Diaz, I. Otaduy, and G. Puente

DB

WWW WWW

VBS Script

Data Metamodel

iMacros script FormFlow model

Weaving model

coupled to
abstracted as

iMacros WebFeeder

Fig. 2. From script coding to script modeling

establishing the mapping is the most complex task. Notice that parametrization
and configuration are not supported by iMacros but handled externally (e.g.
using a VBS editor).

From a corporate perspective, the use of this solution for feeding form-intensive
websites rises two issues. First, this solution might require an important upfront
investment (e.g. the script for the CDTI case study took more than 20 hours to
develop). This investment can be put in jeopardy if the structure of either the web
pages or the external sources are upgraded. Second, affordability. Clerks are the
domain experts as far as the feeding process is concerned. They know about the
documents, spreadsheets and database applications that contain the data that will
eventually feed the website. They also know about the site map, the possible flows
for introducing the information as well as any directive concerning the feeding pro-
cess. However, they cannot set the solution by themselves: VBS is strange to them.
Even a tiny change in the website (potentially breaking the script) makes them
dependent on the availability of the always-busy computing department.

Configuration (i.e. the manual coding of the VBS script) is the Achilles’ heel
of this solution. The question is whether this code can be abstracted in terms of
a model. This would bring modelware benefits to the realm of Web autofilling:
simpler development, lower required skills, faster delivery, etc [8]. This grounds
the development of WebFeeder.

4 From iMacros to WebFeeder: From Coding to Modeling

WebFeeder is a plugin for iMacros. iMacros is realized as a sidebar where ar-
tifacts (i.e. iMacros scripts) can be recorded, edited and played. We extended
iMacros with a second type of artifact: feeders (see Figure 3). Feeders are
abstractions of form filling scripts (i.e. script models). Feeders can be synthe-
sised from iMacros scripts, and run , i.e. transformed from models into macros,

User-Driven Automation of Web Form Filling 177

(2.2)

(2.1)

(1)
(3)
(4)

Fig. 3. WebFeeder extends iMacros to support the life cycle of feeders: record (2.1),
weave (2.2), synthesise (3) and run (4)

and next, enacted. This round-trip from scripts to feeders yields the very same
script if all data is constant and provided by the user at recording time. How-
ever, we extended iMacros with a configuration parameter: the external data
sources (Figure 3(1)). This permits WebFeeder to obtain a rudimentary concep-
tual model from this external source before recording. At recording time (Figure
3(2.1)), when an input field is detected, the user is prompted to set the map-
ping between the entry field and the conceptual model. Figure 3(2.2) shows this
layered menu for the sample case. The C.Postal input field is mapped to the zip

178 O. Diaz, I. Otaduy, and G. Puente

Fig. 4. Pushing the buttons in iMacros: the LoadDataSource button (Figure 3(1)),
the Synthesis button (Figure 3(3)), and the Run button (Figure 3(4)).

attribute of the Company class when playing the role PROJECT.mainCompany.
The important point to notice is that this mapping information is captured as
part of the sample iMacros script being recorded. At synthesise time (Figure
3(3)), a feeder is obtained from the recorded macro and stored as part of the
iMacros artifacts (e.g. the CDTI_feeder folder in Figure 3). At run time (Figure
3(4)), the feeder is transformed back into an iMacros script where mapping links
are resolved during the transformation process so that the resulting script is a
totally valid (i.e. totally instantiated) iMacros script. The whole process goes on
without programming nor leaving the iMacros sidebar.

Implementation wise, three Ecore (meta)models are involved (see Figure
2(right)): (1) form filling scripts are abstracted in terms of FormFlow models, (2)
the structure of the data source (e.g. the database schema) is captured as a Data
metamodel, and (3), the VBS script is mainly expressed as a weaving model be-
tween a FormFlow model and a Data metamodel. The aforementioned feeders
are realized as pairs (FormFlow model, Weaving model) (see the CDTI_feeder
folder in Figure 3).

Feeders can be synthesised and run . Figure 4 depicts the processes trig-
gered when pushing the namesake button in iMacros. During synthesis, in-
jectors are used to obtain the FormFlow model (i.e. the platform-independent
model (PIM)) and the Weaving model out of the sample iMacros script. At run
time, the feeder is enacted, i.e, (i) references to external sources are resolved, (ii)
an iMacros model (i.e. the platform-specific model (PSM)) is generated merg-
ing the information contained into the FormFlow, the Weaving and the Data
models, (iii) this iMacros model is transformed into an iMacros script, and (iv)
this script is run. Next sections introduce the main models that comprise the
WebFeeder system and their extraction processes.

User-Driven Automation of Web Form Filling 179

5 Abstracting the External Sources

The Data Metamodel. It stands for the elements and structure of the external
source. If a database then, the Data metamodel captures the database schema as
represented in the database catalogue. If a spreadsheet then, the Data metamodel
denotes the tabular structure where data is ordered along different sheets and
columns.

Injection. No matter the data source, the challenge is twofold. First, we need
“a metamodel injector” that automatically obtains the Data metamodel out of
the structure of the data source (e.g. the database schema, the spreadsheet file
structure). Second, we require a “model injector” which harvests models out of
a data source according to a given metamodel.

In a previous work [11], we studied model injection for databases, providing a
language, Schemol, for defining database-to-model injectors. Schemol also per-
mits to perform an automatic extraction of a metamodel based on a database
schema. This feature, called bootstrap, transforms tables into metaclasses,
columns into attributes, and foreign keys into references between metaclasses.
This work has been extended to permit data sources other than databases. The
approach is based on defining appropriate “drivers” that permit to conceptu-
alize spreadsheets as databases, where sheets are the tables counterparts. The
Schemol engine is the same but the driver changes. So far, drivers are available
for Excel spreadsheets. Figure 5(right) shows the Data metamodel automatically
obtained by Schemol for our sample database (Figure 5(left)). Each project has
a main company, a set of participating companies, a manager and a set of users.
Meanwhile, each employee is associated with the company he works for. Both
companies and employees can be associated with several projects.

6 Abstracting the Form Filling Process

The FormFlow Metamodel. A FormFlow model abstracts the process of
filling in a specific web form. This process abstracts a valid sequence of user
interactions with the aim of form filling. The model includes: (i) the elements
that compose the web form (e.g., type of inputs, ids), (ii) the order of the
interactions (e.g., which input comes after another, when do we have to click a
button, etc.) and (iii) the existence of loops (i.e. a set of pages that can be filled
more than once during the same process, e.g. adding many users to a project).

A FormFlow model abstracts a filling process through a Session class (see
Figure 6). A session is a sequence of PageVisits which in turn, are conceived
as sequences of Interactions. Interactions can be AtomicInteractions or
CompoundInteractions. Atomic interactions are classified as mouse Click or
data Input . Clicks act upon Hyperlinks or Buttons, and they are usually used for
page navigation. Input elements require the user to introduce data. On the other
hand, a compound interaction stands for a meaningful unit of interactions (e.g.
an HTML form element). Loops can be defined when many similar elements
need to be introduced through the same section of the web form (e.g. adding

180 O. Diaz, I. Otaduy, and G. Puente

Indexes

PROJECT

main_company INT(11)
year VARCHAR(45)
acronym VARCHAR(45)
title VARCHAR(45)

manager INT(11)

id INT(11)

Indexes

USERS

project_id INT(11)
employee_id INT(11)

Indexes

PARTICIPANTS

project_id INT(11)
company_id INT(11)

Indexes

COMPANY

phone INT(11)
name VARCHAR(45)
id INT(11)

email VARCHAR(255)
street VARCHAR(255)
city VARCHAR(255)
zip VARCHAR(255)
state VARCHAR(255)

Indexes

EMPLOYEE

email VARCHAR(45)
id_company INT(11)

phone INT(11)
last VARCHAR(45)
first VARCHAR(45)
id INT(11)

id : ELong
name : EString
phone : EString
email: EString
street: EString
city: EString
zip: EString
state: EString

COMPANY

id : ELong
first : EString
last : EString
phone: EString
email: EString

EMPLOYEE

id : ELong
title : EString
acronym : EString
year : EString

PROJECT

main_company
1

manager
1

users
1..*

participants
1..*

@users
1

id_company
1

@participants
1

Fig. 5. Harvesting the Data metamodel out of database catalogues

users to a project). Each loop contains a reference to its trigger interaction (i.e.
the button to access the first form in the loop) and the set of involved pageVisits.

Injection. FormFlow models can be automatically obtained from iMacros
scripts. This process goes through the recorded macro and for each action, creates
the corresponding FormFlow model element. For each URL or TAG command
performed on a button or hyperlink, a Click element is created. On the other
hand, when a TAG command is performed on an HTML input field, an Input
element is generated. If the system detects that one command has been enacted
in a different page than the previous one, a new PageVisit is generated. Within
each visited page, for each different HTML form element whose fields have been
enacted a CompoundInteraction is created. Besides, if the transformation detects
that a concrete set of pages have been filled out more than once, it automatically
creates the corresponding Loop element. Figure 7 depicts the FormFlow model
obtained from the iMacros script in Figure 1.

7 Abstracting the Mapping

The Weaving Metamodel. A mapping sets a feed relationship from attributes
in the Data metamodel to input fields in the FormFlow model. This mapping
is captured as “link” elements along an AMW model [10]. A link states a nexus
(in this case, a feed relationship) that indicates which data is to feed what input
field.

Injection. Weaving data is collected as part of the recording process. That is, we
prompt the user for the weaving information when iMacros encounters an input
field. This is achieved through the FormFlowDecorator (see Figure 3(2.2)). When

User-Driven Automation of Web Form Filling 181

Interaction

id: EInt

id_attr : EString
name_attr : EString

CompoundInteraction

id_attr : EString
txt_content : EString
name_attr : EString
label : EString

AtomicInteraction

id: EInt

Session

control_type: InputType
required : EBoolean
mask : EString
pattern : EString
default : EString

Input

control_type : ClickType

Click

interactions
1..*

firstInteraction
1

next
0..1

interactions
1..*

firstInteraction
1

- TEXTFIELD
- TEXTAREA
- HIDDEN
- PASSWORD
- RADIO
- SELECT
- CHECKBOX

<<enumeration>>
InputType

- SUBMIT
- BUTTON
- HYPERLINK
- IMAGE

<<enumeration>>
ClickType

url : EString

PageVisit

pageVisits
1..*

firstPageVisit
1 next

0..1 Loop

id: EInt

pageVisits
1..*

triggerInteraction
1

loops
0..*

Fig. 6. The FormFlow metamodel

Fig. 7. Harvesting the FormFlow model out of iMacros scripts

182 O. Diaz, I. Otaduy, and G. Puente

an input field is detected, the FormFlowDecorator pops up to collect the other
participant in the link relationship: the attribute of the Data metamodel. In the
example, the input field C.Postal is detected in a web form. This makes the
decorator pop up, requesting its Data metamodel counterpart. In this way, the
iMacros script is leveraged with weaving data as part of the recording process.
In addition, the user can also provide the mask, the pattern and a default value
for the input field at hand. Similar to the previous cases, an injector is defined
to extract the Weaving model out of the enriched iMacros script. No additional
user intervention is required.

8 Facing Upgrades

Section 3 characterises current solutions as being programming intensive and
fragile. WebFeeder moves this endeavour from the programming realm to the
modeling realm, and in so doing, reduces the effort and the skills required to
obtain a solution. However, models (i.e. feeders) are still fragile. That is, upgrades
on either the website or the structure of the data source can make the feeder
break apart. This section addresses this issue.

Table 2. A classification of upgrades for websites and database schema. Frequency is
based on anecdotal evidences from the test case.

Change Frequency Contingency action
Create table low None
Drop table low Update Weaving model
Add column high None
Drop column high Update Weaving model

New Page low Regenerate the feeder from start
Delete Page low Regenerate the feeder from start
New Form low Update FormFlow model

Delete Form low Update FormFlow model
New Field high Update FormFlow model

Delete Field high Update FormFlow model

Table 2 typifies some of the possible changes. Upgrades can be handled using
corrective or preventive actions. A corrective action deals with an upgrade that
has occurred, and a preventive action addresses the potential for an upgrade to
occur. We opted for a preventive strategy for tackling upgrades. That is, before
running the feeder, we first check whether an upgrade occurred. If so, the user
is prompted so as to reestablish the consistency between the feeder and the
external dependencies (i.e. the website or the database schema). To this end,
we introduce the “safe mode” for running feeders. Microsoft Windows’ safe
mode is a boot method that facilitates to diagnose problems. Likewise, when
upgrades are expected, feeders can be run in “safe mode”. Compared with the

User-Driven Automation of Web Form Filling 183

normal execution, this mode introduces two main differences as for the feeder -
to-iMacros transformation, namely:

– the transformation is not enacted as a single shot but it processes one
PageVisit at a time. This introduces a kind of “lazy evaluation” where the
transformation of pageVisit elements and the enactment of the resulting
iMacros scripts are intermingled: transform(pageVisit_1, scriptOutput_1),
enact(scriptOutput_1), transform(pageVisit_2, scriptOutput_2),
enact(scriptOutput_2), etc. The rationales are twofold. First, this permits
to phrase upgrade detection in terms of model differences between the exist-
ing pageVisit model and the current pageVisit model as extracted from the
current page . Second, upgrade resolution is also handled at the page level,
hence facilitating the intervention of the user at the time and at the place
where the mismatch is detected (see next point).

– the transformation is leveraged with “caution clauses”. Two types of cau-
tion clauses are introduced to handle each type of upgrades. For upgrades
on web pages, a caution clause is introduced before the generation of the
corresponding iMacros script. On loading, the clause obtains the FormFlow
model only for the page at hand: the current “pageVisit” model. This model
is compared for the namesake page in the existing FormFlow model: the
stored “pageVisit” model. If mismatches, the FormFlowDecorator pops up
for the user to restore the consistency. Second, for upgrades on external
sources, a caution clause is introduced after the update of each pageVisit.
This clause checks the mapping established on the Weaving model with the
existing Data metamodel elements. If a reference does not match any Data
metamodel element, the user is prompted to restore the consistency by pro-
viding a new mapping. Once these models are updated, the autofilling for
the current page is enacted.

Fig. 8. Upgrading the sample form with a new field

184 O. Diaz, I. Otaduy, and G. Puente

Figure 8 illustrates the case of upgrading the sample form with a new field.
WebFeeder detects a mismatch between the current FormFlow model and the
pageVisit model as extracted from the current page. The execution stops and
the user is prompted to provide a data weaving for the new field (if appropriate).
Next, the execution resumes.

The bottom line is that feeder co-evolution is handled using the very same
mechanisms that those of feeder construction, hence minimizing the cognitive
burdens. Clerks can cope with (small) upgrades by themselves without turning
to technical staff. Disruptive upgrades like introducing new tables or adding or
deleting pages, require re-generating the feeder from scratch.

9 Conclusions

We address the feeding of form-intensive websites from external sources. Cur-
rent solutions such as iMacros are characterized as programming intensive and
fragile, hence, moving these tools away from their more likely audience: clerks.
We strive to empower back clerks by abstracting the way at which feeding so-
lutions are realized. The approach abstracts the development effort from the
coding of iMacros scripts to the conception of models (i.e. feeders) from which
these scripts are generated. In addition, feeder co-evolution (i.e. propagating
website/data structure upgrades to the feeder) is handled using the very same
mechanisms that those of feeder construction, hence minimizing the cognitive
burdens. Clerks can cope with (small) upgrades by themselves without resort-
ing to technical staff. The approach is realized through WebFeeder, a plugin for
iMacros. WebFeeder introduces script models (i.e. feeders) as first-class artifacts
in iMacros. Feeder synthesis, enactment and maintenance is handled without
leaving iMacros. Next follow-on includes to conduct studies on the robustness
and affordability of WebFeeder. A detailed account of the typology of website
upgrades and their likelihood, will serve to better assess WebFeeder robustness.
So far, only one clerk has participated in the design of WebFeeder. A more ample
feedback is required.

Acknowledgments. Thanks are due to Inmaculada Cacho for her evaluation
of WebFeeder. This work is co-supported by the Spanish Ministry of Education,
and the European Social Fund under contract TIN2011-23839, and the Ministerio
de Industria, Turismo y Comercio under contract TSI-020500-2010-206. Otaduy
enjoys a doctoral grant from the Basque Government under the “Researchers
Training Program”.

References

1. Firefox autofill forms plugin. Online, http://autofillforms.mozdev.org (last ac-
cessed February 19, 2013)

2. Google toolbar. Online, http://toolbar.google.com/ (last accessed February 19,
2013)

http://autofillforms.mozdev.org
http://toolbar.google.com/

User-Driven Automation of Web Form Filling 185

3. iMacros. Online, http://www.iopus.com/iMacros/ (last accessed February 19,
2013)

4. Microformats. Online, http://microformats.org// (last accessed February 19,
2013)

5. Safari - autofill. Online http://www.apple.com/safari/ (last accessed February
19, 2013)

6. Selenium plugin. Online, http://docs.seleniumhq.org (last accessed February
19, 2013)

7. Araujo, S., Gao, Q., Leonardi, E., Houben, G.-J.: Carbon: Domain-Independent
Automatic Web Form Filling. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G.
(eds.) ICWE 2010. LNCS, vol. 6189, pp. 292–306. Springer, Heidelberg (2010)

8. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Synthesis Lectures on Software Engineering. Morgan & Claypool Pub-
lishers (2012)

9. Cypher, A.: Automating Data Entry for End Users. In: 2012 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pp. 23–30 (2012)

10. Fabro, M.D.D., Bézivin, J., Valduriez, P.: Weaving Models with the Eclipse AMW
Plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe, Citeseer, vol.
2006 (2006)

11. Díaz, O., Puente, G., Izquierdo, J.L.C., Molina, J.G.: Harvesting Models from Web
2.0 Databases. Software & Systems Modeling 12(1), 15–34 (2013)

12. Firmenich, S., Gaits, V., Gordillo, S., Rossi, G., Winckler, M.: Supporting Users
Tasks with Personal Information Management and Web Forms Augmentation. In:
Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp.
268–282. Springer, Heidelberg (2012)

13. Heinrich, M., Gaedke, M.: WebSoDa: A Tailored Data Binding Framework for
Web Programmers Leveraging the WebSocket Protocol and HTML5 Microdata.
In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757,
pp. 387–390. Springer, Heidelberg (2011)

14. Scaffidi, C., Cypher, A., Elbaum, S., Koesnandar, A., Myers, B.: Using Scenario-
based Requirements to Direct Research on Web Macro Tools. Journal of Visual
Languages & Computing 19(4), 485–498 (2008)

http://www.iopus.com/iMacros/
http://microformats.org//
http://www.apple.com/safari/
http://docs.seleniumhq.org

Generating Feature Usage Scenarios

in Client-Side Web Applications

Josip Maras1, Maja Štula1, and Jan Carlson2

1 University of Split, Croatia
{josip.maras,maja.stula}@fesb.hr

2 Mälardalen University, Sweden
jan.carlson@mdh.se

Abstract. Client-side web applications are highly-dynamic event-driven
GUI applications where the majority of code is executed as a response
to user-generated events. Many software engineering activities (e.g. test-
ing) require sequences of actions (i.e. usage scenarios) that execute the
application code with high coverage. Specifying these usage scenarios
is a difficult and time-consuming activity. This is especially true when
generating usage scenarios for a particular feature because it requires
in-depth knowledge of application behavior and understanding of the
underlying implementation. In this paper we present a method for au-
tomatic generation of feature usage scenarios. The method is based on
dynamic analysis and systematic exploration of the application’s event
and value space. We have evaluated the approach in a case study, and
the evaluation shows that the method is capable of identifying usage sce-
narios for a particular feature. We have also performed the evaluation on
a suite of web applications, and the results show that an increase in cov-
erage can be achieved, when compared to the initial coverage obtained
by loading the page and executing registered events.

Keywords: Web Applications, Symbolic Execution, GUI Testing.

1 Introduction

The client-side of a web application is a highly dynamic, event-driven envi-
ronment where features manifest at runtime, triggered by sequences of user
events – usage scenarios. Specifying these usage scenarios is a difficult and time-
consuming activity and in the client-side web application domain, it is made even
more complicated due to the fact that the application is a result of interplay of
three conceptually different languages (HTML, CSS, and JavaScript), where the
most complex one – JavaScript is a highly dynamic scripting language. This
makes it difficult to understand feature behaviors and to specify usage scenarios
that capture the complete behavior of particular features.

Usage scenarios are most often used in web application testing. Current state
of practice is that developers create tests either manually, or with tools such
as Selenium1, which enable recording and replaying usage scenarios designed to

1 http://docs.seleniumhq.org/

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 186–200, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Generating Feature Usage Scenarios in Client-Side Web Applications 187

test certain features. This is a time-consuming activity and automating it would
offer considerable benefits. Usage scenarios can also be used for reuse – in our
recent work [7] we have developed methods for identifying and extracting code
and resources of client-side features based on the dynamic analysis of execution
traces recorded while executing user-specified usage scenarios. This means that
the quality of the extracted feature is highly dependent on the quality of usage
scenarios. For this reason, automatic generation of high-coverage usage-scenarios
for particular features would be beneficial.

In this work we define a method for generating usage scenarios for a partic-
ular feature in a client-side web application. The user selects parts of the page
where the target feature manifests, and the process generates usage scenarios
that achieve high coverage with respect to the selected parts of the page. The
method is based on dynamic analysis and systematic exploration of the appli-
cation’s event and value space. Initial scenarios are created based on events
registered during the initialization of the page, and new scenarios are added by
executing and dynamically analyzing the execution of already generated scenar-
ios. During scenario execution, all input parameters are symbolically tracked,
and all event registrations, as well as all data dependencies between code ex-
pressions are logged. New scenarios are generated by modifying event input
parameters, and by extending existing scenarios with registered events. Finally,
the executed usage scenarios are filtered to reduce their number, with the criteria
of still achieving high coverage.

We have evaluated the method on a case-study application, and the evaluation
shows that the method is able to generate usage scenarios that target particular
application features. We have also run the evaluation on a suite of web applica-
tions, and the evaluation shows that an increase in coverage, when compared to
the straight-forward approach of loading the page and executing all registered
events, is achieved by using systematic exploration of the application’s event and
value space.

This paper is organized as follows: Section 2 describes related work, while
Section 3 presents a conceptual model of client-side web applications that helps
us reason about the relationships between features and usage scenarios. Section 4
gives an overview of the feature usage scenario generation process, while Sections
5 and 6 go into more detail about generating and filtering usage scenarios. Section
7 describes the evaluation, while Section 8 presents the conclusion and possible
future work.

2 Related Work

Our approach is based on client-side web application testing, where the goal is
to create sequences of events that achieve high code coverage.

In [9], Mesbah et. al. describe their approach for automatic testing. The
method is based on a crawler [8] that infers a state-flow graph for all client-side
user interface states. New states and transitions are created by executing exist-
ing event handlers, analyzing the structure of the application and determining if

188 J. Maras, M. Štula, and J. Carlson

it is changed enough to warrant a new state. The crawling phase is directed ei-
ther with randomly generated input values or with user-specified values. Various
errors are detected (DOM validity, error messages, etc.) by analyzing possible
client-side user interface states.

Saxena et al. [10] present a method and a tool – Kudzu. The approach explores
the application’s event space with GUI exploration (searches the space of all
event sequences with a random exploration strategy), and the application’s value
space by using dynamic symbolic execution. In the process, they have developed
a string constraint solver capable of taking into account the specifics of string
constraints present in JavaScript programs.

Artemis [2] is an approach for feedback directed testing of JavaScript applica-
tions from which we have derived most insights when developing our approach.
The approach is based on dynamic analysis of web application execution – the
application execution is monitored and all event registrations logged. New test
cases are created by extending already existing tests with event registrations and
by generating variants of the event input parameters. For generating new event
input parameters they use randomly chosen values, and constants collected dur-
ing the dynamic execution. They also introduce prioritization functions which
influence the order in which generated test cases are analyzed.

None of the introduced client-side web application testing approaches enable
developers to target specific client-side features, nor do they enable the filtering of
generated scenarios in order to minimize the number of necessary usage scenarios.
Also, in order to improve coverage, we use the systematic exploration of the
application’s event-space (similar to [2]) and combine it with symbolic execution
(similar to [10]). On top of this, we track application dependencies by the means
of a dependency graph [7], which enables us to accurately capture dependencies
between different events, and to create event chains.

In the domain of testing server-side web applications, there exists the SWAT
tool [1], which uses search-based testing. In their approach, random inputs to the
web application are generated with additionally incorporated constant seeding
(gathered by statically analyzing the source code), and by dynamically mining
values from the execution. Although some parts of the approach could be adopted
to fit the domain of client-side applications, their method is specially developed
to deal with constraints inherent in server-side applications.

3 A Conceptual Model of the Client-Side Application

In this section we present a conceptual model of client-side web applications
(Figure 1) that will be used to reason about generating usage scenarios for a
particular feature. A feature is an abstract notion representing a distinguishable
part of the system behavior that is manifested at runtime, when a user preforms
a certain sequence of actions, i.e. a usage scenario [3].

A client-side application can be viewed as a collection of visually and behav-
iorally distinct UI elements (or UI controls). A UI control is primarily defined
in terms of its structure, but it also includes the behavior on that structure. For

Generating Feature Usage Scenarios in Client-Side Web Applications 189

Fig. 1. Client-side web application conceptual model

example, in the case study shown in Figure 3, Section 7, each marked section of
the page can be considered as a UI control.

A client-side application offers a number of features. Since client-side web ap-
plications are UI applications to server-side applications, a feature is manifested
through a number of structural changes on the client-side and/or communica-
tions with the server-side. Because a UI control encapsulates structure and the
behavior on that structure, and since features can cross-cut between different
parts of the application, we define that a single feature is implemented by at
least one UI control (Figure 1). A UI control implements a feature by reacting
to user-generated events by modifying its structure, and/or communicating with
the server from that structure. We utilize this relationship between features and
UI controls – since features are abstract, and UI controls concrete, when gener-
ating usage scenarios for a particular feature, we are generating usage scenarios
for the implementing UI controls.

3.1 Terminology

An event e is defined as a tuple e = 〈h, t〉, where h is an object on which the event
occurs (e.g. an HTML node, or the global window or document objects), and
where t is an event type. At run-time, when an event is raised it is parametrized
with properties of three different types [2]: i) event properties – a map from
strings (property names) to numbers, booleans, strings and DOM nodes, ii)
form properties, which provide string values for HTML form fields, and iii) the
execution environment properties, which represent values for the browser’s state
that can be influenced by the user (e.g. window size). A parametrized event ep

consists of an event e and parameters p associated with that event.

190 J. Maras, M. Štula, and J. Carlson

The goal of the process is to compute a set U of usage scenarios: U =
{u0, u1, ..., un} that achieves high coverage of a given feature. A usage scenario
ui is defined as a sequence of parametrized events ui = 〈ep0, ep1, ..., epm〉. A
scenario ui exercises the behavior of a given feature if every parametrized event
epi ∈ 〈ep0, ep1, ..., epm〉 is related to at least one UI control that implements the
feature. A parametrized event is related to a UI control if: i) it is called on an
html node that is a part of the UI control; ii) it modifies the structure of the UI
control; iii) in the case of ajax events, if there is a data dependency from the
request to the structure of the UI control, iv) it influences the execution of an
event related to a UI control.

4 Overview of the Usage Scenario Generation Process

Client-side applications are highly dynamic and event-driven, and the appropri-
ate way of reasoning about their control-flow is through dynamic analysis. As
input the process receives the source code of the application, and a set of UI
control selectors (e.g. css selectors, xPath expressions) that specify the UI con-
trols that implement the feature of interest. The process consists of two phases:
i) generating usage scenarios, and ii) filtering usage scenarios (Figure 2).

Fig. 2. The process of generating feature usage scenarios

The phase of usage scenario generation starts by initializing the web page –
a stage of the execution not dependent on user input. During page initializa-
tion, a number of events can be registered, and these events are the basis for
the creation of initial usage scenarios. For each event registered in the initializa-
tion phase, a new usage scenario, with default event parameter values is created.

Generating Feature Usage Scenarios in Client-Side Web Applications 191

Our approach then proceeds by selecting a usage scenarios, executing it, and
dynamically analyzing the execution. New usage scenarios are created in two
different ways: i) by modifying the usage scenario event input parameters – we
track how the event input parameters influence the control-flow, and new usage
scenarios are generated by modifying those inputs; ii) by extending event chains,
either with new instances of previously executed events whose execution depends
on the variables and objects modified during the execution of the scenario, or
with newly registered events with default parameter values. New usage scenarios
are created and analyzed until a certain coverage is achieved, a given time-budget
expended, or a target number of scenarios have been generated.

In the second phase – usage scenario filtering – execution traces of all exe-
cuted usage scenarios are analyzed, and the computed set of usage scenarios is
filtered by removing scenarios that do not contribute to the feature behavior,
and scenarios whose removal does not lower the overall coverage.

5 Generating Usage Scenarios

In this section we give a detailed description of how new usage scenarios are
created, and for this we will use the example shown in Listing 1.1.

The example application has two features: Feature 1, implemented with the UI
control defined by the first square (node with id fc, line 7), which consists of two
behaviors: i) when the user clicks on the square with the left mouse button, the
application subscribes to the mouse move events which change the color of the
first square background depending on the position of the mouse, ii) counts the
number of middle mouse button clicks on the first square, and outputs whether
this number is even or odd; and Feature 2, implemented with the UI control
defined by the second square (node with id sc, line 7), with a behavior: i) when
the user clicks on the second square it outputs the current mouse position. This
is an example of an event-driven application where code coverage depends both
on the events raised by the user, and the properties of the raised events (e.g.
which mouse button was clicked). Throughout this section we will show how the
process generates usage scenarios that target the first feature.

5.1 Generating Initial Usage Scenarios

The start of the whole process is the execution of the page loading phase with
the goal of obtaining registered events which will be used as a basis for defining
initial usage scenarios (Algorithm 1).

For each event registered at the end of the loading phase, the process assigns
default parameters to the event (e.g. for mouse clicks this means setting the
pressed button to the left mouse button, the position of the mouse to the middle
of the clicked on element; setting empty strings for HTML input elements, etc.),
and creates a usage scenario (u) with that parametrized event.

192 J. Maras, M. Štula, and J. Carlson

1 <html ><head >
2 <style >
3 .c{ width: 100px; height : 100px;}
4 #fc{ background:rgb(255,0,0);} #sc{background:rgb(0,0,255);}
5 </style ></head >
6 <body >
7 <div id="fc" class="c"></div><div id="sc" class="c"></div>
8 <script >
9 var fc = document .getElementById("fc");

10 var sc = document .getElementById("sc");
11 var fs = document .getElementById("fs");
12 var clicks = 0;
13 fc.onmousedown = function (e) {
14 if(e.which == 1)
15 fc.onmousemove = function (e) {
16 var val = e.pageX % 256;
17 this.style.background="rgb("+val+","+val+","+val+")";
18 }
19 else if(e.which == 2)
20 if (++clicks % 2 == 0)
21 this.textContent = "Even";
22 else
23 this.textContent = "Odd";
24 }
25 sc.onclick = function (e) {
26 this.textContent = e.pageX + ";" + e.pageY;
27 }
28 </script ></body ></html >

Listing 1.1. Example application

Algorithm 1. generateInitialScenarios(webAppCode)

1: executionInfo ← loadPage(webAppCode)
2: U ← empty
3: for all e : getEventRegs(executionInfo) do
4: ep ← parametrizeWithDefaults(e)
5: u ← createEmptyScenario()
6: u ← appendEventToScenario(u, ep)
7: U ← appendScenario(U , u)
8: end for

Example. In the example from Listing 1.1 this means the creation of two usage
scenarios with one event, based on the onmousedown event registration from
line 13, Listing 1.1 – u0 = 〈〈#fc, onmousedown〉 , {which : 1}〉 (left mouse button
is the default button in mouse events, represented by the value 1 of the which
property), and based on the onclick mouse registration from line 25, Listing 1.1
– u1 = 〈〈#sc, onclick〉 , {pageX : 50, pageY : 150}〉 (the click is initially executed
in the middle of the element).

Generating Feature Usage Scenarios in Client-Side Web Applications 193

5.2 Generating Scenarios by Exploring the Value Space

In order to generate scenarios by exploring the value space, we modify event
parameters by using concolic testing [4,11]. The main idea is to execute the usage
scenario both with concrete (e.g. default values for the initially created usage
scenarios) and symbolic values for event input parameters. During the execution
all encountered control-flow branches (e.g. if statements, conditional expressions,
etc.) whose branching conditions are expressions that contain symbolic variables
are added to the so called path-constraint, which carries information about how
the control-flow of the execution depends on the input parameters. In order to
build a scenario that exercises another path through the application we have to
modify the input parameters based on the path constraint. This is usually done
by systematically negating the constraints that compose the path-constraint,
and in our approach we use generational search [5]. Constraints obtained in this
way are solved with a constraint solver, which gives new event input parameter
values that exercise different execution paths. Currently we are using Choco [6]
– an of the shelf constraint solver.

Algorithm 2. createByModifyingPathConstraint(u, U , executionInfo)

1: for all invertedFormula : getInvertedFormulas(getPathConstraint(executionInfo))
do

2: result ← solveFormula(invertedFormula)
3: if result �= null then
4: 〈e0, e1, ..., en〉 ← getAffectedEvents(u, result)
5: 〈ep0, ep1, ..., epn〉 ← parametrizeEvents(〈e0, e1, ..., en〉, result)
6: U ← appendScenario(U , createScenario(〈ep0, ep1, ..., epn〉))
7: end if
8: end for

Determining default parameter domains – In addition to the constraints gath-
ered during concolic execution, some of the event parameters always fall into a
certain domain (e.g. the which property of the mouse event handler can have
only three values: 1, 2, or 3; or the mouse position parameters, such as pageX and
pageY, are constrained by the position of the element the event occurs upon).
For this reason, when constructing the constraint that will be sent to the solver,
a constraint that captures this domain of each parameter is also added.

Example. After the execution of the first usage scenario, we study its path con-
straint obtained from executing the if statement from Line 14, Listing 1.1: which
= 1. In order to cover another execution path through the application we in-
vert that constraint and obtain (which �= 1) and add the constraints inherent
to the which property: which = 1 ∨ which = 2 ∨ which = 3. For these con-
straints the constraint solver obtains the result which = 3, and the new scenario
u2 = 〈〈#fc, onmousedown〉 , {which : 3}〉 is generated. When we execute the us-
age scenario u2 the resulting path constraint is which �= 1 ∧ which �= 2, because

194 J. Maras, M. Štula, and J. Carlson

both the condition of the if statement in Line 14, and the condition of the if state-
ment in line 19 were evaluated to false. By inverting these constraints we obtain
two constraints: which �= 1∧which = 2; and which = 1, and using the constraint
solver we get two solutions: which = 2 and which = 1. The solution which = 1 is
discarded since the scenario with the exact parameters already exists, and out
of which = 2 we obtain a new scenario u3 = 〈〈#fc, onmousedown〉 , {which : 2}〉.

5.3 Generating Scenarios by Exploring the Event-Space

When generating scenarios by exploring the event-space the goal is to extend
event chains, either with events newly registered during the execution of a sce-
nario, or with already executed events that are still registered at the end of
scenario execution. Algorithm 3 gives more detail about the whole process.

Algorithm 3. createByExtendingEvents(u, U , executionInfo)

1: for all e : getEventRegs(executionInfo) do
2: if wasInstanceExecuted(e, U) then
3: for all ep : getPreviousParametrizations(e, U) do
4: if connectionExists(executionInfo, ep) then
5: un ← createCopy(u)
6: un ← appendEventToScenario(un, e

p)
7: U ← appendScenario(U , un)
8: end if
9: end for
10: else
11: un ← createCopy(u)
12: un ← appendEventToScenario(un, parametrizeWithDefaults(e))
13: U ← appendScenario(U , un)
14: end if
15: end for

After the execution of a scenario the process traverses all events that are still
registered at the end of the execution. If the event has already been executed
(at least one parametrization of that event already exists in previously executed
scenarios) then all execution logs of those events parametrizations are traversed.
During the execution of each scenario we build a dependency graph [7] which
captures the dependencies between code constructs that exist in a scenario. The
insight that we use here is: there is a potential connection between an event
and a scenario if the scenario modifies variables and/or objects on which the
control-flow of the event, either directly, or indirectly, depends on (influences
the branching conditions). If a connection exists between the execution info of
the parametrized event and the execution info of the current scenario, then a
new scenario is created by appending the parametrized event to the parametrized
events from the current scenario. If the event has not yet been executed, then the
process is similar to the process of generating initial usage scenarios – the newly

Generating Feature Usage Scenarios in Client-Side Web Applications 195

registered event is parametrized with default parameters, and a new scenario
is created by appending the parametrized event to the events from the current
scenario.

Example. When analyzing the execution of the u0 scenario, a new event,
which has not been executed so far, is registered in Line 15, Listing 1.1 –
〈#fc, onmousemove〉. This leads to the creation of a new usage scenario: u4 = 〈〈
#fc, onmousedown, {which: 1}〉; 〈#fc, onmousemove, {pageX : 50, pageY : 50}〉〉.
If we also study the process after the execution of u2 = 〈〈 #fc, onmousedown,
{which: 2}〉〉 scenario, we can see that the event 〈#fc, onmousedown〉, {which:
2} writes to the variable clicks, created outside of the event context, at line 20,
Listing 1.1. That same variable influences the control flow of the event (there
exists a data dependency from the variable clicks to the if statement condition)
– u2 is dependent on itself – a new scenario u5 is created: u5 = 〈〈 #container,
onmousedown, {which: 2}〉; 〈#container, onmousedown, {which: 2}〉.

5.4 Prioritizing Scenarios

The algorithms described in the previous sections create new usage scenarios by
systematically exploring the event and value space of the application. This means
that the number of generated scenarios considerably grows with application com-
plexity. For this reason we determine the next scenario that will be executed and
analyzed based on the following procedure: if there is a non-analyzed scenario
created by exploring the value space, or a scenario whose last event has not
so far been executed, the process selects it. If there are no such scenarios, i.e.
only the scenarios created by extending the event chain with already executed
events are available, then select the next scenario randomly with the following
prioritization function:

P = 1−

m∑
i=0

cov(ei)

m+ 1

The formula is based on the intuition that executing scenarios with events that
have already achieved high code coverage is likely to be less useful than executing
scenarios with events with low coverage [2]. After the execution of every scenario,
for every function visited during the evaluation of each event e, we recalculate
the branch coverage achieved so far. We then use the prioritization function to
guide the random selection of the next usage scenario that will be executed and
analyzed. In the prioritization function: cov represents event branch coverage
achieved so far.

6 Filtering Scenarios

In order to achieve high coverage, the process generates a number of scenarios.
However, we are typically interested in obtaining a minimal number of scenarios
that still achieve the same coverage. The main idea of this part of the process

196 J. Maras, M. Štula, and J. Carlson

is to remove events that are not related to the UI controls that implement the
feature (see Section 3.1), and to reduce the number of scenarios based on scenario
coverage.

Algorithm 4. filterUsageScenarios(U , selectors)

1: for all ui ∈ U do
2: if notRelatedToFeature(ui, selectors) then
3: U ← removeScenario(U, ui)
4: end if
5: end for
6: jointCoverage ← getJointCoverage(U)
7: for all u ∈ sortDescendingByNoOfEvents(U) do
8: if canScenarioBeRemoved(u, jointCoverage) then
9: jointCoverage ← removeScenarioCoverage(jointCoverage, u))
10: U ← removeScenario(U, u)
11: end if
12: end for

For every executed scenario, the process checks whether the scenario is related
to the specified UI controls (Section 3.1) – if it is not, the scenario is filtered away.
The process then calculates joint scenario coverage, which is a map that shows,
for each code expression, how many scenarios have executed that expression.
Then, all scenarios are traversed in descending order, starting from the scenario
with the longest event chain. For each scenario, the algorithm checks whether the
joint coverage would remain the same if the expressions executed by the scenario
would be removed. If so, the scenario is removed from the set of scenarios, and
its coverage from jointCoverage.

Example. In the example application, the scenario generation phase has gener-
ated the following six scenarios:

– u0 = 〈〈#fc, onmousedown〉 , {which : 1}〉; cov0 = {9− 15, 25}
– u1 = 〈〈#sc, onclick〉 , {pageX : 50, pageY : 150}〉; cov1 = {9− 13, 25, 26}
– u2 = 〈〈#fc, onmousedown〉 , {which : 3}〉; cov2 = {9− 14, 19, 25}
– u3 = 〈〈 #fc, onmousedown, {which: 2}〉〉; cov3 = {9− 14, 19, 20, 21, 25}
– u4 = 〈〈 #fc, onmousedown, {which: 1}〉; 〈#fc, onmousemove, {pageX : 50,

pageY : 50}〉〉; cov4 = {9− 17, 25}
– u5 = 〈〈 #fc, onmousedown, {which: 2}〉; 〈#fc, onmousedown, {which: 2}〉;

cov5 = {9− 14, 19, 20, 21, 23, 25}

First all scenarios are traversed in order to remove the ones that do not contribute
to the feature. In this case, this means the removal of scenario u1 because it
neither occurs on, nor does it modify the selected UI control (#fc). Next, a
joint coverage for the remaining scenarios is calculated. Here, we will discuss in
terms of code lines, but the algorithm in general works on AST nodes. Joint
coverage, from the perspective of executed lines, for the remaining scenarios

Generating Feature Usage Scenarios in Client-Side Web Applications 197

u0, u2, u3, u4, u5 is: 9-14→5, 15→2, 16-17→1, 19→3, 20→2, 21→2, 23→1, 25→5.
First we process the scenario u5, which can not be removed from the set because
it is the only scenario that executes line 23. Similarly, u4 can not be removed
because no other scenario executes lines 16 and 17. Scenario u3 can be removed,
because all of its lines are executed by at least one other scenario. After the
removal of u3 the joint coverage is: 9-14→4, 15→2, 16-17→1, 19→2, 20→1,
21→1, 23→1, 25→4. Similarly, u2 and u0 can also be removed.

7 Evaluation

We have performed two types of evaluation: i) on a case study application, where
we study how the process is able to generate feature usage scenarios, and ii) on
a suite of web applications, where we study the coverage the process was able to
achieve when generating test cases. All results were obtained with the Firecrow
tool2 which implements the algorithms described in this paper.

7.1 Generating Feature Usage Scenarios – A Case Study

Consider the example application shown in Figure 3 which represents a tourist
information application that enables the user to: i) toggle between different
types of accommodation (by using the select menu marked with 1, or by pressing
keyboard keys: e.g. A – Apartments, or H – hotels), ii) to select map locations
(marked with 2) with mouse clicks which will change the information and photos
displayed in the photos section (marked with 3); iii) to toggle between different
photos (marked with 3) by clicking on buttons, or by pressing keyboard buttons
(e.g. 1 for the first photo, 2 for the second photo); iv) to toggle between different
county map zoom levels (marked with 4) by clicking on the county map; v) to
automatically cycle between different event information (marked with 5).

The example application has three distinct high-level features: i) selecting
the map location and viewing its information (sections marked with 1, 2, and
3); ii) toggling between different county map zoom levels (marked with 4); and
iii) viewing event information (marked with 5). Even in the case of these rela-
tively simple features, specifying usage scenarios with high coverage is a time-
consuming activity that requires in-depth knowledge of application behavior and
the understanding of the underlying implementation. For example, a developer
who wants to specify a usage scenario that exercises the complete behavior of
the first feature has to be aware of different ways the location can be selected
(by mouse clicking on the location point in the map, by changing the type of
displayed locations through the select box, or by pressing keyboard keys), and
of different ways the photos (marked with 3) can be toggled (either with mouse
clicks on different buttons, or with keyboard presses).

We have initialized the process for each of the features with the results shown
in Table 1. For each feature, the process was able to achieve full coverage (in gen-
eral this does not have to be the case), and it was successful in generating usage

2 https://github.com/jomaras/Firecrow

198 J. Maras, M. Štula, and J. Carlson

Fig. 3. Case study application

Table 1. A case study of generating feature usage scenarios

Feature All Scenarios Kept Scenarios Gen. events User events

Feature 1 25 12 12 12

Feature 2 25 1 2 2

Feature 3 25 1 1 1

scenarios that target specific UI controls. The table shows how many scenarios
the process generated in order to achieve full coverage (column All Scenarios),
how many scenarios were kept after the filtering process (Kept Scenarios), and
how many events in total the filtered scenarios have (Gen. events). The table
also shows the minimum number of events, we were able to find, to achieve full
coverage. In this application, the process was able to generate feature scenarios
which in total have the minimal number of events we were able to determine
by studying the application code. In general, since scenarios can be picked ran-
domly from the set of generated scenarios, the generated sequences of events in
all analyzed scenarios are not necessarily minimal.

7.2 Generating Usage Scenarios for the Whole Page

For this experiment we have evaluated the approach by generating 100 tests for
a suite of web applications, most of them obtained from 10k and 1k JavaScript
challenges3. The code of all applications, and the generated scenarios can be

3 http://10k.aneventapart.com/ and http://js1k.com/

Generating Feature Usage Scenarios in Client-Side Web Applications 199

obtained from: www.fesb.hr/∼jomaras/download/usageScenarioGenerator.zip. Ta-
ble 2 shows the results. For each application it shows the lines of code (LOC),
statement coverage that can be achieved just by loading the page (L-Cov), cov-
erage that can be achieved by executing the initially registered events with de-
fault parameters (I-Cov), coverage the process was able to achieve (A-Cov), and
statement coverage that we were able to achieve by constructing event chains
manually (M-Cov). The table also shows how many scenarios were kept after the
filtering phase (Kept), and how many events have the final generated scenarios
together. On average, the process is able to achieve additional 17,6% coverage
when compared to the coverage achieved by loading the page and executing all
registered events.

Table 2. Experiment results for generating 100 usage scenarios that target whole pages:
LOC - Lines of Code, L-Cov – statement coverage on page load, I-Cov – statement
coverage on executing initially registered events, A-Cov – Achieved Coverage, M-Cov
– Maximum coverage we were manually able to achieve, Kept – Number of remaining
scenarios after filtering, Gen. Events - total number of generated events.

App LOC L-Cov I-Cov A-Cov M-Cov Kept Gen. Events

Snake 223 57,5% 63,7% 90% 98,36% 3 14

Prism 401 56,5% 70,5% 82,5% 94% 7 17

Jump 313 63,2% 65,8% 70,32% 98,23% 2 11

Agency 303 35,1% 57,4% 100% 100% 12 12

Slider 128 45,6% 71,7% 77,17% 86,41% 3 9

Minesweeper 175 59,1% 85,2% 93,91% 95,97% 6 7

3DMaker 385 18,9% 31% 42,59% 94,2% 2 8

floatwar 457 17,1% 45% 64,47% 93,7% 2 9

snowpar 352 19% 61,8% 81,5% 88,42% 19 22

3DModel 2567 17,8% 55,6% 81,8% 81,8% 24 24

8 Conclusion

Usage scenarios that execute application features with high coverage are used in
many software engineering activities, such as testing, or reuse. Manually spec-
ifying these usage scenarios is a time-consuming activity, and automating it
would bring considerable benefits. In this paper we have presented an automatic
method for generating feature usage scenarios. The method works by systemat-
ically exploring the event and value space of the application. In order to create
high-coverage scenarios we utilize techniques such as symbolic execution, and
dependency tracking. In order to reduce the number of generated scenarios, we
analyze the relationships between the scenarios and features, and remove all non-
related scenarios. We also subsume scenarios based on their coverage. We have
evaluated the method on a case study application, and the evaluation shows
that the method is able to generate scenarios that target certain application
features. We have also performed the evaluation on a suite of web applications,

200 J. Maras, M. Štula, and J. Carlson

and the results show that an increase of code coverage, when compared to the
initial coverage achieved simply by loading the page and executing all registered
events, can be achieved.

For future work we plan to expand the usage scenario process to generate tests
which take into account the server-side code, and we plan to perform the eval-
uation on a larger set of web applications. Since one motivation for developing
this approach was to support the identification of feature code by automatically
generating high-coverage usage scenarios, we plan to utilize this method in the
development of an automatic feature identification process (by extending [7]).

References

1. Alshahwan, N., Harman, M.: Automated web application testing using search based
software engineering. In: 26th International Conference on Automated Software
Engineering, ASE 2011, pp. 3–12. IEEE Computer Society (2011)

2. Artzi, S., Dolby, J., Jensen, S.H., Møller, A., Tip, F.: A framework for automated
testing of javascript web applications. In: 33rd International Conference on Soft-
ware Engineering, ICSE 2011, pp. 571–580. ACM (2011)

3. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE
Transactions on Software Engineering 29(3), 210–224 (2003)

4. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing.
ACM Sigplan Notices 40, 213–223 (2005)

5. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. NDSS
(2008)

6. Jussien, N., Rochart, G., Lorca, X.: The choco constraint programming solver.
In: CPAIOR 2008 Workshop on Open-Source Software for Integer and Contraint
Programming (2008)

7. Maras, J., Carlson, J., Crnkovic, I.: Extracting client-side web application code.
In: 21st International Conference on World Wide Web, WWW 2012, pp. 819–828.
ACM (2012)

8. Mesbah, A., Bozdag, E., van Deursen, A.: Crawling ajax by inferring user interface
state changes. In: Eighth International Conference on Web Engineering, ICWE
2008, pp. 122–134. IEEE (2008)

9. Mesbah, A., van Deursen, A., Roest, D.: Invariant-based automatic testing of mod-
ern web applications. IEEE Transactions on Software Engineering 38(1), 35–53
(2012)

10. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for javascript. In: 2010 IEEE Symposium on Security and
Privacy (SP), pp. 513–528. IEEE (2010)

11. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C, vol. 30.
ACM (2005)

Supporting Customized Views for Enforcing
Access Control Constraints in Real-Time

Collaborative Web Applications

Patrick Gaubatz1, Waldemar Hummer2, Uwe Zdun1, and Mark Strembeck3

1 Faculty of Computer Science, University of Vienna, Austria
{firstname.lastname}@univie.ac.at

2 Distributed Systems Group, Vienna University of Technology, Austria
lastname@infosys.tuwien.ac.at

3 Institute for Information Systems, WU Vienna, Austria
{firstname.lastname}@wu.ac.at

Abstract. Real-time collaborative Web applications allow multiple users
to concurrently work on a shared document. In addition to popular use
cases, such as collaborative text editing, they can also be used for form-
based business applications that often require forms to be filled out by
different stakeholders. In this context, different users typically need to
fill in different parts of a form. Role-based access control and entailment
constraints provide means for defining such restrictions. Major challenges
in the context of integrating collaborative Web applications with access
control restrictions are how to support changes of the configuration of
access constrained UI elements at runtime, realizing acceptable perfor-
mance and update behaviour, and an easy integration with existing Web
applications. In this paper, we address these challenges through a novel
approach supporting constrained and customized UI views that support
runtime changes and integrate well with existing Web applications. Us-
ing a prototypical implementation, we show that the approach provides
acceptable update behaviour and requires only a small performance over-
head for the access control tasks with linear scalability.

1 Introduction

Real-time collaborative Web applications such as Google Docs1, Etherpad2, or
Creately3 aim to efficiently support the joint work of different team members,
allowing them to collaboratively work on the same artifact at the same time. In
addition to such popular examples, the real-time collaboration approach can also
be used in typical business applications that often require multiple forms to be
filled out by different stakeholders [7]. A crucial – though in the context of real-
time collaborative Web applications often neglected – aspect of these business
applications is access control.
1 https://docs.google.com
2 http://etherpad.org
3 http://creately.com

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 201–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

202 P. Gaubatz et al.

In recent years, role-based access control (RBAC) [14] emerged as a standard
for access control in software systems. In RBAC, roles are used to model differ-
ent job positions and scopes of duty within an information system. These roles
are equipped with permissions to perform tasks. Human users (subjects) are as-
signed to roles according to their work profile [17]. For example, in an e-health
application only a doctor shall be allowed to file a report. Moreover, a second
doctor needs to check and sign the same report (four-eyes principle). In this ex-
ample the role doctor is equipped with both permissions, i.e., filing and signing
a report. To prevent a single subject from performing both tasks on the same
report (thus undermining the four-eyes principle) we have to constrain these two
tasks with an entailment constraint. Entailment constraints (see, e.g., [3,18,20])
provide means for placing restrictions on the subjects who can perform a task x
given that a certain subject has performed another task y. Mutual exclusion
and binding constraints are typical examples for entailment constraints. For in-
stance, a dynamic mutual exclusion (DME) constraint defines that two subjects
must not perform two mutually exclusive tasks in the same instance of a Web
document. This means, that the permissions to perform two DME tasks can
be assigned to the same subject or role, but for each instance of a particular
Web document, we need two distinct individuals to perform both tasks. Binding
constraints, on the other hand, can be seen as the opposite of mutual exclusion
constraints. For example, subject binding defines that the subject who performed
the first task must also perform the bound tasks.

Ideally, realizing form-based business applications with a real-time collabora-
tive Web application approach would enable us to enforce RBAC and entailment
constraints directly as the users collaboratively work on the forms, i.e., by con-
straining (e.g. by disabling, locking, or hiding) certain control elements in the
user interfaces (UI) for certain subjects. However, so far this topic has – to the
best of our knowledge – not been addressed in the existing literature. Major
open challenges in this context are how to support changes of the configuration
of access constrained UI elements at runtime, realizing acceptable performance
and update behaviour, and the easy integration with existing Web applications.

In this paper, we address these challenges that are inherent to enforcing ac-
cess control constraints in the context of real-time collaborative Web applica-
tions. The client-side part of our approach follows the Model-View-ViewModel
pattern [15]. Additional server-side components complement our service-based
architecture. The resulting architecture enables us to support runtime changes
and facilitates the integration our approach with existing applications (see Sec-
tion 6.2). Furthermore, we show that the approach provides acceptable update
behaviour and requires only a small performance overhead for the access con-
trol tasks. In our experiments, it shows linear scalability (see Section 6.1). The
remainder of this paper is structured as follows: An example scenario motivates
our approach in Section 2. In Sections 3 and 4 we propose a novel approach
supporting constrained and customized UI views. In Section 5, we describe a
prototypical implementation and revisit the motivating example. After compar-
ing to related work in Section 7 we conclude in Section 8.

Supporting Customized Views for Enforcing Access Control Constraints 203

2 Motivating Example and Challenges

As a motivating example, consider a Web-based application where patient health
records are maintained using forms for data entry. The data entry procedure is
typically included in a business process with well-defined roles and responsibil-
ities (see, e.g., [9]). In previous work, we presented CoCoForm [7], a real-time
collaborative Web application framework in which several users can concurrently
fill out HTML forms.

Fig. 1. Form-based Collaborative Web Application with Customized Views

Figure 1 shows a simplified example of using CoCoForm in the e-health do-
main. It includes four subjects with shared access to the health record of a
patient. The subjects take different roles (nurse, physician, patient) which de-
fine their permissions within the application. The nurse enters the name and
other personal data of the patient into a textfield (identified by “1”), physician B
adds “Therapy 1” to the list of therapies (field “2”), and physician C suggests an
additional specialized therapy “Therapy 2”. The entire form record is then con-
firmed by both physicians (buttons “3”). To enforce the four-eyes principle (DME
constraint), after physician B clicks the first submit button, the second button
is deactivated for physician B, but remains active for physician C. Moreover,
each physician can only modify his own therapy suggestions (subject-binding
constraint). Finally, the patient should have read-only access to the data. To
enforce these constraints, each user has a customized view with partial access to
the collaboratively shared model. In Figure 1, white elements can be accessed
and modified by the respective user, whereas elements with gray background are
subject to access limitations (e.g., read-only but not editable).

A major challenge to realize such customized views for access control con-
straints is that the configuration of constrained UI elements must be computed
server-side and effected client-side. Moreover, this configuration might change
dynamically at runtime. Other challenges are related to performance and update
behaviour : This means, we immediately need to deliver customized views to all
UIs that access the same instance of a Web document (e.g., in the example the
UIs need to be updated immediately after one of the subjects changes a docu-
ment). Such an immediate update is required to prevent users from performing
actions that were either already performed by another user or that are con-
strained by an entailment constraint (which may have a direct impact on the

204 P. Gaubatz et al.

subjects who are allowed to fill in certain form field for example, see Section 1).
In order to be applicable in real-world application scenarios, the approach should
efficiently handle large numbers of simultaneously connected users. Finally, the
approach should allow for an easy integration with existing Web applications.

3 Approach Synopsis

The aim of our approach is to support access control and customized views in
real-time collaborative Web applications. The View of a Web application rep-
resents the UI with all visible and invisible elements, form input fields, inter-
active content, and more. The elements and associated interactions in the UI
are subject to constraints (e.g., actions that require a certain permission) which
are encoded in well-defined (RBAC) models. Our approach maps the model ele-
ments to configuration properties, and clients request the runtime values of these
configurations from a View Service. The user-specific configurations computed
by the server-side View Service are then applied to the View on the client-side.

Fig. 2. Data Binding between View and ViewModel

As the basic binding concept between the View and the Model, our approach
applies the Model-View-ViewModel (MVVM) pattern [15]. The MVVM is a spe-
cific version of the Presentation Model pattern (see [6]). It relies on the data
binding concept, which ensures that the View and the state of its components
are bound to properties of a ViewModel. This means that changes of the View-
Model are automatically reflected in the View. For instance, in Figure 2 we can
see that the value attribute of the <input> field is bound to the property Name
in the ViewModel. Secondly, the onclick handler of the button is bound to the
ViewModel ’s Save property. In general, the ViewModel acts as a mediator be-
tween the Model and the View by encapsulating all logic (e.g., formatting and
data type conversion) needed to expose the properties and functionalities of the
Model to the bound View. Additionally, it is in charge of reacting to user com-
mands (e.g., a user fills out an input field) and reflecting them by performing
the corresponding Model state changes. In general, the MVVM pattern makes
it easy to realize the client-side part of the required View Customization func-
tionality. In particular, we can customize a client’s View just by configuring its
ViewModel properties.

Supporting Customized Views for Enforcing Access Control Constraints 205

Fig. 3. Architectural Overview

Figure 3 provides an architectural overview of the components (i.e., both
server-side and client-side) and interactions in our approach that are needed to
realize the required View Customization functionality. The left-hand column of
the figure depicts the core components of the MVVM architecture. In contrast
to the classic MVVM architecture, in our approach the ViewModel does not
directly access/manipulate the shared Model (i.e., the shared application state).
Instead, it accesses/manipulates only a local copy of the shared Model. That
is, a Collaboration Service, which is the cornerstone of a real-time collaborative
Web application, ensures that the server-side shared Model is constantly kept in
sync with all client-side copies of it. While the Collaboration Service allows us
to let users collaboratively work on the same Web document, it certainly does
not provide means for constraining (e.g., disabling, locking, or hiding) certain
control elements in the UI for certain users. Consequently, the View Service
uses the central RBAC Service to compute ViewModel configurations. Although
these ViewModel configurations are computed server-side, they need to be ef-
fected client-side, i.e., to constrain UI elements in the Views of each client. To
account for this, the client-side View Updater component of each client actively
requests (i.e., pulls) the computed ViewModel configurations from the View Ser-
vice. Eventually, these configurations are then applied to the ViewModel, which
in turn – through data binding – effectively constrain the Views of each client.

4 Supporting Customized Views

This section details how the different components of the architecture outlined in
Figure 3 enable us to enforce access control policies and entailment constraints
directly as the users collaboratively work on a shared Model, i.e., by constraining
certain control elements in the UI for certain subjects.

Firstly, we want to exemplify our UI customization approach using Figure 4.
The figure is divided in two parts, the client-side part and the server-side part.

206 P. Gaubatz et al.

The figure shows that the Model contains only a single property Name which is
mapped 1 to both, a value and a label property in the ViewModel. Next, by
applying the basic MVVM pattern, the two properties are bound 2 to concrete
<label> and <input> HTML elements in the View.

Fig. 4. View Customization Example

Next, we assume that the <input> field (and the associated action in the
RBAC model) is constrained by some RBAC policy. To customize the <input>
and dynamically make it enabled or disabled, we add the disable property to
our ViewModel. The name of the property (disable) is added to the set of Cus-
tomizable Properties. That is, we do not want the client to decide about the
value of the disable property on its own. Instead, the server has to compute the
values for each Customizable Property. Thus, the client requests 3 the values
from the server-side View Service. The View Service uses the RBAC Service to
determine the concrete value for the disable property (true if and only if the
client is allowed to change the Name property of the Model). The View Service
returns 4 the list of Customizable Properties together with their customized
values to the client-side View Updater. Next, the View Updater applies 5 these
customized values to the ViewModel. Finally, the property value is automati-
cally reflected 6 in the View, as we have bound the disable property of the
ViewModel to the disabled flag of our <input> field.

Abstracting from the example in Figure 4, the basic idea of our approach is
that the core ViewModel is augmented with additional Customizable Properties.
These properties are used to easily implement customizations in the View (e.g.,
enabling/disabling an <input> field). While the property names are defined and
processed on the client-side, the actual values for these properties are computed
for each user separately on the server side. In summary, the purpose of the
Customizable Properties is twofold:

1. Enablement. At the client-side, these properties have an enabling charac-
ter, i.e. they allow for realizing the customization of the View.

2. Contract. Additionally, they can be considered as a contract between the
ViewModel and the server-side View Service. That is, the client-side View-
Model defines the set of Customizable Properties and the server-side View

Supporting Customized Views for Enforcing Access Control Constraints 207

Service provides the actual values for these properties. For instance, if the
server returns a value of true for the disable property (see the example
above), the client is responsible for actually disabling the <input> field in
the client’s View. Hence, the client and the server must have a common view
of the semantics of each property.

4.1 Client-Side Updates of the ViewModel

The View Updater is in charge of requesting and applying ViewModel config-
urations from the View Service. We propose a simple request/response style of
communication between these two components.

1 var subject, role,
2 viewModel = {
3 value: ’Peter’, label: ’Name’, // core properties
4 disable: false, visible: true // customizable properties
5 };
6
7 function requestView() {
8 var xhr = new XMLHttpRequest(),
9 uri = ’/viewService?subject=’ + encodeURI(subject) + ’&role=’ + encodeURI(role);

10 xhr.open(’GET’, uri);
11 xhr.onload = function() {
12 var configuration = JSON.parse(this.response); // e.g. {disable: true, visible: true}
13 for (var property in configuration) {
14 viewModel[property] = configuration[property];
15 }
16 };
17 xhr.send();
18 };
19
20 function onModelChange(property, value) { // called whenever the Model changes
21 requestView();
22 viewModel[property] = value;
23 };

Listing 1. A Simple View Updater Example

Listing 1 illustrates an excerpt of the corresponding exemplary client-side
JavaScript code. After firing the request (line 17) we asynchronously process the
response that contains the requested ViewModel configuration. In the example
from Listing 1, the Customizable Properties consist of two properties disable and
visible (line 4). Correspondingly, the ViewModel configuration returned by the
View Service contains concrete values for these two properties, e.g., {disable:
true, visible: true}. The next step is to apply this configuration to our View-
Model. To this end, the JSON-encoded result of the View Service is parsed, and
each entry in the result is applied to the local viewModel variable (lines 12-15).

Having discussed how the View Updater requests and applies ViewModel con-
figurations, we now draw our attention to the question when it should issue its
requests. In general, we can say that this depends on the application’s context.
However, in our context, i.e., RBAC and entailment constraints, we can also say

208 P. Gaubatz et al.

that Views need to be updated exclusively after a Model change has happened.
Whenever a property is changed in the shared Model (i.e., the application state),
all Views need to be re-computed and (potentially) updated. This circumstance
is also reflected in Listing 1 (lines 20-23), where we can see that a new request is
triggered for every Model change that happens (via the onModelSync() callback).

4.2 Server-Side Computation of ViewModel Configurations

The computation of ViewModel configurations is done server-side, i.e., by the
View Service. Upon a request, the View Service returns a ViewModel configura-
tion to the requesting client-side View Updater component.

1 function onRequest(subject, role) {
2 var property = ’Name’, // there is just a single ’Name’ property in our model
3 response = {
4 disable: !rbacService.canWrite(subject, role, property),
5 visible: rbacService.canRead(subject, role, property)
6 };
7 return response; // e.g. {disable: false, visible: true}
8 }

Listing 2. Basic View Service Example

For instance, in Listing 2 we can see an excerpt of the implementation of a
very basic View Service4 that is tailored to return a configuration for the set of
Customizable Properties defined in the application code presented in Listing 1. In
essence, the service has to compute values for the two Customizable Properties,
i.e., disable and visible. As we can see (line 4), it “asks” the central RBAC
Service if the provided subject/role combination has the permission to change
(i.e., write) the application’s Model property, i.e., Name. A positive answer (i.e.,
the user has the permission to change the Model property) is reflected with a
disable value of false, which in turn enables the UI element and eventually
allows this specific user to manipulate the Model property in her customized
View. Similarly, the service uses the RBAC Service to determine a value for the
visible property. Eventually, it returns the JSON-encoded configuration (line 7)
to the requesting client. Note, that the required parameters of the service, i.e.,
subject and role could be supplied as URI parameters (as in line 9 in Listing 1).

5 Implementation – The CoCoForm Framework

This section discusses a prototype implementation of our approach, called Con-
strainable Collaborative Forms (CoCoForm)5. We used CoCoForm to implement
and evaluate the e-health record case from Section 2.
4 Note that we chose JavaScript solely for its well-known and concise syntax.
5 A proof-of-concept demo is available at http://demo.swa.univie.ac.at/cocoform2

Supporting Customized Views for Enforcing Access Control Constraints 209

Our prototype is based on the OpenCoweb6 framework, which consists of
both, a Collaboration Service (as in Figure 3) and a (client-side) JavaScript
API. The latter allows to subscribe to incoming Model change events, i.e., by
registering a callback function which in turn enables us to trigger our View
Updater component (as in Listing 1).

The View Updater issues simple XMLHttpRequests to obtain ViewModel con-
figurations from the View Service. The View Service is implemented as a plain
HTTP Service in Java, using the JAX-RS API7, and the configurations are re-
turned in JSON format. The central RBAC Service, which is utilized by the
View Service, has been presented in previous work [7]. We use a model-driven
approach for defining forms and securing them using access control constraints.
Server-side we internally work with Ecore8 model instances which are marshalled
into JSON for the client-side JavaScript application.

Besides OpenCoweb’s JavaScript API, we use the Knockout9 library for re-
alizing the MVVM pattern in the client-side application code. In particular, we
also use Knockout’s Mapping plugin which allows us to automatically transform
the JSON-encoded Model into a ViewModel. The Mapping plugin also allows
us to easily update the ViewModel whenever the Model changes. Additionally,
we augment the ViewModel with additional visible and editable properties.
We also use Knockout’s template mechanism to (1) create the needed input
fields and buttons on-the-fly and (2) establish data binding using corresponding
data-bind attributes.

Fig. 5. Customized Views and Dynamic Mutual Exclusion with CoCoForm

Motivating Example Revisited. Now we want to revisit the dynamic mutual
exclusion example from Section 2 and discuss a concrete implementation using
CoCoForm. Figure 5 shows four screenshot excerpts of an example form with two
dynamically mutual exclusive buttons. In particular, these buttons represent the
first and the second signature on a patient record (as described in Section 2).
6 OpenCoweb, http://opencoweb.org
7 JAX-RS, http://jax-rs-spec.java.net
8 Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf
9 Knockout, http://knockoutjs.com

210 P. Gaubatz et al.

Figure 5 is vertically split into two columns, i.e., the View of the first user
(subject B) and the second user (subject C). Both subjects are concurrently
working on this form. In the first row (indicated with 1) we can see that both
buttons are available for both subjects. The mouse pointer in the upper left part
indicates that subject B clicks the first signature button. This click results in a
Model change which triggers the View Updater component of both clients. As
a result, the View Updaters of both clients issue a request to the View Service,
resulting in the updated Views in 2 . While the first button has been disabled
for both clients (which reflects the requirement that any form element can only
be manipulated once), the second button is only disabled for subject B. This is
due to the dynamic mutual exclusion constraint which demands that subject B,
who has just clicked the first button, must be prevented from clicking the second
button (see Section 2). However, subject C is still allowed to click the second
button. In summary, this example illustrates how our approach enforces access
control constraints in real-time collaborative Web applications by dynamically
changing the UIs of each user at runtime.

6 Evaluation

In the following sections we discuss both, our lessons learned and the limitations
of our approach and the findings of the conducted performance evaluation.

6.1 View Service Performance Evaluation

In the context of real-time collaborative Web applications, users typically ex-
pect instantaneous update behavior, which led us to study in how far our UI
customization approach meets this requirement. We identify the View Service as
a potential performance bottleneck. In particular, we anticipate that requests is-
sued by a potentially large number of users (i.e., resulting from a Model change)
need to be handled concurrently by CoCoForm’s View Service.

All measurements have been conducted on a machine equipped with a 2.4
GHz dual core CPU, 8 GB RAM, running Ubuntu GNU/Linux 12.10. Both,
the View Service and the testing tool, i.e., Apache’s ab tool10, ran on the same
machine. Hence, the measurements are free from any network-induced effects
such as latency, jitter and so on.

Figure 6 depicts the average response times of both, the actual View Service
(solid line) and a “Null” (i.e., no computation at all) Service (dashed line), for a
given number of concurrent requests. For instance, in the case of 600 concurrent
requests, the average response time for all clients is roughly 200 ms while the
response time of the Null Service is roughly 50 ms. This means, that in this case
it takes roughly 150 ms to compute a single ViewModel configuration, while the
rest of 50 ms accounts for the underlying communication and Web Service stack.

The evaluation results indicate that our View Service implementation has
linear scalability. Even in the case of 2000 users working on the same form
10 Apache ab tool, http://httpd.apache.org/docs/2.4/programs/ab.html

Supporting Customized Views for Enforcing Access Control Constraints 211

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
vg

. R
es

po
ns

e
T

im
e

(m
s)

Concurrent Requests

View Service:
Null Service:

Fig. 6. View Service Response Times

document collaboratively, the average response time remains well below a second.
In our experiment, the View Service’s response times amount to approximately
four times the response times of the Null Service. As the Null Service represents
the theoretical minimum that is possible for the given Web Service framework,
we consider the performance overhead acceptable.

6.2 Lessons Learned

We implemented the CoCoForm prototype (see Section 5) to demonstrate the
feasibility of our approach (see Section 4). We showed that access control policies
and entailment constraints in the context of real-time collaborative Web appli-
cations can effectively be enforced by dynamically constraining UI elements for
certain subjects. In the following paragraphs we want to discuss our lessons
learned and the limitations of our approach.

Our approach is complementary to currently available frameworks and solu-
tions that support the development of real-time collaborative Web applications
such as Apache Wave11, ShareJS12 and OpenCoweb (see Section 5). This is due
to the fact that it is completely decoupled from the collaborative aspects of the
application. In essence, supporting customized views using our approach merely
requires the deployment of a single, dedicated and self-contained View Service as
well as hooking-in the View Updater code into the client-side application code.

Although our approach is built upon the MVVM pattern, it does not exclude
other approaches (e.g., the classic Model-View-Controller pattern). Instead, we
argue that our approach can coexist with others. In that case, the ViewModel is
solely used to realize the customizable parts of the View. Hence, it just contains
the set of Customizable Properties. The only requirement is that the correspond-
ing DOM nodes (e.g., <input> elements) are augmented with additional data
binding attributes (e.g., data-bind). Note that this even works in the case of
dynamically generated (i.e., generated using JavaScript code) DOM nodes, as
long as it is possible to add the data binding attributes.
11 Apache Wave, http://incubator.apache.org/wave
12 ShareJS, http://sharejs.org

212 P. Gaubatz et al.

A major concern – especially in the context of real-time collaborative Web
applications – is the ability to apply the View customization nearly instanta-
neously. In other words, the response times of the View Service must be kept
low. Keeping the response time low with a growing number of simultaneously
connected users, requires that the system is able to scale. Our View Service it-
self is completely stateless, as (1) each request contains all necessary information
(e.g., subject and role) that is needed to compute a ViewModel configuration and
(2) no information at all needs to be persisted. This stateless nature as well as
the simple request/response style of communication between the View Updater
and the View Service allows for scaling horizontally in a straightforward man-
ner, i.e., the communication can be routed through a load-balancing proxy that
distributes each request among multiple instances of the service.

However, the request/response communication style also comes with a couple
of challenges. For example, there is the issue of “the needless request”. This is
the case when the View Service returns a ViewModel configuration that is not
different from the currently active one. Hence, we could have saved both client-
side and server-side computing resources (e.g., CPU time, network bandwidth,
etc.) if we simply had not issued this “needless request” in the first place. This
issue can be addressed using a push approach (instead of the presented pull
approach). That is, the View Service would selectively push new ViewModel
configurations to the clients only if it is necessary (i.e., at least one ViewModel
property needs to be changed). However, this push approach introduces a certain
amount of complexity to the View Service. For instance, it would require an
explicit session handling, i.e., in a push scheme we have to maintain a list of
connected clients to correctly update the corresponding ViewModels. Moreover,
a push scheme would also require to keep track of each client’s ViewModel to
determine if we need to push a new ViewModel to a particular client. In summary,
the push approach allows for avoiding “needless requests” (in fact, no requests are
made at all) while the pull approach comes with a lower complexity, especially
when scaling (i.e., when multiple instance of the View Service have to coordinate
session with each client’s ViewModel configuration). Another idea to – at least –
mitigate this problem would be a more efficient client-side triggering logic. For
instance, we could provide the clients with a list of Model properties that are
not constrained by any access control constraint at all. Then, the clients would
not need to request a new ViewModel configuration whenever a Model change
event arrives that is contained in the list of unconstrained properties.

In our approach access control policies and entailment constraints are enforced
client-side, i.e., by constraining UI elements. From a security perspective, how-
ever, we often cannot trust code that is executed on the client (i.e., the browser).
The reason is that we can not prevent a potential attacker from modifying the
code to be executed. For instance, an attacker might be able to change the View-
Model configuration to gain access to a constrained UI element and eventually
pass a Model change event (i.e., concerning a constrained Model property) to the
Collaboration Service. However, we could contain the effects of such client-side
code injections by preventing such unauthorized Model changes (1) from being

Supporting Customized Views for Enforcing Access Control Constraints 213

applied to the server-side Model and (2) from being distributed to other session
participants. This can be achieved by routing all incoming (i.e., coming from
the clients) Model change events trough an enforcement proxy. This proxy uses
the RBAC Service to decide if it should forward the event to the Collaboration
Service (i.e., in case the client has the permission to change the Model property)
or not. This guarantees that client-side code injections do not lead to server-side
Model changes or impact session participants.

Finally, our approach assumes that the Model is being synchronized with
all clients. That is, all clients “see” exactly the same Model. However, if this
Model contains sensitive information, this might be an issue. We will address
this problem as part of our ongoing research.

7 Related Work

In this section we discuss related work in the area of customized and shared
application views, collaboration platforms as well as access control enforcement.

Customized and Shared Application Views. Similar to customized views in
our approach, Koidl et al. [12] propose user-specific Web site rendering. However,
their approach aims at user-centric personalization of Web experience, whereas
the customized views in our approach result from RBAC policies and entailment
constraints. An interesting aspect in their solution is that the personalization
is cross-site, i.e., it spans the Web sites of multiple providers. Our approach
currently does not implement cross-provider policies. However, we presented a
related approach for cross-organizational access control in Web service based
business processes in [9]. As part of our future work, we will integrate cross-
site capabilities in our approach for real-time collaborative Web applications.
Berry et al. [2] have applied role-based view control to desktop applications.
Their approach captures the virtual framebuffer of application windows and
applies blurring, highlighting, pixelizations, and other manipulations over the
rendered view. Our approach benefits from the fact that manipulation of Web
user interfaces is easier to achieve; using the path to the target DOM element,
our client-side View Updater takes care of customized view manipulations.

Collaboration Platforms. The seminal work of Sun et al. [19] proposes the
transparent adaptation (TA) approach to convert single-user applications into
collaborative multi-user applications. The cornerstone of TA is operational trans-
formation (OT) [4]. Our approach is orthogonal to OT: the RBAC policies and
entailment constraints provide an application workflow with well-defined respon-
sibilities, and we maintain document consistency by allowing only sequences of
operations that comply with this workflow. Farwick et al. [5] discuss an archi-
tecture for Web-based collaborative metamodeling. Their framework allows mul-
tiple users to work on graphical meta-models collaboratively. Modifications of
the (meta-)models are secured by basic access control measures, but in contrast
to our work, they do not explicitly address customized views and dynamic up-
dates resulting from the enforcement of RBAC entailment constraints. Heinrich

214 P. Gaubatz et al.

et al. [8] present a generic collaboration infrastructure aimed at transforming
existing single-user Web applications into collaborative multi-user Web applica-
tions by synchronizing DOM trees. In other words, their approach makes sure
that the DOM trees of all clients in a collaborative session is constantly kept in
sync. As we strive for customizing the DOM tree for each client, this approach is
completely at odds with ours. Consequently, we require synchronization to take
place at the model-level instead of the view-level (as in [8]).

Security and Access Control Enforcement. A plethora of approaches have
been presented for integrating security and access control in Web applications.
Joshi et al. [10] provide an early study on generic security models for Web-
based applications. Starnberger et al. [16] use smart card based security and
discuss a generic proxy architecture to enforce authorizations. In [1], Belchior and
colleagues model RBAC policies using RDF triples and N3Logic rules. Mallouli
et al. [13] use extended finite state machines (EFSM) to model systems with
OrBAC [11] (Organization Based Access Control) security policies. However,
none of these approaches addresses the enforcement of access control policies
and entailment constraints in dynamic real-time Web applications.

8 Conclusion and Future Work

In this paper, we demonstrate that access control policies and constraints –
in particular entailment constraints – in the context of real-time collaborative
Web applications can effectively be enforced by dynamically constraining UI el-
ements for certain subjects. We show that our service-based approach can be
used to realize the corresponding UI view configuration functionality and we
provide evidence that it is potentially capable of meeting the – especially in the
context of real-time collaborative Web applications important – requirement of
nearly instantaneous update behavior, even for a large number of simultaneously
connected users. Although the client-side part of the UI view configuration func-
tionality is built upon the MVVM pattern, we show that it can easily coexist
with others.

As future work we will look into privacy issues (see Section 6.2) and apply
our approach to other types of collaborative processes. In particular, we are in-
terested in establishing the concept of entailment constraints in more dynamic
processes (e.g., text editing or modeling) where we will have to deal with com-
pletely dynamic (i.e., changing at runtime) access control and constraint models.

References

1. Belchior, M., Schwabe, D., Silva Parreiras, F.: Role-based access control for model-
driven web applications. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE
2012. LNCS, vol. 7387, pp. 106–120. Springer, Heidelberg (2012)

2. Berry, L., Bartram, L., Booth, K.S.: Role-based control of shared application views.
In: 18th ACM Symposium on User Interface Software and Technology (UIST),
pp. 23–32 (2005)

Supporting Customized Views for Enforcing Access Control Constraints 215

3. Bertino, E., Ferraria, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM Transactions on In-
formation and System Security 2(1), 65–104 (1999)

4. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD
Record 18(2), 399–407 (1989)

5. Farwick, M., Agreiter, B., White, J., Forster, S., Lanzanasto, N., Breu, R.: A web-
based collaborative metamodeling environment with secure remote model access.
In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS,
vol. 6189, pp. 278–291. Springer, Heidelberg (2010)

6. Fowler, M.: Presentation model. Essay (July 2004)
7. Gaubatz, P., Zdun, U.: Supporting entailment constraints in the context of collab-

orative web applications. In: 28th Symposium on Applied Computing (2013)
8. Heinrich, M., Lehmann, F., Springer, T., Gaedke, M.: Exploiting single-user web

applications for shared editing: a generic transformation approach. In: Proceedings
of the 21st International Conference on World Wide Web, pp. 1057–1066 (2012)

9. Hummer, W., Gaubatz, P., Strembeck, M., Zdun, U., Dustdar, S.: An integrated
approach for identity and access management in a SOA context. In: 16th ACM
Symposium on Access Control Models and Technologies (SACMAT) (2011)

10. Joshi, J.B.D., Aref, W.G., Ghafoor, A., Spafford, E.H.: Security models for web-
based applications. Communications of the ACM 44(2), 38–44 (2001)

11. Kalam, A.A.E., Benferhat, S., Miège, A., Baida, R.E., Cuppens, F., Saurel, C.,
Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In:
4th IEEE Int. Workshop on Policies for Distributed Systems and Networks (2003)

12. Koidl, K., Conlan, O., Wade, V.: Towards user-centric cross-site personalisation.
In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757,
pp. 391–394. Springer, Heidelberg (2011)

13. Mallouli, W., Orset, J.M., Cavalli, A., Cuppens, N., Cuppens, F.: A formal ap-
proach for testing security rules. In: 12th ACM Symposium on Access Control
Models and Technologies (SACMAT), pp. 127–132. ACM (2007)

14. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role- based access control mod-
els. Computer 29(2), 38–47 (1996)

15. Smith, J.: WPF apps with the Model-View-ViewModel design pattern. MSDN
Magazine (2009)

16. Starnberger, G., Froihofer, L., Goeschka, K.M.: A generic proxy for secure smart
card-enabled web applications. In: Benatallah, B., Casati, F., Kappel, G., Rossi,
G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 370–384. Springer, Heidelberg (2010)

17. Strembeck, M.: Scenario-driven Role Engineering. IEEE Security & Privacy 8(1)
(January/February 2010)

18. Strembeck, M., Mendling, J.: Generic algorithms for consistency checking of
mutual-exclusion and binding constraints in a business process context. In: Meers-
man, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 204–221.
Springer, Heidelberg (2010)

19. Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., Cai, W.: Transparent adaptation of
single-user applications for multi-user real-time collaboration. ACM Transactions
on Computer-Human Interaction 13(4), 531–582 (2006)

20. Wainer, J., Barthelmes, P., Kumar, A.: W-RBAC - A Workflow Security Model
Incorporating Controlled Overriding of Constraints. International Journal of Co-
operative Information Systems (IJCIS) 12(4) (December 2003)

Towards Simulation-Based Similarity of End User
Browsing Processes

Sudhir Agarwal1 and Martin Junghans2

1 Stanford Computer Science Department, Stanford University
353 Serra Mall, Stanford, CA-94301, USA

sudhir@cs.stanford.edu
2 Institutes AIFB and KSRI, Karlsruhe Institute of Technology

Englerstr. 11, 76131 Karlsruhe, Germany
junghans@kit.edu

Abstract. For increasingly sophisticated use cases an end user needs to extract,
combine, and aggregate information from various (often dynamic) web pages
from different websites. Current search engines do not focus on combining infor-
mation from various web pages in order to answer the overall information need
of the user. Semantic Web and Linked Data usually take a static view on the data
and rely on providers cooperation. Web automation scripts, initially developed for
testing websites, allow end users to capture their browsing activities as executable
processes and share them with other end users. A script can contain instructions
for accessing, extracting and merging (dynamic) information from various web-
sites for a particular purpose. Techniques for allowing users to search for scripts
that satisfy complex constraints restrict to existing scripts in the repository, i.e.
they do not deduce scripts that may satisfy the request as well. In this paper, we
show how semantic descriptions of web sites can be derived from such scripts,
and how such semantic descriptions of web sites along with usage information
present in the scripts can be used to obtain new scripts with similar functionality.

1 Introduction

For many practical purposes end users need information that is scattered across mul-
tiple websites. Static websites can be reached and their content can be indexed by the
crawlers of state of the art search engines. However, in many cases, end users still re-
quire to do a lot of manual work to compile together the required information. Consider
for example an end user who is interested in knowing the names of the chairs of a
particular track at the previous WWW conferences. As of today Google does not de-
liver satisfactory results for queries similar to “track chairs of all WWW conferences”.
Search engines focus on finding individual highly ranked web pages and not on provid-
ing the required information directly. Search engines results often contain links to web
pages with similar content even though the information need of the user might require
pages with complementary information. As a result, an end user needs to pose multiple
queries to a search engine, browse through the hits, and aggregate the required informa-
tion fragments outside of the found web pages. The case of dynamic websites to access
the information in the Deep Web [1] is even more complex and still an open challenge

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 216–223, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Simulation-Based Similarity of End User Browsing Processes 217

for search engines since it is hard for automatic crawlers to sensibly interact with the
dynamic websites. Furthermore, indexing such information is not a suitable technique
since the information underlying dynamic websites changes so rapidly that the index
becomes quickly outdated.

In contrast to search engine crawlers, end users are able to reach the dynamic web
pages. Information retrieval has focused on analyzing such click trails of millions of
end users mainly for the purpose of improving web search results. Click trails can be
used as endorsements to rank search results more effectively [2], trail destination pages
can themselves be used as search results [3], and the concept of teleportation can be
used to navigate directly to the desired page [4]. Similarly, large-scale studies of web
page revisitation patterns [5] focus on how often users revisit the same page, while
ignoring how people get there. The statistics based click analysis methods typically
do not consider semantics of user queries and pages. As a result, a frequently used and
thus recommended path may not necessarily satisfy the information need, and end users
still require to figure out themselves which of the recommended web pages are actually
relevant for them and which interactions are required with which web pages.

Semantic Web [6] has proposed the annotation of web pages in order to describe
the information content of web pages. However, apart from the fact that still most of
the web pages are not annotated, it is hard to build a server-sided semantic information
search engines since a crawler will be unable to reach and index the semantic anno-
tations within deep web pages. Linked Data [7] separates the structured data from the
traditional web (and as a result also from the end users) completely. The Linked Data ap-
proach is primarily useful for application developers since end users cannot be expected
to consume RDF directly. Therefore, end users still require human understandable ap-
plications to interact with. Semantic Web and Linked Data approaches (i) heavily rely
on the availability of structured data, and (ii) providers are expected to provide access to
their data through APIs, which is unlikely to happen for valuable data, and (iii) the data
made accessible by a provider is often not semantically aligned that of other providers
and its usage is restricted, e.g. for advertisement purposes only.

Approaches for searching navigational plans, e.g., [8] cannot compute navigational
paths that consist of data flow between web pages, which are not connected in the
web graph as well as require a mediated schema. In contrast, web scripts that combine
different data sources can introduce and model additional links (like data exchange
between different web pages).

Recently, browsing scripts, initially developed for the purpose of testing web sites,
have drawn a lot of attention as they can be very useful for the end users as well, espe-
cially when end users share their scripts with other end users. In our previous work [9]
we have shown how browsing processes satisfying complex user constraints can be
efficiently retrieved from a repository of browsing processes. However, the search tech-
nique is limited to the directly known scripts as it does not deduce new scripts that may
have the required functionality.

Our Approach: We aim at providing end users with a list of browsing processes such
that each browsing process in the list will lead an end user to the required information.
Our approach build on the idea of end users sharing their browsing processes with other
end users so that a large number of browsing process are available for end users to

218 S. Agarwal and M. Junghans

choose from. Specifically in this paper our aim is to equip existing browsing process
search with the ability to deduce new scripts. We achieve this by providing a technique
for computing browsing processes similar to a given browsing process. We first show
how user browsing processes (consisting of link selection, form inputs, and information
extraction steps) can be formalized. Then we present a method to automatically derive
semantic annotations of websites from the browsing processes. Then, we show how
functionally similar browsing processes can be generated from the known browsing
processes. The computation of the set of all similar browsing processes is done offline,
i.e. prior to searching.

2 Formalization of End User Browsing Processes

In this section, we present how end user browsing processes can be described formally.
The formalization enables generic automatic procedures such as for verification, testing,
search and composition. Browsing processes capture users’ interactions with websites
and local operations. In order to be able to construct browsing processes for a given need
we need a formal and semantic model of websites. In contrast to top-down semantics
based approaches that require semantically annotated websites, we show how semantic
annotations of websites can be derived from browsing processes.

An end user browsing process is a sequential process that coordinates the execution
of multiple websites. An end user has a local knowledge base, and the browsing activi-
ties that an end user carries out can be categorized into input, output, and local (wrt. the
end user knowledge base) actions. An input action causes addition of knowledge from
a website into the knowledge base, the output activity emits (without deleting) knowl-
edge from the knowledge base to a website, and a local action causes changes in the
knowledge base independent of the websites such as deletion or alignment of knowl-
edge. Such browsing processes can be easily modeled by a process algebra such as
π-calculus [10] with the syntax 0 | c[x].P | c〈y〉.P | τ.P , where 0 denotes the process
that does nothing and used as termination symbol, c[x].P denotes a process that inputs
some values along the channel c, binds them to x, and then behaves like the process
P , c〈y〉.P denotes a process that outputs values y along the channel c, and then be-
haves like the process P , and finally τ.P denotes a process that performs a local action,
and then behaves like the process P . A local action is an action performed by the end
user in his/her local knowledge base in order to structure the knowledge as per user’s
needs. The set of local actions available to an end user depends on the data model of
the knowledge base, e.g. a relational model will allow different operations than a graph
based model.

In a pure process algebra such as the π-calculus the process resources and variable
are seen as strings without any structure. As a result, it is hard for an end user to un-
derstand which values he or she should provide for the variables in order to get the
desired result. We fill this gap by allowing process variables to have semantics with the
help of a domain ontology OD expressed in ALC (attributive concept language with
complements) [11]. E.g., input parameters x and the communication channel c of an
input activity are process resources and further described in OD . With ALC we can
describe not only the types of process variables but also their relationships with other

Towards Simulation-Based Similarity of End User Browsing Processes 219

process variables. For example, if an input activity has two parameters of type ’Person’,
we can also describe that the first person should be father of the second person. Pre-
cisely, the local knowledge modeled as ABox of ALC can be modified by adding or
removing following types of axioms: (i) add sameAs relation between two individuals,
(ii) add typeOf relation between an individual and a concept, (iii) domain specific re-
lationships between two individuals (object properties), and (iv) relationships between
an individual and a literal (data properties) .

Example 1. The WWW 2013 conference website at URL www2013 contains a link to
the call for research papers web page www2013/cfp that provides links of the form
www2013/cfp/trackname for all the research tracks of the conference. Selecting
one of the provided links returns the page about the track that lists topics, chairs, and
PC members of the track. The second website is the DBLP at dblp that among other
information on the entry page contains the web form dblp/search for searching for
publications of an author. The form dblp/search takes the author name as single
input value and returns a page with the list of publication of the author.

A researcher who is interested in submitting a research paper to the ”Bridging Struc-
tured and Unstructured Data” track wishes to know more about the research background
of the track chairs. For this purpose he wants to have a list of most recent 3 journal
articles of the track chairs. For this purpose, the researcher performs the following nav-
igation actions (i) visit www2013/cfp, (ii) click on www2013/cfp/bridging,
(iii) extract the names tc1, . . . , tck of the track chairs, (iv) visit dblp, (v) for each track
chair tci enter tci in the form dblp/search and extract the publication of tci . In our
formalism this browsing steps can be formalized as a process as:

www2013/cfp〈〉.www2013/cfp/bridging〈〉.
www2013/cfp/bridging[tc1, tc2].dblp〈〉.
dblp/search〈tc1〉.dblp/search[p11, p21, p31].
+pubOf(p11, tc1).+pubOf(p

2
1, tc1).+pubOf(p

3
1, tc1).

dblp〈〉.dblp/search〈tc2〉.dblp/search[p12, p22, p32].
+pubOf(p12, tc2).+pubOf(p

2
2, tc2).+pubOf(p

3
2, tc2).0

As shown in the above example end users’ actions for integrating the extracted knowl-
edge with his/her local knowledge base are part of the browsing process. Note that an
end user has direct incentives for keeping his/her knowledge base consistent since it
makes it easier to query already visited information much faster and in structured way,
e.g. with SPARQL. If the domain ontology used for structuring his/her knowledge base
is a shared vocabulary among a group of end users, the web browsing processes become
easily reusable within the group.

Definition 1. In an expression of form x[y].P the occurrence of y is a binding occur-
rence and in each case the scope of the occurrence is P . An occurrence of y in a brows-
ing process is said to be free if it does not lie within the scope of a binding occurrence
of y. The set of names occurring free in P is denoted by fn(P).

Definition 2. For a set of atomic propositions P and a set of actionsA, a labeled transi-
tion system (LTS) is a tuple (S, T,A, λ), where S is a finite set of states, T ⊆ S×A×S

www2013
www2013/cfp
www2013/cfp/trackname
dblp
dblp/search
dblp/search
www2013/cfp
www2013/cfp/bridging
dblp
dblp/search
www2013/cfp
www2013/cfp/bridging
www2013/cfp/bridging
dblp
dblp/search
dblp/search
dblp
dblp/search
dblp/search

220 S. Agarwal and M. Junghans

a set of labeled transitions between the states, and λ : S → 2AP a labeling function
that maps each set s ∈ S to the set of atomic propositions that are true in s.

Formal semantics of a browsing process is defined by a mapping to an LTS that is a
finite linear sequence of states connected by transitions. A state represents the content
of the knowledge base at a point of time, and a transition an input, output, or local
action. The mapping is done by applying the following three rules:

−
τ.P

τ→ P
,

−

x〈y〉.P x〈y〉→ P
, and

−

x[z].P
x[w]→ P{w/z}

with w /∈ fn(P).

The main idea for obtaining the LTS for a given process expression lies in viewing the
process expressions as states and applying the rules on the states to obtain next states.
E.g., the first rule states with the nominator − that a silent action does nor require any
preconditions to fire, and with the denominator τ.P

τ→ P that the process evolves from
state τ.P to state P by performing the silent action. Analogous for the other two rules.

3 Computation of Similarity between Browsing Processes

Our overall aim is to find known and similar processes efficiently as well as rank them
and to provide the ranked list of appropriate browsing processes to an end user in a same
way search engines presents their results. For this purpose, we first compute semantic
similar websites. A website usage in a browsing process can be replaced by the usage of
a semantically similar website in order to obtain a new browsing process that provides
the similar functionality. In this paper, we only deal with the problem of similarity
computation.

3.1 Derivation of Semantic Description of Websites

A website can be seen as a sequential process. It outputs pages to and receives inputs
from a user through her web browser. Similar to an end user performing local operations
in her knowledge base, a web server can perform local operations, e.g., by invoking CGI
scripts or servlets.

A web page is a message sent by a server. In addition to the information con-
tent, a web page offers a choice of links and forms. The links and the action URLs
of the forms refer to external or internal locations wrt. the web server. Sometimes, a
web page may contains an HTTP redirect instruction to redirect the browser to an-
other URL. The output action of the server that produces a web page with URL u
with l values v1, . . . , vl, m, links l1, . . . , lm and n forms f1, . . . , fn is described as
u〈v1, . . . , vl, l1, . . . , lm, f1, . . . , fn〉.P , where P denotes the web server process (may
be simply 0) after outputting the web page.

Form submission and link selection are similarly modeled except that a user has the
option of filling in values in the former case. We model the arguments of a link as
classes and the values of the arguments as instances of the corresponding classes of the
ontology associated with the website. The semantic annotation of the link arguments
also allow specification of relationships of arguments with other arguments or other

Towards Simulation-Based Similarity of End User Browsing Processes 221

ontology elements. The input parameters of a form are described in a similar fashion.
The name of the ontology class corresponding to the range of a value can be often de-
rived from the id or label of the input field (see e.g. [12]). Note that we require only the
existence of an id or a label. They ids and labels may or may not be semantically mean-
ingful. Some form input types provide a set of predefined values from which one or
more values may be selected. In these cases, the provided values are modeled as ontol-
ogy instances, while the class representing the range of an input field as an enumeration
class instead of a normal class. Execution semantics of the formalism for describing
websites is defined by mapping its syntax to an LTS that is constructed by applying the
rules of execution semantics [13]. The states of the LTS correspond to the knowledge of
the process in that stage of the execution, and the transitions correspond to the atomic
(input, output, or local) activities. There exists decidable reasoning procedures for LTSs
in which the ABox of the ontology may change but the TBox of the ontology may not
change during the execution [14].

Having the formal models of browsing processes and websites, we now present the
derivation of semantic descriptions of websites from a given set of browsing processes.
The main insight underlying such a derivation is that an output of a browsing process
corresponds to an input of a web form, and an input of a browsing process corresponds
to an output of a web form.

Algorithm 1. Derivation of Website Annotations
for all browsing processes P ∈ P do

Let s0, . . . , sn and t1, . . . , tn with (si−1, ti, si) ∈ T denote states and transitions of P
for all ti do

if ti is an output action with values x1, . . . , xn then
add the annotations of x1, . . . , xn from the state si−1 to the annotations of input
variables of the web form or the link

else if ti is an input action with variables v1, . . . , vn then
add the annotations of v1, . . . , vn from the last state of the LTS, i.e. sn, to the
semantic annotations of the values on the web page.

Algorithm 1 describes the derivation of semantic annotations of websites from the
information appearing in the browsing processes. Note that due to the chosen level
of abstraction, link selections and form submissions are treated similarly and it is not
possible to detect whether an output activity of a browsing process corresponds to a
link selection or a form submission. However, this does not create any obstacles in our
approach. If a distinction of links and forms is desired the browsing process language
can be enhanced to add these information. A good heuristic could be to consider the
output activities without arguments as as link selections.

3.2 Computing Similar Websites

From the generic description of websites, we compute the semantic similarity of web-
sites as follows: A website w1 simulates another website w2, in short w1 ∼ w2, if for
every possible input i for w2 if w2 outputs o then w1 also outputs o. In order to com-
pute w1 ∼ w2 we need to check (i) that w1 accepts every input that w2 accepts, and

222 S. Agarwal and M. Junghans

(ii) that the output of w1 has all the semantic annotations that the output of w2 has.
This means, the state of w2 after input must be a model of the semantic annotations of
input parameters of w1, and the state of w1 at the time of output must be a model of
semantic annotations of output parameters of w2. Both conditions can be checked by a
DL reasoner that supports rules, e.g. HermiT [15] by modeling the states as ABoxes,
the semantic annotations as queries, and checking if an ABox is an answer of the query.

3.3 Computing Similar Browsing Processes

We compute similar browsing processes of a given browsing process by replacing the
usage of websites in the browsing process by the usage of websites that simulate the
websites as shown in the Algorithm 2. The algorithm computes in each iteration of the
while loop the set sim(P) of browsing processes that are similar to a browsing process
P . The termination of the algorithms is guaranteed since the number of browsing pro-
cesses, the number of websites within a browsing process, and the number of websites
to similar to a website are all finite, and the algorithm continues with the next iteration
only when it can construct at least one new browsing process.

Algorithm 2. Compute similar browsing processes
changed := true
while changed = true do

changed := false;
Let the set of browsing processes be P
for all browsing processes P ∈ P do

for all websites W that are used in P do
for all websites V that simulate W do

obtain P ′ by replacing W by V in P
if P ′ /∈ P then

add P ′ to sim(P); changed := true;
P := P ∪ sim(P)

4 Conclusion and Outlook

In this paper, we targeted the problem of tediousness of information gathering from var-
ious websites from a bottom-up perspective that proposes capturing and sharing of end
user browsing processes as opposed to the top-down approach that requires annotated
websites in the first place. We have shown how an end user browsing process can be
formalized without requiring extra manual effort for declarative semantic annotations,
and how processes can be mapped to a labeled transition system. We have further shown
how semantic annotations of the web browsing processes can be derived from end user
actions. Existing techniques for searching and composing browsing processes could ex-
ploit the similarity of browsing processes to deduce new browsing processes and to gain
performance respectively. Such an extension of the search technique presented in one
our previous work [9] is planned as future work.

Towards Simulation-Based Similarity of End User Browsing Processes 223

Acknowledgments. The authors acknowledge the support of the European Commu-
nity’s Seventh Framework Programme FP7-ICT-2011-7 (XLike, Grant 288342).

References

1. Bergman, M.K.: The deep web: Surfacing hidden value. The Journal of Electronic Publish-
ing 7 (2001)

2. Bilenko, M., White, R.W.: Mining the search trails of surfing crowds: identifying relevant
websites from user activity. In: Proceedings of the 17th International Conference on World
Wide Web, WWW 2008, pp. 51–60. ACM (2008)

3. White, R.W., Huang, J.: Assessing the scenic route: measuring the value of search trails in
web logs. In: Proceeding of the 33rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pp. 587–594. ACM (2010)

4. Teevan, J., Alvarado, C., Ackerman, M.S., Karger, D.R.: The perfect search engine is not
enough: a study of orienteering behavior in directed search. In: Dykstra-Erickson, E., Tsche-
ligi, M. (eds.) CHI, pp. 415–422. ACM (2004)

5. Adar, E., Teevan, J., Dumais, S.T.: Large scale analysis of web revisitation patterns. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2008,
pp. 1197–1206. ACM (2008)

6. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: a new form of Web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American 5, 34–43 (2001)

7. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on
Semantic Web and Information Systems 5, 1–22 (2009)

8. Friedman, M., Levy, A.Y., Millstein, T.D.: Navigational plans for data integration. In:
Hendler, J., Subramanian, D. (eds.) AAAI/IAAI, pp. 67–73. AAAI Press / The MIT Press
(1999)

9. Junghans, M., Agarwal, S.: Efficient search for web browsing recipes. In: Proceedings of the
20th International Conference on Web Service (ICWS 2013). IEEE (June 2013)

10. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I and II. Journal of
Information and Computation 100, 1–77 (1992)

11. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif.
Intell. 48, 1–26 (1991)

12. Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., Halevy, A.: Google’s deep web
crawl. Proceedings of the VLDB Endowment Archive 1, 1241–1252 (2008)

13. Agarwal, S., Lamparter, S., Studer, R.: Making Web services tradable - A policy-based ap-
proach for specifying preferences on Web service properties. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, Special Issue on Policies 7(1), 11–20 (2009)

14. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics:
theory and applications. Studies in Logic, vol. 148. Elsevier Science (2003)

15. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Journal
of Artificial Intelligence Research 36, 165–228 (2009)

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 224–232, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Domain Specific Language for Orchestrating User
Tasks Whilst Navigation Web Sites

Sérgio Firmenich1,2, Gustavo Rossi1,2, and Marco Winckler3

1 LIFIA, Facultad de Informática
2 Universidad Nacional de La Plata and Conicet Argentina

3 IRIT, Université Paul Sabatier, France
{gustavo,sergio.firmenich}@lifia.info.unlp.edu.ar,

winckler@irit.fr

Abstract. In this paper we claim that there are a lot of processes over Web ap-
plications that require a high level of coordination between individuals and
tasks featuring procedures. We propose hereafter a Domain Specific Language
(DSL) for describing the asynchronous orchestration users’ tasks including ma-
nual users’ tasks (i.e. simple instructions that tell users what to do during the
navigation) and automated tasks (i.e. tasks that can be partially or completely
automated by client-side scripts). The approach is illustrated by examples and a
case study showing the tools, for which an empiric evaluation is presented.

Keywords: task and process modeling, Web application, Web augmentation.

1 Introduction

Although Web navigation was regarded in the past as a solitary activity, nowadays,
many users are engaged in repetitive and collaborative activities that are supported by
uncountable Web applications [6]; for example booking a seat in a flight or explaining
friends how to book a seat next yours in a flight… Moreover, many of these tasks
involve dealing with different Web sites, which run independently with no support to
the actual users’ concern [4].

This lack of integration of different Web resources has motivated the development
of mash-ups tools that are able merge into a specialized applications a set resources
that are scattered among different Web sites [8]. The problem is that mash-up are used
straightforward, when most of tasks users perform are volatile and do not really re-
quire the creation of a new an entirely new applications.

The integration of data across applications can also be done by Web augmentation
artifacts, which perform interventions over Web applications DOMs. Some Web
augmentation approaches [1][4] aim to support users task by adapting the Web pages
visited accordingly.

In this paper we propose a Domain Specific Language (DSL) for describing proce-
dures that are aimed to orchestrate user tasks over multiple Web sites. It supports
flexible process modeling by allowing users to combine manual task and automated
tasks from a repertoire of patterns of tasks performed over the Web. Whilst manual
tasks can be regarded as simple instructions, automated tasks correspond to Web

 A DSL for Orchestrating User Tasks Whilst Navigation Web Sites 225

augmentation [4] tools (i.e. augmenters). The approach is duly illustrated by a case
study describing a trip planning over the Web.

The rest of the paper is organized as follows: section 2 motivates and presents re-
lated works; section 3 introduces the approach. Section 4 present the DSL followed
by the corresponding tool support (section 5). In section 5 we also present a compara-
tive study using our tools; and lately section 6 presents the conclusions and future
work.

2 Motivation and Related Work

Web Augmentation is not a new concept, and it is becoming really important from the
point of view of users, who are expecting new kinds of mechanisms for personalizing
their experience while navigating the Web. Large communities of scripting such as
GreaseMokey prove the value of this technique. There are other similar approaches.
Mashup tools, for instance, have the same final goal: improve the users’ experience.
Neither mash-ups nor existing Web augmentation techniques provide a definite and
flexible solution for supporting users tasks. Here, we compare our approach with
others DSL/tools for supporting users tasks.

Some approaches allow users to specify the steps involved in certain tasks in order
to repeat these steps later. For example CoScripter [4] records the user interactions
(based on DOM events) and then the user may reproduce the same steps automatical-
ly. Other approaches define DSLs that aim to help to automate tasks. For instance,
ChickenFoot [1] extends JavaScript with new sentences (e.g. “click()”, “enter()”,
etc.). In this way, to develop a script for automating Web use is easier. Both Chicken-
Foot and CoScripter are powerful approaches but these do not contemplate changes in
the process, since it is completely DOM-dependent. With the same philosophy we can
mention Selenium [7], which can be used for this task automation, although it was
originally defined for testing. While all these approaches may help users by allowing
them to automate only primitive tasks, our approach mixes these with augmentation
ones, which adapt Web pages accordingly to the current user tasks. It implies that not
only repetitive processes may be defined but complex scenarios of adaptation. Be-
sides that, the manual execution of certain tasks gives the control to users. In this way,
sensitive tasks (for example payments, or sensible information use) are not performed
by automatic tasks in which users may not trust.

3 Overview of Our Approach for Orchestration of Web Tasks

This section provides a view at glance of our approach and the type of users’ tasks
supported which include: primitive and augmentation tasks.

We refer as primitive tasks to a basic set of tasks that are already supported by the
Web browser. These tasks include actions such as “go to a Web page”, “fill in a
form”, etc. Primitive tasks used in our approach are heavily inspired by previous
works that have already proposed a taxonomy for these user tasks [7].

For us, augmentation tasks are those ones that require advanced scripts programming
(based on Web augmentation techniques) to be executed over the Web browser. Some

226 S. Firmenich, G. Rossi, and M. Winckler

of these tools are able to perform changes in DOM’s changing Web pages on the client
side. In previous work [4] we have developed a set of Web augmentation tools, called
augmenters, using the CSN framework. The CSN framework is a tool that supports the
development of scripts aimed to adapt Web sites accordingly to the actual users’ con-
cern. Augmenter are integrated into the Web browser via the framework. Once installed,
augmenters are accessible to the user via a contextual menu. The framework has two
main user roles: i) developers: are users with programming skills who can extend the
framework by creating augmenters; ii) final users: who use augmenters to improve their
performance whilst navigating the Web. For example, Figure 1 shows the activation of
the augmenter DataCollection used to collect data from Web pages. The data collected
is presented as a kind of floating post-it called Pocket. In the example the user is collect-
ing point of interest under the name of “PoI”. As we shall, the collection of Web page
data requires an advanced script (i.e. an augmenter), it modifies the DOM page (by
creating a floating DIV element) and extend what users can do over a Web page (i.e.
create electronic post-its); so that when a user runs the DataCollection augmenter he in
fact performing an augmentation task.

Fig. 1. Example of the use of the augmenter DataCollection

Augmenters can also be used in combination to create complex sequences of tasks.
Figure 2 shows the combined execution of augmenters. In this example a user ex-
ecutes the augmenter CreateGoogleMapsLink from the Pocket element (2.a). This
action adds an anchor to GoogleMaps next to each occurrence of the concept “PoI”
(2.b) that can then navigated to the corresponding GoogleMaps web site (2.c).

Fig. 2.a. Triggering augmenter
using GoogleMapLink

Fig. 2.b. Adaptation performed by
the augmenter GoogleMapLink

Fig. 2.c. Navigation to
GoogleMaps

3.1 Overview of the Approach

The goal is to allow users to create complex processes, called procedures, by compos-
ing primitive and augmentation tasks. The composition is a sequence of tasks forma-
lized by a DSL and stored as a XML file. A dedicated tool parses that XML file and

 A DSL for Orchestrating User Tasks Whilst Navigation Web Sites 227

executes the procedures on the Web browser. Figure 3 provides a view at glance of
the approach. As we shall see, the approach include three phases, as follows:

• Definition of tasks: it concerns the inclusion of task to be composed. This phase
requires skilled Web developers who program augmenters. This is technically de-
manding, but the work should be done once and it will benefit all users. Nonethe-
less, the framework provides a large set of both primitive and augmentation tasks.

• During Composition phase, users create a sequence of tasks available in the reposi-
tory, which is exported by the factory and defined by the means of a DSL describ-
ing all tasks in the procedure. This artifact, defined by the DSL, may be shared with
other users in order to support them in the accomplishment of the same task.

• Execution: this phase features a player that is concerned by the execution of the
procedure previously encoded by the DSL.

Fig. 3. Overview of the approach

4 A DSL for Web Task Composition

Procedures will be defined according with the DSL metamodel shown in Figure by a
UML class model. This metamodel defines those elements contemplated by the DSL
and their relations. Basically, the DSL defines a procedure as a XML file containing a
list of tasks. Primitive tasks supported are based on [3]. The set of augmenters de-
pends on what was developed by users. Composed tasks are used to group several
tasks in a single block. Tasks have three main properties: repetition property for spe-
cifying if the task may be executed more than once. The optional property allows
skipping the execution of the task. If automatic property is true, then the player
automatically triggers the task.

228 S. Firmenich, G. Rossi, and M. Winckler

Fig. 4. The DSL metamodel

Besides these properties, for each task additional properties can be added including
preconditions, postconditions and attributes:

• Preconditions: preconditions are used to decide if the task will be executed or
not according to which information is available. There are two main kinds of pre-
conditions. On the one side, preconditions about collected data: for conditioning
the execution of a task according to the collected data. On the other side, precon-
ditions about navigational history: for conditioning the execution of a task ac-
cording to the Web applications used.

• Post-conditions: post-conditions are specified to determine the effect of execut-
ing a particular task. For example, AffectCurrent is used to specify that the execu-
tion will modify the current Web site.

• Attributes: refer to data required to accomplish tasks. Attributes (with name,
values, etc.) are specified as metadata for each task.

ComposedTask allows creating dependencies in the DSL. With this kind of task a
finite sequence of tasks can be manage altogether in order to mark as repetitive or
optional this entire block.

In the example from Figure 3, we have used both pre and post conditions. For ex-
ample in the augmentation task IconifiedLink we have specified the AffectSubset pre-
condition with a regular expression that matches with all Wikipedia articles. In this
way, when a new “PoI” is collected, all Wikipedia articles will be adapted by adding
the corresponding link to Google Maps (the focused Wikipedia article and any other
opened in non-focused Browser tabs). In order to show an example of precondition,
we have used the PocketHasInstanceOf one in order to execute the augmenter only if
an instance of “PoI” was collected.

5 Tool Support

We have developed two tools: an editor for creating procedures and a procedure
player for parsing and executing procedures.

 A DSL for Orchestrating User Tasks Whilst Navigation Web Sites 229

Fig 5.a. General view of the tool Fig. 5.b. Edition of a single task

Figure 5.a shows the editor: a sidebar that allows users to specify tasks into the
procedure while analyzing Web sites. The tool provides an assisted mode: users may
record their interaction with the Web and the corresponding tasks will be added to the
procedure automatically. This mode contemplates both primitive and augmentation
tasks. Figure 5.b shows how to edit a task. It allows users to specify the name, pre-
and post-conditions as well as values for both properties and attributes.

The Procedure Player is shown in Figure 6. When the user selects a procedure to
be executed, this appears in the Procedure Player. Once it is running, the Procedure
Player may execute automatically a task (if the tasks was marked as automatic).
Those tasks that have been executed appear with different styles, in order to give
visual feedback to users when a task was finished. For manual tasks the Procedure
Player waits to the corresponding user interaction. When this happens the task state
changes and the following task in the sequence is executed. When the procedure has
finished, the user may share the procedure execution (which includes both tasks
definition and data used in each task) for future executions or even for share with
partners.

5.1 A Simple Case Study Using the Tools

Figure 6 shows the execution of a procedure for planning a trip to ICWE2013. The
first task “Enter ICWE Web Site” is automatic and it loads the ICWE2013 Web site.
Then the procedure waits a manual task, which require from users to collect a City
into the Pocket. Once it is made, the procedure loads the accommodation page.

The task “Collect Hotel name” allows user to collect hotel names. After that, an
automatic task opens the site booking.com for searching rooms. Figure 6.b shows
the booking.com loaded with the “Destination” input filled with the city previously
collected. The procedure follows with augmenters for highlighting the selected
hotels.

230 S. Firmenich, G. Rossi, and M. Winckler

Fig. 6.a. Task Execution: collecting accommod-
ation

Fig. 6.b. Task Execution: looking for hotels
rooms

Fig. 7. Trip to ICWE procedure execution: searching and highlighting collected hotels

Figure 7 shows the procedure state once the user has finished several primitive
tasks for searching for rooms. Once the results are shown, the hotel names collected
are used by the task “Highlight collected Hotels” which adapt the current Web page
for highlighting the relevant hotels. Once the hotel room payment is finished, the
procedure gives the same support for buying flight tickets: it opens expedia.com,
prefills the forms for search (it uses the geolocation component provided by the
framework), etc. since some tasks are marked as automatic. Finally, it supports to the
user in the task of filling forms with his personal data.

5.2 Evaluation

We have evaluated empirically the approach by performing the same task in different
ways: manually, automatically with other tool (Selenium) and with procedures. We
defined three procedures with different levels of automation: i) repeating the task
structure but reentering all information, ii) repeating task structure and reusing
information from previous execution, iii) fully automated. We assessed quantitatively
the interactions made by the user using GOMS-Keystroke (KLM) model [6]. The
GOMS-Keystroke (KLM) allows to simulate the performance of a trained user

 A DSL for Orchestrating User Tasks Whilst Navigation Web Sites 231

proposing the average time to perform basic action (for instance, reach for mouse
takes 0,40 sec). Thus, provided a detailed scenario of user actions including low-level
user actions, it is possible to estimate user performance (i.e. speed).

The task was Planning a Trip to ICWE, which implied to use three different Web
sites: i) ICWE2013 home page to get information about the conference; ii)
Expedia.com to buy flights tickets; and iii) boking.com to book a room in one of the
conference hotel.

Table 1 summarizes the results obtained with each approach. The task was
decomposed into smaller ones in order to show when the use of a tool makes the
difference. A first task, Create Artifact, is only valid when a tool for automating tasks
is used.

Table 1. Results of the evaluation

Table also shows how much time was necessary with each approach. The most

time consuming was the normal use (245,3s). Selenium consumed 28.5s. The auto-
matic procedure was the fastest. However it can be counterproductive since users lose
the control over task. Semi-automatic execution only reproduced automatically those
aspects like prefilling forms, and opening URLs when the previous task is finished,
etc. Semi-automatic execution with data reutilization implies more automation by
reusing data used in previous executions of the procedure such as prefilling forms
with passenger information, credit card information, etc. In this case each confirma-
tion steps (i.e. clicking search buttons) were performed manually. Finally, the full-
automated procedure performs even these last actions, but leaving the user unable to
control the task. Defining the procedure took 472,2 sec. This time would be low-
er/higher accordingly to the automation level used. We only measured the case we
thought was the best choice in our approach.

6 Conclusions and Future Work

We presented an approach and DSL for orchestrating user tasks over the Web. The
approach allows easy integration of client-side scripts to build procedures that can be
share with other users. The DSL provides a certain level of abstract that could be used

 Procedures

Task Normal
Use Selenium Semi

automatic
Semi automatic with

data reutilization Automatic

Create Artifact - 9,5 - 472,2 -
Execute Artifact - - 9,5 9,5 9,5
Get information about the conference 12 9,5 14,2 14,2 0
Search Flights 35,9 1,7 1,7 0
Select Flights 5 6.3 6.3 0
Enter Passenger Information 25,5 25,5 0 0
Pay Flights 59,7 9,5 59,7 1,7 0
Search Room 19,9 3,6 3,6 0
Select Room 6,5 5,1 5,1 0
Enter Passenger Information 29,4 27,5 0 0
Pay Room 51,4 9,5 51 4,8 0
Total 245,3 28.5 202,8 46,9 9,5

232 S. Firmenich, G. Rossi, and M. Winckler

to analyze the sequences of users’ tasks used in procedures compositions. Each task
may be pre-conditioned, and the data is not fixed a priori (the approach contemplates
data collection as tasks); which gives flexibility. Manual tasks are contemplated too,
in order to give control to users who may feel uncomfortable if the whole task is dele-
gated in an automatic tool.

The case study presented shows that the tools are completely functional. An empir-
ic evaluation shows how the approach improves the performance in the execution of
complex tasks. However we need additional studies to explore the usability and po-
tential of user adoption of such tools. In addition with user testing of the tools, future
work will address the possibility of having synchronous communication between
users performing procedures. Our ultimate goal is to allow users who create and share
procedures with friends, be able to follow the execution of the procedures.

The approach opens up the way for potential collaboration between users. By shar-
ing procedures or even synchronize users’ procedures execution would allow users to
collaborate in order to accomplish a task altogether or even to share a procedure
execution with a partner.

References

1. Bolin, M., Webber, M., et al.: Automation and customization of rendered web pages. In:
UIST 2005, pp. 163–172. ACM Press (2005)

2. Card, S., Moran, T., Newell, A.: The psychology of human-computer interaction, p. 448.
Lawrence Erlbaum Associates, Hillsdale (1983)

3. Byrne, M.D., John, B., Wehrle, N., Crow, D.: The tangled Web we wove: a taskonomy of
WWW use. In: Proc. of Conf. on Human factors in computing systems (CHI 1999),
pp. 544–551. ACM, New York (1999)

4. Firmenich, S., Winckler, M., Rossi, G., Gordillo, S.: A Framework for Concern-Sensitive,
Client-Side Adaptation. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011.
LNCS, vol. 6757, pp. 198–213. Springer, Heidelberg (2011)

5. Leshed, G., Haber, E., Matthews, T., Lau, T.: CoScripter: automating & sharing how-to
knowledge in the enterprise. In: Proc. of ACM SIGCHI 2008, pp. 1719–1728. ACM Press
(2008)

6. Morris, M.R.: A survey of collaborative web search practices. In: Proc. of ACM SIGCHI
2008, pp. 1657–1660. ACM Press (2008)

7. Selenium, http://jroller.com/selenium/ (last visit: February 26, 2013)
8. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development. IEEE

Internet Computing 12, 44–52 (2008)

Tag Cloud Generation for Results

of Multiple Keywords Queries

Martin Leginus, Peter Dolog, and Ricardo Gomez Lage

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, 9220 Aalborg-East, Denmark

{mleginus,dolog,ricardo}@cs.aau.dk

http://iwis.cs.aau.dk/

Abstract. In this paper we study tag cloud generation for retrieved re-
sults of multiple keyword queries. It is motivated by many real world
scenarios such as personalization tasks, surveillance systems and infor-
mation retrieval tasks defined with multiple keywords. We adjust the
state-of-the-art tag cloud generation techniques for multiple keywords
query results. Consequently, we conduct the extensive evaluation on top
of three distinct collaborative tagging systems. The graph-based methods
perform significantly better for the Movielens and Bibsonomy datasets.
Tag cloud generation based on maximal coverage is more suitable for
the Delicious dataset because of the different statistical properties of the
dataset.

1 Introduction

Tag cloud is an information retrieval interface that is commonly utilized by
users of social tagging systems. It depicts a selection of terms used for resource
annotations by the users. Tags of tag cloud are usually depicted with different
colours and font-sizes. These visual aspects of tags express their popularity and
importance within a system. A tag of the tag cloud links to a set of resources
that are annotated and referenced with the given tag. Users can retrieve the set
of resources by clicking on the relevant tag.

Tag clouds are usually studied as exploration interfaces depicting the most
frequent tags of all resources in a system. In that sense, tag clouds provide
a rough summary of resources and their topic distribution within the system.
Therefore, the tag cloud is suitable for unspecific retrieval and exploration tasks
and serves as a starting point for more specific keyword-based search [1].

In this paper we focus on tag cloud generation techniques for multiple key-
word query results. In other words, as a user expresses his information goal with
a combination of keywords a tag cloud is generated on top of all the related
resources i.e., resources retrieved by the placed query. The tag cloud genera-
tion conditioned by multiple keyword query is motivated by several real-world
scenarios.

Firstly, there is a need for query specific tag clouds due to the large amount
of various resources within the recent collaborative tagging systems e.g., Flick

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 233–248, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://iwis.cs.aau.dk/

234 M. Leginus, P. Dolog, and R.G. Lage

(picture sharing site), Youtube (video repository) or Delicious (bookmark shar-
ing system). The motivation for such tag clouds is:

– Underlying dataset contains a vast amount of data with diverse topics. Many
of these topics are completely irrelevant for given users and the context of
their work.

– Users would like to get an overview or follow dynamics of resources related
to their interests or preferences (expressed in a query or in a user profile).

Secondly, the majority of information retrieval tasks are defined as a combina-
tion of several independent keywords. For instance, almost 67% of all placed
queries in the USA are queries that consist of two or more keywords [3]. Simi-
lar statistics are reported for other countries. Therefore, there is a need for tag
clouds generated with respect to multiple keywords queries.

In such scenarios, tag clouds present tags with respect to the query keywords
entered by a user. This visual interface describes resources retrieved by the query
that contain tags matching query keywords. Even though users can perform
the same tasks as with most-frequent-tags tag clouds i.e., impression making,
browsing or exploring resources, only a subset of resources related to the query
term is considered for the tag cloud generation. Consequently, it results in an
improved exploration of resources as it filters out irrelevant documents.

In this paper we propose a set of tag selection techniques to generate tag clouds
from the results of multiple keyword queries. These techniques are extensions of
existing methods that were introduced in [9] and [6]. The contribution with
respect to our previous work [6] are as follows:

– Different encodings of prior probability distributions for stochastic restarts
of random walk based algorithms. This was needed to achieve a better per-
formance of graph based methods when multiple keyword queries are con-
sidered.

– A graph transformation is conducted on top of syntactically pre-clustered
tag space. It results into higher coverage of the generated tag clouds as was
shown in [7].

– The extended graph-based methods improve relevancy of tag clouds with
45 % on Movielens dataset and 21 % on Bibsonomy in comparison to the
state-of-the-art tag selection techniques.

We conclude through extensive experimental evaluations of three different
datasets which method performs the best.

The structure of the paper is organized as follows; Section 2 positions our work
with respect to related findings in the literature. Section 3 describes various tag
selection techniques we have explored for the generation of tag clouds. Section 4
describes experimental set up and results which we gained from the experiments.
Section 5 summarizes the paper achievements and roadmap to future work.

2 Related Work

Tag clouds are suitable for data-impression tasks within systems that contain
annotated resources. The interface is generated from certain tag labels of system

Tag Cloud Generation for Results of Multiple Keywords Queries 235

resources. Users exploit tag clouds for the better understanding of a topic’s diver-
sity of a large number of considered resources. Tag clouds are often utilized within
social networks and blog monitoring, medical-surveilance and fraud-detection
systems.

Many studies investigated various aspects of tag cloud’s visualization [2]. Tag
color, size and position are important properties that influence user decision
during tag cloud exploration. Furthermore, tags can be sorted alphabetically
or sementically grouped based on their co-occurences. [7] proposes to cluster
syntatically similar tags to avoid redudancies in the tag cloud which improves
the coverage of generated tag clouds.

[9] proposes a synthetic user model aimed for tag cloud evaluation. They in-
troduce various synthetic metrics that measure the qualities of tag clouds such
as coverage, overlap and balance. Moreover, [9] introduces 4 tags selection algo-
rithms for tag cloud generation. The first method selects the most popular tags
within a system. The other two algorithms choose tags based on term frequency-
inverse document frequency (tf-idf). The last and the most promising algorithm
maximizes the coverage of selected tags in a tag cloud. These selection algorithms
only focus on specific properties and aspects of tag cloud as coverage, frequency,
and diversity. In this work, we consider extensions of these tags selection methods
for multiple keywords queries.

As we presented in [6], coverage and overlap are too general measures and
might not be suitable for query conditioned tag clouds. In this work, we exploit
extensions of a topic sensitive version of PageRank algorithm, personalized HITS
and constrained version of Markov Chain algorithm described in [6, 10]. The
extension for tag cloud generation of multiple keyword query results is that the
prior probabilities have to be set differently than in the case of one keyword
queries to achieve better performance.

3 Methods for Tag Clouds Generation with Respect to
Multiple Keyword Queries

In this section, we present a set of methods for tag cloud generation with respect
to multiple keyword queries. For convenience, from now on we refer to multiple
keyword query simply as query. The general application of these methods can
be summarized as follows:

1. Retrieve all system resources annotated or related to the entered query.
2. Perform tags selection method on top of the tag space of retrieved system

resources.
3. The top-k most relevant tags are presented in the generated tag cloud to the

end user.

The following methods explore all tags used for annotation of resources that
were retrieved with respect to the query. The exploration involves an evaluation
of different aspects of invidual tags. The first group of presented methods select
tags based on their coverage or populatity of resources in the system. The second

236 M. Leginus, P. Dolog, and R.G. Lage

group of the methods transforms tags and their co-occurrence (a number of
resources that are annotated with the same two tags) into a graph structure.
The graph is then used as an input for different tag importance estimation
algorithms.

3.1 Most Frequent Tags from Corpus (MFTC)

This method is the most common approach for generating tag clouds on top of
the entire dataset. The entire tag space is sorted and orded according to the tag
annotation frequency in descending order. The final tag cloud contains the top-k
most frequent tags. The advantage is that the most frequent topics within the
system are propagated to the tag cloud. On the other hand, the tag cloud does
not cover other not so frequently represented topics which could be relevant for
the user.

3.2 Most Frequent Tags from Query Result Set (POP)

The method is very similar to the previous one. The difference is that the set
of resources is constrained to those resources that are annotated by at least one
keyword from the query. The method creates tag clouds from top-k most popular
tags of the documents (DTq) that are associated with the set of keywords of the
query Tq. We assume that for each keyword exists the same tag in the system.
The method was initially proposed by Venetis et al. [9] for single keyword queries.
Drawbacks of this method are similar as with the MFTC technique.

3.3 Term Frequency - Inverse Document Frequency Selection
(TFIDF)

The method ranks each tag t of the documents (DTq) that is associated with
the query keywords Tq. The ranking function computes term frequency - inverse
document frequency (tf-idf) for each tag and the document from the set of re-
sources Dt ∩DTq where Dt is the set of resources that are annotated by the tag
t. These values are aggregated with the summation and are sorted in descending
order. The top-k tags with the highest score are selected for the final tag cloud.
The method was introduced by Venetis et al. [9] for single keyword queries tag
cloud generation. The advantages and shortcommings of TFIDF based methods
are similar to their advantages and disadvantages with respect to information re-
trieval tasks on top of traditional document repositories such as no consideration
of semantic similarities between tags.

3.4 Max Coverage Selection (COV)

This selection explores a tag space of the documents (DTq) in the greedy fashion
such that it tries to maximize a coverage of the selected tags. It iterates through
the tag space and at each iteration step selects the tag that covers the highest
number of uncovered documents. The method was proposed by Venetis et al.

Tag Cloud Generation for Results of Multiple Keywords Queries 237

[9] for single keyword queries. The advantage of the method is maximization of
coverage and at the same time minimization of overlap between tag clouds tags.
However, in our previous work [6], we pointed out that there are problems with
tag cloud generation that maximizes coverage. The optimization of coverage
might result into the generation of tag clouds that contain terms with high
coverage but are irrelevant for the specific user’s information retrieval goal.

3.5 Graph Based Methods

In the following subsections, we describe graph based tag cloud generation meth-
ods. Firstly, we introduce graph transformation of the tag space. Secondly, we
describe three graph based methods. Finally, we propose a new adjustment of
prior distribution for the random restarts of graph-based methods.

Graph Creation. The problem of a tag cloud generation with respect to spe-
cific query tags can be also transformed into estimating relative importance of
other tags within underlying graph of tags with respect to the query. Firstly,
an original tag space can be transformed into a graph structure where different
aspects of tags relations can be captured.

In this work we utilize the following approach for graph creation. The graph
creation is similar to our previous work [6], the difference is that the original tag
space is syntactically pre-clustered. The syntactical clustering is presented in
Section 3.10. First, we calculate a tag pair co-occurence using Jaccard similarity
coefficient for all clustered tags, (see Formula 1) where cocr(ti, tj) represents
co-occurence of two tags ti, tj i.e., the number of resources annotated by both
tags ti, tj . Further, f(ti) denotes a frequency of use of the particular tag in the
system).

JAC(ti, tj) =
cocr(ti, tj)

f(ti) + f(tj)− cocr(ti, tj)
(1)

When the calculated similarity for a tag pair is greater than a predefined thresh-
old α, we consider such tags as similar. Second, each similar tag pair is trans-
formed into two directed edges t1 → t2 and t2 → t1. One could propose to con-
struct only undirected graph, but in this context we construct directed graph
in order to apply various graph based algorithms which are limited only to di-
rected graph structures. Finally, we employ various graph-based algorithms to
select the most relevant tags with respect to query tags.

In order to introduce different graph algorithms for relative importance of
tags within the graph, we present preliminaries on graphs and their properties.

Graph preliminaries A directed graph G = (V,E) consists of two sets: a set
of nodes V and a set of edges E. In this context, each node corresponds to one
particular tag from the underlying clustered tag space (the clustering is described
in 3.10). Each edge e is defined as an ordered pair of nodes (u, v) for directed link
from u to v. Therefore, an edge represents a relationship between two particular
tags. A walk from u to v is a sequence of edges (u, u1), (u1, u2) . . . (uk, v). A
walk is a path if no nodes are repeated. Various graph algorithms are based on

238 M. Leginus, P. Dolog, and R.G. Lage

a notion of k-short paths. It is a set of all paths shorter than k between u and v
in the graph. Other algorithms use a number of outgoing and ingoing edges for
deriving an importance of a particular node in the graph. Therefore, we define

– sout(u) as a set of distinct outgoing edges from u
– sin(u) as a set of distinct ingoing edges towards u
– din(u) = |sin(u)| and dout(u) = |sout(u)|

Graph Based Methods. We present three graph-based algorithms for esti-
mating a relative importance I of each node in the graph with respect to the
set of query keywords. These methods are originally introduced in [6] for the tag
cloud generation conditioned by single keyword queries. The algorithms rank an
importance of a tag t with respect to the query keywords Tq where {t, tq} ∈ G
and tq ∈ Tq. It is denoted as:

I(t|Tq)

Sorting tags according to their importance with respect to the tags from Tq

yields ranked tags. Eventually, it is easy to proceed with a tag cloud generation
when only top-k most relevant tags are selected for the final tag cloud.

There exist two distinct approaches for estimating a relative importance of
tags.

1. Distance based approach: The intuition is that a node is more relevant
to a particular node when a graph distance between these nodes is smaller.
In this context, a tag t is less relevant to the set of query tags Tq when there
are many intermediate tags on the graph path from t to tags from Tq.

2. Stochastic approach: The importance of a node is estimated with a
stochastic process. A reader can imagine a token that is randomly traversing
a graph. The token steps from one node u to another node v with a transi-
tion probability which is given by din(v) and dout(v). The random traversal
of the graph after a certain time converges. It means that the time of the
token spent at a certain graph node become stable. The time spent by the
token at each vertex expresses an importance of the particular vertex in the
graph.

In this paper, we focus on the stochastic approach only. This is motivated by
the finding from our previous work [6]. The distance based techniques are com-
putionally expensive and directly dependent on the graph size.

Stochastic Approaches for Tag Cloud Generation. The technique of mea-
suring importance of nodes in the graph is based on the simulation of stochastic
process e.g., random traversal of the graph. For the tag cloud generation it can
be conceived in the following way: There is a tag cloud creator that randomly
explores the graph structure of tags. The tag cloud creator visits a particular
node (tag) in the graph and then randomly hops to one from the tag neigh-
bours of the current node. Each visit of the cloud creator at certain tag can be
interpreted as the evaluation whether a given tag is important for the desired

Tag Cloud Generation for Results of Multiple Keywords Queries 239

tag cloud. When this stochastic process lasts infinitely long time, a period that
the tag cloud creator has spent at a certain tag can be perceived as its impor-
tance. As imaginary tag cloud creator can stay within a particular part of the
sub-graph too long a definition of a back probability needs to be included. The
back probability influences how often the random traversal of graph should be
restarted i.e., start a new random walk from one node that belongs to the query
keywords set. The transition probability from a tag t1 to t2 is defined as

p(t2|t1) =
1

dout(t1)

for all tags t2 that have an ingoing edge from t1. Otherwise, a transition prob-
ability equals 0. This process can be classed as a first-order Markov Chain and
there are various algorithms based on this process.

3.6 PageRank with Priors (PgRank)

This famous algorithm has been proposed in [8] and since then it has been used
for relevance and importance ranking of web resources within the web graph.
The PageRank reflects a behaviour of a random surfer where a certain set of
similar web pages is browsed by the user. After some time, surfer randomly
visits a different web page. Let us assume that the random surfer will browse
and explore web pages forever, in such situation, a time that he spends at a
particular site expresses also its importance in the web graph.

In this work, we focus on estimation of an importance of the tag t with respect
to Tq. Therefore, we describe a topic sensitive PageRank as was introduced by
[4]. A bias towards query tags is introduced with a vector of prior probabilities
pr = {p1 . . . p|V |}. Sum of prior probabilities equals to 1. In this work we consider
more query tags Tq, hence the prior probabilities are set only for these query
nodes. The setting of prior probabilities is described in the following Section 3.9.
A random restart of the random walk is achieved with a back probability β. It
conditions how frequently a stochastic process returns back to the root nodes
i.e., query tags from Tq. Consequently, we are able to define iterative stationary
probability:

π(v)(i+1) = (1− β)

(∑
u=1

din(v)p(v|u)π(i)(u)

)
+ βpv (2)

The resulting importance ranks biased towards Tq are considered as definition
of importance after convergence i.e.;

I(t|Tq) = π(t) (3)

The advantages of graph-based methods were presented in [6], where more rele-
vant tag clouds were generated. However, the method requires to set up several
parameters such as the back probability β and prior probabilities with respect
to a specific dataset.

240 M. Leginus, P. Dolog, and R.G. Lage

3.7 HITS with Priors (HITS)

In the similar way, we utilize HITS algorithm where a bias towards root query
nodes is introduced through a vector pr of prior probabilities.

Similarly, the setting of the prior distributions is described in Section 3.9. A
random surfer is achieved with a back probability β - it determines how often we
jump back to a root node. The iterative stationary distributions for authorities
and hubs is defined in the following way:

a(v)(i+1) = (1− β)

(∑
u=1

din(v)
h(t)(u)

H(i)

)
+ βpv (4)

h(v)(i+1) = (1− β)

(∑
u=1

dout(v)
a(t)(u)

A(i)

)
+ βpv (5)

where

Hi =

|V |∑
v=1

)
∑
u=1

din(v)h
i(u) (6)

Ai =

|V |∑
v=1

)
∑
u=1

dout(v)a
i(u) (7)

The motivation is similar as with the topic sensitive PageRank algorithm only
difference is that at each even step of the traversal only ingoing edges to the
current node (tag) are considered and at each odd step only outgoing edges are
considered as possible steps. The resulting importance ranks (stationary distri-
bution of each node) biased towards Tq are considered as definition of importance
after convergence i.e.;

I(v|Tq) = π(v) (8)

The algorithm has the similar properties as the PageRank with priors or the
k-step Markov Chain methods. However, the setting of the prior distribution is
more complicated. There is a need to encode prior probabilities for hubs and
authorities in the graph.

3.8 k-step Markov Chain (k-MarkovCh)

The technique is different to the previous methods in the implementation of
a random surfer model. It is achieved with a path length limitation. The step
constraint determines how often a token jumps back to one query node from the
query keyword set. The smaller the path length parameter is the more often a
stochastic traversal of the graph restarts back to a node chosen according to the
prior probabilities of nodes. We discuss this issue in the following Section 3.9. A
bias to the root nodes is introduced through a vector pr of prior probabilities.

Tag Cloud Generation for Results of Multiple Keywords Queries 241

The constructed graph can be represented as well with the transition matrix
A which is constructed in the following way. If there is an directed edge from
a node u to v, then we put a transition probability on row u, column v of the
matrix A.

I(v|R) = [A · pR +A2 · pR . . . AK · pR] (9)

The resulting importance ranks (stationary distribution of each node) biased
towards Tq are considered as definition of importance after convergence i.e.; The
method depends on the proper setting of the number of steps the random walk
is performed until the restart is performed. The tuning of this parameter might
be complicated and vary for different datasets.

3.9 Adjustment of Prior Distribution for Stochastic Restarts of
Random Walks

The prior probability for single keyword queries is defined in a simple, straight-
forward way. The probability for the query tag tq is set to 1 and for all other
nodes it is set to 0 [6]. However, this approach does not work for multiple key-
word queries. The naive extension would be to set a prior probability for each
query tag tq from the set of query tags Tq such that p(tq) =

1
|Tq| However, this

approach does not capture individual popularity of a query tag in the corpus. In
other words, when a rarely used tag is chosen as a query tag tq, such tag does not
co-occure with many tags. Therefore, there are not many edges connecting this
graph node with other nodes. Therefore, a random traversal of the graph initi-
ated from the rarely used tag/node might reach not important/relevant nodes
(tags). Consequently, it results into an inclusion of irrelevant tags into the tag
cloud. We verified this assumption by series of preliminary evaluations. The
naive approach of setting prior probabilities for multiple keywords queries suf-
fers from the inclusion of irrelevant tags into the final tag cloud. Therefore, we

First Second Third Fourth Fifth
0

0.1

0.2

0.3

0.4

0.5

0.6

Average prior probability distributions

Tags sorted by frequency in descending order

P
ri

o
r

p
ro

b
a

b
il

it
y

Movielens Delicious Bibsonomy

Fig. 1. Prior probability distributions and their corresponding exponential fit for
Movielens, Delicious and Bibsonomy datasets when generating tag clouds for queries
that consist of five keywords

242 M. Leginus, P. Dolog, and R.G. Lage

propose a simple intuitive setting of prior probabilities which capture a relative
popularity of the individual query tag tq from the set of query tags Tq. The
relative popularity for each query tag tq is computed in the following way:

p(tq) = popularity(tq) =
f(tq)∑

tqi∈Tq
f(tqi)

The sum of all popularities of tags from Tq equals to 1. Therefore, we set for
each query tag tq, the prior probability that equals to popularity(tq). In this
way, the more popular tags are more likely to be chosen after the restart of the
random walk. To motivate the presented approach, we observed the frequency
distribution of query tags, when the size of the query tags is set to 5. We ran-
domly selected 30 different queries for each dataset, each query consists of a set
of five query tags that are semantically similar (the selection process is more
detailed in Section 4.2). Figure 1 presents an average distribution of relative
popularities of query tags for each dataset. All three presented distributions and
their corresponding exponential fits indicate a large differences in relative tags
popularities among considered query tags. Therefore, it empirically proves our
intuition about adjusting prior probabilities of query tags with respect to their
relative popularity.

3.10 Syntactical Pre-clustering of Tags

All the presented techniques generate tag clouds from the syntactically clustered
tag space. We compute Levenhstein edit distance for each tag pair from the initial
tag space as it was succesfully utilized in our previous work [7]. Once, an edit
distance is calculated, the tag space is split into clusters. Each cluster consists of
tags where the Levenhstein distance is equal or lower than a defined threshold (a
number of maximum changes to transform a tag from the tag pair into a second
tag). Then, the most frequent tag for each cluster is selected and is used in all
further computations. It represents all other tags from a considered cluster. This
syntactical pre-clustering avoids redudancies in the generated tag clouds, results
into a denser graph structure for graph based methods.

4 Experiments

To compare the presented tag cloud generation methods described in Section 3
we conduct the following experiments. We measure the relevance of generated
tag clouds with respect to the queries. The queries consist of several (ranging
from two till five keywords) context-related tags that were derived from user
profiles. The motivation is to simulate different information retrieval scenarios
such as retrieval goal defined by multiple tags, retrieval of resources similar to the
selected resource which can be described by the set of assigned tags, and various
surveilance tasks where an expert monitors occurrence of predefined terms in
the system. The relevance of the generated clouds is measured on top of the

Tag Cloud Generation for Results of Multiple Keywords Queries 243

Movielens dataset,a snapshot of Bibsonomy dataset [5], and Delicious dataset.
The Bibsonomy dataset contains 206589 distinct items and 51565 tags. The total
number of tagging posts is 466818. The Movielens dataset contains 16518 unique
tags and 7601 movies. The total number of tagging posts is 95580. The Delicious
dataset represents all bookmarking activities on www.delicious.com from 8th till
16th of September 2009. It contains 187359 users, 185401 unique tags and 355525
bookmarks. The total number of tagging posts is 2046868.

The tag cloud selection techniques are implemented in Java 6 and source code
together with all results are available on our Web site1.

The rest of the evaluation section is organized as follows. Firstly, we define re-
quired evaluation metrics. Secondly, we describe a methodology of the conducted
experiments. In the end, we present and analyze evaluation results.

4.1 Evaluation Metrics

In this paper we measure the relevance of generated tag clouds with respect
to the queries that consist of several context-related tags. We do not measure
coverage, as we showed in our previous work [6] as this synthetic metric might
be misleading. The following paragraph introduce formally the relevance metric.

A set of exiting documents is denoted as D , the whole set of existing tags is
denoted as T , and the set of documents assigned to a tag t ∈ T is denoted as Dt.
The generated tag clouds is a set of tags which is denoted as Tc. The relevance of
Tc expresses how relevant the tags in Tc are with respect to the query keyword
tq. We compute a relevance of each tag t from Tc in the following fashion:

rel(Tc) = avgt∈Tc

|Dt ∩DTq |
|Dt| , (10)

where |Dt| is the number of documents assigned to a tag t and |Dtq | is the
number of all documents that are associated with a query tag tq. The metric
ranges between 0 and 1. When the relevance for a particular tag t is close to 1,
the majority of documents annotated with a tag t is covered by the documents
from Dtq . The more Dt and Dtq overlap, the more related t is to tq. When
Dt ⊆ Dtq , then t can be perceived as more specific sub-category of the original
query tq.

4.2 Evaluation Methodology

We randomly select 15 distinct users from each dataset. Each user profile is
pruned such that it contains only context-related tags. In this evaluation, we
define context-related tags as all the tags assigned by the user to the semantically
similar resources. The intention is to avoid tag cloud generation for semantically
different keywords in the query. For example, a tag cloud generated with respect
to the query keywords like Christianity and Ubuntu is likely to not produce
any relevant results to the users. Therefore, we concentrate only on tags which
are topically similar e.g., russian, dictionary and software. We assume that all

1 http://people.cs.aau.dk/\simmleginus/icwe2013/

http://people.cs.aau.dk/$\sim $mleginus/icwe2013/

244 M. Leginus, P. Dolog, and R.G. Lage

resources annotated by the given user are semantically similar when they share
at least one tag. For each user, we iteratively change the size of the pruned user
profile and measure the relevance of the generated tag clouds.

For each query set of tags Tq, where the size of Tq equals k, we perform the
following evaluation:

1. Generate a tag cloud with respect to given query tags Tq utilizing specific
tags selection method such that tag cloud contains at most n-tags.

2. Measure the relevance of the generated tag cloud.
3. Increase the size of tag cloud n. If maximum size is reached, increment the

size of Tq.

The above-described evaluation is conducted for each datasets and all considered
tags selection methods.

4.3 Graph-Based Techniques

Graph-based tag clouds generation consists of these two steps:

1. Perform syntactical clustering of the original tag space.
2. Make a graph transformation from the syntactically clustered tag space.
3. Make a tag selection utilizing graph-based relevancy ranking algorithms with

respect to the set of query tags Tq.

Each phase requires a certain parameters setting which are presented in the
following paragraphs.

Graph Creation from Tag Space. An important step of graph-based tag
cloud generation is a proper graph transformation. The proposed approach is
computing a tag pair co-occurence for all tags. When this measure for a tag
pair is greater than a predefined threshold α, we consider such tags as similar.
Eventually, each related tag pair is transformed into two directed edges t1 → t2
and t2 → t1. We have manually explored various similarity thresholds for both
datasets and attained the best results with α = 0.035 for Bibsonomy, α = 0.2
for Movielens and α = 0.01 for Delicious.

Parameters Setting of Graph-Based Techniques. The performance of
Pagerank (PgRank), Hits and k-step Markov Chain (k-MarkovCh) strongly de-
pends on proper parameter settings. As the goal of this work is to identify the
most relevant tags with respect to a given query tag tq, we set the parameters
in the following way:

– Prior probabilities for all algorithms are defined as relative ratio of frequency
tq with respect to the total frequency sum of all the tags of the query, and
0 for other tags.

– A back probability β for Pagerank and Hits is relatively high (β = 0.9) in
order to introduce often restart of random walk from the query tag.

– For k-step Markov Chain method, we set a constant k to 6.

The majority of these parameters were the same as in [6, 10].

Tag Cloud Generation for Results of Multiple Keywords Queries 245

25 50 75
0

0.1

0.2

Bibsonomy k = 2

tags in the tag cloud

R
e
le

v
a
n

c
e

25 50 75
0

0.1

0.2

0.3

0.4

Bibsonomy k = 3

tags in the tag cloud

R
e
le

v
a
n

c
e

25 50 75
0

0.1

0.2

0.3

0.4

Bibsonomy k = 4

tags in the tag cloud

R
e
le

v
a
n

c
e

25 50 75
0

0.1

0.2

0.3

0.4

0.5

Bibsonomy k = 5

tags in the tag cloud

R
e
le

v
a
n

c
e

MFTC POP TFIDF COV PgRank HITS k-MarkovCh

Fig. 2. Relevance on Bibsonomy dataset with different selection techniques and their
corresponding logarithmic fit

4.4 Results

We conducted the evaluation for the presented datasets and the methods fol-
lowing the introduced methodology. We iteratively increased the number of tags
in the tag cloud starting with 25 till 75 tags with the step 25. Moreover, we
explored different query sizes, i.e., number of tags in the query, ranging from
k = 2 till k = 5. The results for the Bibsonomy dataset are presented in Figure
2. The graph-based tags selection methods outperform all baseline techniques
in almost all settings. The largest improvements can be observed for tag clouds
with the size n = 25 and all query sizes. In these cases, the Relevance is improved
about 0.21, 0.19, 0.15 and 0.18 for the query sizes 2, 3, 4 and 5 respectively. The
MFTC method attains the worst results, similarly COV method perform worse
than other compared methods. Obviously, tag cloud optimization with respect to
the coverage results into inclusion of more irrelevant tags to the final tag cloud.
The best graph based method is Pagerank algorithm. The performance of HITS
algorithm decreases as the number of query tags increases. Similarly, k-Markov
Chain attains lower Relevance as PageRank algorithm, because k constant is still
the same for larger query sets. Therefore, the imaginary token may reach further
from the query tags in the graph. However, this can be beneficial for cases where
the goal is to deliver more diverse tag clouds as overlap is slightly lower than for
Pagerank algorithm. Graph based methods attain the best results also for the
Movielens dataset. The Relevance is improved about 0.40, 0.44, 0.45 and 0.3 for
these query sizes 2, 3, 4 and 5 respectively (see Figure. 3). The TF-IDF methods
does not attain such good results as there are many relevant tags which are
used frequently on top of all resources in the dataset. The graph based methods
perform very similarly. However, the methods attain lower relevance for large
tag clouds.

On the contrary, the graph based methods attain similar or lower relevance
for tag clouds generated from the Delicious dataset (see Figure 4). For tag clouds
which contain 25 tags the best performing method is PageRank algorithm. On
the other hand, for the tag clouds with more tags, the COV method outperforms
other techniques. Decreased performance of the graph based methods is caused
by the Delicious dataset data distribution. In particular, there are many very

246 M. Leginus, P. Dolog, and R.G. Lage

25 50 75
0

0.2

0.4

Movielens k = 2

tags in the tag cloud

R
e
le

v
a
n

c
e

25 50 75
0

0.2

0.4

0.6

Movielens k = 3

tags in the tag cloud

R
e
le

v
a
n

c
e

25 50 75
0

0.2

0.4

0.6

Movielens k = 4

tags in the tag cloud

R
e
le

v
a
n

c
e

25 50 75
0

0.2

0.4

0.6

Movielens k = 5

tags in the tag cloud

R
e
le

v
a
n

c
e

MFTC POP TFIDF COV PgRank HITS k-MarkovCh

Fig. 3. Relevance on Movielens dataset with different selection techniques and their
corresponding logarithmic fit

frequent tags in the dataset, i.e., almost 20 tags that were assigned at least
10000 times, almost 500 tags that were placed by users at least 1000 times. On
the other hand, there are 172554 tags that were utilized for annotation less than
10 times. Consequently, the underlying co-occurrence graph links very frequent
tags with very rarely used tags. It results into the inclusion of more frequent
tags into tag clouds. Such inclusion causes lower relevance.

25 50 75
0

0.1

0.2

0.3

Delicious k = 2

tags in the tag cloud

R
e
le

v
a
n

c
e

25 50 75
0.1

0.15

0.2

0.25

0.3

0.35

Delicious k = 3

tags in the tag cloud

R
e
le

v
a
n

c
e

25 50 75
0.1

0.2

0.3

0.4

Delicious k = 4

tags in the tag cloud

R
e
le

v
a
n

c
e

25 50 75
0.2

0.25

0.3

0.35

0.4

Delicious k = 5

tags in the tag cloud

R
e
le

v
a
n

c
e

MFTC POP TFIDF COV PgRank HITS k-MarkovCh

Fig. 4. Relevance on Delicious dataset with different selection techniques and their
corresponding logarithmic fit

4.5 Discussions and Limitations

The presented results demonstrate that graph-based methods can be succesfully
exploited for tag cloud generation tasks. The improvements are significant (in
some cases almost tripled relevance such as for the Bibsonomy and Movielens
dataset). The advantage of the graph-based methods is an ability to generate
tag clouds with respect to the particular set of query tags. The methods allow
you to predefine which tag from the query tags should be more preferred by
adjusting prior distribution for stochastic restarts of Markov Chains. Moreover,
these methods allow you to generate more diverse tag clouds with still relatively
high relevance (the smaller back probability β is the more diverse final tag clouds
are). Despite of these advantages, the methods do not perform that well on
top of datasets with the long-tail distribution of tags. We consider datasets

Tag Cloud Generation for Results of Multiple Keywords Queries 247

with the long-tail distribution of tags as those that contain very few tags which
are frequently utilized within the system. Moreover, these datasets include a
large number of infrequently used tags. The graph-based methods select tags
utilizing co-occurrence graph which links more frequent tags with rarely used
tags. Obviously, it results in the inclusion of more frequent tags into the final tag
clouds. This bevahiour causes decreased relevance of the generated tag clouds.

5 Conclusions

We explored the set of tag cloud generation methods with respect to multiple
keyword query. The graph-based methods perform the best at the Movielens and
the Bibsonomy datasets. This is achieved due to the proposed extension of the
setting of prior probabilities for the random walk based algorithms. On the other
hand, the graph-based methods do not perform well for the Delicious dataset.
The Delicious dataset has different distribution of tags with many very frequent
tags which decreases performance for more specific queries. For future work, we
plan to investigate how to build tag clouds based on user preferences. Moreover,
we aim to define tag cloud generation methods that will capture diversity and
novelty of the considered resources.

Acknowledgements. This work has been supported by FP7 ICT project M-
Eco: Medical Ecosystem Personalized Event-Based Surveillance under grant No.
247829. Moreover, the author wish to thank Vicki Chapman for her help with
the proofreading.

References

1. Aras, H., Siegel, S., Malaka, R.: Semantic cloud: an enhanced browsing interface
for exploring resources in folksonomy systems. In: Workshop on Visual Interfaces
to the Social and Semantic Web (VISSW2010), IUI 2010, Hong Kong, China, 2010
(February 7, 2009)

2. Bateman, S., Gutwin, C., Nacenta, M.: Seeing things in the clouds: the effect of
visual features on tag cloud selections. In: Proceedings of the Nineteenth ACM
Conference on Hypertext and Hypermedia, pp. 193–202. ACM (2008)

3. A.T. Company, Keyword and search engines statistics (2013)
4. Haveliwala, T.: Topic-sensitive pagerank: A context-sensitive ranking algorithm

for web search. IEEE Transactions on Knowledge and Data Engineering 15(4),
784–796 (2003)

5. Knowledge and U. o. K. Data Engineering Group. Benchmark folksonomy data
from bibsonomy, version of January 1, 2010 (2010)

6. Leginus, M., Dolog, P., Lage, R.: Graph based techniques for tag cloud generation.
In: Proceedings of the 24th ACM Conference on Hypertext and Social Media. ACM
(2013)

7. Leginus, M., Dolog, P., Lage, R., Durao, F.: Methodologies for improved tag cloud
generation with clustering. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.)
ICWE 2012. LNCS, vol. 7387, pp. 61–75. Springer, Heidelberg (2012)

248 M. Leginus, P. Dolog, and R.G. Lage

8. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, Previous
number = SIDL-WP-1999-0120 (November 1999)

9. Venetis, P., Koutrika, G., Garcia-Molina, H.: On the selection of tags for tag clouds.
In: Proceedings of the Fourth ACM International Conference on Web Search and
Data Mining, WSDM 2011, pp. 835–844. ACM, New York (2011)

10. White, S., Smyth, P.: Algorithms for estimating relative importance in networks.
In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2003, pp. 266–275. ACM, New York (2003)

Summaries on the Fly: Query-Based Extraction

of Structured Knowledge from Web Documents

Besnik Fetahu1, Bernardo Pereira Nunes1,2, and Stefan Dietze1

1 L3S Research Center, Leibniz University Hannover, Germany
{fetahu,nunes,dietze}@L3S.de

2 Department of Informatics - PUC-Rio - Rio de Janeiro, RJ - Brazil
bnunes@inf.puc-rio.br

Abstract. A large part of Web resources consists of unstructured tex-
tual content. Processing and retrieving relevant content for a particular
information need is challenging for both machines and humans. While
information retrieval techniques provide methods for detecting suitable
resources for a particular query, information extraction techniques en-
able the extraction of structured data and text summarization allows
the detection of important sentences. However, these techniques usually
do not consider particular user interests and information needs. In this
paper, we present a novel method to automatically generate structured
summaries from user queries that uses POS patterns to identify relevant
statements and entities in a certain context. Finally, we evaluate our
work using the publicly available New York Times corpus, which shows
the applicability of our method and the advantages over previous works.

Keywords: POS pattern analysis, knowledge extraction, text summa-
rization, query-based summaries, entity recognition.

1 Introduction

The majority of Web resources consist of unstructured textual content. Due
to the vast amount of information, filtering and adaptation of information to
different user needs and contexts is crucial.

Information retrieval (IR) techniques facilitate the discovery and retrieval of
relevant documents, often resulting in large sets of ranked documents shown to
a user. When processing the retrieved documents, as part of such user queries,
efficient methods are needed to enable users to quickly assess and judge the
content of each document, in particular with respect to its relevance to the
query.

Therefore, text summarization techniques aim at decomposing documents into
its most important chunks like paragraphs, sentences, etc. Most prominent ap-
proaches on text summarization techniques rely on topic modeling methods [2],
with each document belonging to one or more topics, and summarizing by de-
tecting the importance of a sentence towards the defined topic. Despite the fact
that text summarization approaches significantly reduce the amount of content,

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 249–264, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

250 B. Fetahu, B.P. Nunes, and S. Dietze

they are not focused on the user interests. Hence, it often generates a generic
summary of a textual document that might not reflect the user interests. Further-
more, after processing and detecting the most relevant concepts in a document,
common text summarization techniques do not take advantage of the concepts
found for representing the summaries in a structured form, which would improve
reasoning over the structured text [1,3,28].

Information extraction (IE) approaches, specifically Named Entity Recog-
nition (NER) tools and environments (e.g. GATE [7], DBpedia Spotlight1,
Alchemy2, AIDA3 or Apache Stanbol4), automatically generate structured data
such as entities and their relationships [18] from unstructured Web resources,
which would assist the information retrieval process.

In order to provide relevant information focused on particular user needs,
we introduce a novel query-driven summarization and knowledge extraction ap-
proach based on POS pattern analysis, topic modeling and NER. Concisely, our
approach exploits POS co-occurrence frequency from documents retrieved given
a user query to summarize the results that match most frequent POS pattern.
Additionally, we use DBpedia5 and Freebase6 as background knowledge to en-
rich, structure and disambiguate the concepts of each retrieved document.

As main contributions of this paper, we introduce a novel POS pattern detec-
tion approach for relevance judgment of statements in unstructured texts; adapt
techniques of text and data processing into a query-based document summariza-
tion approach; create a new conceptual entity type based on the co-occurrence of
certain POS tags, such as noun phrases ; and, finally, the incremental population
of a knowledge base for further reasoning. To the best of our knowledge, this
is the first work that extracts focused and structured summaries, which satisfy
given user queries and information needs. From now on, we refer to this approach
as focused knowledge extraction.

The paper is structured as follows: Section 2 presents the related work on
summarization and Section 3 introduces concepts used and formalizes the prob-
lem of focused knowledge extraction. Section 4 presents an overview and the pre-
processing steps of our approach and Section 5 introduces the focused knowledge
extraction for generating query-based summaries. Finally, in Section 6 we show
the evaluation and the results of our work followed by a brief discussion and
conclusions in Section 7.

2 Related Work

Most of the approaches for text summarization and extraction rely on combined
methods. For instance, natural language processing (NLP) and information ex-
traction (IE) techniques are usually used to generate extraction patterns [9],

1 http://spotlight.dbpedia.org
2 http://www.alchemyapi.com
3 http://adaptivedisclosure.org/aida/
4 http://incubator.apache.org/stanbol
5 http://dbpedia.org
6 http://www.freebase.com

http://spotlight.dbpedia.org
http://www.alchemyapi.com
http://adaptivedisclosure.org/aida/
http://incubator.apache.org/stanbol
http://dbpedia.org
http://www.freebase.com

Summaries on the Fly: Query-Based Extraction 251

while Latent Semantic Analysis (LSA) is combined with clustering techniques,
such as Latent Dirichlet Allocation (LDA), to select representative textual con-
tent from texts [26].

As for IE approaches, the extraction of important pieces of information from
textual contents is mainly based on entities and entity relations [9,17,10], where
they use static patterns along with semantic and lexical features to achieve
higher precision. The extraction of relations and events are usually performed in
large sets of Web pages or data streams, such as Twitter7 [21]. The approach on
generating patterns for extracting relations is similar to ours with the difference
that in our case instead of using fixed set of patterns, they are automatically
generated based on the evidence provided by the retrieved documents for a
specific user query.

Additional work on summarization [4,22,27,13] attempt on incorporating user
query interests. However, they rely on naive heuristics of counting specific terms
and defining manually extraction rules.

The field of Natural Language Processing (NLP) is a clear direction on lever-
aging the unstructured textual content, where the methods exploit the syntactic
and semantic structure of languages used in resources. Related works on co-
reference resolution depict the importance of an entity or part of sentence that
can be implied for a specific context [15,20] and to resolve disambiguation of
specific sentence parts. Similarly to our pattern generation approach, Hovy et
al. [14] uses “Tree Kernels” to encode different needs of detecting events, re-
lations and timestamps by incorporating POS tags, semantic types and other
terms of interest. Moreover, SUMMONS [19] a summarization tool that builds
templates for filling-in necessary information, and generates natural language as
concise summary representation of the filled template. In our approach, we use
co-reference to resolve ambiguities in the text.

A notable effort in text summarization tasks was performed by Blei et al.
introducing the Latent Dirichlet Allocation (LDA) approach [2], which is based
on a generative probabilistic model for topic construction. Particularly, we use
LDA for generating clusters of a set of related topics. Apart from this, LDA is
often used as a tool for summarization.

Other approaches on document clustering and summarization [26] rely on
constructing document-term and sentence-term matrices using Latent Seman-
tic Analysis (LSA). In this case, most important sentences selected based on
generated eigenvalues from a non-negative matrix factorization are chosen as a
base for language models. In this way, meaningful representations of clusters as
sentences are generated rather than terms.

Following the same direction using LSA, Wan [25] considers subtopic creation
from the main topic narrative text. Thus, sentences are measured for their rela-
tionship to the subtopics and presented as summaries for a particular subtopic.
Similarly, Gong and Liu [12] consider IR and LSA techniques for ranking and
identifying most important sentences as a means to construct summaries with
broad coverage for a set of textual resources.

7 http://www.twitter.com

http://www.twitter.com

252 B. Fetahu, B.P. Nunes, and S. Dietze

Recent efforts from the semantic Web community consider the task of sum-
marization from unstructured content [5,3,6,1], which are mainly based on the
previously mentioned methodologies. Briefly, the approaches aim at summarizing
the content into structured format such as Linked Data or as part of Ontology
construction.

The method presented in this paper goes beyond the creation of text sum-
maries and aims to generate structured context-based summaries. Although,
previous semantic-based methods have partially addressed this issue, we incor-
porate specific user needs into an automatic pattern generation approach to
extract only the information that fits the user query context.

3 Background

3.1 Concepts and Fundamentals

For the sake of clarity and to avoid confusion, we introduce concepts that are
used throughout this work. An action is defined as a verb phrase that indicates
an activity involving one or more entities as subject/object, whereas entity is
a less restrictive concept compared to traditional NER approaches, and is not
necessarily required to belong to one of the types (people, location, organization,
etc.) or a newly defined entity type iMisc in Section 5.2.

Additionally, the previous concepts action, entity are also contextually de-
fined. An action context captures additional information like subject/object as
entities found in a specific context, whereas entity context contains additional
descriptive information such as adjectives, quantities, etc.

3.2 Problem Definition

Briefly, we formalize the task of generating contextualized summaries and present
examples for illustration. Let D = {d1, d2, . . . , dm} be a set of documents and
T = {t1, t2, . . . , tn} a set of topics, where a topic is defined as a represen-
tation of most important terms from the corpus in D, formally defined as
ti = {w1, w2, . . . , wk}. We then define matrix D × T = [xij](mn), such that,
xij = o(di, tj), for i = 1 . . .m ∧ j = 1 . . . n, where o(di, tj) is defined by a binary
relation B indicating whether a document is related to a topic or not.

Now, let Q = {q1, q2, . . . , qz} be a set of queries where qk = {e1, . . . , ev} is a
list of query terms. For instance, the user query “European+Union” results in
the singleton term e1 = “European Union”. The result is a subset of matching
documentsD′ ⊂ D and the set of topics T ′ ⊂ T , where ∀t ∈ T ′, ∃d ∈ D′∧o(d, t) ∈
B. Note that, we also perform a query expansion step for each qk ∈ Q, however,
to preserve the clarity of the definition, we assume that the new terms introduced
by the query expansion method are already considered in Q.

In what follows, we define the set σ as the union of POS tags from
the terms in topic definitions from T ′ as ρ = ∪(t∈T ′)ω(t) where ω ∈
{NN,NNP, . . . , V B,CD} and the query terms from qk as φ = ∪(e∈qk)e, hence

Summaries on the Fly: Query-Based Extraction 253

σ = ρ ∪ φ. Elements in σ are used to construct a square matrix which are
added as row and column entries. The co-occurrence of two elements (σi, σj),
for i, j = 1 . . . l, computed for the documents in D′, P = [δ(i, j)]lxl, e.g.
σ = {NN, V B, . . . , “European Union”}.

Finally, a set of patterns Ψ ∈ {ψ1, . . . , ψy} consists of a combination of
elements from σ and a score assigned based on P . From documents in D′

we define a set of sentences S = {s11, . . . s1v, . . . , smv}. As generated output
from patterns in ψ and sentences in S, we define the focused summaries as
C = {((s(i,j), ψk), (E,A))} such that for s(i,j)∃ψk ∧ f(s(i,j), ψk), f(s, ψ) is the
match of sentence s(i,j) with pattern ψ. E = {e1, . . . , ep} and A = {a1, . . . , az}
are the set of entities and actions from sentence s(i,j) and ∀e ∈ E, ∃e ∈ s and
∀a ∈ A, ∃a ∈ s.

4 Overview and Running Example

This section presents the overall workflow of our focused knowledge extraction
approach based on a running example. Fig. 1 shows the whole process starting
from the user query input. Indeed, the user plays a central role in the generation
of the summary, since the resulting summary is based on the user query terms.

Fig. 1. Focused Knowledge Extraction Workflow

Let q1 = {“European Union”} be a query term where q1 ∈ Q issued by the
user. Thus, the query term q1 is processed and expanded using reference datasets,
which results in new terms qk ∈ Q. For instance, the query expansion for “Eu-
ropean Union” results in Q = {“European Union”,“European Union member
economies”, “G20 nations”, . . ., “International Organizations of Europe”}.

The query expansion is performed for each query term provided by the user,
where based on reference datasets, such as DBpedia and Freebase, related terms
are automatically added to the list of user query terms Q. The terms added to

254 B. Fetahu, B.P. Nunes, and S. Dietze

the list Q are labels (rdfs:label) from the directly related entities in such
reference datasets, explained in detail in Section 5.1. The query expansion aims
at improving recall and might be useful to disambiguate a particular user query.
The disambiguation occurs when the query has multiple terms, which facilitates
the identification of the user context.

Once the query terms are expanded, a set of relevant documents is retrieved,
according to these terms. Since the corpus is pre-processed, annotated with POS
tags and co-reference resolution applied, the task is synthesized to generate a set
of patterns scored for their likelihood of appearance on the set of the retrieved
documents.

Thus, in the case of the query Q, the top patterns generated is [JJ → V B →
“European Union” → RB]. The set of topics is defined by the 1000 most repre-
sentative topic terms extracted from the corpus. The set of the topics are selected
using a topic modeling tool based on LDA [2] and annotated with POS tags.

As a result, we obtain all the documents and topics that serve as input to
generate the summaries focused on the extracted knowledge and based on user
queries. The example below shows a generated summary for query “European
Union”, in blue color are shown the entities, while in red the actions.

Bulgaria → joined → European Union, on Monday → helping to end → geographic
divisions → left → cold war → extending → borders of the now 27-member bloc
eastward to the Black Sea.

5 Focused Knowledge Extraction: Query-Based
Summaries

In this section, we describe in details our approach of generating structured and
focused summaries for specific user queries. For the focused summaries we pro-
pose an entity-based view which emphasizes entities and the contexts and ac-
tions in which they appear. In the following subsections are explained in details
the necessary steps towards extracting and generating the focused summaries.

5.1 Query Expansion and Co-reference Resolution

The process of query expansion analyzes separately each query term for matching
entities in the reference dataset DBpedia, and expands with related entities that
are directly connected from all properties and assigned to the original query
term. Moreover, the related query terms are extracted from the related entities
using their label (rdfs:label). For instance, the query term “European Union”
is considered as a singleton term if it is indicated as a cunjunction of terms.
Finally, the query is reformulated as the disjunction of the original terms and
the ones found during query expansion. However, this step can be exploited in
addition also as a query refinement process by considering the conjunction rather
than the disjunction.

Whereas co-reference resolution aims at resolving ambiguities of terms e.g “the
president of the European Union” can be resolved to “Herman Van Rompuy”,
using Stanford’s NLP tool [15,20].

rdfs:label
rdfs:label

Summaries on the Fly: Query-Based Extraction 255

5.2 iMisc Entity Type Definition

Determining the entity type is important for our approach, thus for named en-
tity recognition we rely on the approach in [11], which detect annotation types
such as person, location, organization, date. However, in many cases detecting
the entity type is not possible, hence we rely on a term matrix which computes
co-occurrence term frequencies of noun phrases among a set of previously ana-
lyzed and annotated documents based on the approach in [24,23], and recognizes
named entities of type iMisc to distinguish from the other types.

An entity of type iMisc consists of terms which co-occur and can be formalized
as the following: entity[iMisc] =

⋃k
i=1 co-occur(termi, termi+1), where, in our

case the maximum value for k was found to be 3 (indicating 3 terms that co-
occur).

5.3 Automated Pattern Generation

One of the main challenges on creating user-query based summaries, is the ex-
traction of entities and actions relying on patterns that adapt automatically
to the intent of a user and set of retrieved documents. A pattern consists of a
combination of items from the set σ that co-occur in a set of retrieved docu-
ments (see Section 3.2), with POS tags extracted from the annotation of topic
definition terms and query terms.

Note that the set of POS tags is limited only to the topic definition terms (as
representative for the set of retrieved documents), and ignore other POS tags
not related to the topic definition terms. Thus, for a set of pairs of POS tags
and query terms (σ), all non-repetitive combinations are considered to construct
patterns for a given user query.

The combinations are represented in a symmetric matrix P = [δ(i,j)]l×l in
Eq. 1, hence, as rows and columns items from the set σ. The matrix is com-
puted for each issued query and each entry (δ(i,j)) of the matrix represents the
conditional probabilities of two items from σ co-occurring in the set of retrieved
documents D′.

For instance, consider again our running example with the query “European
Union” (referred with the acronym EU), which after the query expansion step
results in the set of query terms Q = {“European Union member economies”,
“G20 nations”, . . ., “International Organizations of Europe”}. The resulting ma-
trix is as follows:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

CD V BD . . . NN EU

CD p(CD|CD) p(V BD|CD) . . . p(NN |CD) p(EU|CD)
V BD p(CD|V BD) p(V BD|V BD) . . . p(NN |V BD) p(EU|V BD)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

NN p(CD|NN) p(V BD|NN) . . . p(NN |NN) p(EU|NN)
EU p(CD|EU) p(V BD|EU) . . . p(NN |EU) p(EU|EU)

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

256 B. Fetahu, B.P. Nunes, and S. Dietze

Given the resulting matrix P in Eq 1, we compute all possible combinations
of patterns, supported by evidence from the set of retrieved documents. The
problem of automatically generating patterns is modeled as a directed tree graph,
thus, a pattern represents a path from a root node to a leaf node.

From each element in σ for a query a directed tree graph is modeled with all
possible combinations with other element in σ (when the conditional probability
between the two elements is than zero in P). The transition probabilities from
one node to another represent the likelihood of those elements from the docu-
ment’s text with a specific POS tag or query term appearing together. Therefore,
each path from the root node to one of the leaf nodes represents a pattern of
variable number of elements.

The pattern scores are computed for the path from the root node to one of
the leaf nodes. The score of a pattern represents the marginal probability of the
probability of two nodes in the path co-occurring in the retrieved documents.

In more details, for an σi considered as the root node (“European Union”)
of the directed tree graph, as shown in our example in Fig. 2. The score of the
pattern having as a root node “European Union” is computed as in Eq. 2, where
for the i-th row in matrix P probabilities for each parent/child node transition
are multiplied. Finally, the higher the score of the pattern the more important
the pattern is, conveying important information about the most representative
syntactical and semantical structures of a document.

∀ψ ∈ Ψ, ψscore = p(σi) ·
l∏

j=1

p(δi,j |δi,j−1) (2)

To reduce the large number of detected patterns, we retain only the top-10 high
scoring patterns as computed in Eq. 2.

Table 1 shows a small subset of patterns with highest scores generated for our
running example. Using the generated patterns, individual sentences from the
retrieved documents are matched against one of the patterns, and are further
considered for generating focused summaries. A match is considered when a
sentence contains an ordered set of terms having the same syntactical structure
(ignoring POS tags that are not found in the topic definition terms) as a pattern,
we consider the relaxation of a full match and look for partial matches thus
increasing coverage of the summaries.

5.4 Contextual Structure of Extracted Knowledge

A necessary and important step after finding sentences decomposed from the
retrieved documents is extraction of the knowledge as a pre-condition for gener-
ating focused summaries. As indicated in Section 5, our summaries provide an
entity centric view, following the RDF schema visualized in Fig. 3.

Summaries on the Fly: Query-Based Extraction 257

Fig. 2. Pattern Generation approach using directed tree graphs

Table 1. Automatically generated extraction patterns

Generated Patterns Pattern Score ψscore

JJ → V B → “European Union” → RB 5.71E − 09
JJ → NN → RB → V B → EU 4.63E − 09
V B → “European Union” → JJ → RB 2.86E − 09
V B → “European Union” → JJ → NN → RB 1.16E − 09
“European Union” → JJ → NN → RB → V B 6.99E − 10

In Fig. 3, similar as in [8] we consider several structures describing concepts
introduced in Section 3.1. We separate the defined structures into two categories
global and local , explained in more details below.

Global structures such as entity and action capture relevant information about
these concepts, disregarding their context. Only the description and the type of
an entity as defined using standard NER tools8 and the defind iMisc type.
While, for an action the state as the verb tense is extracted and used as an
indicator of whether the action is completed or an ongoing/future activity. Ad-
ditionally, entities are enriched using DBpedia Spotlight with reference datasets
like DBpedia, and a link (owl:sameAs) is provided to the reference instance in
DBpedia.

Local structures like entity-context and action-context capture contextual
information about the two global structures entity and action. With respect
to entity-context, attributes (terms of POS tag adjective) and features like
quantifiers (terms of POS tag as cardinal number) are captured for an en-
tity describing for a specific context. Whereas for action-context we consider

8 http://nlp.stanford.edu/software/corenlp.shtml

owl:sameAs
http://nlp.stanford.edu/software/corenlp.shtml

258 B. Fetahu, B.P. Nunes, and S. Dietze

Fig. 3. Focused Knowledge Extraction RDF Schema

subject/object (entities belonging to the same context) as context specific in-
formation with which an action is linked. Finally, the context structure captures
information about the source of information, matching pattern, along with the
source document and user query.

The proposed RDF schema for representing and storing the focused summaries
offers the functionality of viewing entities appearing in different context, show-
ing the perspectives and their involvement for different queries. While additional
information obtained after entity enrichment provides an interlinking mecha-
nism to other data sources that lead to inferring of new knowledge for focused
summaries.

Final aim of our focused knowledge extraction is constructing a publicly avail-
able knowledge base of summaries generated for different corpora and contexts
over time, which will be incrementally populated and enriched. Access to the
schema, the RDF dataset and other related tools and evaluation is available
from a dedicated Website9.

6 Evaluation and Results

In this section, we present a thorough evaluation of our approach followed by
results and discussion. Concisely, the automatically generated summaries by our
method are compared against abstractive manually created summaries. An “ab-
stractive summary” is the summary that does not necessarily contain a similar
syntactical structure as the original document, but covers its main concepts. The
relevance of the automatically generated summaries for a given query against the
original manually created summaries for each document in our corpus was as-
sessed by humans and also using ROUGE [16].

9 htttp://l3s.de/~fetahu/QueryBased_Summaries/

htttp://l3s.de/~fetahu/QueryBased_Summaries/

Summaries on the Fly: Query-Based Extraction 259

6.1 Dataset

As for the dataset, we used a subset of the New York Times (NYT) corpus, which
contains 40, 000 articles and its manually generated abstractive summaries from
2007. The articles are manually annotated with entities such as persons, loca-
tions and organizations10. In general, the length of the summaries from the NYT
corpus ranges from 1 to 3 sentences. These summaries are used as gold-standard
to measure the coverage of the automatically and contextualized summaries gen-
erated by our approach.

6.2 Evaluation Process

The evaluation is divided into two steps: (1) focused-summary appropriateness
to user queries; and (2) focused-summary coverage.

The evaluation of step (1) aims at measuring how well an automatically
generated summary represents the query terms and concepts implied by the
query. In this evaluation, we created a questionnaire where we showed to the
participants the query terms used to retrieve the documents and the auto-
matically generated summaries. The participant has also access to the original
summary and the document content. For this evaluation, we had 17 partici-
pants in which they evaluated, in average, 20 summaries and chose whether
the automatically generated summary is “relevant” or “not relevant” to a given
query.

As for the second evaluation, we use ROUGE-n metric (Recall-Oriented Un-
derstudy Gisting Evaluation) [16] for computing the coverage of the automati-
cally generated summaries against the manually created summaries in terms of
a contiguous sequence of words (n-grams). For instance, n = 1 represents the
unigram “European”, while n = 2 represents the bigram “European Union”.
The coverage ratio of the contextualized summaries and the manually generated
summaries for the length n is computed as follows:

ROUGEn =

∑
s∈S

∑
wn∈s

|match(wn)|∑
s∈S

∑
wn∈s

|(wn)|
(3)

where |match(wn)| is the total number of the n − grams, represented as wn,
that are part of the automatically generated summary and the manually gen-
erated summaries, i.e. the reference summaries S. Obviously, ROUGE-n is a
recall metric between a candidate summary and a set of reference summaries.
Our evaluation was performed over 20 queries, which generated approximately
110 summaries on average per query. The manually created summaries extracted
from the NYT corpus were used as reference summaries. Note that, the auto-
matically generated summary and its reference summary correspond to the same
document in the corpus.

10 http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2008T19

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2008T19

260 B. Fetahu, B.P. Nunes, and S. Dietze

6.3 Results

The first evaluation used manual evaluators and aimed at assessing the relevance
of a summary given a user query, 76% of the automatically generated summaries
were marked as “relevant”.

For the second evaluation, we used ROUGE-1 to compare the automati-
cally generated summaries and the manually generated abstractive summaries.
Fig. 4 summarizes the results obtained by a sample of user queries. Our method
achieved 25% precision for the query “Super Bowl”, which is a comparatively
high precision value for such task. Furthermore, the query “Terrorist Attacks”
obtained 32% in terms of recall. The F1 measure ranged from 12% to 26%, which
is comparable to traditional summarization techniques.

Virginia.Tech US.Congress Terrorist.Attacks Super.Bowl Stem.Cell Protests National.Security Harry.Potter Global.Warming European.Union

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0 ROUGE−1 R

ROUGE−1 P

ROUGE−1 F

Fig. 4. Results for ROUGE-1 metric for different queries

Table 2. Generated focused summaries for different queries

Query
European

Union

Super

Bowl
US

Congress
Virginia

Tech
Stem
Cell Protest

Harry

Potter
Global

Warming
National
Security

Terrorist
Attacks

#Q.Terms 7 13 17 28 5 2 22 5 0 0
#Doc. 157 370 13 12 105 129 10 198 250 57
#Summ. 129 325 19 11 86 103 7 170 207 52

In Table 3 we show a small subset of generated summaries for the evaluation
queries reported in Table 2. For readability reasons, we do not show all the in-
formation about entities and actions, and their contexts, however, we indicate
the two different structures with colors in blue and red, respectively.

Summaries on the Fly: Query-Based Extraction 261

Table 3. Sample generated focused summaries from retrieved documents for the re-
ported evaluation queries

Query: “European Union” Query: “Super Bowl”
Bulgaria → joined → European Union European
Union on Monday → helping to end → geographic
divisions → left → cold war → extending → bor-
ders of the now 27-member bloc eastward to the
Black Sea.

New York Giants → are to realize → Super Bowl
they → held so firmly → beginning of the season
→ felt completely → implausible weekend they
→ have to win → three games on the road.

Georges Prtre → is → former music director of
the Paris Opera → has conducted → most world
→ leading → symphony orchestras.

Philadelphia Eagles → have played → N.F.C.
championship games in the past past years →
reached → Super Bowl after the season → los-
ing to → New England.

Query: “National Security’ Query: “Virginia Tech”
Kissinger Henry A (Dr) → was named → secre-
tary of state in while → keeping → post as na-
tional security adviser.

Clemson University → try to start → new streak
Wednesday University of Maryland → plays →
host Carolina → lost to → unranked Virginia
Tech on Saturday.

Republicans → forced to → Congressional side-
lines for the first time in years → growing increas-
ingly agitated → Democratic timetable.

Virginia → needed → mountain-sized comeback
→ topple → Georgia Tech in the Gator Bowl
Louisville → took → advantage of some timely
turnovers to → outlast → Wake Forest.

Query: “Stem Cell” Query: “Protest”
Republicans → boasted → support for embryonic
stem cell research as a way to → find → treat-
ments for a wide range of diseases.

Students → clashed → police in this country last
May attention → focused not just → demands →
hold → elections without government meddling
leaders → organizing → protests.

Democrats → applauded → Mr. Spitzer Eliot
(Gov) calls → insure → 500000 children → lack
→ health insurance → enroll → 900000 adults →
are → eligible Medicaid → enrolled → issue debt
→ pay → stem cell research.

Submarine → rammed → Japanese fishing vessel
in waters off Hawaii → killing → nine people.

Query: “Global Warming” Query: “Harry Potter”
Scientists over how to → describe → climate
threat → is particularly → intense experts →
work → final language in portions of the latest
assessment of global warming by the Intergovern-
mental Panel on Climate Change.

Dresden → played → Blackthorne Paul Black-
thorne Paul → is → Harry Potter → grown up to
become → Columbo.

Scientists → shouting lately → global warming
→ is → human-caused catastrophe.

America → taking → children movies → has be-
come → central cultural activity.

Query: “Terrorist Attacks” Query: “US Congress”
Homeland Security Department → is essentially
→ first line of defense again terrorist attacks →
is serving → nation.

Proposal → being considered → small businesses
→ allow write → larger part of they → go to →
court → challenge → federal regulations.

Pentagon → has increased → domestic intelli-
gence collection efforts → help ensure → Ameri-
can bases → are protected → potential terrorist
attacks.

Bush George W (Pres) → has been → bit
forthright things → have gone → Iraq Cheney
Dick (Vice Pres) → spoke → enormous successes
→ refused to pay even → curled-lip service →
consulting → Congress.

7 Conclusions and Future Work

Our approach addresses the task of focused knowledge extraction applied to the
problem of generating focused entity-centric summaries for a given user query.We
exploit POS pattern analysis and NER techniques to identify relevant statements
and entities within a certain context to automatically generate query-based sum-
maries. We also provide an RDF schema with the structured summaries for fur-
ther reasoning in a publicly available knowledge base, which directly contributes
to create a body of knowledge about entities and their appearance contexts over
time. Furthermore, the techniques presented in this paper expand state of the art
techniques on text summarization as well as information extraction.

262 B. Fetahu, B.P. Nunes, and S. Dietze

We extensively evaluated our approach in order to validate that the automat-
ically generated summaries address the user query needs and that it covers the
main concepts of the documents. Indeed, our results showed that 76% of the
summaries were relevant to the user queries and the concepts contained in the
query. Moreover, our automatic evaluation proved to be comparable to state of
the art techniques when assessed using the ROUGE-1 metric. In terms of the
best performing queries, the results for precision, recall and F1 reached 25% of
precision for the query “Super Bowl”, 35% of recall and a F1 of 26% for the query
“Terrorist Attacks”. This shows that our approach extracted focused knowledge
with high precision by incorporating the user interests through the query terms
and it detected the importance of specific POS tags after a POS analysis of the
terms in different topics.

As part of future work, we are working on reducing the number of patterns
generated for a query. Since, it is a combinatorial problem when looking for pat-
terns that involve many query terms. However, this problem could be circum-
vented by introducing a prior language analysis step to constrain the number
of patterns that are appropriate. Moreover, we plan to apply this technique to
several other domains.

References

1. Augenstein, I., Padó, S., Rudolph, S.: Lodifier: Generating linked data from un-
structured text. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V.
(eds.) ESWC 2012. LNCS, vol. 7295, pp. 210–224. Springer, Heidelberg (2012)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

3. Bouayad-Agha, N., Casamayor, G., Wanner, L., Dı́ez, F., López Hernández, S.:
FootbOWL: Using a generic ontology of football competition for planning match
summaries. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis,
D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp.
230–244. Springer, Heidelberg (2011)

4. Brandow, R., Mitze, K., Rau, L.F.: Automatic condensation of electronic publica-
tions by sentence selection. Inf. Process. Manage. 31(5), 675–685 (1995)

5. Bryl, V., Giuliano, C., Serafini, L., Tymoshenko, K.: Supporting natural language
processing with background knowledge: Coreference resolution case. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 80–95. Springer,
Heidelberg (2010)

6. Cheng, G., Tran, T., Qu, Y.: Relin: Relatedness and informativeness-based cen-
trality for entity summarization. In: Aroyo, L., Welty, C., Alani, H., Taylor, J.,
Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS,
vol. 7031, pp. 114–129. Springer, Heidelberg (2011)

7. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: A framework and graph-
ical development environment for robust nlp tools and applications. In: ACL, pp.
168–175 (2002)

8. Dietze, S., Maynard, D., Demidova, E., Risse, T., Peters, W., Doka, K., Stavrakas,
Y.: Entity extraction and consolidation for social web content preservation. In:
SDA, pp. 18–29 (2012)

Summaries on the Fly: Query-Based Extraction 263

9. Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open information extraction
from the web. Commun. ACM 51(12), 68–74 (2008)

10. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information
extraction. In: EMNLP, pp. 1535–1545 (2011)

11. Finkel, J.R., Grenager, T., Manning, C.D.: Incorporating non-local information
into information extraction systems by gibbs sampling. In: ACL (2005)

12. Gong, Y., Liu, X.: Generic text summarization using relevance measure and latent
semantic analysis. In: SIGIR, pp. 19–25 (2001)

13. Grefenstette, G.: Short query linguistic expansion techniques: Palliating one-word
queries by providing intermediate structure to text. In: Pazienza, M.T. (ed.) SCIE
1997. LNCS, vol. 1299, pp. 97–114. Springer, Heidelberg (1997)

14. Hovy, D., Fan, J., Gliozzo, A.M., Patwardhan, S., Welty, C.A.: When did that
happen? - linking events and relations to timestamps. In: EACL, pp. 185–193
(2012)

15. Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., Jurafsky, D.: Stan-
ford’s multi-pass sieve coreference resolution system at the conll-2011 shared task.
In: Proceedings of the Fifteenth Conference on Computational Natural Language
Learning: Shared Task, CONLL Shared Task 2011, Stroudsburg, PA, USA, pp.
28–34. Association for Computational Linguistics (2011)

16. Lin, C.-Y.: Rouge: A package for automatic evaluation of summaries. In: Marie-
Francine Moens, S.S. (ed.) Text Summarization Branches Out: Proceedings of the
ACL 2004 Workshop, Barcelona, Spain, pp. 74–81. Association for Computational
Linguistics (2004)

17. Mausam, M., Schmitz, S., Soderland, R.: Bart, and O. Etzioni. Open language
learning for information extraction. In: EMNLP-CoNLL, pp. 523–534 (2012)

18. Pereira Nunes, B., Kawase, R., Dietze, S., Taibi, D., Casanova, M.A., Nejdl, W.:
Can entities be friends? In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) Abstract
Data Types 1994 and COMPASS 1994. LNCS, vol. 906, pp. 45–57. Springer, Hei-
delberg (1995)

19. Radev, D.R., McKeown, K.: Generating natural language summaries from multiple
on-line sources. Computational Linguistics 24(3), 469–500 (1998)

20. Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky,
D., Manning, C.D.: A multi-pass sieve for coreference resolution. In: EMNLP, pp.
492–501 (2010)

21. Ritter, A., Mausam, Etzioni, O., Clark, S.: Open domain event extraction from
twitter. In: KDD, pp. 1104–1112 (2012)

22. Tombros, A., Sanderson, M.: Advantages of query biased summaries in information
retrieval. In: SIGIR, pp. 2–10 (1998)

23. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology, NAACL 2003, Stroudsburg, PA, USA, vol. 1, pp.
173–180. Association for Computational Linguistics (2003)

24. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a max-
imum entropy part-of-speech tagger. In: Proceedings of the 2000 Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora: Held in Conjunction with the 38th Annual Meeting of the Association
for Computational Linguistics, EMNLP 2000, Stroudsburg, PA, USA, vol. 13, pp.
63–70. Association for Computational Linguistics (2000)

264 B. Fetahu, B.P. Nunes, and S. Dietze

25. Wan, X.: Topic analysis for topic-focused multi-document summarization. In:
CIKM, pp. 1609–1612 (2009)

26. Wang, D., Zhu, S., Li, T., Chi, Y., Gong, Y.: Integrating document clustering and
multidocument summarization. TKDD 5(3), 14 (2011)

27. White, M., Korelsky, T.: Multidocument summarization via information extrac-
tion. In: Proceedings of the HLT Conference, pp. 263–269 (2001)

28. Zhou, Y., Guo, Z., Ren, P., Yu, Y.: Applying wikipedia-based explicit semantic
analysis for query-biased document summarization. In: Huang, D.-S., Zhao, Z.,
Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2010. LNCS, vol. 6215, pp. 474–481.
Springer, Heidelberg (2010)

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 265–282, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Mining Taxonomies from Web Menus:
Rule-Based Concepts and Algorithms

Matthias Keller and Hannes Hartenstein

Steinbuch Centre for Computing, Karlsruhe Institute of Technology, D-76128 Karlsruhe,
Germany

{matthias.keller,hannes.hartenstein}@kit.edu

Abstract. The logical hierarchies of Web sites (i.e. Web site taxonomies) are
obvious to humans, because humans can distinguish different menu levels and
their relationships. But such accurate information about the logical structure is
not yet available to machines. Many applications would benefit if Web site tax-
onomies could be mined from menus, but it was an almost unsolvable problem
in the past. While a tag newly introduced in HTML5 and novel mining methods
allow to distinguish menus from other contents today, it has not yet been re-
searched, how the underlying taxonomies can be extracted, given the menus. In
this paper we present the first detailed analysis of the problem and introduce
rule-based concepts for addressing each identified sub problem. We report on a
large-scale study on mining hierarchical menus of 350 randomly selected do-
mains. Our methods allow extracting Web site taxonomy information that was
not available before with high precision and high recall.

Keywords: Web site taxonomies, Web mining, Content hierarchies.

1 Introduction

What would a user do first to gain an overview over the information she can find on
the ICWE2013 conference Web site? Most likely she will scan the prominently
placed main menu at the top of the page. Maybe she is interested in the call for pa-
pers, so she would move the mouse pointer over the corresponding menu item to ex-
pand the child items. On the top level the contents of the site are organized hierarchi-
cally and the tree structure can be parsed unambiguously by users. This applies to
most other Web sites as well.

Web site taxonomies, understood as logical hierarchies, are obvious to users, but
not yet available to machines. Although nested lists can be modeled, HTML does not
include language features that allow marking the different menu levels, e.g. the root
menu of a Web site. There is a lot of previous work that focuses on extracting and
generating different kinds of hierarchies based on Web content, e.g. from the hyper-
link structure, URL structure or from text features. These hierarchies are very useful
for many applications – but only because they approximate the real logical content
organization. Humans, in contrast, are able to decode the logical organization from
the menu structure and information architects, which are responsible for organizing

266 M. Keller and H. Hartenstein

Fig. 1. Integrating taxonomy information in the presentation of search results (mockup based
on the search result presentation of google.com)1

and labeling information, express it in that way. Information architects emphasize the
importance of well-designed taxonomies for usability (e.g. [1],[2]). If, based on me-
nus, Web site taxonomies could be mined more accurately regarding human percep-
tion, all methods that rely on approximations of the logical hierarchy of Web sites
would benefit, e.g. methods for automated sitemap generation [3], related entity find-
ing [4], keyword enrichment [5] or Web site classification [6]. In addition, precise
taxonomy information would allow whole new applications, in particular the integra-
tion of taxonomies in the presentation of search results (Fig. 1). The mockup illu-
strates that the first level of the Web site taxonomy provides useful information about
the complete range of site content – information users cannot find in current search
result summaries.

However, the seemingly simple problem of extracting taxonomies from menus ap-
pears to be a hard one at a closer look. Humans are able to decode visual features such
as the position, size and layout of menus as well as color information for distinguish-
ing different menu levels or menu types. These features carry semantics that are lost
in the underlying markup code. But recent developments change the situation. The
nav-tag introduced in HTML5 brings new possibilities for analyzing menus. Menus
can be labeled as such and in turn machines are able to distinguish menus from other
content. In addition, the MenuMiner-algorithm [7] presented recently allows identify-
ing fixed menus independent from the underlying markup semantic.

In this paper we present the first thorough analysis of the problem of extracting
logical taxonomies from hierarchical menus. We decompose the problem and present
solutions for the different sub problems. We demonstrate that general design rules
exist that allow solving each sub problem without analyzing visual features. In con-
trast to previous approaches, we focus on the real logical structure as perceived by
humans. This requires an extensive evaluation, because no benchmark exists and the
evaluation can only be conducted against the human perception.

The structure and the contributions of this paper are:
In Section 2 we define the central terms and specify the problem statement based

on these definitions. In Section 3 we present the first in-depth analysis of the problem
of extracting taxonomies based on menus. We identify three sub problems that have
not been described before and propose novel rule-based concepts for solving each sub
problem. We explain how the different levels within a menu can be distinguished,
how active menu items can be determined and how Web site taxonomies can be as-
sembled without analyzing visual features. Our concepts are generic because they rely

1 Google provides shortcut links for some sites at a similar position that are based on ranking

algorithms and that do not summarize the site content as the first level of a taxonomy does.

 Mining Taxonomies from Web Menus: Rule-Based Concepts and Algorithms 267

Fig. 2. Examples of different types of menus

on analyze the structure of the underlying HTML code only, but do not consider tag
semantics. The methods consume little resources and do not require parsing Javascript
or downloading presentational resources as images or CSS-files. In Section 4 we de-
scribe in more detail how the partial solutions are implemented and integrated into a
single application. We introduce the novel ListWalker-algorithm that allows extract-
ing taxonomies based on the order of the menu items only. In Section 5 we evaluate in
a large-scale study how well the implementation performs. Correctness is evaluated
against the human perception of the logical site structure. To our knowledge no other
taxonomy mining approach has been proven to extract the logical structure as per-
ceived by humans with similar accuracy regarding the identification of the first tax-
onomy level and, thus, the main content sections of sites. Finally, related work is
presented in Section 6.

2 Problem Statement

In this paper the term menu denotes a user interface element of a Web site and its
markup code. Menus have the single purpose of providing access to other resources
(cf. Fig. 2). In other words, menus are implementations of navigation design patterns
(e.g. [8]). A single menu can be part of multiple pages of a site. From the Web mining
perspective the menu is defined by all its code snippets from all the pages it is pre-
sented on. The menu can occur in page-dependent variations with different menu
items being expanded or collapsed (Fig. 2(B)). Thus, the code snippets of a single
menu can differ. Different menu levels that are nested are considered as one menu if
the underlying HTML code is continuous, e.g. in case of the menu shown in
Fig. 2(B). In contrast, a4 and a5 in Fig. 2(A) are two separate menus.

In this paper the term Web site taxonomy describes a logical tree structure in which
Web documents are arranged by information architects to facilitate access. Each node
of the logical tree represents a document and has a label. Each node also represents a
site section given by the subtree rooted at that node. Web site taxonomies are logical
structures, not link structures. Taxonomies can also be distinguished from the design
models representing them, e.g. whiteboard drawings, bullet lists or elaborated models
part of Web engineering methods as WebML [9], OOHDM [10] or UWE [11]. To
serve the purpose of facilitating human access, Web site taxonomies must be obvious
to users. In particular, users must be able to decode the original tree structure. Since

268 M. Keller and H. Hartenstein

menus are the user interface elements that provide access to other resources, taxono-
mies are usually implemented as hierarchical menus. Humans are able to decode the
tree structure based on visual and functional features unambiguously. For example, in
Fig. 2(B) a visual feature is that the child nodes are indented. Functional features
encoding hierarchical structures are, e.g., that a submenu is expanded when the mouse
pointer is moved over the parent item (cf. Fig. 2(A)) or different sub trees are perma-
nently expanded depending on the active page (cf. Fig. 2(B)). Multiple menus can
have the same underlying taxonomy, e.g. when there is a main menu at the top and a
second level menu at the left side of a page.

This paper addresses the problem of automatically retrieving the underlying tax-
onomies from Web site menus. Taxonomies are understood as the logical organiza-
tion as it is perceived by humans. Because of the nav-tag newly introduced in HTML5
and novel mining methods [7] the menus itself can be separated from other content. It
is also assumed that if a single menu appears on multiple pages, all of its code snip-
pets can be identified as belonging together.

The mining method should be correct in such a way that the delivered taxonomies
match human perception. It should be universal and not be limited to specific menu
implementations.

In addition, a viable solution should fulfill the following requirements:

─ To enable efficient execution, parsing or interpreting Javascript code should not be
necessary. For the same reason HTML rendering or downloading additional re-
sources such as CSS files or images should not be required as well.

─ The method should not rely on the way the menus are implemented in HTML, e.g.
whether lists or span-tags are used to model menu items.

─ The method should be fault tolerant. Input snippets that do not represent hierar-
chical menus but other page elements, e.g. breadcrumbs, should not lead to incor-
rect results.

3 Decomposing the Problem

In this section we describe how the problem extracting Web site taxonomies from
menus can be broken down into sub problems that can be solved without analyzing
visual features, rendering HTML code or executing Javascript code.

Multiple levels of a Web site taxonomy can be implemented by a single menu.
Thus, extracting intra-menu hierarchies is the first sub-problem. Pages can be logical-
ly arranged under a menu item, even if they are not linked from within a sub menu of
that item. Assigning pages to menu items is the second sub problem. Because differ-
ent levels of a single taxonomy can be implemented by separate menus, extracting
inter-menu hierarchies is the third sub problem.

3.1 Intra-menu Hierarchies

Sub Problem: Extracting taxonomy information from individual menus. Single me-
nus often represent multiple levels of the Web site taxonomy. Humans can decode the

 Mining Taxonomies from Web Menus: Rule-Based Concepts and Algorithms 269

different levels by visual or functional features, but machines cannot interpret these
features. The underlying HTML code does not reliably reflect the taxonomy. For
example, Fig. 3 shows the logical structure of the menu snippet a1 from Fig. 4. In the
Web site taxonomy the node p1 is a parent node of p2, but in the structure of the un-
derlying HTML code p1 and p2 are siblings.

Solution: Menus that represent more than one level can be divided into two classes:
(1) The first class are client menus for which the server always returns the same mar-
kup code on all pages. These menus only have a single snippet variant. Sub items are
collapsed or expanded on the client-side via Javascript and CSS. (2) The second class
are server menus with varying menu snippets depending on the active page (e.g. Fig.
2(B), Fig. 4). The menu state is generated on the server-side and not dynamically
changed on the client side.

Client menus: In practice client menus are easier to deal with, since the original hie-
rarchy can be derived by parsing the HTML tree using a simple page segmentation
algorithm described in [7]2. One reason is that usually each menu level has its own
container element to switch it on or off. Additionally, since only client-side manipula-
tion of the menu is involved, the logical structure of the menu must be available on
client-side. Moreover, instead of proprietary scripts usually Javascript frameworks are
used which render menus as nested lists as a kind of standard.

Server menus: Server menus display only fragments of the Web site taxonomy on
each page. Fig. 3, for example, shows the logical structure of the menu snippets a1
and b1 from Fig. 4. Both menus use different patterns to generate the displayed tax-
onomy fragment: For the first menu all ancestors are rendered but not their siblings.
In the second menu, the siblings of the ancestor p1 are also visible. In case of server
menus the logical structure is often not preserved in the underlying HTML code. We
found that instead of analyzing the HTML structure, other information can be utilized:
There are general design rules almost all menus adhere to. They result from the three
basic questions Web navigation has to answer: “Where am I?”, “What’s here?” and
“Where can I go next?” [2]. To indicate the current location and to allow users to
navigate back to previous levels, the ancestors of the current node are always visible,

Fig. 3. Logical structure of the Web site taxonomy fragments represented by snippet a1 and
snippet b1of Fig. 4.

2 A minor refinement of the algorithm described in [7] was made: ul-elements were always

kept as containers and li-elements were always stripped.

270 M. Keller and H. Hartenstein

Fig. 4. The ListWalker algorithm processes the menu snippets as flat lists

even if the siblings of the ancestors are collapsed (cf. P1-P4 in snippet a1, Fig. 4). The
ancestors appear in their logical order. Another design rule is that child nodes of the
active node, if any, are always expanded to answer the question “Where can I go
next?”. All ancestors are usually presented prior to the child nodes. We found that
given these general design rules the taxonomy can be extracted by processing all
snippets of a menu as flat lists (Fig. 4), regardless depth or whether parent levels are
expanded or not. The ListWalker-algorithm, presented in Section 4.2, extracts the
taxonomy solely from the menu items that the snippets contain and their order. The
underlying HTML structure and the semantics of the tags are ignored. The solution is
very generic and can be applied to menus, regardless of whether tables, lists or other
HTML elements are used.

3.2 Page Assignment

Sub Problem: Assigning pages to site sections. Each menu item corresponds to a site
section, given by all the pages that are logically arranged under that item (at least the
page linked by the menu item). There are often pages that are logically arranged under
a certain menu item, even if they are not linked from within a sub menu of that item.
For example, in Fig. 5 the content link L in the section “Asia” links a page that is
clearly part of this section from the information architecture point of view. In such
cases the parent-child relationship cannot be derived from intra-menu hierarchy in-
formation (cf. previous section) because there is no link to the child in the menu. In
contrast to machines, humans are able to interpret complex visual features (e.g. that
the item “Asia” is highlighted). Even if the item “Asia” would not be highlighted on
the right-hand page, humans would attribute the page to this menu item, because of
the link context and semantic knowledge.

 Mining Taxonomies from Web Menus: Rule-Based Concepts and Algorithms 271

Fig. 5. The page on the right is not linked by a menu item but by a link in the content area (L)
only. It is still a child page of the active menu item “Asia” (A).

Solution: If the intra-menu structure is known, features can be extracted that allow to
distinguish whether a page is arranged under a certain menu item or not. For example,
in Fig. 5 the menu item “Asia” defines a site section and the linked page is part of this
section. In order to extract distinguishing features for identifying other pages of this
section, it is necessary to find examples of pages that are not part of this section. In
general, pages linked by random other menu items cannot be used as negative exam-
ples for a section, because the menu items could as well be child nodes of the item
defining the section. But if the intra-menu hierarchy is known, child nodes can be
identified and excluded. For instance, the menu in Fig. 5 represents only a single level
of the taxonomy and, based on this knowledge, all pages linked by other menu items
can be used a negative examples for the section “Asia”. The features we consider are
(1) CSS classes that are assigned to the menu items and (2) URL directories of the
linked pages.

(1) By analyzing the CSS classes, in many cases the active menu items can be de-
tected without considering the actual visual presentation. Usually there are certain
CSS classes that are used to highlight menu items and our method aims at determin-
ing these. Fig. 6 illustrates this approach. For example, the method assumes that the
menu item “Europe” is highlighted on the page “Europe” but not on any other page
linked in the same menu. If there are one or more CSS classes that are assigned to the
menu item “Europe” if that page is active and, at the same time, these classes are not
assigned to that menu item on any other page linked in the menu, it can be derived
that these classes mark the item as active. Thus, if there are other pages of the site on
which the same classes are assigned to the menu item “Europe”, it can be concluded
that these are child pages of the item as well.

(2) The second feature that can be used for page assignment is the hierarchical URL
structure. Often the pages belonging to a site section, i.e. the child pages of a certain
menu item, reside under the same directory. While the directory structure of a Web
site may or may not reflect the logical structure, aligning it with menu items allows
determining whether this is the case. Similar to the CSS feature it can be analyzed for
all menu items whether they point to a directory that differs from the directory the
other menu items point to. If menu items have child nodes, they can be considered
additionally. Fig. 7 illustrates this approach. The URLs of the child nodes of the menu
item “Audi Sport” have a common directory prefix that is exclusive in a way that no
other pages linked by other menu items reside under this directory. All other pages of

Source:

http://edi

dition.cnn.com

272 M. Keller and H. Hartenstein

Fig. 6. When the linked page is active, the menu item “Europe” has a CSS class that is missing when
another menu item is active, indicating that the class “nav-on” is used to mark the active menu item3

Fig. 7. The child nodes have a common directory and in turn all pages residing under this direc-
tory can be interpreted as child nodes of the menu item (source: http://www.audi.com)

the site that are not linked in the menu and are located below this directory can now
be assigned as child nodes to the menu item “Audi Sport” as well.

3.3 Inter-menu Hierarchies

Sub Problem: Different levels of a Web site taxonomy are often implemented in
separate menus. For example, a horizontal menu bar at the top represents the first
level and a separate vertical menu at the left side represents the second level. These
relations must be extracted in order to recover the original taxonomy. The menus
representing taxonomy levels must also be distinguished from other menus, e.g. me-
nus providing contextual links or navigation aids.

Solution: Menu-submenu relationships can be discovered based on the presented
menu items. Fig. 8 illustrates the idea. If the items of a parent menu are traversed, the
items of the child menu change with each page transition. The child menu will never
have the same items for different active parents if a taxonomy is the underlying

3 The CSS classes used to mark active items are often not assigned to the links, i.e. a-elements,

but their parents (e.g. li-elements). This has to be considered in the implementation.

 Mining Taxonomies from Web Menus: Rule-Based Concepts and Algorithms 273

Fig. 8. The menu items of the lower menu change when the upper menu is traversed, while the
upper menu is fixed if the lower menu is traversed. Thus, a menu-submenu relationship can be
derived without analyzing presentational features (source: http://windows.microsoft.com).

structure. If, in contrast, the items of a sub menu are traversed, the menu items of the
parent menu will not change. Despite promising preliminary results, the solution that
is evaluated in Section 4 does not include this kind of analysis. In our evaluation runs
we found that the task of discovering menu-submenu relationships is more challeng-
ing than we expected due to noise and irregularities. However, training a classifier on
a large sample would be a solution but this is beyond the scope of this paper.

For distinguishing menus that represent levels of the taxonomy we first extract the
intra-menu hierarchies and then try to arrange additional pages in this tree by applying
the concepts presented in the previous section. This is done for all menus without
testing in advance whether they really represent taxonomies or not. In the end, it is
examined whether tree structures have been extracted, and if so, the most extensive is
returned as Web site taxonomy (cf. Sect. 4).

4 Implementation

In this section we describe the implementation of the presented concepts in detail. We
first describe how the concepts are integrated into a single solution based on the Me-
nuMiner-algorithm [7]. Then, we introduce the ListWalker-algorithm that allows
extracting intra-menu hierarchies based on flat lists.

4.1 Solution Overview

We implemented the rule-based methods described in Section 3 on top of the Menu-
Miner-algorithm [7] that delivers the boundaries of menus that are repeated on mul-
tiple pages (Fig. 9). In the example, two menus are found (Fig. 9(2)). Two variations

Fig. 9. (1) The MenuMiner-algorithm is used to extract menus. (2) By parsing the HTML struc-
ture and applying the ListWalker-algorithm intra-menu hierarchies are extracted. (3) The page
assignment methods are applied to extend the hierarchies. (4) Heuristics are used to determine
Web site taxonomies.

274 M. Keller and H. Hartenstein

Fig. 10. On navigation paths descending the Web site taxonomy the child nodes are successive-
ly expanded. Thus, if the root state is known, the taxonomy can be extracted based on flat lists.

(“menu states”) of menu 1 are found on the site, one variant in which the child nodes
of “Products” are collapsed and another one in which the child nodes are expanded. In
the example, Menu 2 has only a single state. Instead of the MenuMiner-algorithm, the
nav-tag introduced in HTML5 can be used for retrieving the menus of a site if it is
widely applied in the future, because the methods can deal with noise, e.g. other navi-
gation elements, such as breadcrumbs or paginations that not represent levels of the
Web site taxonomy. Those elements will not deliver hierarchies and are ignored.

In the next step, HTML tree parsing for analyzing client menus and the ListWalk-
er-algorithm (Section 4.2) for parsing server menus are applied (Fig. 9(3)). Both me-
thods are used for each menu and if they both deliver hierarchy information, the most
complete tree structure is kept for further processing. The overlap coefficient (cf.
[12]) is used for handling noise, e.g. an additional hyperlink on one page that is miss-
ing on others, and deciding whether two slightly different snippets are considered as
one and the same.

Then, the page assignment methods are applied (Fig. 9 (4)) and heuristics are used
to determine the global taxonomy (Fig. 9 (5)). The implementation presented in this
paper relies on first trying to discover hierarchical structures for all menus found indi-
vidually and then judging which menu represents most likely the first level of the
global hierarchy using a metric and other criteria listed below. If there are other pages
that do not contain the menu, the menu selection process is repeated in order to find
all taxonomies of the domain. In our evaluation runs we experimented with different
ways of computing the selection metric K and found that a simple heuristic works
best: Ki = Ai / Pi. The metric Ai is the average depth of the pages in the hierarchy of
menu i, including pages that are arranged in the hierarchy by page assignment. If the
page is neither part of the hierarchy nor an active menu item can be found, the depth
is considered to be 0. The other factor influencing the detection of the main menu is
the average position of the menu in the source code. If, for example, menu i is always
the first menu in the source code of all pages it is contained, Pi has the value 1. In
addition, we discard menus if one of the following boundary conditions is not met:
(A) The menu has less than 15 items, (B) not more than 30% of the text content

 Mining Taxonomies from Web Menus: Rule-Based Concepts and Algorithms 275

appears in average before the menu (to exclude footer menus), and (C) no other menu
with a lower average position Pi appears on more pages.

4.2 ListWalker-Algorithm

As argued in Section 3.1 the underlying HTML code does usually not reflect the logical
structure of the taxonomy fragments rendered on different pages in case of server me-
nus. However, there are two general design rules: (1) All ancestors of the active page
are expanded and displayed above the active page (to allow ascending to parent levels).
The ancestors appear in their logical order. Sibling of the ancestors may or may not be
expanded. (2) If the active page has child nodes theses are always expanded (to allow
further descending the hierarchy). The child nodes appear below the active page.

 Algorithm 1. ListWalker Input: W = 1,2, … , m – the m pages of the site N = n , , n , … n , W , i W – the li Menu Items of Page i Output: G – the edges of the hierarchy 1. // init 2. G ; R 3. for each N with , = i 4. for each n , N with j 1 5. R = R N , N 6. // main loop 7. while (|R| 0) 8. Randomly select N , N R; 9. R = R N , N ; 10. k 0; 11. while (k |N |) 12. If k=0 OR nj,k-1=j AND notContains(Ni,nj,k) 13. break; 14. k k + 1 15. while k N AND notContains N , n , 16. G G j, n , 17. R = R N , n , 18. k k + 1

The ListWalker algorithm presented in this section allows extracting the hierarchy

by processing the menu snippets (“menu states”) as flat lists based on these design
rules. Fig. 10 illustrates the fundamental approach. The figure shows the menu beha-
vior when a user descends the taxonomy starting from the root. Example a shows an
implementation in which the parent levels, the current level and the children of the
active item are expanded. In example b the intermediate level is collapsed. The child
nodes can be easily derived based on the flat list representation because they are suc-
cessively expanded. For example, the child nodes of Item-2 in example a can be

276 M. Keller and H. Hartenstein

retrieved taking the menu items of page Item-2.html and subtracting the items of the
previous state (state of Item-1.html), leaving Item 2.1, Item 2.2 and Item 2.3. This
approach works for example b as well. Child nodes cannot be retrieved by subtracting
the items of random states. Instead a valid reference state is necessary that is either a
parent or sibling. If, e.g., in example b the menu state of Item-2-1.html would be used
as reference to compute the children of Item-2.html, Item 2.2 and Item 2.3 would be
wrongly assigned as children to that page. The reference state problem can be nar-
rowed down to finding a root page that has no parent. The root page is a reference
state for all its menu items. Thus, for each menu item the child nodes can be deter-
mined – and each menu item is again a reference state for its children and so on.

Algorithm 1 is the skeleton of the ListWalker algorithm. The pages W of the site
are numbered from 1 to m. For page w W the menu state is modeled as N =n , , n , , … W, the ordered list of pages linked in the menu. The algorithm
computes G, the edges of the taxonomy as illustrated in Fig. 9. Because of the two
design rules, there is usually a state with n , = i , which is a state of a page that con-
tains a link to itself at the first position (for example the states of Item-1.html in Fig.
10). Such a state will be referred to as first item state (FIS) in the following. The FIS
can be determined easily and in case of a top level menu, the FIS is usually the home-
page. Since a FIS belongs to the first level of the hierarchy and has no parent, it is
always a root state and can be used as initial reference state for its siblings. There
might be multiple FIS, because the extracted states of a menu can encompass multiple
separated trees, e.g. sub sites in different languages.

In Algorithm 1, R holds tuples of reference states and unprocessed states. R is in-
itially filled by iterating the menu items of the FISs, which are either children or sibl-
ings (lines 03-05). In the main loop a random tuple is taken from R (line 08) until R is
empty. The loop starting at line 11 traverses the items of the menu state under exami-
nation until the first child page, which can be identified by being absent in the refer-
ence state. As additional condition the position is considered. Child pages are usually
placed directly after their parent, but we also found implementations where a sub
menu is positioned above or below the parent menu (line 12). The loop starting at line
15 iterates the child pages until a menu item is reached that is contained in the refer-
ence state, denoting the end of the sub menu. The edges from the parent to the child
pages are added to G (line 16) and the active state is added as reference state for each
child page to R for further processing.

In addition to the basic algorithm, a few extensions must be included to make it
applicable for real world Web sites:

• Algorithm 1 delivers valid reference states recursively for all states except the
FISs. As listed, the algorithm does not discover their child pages. A reference
state for a FIS can be found by searching for extracted menu states whose items
are a subset of the FIS.

• Real world menus often contain items that are redirections to pages that are
placed somewhere else in the tree. If not considering these crosslinks, wrong ref-
erence states will result in faulty edges. Thus a tuple N , N with d = n , that
represent a crosslink must not be added to R in line 17. Crosslinks can be

 Mining Taxonomies from Web Menus: Rule-Based Concepts and Algorithms 277

identified by testing if n , , n , … d n , , n , … d is not fulfilled. That is, the pre-
decessors of the active item must also be predecessors of that item in the refer-
ence state.

5 Evaluation

The MenuMiner-algorithm scales very well [7] and the methods presented in this
paper are little resource consuming. The operations including analyzing the crawled
pages have linear-time complexity. In relation to the number of pages the number of
menus grows sublinear and thus processing the menus is uncritical. Since runtime
performance is not an issue and due to space limitations we focus on evaluating the
correctness.

5.1 Methodology

For evaluating the method a data set was constructed by crawling 350 domains. The
domain list was the result of a first crawl seeded with yahoo.com. The crawler was
configured to discover new domains in a depth-first manner. In order to spread the
samples, the next 25 discovered domains were skipped each time a domain was added
to the list. Finally the 350 domains were crawled separately. A crawl was stopped if
all pages were retrieved or 100 pages were processed by the MenuMiner algorithm,
which means that all linked pages were downloaded, too. All in all 259,525 pages
were crawled. One page from each domain was randomly selected and the main
menu, the active menu item, the second menu level and its active item were labeled if
existing.4 In this paper the term main menu refers to a menu that implements the first
level of the Web site taxonomy. We labeled menus as main menus if

• The menu is indispensable for site navigation
• The menu items represent the main content sections
• At least three menu items are links to pages of the same site
• No other menu fulfills the previous conditions

By using these conditions for most of the samples either the main menu could be
identified clearly or the absence of a main menu could be determined. However, some
samples could not be labeled with reasonably certainty and were excluded from the
evaluation. These were pages in languages with non-latin alphabets and pages that
seem to contain multiple main menus according to the above definitions. The active
menu item was labeled as well and if existing, the second level and the active second
level menu item were labeled as well. The active menu items were tagged not only if
highlighted, but also if they could be determined otherwise, e.g. by an additional
breadcrumb navigation. Similar to the main menu, the second level menus that could
not be labeled with certainty were excluded (2.9% of the samples).

4 The labeled data set is available from:
http://dsn.tm.kit.edu/download/icwe2013/data.zip

278 M. Keller and H. Hartenstein

The method was evaluated as a binary classification task. A positive classification
means that the method delivers a menu or a menu item respectively. For evaluating
the correctness the URLs were compared. If all menu items of a mined menu are con-
tained in the labeled menu, it is considered as true positive (TP), otherwise as false
positive (FP). On the other hand, additional menu items in the labeled menu are al-
lowed, because the mined menu items represent the global menu while additional
items may appear on certain pages. However, for 76.4% of the samples, the number
of labeled items equals the number of mined items, and for the other samples, on av-
erage 74.6% of the items were mined. If no menu or menu item respectively was
mined and if none was labeled it counts as true negative (TN), otherwise as false neg-
ative (FN).We were evaluating Precision as TP/(TP+FP) and Recall as TP/(TP+FN) for the task of detecting the main menu, the active main menu item, the
secondary menu and the active secondary menu item (Table 1). In the evaluation of
correctness of the active menu items only pages were included for which the menu
itself was detected correctly. Four different configurations were evaluated: Configura-
tion A using CSS selectors for page assignment (cf. Section 3.1), configuration B
using URL prefixes, configuration AB using both methods and Ares, a more restrictive
version of A, delivering only menus if they contain a submenu. Similarly, only the
TPs from the main menu detection were included in the evaluation of the secondary
menu.

5.2 Results

Fig. 11 and Table 1 show that the configurations A, B and AB detect the first Tax-
onomy level with a Precision around 0.9 and Recall around 0.75. Method A is a
very accurate solution for detecting active menu items, with a Precision close to
0.97. Because the active menu items indicate different site sections, the method
delivers precise topical segmentations of sites that were not available previously.
Method B has a higher Recall but reduced Precision. The combined method per-
forms well with a Precision of 0.89 and Recall of 0.8. For detecting the secondary
menu, the configurations succeed with good Precision values above 0.85. Menu
items that are no hyperlinks seem to be the main reason for errors here. However,
Recall is low, because only secondary menus that are nested within the main menu
can be found yet.

We believe that Precision is fundamental for the applicability of a hierarchy
mining method in most scenarios. Since no comparable methods exist, even a low
Recall is an improvement. The results show that there is room for increasing Pre-
cision at the cost of Recall. Thus we implemented method Ares which only deliv-
ers global menus that contain a second level, based on the idea that if a nested
secondary menu was found, the main menu is identified correctly with high prob-
ability. As expected, Recall is significantly reduced, but Precision is almost
perfect.

 Mining Taxonomies from Web Menus: Rule-Based Concepts and Algorithms 279

Fig. 11. Precision and Recall of the evaluated configurations

Table 1.

 Config. A Config. B Config. AB Con. Ares

Main Menu
Precision 0.903 0.898 0.893 0.986
Recall 0.756 0.755 0.754 0.278
TP/FP/TN/FN 177/19/44/57 176/20/44/57 175/21/44/57 70/1/44/182
Active Main Menu Item
Precision 0.968 0.882 0.894 0.96
Recall 0.555 0.714 0.8 0.511
TP/FP/TN/FN 61/2/65/49 75/10/61/30 84/10/60/21 24/1/22/23
Secondary Menu
Precision 0.864 0.857 0.857 0.857
Recall 0.373 0.471 0.471 0.529
TP/FP/TN/FN 19/3/123/32 24/4/121/27 24/4/120/27 18/3/33/16
Active Secondary Menu Item
Precision 0.933 0.9 0.9 0.933
Recall 1 1 1 1
TP/FP/TN/FN 14/1/4/0 18/2/4/0 18/2/4/0 14/1/3/0

6 Related Work

In this paper, we use the term taxonomy mining to denote the process of extracting
hierarchies that are pre-designed by information architects and that are obvious to
humans because of the visual presentation. Thus, works that generate new hierarchies
based on textual or structural information (e.g. [13]) are not considered in this section
as well as works on extracting non-hierarchical structures (e.g. [14]) or recovering
application models (e.g. [15]). Yang et al. [16] state that the extraction of Web site

280 M. Keller and H. Hartenstein

hierarchies is a very new research topic. Although it is known, that the underlying
content hierarchy can only be approximated by analyzing the structure of URLs
[17][4], it is the common method (e.g. used in [17],[16],[18],[5]) up until now due to
a lack of alternatives. An advanced method of learning hierarchies from URLs and
query strings is described in [5]. Despite the limitation of current approaches for Web
site hierarchy mining, many fields of application have been proposed, e.g. related
entity finding [4], Web site classification [6], topic segmentation [17] or improving
recommendation models [19]. A recent paper shows that contextual advertising can
benefit from a keyword enrichment method based on Web site taxonomies [5]. Bose
et al. [19] obtain the hierarchy information directly from the content designer or the
content management system, the other methods include URL-based heuristics. Only
Yang et al. [16] describe an isolated evaluation of the quality of the hierarchy infor-
mation. They extract hierarchies from the Web graph but utilize the hierarchical URL
structure to generate edge weights. Their methods perform well in the conducted
evaluation that includes five sites. However, the evaluated sites seem to be examples
where the URL structure is a good model for the underlying content hierarchy.

The nav-tag introduced in HTML5 allows semantically annotating menus and our
approach presented in [7] delivers menus regardless of the used tags. Previously, dis-
cerning menus from other content was an unsolved problem. Few other works
included the task of mining menus or link lists, but consider it as side issued not eva-
luated separately. An exception is the method described in [20] that discovers ranked
lists of menus and navigation aids (“key information”). The Precision seems to be not
very high, since in an evaluation of five sites only for two sites the best ranked block
really contains key information. Liu et al. [21] report an average Precision of 0.92 for
detection of “navigation link sets” on five news sites but it is not clear if these are
equivalent to the main navigation. However that is a very good result compared to our
experience with using this kind of features [22].

7 Conclusion

In this paper we demonstrated that Web site taxonomies can be accurately mined
based on menus. Our rule-based approach succeeds without resource-consuming
HTML rendering and is not bound to the semantics of specific tags. We evaluated the
method on 350 randomly selected real-world Web sites. The method was able to
detect the first level of the Web site taxonomy correctly with Precision above 0.9 at
high Recall and the secondary menu with Precision above 0.86. Page assignment is
possible with Precision around 0.97. Thus, the method delivers a very accurate topical
segmentation. Such precise information about the logical organization of Web sites
was not available before and cannot be extracted from the Web graph or the URL
structure. One tested configuration delivers the first menu level with almost perfect
precision, but, currently, at the expense of reduced Recall.

However, the methods can be further adjusted based on the labeled data set gener-
ated for evaluation and we expect that perfect Precision with a much higher Recall is

 Mining Taxonomies from Web Menus: Rule-Based Concepts and Algorithms 281

possible in the future. The combination of separated menus into a single taxonomy
was beyond the scope of this paper and needs more research.

Web site taxonomy information has been used in many fields and thus, many ap-
plications can benefit from the more accurate mining methods presented in this paper.
Also, the extracted taxonomy information can be used for whole new applications,
e.g. to enhance the presentation of search results.

References

1. Morville, P., Rosenfeld, L.: Information architecture for the World Wide Web. O’Reilly,
Sebastopol (2006)

2. Kalbach, J.: Designing Web navigation. O’Reilly, Sebastopol (2007)
3. Lin, S.-H., Chu, K.-P., Chiu, C.-M.: Automatic sitemaps generation: Exploring website

structures using block extraction and hyperlink analysis. Expert Systems with Applica-
tions 38, 3944–3958 (2011)

4. Yang, Q., Jiang, P., Zhang, C., Niu, Z.: Reconstruct Logical Hierarchical Sitemap for Re-
lated Entity Finding. In: Voorhees, E.M., Buckland, L.P. (eds.) The Nineteenth Text Re-
trieval Conf (TREC 2010). National Institute of Standards and Technology, NIST (2010)

5. Pavan Kumar, G.M., Leela, K.P., Parsana, M., Garg, S.: Learning website hierarchies for
keyword enrichment in contextual advertising. In: Proceedings of the Fourth ACM Inter-
national Conference on Web Search and Data Mining, pp. 425–434. ACM, Hong Kong
(2011)

6. Amitay, E., Carmel, D., Darlow, A., Lempel, R., Soffer, A.: The connectivity sonar: de-
tecting site functionality by structural patterns. In: Proceedings of the Fourteenth ACM
Conference on Hypertext and Hypermedia, pp. 38–47. ACM, Nottingham (2003)

7. Keller, M., Nussbaumer, M.: MenuMiner: revealing the information architecture of large
web sites by analyzing maximal cliques. In: Proceedings of the 21st Int’l. Conf. Compa-
nion on World Wide Web, pp. 1025–1034. ACM, Lyon (2012)

8. Rossi, G., Schwabe, D., Lyardet, O., Puc-rio, D.D.I., MarquêS, R., Vicente, S.: Improving
Web information systems with navigational patterns. Computer Networks 31 (1999)

9. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling lan-
guage for designing Web sites. Computer Networks 33, 137–157 (2000)

10. Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic hypermedia application design with
OOHDM. In: Proc. of the the Seventh ACM Conf. on Hypertext, pp. 116–128. ACM, Be-
thesda (1996)

11. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: Uml-Based Web Engineering. In: Rossi,
G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling and Imple-
menting Web Applications, pp. 157–191. Springer London, London (2008)

12. Jones, W.P., Furnas, G.W.: Pictures of relevance: a geometric analysis of similarity meas-
ures. J. Am. Soc. Inf. Sci. 38, 420–442 (1987)

13. Ho, Q., Eisenstein, J., Xing, E.P.: Document hierarchies from text and links. In: Proceed-
ings of the 21st International Conference on World Wide Web, pp. 739–748. ACM, Lyon
(2012)

14. Zheng, X., Gu, Y., Li, Y.: Data extraction from web pages based on structural-semantic
entropy. In: Proc. of the 21st Int’l. Conf. Companion on World Wide Web, pp. 93–102.
ACM, Lyon (2012)

282 M. Keller and H. Hartenstein

15. Bernardi, M., Di Lucca, G., Distante, D.: The RE-UWA approach to recover user centered
conceptual models from Web applications. International Journal on Software Tools for
Technology Transfer 11, 485–501 (2009)

16. Yang, C.C., Liu, N.: Web site topic-hierarchy generation based on link structure. J. Am.
Soc. Inf. Sci. Technol. 60, 495–508 (2009)

17. Kumar, R., Punera, K., Tomkins, A.: Hierarchical topic segmentation of websites. In: Pro-
ceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 257–266. ACM, Philadelphia (2006)

18. Cheung, W.K., Sun, Y.: Identifying a hierarchy of bipartite subgraphs for web site abstrac-
tion. Web Intelli. and Agent Sys. 5, 343–355 (2007)

19. Bose, A., Beemanapalli, K., Srivastava, J., Sahar, S.: Incorporating concept hierarchies in-
to usage mining based recommendations. In: Nasraoui, O., Spiliopoulou, M., Srivastava,
J., Mobasher, B., Masand, B. (eds.) WebKDD 2006. LNCS (LNAI), vol. 4811, pp. 110–
126. Springer, Heidelberg (2007)

20. Wang, C., Lu, J., Zhang, G.: Mining key information of web pages: A method and its ap-
plication. Expert Syst. Appl. 33, 425–433 (2007)

21. Liu, Z., Ng, W.K., Lim, E.-P.: An Automated Algorithm for Extracting Website Skeleton.
In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp.
799–811. Springer, Heidelberg (2004)

22. Keller, M., Nussbaumer, M.: Beyond the Web Graph: Mining the Information Architecture
of the WWW with Navigation Structure Graphs. In: Proc. of the 2011 Int’l. Conf. on
Emerging Intelligent Data and Web Technologies, pp. 99–106. IEEE Computer Society,
Tirana (2011)

Evaluation of Personalized Social Ranking
Functions of Information Retrieval

Mohamed Reda Bouadjenek1,�, Amyn Bennamane2,�,
Hakim Hacid3,�, and Mokrane Bouzeghoub1

1 PRiSM Laboratory, Versailles University
{mrb,mok}@prism.uvsq.fr

2 Dell Innovation House, Dublin, Ireland
amyn_bennamane@dell.com

3 SideTrade, Boulogne-Billancourt, France
hhacid@sidetrade.com

Abstract. There is currently a number of interesting research works
performed in the area of bridging the gap between Social Networks and
Information Retrieval (IR). This is mainly done by enhancing the IR
process with social information. Hence, many approaches have been pro-
posed to improve the ranking process by personalizing it using social
features. In this paper, we review some of these ranking functions.

1 Introduction

The Web 2.0 has introduced a new freedom for the user in his relation with the
Web through social platforms, which are commonly used as means to interact.
Hence, users are more active in generating content, which is one of the most im-
portant factors for the increasingly growing quantity of data. From the research
perspective, this brings important and interesting challenges for many research
fields like Information Retrieval (IR), which is the focus of this paper.

IR is performed every day in an obvious way over the Web, typically under
a search engine. However, finding relevant information remains challenging for
end-users. In existing IR systems, queries are usually interpreted and processed
using document indexes and/or ontologies, which are hidden for users. The re-
sulting documents1 are not necessarily relevant from an end-user perspective,
in spite of the ranking. To improve the IR process and reduce the amount of
irrelevant documents, there are mainly three possible improvement tracks: (i)
query reformulation, (ii) improvement of the IR model, and (iii) post filtering or
re-ranking of the retrieved documents. In this last track, many approaches has
been proposed to improve the ranking process by personalizing it using social
features. In this paper, we propose to review some of these personalized social
ranking functions that rely on social annotations as source of social information.
These annotations are associated to documents in social bookmarking systems.
In this paper, we try to mainly answer the following questions: What are these
� This work has been mainly done when authors was at Bell Labs France, Villarceaux.
1 We also refer to documents as web pages or resources.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 283–290, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

284 M.R. Bouadjenek et al.

functions and how do they work? What is the context where each function is
more efficient? What is the best ranking function?

The main contributions of this work can be summarized as follows:
1. We propose a deep study of the state of the art in social ranking functions.
2. We propose a deep analysis of the performances of these personalized social

ranking functions and a comparison with non-personalized social approaches.
3. Finally, we propose a discussion on the effectiveness, the weakness and the

performance of each approach in different contexts.

The rest of this paper is organized as follows: in Section 2, we introduce the main
concepts used throughout this paper. In Section 3, we review the personalized
ranking functions studied. Section 4 presents the dataset we used, and the eval-
uation methodology. The evaluations are presented and discussed in Section 5.
Finally, Section 6 concludes this paper.

2 Background

In this section, we formally define the basic concepts that we use in this paper.
Then, we formally define the problem of personalized ranking.

2.1 Background and Notation

Social bookmarking systems are based on the techniques of social tagging. The
principle is to provide the user with a mean to freely annotate resources on
the Web with tags, e.g. URIs in delicious. These annotations can be shared
with others. This unstructured approach to classification is often referred to as a
folksonomy. A folksonomy is based on the notion of bookmark defined as follows:

Definition 1. Let U, T,R be respectively the set of Users, Tags and Resources.
A bookmark is a triplet (u,t,r) such as u ∈ U, t ∈ T, r ∈ R, which represents the
fact that the user u has annotated the resource r with the tag t.
Then, a folksonomy is formally defined as follows:
Definition 2. Let U, T,R be respectively the set of Users, Tags and Resources.
A folksonomy F(U, T,R) is a subset of the Cartesian product U × T × R such
that each triple (u, t, r) ∈ F is a bookmark.
In this paper we use the notation summarized in Table 1.

2.2 Problem Definition

Let consider a folksonomy F(U, T,R) whose a user u ∈ U submits a query q
to a search engine. We would like to re-rank the set of resources Rq ⊆ R (or
documents) that match q, such that relevant resources for u are highlighted and
pushed to the top for maximizing his satisfaction and personalizing the search
results. The ranking follows an ordering τ = [r1 ≥ r2 ≥ · · · ≥ rk] in which rk ∈ R
and the ordering relation is defined by ri ≥ rj ⇔ Rank(ri, u, q) ≥ Rank(rj , u, q),
where Rank(r, u, q) is a ranking function that quantify similarity between the
query and the resource w.r.t the user [7].

Evaluation of Personalized Social Ranking Functions 285

Table 1. Paper’s Notation Overview
Variable Description
u, d, t Respectively a user u, a document d and a tag t.
U, D, T Respectively a set of users, documents and tags.
| A | The number of element in the set A.
Tu, Td, Tu,d Respectively the set of tags used by u, tags used to annotate d, and tags used by u to annotate d.

Du, Dt, Du,t Respectively the set of docs tagged by u, docs tagged with t, and docs tagged by u with t.

Ut, Ud, Ut,d Respectively the set of users that use t, users that annotate d, and users that used t to annotate d.

Cos(A,B) The cosine similarity measure between two vectors.
−→pu The vector of the profile of the user u, estimated by its social annotations weighted using the tf-idf.

3 Personalized Ranking Functions Based on Folksonomies

In this Section, we formally define the different personalized ranking functions
studied in this paper. We each time present the ranking score of a document d
for a query q issued by a user u denoted Rank(d, q, u).

3.1 Profile Based Personalization (Xu08)

The approach presented by Xu et al. [9] assumes the ranking score of a document
d is decided by two aspects: (i) a textual matching between q and d, and (ii) a
user interest matching between u and d. Hence, following our notation in Table 1,
their approach can be defined as follows:

Rank(d, q, u) = γ × Cos(−→pu,
−→
Td) + (1− γ)× Sim(−→q ,−→d) (1)

where, γ is a weight that satisfies 0 ≤ γ ≤ 1, and Sim(−→q ,−→d) denotes the textual
matching score between d and q.

3.2 Topics Based Personalization (LDA-P)

We present here a topics-based approach. This approach is based on Latent
Dirichlet Allocation (LDA) [3]. LDA-P relies on the fact that the set of tags can
be used to represent web pages and as input for LDA to construct a model. Then,
for each document that matches a query, LDA-P computes a similarity between
its topic and the topic of the user profile using the cosine measure (inferred using
the previous constructed LDA model). The obtained similarity value is merged
with the textual ranking score to provide a final ranking score for a document
that matches a query w.r.t the query issuer as follows:

Rank(d, q, u) = γ × Cos(−−−→utopic,
−−−→
dtopic) + (1− γ)× Sim(−→q ,−→d) (2)

where, 0 ≤ γ ≤ 1, −−−→utopic and −−−→
dtopic are respectively the vectors that model the

user and the document topics based on the constructed LDA model.

286 M.R. Bouadjenek et al.

3.3 Social Context Based Personalization (SoPRa)

The approach proposed by Bouadjenek et al. [4] is similar to [9]. However, the
authors propose to enhance the ranking process by considering a new aspect,
which is the social matching score. This approach takes into account the entire
social context that surround both users and documents and is called SoPRa.
Following our notation, SoPRa can be defined as follows (β is set to 0.5):

Rank(d, q, u) = γ × Cos(−→pu,
−→
Td) + (1 − γ)×

[
β × Cos(−→q ,

−→
Td) + (1 − β)× Sim(−→q ,

−→
d)

]
(3)

3.4 Scalar Tag Frequency Based Personalization (Noll07)

The approach presented by Noll and Meinel [6] considers only a user interest
matching between u and d. This approach does not make use of the user and
document length normalization factors, and only uses the user tag frequency.
The authors normalize all document tag frequencies to 1, since they want to
give more importance to the user profile. Following the notation given in Table 1,
their ranking function can be defined as follows:

Rank(d, q, u) =
∑

t∈Tu∧t∈Td

|Du,t| (4)

3.5 Scalar tf-if Based Personalization (tf-if)

Vallet et al. [7] proposed to improve the Noll07 approach above by including a
weighting scheme based on an adaptation of the tf-idf as follows:

Rank(d, q, u) =
∑

t∈Tu∧t∈Td

(tfu(t)× iuf(t)× tfd(t)× idf(t)) (5)

3.6 Affinity Based Personalization

Bender et al. [1] proposed several personalized ranking functions based on rela-
tions in a folksonomy. More precisely, we study in this paper the following two
ranking functions that we consider as relevant to this survey:

1. Semantic Search: This approach ranks documents by considering users that
hold similar content to the query, i.e., users who used at least one of the
query terms in describing their content.

2. Social Search: This approach ranks documents by considering friends of the
query issuer who used at least one of the query terms for tagging.

We refer the reader to the original paper for their definition. In the next sections,
we describe the evaluations we have performed on these functions.

4 Dataset and Evaluation Methodology

In this section, we describe the dataset we used and the evaluation methodology.

Evaluation of Personalized Social Ranking Functions 287

4.1 Dataset

To evaluate our approach, we have selected a delicious dataset, which is pub-
lic, described and analyzed in [8]. Before the experiments, we performed four
data preprocessing tasks: (1) We remove annotations that are too personal or
meaningless, e.g. “toread”, “Imported IE Fa-vorites”, etc. (2) The list of terms
undergoes a stemming by means of the Porter’s algorithm in such a way to elim-
inate the differences between terms having the same root. (3) We downloaded
all the available web pages while removing those which are no longer available
using the cURL command line tool. (4) Finally, we removed all the non-english
web pages. Table 2 gives a description of the resulted dataset:

Table 2. Details of the delicious dataset

Bookmarks Users Tags Web pages Unique terms
9 675 294 318 769 425 183 1 321 039 12 015 123

4.2 Evaluation Methodology

Making evaluations for personalized search is a challenge since relevance judg-
ments can only be assessed by end-users [2]. This is difficult to achieve at a large
scale. However, different efforts [2,5] state that the tagging behavior of a user of
a folksonomy closely reflects his behavior of search on the Web. In other words,
if a user tags a document d with a tag t, he will choose to access the document d
if it appears in the result obtained by submitting t as query to the search engine.
Thus, we can easily state that any bookmark (u, t, r) that represents a user u
who tagged a document d with tag t, can be used as a test query for evaluations.
The main idea of these experiments is based on the following assumption:

For a query q = {t} issued by u with query term t, relevant documents are
those tagged by u with t.

Hence, for each evaluation, we randomly select 2000 pairs (u, t), which are
considered to form a personalized query set. For each corresponding pair (u, t),
we remove all the bookmarks (u, t, r) ∈ F, ∀r ∈ R in order to not promote the
resource r (or document) in the results obtained by submitting t as a query in
our algorithm and the considered baselines. By removing these bookmarks, the
results should not be biased in favor of documents that simply are tagged with
query terms and making comparisons to the baseline uniformly. Hence, for each
pair, the user u sends the query q = {t} to the system. Then, we retrieve and
rank all the documents that match this query using a specific baseline, where
documents are indexed based on their textual content using the Apache Lucene.
Finally, according to the previous assumption, we compute the Mean Average
Precision (MAP) and the Mean Reciprocal Rank (MRR) over the 2000 queries.

5 Results and Discussion

In this section, we conduct several experiments, which intend to address the
following questions:

288 M.R. Bouadjenek et al.

1. What is the effectiveness of these personalized ranking functions on users
with different profile lengths?

2. Can these personalized ranking functions achieve good performance even if
users have no bookmarks?

3. Are these personalized ranking functions efficient for large datasets?
4. What is the best personalized ranking function?

In the following, Section 5.1 addresses question 1 and 2, Section 5.2 shows the
analysis of question 3, and lastly, Section 5.3 tackles question 4.

5.1 Performance on Different Users

Here, we try to study the ability of the personalized ranking approaches to
achieve good performance for users that have different profile length, i.e. users
that used few terms in their tagging actions. Hence, we propose to compare these
approaches using the evaluation process described in Section 4.2. We select 2000
query pairs (u, t) based on the number of tags the users used in their tagging
actions. The query pairs are grouped into 6 classes: “0”, 1-5”, “6-10”, “11-15”,
“16-20”, and “21-30”, denoting how many tags users have used in their tagging
actions, e.g. class “1-5” is composed with users who have a profile length between
1 and 5. Note that we fixed γ to 0.5 for all the approaches. The experimental
results are shown in Figure 1.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

0 1-5’
6-10’

11-15’

16-20
21-30

Size of the profiles

(a) Mean Average Precision

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

0 1-5’
6-10’

11-15’

16-20
21-30

Size of the profiles

(b) Mean Reciprocal Rank

SoPRa

SocialSearch
Xu08
LDA-P

TF-IF
Noll07

SemanticSearch

Fig. 1. Performance comparison on different queries, while fixing γ = 0.5

The results show that the performance of all the profile based approaches
decrease for users with high profile length, i.e. SoPRa, Xu08, LDA-P, Noll07,
tf-if. This is certainly due to the fact that these approaches fail to determine the
user expectations, if he expressed his interest in different fields. However, the
affinity based personalization approaches increase their performance for users
with high profile length. These approaches are based on other user experiences
with common tastes and affinities with the query issuer. Hence, we believe that
modeling a user profile with simply his tags is not enough to generate satisfactory
search results, especially for active users on social networks. We must go beyond
that by considering their social relatives for ranking purpose.

Finally, we note that many personalized ranking functions are not able to
provide a suitable ranking of documents for users with no tags. Currently, all

Evaluation of Personalized Social Ranking Functions 289

Table 3. Summary of the analysis

General Time Cold Adaptabilityd Effectivenesse

Performancea Complexityb Startc

Xu08 �� O(| −→pu | + | −→q |) + + -
LDA-P � O(n+ | −→q |) + - -
SoPRa � � � O(| −→pu | +2× | −→q |) + + -
Noll07 � O(| Tu |) - + -
tf-if � O(| Tu |) - + -
SemanticSearch �� O(| q | × | Ut |) + + +

SocialSearch �� O(| q | × | Ut | × | −→pu |) - + +

a The general retrieval performances. ��� : very effective; �� : effective; � : not effective.
c The cold start is a potential problem of a system to effectively handle new entities,
e.g. users, items, or tags. In other words, it concerns the issue that the system cannot
draw any inferences for users or items about which it hasn’t information. + : can cope
with cold start problem; - : cannot cope with cold start problem.
b The complexity is given for computing the ranking score of one document.
d Adaptability refers to the ability of approaches to consider new data and to quickly
update their model. Considering new data is a key problem for these ranking functions
since they are based on social networks, which are growing quickly. + : can easily
update the model; - : cannot easily adapt the model.
e The effectiveness of the approaches for different profile lengths. + : effective for users
with high profiles lengths; - : not effective for users with high profiles lengths.

the approaches, which are able to rank documents for users with no tags relay
on the Lucene naive score for dealing with cold start problem.

5.2 Efficiency Analysis

We compare here the algorithms from the point of view of complexity. If we look
at the complexity of each algorithm, we can distinguish 3 categories of algo-
rithms, upon which we find common properties in term of computing complex-
ity. These categories are the following: (i) Xu08, LDA-P and SoPRa algorithms,
(ii) follow the Noll07 and tf-if algorithms, and (iii) the two last Affinity-based
algorithms. The second category of algorithms is the most efficient with a com-
plexity borned by the profile size of the user. Xu08-based algorithms come second
in complexity, keeping the user profile size linearity and adding to it the query
length. Finally, the third category is the affinity-based algorithms, which are the
slowest ones, because they grow with at least the product of the profile size and
the query size. This complexity analysis is summarized in Table 3.

5.3 Summary

Table 3 summarizes the personalized ranking functions studied from different
point of views. This table is built upon our appreciation of the approaches.

290 M.R. Bouadjenek et al.

As a conclusion, we believe that SoPRa offers the best trade off between
retrieval performance, time complexity, cold start problem, and adaptability.
However, the retrieval performance of this approach decreases for users with
high profile length. We believe that we can tackle this issue by extending this
ranking function by leveraging the social relatives of the query issuer.

6 Conclusion

This paper discusses a contribution to the area of Social Information Retrieval,
which bridges the gap between traditional Information Retrieval and Social Net-
works. In this context, many approaches have been proposed to improve the
ranking process by personalizing it using social features. We reviewed many of
these personalized functions by proposing: (i) a deep study of the state of the
art of ranking functions in social collaborative setting, (ii) a deep analysis of the
performances of these personalized social ranking functions, and (iii) a discus-
sion on the effectiveness, the weakness and the performance of each approaches
in different contexts.

References

1. Bender, M., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J.X.,
Schenkel, R., Weikum, G.: Exploiting social relations for query expansion and result
ranking. In: ICDE Workshops (2008)

2. Bischoff, K., Firan, C.S., Nejdl, W., Paiu, R.: Can all tags be used for search? In:
CIKM (2008)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

4. Bouadjenek, M.R., Hacid, H., Bouzeghoub, M.: Sopra: A new social personalized
ranking function for improving web search. In: SIGIR (2013)

5. Krause, B., Hotho, A., Stumme, G.: A comparison of social bookmarking with tra-
ditional search. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White,
R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 101–113. Springer, Heidelberg (2008)

6. Noll, M.G., Meinel, C.: Web search personalization via social bookmarking and
tagging. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825,
pp. 367–380. Springer, Heidelberg (2007)

7. Vallet, D., Cantador, I., Jose, J.M.: Personalizing web search with folksonomy-based
user and document profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little,
S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993,
pp. 420–431. Springer, Heidelberg (2010)

8. Wetzker, R., Zimmermann, C., Bauckhage, C.: Analyzing social bookmarking sys-
tems: A del.icio.us cookbook. In: ECAI (2008)

9. Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search.
In: SIGIR (2008)

Building Rich Internet Applications Models:

Example of a Better Strategy

Suryakant Choudhary1, Mustafa Emre Dincturk1, Seyed M. Mirtaheri1,
Guy-Vincent Jourdan1,2, Gregor v. Bochmann1,2, and Iosif Viorel Onut3,4

1 EECS - University of Ottawa
2 Fellow of IBM Canada CAS Research, Canada

3 Research and Development, IBMR© Security AppScanR©, Security Systems
4 IBM Canada Software Lab, Canada

{schou062,mdinc075,smirt016}@uottawa.ca,

{gvj,bochmann}@eecs.uottawa.ca,

vioonut@ca.ibm.com

Abstract. Crawling “classical” web applications is a problem that has
been addressed more than a decode ago. Efficient crawling of web ap-
plications that use advanced technologies such as AJAX (called Rich
Internet Applications, RIAs) is still an open problem. Crawling is im-
portant not only for indexing content, but also for building models of
the applications, which is necessary for automated testing, automated
security and accessibility assessments and in general for using software
engineering tools. This paper presents a new strategy to crawl RIAs. It
uses the concept of Model-Based Crawling (MBC) first introduced in [1],
and introduces a new model, the “menu model”, which we show to be
much simpler than previous models for MBC and more effective at build-
ing models than previously published methods. This method and others
are compared against a set of experimental and real RIAs.

Keywords: Crawling, RIAs, AJAX, Modeling.

1 Introduction

The ability to automatically extract a model of a website is important for several
reasons. The most obvious one is to index the content of the sites, which is
done through “crawling”. Indexing is obviously a central feature of the Web,
but not the only reason why inferring models is important. We also require
models for tasks related to good software engineering: models are needed as input
for automated testing of applications (“model-based testing”), models are also
needed for automated security assessments, for automated usability assessments,
or simply as a way to better understand the structure of the website.

Nearly two and a half decades of research in the area of model extraction and
crawling has produced a large body of work with many powerful solutions [2].
The majority of the studies, however, focus on traditional web applications,
where the HTML view of the page is generated on the server side. In this model,

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 291–305, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

292 S. Choudhary et al.

there is a one-to-one relation between the URL of the page and the state of its
Document Object Model (DOM) [3]. Thus, many of the proposed web crawlers
use the URL to identify the state of the DOM. Such assumption reduces the
basic task of crawling the Web to the task of finding all the valid and reachable
URLs from a set of seed URLs.

However, the so-called Rich Internet Applications (RIAs) break the one-to-
one relationship between the URL and the state of the DOM. In RIAs, DOMs
are partially updated by client-side script execution (such as JavaScript R©), and
asynchronous calls to the server are done through technologies such as AJAX [4].
Such sophisticated client-side applications create a one-to-many relation between
the URL and the reachable DOM states associated with that URL.

This evolution is positive, but comes at a cost which has been underestimated:
the crawling techniques developed for traditional web applications just do not
work on RIAs. We have lost our ability to crawl and model web applications
as they are typically created today1. Even simple websites are not immune to
the problem since common tools to create and maintain website content are
increasingly adding AJAX-like scripts to the page. We need to address this
issue, which means to develop web crawlers that do not rely solely on the URL to
uniquely identify the state of the application, but also take into consideration the
DOM structure and its properties to identify different states of the application.
There is some work being done in that domain (see [5] for an overview), but
more must be done. This paper is one step in this direction.

Crawling RIAs is much more complex than crawling traditional web appli-
cations. The one-to-many relation between a URL and states of the DOM can
be modeled as a directed graph referred to as the application graph. In the ap-
plication graph, each state of the DOM is a node, and each JavaScript event
is a directed edge. To construct such a graph, one must differentiate between
different states of the DOM, which is a challenge in itself, but outside the scope
of this paper (see e.g. [6] for a discussion on the topic). In this model, taking an
edge from a node means executing a JavaScript event from the DOM that the
node represents.

After defining the application graph, the task of crawling a RIA is reduced
to the task of discovering every state in the application graph. The state that is
reached when a given URL is loaded is called the “initial state of the URL”. For
a crawler to ensure that all states reachable from a given URL are discovered,
the crawler has to start from the initial state of the URL, take every possible
transition, and do this for every newly discovered state recursively. This often
takes a long time. It is thus interesting for a crawler to discover as many states
as possible during early stages of the crawl, and postpone executing events that
most probably lead to visited states.

To this end, we have introduced a general approach called model-based crawl-
ing [1], where a crawling strategy aims at discovering the states of the application

1 See e.g. https://developers.google.com/webmasters/ajax-crawling/docs/

getting-started, in which Google suggests to create static URLs to index the
pages that will not be reached by the crawler because of AJAX.

https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
https://developers.google.com/webmasters/ajax-crawling/docs/getting-started

Building Rich Internet Applications Models: Example of a Better Strategy 293

as soon as possible by making predictions based on an anticipated model for the
application. In this paper, we propose a new strategy, called the Menu strategy,
using the model-based crawling approach. This new algorithm is simpler and
more efficient to discover all reachable DOM states in a RIA than the other
known strategies.

The rest of this paper is organized as follows: in Section 2, we give an overview
of model-based crawling. In Section 3, we explain the proposed strategy in de-
tails. Section 4 presents the experimental study. In Section 5, a summary of
related works is presented. In Section 6, we conclude the paper.

2 Overview

Building a model of a RIA is potentially a very lengthy process, because of the
large number of states and transitions involved. Because of this, many of the
existing strategies do not try to build a complete model of the application being
crawled. Our approach is different: we insist that under some assumptions, given
enough time the strategy should produce a complete model of the RIA. On the
other hand, we acknowledge that, most of the time, we will not have enough
time to complete the crawl. Thus, our first goal is to produce a complete model
as efficiently as possible, which means that we want to minimize the number of
events we need to execute to produce such a model. Our second goal is that, as
we produce this model, we should discover as many states as possible, as early
as possible during the crawl. Because, in most cases, it is more important to find
the states than it is to find the transitions. If we are not going to run the crawl
to the end, we want to ensure that the partial model being built will contain as
much states as possible.

When we crawl a website, we make the following assumptions: we assume that,
if user inputs are involved, we have access to a collection of sample inputs that
are good enough to build the model. We do not address here the question of how
to generate such inputs. The second assumption is that the RIA being crawled
is deterministic from the point of view of the crawler. This means that, from the
same state, the same action will always produce the same result (go to the same
state). Although this assumption is fairly commonly made in the literature, we
recognize that it is a very limiting assumption and that more work will have to
be done to relax it in the future. Finally, we assume that we can always “reset”
the RIA by reloading the URL, and thus the underlying application graph is
strongly connected.

In general, it is not possible to devise a strategy that would be efficient at
finding the states early, since the underlying graph could be any graph. We
have introduced model-based crawling as a solution to this problem [1]. With
model-based crawling, we initially assume that application will follow a particu-
lar behavioral model referred to as meta-model. It is anticipated that the model
of the application will be an instance of this meta-model. An efficient (ideally, op-
timal) strategy is designed based on this anticipation. However, it is not strictly
assumed that the RIA being crawled will actually follow the meta-model. During

294 S. Choudhary et al.

the crawl, each time we see a difference between the anticipated behavior and
the actual behavior, we adapt the strategy accordingly.

A model-based strategy usually consists of two phases:

1. State exploration phase where the objective is to discover all the appli-
cation states as predicted by the meta-model of the strategy.

2. Transition exploration phase where the objective is to execute all re-
maining events, to complete the model.

It is possible that, during the second phase, new states are discovered, in which
case we will switch back to the first phase. Thus, a model-based crawling strat-
egy may alternate between these two phases multiple times before finishing the
crawl. The strategy finishes the crawl when it has executed all the events in the
application, which guarantees to have discovered all the states of the application.

The first model-based crawling strategy is the “Hypercube” strategy where
the application is anticipated to have a hypercube structure [1]. The Hypercube
strategy is an optimal strategy for the RIAs that fully follow the hypercube meta-
model. However, in practice, few RIAs follow this model, and the algorithms
involved are rather complex. Even though the results were better than other
strategies even for RIAs that do not follow this model, we present here a new
strategy that is better still, much easier to understand and is based on a meta-
model more commonly found in RIAs.

3 Menu Model

The proposed crawling strategy is based on the idea that some events will always
lead the application to the same resulting state, regardless of the source state
from which the event is executed. These kind of events are referred to as the
“menu events”.

We called this new model menu model because our menu events are often
the intended model behind application menus. Such behavior is realized by the
menu items present in a web application such as home, help, about us etc.

Once an event is identified as a menu event, we can use it to anticipate some
part of the application graph, and use this anticipated graph to build an efficient
strategy. Thus, the core of the strategy is to identify these menu events, and then
execute the events that are not menu events sooner than the menu events (since
menu events are anticipated to produce known states). In practice, we prioritize
the events based on the execution history:

1. Globally unexecuted events: This category represents the events that
have not yet been executed at any state discovered so far. Events in this
category have the highest priority.

2. Locally unexecuted events: This category represents the events that have
been executed at some discovered state but have not been executed at the
current state of the application. Events in this category are further divided
into the following subcategories:

Building Rich Internet Applications Models: Example of a Better Strategy 295

(a) Non-classified events: Events in this subcategory has been executed
only once globally. A second execution is necessary to classify the event.
Events in this subcategory have the second highest priority next to the
globally unexecuted events.

(b) Menu events: Events in this subcategory follow the menu model hy-
pothesis when the first two executions are considered: their executions
from two different states have led to the same state. They have the lowest
priority.

(c) Self-Loop events: Events in this subcategory have not changed the
state of the application in their first two executions. They have the same
priority as the menu events.

(d) Other events: All the remaining events belong to this category. These
are the events that have shown neither menu nor self-loop behavior in
their first two executions. These events have the same priority as non-
classified events.

Since the events in the menu and self-loop categories are not expected to lead
to a new state, they have the lowest priority.

The categorization of the events is done throughout the crawl. The priority
sets are updated as new events are found in newly discovered states and as
more information about results of the execution instances of the events become
available.

3.1 State Exploration Phase

The primary goal of the state exploration phase is to discover all the states of the
application as soon as possible. To do so, the strategy constructs and maintains
a graph model of the application. The application graph is a weighted directed
graph, G = (V,E) where V represents the states discovered and E represents
the edges. An edge may be an executed event, a reset, or a predicted transition.
A reset is the action of resetting the application to its initial state by reloading
the URL. For simplicity, we assume each event to have the same unit cost, but
the cost of reset is different and it depends on the application being crawled. A
predicted edge corresponds to a non-classified event or a menu event that is not
executed in the source state (for the purpose of predicting transitions, all non-
classified events are assumed to be menu events). In the case of a non-classified
event, the predicted resulting state is the state which was reached on the first
execution of the event, and in the case of a menu event it is the resulting state
of the menu event. A self-loop predicted edge correspond to an unexecuted self-
loop event. In this case, the predicted resulting state is the starting state of the
self-loop edge. Figure 1 shows an instance of G.

The state exploration phase starts by categorizing the events (initially, the
crawler only knows the events on the initial state; but, as the crawl progresses,
previously unseen events can be found on newly discovered states). Each event
initially belongs to the globally unexecuted category. Unexecuted events are then
picked according to the priority sets. All the instances of the events from a higher

296 S. Choudhary et al.

s0start

s1

s3s2 s4

e
0

e 1

e1 e
2

e2

e3

e3

e
0

Fig. 1. An example of application graph G under construction: solid lines are executed
transitions, dashed lines are resets, dotted lines are predicted transitions

priority set are exhausted before executing an event from a lower priority set.
Among the events with the same priority, the priority is given to any event
which is closer to the current state than the others (closeness is in terms of
number of transitions that needs to be taken to reach a state where the event
is enabled and unexecuted), otherwise one is chosen at random. During the
state exploration phase, we execute all the unexecuted events in the application,
except for categorized menu and self-loop events.

Once an event is picked for execution, the strategy always uses the shortest
known path from the current state scurr to the state snext where the event is going
to be executed. This calculated shortest path may contain predicted transitions.
A predicted transition may of course be wrong, and the application may end up
in a state that is not the predicted one. During the execution of the path, the
strategy verifies, after each predicted transition, that the state reached is the
one predicted. When this is not the case, the crawled RIA contradicts the menu
model (at least from that state, and for this event). To adapt to such a violation,
the strategy discards the current path and looks for the next unexecuted event
from the state reached.

scurr sint1 sint2 snext
e1 e2 e3 ex

Fig. 2. Path from the current state to state snext where the next event can be executed.
Solid lines represent known transitions, and dotted lines represent predicted transitions.

For instance, considering the execution of the example path shown in Fig-
ure 2, let us assume that there is a violation when the predicted transition e2
(originating from sint1) is taken. As Figure 3 shows, after executing event e2 on
sint1, we reach state s′ instead of sint2. Due to this violation, the menu strategy

Building Rich Internet Applications Models: Example of a Better Strategy 297

ignores the rest of the path segments, and builds a new path from the current
state (s′) to a next state with an unexecuted event.

During the execution of a path, each predicted transition leads to the exe-
cution of an event that had not been executed from that state before, which
permits the categorization of that event if it is not already categorized.

scurr sint1 sint2 snext

s′nexts′

(V
io
la
tio

n
)

e1

e
2

e3 ex

Path of events

e′x

Fig. 3. Example of a violation for the path in Figure 2

3.2 Transition Exploration Phase

The state exploration phase executes all the events discovered during that phase,
except for the events in the menu and the self-loop categories. Once the state
exploration phase is over, the menu strategy moves to the transition exploration
phase. The transition exploration phase verifies the validity of the assumptions
made at the state exploration phase by executing all these remaining events. In
an application that follows the menu model, all the states of the application are
found by the end of the state exploration phase. Any violating menu or self-loop
events, however, may lead to the discovery of a new state.

During the transition exploration phase, the strategy tries to find the least
costly path to execute all the remaining events in the application. The cost of
this path is measured in terms of the total number of events and resets required.

If we define a walk of the graph as a sequence of adjacent edges, the tran-
sition exploration problem can be mapped to the problem of finding the least
costly walk of the graph that traverses all the edges representing the unexe-
cuted events at least once. During the transition exploration phase, should the
execution of any unexecuted event lead to the discovery of a new state, the
strategy switches back to the state exploration phase. This mechanism expe-
dites finding new states. Thus, the menu strategy might alternate between the
state and transition exploration phases many times before it finishes the crawl
of the application.

Graph Walk. The transition exploration phase uses a walk generator function
to calculate a walk that covers all of the unexecuted events. During the calcu-
lation of the graph walk, the application graph includes predicted transitions.

298 S. Choudhary et al.

Hence, executing the event sequence in the walk might not result in the expected
state. In fact, a single violation can make the event sequence invalid. To avoid
this, a step-wise approach in construction of the whole walk is taken. The walk
generator function splits the event sequence into multiple walk segments. Each
walk segment may start with a reset, may be followed by zero or more already
executed events, and ends with an unexecuted event.

Considering the example in Figure 1 where the results of all the unexecuted
events have been assumed, a possible walk that covers every unexecuted event
is the sequence < e1, e3, e0, e1, e2 >, which starts at the initial state, s0, and
terminates at s3.

Our immediate situation is similar to the problem known as the Rural Chinese
Postman Problem (RCPP) [7], where given a graph we want a least cost tour
covering only a subset of the edges. The application graph contains known tran-
sitions corresponding to executed events and predicted transitions corresponding
to unexecuted menu and self-loop events. We need a least cost tour to execute
all the remaining unexecuted events.

Unfortunately, the RCPP is an NP-complete problem, so we do not attempt
to solve this problem. Instead, we use the Chinese Postman Problem (CPP).
In CPP, given a graph we want a least cost tour of all the edges. Unlike the
RCPP, there are polynomial algorithms for the CPP. However, this is not a
perfect analogy to our situation: in the current graph, we have both executed
and predicted transitions, and we only want to execute the predicted ones. If we
consider the subgraph containing only the predicted transitions, this subgraph
may not be connected, and a tour may not exist. To address this problem, we
augment this subgraph with a few of the known transitions (including resets if
necessary), until the graph is strongly connected again. We then use CPP to
create a tour that goes over every transitions. This solution gives reasonably
good results (although clearly non optimal) at a small computational cost.

Violation and Strategy Adaptation. When going over the tour, each pre-
dicted transition may lead to a violation of the assumption, and the application
can end up in a state that is not the one predicted. There are two cases to handle:

1. Wrong known state: This is the case where the resulting state has been
discovered previously, but it is not the expected state. When this happens,
the predicted edge is removed from the graph, replaced with the newly ex-
ecuted transition. At this point, we end up in the wrong state in the tour.
Instead of recomputing a tour, we have opted for a simpler solution: the
strategy keeps the original walk, and brings the application back to the
state that was expected to be reached initially. To do this, we simply find
the shortest known path that does not contain any predicted edges from the
current state to that next state, and execute it first.

2. New state: Should a violation lead to the discovery of a new state, the
crawling strategy switches back immediately to the state exploration phase.
However, we do not discard the calculated CPP walk, which is reused later
when the strategy reaches the transition exploration phase again. At this

Building Rich Internet Applications Models: Example of a Better Strategy 299

point, the existing CPP is augmented to include any additional discovered
unexecuted events.

Due to space constraints, we do not include more details which can be found
in [8].

4 Implementation and Evaluation

In this section, we present our experimental results, comparing the efficiency of
the Menu strategy against many other existing crawling strategies on several
AJAX-based RIAs.

4.1 Measuring the Efficiency of a Strategy

As explained before, our definition of an efficient strategy is a strategy that builds
the entire model quickly, while finding all the states as early as possible in the
process. In order to measure speed, instead of measuring time, we measure the
number of event executions and the number of resets required by each strategy
to complete both tasks (find all the states, find the complete model). This is
reasonable since the time spent for event executions and resets dominates the
crawling time and the numbers depend only on the decisions of the strategy.
And this way, the results do not depend on the hardware that is used to run
the experiments and are not affected by the network delays which can vary in
different runs.

We combine these numbers to define a cost unit as follows. We measure for
each application the following two values. t(e)avg: the average event execution
time obtained by measuring the time for executing each event in a randomly
selected set of events in the application and taking the average, and t(r)avg : the
average time to perform a reset. For simplicity, we consider each event execution
to take t(e)avg and take this as a cost unit. Then, we calculate “the cost of reset”:
cr = t(r)avg/t(e)avg. Finally, the cost that is spent by a strategy to find all the
states of an application is calculated by ne + nr × cr where ne and nr are the
total number of events executed and resets used by the strategy to find all the
states, respectively2.

4.2 Crawling Strategies Used for Comparison

– Optimized Standard Crawling Strategies: The standard crawling strategies
are Breadth-First and Depth-First. We use “optimized” versions of these
strategies, meaning that when there is a need to move from the current state
to another known state, the shortest known path from the current state to

2 We measure the value of cr before crawling an application and give this value as a
parameter to each strategy. A strategy, knowing how costly a reset is compared to
an average event execution, can decide whether to reset or not when moving from
current state to another known state.

300 S. Choudhary et al.

the desired state is used. This is in contrast to using systematic resets. The
results presented here with the optimized versions are much better than the
ones obtained using the standard, non-optimized Breadth-First and Depth-
First strategies.

– Greedy Strategy [9]: This is a simple strategy that prefers to explore an event
from the current state, if there is one. Otherwise, it chooses an event from a
state that is closest to the current state.

– Other Model-based Crawling Strategies: We also compare with other ex-
isting model-based strategies: The Hypercube strategy [1] is based on the
anticipation that the application has a hypercube model. The Probability
Strategy [10] prioritizes the events by estimating their probabilities of dis-
covering a new state based on their previous explorations.

– The Optimal Cost: We also present the optimal cost of discovering all the
states for each application. This cost is calculated once the model is known
(after the application is crawled first with one of the strategies). Finding an
optimal path that visits every state in a known model is possible by solving
an Asymmetric Traveling Salesman Problem (ATSP). We use an exact ATSP
solver [11] to find this path. This gives us an idea of how far from the optimal
speed each strategy is (for the first phase, find all the states). Of course, this
optimal is not a strategy on its own, and can only be calculated once the
entire model is known.

4.3 Subject Applications

We are comparing the strategies using two test RIAs and four real RIAs3. This
number is not as large as we would like, but we are limited by the tools that are
available to us. Each new RIA requires a significant amount of work before we
can crawl it4. With the increasing exposure to this problem, better tools will be
made available, and we will be able to test our solutions on a much broader test
set.

– Bebop: This is an AJAX-based interface to browse a list of publications. We
have used an instance that contains 5 publications. It has 1,800 states and
145,811 transitions. The measured cost of reset is 2.

3 http://ssrg.eecs.uottawa.ca/testbeds.html
4 We stress that the work in question is not related to the strategy described here, but
to the limitation of the available tools. One approach to implement a RIA crawler is
to control an external browser using an API such as Selenium WebDriver (as Crawl-
jax [12] does). The main drawback of this approach is the inability to detect auto-
matically all the events in a page since the DOM interface does not have a method
to check if an element has an event registered dynamically (using addEventListener

method in JavaScript). So, the user needs to specify the elements that should be in-
teracted with in an application. Our approach is to implement a browser as part of
the crawler. Thus, our crawler has more control over the application and can detect
automatically all the events in a page. However, this requires more work since we
need to make sure that our browser supports all the functionality required by the
RIA.

http://ssrg.eecs.uottawa.ca/testbeds.html

Building Rich Internet Applications Models: Example of a Better Strategy 301

– jQuery FileTree: This is an AJAX-based file explorer. For this study, we
used an instance that allows browsing Python source code. It has 214 states,
8,428 transitions. The measured cost of reset is 2.

– Periodic Table: This is an AJAX-based periodic table. It has 240 states,
29,034 transitions. The measured cost of reset is 8.

– Clipmarks: This was a AJAX-based social network. We have used a partial
local copy of this website for the experimental study. It has 129 states, 10,580
transitions. The measured cost of reset is 18.

– Altoro Mutual: This is an AJAX version of a demo website in the form of a
fictional banking site. It has 45 states, 1,210 transitions. The measured cost
of reset is 2.

– TestRIA: This is a AJAX test application in the form of a generic homepage.
It has 39 states, 305 transitions. The measured cost of reset is 2.

4.4 Experimental Setup

We have implemented all the mentioned crawling strategies in a prototype of
IBM R© Security AppScan R© Enterprise5. Each strategy is implemented as a sep-
arate class in the same code base, so they use the same DOM equivalence mecha-
nism, the same event identification mechanism, and the same embedded browser.
For this reason, each strategy extracts the same model for an application.

We crawl each application with each strategy ten times and present the aver-
age of these crawls. In each crawl, the events of each state are randomly shuffled
before they are passed to the strategy. The aim here is to eliminate influence
caused by exploring the events of a state in a certain order since the strategy
may not define an exploration priority for the events on a state.

4.5 Costs of Discovering States (Strategy Efficiency)

The box plots in Figure 4 show the results. For each application and for each
strategy, the figure contains a box plot. A box plot consists of a line and a box
on the line. The minimum point of the line shows the cost of discovering the first
state (always equal to the cost of reset for the application). The lower edge, the
line in the middle and the higher edge of the box show the cost of discovering
25%, 50% and 75% of the states, respectively. The maximum point of the line
shows the cost of discovering all the states. The plots are drawn in logarithmic
scale for better visualization. Each horizontal dotted line shows the optimal cost
for the corresponding application.

The results show that for all applications the Greedy strategy and the model-
based strategies are significantly more efficient than Breadth-First and Depth-
First. It can also be seen that the Menu strategy has the best performance to
discover all the states except for the Bebop where it is very close to the best. In

5 Details are available at http://ssrg.eecs.uottawa.ca/docs/prototype.pdf Since
our crawler is built on top of the architecture of a commercial product, we are not
able to provide open-source implementations of the strategies currently.

http://ssrg.eecs.uottawa.ca/docs/prototype.pdf

302 S. Choudhary et al.

D
e
p
t
h
-F

ir
s
t

B
r
e
a
d
t
h
-F

ir
s
t

G
r
e
e
d
y

H
y
p
e
r
c
u
b
e

P
r
o
b
a
b
il
it
y

M
e
n
u

D
e
p
t
h
-F

ir
s
t

B
r
e
a
d
t
h
-F

ir
s
t

G
r
e
e
d
y

H
y
p
e
r
c
u
b
e

P
r
o
b
a
b
il
it
y

M
e
n
u

D
e
p
t
h
-F

ir
s
t

B
r
e
a
d
t
h
-F

ir
s
t

G
r
e
e
d
y

H
y
p
e
r
c
u
b
e

P
r
o
b
a
b
il
it
y

M
e
n
u

D
e
p
t
h
-F

ir
s
t

B
r
e
a
d
t
h
-F

ir
s
t

G
r
e
e
d
y

H
y
p
e
r
c
u
b
e

P
r
o
b
a
b
il
it
y

M
e
n
u

D
e
p
t
h
-F

ir
s
t

B
r
e
a
d
t
h
-F

ir
s
t

G
r
e
e
d
y

H
y
p
e
r
c
u
b
e

P
r
o
b
a
b
il
it
y

M
e
n
u

D
e
p
t
h
-F

ir
s
t

B
r
e
a
d
t
h
-F

ir
s
t

G
r
e
e
d
y

H
y
p
e
r
c
u
b
e

P
r
o
b
a
b
il
it
y

M
e
n
u

100

102

104

106

Bebop FileTree Periodic Table Clipmarks Altoro Mutual TestRIA

C
o
s
t

Fig. 4. Costs of Discovering the States (Strategy Efficiency), in logarithmic scale. Each
horizontal dotted line shows the optimal cost for the corresponding application.

4 out of 6 cases, it was the first to discover the 75% of the states. In addition, the
Menu strategy was the first to discover the 50% and the 25% of the states in all
cases, except for Clipmarks where it is very close to the best. This is particularly
important if one assumes that the crawl will not be run to the end and that in
most cases it will be cut short. It shows that the Menu is the strategy that will
provide the most information after the least amount of time.

4.6 Costs of Complete Crawl

The previous results show the costs of discovering all the states. However, the
crawl does not end at this point since a crawler cannot know all states are
discovered until all the events are explored from each state (in other words, we
could provide this information only because we have run the tests to the end).
In Table 1, the total number of events and the total number of resets during the
crawl are shown as well as the costs calculated based on these numbers.

It can be seen that the model-based strategies and the Greedy strategy finish
crawling with a significantly less cost compared with Breadth-First and Depth-
First. The Menu is in the same ballpark as the other model-based strategies, but
not better. However, the complete crawl is not as important a factor as finding
all the states, as explained before.

5 Related Works

A survey of traditional crawling techniques is presented in [2]. For RIA crawl-
ing, a recent survey is presented in [5]. Except for [1,10,13] which present other

Building Rich Internet Applications Models: Example of a Better Strategy 303

Table 1. Total Costs of Crawling

Bebop FileTree Periodic Table Clipmarks Altoro Mutual TestRIA
Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost Events Resets Cost

Depth-First 13, 386, 210 27 13, 386, 264 99, 336 13 99, 362 897, 358 236 899, 246 19, 569 72 20, 868 6, 876 34 6, 944 1, 433 1 1, 435
Breadth-First 943, 001 8, 732 960, 466 26, 375 1, 639 29, 652 64, 850 14, 633 181, 916 15, 342 926 32, 015 3, 074 334 3, 742 1, 216 55 1, 326
Greedy 826, 914 27 826, 968 20, 721 13 20, 747 29, 926 236 31, 814 11, 396 56 12, 398 2, 508 34 2, 576 1, 001 1 1, 003
Hypercube 816, 142 27 816, 196 19, 865 13 19, 891 29, 921 236 31, 809 11, 350 56 12, 356 2, 489 34 2, 557 994 1 996
Probability 816, 922 27 816, 976 19, 331 13 19, 357 29, 548 236 31, 436 11, 456 62 12, 563 2, 451 34 2, 520 972 1 974
Menu 814, 220 27 814, 274 19, 708 13 19, 734 37, 489 236 39, 377 11, 769 71 13, 043 2, 457 35 2, 527 974 1 976

model-based crawling strategies and [9] which presents the Greedy strategy,
the published research uses Breadth-First or Depth-First strategies for crawl-
ing RIAs. As we have seen, Breadth-First and Depth-First strategies are less
efficient than the Greedy and the model-based strategies.

[14] and [15] suggest algorithms to index a RIA. [15] offers an early attempt in
crawling AJAX applications based on user events and building the model of the
application. The application model is constructed as a graph using the Breadth-
First strategy. [14] introduces an AJAX-aware search engine for indexing the
contents of RIAs. In this model components are adapted to handle RIAs. The
crawler identifies JavaScript events and runs a standard Breadth-First search
on them. [16] offers an algorithm, called AjaxRank, similar to PageRank [17]
tailored to RIAs, to give weight to different states based on the connectivity.

[18–20] seek to automate regression and other testing of a RIA. Crawljax
[12, 21] constructs a state-flow graph of the application by exercising client-
side code and identifying the events that change the state of the application.
Crawljax differentiates states using Levenshtein distance method [22], and uses
a Depth-First strategy. [23] describes the derivation of test sequences from the
application model obtained by crawling. [24] is similar, but takes a white-box
testing approach where the program fragments of the states are analyzed.

Several other tools exist to create an FSM model of the application. RE-
RIA [25] uses execution traces to create the FSM model of the application. As
an improvement to RE-RIA, CrawlRIA [26] generates the execution traces by
running a Depth-First strategy. CreRIA facilitate reverse engineering of a RIA
for dynamic analysis. DynaRIA offers a tool to comprehend a RIA better for
testing and other purposes. It also helps to visualize the run-time behavior of
the application.

6 Conclusion

A new model-based crawling algorithm was introduced: the Menu model. The
proposed architecture models the web application based on the JavaScript events
in each state of the DOM. It makes assumptions about the category of events in
order to derive a strategy, then learns, and adapt its categories as the crawling
proceeds. A prototype of the system is implemented and the results are eval-
uated against several other model-based crawling algorithms. We have shown
empirically that Menu strategy is better than other known strategies when it
comes to finding all the states of the application being modeled.

304 S. Choudhary et al.

Acknowledgments. This work is partially supported by the IBM Center for
Advanced Studies, and the Natural Sciences and Engineering Research Council
of Canada (NSERC).

The views expressed in this article are the sole responsibility of the authors
and do not necessarily reflect those of IBM.

Trademarks: IBM and AppScan are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions world-
wide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at Copy-
right and trademark information at www.ibm.com/legal/copytrade.shtml. Java
and all Java-based trademarks and logos are trademarks or registered trademarks
of Oracle and/or its affiliates.

References

1. Benjamin, K., von Bochmann, G., Dincturk, M.E., Jourdan, G.-V., Onut, I.V.:
A strategy for efficient crawling of rich internet applications. In: Auer, S., Dı́az,
O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 74–89. Springer,
Heidelberg (2011)

2. Olston, C., Najork, M.: Web crawling. Found. Trends Inf. Retr. 4(3), 175–246
(2010)

3. World Wide Web Consortium (W3C): Document Object Model (DOM) (2005),
http://www.w3.org/DOM/

4. Garrett, J.J.: Ajax: A new approach to web applications (2005), http://www.

adaptivepath.com/publications/essays/archives/000385.php

5. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Moosavi, A., von Bochmann, G.,
Jourdan, G.V., Onut, I.V.: Crawling rich internet applications: the state of the
art. In: Proceedings of the 2012 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON 2012, pp. 146–160 (2012)

6. Choudhary, S., Dincturk, M.E., Bochmann, G.V., Jourdan, G.V., Onut, I.V.,
Ionescu, P.: Solving some modeling challenges when testing rich internet appli-
cations for security. In: 2012 International Conference on Software Testing, Verifi-
cation, and Validation, pp. 850–857 (2012)

7. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part ii: The rural
postman problem. Operations Research 43(3), 399–414 (1995)

8. Choudhary, S.: M-crawler: Crawling rich internet applications using menu meta-
model. Master’s thesis, EECS - University of Ottawa (2012), http://ssrg.site.
uottawa.ca/docs/Surya-Thesis.pdf

9. Peng, Z., He, N., Jiang, C., Li, Z., Xu, L., Li, Y., Ren, Y.: Graph-based ajax crawl:
Mining data from rich internet applications. In: 2012 International Conference
on Computer Science and Electronics Engineering (ICCSEE), vol. 3, pp. 590–594
(March 2012)

10. Dincturk, M.E., Choudhary, S., von Bochmann, G., Jourdan, G.-V., Onut, I.V.: A
statistical approach for efficient crawling of rich internet applications. In: Bram-
billa, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 362–
369. Springer, Heidelberg (2012)

11. Carpaneto, G., Dell’Amico, M., Toth, P.: Exact solution of large-scale, asymmetric
traveling salesman problems. ACM Trans. Math. Softw. 21(4), 394–409 (1995)

http://www.w3.org/DOM/
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://ssrg.site.uottawa.ca/docs/Surya-Thesis.pdf
http://ssrg.site.uottawa.ca/docs/Surya-Thesis.pdf

Building Rich Internet Applications Models: Example of a Better Strategy 305

12. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web applications
through dynamic analysis of user interface state changes. TWEB 6(1), 3 (2012)

13. Benjamin, K., Bochmann, G.V., Jourdan, G.V., Onut, I.V.: Some modeling chal-
lenges when testing rich internet applications for security. In: Proceedings of the
2010 Third International Conference on Software Testing, Verification, and Valida-
tion Workshops, ICSTW 2010, pp. 403–409. IEEE Computer Society, Washington,
DC (2010)

14. Duda, C., Frey, G., Kossmann, D., Zhou, C.: Ajaxsearch: crawling, indexing and
searching web 2.0 applications. Proc. VLDB Endow. 1(2), 1440–1443 (2008)

15. Duda, C., Frey, G., Kossmann, D., Matter, R., Zhou, C.: Ajax crawl: Making ajax
applications searchable. In: Proceedings of the 2009 IEEE International Conference
on Data Engineering, ICDE 2009, pp. 78–89. IEEE Computer Society, Washington,
DC (2009)

16. Frey, G.: Indexing ajax web applications. Master’s thesis, ETH Zurich (2007),
http://e-collection.library.ethz.ch/eserv/eth:30111/eth-30111-01.pdf

17. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web, Standford University, Technical Report (1998)

18. Roest, D., Mesbah, A., van Deursen, A.: Regression testing ajax applications: Cop-
ing with dynamism. In: ICST, pp. 127–136. IEEE Computer Society (2010)

19. Bezemer, C.P., Mesbah, A., van Deursen, A.: Automated security testing of web
widget interactions. In: Proceedings of the the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE 2009, pp. 81–90. ACM, New
York (2009)

20. Mesbah, A., van Deursen, A.: Invariant-based automatic testing of ajax user in-
terfaces. In: IEEE 31st International Conference on Software Engineering, ICSE
2009, pp. 210–220 (May 2009)

21. Mesbah, A., Bozdag, E., Deursen, A.V.: Crawling ajax by inferring user interface
state changes. In: Proceedings of the 2008 Eighth International Conference on Web
Engineering, ICWE 2008, pp. 122–134. IEEE Computer Society, Washington, DC
(2008)

22. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10, 707 (1966)

23. Marchetto, A., Tonella, P., Ricca, F.: State-based testing of ajax web applica-
tions. In: Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation, ICST 2008, pp. 121–130. IEEE Computer Society,
Washington, DC (2008)

24. Artzi, S., Dolby, J., Jensen, S.H., Møller, A., Tip, F.: A framework for automated
testing of JavaScript web applications. In: Proc. 33rd International Conference on
Software Engineering (ICSE) (May 2011)

25. Amalfitano, D., Fasolino, A.R., Tramontana, P.: Reverse engineering finite state
machines from rich internet applications. In: Proceedings of the 2008 15th Work-
ing Conference on Reverse Engineering, WCRE 2008, pp. 69–73. IEEE Computer
Society, Washington, DC (2008)

26. Amalfitano, D., Fasolino, A.R., Tramontana, P.: Rich internet application testing
using execution trace data. In: Proceedings of the 2010 Third International Confer-
ence on Software Testing, Verification, and Validation Workshops, ICSTW 2010,
pp. 274–283. IEEE Computer Society, Washington, DC (2010)

http://e-collection.library.ethz.ch/eserv/eth:30111/eth-30111-01.pdf

Intelligent and Adaptive Crawling
of Web Applications for Web Archiving

Muhammad Faheem1 and Pierre Senellart1,2

1 Institut Mines–Télécom, Télécom ParisTech, CNRS LTCI, Paris, France
2 The University of Hong Kong, Hong Kong
firstname.lastname@telecom.paristech.fr

Abstract. Web sites are dynamic in nature with content and structure
changing overtime. Many pages on the Web are produced by content
management systems (CMSs) such as WordPress, vBulletin, or phpBB.
Tools currently used by Web archivists to preserve the content of the
Web blindly crawl and store Web pages, disregarding the CMS the site
is based on (leading to suboptimal crawling strategies) and whatever
structured content is contained in Web pages (resulting in page-level
archives whose content is hard to exploit). We present in this paper an
application-aware helper (AAH) that fits into an archiving crawl pro-
cessing chain to perform intelligent and adaptive crawling of Web appli-
cations (e.g., the pages served by a CMS). Because the AAH is aware
of the Web application currently crawled, it is able to refine the list of
URLs to process and to extend the archive with semantic information
about extracted content. To deal with possible changes in structure of
Web applications, our AAH includes an adaptation module that makes
crawling resilient to small changes in the structure of Web site. We show
the value of our approach by comparing the output and efficiency of
the AAH with respect to regular Web crawlers, also in the presence of
structure change.

1 Introduction

Social Web Archiving. The World Wide Web has become an active publishing
system and is a rich source of information, thanks to contributions of hundreds
of millions of Web users. Part of this public expression is carried out on social
networking and social sharing sites (Twitter, Facebook, Youtube, etc.), part of
it on independent Web sites powered by content management systems (CMSs,
including blogs, wikis, news sites with comment systems, Web forums). Content
published on this range of Web applications includes information that is news-
worthy today or valuable to tomorrow’s historians. Barack Obama thus first an-
nounced his 2012 reelection as US president on Twitter [1]; blogs are more and
more used by politicians both to advertise their political platform and to listen
to citizens’ feedback [2]; Web forums have become a common way for political
dissidents to discuss their agenda [3]; user-contributed wikis such as Wikipedia
contain quality information to the level of traditional reference materials [4].

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 306–322, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 307

Because Web content is distributed, perpetually changing, often stored in
proprietary platforms without any long-term access guarantee, it is critical to
preserve this valuable material for historians, journalists, or social scientists of
future generations. This is the objective of Web archiving [5], which deals with
discovering, crawling, storing, and ensuring long-term access to Web data.

Application-Aware Archiving. Current archival crawlers, such as Internet
Archive’s Heritrix [6], function in a conceptually simple manner. They start from
a seed list of URLs to be stored in a queue. Web pages are then fetched from
this queue one after the other (respecting crawling ethics, limiting the number
of requests per server), stored as is, and links are extracted from them. If these
links point to resources in the scope of the archiving task, they are added to the
queue. This process ends after a specified time or when no new relevant URL
can be found.

This approach does not confront the challenges of modern Web application
crawling: the nature of the Web application crawled is not taken into account to
decide the crawling strategy or the content to be stored; Web applications with
dynamic content (e.g., Web forums, blogs, etc.) may be crawled inefficiently, in
terms of the number of HTTP requests required to archive a given site; content
stored in the archive may be redundant, and typically does not have any structure
(it consists of flat HTML files), which makes access to the archive cumbersome.

The aim of this work is to address this challenge by introducing a
new application-aware approach to archival Web crawling. Our system, the
application-aware helper (AAH for short) relies on a knowledge base of known
Web applications. A Web application is any HTTP-based application that uti-
lizes the Web and Web browser technologies to publish information using a
specific template. We focus in particular on social aspects of the Web, which are
heavily based on user-generated content, social interaction, and networking, as
can be found for instance in Web forums, blogs, or on social networking sites.
Our proposed AAH only harvests the important content of a Web application
(i.e., the content that will be valuable in a Web archive) and avoids duplicates,
uninteresting URLs and templates that just serve a presentational purpose. In
addition the application-aware helper extracts from Web pages individual items
of information (such as blog post content, author, timestamp).

To illustrate, consider the example of a Web forum, say, powered by a con-
tent management system such as vBulletin. On the server side, forum threads
and posts are stored in a database; when a user requests a given Web page, the
response page is automatically generated from this database content, using a
predefined template. Frequently, access to two different URLs will end up pre-
senting the same or overlapping content. For instance, a given user’s posts can
be accessed both through the classical threaded view of forum posts or through
the list of all his or her post displayed on the user profile. This redundancy
means that an archive built by a classical Web crawler will contain duplicated
information, and that many requests to the server do not result in novel pieces
of content. In extreme cases, the crawler can fall into a spider trap because it
has infinitely many links to crawl. There are also several noisy links such as to a

308 M. Faheem and P. Senellart

print-friendly page or advertisement, etc., which would be better to avoid during
the constitution of the archive. On the contrary, a Web crawler that is aware
of the information to be crawled can determine an optimal path to crawl all
posts of a forum, without any useless requests, and can store individual posts,
together with their authors and timestamps, in a structured form that archivists
and archive users can benefit of.

Template Change. Web applications are dynamic in nature; not only their con-
tent changes over time, but their structure and template does as well. Content
management systems provide several templates that one can use for generating
wiki articles, blog posts, forum messages, etc. These systems usually provide a
way for changing the template without altering the informational content, to
adapt to the requirements of a specific site. The layout may also change as a
new version of the CMS is installed. All these layout changes result in possible
changes in the DOM tree of the Web page, usually minor. This makes it more
challenging to recognize and process in an intelligent manner all instances of a
given content management systems, as it is hopeless to hope to manually de-
scribe all possible variations of the template in a Web application knowledge
base. Another goal of this work is an intelligent crawling approach that is re-
silient to minor template changes, and, especially, automatically adapts to these
changes, updating its knowledge of CMSs in the process. Our adaptation tech-
nique relies on both relaxing the crawling and extraction patterns present in the
knowledge base, and on comparing successive versions of the same Web page.

Outline. After presenting the related work (Sect. 2) and giving some prelimi-
nary definitions (Sect. 3), we describe our knowledge base of Web applications
in Sect. 4. The methodology that our application-aware helper implements is
then presented in Sect. 5. We discuss the specific problem of adaptation to tem-
plate changes in Sect. 6 before covering implementation issues and explaining
how the AAH fits into a crawl processing chain in Sect. 7. We finally compare
the efficiency and effectiveness of our AAH with respect to classical crawling
approach in crawling blogs and Web forums in Sect. 8. Initial ideas leading to
this work were presented as a PhD workshop article in [7]; the description of the
algorithms and system, adaptation to template change, experimental results, are
fully novel.

2 Related Work

Web Crawling. Web crawling is a well-studied problem with still ongoing chal-
lenges. A survey of the field of Web archiving and archival Web crawling is
available in [5]. A focused, or goal-directed, crawler, crawls the Web according
to a predefined set of topics [8], and thus influences the crawler behavior not
based on the structure of Web applications as is our aim, but on the content of
Web pages. Our approach does not have the same purpose as focused crawling:
it aims at better archiving of known Web applications. Both strategies for are
thus complementary.

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 309

Content in Web applications or content management systems is arranged with
respect to a template (which may include left or right sidebar of the Web page,
navigation bar, header and footer, main content, etc.). Among the various works
on template extraction, Gibson et al. [9] have performed an analysis of the extent
of template-based content on the Web. They have found that 40–50% of the Web
content (in 2005) is template-based (i.e., part of some Web application), which
is growing at the rate of 6–8% per year. This research is a strong hint at the
benefit of handling Web application crawling in a specific manner.

Forum Crawling. Though application-aware crawling in general has not yet been
addressed, there have been some efforts on content extraction from Web forums.
One such approach [10], dubbed Board Forum Crawling (BFC), leverages the
organized structure of Web forums and simulates user behavior in the extraction
process. BFC deals with the problem effectively, but is still confronted to limi-
tations as it is based on simple rules and can only deal with forums with some
specific organized structure.

Another technique [11], however, does not depend on the specific structure of
the Web forum. The iRobot system assists the extraction process by providing
the sitemap of the Web application being crawled. The sitemap is constructed
by randomly crawling a few pages from the Web application. After sitemap gen-
eration, iRobot obtains the structure of the Web forum in the form of a directed
graph consisting of vertices (Web pages) and directed arcs (links between differ-
ent Web pages). Furthermore a path analysis is performed to provide an optimal
traversal path which leads the extraction process in order to avoid duplicate and
invalid pages. A later effort [12] identified a few drawbacks in iRobot and im-
proved the original system in a number of way: a better minimum spanning tree
discovery technique [13], a better measure of the cost of an edge in the crawling
process as an estimation of its approximate depth in the site, and a refinement
of the detection of duplicate pages. iRobot [11,12] is probably the work clos-
est to ours. In contrast with that system, the AAH we propose is applicable to
any kind of Web application, as long as it is described in our knowledge base.
Also differently from [11,12], where the analysis of the structure of a forum has
to be done independently for each site, the AAH exploits the fact that several
sites may share the same content management system. Our system also extracts
structured and semantic information from the Web pages, where iRobot stores
plain HTML files and leaves the extraction for future work. We finally give in
Sect. 8 a comparison of the performance of iRobot vs AAH to highlight the
superior efficiency of our approach. On the other hand, iRobot aims at a fully
automatic means of crawling a Web forum, while the AAH relies on a knowl-
edge base (manually constructed but automatically maintained) of known Web
applications or content management systems.

Web Application Detection. As we shall explain, our approach relies on a generic
mechanism for detecting the kind of Web application currently crawled. Again
there has been some work in the particular cases of blogs or forums. In particular,
[14] uses support vector machines (SVM) to detect whether a given page is a

310 M. Faheem and P. Senellart

blog page. In [14], SVMs are trained using various traditional feature vectors
formed of the content’s bag of words or bag of n-grams, and some new features
for blog detection are introduced such as the bag of linked URLs and the bag of
anchors. Relative entropy is used for feature selection.

Wrapper Adaptation. Wrapper adaptation, the problem of adapting a Web in-
formation extractor to (minor) changes in the structure of considered Web pages
or Web sites, has received quite some attention in the research community. An
early work is that of Kushmerick [15] who proposed an approach to analyze Web
pages and already extracted information, so as to detect changes in structure. A
“wrapper verification” method is introduced that checks whether a wrapper stops
extracting data; if so, a human supervisor is notified so as to retrain the wrapper.
Chidlovskii [16] introduced some grammatical and logic-based rules to automate
the maintenance of wrappers, assuming only slight changes in the structure of
Web pages. Meng, Hu, and Li [17] suggested a schema-guided wrapper main-
tenance approach called SG-WRAM for wrapper adaptation. Lerman, Minton,
and Knoblock [18] developed a machine learning system for repairing wrapper for
small markup changes. Their proposed system first verifies the extraction from
Web pages, and if the extraction fails then it relaunches the wrapper induction
for data extraction.

Our template adaptation technique is inspired by the previously cited works:
we check whether patterns of our wrapper fail, and if so, we try fixing them
assuming minor changes in Web pages, and possibly using previously crawled
content on this site. One main difference with existing work is that our approach
is also applicable to completely new Web sites, never crawled before, that just
share the same content management system and a similar template.

Data Extraction from Blogs, Forums, etc. A number of works [19,20,21] aim at
automatic wrapper extraction from CMS-generated Web pages, looking for re-
peated structure and typically using tree alignment or tree matching techniques.
This is out of scope of our approach, where we assume that we have a preex-
isting knowledge base of Web applications. Gulhane et al. [22] introduced the
Vertex wrapper induction system. Vertex detects site changes by monitoring a
few sample pages per site. Any structural change can result in changes in page

〈expr〉 ::= 〈step〉 | 〈step〉 "/" 〈expr〉
〈step〉 "//" 〈expr〉

〈step〉 ::= 〈nodetest〉 | 〈step〉 "[" 〈 predicate 〉 "]"
〈nodetest〉 ::= tag | "@" tag | "*" | "@*" | "text()"
〈 predicate 〉 ::= "contains(" 〈value〉 "," string ")" |

〈value〉 "=" string | integer | "last()"
〈value〉 ::= tag | "@" tag

Fig. 1. BNF syntax of the XPath fragment used. The following tokens are used: tag
is a valid XML identifier; string is a single- or double-quote encoded XPath character
string; integer is any positive integer.

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 311

shingle vectors that may render learned rules inapplicable. In our system, we do
not monitor sampled Web pages but dynamically adapt to pages as we crawl
them. The AAH also applies adaptation to different versions of a content man-
agement system found on different Web sites, rather than to just a specific Web
page type.

3 Preliminaries

This section introduce some definitions that we will use throughout this paper. A
Web application is any application or Web site that uses Web standards such as
HTML and HTTP to publish information on the Web in a specific template, in
a way that is accessible by Web browsers. Examples include Web forums, social
networking sites, geolocation services, etc. A Web application type is the content-
management system or server-side technology stack (e.g., vBulletin, WordPress,
the proprietary CMS of Flickr, etc.) that powers this Web application and pro-
vides interaction with it. Several different Web applications can share the same
Web application type (all vBulletin forums use vBulletin), but some Web appli-
cation types can be specific to a given Web application (e.g., the CMS powering
Twitter is specific to that site).

We use a simple subset of the XPath expression language to describe patterns
in the DOM of Web pages that serve either to identify a Web application type,
or to determine navigation or extraction actions to apply to that Web page. A
grammar for the subset we consider is given in Fig. 1. Basically, we only allow
downwards axes and very simple predicates that perform string comparisons.
The semantics of these expressions is the standard one. In the following, an
XPath expression is always one of this sublanguage.

A detection pattern is a rule for detecting Web application types and Web
application, based on the content of a Web page, HTTP metadata, URL com-
ponents. It is implemented as an XPath expression over a virtual document that
contains the HTML Web page as well as all other HTTP metadata.

A crawling action is an XPath expression over an HTML document that
indicates which action to perform on a given Web page. Crawling actions can be
of two kinds: navigation actions point to URLs to be added to the crawling queue;
extraction actions point to individual semantic objects to be extracted from the
Web page (e.g., timestamp, blog post, comment). For instance, div [contains(
@class ,’post’)]//h2[@class=’post-message’]//a/@href is a navigation action
to follow certain types of links.

The application-aware helper distinguishes two main kinds of Web application
levels: intermediate pages, such as lists of forums, lists of threads, can only
be associated with navigation actions; terminal pages, such as the individual
posts in a forum thread, can be associated with both navigation and extraction
actions. For intelligent crawling, our AAH needs not only to distinguish among
Web application types, but among the different kinds of Web pages that can
be produced by a given Web application type. The idea is that the crawler will
navigate intermediate pages until a terminal page is found, and only content

312 M. Faheem and P. Senellart

from this terminal page is extracted; the terminal page may also be navigated,
e.g., in the presence of paging.

Given an XPath expression e, a relaxed expression for e is one where one or
several of the following transformations has been performed:

– a predicate has been removed;
– a tag or string token has been replaced with another such token.

A best-case relaxed expression for e is one where at most one of these transfor-
mations has been performed for every step of e. A worst-case relaxed expression
for e is one where potentially multiple transformations have been performed on
any given step of e.

To illustrate, consider e =div [contains(@class ,’post’)]//h2[@class=’post-
message’]. Examples of best-case relaxed expressions are div [contains(@class
,’post’)]//h2 or div [contains(@class ,’post’)]//h2[@id=’post-content’]; on
the other hand, div [contains(@class ,’message’)]//div[@id=’post-content’] is
an example worst-case relaxed expression.

4 Knowledge Base

The AAH is assisted by a knowledge base of Web application types. This knowl-
edge base specifies how to detect specific Web applications and which crawling
actions should be executed. Types are arranged in a hierarchical manner, from
general categorizations to specific instances (Web sites) of this Web application.
The knowledge base also describes the different levels under a Web application
type and then, based on this, different crawling actions that should be executed
against this specific page level. The knowledge base is specified in a declara-
tive language, so as to be easily shared and updated, hopefully maintained by
non-programmers, and also possibly automatically learned from examples. The
W3C has normalized a Web Application Description Language (WADL) [23] for
describing resources of HTTP-based applications. WADL does not satisfy all
our needs: in particular, there is no place for the description of Web applica-
tion recognition patterns. Consequently, our knowledge-based is described in a
custom XML format.

For each Web application type, and for each level, the knowledge base contains
a set of detection patterns that allows to recognize whether a given page is of that
type or that level. The vBulletin Web forum CMS can for instance be identified
by searching for a reference to a specific script with the detection pattern: script
[contains(@src,’vbulletin_global.js’)]. Pages of the “list of forums” type are
identified1 when they match the pattern a[@class="forum"]/@href.

Similarly, for each Web application type and level, a set of navigation and
extraction actions (for the latter, only in the case of terminal levels) is provided.

1 The example is simplified for the sake of presentation; in reality we have to deal with
several different layouts that vBulletin can produce.

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 313

5 Application-Aware Helper (AAH)

Our main claim is that different crawling techniques should be applied to dif-
ferent types of Web applications. This means having different crawling strate-
gies for different forms of social Web sites (blogs, wikis, social networks, social
bookmarks, microblogs, music networks, Web forums, photo networks, video net-
works, etc.), for specific content management systems (e.g., WordPress, phpBB),
and for specific sites (e.g., Twitter, Facebook). Our proposed approach will de-
tect the type of Web application (general type, content management system, or
site) currently processed by the crawler, and the kind of Web pages inside this
Web application (e.g., a user profile on a social network) and decide on further
crawling actions (following a link, extracting structured content) accordingly.
The proposed crawler is intelligent enough to crawl and store all comments re-
lated to a given blog post in one place, even if comments stays on several Web
pages.

The AAH detects the Web application and Web page type before deciding
which crawling strategy is appropriate for the given Web application. More pre-
cisely, the AAH works in the following order:

1. it detects the Web application type;
2. it detects the Web application level;
3. it executes the relevant crawling actions: extracting the outcome of extrac-

tion actions, and adding the outcome of navigation actions to the URL queue.

The AAH loads the Web application type detection patterns from the knowledge
base and executes them against the given Web application. If the Web applica-
tion type is detected, the system executes all the possible Web application level
detection patterns until it gets a match.

The number of detection patterns for detecting Web application type and
level will grow with the addition of knowledge about new Web applications. In
order to optimize this detection, the system needs to maintain an index of these
patterns. To this aim, we have integrated the YFilter system [24] (an NFA-
based filtering system for XPath expressions) with slight changes according to
our requirements, for efficient indexing of detection patterns, in order to quickly
find the relevant Web application types and levels. YFilter is developed as part of
a publish–subscribe system that allows users to submit a set of queries that are
to be executed against streaming XML pages. By compiling the queries into an
automaton to index all provided patterns, the system is able to efficiently find the
list of all users who submitted a query that matches the current document. In our
integrated version of YFilter, the detection patterns (either for Web application
type or level) will be submitted as queries; when a document satisfy a query,
the system will stop processing the document against all remaining queries (in
contrast to the standard behavior of YFilter), as we do not need more than one
match. In addition, to deal with predicates that are present in our language but
that YFilter does not support, we modify the system so that additional filters
can be tested before validating a match.

314 M. Faheem and P. Senellart

Input: a URL u, sets of detection patterns D and crawling actions A
if alreadyCrawled(u) then

if hasChanged(u) then
markedActions ← detectAndMarkStructuralChanges(u, A);
newActions ← alignCrawlingActions(u, D, markedActions);
addToKnowledgeBase(newActions);

Algorithm 1. Adaptation to template change (recrawl of a Web application)

6 Adaptation to Template Change

We describe here how the AAH adapts to changes in the structure of Web
applications. Structural changes w.r.t. the knowledge base may come from vary-
ing versions of the content management system, or from alternative templates
proposed by the CMS or developed for specific Web applications. The AAH
determines when a change has occurred and tries adapting patterns and actions.

We deal with two different cases of adaptation: first, when (part of) a Web
application has been crawled before the template change and a recrawl is carried
out after that (a common situation in real-world crawl campaigns); second, when
crawling a new Web application that matches the Web application type detection
patterns but for which (some of) the actions are inapplicable.

Recrawl of a Web Application. We first consider the case when part of a Web
application has been crawled successfully using the patterns and actions of the
knowledge base. The template of this Web application then changes (because of
an update of the content management system, or a redesign of the site) and it is
recrawled. Our core adaptation technique relearns appropriate crawling actions
for each crawlable object; the knowledge base is then updated by adding newly
relearned actions to it.

As later described in Sect. 7, crawled Web pages with their Web objects
and metadata are stored in the form of RDF triples into a RDF store. Our
proposed system detects structural changes for already crawled Web applications
by looking for the content (stored in the RDF store) in the Web pages with the
crawling actions used during the previous crawl. If the system fails to extract
the same content with these actions, the structure of the Web site has changed.

Algorithm 1 gives a high-level view of the template adaptation mechanism
in the case of a recrawl. It first checks whether a given URL has already been
crawled by calling the alreadyCrawled Boolean function, which just looks for the
existence of the URL in the RDF store. An already crawled Web page will then
be checked for structured changes with the hasChanged Boolean function.

Structural changes are detected by searching for already crawled content
(URLs corresponding to navigation actions, Web objects, etc.) in a Web page
by using the existing and already learned crawling actions (if any) for the cor-
responding Web application level. The hasChanged function takes care of the
fact that failure to extract deleted information should not be considered as a

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 315

Input: a URL u and a sets of crawling actions A
if not alreadyCrawled(u) then

for a ∈ A do
if hasExtractionFailed (u, a) then

relaxedExpressions ← getRelaxedExpressions(a);
for candidate ∈ relaxedExpressions do

if not hasExtractionFailed(u, candidate) then
addToKnowledgeBase(candidate);
break;

Algorithm 2. Adaptation to template change (new Web application)

structural change. For instance, a Web object such as a Web forum’s comment
that was crawled before may not exist anymore.

In the presence of structural changes, the system calls the detectAndMark-
StructuralChanges function which detects inapplicable crawling actions and
mark them as “failed”. All crawling actions which are marked as failed will be
aligned according to structural changes. The alignCrawlingActions function will
relearn the failed crawling actions.

Crawl of a New Web Application. We are now in the case where we crawl a
completely new Web applications whose template is (slightly) different from
that present in the knowledge base. We assume that the Web application type
detection patterns fired, but either the application level detection patterns or
the crawling actions do not work on this specific Web application.

Let us first consider the case where the Web application level detection pattern
works. Recall that there are two classes of Web application levels: intermediate
and terminal. We make the assumption that on intermediate levels, crawling
actions (that are solely navigation actions) do not fail – on that level, naviga-
tions actions are usually fairly simple (they typically are simple extensions of
the application level detection patterns, e.g., //div[contains(@class ,’post’)] for
the detection pattern and //div[contains(@class ,’post’)]//a/@href for the nav-
igation action). In our experiments we never needed to adapt them. We leave
the case where they might fail to future work. On the other hand, we consider
that both navigation actions and extraction actions from terminal pages may
need to be adapted. The main steps of the adaptation algorithm are described
in Algorithm 2. getRelaxedExpressions creates two set of relaxed expression (for
best-case and worst-case). For each set, different variations of crawling action
will be generated by relaxing predicates and tag names, enumerated by the
number of relaxation needed (simple relaxations come first). Tag names are re-
placed with existing tag names of the DOM tree so that the relaxed expression
matches. When relaxing an attribute name inside a predicate, the AAH only sug-
gests candidates that would make the predicate true; to do that, the AAH first
collects all possible attributes and their values from the page. We favor relax-
ations that use parts from crawling actions in the knowledge base for other Web

316 M. Faheem and P. Senellart

application types of the same general category (e.g., Web forum). The system or-
ders expressions by the number of required relaxations (best-case ones first). Any
expression which succeeds in the extraction will still be tested with a few more
pages of the same Web application level before being added to the knowledge
base for future crawling.

If the system does not detect the Web application level, then the crawling
strategy cannot be initiated. First, the system tries adapting the detection pat-
tern before fixing crawling actions. The idea is here the same as in the previ-
ous part: the system collect all candidate attributes, values, tag names from the
knowledge base for the detected Web application type (e.g., WordPress) and then
creates all possible combinations of relaxed expressions, ordered by the amount
of relaxation, and test them one by one until one that works is found. To illus-
trate, assume that the candidate set of attributes and values are: @class=’post’,
@id=’forum’, @class=’blog’ with candidate set of names article ,div, etc. The
set of relaxed expression will be generated by trying out each possible combi-
nation: // article [contains(@class ,’post’)], // article [contains(@id,’forum’)],
// article [contains(@class ,’blog’)], etc.

7 System

The application-aware helper is implemented in Java. On startup, the sys-
tem first loads the knowledge base and indexes detection patterns us-
ing a YFilter [24] implementation adapted from the one available at
http://yfilter.cs.umass.edu/. Once the system receives a crawling request,
it first makes a lookup to the YFilter index to detect the Web application type
and level. If the Web application type is not detected, the AAH applies the
adaptation strategy to find a relaxed match as previously described. If no match
is found (i.e., if the Web application is unknown), a generic extraction of links
is performed.

When the Web application is successfully detected, the AAH loads the corre-
sponding crawling strategy from the knowledge base and crawls the Web appli-
cation accordingly, possibly using the adaptation strategy. Crawled Web pages
are stored in the form of WARC [25] files – the standard preservation format for
Web archiving – whereas structured content (individual Web objects with their
semantic metadata) is stored in an RDF store. The knowledge base is potentially
updated with new detection patterns or crawling actions.

The AAH is integrated with Heritrix [6], the open-source crawler2 developed
by the Internet Archive. In the crawl processing chain, the AAH replaces the
conventional link extraction module. Crawling actions determined by the AAH
are fed back into the URL queue of Heritrix.

The open-source AAH code and the list of all sites in our experimental dataset
are available at http://perso.telecom-paristech.fr/~faheem/aah.html.

2 http://crawler.archive.org/

http://yfilter.cs.umass.edu/
http://perso.telecom-paristech.fr/~faheem/aah.html
http://crawler.archive.org/

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 317

8 Experiments

We present in this section experimental performance of our proposed system on
its own and with respect to a baseline crawler, GNU wget3 (since the scope of
the crawl is quite simple – complete crawling of specific domain names – wget
is as good as Heritrix here).

Experiment Setup. To evaluate the performance of our system, we have crawled
100 Web applications (totaling nearly 3.3 millions Web pages) of two forms
of social Web sites (Web forum and blog), for three specific content manage-
ment system (vBulletin, phpBB, and WordPress). The Web applications of type
WordPress (33 Web applications, 1.1 million of Web pages), vBulletin (33 Web
applications, 1.2 million of Web pages) and phpBB (34 Web applications, 1 mil-
lion Web pages) were randomly selected from three different sources:

1. http://rankings.big-boards.com/, a database of popular Web forums.
2. A dataset related to European financial crisis.
3. A dataset related to the Rock am Ring music festival in Germany.

The second and third datasets were collected in the framework of the AR-
COMEM project4. In these real-world datasets corresponding to specific archival
tasks, 68% of the seed URLs of Web forum type belongs to either vBulletin or
phpBB, which explains while we target these two CMSs. WordPress is also a
prevalent CMS: the Web as a whole has over 61 million Wordpress sites [26] out
of a number of blogs indexed by Technorati [27] of around 133 million. Moreover,
Wordpress has a 48% market share of the top 100 blogs [28]. All 100 Web appli-
cations were both crawled using wget and the AAH. Both crawlers are configured
to retrieve only HTML documents, disregarding scripts, stylesheets, media files,
etc.

The knowledge base is populated with detection patterns and crawling actions
for one specific version of the three considered CMSs (other versions will be
handled by the adaptation module). Adding a new Web application type to the
knowledge base takes a crawl engineer of the order of 30 minutes.

Performance Metrics. The performance of the AAH will be mainly measured by
evaluating the number of HTTP requests made by both systems vs the amount
of useful content retrieved. Evaluating the number of HTTP requests is easy to
perform by simply counting requests made by both crawlers. Coverage of useful
content is more subjective and we use the following proxies:

1. Counting the amount of textual content that has been retrieved. For that,
we compare the proportion of 2-grams (sequences of two consecutive words)
in the crawl result of both systems, for every Web application.

2. Counting the number of external links (i.e., hyperlinks to another domain)
found in the two crawls. The idea is that external links are a particularly
important part of the content of a Web site.

3 http://www.gnu.org/software/wget/
4 http://www.arcomem.eu/

http://rankings.big-boards.com/
http://www.gnu.org/software/wget/
http://www.arcomem.eu/

318 M. Faheem and P. Senellart

25 1,000 2,000 3,000 4,000 5,000
0

10

20

30

Number of detection patterns

T
im

e
sp

en
t

(s
ec

on
ds

) With indexing (YFilter)
Without indexing

Fig. 2. Performance of the detection
module

WordPress vBulletin phpBB
0

500

1,000

N
um

be
r

of
H

T
T

P
re

qu
es

ts
(×

1,
00

0)

AAH
wget

Fig. 3. Total number of HTTP requests
used to crawl the dataset

WordPress vBulletin phpBB
97

98

99

P
ro

po
rt

io
n

of
se

en
n

-g
ra

m
s

(%
)

Fig. 4. Box chart of the proportion of
seen n-grams for the three considered
CMSs. We show in each case the min-
imum and maximum values (whiskers),
first and third quartiles (box) and median
(horizontal rule).

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

Number of HTTP requests

N
um

be
r

of
di

st
in

ct
2-

gr
am

s
(×

1,
00

0)

AAH
wget

Fig. 5. Crawling http://www.
rockamring-blog.de/

Efficiency of Detection Patterns. We first briefly discuss the use of YFilter to
speed up the indexing of detection patterns. In Fig. 2 we show the time required
to determine Web application type in a synthetically generated knowledge base
as the number of Web application types grows up to 5,000, with or without using
YFilter indexing. The system takes a time linear in the number of detection
patterns when indexing is turned off, taking up to several dozens of seconds. On
the other hand, detection time is essentially constant with YFilter activated.

Crawl Efficiency. We compare the number of HTTP requests required by both
crawlers to crawl each set of Web applications of the same type in Fig. 3. No-
tice how the application-aware helper makes much fewer requests (on average 7
times fewer) than a regular blind crawl. Indeed, for blog-like Web sites, a regular
crawler make redundant HTTP requests for the same Web content, accessing to
a post by tag, author, year, chronological order, etc. In a Web forum, many re-
quests end up being search boxes, edit areas, print view of a post, areas protected
by authentication, etc.

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 319

Table 1. Coverage of external links in the dataset crawled by the AAH

External links
CMS External links (w/o boilerplate)

WordPress 92.7% 99.8%
vBulletin 90.5% 99.5%
phpBB 92.1% 99.6%

Crawl Effectiveness. The crawling results, in terms of coverage of useful content,
are summarized in Fig. 4 and in Table 1. Figure 4 presents the distribution of
the proportion of n-grams crawled by the AAH with respect to those of the full
crawl. Not only are the numbers are generally very high (for the three types,
the median is greater than 98%), but the results are also very stable, with a
very low variance: the worst coverage score on our whole dataset is greater than
97% (typically, lower scores are achieved for small Web sites where the amount
of boilerplate text such as menus or terms of use remains non negligible). This
hints at the statistical significance of the results.

The proportion of external links covered by the AAH is given in Table 1. The
application-aware helper has ignored nearly 10 percent of external links since
every page may use widgets, such as those of Facebook, Amazon, etc., with
URLs varying from one page to another. Once we have excluded boilerplate
with defined set of patters, we see that more than 99.5% of the external links
are present in the content crawled by the AAH.

To reach a better understanding of how an application-aware crawl enfolds,
we plot in Fig. 5 the number of distinct 2-grams discovered by the AAH and
wget during one crawl (in this particular case, of a given WordPress blog), as the
number of requests increase. We see that the AAH directly targets the interesting
part of the Web application, with a number of newly discovered 2-grams that
grows linearly with the number of requests made, to reach a final level of 98%
2-gram coverage after 1,705 requests. On the other hand, wget discovers new
content with a lower rate, and, especially, spends the last 2/5 of its requests
discovering very few new 2-grams.

Comparison to iRobot. The iRobot system [11] that we discussed in Sect. 2 is
not available for testing because of intellectual property reasons. The experi-
ments of [11] are somewhat limited in scope, since only 50,000 Web pages are
considered, over 10 different forum Web sites (to compare with our evaluation,
on 3.3 million Web pages, over 100 different forum or blog Web sites). To com-
pare the AAH to iRobot, we have crawled one of the same Web forum used
in [11]: http://forums.asp.net/ (over 50,000 Web pages). The completeness
of content of the AAH (in terms of both 2-grams and external links, boilerplate
excluded) is over 99 percent; iRobot has a coverage of valuable pages (as evalu-
ated by a human being) of 93 percent on the same Web application. The num-
ber of HTTP requests for iRobot is claimed in [11] to be 1.73 times less than a

http://forums.asp.net/

320 M. Faheem and P. Senellart

Table 2. Examples of structural pattern changes: desktop vs mobile version of
http://www.androidpolice.com/

Desktop version Mobile version

div [@class=’post_title’]/h3/a div [@class=’post_title’]/h2/a
div [@class=’post_info’] div [@class=’post_author’]
div [@class=’post_content’] div [@class=’content’]

regular Web crawler; on the http://forums.asp.net/ Web application, the
AAH makes 10 times fewer requests than wget does.

Adaptation When Recrawling a Web Application. To test our adaptation tech-
nique in the case of a recrawl of a Web application in a realistic environment
(without having to wait for Web sites actually to change), we have considered
sites that have both a desktop and mobile version with different HTML con-
tent. These sites use two different templates to present what is essentially the
same content. We simulated a recrawl by first crawling the Web site with a
User-Agent: HTTP header indicating a regular Web spider (the desktop version
is then served) and then recrawling the mobile version using a mobile browser
User-Agent:.

Our system was not only able to detect the structural changes from one ver-
sion to another, but also, using already crawled content, to fix the failed crawling
actions. Table 2 presents one exemplary Web application that has both a desk-
top and mobile versions, with a partial list of the structural changes in the
patterns across the two versions. Our system was able to automatically correct
these structure changes in both navigation and extraction, reaching a perfect
agreement between the content extracted by the two crawls.

Adaptation for a New Web Application. As stated earlier, we have experimented
our system with 100 Web applications, starting from a straightforward knowledge
base containing information about one specific version of the three considered
content management systems. Among the 100 applications, 77 did not require
any adaptation, which illustrates that many Web applications share common
templates. The 23 remaining ones had a structure that did not match the crawl-
ing actions in the knowledge base; the AAH has applied adaptation successfully
to these 23 cases. Most of the adaptation consisted in relaxing the class or id
attribute rather than replacing the tag name of an element. When there was a
tag name change, it was most often from span to div to article or vice versa,
which is fairly straightforward to adapt. There was no case in the dataset when
more than one relaxation for a given step of an XPath expression was needed; in
other words, only best-case relaxed expressions were used. In 2 cases, the AAH
was unable to adapt all extraction actions, but navigation actions still worked
or could be adapted, which means the Web site could still be crawled, but some
structured content was missing.

http://www.androidpolice.com/
http://forums.asp.net/

Intelligent and Adaptive Crawling of Web Applications for Web Archiving 321

9 Conclusions

In Web archiving, scarce resources are bandwidth, crawling time, and storage
space rather than computation time [5]. We have shown how application-aware
crawling can help reduce bandwidth, time, and storage (by requiring less HTTP
requests to crawl an entire Web application, avoiding duplicates) using lim-
ited computational resources in the process (to apply crawling actions on Web
pages). Application-aware crawling also helps adding semantics to Web archives,
increasing their value to users.

Our work can be extended in several ways, that we shall explore in future
work. First, we can enrich the pattern language we use to allow for more complex
detection and extraction rules, moving to a full support of XPath or even more
powerful Web navigation languages allowing to crawl complex Web applications
making use of AJAX or Web forms. There is a trade-off, however, between the
expressive power of the language and the simplicity of template adaptations.
Second, we want to move towards an automatically constructed knowledge base
of Web applications, either by asking a human being to automatically annotate
the part of a Web application to extract or crawl, using semi-supervised machine
learning techniques, or even by discovering in an unsupervised manner new Web
application types by comparing the structure of different Web sites, determining
the optimal way to crawl them by sampling, in the spirit of iRobot [11].

Acknowledgment. This work was funded by the European Union’s Seventh
Framework Program (FP7/2007–2013) under grant agreement 270239 (AR-
COMEM).

References

1. Jupp, E.: Obama’s victory tweet ‘four more years’ makes history. The Independent
(November 2012), http://ind.pn/RF5Q6O

2. Coleman, S.: Blogs and the new politics of listening. The Political Quarterly 76(2)
(2008)

3. Mulvenon, J.C., Chase, M.: You’ve Got Dissent! Chinese Dissident Use of the
Internet and Beijing’s Counter Strategies. Rand Publishing (2002)

4. Giles, J.: Internet encyclopaedias go head to head. Nature 438 (2005)
5. Masanès, J.: Web archiving. Springer (2006)
6. Sigurðsson, K.: Incremental crawling with Heritrix. In: IWAW (2005)
7. Faheem, M.: Intelligent crawling of Web applications for Web archiving. In: WWW

PhD Symposium (2012)
8. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: A new approach

to topic-specific Web resource discovery. Comp. Networks 31(11-16) (1999)
9. Gibson, D., Punera, K., Tomkins, A.: The volume and evolution of Web page

templates. In: WWW (2005)
10. Guo, Y., Li, K., Zhang, K., Zhang, G.: Board forum crawling: A Web crawling

method for Web forums. In: Web Intelligence (2006)
11. Cai, R., Yang, J.M., Lai, W., Wang, Y., Zhang, L.: iRobot: An intelligent crawler

for Web forums. In: WWW (2008)

http://ind.pn/RF5Q6O

322 M. Faheem and P. Senellart

12. Ying, H.M., Thing, V.: An enhanced intelligent forum crawler. In: CISDA (2012)
13. Edmonds, J.: Optimum branchings. J. Res. Nat. Bureau Standards 71B (1967)
14. Kolari, P., Finin, T., Joshi, A.: SVMs for the blogosphere: Blog identification and

splog detection. In: AAAI (2006)
15. Kushmerick, N.: Regression testing for wrapper maintenance. In: AAAI (1999)
16. Chidlovskii, B.: Automatic repairing of Web wrappers. In: WIDM (2001)
17. Meng, X., Hu, D., Li, C.: Schema-guided wrapper maintenance for Web-data ex-

traction. In: WIDM (2003)
18. Lerman, K., Minton, S.N., Knoblock, C.A.: Wrapper maintenance: A machine

learning approach. J. A. I. Res. (2003)
19. Lim, S.J., Ng, Y.K.: An automated change-detection algorithm for HTML docu-

ments based on semantic hierarchies. In: ICDE (2001)
20. Artail, H., Fawaz, K.: A fast HTML Web page change detection approach based

on hashing and reducing the number of similarity computations. Data Knowl. Eng.
(2008)

21. Ferrara, E., Baumgartner, R.: Automatic wrapper adaptation by tree edit distance
matching. In: Hatzilygeroudis, I., Prentzas, J. (eds.) Combinations of Intelligent
Methods and Applications. SIST, vol. 8, pp. 41–54. Springer, Heidelberg (2011)

22. Gulhane, P., Madaan, A., Mehta, R., Ramamirtham, J., Rastogi, R., Satpal, S.,
Sengamedu, S.H., Tengli, A., Tiwari, C.: Web-scale information extraction with
vertex. In: ICDE (2011)

23. W3C: Web application description language (2009),
http://www.w3.org/Submission/wadl/

24. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path sharing and
predicate evaluation for high-performance XML filtering. ACM TODS (2003)

25. ISO: ISO 28500:2009, Information and documentation – WARC file format
26. WordPress: WordPress sites in the world (2012),

http://en.wordpress.com/stats/
27. The Future Buzz: Social media, Web 2.0 and internet stats (2009),

http://goo.gl/H0FNF
28. Royal Pingdom: WordPress completely dominates top 100 blogs (2012),

http://goo.gl/eifRJ

http://www.w3.org/Submission/wadl/
http://en.wordpress.com/stats/
http://goo.gl/H0FNF
http://goo.gl/eifRJ

Enhancing Web Revisitation

by Contextual Keywords

Tangjian Deng, Liang Zhao, and Ling Feng

Tsinghua National Laboratory for Information Science and Technology
Dept. of Computer Science and Technology, Tsinghua University, Beijing, China
{dtj08,jing-zhao11}@mails.tsinghua.edu.cn, fengling@tsinghua.edu.cn

Abstract. Web revisitation is a common behavior supported by many
web history tools. Taking advantages of access context (like time, loca-
tion, concurrent activity), context-based search of previously accessed
web pages is also being investigated, due to the fact that context un-
der which information is accessed tends to be more easily to remember
than content. To mimic users’ memory recall, we present a way to auto-
matically capture user’s access context from user’s concurrent computer
programs, and manage it in a probabilistic context tree for each accessed
web page in a life cycle. An algorithm for contextual keyword search of
accessed web pages, together with a revisitation feedback mechanism,
are also given. We evaluate the proposed method on synthetic data and
through a 6-week user study. The comparisons of revisit precision and re-
call show our method outperforms the existing contextual search method
YouPivot. In the user study, our method can also work as effectively as
popular methods (like bookmark, browse history) in recall rate (over
90%), while with less average time cost (16.25 seconds) than that (38.66
seconds) of those methods to complete a web revisitation task.

Keywords: Web revisitation, context memory, contextual keyword
search, revisitation feedback.

1 Introduction

Web Revisitation Support. The web is playing a significant role in people’s
daily activities in delivering information to one’s fingertips. Among the common
web behavior, revisitation of previously browsed web pages constitutes an im-
portant web access portion [5,2,21]. According to [17], over 58% of web pages
accessed by 23 users within a 6-week period were revisited ones. The analysis
of a 1-year web search by 114 users also revealed that around 40% of queries
belong to revisitation requests [19]. To support web revisitation, a number of
web history techniques and tools have been developed [14,1,10,22,3].

Bookmark. Manual bookmark of favorite web pages embedded in web browser
is a traditional way to enable users to re-locate the visited pages. Users can also
mark a specific part within a visited web page by the Landmark tool [13]. The
SearchBar [15] allows users to organize their search keywords and clicked pages
under different topics for easy navigation.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 323–337, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

324 T. Deng, L. Zhao, and L. Feng

History Tools. Web browsers maintain users’ accessed URLs according to visit
time (e.g., today, yesterday, last week, etc.). Google Web History1 keeps users’
search keywords and clicked pages, then puts them into different categories like
image, news, normal page, and so on. Users can either navigate or search the
history by keywords from accessed page titles/contents. The Contextual Web
History [22] improves the visual appearance of web browser history by combining
thumbnails of web sites and snippets of contents, assisting users to easily browse
or search the history by time. The dynamic browser toolbar [11] can further
recommend relevant visited pages according to the currently viewed page.

Re:Search Engine. The Re:Search system [18] can support simultaneous find-
ing and re-finding on the web. When a user’s query is similar to a previous query,
Re:Search obtains the current results from an existing search engine, and fetches
relevant previously viewed results from its cache. The newly available results are
then merged with the previously viewed results to create a list that supports
intuitive re-finding and contains new information.

Contextual Search. Access context is also exploited for web revisitation, due
to the fact that context under which information is accessed sometimes is more
easily to remember than content itself [4,20]. [9] developed a YouPivot system,
which allows users to search the context they remember, so that users can see
what was going on under that context. User’s web activities are logged via the
Chrome Extension and sent to YouPivot, which also pulls LastFM and Twitter
data and retrieves calendar data via public ICS files. Also, the user can time-mark
a moment worth remembering, and provide a description on it for contextual
recall in YouPivot. [6,7] also developed a ReFinder system to allow users to
manually annotate such access context as time, location, and concurrent activity
for the visited web pages or local files, with which the users can pose structured
re-find requests to the previously accessed web pages or files.

YouPivot and ReFinder are two closely related work of this study, with the
following differences.

– Instead of prompting users to manually annotate access context as done
by ReFinder, this paper proposes a method to automatically capture the
access context through users’ computer programs running before and after
the access event. Historical access context is managed in probabilistic context
trees, each linked to an accessed web page URL. Later users can revisit
the web pages by contextual keywords. This is different from the ReFinder
system which only supports structured context-based re-search.

– Unlike YouPivot which keeps context persistently, this study considers pro-
gressive evolution of historical access context trees, since along with human
memory fade, the past context for recall will also degrade gradually. Revisi-
tation requests can thus be more realistically interpreted and fast executed.

– To tailor to different users’ revisitation habits, we incorporate a feedback
mechanism during users’ web revisitation to dynamically adjust historical
context memory and relevant result ranking. This is not discussed in either
YouPivot or ReFinder.

1 http://www.google.com/history

Enhancing Web Revisitation by Contextual Keywords 325

Revisit Feedback
Adaptation

Contextual
Keyword Search

Context Memory Management
Context Memory

Construction
Context Memory

Maintenance

contextual keywords
browsed web pages

(time, location, activity)
context

probabilistic context trees linked
to the accessed web page URLs

User

Fig. 1. Our web revisitation framework

Our Work. Fig. 1 outlines the basic idea and framework of our contextual key-
words based web revisitation, consisting of three components: context memory
management, contextual keyword search, and revisit feedback adaptation.

1) Context Memory Management. It captures and represents each access con-
text as a probabilistic context tree, bounded with the corresponding accessed web
page URL. The tree is comprised of contextual keywords, inferred automatically
from user’s running computer programs. The probability assigned to each key-
word node reflects how likely the user will use the keywords for later revisit. The
probabilistic context trees are organized as a context memory, evolving along
with the elapsing time. The keyword nodes are measured by retention strengths,
which will decrease as they age, leading to the circumstance that the contextual
keywords may become from specific to general. Meanwhile, the keyword nodes’
probabilities will decrease gradually due to memory decay.

2) Contextual Keyword Search. Since the mappings between web pages and
probabilistic context trees have been built, we take the contextual keywords as
input, and produce a list of web pages as output. For a contextual keyword
search, we find out all the match trees with non-zero probabilities, where the
trees are ranked based on their probabilities from high to low. Then the visited
web pages linked by the trees are returned straightforwardly.

3) Revisit Feedback Adaptation. From the user’s actions of web revisitation
by contextual keywords, the revisited web pages and the revisit conditions (the
match contexts) are recorded as user’s revisit feedbacks, which are then used to
guide the adjustments on context memory construction and maintenance.

We evaluate our approach by conducting two sets of experiments with syn-
thetic data and through a 6-week user study. In the synthetic data experiment,
we simulate the contextual search method YouPivot and use it as a baseline.
The comparisons of revisit precision and recall show our method outperforms
YouPivot, as our method can adapt to the user’s revisitation habit. In the user
study, the revisit recall rate of our revisit prototype is over 90%. On aver-
age, 16.25 seconds are needed to complete a web revisitation task with our
method and 38.66 seconds with popular methods like bookmark, browse history,
search engines, etc. The experimental results show that our prototype provides a

326 T. Deng, L. Zhao, and L. Feng

complementary effective solution in facilitating user’s web revisitation through
contextual keywords.

The rest of the paper is organized as follows. We address context memory con-
struction and maintenance in Section 2. We present contextual keyword search
in Section 3, and describe revisit feedback adaptation in Section 4. We evaluate
our approach in Section 5 and conclude the paper in Section 6.

2 Context Memory Management

Context memory management component performs two tasks, i.e., construction
of context memory, followed by dynamic maintenance of the context memory.

2.1 Context Memory Construction

Three kinds of user’s access context, i.e., access time, access location, and con-
current activity, are considered in this study. Access time is determinate. Access
location is obtained based on the IP address of user’s computing device or his/her
possible GPS information if available. We infer user’s concurrent activity from
his/her computer programs running before and after the page access as follows.

We continuously monitors the change of the current focus program window
during the user’s interacting with his/her computer. Each focus object held by
the program window can be either a web page or not like a word document, a
friend with whom the user is chatting online, etc. A focus window possesses a
start time, an end time, and a focus time length.

Definition 1. The user’s computer activities is a sequence of focus windows,
denoted as O = 〈O1, O2, . . .〉, where Oi (i ≥ 1) denotes a quadruple (tbegin, tend,
tfocus, object) representing the start time, the end time, the focus time length
and the focus object respectively. For any 1 ≤ i < j,

(1) Oi(tbegin) ≤ Oj(tbegin);
(2) Oi(tfocus) ≤ Length(Oi(tend)−Oi(tbegin));
(3) if Oi(object) = Oj(object), then Length(Oj(tbegin)−Oi(tend)) > τgap.

Table 1. An example of the user’s computer activities

No. Start Time End Time Focus Time (sec) Window Object

1 2012/8/9 10:04:24 2012/8/9 10:09:47 96 MSN - Lily

2 2012/8/9 10:05:38 2012/8/9 10:16:38 128 eBay - jeans

3 2012/8/9 10:06:07 2012/8/9 10:06:20 13 eBay - shoes

4 2012/8/9 10:06:51 2012/8/9 10:13:03 199 eBay - shirt

.

Enhancing Web Revisitation by Contextual Keywords 327

If the objects of any two focus windows are the same and the time gap between
them is less than a threshold τgap (10 minutes), they will be merged together as
one window. Table 1 demonstrates an example of the user’s computer activities.
In this study, if the focus time length of a browsed web page is greater than a
threshold τwf = 30 seconds, we consider it as a to-be-revisited web page. Note
that τwf will adjust based on user’s revisit feedback.

Definition 2. Let wp be a to-be-revisited web page, a time window TW
(wp(tbegin) − Δtb, wp(tend)+Δte), a threshold of focus time length τcf . For every
Oc ∈ O (the sequence of focus windows) overlaps with TW , namely, Oc(tbegin) <
(wp(tend) + Δte) and Oc(tend) > (wp(tbegin) −Δtb), if Oc(tfocus) ≥ τcf , then
Oc is considered as an associated context for wp.

The associated contexts for wp depend on the 3 parameters Δtb, Δte and τcf .
Initially, we set Δtb = Δte = 10 minutes, τcf = 90 seconds. They will adjust to
the user’s revisit feedbacks, and the details are described in Section 4.

Fig. 2. Example of a probabilistic context tree

Consider the uncertain characteristic of user’s memory, the obtained associ-
ated contexts are formulated into a probabilistic context tree. An example of
context tree is shown in Fig. 2. Besides access time and location, each context
extracted from user computer activities forms a leaf node of the context tree.
The edge linking a child node to a parent node in the context tree has a probabil-
ity in [0, 1]. It reflects the likelihood that the child node is used as a contextual
recall cue. For simplicity, all the edges are set as probability 1.0, except the ones
linking the activity leaf nodes and their parent nodes. We use the association
probability between an activity context Oc and the to-be-revisited web page wp

as the probability of the edge linking Oc and its parent node. To compute the
association probability, we consider four features: 1) the focus time length of Oc;
2) the appearing times of Oc; 3) the time distance between Oc and wp; and 4)

the content similarity between Oc and wp, sim(Oc, wp) =
TermCount(Oc∧wp)

TermCount(Oc)
. We

normalize the four values within the same context tree, denoted as f1, f2, f3 and
f4, respectively, where 0 ≤ fi ≤ 1 (i = 1, 2, 3, 4). Taking the four features into
account, the initial association probability pr0 between Oc and wp is computed:

pr0 = (f1 + (1− f2) + (1− f3) + f4)/4 (1)

Intuitively, the longer the focus time length of the context and the more similar
the context to the web page, the larger association probability between them,

328 T. Deng, L. Zhao, and L. Feng

while the appearing times of the context and the time distance between the
context and the web page lead to the opposite case.

2.2 Context Memory Maintenance

Probabilistic context trees in the context memory evolves dynamically in life
cycles to reflect the gradual degradation of human’s context memorization as
well as the contextual keywords that human users will use for recall. For each leaf
node in a probabilistic context tree, both its value and its association probability
will progressively decay with time.

email music online shopping

eBay - jeans eBay - shirt MSN: Lily

online chattingread/write programming

all

busy free

[0, 0.25)

[0.25, 0.5)

[0.5, 0.75)

[0.75, 1)
level 4

level 1

level 2

level 3

Activity Retention Interval

[HR1,HR2)

[HR2,HR3)

[HR3,HR4)

[HR4,HR5)0.7 0.9 0.5

Fig. 3. An abstraction hierarchy of activity context

Taking the actitivity context type for example, we build an n-leveled ab-
straction hierarchy H , where lower-leveled activity values are more precise than
upper-leveled ones, as shown in Fig. 3. The captured “eBay-jeans” activity value
is initially located at the bottom level n. It will climb upwards along H , and
finally disappear when reaching the top level 1. In order to quantitatively mea-
sure such a context value degradation process, we introduce and compute the
retention strength R ∈ [0, 1] of a context value v, based on which we determine
its locating level in the hierarchy. Assume each hierarchical level has a reference
retention interval [HRi, HRi+1) (1 ≤ i ≤ n), which is evenly distributed in [0, 1]
in this study. If v’s retention strength R falls into [HRi, HRi+1), then the con-
text value belongs to level i. According to the psychology studies [16], we define
the retention strength of a context value in its context hierarchy as a function
of the exponential in the square root of time.

For context value v captured and assigned web page association probability
pr0. It initially situates at the bottom level n of its n-leveled context hierarchy
H . Let [HRi, HRi+1) be the retention interval of the i-th hierarchical level in
H . At v’s age t, the retention strength of v is defined as:

R(t) = r0 · e−λ
√
t (2)

where λ is the context memory decay rate, and r0 is the initial retention strength
of v, computed as: r0 = HRn + (HRn+1 − HRn) · pr0 ∈ [HRn, HRn+1).

Enhancing Web Revisitation by Contextual Keywords 329

Intuitively, the larger v’s web page association probability pr0 is, the better the
context value v is remembered. Thus, pr0 affects r0 positively.

Assume after age t01 ∈ [Tmin, Tmax], v will start to degrade from the bottom
level n to its upper level n-1, where

t01 = Tmin + (Tmax − Tmin) · pr0 (3)

and Tmin and Tmax are user-dependent, and initially set to 14 days and 21 days
in this study. The revisitation feedback mechanism will adjust the two settings
based on user’s revisitation requests and result ranking.

Putting HRn and t01 into Equation 2, we get

λ =
1√
t01

ln
r0

HRn
=

1√
Tmin + (Tmax − Tmin) · pr0

ln
r0

HRn
(4)

With r0 and λ, we can compute the retention strengthR(t) of v at age t according
to Equation 2. If it falls in the range of [HRi, HRi+1), then context value v
degraded to the i-th level of H .

In a similar fashion, the web page association probability pr0 of context value
v also evolves along with the elapsing time.

Pr(t) = pr0 · e−λ
√
t (5)

After each degradation computation, the decay rate λ is adjusted to λ =
1√

Tmin+(Tmax−Tmin)·Pr(t)
ln r0

HRn
.

3 Contextual Keyword Search

Given a set of contextual keywords as a user’s revisit requestQ = {k1, k2, . . . , kn},
we evaluate it over the context memory, and returns a ranked list of the match
probabilistic context trees with their linked web pages as the final result. Evalu-
ation of Q proceeds in two steps. Nodes containing contextual keywords are first
identified. Their contribution to the final tree ranking is then computed.

We apply the Dewey encoding scheme to probabilistic context trees based on
[8,23,12]. In our probabilistic context trees, the Dewey number of the root is
actually the tree id. For each node v in a probabilistic context tree, we build
an index according to its keywords. The mapping between the node and its all
probabilities (from the root to it) is also kept, denoted as ϕ : v → PrLink, e.g.,
the node “eBay - jeans” → 〈1.0, 0.7 〉 as shown in Fig. 2. Through scanning
the keyword inverted node lists, the match nodes are identified. The relation-
ship between a node v and its local probabilistic keyword distributions dist
w.r.t. Q is maintained, denoted as μ : v → dist. Assume PNode � {CNode1,
CNode2, . . ., CNodem}, where CNodei is a relevant child node of PNode against
Q, 1 ≤ i ≤ m. The computation of PNode’s keyword distributions is as fol-
lows: for each 1 ≤ i ≤ m, μ : CNodei → dist is promoted by multiplying
Prrev(PNode � CNodei) (the probability of the edge) and the part 0 → μ0 is

330 T. Deng, L. Zhao, and L. Feng

set to 1−Prrev(PNode � CNodei). Then μ : PNode → dist is merged using a
set of bitwise OR operations with μ : CNodei → dist, i.e., multiply μ : PNode
with each part of μ : CNodei and then add the product to the corresponding
part (based on the bitwise OR operation) of μ : PNode.

Since the tree id can be easily got from the Dewey code of a node, based on the
match nodes, we can easily get the match context trees, whose probabilities of
matching the revisit request Q can be computed accordingly. Assume there are
m match nodes v1, ..., vm in a context tree, p be the lowest common ancestor of
the m match nodes. We compute, promote and merge the keyword distributions
of the m match nodes into that of the p node, denoted as S = {v1, ..., vm} → S
= {p}. During the promotion process, especially, for ∀v ∈ S, if �c ∈ S satisfying
that c is a descendent of v, then v can be promoted to its parent vp. The keyword
distributions of vp are created or updated at the same time. Then v is removed
from S, while vp is put into S if vp /∈ S. Let Pr(pathp) be the product of the
probabilities from the root to p, p.μ2n−1 be the distribution (2n − 1) → μ2n−1,
then the probability that the context tree matches Q equals Pr(pathp) ·p.μ2n−1.

Algorithm 1. Context-Based Revisit Algorithm

input:
a revisit request Q = {k1, ..., kn} and a set of probabilistic context trees

output:
a ranked list of context trees R that match request Q

1: load node list L = {Li}, 1 ≤ i ≤ n, ϕ : v → PrLink, determine the match context
trees T = {ct1, ct2, ...} based on L, create and update μ : v → dist;

2: for each ct ∈ T do
3: divide the match nodes of ct into S = {Si}, 1 ≤ i ≤ L, S .num =

∑ |Si|;
4: for i = L; i ≥ 1; −−i do
5: if |Si| = 0 then
6: continue;
7: for each v ∈ Si do
8: if S .num = 1 then
9: ct.prob = ComputeProb(v → dist, v → PrLink);
10: if ct.prob > 0 then
11: insert ct into R according to ct.prob;
12: i = 0; break;
13: let p be the parent of v;
14: if p /∈ Si−1 then
15: create p → PrLink and p → dist, put p into Si−1;
16: else
17: update p → PrLink and p → dist, decrease S .num by 1;
18: remove v from Si;
19: return R;

Example 1. Consider the context tree shown in Fig. 2 w.r.t. a revisit request
{eBay, jeans}. Two match nodes “eBay - jeans” and “eBay - shirt” are got. The

Enhancing Web Revisitation by Contextual Keywords 331

first node with distributions {‘11’→1, ‘10’→0, ‘01’→0, ‘00’→0} and the sec-
ond node with distributions {‘11’→0, ‘10’→1, ‘01’→0, ‘00’→0} need to promote
to their parent node “Activity”, whose distributions is computed as {‘11’→0.7,
‘10’→0.27, ‘01’→0, ‘00’→0.03}. Hence, the probability of the context tree match-
ing the revisit request is 1.0 · 0.7 = 0.7.

The algorithm for finding the match context trees and computing their probabil-
ities is illustrated in Algorithm 1. It scans the keyword inverted node lists once
and determines the elementary match context trees based on the match nodes.
To compute the probability of a match context tree, it firstly divides the match
nodes into different sets based on their hierarchical levels, and then promotes
and merges the nodes one by one starting from the lowest level set. It stops
the promotion process if there remains only one node, which is no other than
the lowest common ancestor of the match nodes. The match context tree will
be inserted into the result list at the right position if its probability w.r.t. the
revisit request is larger than zero.

Complexity Analysis : (1) Time. Identifying the match context trees T (Line
1) takes O(n · |T |). Dividing the match nodes into different sets (Line 3) takes

O(
∑L

i=1 |Si|). Promoting and merging the match nodes (Line 4 - 18) takes

O(L ·
∑L

i=1 |Si|). Thus, the total time cost is O(n · |T |) + O(|T | · L ·
∑L

i=1 |Si|)
= O(|T | · L ·

∑L
i=1 |Si|). Clearly, it depends on the number of match context

trees, the depth of the context tree and the number of the match nodes. (2)
Space. In computing the rankings of the match context trees, we need to store
the match nodes temporally. So the additional space cost is

∑L
i=1 β · |Si| · T ,

where β is the cost for storing a match node, T is the number of match context
trees and |Si| is the number of match nodes in the ith level of a context tree.

4 Revisit Feedback Adaptation

As the outcome of context memory construction and maintenance will directly
impact the actions of the user’s web revisitation by contextual keywords, the
user’s revisit feedbacks should be taken into account in the on-going management
of context memory, so as to provide more suitable contexts for the user to search.

The user’s revisit feedbacks, denoted as F = (WR, CR), are comprised of a set
of true revisit web pages WR and a set of the corresponding revisit conditions
(match contexts) CR, obtained from the user’s revisit actions. Based on F , some
useful information depicting the user’s revisit habit can be got, e.g., the focus
time lengths of the revisited web pages and the match contexts, as well as the
time distance between them, etc. Besides, if the match contexts are at the second
lowest hierarchical level, their current ages are recorded.

For convenient reference, we denote H = (WF , CF , ΔTB, ΔTE , Dτ) as the
parameters characterizing the user’s web revisitation habit, where WF is the
set of the focus time lengths of WR, CF is the set of the focus time lengths of
CR, ΔTB and ΔTE are the sets of the lengths of (WR(tbegin) − CR(tend)) and
(WR(tend)−CR(tbegin)) respectively, and Dτ is the set of ages at which CR decay
from the bottom level to the next upper level.

332 T. Deng, L. Zhao, and L. Feng

Assumption 1. The parameters WF , CF , ΔTB and ΔTE of the user’s revisit
habit satisfy a normal distribution separately, namely, WF ∼ N (μ1, σ

2
1), CF ∼

N (μ2, σ
2
2), ΔTB ∼ N (μ3, σ

2
3), and ΔTE ∼ N (μ4, σ

2
4).

Upon the user’s revisit actions, the mean values and standard deviations
WF (μ1, σ2), CF (μ2, σ2), ΔTB(μ3, σ3), ΔTE(μ4, σ4) and the minimum and max-
imum values Tmin, Tmax of Dτ will be updated accordingly.

Adjustments. The revisit feedback adaptation over context memory manage-
ment refers to the adjustments of several key parameters: (1) τwf = μ1−2σ1; (2)
τcf = μ2 − 2σ2; (3) Δtb = μ3 + 2σ3; (4) Δte = μ4 + 2σ4; (5) Tmin = min{Dτ};
and (6) Tmax = max{Dτ}. The objectives of these adjustments are to capture
the to-be-revisited web pages and the to-be-employed contexts as far as possible,
and to maintain the context memory at more appropriate decay rates.

Reinforcement. Because the recall actions can often refresh the user’s memory,
during the evolution process, certain parts of the context memory are reinforced
due to the user’s revisit actions. Thus, we set the current time as the new born
time of the involving contexts, and reset the decay rate
λ = 1√

Tmin+(Tmax−Tmin)·pr0
ln r0

HRn
based on Equation 4.

5 Evaluation

To evaluate our approach, we implemented a prototype called ReV isit and con-
ducted two sets of experiments: with synthetic data and through a user study.
The two experiments focus on two measurements: 1) revisit result quality (pre-
cision, recall and ranking); and 2) revisit response time. ReV isit is implemented
in C#. The first experiment with synthetic data is conducted on a PC with 2.2
GHz Intel Core 2 Duo CPU, and 2 GB memory on Windows 7 OS.

5.1 Experiment on Synthetic Data

Design: We first build two extra components: 1) data simulator, to simulate
the generation of a user’s computer activities; and 2) user simulator, to simulate
the user’s memory over the generated data and the user’s revisit actions, acts as
a “real user”. Data simulator generates 3-month data comprising of 7 activity
types: email, browsing, programming, read/write, music, online shopping and
online chatting. It separately generate a set of phrases (2 to 5 words) for each
activity type. For a data item, the time span (tend − tbegin) is a random value
from 30 seconds to 15 minutes, the focus time (tfocus) is from 5 seconds to half
of the time span, the activity type is randomly selected and the keywords are
generated from the corresponding set of phrases, where the keywords’ repetition
rate is 3%, and the data type is also set randomly to be web page or not. In
total, 27,824 data items are generated, where the web pages occupy about 57%.

For each generated web page, if tfocus ≥ 30 seconds, it will be stored as a
candidate revisit target by user simulator, which will identify a set of associ-
ated contexts based on its own Δtb = 5 minutes, Δte = 15 minutes, τcf = 60

Enhancing Web Revisitation by Contextual Keywords 333

seconds, Tmin = 10 days and Tmax = 28 days. Every period (7 days), user sim-
ulator will randomly select a part of the the candidate revisit targets as the
true to-be-revisited web pages. For each of them, it chooses 2 keywords from
the corresponding stored contexts with higher association probabilities as a re-
visit request. Then the revisit requests are submitted to ReV isit. Meanwhile,
ReV isit identifies each generated web page, and then build a probabilistic con-
text tree for the possible to-be-revisited one, based on its own Δtb = Δte = 10
minutes, τcf = 90 seconds, Tmin = 14 days and Tmax = 21 days. Every period,
ReV isit processes the revisit requests from user simulator, and then the relevant
parameters are updated according to the revisit feedbacks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

P
re

ci
si

on

Time (week)

Using f1
Using f2
Using f3
Using f1+f2+f3

(a) Average precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

R
ec

al
l

Time (week)

Using f1
Using f2
Using f3
Using f1+f2+f3

(b) Average recall

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12

R
an

ki
ng

 P
os

iti
on

Time (week)

Using f1
Using f2
Using f3
Using f1+f2+f3

(c) Average rank position

Fig. 4. Results on synthetic data using different features in memory construction

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

P
re

ci
si

on

Time (week)

With Adaptation
Without Adaptation

(a) Average precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

R
ec

al
l

Time (week)

With Adaptation
Without Adaptation

(b) Average recall

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12

R
an

ki
ng

 P
os

iti
on

Time (week)

With Adaptation
Without Adaptation

(c) Average rank position

Fig. 5. Results on synthetic data with/without revisit feedback adaptation

Results: The average precision, recall and ranking position of the revisit results
are studied under different settings of context memory management, including
applying various features in computing the association probabilities between
the contexts and the targets, and with or without revisit feedback adaptation.
Clearly, the adopted features will impact the revisit result quality, as demon-
strated in Fig. 4. Note that the influence of the f4 feature is not shown since
the content similarity is very minimal in the synthetic data. Consider the feed-
back adaptation, as ReV isit at first does not grasp the revisit habit of the “real
user” and probably not capture the most associated contexts for later revisit,

334 T. Deng, L. Zhao, and L. Feng

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

P
re

ci
si

on

Time (week)

ReVisit
YouPivot

(a) Average precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

R
ec

al
l

Time (week)

ReVisit
YouPivot

(b) Average recall

 0

 50

 100

 150

 200

 2 4 6 8 10 12

R
es

po
ns

e
T

im
e

(m
s)

Time (week)

ReVisit
YouPivot

(c) Average response time

Fig. 6. Comparison results between ReVisit and YouPivot on synthetic data

the result quality is not so good, shown in Fig. 5. As time goes by, since ReV isit
adapts to the revisit habit, the revisit quality become better, especially that the
recall rate almost keeps at 100%.

We also simulate the contextual search method YouPivot (as we did not get
the source code) and use it as a baseline. Fig. 6 shows the comparisons between
our method and YouPivot on revisit result quality and response time. The ability
of feedback adaptation clearly makes our method to achieve higher precision
and recall than that of YouPivot as time goes by. On the other side, as the
search space (context memory) of our method is smaller than that (all data)
of YouPivot, it takes less time cost for our method than YouPivot to perform
revisit actions. As the generated data is continuously growing, more and more
possible to-be-revisited web pages are recorded, and the context memory size
becomes larger and larger, so it takes more time to do re-finding.

5.2 User Study

Set-Up: A 6-week user study was conducted to investigate the performance of
ReV isit in real case, with 16 participants (8 male and 8 female, aged between
21 and 37), whose computers were installed with ReV isit. During that period,
participants were asked to freely re-find the previously visited web pages with
ReV isit, which kept the re-finding details automatically. For comparison, they
were also asked to re-find the same web pages by popular methods like brows-
ing or searching history list, using search engine, bookmark, etc. and mean-
while record the details in the re-finding process, such as revisit method, input-
keywords, the response time, etc. The user study with ReV isit gathered 864 web
revisitation records in total, 54 records per participant in average.

Results: The participants used time, time + activity, activity as re-finding con-
textual cues at the percentage of 3.97%, 6.29% and 89.74%, respectively. It indi-
cates that users tend to remember activity more often than time. Note that place
was not referred to in the user study, the reason is probably that participants
did the experiment with IP-fixed computers. Fig. 7 shows the result quality of
ReV isit by using different contexts as revisit requests. Since users tend to for-
get time more easily than activity, using time only to revisit works poorer than
the other cases. While activity works quite well as re-finding cues, since richer

Enhancing Web Revisitation by Contextual Keywords 335

 0

 0.2

 0.4

 0.6

 0.8

 1

time time+activity activity

R
ev

is
it

R
es

ul
t Q

ua
lit

y

precision
recall
F-measure

(a) result quality

 0

 2

 4

 6

 8

 10

time time+activity activity

R
es

ul
t R

an
ki

ng
 P

os
iti

on

(b) ranking position

Fig. 7. The result quality of using time, time+activity and activity with ReVisit

information makes it more easily to be remembered and distinguished. For the
ranking positions of the revisited targets, time-only also works poorer than the
other two cases. Participants were more likely to use less than 3 contextual key-
words in a revisit request, where 1-keyword occupies 55.87%, 2-keyword occupies
31.28%, 3-keyword occupies 8.66%, and the remainder is occupied by more than
3 keywords. The result quality of using different number of contextual keywords
with ReV isit is shown in Fig. 8. It is interesting to discover that the precision is
not proportional to keyword number. The reason is that the 4- and 5-keyword
revisit requests often contain time, which can not play well in revisitation.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

R
ev

is
it

R
es

ul
t Q

ua
lit

y

Number of contextual keywords

precision
recall
F-measure

(a) result quality

 0

 2

 4

 6

 8

 10

1 2 3 4 5

R
an

ki
ng

 P
os

iti
on

Number of contextual keywords

(b) ranking position

Fig. 8. The result quality of using different number of keywords with ReVisit

The overall performance comparison between ReV isit and popular methods is
shown in Fig. 9. The precision rate of ReV isit is lower than that of searching his-
tory. It is mainly because ReV isit supports general matching, and participants
tended to revisit by general contextual keywords like music, shopping, chatting
and so on, and thus the result list returned by ReV isit was sometimes longer.
The average time cost for a revisit request shows that ReV isit outperforms the
traditional methods. The reason includes several aspects. The long history list

336 T. Deng, L. Zhao, and L. Feng

 0

 0.2

 0.4

 0.6

 0.8

 1

ReVisit
search history

search engine

R
ev

is
it

R
es

ul
t Q

ua
lit

y

precision
recall
F-measure

(a) result quality

 0

 10

 20

 30

 40

 50

ReVisit
browse history

search history
search engine

others

R
ev

is
it

T
im

e
C

os
t (

s)

(b) time cost

Fig. 9. Performance comparison between ReVisit and popular methods

often required users to spend a bit more time to re-locate the desire targets, and
participants sometimes even gave up browsing when they could not find the tar-
get after several minutes. Searching history needs exact match, and participants
had to try a few more times if they could not remember the keywords very well.
While the query results and their rankings are frequently updated within the
search engine, participants sometimes felt difficult to get the targets.

6 Conclusion

In this work, we propose a method to automatically construct an adaptive and
evolutive context memory based on user’s concurrent computer programs, sup-
porting user’s web revisitation by contextual keywords. Access context is formu-
lated as a probabilistic context tree for each possible to-be-revisited web page.
Context memory evolves as the elapsing time and adjusts according to the user’s
revisit feedbacks. The proposed method is evaluated by an experiment on syn-
thetic data and a 6-week user study. Our experimental results show that it can
adapt to the user’s revisit habit, and contextual keywords based web revisita-
tion offers another simple yet effective solution since it is closer to the way that
human recalls information by context. As future work, we would like to explore
the more appropriate and precise contextual keywords for the user when con-
structing probabilistic context trees, since the contextual keywords contained in
the context trees directly influence the user’s web revisitation action. Also, the
preferable contexts would be explored based on the user’s revisit activities.

Acknowledgments. The work is supported by National Natural Science Foun-
dation of China (60773156, 61073004), Chinese Major State Basic Research
Development 973 Program (2011C B302203-2), Important National Science &
Technology Specific Program (2011ZX0 1042-001-002-2), and research fund of
Tsinghua-Tencent Joint Laboratory for Internet Innovation Technology.

Enhancing Web Revisitation by Contextual Keywords 337

References

1. Abrams, D., Baecker, R., Chignell, M.: Information archiving with bookmarks:
personal webspace construction and organization. In: CHI, pp. 41–48 (1998)

2. Adar, E., Teevan, J., Dumais, S.T.: Large scale analysis of web revisitation pat-
terns. In: CHI, pp. 1197–1206 (2008)

3. Capra, R., Perez-Quinones, M.A.: Using web search engines to find and refind
information. IEEE Computer 38(10), 36–42 (2005)

4. Chen, Y., Jones, G.: Integrating memory context into personal information re-
finding. In: The 2nd Symposium on Future Directions in Info. Access (2008)

5. Cockburn, A., Greenberg, S., Jones, S., Mckenzie, B., Moyle, M.: Improving web
page revisitation: analysis, design and evaluation. IT & Society 1(3), 159–183
(2003)

6. Deng, T., Zhao, L., Feng, L., Xue, W.: Information re-finding by context: a brain
memory inspired approach. In: CIKM, pp. 1553–1558 (2011)

7. Deng, T., Zhao, L., Wang, H., Liu, Q., Feng, L.: Refinder: a context-based infor-
mation re-finding system. IEEE TKDE (August 14, 2012) (preprint)

8. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: ranked keyword
search over xml documents. In: SIGMOD, pp. 16–27 (2003)

9. Hailpern, J., Jitkoff, N., Warr, A., Karahalios, K., Sesek, R., Shkrob, N.: Youpivot:
improving recall with contextual search. In: CHI, pp. 1521–1530 (2011)

10. Jones, W., Bruce, H., Dumais, S.: Keeping found things found on the web. In:
CIKM, pp. 119–126 (2001)

11. Kawase, R., Papadakis, G., Herder, E., Nejdl, W.: Beyond the usual suspects:
context-aware revisitation support. In: ACM Conference on Hypertext and Hyper-
media, pp. 27–36 (2011)

12. Li, J., Liu, C., Zhou, R., Wang, W.: Top-k keyword search over probabilistic xml
data. In: ICDE, pp. 673–684 (2011)

13. MacKay, B., Kellar, M., Watters, C.: An evaluation of landmarks for re-finding
information on the web. In: CHI 2005 Extended Abstracts, pp. 1609–1612 (2005)

14. Mayer, M.: Web history tools and revisitation support: a survey of existing ap-
proaches and directions. Foundations and Trends in HCI 2(3), 173–278 (2009)

15. Morris, D., Morris, M.R., Venolia, G.: Searchbar: a search-centric web history for
task resumption and information re-finding. In: CHI, pp. 1207–1216 (2008)

16. Rubin, D.C., Wenzel, A.E.: One hundred years of forgetting: a quantitative de-
scription of retention. Psychological Review 103(4), 734–760 (1996)

17. Tauscher, L., Greenberg, S.: How people revisit web pages: empirical findings and
implications for the design of history systems. International Journal of Human
Computer Studies 47, 97–137 (1997)

18. Teevan, J.: The re:search engine: simultaneous support for finding and re-finding.
In: UIST, pp. 23–32 (2007)

19. Teevan, J., Adar, E., Jones, R., Potts, M.: Information re-retrieval: repeat queries
in yahoo’s logs. In: SIGIR, pp. 151–158 (2007)

20. Tulving, E.: What is episodic memory? Current Directions in Psychological Sci-
ence 2(3), 67–70 (1993)

21. Tyler, S., Teevan, J.: Large scale query log analysis of re-finding. In: WSDM, pp.
191–200 (2010)

22. Won, S.S., Jin, J., Hong, J.I.: Contextual web history: using visual and contextual
cues to improve web browser history. In: CHI, pp. 1457–1466 (2009)

23. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest lcas in xml
databases. In: SIGMOD, pp. 527–538 (2005)

A Linear and Monotonic Strategy to Keyword

Search over RDF Data

Roberto De Virgilio1, Antonio Maccioni1, and Paolo Cappellari2

1 Università Roma Tre, Rome, Italy
{dvr,maccioni}@dia.uniroma3.it

2 Dublin City University, Dublin, Ireland
pcappellari@computing.dcu.ie

Abstract. Keyword-based search over (semi)structured data is today
considered an essential feature of modern information management sys-
tems and has become an hot topic in database research and development.
Most of the recent approaches to this problem refer to a general scenario
where: (i) the data source is represented as a graph, (ii) answers to
queries are sub-graphs of the source containing keywords from queries,
and (iii) solutions are ranked according to a relevance criteria. In this pa-
per, we illustrate a novel approach to keyword search over semantic data
that combines a solution building algorithm and a ranking technique to
generate the best results in the first answers generated. We show that
our approach is monotonic and has a linear computational complexity,
greatly reducing the complexity of the overall process. Finally, experi-
ments demonstrate that our approach exhibits very good efficiency and
effectiveness, especially with respect to competing approaches.

1 Introduction

The amount of data in the Semantic Web is exponentially increasing due to or-
ganizations that are opening up data in the form of linked data and, on the other
side, to users that are interested in using them. In general, to access (semantic)
data users must know how data is organized (e.g., Web ontologies) and the syn-
tax of a specific query language (e.g., SPARQL). Clearly, this is an obstacle to
information access and retrieval. For this reason Keyword Search (KS) systems
are increasingly capturing the attention of researchers and industry, since they
provide an effective facilitation to non-expert users. Let us consider the example
in Fig. 1. Graph G1 is a sample RDF version of the DBLP dataset (a database
about scientific publications). Vertices in ovals represent entities, such as aut1
and aut2, or concepts, such as Conference and Publication. Vertices in rectangles
are literal values, such as Bernstein and Buneman. Edges describe connections
between vertices. For instance, entity aut1 is a Researcher of name Bernstein.
Typically, given a keyword search query, a generic approach would: i) identify
the vertices of the RDF graph holding the data matching the input keywords,
ii) traverse the edges to discover the connections (i.e. trees or sub-graphs) be-
tween them that build n candidate solutions (with n > k), and iii) rank solutions

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 338–353, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Linear and Monotonic Strategy to Keyword Search over RDF Data 339

Fig. 1. An RDF graph G1 from DBLP

according to a relevance criteria to return the top relevant k. Intrinsically, this
process generates (or computes) more solutions than required (an overset of the
most relevant answers), whereas it would be ideal to generate exactly the best
k. For instance, if one is interested in the top-2 answers for the query Q1 =
{Bernstein, SIGMOD, 2008} over G1 in Fig. 1, then only S1 (i.e. articles of
Bernstein published in SIGMOD 2008) and S2 (i.e. articles of Buneman pub-
lished in SIGMOD 2008) shall be computed. Intuitively, S1 is more relevant than
S2 because it includes more keywords and it should be retrieved as the first an-
swer. Note that ranking functions consider more elaborated criteria to evaluate
the relevance of an answer. It turns out however, that the relevance of answers
is highly dependent on both the construction of candidates and their ranking.
For this reason, the tasks of searching and of ranking are strongly correlated.

In this paper, we present a novel keyword based search technique over RDF
graph-shaped data that builds the best k results in the first k solutions gener-
ated. This technique is inspired by a previous work [4]. The work in [4] builds
top-k solutions in an approximate and sequential way focusing exclusively on the
quality of the results. Differently, in this paper we address efficiency and scalabil-
ity, beyond effectiveness, providing new algorithms to optimize the complexity
of finding the best answers. To validate our approach, we have developed a sys-
tem for keyword-based search over RDF data that implements the techniques
described in this paper. Experiments over widely used benchmarks (Coffman et
al. [3]) shows very good results with respect to other approaches, in terms of
both effectiveness and efficiency. Specifically, we propose two different strategies
for our framework. The first presents a linear computational cost and enables the
search to scale seamlessly with the size of the input. The second, inspired by the
Threshold Algorithm proposed by Fagin et al. [6], guarantees the monotonicity
of the output as we show that the first k solutions generated are indeed the
top-k. Referring the example in Fig. 1 with k = 2, that strategy builds solutions
S1 and S2 in this order.

340 R. De Virgilio, A. Maccioni, and P. Cappellari

The rest of the paper is organized as follows. In Section 2, we introduce some
preliminary issues. In Section 3 we overview the proposed approach to KS, while
in Section 4 we illustrate the approach strategies in more detail. In Section 5, we
discuss related research and in Section 6, we present the experimental results.
Finally, in Section 7, we draw our conclusions and sketch future research.

2 Preliminary Issues

This section states the problem we address and introduces some preliminary
notions and terminology. RDF datasets are naturally represented as labeled di-
rected graphs.

Definition 1 (RDF Data Graph). An RDF data graph is a labeled directed
graph G composed by a tuple G = {V,E,ΣV , ΣE, LG} where V is a set of vertices
and E ⊆ V × V is a set of ordered pairs of vertices, called edges. ΣV and ΣE

are the sets of vertices and edge labels, respectively. The labeling function LG

associates an element of V to an element of ΣV and an element of E to an
element of ΣE.

Intuitively, the problem of KS over RDF is addressed by exploring the dataset
to find sub-graphs holding information relevant to the query. We follow the
traditional Information Retrieval approach to value matching adopted in full-
text search for semantic query expansion. This involves syntactic and semantic
similarities to support an imprecise matching. Since this is not a contribution
of our work, we will not discuss it further. We define a path as the sequence
of vertices and edges from a source to a sink. The sources of a graph are those
nodes with no in-going edges and the sinks are the nodes with no out-going
edges.

Definition 2 (Path). Given a graph G = {V,E,ΣV , ΣE , LG}, a path is a se-
quence pt =lv1 − le1 − lv2 − le2 − . . .− len−1 − lvf where vi ∈ V , ei ∈ E, lvi = LG(vi),
lei = LG(ei), and v1 is a source and vf is a sink.

If a source is not present, a fictitious one can be added. For instance, the graph in
Fig. 1 has two sources: pub1 and pub2. An example of path is pi = pub1-author-

aut1-name-Bernstein. Obviously, at running time we are interested in the paths
relevant to the query, that is, the paths containing at least one vertex matching
a keyword of the query. In particular, as assumed in [12], users enter keywords
corresponding to attribute values, that are necessarily within the sink’s labels.
Under this assumption, we do not search URIs: this is not a limitation because
nodes labeled by URIs are usually linked to literals, which represent verbose
descriptions of such URIs. We index all paths starting from a source and ending
with a sink. In a path, the sequence of edge labels describes the corresponding
structure. To some extent, such a structure describes a schema for the values
on vertices that share the same connection type. While we cannot advocate the
presence of a schema, we can say that such a sequence is a template for the
path. Therefore, given a path p, its template tp results from the path where

A Linear and Monotonic Strategy to Keyword Search over RDF Data 341

each vertex label is replaced with the wildcard #. In the example again using
Fig. 1, the template tp2 associated to p2 is #-author-#-name-#. We say that p2
satisfies tp2 , denoted with p2 ≈ tp2 . Multiple paths that share the same template
can be considered as homogeneous. When two paths pi and pj share a common
node, we say that there is an intersection between pi and pj and we indicate
it with pi ↔ pj . Finally, a solution S to Q over G is a set of paths forming a
connected components, i.e. a directed labeled sub-graph of G where the paths
present pairwise intersections as defined below.

Definition 3 (Solution). A solution S is a set of paths p1, p2, . . . , pn where
∀pa, pb ∈ S there exists a sequence [pa, pw1 , . . . , pwm , pb], with m < n, such that
pwi ∈ S, pa ↔ pw1 , pb ↔ pwm , and ∀i ∈ [1,m-1] : pwi ↔ pwi+1 .

Ranking and Monotonicity. Given the query Q1 over the graph illustrated
in Fig. 1, the solutions are represented by S1 = {p1, p2, p3} and S2 = {p4, p5}.
Intuitively, S1 is more relevant than S2 because it includes more terms from the
input query. To assess the relevance of a solution S for a query Q, a scoring
function score(S,Q) is adopted. It returns a number that is greater when the
solution is more relevant. Then, the ranking is given by ordering the solutions
according to their relevance. We say that a ranking is monotonic if the i-th solu-
tion is more relevant than the i+1-th solution. Consequently, a query answering
process is monotonic if it generates the solutions respecting a monotonic rank-
ing (i.e. the solution of the i-th step is always more relevant than that of the
i+1-th step). In the following sections, we will use the notation score(p,Q) and
score(S,Q) to evaluate the relevance of a path p and of a solution S with respect
to the query Q, respectively. We remark that, unlike all current approaches, we
are independent from the scoring function. In fact, we do not impose a mono-
tonic, aggregative nor an “ad-hoc for the case” scoring function. Without giving
further details, for the running example and for the experiments we used the
scoring function presented in [4].

Problem Definition. Given a labeled directed graph G and a keyword search
based query Q = {q1, q2, . . . , qn}, where each qi is a keyword, we aim at finding
the top-k ranked answers S1, S2, . . . , Sk to Q.

3 Keyword Search over RDF

This section overviews our approach to keyword search over RDF and discusses
the conditions under which the solution generation process exhibits a monotonic
behavior with respect to the score of the solutions.

Overview. Let G be an RDF data graph and Q a KS query over it. Our
approach provides two main phases: the indexing (done off-line), in which all
the paths of G are indexed, and the query processing (done on-the-fly), where
the query evaluation takes place. The first task is described in more detail in [2].
In the second phase, all paths P relevant for Q (i.e. all paths whose sinks match

342 R. De Virgilio, A. Maccioni, and P. Cappellari

cl1[#-year-#] : cl2[#-author-#-name-#] :(
p1 : pub1-year-2008
p4 : pub2-year-2008

) (
p2 : pub1-author-aut1-name-Bernstein

)

cl3[#-acceptedBy-#-name-#] : cl4[#-editedBy-#-name-#] :(
p3 : pub1-acceptedBy-conf1-name-SIGMOD

) (
p5 : pub2-editedBy-conf1-name-SIGMOD

)

Fig. 2. Clustering of paths

at least one keyword of Q) are retrieved in G by exploiting the index and the best
solutions are generated from P . An important feature of this phase is the use of
the scoring function while computing the solutions. This phase is performed by
the following two main tasks:

Clustering. In this task we group the paths of P into clusters cli according to
their template, and we return the set CL of all clusters. As an example, given the
query Q1 and the data graph G1 of Fig. 1, we obtain the clusters shown in Fig. 2.
In this case clusters cl1, cl2, cl3 and cl4 correspond to the different templates
extracted from P . Before the insertion of a path p in the cluster, we evaluate
its score. The paths in a clusters are ordered according to their score with the
greater coming first, i.e. score(p1, Q1) ≥ score(p4, Q1). It is straightforward to
demonstrate that the time complexity of the clustering is O(|P |): we must only
execute |P | insertions into CL at most.

Building. The last task aims at generating the most relevant solutions by com-
bining the paths in the clusters built in the previous step. This is done by
picking and combining the paths with greatest score from each cluster, i.e. the
most promising paths. Note that by building solutions with paths from different
clusters we diversify the solution content since we do not include homogeneous
data, i.e. from the same cluster. The combination of paths is led by a strategy
that decides whether a path has to be inserted in a final solution or not. In
particular, two different strategies are exploited as follows.

1. Linear strategy: guarantees a linear time complexity with respect to the size
of the input. Basically, the final solutions are the connected components of
the most relevant paths of the clusters.

2. Monotonic strategy: generates the solutions in order according to their rele-
vance in a quadratic time complexity with respect to the size of the input.
As the linear strategy, it computes the connected components from the most
relevant paths in the clusters. Unlike the previous strategy, the path inter-
connection is not the only criterion to form a solution. At this point every
connected components is locally analyzed to check if it fulfills the mono-
tonicity, i.e. we check if the solution we are generating is the optimum. This
check is supported by the so called τ -test, which is explained in the next
Section 3. Furthermore, we derived a variant of this strategy that, reducing
a bit the quality of the results, is able to optimize the analysis guaranteeing
the execution in linear time w.r.t. the size of the input.

A Linear and Monotonic Strategy to Keyword Search over RDF Data 343

Monotonic Generation. Monotonicity when building the result set represents
a significant challenge in keyword search systems. This means returning the
optimum solution at each generation step instead of enduring the processing
of blocks of candidate solutions and then selecting the optimum. The second
strategy relies on the Theorem 1 to guarantee the monotonicity of the building.
It requires to verify the two following properties, i.e. Property 1 and Property 2,
on the scoring function. Our strategy is independent from such implementation:
it works with any scoring function as long as it satisfies the properties below.
Furthermore, the two properties are very general and in fact, they are fulfilled
by the most common IR based functions. It is possible to prove that the pivoted
normalization weighting method (SIM) [11], which inspired most of the IR scoring
functions, satisfy Properties 1 and 2. For the sake of simplicity, we discuss the
properties by referring to the data structures used in this paper.

Property 1. Given a query Q and a path p, score(p,Q) = score({p}, Q).

This property states that the score of a path p is equal to the score of the
solution S containing only that same path (i.e. {p}). It means that every path
must be evaluated as the solution containing exactly that path. Consequently we
have that, if score(p1, Q) > score(p2, Q) then score({p1}, Q) > score({p2}, Q).
Analogously, extending Property 1 we provide the following.

Property 2. Given a query Q, a set of paths P in which pβ is the more relevant
path (i.e. ∀pj ∈ P we have that score(pβ , Q) � score(pj , Q)) and P ∗ is its power
set, we have score(S = Pi, Q) ≤ score(S = {pβ}, Q) ∀Pi ⊆ P ∗.

In other words, given the set P containing the candidate paths to be included in
the solution, the scores of all possible solutions generated from P (i.e. P ∗) are
bounded by the score of the most relevant path pβ of P . This property is coherent
and generalizes the Threshold Algorithm (TA) [6]. Contrarily to TA, we do not
use an aggregative function, nor we assume the aggregation to be monotone. TA
introduces a mechanism to optimize the number of steps n to compute the best
k objects (where it could be n > k), while our framework produces k optima
solutions in k steps. To verify the monotonicity we apply a so-called τ -test to
determine which paths of a connected component cc should be inserted into an
optimum solution optS ⊂ cc. The τ -test is supported by Theorem 1. Firstly,
we have to take into consideration the paths that can be used to form more
solutions in the next iterations of the process. In our framework they are still
within the set of clusters CL. Then, let us consider the path ps with the highest
score in CL and the path py with the highest score in cc� optS. Then we define
the threshold τ as τ = max{score(ps, Q), score(py, Q)}. The threshold τ can be
considered as the upper bound score for the potential solutions to generate in
the next iterations of the algorithm. Now, we provide the following:

Theorem 1. Given a query Q, a scoring function satisfying Property 1 and
Property 2, a connected component cc, a subset optS ⊂ cc representing an
optimum solution and a candidate path px ∈ cc� optS, S = optS ∪ {px} is still
optimum iff score(S,Q) ≥ τ.

344 R. De Virgilio, A. Maccioni, and P. Cappellari

Necessary condition. Let us assume that S = optS ∪ {px} is an optimum
solution. We must verify if the score of this solution is still greater than τ .
Reminding to the definition of τ , we can have two cases:

– τ = score(ps, Q) > score(py , Q).
In this case score(ps, Q) represents the upper bound for the scoring
of the possible solutions to generate in the next steps. Recalling the
Property 1, we have score(ps, Q) = score(S′ = {ps}, Q). Referring to
the Property 2, the possible solutions to generate will present a score
less than score(S′ = {ps}, Q): S = optS ∪ {px} is optimum. Therefore,
score(S = optS ∪ {px}) ≥ τ .

– τ = score(py, Q) > score(ps, Q).
In a similar way, score(S = optS ∪ {px}, Q) ≥ τ .

Sufficient condition. Let us consider score(S = optS ∪ {px}, Q) ≥ τ . We
must verify if S = optS∪{px} is an optimum solution. From the assumption,
score(S = optS∪{px}, Q) is greater than both score(ps, Q) and score(py , Q).
Recalling again the properties of the scoring function, the possible solutions
to generate will present a score less than both score(S′ = {ps}, Q) and
score(S′ = {py}, Q). Therefore, S = optS ∪ {px} is an optimum solution. ��

4 Building Strategies

Given the query Q and the set P of paths matching the query Q, we compose
those paths to generate the top-k solutions. As said in the previous section, we
organize such paths into clusters. In the following we discusses two strategies to
compose the paths organized in the set CL of clusters.

4.1 The Linear Strategy

Given the set of clusters CL, the building of solutions is performed by generating
the connected components cc from the most promising paths in CL as shown in
Algorithm 1.

Algorithm 1. Building solutions in linear time
Input : The map CL, a number k.
Output: A list S of k solutions.

S ← ∅;1
while |S| < k and CL is not empty do2

first cl ← ∅;3
cc ← ∅;4
foreach cl ∈ CL do5

first cl ← first cl ∪ cl.DequeueTop() ;6

cc ← FindCC(first cl);7
s ← ∅;8
foreach cc ∈ cc do9

s.Enqueue(cc);10

S.InsertAll(s.DequeueTop(k-|S |)) ;11

return S;12

A Linear and Monotonic Strategy to Keyword Search over RDF Data 345

The algorithm iterates k times at most to produce the best k solutions
(i.e. a list S). At each iteration, we initialize a set first cl with the best
paths from each cluster, that is the paths with the highest score (lines [3-
6]). DequeueTop retrieves the top paths from cl, i.e. all paths having the same
(top) score. Referring again to the example of Fig. 1, in the first iteration we
have first cl = {p1, p2, p3, p5}. Out of first cl we compute the connected
components cc (line [7]), each of which represents a solution. For the example,
{p1, p2, p3, p5} represents a single connected component cc1. At the second it-
eration, we have first cl = {p4} and thus, cc2 = {p4}. Then, all generated
connected components are included into a priority queue s, in order with re-
spect to the score. Finally, through a variant of DequeueTop, we insert the top n
elements (i.e. n = k -|S|) of s into S (line [11]). The execution concludes when
k solutions are produced (i.e |S| < k) or CL becomes empty.

Computational Complexity. Algorithm 1 produces the best-k solutions in
linear time with respect to the number I of paths matching the input query Q:
it is in O(k×I) ∈ O(I). In the worst case, the algorithm iterates k times. The
execution in lines [4-5] is O(|(CL)|) ∈ O(I). Then we have to execute FindCC that
is O(I) since each path knows which are the other intersecting paths. Finally,
both the executions in lines [9-11] and line [12] are in O(I) (i.e. at most we have
to make I insertions). Therefore, the entire sequence of operations in Algorithm 1
is in O(k×I) ∈ O(I).

Ranking. Observing the solutions of the running example, S1 contains the un-
necessary p5, while S2 is partially incomplete (i.e. it should include p5). Such
strategy tends to produce solutions exhaustive but not optimally specific, that
is to include all relevant information matching the query but not optimally lim-
iting the irrelevant ones. Moreover the solution generated at each step may
not be the optimum solution, i.e. the strategy is not monotonic. In fact, it
may happen a generation of a sequence of two solutions Si and Si+1 where
score(Si+1, Q) > score(Si, Q). The next section discusses the conditions under
which the solution generation process exhibits a monotonic behavior with respect
to the score of the solutions.

4.2 The Monotonic Strategy

To generate the top-k solutions guaranteeing monotonicity, differently from Al-
gorithm 1, the building algorithm (Algorithm 2) introduces an exploration pro-
cedure to analyze the connected components of the most relevant paths (line [9]).

The function MonotonicityExploration (Algorithm 3) finds the best solu-
tions CCOpt in cc by launching the analysis over each connected component cc.

Monotonicity Analysis. Algorithm 4 checks if the solution we are generating
is (still) optimum, thus, preserves the monotonicity. It is a recursive func-
tion that generates the set OptSols of all solutions (candidate to be optimum) by

346 R. De Virgilio, A. Maccioni, and P. Cappellari

Algorithm 2. Monotonic Building of top-k solutions
Input : A list CL of clusters, a number k.
Output: A List S of k solutions.

while |S| < k do1
first cl ← ∅;2
cc ← ∅;3
foreach cl ∈ CL do4

first cl ← first cl ∪ cl.DequeueTop() ;5

cc ← FindCC(first cl);6
if CL is not empty then7

ps ← getTopPath(CL);8
BSols ← MonotonicityExploration(cc, CL, ps);9
S.InsertAll(BSols) ;10

else11
foreach cc ∈ cc do12

sol ← newSolution(cc);13
ccSols.Enqueue(sol);14

S.InsertAll(ccSols.DequeueTop(k-|S |)) ;15

return S;16

Algorithm 3. Monotonicity Exploration
Input : A set cc of connected components, a list CL of clusters, a path ps.
Output: A list of solutions BSols.

CCOpt ← ∅;1
foreach cc ∈ cc do2

CCOpt.Enqueue(MonotonicityAnalysis(cc, ∅, ps));3

BSols.InsertAll(CCOpt.DequeueTop());4
InsertPathsInClusters(CCOpt, CL);5
return BSols ;6

combining the paths in a connected component cc. At the end it returns a solu-
tion optS given by the maximal and optimum subset of paths in cc. It takes as
input the connected component cc, the current optimum solution optS and the
top path ps contained in CL.

If cc is empty, we return optS as it is (lines [1-2]). Otherwise, we analyse all
paths px ∈ cc that present an intersection with a path pi of optS (px ↔ pi). If
there is not any intersection then optS is the final optimum solution (lines [6-7]).
Otherwise, for each px, we calculate τ (line [9]), through the function getTau,
and then execute the τ -test on each new solution optS’, that is optS∪ {px}. If
optS’ satisfies the τ -test (line [11]), then it represents the new optimum solution:
we insert it into OptSols and we invoke the recursion on optS’ (line [12]). Oth-
erwise, we keep optS as optimum solution and skip px (line [14]). At the finish,
we want the optimal solution that is not a subset of any other. This is done by se-
lecting the best and maximal solution optS from OptSols by using TakeMaximal
(line [15]). Let us consider our running example. As with the linear strategy, in
the first iteration of the algorithm we start from first cl = {p1, p2, p3, p5}. By
using the scoring function in [4], the paths of first cl have scores 2.05, 1.63,
1.6 and 1.49 respectively. Now the exploration considers all possible combina-
tions of these paths to find the optimum solution(s). Therefore, at the beginning

A Linear and Monotonic Strategy to Keyword Search over RDF Data 347

Algorithm 4. Monotonicity Analysis
Input : A set of paths cc, a solution optS, a path ps.
Output: The new (in case) optimum solution optS.

if cc is empty then1
return optS;2

else3
OptSols ← ∅;4
foreach px ∈ cc do5

if (�pi ∈ optS : px ↔ pi) and optS is not empty then6
OptSols ← OptSols ∪ optS ;7

else8
optS’ ← optS ∪ {px};9
τ ← getTau(cc - {px }, ps);10
if score(optS’, Q) ≥ τ then11

OptSols ← OptSols ∪ MonotonicityAnalysis(cc - {px }, optS’, ps);12

else13
OptSols ← OptSols ∪ optS ;14

optS ← TakeMaximal(OptSols) ;15
return optS;16

we have optS = {p1}, since p1 has the highest score, and ps is p4. The value
of τ is 1.86. The algorithm will then retrieve the following admissible optima
solutions: S′

1 = {p1, p2, p3}, S′
2 = {p1, p3}, and S′

3 = {p1, p2, p5}. These solu-
tions are admissible because they satisfy the τ -test and corresponding paths
present pairwise intersections. During computation, the analysis skips solutions
S′
4 = {p1, p2, p3, p5} and S′

5 = {p1, p3, p5} because they do not satisfy the τ -test:
the scores of S′

4 and S′
5 are 1.55 and 1.26 respectively, as they are both less than

τ . Finally, the function TakeMaximal will select S′
1 as the final first optimum

solution S1 since it has more paths and the highest score. Following a similar
process, at the second round, the algorithm will return S2 = {p4, p5} with a
lesser score than S1.

Computational Complexity. Although this analysis achieves our goal, the
computational complexity of the result generation process is in O(I2). As for
Algorithm 1, in the worst case the computation iterates k times. In lines [2-6]
we follow the same strategy as with Algorithm 1. Therefore, the executions
in lines [4-5] and line [6] are in O(|CL|) ∈ O(I) and O(I) respectively. Then
we have a conditional instruction: if the condition is true, we execute the
monotonicity exploration (lines [8-10]), otherwise we consider each connected
component cc ∈ cc as a solution to insert into S (lines [12-15]). As in Al-
gorithm 1, the execution in lines [12-15] is in O(I). In lines [8-10] we call
the function MonotonicityExploration, that executes the analysis of mono-
tonicity at most I times. This analysis is performed by the recursive function
MonotonicityAnalysis: in Algorithm 4 the main executions are in lines [9-
12] and line [15]. In both the execution is in O(I), since we have I elements
to analyze at the most. Since in Algorithm 3 both the operations in line [4] and in

348 R. De Virgilio, A. Maccioni, and P. Cappellari

line [5] are in O(I), the complexity of the monotonicity exploration is O(I2).
Therefore we conclude that the monotonic strategy is in O(I2).

Linear Monotonic Strategy. To reduce the complexity of the mono-
tonic strategy, we provide a variant of the monotonicity analysis (i.e.
LinearMonotonicityAnalysis) that reaches a linear time complexity of the
overall process. Without showing the pseudo-code, we can say that this strat-
egy directly selects the best path px in cc having an intersection with a path
of optS. It stops the recursion as soon as the best path does not have in-
tersection with a path in optS. In the worst case optS is the initial cc.
LinearMonotonicityAnalysis recurses I times and each execution is O(1),
therefore the whole strategy is in O(I). Nevertheless, with respect to the build-
ing using Algorithm 4, we can generate more specific solutions and (possibly)
less exhaustive, since we compose each solution starting from the most relevant
path (i.e. we favor keywords that are more closely connected in graph terms).

Correctness, Complexity and Quality of Results. Our discussion is sup-
ported by three measures proposed recently [10]: exhaustivity (EX), specificity
(SP) and overlap. Exhaustivity measures the relevance of a solution in terms
of the number of contained keywords. Specificity measures the precision of a
solution in terms of the number of contained keywords with respect to other
irrelevant occurring terms. Overlap measures the redundancy of the information
content among the solutions. Clearly, the ideal ranking process balances ex-
haustivity and specificity while reducing overlap. The linear strategy focuses on
maximizing the number of keywords in a solution, and consequently the num-
ber of paths, privileging EX to the detriment of SP . On the other hand, the
monotonic strategy tries to balance the number of keywords and the number
of paths (i.e. maximizing the former and minimizing the latter); therefore EX
and SP are perfectly balanced. The linear variant of the monotonic strategy is
quite similar, but it privileges SP to the detriment of EX , focusing only on min-
imizing the number of paths. Finally, all strategies do not generate overlapping
solutions since ∀cli, clj ∈ CL, with i �= j, we have that cli ∩ clj = ∅. It means
that a path cannot belong to more than one cluster and moreover, we combine
paths from different clusters that gather a different kind of information content.
As we will demonstrate experimentally in Section 6, state-of-the-art approaches
mainly focus on finding the most exhaustive solutions at the cost of a high level
of overlapping. In terms of precision and recall, other approaches tend to priv-
ilege the recall (finding the best matches with the query) to the detriment of
the precision (i.e. introducing a large number of irrelevant matches, that is noise
in the result set). Demonstrating the correctness of our approach is straightfor-
ward. First of all, our algorithm always terminates. Indeed, (i) the clustering
groups a finite set of paths (at most all the data graph G), (ii) the building
strategies implement recursive functions to traverse finite sets of paths (clusters
or connected components). They also employ sets of visited paths to avoid loops
on the analysis. Second, our framework returns a match S in G for Q: all paths
in S are paths in G that match at least a keyword of Q. Finally, if there exists

A Linear and Monotonic Strategy to Keyword Search over RDF Data 349

a match S in G over Q, our framework is able to discover S. In fact, if there
exists S for Q over G, then there exists a set of paths in S matching Q. Since
our framework indexes all paths in G, we retrieve with Q those paths. If S is
also a top-k solution, then we generate it.

5 Related Work

The most prominent work in the area of keyword search concerns the relational
databases. Here, answers are usually trees composed of joined tuples, so-called
joined tuples trees (JTTs). They can be classified in schema-based or schema-free
approaches (see [13] for survey). Schema-based approaches (e.g., [8]) implement
a middleware layer that makes use of schema information in order to interpret
the query and produce a (possible large) number of relational queries. This inter-
pretation is an NP-complete problem [8] and all the SQL statements produced
must be executed but some (could) return empty results, leading to inefficiency,
which is likely to worsen with the size of the dataset. Schema-free approaches
(e.g., [1,9,7]) are more general as they search, on arbitrary graph-shaped data,
the (minimal) Steiner trees. In all of these approaches a relevant drawback is
that finding a (minimal) Steiner tree is known as an NP-Hard problem. Therefore
the algorithms rely on (rather) complex sub-routines or heuristics to calculate
approximations of Steiner trees. In the best case, such proposals have polynomial
complexity in time. The relational approaches are not suitable to work well on
RDF data and therefore new approaches have been proposed [12,14,5]. The work
in [12] proposes a semi-automatic system to interpret the query into a set of can-
didate conjunctive queries. Users can refine the search by selecting the computed
candidate queries that best represent information need. Candidate queries are
computed exploring the top-k sub-graphs matching the keywords. The approach
in [14] relies on a RDFS domain knowledge to convert keywords in query-guides
that help users to incrementally build the desired semantic query. While unnec-
essary queries are not built (thus not executed), there is a strict dependency
on user feedback. The work in [5] employs a ranking model based on IR and
statistical methods.

6 Experimental Results

We implemented our approach in Yaanii, a Java system for keyword search
over RDF graphs. In our experiments, we used the benchmark provided by Coff-
man et al. [3] which provides a standardized evaluation using three datasets
of different size and complexity. It employs two well-know datasets, IMDb and
Wikipedia, and an ideal contrast due to its smaller size, Mondial. We used the
RDF versions of all three datasets: the Linked IMDb and Wikipedia3, while for
Mondial we converted the SQL dump into RDF ourselves. For each dataset, we
run the set of 50 queries provided in [3] (see the paper for details and statistics).
Experiments were conducted on a dual core 2.66GHz Intel Xeon, running Linux
RedHat, with 4 GB of memory, 6 MB cache, and a 2-disk 1Tbyte striped RAID
array, and we used Oracle 11g v2 to manage our index, as described in [2].

350 R. De Virgilio, A. Maccioni, and P. Cappellari

Fig. 3. Response Times on IMDb and Wikipedia

Performance and Scalability. For query execution evaluation, we compared
the different strategies of our system (i.e. linear L, monotonic M and the vari-
ant linear/monotonic LM), with the most related approaches: SearchWebDB
(SWDB) [12], EASE (EASE) [9], and the best performing techniques based
on graph indexing, i.e. 1000 BFS and 300 BFS that are two configurations of
Blinks [7]. For each dataset, we grouped the queries into five sets (i.e. ten
queries per set): each set is homogeneous with respect to the complexity of the
queries (e.g., number of keywords, number of results and so on). For each set, we
ran the queries ten times and measured the average response time. The total re-
sponse time of each query is the time required for computing the top-10 answers.
We performed cold-cache experiments: we cleared all caches before restarting the
various systems and running the queries. The query response times are shown
in Fig. 3 (in ms and logarithmic scale). Due to space constraints, we report
times only on IMDb and Wikipedia, since their much larger size poses more
challenges. However the performance on Mondial follows a similar trend. In
general EASE and SWDB are comparable with Blinks. Our system performs
consistently better (in any strategy) for most of the queries, significantly outper-
forming the others in some cases (e.g., sets Q21-Q30 or Q31-Q40). This is due
to the greatly reduced (time) complexity of the overall process with respect to
those that spend a lot of time traversing the graph and computing candidates to
be (possible) solutions. An evaluation of the scalability of our system is reported
in Fig. 4.(a). In particular, we report the scalability of Yaanii on IMDb. Our
system provides a similar behavior on Wikipedia. The figure shows the scalabil-
ity with respect to the size of the input, that is the number I of paths. Moreover
we enriched such experiment by introducing also scalability with respect to the
the average size of the query (i.e. |Q|), that is the number of keywords, as shown
in Fig. 4.(b). In particular we evaluate the impact of the number of keywords

A Linear and Monotonic Strategy to Keyword Search over RDF Data 351

M

(a) (b)

Fig. 4. (a) Scalability w.r.t. #paths on IMDb and (b) w.r.t. the size of Q

to find the top-k (i.e. k ∈ {10, 15, 20, 25}) solutions. Also in this case the time
grows linearly. The impact of query length is relevant with a higher k.

Effectiveness. We have also evaluated the effectiveness of results. The first
measure we used is the reciprocal rank (RR). For a query, RR is the ratio be-
tween 1 and the rank at which the first correct answer is returned; or 0 if no
correct answer is returned. Fig. 5.(a) shows the mean reciprocal rank of the
queries for each system in any dataset. Due to the small size, all systems show
comparable performance on the Mondial dataset. Conversely, we have different
results using IMDb and Wikipedia. As expected, Blinks and Ease performs
poorly on this task since they implement a proximity search strategy where
the ranking is unable to distinguish solutions containing a single node. SWDB
performs well in average because it exploits an IR ranking strategy: usually IR-
style search systems prefer larger results supporting the disambiguation of search
terms. Our linear strategy L is comparable with SWDB. This strategy confirms
the problems discussed in Section 3: L favors exhaustive solutions introducing
noise in the final results (i.e. unnecessary information). On the other hand, the
monotonic strategy M significantly outperforms all others: this strategy is able
to return the best result for first (i.e. RR = 1) for all cases. In other words,
it demonstrates how much M balances solutions between being exhaustive and
specific. The linear/monotonic strategy LM shows a similar trend too. We then
measured the interpolation between precision and recall to find the top-10 solu-
tions, for each strategy on the queries on all datasets, that is for each standard
level rj of recall (i.e. 0.1, . . ., 1.0) we calculate the average max precision of
queries in [rj , rj+1], i.e. P (rj) = maxrj≤r≤rj+1P (r). We repeated this procedure
for each strategy. Similarly we calculate the top-10 interpolated precision curve
averaged over the systems: Fig. 5.(b) shows the results. As expected, the pre-
cision of the other systems decreases dramatically for large values of recall. On
the contrary our strategies keeps values within the range [0.6,0.9]. In particular,
the monotonic strategy M presents the highest quality (i.e. a precision in the
range [0.8,1]). LM and L also present good quality in results.

352 R. De Virgilio, A. Maccioni, and P. Cappellari

(a)

M O ers

(b)

Fig. 5. (a) RR measures for all frameworks and (b) Effectiveness of Yaanii

7 Conclusions and Future Work

In this paper, we presented a novel approach to keyword search query over
large RDF datasets, by providing two strategies for top-k query answering. The
linear strategy enables the search to scale seamlessly with the size of the input,
while the monotonic strategy guarantees the monotonicity of the output. In the
worst case, the two strategies present a linear and a quadratic computational
cost respectively, whereas other approaches show these results as lower bounds
(i.e. best or average cases). Furthermore, we described a variant of the second
strategy that reaches both monotonicity and linear complexity. Experimental
results confirmed our algorithms and the advantage over other approaches.

This work now opens several directions of further research. From a theoretical
point of view, we are investigating algorithms to keyword search over distributed
environments, retaining the results achieved in this paper. From a practical point
of view, we are widening a more synthetic catalogue to index information (e.g.,
NoSQL technology), optimization techniques to speed-up the index creation and
update (mainly DBMS independent) and compression mechanisms.

References

1. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using banks. In: ICDE, pp. 431–440 (2002)

2. Cappellari, P., De Virgilio, R., Maccioni, A., Roantree, M.: A path-oriented rdf in-
dex for keyword search query processing. In: Hameurlain, A., Liddle, S.W., Schewe,
K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 366–380. Springer,
Heidelberg (2011)

3. Coffman, J., Weaver, A.: An empirical performance evaluation of relational key-
word search techniques. TKDE 99 1 (2012) (preprints)

4. De Virgilio, R., Cappellari, P., Miscione, M.: Cluster-based exploration for effective
keyword search over semantic datasets. In: Laender, A.H.F., Castano, S., Dayal,
U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 205–218.
Springer, Heidelberg (2009)

5. Elbassuoni, S., Blanco, R.: Keyword search over rdf graphs. In: CIKM, pp. 237–242
(2011)

A Linear and Monotonic Strategy to Keyword Search over RDF Data 353

6. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS, pp. 102–113 (2001)

7. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs.
In: SIGMOD (2007)

8. Hristidis, V., Papakonstantinou, Y.: Discover: Keyword search in relational
databases. In: VLDB, pp. 670–681 (2002)

9. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective 3-in-1 keyword
search method for unstructured, semi-structured and structured data. In: SIGMOD
(2008)

10. Piwowarski, B., Dupret, G.: Evaluation in (xml) information retrieval: expected
precision-recall with user modelling (eprum). In: SIGIR, pp. 260–267 (2006)

11. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In:
SIGIR, pp. 21–29 (1996)

12. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-
didates for efficient keyword search on graph-shaped (rdf) data. In: ICDE, pp.
405–416 (2009)

13. Yu, J.X., Qin, L., Chang, L.: Keyword Search in Relational Databases: A Survey.
Data(base) Engineering Bulletin 33(1), 67–78 (2010)

14. Zenz, G., Zhou, X., Minack, E., Siberski, W., Nejdl, W.: From keywords to semantic
queries - incremental query construction on the semantic web. Journal of Web
Semantics 7(3), 166–176 (2009)

Identifying Candidate Datasets

for Data Interlinking

Luiz André P. Paes Leme1, Giseli Rabello Lopes2, Bernardo Pereira Nunes2,3,
Marco Antonio Casanova2, and Stefan Dietze3

1 Computer Science Institute, Fluminense Federal University,
Niterói/RJ – Brazil, CEP 24210-240

lapaesleme@ic.uff.br
2 Department of Informatics, Pontifical Catholic University of Rio de Janeiro,

Rio de Janeiro/RJ – Brazil, CEP 22451-900
{grlopes,bnunes,casanova}@inf.puc-rio.br

3 L3S Research Center, Leibniz University Hannover, Appelstr. 9a, 30167 Hannover,
Germany

{nunes,dietze}@l3s.de

Abstract. One of the design principles that can stimulate the growth
and increase the usefulness of the Web of data is URIs linkage. However,
the related URIs are typically in different datasets managed by different
publishers. Hence, the designer of a new dataset must be aware of the
existing datasets and inspect their content to define sameAs links. This
paper proposes a technique based on probabilistic classifiers that, given
a datasets S to be published and a set T of known published datasets,
ranks each Ti ∈ T according to the probability that links between S and
Ti can be found by inspecting the most relevant datasets. Results from
our technique show that the search space can be reduced up to 85%,
thereby greatly decreasing the computational effort.

Keywords: Linked Data, datasets recommendation, Bayesian classifier,
data interlinking.

1 Introduction

Over the past years there has been a considerable movement toward publishing
data on the Web following the Linked Data principles [1]. This huge effort has
resulted in the creation of catalogs of Linked Data datasets, such as the Data
Hub1, to mainly make data findable and reusable. However, despite the fact that
extensive list of open datasets are available in these catalogs, most of the data
publishers still connects their datasets to other popular datasets, such as DB-
pedia2, Freebase 3 and Geonames4. Although the linkage with popular datasets

1 http://datahub.io/
2 http://dbpedia.org/
3 http://www.freebase.com/
4 http://www.geonames.org/

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 354–366, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://datahub.io/
http://dbpedia.org/
http://www.freebase.com/
http://www.geonames.org/

Identifying Candidate Datasets for Data Interlinking 355

would allow us to explore external resources, it would fail to cover highly spe-
cialized information. Basically, as described in [2], linkage with popular datasets
is favoured because of two main reasons: (i) the difficulty in finding related open
datasets; and (ii) the strenuous task of discovering instance mappings between
different datasets.

Catalogues of linked data describe the content of datasets in terms of the
update periodicity, authors, SPARQL endpoints, linksets with other datasets,
amongst others, as recommended by W3C Void Vocabulary [3]. However, cata-
logues by themselves do not provide any explicit information to help the URI
linkage process. Therefore, due to the lack of information or of an heuristic for
selecting datasets, the search for links should be done almost by an exhaus-
tive search of all datasets in the catalogues, which is rather unfeasible. On the
other hand, catalogues may provide data for algorithms which would reduce the
number of datasets to inspect.

This paper proposes a probabilistic classifier based on Bayesian theory that,
given a dataset S to be published and a set T of known published datasets,
ranks each Ti ∈ T according to the probability that it will be possible to define
links between URIs of S and Ti, so that most of the links, if not all, could be
found by inspecting the most relevant datasets in the ranking. We refer to this
technique as dataset recommendation.

The rest of the paper is organized as follows. Section 2 presents the most
relevant related work in the area. Section 3 introduces our proposed technique
based on probabilistic classifiers. Section 4 presents the experiments that we have
conducted to test our technique. Section 5 presents some performance analysis.
Finally, section 6 presents conclusions and future work.

2 Related Work

The recommendation for the interlinking of datasets in the Linked Data domain
is a research area still initial but in expansion. Many recommendation systems
have been studied and published, nevertheless most of them have been applied
to e-commerce [4], social networks [5], professional jobs [6], amongst others, but
they rarely have been applied to linked data recommendation. There are few
approaches developed specifically for this purpose. The most related works are
described in this section.

In general, the approaches to construct recommendation systems can be clas-
sified according to the filtering technique, as collaborative, content-based and
hybrid [7, 8]. The first approach collect evidences for recommendation from sim-
ilar behavior, for instance, if a group of users are interested in buying science
fiction books, then recommend buying science fiction books for every one similar
to them. The content-based approach is based on the preferences of users, for
example, if a user has a collection of classical songs, then songs of the same genre
are suggested. The hybrid approach combine the previous two to take advantage
of their benefits.

356 L.A.P.P. Leme et al.

In Open Innovation (OI) scenarios, where companies outsource tasks to a
network of collaborators, Damljanovic et al. [9] present a Linked Data-based
concept recommendation method for topic discovery that is used to match inno-
vation problems and experts. Their approach exploits reference datasets to find
direct or laterally related data from the user and problem descriptions. Although
they tackle the problem of recommending experts to open innovation problems,
their work is similar to ours since we focus on recommending the most relevant
datasets to a data publisher.

Nikolov et al. [10, 2] propose an approach to identify relevant datasets for
data linking. Their approach has two main steps: (i) searching for potential rel-
evant entities in other datasets using as keywords a subset of labels in the new
published dataset; and (ii) filtering out irrelevant datasets by measuring seman-
tic concept similarities obtained by applying ontology matching techniques. The
focus of their work is recommendation for the linking process. Thus, in the filter-
ing step, they consider only the most relevant datasets based on their semantic
similarity.

Lóscio et al. [11] propose the recommendation of relevant datasets for spe-
cific applications, i.e., sources that contribute to answering queries posed to the
applications. The authors argue that a dataset may contribute to answering
application queries, but the response may not be according to the user require-
ments. Thus, they propose the discovery of relevant datasets in a specific domain
using information quality (IQ) as multidimensional criteria. Their recommenda-
tion function estimates a degree of relevance of a given dataset based on the IQ
criteria of correctness, schema completeness and data completeness.

Oliveira et al. [12] use application queries and user feedback to the discover
relevant datasets in Linked Data. The applications queries help filter datasets
that are potentially strong candidates to be relevant and the user feedback helps
analyze the relevance of such candidates. They argue that, by considering both
aspects, one obtains better recommendations. While the works by Lóscio and
Oliveira aim at recommending datasets with respect to user queries, Nikolov
focuses on the recommendation for the linking process, which is closer to our
approach.

Finally, Kuznetsov [13] presents a description of a data integration system
for the Linked Open Space. In his work, he describes a modular architecture
consisting mainly of a “linking system” responsible for (i) discovering relevant
datasets for a given dataset and (ii) creating instance level linkage. Relevant
datasets are discovered by using the referer attribute available in HTTP message
header as described in [14] and ontology matching techniques are used to reduce
the number of pairwise comparisons for instance matching. However, the work
does not present any practical experiment to test the techniques. Although the
approach described in this paper addresses the first step of the linking system
described, we addressed (ii) in previous works [15–17].

Most of the related work presented in this section use techniques as keyword-
based search, schema matching and ontology matching, while others adopt user
feedback and information quality as criteria of relevance. By contrast, our

Identifying Candidate Datasets for Data Interlinking 357

approach considers the interlinking amongst data sources as a “high” level infor-
mation, and does not perform analysis at the instance or schema levels. We do
not explicitly consider a user query, and our recommendation function aims at
recommending datasets that are candidates to be interlinked with a new dataset
being published in the Web of Data. The inputs of our approach are the previ-
ous linkages of the candidates and some known linkage of the new dataset. For
the generation of recommendation ranking, we propose a collaborative approach
which uses Naive Bayes assumptions. To the best of our knowledge there is no
previous work in this sense.

3 Proposed Technique

Instead of providing a restricted list of recommendations, we define the task of
recommending datasets as a task of ranking existing datasets according to its
relevance to URI linkage. Thus, it is at the user’s discretion to decide how far
he/she goes into the ranking in search for links. More precisely, the problem we
address is:

Given a dataset S, calculate a rank score for each dataset Ti (i = 1, ...,m)
in a known set T of datasets. The rank score should favor those datasets
with the highest chance of containing resources that could be linked to
resources of S.

We used metadata about connections between datasets available in catalogues
as the source of evidences of relevance. The interconnection of datasets can be
modeled as a directed graph G = {V,E} where the nodes V are the datasets
in T and there is an edge from A to B in E if and only if there is an RDF
triple t = (s, p, o) ∈ A whose subject s is a resource of A and whose object o
is a resource of B; we say that t is a link from A to B. Furthermore, if there
is an edge from A to B in E then we say that A is connected to B. Note that
there can be only one edge from A to B, even if there are multiple distinct RDF
triples linking A to B.

The actual evidences of relevance are extracted from the correlation between
connections. For example, if datasets connected to DBLP, ACM and CiteSeer
are very often connected to OAI (Open Archives Initiative) then suggest OAI
for those datasets which are connected to DBLP, ACM and CiteSeer but not
to OAI. Intuitively, a high degree of correlation between the sets of connections
{DBLP, ACM and CiteSeer} and {OAI} may indicate that OAI is relevant for
any dataset which is connected to DBLP, ACM and CiteSeer.

One can argue, at this point, that such correlation can be sometimes obvious
inside a specific community, for example, datasets such as DBLP, ACM, Cite-
Seer, IEEE, RAE, PubMed, etc. can be frequently correlated in the bibliographic
domain. Moreover, generic datasets, such as DBPedia and Geonames, are corre-
lated with quite a few datasets, as they provide generic resources and act as hubs
for most datasets. However, as the Linked Data Web grows, the familiarity with
the available datasets of specific domains can decrease and the generic datasets

358 L.A.P.P. Leme et al.

can become exceptions. Therefore, we believe that the correlation between con-
nections, the basis of our recommendation technique, is an appropriate approach
to the problem.

One can define the rank score function as a conditional probability:

score(Ti, S) = P (Ti|S). (1)

where S is the event of selecting S as the dataset one wants to make recommen-
dations to and Ti is the event of containing URIs in Ti that could be linked to
URIs of S. As required, this score function favors those datasets with the highest
probabilities of record linkage with S.

One can rewrite the above expression using Bayes’s rule as follows:

score(Ti, S) =
P (S|Ti)

P (S)
P (Ti). (2)

As in Bayesian classifiers [18, 19], one can represent S as a bag of features
F = {f1, ..., fn} and rewrite once more the above expression:

score(Ti, S) =
P ({f1, ..., fn}|Ti)

P ({f1, ..., fn})
P (Ti). (3)

By the naive Bayes assumptions [18, 19] P ({f1, f2, ..., , fn}|Ti) can be calculated
by multiplying probabilities. Moreover, because P (S) is the same for every Ti

and to make the computation simpler, the score function can be rewritten again:

score(Ti, S) =

⎛
⎝ ∏

j=1..n

P (fj |Ti)

⎞
⎠P (Ti). (4)

score(Ti, S) =

⎛
⎝ ∑

j=1..n

log(P (fj|Ti))

⎞
⎠+ log(P (Ti)). (5)

where we define that
∑

j=1..n log(P (fj |Ti)) = 0, for n = 0, i.e., when S does not
have any feature, the score function takes into account only the probability of
connections to Ti. In this case, the most popular datasets , such as DBPedia,
Geonames, etc. will be favored by the score at the expense of the more highly
appropriate datasets. We are aware that the recommendation may not be quite
accurate in such borderline cases, but we believe that a popularity-based ranking
is preferable to no ranking at all, when nothing is known about S.

Equation 5, therefore, defines the final score function that induces the ranking
of the datasets.

Identifying Candidate Datasets for Data Interlinking 359

By using the maximum likelihood estimate of the probabilities [19] in a train-
ing dataset, the above probabilities can be calculated by the following ratios.

P (fj |Ti) =
count(fj , Ti)∑n
j=1 count(fj, Ti)

. (6)

P (Ti) =
count(Ti)∑m
i=1 count(Ti)

. (7)

where count(fj, Ti) is the number of occurrences in the training set where datasets
containing feature fj are connected to a dataset Ti, count(Ti) is the number of
datasets connected to Ti in T disregarding the feature set. So, for any new
dataset S represented by a set of features F , possibly empty, the rank position
of each one of the existing datasets can be computed by equation (5).

So far we have used a generic set of features F = {f1, ..., fn} of S without
indicating how to apply it to the intuition that correlated datasets provide ev-
idences on the degree of relevance of a dataset Ti to S. In the experiments of
section 4, we used known connections of S as the feature set. In section 4, we
also avoided the borderline case where no feature is known in order to analyze
the effects of knowing some connections of S on the recommendations.

The maximum likelihood estimate can be computed in a training dataset as
follows. Let,

– Conn be a set of ordered pairs (Tj , Ti) indicating that a dataset Tj is con-
nected to a dataset Ti in a training dataset.

– Corr be a set of ordered triples (w, fj , Ti) indicating that if a dataset w is
connected to fj then it is connected to Ti as well in the training dataset.

Fragments of Conn and Corr are depicted in Table 1.a and 1.b. Note that Corr
can be created from Conn by making all possible combinations two by two of
the connections of each distinct Tj .

Note that count(fj, Ti) in equation (6) can be computed from Corr by count-
ing distinct occurrences of pairs (fj , Ti) and that count(Ti) in equation (7) can
be computed by counting distinct pairs (w, Ti). Equations (6) and (7) are then
straightforward computed from these values.

4 Experiments

We tested the recommendation method with data available in the Data Hub
catalogue5, a repository of metadata of open datasets, in the style of Wikipedia.
The Data Hub catalogue stores metadata of the datasets present in the Linking
Open Data (LOD) cloud diagram [20]. It is openly editable and is running a data

5 http://datahub.io

http://datahub.io

360 L.A.P.P. Leme et al.

Table 1. Fragment of the existing connections of the Association for Computing Ma-
chinery (ACM) dataset in the Data Hub catalogue (left side) and simultaneous con-
nections of ACM based on Conn and Corr

Conn

Tj Ti

acm dblp
acm citeseer
acm ieee

Corr

w fj Ti

acm dblp citeseer
acm ieee citeseer
acm citeseer dblp
acm ieee dblp
acm dblp ieee
acm citeseer ieee

(a) (b)

cataloguing software (CKAN)6 maintained by the Open Knowledge
Foundation7.

A multivalued property named relationships, available in the catalogue vo-
cabulary and exposed by the REST API8 of the catalogue, whose domain is the
complete set of catalogued datasets, allows one to assert that a dataset Tj is con-
nected to a dataset Ti by adding the assertions Tj[relationships] = node and
node[object] = Ti to the catalogue data. We used the property relationships to
extract the relation Conn = (Tj , Ti).

To evaluate the technique, we adopted the 10-fold cross validation approach.
The Conn relation is split into training and testing sets in ten different ways.
Testing partitions contain datasets with known connections which are used as
feature sets and ground truth connections for assessment of the ranking. Train-
ing partitions contain datasets to compute the probabilities in equations (6)
and (7). The overall performance is taken as the average of the performances
in the testing partitions. We stress that the references between datasets were
extracted from existing metadata (property relationships) in the Data Hub
catalogue.

In order to define a performance measure, recall that the technique aims at
reducing the search space for defining links by ranking existing datasets. Without
an appropriate ranking of datasets, the discovery of new connections to a dataset
S requires the search for links possibly in all known datasets, which is unfeasible.
With the appropriate ranking, datasets more likely to contain connections from S
will be better positioned in the ranking and the search could be concentrated on
those datasets at the top of the ranking. It is clear, however, that the reduction
in effort will only be good if one can search only a small portion of the ranking.
As we are going to show later, the results indicate that, on the average, only
15% of the ranking was needed to find all connections of S.

6 http://ckan.org
7 http://okfn.org
8 http://datahub.io/api/rest/dataset/[datasetid]

http://ckan.org
http://okfn.org
http://datahub.io/api/rest/dataset/[dataset id]

Identifying Candidate Datasets for Data Interlinking 361

From the above, we defined a performance measure based on the ranking
positions of the discovered connections of datasets in the testing partitions. In-
tuitively, for example, if the less relevant discovered connection of a dataset was
in the tenth position in a rank of one hundred datasets, it would mean that the
search space for links could be reduced to 10% of the complete set of datasets,
since no more connections would be found further down the ranking.

More formally, we define the performance measure as follows. Let,

– S be a dataset in a test partition
– C be the set of connections of S in the test partition
– {F,R} be a partition of C
– F be the set of connection chosen as features of S
– R be the set of connections to be found

Table 2, shows the connections (a) of the Association for Computing Machinery
(ACM) extracted from the Data Hub catalogue at http://datahub.io/api/

rest/dataset/rkb-explorer-acm, and two different choices of feature sets F1

(b) and F2 (c). For each set of features, one wants to find the remaining connec-
tions of the ACM dataset.

Table 2. Existing connections of the Association for Computing Machinery (ACM) in
the Data Hub catalogue (a), two sets of features of ACM (b and c)

C

budapest citeseer cordis courseware
curriculum dblp dbpedia deepblue
dog-food dotac ecs-eprints eprints
epsrc eurecom freebase ft
ibm ieee irit kisti
laas newcastle nsf oai
pisa rae2001 resex risks
roma southampton ulm wiki

F1

deepblue
eurecom

nsf
resex

F2

dblp
ecs-eprints

laas
rae2001

(a) (b) (c)

Start by computing the ranking score(Ti, S) of all datasets Ti in the training
partition for S represented by Fj , (j = 1, 2) and let Pj be the position furthest
down in the ranking among all the positions of the datasets in Rj = C − Fj .
The rankings for both feature sets are shown in Table 3.a and 3.b respectively.

Let P be the number of datasets that must be inspected, if one wants to
find all connections of S following the ranking. Let M be the total number of
distinct datasets in the training partition, then P ′ = P/M is the proportion of
datasets necessary to find all connections of S. The smaller the proportion is,
the better the ranking will be. If one repeats the above process for each S in a
testing partition and for each different partition {F,R} of S, one can calculate
the arithmetic mean of P ′ in a test partition p, denoted by P ′

p. If we repeat the

http://datahub.io/api/rest/dataset/rkb-explorer-acm
http://datahub.io/api/rest/dataset/rkb-explorer-acm

362 L.A.P.P. Leme et al.

process for all test partitions one can take the arithmetic mean of P ′
p, denoted

by P ′
p, as the overall performance.

In our running example, we have thatM = 768. The result for the set F1 shows
that the worst dataset is in thirty-sixth place and, therefore, the performance
in this case is calculated as 36/768 = 4, 69%. On the other hand, if we take the
feature set F2, the performance is 128/768 = 16, 67%.

Table 3. Fragment of the recommendation ranking given that ACM was represented
by the set of features F1 (a) and fragment of a second ranking given the set of features
F2 (b)

Fragment of ranking 1

position dataset

4 freebase
5 ecs-eprints
6 kisti
7 southampton
9 roma
10 wiki
11 dblp
14 budapest
20 oai
22 citeseer
27 ibm
29 ieee
32 risks
33 epsrc
36 dbpedia

Fragment of ranking 2

position dataset

6 wiki
7 eprints
8 oai
9 dotac
10 citeseer
12 southampton
15 ieee
17 budapest
25 curriculum
29 ibm
58 eurecom
60 dbpedia
67 risks
127 deepblue
128 freebase

(a) (b)

5 Performance Analysis

Recall from the previous section that

– S is a dataset in a test partition
– F is the set of connection chosen as features of S
– R is the set of connections to be found
– P is the number of datasets that must be inspected, if one wants to find all

connections of S following the ranking
– P ′ is the proportion of datasets necessary to find all connections of S
– P ′

p is the arithmetic mean of P ′ in a test partition p

– P ′
p is the the arithmetic mean of P ′

p over all test partitions

Identifying Candidate Datasets for Data Interlinking 363

– Pp is the arithmetic mean of P in a test partition p

– Pp is the the arithmetic mean of Pp over all test partitions

Also recall that, given a dataset S, the purpose of the technique is to produce
a ranking of datasets such that the closer a dataset S′ is to the top, the higher
the chances that S′ contains resources that could be linked to resources of S.

In this section, we analyze the followings aspects of the recommendation tech-
nique:

Q1 Given a ranking of recommended datasets, how far down the ranking a
dataset must be to contribute with new links? That is, what is the ranking
efficiency?

Q2 What is the effect of the size of the feature set on the ranking efficiency.
Would a bigger feature set lead to more precise rankings?

Q3 What is the effect of increasing the number of datasets to be found (or
recommended)? If the number of irrelevant datasets increased relatively to
what had to be found, then the method would be less efficient for large
volumes of recommendations.

Fig. 1. Performance function P ′
p(|F |), where |F | is the size of the feature set: (a) dotted

line: Performance computed with rank positions of all datasets in R; (b) dashed line:
Performance computed by discarding the worst rank position of the datasets in R; (c)
solid line: Performance computed by discarding the two worst rank positions of the
datasets in R

To answer the first two questions, we computed the average performance, P ′
p,

as a function of the size of the feature set |F | (shown as dotted line in Fig. 1).
One can see that the efficiency of the ranking is approximately 20%, no matter
what is the size of the feature set |F |. Hence, the user may consider only the top
20% datasets in the ranking when searching for links.

364 L.A.P.P. Leme et al.

Fig. 2. Performance function Pp(|R|)/|R|, where |R| is the size of the set of connections
to be found. P is used instead of P ′ to compute the arithmetic means.

However, we realized that outliers caused by insufficient data distorted the av-
erage performance. Indeed, the size of training partitions was not always enough
to compute the probabilities. Hence, for each set R, we computed a new per-
formance measure that considers only the (|R| − 1)th best positions (shown in
dashed line in Fig. 1)). To confirm that the first performance curve was really
disparate, we computed a third performance measure that considered only the
(|R| − 2)th best positions (shown as solid line in Fig. 1)). Note that the gap be-
tween the dotted curve and the dashed curve is greater than the gap between the
dashed curve and the solid curve, which justifies the hypothesis. To summarize,
Fig. 1 indicates that the performance measure is indeed better at about 15%,
that is, the user may in fact consider only the top 15% datasets in the ranking
when searching for links. This is the first relevant contribution of this paper.

To answer the third question, we analyzed the behavior of the ratio Pp(|R|)/|R|
(shown in Fig. 2). Note that here we used P instead of P ′ to compute the arith-
metic means. This is because |R| is also an absolute number of datasets. There-

fore, Pp(|R|) denotes the average worst position to find a total of |R| datasets.
It does not restrict the number of features of S. Actually, to compute Pp(|R|)
we considered datasets with any number of features. For instance, to compute

Pp(5) we selected all S in the testing partitions with |C| > 5 and for all parti-
tions {F,R} of each S where |R| = 5 we computed P . After that, we computed

Pp(5).

Note that Pp(|R|)/|R| tends to be approximately equal to 2, which means
that the number of datasets that should be inspected is twice the number of
connections that have to be found. This result shows that the computational
effort to find connections depends exclusively on the number of connections to
be found in a proportion of 2:1. We stress that it is not an intuitive conclusion.
We expected that, as the number of datasets to discover grew, the proportion of

Identifying Candidate Datasets for Data Interlinking 365

irrelevant datasets amongst the relevant ones would increase faster. This would
negatively impact the recommendation algorithm. Unlike our expectation the
number of irrelevant datasets increased in the same proportion. This is the second
and last relevant contribution of this paper.

6 Conclusions

Aligned with the Linked Data recommendations [1], and the W3C VoID Vo-
cabulary [3] we proposed a ranking technique that can be used to recommend
datasets and that can dramatically reduce the computational effort to find con-
nections amongst datasets. The technique proved to reduce about 85% of the
search space and to make the computational effort of finding datasets propor-
tional to the number of datasets to be found.

As future work, we plan to explore how to improve the results by taking into
account the information domain of the datasets. Given a dataset S, the other
datasets could be clustered by information domain and valued proportionally
to the information domains of S. To achieve this, one would have to add a
preliminary classification step to find all possible information domains of S.

References

1. Berners-Lee, T.: Linked Data. In: Design Issues. W3C (2006)
2. Nikolov, A., d’Aquin, M., Motta, E.: What Should I Link to? Identifying Relevant

Sources and Classes for Data Linking. In: Proceedings of the Joint International
Semantic Technology Conference (JIST), pp. 284–299. Springer, Heidelberg (2012)

3. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets
with the VoID Vocabulary. W3C (March 2011)

4. Schafer, J.B., Konstan, J., Riedi, J.: Recommender systems in e-commerce. In:
Proceedings of the 1st ACM Conference on Electronic Commerce (EC), pp. 158–
166 (1999)

5. Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative
recommendation. In: Proceedings of the 32nd International ACM Conference on
Research and Development in Information Retrieval (SIGIR), pp. 195–202 (2009)

6. Malinowski, J., Keim, T., Wendt, O., Weitzel, T.: Matching People and Jobs: A
Bilateral Recommendation Approach. In: Proceedings of the 39th Annual Hawaii
International Conference on Print (HICSS), p. 137c (2006)

7. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook.
Springer (2011)

8. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an
introduction. Cambridge University Press, New York (2011)

9. Damljanovic, D., Stankovic, M., Laublet, P.: Linked Data-Based Concept Recom-
mendation: Comparison of Different Methods in Open Innovation Scenario. In:
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012.
LNCS, vol. 7295, pp. 24–38. Springer, Heidelberg (2012)

10. Nikolov, A., d’Aquin, M.: Identifying Relevant Sources for Data Linking using a
Semantic Web Index. In: Proceedings of the 4th Linked Data on the WebWorkshop
(LDOW) (2011)

366 L.A.P.P. Leme et al.

11. Lóscio, B.F., Batista, M., Souza, D.: Using information quality for the identification
of relevant web data sources. In: Proceedings of the 14th International Conference
on Information Integration and Web-based Applications & Services, pp. 36–44
(2012)

12. de Oliveira, H.R., Tavares, A.T., Lóscio, B.F.: Feedback-based data set recommen-
dation for building linked data applications. In: Proceedings of the 8th Interna-
tional Conference on Semantic Systems (I-SEMANTICS), pp. 49–55 (2012)

13. Kuznetsov, K.A.: Scientific data integration system in the linked open data space.
Programming and Computer Software 39(1), 43–48 (2013)

14. Mühleisen, H., Jentzsch, A.: Augmenting the Web of Data using Referers. In:
Proceedings of the 4th Linked Data on the Web Workshop (LDOW) (2011)

15. Leme, L.A.P.P., Casanova, M.A., Breitman, K.K., Furtado, A.L.: Instance-based
OWL schema matching. In: Filipe, J., Cordeiro, J. (eds.) ICEIS. LNBIP, vol. 24,
pp. 14–26. Springer, Heidelberg (2009)

16. Leme, L.A.P., Brauner, D.F., Breitman, K.K., Casanova, M.A., Gazola, A.: Match-
ing object catalogues. Innovations in Systems and Software Engineering 4(4), 315–
328 (2008)

17. Nunes, B.P., Mera, A., Casanova, M.A., Breitman, K.K., Leme, L.A.P.P.: Complex
Matching of RDF Datatype Properties. Technical Report MCC12/11 (December
2011)

18. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann (January 2011)

19. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press (2002)

20. Cyganiak, R., Jentzsch, A.: (Linking Open Data cloud diagram)

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 367–375, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Discovering Links between Political Debates and Media

Damir Juric1,3, Laura Hollink2, and Geert-Jan Houben1

1 Delft University of Technology
2 VU University Amsterdam
3 FER University of Zagreb

Abstract. Politics and media are heavily intertwined and both play a role in the
discussion on policy proposals and current affairs. However, a dataset that
allows a joint analysis of the two does not yet exist. In this paper we take the
first step by discovering links between parliamentary debates in a political
dataset and newspaper articles in a media dataset. Our approach consists of 3
steps. We first discover topics discussed in the debates. Second, we query a
newspaper archive for relevant articles using a combination of debate elements:
dates, actors, topics, and named entities of the debates. Finally, we discover
links, represent them in RDF, and make them available for download. An
evaluation of various versions of this approach shows that the topic detection
adds to the quality of the discovered links, as well as the use of the semantic
structure of the debate, such as headers and a division into smaller events.

Keywords: RDF, parliamentary debates, NER, topic modeling, linking.

1 Introduction

In this paper we present our work on the linking of political debates to media articles.
We present the design choices for a model in which we capture parliamentary
debates, including how they are covered by various media, and we describe the
method for automatic linking between the speeches inside the debates and various
media articles.

To make comparisons between different types of media outlets, links between
datasets would need to be produced. Such links could, for example, support
researchers that want to know how political debates are represented in the media and
how the representation of topics and people change over time. We aim to facilitate
this kind of analysis by providing links between datasets of political debate events and
media data.

The presented method for link discovery aims to connect debate content on a
speech level with relevant articles that contain not just the mentions of speakers but
also mentions of speakers in a context of topics that politicians tackled in their speech
in parliament. This goal made task much harder, because context of the consequential
speeches is often very similar (politicians are speaking about same general topic of
the day). We had to extract enough semantics from each particular speech so that we
could retrieve more articles reporting on the particularities of politician’s speech and

368 D. Juric, L. Hollink, and G.-J. Houben

not just mentioning his name in the context of general topics of the debate (which is
also often the case). We used semantic and information retrieval techniques to
generate automatic queries that contain the context of the parliamentary speeches and
to search newspaper dataset for the connections between speeches and newspaper
articles that are covering them. Since the debate transcripts that we use as a source
posses structural elements such as debate and conversation descriptions, we wanted to
explore if using these elements will help us in our goal of creating the debate-media
dataset.

This paper is organized as follows. First, we describe the PoliMedia project in
which this work is carried out. In Section 2 we present our method for discovering
links between speeches and the media articles. In Section 3 we evaluate the method
on a randomly generated dataset, and finally in Section 4 we conclude our work.

1.1 Related Work

We draw on previous work from various domains: other projects using parliamentary
debate data, event modeling, relatedness discovery, topic modeling, and entity
linking.

[1] presents an approach that extends existing metadata enrichment processes with
a method to discover historical events. In [2], the authors put events as the central
elements in the representation of data from domains such as history, cultural heritage,
multimedia and geography. The Simple Event Model (SEM) is created to model
events in these various domains, without making assumptions about the domain-
specific vocabularies used. In [3] the authors describe a real life problem using SEM.
The problem of link discovery is tackled in [4]: it presents a validation approach of
detected alignment links between dialog transcript and discussed documents, in the
context of a multimodal document alignment framework of multimedia events
(meetings and lectures). In [5] the authors present a function that discovers
relatedness between news articles across four aspects: relevance, novelty, connection
clarity, and transition smoothness. Although, our work does not perform the same task
(we do not have a knowledge base, and we are interested in topics and not just in the
named entities), this field of work is related to ours. In [6] authors describe the system
that disambiguate entity mentions in text and link them to a knowledge base. They
approach readily ports to knowledge bases other than Wikipedia. The Text Analytics
Conference on Knowledge Base Population (TAC-KBP) included the task of entity
linking [7]. Some of the examples include the use of information retrieval techniques
for retrieving the correct knowledge base entry, such as query expansion [8], and
generative clustering models for entities in text based on knowledge base entries [9].
In [10] authors presented algorithm for linking between two different archives, the
news archive as a source and multimedia archive as target. Although the problem is
similar to ours, in this task target archive is heavily annotated by human annotators.
Domain experts extracted entities and topics manually, which is different from our
case. In [11] retrieval techniques are used to link between four different
encyclopedias. They report 40% precision at 100% recall. In our case, we do not have
the similar or same type of articles (like encyclopedia articles) but noisy spoken text
and concise newspaper articles.

 Discovering Links between Political Debates and Media 369

2 Linking Speeches from the Debates to Media Articles

Our PoliMedia method consists of three steps. First, we enrich the existing debate
metadata with topics. Second, for each speech, we search the archive for candidate
articles based on when they were published (7 days after the debate) and occurrence
of the name of the speaker of the speech. Finally, we rank these candidate articles
based on similarity to the query (automatically created from speech text) by
comparing vectors of topics and named entities. We create links between a speech and
an article if the similarity score is above a threshold t.

2.1 Topic Modeling

For each speech inside a debate segment (called PartOfDebate in our method) we
extract ten words that represent one topic discussed inside the speech. Also all
speeches contained inside one debate segment are concatenated into one text and the
set of ten words that represent one topic of the debate segment as a whole is then
extracted from that text. Debate is queried for all PartOfDebate identifiers, which
represents a number of different topics that are being discussed in this particular
debate. The PartOfDebate identifiers contain properties that lead to the actual
speeches and their descriptions (DebateContext). At this point we create two vectors
that are populated with named entity values (those values are objects in statements
‘DebateContext mentions NEscontext‘ and ‘Speech mentions NEsspeech’). The objects of
the hasSpokenText and hasText properties are taken and sent for preprocessing. In the
preprocessing step text we remove all the words that have high frequency but bring a
small amount of information. In [12] it is stated that probabilistic topic models are a
popular tool for the unsupervised analysis of text, providing both a predictive model
of future text and a latent topic representation of the corpus, and that it can be used to
check models, summarize the corpus, and guide exploration of its contents. Topic
models lead to semantically meaningful decompositions of text because they tend to
place high probability on words that represent concepts, and documents are
represented as expressions of those concepts. We used a Java-based package for
statistical natural language processing, document classification, clustering, topic
modeling, information extraction, etc., called Mallet [13]. Mallet uses a fast and
highly scalable implementation of Gibbs sampling. [14].

2.2 Search for Candidate Articles and Ranking

In the second step, we preselect data by fetching all available media from secondary
datasets by using the Search and Retrieve protocol (SRU). Preselected data contains
only those articles in which the name of the speaker from the debate can be found in a
time span of seven days after the speech has been spoken in the parliament.

In the third step, the transcript of the parliamentary debate (in XML format) is used
as a primary source for the task of finding links between the speeches that the debate

370 D. Juric, L. Hollink, and G.-J. Houben

consists of and the media articles. Each debate contains some basic metadata that
depicts a debate as a whole (it should be noticed that one debate can actually contain
more than one part with different topics (spoken on a same day) that we call part of
the debate in this article), of which the date when the speeches were spoken in the
Dutch parliament is the most important one. Each part of the debate (collection of
speeches that are all about single theme) has its description that consists of an
unstructured text. Each article is treated as a document D for which we calculate the
similarity with the previously automatically created query Qexp (that should represent
the context of the debate). We pose our task of finding relevant newspaper articles for
a speech in a debate as an information retrieval problem using the vector space model,
where we consider the speech as the query Q and the newspaper article as the
document D. Fetched candidate articles are tokenized, stripped of stop words, and

indexed. Each article D is represented as a term vector

d of length n, where n is the

length of the total number of terms in our corpus of candidate articles. The elements

of

d are term frequency–inverse document frequency (TF-IDF) scores. We create

vectors for each speech in the debate, made up of topic sets as discussed in Section
2.1 and named entities (NEs) that are associated to the speeches with the
polivoc:mentions property. Similarly, we create vectors for topic sets and NEs derived
from the debateContext of the speech. Element debateContext is a short description of
the subjects that will be addressed in the forthcoming debate segment, that is read by
the chairman (voorzitter) of the debate. Given the debateContext, we detect topic sets
from the text of all speeches that fall under the same debateContext. We select NEs
mentioned in the introductory text of the debateContext. In this way, the semantic
structure of the debate enables us to treat the speeches not as isolated pieces of text
but as part of a broader conversation.

In total, this process results in 4 vectors for each speech: NEsspeech, NEscontext,
Topicsspeech, Topicscontext.

For each speech, we measure similarity between the article vectors of the candidate
articles and the four debate speech vectors that represent the speech. We use two
state-of-the-art measures: the cosine similarity measure and the BM25 similarity
measure. Standard cosine similarity is used because it is proven to work best for this
type of comparisons [4]. Both measures produce similar matches but with different
rankings. Since ranking is not our primary concern (our goal is to populate the dataset
with relevant documents, regardless of their ranking) we choose the cosine similarity
measure because it suits better to our needs. Because cosine similarity values range
between 0 and 1 it was easier to find a threshold for what we take as a relevant
document, then with BM25. Articles with a score above a threshold (0.01) are linked
to the speech with the polivoc:coveredIn property. We exclude articles where only
one (or few) vector contributes to the high similarity score by means of an overlap
measure. The overlap coefficient is related to the Jaccard index that computes the
overlap between two sets. The method pipeline is presented in Fig. 1. The debate
transcript serves as an entry point.

 Discovering Links between Political Debates and Media 371

Fig. 1. Method pipeline

3 Experiments

To gain insight into the quality and added value of the various steps of the linking
method described in the previous section, we have performed experiments with three
versions of the method. Specifically, we have varied which information is used to
rank the candidate articles (named entities (NEs), topics) and whether the partOf
relations between speeches and larger parts of debates are used to also include
information associated to these larger parts (debate segments).

Experiment 1: NEs in speech In the most simple form of our method, we rank
articles only based on the NEs found in the speech.
Experiment 2: NEs + topics in speech Here, we include not only NEs but also topics
detected for the speech.
Experiment 3: NEs + topics in speech and context Finally, we include not just NEs
and topics extracted from the speech itself but combine those with NEs extracted from
the debate context and topics extracted from all speeches in this context.

The method to query the media archive and select candidate articles is kept constant:
we query the archive for articles that mention the name of the speaker and were
published within 7 days after the date of the debate. The value 7 is based on our own
estimation of the time media takes to write about political debates. Since it is kept
constant, a potential suboptimal value will not affect the results. In the future, we
intend to investigate what is the optimal value to produce the highest quality of links.

For the experiments, we have randomly selected 20 debates from our dataset of
10,924 debates. The subjects of those debates ranged from fraud in the social system
to the European elections. In all three experiments we have linked speeches from

372 D. Juric, L. Hollink, and G.-J. Houben

within these 20 debates, thus limiting the effect of variations in debate topics on the
quality of the resulting links. Second, in each of the three experiments, we have
randomly selected 50 speeches from the 20 debates, and linked these to newspaper
articles. One speech can be linked to multiple articles, but for evaluation purposes we
have randomly selected one linked article for each speech. As a result, we have 150
speech-article pairs, namely 3 sets of 50 each.

We used two independent evaluators to read the speeches and articles linked to
them and manually assess their relatedness. Rating was done on a 3-point scale. A
score of 0 score is given if the name of the politician is mentioned in the newspaper
article in a context that is unrelated to the subjects of the speech the politician gave in
parliament; A score of 1 is given if the article mentions the politician in the context of
the debate as a whole, but not specifically in the context of the particular speech; A
score of 2 is given to all the articles that mention name of the politician in the context
of his particular speech (X is given when evaluators can’t decide which score to give).

The left part of Table 1 (dataset EvalNESpeech) shows the average number of relevant,
partially relevant and unrelated links found in Experiment 1. The complete dataset
created with these parameters (using just NEs from the speech) is considerably bigger
than other two datasets, as a result of using the least specific query (the whole dataset
contains 5887 linked articles). Also, for the same reason this dataset contains a large
number of unrelated articles. In [15], the authors stated that NEs play an important
role in news documents. They wanted to exploit that characteristic by considering
them as the only distinguishing features of the documents. In our experiments we
found out that using just NEs is not enough to distinguish between newspaper articles.
For that reason we included an additional element, the topics from the speech. Results
of the evaluation of our method with that additional parameter can be seen in the
middle part of Table 1 (dataset EvalNESpeechTSpeech). It is visible that the second dataset
represents an improvement over the first dataset in terms of quality (this dataset
contained 4449 linked articles in total).

Table 1. Evaluation of produced links based on NEs from speech and on NEs and topics from
speech speech and debate description element

EvalN

ESpeech

Eval1 Eval2 EvalNESpeechTSpeech Eval1 Eval2 EvalAll Eval 1 Eval 2

0 20/40% 18/36% 0 10/20% 13/26% 0 3/ 6% 9/18%

1 13/26% 16/32% 1 16/32% 20/40% 1 17/34% 19/38%

2 11/22% 8/16% 2 15/30% 11/22% 2 24/48% 20/40%

X 6/12% 8/16% X 9/18% 6/12% X 6/12% 2/ 4%

Finally, we produced the third dataset by harvesting the debate structure. We used
NEs and topics from debate descriptions to create a query that is more specific than
both previous queries. In EvalAll we can see that the resulting dataset has the best
quality (for our purpose that means the biggest number of relevant links, with scores 1
or 2). This dataset contained 3804 linked articles in total. Evaluator agreement
(Cohen's Kappa) was 0.5207, which represents a moderate agreement.

 Discovering Links between Political Debates and Media 373

Table 2. Evaluation of produced links based on speech and debate description
element

Recall - To calculate recall we had to conduct a different kind of evaluation. Since for
each speech we have a different query, only way to calculate meaningful recall was to
analyze the speech, create the query manually and then search the library portal in the
same time span as our algorithm. Evaluator task was to analyze five arbitrarily chosen
speeches and to manually create a query that should retrieve all articles containing
those terms in the given context. Then evaluator had to analyze articles retrieved from
using the manual queries (115 newspaper articles) and to decide how many of them
are relevant to the particular speech. With settings as in experiment nr.3 recall was
62% with precision 75% (using the same threshold as for previous evaluation).
Lowering the threshold didn’t change our recall but precision fall to 72% (Fig. 2ab,
exp 3). We discovered that the only way to make the recall higher is to remove vector
with NEs from debate description from the system. This vector is used as a control of
topic drift, so without that vector we got highest recall but with low precision of 50%
(Fig. 2ab, exp4). Since we aim to have more quality than quantity in our final dataset
we decided to use the vector with NEs from debate descriptions. With settings as from
experiments nr.1 and nr.2 we got again lower precision but higher recall in some
cases (Fig. 2ab).

 (a) (b)

Fig. 2. Precision and relative recall

After this evaluation we can conclude that the query representation of the speech as
a combination of named entities (from speech itself and debate descriptions) and
topics (from speech itself and the whole conversation) in combination with used
similarity measures works best for our goal of discovering media articles that covers
the topics from the parliament. The structural elements contained in the transcripts
(like possibility to distinguish segments of the debates that represents one
conversation between many actors) played important part in formalizing a speech into
a complex query. Also, great deal of help was the metadata available from the
transcripts, which allowed us to preselect newspaper archive using predefined time
span. Evaluation showed what we expected, that treating particular speech as a part of
the bigger context (conversation) and creating a query that is a mixture of elements
from both structures will retrieve higher number or relevant articles, because the
newspaper articles from this domain are usually written in a form of report, where

374 D. Juric, L. Hollink, and G.-J. Houben

general subject discussed in the debate are mentioned intertwined with topics from
particular speeches. Extracting topics from the speech was crucial for producing
better recall and using just named entities from the speech produces very low
precision. But extracting additional topics from collection of speeches contained
under one description and additional extracting named entities from that description,
gave us enough semantics to retrieve articles connected to the speech with reasonable
precision and recall.

4 Conclusion and Next Steps

In this paper we have studied the creation of links between a dataset of political
debates and a media archive. We have presented a linking method that takes
advantage of metadata associated to the debates, NEs mentioned in the debate, topics
detected in the debates, and the semantic partOf structure of the debates. We
succeeded to create a pipeline for linking two very different types of text: debate
transcripts containing spoken language full of digressions and different entities, and
short and concise newspapers. We analyzed each parliamentary speech as a part of a
bigger debate, i.e. taking into account the structure of the debate. The links we
produced are of a different nature than those produced by e.g. ontology alignment
tools.

In three experiments we have shown the added value of topics and debate structure.
The results showed that using the NEs we can discover related media articles, but
since the automatically generated queries are not specific enough their usage produces
a dataset that contains a large amount of articles that are not related to the context
from speech nor debate as a whole. We concluded that using topic modeling together
with NEs we can create query representation of speeches that contains enough amount
of context needed to retrieve and discover related articles with satisfactory precision.

These results provide leads for further research into automatic discovery of links
between politics and media. At present, our method results are relatively coarsely
typed links; we are able to discover that a speech and an article are linked, but we
remain unclear about the nature and strength of the link. While it would be easy for us
to represent a finer distinction of link types in RDF, the interpretation and usefulness
of various types of links requires further study and will necessarily be an
interdisciplinary effort. In future work, we aim to look into the direction of the links –
whether politics influences media, or media influences politics – and the strength of
the links, including how the strength varies as more time passes between the date of
the political event and the publication of the media article.

While the presented method is designed to use the specific structure of the data and
metadata at hand, the general idea of combining who (actors), what (named entities
and topics) and when (dates) to find documents related to an event is applicable also
outside the domain of Dutch parliamentary data. Future work includes generalization
of the linking method to other (political) topics and other media collections such as
televised news and radio bulletins (for which the first experiments look promising).

 Discovering Links between Political Debates and Media 375

A virtual research environment will be built that allows the exploration of the
debate topics and media coverage thereof via search and browsing. Next to the use of
standard information retrieval libraries (Lucene), navigation options will be
implemented that will allow users to browse through the linked datasets of debates
and different types of media (newspapers, radio and video content).

References

1. van Erp, Marieke, et al.: Automatic Heritage Metadata Enrichment with Historic Events.
In: Trant, J., Bearman, D. (eds.) Museums and the Web 2011: Proceedings. Archives &
Museum Informatics, Toronto (2011)

2. van Hage, W., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the
Simple Event Model (SEM). J. Web Semantics (2011)

3. van Hage, W.R., Malaisé, V., de Vries, G., Schreiber, G., van Someren, M.: Combining
Ship Trajectories and Semantics with the Simple Event Model (SEM). In: Proceedings of
the 1st ACM International Workshop on Events in Multimedia, pp. 73–80 (2009)

4. Mekhaldi, D., Lalanne, D.: Multimodal Document Alignment: Feature-based Validation to
Strengthen Thematic Links. JMPT 1(1), 30–46 (2010)

5. Lv, Y., Moon, T., Kolari, P., Zheng, Z., Wang, X., Chang, Y.: Learning to model
relatedness for news recommendation. In: WWW (2011)

6. Rao, D., McNamee, P., Dreze, M.: Entity Linking: Finding Extracted Entities in a
Knowledge Base. Springer Lecture Notes in Computer Science: Multisource, Multilingual
Information Extraction and Summarization (2011)

7. Gottipati, S., Jiang, J.: SMU-SIS at TAC 2010 - KBP Track Entity Linking. In:
Proceedings of Text Analysis Conference (TAC 2010) Workshop (2010)

8. Gottipati, S., Jiang, J.: Linking entities to a knowledge base with query expansion.
Empirical Methods in Natural Language Processing, EMNLP (2011)

9. Han, X., Sun, L.: A generative entity-mention model for linking entities with knowledge
base. Association for Computational Linguistics (2011)

10. Bron, M., Huurnink, B., de Rijke, M.: Linking Archives Using Document Enrichment and
Term Selection. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.) TPDL 2011.
LNCS, vol. 6966, pp. 360–371. Springer, Heidelberg (2011)

11. Kern, R., Granitzer, M.: German encyclopedia alignment based on information retrieval
techniques. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL
2010. LNCS, vol. 6273, pp. 315–326. Springer, Heidelberg (2010)

12. Chang, J., Boyd-Graber, J.L., Gerrish, S., Wang, C., Blei, D.M.: Reading Tea Leaves:
How Humans Interpret Topic Models. In: Advances in Neural Information Processing
Systems 22: 23rd Annual Conference on Neural Information Processing Systems (2009)

13. McCallum, Andrew Kachites: MALLET: A Machine Learning for Language Toolkit
(2002), http://mallet.cs.umass.edu

14. Darling, W.M.: A Theoretical and Practical Implementation Tutorial on Topic Modeling
and Gibbs Sampling (2011)

15. Montalvo, S., Martínez, R., Casillas, A., Fresno, V.: Bilingual news clustering using
named entities and fuzzy similarity. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS
(LNAI), vol. 4629, pp. 107–114. Springer, Heidelberg (2007)

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 376–383, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Assisting User Browsing over Linked Data:
Requirements Elicitation with a User Study

Dhavalkumar Thakker, Vania Dimitrova, Lydia Lau, Fan Yang-Turner,
and Dimoklis Despotakis

University of Leeds, Leeds LS2 9JT, UK
{D.Thakker,V.G.Dimitrova,L.M.S.Lau,

F.Yang-Turner,scdd}@leeds.ac.uk

Abstract. There are growing arguments that linked data technologies can be
utilised to enable user-oriented exploratory search systems for the future Inter-
net. Recently, search over linked data has been studied in different domains and
contexts. However, there is still limited insight into how conventional semantic
browsers over linked data can be extended to empower exploratory search,
which is open-ended, multi-faceted and iterative in nature. Empirical user stud-
ies in representative domains can identify problems and elicit requirements for
innovative functionality to assist user exploration. This paper presents such an
approach – a user study with a uni-focal semantic data browser over several
datasets linked via domain ontologies is used to inform what intelligent features
are needed in order to assist exploratory search through linked data. We report
main problems experienced by users while conducting exploratory search tasks,
based on which requirements for algorithmic support to address the observed is-
sues are elicited. A semantic signposting approach for extending a semantic
data browser is proposed as a way to address the derived requirements.

Keywords: Linked Data, Exploratory Search, Requirements Elicitation.

1 Introduction

Linked Data technologies have received wider acceptance, both in industry and aca-
demia. One of the major factors for this success has been the availability of large
amount of semantic data in various formats and domains. In parallel with engineering
solutions for seamless generation of semantic data, efforts have been made to facili-
tate user interaction with such data. There are growing arguments that Linked Data
technologies can be utilised to enable user-oriented exploratory search systems for the
future Internet [1]. In contrast to regular search, exploratory search is open-ended,
multi-faceted, and iterative in nature, and is commonly used in scientific discovery,
learning, and sense making [2].

There are a wide range of tools available for offering exploratory search using se-
mantic web technologies (state of the art in [3] and [4]). However, exploratory search
over linked data is still insufficiently studied. As pointed in a recent keynote focusing
on interaction with Linked Data[5], although the technological platforms for

 Assisting User Browsing over Linked Data: Requirements Elicitation 377

exploring linked data are growing, enabling citizen users to explore inter-connectable
links associated with structured data is still a key challenge. This calls for an urgent
attention by researchers and technology developers to identify major issues with user
exploration of linked data, derive requirements for new methods, and engineer solu-
tions to implement these methods utilising semantic technologies and tools. Experi-
mental studies with existing systems in domains well-presented in linked data can be
used to elicit requirements for engineering new methods for user exploration.

The work presented in this paper follows the above arguments, and specifically fo-
cuses on providing intelligent functionality embedded in a data browser to assist us-
ers in their exploratory search tasks over linked data. This is part of an ongoing re-
search examining intelligent interfaces for interactive sensemaking over linked data,
conducted in the framework of the EU project Dicode (http://www.dicode-project.eu).
We have built a fairly traditional semantic data browser – Pinta - which provides a
base line for identifying key issues users face with conventional uni-focal exploratory
search interfaces over linked data. An instantiation of Pinta in the Music domain is
used in an experimental study with users to elicit requirements for intelligent assis-
tance based on observations of challenges users face while interacting with
MusicPinta; and suggesting a way to address them by adding signposting features.

Section 2 will present the base line system. A user study with MusicPinta is pre-
sented in Section 3. Section 4 reports observations of main interaction issues faced by
users, based on which requirements for adding intelligent functionality are elicited.
Following the requirements, a signposting approach for adding intelligent assistance
is proposed. The paper concludes by pointing at future work.

2 Baseline System for Browsing through Semantic Data

In this section, we present a traditional semantic data browser called Pinta, which
provides a uni-focal interface for browsing through several linked semantic datasets.

2.1 Pinta: A Generic Uni-focal Semantic Browser Shell

The main goal of Pinta is to enable users to easily tap into resources built from the
Web and, in particular, exploring the use of the Linked Data paradigm. Figure 1 de-
picts three-layer architecture for Pinta which comprises: (i) Data Layer, including
knowledge sources and content, (ii) Processing Layer, including modules for semantic
augmentation and query, and (iii) Presentation Layer for content browsing. The Data
Layer contains domain specific ontological knowledge sources and content assem-
bled from the Web (Linked Data and other domain specific sources). The knowledge
sources consist of graphs of ontological concepts relevant to the domain of interest.
They provide the foundation for semantic augmentation of the content in the Process-
ing Layer, and the structure for semantic trajectories for browsing in the Presentation
Layer. The Processing Layer has two main services: (i) semantic augmentation of the
assembled content designed using GATE and (ii) semantic queries to retrieve content
for the Presentation Layer. The Presentation Layer provides a front-end for the out-
put of semantic queries from the Processing Layer.

378 D. Thakker et al.

Fig. 1. Architecture of the generic uni-focal semantic data browser Pinta

The interface layout
includes three main facets
and a description (at the
top) extracted from the
knowledge datasets for
the focus entity (being
currently explored): (i)
Facet 1 includes facts
about the focus entity; (ii)
Facet 2 includes terms
related to the focus entity;
and (iii) Facet 3 shows
related content.

Fig. 2. A faceted-layout template for presenting a focus
(currently explored) entity in Pinta

2.2 MusicPinta: An Instantiation of Pinta in the Music Domain

The Music domain has been selected for an instantiation of Pinta and has been used as
a testbed to observe exploratory search and derive requirements for intelligent sup-
port. The Web of data is rich in music-related datasets and content. As of 2011, there
were at least 13 datasets identified, with a diverse range of concepts and ambiguous
entities covering instruments, performances/events, artists, and music genres. The
data sets used for MusicPinta comprise the following resources.

DBpedia: for musical instruments and artists. This dataset is extracted from dbpedia
SPARQL endpoint using CONSTRUCT queries. DBTune(http://dbtune.org/): for
music-related structured data made available by the DBTune.org in linked data fash-
ion. Among the datasets on DBTune.org we utilise: (i) Jamendo - a large repository
of Creative Commons licensed music; (ii) Megatune - an independent music label;
and (iii) MusicBrainz - a community-maintained open source encyclopaedia of music
information. Amazon reviews for musical instruments shown in Pinta. All datasets,
except the reviews, were available as RDF datasets and the Music ontology
(http://musicontology.com/) was used as schema to interlink them. The Amazon

 Assisting User Browsing over Linked Data: Requirements Elicitation 379

reviews were converted in RDF using Pinta’s semantic augmentation of textual
content in the Processing Layer. MusicPinta is available at:
http://imash.leeds.ac.uk/services/pinta/musicpinta/.

3 User Study and Interaction with MusicPinta

To observe user exploratory search behaviour and elicit requirements for adding intel-
ligent functionality in uni-focal semantic browsers over linked data, we conducted an
exploratory study with MusicPinta.

The study involved 12 participants recruited on voluntary basis. All participants
had IT background, good experience in web search. Each participant attended an in-
dividual session, conducted and observed by an experimenter for an hour: (i) using a
Pre-study questionnaire [5 min] for collecting information about the user and test
his/her domain awareness; (ii) introducing MusicPinta [10 min]; (iii) conducting Task
1 [15 min] aiming at identifying distinctive characteristics of the musical instrument
“bouzouki”; (iv) conducting Task 2 [15 min] for identifying usage and features of the
musical instrument “electric guitar”; (v) a Post-study questionnaire [10 min] for test-
ing again the participant’s domain awareness and gathering usability feedback; and,
(vi) briefly interviewing [5 min] for eliciting the overall impression of using Mu-
sicPinta for exploratory search. After each task, the users were asked to fill-out a short
questionnaire to assess cognitive load using the NASA-TLX questionnaire[6].

Table 1. User tasks in the experimental study

Task 1: Characteristics of a musical instrument
[bozouki]

The music shop is extending its collection of in-
struments with international musical instruments.
You work in an advertising agency which has been
asked to prepare an advertisement script for some of
the new instruments that will appear in the shop. A
key part of the preparation of the advertisement
script is the research of the product.

You have been asked to conduct a research of
one of the new instruments, called bouzouki, using
the information available in MusicPinta. You have
to identify:
 the main characteristics of bouzouki;
 up to five similar instruments to bouzouki;
 features that make bouzouki distinctive from

the similar ones you have chosen.
Go to ‘Semantic Search’ in MusicPinta and type

bouzouki. Browse the content and follow links.
Complete the provided form.

Task 2: Usage and features of a musical instru-
ment [electrical guitar]

The music shop wants to increase the sales of its
traditional musical instruments, such as electrical
guitars. It intends to do this by adding links to crea-
tive commons album recordings with electric guitars,
together with some interesting information about
these albums to inspire customers to play/buy electric
guitars or other musical instruments.

Furthermore, when displaying its electric guitar
items, the shop wants to highlight key features people
look for when purchasing electric guitars.

You are asked is to conduct the research to address
the above requirements by using information provided
in MusicPinta. You have to review the information
about electric guitar and identify:
 three interesting album recordings that include

electric guitars and specify what is interesting;
 key features that people look for when purchas-

ing an electric guitar.
Go to ‘Semantic Search’ in MusicPinta and type

electric guitar. Browse the content and follow links.
Complete the provided form.

380 D. Thakker et al.

The study required participants to complete two tasks related to exploring musical
instruments and was positioned within an advertising scenario for a fictitious UK
music shop (see Table 1). In both tasks, the participants were given an entry point for
browsing and asked to fill in their answers in a provided template. The tasks exhibit
the characteristics of exploratory search tasks summarised in [7]: the main goal is
learning and/or investigation of a musical instrument; there is a low level of specific-
ity about the information needed and how to find it; search is open ended, requires
finding several items and involves a degree of uncertainty; tasks are ‘not too easy’
and include multiple facets.

4 Requirements for Assisting User Browsing over Linked Data

Two musical instrument experts (one for Bouzouki, one for Electric guitar) have
marked the outcome of participants for the two tasks. The marking is to measure how
successful the participants have been in completing the tasks using MusicPinta. Par-
ticipant achieved 70% average score for the task 1 and 48% for the task 2. The de-
tailed analysis on the task performance and learning outcome in the user study is
covered in our recent publication[8]. In this paper, we have only focused on the ob-
servations related to the task outcome and browsing behaviour that allow us to elicit
requirements for supporting exploratory environments.

Observation 1: Abstraction Conundrum. While browsing specific instruments
(e.g. Bouzouki), performances and performers, two participants clicked on abstract
concepts, such as instrument, performance and performer, from the Music Ontol-
ogy. In both cases, the participants were looking for concrete information (e.g. par-
ticipant-12 clicked on instrument in task 1 when seeking for more detail about a
musical instrument, while participant-05 clicked on performer and performance in
task 2 when seeking more detail about an album). The aggregated datasets in Mu-
sicPinta have large number of instances for the abstract concepts (which is typical of
linked datasets), which led to confusion as the result was a long list of performers,
performance and instruments, and the participants quickly pressed back button.

Requirement 1: Offering Semantic Links at an Appropriate Level of Abstraction.
The above observation motivates consideration on identifying what can be algo-
rithmically offered as the right level of abstraction on various browsing junctures.
This is important when the abstract concepts have large amount of concrete
instantiations.

Observation 2: Exploring Entities/Content with Insufficient Information. An-
other interesting case is the high number of ‘empty clicks’ - the user clicks on a link
and is taken to a page with no information, sees that this link is not helpful and
quickly returns to the previous page. In task 1, such clicks concerned similar instru-
ments, e.g. there was no information about bajitar, xalam, rebab. In task 2 such
clicks concerned performances (music albums) and happened quite often. ‘Empty
clicks’ leading to pages with no information was seen as one of the main reasons for
user’s frustration. At the same time, may be due to their experience of links that lead

 Assisting User Browsing over Linked Data: Requirements Elicitation 381

to dead ends, some links were perceived as empty without exploring them further and
the users missed to click on important for the tasks information. With linked datasets,
it is typical to find entities that do not have much explanation or links to other entities.

Similar issues were observed with content (Amazon Reviews in our user study). Us-
ers clicked to view some of the Amazon reviews to find out more information about an
instrument and its review. However some of the reviews were deemed to have insuffi-
cient information to be useful. This observation is in line with relevant research
conducted which concludes that not all reviews are equally helpful (for example, [9]).

Requirement 2: Reduce Entity Link Options. Avoid showing entity links that do not
lead to any new information. Reduce number of entity links shown to the user based
on their browsing value; allowing reduction of clutter and confusion. The challenge
here is to define what ‘browsing value’ is and how to calculate it for an entity with
respect to other entities from the same entity page.

Requirement 3: Reduce Content Link Options. Avoid showing content links that do
not lead to any new information. Reduce number of content links shown to the user
based on their helpfulness/usefulness.

Observation 3. Varied Selection Strategies while Facing Too Many Choices. Both
tasks (deliberately) put the users in situations where they had too many choices. This
means that the users had a large number of links to review while on a focus entity
page. For example, the bouzouki page included 12 different links in the facts facet
and 51 links in the terms. This is a typical situation with the datasets from linked data.
For example, for the DBpedia dataset, which has 3.5M entities and 627M triples, on
average, a user might have to review 192 links while exploring a focus entity.

We observed users following different strategies when presented with too many
choices in the browsing interface: (i)clicking on the nearest classification link from
the 'facts facet' (e.g. plucked string instruments or string instruments) to see gen-
eral characteristics in the case of bouzouki as part of task 1. However, users rarely
clicked on links from the facts facet as part of the task 2, as the task did not require
this; (ii) clicking on instruments mentioned in the 'related terms facet'– (e.g. lute and
mandolin mainly in task2; (iii) clicking on something (e.g. 'an instrument') that
‘sounds familiar’ (e.g. sitar, banjo, pipa in task 1); (iv) click on something (e.g. 'an
instrument or an album') that sounds interesting or unusual (e.g. oud, xalam in task 1
and noticing a women artist or something interesting in the album name in task 2);
(v) clicking on something that looks important (e.g. an artist has several albums in
task 2); and, (vi) clicking randomly (after exhausting other strategies).

This observation is in line with the latest research in search engines and HCI; in-
creasing numbers of options can make designers and users feel less confident when
deciding and less happy with the results[10]. To support varied level of selection
strategies, following requirement is derived.

Requirement 4. Take into Account Context to Cater for Interests and Importance.
People when faced with many choices do select what they find use-
ful/familiar/interesting/unusual/important. Hence, there is a merit in making it easier
for users to decide/spot easily these values. The challenge here is how to measure and
decide these values from the available options for a specific user or holistically.

382 D. Thakker et al.

5 Semantic Signposting to Assist Exploratory Search

The identified requirements from the study indicated the need for further algorithmic
support to realise the exploratory search potential of semantic data browsers. One
possible approach to address these requirements is semantic signposting.

In uni-focal exploration, a user focuses on one entity at a time represented on a
page. This entity page contains links to various descriptions, image and links to other
entities. Such entity page can be treated as a juncture in journey where the explorer
has to make few choices. Some of the requirements elicited can be addressed by pro-
viding signposts guiding the explorer in making a choice about paths she can take.

Only showing 'important' links which are a subset of all possible links for the
user to review as part of next path he/she can take. Let us call ‘candidate entities’ all
the links possible to navigate from a focus entity page. Importance of each candidate
entity can be computed based on density parameters such as – number of further enti-
ties available from a candidate entity (i.e. number of directly connected entities to the
candidate entity), number of potentially reachable entities from this entity (i.e. num-
ber of entities connected to candidate entity via directly connected entities) and type
and weight of the connection (e.g. semantic relationship between candidate entities
and it’s directly connected entities). The judgement of creating subset of links can be
implemented using density metrics for the semantic graphs[11], where density func-
tion shall allow comparing how dense/informative each of the path is originating from
a candidate entity. The subset of links to be shown to the user in this case will be
based on the density value of each link (i.e., candidate entity).

For more creative tasks (such as task 2 in our study) which require browsing
through a large amount of content, the study appeared to provide indication that it will
not be very beneficial to limit the user entity choices, as this can affect the free content
exploration. Instead, signposting can include some indicators about the ‘importance’
or ‘value’ of a content item, e.g. if there is any description (or any multimedia con-
tent), its source of the content (e.g. DBpedia), if further semantic links are available in
the content (e.g. albums with several musical instruments) to facilitate user choices.
There can be some ordering based on the value. Again the judgement of importance
can be implemented using density metrics for the semantic graphs.

Adaptive Signposts. One of the other parameters to consider while judging impor-
tance of links is consideration of user’s prior knowledge, e.g. does user already know
about a particular entity or class of entity? Such consideration in creation of signposts
(i.e. reducing number of links shown to the user) can allow users to decide what is
useful/familiar/interesting/unsual/important(R4). A possible way to ‘sense’ previous
knowledge is to analyse the user clicks on the low classification level links – clicking
on an instrument can indicate some familiarity with its most specific classification
category (e.g. in the study, users familiar with Russian musical instruments clicked on
Balalaika and users familiar with Chinese musical instruments clicked on Pipa). The
necessary techniques to address such requirements can benefit from the research in
the user modelling, adaptation and personalisation. Such solution can allow creating
signposts that include familiar and new knowledge together. Putting familiar and new
items together in such a way can deepen the learning by association[12].

 Assisting User Browsing over Linked Data: Requirements Elicitation 383

6 Conclusions

We have presented a study with a traditional uni-focal semantic data browser to ob-
serve browsing behaviour of users while interacting with several linked semantic
datasets aiming at deriving requirements to inject intelligent features. We have found
several intricate challenges that are applicable to typical interaction over linked se-
mantic datasets. For example, disparity of the options available while browsing from
an entity. In some cases large number of links available from an entity, hence posing
too many options for the user to choose from and in other cases no links or informa-
tion available making users frustrated. We have also observed and reported varied
levels of selection strategies when a user is faced with too many options.

Acknowledgements. The research reported in this paper is supported by the EU 7th
Framework Programme under grant agreement ICT 257184 (DICODE project).

References

1. Waitelonis, J., Knuth, M., Wolf, L., Hercher, J., Sack, H.: The Path is the Destination–
Enabling a New Search Paradigm with Linked Data. In: Linked Data in the Future Internet
at the Future Internet Assembly (2010)

2. Marchionini, G.: Exploratory search: from finding to understanding. Communications of
the ACM 49, 41–46 (2006)

3. Ferré, S., Hermann, A.: Semantic Search: Reconciling Expressive Querying and Explora-
tory Search. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 177–192. Springer, Hei-
delberg (2011)

4. Popov, I.O., Schraefel, M.C., Hall, W., Shadbolt, N.: Connecting the Dots: A Multi-pivot
Approach to Data Exploration. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein,
A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 553–
568. Springer, Heidelberg (2011)

5. schraefel, m.: What does It Look Like, Really? Imagining how Citizens might Effectively,
Usefully and Easily Find, Explore, Query and Re-present Open/Linked Data. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm,
B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 356–369. Springer, Heidelberg (2010)

6. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of
empirical and theoretical research. I. J. Human Mental Workload 11, 139–183 (1988)

7. Wildemuth, B.M., Freund, L.: Assigning search tasks designed to elicit exploratory search
behaviors. In: Proceedings of the Symposium on Human-Computer Interaction and Infor-
mation Retrieval, HCIR 2012, pp. 1–10 (2012)

8. Dimitrova, V., Lau, L., Thakker, D., Yang-turner, F., Despotakis, D.: Exploring Explorato-
ry Search: A User Study with Linked Semantic Data. In: ACM Workshop on Intelligent
Exsploration of Semantic Data (IESD 2013), pp. 9–16 (2013)

9. Mudambi, S.M., Schuff, D.: What Makes a Helpful Online Review? A Study of Customer
Reviews on Amazon.com. MIS Quarterly 34, 185–200 (2010)

10. Oulasvirta, A., Hukkinen, J., Schwartz, B.: When More Is Less: The Paradox of Choice in
Search Engine Use. J. Evaluation, 1–7 (2009)

11. Alani, H., Brewster, C.: Ontology Ranking based on the Analysis of Concept Structures.
In: Proceedings of the 3rd International Conference on Knowledge Capture (2005)

12. Roschelle, J.: Learning in Interactive Environments: Prior Knowledge and New Experience.
Knowledge Creation Diffusion Utilization, American Association of Museums, 37–51 (1995)

A Framework for Migrating Web Applications
to Web Services

Asil A. Almonaies, Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

School of Computing, Queens University
Kingston, Ontario, Canada

{asil,alalfi,cordy,dean}@cs.queensu.ca

Abstract. In this paper, we present a framework for semi-automatically migrat-
ing monolithic legacy web applications to service oriented architecture (SOA)
by separating potentially reusable features as web services. Software design re-
covery and source transformation techniques are used to automatically analyze
and reprogram web application code to migrate existing web-based systems to
support inter-business services and interactions. Such modernization helps make
web applications more flexible, allowing them to more easily integrate function-
ality with other systems and respond to rapidly changing business needs. While
the problem of migrating other kinds of legacy software systems to an SOA en-
vironment has been well studied in the literature, approaches to migrating legacy
web applications to web services are lacking. We demonstrate our framework on
the analysis and automated restructuring of an existing PHP web application, by
migrating integrated internal features to independent, reusable web services.

1 Introduction

Service Oriented Architecture (SOA) is an increasingly important software architecture,
designed to flexibly interconnect software components in response to rapid changes in
the business environment. In SOA, applications are split into separate software services
that can be maintained independently and easily reused. In order to provide the ad-
vantages of SOA in the context of the world wide web, Web Services are used as an
enabling technology, allowing web-based business functionalities to interconnect in an
object-model-neutral manner.

At present the vast majority of production web applications use a monolithic stand-
alone software style. These applications are designed largely without clear modularity,
which makes their maintenance and enhancement in response to rapidly changing busi-
ness requirements a difficult task. Rather than re-implement the business functionality
of these applications as services from scratch for the new world of interoperation and
reuse, web providers would prefer to preserve their investment by migrating their exist-
ing web application functionality to web services. These dynamic legacy web applica-
tions are simply too important to be discarded, and thus they must be reused.

Several modernization approaches to move legacy systems to SOA environments
have been described in the literature. However, to our knowledge only a few research
studies have attempted to address the problem of automatically moving monolithic
legacy dynamic web applications to SOA. Moreover, the work that is done in this area
[1, 2, 3] is very general, discussing the benefits leveraging existing web applications in

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 384–399, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Framework for Migrating Web Applications to Web Services 385

moving to web services, without proposing any practical framework for actually imple-
menting the change.

The nature of monolithic dynamic web applications, often with mixed paradigms and
multi-lingual code, makes analysis and refactoring for the purpose of migration to SOA
a challenging and error-prone problem. Automation of the migration process reduces
human intervention, which reduces the time and cost and increases the consistency of
the migrated code.

In this paper we present a framework and tool set that largely automates the migration
from monolithic PHP web applications to SOA. Software design recovery and source
transformation techniques are used to assist in automating the migration from legacy
web applications to service-oriented web services. The result can be considered to be a
service-oriented web application that implements the endpoints of a Web Service. The
framework can also be used to combine different sets of services from two or more
different web applications to construct a new web service application which behaves
like the two original applications together.

The contributions of this paper are:

– A framework using an iterative process of incremental steps to analyze and repro-
gram existing web applications to web services based on the Service Component
Architecture (SCA) web services standard.

– An automatic extraction process to extract and separate identified business features
in dynamically-typed scripting languages as object-oriented classes.

– An automatic process for inferring the types of parameter values in dynamically–
typed scripting languages using instrumentation and coverage testing.

– An automatic process for converting an object-oriented class into an SCA service
component.

– A prototype set of tools using source analysis and transformation to automate the
reprogramming of web applications written in PHP to extract and separate identi-
fied business features as web services.

– A demonstration of the framework and tool set in extracting web services from
SCARF, a monolithic web application for a conference and research paper discus-
sion forum, and automatically reprogramming it to use these services.

The rest of this paper is organized as follows: Section 2 gives an overview of our frame-
work for SOA migration, and Section 3 details the steps of our automated iterative
migration process. Section 4 presents a case study using our framework and automated
process in practice. Section 5 relates our work to other work in SOA migration, and
finally Section 6 summarizes our conclusions and outlines our future work.

2 A Web Application to SOA Migration Framework

Our proposed framework uses a new approach to the problem of legacy system migra-
tion to service-oriented architecture. It is one of the first approaches to explore the area
of moving a monolithic web application to SOA with significant levels of automation.
The proposed framework (Figure 1) consists of two main steps, Service Identification
and Service Migration, to produce a new application using web services.

386 A.A. Almonaies et al.

2.1 Service Identification

While our work concentrates on the service migration aspect of the problem, one of
the main challenges in modernizing a web legacy system is the identification of poten-
tial service functionality that may have business value. Our approach does not attempt
to solve the identification of services, rather we leverage the results of other research
such as the work done by Asuncion et al.[4], which uses goal-based, model-driven and
service-oriented approaches to identify business rules in the application.

Dynamic
Web application

Adapted
Web application
Using Services

Fig. 1. A Migration Framework

In our framework, the output of the service identification step is a marked-up version
of the web application source code in which sections of code with the desired business
functionality have been identified as the operations of a candidate service. This tagged
candidate service is then the input to our automated migration process.

In this paper we carried out the identification process manually. Based on the func-
tionalities that we wanted to extract from the adapted web application, we identified
each potential operation of the candidate service using XML markup of the application
source. In our identification notation, each candidate service operation is marked up us-
ing a <service function = function-name> tag, where function-name is a user-suggested
name for the candidate service operation (Figure 2).

2.2 Service Separation and Migration

Candidate service migration is the process of separating each identified candidate ser-
vice into a separate class , extracting it from the original application code, converting the
created class into a separate independent service, and adapting the original application
code to use the separated service. Once extracted and migrated to a separate service, the
extracted service is used by the adapted original application as a client, and can also be
easily used by other web applications.

Legacy web applications are generally implemented using scripting languages such
as PHP [5] or Python [6]. These languages are dynamically typed, reflexive and sup-
port dynamic changes to the code. The nature of monolithic dynamic web applications,
often with mixed programming paradigms, makes the analysis and refactoring of web
application source code challenging. Thus the process of separation & migration of
candidate services is time consuming, technically complex and error-prone.

While there are a number of different approaches to migrating various kinds of legacy
software systems to a service oriented architecture in the literature [7, 8, 9], approaches

A Framework for Migrating Web Applications to Web Services 387

<?php
include ("welcome.html");

$fname = "John";

<service function = Reverse>
$name = strrev ($fname);

</service>

echo "My name is".$name;
?>

Fig. 2. Example Marked Candidate Service Operation

to migrating web applications to web services are lacking [10]. This lack of other ap-
proaches, and the clear need for automation to assist in web application migration is
the focus of the work of this paper. The concrete goal of our research is to to automate
the separation and migration of identified candidate services in PHP-based web appli-
cations to web services using IBM’s Service Component Architecture (SCA) standard.
While our work concentrates on PHP in this paper, the same process and strategy can
be easily adapted to other web application languages and technologies.

3 Automating Service Migration

Our process for automating service separation and migration consists of several steps,
each implemented using a TXL [11] source transformation of the PHP web application
code. The five steps of our process are (Figure 3) :

1. Candidate Service Refactoring
2. Candidate Service Separation
3. Parameter Type Inference
4. Service Component Conversion
5. Database Refactoring

The following sections describe each of these steps in detail.

3.1 Candidate Service Refactoring

The input for the first step is the marked up source code of the web application which
identifies PHP code sections as potential operations of the candidate service. In the
simple example of Figure 2, a PHP code section is marked as the candidate service
operation "Reverse".

The refactoring step automatically creates a PHP function for each of the marked
up candidate code sections, and wraps them in a new class for the candidate service.
Parameters and results of the functions are inferred from the dependencies of the code
sections on their context, and the original code sections are replaced by parameterized
calls to the functions of the new candidate service class.

When this step is complete, the application has been refactored to separate the orig-
inal marked code sections into functions of the separate class (Figure 4). The user pro-
vides a name for the new class, in this case "Example".

388 A.A. Almonaies et al.

3.2 Candidate Service Separation

In the next step, we automatically separate the new candidate service class into a sep-
arate PHP class file and generate the appropriate PHP code necessary for the original
program to use it, including include directives for the separated class file and creation
of an instance object for use in the original code.

As part of the separation, we create a constructor class for each of the operations
wrapped in class, called the return class, which acts as a dictionary to contain the re-
turned values of the operation. The results of the candidate service separation step on
our simple example candidate class are shown in Figure 5.

Fig. 3. Steps of our Automated Process for Service Migration

class Example {
function Reverse ($name, $fname) {

$name = strrev ($fname);
return new Reverse_return ($name);

}
}

Fig. 4. Example Class Generated by the Refactoring Step

3.3 Parameter Type Inference

Like most web application languages, PHP is a dynamically typed language, and types
of function parameters are not normally specified. A parameter simply has whatever
type it takes on at run time. Parameters to service operations, by contrast, must be
specified as part of the service description.

A Framework for Migrating Web Applications to Web Services 389

Thus in this step we first instrument each function of the refactored and separated
candidate service class to dynamically capture parameter types, and then run the instru-
mented application to cover execution of every candidate service operation function.
The instrumentation stores in a file a table of each function annotated with the types of
the parameters it receives when actually run. In some cases, parameters end up with a
NULL type, if the corresponding variable has not been set when the function is called.
In this case we delete the NULL values as they do not affect the output.

The type table file is then used to explicitly annotate the parameters of the service
operation functions of the candidate service class with their expected types. These pa-
rameter types are required in the Service Component Conversion step (Section 3.4) both
for creating the Web Services Description Language (WSDL) service description of the
new service, and for creating SCA parameter annotations for the operations of the new
service. The result of the parameter type inference step is a fully typed version of the
separated candidate class file (Figure 6).

<?php
include ("welcome.html");

include_once "Example_return.php";
include_once "Example.php";
$Example_obj = new Example ();

$fname = "John";

$Reverse_return_obj = $Example_obj -> Reverse ($name, $fname);
$name = $Reverse_return_obj -> name;

echo "My name is".$name;
?>

(a) Refactored Original Code after Candidate Service Class Separation

<?php

include_once "Example_return.php";

class Example {
function Reverse ($name, $fname) {

$name = strrev ($fname);
return new Reverse_return ($name);

}
}
?>

(b) Separated Candidate Service Class

<?php
class Reverse_return {

public $name;
public function __construct ($name) {

$this -> name = $name;
}

}
?>

(c) Return Value Constructor Class for Reverse Operation of Separated Candidate Service Class

Fig. 5. Example Refactored and Separated Candidate Service Class

390 A.A. Almonaies et al.

<?php
include_once "Example_return.php";

class Example {
function Reverse (NULL $name, string $fname) {

$name = strrev ($fname);
return new Reverse_return($name);

}
}
?>

Fig. 6. Example Refactored and Separated Service Class after Type Inference

3.4 Service Component Conversion

After inferring parameter types of the separated candidate service class operation func-
tions, we are ready to reprogram the class into a real service component. In this step
we convert the separated candidate service class file into an SCA service component,
by adding the required SCA annotations to the class and each of its operation functions
specifying the name, number and types of the expected service operation message pa-
rameters. As part of this conversion, the Web Service Description Language (WSDL)
service description file is created automatically by the SCA technology.

<?php
include ("welcome.html");

include_once "Example_return.php";
include_once ("SCA/SCA.php");
$Example_obj = SCA :: getService ("Example.wsdl");

$fname = "John";

$Reverse_return_objStr = $Example_obj -> Reverse ($name, $fname);
$Reverse_return_obj = unserialize ($Reverse_return_objStr);
$name = $Reverse_return_obj -> name;

echo "My name is".$name;
?>

(a) Converted Original Application as SCA Client

<?php
include_once "Example_return.php";
include "SCA/SCA.php";

/**
* @service

* @binding.soap

*/
class Example {

/**
* @param string $fname

* @return string

*/
function Reverse (string $fname) {

$name = strrev ($fname);
return serialize (new Reverse_return ($name));

}
}
?>

(b) Converted Candidate Service Class as SCA Service

Fig. 7. Example Converted to a Web Service-based Application

A Framework for Migrating Web Applications to Web Services 391

In order to create an SCA component several steps are required. SCA service type
annotations must be added to each of the service operation functions of the candidate
service class to specify the types of parameters and return values of the operation. The
SCA interface and SCA service annotations must be generated for the candidate service
class to specify the service and its service binding (in the case of our conversions, the
SOAP messaging protocol). And finally, the original adapted web application must be
converted to a service client of the WSDL service description and SCA protocol.

Figure 7 shows the result of applying these transformations to the candidate service
class file and refactored original application to create an SCA-based client/server rela-
tionship using the new web service.

3.5 Database Refactoring

In the final step of our migration, the original application database is refactored to sep-
arate those tables used only by the new separated service into a separate database, and
remove them from the original application database. This allows the new web service
to be used by other applications independently of the original. In our current implemen-
tation of the framework, this final step is done manually when required.

4 A Case Study: SCARF

In the previous sections we have outlined our framework for automatic migration of
web applications to SOA using a sequence of source transformations that take identi-
fied potential service operations in the application code to separate reusable SCA web
services. Our running example has demonstrated the application of the process to a
small but representative toy web application.

Thus far we have used our framework on two real web applications, the Moodle
course management system [12], a large production web application used by thousands
of students and instructors worldwide, and SCARF, the Stanford conference and re-
search forum, a research discussion forum application [13]. Due to space limitations,
in this paper we only show the use of our framework in separating and migrating the
paper management functionality of SCARF to a web service.

4.1 The SCARF Paper Management Subsystem

SCARF [13] is a PHP-based web application designed to help researchers and confer-
ence administrators create and maintain discussion forums for their research papers. In
SCARF, papers are uploaded and stored in a database where users can view, comment
and edit them, as well as organize them into sessions. SCARF is intended to support
interactive conferences such as SIGCOMM, for which it was originally developed.

4.2 Step 1: Paper Management Service Identification

Our plan is to identify and separate a new web service for the research paper manage-
ment aspects of SCARF, separating it from the user interface code of the web applica-
tion so that it can be accessed and reused by other applications. The paper management

392 A.A. Almonaies et al.

system in SCARF supports several operations. For example, users can download a spe-
cific paper, edit the content of a paper, and add a new paper to the forum.

We begin by analyzing the SCARF source to identify the functionalities related to
paper management. The business logic of the paper management functionality is spread
over five PHP pages:

– editpaper.php: Logic to enable an authenticated user to add a new paper to the
forum or edit the information of existing papers.

– showpaper.php: Logic to access specific paper details, such as name, authors, ab-
stract, comments, the paper document and auxiliary files.

– showsession.php: Logic to show all papers available in a specific session with in-
formation about them.

– getpaper.php: Logic to download a paper.
– getfile.php: Logic to download an auxiliary file associated with a paper.

Each of these pages contains sections of code that provide particular discrete opera-
tions that we can identify as part of our candidate paper management service class,
interspersed with user interface code to present and interact with the page. Figure 8
shows the tagged candidate service operation code sections for the paper management
functionality of SCARF in the editpaper.php page.

4.3 Step 2: Refactoring

While candidate service operations are often contained in a single PHP source file, in
the case of the SCARF paper management functionality, the code is spread over several
different PHP source of the application. To handle this we use our refactoring transfor-
mation to generate several candidate service classes for the operations, one from each
PHP page, and merge the results into a single unified candidate service class (Figure 9)
before conversion to an SCA service.

We run our refactoring transformation in turn on each of the five tagged source pages,
generating a new separate candidate service class for each one, while adapting the orig-
inal page to use the new service. By specifying to the refactoring process that the new
candidate service classes should each have the same name, in this case papers, we pre-
pare them for merging.

When the refactoring step is complete, we have five generated candidate service
classes, each with the same name, and each with its own set of candidate service oper-
ations. We then merge the candidate service operation functions from the five different
classes into one single class file containing all of the candidate service operations, as
shown in Figure 9. If the different generated candidate service classes have two opera-
tions with the same name and functionality, then we merge them by hand into a single
operation function. If their functionality is different, then we must rename one of them
and its corresponding calls in the adapted page file.

As part of the refactoring transformation, the results required by each candidate ser-
vice operation are analyzed and a result value class generated for each candidate service
operation. These classes do not require merging since each is a unique separate class,
but the files containing them are merged into one, simply by concatenating them.

A Framework for Migrating Web Applications to Web Services 393

<?php
include_once("functions.php");
<markIncludes/>
include_once("header.php");
////////// (... 10 lines elided ...) //////////
if (isset($_GET[’paper_id’])) {

$id = (int) $_GET[’paper_id’];
<service function=getPaperDetails>
$result = query("SELECT title, abstract, session_id, pdf, pdfname FROM papers WHERE paper_id=’".$id."’");
$title = $result[0]["title"];
$abstract = $result[0]["abstract"];
$session_id = $result[0]["session_id"];
$pdf = $result[0]["pdf"];
$pdfname = $result[0]["pdfname"];
$result = query("SELECT user_id FROM authors WHERE paper_id=’".$id."’ ORDER BY ‘order‘");
$authors = Array();
if ($result){

foreach($result as $row) {
$authors[] = $row;

}
}
</service>

}
////////// (... 60 lines elided ...) //////////

include("editform3.php");
<service function=getFileEdit>
$result = query("SELECT name, data FROM files WHERE paper_id=’".$id."’");
</service>

////////// (... 75 lines elided ...) //////////
if (!isset($_POST[’paper_id’])) {

// new paper
<service function=addPaper>
$row = query ("SELECT MAX(‘order‘) as max FROM ‘papers‘ WHERE session_id = ’".$session."’");
$order = (int) $row[0] + 1;
query ("INSERT INTO papers (title, abstract, pdf, pdfname, session_id, ‘order‘) VALUES (’".$title."’, ’".$

abstract."’, ’".$pdf."’, ’".$pdfname."’, ’".$session."’, ’".$order."’)");
$row = query ("SELECT paper_id FROM papers WHERE title=’".$title."’ AND abstract=’".$abstract."’ AND pdfname

=’".$pdfname."’ AND session_id=’".$session."’ ORDER BY paper_id DESC");
$id = $row[0][’paper_id’];;
</service>

} else {
// updated paper paper

if (!empty($filename)) {
$pdfSetString = "pdf=’$pdf’, pdfname=’$pdfname’,";

} else {
$pdfSetString = "";

}
<service function=updatePaper>
query("UPDATE papers SET title=’".$title."’, abstract=’".$abstract."’, ".$pdfSetString." session_id=’".$

session."’ WHERE paper_id=’".$id."’");
$id = (int) $_POST[’paper_id’];
query("DELETE FROM authors WHERE paper_id=’".$id."’");
</service>

}
////////// (... 50 lines elided ...) //////////

$num = 0;
<service function=addAuthors>
foreach ($_POST[’authors’] as $author) {

if (! empty($author)) {
query ("INSERT INTO authors (‘paper_id‘, ‘user_id‘, ‘order‘) VALUES (’".$id."’, ’" .

mysql_real_escape_string($author) . "’, ’".$num."’)");
}
$num++;

}
</service>
if (!isset($_POST[’paper_id’])) {

print "Paper added successfully";
} else {

print "Paper updated successfully";
}
print ". View the paper";

}
include_once("footer.php");
?>

Fig. 8. Paper Management Operation Markup in the SCARF editpaper.php page

394 A.A. Almonaies et al.

Fig. 9. Generating and Merging Candidate Service Operations from Multiple Application Pages

4.4 Step 3: Type Inference

Once the generated candidate service classes for each page have been merged into a sin-
gle merged candidate service class, the remaining steps of the process simply proceed
as for a single page. We use the the dynamic type inference technique of Section 3.3 to
infer the types of the operation parameters of the new merged candidate service class
by instrumenting and running the class with the adapted application pages to gather and
store dynamic type information, and then use the type merging transformation to add
the inferred types to the merged candidate service class operation functions.

Figure 10 shows the merged SCARF paper management candidate service after the
instrumentation transformation, with instrumentation code highlighted. This temporary
instrumented version of the merged candidate service class is exercised by running
the SCARF application with the adapted application pages, exploring all of the paper
management related links from the SCARF user interface until all of the candidate
service operation functions have been called at least once.

The output of this step is an instrumentation file containing type signatures for all of
the parameters of all fourteen of the candidate service operation functions (Figure 11),
which are then merged into the candidate service class using the typing transformation
described in Section 3.3 to yield the fully typed merged candidate service class.

4.5 Step 4: Conversion to SCA

In the final stage of the automated migration, conversion to an SCA service component,
we use the transformations of Section 3.4 to turn the SCARF candidate service class
into an SCA-based web service, and modify the pages of the adapted SCARF web
application to use the new service as a client.

1. The typed candidate service class is automatically transformed to remove NULL
parameters, to insert code to unserialize parameters that are of type object or array,
and to serialize the result object of each operation.

2. The SCA annotation transformation of Section 3.4 is applied to the serialized candi-
date service class to yield an SCA service component. We add an include statement
for the SCA library, and SCA annotations for the class and methods. These include
@service and @binding.soap annotations for the class, and parameter and result
type annotations for each operation function. This enables the class as a service.

A Framework for Migrating Web Applications to Web Services 395

<?php
include_once ("functions.php");
include_once "papers_return.php";

class papers {
function addAuthors ($_POST, $author, $id, $num) {

$FileHandle = fopen ("/tmp/papers.merge.php", ’a’);
fwrite ($FileHandle, "class papers{\n function addAuthors(");
fwrite ($FileHandle, gettype ($_POST).’ $_POST’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($author).’ $author’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($id).’ $id’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($num).’ $num’);
fwrite ($FileHandle, ") {\n");
fwrite ($FileHandle, " }\n}\n");
fclose ($FileHandle);
foreach ($_POST [’authors’] as $author) {

if (! empty ($author)) {
query ("INSERT INTO authors (‘paper_id‘, ‘user_id‘, ‘order‘) VALUES (’".$id."’, ’".

mysql_real_escape_string ($author)."’, ’".$num."’)");
}
$num ++;

}
return new addAuthors_return ();

}

function updateFile ($id, $oldname, $name, $ext, $type, $data) {
$FileHandle = fopen ("/tmp/papers.merge.php", ’a’);
fwrite ($FileHandle, "class papers{\n function updateFile(");
fwrite ($FileHandle, gettype ($id).’ $id’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($oldname).’ $oldname’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($name).’ $name’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($ext).’ $ext’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($type).’ $type’);
fwrite ($FileHandle, ",");
fwrite ($FileHandle, gettype ($data).’ $data’);
fwrite ($FileHandle, ") {\n");
fwrite ($FileHandle, " }\n}\n");
fclose ($FileHandle);
query ("DELETE FROM files WHERE paper_id=’".$id."’ AND name=’".$oldname."’");
query ("INSERT INTO files (paper_id, name, ext, type, data) VALUES (’".$id."$’, ’".$name."’, ’".$ext."’,

’".$type."’, ’".$data."’)");
return new updateFile_return ();

}

////////// (12 more instrumented candidate service operation functions) //////////
}
?>

Fig. 10. Instrumented Merged Candidate Service Class for SCARF Paper Management

3. Invoking the converted service class using the SCA WSDL generation URL http :
//hostname/path/papers.php?wsdl causes the SCA platform to generate the
WSDL service description for the new service from the SCA annotations.

4. In the final transformation, the adapted source pages of the SCARF web application
are converted to be an SCA client of the new web service. We add the include
statement for the SCA library, create an instance of the proxy object for the service,
and update each service operation call to use it.

Figure 12 shows the final SCARF paper management service class after conversion to
an SCA service. Each of the adapted SCARF application pages from which the service
operations were extracted are converted to SCA WSDL clients of the service using the
final transformation of Section 3.4, and the migration is complete.

396 A.A. Almonaies et al.

<?php
class papers{
function getPaperDetails(array $result,integer $id,string $title,string $abstract,NULL $session_id,string $pdf,

string $pdfname,NULL $authors,array $row) { }
function getFileEdit(array $result,integer $id) { }
function updatePaper2(string $newname,integer $id,string $oldname) { }
function addPaper(array $row,integer $session,NULL $order,string $title,string $abstract,string $pdf,string $

pdfname,integer $id) { }
function updateFile(string $id,string $oldname,string $name,string $ext,string $type,string $data) { }
function updatePaper(string $title,string $abstract,string $pdfSetString,integer $session,integer $id,array $_POST

) { }
function deletePaper(integer $id,string $oldname) { }
function addAuthors(array $_POST,NULL $author,integer $id,integer $num) { }
function getFile(NULL $id,array $_GET,NULL $name,NULL $result) { }
function getpaper(NULL $id,array $_GET,NULL $result) { }
function getPaperAttribs(integer $id,array $_GET,array $result,NULL $title,NULL $abstract) { }
function getFileInfo(NULL $result2,string $id) { }
function paperTitle(NULL $result2,array $row) { }
function paperAuthor(array $result3,array $row2) { }

}
?>

Fig. 11. Type Instrumentation Output of the SCARF Candidate Service Class

4.6 SCARF / SOA: Testing the Result

We validated the conversion of the SCARF paper management subsystem into a web
service by testing the migrated SCARF web application in two ways.

First, we already knew how to cover all of the new web service operations from the
SCARF browser interface, because we already had to test all of the operations of the
candidate service class from the web interface as part of the type inference instrumenta-
tion step. To test the migrated SCARF, we exercised all of the same links in the SCARF
user interface to cover all of the operations of the new paper management web service,
and verified that the behaviour and output of each of the pages was the same for these
tests in both the original and the migrated web application.

Second, to be certain that we had not changed any hidden behaviour, we logged the
values of PHP variables before and after each tagged candidate service operation code
segment in the original application, and compared those values to the same variables be-
fore and after the calls to the corresponding web service operations of the new extracted
SCARF paper management web service.

5 Related Work

Our approach does not attempt to solve the identification of services, rather we leverage
the results of other research such as the work done by Asuncion et al. [4], which uses a
goal-based, model-driven approach to identify business rules in the application.

There has been a lot of work on migration of traditional legacy systems to SOA.
Lewis et al.’s [8] SMART process provides a set of guidelines to identify the context,
current system and target SOA system states and the gaps between them, and suggests
the steps required to create a migration strategy. O’Brien et al. [14] describe a strat-
egy for architecture reconstruction in legacy systems by identifying and reusing legacy
components as services. Zhang and Yang introduce the use of cluster analysis [15], and
Dwivedi and Kulkarni present a model-driven approach for service identification which
utilizes process maps and service hierarchies [16]. Other approaches are presented by
Chen et al. [17] and Aversano et al. [18].

A Framework for Migrating Web Applications to Web Services 397

<?php
include_once ("functions.php");
include_once "papers_return.php";
include "SCA/SCA.php";

/**
* @service

* @binding.soap

*/
class papers {

/**
* @param string $_POSTStr

* @param integer $id

* @param integer $num

* @return string

*/
function addAuthors (string $_POSTStr, integer $id, integer $num) {

$_POST = unserialize ($_POSTStr);
foreach ($_POST [’authors’] as $author) {

if (! empty ($author)) {
query ("INSERT INTO authors (‘paper_id‘, ‘user_id‘, ‘order‘) VALUES (’".$id."’, ’".

mysql_real_escape_string ($author)."’, ’".$num."’)");
}
$num ++;

}
return serialize (new addAuthors_return ());

}
/**

* @param string $id

* @param string $oldname

* @param string $name

* @param string $ext

* @param string $type

* @param string $data

* @return string

*/
function updateFile (string $id, string $oldname, string $name, string $ext, string $type, string $data) {

query ("DELETE FROM files WHERE paper_id=’".$id."’ AND name=’".$oldname."’");
query ("INSERT INTO files (paper_id, name, ext, type, data) VALUES (’".$id."$’, ’".$name."’, ’".$ext."’, ’".$

type."’, ’".$data."’)");
return serialize (new updateFile_return ());

}
/**

* @param string $newname

* @param integer $id

* @param string $oldname

* @return string

*/
function updatePaper2 (string $newname, integer $id, string $oldname) {

query ("UPDATE files SET name=’".$newname."’ WHERE paper_id=’".$id."’ AND name=’".$oldname."’");
return serialize (new updatePaper2_return ());

}
/**

* @param integer $id

* @param string $oldname

* @return string

*/
function deletePaper (integer $id, string $oldname) {

query ("DELETE FROM files WHERE paper_id=’".$id."’ AND name=’".$oldname."’");
return serialize (new deletePaper_return ());

}

////////// (10 more service operations) //////////
}
?>

Fig. 12. Final Migrated SCARF Paper Management Service Class

Much less work has been done in the area of migrating web applications to SOA.
Tatsubori and Takashi’s H2W framework [19] constructs web service wrappers for ex-
isting multi-paged web applications, and Dezhgosha and Angara [20] discuss how web
services can be used to leverage existing web applications in a similar way. Vijaya and
Rajan [21] focus on exploring the benefits of converting to web services, and Ajlan and
Zedan [22] have worked on exposing the assignment module of Moodle as a web ser-
vice, using a UML collaboration diagram to analyze and capture the necessary features.

In contrast, our work proposes a concrete generic framework of iterative steps for the
migration of identified functionality to web services. Our goal is automation, and we

398 A.A. Almonaies et al.

have implemented our framework as a source transformation-based toolset that largely
automates the migration of identified service operations in legacy PHP web applications
to SCA-based web services.

6 Conclusions and Future Work

In this paper we have presented a framework and tool prototype that automates the
migration of monolithic PHP web applications to web services in an SOA environment.
The framework represents a new approach to the problem of migrating legacy systems
to service-oriented architecture. It is one of the first approaches to explore the area
of moving monolithic web applications to SOA, and the first to describe a complete
detailed process with significant levels of automation.

Our framework consists of several automated steps: candidate service refactoring,
candidate service separation, parameter type inference, service component conversion,
and database refactoring. The result of applying our process is a new web application
in which identified business operations have been separated into web services that both
serve the original web application and can be reused by other applications.

At present our prototype implementation does not handle every feature of the PHP
language. In particular, the refactoring step does not always detect all modifications or
uses of variables in the tagged candidate service code fragments, in particular when
variables appear inside strings. As a result the inferred parameters and return classes
may in some unusual cases be incomplete. However, this is a well understood problem
and it is relatively straightforward to extend the implementation. Due to the use of
the TXL source transformation engine and its PHP grammar, at present our source
transformations do not retain PHP comments from the original code. This is a known
difficulty with source transformation tools, and can be addressed using the techniques
described in Malton et al. [23].

There are several future lines of research for our work. While our migration process
presently uses serialization to transfer non primitive data types, further analysis of the
client application and the candidate service class could provide automated assistance for
the migration of core data structures to Service Data Objects (SDO-DAS-XML) [24].
Currently every identified code segment in the original application is converted into a
separate service operation. Clone detection techniques could identify similar operations
and merge them into a single operation. While we have illustrated the automation of
our process on the PHP language, our framework and its steps are not specific to any
particular language. Extending our prototype automated migration tools to other web
application languages such as Python is another area for future research.

References

[1] Tatsubori, M., Takahashi, K.: Decomposition and abstraction of web applications for web
service extraction and composition. In: ICWS, pp. 859–868 (2006)

[2] Rajan, A., Otieno, J.: Leveraging traditional distributed applications to web services for
e-learning applications. In: DEXA, pp. 430–435 (2004)

[3] Dezhgosha, K., Angara, S.: Web services for designing small-scale web applications. In:
EIT, 4 p. (2005)

A Framework for Migrating Web Applications to Web Services 399

[4] Asuncion, C.H., Iacob, M.E., van Sinderen, M.: Towards a flexible service integration
through separation of business rules. In: EDOC, pp. 184–193 (2010)

[5] Achour, M., Betz, F., Dovgal, A., Loopes, N., Magnusson, H., Richter, G., Seguy, D.,
Vrana, J.: PHP Manual, http://www.php.net/manual/en/index.php (last ac-
cessed August 2011)

[6] Van Rossum, G.: Python programming language, http://www.python.org/ (last ac-
cessed August 2011)

[7] Smith, D.: Migration of legacy assets to service-oriented architecture environments. In:
ICSE, pp. 174–175 (2007)

[8] Lewis, G., Morris, E., O’Brien, L., Smith, D., Wrage, L.: SMART: The service-oriented
migration and reuse technique. In: STEP, pp. 222–229 (2005)

[9] Sneed, H.M., Sneed, S.H.: Creating web services from legacy host programs. In: WSE, pp.
59–65 (2003)

[10] Almonaies, A., Cordy, J.R., Dean, T.R.: Legacy System Evolution towards Service- Ori-
ented Architecture. In: SOAME, pp. 53–62 (2010)

[11] Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program. 61, 190–210
(2006)

[12] Moodle Trust: Moodle, http://Moodle.org (last accessed October 2010)
[13] Tarjan, P., McKeown, N.: The Stanford Conference and Research Forum,

http://scarf.sourceforge.net/ (last accessed March 2013)
[14] O’Brien, L., Smith, D.B., Lewis, G.A.: Supporting migration to services using software

architecture reconstruction. In: STEP, pp. 81–91 (2005)
[15] Zhang, Z., Yang, H.: Incubating services in legacy systems for architectural migration. In:

APSEC, pp. 196–203 (2004)
[16] Dwivedi, V., Kulkarni, N.: A model driven service identification approach for process cen-

tric systems. In: Congress on Services Part II, SERVICES-2, pp. 65–72 (2008)
[17] Chen, F., Li, S., Chu, W.C.C.: Feature analysis for service-oriented reengineering. In:

APSEC, pp. 201–208. IEEE Computer Society (2005)
[18] Aversano, L., Cerulo, L., Palumbo, C.: Mining candidate web services from legacy code.

In: WSE, pp. 37–40 (2008)
[19] Tatsubori, M., Takashi, K.: Decomposition and abstraction of web applications for web

service extraction and composition. In: ICWS, pp. 859–868 (2006)
[20] Dezhgosha, K., Angara, S.: Web services for designing small-scale Web applications. In:

International Conference on Electro Information Technology, 4 p. (2005)
[21] Rajan, A.V.S., Otieno, J.: Leveraging traditional distributed applications to web services for

e-learning applications. In: 15th Intl. Workshop on Database and Expert Systems Applica-
tions, pp. 430–435 (2004)

[22] Ajlan, A., Zedan, H.: E-learning (MOODLE) Based on Service Oriented Architecture. In:
The EADTU’s 20th Anniversary Conference, pp. 62–70 (2007)

[23] Malton, A.J., Schneider, K.A., Cordy, J.R., Dean, T.R., Dousineau, D., Reynolds, J.: Pro-
cessing software source text in automated design recovery and transformation. In: IWPC,
pp. 127–134 (2001)

[24] Charters, G., Peters, M., Maynard, C., Srinivas, A.: An introduction to Service Data Objects
for PHP, http://www.ibm.com/developerworks/library/os-sdophp/
(last accessed July 2011)

http://www.php.net/manual/en/index.php
http://www.python.org/
http://Moodle.org
http://scarf.sourceforge.net/
http://www.ibm.com/developerworks/library/os-sdophp/

Automatic Refinement of Service Compositions�

Umberto S. Costa1,��, Mirian Halfeld Ferrari2,
Martin A. Musicante1, and Sophie Robert2

1 Universidade Federal do Rio Grande do Norte, DIMAp, Natal, Brazil
{umberto,mam}@dimap.ufrn.br

2 Université d’Orléans, LIFO, Orléans, France
{mirian,sophie.robert}@univ-orleans.fr

Abstract. We propose a method for the automatic refinement of web
service compositions: given a composite web service specification over
abstract modules, our method generates lower-level versions of this com-
position. The refinement process is based on query rewriting techniques
extended to take into account not only functional and non-functional
requirements but also semantic information. Experimental results
illustrate the performance and scalability of the method.

Keywords: Web Services, Service Compositions, Automatic Refinement.

1 Introduction

The composition of web services is a central task in Service-Oriented Software
Development [1]. This task consists in combining pre-existing services in order to
achieve new functionalities. The selection of services is based on the requirements
of the compound service as well as on the descriptions of individual services.
Services from different providers may not agree on the representation of data
or functionality. The successful combination of services depends on the correct
matching between their interfaces. In this scenario, the composition designer is
in charge of providing mechanisms to find suitable services and to adapt their in-
terfaces as required by the composition. A number of initiatives were proposed to
tackle the problem of automatically composing web services. Approaches include
the adaptation of techniques from areas such as Databases [2] or AI Planning [3].

In this paper we propose a mechanism for the automatic refinement of web
service specifications, using semantic information. The Semantic Web can help
to broaden the choice of services. Ontologies [4] may be used to align the repre-
sentation of concepts, as well as to describe the relationships between services.
The developer can describe a compound application in terms of semantic de-
scriptions (abstract services). Each abstract service may correspond to one or

� This work was partly supported by the National Institute of Science and Tech-
nology for Software Engineering (INES), funded by CNPq (Brazil) 573964/2008-4;
CAPES/UdelaR (Brazil) 021/2010; CAPES/STIC-AmSud (Brazil) 020/2010; ANR
project ExaviZ.

�� Bolsista da CAPES - Braśılia/Brasil.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 400–407, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Refinement of Service Compositions 401

more concrete services, as published by individual providers. We assume that the
construction of a composition of concrete services is based on a software develop-
ment process formed by Specification, Refinement, Evaluation and Coding steps.
This paper focuses on the Refinement step and presents an algorithm to auto-
matically refine high-level specifications of service compositions into lower-level
ones. Our method is based on the MiniCon algorithm [5] for query rewriting,
known in the database domain. We begin with a higher-level composition spec-
ification expressed over abstract services and quality constraints. Our approach
generates several translations of this specification into compositions over con-
crete services. The solutions produced will be ranked (Evaluation) and coded
into concrete orchestrations. These two steps are beyond the scope of our work.

This paper is organised as follows: Section 2 describes our method; Section 3
presents some experiments; Section 4 concludes the paper.

2 Rewriting Compositions

Our algorithm for refining specifications of abstract compositions is structured
in two main phases. In the first one, each concrete service definition is scanned in
order to identify what parts of the specification it covers. The second phase of our
algorithm combines concrete services, in order to cover the whole specification.

Both the abstract composition and concrete services are defined in the same
way, by using the syntax: C(t̄) ≡def A1(t̄1), . . . , An(t̄n), Q1(t̄′1), . . . , Qm(¯t′m). The
elements of the tuple t̄ on the left-hand side of a definition are the formal param-
eters. These parameters represent input (marked with “?”) or output (marked
with “!”) data. The right-hand side of the definition consists of abstract service
calls and quality constraints. The same decorations are used for the parameters
of these items. Additionally, optional parameters of abstract services inside the
definition of concrete services are marked with “∗”. Quality constraints Qi(t̄)
are of the form (X op Y), (X op a) or (X ∈ C) where X and Y are variables, a
is constant, op ∈ {<,>,≤,≥,=} and C is a set of constants.

The first phase of our method consists in matching the specification of each
concrete service with parts of the abstract composition. Each concrete service
may be used to implement parts of the composition. Given the abstract compo-
sition C(. . .) ≡def A1(. . .), . . . , An(. . .), Q1(. . .), . . . , Qm(. . .) and each concrete
service Si(. . .) ≡def Ai(. . .), . . . , Aj(. . .), Qk(. . .), . . . , Ql(. . .), our algorithm
tries to match some abstract services on the right-hand side of the definition
of Si with the same services on the right-hand side of the definition of C. This
matching consists in a (semantic) mapping to make their parameters compati-
ble. For each possible matching, a tuple containing the mapping information is
produced. Each of these tuples is called a PCD (Partial Coverage Descriptor).

A Partial Coverage Descriptor D for a concrete service S and a composition
C is a tuple 〈S, h, ϕ,G,Def , has opt〉, where:
– S is the name of the concrete service involved in the matching.
– ϕ is a partial mapping from Terms(C) to h(Terms(S)). This mapping defines

the correspondence between the terms appearing on the abstract composition
and terms that appear on the concrete service definition.

402 U.S. Costa et al.

– h is a mapping from Terms(S) to Terms(S). For every term x that is not
a parameter of S, h(x) = x. For terms x and y that are parameters of S, h
may be such that h(x) = h(y), where for every parameter x we have that
h(x) = h(h(x)). This mapping is the head homomorphism in [5].

– G is the set of abstract service names and quality constraints covered by S.
– Def is a set of quality constraints of the abstract composition. Intuitively,

this set will contain those conditions that cannot be guaranteed by S alone.
– has opt is a boolean flag used to indicate that some abstract service in the

definition of S has been used in G and has an optional parameter. �

Roughly speaking, a PCD D indicates (i) which part of the abstract composition
is covered by a concrete service S and (ii) how to relate the data processed by
the composition with the parameters of the concrete service.

Example 1. Let C(x?, y!) ≡def A1(x?, x?), A2(x?, y!) be an abstract composition.
Let S(a?, b?) ≡def A1(a?, b?), A3(a?) be the specification of a concrete service.
Let us consider the abstract service callA1(x?, x?) in C. We can use the definition
of S to cover part of the composition. Indeed, it is possible to obtain the PCD
D = 〈S, ϕ, h, {A1}, ∅, false〉 where h(a) = a, h(b) = a and ϕ(x) = h(a). �

The algorithm below builds a set of PCDs, given an abstract composition C and
a set of concrete service specifications S.

Algorithm 1. (Build PCDs)

1procedure build PCDs(C, S)
2PCDs := ∅;
3for each abstract service A in the definition of C do
4for each concrete service S∈ S do
5if there are mappings h and ϕ for A in the definitions of C and S then
6G := {A};
7Def := ∅;
8PCD := 〈 S, h, ϕ, G, Def, has opt 〉;
9AS := {A′ | A′ is an abstract service or quality constraints in C sharing
10parameters with A or with other elements of AS}
11PCD OK := true;
12while AS�= ∅ and PCD OK do
13A’ := choose an abstract service from AS;
14if h, ϕ can be extended to cover A’ then
15Update PCD w.r.t. h, ϕ, G, Def, has opt
16AS := AS − A’;
17else PCD OK := false;
18if PCD OK then PCDs := PCDs ∪ PCD;

In the mappings for the abstract service A (line 5), parameters appearing on
the left-hand side of C should only be mapped to parameters appearing on the
left-hand side of concrete service definitions or optional ones. Then, Algorithm 1
looks for other abstract services or quality constraints connected to A. The set
AS contains all abstract services or quality constraints of C that (i) have a data
dependency to A and (ii) are not mapped by ϕ to parameters of S (line 9).

Automatic Refinement of Service Compositions 403

Example 2. Let C(y!) ≡def A1(x?, y!), A2(x!), x ≥ 10, y ∈ {5, 4, 3} be an abstract
composition. Let us suppose S(b!) ≡def A1(a?, b!), A2(a!), a = 10. We will obtain
a PCD covering not only the abstract service call A1(x?, y!), but, due to the
mapping of x (on the composition) to a on S (i.e., ϕ(x) = a), the PCD must also
cover the abstract service call A2(x!) and the condition x ≥ 10. This matching
is possible because service S may cover A2 and specifies that a = 10. �

One important difference between our algorithm and MiniCon [5], is that our
method supports the notion of optional parameters in the specification of a
concrete services, i.e., parameters that can be ignored. The information about
optional parameters is supposed to be provided by the vendor of the service as
part of its specification. This situation is described in the next example.

Example 3. Let C(u?, x!) ≡def A1(u?, v!, w!), A2(v?, w?, x!) be an abstract com-
position and S(a?, c!) ≡def A1(a?, ∗b!, c!) a concrete service specification where b
is an optional parameter. Algorithm 1 builds the PCDD = 〈S, h, ϕ, {A1}, ∅, true〉
where h is the identity function; ϕ(u) = a, ϕ(v) = b, ϕ(w) = c. There are two
data dependencies between A1 and A2, given by the parameters v and w on both
service calls. None of these data dependencies is taken into account when the set
AS is built at line 9 of Algorithm 1: (i) the variable v is mapped to the optional
parameter b on the specification of S and (ii) the variable w is mapped by ϕ to
c, which is a parameter of S. Notice that this PCD is marked as having optional
parameters (last component of the tuple is true). This information will be used
in the algorithm of the second phase to restrict combinations of PCDs. �

Our second phase algorithm combines PCDs to produce compositions over con-
crete services. To this end, it takes the set of PCDs produced by Algorithm 1
and looks for combinations of these PCDs to cover the right-hand side of the
abstract service composition C. This procedure is described by Algorithm 2.

Algorithm 2. (Combine PCDs)

1procedure Combine PCDs(C, PCDs)
2Given C = C(t̄) ≡def A1(. . .), . . . , An(. . .), Q1(. . .), . . . , Qm(. . .) and
3PCDs = {. . . , 〈Si, hi, ϕi, Gi, Defi, has opti〉, . . . };
4for each combination {PCD1, . . . ,PCDk}⊆ PCDs such that
5(a) {A1(. . .), . . . , An(. . .)} ⊆ G1 ∪ · · · ∪Gk;
6(b) ∀ i, j . Gi ∩Gj ⊆ Defi ∩ Defj ;
7(c) All deferred constraints in Def1 . . . Defk hold;
8(d) Input and output optional parameters should match.
9do Pre := ∅; Pos := ∅;
10for each variable x ∈ Qi such that Qi /∈ G1 ∪ · · · ∪Gk do
11if x is an input parameter of C then Pre := Pre ∪ Qi end if;
12if x is an output parameter of C then Pos := Pos ∪ Qi end if;
13publish 〈 Pre 〉 C′(EC(t̄)) ≡def S1(t̄1), . . . , Sk(t̄k) 〈 Pos 〉;

Algorithm 2 tries to cover the definition of the abstract composition C by
searching all subsets of PCDs such that: (a) they cover all the abstract services

404 U.S. Costa et al.

A1, . . . , An of C (line 5); (b) there is no overlapping of the abstract services
covered by these PCDs, except for deferred quality constraints (line 6); (c) the
deferred quality constraints of the PCDs must hold when their variables are
instantiated using the mappings of the PCDs (line 7); (d) each term in C mapped
to an optional output parameter (in the definition of Si) can only be mapped to
optional input parameters (in the definition of any concrete service) (line 8).

For each combination of PCDs satisfying the conditions above, one con-
crete composition is produced. The refined composition is published in line 13,
with its pre- and post-conditions. These conditions are properties of the ab-
stract composition that cannot be statically verified. Each concrete composition
C′(EC(t̄)) ≡def S1(t̄1), . . . , Sk(t̄k) has a parameter tuple obtained by applying
the function EC(t̄) to the parameters of the abstract composition. This function
expresses an equivalence class of parameters. The function EC(t̄) permits to
equate parameters that are different on the abstract composition but that are
mapped to the same term on a concrete service as shown in Example 4.

Example 4. Let C(x?, y?, z!) ≡def A1(x?, y?, w!), A2(w?, z!) be an abstract com-
position, S1(a?, r!) ≡def A1(a?, a?, r!) and S2(c?, d!) ≡def A2(c?, d!) be the spec-
ifications of concrete services. Algorithm 1 builds the following PCDs: D1 =
〈S1, h1, ϕ1, {A1}, ∅, false〉, where h1 is the identity, ϕ1(x) = a, ϕ1(y) = a and
ϕ1(w) = r; D2 = 〈S2, h2, ϕ2, {A2}, ∅, false〉 where h2 is the identity, ϕ2(w) = c
and ϕ2(z) = d. In D1, both x and y are mapped by ϕ1 to a and thus define the
equivalence class {x, y}. So, x and y correspond to the same parameter. Each oc-
currence of a must be replaced with the representative term of the equivalence
class {x, y}. Thus, we can generate the concrete composition C′ by using the
terms in EC(〈x, y, z〉), as follows: C′(x?, x?, z!) ≡def S1(x?, w!), S2(w?, z!). �

The parameters of S1(t̄1), . . . , Sk(t̄k) in the concrete composition (Algorithm 2,
line 13) are represented by the tuples t̄i. The terms in these tuples are obtained
as t̄i = f−1

i ◦ EC ◦ ψi ◦ hi(t̄′i), such that: (i) t̄′i are the parameters of Si; (ii)
the mappings ψi rename the variables of the service Si into the corresponding
variables of the abstract composition; and (iii) the conversion functions fi are
provided by a set of ontologies. For each t′j ∈ hi(t̄′), ψi(t

′
j) = tj, if ϕi(tj) =

fi ◦ hi(t
′
j), and t′j otherwise. As usual, conversion functions are bijective. In the

case of the same representation of data, conversion functions are the identity.
It can be proved that the concrete service compositions produced by the

combination of Algorithms 1 and 2 meet the requirements of the abstract com-
position, in functional terms. This is described by the following property:

Property 1 (Correctness). Given an abstract composition C, for each con-
crete composition C′ obtained by our algorithm, the following property holds:
∀ t̄, t̄′ . C′(t̄?, t̄′!) ⇒ C(t̄?, t̄′!). �

Property 1 ensures that the solutions obtained by our method are functionally
correct. Notice that the functionality implemented by the refined compositions
may not cover all the cases considered by the abstract composition. The compo-
sitions obtained by our method depend on the available concrete services. The
available services may not match all the cases of the specification.

Automatic Refinement of Service Compositions 405

3 Experiments

We have implemented a prototype of our method in Java on the basis of the
MiniCon program. In the second phase of our method, all combinations of PCDs
are considered, which implies an exponential time complexity (in the number of
PCDs generated by the first phase of the method)1. This is due to the combi-
natorial nature of the problem, which is also faced by the MiniCon Algorithm.
Figures 1 and 2 show the average time from 10 executions on a Dual Core
2.83GHz processor, 4GB RAM machine running Debian 6.

In Figure 1 we show the runtime for a composition with 10 abstract services
and a varying number of concrete services (with two left-hand side parameters)
defined by 10 abstract services. In these experiments each concrete service re-
sponds to the composition requirements with: (A) no quality constraint; (B)
five quality constraints added to each definition; (C) MiniCon without quality
constraints but with an optimization procedure. We have used an optimization
to avoid the combinatorial explosion of the MiniCon approach, since each ser-
vice can respond alone to composition requirements. The linear growth shown
in Figure 1 is due to this optimization. The overhead introduced by the quality
constraints in case (B) varies from 11% to 23% when compared to case (A).

Fig. 1. # Services × Time (ms)

In Figure 2, we show the runtime for an abstract composition formed by six
abstract services and one quality constraint. The number of concrete services
taken into account varies from 96 to 228. This is shown on the X-axis. For each
number of concrete services, we varied the proportion of them that satisfies the
quality constraints of the abstract composition. Percentages range from 0% to
100%. This is shown on the Z-axis of the picture. The Y-axis of the picture
corresponds to the average execution time of the program.

We observe that for a reduced percentage of services that complies with the
quality constraint, the first phase of the algorithm will produce a reduced number

1 The first phase of our method is O(m.n2), where m is the number of concrete services
and n is the number of abstract services invoked by the abstract composition and
concrete service definitions.

406 U.S. Costa et al.

Fig. 2. # Services × Qly Compliance × Time (ms)

of PCDs, allowing the second phase to work with a fewer combinations. As
the number of services that meet the quality restriction increases, the second
phase of the algorithm shows its combinatorial nature, making it difficult to
deal with more than about 150 concrete services. We should notice that on
usual situations, the number of available concrete services is not expected to be
that many. According to these preliminary experiments, our approach is feasible
for problems with up to almost two hundred concrete services (depending on the
proportion of quality constraints met by the concrete services).

4 Final Remarks

Selecting and composing services is not a new problem [6,7,8,9]: Some authors
[10,11] consider an automatic selection of services, from the semantic point of
view. To others, web service compositions are obtained as refinements of more
abstract specifications [8,12]. Query Rewriting techniques [13,2,5] have been con-
sidered for generating compositions from abstract specifications. Recently, re-
searchers have started to apply this technique in the context of web semantics
and web service composition [7,8,9]. Our work is inserted in this context, where
we use non-functional properties for fine-tuning the selection of services.

Our work adapts and extends the query rewriting method MiniCon to service
composition. In this new context, it is important to remark that the definition
of a composition or a service is not seen as a database query and, thus, is not
imposed to the same restrictions. Besides this adaptation (that, for instance,
makes useless the notion of safe rules required in [5]), the original method has
been expanded to deal with optional parameters and quality constraints.

The advantages of our approach are significant: it eases the user’s work, de-
ferring technical details to further steps; takes into account both functional and
non-functional requirements; offers different solutions that can be used latter
when dealing with service evolution in runtime; allows the use of domain ontol-
ogy information to perform data transformations (i.e., in practice, our algorithm

Automatic Refinement of Service Compositions 407

is capable of automatically performing data conversions in order to use services
whose parameters do not match exactly).

Experiments using our prototype implementation show that our approach is
feasible on real-life applications, where distinct concrete services rarely respond
to the same non-functional requirements (restricting the possible choices during
the rewriting). As a future direction, we are aware of the need of establishing
theoretical properties of our approach. We are currently working on the classifi-
cation of solutions according to an user profile.

Acknowledgements. Special thanks to Prof. R. Pottinger, who kindly made
available the code of MiniCon, and to S. Munier for implementing a prototype
of our method.

References

1. Marks, E., Bell, M.: Service-Oriented Architecture: A Planning and Implementa-
tion Guide for Business and Technology. Wiley (2006)

2. Levy, A.Y.: Logic-Based Techniques in Data Integration. In: Minker, J. (ed.) Logic-
Based Artificial Intelligence, pp. 575–595. Kluwer, USA (2000)

3. Rao, J., Su, X.: A survey of automated web service composition methods. In: Car-
doso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005)

4. Dobson, G., Sanchez-Macian, A.: Towards Unified QoS/SLA Ontologies. In: Pro-
ceedings of the IEEE Services Computing Workshops, SCW 2006, pp. 169–174.
IEEE Computer Society, Washington, DC (2006)

5. Pottinger, R., Halevy, A.Y.: Minicon: A scalable algorithm for answering queries
using views. VLDB J. 10(2-3), 182–198 (2001)

6. Alrifai, M., Risse, T.: Combining Global Optimization with Local Selection for
Efficient QoS-aware Service Composition. In: Proc. of the 18th International Con-
ference on World Wide Web, WWW 2009, pp. 881–890. ACM, New York (2009)

7. Barhamgi, M., Benslimane, D., Medjahed, B.: A query rewriting approach for web
service composition. IEEE Trans. Serv. Comput. 3(3), 206–222 (2010)

8. Thakkar, S., Ambite, J.L., Knoblock, C.A.: A data integration approach to auto-
matically composing and optimizing web services. In: Proc. of the ICAPSWorkshop
on Planning and Scheduling for Web and Grid Services (2004)

9. Zhao, W., Liu, C., Chen, J.: Automatic composition of information-providing web
services based on query rewriting. Science China Information Sciences, 1–17 (2011)

10. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic
composition of e-services. Technical Report 22-2003, Dipartimento di Informatica
e Sistemistica, Universita di Roma La Sapienza, Roma, Italy (2003)

11. Izquierdo, D., Vidal, M.-E., Bonet, B.: An expressive and efficient solution to the
service selection problem. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P.,
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 386–401. Springer, Heidelberg (2010)

12. Mesmoudi, A., Mrissa, M., Hacid, M.S.: Combining configuration and query rewrit-
ing for Web service composition. Technical Report RR-LIRIS-2010-015, LIRIS
UMR 5205 CNRS/INSA Lyon/U. Lyon 1/U. Lyon 2/EC Lyon (July 2010)

13. Duschka, O.M.: Query Planning and Optimization in Information Integration. PhD
thesis, Department of Computer Science, Stanford University (December 1997)

A Generative Approach for the Adaptive
Monitoring of SLA in Service Choreographies

Antonia Bertolino, Antonello Calabrò, and Guglielmo De Angelis

CNR–ISTI, Pisa, Italy
{antonia.bertolino,antonello.calabro,guglielmo.deangelis}@isti.cnr.it

Abstract. Monitoring is an essential means in the management of
service-oriented applications. Here, event correlation results crucial when
monitoring rules aim at checking the exposed levels of Quality of Service
against the Service Level Agreements established among the choreogra-
phy participants. However, when choreographies are enacted over dis-
tributed networks or clouds, the relevant monitoring rules might not be
completely defined a-priori, as they may need to be adapted to the spe-
cific infrastructure and to the evolution of events. This paper presents an
adaptive multi-source monitoring architecture synthesizing instances of
rules at run-time and shows examples of use on a demonstration scenario
from the European Project CHOReOS.

Keywords: Monitoring, Choreographies, Complex Event Processor,
SOA, SLA, QoS.

1 Introduction

Service choreographies specify the intended interaction protocol among a set of
cooperating services at the application business level [1]. With services becoming
more and more pervasive and critical in everyday life and business, increasing
importance assumes the quality exposed by those interactions. The agreed lev-
els of Quality of Service (QoS) between the involved parties form the Service
Level Agreements (SLAs). Hence, service choreographies are often augmented
with notations expressing the non-functional properties that the choreographed
service should abide by [2]. As a consequence, SLA monitoring and assessment
become essential assets of any environment supporting choreography enactment.

Within the context of SOA, in order to effectively detect unexpected or un-
desirable behaviors of services, locate the origin of the issue, or even predict
potential failures it is generally necessary to track, combine, and analyze events
occurring at different abstraction levels. Therefore, in contrast with the use of
more monitors operating in separate contexts, a promising strategy that is in-
vestigated in the literature is to architect SLA monitoring solutions able to
reveal or predict run-time anomalies due to the combination of phenomena orig-
inated from sources operating at different levels [3]. We have recently devel-
oped [4] a monitoring architecture supporting the SLA monitoring of service

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 408–415, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adaptive Monitoring of SLA in Service Choreographies 409

choreographies from multiple sources, namely the infrastructure and the busi-
ness layers, within the scope of the CHOReOS project1.

The above mentioned multi-source monitoring solution, though, had not been
conceived to deal with the continuous dynamic evolution that is typical of service
compositions. In a context in which services may dynamically appear and disap-
pear and are dynamically bound, it is reasonable to assume that the same SLA
requirements to be monitored may also evolve, even as a reaction to some occur-
ring event or situation that cannot be a-priori known. Moreover, the deployment
and the execution of applications on highly dynamic Cloud infrastructures in-
troduce further requirements of adaptability with respect to monitoring. Such
requirements must be directly addressed by developers, providers, and maintain-
ers of the choreography-based applications [5].

In this paper we present a monitoring infrastructure that improves on [4]
by supporting the dynamic evolution of SLA monitoring rules. Specifically, our
contribution is a generative approach for the adaptive multi-source monitoring
of SLAs in service choreographies.

The rest of the paper is structured as follows: Section 2 introduces our adap-
tive multi-source monitoring framework including a generative module for the
monitoring rules making the architecture adaptable at run-time; Section 3 re-
ports about a case study demonstrating the application of the approach; finally
Section 4 draws the conclusions.

2 Adaptive SLA Monitoring

In [4] we presented a monitoring architecture based on Glimpse [6] that sup-
ported the SLA monitoring of service choreographies from multiple sources. In
the following we refer to such starting configuration as a Multi-source Monitoring
Framework.

Fig. 1. Multi-source Monitoring Architecture

1 See at http://www.choreos.eu

http://www.choreos.eu

410 A. Bertolino, A. Calabrò, and G. De Angelis

As shown in Figure 1, the configuration relies on a Distributed Service Bus
(DSB) sharing distributed communication channels among the choreographed
services. The DSB distinguishes between a set of channels on which both co-
ordination and application messages flow (i.e. Data Plane), and another set
dedicated to the monitoring activities (i.e., Control Plane). The data passing
through the latter, can be correlated and analyzed by means of a Complex Event
Processor (CEP).

Via the DSB, the Multi-source Monitoring Framework integrates three differ-
ent monitoring facilities, each relative to a specific data source:
Infrastructure Monitor (IM): focuses on the status of the environment, providing
support for the monitoring of resources, both in terms of their utilization and
health status.
Business Service-Oriented Monitor (BSM): is responsible for monitoring the co-
ordination messages that the choreographed services exchange with each other
on the Data Plane channels of the DSB, by means of distributed interceptors.
Then, BSM analyzes the temporal sequence of those events, checks the compli-
ance of the SLA in the choreography specification, and, if any violation is found,
it notify over the Control Plane.
Event Monitor (EM): refers to a generic event-based monitoring infrastructure
able to bridge the notifications coming from the other two sources. Specifically
at this level the other two kind of sources are wrapped by means of Glimpse
Probes that forward notifications to the Glimpse CEP where they are processed
and correlated.

Let us now refer to a scenario, such as the one that is emerging within the
context of the Cloud paradigm, in which a solution that relies on the off-line
definition of the monitoring rules appears not effective, as it is not thinkable to
foresee a-priori the actual instantiation of the configurations. In fact, in the Cloud
computing model enterprises provide infrastructures (e.g. machines) on-demand
by allocating the exact amount of resources the customers need to use. Therefore,
the information about the nodes available, and the mapping of the services on
them becomes available only at run-time. Both the monitoring infrastructure
and the correlation rules should deal with such dynamic contexts and adapt
themselves according to the evolution of the deployment context.

To address such need, in this paper we propose a novel adaptive configuration
of the Multi-source Monitoring Framework that supports the definition of the
monitoring rules at run-time: the latter are synthesized by means of techniques
based on generative programming approaches [7]. In this sense, with respect
to the high-level hierarchical configuration presented in Section 2, the main
improvement toward adaptiveness at run-time is relative to the source Event
Monitoring.

In any event-based monitor, a central element is the CEP, which is the rule
engine that analyzes the primitive events, generated from some kind of probes,
in order to infer complex events matching the consumer requests. There exist
several rule engines that can be used for this task (like Drools Fusion, RuleML),
and for the sake of space we do not focus on traditional aspects of a CEP [6].

Adaptive Monitoring of SLA in Service Choreographies 411

Fig. 2. Main Components of the CEP for the Adaptive Monitor

We focus instead on the specific components that support adaptiveness: as de-
picted in Figure 2, we have extended the CEP in its functionalities by including
the sub-components: the Rules Repository, the Rule Generator, and the Tem-
plate Repository.

The component Rules Repository abstracts the definition of three kind of
repositories, each linking a dedicated kind of rule-set. Specifically, there is a
repository storing the rules matching infrastructure events; a repository storing
event rules about the SLA agreed among the choreographed business services;
finally an additional repository storing the meta-rules enabling the run-time
adaptation by means of generative procedures. A meta-rule is a special rule
whose body implements the run-time synthesis procedure for populating both
the SLA Rule Repository, and the Infrastructure Rule Repository.

Fig. 3. Diagram of Interactions during Rule Synthesis

412 A. Bertolino, A. Calabrò, and G. De Angelis

Figure 3 depicts a UML Sequence Diagram modeling the interaction schema
that takes place among the traditional CEP and its new sub-components. Specif-
ically, the rule generation is done in two steps. First, whenever a meta-rule within
the CEP matches, it triggers the synthesis by the Rule Generator component.
This will refer to the entries of the Template Repository relative to the kind
of rules to be generated: precisely, a rule template is a rule skeleton, the spec-
ification of which has to be completed at run-time by instantiating a set of
template-dependent placeholders. The Rule Generator will instantiate the latter
with appropriate values inferred at run-time. Second, once the run-time synthesis
of the new set of rules is completed, the Rule Generator loads the new rules into
their corresponding repository (either SLA Rule Repository or Infrastructure
Rule Repository) and enables them by refreshing the CEP’s rule engine.

For the sake of completeness, we remark that both the SLA Rule Repository,
and the Infrastructure Rule Repository can obviously also include sets of static
rules that do not depend on the generative process discussed above.

3 Demonstration Scenario

The presented monitoring framework provides the facilities to adaptively de-
tect and correlate events generated by different layers. In this section we show
how this can help problems detection on a scenario referred by a choreography
developed within the CHOReOS Project.

3.1 Scenario Description

In the following, the paper refers to the choreography “Manage Unexpected Ar-
rival” from the “Passenger-Friendly Airport” [8]. For the sake of presentation
with respect to the main contribution of the paper, the case study focuses on
the monitoring activities of the task Book Amenities [8], and more specifically
when the role Airport starts interacting with the other participants in the task
(e.g. Security Company, etc.).

Fig. 4. The Passenger-Friendly Airport Use Case

Adaptive Monitoring of SLA in Service Choreographies 413

Specifically, with respect to the interactions between the Airport, and the
Security Company, the paper reports how to combine the run-time assessment
of the QoS by the BSM with the information provided by the IM referring to
the status of the nodes hosting the services.

Within the configuration of the scenario the infrastructural nodes were
equipped on-purpose with means (i.e. “Load Knob”) for injecting artificial dis-
ruptions by overloading them.

The components of the Multi-source Monitoring framework were distributedly
deployed on dedicated nodes (i.e. hosting the DSB, the CEP, and the BSM).
According to the configuration presented in Section 2, the scenario included a
set of probes (i.e. Glimpse Probes) notifying either violations of SLAs at business
service level, or information about the status of the nodes in the cloud hosting
the services.

In addition, the BSM has been configured to intercept events on the Data
Plane, while the CEP and the Glimpse Probe were bound to the Control Plane.
Finally, an SLA regulating the latency of the interactions between the partic-
ipants Airport, and Security Company has been loaded and activated within
the BSM.

3.2 Execution and Adaptation

Within this case study we assumed that the rule knowledge base of the CEP
has been instructed with a meta-rule specifying the action/countermeasure to
activate if an SLA violation message occurs. We are assuming that the action
depends on the specific machine where the violation occurred, and moreover it
varies for the two different configurations about the monitored notifications: 1)
SLA violation && node overload; 2) SLA violation && node not overloaded.

When the BSM reveals that an SLA violation has occurred, its associated
Glimpse Probe sends a warning to the CEP. According to the generative process
described in Section 2, the CEP first interacts with an internal registry associated
with the Data Plane of the DSB in other to identify the IP address of the
machine running the specific instance of the service that violated the SLA; then,
its Rule Generator component synthesizes and enables a new rule looking for
issues on the node hosting that service.

Listing 1 reports the auto-generated rule after an SLA violation of the service
Security Company is raised to the CEP.

The generated rule is composed by two parts: the first begins at line 7, where
the $aEvent represents the SLA Alert event sent by the BSM to the CEP. It is
identified by the timestamp, a parameter checking if the event has been already
managed by the CEP (i.e. isConsumed), and the name of the event. The second
part begins at line 8, and represents the infrastructure event the Multi-source
Monitoring framework looks for matching. Notably, this second part specifies
a parameter called getMachineIP containing the IP address of the node that
generated the infrastructure-level notification, which would be matched with
the IP address retrieved from the SLA notification during the generation of the
rule. In addition, such a declaration refers to a filter on the window frame within

414 A. Bertolino, A. Calabrò, and G. De Angelis

which the correlation should be considered valid (see at line: 8). Specifically
Listing 1 specifies that two events can be correlated if $bEvent occurred within
a 10 seconds interval after $aEvent.

1 <ComplexEventRuleActionList xmlns="http://labse.isti.cnr.it/glimpse/xml/ComplexEventRule"...>
2 <Insert RuleType="drools"><RuleName>

SLA_violation_overload_Autogenerated_SecutiryCompanyService</RuleName>
3 <RuleBody>
4 rule "SecurityCompanyService_INFRASTRUCTUREVIOLATION"
5
6 when
7 $aEvent : GlimpseBaseEventChoreos(this.isConsumed == true, this.getTimeStamp == 1360752708858,

this.getEventName == "SLA Alert − SecurityCompanyService");
8 $bEvent : GlimpseBaseEventChoreos(this.isConsumed == false, this.getEventName == "load_one",

this.getMachineIP == "67.215.65.132", this after[0,10s] $aEvent);
9 then

10 $bEvent.setConsumed(true); update($bEvent);
11 ResponseDispatcher.LogViolation("...","auto_generated_rule", "\nSLA and Infrastructure violation by

service: SecurityCompanyService" + "\npossibly due to an overload on machine: " + $bEvent.
getMachineIP());

12 retract($aEvent); retract($bEvent);
13 end
14 </RuleBody>
15 </Insert>
16 </ComplexEventRuleActionList>

Listing 1. Generated Rule : SLA violation due to the overload of the hosting node

In the simulation case that no artificial overload is injected, the rule at Listing 1
applies, and a notification is dispatched to the service provider/administrator as
potentially the violation may be due to the service itself. On the other hand, by
querying the “Load Knob” on the node hosting the Security Company service , it
is possible to inject some artificial disruption at the infrastructure level. In this
case, when both the SLA violation on Security Company and a notification of an
overload peak from the machine hosting it occur, the rule at Listing 1 matches.
The assigned countermeasure is to dispatch a notification for redistributing some
of the services active on that specific node onto some others nodes of the cluster.

4 Conclusion and Future Work

Adaptability is a key problem in the distributed and dynamic environments
subsumed by the paradigm of the service choreographies. Specifically, as chore-
ographies are abstract specifications, they may include interaction schema that
can evolve after the design phase, so that unexpected events or scenarios may
actually take place at run-time.

In addition, adaptability is a crucial asset for monitoring infrastructures cor-
relating phenomena originated from sources operating at different abstraction
layers; for example trying to understand the causes of run-time anomalies such
as the SLA violations among participants of a choreography. In these contexts
the dynamicity is even more evident when the participants are executing in a
distributed cloud-based infrastructure.

In this work we extended the Multi-source Monitoring framework originally
introduced in [4] with features supporting the adaptive generation of the moni-
toring rules at run-time. Other works already exist, e.g. [3], and [5], arguing that
SOA monitoring cannot address separately layer-specific issues. Moreover, the

Adaptive Monitoring of SLA in Service Choreographies 415

authors of both [9], and [10] previously considered that the monitoring activity
can be enhanced with adaptation. On the one hand, these frameworks mainly
refer to orchestrated service compositions while we focused on decentralized and
message-oriented scenarios that are typical of service choreographies. On the
other hand, our architecture refers to “adaptiveness” as a mean to deal with
configurations/scenarios that cannot be completely specified either at design, or
deployment time. The work and the application case study have been developed
as part of the demonstrators of the CHOReOS project.

An interesting aspect of [9] that our work did not consider yet concerns the
verification of the consistency between the run-time generated rules and the ones
already loaded within the CEP. We are interested in supporting means ensuring
such kind of consistency for the Multi-source Monitoring framework.

Acknowledgments. This work is part of the European Project FP7 IP 257178:
CHOReOS. We thank the colleagues from Linagora and University of São Paulo
for their contribution to some components of the Multi-source Monitoring
Framework.

References

1. Barker, A., Walton, C.D., Robertson, D.: Choreographing Web Services. IEEE T.
Services Computing 2(2), 152–166 (2009)

2. Bartolini, C., Bertolino, A., Ciancone, A., De Angelis, G., Mirandola, R.: Non-
Functional Analysis of Service Choreographies. In: Proc. of the Workshop on Prin-
ciples of Engineering Service Oriented Systems. IEEE-CS (June 2012)

3. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered Monitoring
and Adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2012. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

4. Ben Hamida, A., Bertolino, A., Calabrò, A., De Angelis, G., Lago, N., Lesbegueries,
J.: Monitoring service choreographies from multiple sources. In: Avgeriou, P. (ed.)
SERENE 2012. LNCS, vol. 7527, pp. 134–149. Springer, Heidelberg (2012)

5. Katsaros, G., Kousiouris, G., Gogouvitis, S.V., Kyriazis, D., Menychtas, A.,
Varvarigou, T.: A Self-adaptive hierarchical monitoring mechanism for Clouds.
JSS 85(5), 1029–1041 (2012)

6. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a
Model-Driven Infrastructure for Runtime Monitoring. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 130–144. Springer, Heidelberg (2011)

7. Czarnecki, K., Eisenecker, U.W.: Generative programming - methods, tools and
applications. Addison-Wesley (2000)

8. Chatel, P., Vincent, H. (eds.): Passenger Friendly Airport Services Choreographies
Design. Number Del. D6.2. The CHOReOS Consortium (2012)

9. Contreras, R., Zisman, A., Marconi, A., Pistore, M.: PRadapt: A framework for
dynamic monitoring of adaptable service-based systems. In: Proc. of the Workshop
on Principles of Engineering Service Oriented Systems, pp. 50–56 (June 2012)

10. Wetzstein, B., Karastoyanova, D., Kopp, O., Leymann, F., Zwink, D.: Cross-
organizational process monitoring based on service choreographies. In: Proc. of
the Symposium on Applied Computing, pp. 2485–2490. ACM (2010)

Detecting Occasional Reputation Attacks

on Cloud Services

Talal H. Noor, Quan Z. Sheng, and Abdullah Alfazi

School of Computer Science
The University of Adelaide, Adelaide SA 5005, Australia

{talal,qsheng,abdullah}@cs.adelaide.edu.au

Abstract. Cloud service consumers’ feedback is a good source to assess
the trustworthiness of cloud services. However, it is not unusual that a
trust management system experiences malicious behaviors from its users.
Although several techniques have been proposed to address trust man-
agement in cloud environments, the issue of how to detect occasional rep-
utation attacks on cloud services is still largely overlooked. In this paper,
we introduce an occasional attacks detection model that recognizes mis-
leading trust feedbacks from occasional collusion and Sybil attacks and
adjusts trust results for cloud services that have been affected by these
malicious behaviors. We have collected a large collection of consumer’s
trust feedbacks given on real-world cloud services (over ten thousand
records) to evaluate and demonstrate the applicability of our approach
and show the capability of detecting such malicious behaviors.

Keywords: Trust Management, Cloud Computing, Occasional Attacks,
Attacks Detection.

1 Introduction

The highly dynamic, distributed, and non-transparent nature of cloud services
makes trust management in cloud environments a challenging problem [10,6,8].
Several techniques have been proposed to assess and manage trust based on
feedback collected from participants [6,5,1]. However, not much attention has
been given to detect occasional and periodic reputation attacks on cloud services.
The main goal of our work is to detect occasional and periodic reputation attacks
on cloud services1. Unfortunately, this is not an easy task due to some unique
characteristics of cloud environments: i) consumers are dynamic and may have
multiple accounts for a particular service (e.g., owning multiple email accounts in
Gmail) which makes it difficult for a Trust Management Service (TMS) to detect
whether a Sybil attack is performed; ii) the occasional way that these attacks
occur, as described in [10], which makes the detection of such malicious behaviors
a significant challenge and significantly affects the performance of TMS. TMS

1 Other techniques for detecting attacks on different distributions over an extended
period of time are previously proposed. Interested readers are referred to [9,8] for
more technical details.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 416–423, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Detecting Occasional Reputation Attacks on Cloud Services 417

should be able to efficiently detect such attacks and thus dilute the influence of
those misleading feedbacks to enable more robust trust calculations.

In this paper, we overview the design and implementation of the occasional
attacks detection model. This model allows TMS to detect misleading feedbacks
from collusion and Sybil attacks and helps to have robust trust calculations. In
a nutshell, the salient features of the model are i) Occasional Collusion Attacks
Detection Metric: this metric distinguishes between misleading and credible feed-
backs by detecting the occasional collusion attacks (i.e., attackers who intend
to manipulate the trust results by giving multiple trust feedbacks to a certain
cloud service in a short period of time [3]); ii) Occasional Sybil Attacks Detection
Metric: this metric allows TMS to identify misleading trust feedbacks from Sybil
attacks and detect occasional Sybil attacks (i.e., attackers who create multiple
identities and leave misleading trust feedbacks in a short period of time to trick
cloud service consumers into trusting cloud services that are not trustworthy [4]);
iii) Adaptivity and Flexibility: the model is adaptive and flexible in the sense that
it is possible to tweak the metrics according to the trust evaluation needs (e.g.,
to detect the collusion attacks only or to detect both attacks).

The remainder of the paper is organized as follows. Section 2 details the trust
management service including the trust feedback collection and assessment and
briefly describes the identity management service. Section 3 describes the details
of our occasional attacks detection model. Section 4 reports the implementation
and several experimental evaluations. Finally, Section 5 discusses the related
work and provides some concluding remarks.

2 Trust Management Service (TMS)

In a typical reputation-based TMS, consumers either give feedback regarding
the trustworthiness of a particular cloud service or request trust assessment for
the service2. From consumers’ feedback, the trust behavior of a cloud service is
represented by a tuple H = (C, S, F , Tf), where C is the consumer’s primary
identity, S is the cloud service’s identity, and F is a set of feedbacks (i.e., based
on several Quality of Service (QoS) parameters including availability, security,
response time, etc.). Each feedback in F is represented in numerical form with the
range of [0, 1], where 0, 1, and 0.5 means negative, positive, and neutral feedback
respectively. Tf is the timestamps when feedbacks are given. TMS calculates the
trust result, denoted as Tr(s), from the collected feedbacks as follows:

Tr(s) =
∑|V(s)|

c=1 F(c, s) ∗ Oa(s, t0, t)

|V(s)| + χ ∗ Ct(s, t0, t) (1)

where V(s) denotes feedbacks given to the cloud service s and |V(s)| represents
the total number of trust feedbacks. F(c, s) are feedbacks from the cth consumer
weighted by the occasional attacks detection factors Oa(s, t0, t) to allow TMS
to dilute the influence of misleading feedbacks. F(c, s) is held in the invocation

2 We assume a transaction-based feedback where all feedbacks are held in the TMS.

418 T.H. Noor, Q.Z. Sheng, and A. Alfazi

history record h and updated in TMS. Ct(s, t0, t) is the change rate of trust results
in a period of time that allows TMS to adjust trust results for cloud services that
have been affected by malicious behaviors. χ is the normalized weight factor for
the change rate of trust results which increase the adaptivity where the higher
χ is, the more the cloud service is rewarded and vice versa. More details on how
to calculate Oa(s, t0, t) and Ct(s, t0, t) are described in Section 3.

Since trust and identification are closely related [2], the Identity Management
Service (IdM) can facilitate TMS in the detection of occasional Sybil attacks
against cloud services without breaching the privacy of consumers. When con-
sumers attempt to use TMS for the first time, they are required to register
their credentials at the trust identity registry in IdM to establish their identi-
ties. The trust identity registry stores an identity record represented by a tuple
I = (C, Ca, Ti) for each consumer. C is the consumer’s primary identity. Ca rep-
resents a set of credentials’ attributes (e.g., passwords, IP address, etc.) and Ti
represents the consumer’s registration time in TMS. More details on the detec-
tion of occasional Sybil attacks can be found in Section 3.

3 Occasional Attacks Detection Model

Occasional Collusion Attacks Detection Metric. We consider time in detecting
occasional and periodic collusion attacks (i.e., periodicity). In other words, we
consider the total number of feedbacks |V(s)| given to cloud service s during
a period of time [t0, t]. The sudden change in the feedback behavior indicates
an occasional feedback collusion. To detect such behaviors, we measure the per-
centage of occasional and periodic change in the total number of trust feedbacks
among the whole feedback behavior (i.e., consumers’ behavior in giving feedbacks
for a certain cloud service). The occasional feedback collusion factor Of (s, t0, t)
of cloud service s in a period of time [t0, t], is calculated as follows:

Of (s,t0, t) = 1−

⎛
⎝
(∫ t

t0
|V(s, t)| dt

)
−
(∫ t

t0
Δf (s, t)dt

)
∫ t

t0
|V(s, t)| dt

⎞
⎠

whereΔf (s, t) =

⎧⎪⎨
⎪⎩
Cμ (|V(s, t)|) if |V(s, t)| ≥

Cμ (|V(s, t)|)
|V(s, t)| otherwise

(2)

where the first part of the numerator represents the whole area under the curve
which represents the feedback behavior for cloud service s. The second part of the
numerator represents the intersection between the area under the curve and the
area under the cumulative mean of the total number of feedbacks Cμ (|V(s, t)|)
(i.e., which represents the mean of all points in the total number of feedbacks and
up to the last element because the mean is dynamic and changes from time to
time). The denominator represents the whole area under the curve. As a result,
the higher the occasional change in the total number of feedbacks, the more
likely that the cloud service has been affected by occasional collusions.

Detecting Occasional Reputation Attacks on Cloud Services 419

Occasional Sybil Attacks Detection Metric. Malicious users may manipulate
trust results to disadvantage particular cloud services by creating multiple ac-
counts and giving misleading feedbacks in a short period of time (i.e., Sybil
attacks). To overcome the occasional Sybil attacks, we consider the total num-
ber of established identities |I(s)| for consumers who gave feedbacks to cloud
service s during a period of time [t0, t]. The sudden changes in the total number
of established identities is an indicator for an occasional Sybil attack. To detect
such behavior, we measure the percentage of occasional and periodic change in
the total number of established identities among the whole identity behavior
(i.e., all established identities for consumers who gave feedbacks to a particular
cloud service). The higher the change in the total number of established identi-
ties, the more likely that the cloud service has been attacked by an occasional
Sybil attack. Similarly, the occasional Sybil attacks factor Oi(s, t0, t) of a certain
cloud service s in a period of time [t0, t], is calculated as follows:

Oi(s,t0, t) = 1−

⎛
⎝
(∫ t

t0
|I(s, t)| dt

)
−
(∫ t

t0
Δi(s, t)dt

)
∫ t

t0
|I(s, t)| dt

⎞
⎠

whereΔi(s, t) =

⎧⎪⎨
⎪⎩
Cμ (|I(s, t)|) if |I(s, t)| ≥

Cμ (|I(s, t)|)
|I(s, t)| otherwise

(3)

Based on the proposed occasional attacks detection metrics, TMS dilutes the
influence of those misleading feedbacks by assigning the occasional attacks de-
tection aggregated weights Oa(s, t0, t) to each trust feedback as shown in Equa-
tion 1. Oa(s, t0, t) is calculated as follows:

Oa(s, t0, t) =
φ ∗ Of (s, t0, t) + ι ∗ Oi(s, t0, t)

λ
(4)

where φ and Of (s, t0, t) denote the normalized weight of the occasional collusion
attacks detection factor and the factor’s value respectively. The second part of
the equation represents the occasional Sybil attacks detection factor where ι
denotes the factor’s normalized weight and Oi(s, t0, t) denotes the factor’s value.
λ represents the number of factors used to calculate Oa(s, t0, t). For example, if
we only consider the occasional collusion attacks detection factor, λ = 1; if we
consider both the occasional collusion attacks detection factor and the occasional
Sybil attacks detection factor, λ = 2.

Change Rate of Trust Metric. To allow TMS to adjust and tweak trust results
for cloud services that have been affected by occasional reputation attacks we
introduce the change rate of trust factor. The idea behind this factor is to com-
pensate the affected cloud services by the same percentage of damage in the
trust results. Given Con(s, t0) the conventional model (i.e., calculating the trust
results without considering the proposed approach) for a cloud service s in a
previous time instance, Con(s, t) the conventional model for the same cloud ser-
vice calculated in a more recent time instance, Oa(s, t0, t) the occasional attacks

420 T.H. Noor, Q.Z. Sheng, and A. Alfazi

detection aggregated weights, and eOa the occasional attacks percentage thresh-
old. The change rate of trust results factor Ct(s, t0, t) is calculated as follows:

Ot(s, t0, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Con(s,t0)
Con(s,t)

)
− 1 if Con(s, t) < Con(s, t0)

and 1−Oa(s, t0, t) ≥ eOa

0 otherwise

(5)

where
(

Con(s,t0)
Con(s,t)

)
−1 represents the change rate of trust results for cloud service

s during a period of time [t0, t]. The change rate of trust results will only be
used if the conventional model in the more recent time instance is less than
the conventional model in the previous time instance and the occasional attacks
percentage during the same period of time [t0, t] (i.e., 1 − Oa(s, t0, t)) is larger
or equal to the occasional attacks percentage threshold. For instance, even if
the conventional model in the current time for the cloud service a is less than
the conventional model 10 days ago, the cloud service a will not be rewarded
because the occasional attacks percentage is less than the occasional attacks
percentage threshold (e.g., 1 −Oa(a, t0, t) = 20% and eOa = 30%). The change
rate of trust results is designed to limit the rewards to cloud services that are
affected by slandering attacks [4] (i.e., cloud services that have decreased trust
results) because TMS can dilute the increased trust results from self-promoting
attacks [3] using the occasional attacks detection factors (i.e., Oa(s, t0, t)). The
adaptive change rate of trust results factor can be used to assign different weights
using χ the normalized weight factor as shown in Equation 1.

4 Implementation and Experimental Evaluation

System Architecture. The architecture consists of several layers including: i)
Trust Data Provisioning for collecting cloud services and trust information where
the Cloud Services Crawler module is developed based on the Open Source Web
Crawler for Java (crawler4j3) and extended to allow TMS to automatically dis-
cover cloud services on the Internet and the Trust Feedbacks Collector module is
developed to collect feedbacks directly from consumers and stores them in the
Trust Feedbacks Database. Moreover, an IdM is developed to allow consumers to
establish their identities before using TMS through registering their credentials
at the Trust Identity Registry where the total number of established identities
is collected using the Identity Info Collector. ii) Trust Assessment Function for
handling trust assessment requests from users where the Factors Calculator is
developed to calculate the occasional attacks detection factors and the Trust
Assessor to calculate the trust of cloud services by assigning the factors weights
to feedbacks and store them in the Trust Results and Factors Weights Storage.

3 http://code.google.com/p/crawler4j/

Detecting Occasional Reputation Attacks on Cloud Services 421

Experimental Design and Setup. In order to validate our approach, we col-
lected real world trust feedbacks on cloud services by crawling review websites
such as CloudHostingReviewer.com and cloud-computing.findthebest.com

where consumers usually give their feedback on cloud services that they have
used. The collected data is represented in a tuple H where the feedback rep-
resents several QoS parameters as aforementioned and a set of credentials are
augmented for each corresponding consumer. We managed to collect 10,076 feed-
backs given by 6,982 consumers to 113 real-world cloud services. The collected
data is divided into 2 groups of cloud services, one is used to validate our model
against occasional collusion attacks and the other is used to validate the model
against occasional Sybil attacks. Each cloud service group represents a Peaks
behavior model. We conducted several experiments to validate the proposed
occasional attacks detection model and to demonstrate its robustness against
occasional collusion and Sybil attacks. We use two experimental settings: i) mea-
suring the robustness of our model with a conventional model Con(s, t0, t) (i.e.,
turning Oa(s, t0, t) to 1 for all feedbacks), and ii) measuring the performance
of our model using two measures namely precision (i.e., to know how well TMS
did in detecting attacks) and recall (i.e., to know how many detected attacks are
actual attacks). In our experiments, TMS starts rewarding cloud services that
have been affected by malicious behaviors when the occasional attacks percent-
age reaches 25% (i.e., eOa = 25%), so the rewarding process will occur only when
there is a significant damage in the trust result.

Robustness Against Occasional Collusion Attacks. In occasional collusion attacks
experiments, we simulated malicious users to increase trust results of cloud ser-
vices (i.e., self-promoting attack [3]) by giving multiple feedbacks with the range
of [0.8, 1.0]. From Figure 1, we note that results when considering to calculate
the trust with our model decrease quickly after a short period of time and the
responsible metric for this detection is the occasional collusion attacks detec-
tion metric. In addition, we can see that our model achieves 0.508 in precision
and scores 0.689 in recall. Overall there is a fair degree in recall which indicates
that most of the detected attacks are actual attacks. This means that our model
can successfully detect occasional attacks and TMS diluted the increased trust
results from self-promoting attacks using the proposed factors.

Robustness Against Occasional Sybil Attacks. In occasional Sybil attacks exper-
iments, we simulated malicious users to decrease trust results of cloud services
(i.e., slandering attack [4]) by establishing multiple identities and giving feed-
backs with the range of [0, 0.2]. From Figure 2 we can see that trust results when
considering to calculate the trust with our model response effectively where 5
peaks in trust results appear (i.e., Figure 2(a)). This is true because the cloud
service was rewarded when the occasional attacks occurred. Moreover, we note
that the overall precision of our model is 0.435, while the overall recall is 0.652
(See Figure 2(b)). This means that our model can successfully detect occasional
Sybil attacks and reward affected cloud services using the change rate of trust
factor.

422 T.H. Noor, Q.Z. Sheng, and A. Alfazi

(a) Robustness Against Attacks

��
��

�����

�
��	
���
���
���
��

���
��
���

��������� ������

��
��
��
��
��
�

������������

(b) Attacks Detection

Fig. 1. Occasional Collusion Attacks Experiments

�

���

���

���

� �� �� �� �� 	��

������������

 ����������!����"��#��������

$�
��
��
��

��
	�
��

$
���

(a) Robustness Against Attacks

����

���
�

�
��	
���
���
���
��

���
��
���

��������� ������

��
��
��
��
��
�

������������

(b) Attacks Detection

Fig. 2. Occasional Sybil Attacks Experiments

5 Discussions and Conclusion

Over the past few years, trust management has been one of the hot topics espe-
cially in the area of cloud computing. Some of the research works use policy-based
trust management techniques. For example, Ko et al. [7] proposed TrustCloud
framework for accountability and trust in cloud computing which consists of five
layers including workflow, data, system, policies and laws, and regulations lay-
ers to address accountability in the cloud environment from all aspects. Brandic
et al. [1] proposed a novel approach for compliance management in cloud envi-
ronments to establish trust where the approach is developed using a centralized
architecture and uses compliant management technique to establish trust. Unlike
previous works that use policy-based techniques, we evaluate the trustworthiness
of a cloud service using reputation-based trust management techniques.

Other research works use reputation-based trust management techniques. For
instance, Habib et al. [5] proposed a multi-faceted Trust Management (TM) sys-
tem architecture which models uncertainty of trust information collected from
multiple sources using a set of Quality of Service (QoS) attributes such as se-
curity, latency, availability, and customer support. Hwang et al. [6] proposed
a security-aware cloud architecture where trust negotiation and data coloring

Detecting Occasional Reputation Attacks on Cloud Services 423

techniques are used to support cloud providers and the trust-overlay networks
to support consumers. Unlike previous works, we propose an occasional attacks
detection model that not only detects misleading trust feedbacks from collusion
and Sybil attacks, but also has the ability to adaptively adjust the trust results
for cloud services that have been affected by occasional malicious behaviors.

Our work presented in this paper is one of the first few that focuses on the
detection of occasional reputation attacks on cloud services. We present several
techniques enabling the detection of such attacks. In particular, we introduce
an occasional attacks detection model that detects misleading feedbacks from
collusion and Sybil attacks. Our model has the capability to adjust trust results
for cloud services that have been affected by such malicious behaviors. We also
have collected a large collection of consumer’s trust feedbacks given on real-world
cloud services to evaluate and demonstrate the applicability of our approach.

Acknowledgments. Talal H. Noor and Abdullah Alfazi’s work has been sup-
ported by King Abdullah’s Postgraduate Scholarships, the Ministry of Higher
Education, Kingdom of Saudi Arabia.

References

1. Brandic, I., et al.: Compliant Cloud Computing (C3): Architecture and Language
Support for User-Driven Compliance Management in Clouds. In: Proc. of CLOUD
2010 (2010)

2. David, O., Jaquet, C.: Trust and Identification in the Light of Virtual Persons
(June 2009),
http://www.fidis.net/resources/deliverables/identity-of-identity/

(accessed March 10, 2011)
3. Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.

(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)
4. Friedman, E., et al.: Manipulation-Resistant Reputation Systems. In: Algorithmic

Game Theory, chap, pp. 677–697. Cambridge University Press, New York (2007)
5. Habib, S., et al.: Towards a Trust Management System for Cloud Computing. In:

Proc. of TrustCom 2011 (2011)
6. Hwang, K., Li, D.: Trusted Cloud Computing with Secure Resources and Data

Coloring. IEEE Internet Computing 14(5), 14–22 (2010)
7. Ko, R., et al.: TrustCloud: A Framework for Accountability and Trust in Cloud

Computing. In: Proc. of SERVICES 2011 (2011)
8. Noor, T.H., Sheng, Q.Z.: Credibility-Based Trust Management for Services in

Cloud Environments. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)
ICSOC 2011. LNCS, vol. 7084, pp. 328–343. Springer, Heidelberg (2011)

9. Noor, T.H., Sheng, Q.Z.: Trust as a Service: A Framework for Trust Management
in Cloud Environments. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE
2011. LNCS, vol. 6997, pp. 314–321. Springer, Heidelberg (2011)

10. Ren, K., et al.: Security Challenges for the Public Cloud. IEEE Internet Comput-
ing 16(1), 69–73 (2012)

http://www.fidis.net/resources/deliverables/identity-of-identity/

Multi-tenancy Performance Benchmark

for Web Application Platforms

Rouven Krebs, Alexander Wert, and Samuel Kounev

SAP AG, Applied Research,
Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

{rouven.krebs}@sap.com

Karlsruhe Institute of Technology, IPD,
Kaiserstrasse 12, 76131 Karlsruhe, Germany

{alexander.wert,kounev}@kit.edu

Abstract. Cloud environments reduce data center operating costs
through resource sharing and economies of scale. Infrastructure-as-a-
Service is one example that leverages virtualization to share infrastruc-
ture resources. However, virtualization is often insufficient to provide
Software-as-a-Service applications due to the need to replicate the oper-
ating system, middleware and application components for each customer.
To overcome this problem, multi-tenancy has emerged as an architectural
style that allows to share a single Web application instance among multi-
ple independent customers, thereby significantly improving the efficiency
of Software-as-a-Service offerings. A number of platforms are available
today that support the development and hosting of multi-tenant appli-
cations by encapsulating multi-tenancy specific functionality. Although
a lack of performance guarantees is one of the major obstacles to the
adoption of cloud computing, in general, and multi-tenant applications,
in particular, these kinds of applications and platforms have so far not
been in the focus of the performance and benchmarking community. In
this paper, we present an extended version of an existing and widely
accepted application benchmark adding support for multi-tenant plat-
form features. The benchmark is focused on evaluating the maximum
throughput and the amount of tenants that can be served by a platform.
We present a case study comparing virtualization and multi-tenancy. The
results demonstrate the practical usability of the proposed benchmark in
evaluating multi-tenant platforms and gives insights that help to decide
for one sharing approach.

Keywords: Platform, SaaS, Multi-tenancy, Benchmark.

1 Introduction

Cloud Computing enables ubiquitous and convenient on demand access to com-
puting resources over network [2]. Cloud users benefit from the lower costs
and increased flexibility, in an efficient and scalable manner, the elimination
of an upfront commitment, and payment on a short-term pay per use basis [2].

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 424–438, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multi-tenancy Performance Benchmark for Web Application Platforms 425

The National Institute of Standards and Technology [19] defines three service
models for cloud computing. The Infrastructure-as-a-Service (IaaS) model allows
to provide and share hardware resources using virtualization technology. The
Platform-as-a-Service (PaaS) model allows to deploy and develop applications
of different customers within a shared cloud middleware environment. Finally,
the Software-as-a-Service (SaaS) model provides hosted applications accessed
remotely via the Internet.

Multi-tenancy is an architectural style in SaaS scenarios that enables the shar-
ing a single application instance among multiple independent customers. This
style increases efficiency by sharing not only the hardware but also the operating
system, the middleware and the application components themselves. The term
tenant refers to a group of users sharing the same view on an application. This
view includes the data they access, the application configuration, the user man-
agement, particular functionalities and related non-functional properties [18].
According to the Gartner’s hype cycle from 2011 [24] [21], multi-tenancy is esti-
mated to become mainstream in 2-5 years.

Implementing the functionality to share a single application instance among
several tenants is a complex task [11][20] that has to be performed for every
developed application. Therefore, the best approach for realizing multi-tenancy
is to employ a middleware platform or a PaaS environment that natively sup-
ports the development by encapsulating basic functionality such as for example
the management and identification of tenants. Google App Engine [10], SAP
NetWeaver Application Server and force.com [28] support the developer with
predefined interfaces and implicit functionality reducing the development effort
for creating a multi-tenant application.

While Cloud Computing provides many advantages as described above, it
still fails to provide high availability and response time guarantees required
for running mission-critical applications. Various reports [22] [4] indicate that
performance is still one of the major obstacles for the adoption of the cloud
paradigm. To gain insight into the performance provided by cloud platforms,
representative application benchmarks and metrics are needed. Various bench-
marks and metrics with focus on cloud environments were developed in the last
view years. However, such benchmarks are usually focused on specific aspects of
cloud services like persistence or features like infrastructure elasticity.

To the best of our knowledge, no benchmark that explicitly supports the
evaluation of multi-tenant platforms exists so far. To fill this gap, in this paper we
propose an extended version of an existing benchmark to support multi-tenancy.
This benchmark can be used to evaluate the performance of an on premise
middleware system or a PaaS environment supporting multi-tenant applications.

The selected case study to evaluate the usability of the benchmark is moti-
vated by our former publication [20]. In this paper, we present an estimation
approach to balance the increasing development costs for developing a multi-
tenant application (MTA) with the decreasing operating costs resulting from
the improvements in resource efficiency. Furthermore, given that, running multi-
ple copies of an application in separate virtual machines (VM), each customized

426 R. Krebs, A. Wert, and S. Kounev

for a given tenant, is often considered as an alternative to adopting a multi-
tenant architecture, we decided to evaluate the two approaches in terms of the
performance they provide. Our approach allows to find the point at which multi-
tenancy is more efficient with respect to resource utilization in a given application
scenario.

In summary, the contribution of this paper is twofold: We present an extended
version of an established benchmark to support multi-tenancy. Furthermore, we
present a comparison of virtualization and multi-tenancy which helps to estimate
the efficiency of the approaches.

The remainder of the paper is structured as follows. In Section 2, we out-
line important and common design aspects of multi-tenant systems. Section 3
presents our extensions of the TPC-W benchmark based on the outcomes of
the previous section. Furthermore, we give an insight into our implementation.
Section 4 presents our case study investigating the efficiency of multi-tenant sys-
tems compared to virtualization. Section 5, surveys related work and Section 6
concludes the paper.

2 General Design Concerns in Multi-tenant Architectures

To ensure isolation in a multi-tenant application (MTA) one has to make a num-
ber of architectural decisions. Furthermore, PaaS scenarios raise some additional
requirements concerning the actual implementation. In this section, we give a
short overview of the most important architectural aspects related to our work
and the impact of multi-tenancy on potential benchmarks and metrics.

2.1 Tenant Identification

When a request arrives at a MTA not only the specific user has to be identified,
but also the tenant it belongs to. Various approaches exist to identify the tenant.
One solution is to attach the tenant specific information to the user identification.
However, this approach requires an authentication of the user and duplicate user
names in different tenants are not possible, thus, violating isolation. Another
widely used approach (e.g., Google App Engine [10]) is to use the host name as
a basis for the tenant identification. In this scenario, various host aliases point
to the same application instance/IP address. Thus, a tenant identification is
possible without requiring a login and duplicate user names are supported. A
common approach to transfer the tenant’s identifier along the execution path
leverages the thread context to which the relevant information is attached.

2.2 Database

In general, we distinguish three major approaches to separate a tenants data
from the data persisted by other tenants (Wang et al. [27] and Chong et al. [6]).
The dedicated database system provides a separate dedicated database for each

Multi-tenancy Performance Benchmark for Web Application Platforms 427

tenant and has the best isolation at the cost of the highest overhead. In a dedi-
cated table/schema approach, every tenant uses the same database management
system, but separate tables or schemas. This scenario enables at least a partial
sharing. However, some mutual performance influences between tenants are now
possible. The highest degree of sharing, respectively efficiency, is established by
sharing the same tables and schemas. To differentiate the data, a column with
the tenant id is added to each table. This approach also has the largest conse-
quences on the application or platform. An application has to take care of the
tenant id in every database statement. If the platform provides an abstraction
of the database, it might handle the additional tenant id in a transparent way
(e.g., EclipseLink [8]).

2.3 Tenant Meta-Data

Koziolek [17] presents a high level architecture for MTAs based on observations
he made about existing offerings. In general, this architecture reflects a Web
Application Architecture with an additional meta data storage for the tenant
specific information (e.g., customization, database id, tenant name, SLAs). An-
other element is the meta-data manager which enables access to the meta-data
and adjusts the application according to the information stored in the meta-
data. The variability of information stored in the meta data is high. However,
we can assume that at least an id for the tenant, a display name for the tenant
and a database identifier is available. Depending on the employed data man-
agement approach, the latter may refer to an tenant specific id or database
connection. Platforms with multi-tenancy support usually provide access to the
tenant meta-data.

2.4 Security

Normally either the implemented persistency APIs of the platforms or the appli-
cation developer has to ensure the separation of data by using SQL statements
with tenant id as aforementioned. In addition, tenant specific caches might be
required. The identification of a tenant might base on an identity management
system as part of the meta-data manager. However, the access to the application
might allow to run attacks against other tenants with extended privileges. This
has to be reflected by special measures like SQL encoding and stack overflow
prevention.

2.5 Metrics for a Multi-tenant Benchmark

In traditional benchmarks, usually one or several performance metrics are ob-
served in relation to the amount of simulated users, the request rate, and some-
times price (e.g., [1]). Based on this information, a quality metric of the system
is derived.

In a multi-tenant system, we can also incorporate the amount of tenants, for
example, considering the throughput and response time in relation to the amount

428 R. Krebs, A. Wert, and S. Kounev

of tenants. This metric might be of interest when the per tenant overhead and the
total amount of tenants a platform could serve is relevant. Furthermore, it might
answer the question about the optimal amount of tenants for one application
server. Another metric might define a fixed number of tenants by observing the
QoS based on the amount of users for each.

It is worth to mention that real applications serve tenants with different
amounts of users and various database sizes and consequently various resource
demands. If these factors are known for the scenario under investigation the
benchmark might reflect this.

2.6 PaaS Persistence

We consider traditional middleware and PaaS environments with multi-tenancy
support. Existing PaaS environments provide an application runtime container
and various embedded services accessed via an API (e.g., Google App Engine,
SAP NetWeaver Cloud). Persistence services are of major importance. Existing
offerings provide SQL or key value stores. However, in the majority of cases, the
access to the storage is only permitted within the application runtime container.
Even in cases where a user interface to manipulate individual data records exists,
it is normally impossible to directly load high amounts of data.

3 Multi-tenant Benchmark

In this section, we present our extensions of the TPC-W benchmark [1] based
on the implementation provided in [5] and focus on our modifications for cloud
environments with multi-tenancy support. TPC-W was already used successfully
in the field of multi-tenancy [26] and already satisfies some of the requirements
for a cloud benchmark [3] .

3.1 TPC-W

The Transaction Processing Performance Council (TPC) developed a transac-
tional Web e-commerce benchmark (TPC-W) [1]. Its focus is on business oriented
transactional Web servers. The workload models an Internet commerce environ-
ment emulating an online bookshop. The benchmark emulates multiple on-line
browser sessions by accessing dynamically generated Web pages. The benchmark
provides three workload profiles that differ in their the browse-to-buy request
ratio resulting in different proportions of database reads or inserts/updates: pri-
marily shopping, browsing and Web-based ordering. The load can be varied by
the amount of emulated browsers (EB) sending requests to the system. One EB
corresponds to one user calling various Web transactions in a closed workload.
To ensure portability, TPC does not require the use of a specific implementation.
Instead a detailed specification of the functionality that must be provided by an
implementation is published.

Multi-tenancy Performance Benchmark for Web Application Platforms 429

3.2 Multi-tenant TPC-W Specification

We extended the specification of TPC-W in several points to cover the relevant
conceptual aspects of multi-tenant systems described in Section 2. The PaaS
persistence related concerns (cf. Section 2.6) do not directly relate to the speci-
fication of the benchmark and will be discussed in Section 3.3.

The Tenant Meta Data Manager (cf. Section 2.3) provided by a platform is
used to render the tenant’s display name as part of various Web pages (Home
Page, Customer Registration Page, Buy Confirm Page). In one the pages (Buy
Confirm) the tenant’s identifier is also rendered.

For environments with a native connection to one schema on one database
server, a tenantId column is added to every table (cf. Section 2.2). Conse-
quently, the primary key has to be a combination of the tenantId and the
entity specific id field. In addition to the TPC-W standard the tenantId, re-
trived from the meta-data manager, is added to every SQL request from the
application to ensure data isolation and thus privacy of the data. In addition,
we recommend to encode all SQL parameters for security reasons. TPC-W does
not specify application internal caches; thus, we do not have to provide a tenant
specific access mechanism.

Several database management systems do not support the auto generation of
combined primary keys. Thus, an application based key generation mechanism is
applied to generate the primary keys. To ensure portability, we specify the usage
of a key-value table with segment support to reduce overhead. This solution
consists of a database table which provides a key counter for each table and
each tenant. To avoid overhead, the key-value table is accessed via an application
local cache. This cache increases the counter by a count of 1000 and thus it could
return 1000 ids before the next update of the key table. It has to be ensured that
increasing the database key counter by several application instances does not
result in unresolved conflicts. This key counter mechanism is used to generate
the primary keys. It is worth mentioning, that the tenantId part of the key
must not be generated, as this is a value derived by the request that triggered
the database update.

For environments with a native connection to various SQL servers or schemas
for each tenant the auto generation for the keys can be reused and the additional
column for the tenant id becomes obsolete. In such situations we assume that
the database connection/schema is either provided in a transparent way by the
platform or is stored in an application specific configuration where it is mapped
to the tenant. In the latter case, for every SQL request, the appropriate connec-
tion must be selected based on the tenants id returned by the tenant meta-data
manager.

For environments with an API based access to the persistence layer, where
the data isolation aspect is transparent to the application the above methods
might be irrelevant. However, if the data isolation aspect is not transparent the
described solutions have to be considered.

430 R. Krebs, A. Wert, and S. Kounev

The load driver has to support the platform specific tenant identification
mechanism (cf. Section2.1). As every tenant accesses the same application, we
assume similar workload profiles.

The relevant metrics and the exact setup concerning the number of users for
each tenant depends on the goals of the benchmarking scenario. For our case
study, we defined static workload profiles for each tenant with an increasing
amount of tenants.

3.3 Implementation

The basis of our version [5] provides a Java Servlet based application that ac-
cesses the database with the help of one central class using a JDBC connection.
Figure 1 shows an overview of the elements used in our version of the TPC-W
benchmark. In the following, we briefly describe the functionality of the various
elements and how they are related to each other.

TPCW home interaction is one example of 14 servlets used in our implemen-
tation. The servlets render the html pages and implement the expected work
flow. Every servlet has a reference to the TenantMetaDataAccess and uses an
implementation of the interface ITPCW Tenant to access the meta-data for the
tenant that owns the current thread.

TPCW Database implements the JDBC-based communication with the
database, which is implemented as described in Section 3.1. It also encapsulates
the key generator.

The TenantMetaDataAccess class implements the access to the platform’s
tenant meta-data. It hides the platform specific implementation for accessing in-
formation about the tenants. Thus, it is possible to port the implementation to
another platform by changing the implementation of this class. The TenantMeta-
DataAccess provides a platform specific implementation of the ITPCW Tenant
interface.

Fig. 1. Overview of the Multi-Tenant TPC-W Benchmark

Multi-tenancy Performance Benchmark for Web Application Platforms 431

ITPCW Tenant defines the interface that represents a concrete tenant en-
capsulating the communication with the meta-data manager to provide tenant
specific information.

CreateDatabase extends HttpServlet and is a proxy to create the required
schema in the platform environment when no direct access is available. The
method createSharedTable creates a shared schema in the database. Method
createTenantConnection creates a schema without tenant id for each tenant.
The corresponding connection and type of database multi-tenancy is then set
in the TPCW Database. Thus, using createTenantConnection enables separate
schema and separate databases to be used. If the platform provides the tenant
specific connections in a transparent way, one has to modify TPCW Database.

FillDatabase is a proxy extending HttpServlet to initialize the databases data
for the benchmark run using TPCW Database.

The Load Driver is provided in [5]. The target platform in our case differen-
tiates tenants by the host name. Therefore, we created one instance of the load
driver for each tenant with a tenant specific hostname as a target.

4 Case Study

In this section, we apply our extended version of the TPC-W benchmark in a case
study demonstrating its use for performance evaluation. In addition, we present
a comparison of virtualization and multi-tenancy which helps to estimate the
efficiency of the approaches.

4.1 Goals

The main goal of the presented case study is to compare an application-based
multi-tenancy approach with a pure virtualization-based approach in terms of
performance. In particular, we investigate the following main question: Given
a certain setup, under which conditions is an application-based multi-tenancy
approach more efficient than a virtualization-based approach, and vice versa?

In order to address this question, we investigate the following research ques-
tions for each of the two scenarios:

– RQ1: What is the maximum throughput that can be achieved with the
corresponding sharing approach depending on the tenants-size.

– RQ2: Under which relationship between the tenant size and number of ten-
ants is a multi-tenant architecture more efficient?

4.2 Experimental Setup

In order to address the research questions mentioned above, we perform a series
of experiments.

Figure 2 shows the experimental setups for the virtualization-based scenario
(Figure 2a) and the multi-tenancy scenario (Figure 2a). In both cases, the ex-
perimental setup comprises three physical servers: The Load Server is used for

432 R. Krebs, A. Wert, and S. Kounev

Database Server

Schema 2Schema 1 ... Schema n

MySQL xxx

Application
Server
XEN 4.1

VM 1 VM 2 ... VM n

Load Server

LAN
1 Gbit/s

Remote Browser Emulators

TPC-W TPC-W TPC-W TPC-W

T 1 T 2 ... T n

(a) Setup for Virtualization-Based
Sharing Approach

Database Server

MT-extended
Schema

MySQL
xxx

Application
Server

XEN 4.1

VM

Load Server

LAN
1 Gbit/s

MT-extended
TPC-W

Remote Browser Emulators

T 1 T 2 ... T n

(b) Setup for Application-Based
Multi-Tenancy Approach

Fig. 2. Experimental Setup

user emulation, the Application Server hosts the application logic part of the
benchmark and the Database Server serves as the persistence layer. These three
physical machines have the same characteristics. In particular, each of them has
a processing power of 16 x 2,13 GHz, a memory capacity of 16 GB, and SUSE
Enterprise 11 as operating system. The machines are connected by a 1 Gbit/s
LAN. For our experiments, we assume there are n equal-sized tenants T1...Tn
each comprising m users (cf. Section 3.2) emulated by means of Remote Browser
Emulators (RBE) (cf. [1]) running on the Load Server. The browsing workload
mix defined by [1] is used to generate load.

In the following, we explain the differences in the two scenarios.

Scenario I: Virtualization-Based Approach. In this scenario, the cus-
tomer contexts are separated by means of separate VMs and separate database
schemata (cf. Figure 2a). Thus, for each customer context the Application Server
hosts a VM on top of a common XEN 4.1 hypervisor. Each VM is running a sep-
arate application instance of TPC-W within an SAP-specific customized version
of Apache Tomcat. Given that TPC-W is an I/O-intensive application, com-
pared to the Database Server, the CPU consumption on the Application Server
is relatively small. Thus, given that the focus of our comparison is on the Ap-
plication Server tier, it is reasonable to pin the cores of all VM to one physical
core to avoid the database from being the bottleneck. The available memory

Multi-tenancy Performance Benchmark for Web Application Platforms 433

capacity is equally distributed among the VM and the host operating system.
Similarly to the application layer, the separation on the persistence layer is re-
alized by means of a separate database schemata. Thus, each TPC-W instance
uses its own, dedicated database schema. However, all database schemata are
hosted within a common MySQL 5.1 process executed on the Database Server.

Scenario II: Multi-tenancy Approach. In the multi-tenant scenario, the
tenants are separated by the notion of separate tenant contexts at the application
layer and an extended database schema which allows for accessing tenant-specific
data. Correspondingly, the experimental setup for Scenario II comprises only
one VM and only one database schema (cf. Figure 2b). The single VM hosts
the multi-tenant version of TPC-W (cf. Section 3.2) deployed on the extended
Apache Tomcat. The Tomcat instance provides a Tenant Meta Data Manager
(cf. Section 2.1). Based on the tenant-specific meta-data, the benchmark accesses
the extended database schema. Similarly to the setup of Scenario I, the virtual
processing unit of the single VM is pinned to a single physical CPU core.

Testing Methodology. We performed 10 experiment series in total, five for
each scenario. For every series, the size of each tenant was fixed to 250, 500, 750,
1000 or 1500 users. We are interested in the maximum throughput of the system.
Thus, we started each experiment series with one active tenant and increased
the amount of tenants stepwise until the application started to throw time out
exceptions. To ensure equal conditions the databases were newly created, and
filled with data before every run. Afterwards, the database management system
and the VMs were restarted prior to starting the load driver. In the multi-tenancy
scenario we restarted the VM as well. The warm-up phase was set to 10 minutes
and the measurement period was 30 minutes.

4.3 Results

In this section we present the results of our measurements. Figure 3 presents
a general overview of the most important data gathered, whereas the specific
research questions RQ1 and RQ2 are addressed by Figure 4a and Figure 4b.
The confidence intervals in all measurements were negligibly small and are thus
omitted for compactness.

In Figure 3, the number of tenants is shown on the x-axis and the throughput
in transactions/second on the y-axis. The various curves represent measurements
with the multi-tenancy and virtualization-based sharing approach for various
amounts of users per tenant. In general the CPU utilization became a bottleneck
and prevented the system to achieve higher throughputs. In the virtualization
scenario with a tenant size of 250 users, the amount of guest domains was limited
to 12 due to a lack of memory which resulted in memory exceptions when the
server was lunched. Although the systems CPU was underutilized with only 12
domains. The measurement with 250 users and multi-tenancy were stopped at 20
tenants due to time limitations for further experiments and the already existing

434 R. Krebs, A. Wert, and S. Kounev

0
100
200
300
400
500
600
700
800
900

0 5 10 15 20 25

Th
ro

ug
hp

ut
 [T

ra
ns

/s
]

Tenants

Virtualization 250 Users
Virtualization 500 Users
Virtualization 750 Users
Multi-tenancy 250 Users
Multi-tenancy 500 Users
Multi-tenancy 750 Users

Fig. 3. Throughput Dependent on the Amount of Tenants

0

200

400

600

800

1000

1200

0 500 1000 1500

Th
ro

ug
hp

ut
 [T

ra
ns

/s
]

Tenant Size [# user]

Virtualization

Multi-tenancy

(a) Maximum Achievable Throughput

0

5

10

15

20

25

0 500 1000 1500

Te

na
nt

s

Tenant Size [# user]

Virtualization
Multi-tenancy

(b) Paredo Optimal Configurations

Fig. 4. Maximum Throughput and Paredo Based Decision Support

data to answer our research questions. We assume unused potential concerning
the amount of tenants because of very low response times and a CPU utilization
of around 70%. The figure also shows that the advantage of multi-tenancy is less
for the 500 users scenario and even lower for 750 users. In similar measurements
for 1000 and 1500, users we observed lower maximum throughputs in the multi-
tenancy case.

Figure 4a focuses on RQ1. The maximum overall throughput of all tenants is
shown on the y-axis. The x-axis presents the number of users for each tenant. By
increasing the number of tenants for each tenant size, the maximum throughput
was determined. The maximum throughput decreases with lower values for the
tenant size in the case of virtualization whereas in the case of multi-tenancy
throughput remains stable.

Figure 4b shows the tenant size on the x-axis and the amount of tenants at
which the maximum throughput was achieved on the y-axis. Thus it presents
paredo optimal configurations in terms of the maximum throughput for the
virtualization and multi-tenancy scenario. It shows, that multi-tenancy is less
efficient in situations with more than 1000 users as there the amount of served
tenants and the throughput is below the capabilities of virtualization. In the
range between 250 and 1000 users per tenant, virtualization is a usable model,
for the given hardware configuration, if the amount of tenants to be served is
below the curve for virtualization. Nevertheless, multi-tenancy is able to serve
more tenants with a higher total throughput by using the same hardware in these

Multi-tenancy Performance Benchmark for Web Application Platforms 435

boundaries. The benefits of multi-tenancy becomes more significant in scenarios
with 250 users or less. At these, the total throughput for virtualization was not
longer limited by the CPU, instead the memory become the bottleneck. Multi-
tenancy uses memory resources very efficiently as it avoids to allocate static
memory for the application, application server and OS. Consequently multi-
tenancy can still achieve a high throughput and good utilization of the CPU in
these cases. Thus, this figure addresses RQ2.

Especially for stateless web applications with low memory demands the CPU
is the primary bottleneck, beside I/O which is not subject of this discussion.
Based on our results we can conclude that virtualization produces additional
overhead on the CPU with an increasing amount of VMs hosted on one server,
thus the throughput was limited. Nevertheless, these drawbacks are widely neg-
ligibly. The most important observation is the inefficient usage of the memory
when virtualization is used to serve one application for several customers. Con-
sequently, the primary factor for selecting one of the solutions should be the
memory. If an application requests a high amount of memory the overheads for
the OS and application server may also become less important. Especially in
stateless applications with small memory demands multi-tenancy outperforms
virtualization for small tenants as here the static memory allocations of the run-
time environment become the limiting factor. Furthermore, multi-tenancy allows
to over commit memory, which is not possible using Xen.

5 Related Work

Performance is of major interest in cloud computing [2] [4]. Conventional mid-
dleware benchmarks for classical platforms (e.g., SPECjEnterprise [25]) do not
support essential cloud features like multi-tenancy. Therefore, several new bench-
marks have emerged in the last years to support the performance evaluation of
cloud platforms. Most activities focus IaaS and cloud-specific features like elas-
ticity [14]. Others focus on cloud specific services like persistence [7] [13].

Virtualization enables sharing at the infrastructure level. Thus, it is a key
enabler for IaaS clouds and it has been widely used over the past years in data
centers. A number of benchmarks have been developed in the past years for
evaluating virtualization platforms.

One example is VMmark [12], a benchmark developed by VMware. VMmark
defines a tile as a set of VMs serving different predefined applications (e.g.,
SPECweb2005). The benchmark score is based on a normalized overall through-
put of the applications as a function of the amount of deployed tiles. The total
throughput increases as long as the system is not saturated. As part of the bench-
mark results VMware publishes the maximum throughput and the number of
tiles. This approach is similar to our approach, where we consider the overall
system throughput depending on the amount of tenants.

Binnig et al. [3] discuss characteristics of cloud services and derive a list of re-
quirements for a cloud benchmark. Afterwards, they analyze the existing TPC-
W benchmark, discuss why the TPC-W benchmark satisfies requirements for

436 R. Krebs, A. Wert, and S. Kounev

cloud benchmarking and discuss some initial ideas for a new benchmark that
overcomes some shortcomings of the TPC-W benchmark. Major shortcomings
reported are the requirement of ACID properties for data operations and invalid
metrics for adaptable and scalable systems in terms of elasticity. However, we
observe a trend in PaaS environments to support the ACID properties (e.g.,
SAP NetWeaver Cloud[23]) for complex Web applications. Furthermore, a PaaS
provider or customer usually has the opportunity to control the elasticity mech-
anisms as required for a performance test. Finally, our focus is on multi-tenancy
features that were not considered in [3].

The authors of [26] present a method for resource demand estimation on a
per tenants base. Furthermore, they provide a mechanism to ensure performance
isolation. For the evaluation, they used an implementation of TPC-W. However,
they did not report any extensions for data isolation nor any usage of platform
provided multi-tenancy services.

MulTe [15] is a framework that helps building and running existing database
benchmarks to evaluate various performance metrics of multi-tenant database
management systems. However, our definition of multi-tenancy assumes a shared
application instance, as opposed to merely a shared DBMS used by several ap-
plications. Therefore, MulTe goals defer from our own.

Regarding the tradeoff decisions several papers present approaches to increase
the efficiency of multi-tenant systems (e.g., [29], [9]). However, they do not help
to come to a tradeoff decision for various resource sharing approaches.

In [27], various sharing options for implementing multi-tenant persistence are
discussed. The authors evaluate their non-functional behavior including perfor-
mance aspects. Given that our focus is on the application tier the database was
not a bottleneck in our scenario.

6 Conclusion

Performance concerns are one of the major obstacles for potential cloud cus-
tomers. We analyzed the most important concepts of multi-tenant applications
and identified features provided by platforms to support multi-tenancy. To sup-
port the performance engineering process this paper proposes an extension of
the TPC-W benchmark for platforms that support the identified multi-tenancy
features. This includes various multi-tenant persistence models, tenant identifi-
cation mechanisms and access to tenant specific meta-data. We evaluated the
usability of the proposed benchmark in a case study where the maximum through-
put of a multi-tenancy supporting platform based on the amount of tenants and
users per tenant was evaluated. Furthermore, we leveraged the benchmark to
compare a virtualization based with a multi-tenancy based sharing approach.

Multi-tenancy shows only a moderate benefit as long as additional virtual
machines can be started to handle new tenants. Once the lack of memory start
limiting the capability to lunch further virtual machines, multi-tenancy shows
significant advantages as it still serves and increasing amount of tenants with
good performance. Overall, multi-tenancy exhibits significantly higher efficiency

Multi-tenancy Performance Benchmark for Web Application Platforms 437

for a high amount of tenants with low usage, because it avoids a high static
memory allocation. In our case study, we observed that memory was the primary
limitation of virtualization. As long as CPU is the bottleneck the advantages of
MTAs are less.

In our future research, we will leverage this benchmark for the evaluation
of performance isolation between different tenants. Furthermore, we are inter-
ested in the efficiency of mutual utilized resources when load profiles underlie
fluctuations and the impact of various load profiles for different tenants.

Acknowledgements. The research leading to these results has received funding
from the European Union’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement No 258862 and was supported by the German Research
Foundation (DFG), grant RE 1674/6-1 (Transfer project KIT-SAP).

References

1. TPC Benchmark W, Transaction Processing Performance Council (2002)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berke-
ley view of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS Department,
University of California, Berkeley (February 2009)

3. Binnig, C., Kossmann, D., Kraska, T., Loesing, S.: How is the weather tomorrow?:
towards a benchmark for the cloud. In: Proceedings of the Second International
Workshop on Testing Database Systems (2009)

4. Bitcurrent. Bitcurrent cloud computing survey 2011. Tech. rep., bitcurrent (2011)

5. Cain, H.W., Rajwar, R., Marden, M., Lipasti, M.H.: An architectural evaluation of
Java TPC-W. In: Proceedings of the Seventh International Symposium on High-
Performance Computer Architecture (2001)

6. Chong, F., Carraro, G., Wolter, R.: Multi-tenant data architecture (June 2006)

7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC 2010, New York, NY, USA (2010)

8. Eclipse Foundation. Eclipselink/development/indigo/multi-tenancy (October
2012)

9. Fehling, C., Leymann, F., Mietzner, R.: A framework for optimized distribution
of tenants in cloud applications. In: 2010 IEEE 3rd International Conference on
Cloud Computing, CLOUD (2010)

10. Google. Google Cloud Platform (November 2012),
https://cloud.google.com/index

11. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native
multi-tenancy application development and management. In: E-Commerce Tech-
nology and the 4th IEEE International Conference on Enterprise Computing, E-
Commerce, and E-Services (2007)

12. Herndon, B., Smith, P., Roderick, L., Zamost, E., Anderson, J., Makhija, V., Hern-
don, B., Smith, P., Zamost, E., Anderson, J.: Vmmark: A scalable benchmark for
virtualized systems. Tech. rep., VMware (2006)

https://cloud.google.com/index

438 R. Krebs, A. Wert, and S. Kounev

13. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The hibench benchmark suite:
Characterization of the mapreduce-based data analysis. In: ICDE Workshops
(2010)

14. Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity for
cloud platforms. In: Proceedings of the Third Joint WOSP/SIPEW International
Conference on Performance Engineering, New York, NY, USA (2012)

15. Kiefer, T., Schlegel, B., Lehner, W.: MulTe: A multi-tenancy database benchmark
framework. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp.
92–107. Springer, Heidelberg (2013)

16. Koziolek, H.: Towards an architectural style for multi-tenant software applications.
In: Proc. Software Engineering (SE 2010). LNI, vol. 159 (February 2010)

17. Koziolek, H.: The sposad architectural style for multi-tenant software applications.
In: Proc. 9th Working IEEE/IFIP Conf. on Software Architecture (WICSA 2011),
Workshop on Architecting Cloud Computing Applications and Systems (July 2011)

18. Krebs, R., Momm, C., Kounev, S.: Architectural Concerns in Multi-Tenant SaaS
Applications. In: Proceedings of the 2nd International Conference on Cloud Com-
puting and Services Science, CLOSER 2012 (2012)

19. Mell, P., Grance, T.: The NIST definition of cloud computing. digital (2011)
20. Momm, C., Krebs, R.: A Qualitative Discussion of Different Approaches for Im-

plementing Multi-Tenant SaaS Offerings. In: Proceedings of Software Engineering
2011 (SE 2011), Workshop (ESoSyM 2011) (2011)

21. Natis, Y.: Gartner reference model for elasticity and multitenancy. Gartner report,
Gartner (June 2012)

22. Packman, E., Taylor, P., Rachitsky, L., Rejali, S., Power, S., Rae, I., Koffler, D.:
Bitcurrent: Cloud comuting performance. Tech. rep., bitcurrent (June 2010)

23. SAP AG. SAP NetWeaver Cloud (November 2012),
https://netweaver.ondemand.com

24. Smith, D.: Hype cycle for cloud computing. Tech. rep., Gartner, ID Number:
G00214915 (July 2011)

25. Spec. Specjenterprise2010, (November 2012),
http://www.spec.org/jEnterprise2010/

26. Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J., Zhong, H.: Application-level
cpu consumption estimation: Towards performance isolation of multi-tenancy web
applications. In: IEEE CLOUD (2012)

27. Wang, Z.H., Guo, C.J., Gao, B., Sun, W., Zhang, Z., An, W.H.: A study and
performance evaluation of the multi-tenant data tier design patterns for service
oriented computing. In: IEEE International Conference on e-Business Engineering,
ICEBE 2008 (2008)

28. Weissman, C.D., Bobrowski, S.: The design of the force.com multitenant Internet
application development platform. In: Proceedings of the 35th SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2009. ACM (2009)

29. Zhang, Y., Wang, Z., Gao, B., Guo, C., Sun, W., Li, X.: An effective heuristic for
on-line tenant placement problem in saas. In: IEEE International Conference on
Web Services (2010)

https://netweaver.ondemand.com
http://www.spec.org/jEnterprise2010/

Agile Software Development with Open Source

Software in a Hospital Environment – Case
Study of an eCRF-System for Orthopaedical

Studies

Tünay Özcan1,2, Semra Kocak1, and Philipp Brune2

1 Orthopädische Studienzentrale des Universitätsklinikums
Oberer Eselsberg 45, D-89081 Ulm

2 Hochschule Neu-Ulm
Wileystraße 1, D-89231 Neu-Ulm

tuenay_oezcan@yahoo.com,

semra.kocak@rku.de,

philipp.brune@hs-neu-ulm.de

Abstract. In recent years, agile development of web-based applications
as well as open-source software (OSS) have been subject to research and
practical application in many domains. For the healthcare sector, the
use of OSS has been studied in the literature with contradicting find-
ings. Regarding OSS in clinical applications, mainly case studies from
hospital-wide IS have been reported. Agile methods have been exam-
ined merely in the context of healthcare software product development.
However, the development of web-based applications in clinical depart-
ments using agile methods and OSS has not been studied so far. Thus,
in this paper the feasibility of such an approach is examined for an elec-
tronic case report form (eCRF) application for orthopaedical studies. It
is demonstrated how OSS-based web engineering projects may be suc-
cessfully accomplished in highly specialized environments like clinical
departments by properly taking into account their specific requirements.

Keywords: Web Application Engineering, Open Source Software, Agile
Software Development, Healthcare IS, Clinical Studies.

1 Introduction

The healthcare sector in general and especially clinical centers in the west-
ern world are currently facing increasing economical pressure due to medical
progress and demographic change. The lack of financial and personal resources
forces healthcare providers to strongly optimize their processes in order to cope
with these changes. However, all optimizations need to take into account the
high quality standards required for medical treatment [5]. Therefore, informa-
tion systems (IS) play an important role, i.e. electronic patient record (ePR)
systems [5].

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 439–451, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

440 T. Özcan, S. Kocak, and P. Brune

The German federal association for healthcare IT (Bundesverband Gesund-
heits-IT) in 2011/2012 conducted a survey among stakeholders in hospitals to
identify IS trends and measure user satisfaction. On the question “which in-
tranet/internet application would become increasingly important within the next
5 years” for them, 82 of 100 interviewed physicians answered that state-of-the-
art medical knowledge will become more and more important. To collect and
distribute this knowledge by scientific publications, clinical studies are required.

Clinical studies require to collect and store the underlying empirical data in a
structured and persistent form. Therefore, information technology plays an im-
portant role. eCRF applications allow to perform patient surveys in electronic
form and support the related data management and administrative tasks. During
the development of an eCRF application it is especially important to focus on the
user requirements, in particular those of the patients and physicians, to ensure
an efficient process support and a high user acceptance of the resulting software.
Thus, in the present case a web-based eCRF application for orthopaedical clin-
ical studies was developed individually by and for the center for orthopaedical
studies (Orthopädische Studienzentrale) of the Ulm university hospital. Due to
the close interaction with the relevant stakeholders (in particular physicians)
and the unclear detail requirements at project start, an agile method based on
Scrum was chosen for the project [7,24,32].

To ensure long-time support and operation, an application also needs to ad-
here to the standards and requirements of the IT organization. Therefore, beside
the selection of an appropriate development method, the application architecture
and the proper choice of its technical components are crucial for the application’s
success [27]. Here, open source software (OSS) provides a possible alternative to
commercially available solutions. Besides the savings of the licence fees, OSS usu-
ally offers good transparency, extendability and the support of open standards
[13]. In the literature, agile software development of web-based applications not
only for but in a clinical department in combination with OSS has not been
studied so far [3]. Thus, this paper analyses the feasibility of such an approach
by examining the proof-of-concept implementation of the real eCRF system Or-
thoClinical. In addition, the usability of OSS components as a basis for designing
the software architecture of web-based applications is analysed in this context.

The rest of this paper is organized as follows: In section 2 the related work is
reviewed and section 3 describes the project context of the proof-of-concept im-
plementation of OrthoClinical. Section 4 illustrates the selection and customiza-
tion of the agile concepts used, and in section 5 the application architecture
including the selected OSS components is presented. In section 6 the results
of the evaluation of the proof-of-concept prototype are discussed in detail. We
conclude with a summary of our findings.

2 Related Work

Since the introduction of Extreme Programming (XP) [6] and the declaration of
the agile manifesto [7], agile methods have been intensively discussed in research

Agile Software Development with OSS in a Hospital Environment 441

and practice [12]. Popular agile methods today include the Crystal family [1]
and in particular Scrum [32]. All these methods more or less form a set of best
practices, which have to be customized according to the requirements of each
project [2].

Reasons for the success of Scrum and other agile methods have been studied
by various authors [29,10,25]. In [12], 36 studies regarding agile methods are
examined, mainly related to XP, which is found to be inadequate for larger
organizations. Hence, agile methods show to be most effective with smaller teams
and social factors being the most important influence on project success [12].

One example reported for the use of Scrum in the healthcare sector is a
pilot project related to imaging diagnostic systems conducted by GE Healthcare
corporation [3]. In the context of critical systems development in general, agile
methods and OSS have been also examined, but not explicitly with respect to
the healthcare sector [15].

In recent years, the use of OSS in the healthcare sector has been studied
by different publications. Most of the authors focus on the general economical,
organizational and technical advantages and disadvantages of OSS, with het-
erogeneous findings [11,27,13,28]. Especially in Europe, a limited acceptance of
OSS in the healthcare sector is observed [13]. The majority of the examined clin-
ical OSS projects were not completed due to inactivity already in early stages.
However, these projects mainly were related to the development of hospital in-
formation systems (HIS) and imaging diagnostics [16].

Various authors report case studies on individual OSS projects, i.e. the re-
design of the Irish Beaumont hospital’s IT infrstructure [14], the Decentralized
Hospital Computer Program (DHCP) system [8] and its successor VistA [9,20],
clinical decision support systems [34,31], the Mediboard system in Mali [4], a
private cloud platform for healthcare data in India [17], or the MyHealthService
project [35]. In addition, there exist some projects related to imaging diagnostics
based on OSS, i.e. an approach for image processing based on the Digital Imag-
ing and Communications in Medicine (DICOM) standard [18]. Another example
is PrivacyGuard, a tool supporting the anonymization of clinical image data [30].

However, the literature on applications in the clinical research domain is
sparse. With respect to eCRF systems, only the project PHPSurveyor was stud-
ied. Originally developed for a special disease pattern, it may be also used in
other contexts due to its modular design [23]. Regarding the orthopaedic do-
main, Shah et al. have analyzed the existing Electronic Data Capture (EDC)
systems available commercially or as OSS [33]. They state that the majority of
the clinical departments still is using inefficient spreadsheet applications to sup-
port clinical studies, which is considered inflexible, insecure and inefficient with
respect to process support. Also the data is stored that way in a non-standard
and poorly structured form, thus prohibiting data exchange from the beginning.
In addition, it is observed that some physicians are still not willing to share
their data with others, despite the medical benefits of such data collections.
Reasons are considered to be a lack of physicians’ resources and missing IT sup-
port in form of adequate EDC systems. Therefore, the authors recommend the

442 T. Özcan, S. Kocak, and P. Brune

data collection on the level of individual institutions by means of databases in
combination with intuitive and user-friendly front-end systems [33].

Thus, it can be concluded that the use of agile methods in combination with
OSS in the healthcare sector has rarely been studied in the literature. In par-
ticular, projects implementing individual web-based applications in the domain
of clinical research and their integration with the hospital-wide IT organization
have not been reported so far at all. In addition, only very few case studies from
the German or European regions even about partial aspects of the mentioned
topics exist. Thus, in the present work it is examined by studying the imple-
mentation of the OrthoClinical eCRF system at the Ulm university hospital,
how:

– agile methods may be adapted to the clinical domain to enable rapid devel-
opment of efficient applications,

– a web-based orthopaedical eCRF system with integrated study management
module may be developed based on OSS, and which OSS components may be
selected for its architecture in order to fulfill the requirements regarding cost
efficiency, interoperability, rapid development and standard conformance.

3 Project Context

The RKU - Universitäts- und Rehabilitationskliniken Ulm (University and Re-
habilitation Clinics Ulm) are maximum care clinics focussing on orthopaedics
and neurology. Founded in 1969 by the Ulm university hospital, today the clin-
ics offer acute care and subsequent medical and professional rehabilitation of
orthopaedic and neurological patients. In addition, the clinics support teaching
and research at the university hospital. Therefore, some of the physicians work-
ing at RKU are directly employed by the university hospital. In total, RKU has
a staff of 500, including 60 employees in medical service and 176 in nursing.

The orthopaedical department founded the center for orthopaedical studies
in 2011 to support the research activities of the physicians. It supports the data
collection, extraction and analysis for clinical studies among ambulant patients.
Located at RKU, the center organizationally belongs directly to the university
hospital. So far, the data for clinical studies was collected by means of paper-
based questionnaires handed out to the ambulant patients. Then, the filled-out
questionnaires were manually recorded in a spreadsheet application and subse-
quently analyzed with standard statistics software tools. To enable more efficient
research, the implementation of an adequate software solution for electronic data
collection and processing was necessary. In a first step, this system should be
only used by the center for orthopaedical studies and primarily help to reduce
the workload of the physicians with respect to the extension of the clinical study
database.

This paper describes the development of a first prototype of this applica-
tion, called OrthoClinical. For an easy access by different types of client devices
(mobile and stationary), OrthoClinical was designed as web-based application.

Agile Software Development with OSS in a Hospital Environment 443

The prototype was required to support at least the design and administration
of electronic questionnaires and the electronic execution of patient surveys (i.e.
in the patients’ waiting area by means of a tablet computer). Later, it should
be extended to a full-featured eCRF system supporting retrospective as well as
prospective studies.

4 Agile Methodology

The selection of an adequate project methodology was performed by means
of the decision matrix proposed by Cockburn [1]. The priorities of the project
were considered to be productivity and tolerance, since first results should be
available at an early stage, which the team atmosphere should enable. Thus, the
productivity and tolerance grid was chosen as basis for the decision (see Fig. 1).

Fig. 1. Decision matrix for project methodology selection according to Cockburn [1]

The project’s criticality was classified as “Comfort”, since the system only
reduces the workload of the users. The development team consisted of 3 per-
sons. Thus, according to Cockburn it is a C6 project requiring cost-effective
development, since no direct financial benefits are expected, frequent delivery of
working software and a high demand for communication between the team and
other stakeholders.

To meet this requirements a combination of the agile methods Crystal Clear
and Scrum was chosen. Usually Scrum is considered to requires an experienced
team with good technical skills in the development environment used. Addition-
ally, a close interaction with the customer representatives is needed, i.e. for test-
ing the delivered software after each sprint [10]. However, these requirements
were not completely met by the project. Neither experienced developers were
available, nor the customer representatives (physicians) were able to perform

444 T. Özcan, S. Kocak, and P. Brune

a regular quality assurance after each sprint due to their tight schedules and
shifted working times.

According to Crystal Clear, the “Exploratory 360” strategy was used at
project start [2]. Thereby, the items business value, requirements, technology
plan, team make up and working conventions were analyzed and defined. The
category domain model was integrated into the working conventions and not
considered separately.

First, together with the stakeholders the business value definition was worked
out [2]. Therefore, interviews with the assistant medical director, physicians,
medical documentation officers and MD students were done to estimate the sys-
tem’s expected value for the orthopaedical department. It became obvious that
the system should not only improve the efficiency of the processes but also in-
crease the transparency about the research activities at RKU. For a cost-efficient
implementation it was decided to develop the application based in OSS. To sup-
port different client devices, the implementation as a web-based application was
chosen.

The high-level use cases related to administration, data capture and schedul-
ing were identified to be the most important requirements, therefore these
functional domains were implemented as core modules of OrthoClinic. Fig. 2
illustrates this modular structure. The high-level use cases were then refined
and worked out in form of user stories. In discussions with the stakeholders it
become clear that the modules administration and data capture were of highest
priority, thus it was decided to implement them first.

Fig. 2. Functional modules of OrthoClinical

Crystal Clear defines the project roles executive sponsor, expert user, lead
designer, designer-programmer and coordinator, the latter being responsible for
project management. In smaller teams it is necessary for the members to take
multiple of these roles [2]. Therefore, during the team make-up of the OrthoClin-
ical project the roles sponsor, coordinator, lead designer, designer-programmer

Agile Software Development with OSS in a Hospital Environment 445

Fig. 3. Project roles according to Crystal Clear with the respective communication
relations and responsibilities

and expert user were assigned. The role of the expert user was taken first by a
medical specialist, and second by a staff member of the center for orthopaed-
ical studies. Fig. 3 illustrates the assigned project roles with their respective
communication relations and tasks within the project.

Working conventions help to organize the daily work of the team. Therefore,
Crystal Clear defines seven categories, namely frequent delivery, reflective im-
provement, osmotic communication, personal safety, focus, easy access to expert
user und technical environment. Osmotic communication and easy access to ex-
pert user proved to be especially challenging in the present project context.

Osmotic communication should allow the developers to take part directly or
indirectly in every development-related communication process. However, since
in the present scenario not all developers were able to work at the same time at
the project, an indirect form of osmotic communication was established by means
of an information board (see Fig. 4). Here, i.e. coding standards or informations
about development items were put on visible to all team members. Also problems
or impediments could be noted and discussed on the board by all developers.
Thereby it was possible to discuss ideas or solutions without the need for all
team members to be physically present all the time.

The easy access to an expert user also proved to be a challenge to the project.
Crystal Clear requires the expert user to be continuously involved in the de-
velopment process as close as possible to ensure that deviations between the
current implementation and the requirements are identified quickly. However, in
the present case this principle needed to be adapted. At project start a physician
was denoted as the expert user. However, due to the tight schedules and shifted
working times of the physicians this proved not to be feasible. Instead, the role of
the expert user was additionally taken by a medical documentation officer, who

446 T. Özcan, S. Kocak, and P. Brune

Fig. 4. Snapshot of the information board used for communication between the team
members

was also involved in the development himself. Thus, no continuous independent
quality assurance could be guaranteed.

The actual development work was organized using Scrum. Before the start of
the first iteration (sprint) already all major requirements needed to be identified.
First, since the physician serving as the expert user was not available during the
rest of the project, and second because it is required for software projects at
RKU to deliver a detailed IT security and privacy concept at project start.

The functional requirements were specified as user stories collected in inter-
views with selected physicians and medical documentation officers. To further
involve the other physicians and obtain their feedback, the collected user sto-
ries were distributed to all of them in written form. In total, 22 user stories
were identified and put into the product backlog. According to Scrum, the user
stories in the product backlog should be prioritized by the product owner. The
role of the product owner in the project was taken by different persons, first by
the project sponsor, then for pragmatic reasons by the expert user and the lead
programmer.

So far, three sprints were performed, each lasting for one week. Sprint meetings
were scheduled on demand and after each sprint. Due to time limitations not all
user stories could be implemented as planned during these sprints. After the first
sprint the prioritization and number of relevant user stories was adjusted. Scrum
requires to involve the users in the testing and approval of the implemented user
stories after each sprint. This proved not to be feasible in the clinical context. In
the future, the regular early morning status meetings of the physicians might be
used for testing individual functionalities and for general information about the
project progress. This would not only allow a better individual feedback by the
physicians, but also provide an environment for broader discussionswith the users.

Agile Software Development with OSS in a Hospital Environment 447

5 Application Architecture and OSS Components

OrthoClinical was realized as a web-based application with a standard three-tier
architecture, composed of the database, business logic and presentation layers.
Therefore, in general different OSS platforms may be considered, in particular
the frequently used PHP and Java Enterprise Edition (EE) environments [22],
since for the latter also different open source implementations exist. Criteria for
the selection of the used components were license fees, initial skill adaptation
effort, interoperability, a high productivity within short development cycles and
support for open standards. From these, the initial skill adaptation effort strongly
depends on the experience and knowledge of the team members. Thus, no general
statement for other projects is possible here.

Both Java EE and PHP fulfill the selection criteria license fees, interoperability
and high productivity. PHPSurveyor, the only OSS-based eCRF web application
documented in the literature so far, was developed using PHP [23]. However, for
OrthoClinical some significant disadvantages of PHP were identified: First, the
initial skill adaptation effort would have been higher for PHP, since the team
members already had Java EE but little PHP development experience. Second,
PHP in contrast to Java EE does not provide a dedicated support for business
logic implementation by a built-in component architecture. Due to the lack of
type safety, for PHP also a higher testing effort was expected. In contrast, Java
EE with its Enterprise Java Beans (EJB) component architecture provides a
solid foundation for implementing business logic. With Eclipse and Netbeans
IDE [21] also powerful development environments exist for Java EE.

Thus, Java EE and Java ServerFaces (JSF) 2.0 were selected as the develop-
ment platform [22]. The standard JSF framework was extended for OrthoClinical
by the Primefaces library. Using JSF and the Primefaces UI library [26] enabled
the developers to create a professional web user interface by combining visual
components. The communities of both frameworks are very active and questions
could be discussed with members in various forums. JSF is well documented. In
contrast, Primefaces indeed offers many realistic examples, but lacks a compre-
hensive open online documentation.

Enterprise Java Beans (EJB) like JSF is a standardized technology. This is
an advantage regarding extendability and maintainability. The data access layer
was implemented using Java Persistence API (JPA) and EclipseLink for object-
relational mapping (ORM) [22]. The database layer was realized by the popular
database management system (DBMS) MySQL 5.2.

NetBeans 7.2 with its integrated GlassFish application server was used as
development environment. It provides i.e. a powerful scaffolding functionality
for automatically generating business logic classes (EJB) and JSF pages from
a relational database model [21]. For the creation of this database model and
the administration of the underlying DBMS the MySQL Workbench software
was used. The scaffolding functionality of NetBeans IDE proved to be extremely
useful. A disadvantage was the instability of the integrated GlassFish server. As a
workaround, the server subsequently was installed and administrated separately
from NetBeans.

448 T. Özcan, S. Kocak, and P. Brune

Fig. 5. Screenshot of a questionnaire form (Harris Hip Score, in German language) in
OrthoClinical

Fig. 5 shows a screenshot of a patient questionnaire form (Harris Hip Score)
in the resulting OrthoClinical web application developed this way.

6 Prototype Evaluation

In retrospect, the developers consider the selected OSS implementation of the
Java EE technology stack and development tools as mature and effective means
to build user-friendly and reliable web-based applications. In particular the scaf-
folding functionality of Netbeans IDE for generating skeleton JSF pages and
presentation and business layer Java Beans in combination with the Primefaces
UI library strongly supported the rapid development of working increments of
the software during the sprints.

To validate the practical usability of OrthoClinical for patient surveys, an
empirical usability test was performed. Therefore, 14 randomly selected patients
in the orthopaedical department were asked to fill out the questionnaire for the
so-called Harris Hip Score in OrthoClinical (see Fig. 5) using a tablet PC. All
participants were asked to perform a representative and identical task in Or-
thoClinical, namely to “fill out the Harris Hip Score questionnaire for the hip
body region”. They did not receive any special training on how to use Ortho-
Clinical before. The objective was to measure the usability criteria effectiveness,
efficiency and user satisfaction. Effectiveness indicates if the users are able to
perform a certain task successfully, efficiency measures the effort necessary for
it. User satisfaction indicates the subjective perception of the usability by the
test persons. The last criteria is only meaningful with respect to the average user
satisfaction of the respective peer group [19]. During the tests the patients were

Agile Software Development with OSS in a Hospital Environment 449

observed and the durations to complete the test task were measured. A success-
ful completion of the test task required the participants to perform the following
steps: 1. selection of the patient region in OrthoClinical, 2. fill out the question-
naire, 3. save the results. After the test, the participants were interviewed to
measure the usability criteria. The results are shown table 1.

Table 1. Results of the usability test of OrthoClinical from the patients’ perspective

Age Effectiveness Efficiency User Satisfaction

25 – 45 Yes, without support 3.5 min. High

45 – 65 Yes, with support 4.5 min. Medium

65 – 75 No, despite support < 8 min. Low

The results show that older patients in general had problems using electronic
client devices, regardless of the user-friendly web-based frontend. Two patients
even refused to take part in the test because they never had used such devices
in their everyday life. Some participants also criticised the current way how
questionnaires are displayed in OrthoClinical (all question on one web page).
They suggested that there should be a separate page for answering each question.
On the positive side, the overall GUI layout of the web pages was considered
well structured.

Participants between 25 and 35 years were able to perform the task without
support in an average of 3.5 minutes. The 45 to 55 year old patients partially
needed help, i.e. regarding the scrolling of the questionnaire page. The user
satisfaction in this user group was medium. The test persons older then 65 years
had significant problems using OrthoClinical. Despite personal assistance they
were not able to successfully complete the task. As a reason for this an overall
lack of computer skills was mentioned.

7 Conclusion

In conclusion, the project demonstrated that it is in general possible to use agile
methods for web-based application development in a clinical environment. How-
ever, these methods need to be customized and extended with respect to the
identified specific requirements. Due to the required quality insurance measures
at project start it was not possible to use agility during all phases of the devel-
opment process. To get an approval for the project by the IT administration it
was i.e. necessary to create an technical specification and IT security document
in advance, which already defined key functionalities, the software architecture,
and the data model. Nevertheless it was possible for the rest of the project to
design and use a tailored agile methodology combining elements of Scrum and
Crystal Clear.

450 T. Özcan, S. Kocak, and P. Brune

The OSS components used developing the OrthoClinical web application
proved to provide an efficient alternative to commercially available products.
Originally, the main reason for the clinics administration to use OSS was the
savings of license fees. However, during the project also further advantages like
extendability and vendor independence became apparent.

However, further research is necessary to evaluate the presented approach
more extensively for a longer duration, and also in various similar project
contexts.

References

1. Cockburn, A.: Selecting a projects methodology. IEEE Software 4, 64–71 (2000)

2. Cockburn, A.: Crystal Clear - A human powered methodology for small teams.
Addison-Wesley (2005)

3. Deitsch, A., Hughes, R.: Ge healthcare goes agile. Information Week, 59–63 (2010)

4. Bagayoko, C.: Selection of secure single sign-on solutions for heterogeneous com-
puting environments. BMC Medical Informatics and Decision Making 10(22), 1–13
(2010)

5. Bärwolff, H., Hüsken, V., Victor, F.: IT-Systeme in der Medizin IT- Entschei-
dungshilfe für den Medizinbereich - Konzepte, Standards und optimierte Prozesse.
Vieweg+Teubner Verlag, Wiesbaden (2006)

6. Beck, K.: Extreme Programming eXplained - Embrace Change. Addison-Wesley
(2000)

7. Beck, K., et al.: Principles behind the agile manifesto (2001),
http://agilemanifesto.org/principles.html

8. Brown, S., et al.: Vista u.s. department of veteran affairs national scale his. Inter-
national Journal of Medical Informatics 69, 135–156 (2003)

9. Byrne, C., et al.: The value from investments in health information technology at
the u.s. department of veteran affairs. Health Affairs 29(4), 1–13 (2010)

10. Cesar, A., et al.: An empirical study on the relationship between use of agile prac-
tices and the sucess of scrum projects. In: Proc. of the 2010 ACM-IEE International
Symposium on Empirical Software Engineering and Measurment (ESEM 2010),
vol. 10 (2010)

11. Dinevski, D., Inchingolo, P., Krajnc, I., Kokol, P.: Open source in health care
and open three example. In: IEEE International Symposium on Combuter Based
Medicine (2007)

12. Dyba, T., Dingsor, T.: Empirical studies of agile software development: A system-
atic review. Information and Software Technology 50, 833–859 (2010)

13. Murray, P., et al.: Open source and healthcare in europe time to put leading edge
ideas into practice. Medical Informatics in a United and Healthy Europe (2009)

14. Fitzgerald, B., Kenny, T.: Open source software in the trenches: Lessons from a
large-scale oss implementation. In: 24th International Conference on Information
Systems (ICIS), pp. 316–326 (2003)

15. Gary, K.: Agile methods for open source safety critical software. Software Practice
and Experience, 943–962 (2011)

16. Hogarth, M., Turner, S.: A study of clinilally related open source software projects.
In: AMIA Annu. Symp. Proc., pp. 330–334 (2005)

http://agilemanifesto.org/principles.html

Agile Software Development with OSS in a Hospital Environment 451

17. Lakshimi, M., Malar, J.D.: An open source private cloud solution for rural health-
care. In: International Conference on Signal Processing Communication Comouting
and Networking (2011)

18. Marcheschi, P., Mazzarisi, A., Benassi, A., Ferdeghini, E.: An open source based
radiological information system to support a clinical cardiology depearment. In:
Computer in Cardiology, pp. 363–366 (2003)

19. Hartmann, M.: Usability Untersuchungen eines Internetauftrittes nach DIN EN
ISO 9242 Am Praxisbeispiel der Firma MAFI Transport Systeme GmbH. Diplom-
ica Verlag GmbH (2008)

20. Molin, J.D.: Open innovation; transforming health systems trough open and evi-
dence based healthcare ict innovation. Communication & Strategy 3, 17–35 (2011)

21. Netbeans: The netbeans e-commerce tutorial (2012),
http://netbeans.org/kb/docs/javaee/ecommerce/entity-session.html

22. Oracle: The java persictence api a simpler programming model for entity persis-
tence (2012),
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html

23. Orr, S., Straus, S., Holyrod-Leduc, J.: Development and example of a web based
open source clinical tool. In: AMIA 2005 Symposium, pp. 330–334 (2005)

24. Pichler, R.: Scrum agiles Projektmanagement erfolgreich einsetzen. Dpunkt Verlag
(2008)

25. Pries-Heje, L., Pries-Heje, J.: Agile and distributed project management: A case
study revealing why scrum is useful. In: ECIS 2011 Proceedings, vol. 217 (2011)

26. Primefaces: Ultimate jsf component suite (2012), http://www.primefaces.org
27. Ralston, B.: Open source expected to improve innovation. Health Management

Technology 30(8), 12–13 (2011)
28. Reynolds, C., Wyatt, J.: Open source, open standards and health care information

systems. J. Med. 13(1) (2011)
29. Rising, L., Janoff, N.: The scrum software development process for small teams.

IEEE Softw. 17(4), 26–32 (2000)
30. Rodrigez, D.G., Carpenter, T., van Hemert, J., Wardlaw, J.: An open source toolkit

for medical imaging de-identification. Eur. Radiol., 1896–1903 (2010)
31. Sackett, D.: Implementing an integrative mulitagent clinical decision support sys-

tem with open source software. J. Med. Sys. 36(1), 123–137 (2012)
32. Schwaber, K.: Scrum alliance - scrum guide (2009),

http://www.scrum.org/Scrum-Guides

33. Shah, J.: Electronic data captuare for registries and clinical trails in orthopaedic
surgery: Open source versus comercial systems. Clin. Orthop. Relat. Res. 468(10),
2664–2671 (2010)

34. Shirabad, S.: Implementing an intergrative multi-agent clinical decision support
system with open source software. J. Med. Syst., 123–127 (2010)

35. Vognild, L., Fernandez, L., Burkow, T.: The myhealth service approach for chronic
disease management based on free open source software und low cost components.
In: 31st Annual International Conference of the IEEE EMBS, pp. 1234–1237 (2009)

http://netbeans.org/kb/docs/javaee/ecommerce/entity-session.html
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.primefaces.org
http://www.scrum.org/Scrum-Guides

USTO.RE: A Private Cloud Storage Software

System

Frederico Durão1, Rodrigo Assad2, Anderson Fonseca3, José Fernando3,4,
Vińıcius Garcia3, and Fernando Trinta5

1 Federal University of Bahia, Computer Science Department
Av. Adhemar de Barros, Salvador - Bahia, Brazil

freddurao@dcc.ufba.br
2 Federal Rural University of Pernambuco

Recife - Pernambuco, Brazil
assad@deinfo.br,assad@usto.re

3 Federal University of Pernambuco
Recife - Pernambuco Brazil

{afs8,jfsc,vcg}@cin.ufpe.br
4 University Center of João Pessoa - UNIPÊ

João Pessoa - Paraiba, Brazil
gentio@gmail.com

5 Federal University of Ceará
Fortaleza - Ceará, Brazil

fernando.trinta@lia.ufc.br

Abstract. Cloud computing is a computing model where hardware,
platforms and software are seen as services; viz. Infrastructure as a Ser-
vice, Platform as a Service, and Software as a Service, respectively. Data
as a Service (DaaS) is based on the concept that the product, data in this
case, can be provided on demand to the user, regardless of geographic or
organizational separation between provider and consumer. DaaS appli-
cations are for the most part based on excessive data replication in order
to guarantee data availability, which means excessive costs in hardware
investments. This white paper presents the specification, implementa-
tion and evaluation of a system called USTO.RE which aims to be
an effective and low-cost alternative for storing data, thereby mitigating
the problem of excessive data replication and thus allows itself to be
considered a reliable platform from the perspective of data availability.
Evaluation scenarios and the results achieved in our experiments to eval-
uate the system as well as possible lines for future development will be
presented.

1 Introduction

Recent CISCO report1 on predictions about mobile data traffic, show that they
currently achieve a flow of approximately 0.6 exabytes of mobile data per month.

1 Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2011
– 2016, URL: http://bit.ly/x5V50B, last access on 05/03/2012.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 452–466, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://bit.ly/x5V50B

USTO.RE: A Private Cloud Storage Software System 453

This report states that the flow of mobile data will be multiplied by a factor
larger than 10 by 2016, based on the fact that the speeds will be multiplied by
similar values. The considerable increase in the amount of information produced
by users associated with the need to access data in a ubiquitous manner led to
the emergence of data storage systems in the cloud [8].

Cloud Storage Systems appear quite attractive to home users, by providing
them with the ability to access, retrieve and store their files from anywhere at
anytime. Studies show that in 2010, the amount of data produced was greater
than the storage capacity [2]. Thus, we can infer that the tendency is for this
disparity to grow increasingly, corroborating the report submitted by CISCO.
The applications of cloud storage based on the principles of Cloud Computing, in
which users pay for what they consume and can access data from anywhere with
growth in storage resources, are done on demand. Because of this relationship, a
service model commonly used for the applications of cloud storage is the cloud
storage of Data as a Service (DaaS).

There are a number of platforms in the cloud data storage [8], most of which
have common features: i) the need to assemble a dedicated infrastructure to
ensure the availability of data when the user requests access; or ii) the lack of
reliability from the standpoint of ensuring the availability of data, which can be
clearly identified from the analysis of contracts of service providers.

In the context of these issues, the project USTO.RE proposes the reduction
of costs associated with the need for a dedicated infrastructure of cloud storage
systems through an approach based on the Peer to Peer (P2P) network. This
approach significantly reduces the CAPEX, which encompasses capital expendi-
ture or investments on acquisition for companies to build their own data storage
environment. The main advantage of USTO.RE is that it opportunistically
benefits from opportunistic storage resources and idle disks of computers in the
existing infrastructure of the company.

The remainder of this paper describes the architecture and results of tests
conducted with USTO.RE. Section 2 reviews other works related to our pro-
posal, and Section 3 introduces the system and provides an overview of its ar-
chitecture. Section 4 describes the project use case, testing scenarios and their
achievements. Finally, Section 5 draws the main conclusions and outlines future
lines of investigation.

2 Related Work

There are several existing solutions for data storage in the cloud DaaS model.
In general, these solutions are proprietary and closed, which therefore prevents
a more detailed technical analysis on each proposal. Looking at some of the
major existing solutions, such as Amazon S3, Megastore, MSFSS and Hadoop
Distributed File System (HDFS), we note that they invariably utilize all a com-
mon strategy based on replication of data across multiple servers, where the
number of servers involved in replication, ranges from 3 to 7 depending on

454 F. Durão et al.

the solution. This forced replication is done because there is no automation in
the processes of replication that can guarantee 99.9999999% availability [8].

Amazon S3 (Simple Storage Service) [2] is the storage system behind many
of the services of Amazon.com known as Dynamo [8], which recently had its
SQL-database launched under the name DynamoDB [8]. The DynamoDB has a
backup policy where at least three copies of the same data are made, and two
are made in one and the same zone on a third outer zone, so as to increase
the availability of the information. According to 2009 data, the system stored
about 40 billion files of 400,000 customers. Their challenges include ensuring
availability and fault management.

Megastore, is a system developed with a focus on online interactive services
[3]. It was developed and is used by Google for a long time and handles more
than 3 billion written and 20 billion read transactions daily. It also stores a value
close to a petabytes of raw data in their datacenters spread globally.

MSFSS is a distributed file system highly scalable and flexible, designed to
store a large amount of small files [18]. Its architecture is divided into three
main components: single master, storage nodes and metadata servers. Every file
stored in the system receives a 128-bit identifier (FID - File ID) generated after
its storage. These files are stored in the local file system of each node storage.
Further, MSFSS supports data replication, which ensures consistency between
replicas and performs rapid synchronization to identify obsolete ones. The FSI
(File System Interface) library provides access to the system for external clients
and allocates a large amount of FIDs processes in batch and leaves stored in
local memory for later use [18]. By default, MSFSS replicates the files twice
although this value can be configured to ensure greater availability and reliability.
During the reading process, any replica can be considered, on the other hand, in
the process of writing, all replicas must be updated automatically. To minimize
latency, the data is stored near the user and the replicas close to each other. It
separates groups by regions and creates 3 to 5 replicas for data centers.

Wuala2 is an online cloud file storage that unlike the majority of online file
storage services like Dropbox and Box.com, which offer paid plans only as a
means to expand storage. Wuala offers the option to gain additional online stor-
age in exchange for some of the user’s unused local disk space to commit to
the network. Similarly to our approach, uploads are encrypted automatically,
anything that is sent to backup is given a high-grade file encryption to pre-
vent hackers and other nefarious evildoers from messing with the cache of files.
Also similarly as our approach, Wuala offers a simple, yet capable, mobile app
for Android and iOS devices, making file access easy and accessible from any-
where. An interesting feature about Wuala is the possibility of adjusting the
bandwidth so that one can easily cap the amount of upstream and downstream
net traffic that available to Wuala. Unlike our approach, after installing Wuala,
it will mount WualaDrive on the computer as a network drive, where one can
directly access all files and even save files directly there. A key feature is the
possibility of building groups and share files with distinct collections of users.

2 www.wuala.com/en

USTO.RE: A Private Cloud Storage Software System 455

Worth mentioning that every uploaded files in a group will be counted against
storage quota for every group members. Tagging mechanism is allowed. Unlike
our approach Wuala doesn’t keep files versioned with date. Instead they will
keep your files for up to 10 versions.

Symform3 is a also an online cloud backup service that encrypts, shreds,
and globally distributes data. Similarly as Wuala, Symform’s customers join
the Symform network by contributing excess local drive space and, in exchange,
receive free cloud backup. Symform is basically a folder synchronization product.
One can only select folders that wants to synchronize with the cloud. There is
not option of selecting individual files or file types for backup. Once a folder
is selected, all sub-folders in that tree are included. Similarly as our approach,
Symform encrypts the data and chops it up into fragments. The ideal size for a
folder is 64 MB and that block of data is broken into 64 1 MB fragments. To
that data, 32 parity fragments are added and all 96 fragments are distributed
to 96 member devices (contribution nodes) out in the cloud. The algorithm
for adding parity is actually a RAID algorithm. Every piece of data sent to
backup is monitored by a Cloud Control metadata where Symform keeps track
of where each fragment is sent. Symform constantly monitors the performance
and availability of contribution nodes. If a member’s device becomes unavailable,
Symform sends an email notifying them, and can recreate the data from the
unavailable device (from other data and parity) to send to another contribution
node. Data is geographically dispersed, which increases data security. According
to Symform, member contribution nodes are located in 150 countries.

Freenet4 is a free P2P software designed for anonymous file sharing. Indeed,
the Freednet is targeted at those who want to exercise free speech without fear
of censorship or retribution. Unlike most of file sharing discussed in this paper
is the single one which allows one to publish websites and take part in online
bulletin boards obviously only accessible to those who use the software. Unlike
our approach, the Freenet network is decentralized without any central hub.
The shared files are stored encrypted in different computers around the world.
The size of the default folder where shared files are stored is determined by the
user during installation and it can go from a few Megabytes up to dozens of
Gigabytes. Because all the stored data is encrypted Freenet users do not know
what they are sharing and have no saying on what is being shared, this allows
for denial of knowledge. A particular feature is that files in Freenet are kept or
deleted depending on popularity, if something isn’t downloaded for some days,
Freednet wil delete them.

AeroFS5 is on software for file sharing on the Web and is nearly as seamless
and simple Dropbox, but with the added security that comes from keeping data
(and data transfers) confined to local computers rather than on someone else’s
server. The level of OS integration present and its ease of configuration make
it a very promising “personal cloud” solution. As to the security, data is fully

3 http://www.symform.com/
4 https://freenetproject.org/
5 https://aerofs.com/

456 F. Durão et al.

encrypted before being transferred to other computers, preventing it from being
intercepted and decoded in transit. Installing the AeroFS software creates a
folder in the user profile, much like Dropbox does, and this can be changed from
the default location as desired. Aside from the security advantages, AeroFS frees
users from the limited amount of storage space provided by other cloud service
vendors. The size of a “personal cloud” is limited only by the amount of disk
space on your various computers. Limiting download and upload bandwidth is
also possible, which is especially desirable if the syncing is occurring between
multiple clients. The versioning system in AeroFS keep older versions stored
as long as there is sufficient free local disk space; if one’s disk gets too full, it
will begin silently deleting the very oldest items to make more room. AeroFS’
versioning system keeps old versions until it runs out of space, and then begins
deleting the oldest copies of files to make more room. Our approach does not
implement this feature, rather we let the users take care of this own files. Conflict
management is the a concern, file conflicts are not solved properly if problems
occurs. And finally, the AeroFS’s biggest shortcoming, which is lack of access
from Web browsers or mobile devices. Dropbox (and, for that matter, Google
Drive, SugarSync, Box.com, and most of the other major players in this field)
offers apps for iOS and Android as well as a robust Web client that can be used
to access your files while on public computers.

The HDFS is a file system used by Hadoop [14] and its related projects.
Hadoop is a framework for analysis and processing of large amounts of data
using MapReduce [7]. One of the main features of Hadoop is the partitioning of
data and computation thereof using thousands of hosts. For instance, the cluster
Hadoop at Yahoo! reached 25,000 servers (with cluster up to 3,500 servers) and
stored 25 Petabytes of data [14].

The abovementioned works have in common excessive replication of informa-
tion. This fact has to do with the need to ensure high data availability, increase
reliability, and performance of information retrieval. However, the use of repli-
cas does not only bring benefits. It creates an extra data traffic on the network,
which can be so excessive to the point of becoming the main bottleneck for
an application, and may generate a cost so high that the band can make the
application unfeasible [17].

These solutions infer the need to purchase infrastructure in order to provide
a dedicated service and to guarantee a replica of the data. In order to improve
this scenario, the goal of USTO.RE is to allow for the creation of a cloud data
storage using P2P technology that is based on the availability of each peer to
dynamically create federations and set the amount of replications for the chunk6

of each file. This approach is allowed in environments where peers have increased
availability (low failure rate) with one minor replication, and in the case of a
more dynamic environment as company Intranet, it has further replication. In
the next section, our proposal will be explained in detail.

6 Chunk is a piece of information, i.e. a “small” part of a file stored. Files are divided
into chunks, which in turn are replicated storage points in cloud infrastructure.

USTO.RE: A Private Cloud Storage Software System 457

3 The USTO.RE System

The architecture of USTO.RE was specified with the target of achieving a set
of quality attributes peculiar to distributed storage systems that met the main
benefits offered by P2P applications, namely

Scalability: Given the possibility of exploring hardware resources of a large
number of (hosts) machines connected to the network, this is done mainly
through the rational use of idle resources in large corporations..

Optimization Iterations (messaging): The distance between the peers in-
teracting in the system has an impact on overall performance in the latency of
individual interactions, so the load network traffic also suffers from a negative
impact on this latency. In this context, the choice of using the strategy is aimed
at federation grouping related peers and to reduce this latency.

Availability: P2P systems are based on free computers that join the system
at any time. Furthermore, the connections are not managed by the system or
some authority that ensures connectivity and quality of service. In this context, a
strategy for ensuring service availability should be implemented considering the
basic characteristics of a storage system with high availability and the restrictions
imposed on a P2P network.

Data Security: When it comes to data storage, protection and security policies
should be effectively adopted to ensure user privacy and system data consistency.

Figure 1 overviews theUSTO.RE architecture, its major components, depen-
dencies and relationships. The architecture comprises a set of five components
structured in three layers. They are: i) Super Peers Rendezvous Relay or simply
Super Peers, ii) Servers iii) proxies, iv) Relational SQL and Non-Sql Databases
and v) Simple Peers. These components have different functions and interact as
a decentralized distributed and hybrid system, similar to a P2P network, where
each node performs both functions as a server and clients. The components are
grouped dynamically as associations of data, where the groups are assembled so
as to minimize the messaging system.

The organization of this system architecture enables a multi-layered distri-
bution of processing, since the components are physically distributed. However,
because it is a hybrid P2P architecture that is structured and multi-layered, the
system has a horizontal distribution. In this horizontal distribution in a P2P net-
work, a client or a server can be physically divided into pieces that are logically
equivalent, where each operates on its own portion of the data that provides a
balanced load. In the following, we present the components of the USTO.RE
architecture.

3.1 Super Peers

The Super Peers act as reference points for other components of the architecture,
being the gateway to the participation of servers, proxies and simple peers. The
role of a Super Peer is to set up federations when each data peer requests the

458 F. Durão et al.

Fig. 1. USTO.RE Architecture

network connection. For this, Super Peers must have its location previously
known by all other peers through a pre-configuration. Consequently, they are
the first components to be initialized to the correct functioning of USTO.RE.
Also as a result, a Super Peer keeps information on all servers, Proxies and
Simple Peers, grouping them dynamically according to the profile of each peer,
to be explained below.

It is also the role of this type of peer, to dynamically choose peers and fed-
erations of servers based on a proximity algorithm [9]. The federation grouping
allows elastic growth and ensures system scalability, because there is a limit to
the number of associations that can be created. By definition, elastic growth is
the characteristic of the system grow or decrease, in terms of capacity and re-
source consumption of dynamic and non-intrusive way. The peers communicate
with the network through the P2P JXTA protocol [16] and can optionally offer a
service interface REST [16] to allow for interoperability with other applications.

3.2 Servers

The Server Peers offer a list of services and must be executed immediately
after the startup of Super Peers (Step 1 in Figure 1). Super Peers establish a
synchronization scheme, thus ensuring that the list of servers in each of them
would be updated as the input or output of a Sever Peer.

The definition of peers with specific functionality in the network differs from
some proposals for P2P systems, where which each peer should be able to play all
the roles, thus promoting the idea of a DHT (Distributed Hash Table) [13,11].
However, the implementation using a DHT in its essence is quite costly and

USTO.RE: A Private Cloud Storage Software System 459

difficult to scale [12]. Therefore, USTO.RE adopted the creation of hierarchi-
cal levels that implement well-defined services and that can grow horizontally.
Among the available services via the servers, we can mention.

1. Authentication: used for each peer to get authenticated;
2. Availability: allows one to check the availability of each peer;
3. Chunk: used to monitor the chunks storage;
4. Error: allows servers to monitor eventual errors;
5. Output Control: controls the voluntary withdrawal of a peer when it dis-

connects from the network voluntarily;
6. Management Directories: used for storage and retrieval of entire

directories;
7. Manages File: used for file storage and retrieval;
8. Search Peers: search for a set of peers that comply with Service-Level

Agreement (SLA) for file storage;
9. tree Directories: used to preview entire directories;
10. Access Security: controls the access permission to the chunks;
11. Trace: maintains a list of users and files being accessed when a file is re-

quested to be recovered.

As shown in Figure 1, the Server Peers access two types of database to main-
tain consistency of the system. A traditional relational database contains data
from users of the system, and a non-SQL database [5] which allows horizon-
tal growth and faster recovery of information related to the files and chunks
saved. The choice of this separation is given by the issues related to system
performance, since with increasing volume and file chunks saved the manage-
ment system database try to become a bottleneck point, and using a distributed
system enables natively become a viable and scalable solution [5].

All information regarding authentication and the SLA peers are saved in a
relational database because of the relational integrity assurance provided by
this type of database. Already, the service of FileTracker, which allows for the
identification of which peer has pieces of the file to be recovered, is used in a
SQL database that allows for its horizontal growth. Instances of banks, whether
they be relational or non-sql, can be shared between more than one server. A
Server Peer can provide one or more network services; therefore, the same as
creating federations of data, one can start peer and server proxies with increasing
demand scalability and resilience of the system.

3.3 Proxy

After initialization of Super Peers and Server Peers, the third component that
needs to be executed is the Proxy. Each proxy acts as a catalog, a location service
for services running on differentUSTO.RE servers. A Proxy when announcing a
Super Peer (Step 2 in Figure 1), receives the list of registered servers. In addition,
a Proxy gets the information of what services are available on each server. Thus,
when a peer requests information about a particular service, a Proxy provide a

460 F. Durão et al.

reference to a server that meets this requirement. Thus, a Proxy establishes a
bridge between service consumers, typically the Simple Peers, and providers of
a service, in this case, the Server Peers.

3.4 Simple Peers

Simple Peers are responsible for storing the files chunks. In fact, these machines
provide storage space to be shared among multiple users. Each Simple Peer has
a profile that defines its availability in the network. This availability is related
to the time period in which the peer is available to share data. As an example, a
peer that is in a corporate Intranet can have on one’s profile: availability assigned
at “8:00 to 12:00 and 14:00 to 18:00”. Thus, when a Simple Peer connects to
the network, it receives from the Super Peer the list of proxies available in the
network (Step 3 in Figure 1). From this list, the proxy searches for a specific
service and gets the reference over which servers proffer a particular service (Step
4 in Figure 1). A Server Peer is chosen randomly, and Simple Peers request the
desired service (Step 5 in Figure 1). If a service is not met for any reason, such
as a timeout, the proxy can provide a new Server Peer to the Simple Peer.

Each peer has a REST service interface [16] that allows user authentication,
storage, retrieval and deletion of data saved. This feature presents a key advan-
tage in terms of the possibility of harmonizing the system with other existing
interfaces, such as Amazon’s S3. In the current architecture, data storage service
can be modified to work with other alternatives (i.e. Megastore, MSFSS or S3).

To ensure each balanced chunk is scattered in the network, each peer must
periodically report their current state in order to maintain the SLA to date.
Figure 2 (a) shows the peer (PL 1) workflow from the moment he announces
his profile to the established communication with other peers through the server
(PS 1). Periodically every peer sends a message to servers as “keep-alive” stating
that he is online. This way, the server knows that the peer is complying with the
agreed profile (SLA) and becomes eligible for receiving chunks at the specified
time. Still, every peer checks with other existing peers whether its own chunks are
replicated in the minimum amount of peers obeying the criterion of availability
required [9]. Otherwise, it replicates the chunk(s) in other available peer. When
the peer owner of this chunk re-connects to the network, it will be notified that
there is chunk excess, thereby excluding it.

Figure 2 (b) shows the workflow between peers and servers from the login of
the peer in the network until the file is stored. After the peer (PL1) is connected
to the P2P network1, the Super Peer indicates a Server Peer to authenticate it.
Once authentication succeeds, the process of identifying pairs to form federations
takes place. With federation (group of peers) established, the system is able to
receive files. By receiving a file (“arq1.zip”), the peer PL1 informs the need to
store it in the system, it is made to a segmentation of the file (in chunks) and
these segments are sent to be saved in the P2P network1. Then, to make the save,
there is a routine analysis to measure the reliability of the state peers and hence
the availability of segments of the network file, and if there is a combination of
peers that meets the SLA for storage, the segments of the file are sent to these

USTO.RE: A Private Cloud Storage Software System 461

PL1 announces its

profile to PS1

PL1 periodically sends

keep_alive

PL1 sends

keep_alive
according to its

profile?

PS1 redefines the PL1

profile and remove it from
the list of pairs of that

schedule

NO

PS1 identifies data

segments stored in PL1

PS1 identifies data

segments stored in PL1

PS1 informs the keep_alive

response failure and
change in the profile to PL1

YES
Sends to the selected pairs

the segments that were
with PL1

Waiting time

PL1 sends

keep_alive
according to its

profile?

NO

YES

(a)

PL1 connect to the

P2P1 network

Super Peer indicates PS to
PL1

PL1 authenticates with PS1

PAIR MEASUREMENT
PROCESS

PL1 reports that need to

store "arq1.zip"

PL1 segments "arq1.zip"

and save it on P2P1

RELIABILITY COMBINED
MEASUREMENT PROCESSWaiting time

There is pair
combination that

satisfies the
storage?

NO

(b)

Sends to the selected pairs
the "arq1.zip" segments

YES

There are more
data segments to be

sent?

YES

PS1 announces PL1
that "arq1.zip" saving

was concluded

NO

LEGEND

PL: Local Peer
PS: Server Peer

Fig. 2. a) Peer Workflow b) Server Proxy Workflow

peers. If there are no more segments of files to be saved, the PS1 peer server
communicates to the PL1 peer, which requested the file saving, that it was saved
successfully.

4 Experimental Evaluation

For assessing the project with regard to performance and scalability, a pilot
project was planned and carried out addressing three different scenarios. The
methodology Goal - Question - Metric (GQM) [4] guided the evaluation by
establishing the purpose of the study, the questions to be answered, and the
metrics used to interpret the answers.

Three scenarios were assessed using USTO.RE. The first two were designed
to test the feasibility of peer selection algorithm and performance of the proposed
solution, thus validating the system in a corporate Intranet. The third scenario
validation was performed with the system implemented. In the latter case, there
is the scalability of the solution by adding peers gradually until it reaches 40
P2P clients with maximum 5Gb storage, and two servers providing interfaces
for accessing REST nodes.

4.1 Scenario 1

As described earlier, this scenario aims at analyzing the algorithm of peer selec-
tion in order to assess its performance within a corporate Intranet. The question

462 F. Durão et al.

associated with this goal is: How efficient is the algorithm for the selection of
peers? In particular, we consider efficiency as the latency of the algorithm to
select peers. In the following, we list the configurations for the algorithm of
availability as well as the respective metrics to be collected:

– A file was divided into 100 chunks to be distributed along 376 possible
machines;

– As to the number of executions, 100 was chosen because it is large enough to
display the runtime of the algorithm in practice. This number is not required
to be determined by any empirical method since the asymptotic behavior of
the algorithm is known, at least according to the parameters of Cormen [6].

– The failure rates were measured using the empirical model Garden [1] in a
296-day experiment of continuous monitoring software by Squid [15];

– The minimum number of machines on which the configurable piece would
necessarily have to be placed was 5;

– We used the following profile of availability according to the equation shown
below, where t represents the time:

The result of the executions was arranged in three separate sheets, measuring: i)
runtime; ii) mean number of machines where the same chunk was sent, and iii)
average chunks per machine. As a result, the algorithm has proven to be quite
satisfactory in terms of execution time, achieving the arithmetic mean time of
1.92 ms with a maximum time of 34 ms, and a minimum of less than 1 ms. As
will be seen in the results of Scenario 3, this time is the same as the time spent
to access files on the Windows Netbios network.

4.2 Scenario 2

Following the GQM methodology, the goal for this scenario is to analyze the
USTO.RE efficiency in terms of user within a corporate Intranet and the re-
lated question is: How fast is the USTO.RE in use?. We consider speed-related
performance of USTO.RE as the basic system features.

As a natural behavior, the USTO.RE performance depends on the amount
of messages exchanged by its internal components. This amount of messages in
turn is directly related to the size of chunks and the size of queues of chunks that
form these messages. In this context, the performance was evaluated in terms of
variation in the size of chunks and the queue, thereby examining the impact of
these variables on time data transmission. The objective of this test is therefore
to identify what is needed to perform specific settings when the system is running

USTO.RE: A Private Cloud Storage Software System 463

in LAN environments where throughput is high and WAN environments where
throughput is lower and more varied.

For this particular test execution, 20 machines were utilized, and all had the
same configuration, Pentium IV with 2GB of RAM and a 100Mbps network
card, i.e. old desktops that are compliant with cloud computing features and
efficient use of computing resources. Fifteen (15) out of 20 were utilized to send
data whereas five (5) were used for storage with 10TB of storage space. The
machines sent 1Gb of data, as follows:

– 3 machines sending 2000 files of 500 Kb;
– 6 machines sending 500 files of 5 Mb;
– 3 machines sending 50 files of 50 Mb;
– 3 machines sending 5 files of 200 Mb.

Table 1 presents the results obtained for the data transmission system in terms
of Chunks and Queue. In the leftmost column are the values of the chunk size
and the amount of the queue in terms of chunks. That is, for the first case, each
system message has one queue comprising 10 chunks of 128Kb.

Table 1. Average Delivery Time of Chunks per Queue

Chunks/Queue Time Chunks/Queue Time

128/10 00:03:20 32/10 00:12:03

128/8 00:03:08 32/8 00:14:53

128/6 00:04:54 32/6 00:18:50

128/4 00:06:22 32/4 00:22:59

128/2 00:13:15 32/2 00:59:19

64/10 00:05:46 16/10 00:23:17

64/8 00:07:32 16/8 00:30:00

64/6 00:10:15 16/6 00:32:15

64/4 00:12:02 16/4 00:47:49

64/2 00:30:31 16/2 02:03:10

As can be seen, there is a significant impact on system performance when there
are variations in the parameters analyzed. This impact is higher when there is
variation in the size of the chunk. This occurs because there is an augment in
the number of messages to be sent in order for a file to be saved. This same
rationale applies to the variation of the queue, but is not as significant for the
final performance of the system.

Considering that the queue size was not a significant factor in the performance
of the system, we opted to use chunks of 128Kb and queues in size 10 for LAN
and WAN environments.

In this scenario, we also examined the issues related to the performance of
the machines. It was observed that the machines receiving data reached their
full storage capacity, i.e. 100% CPU usage, 2GB of memory consumption and

464 F. Durão et al.

20Mbps of traffic in this situation. Comparing the transmission rate obtained
with the results reported by Google File System (GFS) in the Session Micro
Test [10], we can observe that USTO.RE has reached about 40% of the pro-
cessing capacity of the GFS. Taking into account the difference between the
real-world and test environments, the USTO.RE used an HUB and not a
switch, as well as cheaper network cards that limit the transmission capacity.
In addition, the chunks were 128KB instead of 4MB as in SFM. However, these
results indicate that it is possible to overcome the results of GFS. With regard
to the machines that were spreading data, they consumed little recourse, i.e.
128MB of RAM, nearly half the CPU consumption.

4.3 Scenario 3

For the latter scenario, the scalability of the system is tested. The goal therefore
is to evaluate USTO.RE potential from the user-centric standpoint within a
corporate Intranet, and the related question is: How functional is the USTO.RE
to the user? We consider the functional potential through USTO.RE scalability
and performance in relation to the environment that exists today on corporate
Intranets for storing and sharing data.

In the latter assessment, we utilized a performatic access control tool to val-
idate the USTO.RE scalability and performance of file transfer. In the test
scenario the goal was to assess the system’s growth capacity, both vertically
and horizontally. For this, we used two servers providing REST service inter-
faces that connected to the P2P network, performed the download the file and
stored in the P2P network. During the test, as a) interfaces services began to
become bottleneck point, others were added as needed; and b) as more nodes
were needed for the P2P network, they also were added thus allowing the growth
of the system.

In this test scenario, all peers were 100% available, i.e. 24 hour, making each
chunk replicated by 2-3 machines according to the algorithm described in [9].

As a result, the tests for reading files (with an average size of 11Mb), the
waiting time to get it was on average 28 seconds (to measure this average, each
file was restored three times and the average time obtained corresponds to this
result). As to downloading files via the REST service interface, the average time
was 31 seconds, thus demonstrating the efficiency of the proposed architecture
with the service Filetracker (measurement performed with the same procedure
as above). These test results showed that in comparison to other network storage
solutions, the system can produce an acceptable performance. Figure displays
the screen with some system files saved.

5 Conclusion

This paper presented USTO.RE, a cloud storage system at a low cost with high
reliability. This tool consists of peers in a P2P network and an algorithm that
allows to dynamically calculate how many nodes a chunk should be replicated so

USTO.RE: A Private Cloud Storage Software System 465

that when files are requested to be restored, the system ensures its availability.
Evaluations were performed in order to validate the algorithm that supports the
proposal, as well as the feasibility of the solution, achieving satisfactory results.
In addition, new test scenarios are being validated to investigate the solution’s
degree of scalability. Future works include the calculation of optimal storage
size per peer in order to increase storage efficiency. Further, we also aim at
researching the utilization or adaptation of an algorithm that allows to group
more efficiently the peers in federations, thus improving the storage efficiency as
well as its replication.

Acknowledgments. Authors would like to thank the University Center of João
Pessoa - UNIPÊ for financing the publication of this article.

References

1. Abd-El-barr, M.: Design and Analysis of Reliable and Fault-tolerant Computer
Systems. Imperial College Press, London (2006)

2. Amazon. Amazon Simple Storage Service (Amazon S3) (March 2012),
http://aws.amazon.com/pt/s3/ (last access March 5, 2012)

3. Baker, J., Bond, C., Corbett, J., Furman, J.J., Khorlin, A., Larson, J., Leon, J.-M.,
Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing scalable, highly available
storage for interactive services. In: CIDR 2011, pp. 223–234 (2011)

4. Basili, V.R., Caldiera, G., Rombach, D.: The Goal Question Metrics Approach,
vol. I, pp. 528–532. John Wiley & Sons (February 1994)

5. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, vol. 7, p. 15. USENIX Association (2006)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

8. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. SIGOPS Oper. Syst. Rev. 41, 205–220 (2007)

9. Duarte, M.: Um algoritmo de disponibilidade em sistemas de backup distribúıdo
seguro usando a plataforma peer-to-peer. Dissertação de mestrado, Centro de In-
formática, Universidade Federal de Pernambuco, Recife-PE, Brazil (2010)

10. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. SIGOPS Oper.
Syst. Rev. 37(5), 29–43 (2003)

11. Loest, S.R., Madruga, M.C., Maziero, C.A., Lung, L.C.: Backupit: An intrusion-
tolerant cooperative backup system. In: Proceedings of the 2009 Eigth IEEE/ACIS
International Conference on Computer and Information Science, pp. 724–729. IEEE
Computer Society (2009)

12. Nocentini, C., Crescenzi, P., Lanzi, L.: Performance evaluation of a chord-based
jxta implementation. In: Proceedings of the 2009 First International Conference
on Advances in P2P Systems, pp. 7–12. IEEE Computer Society (2009)

http://aws.amazon.com/pt/s3/

466 F. Durão et al.

13. Oliveira, M.: Ourbackup: A p2p backup solution based on social networks. M.sc.
dissertation, Universidade Federal de Campina Grande, Campina Grande – PB,
Brazil (2007)

14. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file sys-
tem. In: Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pp. 1–10. IEEE Computer Society (2010)

15. Squid. Squid: Optimising web delivery (2012), http://www.squid-cache.org/

(last access March 5, 2012)
16. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and

Systems Architecture. O’Reilly Media (2010)
17. Yang, Q., Xiao, W., Ren, J.: Prins: Optimizing performance of reliable internet

storages. In: Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems, p. 32. IEEE Computer Society (2006)

18. Yu, L., Chen, G., Wang, W., Dong, J.: Msfss: A storage system for mass small
files. In: Shen, W., Yang, Y., Yong, J., Hawryszkiewycz, I., Lin, Z., Barthes, J.-
P.A., Maher, M.L., Hao, Q., Tran, M.H. (eds.) 11th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), Los Alamitos, CA,
USA, pp. 1087–1092. IEEE Computer Society Press (April 2007)

http://www.squid-cache.org/

Market Intelligence: Linked Data-driven Entity

Resolution for Customer and Competitor
Analysis

Ulli Waltinger1, Dan Tecuci2, Florin Picioroaga3, Cosmin Grigoras3,
and Sean Sullivan4

1 Siemens AG Corporate Technology, Munich, Germany
2 Siemens Corporation, Corporate Technology Princeton, NJ, USA

3 Siemens AG Corporate Technology, Brasov, Romania
4 Siemens Energy Inc. Orlando, USA

{ulli.waltinger,dan.tecuci,florin.picioroaga,
cosmin.grigoras,sean.sullivan}@siemens.com

http://www.siemens.com/

Abstract. In this paper, we present a linked data-driven method for
named entity recognition and disambiguation which is applied within an
industry customer and competitor analysis application. The proposed
algorithm primarily targets the domain of geoparsing and geocoding,
but it can easily be adapted to other problems such duplicate detection.
The contributions of this paper are three fold: First, we want to give an
overview of Market Intelligence, a customer and competitor analysis ap-
plication developed for Siemens Energy, which allows users to pose ques-
tions and queries on regularly crawled websites, emails and RSS feeds,
to detect and respond to competitor, customer, and market trends more
effectively. Second, we describe the UIMA-based processing architecture
that builds the framework for analyzing and converting unstructured
heterogeneous documents into a structured and semantically-enhanced
knowledge representation. Third, we propose a novel algorithm that is
used within the framework for content analysis and entity disambigua-
tion. The performed evaluation shows with an accuracy of up to 91.69%
that the proposed method for named entity recognition and disambigua-
tion is very effective, while at the same time relying on Linked Data
only.

Keywords: Named Entity Recognition, Named Entity Disambiguation,
Word Sense Disambiguation, GeoParsing, GeoCoding, Market Intelli-
gence.

1 Introduction

Today enterprises deal with decisions that involve the analysis of information
from various heterogeneous sources on a massively scale. In this context, an
effective information access and analysis can be seen as one of the fundamen-
tal building blocks within the decision making process and in the process of

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 467–481, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.siemens.com/

468 U. Waltinger et al.

enabling an cost-effective customer service [1]. The amount of available infor-
mation nowadays grows at an amazing speed, which raises several challenges.
More precisely, it is assumed that enterprise data will grow by 800 percent in
the next five years, whereas 80 percent of it exists by means of documents,
files or other unstructured data [1]. That is, most of the data and resources
available lack of meta data or being semantically augmented, which support
an efficient and well-defined data exploration and analysis for market intelli-
gence applications. In this context information extraction and retrieval tech-
niques, such as Named Entity Recognition (NER) and Disambiguation (NERD)
[2, 3], are an important part for obtaining and automatically analyzing such
information hidden in unstructured, machine-readable documents. Especially
in the area of customer and competitor analysis applications, plays the auto-
matic identification and resolution of entities, such as company names, their
location and connected profiles a significant role. These applications aim to
provide information about business opportunities, strengths and weaknesses of
customers/competitors that are primarily distributed across various unstruc-
tured sources. In the setup of Market Intelligence, a project of Siemens Corpora-
tion, Corporate Technologies and Siemens Energy, we aim to identify customer
and competitor information from unstructured documents to enable answers
such as: What are the service units of company X that are located

around Clive and Jupiter?, Which units on the East Coast remain

open? or Is there a company X that has installed component Y? In this
context, the automatic extraction and disambiguation of context-specific enti-
ties and its geo-related references [4] are in the center of the project scope. That
is, in this paper, we do not focus on the aspect of natural language question
answering, but targeting the challenge of not only extracting business relevant
information out of regularly crawled websites, emails and RSS feeds, but also
applying a context-specific disambiguation, of the extracted information. As an
example:

”The units located in Jupiter [→Jupiter, Florida] and Princeton
[→Princeton, British Columbia] (Canada) [→Canada] will remain open.”

”Princeton [→Princeton, New Jersey] (US) [→United States], the city
New York [→New York City] and the state New York [→New York]
need to be notified.”

In this example, one can identify that the surface form of the geo-related enti-
ties entities are often ambiguous. That is, taken out of context, the same name
(e.g. Princeton, Jupiter, or New York) may have multiple meanings (i.e. refer
to different entities). There are three main contributions of this paper: In Sec-
tion 2, we give an overview of Market Intelligence, the customer and competitor
analysis application developed for Siemens Energy, in which the described com-
ponents are integrated. Section 3 reviews related work. Thereupon in Section
4, we describe the UIMA-based processing architecture that builds the frame-
work for analyzing and converting unstructured heterogeneous documents into
a structured and semantically-enhanced knowledge representation. In Section

Market Intelligence: Linked Data-Driven Entity Resolution 469

5, we propose a NERD algorithm that is used within the framework for con-
tent analysis and entity disambiguation targeting the domain of geoparsing and
geocoding. In Section 6, we present the evaluation of the entity disambiguation
algorithm that is applied on two different datasets. Finally, Section 7 concludes
this paper.

2 Overview of Market Intelligence

Information about business opportunities, new regulations, competitor and cus-
tomer news is massive and scattered across an ever growing number of sources.
Hidden in publicly available news, internal bulletins, market reports or docu-
ments it is difficult to keep track of latest developments and get a global pic-
ture of the market situation. The goal of the Market Intelligence application is
to aggregate and analyze such data and extract actionable knowledge from it.
Currently we focus on the following functionalities: automated classification of
incoming information into business relevant categories, automatic identification
of named entities from a catalog of entities of interest, instant notification based
on custom-made rules that use the result of classification and entity recognition,
and collaboration (sharing and commenting). The data that is analyzed comes
from a set of publicly available websites identified by the business as being of
interest. Among the named entities identified, geolocations are of great impor-
tance. Figure 1 shows a map representation of a set of selected news and Figure 2
shows an individual piece of news with its corresponding annotations.

The application is being developed for Siemens Energy Service.

Fig. 1. Screenshot of the Market Intelligence application

470 U. Waltinger et al.

Fig. 2. Metadata annotations in Market Intelligence web application

3 Related Work

Documents, articles and other comprised resources contain named entities of
different flavor, as for example locations, products or people, but also weapons
or organizations, which play a significant role in automatic data analytic (e.g.
product and relationship mining, location detection, sentiment analysis). Named
Entity Recognition (NER) has been extensively addressed in different research
fields [5, 6, 3], and can be seen as one of the fundamental components of current
information extraction and retrieval sytems. This task focuses on the identifica-
tion of proper nouns, which are further classified into a predefined set of entity
categories (e.g. location, persons, numeric or time). As an extension of it, the
task of Named Entity Disambiguation (NED), attempts to additionally disam-
biguate the classified entity by linking the entity to real world object identifier
(e.g. URI). That is, mapping information units to explicitly and uniquely men-
tioned entities in a knowledge base. As one of the most prominent comprised
knowledge base, the Wikipedia data set was heavily used for this task lately
[7, 6]. In this context, numerous approaches have been published using concept
similarity [8–11] or relatedness measures [6, 12] to rank the respective object
candidates.

Most recently, RDF-based knowledge bases such as Freebase1, GeoNames2,
YAGO [13], or DBpedia [14] are used as a resource for web-based entity identi-
fier [15, 16]. For an comprehensive overview and comparison of current (publicly
available) NERD services that leverage RDF-based repositories as a resource see
[3]. The domain of geocoding or geoparsing [4], can be seen as a geospatial exten-
sion of NER(D). This research field is concerned with the automatically mapping
of locations specifically, referred to as the processing of textually-encoded spatial

1 www.freebase.com
2 www.geonames.org

Market Intelligence: Linked Data-Driven Entity Resolution 471

data [17]. Note that we see geoparsing as the task of location-based extraction
from text (NER), and gecoding as the NED complement, the mapping of refer-
ences to real-world counterparts [17]. Similar to current NER approaches, we can
identify three different branches of methods [4]: Gazetteer-based lookup methods
[18], Rule-based approaches (e.g. GATEs ANNIE module [19]) by using a set of
symbolic rules to encode the decision procedure (Definite Clause Grammars via
Prolog) [20]. The third branch uses machine learning-based approaches. Most
commonly using a sliding window, which is introduced in order to extract a
set of classification properties and features (e.g. context, length, string surface)
[21]. In this work, we are using for the NER component, the Gazetteer-based
approach as a stimulus for the learning-based entity classification. With regards
to NED, we are focusing on meta data via DBpedia only. In this context, the
approaches of [10] and [16] are most related to our approach in the sense of
putting the textual context of an entity in the center for the task of candidate
ranking. However, different to others, our approach does not rely on any train-
ing cycle for graph construction or edge weighting, but operates entirely on the
RDF-metadata only. In addition, the method proposed in this paper allows to
incorporate the (initial) named entity category as an stimulus and part of the
evidence strategy for disambiguation.

4 Information Processing Architecture

The overall processing architecture of the Market Intelligence application can be
divided into two interconnect pipelines: the data management pipeline, which
leads the data workflow between the different processing components, and the
UIMA pipeline that bears the content extraction and analysis procedures.

4.1 Data Management Pipeline

The process of data transformation consists of the following components (see
Figure 3):

1. Content Dispatcher: This components collects the heterogeneous data
from various sources (RSS, E-Mails, crawled web pages) via custom adapters.

2. Content Transformer: The aggregated data collection gets pre-processed
via processing templates (i.e. extracting the only the text from the incoming
data).

3. Content Storage: The extracted content fragments are stored to a rela-
tional database storage.

4. Message Broker: Each content fragment is further sent out as a message
to a message broker.

5. UIMA Connector: The message from the message broker is consumed
by a component (pipeline connector) responsible for transforming the re-
ceived data to a data structure (Common Analysis Structure) accepted by
the UIMA framework.

472 U. Waltinger et al.

Fig. 3. Overview of the general processing work flow of the Marketing Intelligence
pipeline

6. UIMA Pipeline: UIMA pipeline runs the analysis engines on the given
data and extracts the information specific to each engine. We will call this
information annotation.

7. Annotation Storage: The extracted annotations are stored in a knowledge
base as triple statements.

4.2 UIMA Pipeline

The UIMA framework3 has been used for analyzing the text message and ex-
tracting the information required. More precisely, the framework consists of a set
of text analyzing engines that are grouped in a single processing pipeline. The
analyzing engines are refereed to as annotators. The results of these annotators
are defined as annotations. All these annotations are then persisted by a special
component called consumer. The Market Intelligence project incorporates the
following UIMA components:

1. LocationAnnotator that recognizes the geographical locations (cities,
countries) that occur in the respective content fragments. This component
additionally resolves each entity by its unique URI representation (see
Section 5).

2. OrganizationAnnotator that recognizes customers and competitors enti-
ties. It utilizes the gazetteer component as available within GATE4.

3 http://uima.apache.org/
4 http://gate.ac.uk/

Market Intelligence: Linked Data-Driven Entity Resolution 473

3. ClassifierAnnotator that recognizes domain-specific meta-information,
such as fuel type, business segmentation, joint venture etc. using Support
Vector Machines.

4. RegularExpressionAnnotator that is used for matching meta-
information, based on a set of regular expressions.

5. RDFCASConsumer is used to store the annotations in the RDF-based
triple format.

Subsequently, all annotations produced by components within the UIMA pipeline
can be viewed and further processed (deleted or adding new ones) within the
Market Intelligence web application.

5 Evidence-Based Entity Disambiguation

As described in the previous section, the UIMA pipeline integrates several entity
annotators and an entity disambiguation annotator that focuses on geo-related
references. The work flow of this evidence-based component is depicted in Figure
4, and can be subdivided into three consecutive components. At first, the recog-
nition task that combines a state-of-the-art NER library with domain-specific
gazetteer induction. Second, the disambiguation task which utilizes DBpedia as
an resource for entity disambiguation and URI identifier assignment. Finally, the
connector to the MI application, which makes use of the data set of GeoNames
to construct SPARQL queries based on prior templates. In the following, we
describe each individual component in more detail.

StanfordNER
Tokenization, Lemmatizer, Tagger,

Parse-Tree, Named Entity Recogntion Domain-specific
Gazetteer
Clive/LOC

NER-Ontology-
Mapping

LOC/Country,City
Clive Owen / Actor

Clive, Alberta / Village

Clive, Iowa Princeton University

Princeton, British
Columbia

Princeton, New Jersey

Topic: Cities in
Iowa; Cities in the
United States by
state; Populated
places

Context: Clive is a
city in Dallas and
Polk counties in
the U.S. state of
Iowa.

Referal: 1987

SPARQL-
Template

x > point(lon,lat)

5102922
 lat: 40.348; lon:-74.659

4852065
lat:41.603; lon:-93.724

Show service units located around Clive?

SELECT * { … RADIUS (POINT(?lon, ?lat), ?rad) WHERE … }

… service units
in clive

and princeton … NER-Validation
Gazetter-Induction; Parse-Tree-Validation;

Surface-based reconsolidation

Candidate Retrieval
Ontology-Induction; Query Construction

DBpedia

GeoNames

Candidate Ranking
Evidence Collector; Candidate Validation

N
ER

N

ED

G
EO

Fig. 4. Overview of the work flow of the evidence-based geospatial named entity recog-
nition and disambiguation

474 U. Waltinger et al.

5.1 NER - Named Entity Recognition

The NER phase focuses on the identification and tagging of single nouns and
phrases using StanfordNER ([21]). That is, each input document is preprocessed
by applying tokenization, lemmatization, part-of-speech-tagging, parse-tree ex-
traction and (default) named entity recognition. Subsequently, a NER validation
is applied that enhances and corrects the default token representation as gener-
ated by StanfordNER. This component utilizes domain-specific gazetteers (e.g.
clive may also refer to a city) to re-annotate those text segments, which could
not be identified within the pre-processing phase. In addition, multi-word units
(e.g. jupiter, florida), which are missed by StanfordNER will be concatenated
by reconciliation the surface- and the parse-tree representation. The resultant
StanfordNER-enhanced object representation is further used as an input for the
NED component.

5.2 NED - Named Entity Disambiguation

The NED components can be subdivided into the candidate retrieval and the
candidate ranking module.

Candidate Retrieval. The candidate retrieval module utilizes the DBpedia
data set not only to retrieve a a list of object identifier, but also uses the ontology5

to typify and validate the search strategy. That is, we incorporate a mapping
between the entity category (e.g. LOC for location) and the respective DBpedia
counterparts as they are represented using the SKOS vocabulary (e.g. Country,
City, ...).

LOC → PopulatedP lace;Geography;CelestialBody;NaturalP lace; · · · (1)

This changes massively the search strategy, since we are inducing higher confi-
dence to candidates which are associated to a certain category (e.g. clive rather
location than name), instead of the most common ”eat-all-you-can” approach.
In order to allow an efficient search-and-retrieval performance, we decided to
parse the entire DBpedia data set into an Apache Lucene6 index. Note, we used
only a snapshot of the meta data (as represented through title, short abstracts,
articles categories and the links to GeoNames) for index construction. For each
entity candidate we construct the Ontology-induced query and score each entity
as follows:

scorecan(q, d) = log10(
∑
t∈q

(tf(t ∈ d) · idf(t)2 · tb · norm(t, d))) (2)

where tf(t ∈ d) defines the term frequency within the observed scored DBpedia
short abstract description d; idf(t) represents the inverse document frequency

5 http://wiki.dbpedia.org/Ontology
6 http://lucene.apache.org

Market Intelligence: Linked Data-Driven Entity Resolution 475

applied to the DBpedia summary description representation. tb is the search
time boost of term t in the query q. norm(t, s) encapsulates a few (indexing
time) boosts and length factors with reference to Lucene’s document and field
boost property [22]. Note, we collect only the 100 best entity candidates which
are further passed to the ranking component.

Candidate Ranking: The candidate ranking can be subdivided into the evi-
dence collection and the evidence validation phase. More precisely, at first, we
collect a number of evidences that consider the confidence and the probability
that a candidate refers to a proper entity instance, in order to, subsequently,
rank and validate the most likely referred instances of a given candidate. The
evidence collector utilizes the following measures:

Popularity-Based Evidence: This measure follows the rational that given an
surface form of an token there exist a prior assumption of which entity might
be meant. As for instance, just given the context ”We live in New York”, the
majority of people would think of the city rather than the state of New York. This
prior stimulus can be deduced from the number of referels (or backlinks), which
are interlinked to a certain entity. That is, the number of pointing hyperlinks,
established by human, operates as a common sense amplifier for a certain entity,
as proposed by [23]. Though, we define the popularity-based evidence score as
follows:

evipop(u) = n · log10(log10(bu)) (3)

where bu refers to the number of incoming links to a certain DBpedia entity
u. That is, we use the double logarithmic normalized backlink score as an
(probability-based) evidence for the most popular referenced DBpedia instance
for a given surface form (e.g. Princeton (New Jersey): 0.51 v.s. Princeton (British
Columbia): 0.30)

Surface-Based Evidence: The surface-based evidence refers to quotient be-
tween the intersection and the union of the pairwise compared term features
among the input entity, e, and the current observed DBpedia entity u (e.g.
Princeton → Princeton (New Jersey))

evisur(e, u) =
tfe,u

tfe,u + tfe + tfu
(4)

That is, this score collects evidences for the term overlap on its surface form.
While the surface-based evidence is a good indicator for a successful mapping,
there exist a lot of false positive examples for it. For example: surface form
of Aspen → Aspen within DBpedia (evisur : 1.0), though the article Aspen
describes not Aspen, Colorado but a certain tree species.

Context-Based Evidence: The context-based score collects evidence from the
description of each DBpedia entity. The rational behind this evidence score is
that each (surface form) of an entity is primarily instantiated through its context.

476 U. Waltinger et al.

We define context as the surrounding terms co-occur (left/right) with the entity
within a word window of size m.

evicon(c, u) =

n∑
i=1

ci × ui√
n∑

i=1

(ci)2 ×
√

n∑
i=1

(ui)2

(5)

That is, we apply the standard cosine measure to obtain the similarity between
the context of the input entity (c) using m word features left and right from the
observed token by means of its sentence representation, and the context of the
entity candidate as given by its short summary value (u). Note that we applied
the normalized term frequency for input vector construction utilizing nouns and
ner entities only.

Topic-Based Evidence: The topic-based evidence measures the correlation
from the initial mapped named entity category and the respective DBpedia cat-
egory associated to the candidate. More precisely, since we are able to traverse
the category taxonomy within DBpedia by means of its graph-based represen-
tation (e.g. Princeton (New Jersey) → University towns in the United States
 → Cities in the United States), we are able to score the normalized graph-path
distance, between the initial mapping category uc and the respective category
candidate note nc by:

evitop(uc, nc) = 1/|dis(uc, nc)| (6)

The rational behind this approach is to allow to adjust the confidence of an entity
candidate by its assigned category even if the latter was not part of the initial
ontology mapping process (e.g. LOC → Country, City,...). Note, we allowed also
a substring match of nodes to score the distance (e.g. City → Cities in the United
States).

Mutual Evidence Confidence: In this NED phase, the k evidences are accu-
mulated to a mutual confidence score defined as

confevi(d) =

scorecan +
k∑

i=1

(λ · evii) + φ

k + 2
(7)

dmax = argmax
d∈D

confevi(d) (8)

where φ represents the redirect amplifier as an indicator whether an respective
redirect instance was used for the calculation (e.g. NYC → New York City). λ
is defined as a weighting parameter (evaluation setup λ = 2). In a final step, all
entity candidates, d ∈ D are ranked by its confevi score, and the final entity
instance is selected by means of dmax > μ. That is, we allow the disambiguation
assignment only for those entities with a sufficient mutual evidence confidence
(μ = 0.3).

Market Intelligence: Linked Data-Driven Entity Resolution 477

5.3 GEO - Geospatial Analysis

The final component in the processing pipeline is the geospatial analysis. Here,
the newly assign DBpedia URI is mapped to it GeoNames URI counterpart. For
this task, we use the already available triples linking within the DBpedia data
set. Having successfully assigned a given GeoNames URI, we apply different
SPARQL template queries to collect the information need for the MI applica-
tions. As for example to infer from a city → country, or it‘s geographic coordinates
as: Cliveraw → Clive, UnitedStatesnerd → 4852065geo → (lat : 41.60304; lon :
−93.72411geo) → State : Iowageo → Country : UnitedStatesgeo

The set of inferred geographical information is finally stored within the RDF-
based triple store component, and subsequently get interlinked to theGeoNames
dataset, and to business-related entities. The business entities are imported from
the database by use of a translator importer, which requires the hidden semantics
of the tabular form information to be declared up front and will be used for
clusters of same type information.

6 Experiments

We conducted two different experiments, in order to evaluate the proposed
evidence-based method to named entity recognition and disambiguation for the
domain of geoparsing and geocoding. We decided to use two different data sets,
not only to allow a generic comparison to other state-of-the-art approaches, but
also to evaluate both sides of the targeted application. More precisely, since the
algorithm is part of the pre-processing component of the MI application, it is
used to facilitate both, not only the annotation process for the unstructured
document collection, but also for the analysis of the questions and queries as
posed by the users against MI application. Therefore, we decided to use for the
evaluation of the backend side, a standard data set - the CoNLL task data set
[24] - since multiple approaches have already been evaluated. The second data
set, targets the user perspective of the application and is part of an entity-biased
question-answering corpus collection [25]. Both data sets have already been man-
ually annotated and build therefore the reference plain and bench mark for our
evaluation. In the following, we describe the respective corpus properties in more
detail.

6.1 Dataset

The CoNLL dataset was created by [16] based on the CoNLL 2003 data [24].
It consists of 1.393 news article, which were manually annotated by means of
corresponding YAGO7 entities. Each of the total 34, 956 mentions was disam-
biguated by two students, with an overall distribution of 25 entities per article on
average. For the experiment, we have used both, the test set with 4, 458 entities,
refereed to as CoNLL-TestA and the training set with 27, 790 entities, denoted

7 http://www.mpi-inf.mpg.de/yago-naga/yago/

478 U. Waltinger et al.

as CoNLL-TestB. Note, since our approach does not rely on the existence of a
training corpus, we used both within our experiments. For a detail description on
the used corpus see [16]. The QA data set8 consists of 5, 500 questions initially
created by [26] in the context of question classification. This question collection
has been additionally processed by [25] comprising a training set of 5000 and a
test set of 500 questions. For each question, the named entities were annotated
and classified by means of the standard categories person, location and orga-
nization. For the experiments, we extracted only those question, which refer to
location-based entities and manually assigned and validated their corresponding
DBpedia URI‘s.

6.2 Results

The results of the backend evaluation (CoNLL) are shown in Table 1. We have
used the results published by [16] and [11] as our reference base line. As we can
identify the performance of the location based disambiguation performs, with an
accuracy of over 91%, equally well on both datasets. The overall macro preci-
sion is slightly under the best performing system, the micro precision however is
outperforming the benchmark results. Though, with regards to the disambigua-
tion of organizations, we could identify the limitations of our algorithm. Given
just the entity candidate Barcelona, our method classifies it as an location, and
subsequently disambiguates the candidate to the city Barcelona rather than to
the soccer team F. C. Barcelona, which potentially could be identified by the
broader context of the entire document. Note that we used a sentence-based
context window for the experiments.

Table 1. Result of test set B [16] using 1392 documents and 4458 entities. (Orga-
nization which are tagged as locations e.g Barcelona but it is F.C. Barcelona;) with
Competitor Results.

NERD TestA (4458). NERD TestB (27790). ML-Ref [16] Kulk [11]

Acc - LOC 91.69 91.50

Acc - PER 78.6 86.7

Acc - ORG 43.8/76.5 60.7/78.6

MicroPrec 73.1 84.1 81.82 72.87

MacroPrec 71.3 79.6 81.91 76.74

The results of the second experiments are shown at Table 2. As a reference
baseline, we have used the results published by [25] and the results of Nlp-Geo9

[27]. Even though, the second data set is with a size of 200 annotated questions
rather small, our systems performs, with an accuracy of 83%, very well on the
task of location-based entity recognition and disambiguation.

8 Accessible at https://qa.l2f.inesc-id.pt/wiki/index.php/Resources
9 http://code.google.com/p/nlp-geo/

Market Intelligence: Linked Data-Driven Entity Resolution 479

Table 2. Result of NERQ data set as provided by [25] using 200 questions ((Geo-
Precision)85.04 (Geo-Recall)62.43)

NERD QA (200) Geo-NLP[27] Supervised [25]

Acc - LOC 83,91 75,11 59,43

6.3 Discussion

Overall, the result of both experiments show that our evidence-based method
performs on a very satisfying basis on both sides of the application pipeline.
Analyzing the individual errors of the evaluation more closely, we can iden-
tify some systematic issues using the evidence-based method: First, using a
sentence-based context window allows a sufficient level for most of the test
cases, though, it does not consider the topic of entire documents. As for ex-
ample, the occurrence of cyprus is correctly identified as an entity, but mapped
to Cyprus as the country instead of Cyprus national football team, which the
article referred to. Similar examples, New Zealand as the country instead of
New Zealand national rugby union team, or Birmingham as the country instead
of Birmingham City F.C. Second, synonymous entities (in terms of redirects)
have not been separately evaluated or resolved. That is, even if the redirects
within DBpedia map World Wide Web to Internet or Islam → Muslim, we
treated the assignment of World Wide Web as an error, if in the test set the
entity Internet was used. Third, the algorithms makes use of the actual entity
category as a stimulus for the disambiguation task. More precisely, different to
other approaches, our method doe not disregard the entity category (e.g. LOC)
during the disambiguation phase. However, wrongly classified entity information
is passed on to the NED component, influencing the candidate retrieval and the
topic-based evidence score. From the perspective of the access to the comprised
Linked Data resources, for performance reasons, we decided to index the RDF-
dataset of DBpedia in an offline mode. That is, we used a snapshot of selected
metdata information to allow an efficient search-and-retrieval process. Though,
this task could be also achieved using an endpoint service only, as it is deployed
for the task of the GeoNames mapping.

7 Conclusion

In this paper, we gave an overview of the customer and competitor analysis
application Market Intelligence for Siemens Energy. This system allows users
to pose questions and queries on regularly crawled document repositories, to
detect and respond to competitor, customer, and market trends more effectively.
We described the overall UIMA-based processing architecture that builds the
framework for analyzing and converting unstructured heterogeneous documents
into a structured and semantically-enhanced knowledge representation. Finally,
we presented a multiple evidence-based method for named entity recognition and
disambiguation which is applied within the industry-based analysis application.

480 U. Waltinger et al.

The proposed algorithm primarily targeted the domain of geoparsing, though,
it‘s application was also evaluated for the domain of person and organization
resolution. The performed evaluation shows with an accuracy of up to 91.69%
that the proposed method for named entity recognition and disambiguation is
very effective, while at the same time relying on Linked Data only.

References

1. IBM-Whitepaper, I.: Leveraging content integration for improved customer service.
Technical report (2010)

2. Collins, M., Singer, Y.: Unsupervised models for named entity classification. In:
Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, pp. 100–110 (1999)

3. Rizzo, G., Troncy, R., Hellmann, S., Bruemmer, M.: NERD meets NIF: Lifting
NLP extraction results to the linked data cloud. In: 5th Workshop on Linked Data
on the Web, LDOW, Lyon, France (April 16, 2012)

4. Hill, L.L.: Georeferencing: The Geographic Associations of Information. Digital
Libraries and Electronic Publishing (2006)

5. Extracting company names from text. In: Proceedings of the Seventh IEEE Con-
ference on Artificial Intelligence Applications, vol. i (1991)

6. Milne, D.N., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the
17th ACM Conference on Information and Knowledge Management, CIKM 2008,
Napa Valley, California, USA, October 26-30, pp. 509–518 (2008)

7. Bunescu, R., Pasca, M.: Using Encyclopedic Knowledge for Named Entity Disam-
biguation. In: Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 2006) (2006)

8. Cucerzan, S.: Large-scale named entity disambiguation based on wikipedia data.
In: Proceedings of the EMNLP-CoNLL, Prague, Czech Republic, June 28-30, pp.
708–716 (2007)

9. Nguyen, H.T., Cao, T.H.: Named entity disambiguation on an ontology enriched
by Wikipedia. In: RIVF, pp. 247–254. IEEE (2008)

10. Waltinger, U., Mehler, A.: Who is it? context sensitive named entity and instance
recognition by means of wikipedia. In: 2008 IEEE / WIC / ACM International
Conference on Web Intelligence, WI 2008, Sydney, NSW, Australia, December 9-
12. Main Conference Proceedings, pp. 381–384 (2008)

11. Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Collective annotation
of wikipedia entities in web text. In: Proceedings of the 15th ACM SIGKDD, KDD
2009, pp. 457–466. ACM, New York (2009)

12. Waltinger, U., Mehler, A.: Social semantics and its evaluation by means of seman-
tic relatedness and open topic models. In: 2009 IEEE/WIC/ACM International
Conference on Web Intelligence, WI 2009, Milan, Italy, September 15-18. Main
Conference Proceedings, pp. 42–49 (2009)

13. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge.
In: Proceedings of the 16th International Conference on World Wide Web, WWW
2007, pp. 697–706. ACM, New York (2007)

14. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A Nucleus for a Web of Open Data. In: Aberer, K., et al. (eds.) ASWC 2007 and
ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

Market Intelligence: Linked Data-Driven Entity Resolution 481

15. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: Dbpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems, I-Semantics 2011, pp. 1–8. ACM, New York (2011)

16. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M.,
Taneva, B., Thater, S., Weikum, G.: Robust disambiguation of named entities
in text. In: Conference on EMNLP 2011, Edinburgh, Scotland, United Kingdom,
pp. 782–792 (2011)

17. Leidner, J.L., Lieberman, M.D.: Detecting geographical references in the form of
place names and associated spatial natural language. SIGSPATIAL Special 3(2),
5–11 (2011)

18. Tobin, R., Grover, C., Byrne, K., Reid, J., Walsh, J.: Evaluation of georeferencing.
In: Proceedings of the 6th Workshop on Geographic Information Retrieval, GIR
2010, pp. 7:1–7:8. ACM, New York (2010)

19. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL 2002) (2002)

20. Bilhaut, F., Charnois, T., Enjalbert, P., Mathet, Y.: Geographic reference analy-
sis for geographic document querying. In: Proceedings of the HLT-NAACL 2003
Workshop on Analysis of Geographic References, HLT-NAACL-GEOREF 2003,
Stroudsburg, PA, USA, vol. 1, pp. 55–62. Association for Computational Linguis-
tics (2003)

21. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of the 43rd An-
nual Meeting on Association for Computational Linguistics, ACL 2005, Strouds-
burg, PA, USA, pp. 363–370. Association for Computational Linguistics (2005)

22. Hatcher, E., Gospodnetic, O., McCandless, M.: Lucene in Action, 2nd revised edn.
Manning (2010)

23. Waltinger, U., Breuing, A., Wachsmuth, I.: Interfacing virtual agents with collab-
orative knowledge: Open domain question answering using wikipedia-based topic
models. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, July 16-22, pp. 1896–1902
(2011)

24. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared
task: language-independent named entity recognition. In: Proceedings of the HLT-
NAACL 2003, CONLL 2003, Stroudsburg, PA, USA, vol. 4, pp. 142–147. Associ-
ation for Computational Linguistics (2003)

25. Ana Cristina Mendes, L.C., Lobo, P.V.: Named entity recognition in questions:
Towards a golden collection. In: Calzolari, N. (ConferenceChair) Choukri, K.,
Maegaard, B., Mariani, J., Odjik, J., Piperidis, S., Rosner, M., Tapias, D. (eds.)
Proceedings of the LREC 2010, Valletta, Malta. European Language Resources
Association (ELRA) (May 2010)

26. Li, X., Roth, D.: Learning question classifiers: the role of semantic information.
Nat. Lang. Eng. 12(3), 229–249 (2006)

27. Benefico, S.: Geo-related Information Extraction from natural language using
YAGO. Technical report (2012)

GAwI: A Comprehensive Workspace Awareness

Library for Collaborative Web Applications

Matthias Heinrich1, Franz Josef Grüneberger1, Thomas Springer2,
Philipp Hauer3, and Martin Gaedke3

1 SAP AG, Germany
{matthias.heinrich,franz.josef.grueneberger}@sap.com

2 Dresden University of Technology, Germany
thomas.springer@tu-dresden.de

3 Chemnitz University of Technology, Germany
{philipp.hauer,martin.gaedke}@cs.tu-chemnitz.de

Abstract. In the light of the Web 2.0 movement, the rise of collabo-
rative web applications like Google Docs lead to an enormous end-user
adoption largely due to their advanced multi-user capabilities (i.e. docu-
ment synchronization in real-time and sophisticated workspace awareness
support). Nevertheless, the development of collaborative web applica-
tions, in particular, the implementation of workspace awareness widgets
such as telepointers, radar views, etc., is costly since there are no com-
prehensive libraries promoting widget reuse. Therefore, we introduce the
enhanced Generic Awareness Infrastructure (GAwI) allowing for an effi-
cient development of collaborative web applications. Efficiency is fostered
through GAwI’s reusable set of widgets and its non-invasive integration.
In this paper, we expose GAwI’s enhanced widget set, verify GAwI’s
comprehensiveness in terms of workspace awareness and demo the GAwI
integration and GAwI widgets in two widespread open-source editors.

1 Introduction

Collaborative web applications like Google Docs allow multiple users to change
the very same document simultaneously. Besides document synchronization and
conflict resolution, collaborative real-time applications require a third distinctive
multi-user capability, namely, workspace awareness, which is commonly exposed
through awareness widgets such as participant lists, telepointers, radar views,
etc. In essence, Workspace Awareness (WA) supports collaborators to under-
stand the actions and intentions of others [1]. For example, participant lists
allow understanding who is in the shared workspace or creation coloring widgets
indicate who authored new content.

Nevertheless, even though collaborative web applications necessitate WA ca-
pabilities to efficiently support joint work [2], modern collaboration frameworks
targeting the web (e.g. Apache Wave [3], beWeeVee [4] or CEFX [5]) do not offer
WA features at all. Consequently, the traditional from-scratch implementation
of WA functionality for collaborative web applications results in time-consuming
and costly development projects neglecting WA widget reuse.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 482–485, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

GAwI: A Comprehensive Workspace Awareness Library 483

Therefore, we introduced the Generic Awareness Infrastructure (GAwI) in [6]
advocating non-invasive WA incorporation and WA widget reuse. In this pa-
per, we present an enhanced set of reusable awareness widgets including a
telepointer, radar view, artifact marking and telecaret widget. Moreover, we
validate the comprehensiveness of the resulting WA library and showcase the
enhanced awareness widget set in a dedicated screencast that is available at
http://vsr.informatik.tu-chemnitz.de/demo/GAwI/.

2 GAwI Overview

The collaboration system architecture including GAwI components is shown in
Figure 1(a) and consists of a server and an arbitrary number of clients. In de-
tail, the depicted collaboration system comprises the abstract web editor stack
(including Editor UI, Editor API, W3C APIs and the DOM), the concurrency
control system (including the Generic Sync Adapter and the server-side DOM
Sync Service) and the Generic Awareness Infrastructure. While the generic con-
currency control, which is discussed in [7], synchronizes DOM changes and re-
solves editing conflicts, GAwI captures, distributes and provides input for WA
widgets [6]. The generic nature of GAwI is promoted by relying exclusively on
standardizedW3C APIs instead of editor-specific ones that would entail an extra
WA adapter implementation for each supported web editor.

Nevertheless, the GAwI presented in [6] accommodates only two awareness
widgets (participant list and creation coloring) and thus, lacks WA support in
a comprehensive and holistic manner. Gutwin et al. introduced the 10 WA ele-
ments [2] listed in Figure 1(b) (presence, identity, etc.) that have to be covered
by a comprehensive WA library. Currently, the spider chart in Figure 1(b) gives
a rough estimation to what extent WA elements are covered by GAwI [6]. On
the one side, the participant list reflects if collaborators are present and reveals
their identity; on the other hand, the creation coloring widget discloses who
carried out what action and which artifacts were affected. In particular, the
where-elements location, gaze, view and reach are not sufficiently supported.

3 GAwI Enhancements

To enhance GAwI’s existing set of WA widgets and to effectively support all 10
WA elements, we implemented 4 extra awareness widgets depicted in Figure 1(c).
In the following, we discuss implementation details that allow for reuse.

Telepointer: To be aware of the mouse cursor of other participants, the tele-
pointer mimics the cursor movements remotely. Our implementation built on top
of standardized W3C APIs starts capturing local mouse cursor changes when the
DOM Core mousemove event is fired. Since participants’ viewports may differ in
various aspects (e.g. size, zoom level or resolution), the x and y window co-
ordinates cannot be exploited. Instead, we leverage the underlying DOM node
(e.g. a text node representing a heading or an SVG node visualizing a circle) as

http://vsr.informatik.tu-chemnitz.de/demo/GAwI/

484 M. Heinrich et al.

Fig. 1. (a) The GAwI architecture [6] (b) WA elements [2] and their as-is coverage (c)
Set of added awareness widgets (d) Comprehensiveness analysis of WA support

the reference point for positioning calculations which results in more accurate
positions in heterogeneous environments. The telepointer shape is drawn on a
HTML5 canvas layer that spans the entire shared workspace. Adopting a pixel-
based canvas is essential since SVG-based solutions may impair performance.

Radar View: To highlight where participants are working, the radar view ex-
poses a miniaturized view including all document artifacts and semi-transparent
viewports. Miniaturizing HTML documents is not trivial since HTML consists
of a variety of different media objects that cannot be scaled in a uniform manner
(e.g. scaling fonts differs from scaling images). Hence, we used the html2canvas
JavaScript library to generate a pixel-based representation from the DOM view
that can be uniformly scaled to a miniature view. However, taking a snapshot
of the DOM view is costly and thus, the radar view is only updated if a fixed
time interval elapsed and not if document artifacts are changed.

Artifact Marking: Local artifact selections are highlighted remotely by the
artifact marking widget and thus provide means to focus the attention of collab-
orators on a specific object. The capturing phase is triggered by mouse events
(e.g. click) and has to ensure that the selection area is properly calculated.
Absolute coordinates are once again not an option due to heterogeneous window
sizes, zoom levels, etc. The HTML5 Editing API provides so called Range objects
that allow specifying continuous selection parts based on content rather than on
coordinates. These range objects are exploited to draw a properly dimensioned,
semi-transparent <div> node on top of selected document artifacts.

GAwI: A Comprehensive Workspace Awareness Library 485

Telecaret: Communicating the local text cursor position to teammates is the
task of the telecaret. Thereby, DOM keyboard events (e.g. keydown) are used
to initiate the telecaret re-positioning. Analog to calculating artifact marking
areas, the range object also enables telecaret positioning whereas range objects
with the same start and end point are adopted. The visualization is materialized
through an extra <div> element inheriting the participant list’s color code.

Besides providing details about the application-agnostic implementation, Fig-
ure 1(d) depicts an assessment of the individual widgets regarding their support
for the 10 WA elements. Even though this expert estimate is coarse-grained and
an end-user study could detail the results, the trend becomes apparent that the
sum of all widgets can comprehensively cover all WA elements. However, the
support for gaze, reach and intention leaves room for improvement.

4 GAwI Demonstration and Conclusions

In this demo (cf. http://vsr.informatik.tu-chemnitz.de/demo/GAwI/), we
leverage two web-based open-source editors, namely, CKEditor [8] and SVG-
edit [9], to showcase GAwI capabilities. First, we show the non-invasive integra-
tion of GAwI in the prominent CKEditor, i.e. the integration entails no source
code changes to the editor’s JavaScript code. Second, we demo WA widgets
in a word processor application (CKEditor) and third, we employ a graphics
application (SVG-edit) to again present the generic WA widgets.

In essence, in this paper, we discussed a set of AW widgets that drive develop-
ment efficiency for collaborative web applications due to their generic nature and
non-invasive incorporation into existing web applications. In a next step, we will
conduct a user study adopting the collaborative CKEditor and the multi-user
SVG-edit to thoroughly assess the functionality and usability of GAwI widgets.

Acknowledgments. This work was partially supported by funds from the Eu-
ropean Commission (project OMELETTE, contract number 257635).

References

1. Dourish, P., Bellotti, V.: Awareness and Coordination in Shared Workspaces. In:
CSCW, pp. 107–114 (1992)

2. Gutwin, C., Greenberg, S.: A Descriptive Framework of Workspace Awareness for
Real-Time Groupware. Computer Supported Cooperative Work 11, 411–446 (2002)

3. ASF: Apache Wave, http://incubator.apache.org/wave/ (2013)
4. Corvalius: beWeeVee, http://www.beweevee.com (2013)
5. Gerlicher, A.: CEFX (2013), http://sourceforge.net/projects/cefx/
6. Heinrich, M., Grüneberger, F.J., Springer, T., Gaedke, M.: Reusable Awareness

Widgets for Collaborative Web Applications - A Non-invasive Approach. In: Bram-
billa, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 1–15.
Springer, Heidelberg (2012)

7. Heinrich, M., Lehmann, F., Springer, T., Gaedke, M.: Exploiting Single-User Web
Applications for Shared Editing: A Generic Transformation Approach. In: WWW,
pp. 1057–1066 (2012)

8. CKSource: CKEditor (2013), http://ckeditor.com/
9. Schiller, J., Rusnak, P.: SVG-edit (2013), http://code.google.com/p/svg-edit/

http://vsr.informatik.tu-chemnitz.de/demo/GAwI/
http://incubator.apache.org/wave/
http://www.beweevee.com
http://sourceforge.net/projects/cefx/
http://ckeditor.com/
http://code.google.com/p/svg-edit/

On Weighted Hybrid Track Recommendations

Simon Franz1, Thomas Hornung1, Cai-Nicolas Ziegler2,
Martin Przyjaciel-Zablocki1, Alexander Schätzle1, and Georg Lausen1

1 Institute of Computer Science, Albert-Ludwigs-Universität Freiburg, Germany
{franzs,hornungt,zablocki,schaetzl,lausen}@informatik.uni-freiburg.de

2 American Express, PAYBACK GmbH, München, Germany
cai-nicolas.ziegler@payback.net

Abstract. Music is a highly subjective domain, which makes it a chal-
lenging research area for recommender systems. In this paper, we present
our TRecS (Track Recommender System) prototype, a hybrid recom-
mender that blends three different recommender techniques into one
score. Since traceability is an important issue for the acceptance of
recommender systems by users, we have implemented a detailed ex-
planation feature that supports transparency about the contribution of
each sub-recommender for the overall result. To avoid overspecialization,
TRecS peppers the result list with recommendations that are based on a
serendipity metric. This way, users can benefit from both recommenda-
tions aligned with their current taste while gaining some diversification.

1 Introduction

While e-commerce has embraced the benefits of using recommender systems
early on, the music domain has long been influenced by offline radio stations,
where static playlists based on track popularity and expert preselections are
broadcast to every listener. With the advent of music streaming platforms, such
as Last.fm1 or Spotify2, the balance has shifted and users can now create their
own private radio stations. As a downside, users now have to curate their own
playlists and are less likely to discover new music. For this, a music recommender
system is an elegant supplement, which can make use of both the wisdom of the
crowds and the user’s past listening history.

In this paper, we present our TRecS prototype that combines multiple metrics
into one comprehensive prediction score: the similarity of tracks is computed
based on the listening history of Last.fm users (track similarity), the tags that
are associated with tracks (tag similarity), and the temporal listening profile of
individual tracks (time similarity). While these metrics assure recommendations
that share characteristics with music a user has liked so far, we have additionally
implemented a serendipity measure [1] that includes complementary music to
the list of recommended tracks. TRecS is a weighted hybrid recommender [2],
where the weights for each metric are adjustable, and the system supports an

1 http://www.last.fm
2 http://www.spotify.com

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 486–489, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.last.fm
http://www.spotify.com

On Weighted Hybrid Track Recommendations 487

explanation for each recommended track with respect to the contribution of
each sub-recommender to the overall prediction score. A study with over 140
participants has shown that the perceived quality of recommendations gradually
improves with the number of rated recommendation lists.

2 TRecS Architecture and Design

TRecS relies on one collaborative metric and two content-based metrics (cf. Sec-
tion 2.1) [3]. The overall architecture of the system is shown in Figure 1. Our
crawled data set from Last.fm is first preprocessed (e.g. data cleansing and dis-
ambiguation) and reduced to 50, 000 tracks while maintaining key characteristics
of the original data set. Afterwards, for each metric the similarity between all
songs is precomputed and stored in the knowledge base. At runtime, when a
user requests a new recommendation list, the user’s context, i.e. the tracks rated
so far, is used to compute the next recommendations based on a weighted score
of the three sub-recommenders. Before the result list is returned, it is peppered
with additional serendipitous tracks (cf. Section 2.4).

The TRecS prototype is available online with an introductory tutorial at:

http://trecs.informatik.uni-freiburg.de

User Interface

(1) Search & Listen Tracks
(2) Rate Tracks
(3) View & Listen Recommended Tracks
(4) Rate Recommended Tracks

User Session

User Context

Recommender Engine

Knowledge
Base

Data Preprocessor

(1) Data cleaning & disambiguation
(2) Analyze & Extract approriate subset
(3) Precompute Track-Similarity
(4) Precompute Tag-Similarity
(5) Precompute Time-Similarity

Users

Tracks

Context

Track Similarity
Recommender

Tag Similarity
Recommender

Time Similarity
Recommender

Recommended
Tracks

Serendipity
Tracks

Crawled Last.fm dataset

Youtube Videos for
Tracks Youtube

Connector

Fig. 1. TRecS system architecture

For computing similarities, each track is represented as a vector of features.
The similarity between each track can now be determined with some distance
metric between these vectors. Thus, it is sufficient to describe for each recom-
mender how features are represented for each track and which distance metric is
used.

http://trecs.informatik.uni-freiburg.de

488 S. Franz et al.

2.1 Similarity Metrics

TRecS puts three different recommender systems to use, each based on its own
similarity metric:

1. Track similarity. Each track is represented as a vector αi = (c1, . . . , cn),
where cj represents the number of times the user j ∈ U has listened to this
track, and |U | = n is the number of all users. The similarity is determined
by the Pearson product-moment correlation (see, e.g., [4]).

2. Tag similarity. With tag similarity, each track is represented as a vector
βi = (l1, . . . , lm), where lj ∈ [0, 100] represents the score to what extent
the tag lj ∈ L “describes” this track, where |L| = m is the number of all
used tags. Since for tags we do not need to care for user-specific scales, the
similarity is determined by the cosine similarity measure [4].

3. Time similarity. Every season has its music, e.g. there are typical songs
for Valentine’s day or Christmas. To capture this behavior, each track is
represented as a vector γi = (w1, . . . , w52), where wj is the number of times
the track has been listened to in the jth week of the year, accumulated over
all users. Similar to tag similarity, the cosine similarity is computed.

Every recommender generates a track-track similarity matrix Ak, k ∈ {1, 2, 3}.
These are used for generating predictions for the active user.

2.2 Comparing Recommenders

In order to see how close the similarity estimates of all three recommenders are
to each other, we implemented the following approach: First we iterated through
every matrix Ak, k ∈ {1, 2, 3}, and created a new matrix Bk, where the entries
of Bk, i.e., bki,j , are defined as z-scores:

bki,j =
aki,j − ak

σk
, (1)

where σk is the standard deviation over all entries of matrix Ak, and ak is the
mean over all its entries. Now we build all three pairs of matrices {Bx, By},
where x, y ∈ {1, 2, 3} and x �= y, and calculate the matrix Cxy for each, where
cxyi,j = |bxi,j − byi,j |. For each matrix Cxy we now calculate one scalar value, which
is the mean over all its entries. We denote this scalar by cxy and it gives us an
indication how close the similarity matrices produced by recommender x versus
y are. The lower the value, the closer they are to each other.

The results show that the track and tag recommender are closest to each
other (c12 = 0.93), while the time recommender produces more deviating results
from both the track (c13 = 1.33) and the tag recommender (c23 = 1.67). This
well aligns with our conjectures before conducting this test.

On Weighted Hybrid Track Recommendations 489

2.3 Prediction Generation

The prediction score p(u, tnew) of a track tnew, which user u has so far not rated
yet, is computed based on a linear combination of the similarity scores of the
three recommenders, denoted as sim(tnew, t):

p(u, tnew) =

∑
t∈Tracks

sim(tnew, t) · r(u, t)∑
t∈Tracks

sim(tnew, t)
(2)

The so far rated songs of a user are considered by r(u, t), reflecting a rating of
user u for track t. If a user has only rated tracks of a few different artists so far,
the majority of the recommendations might be from only one artist. To alleviate
this undesirable behavior, for each artist at most two tracks are recommended
to the user, working as a simple diversification means [5].

The weights of the three recommenders can be adjusted in the prototype and
are set to equal weighting by default.

2.4 Adding Serendipity

For recommending serendipitous tracks, the last five positively rated tracks of
the user are investigated. For each of these tracks, the last five users having
listened to this track are selected, yielding (at most) 25 candidate users Ucand.
The intersection of tracks the users in Ucand have listened to is computed and
the tracks with the highest overlap are chosen.

If there are tracks with the same overlap, the number of times the track has
been listened to by all users gives the final rank. The tracks are inserted in the
result list, with the constraint that the serendipity ranking’s order is preserved.

The ratio of serendipitous to similarity-based tracks is set to 30% vs. 70% by
default.

References

1. Zhang, Y.C., Séaghdha, D.Ó., Quercia, D., Jambor, T.: Auralist: Introducing
Serendipity Into Music Recommendation. In: Adar, E., Teevan, J., Agichtein, E.,
Maarek, Y. (eds.) WSDM, pp. 13–22. ACM (2012)

2. Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl,
W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg
(2007)

3. Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Sys-
tems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

4. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval - The Con-
cepts and Technology Behind Search, 2nd edn. Pearson Education Ltd., Harlow
(2011)

5. Ziegler, C.N., McNee, S., Konstan, J., Lausen, G.: Improving Recommendation Lists
Through Topic Diversification. In: Proceedings of the 14th International World Wide
Web Conference, Chiba, Japan. ACM Press (May 2005)

A Hybrid B2B App Recommender System

Alexandru Oprea1, Thomas Hornung2, Cai-Nicolas Ziegler3,
Holger Eggs1, and Georg Lausen2

1 SAP Commercial Platform, St. Leon-Rot & SAP Research, Darmstadt, Germany
{alexandru.dorin.oprea,holger.eggs}@sap.com

2 Institute of Computer Science, Albert-Ludwigs-Universität Freiburg, Germany
{hornungt,lausen}@informatik.uni-freiburg.de

3 American Express, PAYBACK GmbH, München, Germany
cai-nicolas.ziegler@payback.net

Abstract. Recommender systems are integral to B2C e-commerce, with
little use so far in B2B. We present a live recommender system that
operates in a domain where users are companies and the products being
recommended B2B apps. Besides operating in an entire new domain, the
SAP Store recommender is based on a weighted hybrid design, making
use of a novel confidence-based weighting scheme for combining ratings.
Evaluations have shown that our system performs significantly better
than a top-seller recommender benchmark.

1 Introduction and Motivation

The SAP Store caters to SME companies that aim to drive their business via
B2B apps, e.g., for customer relation management or compliance. Many of these
apps are geared towards specific industries and their needs. As the number of
partners producing them is growing, so is the number of apps in the store itself
and thus the complexity for the user (who represents a company) to actually
find what he is looking for.

To actively help the user, we propose a hybrid recommender system that
addresses exactly the needs of this specific B2B scenario. The system puts to
use both knowledge-based, collaborative, and content-based sub-recommenders.
Moreover, we present a novel hybrid weighting scheme [1] that incorporates confi-
dence scoring for the predictions produced, so that sub-recommenders contribute
for recommendations according to their confidence weight.

The system is live and can be used by logged-in users1. We have conducted
empirical evaluations via hold-out testing that show that the recommender out-
performs the non-personalized top-seller recommender.

2 Recommender System Architecture

The architecture of the recommender is depicted in Figure 1. Overall, we have
three different information sources for generating new recommendations: the

1 See http://store.sap.com

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 490–493, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://store.sap.com

A Hybrid B2B App Recommender System 491

Knowledge-based
Filter (KBF)

User Profiles

App Profiles

TRX Data

User-Item CF

Item-Item CF

Content-based Augmentation

Content-based Augmentation

Item-Item Matrix

User-User Matrix

Weighted
Mean

Recommendation List

1

2a

2b

3

4

Fig. 1. SAP Store recommender system architecture

user profiles (e.g., company size, industry, country), the app profiles (e.g, sup-
ported industries, business areas), and the transactional customer data (e.g.,
sales orders, downloads).

Initially, the knowledge-based component filters the list of relevant apps by a
set of plausibility rules resulting in an unsorted set of candidate apps (1). These
are fed to an item-item (2a) and user-item collaborative filter (CF), see (2b) [2].

To deal with the cold-start problem in cases where only sparse ratings are
available for apps, a content-based augmentation scheme computes similarities
based on the cosine similarity measure [3] between properties of the apps. For
users that are new to the system, the similarity can be determined by comparing
their profiles to other users based on their cosine similarity. This way, the two
matrices will contain meaningful entries for all users and apps known to the
system, and recommendations get more personalized once more context data is
available. The scores of the two CF algorithms are combined by a weighted mean
(cf. Section 2.1), and a sorted top-k recommendation list is returned.

The calculation of the matrices is done off-line as the computation is quadratic
in the number of users or apps, respectively.

2.1 Weighting by Confidence Scores

The score of a recommended app is based on a weighted mean of the constituent
item-item and user-item scores. Each of these gives an estimate of how much a
user might like an app; e.g., Eq. 1 shows how a prediction score for the item-item
case is determined for app am for user u: The ratings ru(b) of u for apps b ∈ Ru

492 A. Oprea et al.

he has already rated are weighted by their similarity to am, denoted s(b, am), as
an indicator if this app might be relevant for the user2.

pi(u, am) =

∑
b∈Ru

s(am, b) · ru(b)∑
b∈Ru

s(am, b)
(1)

Now, for each recommender score a confidence score is calculated, denoted ci
and cu respectively, which is based on the number of supporting items or users
of each prediction. These weights are used to determine the overall score p:

p(u, am) =
ci · pi(u, am) + cu · pu(u, am)

ci + cu
(2)

The confidence score cu for the prediction pu(u, am) tells us how reliable a pre-
diction is. It grows with a growing number of supporting data points: For each
user ui, we calculate the z-score of his similarity with our current user u. We
now sum these z-score similarities for all k users in user u’s neighborhood [2].
The sum is divided by k and the resulting value gives us the average normal-
ized similarity of all the users whose ratings have been taken into account for
pu(u, am). The same is done for the item-based case.

Since we are making use of standard z-scores, the linear combination shown in
Eq. 2 based on the two confidence weights is sound. The confidence scheme repre-
sents a powerful means to adjust the hybrid recommender’s weighting according
to the predicted reliability of each of the two sub-recommenders.

3 Performance Evaluation

In order to test the performance of the presented hybrid recommender using our
novel confidence-based weighting scheme, we conducted an empirical evaluation
with real-world data of 5, 233 users (e.g., companies registered for and using the
SAP Store) having purchased or expressed interest in 615 app solutions.

The frequency distribution in Fig. 2(a) shows leads per app, i.e., how many
companies have purchased or expressed interest in each app, sorted in descending
order. The log-log plotted graph exhibits a power-law distribution, so a small
number of apps attracts a high number of leads. This is confirmed by Fig. 2(b),
showing that the top-5 apps accumulate 29% of all leads, and top-100 capture
90%. We thus conjecture that a non-personalized top-seller recommender, which
only recommends the top-N most popular apps, will perform very well.

We adopted a hold-out cross-validation approach for testing, where one rating
rv of a user is withheld and all others are used to define his profile and calcu-
late predictions, aiming to recommend exactly rv. For baselining, we compared
our recommender’s performance with that of the top-seller recommender. The
evaluation task for each of the two recommenders was to produce a list of top-N
recommendations and count in how many cases the produced list contained rv.

The evaluation is shown in Tab. 1. All results exhibit statistical significance
at the p < .05 level, so we see the hybrid approach outperforms the top-seller.

2 The score pu for the user-item case is computed in an analogous way, with additional
consideration of the user’s average rating to level the effect of subjective ratings.

A Hybrid B2B App Recommender System 493

(a) (b)

Fig. 2. Log-log frequency distribution of leads per app (a) and cumulative share of
leads by number of apps (b)

Table 1. Performance benchmark results

Top-1 Top-3 Top-5 Top-10

Hybrid recommender 10.9% 24.4% 33.5% 51.2%
Top-seller 6.6% 18.9% 27.6% 43.4%

4 Conclusion and Outlook

We have presented our recommender for the new domain of B2B apps, making
use of a novel hybrid weighted scheme based on confidence scoring. Our first
evaluations have shown very promising results and the system has gone live
into operational use at SAP. In the future, we want to tune the recommending
algorithms further and aim at doing the matrix calculations in real-time, using
HANA [4], SAP’s new high-performance in-memory database.

References

1. Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl,
W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg
(2007)

2. Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Sys-
tems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

3. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval - The Con-
cepts and Technology Behind Search, 2nd edn. Pearson Education Ltd., Harlow
(2011)

4. Färber, F., May, N., Lehner, W., Große, P., Müller, I., Rauhe, H., Dees, J.: The
SAP HANA Database – An Architecture Overview. IEEE Data Eng. Bull. 35(1),
28–33 (2012)

PEUDOM: A Mashup Platform for the End User
Development of Common Information Spaces

Maristella Matera, Matteo Picozzi, Michele Pini, and Marco Tonazzo

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB

{matera,picozzi}@elet.polimi.it,
{michele.pini,marco.tonazzo}@mail.polimi.it

Abstract. This paper presents a Web platform for the user-driven,
service-based creation of Common Information Spaces (CISs). Two com-
position environments, characterized by intuitive visual notations, en-
able i) the integration of services to create UI-rich components and ii)
the synchronization of components into interactive workspaces. Collab-
orative features allow multiple users to collaborate, synchronously and
asynchronously, to share and co-create CISs.

Keywords: Collaborative Mashups, End User Development, Common
Information Spaces.

1 Introduction

Web 2.0 has accelerated the evolution of the Web, becoming a driver of in-
novation. End users are now involved in the process of content creation, and
this opportunity raised the users’ will to become active creators of applications,
thus promoting the mashup phenomenon. So far, mashups have been conceived
as Personal Information Spaces (PISs), i.e., vertical applications solving situa-
tional needs, assembled by the end users by integrating ready-to-use resources.
Mashups, however, have a great potential to accommodate the sharing and co-
creation of knowledge [1]. While collaboration has been extensively investigated
in the CSCW (Computer Supported Cooperative Work) area, the co-creation
of web-based Common Information Spaces (CISs), especially by means of web
mashups approaches, is still scarcely explored. Recent works highlight the need
for collaboration [2], but the proposed solutions only cover specific aspects (e.g.,
awareness in synchronous editing), while they do not offer comprehensive ap-
proaches ranging different forms of synchronous and asynchronous collaboration.

1.1 Demo Organization

This demo presents the main ingredients of our approach for the collabora-
tive construction of CISs. We illustrate the collaborative mechanisms intro-
duced in PEUDOM, a platform for the end user development of mashups that

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 494–497, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

PEUDOM: A Mashup Platform for the End User Development 495

offers visual paradigms for the creation of UI-rich components and the syn-
chronization of such components to create orchestrated information spaces.
The demo introduces the web environments supporting the visual composi-
tion of PISs, and the collaborative mechanisms that allow users to make PISs
evolve into CISs. The demo also illustrates the models underlying the compo-
sition paradigms, the techniques for the automatic generation of application
schemas, the pervasive execution of the resulting mashups on different devices
to facilitate sharing, and the mechanisms for schema co-evolution in collab-
orative scenarios. The rest of this paper describes some basic ingredients of
our approach that will be also illustrated during the demo. More details on
the composition paradigm and the underlying models can be found in [3,4]. A
video demonstrating the use of PEUDOM for CIS co-creation is available at
http://home.dei.polimi.it/picozzi/peudom/demoICWE.html.

2 Models and Tools for PIS Composition

In our mashup platform, component integration complies with an event-driven,
publish-subscribe paradigm that enables the synchronization of components ’ be-
haviors. Components wrap (remote or local) services and expose events and
operations. The coupling of components within an integrated workspace is based
on the subscription of operations, which become listeners, for events exposed
by other components. Subscriptions are expressed in a composition schema rep-
resented in an XML-based domain specific language [3], which is then used to
govern the execution of the PIS, i.e., the synchronization of the different com-
ponents according to the defined listeners. As shown in Figure 1, a web envi-
ronment, the Mashup Dashboard, enables the creation of PIS schemas. An Event
Handler on the client-side intercepts the visual composition actions executed
by the end-user, and automatically translates them into elements, i.e., listeners
and property values, of the PIS schema. Based on the so created schema, the
Mashup Engine acts as an event bus: it listens to and handles the events raised
by the interaction with each single components, and activates the subscribed
operations as prescribed by the listeners in the composition schema. A relevant
characteristic of our approach is the interleaving of the design and execution
phases [3]: users immediately experience the effect of their composition actions
(i.e., the composition schema is immediately interpreted and executed); thus
they can iteratively and interactively refine the resulting applications.

The platform also provides a web environment for the creation of components
(Component Editor in Figure 1). Through the Service Manager module, it offers
support for querying REST services, displaying the retrieved results in a visual
format, and visually defining selection and projection queries over such results.
A visual mapping process indeed allows the user to select data attributes and
associate them to user interface elements playing the role of data collectors. The
association of data from multiple services to a same UI data collector also defines
integration queries [4]. The editor, through the Visual Mapping Manager, trans-
lates the visual actions into an XML-based component schema. The execution of

http://home.dei.polimi.it/picozzi/peudom/demoICWE.html

496 M. Matera et al.

Mashup DashboardComponent Editor

Service Manager
Visual Mapping

Manager

Component
Execution

Engine

Web Services
and APIs

Repository Server

Service Descriptor
Repository

Component Schema
Repository

Composition Schema
Repository

Service
descriptor

Component
schema

Visual
Templates

Mashup EngineEvent Handler

Collaboration Layer

Live Editing
Server

Editing Action
Queue

Sharing Server Communication Server

Versioning
System

User/Group
Manager

Notification
Server

Chat
Server

Annotation
Server

Client
Server

Live Editing Client

Communication Client

Component
schema

Composition
schema

Fig. 1. Platform Architecture

the so created component is then possible within the Mashup Dashboard, as well
as standalone apps on different devices where execution engines, coded according
to the target technology, interpret and instantiate the component schema.

3 From PIS Composition to CIS Co-Creation

PEUDOM exploits a “lightweight” execution paradigm, hosting all the modules
for composing and executing the composite information spaces at the client-side.
As highlighted in Figure 1, server side modules instead manage the sharing of
resources by multiple users and the synchronous and asynchronous communi-
cation. A schema versioning, an annotation system and an activity log system
support synchronous communication. Instant messaging and live editing then
enable synchronous collaboration. For example, if a user performs an action on
a client that modifies locally a shared PIS (i.e., a CIS), this action is propagated
(through the Live Editing Client) to a Live Editing Server in charge of updating
the composition schema on each listening client. The server maintains a repre-
sentation of all the distributed editing actions: every editing session on a CIS is
associated with an Editing Action Queue from which messages are broadcasted
to all the active CIS instances, except the one where the modification originated.
On a client listening to modification actions, the Live Editing Client interprets
the received actions and actuates the changes on the local schema.

The server-side management of the editing action queue ensures the synchro-
nized evolution of all the active PIS instances. With respect to the paradigm

PEUDOM: A Mashup Platform for the End User Development 497

adopted for PIS construction, the CIS composition schema is now enriched with
status meta-data (e.g., parameter values to query single components, items se-
lected in a given data set), so that each CIS instance is synchronized not only
with respect to the composition structure (i.e., components and listeners), but
also with respect to behavioral aspects, e.g., the displayed data set filtered out
by different actions of concurrent users. Therefore, the composite application is
now long-lasting and stateful: both structure and state variables are maintained
across different sessions.

4 Conclusions

Collaboration in mashup-based development can be beneficial in collective intel-
ligence scenarios [5], where teams of people co-create knowledge by sharing inte-
grated information spaces with professional peers, in meta-design environments
[6], where end-users shape up their tools in collaboration with expert develop-
ers, or in scenarios where people, not able to develop by themselves their own
applications, ask for help and advice from experts within reference communities
in a kind of crowdsourced Web Engineering [7]. This demo illustrate our solution
for the collaborative development of CISs. The proposed techniques have been
experimented by extending our Web platform for mashup development, but they
address elements, such as services, components, composition schemas, that are
recurrent in the majority of mashup platforms. Also due to the component-based
nature of the collaborative modules, and the customizability of their event-driven
logic, we believe the proposed techniques and their supportive software modules
can be easily adapted and exploited in the context of other approaches.

References

1. Ardito, C., Costabile, M.F., Desolda, G., Matera, M., Piccinno, A., Picozzi, M.:
Composition of situational interactive spaces by end users: a case for cultural her-
itage. In: Proc. of NordiChi 2012, pp. 79–88. ACM (2012)

2. Heinrich, M., Grüneberger, F.J., Springer, T., Gaedke, M.: Reusable awareness wid-
gets for collaborative web applications - a non-invasive approach. In: Brambilla, M.,
Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 1–15. Springer,
Heidelberg (2012)

3. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci, C.:
Dashmash: A mashup environment for end user development. In: Auer, S., Díaz,
O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166. Springer,
Heidelberg (2011)

4. Cappiello, C., Matera, M., Picozzi, M.: End User Development of Mashups. In: Proc.
of CHI International. LNCS, Springer (in print, 2013)

5. Grasso, A., Convertino, G.: Collective intelligence in organizations: Tools and studies
- introduction. CSCW 21(4-5), 357–369 (2012)

6. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N.: Meta-design: a
manifesto for end-user development. Commun. ACM 47(9), 33–37 (2004)

7. Nebeling, M., Leone, S., Norrie, M.C.: Crowdsourced web engineering and design.
In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387,
pp. 31–45. Springer, Heidelberg (2012)

Customized Views on Profiles in WebID-Based

Distributed Social Networks

Stefan Wild, Olexiy Chudnovskyy, Sebastian Heil, and Martin Gaedke

Chemnitz University of Technology, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. WebID as an extensible and distributed identification ap-
proach enables users to globally authenticate themselves, connect to each
other and manage their identity data at a self-defined place. Identity data
stored in WebID profile documents can be protected from unauthorized
access using appropriate access control methods. While existing meth-
ods are primarily about securing resources, they lack providing adequate
mechanisms for controlling access to specific data within profiles.

This paper presents our approach to create customized views on
profiles in WebID-based distributed social networks. We introduce fine-
grained personalized filters based on SPARQL templates and demon-
strate their integration into an existing identity management platform.

Keywords: Social Web, Semantic Web, WebID, Access Control.

1 Introduction

Centralized social networks such as Facebook, Google+ or LinkedIn provide var-
ied possibilities for personal information exchange, but try to bind users within
their own domains [6]. Avoiding data silos and enabling users to remain in control
of their data asks for a distributed social network (DSN). A DSN can be im-
plemented on the basis of W3C’s WebID specification [4]. WebID as a universal
identification mechanism enables authentication through a client certificate that
includes an URI, called WebID, referring to a resource containing the identity
owner’s data, called WebID profile. WebID profiles are extensible and machine-
readable through RDF and domain specific vocabularies like FOAF. It is in
the user’s interest to consolidate personal data at one place and publish it in a
uniform way to enable data reuse across different services and Web applications.

Unprotected WebID profiles, however, are potential information sources for
known and wanted, but also for unknown and unwanted requesters. Authenti-
cating via WebID requires a publicly accessible profile as it contains the profile
owner’s public keys, i.e., also data irrelevant to authentication per se could be
retrieved [2]. Existing mechanisms only provide coarse access control and require
outsourcing profile data to be protected as separate resources. There is a clear
need for fine-grained and user-defined access control of WebID profile data.

We identified 3 requirements a solution has to fulfill: First, identity owners
must be enabled to express fine-grained views on WebID profiles targeting differ-
ent requesting agents. Second, view definitions must be portable to other systems

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 498–501, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Customized Views on Profiles in WebID-Based Distributed Social Networks 499

without making major adjustments. Third, views on profiles must be standard
compliant to ease maintenance, ensure traceability and reliable processing.

This paper addresses these requirements by the following contributions: First,
we propose a flexible approach to customize views on WebID profiles using fine-
grained filters. Second, we present an RDF-based filter language using SPARQL.
Third, we demonstrate the integration of view customization facilities into an
existing WebID identity provider and profile management platform.

The rest of this paper is organized as follows: We analyze related work in
Section 2, present our solution in Section 3, and conclude the paper in Section 4.

2 Related Work

Web Access Control (WAC) enables access control to resources at the document
level and supports assigning access rights to agents identified by WebIDs [2].
Access control lists specified by WAC are machine-readable through RDF and
can be stored as self-contained resources independently from the resources they
control access to. While WAC is well-suited for scenarios with many resources
to be protected, it lacks possibilities to secure specific data within resources [1].
A fine-grained control requires outsourcing specific profile parts as separate re-
sources and defining corresponding ACLs, which entails declining portability.

Similar to WAC, the Access Control Ontology (ACO) can only control access
to resources [3]. ACO is more flexible than WAC, as it additionally supports
defining roles and enables to directly map permissions to HTTP verbs.

The approach proposed in [5] enables manipulating profile data for specific re-
questing agents. Relevant profile data is addressed through URIs or RDF triple
elements and logic defined by a custom vocabulary is interpreted to establish
diverse views on profiles for specific requesting agents. Using a custom vocabu-
lary limits expressiveness and portability. View definitions offer alternative in-
formation sources relative to existing WebID profile data. This requires further
processing to merge or replace specific triples. Like ACO and WAC, treating
particular profile data independently requires outsourcing as separate resources.

In contrast to the presented techniques, our approach enables filtering at the
level of identity attributes while avoiding to distribute profile data.

3 Customized Views on WebID Profiles

To create customized views on WebID profiles, our solution automatically selects
a filter specified for the requesting agent. If no filter specification is available,
an identity fallback function retrieves the most appropriate filter. The entire
WebID profile is converted via a graph-to-graph transformation into a filtered
profile containing only data satisfying the visibility constraints defined for the
requesting agent. For the transformation, we use SPARQL CONSTRUCT state-
ments to apply a whitelisting to particular WebID profile data. The represen-
tation of the filtered profile is then sent back to the requesting party. Figure 1
illustrates this approach. Filters are created by WebID profile owners and stored
in a machine-readable way within the profiles. As an RDF-based language using

500 S. Wild et al.

Requester’s identity

Retrieve filter
best matching to

requester’s identity

Graph representation
of requested profile

Graph representation of
filtered profile

Filter specification
retrieved for

identity

Filtering of
requested profile

using retrieved filter
specification

Serialization of
filtered profile

Party
requesting profile

Profile
response

Profile
request

Customized Views on WebID Profiles Filter
specs.

Fig. 1. Approach to Customized Views on WebID Profiles

SPARQL, the proposed WebID Profile Filter Language (WPFL) defines such
filter specifications consisting of filter:entity, i.e., the requesting agent, and
filter:command, i.e., the filter logic specified in SPARQL. WPFL also connects
the filter specification with the WebID profile and is exemplarily shown below:

<WebID> f i l t e r : s p e c i f i c a t i o n [
f i l t e r : e n t i t y ENTITY;
f i l t e r : command COMMAND] .

We implement the approach using Sociddea - a WebID identity provider and
management platform. Sociddea facilitates creating and editing views via a GUI,
as shown in Figure 2. While the GUI targets unskilled users and is less expres-
sive, Sociddea also allows to directly input SPARQL statements, which is more
powerful but requires basic knowledge of Semantic Web technologies.

As all filter specifications are consolidated in the identity owner’s WebID
profile, this solution represents a portable approach. Using SPARQL as a well-
established and proven language increases maintainability and flexibility, e.g., it
also enables handling new identity attributes and conditional filtering.

Demonstration. In the demo session, we will show the creation WebID profiles
using Sociddea. We present how users can define profile views via GUI and
SPARQL queries. Finally, we demonstrate the filter selection and application
depending on different requesting agents. Further information and a prototype
is available at http://vsr.informatik.tu-chemnitz.de/demo/sociddea/.

4 Conclusion

By enabling identity owners to control the way their profile data is exposed
to others, we made a significant step towards privacy in WebID-based DSNs.
Filtering of WebID profile data allows identity owners to keep control about

http://vsr.informatik.tu-chemnitz.de/demo/sociddea/

Customized Views on Profiles in WebID-Based Distributed Social Networks 501

Fig. 2. Creation of Filter Specification based on User Selection

amount and nature of personal data being presented to entities requesting their
profile data. In future work, we will analyze an extension of the filtering towards
capabilities for dynamically adding and replacing profile data. We also plan to
research the topic of reusing filters by sharing them between users of a DSN.

Acknowledgment. This work was funded by the European Commission
(project OMELETTE, contract 257635).

References

1. Chudnovskyy, O., Wild, S., Gebhardt, H., Gaedke, M.: Data Portability Using
WebComposition/Data Grid Service. International Journal on Advances in Internet
Technology 4(3 & 4), 123–132 (2012)

2. Hackett, M., Hawkey, K.: Security, Privacy and Usability Requirements for Feder-
ated Identity (2012)

3. Tomaszuk, D., Gaedke, M., Gebhardt, H.: WebID+ACO: A distributed identifica-
tion mechanism for social web (2011)

4. Tramp, S., Frischmuth, P., Ermilov, T., Shekarpour, S.: An Architecture of a Dis-
tributed Semantic Social Network. Semantic Web (2012)

5. Tramp, S., Story, H., Sambra, A., Frischmuth, P., Martin, M., Auer, S.: Extending
the WebID Protocol with Access Delegation. In: Proceedings of the Third Interna-
tional Workshop on Consuming Linked Data (COLD 2012) (2012)

6. Yeung, C.M.A., Liccardi, I., Lu, K., Seneviratne, O., Berners-Lee, T.: Decentraliza-
tion: The future of online social networking. In: W3C Workshop on the Future of
Social Networking Position Papers 2 (2009)

Inter-Widget Communication by Demonstration

in User Interface Mashups

Olexiy Chudnovskyy1, Christian Fischer1, Martin Gaedke1,
and Stefan Pietschmann2

1 Chemnitz University of Technology, Germany
{olexiy.chudnovskyy,christian.fischer,gaedke}@informatik.tu-chemnitz.de

2 Technische Universität Dresden, Germany
stefan.pietschmann@tu-dresden.de

Abstract. User Interface Mashups have become increasingly popular,
as they allow end users with little programming skills to create situ-
ational Web applications on their own. Those are built by composing
interactive components, so-called widgets, whose integration is achieved
by the means of “inter-widget communication” (IWC). Since widgets
are built by different vendors and rely on different data models, IWC
rarely works “out of the box”, which leaves users with the tedious task
of manual wiring and limited functionality.

This paper presents a semi-automatic, end-user friendly approach to
extend widgets with IWC capabilities by employing the programming by
demonstration paradigm. The solution is demonstrated using an exten-
sion of Apache Rave, an open-source widget composition platform.

Keywords: mashup, inter-widget communication, programming by
demonstration.

1 Introduction

User Interface Mashups (UI Mashups) facilitate the aggregation of several wid-
gets on a canvas or “workspace” to create situational applications. The integra-
tion of functionality and data offered by widgets is achieved by the so-called
Inter-Widget Communication (IWC). The corresponding messaging infrastruc-
ture provided by many platforms allows for synchronization and message transfer
between widgets which lets them act as one integrated solution with significantly
improved user experience [3,4,2]. Many of the widgets currently available on the
Web do not make use of IWC. Some of them are simply not designed to be used
in compositions. Others rely on component models unaware of IWC mechanisms,
such as W3C widgets. Finally, IWC-enabled widgets developed by different par-
ties suffer from compatibility problems with regard to communication models
and data formats. As result, users often have to input the same data multiple
times and synchronize views manually.

In prior work [1] we have proposed a semi-automatic context-independent ap-
proach for extending widgets with IWC capabilities. It is targeted at domain

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 502–505, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

IWC by Demonstration in UI Mashups 503

experts and skilled users, as a basic understand of data types is required. The
work presented here addresses users with little or no programming skills and
provides the following major contributions: First, we show how Web-based wid-
gets can be extended towards IWC capabilities on the graphical user interface
(GUI) level automatically; Second, we demonstrate how IWC configuration can
be done using the programming by demonstration (PBD) technique; Finally, we
demonstrate how this approach has been integrated and tested with several open
source projects.

The rest of the paper is structured as follows. After giving an overview of
related works in the next section, Sect. 3 presents the proposed solution for end-
user friendly IWC configuration. Finally, Sect. 4 concludes the paper and gives
an outlook on future work.

2 Related Work

Building mashups by demonstration has been explored in the Karma project [6].
The project focused on so called data mashups, i.e. ones, which extract, integrate
and display data from different sources. Users apply PBD technique to specify,
how data from Web pages is extracted, normalized and combined together. In
contrast, the focus of this work lies on widget-based mashups and thus requires
further techniques to configure GUI-level IWC between widgets.

Geppeto project introduced the idea of programming on the GUI level and ap-
plied it the context of widget-based dashboards [5]. Using several special-purpose
widgets and the PBD technique users are able to define workflows consisting of
multiple GUI actions across different widgets. However, the recorded workflows
can only be triggered by user or by pre-defined system events and not by widgets
themselves.

Several research projects have focused on end-user friendly IWC configuration.
Within the CRUISE project [4] users can establish connections between widgets
by means of the drag&drop technique. However, widgets need to be designed
this way and rely on semantically compatible data types. The solution presented
in this paper is more generic, as widgets do not need to be IWC aware or to
comply with any particular interface.

3 End-User Friendly IWC Configuration

The proposed concept is applied in the context of so-called choreographed UI
mashups [7]. Therein, communication emerges without an explicit data flow
definition: Widgets send and receive messages based on the publish-subscribe
(pub/sub) messaging pattern. To be semantically compatible they utilize a ref-
erence ontology describing the data concepts shared. Widgets themselves are
treated as black boxes with public interfaces exposing publications and sub-
scriptions to certain topics and the data types involved.

Implementations of this model predominantly support application-level events
and operations. GUI changes and interactions are usually not communicated via

504 O. Chudnovskyy et al.

pub/sub. Naturally, if widgets do not expose application-level interfaces or the
concepts are incompatible (e.g., by not using a common reference ontology),
IWC becomes impossible. Our approach addresses this problem by enriching
the widget interface with events and operations at the presentation layer. These
can be employed to orchestrate widget GUIs – guided by the user – thereby
establishing connections between widgets.

To enrich widgets with the new interface we have extended the widget con-
tainers Apache Wookie1 and Shindig2 so that DOM-event listeners are automat-
ically added to the source code of instantiated widgets, e. g., for HTML inputs,
select boxes, buttons, and anchors. These extension mechanisms allow for an
easy monitoring and invocation of state changes for the above-mentioned ele-
ments. To establish a “connection” between widgets, users perform GUI actions
in one widget, which should lead to the message transfer, and actions in another
widget, which should be executed after the message transfer. A learning system
then detects correlations in recorded action sequences indicating possible data
flow. One correlation currently supported in our prototype is the reoccurance
of text in different HTML input elements. If a user searches for “London” in
a weather forecast widget and right after that selects the same city in a map
widget, the platform will detect this repeated input and derive a “connection”
between the GUI elements. Fig. 1 illustrates this example workflow.

Fig. 1. Configuration of IWC using Programming by Demonstration

From then on, whenever a user starts a similar interaction with the source
widget, the system will automatically complete the corresponding interaction
in the target widget with the help of the automatically integrated code. The
configuration is stored per workspace and user so that widgets can be reused in
different contexts without prior source code modifications.

In the demo session we plan to showcase the above-mentioned trip planning
scenario. First, we demonstrate how a map, a weather forecast, and a Wikipedia

1 http://wookie.apache.org/
2 http://shindig.apache.org

http://wookie.apache.org/
http://shindig.apache.org

IWC by Demonstration in UI Mashups 505

widget can be automatically extended towards IWC capabilities. Then, we show
how the desired data flow can be configured by simply interacting with the aggre-
gated widgets. Finally, we present the derived IWC configuration and automatic
re-execution of the recorded actions.

A screencast of the planned demonstration and a running prototype based on
Apache Rave3 are available at http://vsr.cs.tu-chemnitz.de/demo/iwc-pbd.

4 Conclusions

This paper describes an approach to extend stand-alone widgets with IWC func-
tionality in an end-user friendly fashion. To achieve this, widgets are automati-
cally equipped with GUI-level observers, which allow for the deduction of logical
connections by monitoring user interactions. As a result, widget integration does
not require any programming skills. Users apply the same techniques as they do
while naturally interacting with their Web applications.

The approach is currently limited to simple patterns of user interactions with a
focus on Web-based forms. Future work will explore how to detect and transfer
complex data between widgets. Further, we plan to conduct a user study to
improve on the usability and scrutability of the approach.

Acknowledgment. This work was supported by the European Commission
(project OMELETTE, contract 257635).

References

1. Chudnovskyy, O., Müller, S., Gaedke, M.: Extending web standards-based widgets
towards inter-widget communication. In: 4th Intl. Workshop on Lightweight Inte-
gration on the Web, pp. 93–96 (2012)

2. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Ignacio, J.: End-User-
Oriented Telco Mashups: The OMELETTE Approach. In: WWW 2012 Companion
Volume, pp. 235–238 (2012)

3. Lizcano, D., Soriano, J., Reyes, M., Hierro, J.J.: Ezweb/fast: Reporting on a suc-
cessful mashup-based solution for developing and deploying composite applications
in the upcoming ubiquitous soa. In: Proc. of the 2nd Intl. Conf. on Mobile Ubiqui-
tous Computing Systems, Services and Technologies, pp. 488–495. IEEE (September
2008)

4. Pietschmann, S., Voigt, M., Meißner, K.: Rich communication patterns for mashups.
In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387,
pp. 315–322. Springer, Heidelberg (2012)

5. Skrobo, D.: Widget-Oriented Consumer Programming. AUTOMATIKA: Journal
for Control, Measurement, Electronics, Computing and Communications 50(3-4),
252–264 (2009)

6. Tuchinda, R., Knoblock, C.A., Szekely, P.: Building Mashups by Demonstration.
ACM Transactions on the Web 5(3), 1–45 (2011)

7. Wilson, S., Daniel, F., Jugel, U., Soi, S.: Orchestrated User Interface Mashups Using
W3C Widgets. In: Harth, A., Koch, N. (eds.) ICWE 2011. LNCS, vol. 7059, pp. 49–
61. Springer, Heidelberg (2012)

3 http://rave.apache.org

http://vsr.cs.tu-chemnitz.de/demo/iwc-pbd
http://rave.apache.org

A Linked Data Perspective for Effective

Exploration of Web APIs Repositories

Devis Bianchini, Valeria De Antonellis, and Michele Melchiori

Dept. of Information Engineering University of Brescia
Via Branze, 38 - 25123 Brescia (Italy)

{bianchin,deantone,melchior}@ing.unibs.it

Abstract. In this paper, we propose a novel approach to provide a
comprehensive cross-repositories view of the available Web APIs infor-
mation, in order to enhance effective multi-perspective Web APIs search
for fast development of web mashups. The approach is based on Linked
Data principles to identify and use semantic links across repositories for
search purposes. Specifically, the paper considers Web APIs search across
the popular ProgrammableWeb and Mashape repositories by combining
their distinctive Web API descriptions.

1 Approach Overview

The problem of searching Web APIs to be aggregated for fast web mashup de-
velopment necessarily comes up against the fact that Web APIs are shared by
providers across different public repositories, which focus on distinct aspects that
are considered for Web API search. In this paper, we propose a novel approach
to provide a comprehensive cross-repositories view of the available Web APIs
information, in order to enhance effective multi-perspective Web APIs search.
Specifically, we consider Web APIs search on the ProgrammableWeb1 (PW) and
Mashape2 (MP) repositories by combining their distinctive Web API descrip-
tions. With respect to related approaches on Linked Web services and Linked
Web APIs [1,2], we rely on information stored within public available reposito-
ries without forcing the web designers to perform semantic annotation of Web
APIs.

An overview of our approach is shown in Figure 1. The approach is based
on Linked Data principles: (i) the contents of repositories are formally repre-
sented (based on RDF), to make them machine processable and enable access
through non-proprietary tools (e.g., SPARQL endpoints); (ii) metrics and crite-
ria to automatically identify semantic links between RDF elements (e.g., Web
APIs, developers’ profile) across different vocabularies are defined; (iii) identi-
fied links are also published as open data to be properly exploited for Web API
search. Starting from the PW and MP repositories, RDF vocabularies which
represent their contents are designed using the main concepts in this domain of

1 http://www.programmableweb.com/
2 https://www.mashape.com/

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 506–509, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Linked Data Perspective for Effective Exploration 507

Vocabularies
(Virtuoso RDF
Triple Store)

...Web API
repositories

Design of RDF vocabularies
and linking conditions
Cartridges definition

Identification of links
between resources

Automatic task
(run-time)

Link Repository
(Virtuoso RDF
Triple Store) Links

maintenance

Semi-automatic
task

(design-time)

SPARQL
queries

ProgrammableWeb Mashape

Web
designer

Fig. 1. Overview of the methodology for Linked Web API publication and search

interest: categories, tags, web mashups and actors involved in Web API sharing,
namely providers and web mashup developers. Vocabularies are stored within
the RDF Triple Store of the Virtuoso Universal Server, on which the approach is
implemented. Links across different vocabularies are also stored in a Link Repos-
itory, built upon the Virtuoso Triple Store. Web API search strategies, based
on RDF vocabularies and cross-repositories, are then applied, inspired by [3].
Such strategies are implemented through SPARQL queries issued on the Virtu-
oso Universal Server to query the contents of different repositories in a combined
way. Due to the dynamic nature of Web API repositories, a link maintenance
mechanism has been also implemented.

2 Linked Web API RDF Vocabulary Definition

The RDF representation of PW and MP vocabularies, together with cross-
repositories links (dashed arrows) are shown in Figure 2. Class modeling should
rely on external vocabularies or ontologies, when available [4]. For instance, we
modeled actors involved in Web API sharing within the two vocabularies in
Figure 2 using the FOAF (Friend of a Friend) ontology.

The relevant classes of resources which have been included in the PW and
MP vocabularies reflect the distinctive features of the two repositories for Web
API description. The PW repository focuses on the Web APIs, the way they
are aggregated into mashups, developers who may be the owners of mashups or
providers of Web APIs. On the other hand, the MP repository is a cloud API
hub focusing on people involved in Web API sharing, denoted as mashapers in
the repository, distinguishing among three roles, namely Web API providers,
consumers (who used the Web API in one of their own mashups) and followers
(who declare their interest on the Web API). This perspective is further enriched
through relationships between mashapers.

Semantic links between resources across different repositories are identified,
as well as the conditions to be verified to set the links. Formally, we represent
a semantic link L as follows: L = 〈type, s URI, t URI, conf, [when]〉, where

508 D. Bianchini, V.D. Antonellis, and M. Melchiori

Mashup

foaf:Person

WebAPI

URL

Date

URL

String

URL

hasDataFormat
address

hasCategoryhasProtocol

tagged

updated

isUsedIn

address

foaf:homepage

developedBy

foaf:name

tagged

String

String

Date

added

String

name

Developer

rdfs:subClassOf

Tag

Category

String name

WebAPI

Mashaper

Date

URL

Date

address
updated

tagged

hasCategory

registrationDate

consumedBy
followedBy

providedBy

follows

foaf:Person

String

URL

foaf:homepage
foaf:name

rdfs:subClassOf

Category

Tag

String
name

sameAs

similarTo

similarTo

sameAs

ProgrammableWeb Mashape

Fig. 2. Linked Web API vocabulary

s URI and t URI are the URIs of the source and target resources of the link,
respectively, conf is the confidence to set the link (obtained through similarity
metrics depending on the link type) and the optional element when denotes when
the link has been established and threrefore stored within the Link Repository.
With reference to the vocabularies shown in Figure 2, the following link types
have been identified:

– sameAs link between Web APIs, to denote that two APIs registered in the
repositories refer to the same component;

– similarTo link between categories and tags used to classify Web APIs;
– sameAs link between developers’ profiles, to denote that a developer within

the ProgrammableWeb repository corresponds to a mashaper registered
within Mashape.

3 Link Exploitation and Maintenance

Contents of the Link Repository can be exposed as open data and used to browse
Web API information across PW and MP repositories. A query is formally de-
fined as Q = 〈CQ, TQ,FQ,MQ〉, where CQ is the set of categories, TQ is the set of
tags, FQ (optional) is a set of pairs 〈tech feature=value〉 and MQ (optional)
is a mashup (that is, a set of Web APIs) which the Web API to search for will
be aggregated in. A search interface supports designers that are not confident
with SPARQL in query formulation.

When the query Q is formulated, the Link Repository is inspected to expand
the set of categories and tags specified in the query. The expanded set of cate-
gories and tags are used to retrieve Web APIs from the PW and MP repositories.
Pairs of retrieved Web APIs (one from PW and one from MP) are compared: if a
sameAs link between Web APIs is already stored within the Link Repository, the
Web APIs are reconcilied, otherwise the link is checked to be established. At the
same time, the Link Repository is updated with the new links. Links oldest than

A Linked Data Perspective for Effective Exploration 509

a predefined set of days in the Link Repository are never considered to check
semantic links across repositories and are periodically deleted by the system.
The last search steps concern filtering and ranking of search results. Retrieved
Web APIs are filtered out according to the set of required features FQ if spec-
ified in Q. Finally, search results are ranked according to their appropriateness
with respect to the target mashup MQ if specified in Q and according to their
popularity. Specifically, we define the similarity between two mashups M1 and
M2 (as sets of Web APIs) using the following formula:

MashupSim(M1,M2) =
2 · |M1∩M2|
|M1|+ |M2| (1)

where |M1∩M2| denotes the number of common Web APIs in the two mashups
and |Mi| the number of Web APIs in the mashup Mi. Given the set MW of
mashups of a Web API W among search results, the appropriateness of W with
respect to the mashup MQ is given by maxj{MashupSim(MQ,Mj)}, where
Mj∈MW . Popularity of a result is measured as the number of developers who
used that Web API in their own mashups.

4 Concluding Remarks

In [3,5] we demonstrated the usefulness of considering multi-perspective Web
API description for searching purposes on the ProgrammableWeb repository, leav-
ing to the Web API consumers the task of adding information about their profile
and the way they used Web APIs in their mashups. On the basis of those results,
we moved to the development of a novel approach based on Linked Data prin-
ciples to provide a comprehensive cross-repositories view of the available Web
APIs information. In this paper, we presented the approach by considering Web
APIs search on the ProgrammableWeb and Mashape repositories and combining
their distinctive Web API descriptions.

References

1. Taheriyan, M., Knoblock, C., Szekely, P., Ambite, J.: Semi-Automatically Modeling
Web APIs to Create Linked APIs. In: Proc. of the ESWC 2012 Workshop on Linked
APIs (2012)

2. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.:
iServe: a Linked Services Publishing Platform. In: Proc. of ESWC Ontology Repos-
itories and Editors for the Semantic Web (2010)

3. Bianchini, D., De Antonellis, V., Melchiori, M.: Semantic Collaborative Tagging for
Web APIs Sharing and Reuse. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.)
ICWE 2012. LNCS, vol. 7387, pp. 76–90. Springer, Heidelberg (2012)

4. Villazón-Terrazas, B., Vilches, L., Corcho, O., Gómez-Pérez, A.: Methodological
Guidelines for Publishing Government Linked Data. Springer (2011)

5. Bianchini, D., De Antonellis, V., Melchiori, M.: A Multi-perspective Framework for
Web API Search in Enterprise Mashup Design. In: Salinesi, C., Norrie, M.C., Pastor,
Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 353–368. Springer, Heidelberg (2013)

Responsive Design and Development:

Methods, Technologies and Current Issues

Michael Nebeling and Moira C. Norrie

Institute of Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{nebeling,norrie}@inf.ethz.ch

Abstract. Responsive design is a major trend in web development to
cater for the diversity of devices used for web browsing. However, apply-
ing responsive design to existing web sites often involves major reengi-
neering due to the underlying fluid grid concept. Moreover, applications
of responsive design are currently limited to desktop-to-mobile adapta-
tion. This tutorial introduces the main ideas behind responsive design
with a focus on the methods and technologies. Based on previous re-
search, we highlight several limitations of the original approach and show
how the concepts and methods can be extended to adapt to many differ-
ent viewing conditions including large-screen settings and touch devices.

Keywords: responsive web design, interface-driven web engineering.

1 Introduction

Application developers in general, and web site providers in particular, cur-
rently have to deal with the increased range of new devices and diversity of
interface characteristics, not only in terms of screen size and resolution, but also
supported input and output modalities. For example, the term “mobile” has
traditionally been used to refer to small-form factor, handheld devices such as
mobile phones and PDAs with limited screen size and processing power. However,
nowadays, this includes a whole new generation of smartphones and tablet com-
puters, such as the iPhone or iPad, that are becoming more and more powerful
and commonly provide touch, gesture-based input and other advanced sensing
techniques. There are also new kinds of medium-size devices, such as notebooks
with support for slate mode, booklets and convertibles, that are often hybrid
solutions, but still primarily designed for mobile settings. It is frequently the
case that, as well as supporting traditional mouse and keyboard input, they
increasingly provide support for an even richer combination of touch, pen and
gesture-based input. Looking at the other end of the spectrum, even the term
“desktop” may nowadays refer to a wide range of devices with a strong trend
towards large, wide-format screens, and there is growing interest in physically
much larger, very high-resolution display environments [1]. In addition, research
has also suggested extensions of the desktop paradigm towards what has emerged

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 510–513, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Responsive Design and Development 511

as the “tabletop”. Many new kinds of large interactive surfaces have been devel-
oped and are now becoming commonplace in offices, public spaces and at home.
With very small touchscreens [2] and new types of rollable devices [3], recent
research has continued to explore different kinds of interaction techniques and is
constantly pushing forward both input and output technologies. We can there-
fore expect an even greater diversification in terms of device characteristics over
the coming years.

The rapid evolution and increased diversity of new devices used for web brows-
ing has caused a major rethinking of design strategies. For many years, two
strategies, graceful degradation [4] and progressive enhancement [5], have played
a major role. Both aim at a layered approach towards multi-device authoring by
adding either more or fewer layers designed for more or less advanced devices in
terms of their screen size, input methods and other supported capabilities. Both
also follow the well-established separation of concerns in web engineering by dis-
tinguishing the different levels of content, navigation and presentation typically
using rule-based approaches for selecting appropriate layers. The main difference
is that graceful degradation starts from a user interface designed for the “less
constrained platform”, removing features if the particular device in use does not
provide the required support, while progressive enhancement adds layers to the
core interface designed for the “lowest common denominator”. The two strategies
have therefore in common the fact that they try to divide the device landscape
into linear partitions, but start at opposite ends of the spectrum. However, this
approach has become less feasible nowadays due to the diversification of devices.

A new trend is therefore responsive web design [6] which means to build the
layout of the web interface on fluid grids that can dynamically adapt to diverse
viewing environments. At the technical level, this is achieved by using relative
units (percentages or ems) rather than absolute units (pixels or points) for page
element sizing as well as CSS3 media queries to apply different CSS rules for the
position and floating of elements depending on the size of the browser window.
Hence, responsive design promotes a specific way of implementing interfaces that
is however difficult to apply to existing web sites without major reengineering [7].

The tutorial is divided into two parts. The first part provides an introduction
to responsive web design as a new and significant trend in web development
as well as a discussion of current issues. The second part gives an overview
of existing, and our own, ongoing research to tackle the different issues in a
systematic way. Practitioners not familiar with the concepts and technologies will
benefit from the step-by-step introduction. For the ICWE research community,
the tutorial provides interesting opportunities for discussing this new web design
trend and the implications for web engineering.

2 Tutorial Synopsis

Using various examples, participants will learn about different methods and
technologies for achieving responsive design. In particular, the new features of
HTML5 and CSS3 will be discussed as well as the problems caused by the fact

512 M. Nebeling and M.C. Norrie

that these standards themselves are still evolving.While desktop-to-mobile adap-
tation will be used as the running example in the first part of the tutorial to
illustrate the concepts and steps involved in responsive design as a web design
method, it also shows the benefits and limitations compared to other context-
aware adaptation approaches that have been promoted in research. Specifically,
there is an interesting tension and contrast between the interface-driven ap-
proach behind responsive web design and model-driven web engineering which
has great potential for discussion in the ICWE forum.

The second part of the tutorial addresses some of the issues of responsive de-
sign, both from a technological point of view and as a web design method, based
on our previous research [8]. First, we present languages, frameworks and tools
developed by us and other researchers that tackle the issues of context-aware
adaptation at the implementation level. Second, we show how crowdsourcing
can be used for the adaptation and evaluation of web sites to make the de-
sign and development for the increased proliferation of different forms of devices
practical. Finally, we present a set of metrics for measuring the adaptivity of
web interfaces and guiding web developers in the adaptation process in order
to address contexts of use that are still poorly supported by current design.
The methods and tools presented in the second part go beyond the principles
of responsive design, not only from a technological and methodological point
of view, but also in terms of scenarios and use cases. In particular, we show
how the techniques were extended to cater for adaptation to large-screen dis-
plays and multi-touch devices as well as distributed interfaces and interaction in
multi-device environments.

Therefore, participants will not only receive an overview and introduction to
the current trend of responsive web design, but also a sense of the shortcomings
of the approach and current issues. For researchers, we highlight interesting op-
portunities for further research when looking at responsive design in the broader
context of web engineering.

Biographical Sketch

Michael Nebeling is a Post-doctoral Researcher and Lecturer at ETH Zurich. His
research and teaching interests are at the intersection of Web Engineering and
HCI, including context-aware and adaptive systems, multi-device and gesture-
based interaction, end-user development and crowdsourcing. His PhD thesis,
Lightweight Informed Adaptation: Methods and Tools for Responsive Design and
Development of Very Flexible, Highly Adaptive Web Interfaces [8], has made
several contributions to ICWE and has won best paper awards and nominations
at CHI 2011 and EICS 2012.

Moira Norrie has been a Professor at ETH Zurich since 1996 when she established
a research group on Global Information Systems. She heads the Institute for
Information Systems which is part of the Department of Computer Science.
Her main areas of research are information systems engineering, information
interaction, web engineering and personal information management.

Responsive Design and Development 513

References

1. Czerwinski, M., Robertson, G., Meyers, B., Smith, G., Robbins, D., Tan, D.: Large
display research overview. In: Proc. CHI (2006)

2. Baudisch, P., Chu, G.: Back-of-Device Interaction Allows Creating Very Small Touch
Devices. In: Proc. CHI (2009)

3. Steimle, J., Jordt, A., Maes, P.: Flexpad: Highly Flexible Bending Interactions for
Projected Handheld Displays. In: Proc. CHI (2013)

4. Florins, M., Vanderdonckt, J.: Graceful Degradation of User Interfaces as a Design
Method for Multiplatform Systems. In: Proc. IUI (2004)

5. Desruelle, H., Blomme, D., Gielen, F.: Adaptive Mobile Web Applications: A Quan-
titative Evaluation Approach. In: Auer, S., Dı́az, O., Papadopoulos, G.A. (eds.)
ICWE 2011. LNCS, vol. 6757, pp. 375–378. Springer, Heidelberg (2011)

6. Marcotte, E.: Responsive Web Design. A Book Apart (2011)
7. Nebeling, M., Matulic, F., Streit, L., Norrie, M.C.: Adaptive Layout Template for

Effective Web Content Presentation in Large-Screen Contexts. In: Proc. DocEng
(2011)

8. Nebeling, M.: Lightweight Informed Adaptation: Methods and Tools for Responsive
Design and Development of Very Flexible, Highly Adaptive Web Interfaces. PhD
thesis, ETH Zurich (2012)

An Introduction to Human Computation and

Games with a Purpose

Alessandro Bozzon1 and Luca Galli2

1 Delft University of Technology, Mekelweg 4, 2628CD, Delft, The Netherlands
a.bozzon@tudelft.nl

2 Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
luca.galli@polimi.it

Abstract. Crowdsourcing and human computation are novel disciplines
that enable the design of computation processes that include humans as
actors for task execution. In such a context, Games With a Purpose
are an effective mean to channel, in a constructive manner, the human
brainpower required to perform tasks that computers are unable to per-
form, through computer games. This tutorial introduces the core research
questions in human computation, with a specific focus on the techniques
required to manage structured and unstructured data. The second half
of the tutorial delves into the field of game design for serious task, with
an emphasis on games for human computation purposes. Our goal is to
provide participants with a wide, yet complete overview of the research
landscape; we aim at giving practitioners a solid understanding of the
best practices in designing and running human computation tasks, while
providing academics with solid references and, possibly, promising ideas
for their future research activities.

Keywords: Crowdsourcing, Human Computation, Games With a
Purpose.

1 Introduction

The Web has evolved from a publishing platform to a collaborative and so-
cial tool, where users spend time online for sharing information and opinions,
cooperating in the execution of tasks, playing games, and participating to the
collective life of communities. Crowdsourcing [1] and human computation [2] are
novel disciplines that exploited such an evolution to enable the design of com-
putation processes that include humans as actors for task execution. In such a
context, Games With a Purpose [3] are an effective mean to channel, in a con-
structive manner, the human brainpower required to perform tasks computers
are unable to perform, through computer games. Gamification techniques are
applied where the lack of motivation is mining the efficiency of the users. Al-
though these topics are rather new, Human Computation and Games With a
Purpose and Gamification rapidly became interesting topics of research, with
widespread adoption in industry.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 514–517, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Introduction to Human Computation and Games with a Purpose 515

Our tutorial targets academics and practitioners that would like to under-
stand how human computation and game design techniques could be applied to
personal and enterprise content management systems. The tutorial is divided
into two parts. The first part introduces the core research questions in human
computation, with a specific focus on the techniques required to manage struc-
tured and unstructured data. The second part delves into the field of game design
for serious task, with an emphasis on games for human computation purposes.
Our goal is to provide the ICWE research community with a solid understanding
of the best practices in designing and running human computation tasks, with
references to the most relevant works in the field.

2 Tutorial Synopsis

The tutorial will address several aspects of Human Computation, Games With
a Purpose and gamified applications; it will provide an overview of the meth-
ods, techniques, and tools that can be used to successfully include crowds in
applications and systems.

The intended length of the tutorial is 3 hours over two sessions. The first
session will focus on providing a comprehensive background on human com-
putation, introducing the discipline from a historical, industrial, and academic
point of view. Attendees will be presented with the best practices in human
computation tasks design, with specific insights on performer selection, task al-
location, task optimisation, and result aggregation issues. We will then provide
an overview on industrial human computation platforms (e.g. Amazon Mechan-
ical Turk1, Crowdflower2) and state-of-the-art systems [4] and frameworks [5].
In addition, we will provide an in-depth analysis for some of these systems,
focusing on the ones published in scholarly articles (e.g. CrowdDb [6], Crowd-
Lang [7], Crowdsearcher [8] [9], DeCo [10]); we will discuss the design choices
of these systems, analyse their areas of application (e.g. database, information
retrieval, multimedia information retrieval), and enumerate desiderata for the
next generation of human-enhanced data management systems.

The second session of the tutorial will be centred on describing techniques
used to improve the engagement of the performers in a platform. We will intro-
duce two complementary streams of development, respectively represented by
Application Gamification [11] and Games with a Purpose [3], addressing their
commonalities and differences. By referring to the best practices used in tradi-
tional literature on game design [12] [13] [14], we will analyse the structure of
a game, the design of game mechanics, and the development process of a typi-
cal digital game. The design process for Gamified Applications and Games with
a Purpose will be outlined, with an emphasis on the design of suitable game
mechanics for the former and on the design and match of tasks for the latter.
During the presentation, the most prominent examples such as ESP Game [15],

1 https://www.mturk.com/mturk/
2 http://crowdflower.com/

https://www.mturk.com/mturk/
http://crowdflower.com/

516 A. Bozzon and L. Galli

FoldIt [16], Ingress3, Yahoo! Answers4 will be showcased. The session will end
with a brief introduction to open source or proprietary tools and frameworks for
the development of gamified application and digital games for the web, including
UserInfuser5, OpenBadges6, Badgeville7, Haxe8, and Unity9.

3 Biographical Sketch

Alessandro Bozzon is an Assistant Professor at the Delft University of Technol-
ogy, with the Web Information Systems group. His research interests are into
the fields of data and information management on the Web, with specific fo-
cus on Semantic Web technologies, human- and social-computation, and data
integration. His current research aims at defining a foundational theory for hy-
brid human and automatic information management systems, by studying the
theoretical models and the technical means to achieve this integration.

Luca Galli is a Phd Student at Politecnico di Milano. His research interests in-
volves Data Mining and Text Mining, Human and Social computation, Game
Design and video games development technologies (innovative middleware ar-
chitectures, game engine architecture, multi platform deployment). His current
research aims at integrating traditional game paradigms and gamification tech-
niques in the design and implementation of human enhanced applications.

References

1. Howe, J.: Crowdsourcing: Why the Power of the Crowd Is Driving the Future of
Business, 1st edn. Crown Publishing Group, New York (2008)

2. Law, E., von Ahn, L.: Human Computation. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning. Morgan & Claypool Publishers (2011)

3. von Ahn, L.: Games with a purpose. Computer 39(6), 92–94 (2006)

4. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54(4), 86–96 (2011)

5. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: tools for iterative tasks
on mechanical turk. In: HCOMP 2009, pp. 29–30. ACM (2009)

6. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: Crowddb: answer-
ing queries with crowdsourcing. In: ACM SIGMOD 2011, pp. 61–72. ACM (2011)

7. Minder, P., Bernstein, A.: How to translate a book within an hour: towards general
purpose programmable human computers with crowdlang. In: WebScience 2012,
Evanston, IL, USA, pp. 209–212. ACM (2012)

3 http://www.ingress.com/
4 http://answers.yahoo.com/
5 https://code.google.com/p/userinfuser/
6 http://openbadges.org/
7 http://badgeville.com/
8 http://haxe.org/
9 http://unity3d.com/

http://www.ingress.com/
http://answers.yahoo.com/
https://code.google.com/p/userinfuser/
http://openbadges.org/
http://badgeville.com/
http://haxe.org/
http://unity3d.com/

An Introduction to Human Computation and Games with a Purpose 517

8. Bozzon, A., Brambilla, M., Ceri, S.: Answering search queries with crowdsearcher.
In: 21st Int.l Conf. on World Wide Web 2012, WWW 2012, pp. 1009–1018. ACM
(2012)

9. Bozzon, A., Brambilla, M., Ceri, S., Mauri, A.: Reactive crowdsourcing. In: 22nd
Intl. Conf. on World Wide Web 2013, WWW 2013. ACM (2013)

10. Park, H., Pang, R., Parameswaran, A.G., Garcia-Molina, H., Polyzotis, N., Widom,
J.: Deco: A system for declarative crowdsourcing. PVLDB 5(12), 1990–1993 (2012)

11. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements
to gamefulness: defining “gamification”. In: Proceedings of the 15th Interna-
tional Academic MindTrek Conference: Envisioning Future Media Environments,
MindTrek 2011, pp. 9–15. ACM, New York (2011)

12. Crawford, C.: The Art of Computer Game Design. Washington State University
Vancouver, Vancouver (1982)

13. Fullerton, T., Swain, C., Hoffman, S.: Game Design Workshop: A playcentric ap-
proach to creating innovative games. Morgan Kauffmann (2008)

14. Zichermann, G., Cunningham, C.: Gamification by Design: Implementing Game
Mechanics in Web and Mobile Apps (2011)

15. von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2004,
pp. 319–326. ACM, New York (2004)

16. Cooper, S., Treuille, A., Barbero, J., Leaver-Fay, A., Tuite, K., Khatib, F., Snyder,
A.C., Beenen, M., Salesin, D., Baker, D., Popović, Z.: The challenge of designing
scientific discovery games. In: Proceedings of the Fifth International Conference on
the Foundations of Digital Games, FDG 2010, pp. 40–47. ACM, New York (2010)

Current Challenges in Web Crawling

Denis Shestakov

Department of Media Technology, Aalto University
P.O. Box 15500, FI-00076 Aalto, Finland

denis.shestakov@aalto.fi

https://mediatech.aalto.fi/~denis/

Abstract. Web crawling, a process of collecting web pages in an auto-
mated manner, is the primary and ubiquitous operation used by a large
number of web systems and agents starting from a simple program for
website backup to a major web search engine. Due to an astronomical
amount of data already published on the Web and ongoing exponential
growth of web content, any party that want to take advantage of massive-
scale web data faces a high barrier to entry. In this tutorial, we will
introduce the audience to five topics: architecture and implementation
of high-performance web crawler, collaborative web crawling, crawling
the deep Web, crawling multimedia content and future directions in web
crawling research.

Keywords: web crawling, web crawler, web spider, web robot, web
structure, web growth, web coverage, web graph, collaborative crawling,
web ecosystem, web harvesting, crawler architecture, focused crawling,
distributed crawling, web mining, web retrieval, deep Web.

1 Introduction

Web crawling [1], a process of collecting web pages in an automated manner, is
the primary and ubiquitous operation used by a large number of web systems
and agents starting from a simple program for website backup to a major web
search engine. For example, search engines such as Google or Microsoft Bing use
web crawlers to routinely visit billions of web pages, which are then indexed and
made available for answering user search requests. In this way, the characteristics
of obtained web crawls such as coverage or freshness directly affect on the quality
of web search results served to users. Besides web search, the web crawling tech-
nology is central in such applications as web data mining and extraction, social
media analysis, digital preservation (i.e., ensuring continued access to informa-
tion and all kinds of records, scientific and cultural heritage existing in digital
formats), detection of web spam and fraudulent web sites, finding unauthorized
use of copyrighted content (music, videos, texts, etc.), identification of illegal
and harmful web activities (e.g., terrorist chat rooms), virtual tourism, etc.

Due to an astronomical amount of data already published on the Web and
ongoing exponential growth of web content, any party (whether it be an individ-
ual, company, government agency, non-profit or educational organization, etc.)

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 518–521, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

https://mediatech.aalto.fi/~denis/

Current Challenges in Web Crawling 519

that want to take advantage of massive-scale web data faces a high barrier to
entry. Indeed, only network costs associated with the downloading of web-scale
size collection by themselves lead to expenses that are not affordable by the
majority of potential players.

For those with flexible budgets, there is a next barrier: operating web-scale
crawl (at least, hundreds of millions of pages) is a challenging task that requires
skills and expertise in distributed data retrieval and processing, not to mention
large operational costs. Finally, for the parties who nevertheless manage to over-
come the above obstacles but interested in specific subsets of web information,
the results of crawl are often wasteful, as majority of retrieved pages do not
match their criteria of interest.

As a result, while there are many parties crawling the Web, the large-scale
web crawling is done mostly by commercial companies, specifically by web search
engines (e.g., Google). Currently, search engines’ crawlers are aware of more
than one trillion links and probably of more than one hundred billion pages
that are re-visited on a regular basis to keep their indexes fresh.1 Unlike web
crawling under the industrial settings, the scale of non-industrial web crawling
is modest and does not usually exceed several hundred million pages. Besides
the dramatic difference in scale, the crawl datasets collected by commercial web
crawlers are not in a public domain, not to mention that their algorithms and
techniques are proprietary and kept in secret. As a result, only crawls of small
sizes are available to the research community as well as to the general audience.
It is clearly unsuitable since such datasets could facilitate research not only in
the area of web information retrieval and more generally in computer science
but also in other disciplines such as biology, epidemiology, linguistics, sociology,
mathematics, etc. [2]. Furthermore, analysis of web datasets (e.g., investigating
how web sites are ready to the next ’wave’ of users who browse the Web using
mobile devices) is of key importance for business and media companies.

In this tutorial, we will address the following topics: architecture and imple-
mentation of high-performance web crawler, collaborative web crawling, crawling
the deep Web, crawling multimedia content available on the Web, and future di-
rections in web crawling research. We will also provide some background on the
structure of the Web and the role of crawling in the Web ecosystem.

2 Tutorial Synopsis

The material will be presented in the following six modules:

– Web structure&ecosystem. We start with some necessary background on
the structure&ecosystem of the Web [3,4] and provide some useful estimates
for the amount of content on the Web [5,6].

– Architecture and implementation of high-performance web crawler.
Here we present ’traditional’ challenges in building an efficient web-scale
crawler system and describe state-of-the-art techniques and approaches [7,8].

1 See blog entry at
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

520 D. Shestakov

– Collaborative web crawling. A collaborative web crawler [9] is a service
that crawls the Web on the behalf of its many client applications that define
filters to be evaluated against each crawled page.

– Crawling the deep Web. We describe the challenges in accessing informa-
tion available in myriads of online web databases [10] and techniques used
in modern web crawlers [11,12]. We also address here complications for web
crawlers caused by new web standards, techniques and practices (e.g., rich
internet applications) [13].

– Crawling multimedia content. We overview this rather unexplored sub-
area, which is poorly covered in the literature.

– Future directions. Here we discuss some open questions in web crawling
research (e.g., crawling utilizing web content structure [14]) and conclude
with references to literature, datasets, relevant projects, self-study materials,
etc.

3 Biographical Sketch

Denis Shestakov is a postdoctoral researcher at the Department of Media Tech-
nology, Aalto University, Finland. He spent one year as a visiting researcher
at INRIA Rennes, France. Denis obtained his doctoral degree at University of
Turku, Finland in 2008. In his doctoral work [15], Denis addressed the lim-
itations of web crawlers, specifically the poor coverage of information avail-
able in online databases (a.k.a. the deep Web). His current research interests
lie in the area of distributed algorithms for big data processing, with particu-
lar applications in web crawling and large-scale multimedia retrieval. Denis is
maintaining an open group on research works in the area of web crawling (see
http://www.mendeley.com/groups/531771/web-crawling/). Contact him at
denis.shestakov@aalto.fi or visit his homepage at https://mediatech.aalto.

fi/~denis/.

References

1. Olston, C., Najork, M.: Web crawling. Foundations and Trends in Information
Retrieval 4(3), 175–246 (2010)

2. Barabasi, A.-L.: Scale-Free networks: A decade and beyond. Science 325(5939),
412–413 (2009)

3. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The
Web as a graph: measurements, models, and methods. In: Asano, T., Imai, H., Lee,
D.T., Nakano, S.-I., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp.
1–17. Springer, Heidelberg (1999)

4. Schonfeld, U., Shivakumar, N.: Sitemaps: Above and beyond the crawl of duty. In:
Proc. of WWW 2009, pp. 991–1000 (2009)

5. Bar-Yossef, Z., Gurevich, M.: Random sampling from a search engine’s index.
JACM 55(5) (2008)

6. Shestakov, D.: Sampling the national deep Web. In: Hameurlain, A., Liddle, S.W.,
Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part I. LNCS, vol. 6860, pp. 331–340.
Springer, Heidelberg (2011)

http://www.mendeley.com/groups/531771/web-crawling/
https://mediatech.aalto.fi/~denis/
https://mediatech.aalto.fi/~denis/

Current Challenges in Web Crawling 521

7. Shkapenyuk, V., Suel, T.: Design and implementation of a high-performance dis-
tributed web crawler. In: Proc. of ICDE 2002, pp. 357–368 (2002)

8. Lee, H.-T., Leonard, D., Wang, X., Loguinov, D.: IRLbot: Scaling to 6 billion pages
and beyond. ACM Transactions on the Web 3(3) (2009)

9. Hsieh, J., Gribble, S., Levy, H.: The architecture and implementation of an exten-
sible web crawler. In: Proc. of NSDI 2010 (2010)

10. Shestakov, D.: Deep Web: databases on the Web. Entry: Handbook of Research on
Innovations in Database Technologies and Applications, pp. 581–588 (2009)

11. Madhavan, J., Ko, D., Kot, �L., Ganapathy, V., Rasmussen, A., Halevy, A.: Google’s
deep-Web crawl. In: Proc. of VLDB 2008, pp. 1241–1252 (2008)

12. Shestakov, D.: On building a search interface discovery system. In: Proc. of VLDB
Workshops 2009, pp. 81–93 (2009)

13. Duda, C., Frey, G., Kossmann, D., Matter, R., Zhou, C.: AJAX crawl: Making
AJAX applications searchable. In: Proc. of ICDE 2009, pp. 78–89 (2009)

14. Lin, S.-H., Ho, J.-M.: Discovering informative content blocks from web documents.
In: Proc. of SIGKDD 2002, pp. 588–593 (2002)

15. Shestakov, D.: Search interfaces on the Web: Querying and characterizing. Doctoral
thesis, University of Turku (2008)

Enterprise Application Integration -

The Cloud Perspective

Jörg Lässig and Markus Ullrich

University of Applied Sciences Zittau/Görlitz
Department of Electronical Engineering and Computer Science

Brückenstr. 1, 02826 Görlitz, Germany
{jlaessig,mullrich}@hszg.de

http://f-ei.hszg.de/ead

Abstract. So far, asynchronous messaging has proven to be the best
strategy for enterprise application integration (EAI) success. However,
building and deploying messaging solutions causes several problems for
developers and new technologies and computing paradigms as cloud com-
puting demand for new solutions. There are more than sixty enterprise
integration patterns that are designed to effectively develop messaging
solutions for enterprises. The tutorial introduces the visual notation
framework to describe large-scale integration solutions across different
systems and technologies. This includes examples covering a variety of
different integration styles and techniques. In a case study we illustrate
the application of the patterns in practice and review existing and emerg-
ing standards. Also we try to shed light into the future of EAI. In par-
ticular cloud integration is an upcoming trend which is discussed in the
tutorial, addressing advantages and limitations of this and other modern
EAI strategies and architectures. Looking at open-source solutions for
enterprise service buses and messaging systems, we also provide practi-
cal advice on designing code that connects an application to a messaging
system. This provides information to help the practitioner to design EAI
or cloud integration solutions by applying the introduced knowledge.

Keywords: Enterprise application integration, cloud integration, inte-
gration styles, enterprise service bus, open-source ESB systems, integra-
tion patterns, messaging, business process integration.

1 Introduction

Nowadays requirements for software systems in enterprises are changing fre-
quently due to changes on the business side but also due to emerging new
technologies such as significant progress in the cloud computing field. Also, re-
quirements and applied technologies usually differ between enterprises –even in
the same industrial sector– significantly. This is due to the availability of vari-
ous solutions for similar problems, differences in the historic development of an
enterprise, different management styles, different business strategies and goals,
different levels of process automation and management, etc.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 522–525, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://f-ei.hszg.de/ead

Enterprise Application Integration - The Cloud Perspective 523

Thus, it is impossible to offer all-in-one software solutions to satisfy all the
needs of every enterprise. The obvious practical approach is of course to have
different software tools for special purposes and to choose them accordingly from
a selection of available systems. In the usual case, the choice is feature-based and
hence often systems from different software vendors are applied to different needs
within the same enterprise. The need of communication between those systems
was/ is often not needed initially but is becoming increasingly important in a
globalized environment and in times of the introduction of new paradigms as
Industry 4.0 [6] or information partnerships between companies.

1.1 Enterprise Application Integration

According to the above described setting, the selected systems of a company
often do not support appropriate interfaces to communicate with each other
directly. Also, the coupling of several systems in a pairwise manner is ineffi-
cient. This is where enterprise application integration (EAI) comes into play:
The need to exchange information between those systems has to be satisfied by
a robust and flexible enterprise application integration strategy. According to
Gartner there are four major data delivery styles1. A frequently used and effec-
tive solution for EAI is messaging since it offers the same loose coupling between
applications as file transfer and -at the same time- it is almost as consistent and
reliable as a shared database but with no obvious performance bottleneck. De-
spite those advantageous characteristics, the asynchronous nature of messaging
as well as integrating software systems with a variety of different interfaces can
be a significant challenge for first time developers of a messaging system.

1.2 Cloud Integration

Currently, the cloud paradigm influences various enterprise IT solutions [7] and
the same is true for the development of state of the art EAI solutions [1]. Cloud
computing solutions in enterprises also trigger a demand for new integration
solutions, e. g., SaaS-to-SaaS (S2S) integration, Cloud-to-Enterprise integration
(C2E) or even cloud business process management solutions (Cloud-BPM)2.

To formalize different approaches, enterprise integration patterns [2] can help
to reduce the complexity of integration solutions in a standardized way. Here,
basic messaging patterns are considered and the tutorial highlights in which
situation which pattern should be applied. This also includes an review of open-
source enterprise service bus (ESB) solutions that support messaging, the ap-
plication of EAI patterns for common integration scenarios and discussions on
how new challenges and technologies can be integrated.

1 E. Thoo, T. Friedman, M. A. Beyer. Critical Capabilities for Data Integration
Tools: Common Data Delivery Styles.

2 G. Johnson. Cloud Integration Defined. Can Cloud BPM Be Far Behind?

http://www.gartner.com/technology/reprints.do?id=1-19M57L2&ct=120308&st=sb
http://www.gartner.com/technology/reprints.do?id=1-19M57L2&ct=120308&st=sb
http://it.toolbox.com/blogs/integrate-my-jde/cloud-integration-defined-can-cloud-bpm-be-far-behind-40537

524 J. Lässig and M. Ullrich

2 Tutorial Synopsis

After outlining the need of EAI in modern enterprises to be competitive, we
discuss the most frequent challenges when applying EAI strategies in practical
settings, such as the integration of critical business functions in the integration
scenario or a lack of control concerning participating applications. Typical in-
tegration settings range from the integration of a few applications in a single
company for special needs up to the integration of various systems and pro-
cesses in supply chains and enterprise networks or dynamic environments such
as virtual enterprises as introduced in [3,4,5].

The attempt to reduce the complexity of integration tasks motivates the de-
velopment of standards to handle and manage those various flavors of integration
scenarios. We feature the common visual notation for integration solutions as in-
troduced by Hohpe and Woolf in [2] so that integration scenarios can be defined
and described consistently and high-level.

Next we discuss basic integration styles like file transfer, relational databases
and remote procedure calls with a special focus on asynchronous systems and
message processing. Here, the topics range from the construction of messages
over the characteristics of messaging channels, routing and transformation pat-
terns and also endpoints. Even patterns for managing messaging systems are
considered. Additionally, we describe architectural styles and patterns like pipes
and filters or message brokers.

Subsequently, we also give an introduction to EAI in the cloud while explain-
ing the different characteristics and levels of cloud integration and the additional
challenges of application integration compared to data integration in the cloud.
This includes also security considerations in this open and vulnerable environ-
ment. Compared to traditional environments new security models across clouds
are needed.

On this firm conceptual basis, we review current technologies and standards
for EAI solutions and also point out further standardization needs. As one way
to implement integration patterns, web services are examined. ESBs are used for
the integration of complex and heterogenous EAI scenarios and can be seen as
a general approach to implement service-oriented architectures efficiently. There
is a high number of different ESB systems available. Focusing further on the
implementation side, we showcase some of the most popular open-source ESB
solutions for EAI in a live demo and compare them in terms of features, e. g.,
supported patterns, performance, documentation, usability, maturity or the sup-
port of work flows and work flow engines. Typical is, e. g., the support of the
WS-Business Processes Execution Language (BPEL) to implement work flows
which orchestrate web services.

In a case study we implement an non-trivial exemplary integration scenario
and highlight the most important considerations while designing an effective
messaging solution, which illustrates certain patterns in a practical setting. The
tutorial is concluded with an outlook on emerging trends and future directions
of EAI.

Enterprise Application Integration - The Cloud Perspective 525

3 Bibliographical Sketch

Jörg Lässig is a Full Professor in the field of Enterprise Application Develop-
ment at the Department of Electrical Engineering and Computer Science at the
University of Applied Sciences Zittau/ Görlitz since 2011. He holds degrees in
Computer Science and Computational Physics and received a Ph.D. in Com-
puter Science for his research on efficient algorithms and models for the genera-
tion and control of cooperation networks at Chemnitz University of Technology,
which he finished in 2009. Afterwards he has been participating in various re-
search projects at the International Computer Science Institute at Berkeley,
California and at the Universit della Svizzera italiana in Lugano, Switzerland.
He is currently focusing on various topics in the context of sustainable informa-
tion technologies and applications which includes the directions sustainability
in enterprise IT, green information systems, logistics and supply and business
intelligence.

Markus Ullrich is currently a research associate at the University of Applied
Sciences Zittau/Görlitz where he received his M.S. and B.S. in Computer Sci-
ence in 2010 and 2012, respectively. From 2009 to 2012, he worked as a software
developer at the Decision Optimization GmbH where he developed and tested
data mining algorithms for predictive maintenance. His current research is fo-
cused on cloud computing, cloud integration, distributed systems and privacy
preserving data mining.

References

1. Erbes, J., Motahari Nezhad, H.R., Graupner, S.: The future of enterprise it in the
cloud. Computer 45(5), 66–72 (2012)

2. Hohpe, G., Woolf, B.: Enterprise integration patterns: Designing, building, and de-
ploying messaging solutions. Addison-Wesley Professional (2004)

3. Lässig, J.: Algorithms and Models for the Generation and Control of Competence
Networks. Mensch und Buch Verlag (2009)

4. Lässig, J., Heinrich, S., Dürr, H.: Intelligent support system for enterprise cooper-
ation management. In: Proceedings of the 4th Indian International Conference on
Artificial Intelligence, Bangalore, India, pp. 1626–1645 (December 2009)

5. Lässig, J., Trommler, U.: New approaches to enterprise cooperation generation and
management. In: Proceedings of the 12th International Conference on Enterprise
Information Systems (ICEIS 2010), Funchal, Madeira, Portugal, pp. 350–359 (2010)

6. Meisen, T., Meisen, P., Schilberg, D., Jeschke, S.: Digitale produktion via enterprise
application integration. In: Automation, Communication and Cybernetics in Science
and Engineering 2009/2010, pp. 609–622. Springer (2011)

7. Ullrich, M., ten Hagen, K., Lässig, J.: Public cloud extension for desktop
applications–case study of a data mining solution. In: 2012 Second Symposium on
Network Cloud Computing and Applications (NCCA), pp. 53–64. IEEE (2012)

Erratum: Heuristic Role Detection of Visual
Elements of Web Pages

M. Elgin Akpınar1 and Yeliz Yeşilada2

1 Middle East Technical University, Ankara, Turkey
2 Middle East Technical University Northern Cyprus Campus,

Kalkanlı, Güzelyurt, Mersin 10, Turkey
{elgin.akpinar,yyeliz}@metu.edu.tr

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 123–131, 2013.
© Springer-Verlag Berlin Heidelberg 2013

DOI 10.1007/978-3-642-39200-9_51

The following acknowledgment was inadvertently omitted from the paper.

Acknowledgements

The project is supported by the Scientific and Technological Research Council of
Turkey (TÜBİTAK) with the grant number 109E251 (http://emine.ncc.metu.edu.tr/).
As such the authors would like to thank TÜBİTAK for their continued support.

__

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-39200-9_12
__

Author Index

Agarwal, Sudhir 216
Akpınar, M. Elgin 123
Alalfi, Manar H. 384
Alfazi, Abdullah 416
Almonaies, Asil A. 384
Assad, Rodrigo 452
Ast, Markus 84

Behfarshad, Zahra 52
Bennamane, Amyn 283
Bertolino, Antonia 408
Bianchini, Devis 506
Blichmann, Gregor 140
Bochmann, Gregor v. 291
Borchers, Jan 6
Bouadjenek, Mohamed Reda 283
Bouzeghoub, Mokrane 283
Bozzon, Alessandro 514
Brune, Philipp 439

Cabot, Jordi 68
Calabrò, Antonello 408
Cánovas Izquierdo, Javier Luis 68
Cappellari, Paolo 338
Carlson, Jan 186
Casanova, Marco Antonio 354
Casati, Fabio 156
Chepegin, Vadim 114
Choudhary, Suryakant 291
Chudnovskyy, Olexiy 114, 498, 502
Cordy, James R. 384
Costa, Umberto S. 400

Dean, Thomas R. 384
De Angelis, Guglielmo 408
De Antonellis, Valeria 506
Deng, Tangjian 323
de Spindler, Alexandre 37
Despotakis, Dimoklis 376
De Virgilio, Roberto 338
Diaz, Oscar 171
Dietze, Stefan 249, 354
Dimitrova, Vania 376
Dincturk, Mustafa Emre 291

Dolog, Peter 233
Durão, Frederico 452

Eggs, Holger 490

Faheem, Muhammad 306
Feng, Ling 323
Fernando, José 452
Ferrari, Mirian Halfeld 400
Fetahu, Besnik 249
Firmenich, Sérgio 224
Fischer, Christian 502
Fonseca, Anderson 452
Franz, Simon 486

Gaedke, Martin 7, 84, 114, 482, 498, 502
Galli, Luca 514
Garcia, Vińıcius 452
Gaubatz, Patrick 201
Griffiths, David 114
Grigera, Julián 7
Grigoras, Cosmin 467
Grüneberger, Franz Josef 482

Hacid, Hakim 283
Happe, Jens 132
Hartenstein, Hannes 265
Hauer, Philipp 482
Heil, Sebastian 7, 498
Heinrich, Matthias 482
Hollink, Laura 367
Hornung, Thomas 486, 490
Houben, Geert-Jan 367
Hummer, Waldemar 201

Jara Laconich, Juan José 156
Jourdan, Guy-Vincent 291
Junghans, Martin 216
Juric, Damir 367

Keller, Matthias 265
Klamma, Ralf 99
Kocak, Semra 439
Kounev, Samuel 424
Kovachev, Dejan 99
Krebs, Rouven 424

528 Author Index

Lage, Ricardo Gomez 233
Lässig, Jörg 522
Lau, Lydia 376
Lausen, Georg 486, 490
Leginus, Martin 233
Leone, Stefania 37
Lopes, Giseli Rabello 354

Maccioni, Antonio 338
Maras, Josip 186
Marchese, Maurizio 156
Matera, Maristella 494
McLeod, Dennis 37
Meißner, Klaus 140
Melchiori, Michele 506
Mesbah, Ali 52
Mirtaheri, Seyed M. 291
Moser, Martin 132
Musicante, Martin A. 400

Nascimento, Vagner 22
Nebeling, Michael 510
Nicolaescu, Petru 99
Niederhausen, Matthias 114
Noor, Talal H. 416
Norrie, Moira C. 37, 510

Onut, Iosif Viorel 291
Oprea, Alexandru 490
Otaduy, Itziar 171
Özcan, Tünay 439

Pereira Nunes, Bernardo 249, 354
Picioroaga, Florin 467
Picozzi, Matteo 494
Pietschmann, Stefan 114, 502
Pini, Michele 494
P. Paes Leme, Luiz André 354
Przyjaciel-Zablocki, Martin 486
Puente, Gorka 171

Radeck, Carsten 140
Renzel, Dominik 99
Reussner, Ralf 132
Rivero, José Mat́ıas 7
Robert, Sophie 400
Rossi, Gustavo 7, 224

Schätzle, Alexander 486
Schwabe, Daniel 22
Senellart, Pierre 306
Sheng, Quan Z. 416
Shestakov, Denis 518
Springer, Thomas 482
Strembeck, Mark 201
Štula, Maja 186
Sullivan, Sean 467

Tecuci, Dan 467
Thakker, Dhavalkumar 376
Tonazzo, Marco 494
Trinta, Fernando 452

Ullrich, Markus 522

van der Aalst, Wil M.P. 1

Waltinger, Ulli 467
Wang, X. Sean 5
Wert, Alexander 424
Westermann, Dennis 132
Wild, Stefan 84, 498
Winckler, Marco 224

Yang-Turner, Fan 376
Yeşilada, Yeliz 123

Zdrahal, Petr 132
Zdun, Uwe 201
Zhao, Liang 323
Ziegler, Cai-Nicolas 486, 490

	Preface
	Organization
	Table of Contents
	Keynotes
	Challenges in Service Mining:Record, Check, Discover
	1 From Process Mining to Service Mining
	2 Related Work on Service Mining
	References

	How to Share Data Securely
	An Internet of Custom-Made Things: From 3D Printing and Personal Fabrication to Personal Design of Interactive Devices

	Web Application Engineering
	MockAPI: An Agile Approach Supporting API-first WebApplication Development
	1 Introduction
	2 Background and Related Work
	2.1 State of the Art in Web Applications Development
	2.2 Agile Development Style Meets Service-Oriented Architecture

	3 The MockAPI Approach
	3.1 The Approach in a Nutshell
	3.2 MockAPI Process
	3.3 Mockup Building and Annotation
	3.4 Generating APIs from MockAPI

	4 Implementation
	4.1 The Interactive Annotation Tool
	4.2 Generating APIs from MockAPI

	5 Validation
	6 Conclusions and Future Work
	References

	Semantic Data Driven Interfaces for Web Applications
	1 Introduction
	2 Running Example
	3 A Semantic Interface Model
	3.1 Rules and Interface Definition Parameters
	3.2 Abstract Interface Selection Rules
	3.3 Abstract Interface Element Selection Rules
	3.4 Concrete Interface Mapping Rules
	3.5 Concrete Widgets Definitions

	4 Implementation Architecture
	5 Discussion and Conclusions
	References

	Integrating Component-Based Web Engineeringinto Content Management Systems
	1 Introduction
	2 Background
	3 Approach
	4 Component Model
	5 WordPress Extension
	6 Composition Plug-in
	7 Scenario
	8 Conclusion
	References

	Client-Server Programming
	Hidden-Web Induced by Client-Side Scripting:An Empirical Study
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 Methodology
	4.1 Experimental Objects
	4.2 Experimental Design

	5 Client-Side Hidden-Web Analysis
	5.1 Event-Driven Dynamic Crawling
	5.2 Classification
	5.3 Characterization Analysis

	6 Results
	6.1 Pervasiveness (RQ1)
	6.2 Quantity (RQ2)
	6.3 Induction (RQ3)
	6.4 Correlations (RQ4)

	7 Discussion
	8 Conclusion
	References

	Discovering Implicit Schemas in JSON Data
	1 Introduction
	2 What is Behind JSON Data
	3 Schema Discovery in JSON
	3.1 Pre-discovery Phase
	3.2 Single-Service Discoverer
	3.3 Multi-service Discoverer

	4 Discovering Service Dependencies
	5 Implementation
	6 Related Work
	7 Conclusion and Future Work
	References

	The SWAC Approach for Sharing a WebApplication’s Codebase BetweenServer and Client
	1 Introduction
	2 Example
	3 Approach for Sharing a Web Application’s Codebase
	3.1 Routing
	3.2 View
	3.3 Security
	3.4 State Transfer

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Component-Based User Interfaces
	DireWolf - Distributing and Migrating UserInterfaces for Widget-Based Web Applications
	1 Introduction
	2 Related Work
	3 Widget-Based Web Applications
	4 DireWolf Framework
	4.1 Requirements Analysis
	4.2 Framework Design
	4.3 Widget Migration

	5 Implementation
	6 Evaluation
	7 Conclusions and Future Work
	References

	Awareness and Control for Inter-WidgetCommunication: Challenges and Solutions
	1 Introduction
	2 Towards End-User Friendly IWC: Existing Challenges
	2.1 Problem Space: Awareness
	2.2 Problem Space: Control

	3 Analysis of Existing Approaches
	3.1 Solutions for Problem Space: Awareness
	3.2 Solutions for Problem Space: Control

	4 Comparison of Approaches and Drawn Guidelines
	5 Conclusions
	References

	Heuristic Role Detectionof Visual Elements ofWeb Pages
	1 Introduction
	2 Related Work
	3 Ontology Based Heuristic Role Detection
	3.1 Visual Element Identifier
	3.2 Rule Generator
	3.3 Role Detector

	4 Evaluation
	4.1 Results
	4.2 Discussion

	5 Conclusion
	References

	Performance-Aware Designof Web Application Front-Ends
	1 Introduction
	2 PredictionModel
	3 Validation and Discussion
	3.1 Results
	3.2 Threats to Validity

	4 Conclusions
	References

	Mashups and End-User Development
	CapView – Functionality-Aware Visual MashupDevelopment for Non-programmers
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 A Capability-Centered View for Non-programmers
	4.1 Overview
	4.2 Visual Exploration of a Mashup’s Functionality
	4.3 Context-Sensitive Label Generation
	4.4 Interaction Mechanisms to Establish Connections

	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusion and Future Work
	References

	Social Spreadsheet
	1 Introduction
	2 Background and Design Principles
	3 State of the Art
	3.1 Represent Social Media Data in Spreadsheets
	3.2 Call APIs with Spreadsheet Custom Functions

	4 Social Spreadsheet
	4.1 Social Media Conceptual Model
	4.2 Spreadsheet Social Functions
	4.3 Special Purpose Templates

	5 Implementation
	5.1 Authentication with Social Networks
	5.2 Google Spreadsheet vs. Excel

	6 Related Work
	7 Validation
	8 Conclusion and Future Work
	References

	User-Driven Automation of Web Form Filling
	1 Introduction
	2 Related Work
	3 A Brief on iMacros
	4 From iMacros to WebFeeder: From Coding to Modeling
	5 Abstracting the External Sources
	6 Abstracting the Form Filling Process
	7 Abstracting the Mapping
	8 Facing Upgrades
	9 Conclusions
	References

	Navigation Analysis and Collaboration
	Generating Feature Usage Scenariosin Client-Side Web Applications
	1 Introduction
	2 Related Work
	3 A Conceptual Model of the Client-Side Application
	3.1 Terminology

	4 Overview of the Usage Scenario Generation Process
	5 Generating Usage Scenarios
	5.1 Generating Initial Usage Scenarios
	5.2 Generating Scenarios by Exploring the Value Space
	5.3 Generating Scenarios by Exploring the Event-Space
	5.4 Prioritizing Scenarios

	6 Filtering Scenarios
	7 Evaluation
	7.1 Generating Feature Usage Scenarios – A Case Study
	7.2 Generating Usage Scenarios for the Whole Page

	8 Conclusion
	References

	Supporting Customized Views for EnforcingAccess Control Constraints in Real-TimeCollaborative Web Applications
	1 Introduction
	2 Motivating Example and Challenges
	3 Approach Synopsis
	4 Supporting Customized Views
	4.1 Client-Side Updates of the ViewModel
	4.2 Server-Side Computation of ViewModel Configurations

	5 Implementation – The CoCoForm Framework
	6 Evaluation
	6.1 View Service Performance Evaluation
	6.2 Lessons Learned

	7 Related Work
	8 Conclusion and Future Work
	References

	Towards Simulation-Based Similarity of End UserBrowsing Processes
	1 Introduction
	2 Formalization of End User Browsing Processes
	3 Computation of Similarity between Browsing Processes
	3.1 Derivation of Semantic Description ofWebsites
	3.2 Computing SimilarWebsites
	3.3 Computing Similar Browsing Processes

	4 Conclusion and Outlook
	References

	A Domain Specific Language for Orchestrating UserTasks Whilst Navigation Web Sites
	1 Introduction
	2 Motivation and Related Work
	3 Overview of Our Approach for Orchestration of Web Tasks
	3.1 Overview of the Approach

	4 A DSL for Web Task Composition
	5 Tool Support
	5.1 A Simple Case Study Using the Tools
	5.2 Evaluation

	6 Conclusions and Future Work
	References

	Web Information Retrieval
	Tag Cloud Generation for Resultsof Multiple Keywords Queries
	1 Introduction
	2 Related Work
	3 Methods for Tag Clouds Generation with Respect to Multiple Keyword Queries
	3.1 Most Frequent Tags from Corpus (MFTC)
	3.2 Most Frequent Tags from Query Result Set (POP)
	3.3 Term Frequency - Inverse Document Frequency Selection
	3.4 Max Coverage Selection (COV)
	3.5 Graph Based Methods
	3.6 PageRank with Priors (PgRank)
	3.7 HITS with Priors (HITS)
	3.8 k-step Markov Chain (k-MarkovCh)
	3.9 Adjustment of Prior Distribution for Stochastic Restarts of
	3.10 Syntactical Pre-clustering of Tags

	4 Experiments
	4.1 Evaluation Metrics
	4.2 Evaluation Methodology
	4.3 Graph-Based Techniques
	4.4 Results
	4.5 Discussions and Limitations

	5 Conclusions
	References

	Summaries on the Fly: Query-Based Extractionof Structured Knowledge from Web Documents
	1 Introduction
	2 Related Work
	3 Background
	3.1 Concepts and Fundamentals
	3.2 Problem Definition

	4 Overview and Running Example
	5 Focused Knowledge Extraction: Query-Based Summaries
	5.1 Query Expansion and Co-reference Resolution
	5.2 iMisc Entity Type Definition
	5.3 Automated Pattern Generation
	5.4 Contextual Structure of Extracted Knowledge

	6 Evaluation and Results
	6.1 Dataset
	6.2 Evaluation Process
	6.3 Results

	7 Conclusions and Future Work
	References

	Mining Taxonomies from Web Menus:Rule-Based Concepts and Algorithms
	1 Introduction
	2 Problem Statement
	3 Decomposing the Problem
	3.1 Intra-menu Hierarchies
	3.2 Page Assignment
	3.3 Inter-menu Hierarchies

	4 Implementation
	4.1 Solution Overview
	4.2 ListWalker-Algorithm

	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Related Work
	7 Conclusion
	References

	Evaluation of Personalized Social RankingFunctions of Information Retrieval

	Crawling and Revisitation
	Building Rich Internet Applications Models:Example of a Better Strategy
	1 Introduction
	2 Overview
	3 Menu Model
	3.1 State Exploration Phase
	3.2 Transition Exploration Phase

	4 Implementation and Evaluation
	4.1 Measuring the Efficiency of a Strategy
	4.2 Crawling Strategies Used for Comparison
	4.3 Subject Applications
	4.4 Experimental Setup
	4.5 Costs of Discovering States (Strategy Efficiency)
	4.6 Costs of Complete Crawl

	5 Related Works
	6 Conclusion
	References

	Intelligent and Adaptive Crawlingof Web Applications for Web Archiving
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 KnowledgeBase
	5 Application-Aware Helper (AAH)
	6 Adaptation to Template Change
	7 System
	8 Experiments
	9 Conclusions
	References

	Enhancing Web Revisitation by Contextual Keywords
	1 Introduction
	2 Context Memory Management
	2.1 Context Memory Construction
	2.2 Context Memory Maintenance

	3 Contextual Keyword Search
	4 Revisit Feedback Adaptation
	5 Evaluation
	5.1 Experiment on Synthetic Data
	5.2 User Study

	6 Conclusion
	References

	Semantic Data Search and Interlinking
	A Linear and Monotonic Strategy to KeywordSearch over RDF Data
	1 Introduction
	2 Preliminary Issues
	3 Keyword Search over RDF
	4 Building Strategies
	4.1 The Linear Strategy
	4.2 The Monotonic Strategy

	5 Related Work
	6 Experimental Results
	7 Conclusions and Future Work
	References

	Identifying Candidate Datasetsfor Data Interlinking
	1 Introduction
	2 Related Work
	3 Proposed Technique
	4 Experiments
	5 Performance Analysis
	6 Conclusions
	References

	Discovering Links between Political Debates and Media
	1 Introduction
	1.1 Related Work

	2 Linking Speeches from the Debates to Media Articles
	2.1 Topic Modeling
	2.2 Search for Candidate Articles and Ranking

	3 Experiments
	4 Conclusion and Next Steps
	References

	Assisting User Browsing over Linked Data:Requirements Elicitation with a User Study
	1 Introduction
	2 Baseline System for Browsing through Semantic Data
	2.1 Pinta: A Generic Uni-focal Semantic Browser Shell
	2.2 MusicPinta: An Instantiation of Pinta in the Music Domain

	Web Services and Cloud Computing
	A Framework for Migrating Web ApplicationstoWeb Services
	1 Introduction
	2 A Web Application to SOA Migration Framework
	2.1 Service Identification
	2.2 Service Separation and Migration

	3 Automating Service Migration
	3.1 Candidate Service Refactoring
	3.2 Candidate Service Separation
	3.3 Parameter Type Inference
	3.4 Service Component Conversion
	3.5 Database Refactoring

	4 A Case Study: SCARF
	4.1 The SCARF Paper Management Subsystem
	4.2 Step 1: Paper Management Service Identification
	4.3 Step 2: Refactoring
	4.4 Step 3: Type Inference
	4.5 Step 4: Conversion to SCA
	4.6 SCARF / SOA: Testing the Result

	5 Related Work
	6 Conclusions and Future Work
	References

	Automatic Refinement of Service Compositions
	1 Introduction
	2 Rewriting Compositions
	3 Experiments
	4 FinalRemarks
	References

	A Generative Approach for the AdaptiveMonitoring of SLA in Service Choreographies
	1 Introduction
	2 Adaptive SLA Monitoring
	3 Demonstration Scenario
	3.1 Scenario Description
	3.2 Execution and Adaptation

	4 Conclusion and Future Work
	References

	Detecting Occasional Reputation Attackson Cloud Services
	1 Introduction
	2 Trust Management Service (TMS)
	3 Occasional Attacks Detection Model
	4 Implementation and Experimental Evaluation
	5 Discussions and Conclusion
	References

	Industry Papers
	Multi-tenancy Performance Benchmarkfor Web Application Platforms
	1 Introduction
	2 General Design Concerns in Multi-tenant Architectures
	2.1 Tenant Identification
	2.2 Database
	2.3 Tenant Meta-Data
	2.4 Security
	2.5 Metrics for a Multi-tenant Benchmark
	2.6 PaaS Persistence

	3 Multi-tenant Benchmark
	3.1 TPC-W
	3.2 Multi-tenant TPC-W Specification
	3.3 Implementation

	4 Case Study
	4.1 Goals
	4.2 Experimental Setup
	4.3 Results

	5 Related Work
	6 Conclusion
	References

	Agile Software Development with Open SourceSoftware in a Hospital Environment – CaseStudy of an eCRF-System for OrthopaedicalStudies
	1 Introduction
	2 Related Work
	3 ProjectContext
	4 Agile Methodology
	5 Application Architecture and OSS Components
	6 Prototype Evaluation
	7 Conclusion
	References

	USTO.RE: A Private Cloud Storage SoftwareSystem
	1 Introduction
	2 Related Work
	3 The USTO.RE System
	3.1 Super Peers
	3.2 Servers
	3.3 Proxy
	3.4 Simple Peers

	4 Experimental Evaluation
	4.1 Scenario 1
	4.2 Scenario 2
	4.3 Scenario 3

	5 Conclusion
	References

	Market Intelligence: Linked Data-driven EntityResolution for Customer and CompetitorAnalysis
	1 Introduction
	2 Overview of Market Intelligence
	3 Related Work
	4 Information Processing Architecture
	4.1 Data Management Pipeline
	4.2 UIMA Pipeline

	5 Evidence-Based Entity Disambiguation
	5.1 NER - Named Entity Recognition
	5.2 NED - Named Entity Disambiguation
	5.3 GEO - Geospatial Analysis

	6 Experiments
	6.1 Dataset
	6.2 Results
	6.3 Discussion

	7 Conclusion
	References

	Demonstrations and Posters
	GAwI: A Comprehensive Workspace AwarenessLibrary for Collaborative Web Applications
	1 Introduction
	2 GAwI Overview
	3 GAwI Enhancements
	4 GAwI Demonstration and Conclusions
	References

	On Weighted Hybrid Track Recommendations
	1 Introduction
	2 TRecS Architecture and Design
	2.1 Similarity Metrics
	2.2 Comparing Recommenders
	2.3 Prediction Generation
	2.4 Adding Serendipity

	References

	A Hybrid B2B App Recommender System
	1 Introduction and Motivation
	2 Recommender System Architecture
	2.1 Weighting by Confidence Scores

	3 Performance Evaluation
	4 Conclusion and Outlook
	References

	PEUDOM: A Mashup Platform for the End UserDevelopment of Common Information Spaces
	1 Introduction
	1.1 Demo Organization

	2 Models and Tools for PIS Composition
	3 From PIS Composition to CIS Co-Creation
	4 Conclusions
	References

	Customized Views on Profiles in WebID-BasedDistributed Social Networks
	1 Introduction
	2 Related Work
	3 Customized Views on WebID Profiles
	4 Conclusion
	References

	Inter-Widget Communication by Demonstrationin User Interface Mashups
	1 Introduction
	2 Related Work
	3 End-User Friendly IWC Configuration
	4 Conclusions
	References

	A Linked Data Perspective for EffectiveExploration of Web APIs Repositories
	1 Approach Overview
	2 Linked Web API RDF Vocabulary Definition
	3 Link Exploitation and Maintenance
	4 Concluding Remarks
	References

	Tutorials
	Responsive Design and Development:Methods, Technologies and Current Issues
	1 Introduction
	2 Tutorial Synopsis
	References

	An Introduction to Human Computation andGames with a Purpose
	1 Introduction
	2 Tutorial Synopsis
	3 Biographical Sketch
	References

	Current Challenges in Web Crawling
	1 Introduction
	2 Tutorial Synopsis
	3 Biographical Sketch
	References

	Enterprise Application Integration -The Cloud Perspective
	1 Introduction
	1.1 Enterprise Application Integration
	1.2 Cloud Integration

	2 Tutorial Synopsis
	3 Bibliographical Sketch
	References

	Erratum
	Erratum: Heuristic Role Detection of VisualElements of Web Pages

	Author Index

