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Abstract. Preventing the corruption of the voting platform is a major
issue for any e-voting scheme. To address this, a number of recent proto-
cols enable voters to validate the operation of their platform by utilizing
a platform independent feedback: the voting system reaches out to the
voter to convince her that the vote was cast as intended. This poses two
major problems: first, the system should not learn the actual vote; sec-
ond, the voter should be able to validate the system’s response without
performing a mathematically complex protocol (we call this property
“human verifiability”). Current solutions with convincing privacy guar-
antees suffer from trust scalability problems: either a small coalition of
servers can entirely break privacy or the platform has a secret key which
prevents the privacy from being breached. In this work we demonstrate
how it is possible to provide better trust distribution without platform
side secrets by increasing the number of feedback messages back to the
voter. The main challenge of our approach is to maintain human verifi-
ability: to solve this we provide new techniques that are based on either
simple mathematical calculations or a novel visual cryptography tech-
nique that we call visual sharing of shape descriptions, which may be of
independent interest.

Keywords: Electronic voting, elections integrity, visual cryptography.

1 Introduction

The integrity of the voting platform is a critical feature of electronic voting
systems. If an attacker controls the voting platform then it can not only breach
voter privacy but also manipulate the election results. For this reason, as e-voting
systems increasingly find their way to real-world deployments, the security prop-
erties of the voting platform have become a major consideration. This problem
is particularly exacerbated in the case of Internet voting where the voter is sup-
posed to use a general purpose system (PC) for ballot casting. In this context
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the problem has been generally identified as the untrusted platform problem. To
solve the problem a general methodology has arisen that enables the human op-
erator of the ballot casting PC to validate its operation (i.e., that it has cast the
proper vote) by receiving a suitable feedback from the system. This approach,
even if we assume the existence of such feedback channel for free1, it has to
additionally overcome two major challenges: First, the system should be able to
provide such feedback without breaching the privacy of the voter and learning
its vote. Second, the validation protocol should not be mathematically complex
since then this would require the utilization of the PC again to complete it; in
other words, the protocol should be “human-verifiable” i.e., easily executed by
a human in the verifier side. We first explain how these problems have been
addressed in the literature so far and then we present our results.

1.1 Previous Work

An ingenious idea to resolve the untrusted platform problem was proposed by
Chaum [4]: in code voting the system provides to the voter a code that uniquely
corresponds to his proper vote but the actual correspondence is hidden. The
system used pre-encrypted ballots and return codes, requiring the voters to enter
pseudo-random numbers in order to cast a vote. The scheme guarantees privacy
and integrity against malicious computers however codes need to be generated
via a multiparty protocol and distributed privately, something that substantially
increases the complexity of the system. Later the idea of code voting was applied
in voting schemes like those in [23,13].

Subsequent work in code verification protocols cf. [14,11] simplified the bal-
lot casting procedure and made it compatible with standard encrypted ballot
casting systems (so that previous tallying mechanisms can be readily applied, as
those in [12,1,2,15,20,7]). More specifically, Heiberg et al. propose in [14] a code
verification protocol that uses random security codes. These are reconstructed as
the vote is transfered from the PC to the messenger through the vote collector,
by a proxy oblivious transfer scheme. Gjøsteen in [10,11] uses pseudo-random
codes, generated as the composition of three pseudo-random functions, owned
by the PC, the vote collector and the messenger respectively. These papers fo-
cused on the vote collection and feedback system which is comprised of two
servers, a vote collector and a messenger who collaborate to produce the vali-
dation code that is transmitted as feedback back to the user. The separation of
these two servers is an essential feature and their collaboration breaks privacy
in the protocols of [14,11]. To address this serious privacy issue (as well as a few
other problems), Lipmaa presented an adaptation of Gjøsteen’s protocol in [16],
that prevents the coalition of the servers from breaching privacy by relying on
a secret stored on the PC. In this case, the vote collector and messenger server
coalition is still unable to breach privacy unless somehow they get access to the
PC secret-key. While this addresses partially the privacy concern it increases the

1 For example an SMS to a smartphone has been suggested as an implementation of
the feedback mechanism.
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key-management requirements of the protocol on the PC side. Given the above,
it remains as an open question to provide better privacy guarantees without
using a secret key on the PC side.

Part of our techniques to be presented below are related to visual cryptog-
raphy. Naor and Shamir [19] introduced visual cryptography and proposed a
visual secret sharing protocol that shares black and white images. In their sys-
tem each pixel is mapped to a certain shape and can be subdivided to a number
of black and white sub-pixels. The scheme considers a pixel as black if the num-
ber of black sub-pixels exceeds a certain threshold and analogously white if the
black sub-pixels are below a threshold. The final pixels are revealed visually by
overlaying a number of shares. While very interesting, the techniques of visual
cryptography have found little applications in real world systems. Chaum ex-
ploited visual cryptography for visual receipts in supervised electronic voting
(elections through voting booths) [5]. The scheme uses a 2-out-of-2 secret shar-
ing scheme to share the written form of the vote in two complementary sheets
that reveal the vote when combined, while none of the sheets leaks information
on its own. The voters keep one sheet and verify their ballot by comparing it
with a copy posted on the bulletin board. The use of visual cryptography was
later found to be non-essential and the original system was simplified in a way
that obviates the visual cryptography part, [22].

1.2 Our Results

In this work we tackle the problem of scaling the privacy guarantee in code
verification voting systems without requiring any secret-keys on the PC side. Our
approach to achieve this is by increasing the number of feedback messages back
to the voter in order to enable the distribution of the messenger functionality.
The main challenge of this approach is to maintain human verifiability: to solve
this we provide new techniques that are based on either a simple mathematical
calculation that the voter is supposed to execute or a novel visual cryptography
technique that we call visual sharing of shape descriptions and is detailed below.

In general we follow the same initial setup as the voting systems of [14,10,16],
i.e., the voter interacts with her PC to generate an encrypted vote. This vote
however, is transmitted to a set of voting servers: in our scalable system we
need not distinguish between types of servers as in previous protocols — all
of our servers behave in identical fashion. The voting servers provide feedback
to the user through an untappable channel (as the single messenger did in the
previous protocols cited above). Each feedback by itself carries no information
that can be tied to a specific voter choice. Nevertheless, the voter is able to
validate her vote by appropriately synthesizing the feedback she receives from
the servers. We consider the cases where the feedback may be the vote itself, a
visual representation of the vote (explained below) or a voter dependent security
code. In the latter case it is also required to have another out-of-band channel for
the distribution of the security codes (as in [14,11,4]). The first two cases though,
highlight a unique feature of our methodology: since there is a set of voting
servers that each one of them is incapable of extracting something useful from
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the feedback they return to the voter, it is actually possible for the synthesized
feedback to be the actual vote that was casted.

We give two constructions that address the problem of human verifiability
(via the synthesis of the voting server feedback messages). In the first case we
assume that the voter is capable of executing addition of decimal numbers, i.e.,
the voter should be capable of verifying that, e.g., the two-digit decimal numbers
32 and 92 sum up to a number that ends in 44. While for some people this may
be an easy task, it can be argued by some that it is a tall order for the general
population who may not be accustomed to perform mathematical calculations.
For this reason we introduce an entirely different technique that is related to
(but distinct from) visual cryptography and may be of independent interest.

A visual sharing of shape descriptions is a way to perform secret-sharing of a
set of shape descriptions. For example a shape description can be the following:
“a full circle.” In this setting the voter may be given two or more images and
we assume that she is capable of deciding (in her mind) whether the overlay
of the images matches the shape description she is given. In the case of a full
circle, for example, a question that the voter is assumed to be able to answer

is the following: does the overlay of and amount to a full circle? In
our second vote verification protocol the voter validates the PC operation by
answering queries such as this one.

We present our protocols for the case that the voting server feedback synthe-
sizes back to the actual vote, however, as mentioned, our protocols can be easily
adapted to the code verification setting (as in [14,11]). In this setting a code
generation phase takes place before the elections and the codes are sent to the
voter through an out-of-band communication channel (called the pre-channel
that for instance is paper mail sent ahead of the elections). Then, the voting
servers will obtain a share of the code that corresponds to the submitted vote
and will forward it, through another out-of-band channel (the post-channel), to
the voter as feedback that will be synthesized as above using our techniques.
An attacker may view the contents of at most one of these channels, in order to
guarantee privacy.

2 Cryptographic Preliminaries and Tools

Public Key Cryptosystem. A public key cryptosystem is a triple of algo-
rithms 〈Gen,Enc,Dec〉. The randomized Gen algorithm on input the security
parameter 1k outputs a secret/public key pair (pk, sk) ← Gen(1k). The Encpk
randomized algorithm on input pk, a message m and randomness r outputs a
ciphertext c = Encpk(m, r). The deterministic Decsk algorithm on input sk and
a ciphertext c ∈ C outputs a message m′ = Decsk(c). For a correct encryption
scheme it holds that if (pk, sk)← Gen(1k) then Decsk(Encpk(m, r)) = m.

The ElGamal cryptosystem works over a finite cyclic group Gq of prime order
q, generated by 〈g〉. Gen selects a secret key sk ← Zq and sets pk = gsk.
A message m ∈ G is encrypted as 〈c1, c2〉 = Encpk(m, r) = 〈m · pkr, gr〉,
with randomness r ∈ Zq. On input 〈c1, c2〉 the decryption algorithm outputs
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m′ = Decsk(〈c1, c2〉) = c1/c
sk
2 . The cryptosystem is multiplicatively homomor-

phic as for all m1,m2, r1, r2 ∈ Zq it holds that Encpk(m1, r1) · Encpk(m2, r2) =
Encpk(m1 · m2, r1 + r2). An additively homomorphic variant is derived if we
encrypt gm instead of m. The ElGamal cryptosystem is IND-CPA secure under
the decisional Diffie-Hellman assumption.

Commitments. A commitment scheme is a triple of algorithms 〈Gen,Com,
Open〉. The randomized Gen algorithm on input 1k outputs a public key h.
The randomized Comh algorithm on input h, a message m and randomness r
and outputs a commitment c = Comh(m, r). The Open algorithm on input a
commitment c and the de-commiting values m, r verifies that c = Comh(m, r).
A commitment scheme satisfies the statistically hiding property if the distribu-
tions of commitments for two different messages are indistinguishable. It satisfies
the computationally binding property if any polynomial-time adversary cannot
open a commitment to two different values with non-negligible probability. The
Pedersen commitment scheme [21] works over a finite cyclic group Gq of prime
order q generated by 〈g〉. The message and randomness space is Zq and the ci-
pherspace Gq. Gen(1k) outputs a key h = gα for α← Zq and algorithm Comh,
on input m, r ∈ Zq outputs c = gmhr. The scheme is statistically hiding and
computationally binding under the decisional Diffie-Hellman assumption.

Signatures. Adigital signature scheme is a triple of algorithms 〈Gen, Sign, V er〉.
The randomizedGen algorithmon input 1k outputs a verification/signing key pair
(vk, sk)← Gen(1k). The randomized Signsk algorithm on input the signing key
sk, a messagem and randomness r outputs a signature σ = Signsk(m, r) and the
V ervk algorithm, on input the verification key vk, a message m and a signature
σ accepts the signature as valid or rejects it. Security for signatures is defined as
existentially unforgeability against chosen message attack (EUF-CMA), stating
that no polynomial forger can produce a valid signature for a message that he has
not seen before, assuming black box access to a signing oracle. For our purposes
we rely on any EUF-CMA signature scheme and we assume the existence of a pub-
lic key infrastructure that can be used to digitally sign messages. All participants
of the protocol, i.e. the voter’s PCs and the online voting servers, are assumed to
support these operations.

Proofs of Knowledge. A proof of knowledge is a communication protocol
between two entities, a Prover and a Verifier. The prover possesses a valid witness
w for a publicly known predicate R, such that R(w) = 1 and wants to convince
the verifier without revealing the witness. A special case of proofs of knowledge
are the 3-message Σ-protocols whose communication transcript is of the form
〈com, chl, ans〉. The prover makes the first step to send a commitment com to
the verifier. The response of the verifier is a randomly chosen challenge chl.
The prover terminates the protocol by sending an answer message ans and the
verifier checks the validity of some conditions. Any Σ-protocol can be made
non interactive in the random oracle model by using the Fiat-Shamir heuristic
[8]. The techniques of [6] allow us to produce conjunctions and disjunctions of
Σ-protocols that satisfy special soundness and honest-verifier zero-knowledge.
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The well known Schnorr protocol for proving knowledge of a discrete loga-
rithm forms the basis of all necessary proofs of knowledge we discuss. Bit com-
mitment proofs of the form pk(r | hr = C ∨ hr = (C/g)), for Pederesen
bit commitments C on a public key h, are an immediate consequence of the
disjunctions of Schnorr protocols, known as Schnorr “OR” proofs. The proof
pk(α, r1, r2 | C1 = gαhr1

1 ∧ C2 = gαhr2
2 ) that two Pedersen commitments C1, C2

over the public keys h1, h2 hide the same value α, is also derived from Schnorr’s
protocol. By employing the techniques of [6] the previous proof can be gener-
alized to “OR” proofs for the statement pk(α, β, r1, r2 | C1 = gαhr1

1 ∧ C2 =
gβhr2

2 ∧ (α = β ∨ α = β + u ∨ . . . ∨ α = β + λu)), stating that the hidden
values α, β of the two commitments satisfy the relation α = β + iu, for some
i ∈ {0, . . . , λ} and a publicly known value u.

Finally range proofs are proofs of knowledge showing that a committed value
x in a commitment C lies in a specific range of values, such as [0,m − 1], for
m ≥ 2. For Pedersen commitments such a proof will be denoted as pk(α, r | C =
gαhr ∧ x ∈ [0,m − 1] ). For the purposes of our protocol we employ the
range proof from [17]. Alternatively one could use any efficient range proof
in exponents, like the generalization of [17] presented in [3]. The proof mod-
ifies the classic bit-length range proof of [18] to arbitrary ranges. The proof

of [17] writes number α ∈ [0,m − 1] in the form α =
∑�log2(m−1)�

j=0 μjHj ,

where Hj = 	(m − 1 + 2j)/2j+1
 and μj ∈ {0, 1}. Then it commits to all
values μj and uses bit commitment proofs to show that μj ∈ {0, 1}, requir-
ing k = 	log2(m − 1)
 + 1 single bit proofs. For small values of m the proof
remains efficient for our purpose. Both the prover and the verifier precompute
the coefficients Hj and the verifier can confirm that the committed values μj

represent α by checking that gα =
∏k−1

j=0 (g
μj )Hj .

The Communication Channels. We require the existence of secure commu-
nication channels for vote verification. We use the term “untappable channel”
to refer to a private channel that prevents an adversary from intercepting sent
messages, keeping the information sent through this channel perfectly secret to
all other parties. We assume the existence of an one-way untappable channel
from the voting servers to the voter to transfer the receipts. This channel can be
viewed either as a unique untappable channel used by all servers, or alternatively
as a set of communication channels (one from each server to the voter) requiring
that one of them should be untappable. Two channels are referred as “a pair of
out-of-band communication channels” when they are both secure, authenticated
and independent of the PC. In our case we will need a channel from the elec-
tions authorities to the voters for receipt distribution and a channel from the
voting servers to the voters for verification. For both “out-of-band” channels we
prohibit the attacker from modifying their contents. However we may allow the
attacker to read the contents of at most one of these channels. We also require
the existence of a broadcast channel between the PC and the voting servers,
where the PC posts public information required by them.
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3 The Vote Verification Protocol

The Security Model. We define the notion of security of our scheme in terms
of privacy and integrity. Throughout our discussion we refer to malicious enti-
ties. In our setting a malicious PC wants to violate integrity by modifying the
vote. We recall that privacy is not relevant against such an attacker, since the
PC knows the vote. A set of malicious (honest but curious) voting servers want
to violate privacy by learning the vote, as by their construction they cannot al-
ter encrypted submitted ballots. We ask that the following requirements are met:

Cast as intended: We consider the following game between two entities, an ad-
versary A and an honest challenger C: We give A access to the public keys PK
and the voter identities ID, and in the code verification setting to the verification
codes CS possessed by the voters. A picks a voter V from the ID set, corrupts
her PC and lets V cast a ballot for candidate x. Then C runs the whole voting
protocol and outputs the encryption of a vote E, the secret receipt R and the
public auxiliary information Pub of the protocol. Let Q be a predicate that on
input the receipt R and the public information Pub outputs 1 iff R is consistent
with Pub. In the code verification setting the codes CS are also part of Q’s in-
put, whose output is 1 iff all its input arguments are consistent. A wins the game
if Q(R,Pub, (CS)) = 1 and Decsk(E) �= x. A voting protocol with receipts sat-
isfies the “cast as intended” property if it holds that Pr[A(PK,Pub, ID, (CS))
wins] ≤ ε(k), where ε(k) is a negligible function in the security parameter k.

(t, n)-Vote secrecy: We consider the following game between an adversary A
and an honest challenger C: We give A have access to the public keys set PK,
to the voter identities ID and, in the code verification setting, to the codes CS
possessed by the voters. A picks and corrupts t < n out of n servers. A picks a
voter identity from the ID set and two candidates x0, x1 of his choice and gives
them to the challenger. Then C runs the vote casting by picking at random
a bit b ← {0, 1} and encrypting message xb as E = Encpk(xb). Then C runs
the voting protocol and outputs the encrypted vote E, the secret receipt R and
all other auxiliary public information and secret information Pub, Sec, sending
E,Pub and the appropriate share of Seci to server Si. A in possession of Pub
and the private values {Seci}i∈[j1,...,jt] of t compromised servers, outputs a bit
b∗. A wins the game if b∗ = b. A voting protocol satisfies “(t, n)-vote secrecy” if
it holds that Pr[A(PK,Pub, ID, (CS), E, {Seci}i∈[j1,...,jt]) wins] ≤ 1/2 + ε(k),
where ε(k) is a negligible function.

As we mentioned before, our solution focuses only on the vote submission
phase, like previously suggested protocols [14,16]. The final stage of tallying is
considered a separate procedure and correct tallying can be guaranteed by em-
ploying a suitable protocol. To address coercion one may allow revoting. How-
ever, similarly to previous approaches [14,11,16], this clashes with the cast as
intended property since there is no means to guarantee that the servers will send
to the tallier the most recent vote submitted by a voter. We note that in case of
a wrong receipt we accuse the PC of being malicious (since it is assumed to be
the most vulnerable component). Note that if the voting servers’ goal is to break
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privacy, sending wrong receipts will not be useful to them. Still if a server wants
to disrupt the election it can create confusion by not issuing receipts, however a
voter that verifies her vote will notice that an error has occurred.

3.1 Instantiation of the Vote Verification Protocol

We are now ready to describe the vote verification protocol. Let n ≥ 2 be the
desired number of voting servers and M be the set of m candidates that partic-
ipate in the elections, represented as globally known elements in Zm. Moreover
let Gq be a subgroup of Zp of prime order q over which we implement ElGamal
encryption and Pedersen commitments. Our message space is Zu, where u is
an additional system parameter. Specifically u is chosen so as to facilitate the
vote reconstruction and verification by the voter. We set u = minλ 10

λ such
that m ≤ 10λ < q. As we consider small scale elections with at most a few
hundred options in total, typical values for u will be 100 or 1000. By this trick
we avoid the modular additions that would be otherwise required by the vote
verification step of the voter, which is simplified to addition of λ-digit decimal
numbers. By introducing n voting servers (2 ≤ n < q), the voter needs to add
the corresponding n numbers.

Let us consider the ElGamal key pairs (pkt, skt) of the tallier and the commit-
ment scheme (g, h) that are generated in a key generation phase prior to the elec-
tions. During vote submission a voter casts her ballot through her PC voting for
candidate x ∈ Zm. Then the PC splits the vote by picking n − 1 random shares
x1, . . . , xn−1 ∈ Zu and adjusting xn such that x =

∑n
i=1 xi mod u. The PC com-

putes the commitments (C1, . . . , Cn) = (gx1hr1 , . . . , gxnhrn) to the shares and
sends them, through the broadcast channel, to the voting servers S1, . . . , Sn along
with the encrypted vote Et = (Ex, Et) = (gxpkrt , g

r). The PC needs to prove in
zero knowledge that the shares and the vote satisfy the relation x =

∑n
i=1 xi mod

u, and opens the commitment Ci to server Si who verifies its validity. In addition
the PC needs to prove that the encrypted candidate corresponds to a valid value
in the range [0,m− 1]. By this we prevent a malicious PC from submitting forged
ballots of the form y = x+ ku that would yield a correct receipt modulo u.

The PC prepares a non-interactive witness indistinguishable proof of knowl-
edge of the above statements denoted as π = PK(x, r, {xi, ri}ni=1 | Ex = gxpkrt
∧ x ∈ [0,m − 1] ∧ {Ci = gxihri}ni=1 ∧ x =

∑n
i=1 xi mod u), using standard

variations of the Schnorr proof and adapting the techniques of [6]. We note that
the proof requires that n · u < q to work properly. From the results of [6] it
follows that the proof satisfies correctness, special soundness and honest veri-
fier zero knowledge, however we provide a security proof in appendix D. In our
instantiation we will use the non-interactive version of the proof by using the
Fiat-Shamir heuristic [8]. Each online server Si verifies the proof π, decrypts
and obtains the share xi and verifies compatibility with commitment Ci. Upon
successful verification of all these steps, the server sends the value xi through the
untappable channel to the voter who verifies the vote by performing a regular
addition with possible carry drop beyond the most significant digit (x =

∑n
i=1 xi

mod 10λ). In this protocol we allow re-voting as a measure against vote coercion.
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The Proof of Knowledge π: Public Input: 〈p, q, g, u〉 the system parameters,
h, pkt the commitment key and the tallier’s public key, m the number of candi-
dates and k = 	log2(m− 1)
+1, Et = (Ex, Er) = (gxpkrt , g

r), {Ci = gxihri}ni=1.
Prover’s Input: x, r, {xi, ri}ni=1.

1. The Prover:
(a) Range proof: For j = 0, . . . , k − 1 computes μj ∈ {0, 1} s.t. x =

∑k−1
j=0 μjHj where Hj = 	((m− 1) + 2j)/2j+1


(b) Range proof: For j = 0, . . . , k − 1:

i. Picks zj ← Zq s.t.
∑k−1

j=0 zjHj = r.

ii. Commits to μj as Ej = gμjpk
zj
t .

iii. If μj = 0 it picks wj , c2j , ρ2j ← Zq and sets y1j = pk
wj

t , y2j =
pk

ρ2j

t (Ej/g)−c2j .
iv. if μj = 1 it picks wj , c1j , ρ1j ← Zq and sets y1j = pk

ρ1j

t (Ej)−c1j ,
y2j = pk

wj

t .

(c) Valid shares: If
∑n

i=1 xi = x + (i − 1)u mod q, with i ∈ {1, 2, . . . , n},
it picks w, ρa, ρb, {cj, sj , ρ′1j , ρ′2j}j �=i ← Zq and sets ai = gwpkρa

t , bi =

gwhρb , {aj = (Ex)
−cjgsjpk

ρ′
1j

t , bj = (
∏n

l=1 Cl/g
(j−1)u)−cjgsjhρ′

2j}i�=j .

(d) It sends ({ai, bi}ni=1, {Ej, y1j , y2j}k−1j=0 ) to the Verifier.
2. The Verifier picks c← Zq and sends it to the Prover.
3. The Prover:

(a) Range proof: For j = 0, . . . , k − 1:
i. If μj = 0 it sets c1j = c− c2j , ρ1j = wj + c1jzj .
ii. if μj = 1 it sets c2j = c− c1j , ρ2j = wj + c2jzj .

(b) Valid shares: If
∑n

i=1 xi = x+ (i− 1)u mod q, with i ∈ {1, 2, . . . , n}, it
sets ci = c−∑

i�=j cj , si = w+xci, ρ
′
1i = ρa+rci, ρ

′
22 = ρb+(

∑n
l=1 rl)ci.

(c) It sends ({ci, si, ρ′1i, ρ′2i}ni=1, {c1j, c2j , ρ1j , ρ2j}k−1j=0 ) to the Verifier.
4. The Verifier accepts if all the following tests succeed, otherwise it rejects:

(a) Range proof: For j = 0, . . . , k − 1: c = c1j + c2j and pk
ρ1j

t = y1j(Ej)c1j
and pk

ρ2j

t = y2j(Ej/g)c2j .
(b) Range proof: Ex =

∏k−1
j=0 EjHj .

(c) Valid shares: c =
∑n

i=1 ci and for i = 1, . . . , n : gsipk
ρ′
1i

t = ai(Ex)
ci and

gsihρ′
2i = bi(

∏n
l=1 Cl/g

(i−1)u)ci .

The Vote Verification Protocol: Let M be the set of m candidates, n the
number of servers, (pkSi , skSi), (pkt, skt) be the public/secret key pairs of server
Si (i = 1, . . . , n) and the tallier respectively, (skV , vkV ) and (sgSi , vkSi) be the
signing/verification key pairs of voter V and server Si, h the commitment public
key and 〈p, q, g, u〉 the system parameters.

– The voter V:
1. Submits a vote for candidate x ∈ Zm.
2. Waits for shares x1, . . . , xn from the servers and checks that x = x1 +
· · ·+ xn mod u.

– The PC (skV , pkt, {pkSi}ni=1) on input x by the voter:
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1. Picks x1, . . . , xn−1 ← Zu and sets xn = x−∑n−1
j=1 xj mod u.

2. Picks r← Zq and encrypts x as Et = (Ex, Er) = Encpkt(g
x, r).

3. For alli = 1, . . . , n picks ρi, ri, r
′
i ← Zq and encrypts xi as ei = EncpkSi

(xi, ρi) and commits to it as Ci = gxihri . Then it encrypts the random-
ness ri as Ri = EncpkSi

(ri, r
′
i).

4. Prepares the non interactive proof π = PK(x, r, {xi, ri}ni=1 | Ex =
gxpkrt ∧ {Ci = gxihri}ni=1 ∧ x =

∑n
i=1 xi mod u ∧ x ∈ [0,m− 1]).

5. Signs the vote σ = SingskV (Et, π).
6. For all i = 1, . . . n sends to Server Si Di = (ei, Ri) and sends B =

(Et, {Cj}nj=1, π, σ, V ) through the broadcast channel to all servers.

– The Server Si (sgSi , skSi , vkV ) on input Di, B performs the following tests.
If any step fails it declares a forgery and stops:
1. Decrypts the de-committing values of Di to obtain ri, xi, verifies the

valid opening of Ci = gxihri and that xi ∈ Zu.
2. Verifies the proof π and the signature σ.
3. Signs the vote Et, σ

′ = SignsgSi
(Et), stores it and sends xi to the voter

V through the untappable channel.
– The Tallier: When the election is over the tallier gets the signed votes from

a sever, verifies the server’s signatures and runs a decryption protocol.

3.2 Security and Performance

We now discuss the security offered by the vote verification protocol. We guaran-
tee that the protocol meets our security requirements in the corruption scenario
where the voter’s PC is corrupted or a subset of t ≤ n−1 out of n voting servers
are honest-but-curious, i.e. they follow the protocol but share their information
with the attacker. We state that if a voter successfully verifies her vote and does
not revote, then we guarantee that the vote was cast as intended and remains
secret from the voting servers.

Cast as intended: In order for a corrupted PC to succeed in submitting a mes-
sage x′ ∈ Zq instead of a valid candidate x ∈ [0,m− 1] selected by the voter, it
must be the case that the receipts are equal, that is x = x′ mod u. Thus x′ must
be of the form x′ = x+ ku mod q, for a k ∈ Z. Since we assume the execution of
the voting protocol by the honest challenger all voting servers check that they
receive compatible values in the correct range. Then the range proof guarantees
that x′ ∈ Zm ⊂ Zu, and thus k = 0 giving us x′ = x mod q.

(t, n)-Vote secrecy: Without loss of generality assume that the adversary controls
the first t < n servers and let x0, x1 ∈ [0,m− 1] be the candidates chosen by the
adversary and given to the voting system. The challenger choses b from {0, 1} and
generates the n shares xb1, . . . , xbn ∈ Zu, forming the receipt xb =

∑n
i=1 xbi mod

u. The adversary obtains the the private shares xb1, . . . , xbt of the receipt and the
publicly announced vales Ci = gxbihri for all i = 1, . . . , n and E = (gxbpkr, gr).
Since we use a (n, n)-secret sharing scheme the adversary needs all n shares to
reconstruct the receipt, while with fewer he obtains a random value

∑t
i=1 xbi

mod u in Zu. From the statistically hiding property of Pedersen commitments
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and ElGamal encryption it is guaranteed that he cannot distinguish between
x0, x1 from E or from the commitments Ci, for i = 1, . . . , n.

We cannot guarantee security against coalitions of malicious computers and
malicious voting servers, as in this scenario the malicious voting servers triv-
ially learn the vote from the PC. The PC submits a fake ballot undetected as
long as it collaborates with one malicious server who deviates from the protocol
and sends a modified value to the voter so that she reconstructs a correct receipt.

Complexity. We calculate the complexity of the n-server protocol, (2 ≤ n < q)
for m candidates, counting the number of the online exponentiations, signings
and signature verifications. Values that can be pre-computed like Hj for the
range proofs, the votes gx and the values giu that appear in the proofs are not
counted. The PC performs 6n+2 exponentiations for vote encryption and com-
mitments to the shares, 4k for the range proof and 5(n − 1) + 3 for the valid
share proof, a total of 4(	log2(m − 1)
 + 1) + 11n exponentiations. In addition
it performs a single signing. Each server Si performs 4 exponentiations for de-
cryptions and commitment verifications, 5k for verifying the range and 5n for
verifying the valid shares, a total of 5(	log2(m−1)
+1)+5n+4 exponentiations.
Additionally the sever performs one signing and one signature verification.

3.3 Instantiation of a Code Verification Protocol

With a simple adaptation our protocol can be transformed to use voter depen-
dent security codes as receipts, relaxing the untappable channel requirement.
Following the approach of [14,10,16], we assume a code generation phase before
the elections and we use a pair of out-of-band channels, a pre-channel for code
delivery to the voters and a post-channel for sending the receipts to the voters.

We sightly change the protocol by creating the security codes through an one-
time pad scheme. For each voter V we pick a random value bV ∈ Zu and set
CodeV [x] = x + bV mod u , for all candidates x. We also pick n − 1 random
values bV1 , . . . , bVn−1 ∈ Zm and set appropriately bVn such that

∑n
i=1 bVi = bV .

We send through the pre-channel the pairs (x, codeV [x]) to the voter V . Also the
pairs (V, bVi) need to be given to each server Si. The voting protocol remains
the same, except for the servers’ last step, where they send αi = xi + bVi mod u
through the post-channel. Finally the voter reconstructs the security code as
c =

∑n
i=1 αi =

∑n
i=1 xi + bVi = x+ bV and compares it to the value CodeV [x].

We do not allow revoting as the security of the one-time pad scheme collapses
otherwise. The protocol has the same security guarantees with the vote verifica-
tion protocol and additionally an observer of the pre-channel gets no information
about the voting process and an observer of the post-channel gets no information
about the vote x from the code c = x + bV mod u, due to the perfect secrecy
of one-time pad. To allow revoting we should use an untappable post-channel.
Although in this case we do not relax the untappable channel assumption, voter-
dependent receipts can still be useful as a means against coercion.
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4 A Visual Vote Verification Protocol

In this section we introduce visual vote verification. This method enables the
generation of visual receipts that even though individually leak no information
about the submitted vote, overlaying them enables the verification of it. Even
though the notion is general, here we will consider the case of two voting servers
and an untappable channel to forward the receipts, allowing revoting.

First we introduce a formal cryptographic primitive that we call n-Visual
Sharing of Shape Descriptions (n-VSSD). The main idea is that each voter choice
will correspond in a unique way to a certain shape. Shapes can be split in n
different parts, without revealing information about the initial image; still a
person can easily verify that the parts overlay back to the shape. Using a VSSD
we show how visual vote verification can be facilitated. Due to lack of space the
proofs of this section can be found in appendix B.

The n-VSSD. Let M be the set of m ≥ 2 distinct messages which we want to
represent visually and share in n ≥ 2 different parts. Let Dx be the set of visual
descriptions for message x ∈ M (we note that we allow each message to have
more than one visual representation, i.e., |Dx| ≥ 1). Also let Λ be a commutative
semigroup equipped with an operation ∨ that will be called the visual alphabet.
The splitting function is a probabilistic function P : M → Λn, that given a
message m ∈ M outputs a valid “splitting” of it, consisting of n shares in Λ.
Then we ask for the following properties:

– Solvability: ∀x ∈M ∀〈v1, . . . , vn〉 ∈ P (x) it holds that ∨ni=1vi ∈ Dx.
– (t, n)-Resilience: Let w be an n-tuple of the form 〈(A∪{#}), . . . , (A∪{#})〉,

where the symbol # represents a share of unknown value in Λ and A rep-
resents known shares in Λ, such that w has t < n known shares A (i.e.,
different than #). Then there is a constant 0 < c < 1 such that for all w of
the previous form it holds that Probv←P (x)[w ∈ v] = c.

The solvability property corresponds to correctness, requiring the correct recon-
struction of a visual description of the initial message from all its n shares. The
(t, n)-resilience property corresponds to threshold security, stating that any ob-
server in possession of t or less shares of an image cannot distinguish between
the initial message they may belong to, as the ordered t shares can be part of
any message with equal probability.

4.1 A 2-VSSD Instantiation

Let us first consider two shape descriptions: full circle and half circle. These two
shape descriptions can be visually represented by a completely black circle and
by a circle that is half white in its left or right part. We can correspond these
two shapes to a set of messages M = {0, 1} say, such that, 0 corresponds to
full circle and 1 corresponds to half circle. Next we define the visual alphabet
Λ to contain two half circles as defined above: half white in the left and half
white in the right part. Observe now that P (0) may contain any pair of the two
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complementary elements from Λ, while P (1) may contain any pair of elements
from Λ where the same half circle appears twice.

As bitstrings, we can denote the full circle by 11, while the half-circle by 10
or 01, thus having D0 = {11} and D1 = {01, 10}. Our alphabet is Λ = {01, 10}
and the operation ∨ is the bitwise OR operation in the elements of Λ applied
coordinate-wise. In this case the message corresponding to a shape bb′ ∈ ∪x∈MDx

can be simply recovered as x = b ⊕ b′ (where ⊕ stands for the x-or operation).
The splitting function is then defined as follows: P (0) is uniformly chosen from
{(10, 01), (01, 10)} while P (1) is uniformly chosen from {(01, 01), (10, 10)}.
Proposition 1. Let M = {0, 1}. The (M, {Dx}x∈M , Λ, P ) scheme defined above
is a 2-VSSD that satisfies (1, 2)-resilience.

A Scheme for Arbitrary M . Let the set M be an arbitrary set of size
m ≥ 2 (corresponding, say, to m different election candidates). Without loss
of generality consider M = Zm. Let 〈M∗, {D∗x}x∈M∗ , Λ∗, P ∗〉 be the 2-VSSD
defined above and k = 	log2(m − 1)
 + 1. Let Λ = {10, 01}k and let ∨ be the
bitwise OR operation. We next need to determine the visual description set Dx

and the splitting function P (x) for each x ∈ M . Let (bk−1 . . . b0) ∈ {0, 1}k be
the binary encoding for a message x ∈ M . We define the set Dx by processing
each bit bj ∈ M∗ = {0, 1} of x separately and independently from the others.
Specifically a bitstring (dk−1 . . . d0) is in Dx iff for all j = 0, . . . , k− 1 dj ∈ D∗bj .
Similarly the function P (x) applies in each bit of x the splitting function P ∗

such that the tuple (ak−1 . . . a0, a′k−1 . . . a
′
0) is in P (x) iff for all j = 0, . . . k − 1

(aj , a
′
j) ∈ P ∗(bj). We provide a detailed example in appendix A.

message bit shape description visual split 1 split 2

0 full circle (10,01): (01,10):

1 half circle or (01,01): (10,10):

Fig. 1. The 2-VSSD for M∗ = {0, 1} with visual alphabet Λ∗

Proposition 2. For any m ∈ N, the scheme (M = Zm, {Dx}x∈M , Λ, P ) defined
above is a 2-VSSD that satisfies (1, 2)-resilience.

4.2 Instantiation of the Visual Vote Verification Protocol

Let us proceed to the visual vote verification protocol that uses the above 2-
VSSD. As usual the voter votes for candidate x through her PC, which encrypts
it for the tallier. It also generates the visual shares P (x) = (v1, v2) that yield the
visual description v0 = v1 ∨ v2, with v0 ∈ Dx. The PC prepares a proof of com-
patibility of the visual description, the shares and the vote: It commits through
Pedersen commitments C0j , C1j , C2j to each bit j = 0, . . . , 2k − 1 of v0, v1, v2
respectively, and proves the validity of bit commitments. Moreover it proves that
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the splitting is valid, i.e. that for each bit j v0j = v1j ∨ v2j . To do so we observe
that the latter is true if and only if the commitment Cj = (C1j )(C2j )

2(C0j )
3

hides a value in {0, 4, 5, 6}. In addition the PC proves that v0 = (v02k−1
v02k−2

. . .
v01v00) is a valid visual description of x, i.e. v0 ∈ Dx. That is for each bit bj ,
j = 0, . . . , k − 1 in the binary encoding of x, it holds that bj = v02j+1 ⊕ v02j =
v02j+1 + v02j mod 2. Since we have proved that all values v0j are bits and for
all j = 0, . . . , k − 1 (v02j+1v02j ) ∈ ∪x∈M∗D∗x, i.e. (v02j+1v02j ) ∈ {01, 10, 11}, the
latter relation is equivalent to proving that bj = 2− v02j+1 − v02j . Thus we prove
knowledge of the value x in the encryption Ex and then prove that the com-

mitment
∏k−1

j=0 (
g2

C02j+1
·C02j

)2
j

also hides the same value x. The full interactive

proof of knowledge is denoted as π′ = PK(x, ρ, {(vij , rij )i=0,1,2}2k−1j=0 | {(Cij =

gvij hrij )i=0,1,2}2k−1j=0 ∧ ({(vij )i=0,1,2}2k−1j=0 ∈ {0, 1}) ∧ (v1j + 2v2j + 3v0j ∈
{0, 4, 5, 6})2k−1j=0 ∧ Ex = gxpkρt ∧ (x =

∑k−1
j=0 (2 − v02j+1 − v02j )2

j)). Due to
lack of space its full description is given in appendix C. For our protocol we will
use the non-interactive version by the Fiat-Shamir heuristic. Its security follows
from the results of [6], however we provide a proof in appendix D.

Each server Si (i = 1, 2) needs to verify the proof π′ and the validity of the
share vi. The servers store the shares vi for all vi ∈ Λ, as well as their cor-
responding images that will be sent back to the voters. Let ṽi be the number
whose binary encoding is the bitstring vi = (vi2k−1

vi2k−2
. . . vi1vi0) ∈ Λ, i.e.

ṽi =
∑2k−1

j=0 vij2
j . Each server Si stores a database of all valid shares vi ∈ Λ

and their images, indexed by the corresponding value ṽi. By this construction
we do not need to open all bit commitments {Cij = gvij hrij }2k−1j=0 of the bits
of vi to server Si, in order to verify the validity of the share. Instead the PC
can open to server Si a single commitment C′i =

∏2k−1
j=0 (Cij )

2j as gṽihρṽi with

ρṽi =
∑2k−1

j=0 rij2
j, so that the server can verify that the bit commitments Cij

correspond to a valid share vi. We note that ṽi needs to be in Zq so we should
have 22k − 1 < q. If all verifications are successful the server Si sends the image
indexed by ṽi to the voter through the untappable channel.

The Visual Vote Verification Protocol: Let M be the set of m candidates,
k = 	log2(m − 1)
 + 1, (pkSi , skSi), (pkt, skt) be the public/secret key pairs of
server Si (i = 1, 2) and the tallier respectively, (skV , vkV ) and (sgSi , vkSi) be
the signing/verification key pairs of voter V and server Si, h the commitment
public key and 〈p, q, g〉 the system parameters.

– The voter V votes for candidate x through her PC and waits for the im-
ages from the voting servers. Upon receiving them she verifies that their
overlaying is a correct shape description for candidate x.

– The PC (skV , pkt, pkS1 , pkS2) on input x by the voter:
1. Generates a valid visual splitting (v1, v2) ← P (x) for candidate x and

its visual representation v0 = v1 ∨ v2 ∈ Dx.
2. Picks r, ρ← Zq and encrypts the vote Et = (Ex, Eρ) = Encpkt(g

x, ρ).
3. For each j = 0, . . . , 2k − 1 commits to the j-th bit of v0, v1, v2 as Cij =

gvij hrij for i = 0, 1, 2 and {rij}j=0,...,2k−1
i=0,1,2 ← Zq.
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4. Let ṽ1, ṽ2 ∈ Zq be the values whose binary representation is v1, v2 ∈
{0, 1}2k. Then for i = 1, 2 the PC encrypts the opening randomness

ρṽi =
∑2k−1

j=0 rij2
j as Rvi = EncpkSi

(ρṽi , r
′
i), for r

′
i ← Zq and the values

ṽi as evi = EncpkSi
(ṽi, ri), for ri ← Zq.

5. Prepares the non-interactive proof of knowledge π′ = PK(x, ρ, {(vij ,
rij )i=0,1,2}2k−1j=0 | ((Cij = gvij hrij )i=0,1,2)

2k−1
j=0 ∧ ({(vij )i=0,1,2}2k−1j=0 ∈

{0, 1}) ∧ (v1j +2v2j + 3v0j ∈ {0, 4, 5, 6})2k−1j=0 ∧ (Ex = gxpkρt ) ∧ (x =
∑k−1

j=0 (2− v02j+1 − v02j )2
j).

6. Signs the encrypted message and the proof.
7. Sends to server Si, for i = 1, 2, Di = (evi , Rvi) and posts B = (Et,
{(Cij )i=0,1,2 }2k−1j=0 , π′, singskV (Et, π

′), V ) to the broadcast channel.
– The Server Si (sgSi , skSi , vkV , 〈ṽi, vi, image(vi)〉vi∈Λ) on input Di, B per-

forms the following tests. If any step fails it declares a forgery and stops:
1. Verifies the voter’s signature and proof π′.
2. Decrypts evi , Rvi to obtain ṽi, ρvi , checks that ṽi is a valid entry in the

database 〈ṽi, vi, image(vi)〉vi∈Λ and checks that gṽihρṽi =
∏2k−1

j=0 (Cij )
2j .

3. Sends the corresponding image of vi ∈ Λ to the voter through the un-
tappable channel. It signs and stores the vote signsgSi

(Et).
– The Tallier: Obtains from a server the votes Et and runs a suitable protocol.

Security. Cast as intended: Let x be the vote submitted by the voter and x′

the forged vote such thatDecskt(Et) = x′. In order for x′ to create a valid receipt
v0 for x it should hold that v0 ∈ Dx, which implies that for all j = 0, . . . , k − 1
(v02j+1v02j ) ∈ D∗bj where bj is the j-th bit of x, and thus v02j+1 ⊕ v02j = bj .

It follows that
∑k−1

j=0 (v02j+1 ⊕ v02j )2
j =

∑k−1
j=0 bj2

j = x. Since proof π′ guaran-

tees that Et and
∑k−1

j=0 (v02j+1⊕v02j )2
j hide the same value, we have that x = x′.

(1,2)-Vote secrecy: Without loss of generaltiy let the attacker control server S1

and let x0, x1 ∈ Zm be the candidates chosen by the attacker. The challenger
randomly selects and encrypts xb (b ∈ {0, 1}) and produces the shares (v1, v2) ∈
P (xb). The public commitments and encryptions do not reveal information to
the attacker, who neither extracts information from v1 since Prob[(v1,#) ∈
P (x0)] = Prob[(v1,#) ∈ P (x1)] from the (1, 2)-resilience property.

Complexity. The PC needs 10 exponentiations for encryptions and commit-
ments, 12k exponentiations for bit commitments and 44k+3 exponentiations for
generating the proof π′, a total of 56(	log2(m− 1)
+1)+ 15 online exponentia-
tions and one signing. Each server Si does 4 exponentiations for decryptions and
commitment openings, 56k+5 for verifying π′ and k for checking the compatibil-
ity of the share and its bits, a total of 57(	log2(m− 1)
+1)+9 exponentiations,
one signing and one signature verification.

Extensions. The 2-VSSD scheme we presented can be extended to n-VSSD in
a number of possible ways. We leave it as future work to determine which ones
might be more suitable for human verifiability. We also leave it as open question
to develop the case where resiliency is achieved for t > 1 but we conjecture that
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it is possible to obtain a general n-VSSD (n > 2) with (t, n)-resilience for t > 1
using techniques that were developed for colored visual secret sharing [25].
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Appendix A

We provide an example of the visual description of a scheme with 4 candidates
along with the relevant splittings. The visual alphabet for this representation is
Λ = {01, 10}2.

Message Shape Dx P (x)

00 Two full
circles

( , ) ( , )

( , ) ( , )

01 Full circle
followed by
half circle

( , ) ( , )

( , ) ( , )

10 Half circle
followed by
full circle

( , ) ( , )

( , ) ( , )

11 Two half
circles

, ( , ) ( , )

, ( , ) ( , )

Fig. 2. Visual descriptions and splittings of 4 candidates

The depiction of the splittings along with the relevant shares exhibits the
solvability property, while for a randomly selected share w in Λ , say w =

, it holds that Prob[( ,#) ∈ P (00)] = Prob[( ,#) ∈ P (01)] =

Prob[( ,#) ∈ P (10)] = Prob[( ,#) ∈ P (11)] = 1/4, satisfying (1, 2)-

resilience. The same holds for the rest of the cases with w = , w = ,

w = and the symmetric case (#, w).

Appendix B

Proof of Proposition 1

Proof. For the message 0 the description set is D0 = {11} and possible splittings
are P (0) ∈ {(10, 01), (01, 10)}, and analogously for the message 1 D1 = {01, 10}
and P (1) ∈ {(01, 01), (10, 10)}.
Solvability: For message 0 we have 10∨ 01 = 11 ∈ D0 and 01∨ 10 = 11 ∈ D0.
Similarly for message 1, we have 01 ∨ 01 = 01 ∈ D1 and 10 ∨ 10 = 10 ∈ D1.

(1,2)-Resilience: The 2-tuples with one known and one unknown element
in Λ we need to consider are (01,#), (10,#), (#, 01), (#, 10). The function P
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outputs one of the possible valid splittings uniformly at random and thus we
have Prob[(01,#) ∈ P (0)] = Prob[(01,#) ∈ P (1)] = 1

2 , Prob[(10,#) ∈ P (0)] =
Prob[(10,#) ∈ P (1)] = 1

2 and Prob[(#, 01) ∈ P (0)] = Prob[(#, 01) ∈ P (1)] = 1
2 ,

Prob[(#, 10) ∈ P (0)] = Prob[(#, 10) ∈ P (1)] = 1
2 .

Proof of Proposition 2

Proof. Solvability: Let (ak−1 . . . a0, a′k−1 . . . a
′
0) be a splitting in P (x). From

the construction of P for all j = 0, . . . , k−1 (aj , a
′
j) ∈ P ∗(bj) where bj is the j-th

bit of x. Then from proposition 1 for all j = 0, . . . , k−1 it holds that dj = aj∨a′j
is in D∗bj , which implies that (dk−1 . . . d0) ∈ Dx as requested.

(1,2)-Resilience: Let (ak−1 . . . a0,#k) denote the tuple with exactly one known
element (ak−1 . . . a0) in Λ = {01, 10}k. Thus for all j = 0, . . . , k − 1 aj = 01 or
aj = 10, i.e. aj ∈ Λ∗. Since the splitting function P (x) handles each bit bj of x in-
dependently from the others, we have that for all x ∈M Prob[(ak−1 . . . a0,#k) ∈
P (x)] = Prob[(ak−1,#) ∈ P ∗(bk−1)] × · · · × Prob[(a0,#) ∈ P ∗(b0)], where
bj ∈ M∗ is the j-th bit of x. Since from proposition 1 we have that for all
aj ∈ Λ∗ Prob[(aj ,#) ∈ P ∗(0)] = Prob[(aj ,#) ∈ P ∗(1)] = 1

2 we conclude that
for all x ∈M Prob[(ak−1 . . . , a0,#k) ∈ P (x)] = (12 )

k as requested.
The case of (#k, ak−1 . . . a0) is symmetrical.

Appendix C

The proof π′: Public Input: 〈p, q, g〉, h, pkt, m, k = 	log2(m − 1)
 + 1, Et =
(Ex, Eρ) = (gxpkρt , g

ρ), {C1j = gv1j hr1j , C2j = gv2j hr2j , C0j = gv0j hr0j }2k−1j=0 .

Let d1 = 1, d2 = g4, d3 = g5, d4 = g6.
Prover’s Input: x, ρ, {v1j , r1j , v2j , r2j , v0j , r0j}2k−1j=0 .

1. The Prover:
(a) Bit proof: For j = 0, . . . , 2k − 1:

i. For i = 0, 1, 2 :
– If vij = 0 it picks wij , c2ij , ρ2ij ← Zq and sets y1ij = hwij ,

y2ij = hρ2ij (Cij /g)
−c2ij .

– Else if v1j = 1 it picks wij , c1ij , ρ1ij ← Zq and sets y1ij =
hρ1ij (Cij )

−c1ij , y2ij = hwij

(b) OR proof: For j = 0, . . . , 2k − 1:
i. If 1v1j+2v2j+3v0j = 0 (case 0∨0 = 0) set t = 1. If 1v1j+2v2j+3v0j =

4 (case 1∨ 0 = 1) set t = 2. If 1v1j +2v2j +3v0j = 5 (case 0∨ 1 = 1)
set t = 3. If 1v1j + 2v2j + 3v0j = 6 (case 1 ∨ 1 = 1) set t = 4.

ii. It picks wtj , {cλj , ρλj}λ�=t
λ=1,2,3,4 ← Zq and sets ytj = hwtj and {yλj =

hρλj (
(C1j

)(C2j
)2(C0j

)3

dλ
)−cλj}λ�=t

λ=1,2,3,4.

(c) It picks w, ρ1, ρ2 ← Zq and sets y1 = gwpkρ1

t , y2 = gwhρ2 .
(d) It sends (y1, y2), (y1j , y2j, y3j , y4j)

2k−1
j=0 ,((y1ij , y2ij)

2k−1
j=0 )i=0,1,2 to the

Verifier.
2. The Verifier picks c← Zq and sends it to the Prover.
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3. The Prover:
(a) Bit proof: For j = 0, . . . , 2k − 1:

– For i = 0, 1, 2 :
i. If vij = 0 it sets c1ij = c− c2ij , ρ1ij = wij + c1ijrij .
ii. Else if vij = 1 it sets c2ij = c− c1ij , ρ2ij = wij + c2ijrij .

(b) OR proof: For j = 0, . . . , 2k − 1:

– It sets ctj = c−(∑λ�=t
λ=1,2,3,4 cλj) and ρtj = wtj+ctj(r1j +2r2j +3r0j).

(c) It sets s = w + cx, ρ′1 = ρ1 + cρ, ρ′2 = ρ2 − c(
∑k−1

j=0 (r02j+1 + r02j )2
j).

(d) It sends to the Verifier (s, ρ′1, ρ
′
2) , ((cλj , ρλj )λ=1,2,3,4)

2k−1
j=0 and ((c1ij ,

c2ij , ρ1ij , ρ2ij)
2k−1
j=0 )i=0,1,2.

4. The Verifier accepts if all the following tests succeed, otherwise it rejects:
(a) For j = 0, . . . , 2k − 1:

i. Bit proof: For i = 0, 1, 2: c = c1ij + c2ij , h
ρ1ij = y1ij(Cij )

c1ij and
hρ2ij = y2ij(Cij/g)

c2ij .

ii. OR proof: c =
∑4

λ=1 cλj and for λ = 1, 2, 3, 4:

hρλj = yλj(
(C1j

)(C2j
)2(C0j

)3

dλ
)cλj .

(b) gspk
ρ′
1

t = y1(Ex)
c and gshρ′

2 = y2(
∏k−1

j=0 (
g2

C02j+1
·C02j

)2
j

)c.

Appendix D

Security Proof for Proof of Knowledge π

Proof. Completeness: Executing the protocol with an honest prover and a

honest verifier, we have that in step 4 condition (b) holds since
∏k−1

j=0 EHj

j =
∏k−1

j=0 (g
μjpk

zj
t )Hj = g

∑k−1
j=0 μjHjpk

∑k−1
j=0 zjHj

t = gxpkrt = Ex.

Let i∗ be the value such that
∑n

i=1 xi = x+ (i∗ − 1)u. Then condition (c) holds
since

∑n
i=1 ci = c and for all i = 1, . . . , n with i �= i∗ we have that:

ai(Ex)
ci = ((Ex)

−cigsipkρ
′
1i

t )(Ex)
ci = gsipktρ

′
1i

and

bi(

n∏

l=1

Cl/g
(i−1)u)ci = (

n∏

l=1

Cl/g
(i−1)u)−cigsihρ′

2i(

n∏

l=1

Cl/g
(i−1)u)ci = gsihρ′

2i .

For i∗ it holds that:

ai∗(Ex)
ci∗ = (gwpkρa

t )(gxpkrt )
ci∗ = gw+xci∗pkρa+rci∗

t = gsi∗pk
ρ′
1i∗

t

and

bi∗(
n∏

l=1

Cl/g
(i∗−1)u)ci∗ = gwhρb(

n∏

l=1

gxlhrl/g(i
∗−1)u)ci∗ =

= gwhρb(g
∑n

l=1 xl−(i∗−1)uh
∑n

l=1 rl)ci∗ = gw+(
∑n

l=1 xl−(i∗−1)u)ci∗hρb+(
∑n

l=1 rl)ci∗ =
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= gw+xci∗hρb+(
∑n

l=1 rl)ci∗ = gsi∗hρ′
2i∗ .

Finally condition (a) holds as for all j = 0, . . . , k − 1: c = c1j + c2j , and if
Ej = g0pk

zj
t , we have that:

y1j(Ej)c1j = pk
wj

t (pk
zj
t )c1j = pk

wj+c1jzj
t = pktρ1j

and
y2j(Ej/g)c2j = pk

ρ2j

t (Ej/g)−c2j(Ej/g)c2j = pk
ρ2j

t .

Otherwise if Ej = g1pk
zj
t then:

y1j(Ej)c1j = pk
ρ1j

t (Ej)−c1j (Ej)c1j = pk
ρ1j

t

and
y2j(Ej/g)c2j = pk

wj

t (g1pk
zj
t /g1)c2j = pk

wj+zjc2j
t = pk

ρ2j

t .

Special Soundness: Let
〈A, c,B〉 =

= 〈({ai, bi}ni=1, {Ej, y1j , y2j}k−1j=0 ), c, ({ci, si, ρ′1i, ρ′2i}ni=1, {c1j , c2j, ρ1j , ρ2j}k−1j=0 )〉
and

〈A, c̃, B̃〉 =
= 〈({ai, bi}ni=1, {Ej, y1j , y2j}k−1j=0 ), c̃, ({c̃i, s̃i, ρ̃′1i, ρ̃′2i}ni=1, { ˜c1j , ˜c2j, ρ̃1j , ρ̃2j}k−1j=0 )〉
be two accepting communication transcripts for the same first message A with
c �= c̃.

Since both transcripts are accepting we have that from condition (c) for i =
1, . . . , n:

gsipk
ρ′
1i

t = ai(Ex)
ci and gs̃ipk

ρ̃′
1i

t = ai(Ex)
c̃i

and

gsihρ′
2i = bi(

n∏

l=1

Cl/g
(i−1)u)ci and gs̃ihρ̃′

2i = bi(

n∏

l=1

Cl/g
(i−1)u)c̃i .

Then since c �= c̃ for some i ∈ {1, . . . , n} there are ci �= c̃i so that we have:

gsipk
ρ′
1i

t

gs̃ipk
ρ̃′
1i

t

= (Ex)
ci−c̃i ⇔ g

si−s̃i
ci−c̃i pk

ρ′1i−
˜ρ′
1j

ci−c̃i
t = Ex

so we can extract a valid opening for Ex = gwipkv1it with wi = si−s̃i
ci−c̃i and

v1i =
ρ′
1i− ˜ρ′

1j

ci−c̃i .
In addition since:

gsipk
ρ′
2i

t

gs̃ipk
ρ̃′
2i

t

= (

n∏

l=1

Cl/g
(i−1)u)ci−c̃i ⇔ g

si−s̃i
ci−c̃i pk

ρ′2i−
˜ρ′
2i

ci−c̃i
t =

n∏

l=1

Cl/g
(i−1)u
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we also extract a valid opening for
∏n

l=1 Cl/g
(i−1)u = gwipkv2it with wi and

v2i =
ρ′
2i−ρ̃′

2i

ci−c̃i .
From condition (a) we have that since c �= c̃ for all j = 0, . . . , k − 1, either

c1j �= ˜c1j or c2j �= ˜c2j . We also have that:

pk
ρ1j

t = y1j(Ej)c1j and pk
˜ρ1j

t = y1j(Ej) ˜c1j

and
pk

ρ2j

t = y2j(Ej/g)c2j and pk
˜ρ2j

t = y2j(Ej/g) ˜c2j .

Then in the case that c1j �= ˜c1j we have that:

pk
ρ1j

t

pk
ρ̃1j

t

=
(Ej)c1j
(Ej) ˜c1j

⇔ pk

ρ1j− ˜ρ1j
c1j− ˜c1j

t = Ej

so we can extract a valid opening for Ej = pk
z1j
t with z1j =

ρ1j− ˜ρ1j

c1j− ˜c1j
. Similarly

in the case that c2j �= ˜c2j from
pk

ρ2j
t

pk
˜ρ2j

t

=
(Ej/g)c2j
(Ej/g) ˜c2j

we extract a valid opening for

Ej/g = pk
z2j
t with z2j =

ρ2j− ˜ρ2j

c2j− ˜c2j
.

HV Zero Knowledge: We can create a simulator for the prover given the
public input G, q, g, pkt, h, Ex, {Ci}ni=1 as follows: We randomly pick c ← Zq

and for i = 1, . . . n we pick c1i, si, ρ
′
1i, ρ

′
2i ← Zq and set c2i = c − c1i mod

q. For j = 0, . . . , k − 1 we pick c1j , ρ1j , ρ2j ← Zq and set c2j = c − c1j
mod q. We fix the second and the third message of the communication pro-
tocol to be 〈c, ({ci, si, ρ′1i, ρ′2i}ni=1, {c1j , c2j, ρ1j , ρ2j}k−1j=0 )〉. Then we set the first

message A to be A = ({(Ex)
−cigsipkρ

′
1i

t , (
∏n

l=1 Cl/g
(i−1)u)−cigsihρ′

2i}ni=1 ,

{Ej, pkρ1j

t (Ej)−c1j , pkρ2j

t (Ej/g)−c2j}k−1j=0 ).

Security Proof for Proof of Knowledge π′

Proof. Completeness: Executing the protocol with an honest prover and a
honest verifier, we have that in step 4 condition (b) holds since

y1(Ex)
c = gwpkρ1

t (gxpkρt )
c = gw+cxpkρ1+cρ

t = gspk
ρ′
1

t

and

y2(

k−1∏

j=0

(
g2

C02j+1 · C02j

)2
j

)c =

= gwhρ2(g(
∑k−1

j=0 (2−v02j+1
−v02j )2j)h(−∑k−1

j=0 (r02j+1
+r02j )2

j))c = gw+cxhρ′
2 = gshρ′

2 .

Condition (ai) holds as for all j = 0, . . . , 2k − 1 and for all i = 0, 1, 2: c =
c1ij + c2ij , and if Cij = g0hrij , we have that:

y1ij(Cij )
c1ij = hwij (hrij )c1ij = hρ1ij

and
y2ij(Cij/g)

c2ij = (hρ2ij (Cij/g)
−c2ij)(Cij /g)

c2ij = hρ2ij .
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Otherwise if Cij = g1hrij we have that:

y1ij(Cij )
c1ij = (hρ1ij (Cij )

−c1ij )(Cij )
c1ij = hρ1ij

and
y2ij(Cij/g)

c2ij = hwij (ghrij /g)c2ij = hwij+c2ijrij = hρ2ij .

Regarding condition (aii), for j = 0, . . . , 2k − 1, we present the case for general
t ∈ {1, 2, 3, 4} with dt = gα, i.e. (v1j ) + 2(v2j )+ 3(v0j ) = α, with α ∈ {0, 4, 5, 6}.
The condition holds as c = c1j+c2j+c3j+c4j and for t : ytj(

(C1j
)(C2j

)2(C3j
)3

dt
)ctj =

= hwtj (
g(1v1j+2v2j+3v0j )h(1r1j+2r2j+3r0j )

gα
)ctj =

= hwtj (
gαh(1r1j+2r2j+3r0j )

gα
)ctj = hwtj+c1j(1r1j+2r2j+3r0j ) = hρ1j .

For λ �= t the proof is simulated and thus yλj(
(C1j

)(C2j
)2(C3j

)3

dλ
)cλj =

= (hρλj (
(C1j )(C2j )

2(C3j )
3

dλ
)−cλj )(

(C1j )(C2j )
2(C3j )

3

dλ
)cλj = hρλj .

Special Soundness:

Let 〈A, c,B〉, 〈A, c̃, B̃〉 be two accepting communication transcripts for the same
first message A with c �= c̃ and

A = ((y1, y2), (y1j , y2j , y3j, y4j)
2k−1
j=0 , ((y1ij , y2ij)

2k−1
j=0 )i=0,1,2)

and

B = ((s, ρ′1, ρ
′
2), ((cλj , ρλj )λ=1,2,3,4)

2k−1
j=0 , ((c1ij , c2ij , ρ1ij , ρ2ij)

2k−1
j=0 )i=0,1,2)

and

B̃ = ((s̃, ρ̃′1, ρ̃
′
2), (( ˜cλj , ˜ρλj )λ=1,2,3,4)

2k−1
j=0 , (( ˜c1ij , ˜c2ij , ˜ρ1ij , ˜ρ2ij)

2k−1
j=0 )i=0,1,2).

Then for condition (ai) of step 4, since c �= c̃, for j = 0, . . . , 2k− 1 and i = 0, 1, 2
either c1ij �= ˜c1ij or c2ij �= ˜c2ij . In the first case we have hρ1ij = y1ij(Cij )

c1ij and
h ˜ρ1ij = y1ij(Cij )

˜c1ij whose division gives us

hρ1ij− ˜ρ1ij = (Cij )
c1ij− ˜c1ij ⇔ h

ρ1ij− ˜ρ1ij
c1ij− ˜c1ij = Cij

i.e. we extract ζ =
ρ1ij− ˜ρ1ij

c1ij− ˜c1ij
as a valid opening for Cij . In the second case

we have that hρ2ij = y2ij(Cij /g)
c2ij and h ˜ρ2ij = y2ij(Cij /g)

˜c2ij and similarly

h
ρ2ij− ˜ρ2ij
c2ij− ˜c2ij = (Cij/g), i.e.we extract ζ′ = ρ2ij− ˜ρ2ij

c2ij− ˜c2ij
as a valid opening for (Cij/g).
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From condition (aii) for j = 0, . . . , 2k − 1 and λ = 1, 2, 3, 4 we have that

hρλj = yλj(
(C1j

)(C2j
)2(C0j

)3

dλ
)cλj and h ˜ρλj = yλj(

(C1j
)(C2j

)2(C0j
)3

dλ
) ˜cλj whose di-

vision yields hρλj− ˜ρλj = (
(C1j

)(C2j
)2(C0j

)3

dλ
)cλj− ˜cλj . Since c �= c̃ for each j =

0, . . . , 2k − 1 there is a λ ∈ {1, 2, 3, 4} such that cλj �= ˜cλj . Thus h
ρλj− ˜ρλj
cλj− ˜cλj =

(
(C1j

)(C2j
)2(C0j

)3

dλ
), concluding that we can extract η =

ρλj− ˜ρλj

cλj− ˜cλj
as a valid open-

ing for C′j =
(C1j

)(C2j
)2(C0j

)3

dλ
.

Finally from condition (b) we have that gspk
ρ′
1

t = y1(Ex)
c and gs̃pk

ρ̃′
1

t =

y1(Ex)
c̃ from which we have that g

s−s̃
c−c̃ h

ρ′1−ρ̃′
1

c−c̃ = Ex, i.e. we extract α = s−s̃
c−c̃ ,

β =
ρ′
1−ρ̃′

1

c−c̃ as a valid opening for Ex = gαhβ .
Similarly from

gshρ′
2 = y2(

k−1∏

j=0

(
g2

C02j+1 · C02j

)(2
j))c and gs̃hρ̃′

2 = y2(

k−1∏

j=0

(
g2

C02j+1 · C02j

)(2
j))c̃

we extract α = s−s̃
c−c̃ and β′ = ρ′

2−ρ̃′
2

c−c̃ as a valid opening for

C′′ = (

k−1∏

j=0

(
g2

C02j+1 · C02j

)2
j

).

HV Zero Knowledge: There is a simulator that can simulate the commu-
nication transcript. On input G, q, g, pkt, h, Ex, {(Cij )j=0,...,2k−1}i=0,1,2 it picks
randomly a value c ∈ Zq. It also picks uniformly at random s, ρ′1, ρ′2 ∈ Zq.
For λ = 1, 2, 3, 4 and for j = 0, . . . , 2k − 1 it picks cλj , ρλj ∈ Zq such that
∑4

λ=1 cλj = c. For i = 0, 1, 2 and j = 0, . . . , 2k−1 it picks c1ij , c2ij , ρ1ij , ρ2ij ∈ Zq

such that c1ij+c2ij = c. We define the second and the third message of the com-
munication transcript to be respectively c and

B = ((s, ρ′1, ρ
′
2), ((cλj , ρλj )λ=1,2,3,4)

2k−1
j=0 , ((c1ij , c2ij , ρ1ij , ρ2ij)

2k−1
j=0 )i=0,1,2).

We now set the first message of the transcript to be A:

– (y1, y2) = (gspk
ρ′
1

t (Ex)
−c, gshρ′

2(
∏k−1

j=0 (
g2

C02j+1
·C02j

)(2
j))−c)

– for j = 0, . . . , 2k − 1, for λ = 1, 2, 3, 4: yλj = hρλj (
(C1j

)(C2j
)2(C0j

)3

dλ
)−cλj

– For i = 0, 1, 2, for j = 0, . . . , 2k − 1:

(y1ij , y2ij) = (hρ1ij (Cij )
−c1ij , hρ2ij (Cij /g)

−c2ij).

The final simulated transcript is 〈A, c,B〉.
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