
James Heather
Steve Schneider
Vanessa Teague (Eds.)

 123

LN
CS

 7
98

5

4th International Conference, Vote-ID 2013
Guildford, UK, July 2013
Proceedings

E-Voting
and Identity

Lecture Notes in Computer Science 7985
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

James Heather Steve Schneider
Vanessa Teague (Eds.)

E-Voting
and Identity
4th International Conference, Vote-ID 2013
Guildford, UK, July 17-19, 2013
Proceedings

13

Volume Editors

James Heather
University of Surrey
Guildford, Surrey, GU2 7XH, UK
E-mail: j.heather@surrey.ac.uk

Steve Schneider
University of Surrey
Guildford, Surrey, GU2 7XH, UK
E-mail: s.schneider@surrey.ac.uk

Vanessa Teague
The University of Melbourne
Parkville VIC 3010, Australia
E-mail: vjteague@unimelb.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39184-2 e-ISBN 978-3-642-39185-9
DOI 10.1007/978-3-642-39185-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013941244

CR Subject Classification (1998): E.3, D.4.6, K.6.5, C.2, J.1, K.4.4, K.5.2

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This is the fourth edition of the International Conference on E-Voting and Iden-
tity (VoteID). Previous VoteID conferences were held in Tallinn, Estonia (2011),
Luxembourg (2009) and Bochum, Germany (2007). This year’s VoteID takes
place in Guildford, UK, on 17–19 July 2013, hosted by the University of Surrey,
preceded by a special session on “Voting Systems Demonstrations” exhibiting
recent practical developments in voting systems.

Countries around the world are increasing their deployment of electronic vot-
ing, though in many places the trustworthiness of their systems remains contro-
versial. Vote-ID has always maintained a strong focus on designing trustworthy
voting systems, but the breadth of interpretations of trustworthiness seems to
widen every year. This year’s papers include a range of works on end-to-end ver-
ifiable election systems, verifiably correct complex tallying algorithms, human
perceptions of verifiability, formal models of verifiability and, of course, attacks
on systems formerly advertised as verifiable.

To be trustworthy is one thing, but to be trusted is quite another. The increas-
ing practical application of electronic voting technologies implies a need for us
to understand the wider implications of gaining and deserving public trust. This
year’s Vote-ID boasts some prestigious invited speakers on this theme: David
Birch, a founding Director of Consult Hyperion, will be speaking on “Suppose
Electronic Voting Works? What Then?”; Robert Krimmer, Senior Adviser on
New Voting Technologies in the Election Department of the OSCE’s Office for
Democratic Institutions and Human Rights (OSCE/ODIHR), gives a talk en-
titled “The Election Observation of New Voting Technologies”; Philip Stark,
Professor and Chair of Statistics, UC Berkeley, speaks on “E2E to Hand-to-Eye:
Verifiability, Trust, Audits”; and Baroness Onora O’Neill of Bengarve CBE FBA
Hon FRS F Med Sci, Chair of the Equality and Human Rights Commission, de-
livers our keynote address on the subject of “Trustworthiness before Trust”.

The Programme Committee selected 12 papers for presentation at the con-
ference out of a total of 26 submissions. Each submission was reviewed by at
least four Programme Committee members.

We would like to thank everyone who helped in bringing this conference
together: the authors for their submissions; the Programme Committee and the
external reviewers for their conscientious and timely efforts in reviewing and
discussing the submissions; Maggie Burton, who provided such excellent support
for the local arrangements; and Consult Hyperion and IBM for their generous
sponsorship that allowed us to extend invitations to the guest speakers, as well as
funding a number of student stipends. Finally, we thank our home institutions,
The University of Melbourne and University of Surrey, for their support.

July 2013 James Heather
Steve Schneider
Vanessa Teague

Organization

Program Committee

Josh Benaloh Microsoft Research
Jeremy Clark Carleton University
J Paul Gibson Telecom & Management SudParis
Joseph Hall Center for Democracy & Technology
James Heather University of Surrey
Hugo Jonker University of Luxembourg
Aggelos Kiayias University of Connecticut
Reto Koenig Berne University of Applied Sciences
Helger Lipmaa University of Tartu
Olivier Pereira Universite catholique de Louvain
Mark Ryan University of Birmingham
Peter Ryan University of Luxembourg
Steve Schneider University of Surrey
Berry Schoenmakers Eindhoven University of Technology
Vanessa Teague The University of Melbourne
Melanie Volkamer Technische Universität Darmstadt
Poorvi Vora The George Washington University
David Wagner University of California, Berkeley
Douglas Wikström KTH Royal Institute of Technology
Zhe Xia Wuhan University of Technology

Additional Reviewers

Grewal, Gurchetan S.
Joaquim, Rui
Llewellyn, Morgan
Mauw, Sjouke
Peacock, Thea
Phillips, Joshua

Table of Contents

Scaling Privacy Guarantees in Code-Verification Elections 1
Aggelos Kiayias and Anthi Orfanou

On the Specification and Verification of Voting Schemes 25
Bernhard Beckert, Rajeev Goré, and Carsten Schürmann

Formal Model-Based Validation for Tally Systems . 41
Dermot Cochran and Joseph R. Kiniry

Vote Casting in Any Preferred Constituency: A New Voting Channel . . . 61
Jurlind Budurushi, Maria Henning, and Melanie Volkamer

Attacking the Verification Code Mechanism in the Norwegian Internet
Voting System . 76

Reto E. Koenig, Philipp Locher, and Rolf Haenni

A Formal Model for the Requirement of Verifiability in Electronic
Voting by Means of a Bulletin Board . 93

Katharina Bräunlich and Rüdiger Grimm

Analysis of an Electronic Boardroom Voting System 109
Mathilde Arnaud, Véronique Cortier, and Cyrille Wiedling

Dispute Resolution in Accessible Voting Systems: The Design and Use
of Audiotegrity . 127

Tyler Kaczmarek, John Wittrock, Richard Carback, Alex Florescu,
Jan Rubio, Noel Runyan, Poorvi L. Vora, and Filip Zagórski

Mental Models of Verifiability in Voting . 142
Maina M. Olembo, Steffen Bartsch, and Melanie Volkamer

Prêt à Voter Providing Everlasting Privacy . 156
Denise Demirel, Maria Henning, Jeroen van de Graaf,
Peter Y.A. Ryan, and Johannes Buchmann

Towards a Practical Cryptographic Voting Scheme Based on Malleable
Proofs . 176

David Bernhard, Stephan Neumann, and Melanie Volkamer

A Practical Coercion Resistant Voting Scheme Revisited 193
Roberto Araújo and Jacques Traoré

Author Index . 211

Scaling Privacy Guarantees

in Code-Verification Elections

Aggelos Kiayias1,� and Anthi Orfanou2

1 National and Kapodistrian University of Athens, Athens, Greece
aggelos@kiayias.com

2 Columbia University, New York, NY
anthi@cs.columbia.edu

Abstract. Preventing the corruption of the voting platform is a major
issue for any e-voting scheme. To address this, a number of recent proto-
cols enable voters to validate the operation of their platform by utilizing
a platform independent feedback: the voting system reaches out to the
voter to convince her that the vote was cast as intended. This poses two
major problems: first, the system should not learn the actual vote; sec-
ond, the voter should be able to validate the system’s response without
performing a mathematically complex protocol (we call this property
“human verifiability”). Current solutions with convincing privacy guar-
antees suffer from trust scalability problems: either a small coalition of
servers can entirely break privacy or the platform has a secret key which
prevents the privacy from being breached. In this work we demonstrate
how it is possible to provide better trust distribution without platform
side secrets by increasing the number of feedback messages back to the
voter. The main challenge of our approach is to maintain human verifi-
ability: to solve this we provide new techniques that are based on either
simple mathematical calculations or a novel visual cryptography tech-
nique that we call visual sharing of shape descriptions, which may be of
independent interest.

Keywords: Electronic voting, elections integrity, visual cryptography.

1 Introduction

The integrity of the voting platform is a critical feature of electronic voting
systems. If an attacker controls the voting platform then it can not only breach
voter privacy but also manipulate the election results. For this reason, as e-voting
systems increasingly find their way to real-world deployments, the security prop-
erties of the voting platform have become a major consideration. This problem
is particularly exacerbated in the case of Internet voting where the voter is sup-
posed to use a general purpose system (PC) for ballot casting. In this context

� Supported by project FINER of Greek Secretariat of Research and Technology, ERC
project CODAMODA and Marie Curie grant RECUP. Also partly supported by an
EAC grant from the VoTeR center - University of Connecticut.

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 1–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A. Kiayias and A. Orfanou

the problem has been generally identified as the untrusted platform problem. To
solve the problem a general methodology has arisen that enables the human op-
erator of the ballot casting PC to validate its operation (i.e., that it has cast the
proper vote) by receiving a suitable feedback from the system. This approach,
even if we assume the existence of such feedback channel for free1, it has to
additionally overcome two major challenges: First, the system should be able to
provide such feedback without breaching the privacy of the voter and learning
its vote. Second, the validation protocol should not be mathematically complex
since then this would require the utilization of the PC again to complete it; in
other words, the protocol should be “human-verifiable” i.e., easily executed by
a human in the verifier side. We first explain how these problems have been
addressed in the literature so far and then we present our results.

1.1 Previous Work

An ingenious idea to resolve the untrusted platform problem was proposed by
Chaum [4]: in code voting the system provides to the voter a code that uniquely
corresponds to his proper vote but the actual correspondence is hidden. The
system used pre-encrypted ballots and return codes, requiring the voters to enter
pseudo-random numbers in order to cast a vote. The scheme guarantees privacy
and integrity against malicious computers however codes need to be generated
via a multiparty protocol and distributed privately, something that substantially
increases the complexity of the system. Later the idea of code voting was applied
in voting schemes like those in [23,13].

Subsequent work in code verification protocols cf. [14,11] simplified the bal-
lot casting procedure and made it compatible with standard encrypted ballot
casting systems (so that previous tallying mechanisms can be readily applied, as
those in [12,1,2,15,20,7]). More specifically, Heiberg et al. propose in [14] a code
verification protocol that uses random security codes. These are reconstructed as
the vote is transfered from the PC to the messenger through the vote collector,
by a proxy oblivious transfer scheme. Gjøsteen in [10,11] uses pseudo-random
codes, generated as the composition of three pseudo-random functions, owned
by the PC, the vote collector and the messenger respectively. These papers fo-
cused on the vote collection and feedback system which is comprised of two
servers, a vote collector and a messenger who collaborate to produce the vali-
dation code that is transmitted as feedback back to the user. The separation of
these two servers is an essential feature and their collaboration breaks privacy
in the protocols of [14,11]. To address this serious privacy issue (as well as a few
other problems), Lipmaa presented an adaptation of Gjøsteen’s protocol in [16],
that prevents the coalition of the servers from breaching privacy by relying on
a secret stored on the PC. In this case, the vote collector and messenger server
coalition is still unable to breach privacy unless somehow they get access to the
PC secret-key. While this addresses partially the privacy concern it increases the

1 For example an SMS to a smartphone has been suggested as an implementation of
the feedback mechanism.

Scaling Privacy Guarantees in Code-Verification Elections 3

key-management requirements of the protocol on the PC side. Given the above,
it remains as an open question to provide better privacy guarantees without
using a secret key on the PC side.

Part of our techniques to be presented below are related to visual cryptog-
raphy. Naor and Shamir [19] introduced visual cryptography and proposed a
visual secret sharing protocol that shares black and white images. In their sys-
tem each pixel is mapped to a certain shape and can be subdivided to a number
of black and white sub-pixels. The scheme considers a pixel as black if the num-
ber of black sub-pixels exceeds a certain threshold and analogously white if the
black sub-pixels are below a threshold. The final pixels are revealed visually by
overlaying a number of shares. While very interesting, the techniques of visual
cryptography have found little applications in real world systems. Chaum ex-
ploited visual cryptography for visual receipts in supervised electronic voting
(elections through voting booths) [5]. The scheme uses a 2-out-of-2 secret shar-
ing scheme to share the written form of the vote in two complementary sheets
that reveal the vote when combined, while none of the sheets leaks information
on its own. The voters keep one sheet and verify their ballot by comparing it
with a copy posted on the bulletin board. The use of visual cryptography was
later found to be non-essential and the original system was simplified in a way
that obviates the visual cryptography part, [22].

1.2 Our Results

In this work we tackle the problem of scaling the privacy guarantee in code
verification voting systems without requiring any secret-keys on the PC side. Our
approach to achieve this is by increasing the number of feedback messages back
to the voter in order to enable the distribution of the messenger functionality.
The main challenge of this approach is to maintain human verifiability: to solve
this we provide new techniques that are based on either a simple mathematical
calculation that the voter is supposed to execute or a novel visual cryptography
technique that we call visual sharing of shape descriptions and is detailed below.

In general we follow the same initial setup as the voting systems of [14,10,16],
i.e., the voter interacts with her PC to generate an encrypted vote. This vote
however, is transmitted to a set of voting servers: in our scalable system we
need not distinguish between types of servers as in previous protocols — all
of our servers behave in identical fashion. The voting servers provide feedback
to the user through an untappable channel (as the single messenger did in the
previous protocols cited above). Each feedback by itself carries no information
that can be tied to a specific voter choice. Nevertheless, the voter is able to
validate her vote by appropriately synthesizing the feedback she receives from
the servers. We consider the cases where the feedback may be the vote itself, a
visual representation of the vote (explained below) or a voter dependent security
code. In the latter case it is also required to have another out-of-band channel for
the distribution of the security codes (as in [14,11,4]). The first two cases though,
highlight a unique feature of our methodology: since there is a set of voting
servers that each one of them is incapable of extracting something useful from

4 A. Kiayias and A. Orfanou

the feedback they return to the voter, it is actually possible for the synthesized
feedback to be the actual vote that was casted.

We give two constructions that address the problem of human verifiability
(via the synthesis of the voting server feedback messages). In the first case we
assume that the voter is capable of executing addition of decimal numbers, i.e.,
the voter should be capable of verifying that, e.g., the two-digit decimal numbers
32 and 92 sum up to a number that ends in 44. While for some people this may
be an easy task, it can be argued by some that it is a tall order for the general
population who may not be accustomed to perform mathematical calculations.
For this reason we introduce an entirely different technique that is related to
(but distinct from) visual cryptography and may be of independent interest.

A visual sharing of shape descriptions is a way to perform secret-sharing of a
set of shape descriptions. For example a shape description can be the following:
“a full circle.” In this setting the voter may be given two or more images and
we assume that she is capable of deciding (in her mind) whether the overlay
of the images matches the shape description she is given. In the case of a full
circle, for example, a question that the voter is assumed to be able to answer

is the following: does the overlay of and amount to a full circle? In
our second vote verification protocol the voter validates the PC operation by
answering queries such as this one.

We present our protocols for the case that the voting server feedback synthe-
sizes back to the actual vote, however, as mentioned, our protocols can be easily
adapted to the code verification setting (as in [14,11]). In this setting a code
generation phase takes place before the elections and the codes are sent to the
voter through an out-of-band communication channel (called the pre-channel
that for instance is paper mail sent ahead of the elections). Then, the voting
servers will obtain a share of the code that corresponds to the submitted vote
and will forward it, through another out-of-band channel (the post-channel), to
the voter as feedback that will be synthesized as above using our techniques.
An attacker may view the contents of at most one of these channels, in order to
guarantee privacy.

2 Cryptographic Preliminaries and Tools

Public Key Cryptosystem. A public key cryptosystem is a triple of algo-
rithms 〈Gen,Enc,Dec〉. The randomized Gen algorithm on input the security
parameter 1k outputs a secret/public key pair (pk, sk) ← Gen(1k). The Encpk
randomized algorithm on input pk, a message m and randomness r outputs a
ciphertext c = Encpk(m, r). The deterministic Decsk algorithm on input sk and
a ciphertext c ∈ C outputs a message m′ = Decsk(c). For a correct encryption
scheme it holds that if (pk, sk)← Gen(1k) then Decsk(Encpk(m, r)) = m.

The ElGamal cryptosystem works over a finite cyclic group Gq of prime order
q, generated by 〈g〉. Gen selects a secret key sk ← Zq and sets pk = gsk.
A message m ∈ G is encrypted as 〈c1, c2〉 = Encpk(m, r) = 〈m · pkr, gr〉,
with randomness r ∈ Zq. On input 〈c1, c2〉 the decryption algorithm outputs

Scaling Privacy Guarantees in Code-Verification Elections 5

m′ = Decsk(〈c1, c2〉) = c1/c
sk
2 . The cryptosystem is multiplicatively homomor-

phic as for all m1,m2, r1, r2 ∈ Zq it holds that Encpk(m1, r1) · Encpk(m2, r2) =
Encpk(m1 · m2, r1 + r2). An additively homomorphic variant is derived if we
encrypt gm instead of m. The ElGamal cryptosystem is IND-CPA secure under
the decisional Diffie-Hellman assumption.

Commitments. A commitment scheme is a triple of algorithms 〈Gen,Com,
Open〉. The randomized Gen algorithm on input 1k outputs a public key h.
The randomized Comh algorithm on input h, a message m and randomness r
and outputs a commitment c = Comh(m, r). The Open algorithm on input a
commitment c and the de-commiting values m, r verifies that c = Comh(m, r).
A commitment scheme satisfies the statistically hiding property if the distribu-
tions of commitments for two different messages are indistinguishable. It satisfies
the computationally binding property if any polynomial-time adversary cannot
open a commitment to two different values with non-negligible probability. The
Pedersen commitment scheme [21] works over a finite cyclic group Gq of prime
order q generated by 〈g〉. The message and randomness space is Zq and the ci-
pherspace Gq. Gen(1k) outputs a key h = gα for α← Zq and algorithm Comh,
on input m, r ∈ Zq outputs c = gmhr. The scheme is statistically hiding and
computationally binding under the decisional Diffie-Hellman assumption.

Signatures. Adigital signature scheme is a triple of algorithms 〈Gen, Sign, V er〉.
The randomizedGen algorithmon input 1k outputs a verification/signing key pair
(vk, sk)← Gen(1k). The randomized Signsk algorithm on input the signing key
sk, a messagem and randomness r outputs a signature σ = Signsk(m, r) and the
V ervk algorithm, on input the verification key vk, a message m and a signature
σ accepts the signature as valid or rejects it. Security for signatures is defined as
existentially unforgeability against chosen message attack (EUF-CMA), stating
that no polynomial forger can produce a valid signature for a message that he has
not seen before, assuming black box access to a signing oracle. For our purposes
we rely on any EUF-CMA signature scheme and we assume the existence of a pub-
lic key infrastructure that can be used to digitally sign messages. All participants
of the protocol, i.e. the voter’s PCs and the online voting servers, are assumed to
support these operations.

Proofs of Knowledge. A proof of knowledge is a communication protocol
between two entities, a Prover and a Verifier. The prover possesses a valid witness
w for a publicly known predicate R, such that R(w) = 1 and wants to convince
the verifier without revealing the witness. A special case of proofs of knowledge
are the 3-message Σ-protocols whose communication transcript is of the form
〈com, chl, ans〉. The prover makes the first step to send a commitment com to
the verifier. The response of the verifier is a randomly chosen challenge chl.
The prover terminates the protocol by sending an answer message ans and the
verifier checks the validity of some conditions. Any Σ-protocol can be made
non interactive in the random oracle model by using the Fiat-Shamir heuristic
[8]. The techniques of [6] allow us to produce conjunctions and disjunctions of
Σ-protocols that satisfy special soundness and honest-verifier zero-knowledge.

6 A. Kiayias and A. Orfanou

The well known Schnorr protocol for proving knowledge of a discrete loga-
rithm forms the basis of all necessary proofs of knowledge we discuss. Bit com-
mitment proofs of the form pk(r | hr = C ∨ hr = (C/g)), for Pederesen
bit commitments C on a public key h, are an immediate consequence of the
disjunctions of Schnorr protocols, known as Schnorr “OR” proofs. The proof
pk(α, r1, r2 | C1 = gαhr1

1 ∧ C2 = gαhr2
2) that two Pedersen commitments C1, C2

over the public keys h1, h2 hide the same value α, is also derived from Schnorr’s
protocol. By employing the techniques of [6] the previous proof can be gener-
alized to “OR” proofs for the statement pk(α, β, r1, r2 | C1 = gαhr1

1 ∧ C2 =
gβhr2

2 ∧ (α = β ∨ α = β + u ∨ . . . ∨ α = β + λu)), stating that the hidden
values α, β of the two commitments satisfy the relation α = β + iu, for some
i ∈ {0, . . . , λ} and a publicly known value u.

Finally range proofs are proofs of knowledge showing that a committed value
x in a commitment C lies in a specific range of values, such as [0,m − 1], for
m ≥ 2. For Pedersen commitments such a proof will be denoted as pk(α, r | C =
gαhr ∧ x ∈ [0,m − 1]). For the purposes of our protocol we employ the
range proof from [17]. Alternatively one could use any efficient range proof
in exponents, like the generalization of [17] presented in [3]. The proof mod-
ifies the classic bit-length range proof of [18] to arbitrary ranges. The proof

of [17] writes number α ∈ [0,m − 1] in the form α =
∑�log2(m−1)�

j=0 μjHj ,

where Hj = 	(m − 1 + 2j)/2j+1
 and μj ∈ {0, 1}. Then it commits to all
values μj and uses bit commitment proofs to show that μj ∈ {0, 1}, requir-
ing k = 	log2(m − 1)
 + 1 single bit proofs. For small values of m the proof
remains efficient for our purpose. Both the prover and the verifier precompute
the coefficients Hj and the verifier can confirm that the committed values μj

represent α by checking that gα =
∏k−1

j=0 (g
μj)Hj .

The Communication Channels. We require the existence of secure commu-
nication channels for vote verification. We use the term “untappable channel”
to refer to a private channel that prevents an adversary from intercepting sent
messages, keeping the information sent through this channel perfectly secret to
all other parties. We assume the existence of an one-way untappable channel
from the voting servers to the voter to transfer the receipts. This channel can be
viewed either as a unique untappable channel used by all servers, or alternatively
as a set of communication channels (one from each server to the voter) requiring
that one of them should be untappable. Two channels are referred as “a pair of
out-of-band communication channels” when they are both secure, authenticated
and independent of the PC. In our case we will need a channel from the elec-
tions authorities to the voters for receipt distribution and a channel from the
voting servers to the voters for verification. For both “out-of-band” channels we
prohibit the attacker from modifying their contents. However we may allow the
attacker to read the contents of at most one of these channels. We also require
the existence of a broadcast channel between the PC and the voting servers,
where the PC posts public information required by them.

Scaling Privacy Guarantees in Code-Verification Elections 7

3 The Vote Verification Protocol

The Security Model. We define the notion of security of our scheme in terms
of privacy and integrity. Throughout our discussion we refer to malicious enti-
ties. In our setting a malicious PC wants to violate integrity by modifying the
vote. We recall that privacy is not relevant against such an attacker, since the
PC knows the vote. A set of malicious (honest but curious) voting servers want
to violate privacy by learning the vote, as by their construction they cannot al-
ter encrypted submitted ballots. We ask that the following requirements are met:

Cast as intended: We consider the following game between two entities, an ad-
versary A and an honest challenger C: We give A access to the public keys PK
and the voter identities ID, and in the code verification setting to the verification
codes CS possessed by the voters. A picks a voter V from the ID set, corrupts
her PC and lets V cast a ballot for candidate x. Then C runs the whole voting
protocol and outputs the encryption of a vote E, the secret receipt R and the
public auxiliary information Pub of the protocol. Let Q be a predicate that on
input the receipt R and the public information Pub outputs 1 iff R is consistent
with Pub. In the code verification setting the codes CS are also part of Q’s in-
put, whose output is 1 iff all its input arguments are consistent. A wins the game
if Q(R,Pub, (CS)) = 1 and Decsk(E) �= x. A voting protocol with receipts sat-
isfies the “cast as intended” property if it holds that Pr[A(PK,Pub, ID, (CS))
wins] ≤ ε(k), where ε(k) is a negligible function in the security parameter k.

(t, n)-Vote secrecy: We consider the following game between an adversary A
and an honest challenger C: We give A have access to the public keys set PK,
to the voter identities ID and, in the code verification setting, to the codes CS
possessed by the voters. A picks and corrupts t < n out of n servers. A picks a
voter identity from the ID set and two candidates x0, x1 of his choice and gives
them to the challenger. Then C runs the vote casting by picking at random
a bit b ← {0, 1} and encrypting message xb as E = Encpk(xb). Then C runs
the voting protocol and outputs the encrypted vote E, the secret receipt R and
all other auxiliary public information and secret information Pub, Sec, sending
E,Pub and the appropriate share of Seci to server Si. A in possession of Pub
and the private values {Seci}i∈[j1,...,jt] of t compromised servers, outputs a bit
b∗. A wins the game if b∗ = b. A voting protocol satisfies “(t, n)-vote secrecy” if
it holds that Pr[A(PK,Pub, ID, (CS), E, {Seci}i∈[j1,...,jt]) wins] ≤ 1/2 + ε(k),
where ε(k) is a negligible function.

As we mentioned before, our solution focuses only on the vote submission
phase, like previously suggested protocols [14,16]. The final stage of tallying is
considered a separate procedure and correct tallying can be guaranteed by em-
ploying a suitable protocol. To address coercion one may allow revoting. How-
ever, similarly to previous approaches [14,11,16], this clashes with the cast as
intended property since there is no means to guarantee that the servers will send
to the tallier the most recent vote submitted by a voter. We note that in case of
a wrong receipt we accuse the PC of being malicious (since it is assumed to be
the most vulnerable component). Note that if the voting servers’ goal is to break

8 A. Kiayias and A. Orfanou

privacy, sending wrong receipts will not be useful to them. Still if a server wants
to disrupt the election it can create confusion by not issuing receipts, however a
voter that verifies her vote will notice that an error has occurred.

3.1 Instantiation of the Vote Verification Protocol

We are now ready to describe the vote verification protocol. Let n ≥ 2 be the
desired number of voting servers and M be the set of m candidates that partic-
ipate in the elections, represented as globally known elements in Zm. Moreover
let Gq be a subgroup of Zp of prime order q over which we implement ElGamal
encryption and Pedersen commitments. Our message space is Zu, where u is
an additional system parameter. Specifically u is chosen so as to facilitate the
vote reconstruction and verification by the voter. We set u = minλ 10

λ such
that m ≤ 10λ < q. As we consider small scale elections with at most a few
hundred options in total, typical values for u will be 100 or 1000. By this trick
we avoid the modular additions that would be otherwise required by the vote
verification step of the voter, which is simplified to addition of λ-digit decimal
numbers. By introducing n voting servers (2 ≤ n < q), the voter needs to add
the corresponding n numbers.

Let us consider the ElGamal key pairs (pkt, skt) of the tallier and the commit-
ment scheme (g, h) that are generated in a key generation phase prior to the elec-
tions. During vote submission a voter casts her ballot through her PC voting for
candidate x ∈ Zm. Then the PC splits the vote by picking n − 1 random shares
x1, . . . , xn−1 ∈ Zu and adjusting xn such that x =

∑n
i=1 xi mod u. The PC com-

putes the commitments (C1, . . . , Cn) = (gx1hr1 , . . . , gxnhrn) to the shares and
sends them, through the broadcast channel, to the voting servers S1, . . . , Sn along
with the encrypted vote Et = (Ex, Et) = (gxpkrt , g

r). The PC needs to prove in
zero knowledge that the shares and the vote satisfy the relation x =

∑n
i=1 xi mod

u, and opens the commitment Ci to server Si who verifies its validity. In addition
the PC needs to prove that the encrypted candidate corresponds to a valid value
in the range [0,m− 1]. By this we prevent a malicious PC from submitting forged
ballots of the form y = x+ ku that would yield a correct receipt modulo u.

The PC prepares a non-interactive witness indistinguishable proof of knowl-
edge of the above statements denoted as π = PK(x, r, {xi, ri}ni=1 | Ex = gxpkrt
∧ x ∈ [0,m − 1] ∧ {Ci = gxihri}ni=1 ∧ x =

∑n
i=1 xi mod u), using standard

variations of the Schnorr proof and adapting the techniques of [6]. We note that
the proof requires that n · u < q to work properly. From the results of [6] it
follows that the proof satisfies correctness, special soundness and honest veri-
fier zero knowledge, however we provide a security proof in appendix D. In our
instantiation we will use the non-interactive version of the proof by using the
Fiat-Shamir heuristic [8]. Each online server Si verifies the proof π, decrypts
and obtains the share xi and verifies compatibility with commitment Ci. Upon
successful verification of all these steps, the server sends the value xi through the
untappable channel to the voter who verifies the vote by performing a regular
addition with possible carry drop beyond the most significant digit (x =

∑n
i=1 xi

mod 10λ). In this protocol we allow re-voting as a measure against vote coercion.

Scaling Privacy Guarantees in Code-Verification Elections 9

The Proof of Knowledge π: Public Input: 〈p, q, g, u〉 the system parameters,
h, pkt the commitment key and the tallier’s public key, m the number of candi-
dates and k = 	log2(m− 1)
+1, Et = (Ex, Er) = (gxpkrt , g

r), {Ci = gxihri}ni=1.
Prover’s Input: x, r, {xi, ri}ni=1.

1. The Prover:
(a) Range proof: For j = 0, . . . , k − 1 computes μj ∈ {0, 1} s.t. x =∑k−1

j=0 μjHj where Hj = 	((m− 1) + 2j)/2j+1

(b) Range proof: For j = 0, . . . , k − 1:

i. Picks zj ← Zq s.t.
∑k−1

j=0 zjHj = r.

ii. Commits to μj as Ej = gμjpk
zj
t .

iii. If μj = 0 it picks wj , c2j , ρ2j ← Zq and sets y1j = pk
wj

t , y2j =
pk

ρ2j

t (Ej/g)−c2j .
iv. if μj = 1 it picks wj , c1j , ρ1j ← Zq and sets y1j = pk

ρ1j

t (Ej)−c1j ,
y2j = pk

wj

t .

(c) Valid shares: If
∑n

i=1 xi = x + (i − 1)u mod q, with i ∈ {1, 2, . . . , n},
it picks w, ρa, ρb, {cj, sj , ρ′1j , ρ′2j}j �=i ← Zq and sets ai = gwpkρa

t , bi =

gwhρb , {aj = (Ex)
−cjgsjpk

ρ′
1j

t , bj = (
∏n

l=1 Cl/g
(j−1)u)−cjgsjhρ′

2j}i�=j .

(d) It sends ({ai, bi}ni=1, {Ej, y1j , y2j}k−1j=0) to the Verifier.
2. The Verifier picks c← Zq and sends it to the Prover.
3. The Prover:

(a) Range proof: For j = 0, . . . , k − 1:
i. If μj = 0 it sets c1j = c− c2j , ρ1j = wj + c1jzj .
ii. if μj = 1 it sets c2j = c− c1j , ρ2j = wj + c2jzj .

(b) Valid shares: If
∑n

i=1 xi = x+ (i− 1)u mod q, with i ∈ {1, 2, . . . , n}, it
sets ci = c−∑

i�=j cj , si = w+xci, ρ
′
1i = ρa+rci, ρ

′
22 = ρb+(

∑n
l=1 rl)ci.

(c) It sends ({ci, si, ρ′1i, ρ′2i}ni=1, {c1j, c2j , ρ1j , ρ2j}k−1j=0) to the Verifier.
4. The Verifier accepts if all the following tests succeed, otherwise it rejects:

(a) Range proof: For j = 0, . . . , k − 1: c = c1j + c2j and pk
ρ1j

t = y1j(Ej)c1j
and pk

ρ2j

t = y2j(Ej/g)c2j .
(b) Range proof: Ex =

∏k−1
j=0 EjHj .

(c) Valid shares: c =
∑n

i=1 ci and for i = 1, . . . , n : gsipk
ρ′
1i

t = ai(Ex)
ci and

gsihρ′
2i = bi(

∏n
l=1 Cl/g

(i−1)u)ci .

The Vote Verification Protocol: Let M be the set of m candidates, n the
number of servers, (pkSi , skSi), (pkt, skt) be the public/secret key pairs of server
Si (i = 1, . . . , n) and the tallier respectively, (skV , vkV) and (sgSi , vkSi) be the
signing/verification key pairs of voter V and server Si, h the commitment public
key and 〈p, q, g, u〉 the system parameters.

– The voter V:
1. Submits a vote for candidate x ∈ Zm.
2. Waits for shares x1, . . . , xn from the servers and checks that x = x1 +
· · ·+ xn mod u.

– The PC (skV , pkt, {pkSi}ni=1) on input x by the voter:

10 A. Kiayias and A. Orfanou

1. Picks x1, . . . , xn−1 ← Zu and sets xn = x−∑n−1
j=1 xj mod u.

2. Picks r← Zq and encrypts x as Et = (Ex, Er) = Encpkt(g
x, r).

3. For alli = 1, . . . , n picks ρi, ri, r
′
i ← Zq and encrypts xi as ei = EncpkSi

(xi, ρi) and commits to it as Ci = gxihri . Then it encrypts the random-
ness ri as Ri = EncpkSi

(ri, r
′
i).

4. Prepares the non interactive proof π = PK(x, r, {xi, ri}ni=1 | Ex =
gxpkrt ∧ {Ci = gxihri}ni=1 ∧ x =

∑n
i=1 xi mod u ∧ x ∈ [0,m− 1]).

5. Signs the vote σ = SingskV (Et, π).
6. For all i = 1, . . . n sends to Server Si Di = (ei, Ri) and sends B =

(Et, {Cj}nj=1, π, σ, V) through the broadcast channel to all servers.

– The Server Si (sgSi , skSi , vkV) on input Di, B performs the following tests.
If any step fails it declares a forgery and stops:
1. Decrypts the de-committing values of Di to obtain ri, xi, verifies the

valid opening of Ci = gxihri and that xi ∈ Zu.
2. Verifies the proof π and the signature σ.
3. Signs the vote Et, σ

′ = SignsgSi
(Et), stores it and sends xi to the voter

V through the untappable channel.
– The Tallier: When the election is over the tallier gets the signed votes from

a sever, verifies the server’s signatures and runs a decryption protocol.

3.2 Security and Performance

We now discuss the security offered by the vote verification protocol. We guaran-
tee that the protocol meets our security requirements in the corruption scenario
where the voter’s PC is corrupted or a subset of t ≤ n−1 out of n voting servers
are honest-but-curious, i.e. they follow the protocol but share their information
with the attacker. We state that if a voter successfully verifies her vote and does
not revote, then we guarantee that the vote was cast as intended and remains
secret from the voting servers.

Cast as intended: In order for a corrupted PC to succeed in submitting a mes-
sage x′ ∈ Zq instead of a valid candidate x ∈ [0,m− 1] selected by the voter, it
must be the case that the receipts are equal, that is x = x′ mod u. Thus x′ must
be of the form x′ = x+ ku mod q, for a k ∈ Z. Since we assume the execution of
the voting protocol by the honest challenger all voting servers check that they
receive compatible values in the correct range. Then the range proof guarantees
that x′ ∈ Zm ⊂ Zu, and thus k = 0 giving us x′ = x mod q.

(t, n)-Vote secrecy: Without loss of generality assume that the adversary controls
the first t < n servers and let x0, x1 ∈ [0,m− 1] be the candidates chosen by the
adversary and given to the voting system. The challenger choses b from {0, 1} and
generates the n shares xb1, . . . , xbn ∈ Zu, forming the receipt xb =

∑n
i=1 xbi mod

u. The adversary obtains the the private shares xb1, . . . , xbt of the receipt and the
publicly announced vales Ci = gxbihri for all i = 1, . . . , n and E = (gxbpkr, gr).
Since we use a (n, n)-secret sharing scheme the adversary needs all n shares to
reconstruct the receipt, while with fewer he obtains a random value

∑t
i=1 xbi

mod u in Zu. From the statistically hiding property of Pedersen commitments

Scaling Privacy Guarantees in Code-Verification Elections 11

and ElGamal encryption it is guaranteed that he cannot distinguish between
x0, x1 from E or from the commitments Ci, for i = 1, . . . , n.

We cannot guarantee security against coalitions of malicious computers and
malicious voting servers, as in this scenario the malicious voting servers triv-
ially learn the vote from the PC. The PC submits a fake ballot undetected as
long as it collaborates with one malicious server who deviates from the protocol
and sends a modified value to the voter so that she reconstructs a correct receipt.

Complexity. We calculate the complexity of the n-server protocol, (2 ≤ n < q)
for m candidates, counting the number of the online exponentiations, signings
and signature verifications. Values that can be pre-computed like Hj for the
range proofs, the votes gx and the values giu that appear in the proofs are not
counted. The PC performs 6n+2 exponentiations for vote encryption and com-
mitments to the shares, 4k for the range proof and 5(n − 1) + 3 for the valid
share proof, a total of 4(log2(m − 1)
 + 1) + 11n exponentiations. In addition
it performs a single signing. Each server Si performs 4 exponentiations for de-
cryptions and commitment verifications, 5k for verifying the range and 5n for
verifying the valid shares, a total of 5(log2(m−1)
+1)+5n+4 exponentiations.
Additionally the sever performs one signing and one signature verification.

3.3 Instantiation of a Code Verification Protocol

With a simple adaptation our protocol can be transformed to use voter depen-
dent security codes as receipts, relaxing the untappable channel requirement.
Following the approach of [14,10,16], we assume a code generation phase before
the elections and we use a pair of out-of-band channels, a pre-channel for code
delivery to the voters and a post-channel for sending the receipts to the voters.

We sightly change the protocol by creating the security codes through an one-
time pad scheme. For each voter V we pick a random value bV ∈ Zu and set
CodeV [x] = x + bV mod u , for all candidates x. We also pick n − 1 random
values bV1 , . . . , bVn−1 ∈ Zm and set appropriately bVn such that

∑n
i=1 bVi = bV .

We send through the pre-channel the pairs (x, codeV [x]) to the voter V . Also the
pairs (V, bVi) need to be given to each server Si. The voting protocol remains
the same, except for the servers’ last step, where they send αi = xi + bVi mod u
through the post-channel. Finally the voter reconstructs the security code as
c =

∑n
i=1 αi =

∑n
i=1 xi + bVi = x+ bV and compares it to the value CodeV [x].

We do not allow revoting as the security of the one-time pad scheme collapses
otherwise. The protocol has the same security guarantees with the vote verifica-
tion protocol and additionally an observer of the pre-channel gets no information
about the voting process and an observer of the post-channel gets no information
about the vote x from the code c = x + bV mod u, due to the perfect secrecy
of one-time pad. To allow revoting we should use an untappable post-channel.
Although in this case we do not relax the untappable channel assumption, voter-
dependent receipts can still be useful as a means against coercion.

12 A. Kiayias and A. Orfanou

4 A Visual Vote Verification Protocol

In this section we introduce visual vote verification. This method enables the
generation of visual receipts that even though individually leak no information
about the submitted vote, overlaying them enables the verification of it. Even
though the notion is general, here we will consider the case of two voting servers
and an untappable channel to forward the receipts, allowing revoting.

First we introduce a formal cryptographic primitive that we call n-Visual
Sharing of Shape Descriptions (n-VSSD). The main idea is that each voter choice
will correspond in a unique way to a certain shape. Shapes can be split in n
different parts, without revealing information about the initial image; still a
person can easily verify that the parts overlay back to the shape. Using a VSSD
we show how visual vote verification can be facilitated. Due to lack of space the
proofs of this section can be found in appendix B.

The n-VSSD. Let M be the set of m ≥ 2 distinct messages which we want to
represent visually and share in n ≥ 2 different parts. Let Dx be the set of visual
descriptions for message x ∈ M (we note that we allow each message to have
more than one visual representation, i.e., |Dx| ≥ 1). Also let Λ be a commutative
semigroup equipped with an operation ∨ that will be called the visual alphabet.
The splitting function is a probabilistic function P : M → Λn, that given a
message m ∈ M outputs a valid “splitting” of it, consisting of n shares in Λ.
Then we ask for the following properties:

– Solvability: ∀x ∈M ∀〈v1, . . . , vn〉 ∈ P (x) it holds that ∨n
i=1vi ∈ Dx.

– (t, n)-Resilience: Let w be an n-tuple of the form 〈(A∪{#}), . . . , (A∪{#})〉,
where the symbol # represents a share of unknown value in Λ and A rep-
resents known shares in Λ, such that w has t < n known shares A (i.e.,
different than #). Then there is a constant 0 < c < 1 such that for all w of
the previous form it holds that Probv←P (x)[w ∈ v] = c.

The solvability property corresponds to correctness, requiring the correct recon-
struction of a visual description of the initial message from all its n shares. The
(t, n)-resilience property corresponds to threshold security, stating that any ob-
server in possession of t or less shares of an image cannot distinguish between
the initial message they may belong to, as the ordered t shares can be part of
any message with equal probability.

4.1 A 2-VSSD Instantiation

Let us first consider two shape descriptions: full circle and half circle. These two
shape descriptions can be visually represented by a completely black circle and
by a circle that is half white in its left or right part. We can correspond these
two shapes to a set of messages M = {0, 1} say, such that, 0 corresponds to
full circle and 1 corresponds to half circle. Next we define the visual alphabet
Λ to contain two half circles as defined above: half white in the left and half
white in the right part. Observe now that P (0) may contain any pair of the two

Scaling Privacy Guarantees in Code-Verification Elections 13

complementary elements from Λ, while P (1) may contain any pair of elements
from Λ where the same half circle appears twice.

As bitstrings, we can denote the full circle by 11, while the half-circle by 10
or 01, thus having D0 = {11} and D1 = {01, 10}. Our alphabet is Λ = {01, 10}
and the operation ∨ is the bitwise OR operation in the elements of Λ applied
coordinate-wise. In this case the message corresponding to a shape bb′ ∈ ∪x∈MDx

can be simply recovered as x = b ⊕ b′ (where ⊕ stands for the x-or operation).
The splitting function is then defined as follows: P (0) is uniformly chosen from
{(10, 01), (01, 10)} while P (1) is uniformly chosen from {(01, 01), (10, 10)}.
Proposition 1. Let M = {0, 1}. The (M, {Dx}x∈M , Λ, P) scheme defined above
is a 2-VSSD that satisfies (1, 2)-resilience.

A Scheme for Arbitrary M . Let the set M be an arbitrary set of size
m ≥ 2 (corresponding, say, to m different election candidates). Without loss
of generality consider M = Zm. Let 〈M∗, {D∗x}x∈M∗ , Λ∗, P ∗〉 be the 2-VSSD
defined above and k = 	log2(m − 1)
 + 1. Let Λ = {10, 01}k and let ∨ be the
bitwise OR operation. We next need to determine the visual description set Dx

and the splitting function P (x) for each x ∈ M . Let (bk−1 . . . b0) ∈ {0, 1}k be
the binary encoding for a message x ∈ M . We define the set Dx by processing
each bit bj ∈ M∗ = {0, 1} of x separately and independently from the others.
Specifically a bitstring (dk−1 . . . d0) is in Dx iff for all j = 0, . . . , k− 1 dj ∈ D∗bj .
Similarly the function P (x) applies in each bit of x the splitting function P ∗

such that the tuple (ak−1 . . . a0, a′k−1 . . . a
′
0) is in P (x) iff for all j = 0, . . . k − 1

(aj , a
′
j) ∈ P ∗(bj). We provide a detailed example in appendix A.

message bit shape description visual split 1 split 2

0 full circle (10,01): (01,10):

1 half circle or (01,01): (10,10):

Fig. 1. The 2-VSSD for M∗ = {0, 1} with visual alphabet Λ∗

Proposition 2. For any m ∈ N, the scheme (M = Zm, {Dx}x∈M , Λ, P) defined
above is a 2-VSSD that satisfies (1, 2)-resilience.

4.2 Instantiation of the Visual Vote Verification Protocol

Let us proceed to the visual vote verification protocol that uses the above 2-
VSSD. As usual the voter votes for candidate x through her PC, which encrypts
it for the tallier. It also generates the visual shares P (x) = (v1, v2) that yield the
visual description v0 = v1 ∨ v2, with v0 ∈ Dx. The PC prepares a proof of com-
patibility of the visual description, the shares and the vote: It commits through
Pedersen commitments C0j , C1j , C2j to each bit j = 0, . . . , 2k − 1 of v0, v1, v2
respectively, and proves the validity of bit commitments. Moreover it proves that

14 A. Kiayias and A. Orfanou

the splitting is valid, i.e. that for each bit j v0j = v1j ∨ v2j . To do so we observe
that the latter is true if and only if the commitment Cj = (C1j)(C2j)

2(C0j)
3

hides a value in {0, 4, 5, 6}. In addition the PC proves that v0 = (v02k−1
v02k−2

. . .
v01v00) is a valid visual description of x, i.e. v0 ∈ Dx. That is for each bit bj ,
j = 0, . . . , k − 1 in the binary encoding of x, it holds that bj = v02j+1 ⊕ v02j =
v02j+1 + v02j mod 2. Since we have proved that all values v0j are bits and for
all j = 0, . . . , k − 1 (v02j+1v02j) ∈ ∪x∈M∗D∗x, i.e. (v02j+1v02j) ∈ {01, 10, 11}, the
latter relation is equivalent to proving that bj = 2− v02j+1 − v02j . Thus we prove
knowledge of the value x in the encryption Ex and then prove that the com-

mitment
∏k−1

j=0 (
g2

C02j+1
·C02j

)2
j

also hides the same value x. The full interactive

proof of knowledge is denoted as π′ = PK(x, ρ, {(vij , rij)i=0,1,2}2k−1j=0 | {(Cij =

gvij hrij)i=0,1,2}2k−1j=0 ∧ ({(vij)i=0,1,2}2k−1j=0 ∈ {0, 1}) ∧ (v1j + 2v2j + 3v0j ∈
{0, 4, 5, 6})2k−1j=0 ∧ Ex = gxpkρt ∧ (x =

∑k−1
j=0 (2 − v02j+1 − v02j)2

j)). Due to
lack of space its full description is given in appendix C. For our protocol we will
use the non-interactive version by the Fiat-Shamir heuristic. Its security follows
from the results of [6], however we provide a proof in appendix D.

Each server Si (i = 1, 2) needs to verify the proof π′ and the validity of the
share vi. The servers store the shares vi for all vi ∈ Λ, as well as their cor-
responding images that will be sent back to the voters. Let ṽi be the number
whose binary encoding is the bitstring vi = (vi2k−1

vi2k−2
. . . vi1vi0) ∈ Λ, i.e.

ṽi =
∑2k−1

j=0 vij2
j . Each server Si stores a database of all valid shares vi ∈ Λ

and their images, indexed by the corresponding value ṽi. By this construction
we do not need to open all bit commitments {Cij = gvij hrij }2k−1j=0 of the bits
of vi to server Si, in order to verify the validity of the share. Instead the PC
can open to server Si a single commitment C′i =

∏2k−1
j=0 (Cij)

2j as gṽihρṽi with

ρṽi =
∑2k−1

j=0 rij2
j, so that the server can verify that the bit commitments Cij

correspond to a valid share vi. We note that ṽi needs to be in Zq so we should
have 22k − 1 < q. If all verifications are successful the server Si sends the image
indexed by ṽi to the voter through the untappable channel.

The Visual Vote Verification Protocol: Let M be the set of m candidates,
k = 	log2(m − 1)
 + 1, (pkSi , skSi), (pkt, skt) be the public/secret key pairs of
server Si (i = 1, 2) and the tallier respectively, (skV , vkV) and (sgSi , vkSi) be
the signing/verification key pairs of voter V and server Si, h the commitment
public key and 〈p, q, g〉 the system parameters.

– The voter V votes for candidate x through her PC and waits for the im-
ages from the voting servers. Upon receiving them she verifies that their
overlaying is a correct shape description for candidate x.

– The PC (skV , pkt, pkS1 , pkS2) on input x by the voter:
1. Generates a valid visual splitting (v1, v2) ← P (x) for candidate x and

its visual representation v0 = v1 ∨ v2 ∈ Dx.
2. Picks r, ρ← Zq and encrypts the vote Et = (Ex, Eρ) = Encpkt(g

x, ρ).
3. For each j = 0, . . . , 2k − 1 commits to the j-th bit of v0, v1, v2 as Cij =

gvij hrij for i = 0, 1, 2 and {rij}j=0,...,2k−1
i=0,1,2 ← Zq.

Scaling Privacy Guarantees in Code-Verification Elections 15

4. Let ṽ1, ṽ2 ∈ Zq be the values whose binary representation is v1, v2 ∈
{0, 1}2k. Then for i = 1, 2 the PC encrypts the opening randomness

ρṽi =
∑2k−1

j=0 rij2
j as Rvi = EncpkSi

(ρṽi , r
′
i), for r

′
i ← Zq and the values

ṽi as evi = EncpkSi
(ṽi, ri), for ri ← Zq.

5. Prepares the non-interactive proof of knowledge π′ = PK(x, ρ, {(vij ,
rij)i=0,1,2}2k−1j=0 | ((Cij = gvij hrij)i=0,1,2)

2k−1
j=0 ∧ ({(vij)i=0,1,2}2k−1j=0 ∈

{0, 1}) ∧ (v1j +2v2j + 3v0j ∈ {0, 4, 5, 6})2k−1j=0 ∧ (Ex = gxpkρt) ∧ (x =∑k−1
j=0 (2− v02j+1 − v02j)2

j).
6. Signs the encrypted message and the proof.
7. Sends to server Si, for i = 1, 2, Di = (evi , Rvi) and posts B = (Et,
{(Cij)i=0,1,2 }2k−1j=0 , π′, singskV (Et, π

′), V) to the broadcast channel.
– The Server Si (sgSi , skSi , vkV , 〈ṽi, vi, image(vi)〉vi∈Λ) on input Di, B per-

forms the following tests. If any step fails it declares a forgery and stops:
1. Verifies the voter’s signature and proof π′.
2. Decrypts evi , Rvi to obtain ṽi, ρvi , checks that ṽi is a valid entry in the

database 〈ṽi, vi, image(vi)〉vi∈Λ and checks that gṽihρṽi =
∏2k−1

j=0 (Cij)
2j .

3. Sends the corresponding image of vi ∈ Λ to the voter through the un-
tappable channel. It signs and stores the vote signsgSi

(Et).
– The Tallier: Obtains from a server the votes Et and runs a suitable protocol.

Security. Cast as intended: Let x be the vote submitted by the voter and x′

the forged vote such thatDecskt(Et) = x′. In order for x′ to create a valid receipt
v0 for x it should hold that v0 ∈ Dx, which implies that for all j = 0, . . . , k − 1
(v02j+1v02j) ∈ D∗bj where bj is the j-th bit of x, and thus v02j+1 ⊕ v02j = bj .

It follows that
∑k−1

j=0 (v02j+1 ⊕ v02j)2
j =

∑k−1
j=0 bj2

j = x. Since proof π′ guaran-

tees that Et and
∑k−1

j=0 (v02j+1⊕v02j)2
j hide the same value, we have that x = x′.

(1,2)-Vote secrecy: Without loss of generaltiy let the attacker control server S1

and let x0, x1 ∈ Zm be the candidates chosen by the attacker. The challenger
randomly selects and encrypts xb (b ∈ {0, 1}) and produces the shares (v1, v2) ∈
P (xb). The public commitments and encryptions do not reveal information to
the attacker, who neither extracts information from v1 since Prob[(v1,#) ∈
P (x0)] = Prob[(v1,#) ∈ P (x1)] from the (1, 2)-resilience property.

Complexity. The PC needs 10 exponentiations for encryptions and commit-
ments, 12k exponentiations for bit commitments and 44k+3 exponentiations for
generating the proof π′, a total of 56(log2(m− 1)
+1)+ 15 online exponentia-
tions and one signing. Each server Si does 4 exponentiations for decryptions and
commitment openings, 56k+5 for verifying π′ and k for checking the compatibil-
ity of the share and its bits, a total of 57(log2(m− 1)
+1)+9 exponentiations,
one signing and one signature verification.

Extensions. The 2-VSSD scheme we presented can be extended to n-VSSD in
a number of possible ways. We leave it as future work to determine which ones
might be more suitable for human verifiability. We also leave it as open question
to develop the case where resiliency is achieved for t > 1 but we conjecture that

16 A. Kiayias and A. Orfanou

it is possible to obtain a general n-VSSD (n > 2) with (t, n)-resilience for t > 1
using techniques that were developed for colored visual secret sharing [25].

References

1. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012)

2. Boneh, D., Golle, P.: Almost entirely correct mixing with applications to voting.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, pp. 68–77. ACM, New York (2002)

3. Chaabouni, R., Lipmaa, H., Shelat, A.: Additive combinatorics and discrete log-
arithm based range protocols. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 336–351. Springer, Heidelberg (2010)

4. Chaum, D.: Surevote. International patent WO 01/55940 A1 (2001)
5. Chaum, D.: Secret-ballot receipts: True voter-verifiable elections. IEEE Security &

Privacy 2(1), 38–47 (2004)
6. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-

plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

7. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

8. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

9. Gjøsteen, K.: Analysis internet voting protocol. Technical Report (2010),
http://www.regjeringen.no

10. Gjøsteen, K.: Analysis of an internet voting protocol. IACR Cryptology ePrint
Archive 2010:380 (2010)

11. Gjøsteen, K.: The norwegian internet voting protocol. In: Kiayias, A., Lipmaa, H.
(eds.) VoteID 2011. LNCS, vol. 7187, pp. 1–18. Springer, Heidelberg (2012)

12. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003)

13. Heather, J., Ryan, P.Y.A., Teague, V.: Pretty good democracy for more expressive
voting schemes. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 405–423. Springer, Heidelberg (2010)

14. Heiberg, S., Lipmaa, H., van Laenen, F.: On E-vote integrity in the case of malicious
voter computers. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 373–388. Springer, Heidelberg (2010)

15. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: Proceedings of the 11th USENIX Security
Symposium, pp. 339–353. USENIX Association, Berkeley (2002)

16. Lipmaa, H.: Two simple code-verification voting protocols. IACR Cryptology
ePrint Archive, 2011:317 (2011)

17. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg
(2003)

http://www.regjeringen.no

Scaling Privacy Guarantees in Code-Verification Elections 17

18. Mao, W.: Guaranteed correct sharing of integer factorization with off-line share-
holders. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 60–71.
Springer, Heidelberg (1998)

19. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

20. Andrew Neff, C.: A verifiable secret shuffle and its application to e-voting. In: Pro-
ceedings of the 8th ACM Conference on Computer and Communications Security,
CCS 2001, pp. 116–125. ACM, New York (2001)

21. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

22. Ryan, P.Y.A.: A variant of the chaum voter-verifiable scheme. In: WITS, pp. 81–88
(2005)

23. Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B., Malcolm,
J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp.
111–130. Springer, Heidelberg (2013)

24. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

25. Verheul, E.R., Van Tilborg, H.C.A.: Constructions and properties of k out of nvi-
sual secret sharing schemes. Des. Codes Cryptography 11(2), 179–196 (1997)

18 A. Kiayias and A. Orfanou

Appendix A

We provide an example of the visual description of a scheme with 4 candidates
along with the relevant splittings. The visual alphabet for this representation is
Λ = {01, 10}2.

Message Shape Dx P (x)

00 Two full
circles

(,) (,)

(,) (,)

01 Full circle
followed by
half circle

(,) (,)

(,) (,)

10 Half circle
followed by
full circle

(,) (,)

(,) (,)

11 Two half
circles

, (,) (,)

, (,) (,)

Fig. 2. Visual descriptions and splittings of 4 candidates

The depiction of the splittings along with the relevant shares exhibits the
solvability property, while for a randomly selected share w in Λ , say w =

, it holds that Prob[(,#) ∈ P (00)] = Prob[(,#) ∈ P (01)] =

Prob[(,#) ∈ P (10)] = Prob[(,#) ∈ P (11)] = 1/4, satisfying (1, 2)-

resilience. The same holds for the rest of the cases with w = , w = ,

w = and the symmetric case (#, w).

Appendix B

Proof of Proposition 1

Proof. For the message 0 the description set is D0 = {11} and possible splittings
are P (0) ∈ {(10, 01), (01, 10)}, and analogously for the message 1 D1 = {01, 10}
and P (1) ∈ {(01, 01), (10, 10)}.
Solvability: For message 0 we have 10∨ 01 = 11 ∈ D0 and 01∨ 10 = 11 ∈ D0.
Similarly for message 1, we have 01 ∨ 01 = 01 ∈ D1 and 10 ∨ 10 = 10 ∈ D1.

(1,2)-Resilience: The 2-tuples with one known and one unknown element
in Λ we need to consider are (01,#), (10,#), (#, 01), (#, 10). The function P

Scaling Privacy Guarantees in Code-Verification Elections 19

outputs one of the possible valid splittings uniformly at random and thus we
have Prob[(01,#) ∈ P (0)] = Prob[(01,#) ∈ P (1)] = 1

2 , Prob[(10,#) ∈ P (0)] =
Prob[(10,#) ∈ P (1)] = 1

2 and Prob[(#, 01) ∈ P (0)] = Prob[(#, 01) ∈ P (1)] = 1
2 ,

Prob[(#, 10) ∈ P (0)] = Prob[(#, 10) ∈ P (1)] = 1
2 .

Proof of Proposition 2

Proof. Solvability: Let (ak−1 . . . a0, a′k−1 . . . a
′
0) be a splitting in P (x). From

the construction of P for all j = 0, . . . , k−1 (aj , a
′
j) ∈ P ∗(bj) where bj is the j-th

bit of x. Then from proposition 1 for all j = 0, . . . , k−1 it holds that dj = aj∨a′j
is in D∗bj , which implies that (dk−1 . . . d0) ∈ Dx as requested.

(1,2)-Resilience: Let (ak−1 . . . a0,#k) denote the tuple with exactly one known
element (ak−1 . . . a0) in Λ = {01, 10}k. Thus for all j = 0, . . . , k − 1 aj = 01 or
aj = 10, i.e. aj ∈ Λ∗. Since the splitting function P (x) handles each bit bj of x in-
dependently from the others, we have that for all x ∈M Prob[(ak−1 . . . a0,#k) ∈
P (x)] = Prob[(ak−1,#) ∈ P ∗(bk−1)] × · · · × Prob[(a0,#) ∈ P ∗(b0)], where
bj ∈ M∗ is the j-th bit of x. Since from proposition 1 we have that for all
aj ∈ Λ∗ Prob[(aj ,#) ∈ P ∗(0)] = Prob[(aj ,#) ∈ P ∗(1)] = 1

2 we conclude that
for all x ∈M Prob[(ak−1 . . . , a0,#k) ∈ P (x)] = (12)

k as requested.
The case of (#k, ak−1 . . . a0) is symmetrical.

Appendix C

The proof π′: Public Input: 〈p, q, g〉, h, pkt, m, k = 	log2(m − 1)
 + 1, Et =
(Ex, Eρ) = (gxpkρt , g

ρ), {C1j = gv1j hr1j , C2j = gv2j hr2j , C0j = gv0j hr0j }2k−1j=0 .

Let d1 = 1, d2 = g4, d3 = g5, d4 = g6.
Prover’s Input: x, ρ, {v1j , r1j , v2j , r2j , v0j , r0j}2k−1j=0 .

1. The Prover:
(a) Bit proof: For j = 0, . . . , 2k − 1:

i. For i = 0, 1, 2 :
– If vij = 0 it picks wij , c2ij , ρ2ij ← Zq and sets y1ij = hwij ,

y2ij = hρ2ij (Cij /g)
−c2ij .

– Else if v1j = 1 it picks wij , c1ij , ρ1ij ← Zq and sets y1ij =
hρ1ij (Cij)

−c1ij , y2ij = hwij

(b) OR proof: For j = 0, . . . , 2k − 1:
i. If 1v1j+2v2j+3v0j = 0 (case 0∨0 = 0) set t = 1. If 1v1j+2v2j+3v0j =

4 (case 1∨ 0 = 1) set t = 2. If 1v1j +2v2j +3v0j = 5 (case 0∨ 1 = 1)
set t = 3. If 1v1j + 2v2j + 3v0j = 6 (case 1 ∨ 1 = 1) set t = 4.

ii. It picks wtj , {cλj , ρλj}λ�=t
λ=1,2,3,4 ← Zq and sets ytj = hwtj and {yλj =

hρλj (
(C1j

)(C2j
)2(C0j

)3

dλ
)−cλj}λ�=t

λ=1,2,3,4.

(c) It picks w, ρ1, ρ2 ← Zq and sets y1 = gwpkρ1

t , y2 = gwhρ2 .
(d) It sends (y1, y2), (y1j , y2j, y3j , y4j)

2k−1
j=0 ,((y1ij , y2ij)

2k−1
j=0)i=0,1,2 to the

Verifier.
2. The Verifier picks c← Zq and sends it to the Prover.

20 A. Kiayias and A. Orfanou

3. The Prover:
(a) Bit proof: For j = 0, . . . , 2k − 1:

– For i = 0, 1, 2 :
i. If vij = 0 it sets c1ij = c− c2ij , ρ1ij = wij + c1ijrij .
ii. Else if vij = 1 it sets c2ij = c− c1ij , ρ2ij = wij + c2ijrij .

(b) OR proof: For j = 0, . . . , 2k − 1:

– It sets ctj = c−(
∑λ�=t

λ=1,2,3,4 cλj) and ρtj = wtj+ctj(r1j +2r2j +3r0j).

(c) It sets s = w + cx, ρ′1 = ρ1 + cρ, ρ′2 = ρ2 − c(
∑k−1

j=0 (r02j+1 + r02j)2
j).

(d) It sends to the Verifier (s, ρ′1, ρ
′
2) , ((cλj , ρλj)λ=1,2,3,4)

2k−1
j=0 and ((c1ij ,

c2ij , ρ1ij , ρ2ij)
2k−1
j=0)i=0,1,2.

4. The Verifier accepts if all the following tests succeed, otherwise it rejects:
(a) For j = 0, . . . , 2k − 1:

i. Bit proof: For i = 0, 1, 2: c = c1ij + c2ij , h
ρ1ij = y1ij(Cij)

c1ij and
hρ2ij = y2ij(Cij/g)

c2ij .

ii. OR proof: c =
∑4

λ=1 cλj and for λ = 1, 2, 3, 4:

hρλj = yλj(
(C1j

)(C2j
)2(C0j

)3

dλ
)cλj .

(b) gspk
ρ′
1

t = y1(Ex)
c and gshρ′

2 = y2(
∏k−1

j=0 (
g2

C02j+1
·C02j

)2
j

)c.

Appendix D

Security Proof for Proof of Knowledge π

Proof. Completeness: Executing the protocol with an honest prover and a

honest verifier, we have that in step 4 condition (b) holds since
∏k−1

j=0 EHj

j =∏k−1
j=0 (g

μjpk
zj
t)Hj = g

∑k−1
j=0 μjHjpk

∑k−1
j=0 zjHj

t = gxpkrt = Ex.

Let i∗ be the value such that
∑n

i=1 xi = x+ (i∗ − 1)u. Then condition (c) holds
since

∑n
i=1 ci = c and for all i = 1, . . . , n with i �= i∗ we have that:

ai(Ex)
ci = ((Ex)

−cigsipkρ
′
1i

t)(Ex)
ci = gsipktρ

′
1i

and

bi(

n∏
l=1

Cl/g
(i−1)u)ci = (

n∏
l=1

Cl/g
(i−1)u)−cigsihρ′

2i(

n∏
l=1

Cl/g
(i−1)u)ci = gsihρ′

2i .

For i∗ it holds that:

ai∗(Ex)
ci∗ = (gwpkρa

t)(gxpkrt)
ci∗ = gw+xci∗pkρa+rci∗

t = gsi∗pk
ρ′
1i∗

t

and

bi∗(
n∏

l=1

Cl/g
(i∗−1)u)ci∗ = gwhρb(

n∏
l=1

gxlhrl/g(i
∗−1)u)ci∗ =

= gwhρb(g
∑n

l=1 xl−(i∗−1)uh
∑n

l=1 rl)ci∗ = gw+(
∑n

l=1 xl−(i∗−1)u)ci∗hρb+(
∑n

l=1 rl)ci∗ =

Scaling Privacy Guarantees in Code-Verification Elections 21

= gw+xci∗hρb+(
∑n

l=1 rl)ci∗ = gsi∗hρ′
2i∗ .

Finally condition (a) holds as for all j = 0, . . . , k − 1: c = c1j + c2j , and if
Ej = g0pk

zj
t , we have that:

y1j(Ej)c1j = pk
wj

t (pk
zj
t)c1j = pk

wj+c1jzj
t = pktρ1j

and
y2j(Ej/g)c2j = pk

ρ2j

t (Ej/g)−c2j(Ej/g)c2j = pk
ρ2j

t .

Otherwise if Ej = g1pk
zj
t then:

y1j(Ej)c1j = pk
ρ1j

t (Ej)−c1j (Ej)c1j = pk
ρ1j

t

and
y2j(Ej/g)c2j = pk

wj

t (g1pk
zj
t /g1)c2j = pk

wj+zjc2j
t = pk

ρ2j

t .

Special Soundness: Let
〈A, c,B〉 =

= 〈({ai, bi}ni=1, {Ej, y1j , y2j}k−1j=0), c, ({ci, si, ρ′1i, ρ′2i}ni=1, {c1j , c2j, ρ1j , ρ2j}k−1j=0)〉
and

〈A, c̃, B̃〉 =
= 〈({ai, bi}ni=1, {Ej, y1j , y2j}k−1j=0), c̃, ({c̃i, s̃i, ρ̃′1i, ρ̃′2i}ni=1, { ˜c1j , ˜c2j, ρ̃1j , ρ̃2j}k−1j=0)〉
be two accepting communication transcripts for the same first message A with
c �= c̃.

Since both transcripts are accepting we have that from condition (c) for i =
1, . . . , n:

gsipk
ρ′
1i

t = ai(Ex)
ci and gs̃ipk

ρ̃′
1i

t = ai(Ex)
c̃i

and

gsihρ′
2i = bi(

n∏
l=1

Cl/g
(i−1)u)ci and gs̃ihρ̃′

2i = bi(

n∏
l=1

Cl/g
(i−1)u)c̃i .

Then since c �= c̃ for some i ∈ {1, . . . , n} there are ci �= c̃i so that we have:

gsipk
ρ′
1i

t

gs̃ipk
ρ̃′
1i

t

= (Ex)
ci−c̃i ⇔ g

si−s̃i
ci−c̃i pk

ρ′1i−
˜ρ′
1j

ci−c̃i
t = Ex

so we can extract a valid opening for Ex = gwipkv1it with wi = si−s̃i
ci−c̃i and

v1i =
ρ′
1i− ˜ρ′

1j

ci−c̃i .
In addition since:

gsipk
ρ′
2i

t

gs̃ipk
ρ̃′
2i

t

= (

n∏
l=1

Cl/g
(i−1)u)ci−c̃i ⇔ g

si−s̃i
ci−c̃i pk

ρ′2i−
˜ρ′
2i

ci−c̃i
t =

n∏
l=1

Cl/g
(i−1)u

22 A. Kiayias and A. Orfanou

we also extract a valid opening for
∏n

l=1 Cl/g
(i−1)u = gwipkv2it with wi and

v2i =
ρ′
2i−ρ̃′

2i

ci−c̃i .
From condition (a) we have that since c �= c̃ for all j = 0, . . . , k − 1, either

c1j �= ˜c1j or c2j �= ˜c2j . We also have that:

pk
ρ1j

t = y1j(Ej)c1j and pk
˜ρ1j

t = y1j(Ej) ˜c1j

and
pk

ρ2j

t = y2j(Ej/g)c2j and pk
˜ρ2j

t = y2j(Ej/g) ˜c2j .

Then in the case that c1j �= ˜c1j we have that:

pk
ρ1j

t

pk
ρ̃1j

t

=
(Ej)c1j
(Ej) ˜c1j

⇔ pk

ρ1j− ˜ρ1j
c1j− ˜c1j

t = Ej

so we can extract a valid opening for Ej = pk
z1j
t with z1j =

ρ1j− ˜ρ1j

c1j− ˜c1j
. Similarly

in the case that c2j �= ˜c2j from
pk

ρ2j
t

pk
˜ρ2j

t

=
(Ej/g)c2j
(Ej/g) ˜c2j

we extract a valid opening for

Ej/g = pk
z2j
t with z2j =

ρ2j− ˜ρ2j

c2j− ˜c2j
.

HV Zero Knowledge: We can create a simulator for the prover given the
public input G, q, g, pkt, h, Ex, {Ci}ni=1 as follows: We randomly pick c ← Zq

and for i = 1, . . . n we pick c1i, si, ρ
′
1i, ρ

′
2i ← Zq and set c2i = c − c1i mod

q. For j = 0, . . . , k − 1 we pick c1j , ρ1j , ρ2j ← Zq and set c2j = c − c1j
mod q. We fix the second and the third message of the communication pro-
tocol to be 〈c, ({ci, si, ρ′1i, ρ′2i}ni=1, {c1j , c2j, ρ1j , ρ2j}k−1j=0)〉. Then we set the first

message A to be A = ({(Ex)
−cigsipkρ

′
1i

t , (
∏n

l=1 Cl/g
(i−1)u)−cigsihρ′

2i}ni=1 ,

{Ej, pkρ1j

t (Ej)−c1j , pkρ2j

t (Ej/g)−c2j}k−1j=0).

Security Proof for Proof of Knowledge π′

Proof. Completeness: Executing the protocol with an honest prover and a
honest verifier, we have that in step 4 condition (b) holds since

y1(Ex)
c = gwpkρ1

t (gxpkρt)
c = gw+cxpkρ1+cρ

t = gspk
ρ′
1

t

and

y2(

k−1∏
j=0

(
g2

C02j+1 · C02j

)2
j

)c =

= gwhρ2(g(
∑k−1

j=0 (2−v02j+1
−v02j)2j)h(−∑k−1

j=0 (r02j+1
+r02j)2

j))c = gw+cxhρ′
2 = gshρ′

2 .

Condition (ai) holds as for all j = 0, . . . , 2k − 1 and for all i = 0, 1, 2: c =
c1ij + c2ij , and if Cij = g0hrij , we have that:

y1ij(Cij)
c1ij = hwij (hrij)c1ij = hρ1ij

and
y2ij(Cij/g)

c2ij = (hρ2ij (Cij/g)
−c2ij)(Cij /g)

c2ij = hρ2ij .

Scaling Privacy Guarantees in Code-Verification Elections 23

Otherwise if Cij = g1hrij we have that:

y1ij(Cij)
c1ij = (hρ1ij (Cij)

−c1ij)(Cij)
c1ij = hρ1ij

and
y2ij(Cij/g)

c2ij = hwij (ghrij /g)c2ij = hwij+c2ijrij = hρ2ij .

Regarding condition (aii), for j = 0, . . . , 2k − 1, we present the case for general
t ∈ {1, 2, 3, 4} with dt = gα, i.e. (v1j) + 2(v2j)+ 3(v0j) = α, with α ∈ {0, 4, 5, 6}.
The condition holds as c = c1j+c2j+c3j+c4j and for t : ytj(

(C1j
)(C2j

)2(C3j
)3

dt
)ctj =

= hwtj (
g(1v1j+2v2j+3v0j)h(1r1j+2r2j+3r0j)

gα
)ctj =

= hwtj (
gαh(1r1j+2r2j+3r0j)

gα
)ctj = hwtj+c1j(1r1j+2r2j+3r0j) = hρ1j .

For λ �= t the proof is simulated and thus yλj(
(C1j

)(C2j
)2(C3j

)3

dλ
)cλj =

= (hρλj (
(C1j)(C2j)

2(C3j)
3

dλ
)−cλj)(

(C1j)(C2j)
2(C3j)

3

dλ
)cλj = hρλj .

Special Soundness:

Let 〈A, c,B〉, 〈A, c̃, B̃〉 be two accepting communication transcripts for the same
first message A with c �= c̃ and

A = ((y1, y2), (y1j , y2j , y3j, y4j)
2k−1
j=0 , ((y1ij , y2ij)

2k−1
j=0)i=0,1,2)

and

B = ((s, ρ′1, ρ
′
2), ((cλj , ρλj)λ=1,2,3,4)

2k−1
j=0 , ((c1ij , c2ij , ρ1ij , ρ2ij)

2k−1
j=0)i=0,1,2)

and

B̃ = ((s̃, ρ̃′1, ρ̃
′
2), ((˜cλj , ˜ρλj)λ=1,2,3,4)

2k−1
j=0 , ((˜c1ij , ˜c2ij , ˜ρ1ij , ˜ρ2ij)

2k−1
j=0)i=0,1,2).

Then for condition (ai) of step 4, since c �= c̃, for j = 0, . . . , 2k− 1 and i = 0, 1, 2
either c1ij �= ˜c1ij or c2ij �= ˜c2ij . In the first case we have hρ1ij = y1ij(Cij)

c1ij and
h ˜ρ1ij = y1ij(Cij)

˜c1ij whose division gives us

hρ1ij− ˜ρ1ij = (Cij)
c1ij− ˜c1ij ⇔ h

ρ1ij− ˜ρ1ij
c1ij− ˜c1ij = Cij

i.e. we extract ζ =
ρ1ij− ˜ρ1ij

c1ij− ˜c1ij
as a valid opening for Cij . In the second case

we have that hρ2ij = y2ij(Cij /g)
c2ij and h ˜ρ2ij = y2ij(Cij /g)

˜c2ij and similarly

h
ρ2ij− ˜ρ2ij
c2ij− ˜c2ij = (Cij/g), i.e.we extract ζ′ = ρ2ij− ˜ρ2ij

c2ij− ˜c2ij
as a valid opening for (Cij/g).

24 A. Kiayias and A. Orfanou

From condition (aii) for j = 0, . . . , 2k − 1 and λ = 1, 2, 3, 4 we have that

hρλj = yλj(
(C1j

)(C2j
)2(C0j

)3

dλ
)cλj and h ˜ρλj = yλj(

(C1j
)(C2j

)2(C0j
)3

dλ
) ˜cλj whose di-

vision yields hρλj− ˜ρλj = (
(C1j

)(C2j
)2(C0j

)3

dλ
)cλj− ˜cλj . Since c �= c̃ for each j =

0, . . . , 2k − 1 there is a λ ∈ {1, 2, 3, 4} such that cλj �= ˜cλj . Thus h
ρλj− ˜ρλj
cλj− ˜cλj =

(
(C1j

)(C2j
)2(C0j

)3

dλ
), concluding that we can extract η =

ρλj− ˜ρλj

cλj− ˜cλj
as a valid open-

ing for C′j =
(C1j

)(C2j
)2(C0j

)3

dλ
.

Finally from condition (b) we have that gspk
ρ′
1

t = y1(Ex)
c and gs̃pk

ρ̃′
1

t =

y1(Ex)
c̃ from which we have that g

s−s̃
c−c̃ h

ρ′1−ρ̃′
1

c−c̃ = Ex, i.e. we extract α = s−s̃
c−c̃ ,

β =
ρ′
1−ρ̃′

1

c−c̃ as a valid opening for Ex = gαhβ .
Similarly from

gshρ′
2 = y2(

k−1∏
j=0

(
g2

C02j+1 · C02j

)(2
j))c and gs̃hρ̃′

2 = y2(

k−1∏
j=0

(
g2

C02j+1 · C02j

)(2
j))c̃

we extract α = s−s̃
c−c̃ and β′ = ρ′

2−ρ̃′
2

c−c̃ as a valid opening for

C′′ = (

k−1∏
j=0

(
g2

C02j+1 · C02j

)2
j

).

HV Zero Knowledge: There is a simulator that can simulate the commu-
nication transcript. On input G, q, g, pkt, h, Ex, {(Cij)j=0,...,2k−1}i=0,1,2 it picks
randomly a value c ∈ Zq. It also picks uniformly at random s, ρ′1, ρ′2 ∈ Zq.
For λ = 1, 2, 3, 4 and for j = 0, . . . , 2k − 1 it picks cλj , ρλj ∈ Zq such that∑4

λ=1 cλj = c. For i = 0, 1, 2 and j = 0, . . . , 2k−1 it picks c1ij , c2ij , ρ1ij , ρ2ij ∈ Zq

such that c1ij+c2ij = c. We define the second and the third message of the com-
munication transcript to be respectively c and

B = ((s, ρ′1, ρ
′
2), ((cλj , ρλj)λ=1,2,3,4)

2k−1
j=0 , ((c1ij , c2ij , ρ1ij , ρ2ij)

2k−1
j=0)i=0,1,2).

We now set the first message of the transcript to be A:

– (y1, y2) = (gspk
ρ′
1

t (Ex)
−c, gshρ′

2(
∏k−1

j=0 (
g2

C02j+1
·C02j

)(2
j))−c)

– for j = 0, . . . , 2k − 1, for λ = 1, 2, 3, 4: yλj = hρλj (
(C1j

)(C2j
)2(C0j

)3

dλ
)−cλj

– For i = 0, 1, 2, for j = 0, . . . , 2k − 1:

(y1ij , y2ij) = (hρ1ij (Cij)
−c1ij , hρ2ij (Cij /g)

−c2ij).

The final simulated transcript is 〈A, c,B〉.

On the Specification and Verification

of Voting Schemes

Bernhard Beckert1, Rajeev Goré2, and Carsten Schürmann3

1 Karlsruhe Institute of Technology
beckert@kit.edu

2 The Australian National University
Rajeev.Gore@anu.edu.au

3 IT University of Copenhagen
carsten@itu.dk

Abstract. The ability to count ballots by computers allows us to design
new voting schemes that are arguably fairer than existing schemes de-
signed for hand-counting. We argue that formal methods can and should
be used to ensure that such schemes behave as intended and are con-
form to the desired democratic properties. Specifically, we define two
semantic criteria for single transferable vote (STV) schemes, formulated
in first-order logic, and show how bounded model-checking can be used
to test whether these criteria are met. As a case study, we then analyse
an existing voting scheme for electing the board of trustees for a major
international conference and discuss its deficiencies.

1 Introduction

The goal of any social choice function is to compute an “optimal” choice from
a given set of preferences. Voting schemes in elections are a prime example of
such choice functions as they compute a seat distribution from a set of prefer-
ences recorded on ballots. By voting scheme we mean a concrete description of
a method for counting the ballots and computing which candidates are elected –
as opposed to an actual computer implementation of such a scheme or a scheme
describing the process of casting votes via computer. The difficulty in designing
preferential voting schemes is that the optimisation criteria are not only multi-
dimensional, but multi-dimensional on more than one level. On one level, we
want to satisfy each voter, so each voter is a dimension. On a higher level, there
are desirable global criteria such as “majority rule” and “minority protection”
that are at least partly inconsistent with each other. It is well-known that “op-
timising” such theoretical voting schemes along one dimension may cause them
to become “sub-optimal” along another.

This observation is not new and voting specialists have proposed a series of
mathematical criteria [3] that can be used to compare various voting schemes
with one another. A classic example is the notion of a Condorcet winner, defined
as the candidate who wins against each other candidate in a one-on-one contest.
Such a winner exists provided that there is no cycle in the one-to-one contest

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 25–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 B. Beckert, R. Goré, and C. Schürmann

relation. A voting scheme is said to satisfy the Condorcet criterion if the Con-
dorcet winner is guaranteed to be elected when such a winner exists. Another is
the monotonicity criterion which requires that a candidate who wins a contest
will also win if the ballots were changed uniformly to rank that candidate higher.

In practice, theoretical voting schemes are often simplified in many ways when
used in real-world elections, typically to reduce their complexity to allow counting
by hand. Such practical schemes may not satisfy general properties such as the
Condorcet criterion simply because it is intractable to compute the Condorcet
winner by hand, but they may satisfy some weaker version of “optimality” that is
specific to that particular scheme. It may even happen that one among the optimal
winners is chosen at random [2] (as allowed by the Australian Capital Territory’s
Hare-Clark Method) or that someone other than the optimal winner is elected.

Voting schemes also evolve over time – for national elections in the large,
and local elections, union elections, share holder elections, and board of trustee
elections in the small. Incremental changes to the electoral system, the tallying
process and the related algorithms challenge the common understanding about
what the voting scheme actually does. For example, since 1969 some local elec-
tions in New Zealand adopted Meeks’ method [7], which is a voting scheme for
preferential voting that uses fractional weightings in its computations and is too
complex to count by hand. This also required an adjustment of understanding
about who will now be elected. In general, it is often not clear whether changes
to the electoral system improve or worsen the overall quality of a voting scheme
with regard to the various dimensions of optimisation. Changes to the electoral
system in Germany, for example, have created paradoxical situations where more
votes for a party translate into fewer seats and fewer votes into more seats, and
have prompted Germany’s Supreme Court to intervene repeatedly (see, e.g., [6]).

Many jurisdictions are now using computers to count ballots according to tra-
ditional voting schemes. Using computers to count ballots opens up the possibil-
ity to use voting schemes which really are optimised along multiple dimensions,
while retaining global desiderata such as the Condorcet criterion. The inherent
complexity of counting ballots according to such schemes means that it may no
longer be possible to “verify” the result by hand-counting, even when the num-
ber of ballots is small. It is therefore important to imbue these schemes with the
trust accorded to existing schemes. Note that our focus is on trust in the voting
scheme, not trust in the computer-based process for casting votes.

One way to engender trust in such complex yet “fairer” voting schemes is
to specify the desiderata when the scheme is being designed, and then formally
check that the scheme meets these criteria before proposing changes to the leg-
islation to enact the scheme. Such formal analyses could contribute significant
unbiased information into the political discussions that typically involve such
legislative changes and also assure voters that the changes will not create para-
doxical situations as described above.

Formal analysis, however, is only practicable when we possess formal specifica-
tions of the voting scheme.We argue that it is important to give declarative specifi-
cations of the properties of a voting scheme for two reasons: (1) For understanding

On the Specification and Verification of Voting Schemes 27

their properties and how they change during the evolution process, so that improv-
ing a scheme in one aspect does not by accident introduce flawsw.r.t. other aspects.
(2) For checking the correctness of the scheme from both an algorithmic and im-
plementation perspective.We also argue that general criteria are not sufficient and
criteria are needed that are tailor-made for specific (classes of) voting schemes.

The properties in question are difficult to state, to formalise, to understand.
to analyse, and to describe declaratively (as opposed to algorithmically) because:
the final voting scheme may have to compromise between the conflicting demands
of multiple individual desirable properties; the voting scheme may evolve and
we may have to revisit these desiderata; even when the properties can be made
mathematically precise, the resulting mathematical statement cannot serve as a
specification if the electoral law defines a voting scheme that does not (always)
compute the optimal solution.

Contributions. Here, we show how seemingly innocuous revisions to a voting
scheme can have serious implications on the desired properties of the system. As a
running example, we use the preferential voting schemes single transferable vote
(STV) that is used in large national elections world-wide, but also for smaller
professional elections.

In Section 2, we define two tailor-made criteria to establish the desired prop-
erties of the voting scheme. Both criteria are formulated using first-order logic
and are amenable for bounded model checking, which is the tool of choice for our
formal analysis (Section 3). Subsequently, we discuss (Section 4) a particularly
interesting variant of the Single Transferrable Vote Algorithm (CADE-STV) for
the board of trustees of the International Conference on Automated Deduc-
tion (CADE). We explain its oddities and differences to standard STV, and give
a historical account of the conception and the stepwise refinement of the algo-
rithm. This paper extends our system description of a bounded model checking
system for analysing voting schemes and its application to CADE-STV [1].

Related Work. Voting schemes have been investigated by social choice theorists
for many decades. These tend to be mathematical analyses which prove various
(relative) properties of different voting schemes: see [11]. Such work tends to
concentrate on what we have referred to as theoretical schemes and is often
couched in terms of a formal theorem and its proof in natural language.

There is also a significant body of research on various properties of vote-
casting schemes, particular security properties [13].

There does not appear to be much existing work on the formal analysis of
voting schemes using methods and tools from the computer aided verification and
automated deduction communities in our sense, although there is some existing
work on the formal analysis of actual implementations of such schemes [9,8,5].

2 Semantic Criteria for Analysing Voting Schemes

We focus on preferential voting schemes. Each vote consists of a partial linear
order on candidates. Suppose that C candidates, numbered 1, 2, . . . , C, are com-
peting for S > 0 vacant seats in an election. Furthermore, assume that V ≥ 1

28 B. Beckert, R. Goré, and C. Schürmann

votes have been cast and are collected in a ballot box. It is commonly agreed that
for k ≤ C, a vote [c1, c2, . . . , ck] ranks a subset of the candidates in decreasing
order of preference so that each ci ∈ {1, 2, . . . , C} and ci �= cj for i �= j.

2.1 Basic Criteria

Many criteria that voting schemes preferably should satisfy have been proposed
(for an overview see [3]). Below, we describe a few important examples. Note
that, even though these basic criteria seem obvious and indispensable for voting
schemes on first sight, they are in fact not always satisfied by each reasonable
voting scheme. Most real-word voting schemes violate at least some basic criteria
for some possible ballot box input.

An “obvious” and widely used criterion is the majority criterion, which states
that, if a candidate c is ranked first by a majority of voters, then c must be
elected. This is indeed satisfied by all reasonable preferential voting schemes that
use votes ranking candidates. However, the majority criterion can be violated
by preferential voting schemes where voters can attach a numerical preference
to candidates instead of just ranking them (Borda count scheme).

Another “obvious” criterion is the monotonicity criterion [14]. Assume that
there are two ballot boxes B and B′ where B′ results from B by raising the
preference for a candidate c in one or more of the votes and leaving the votes
otherwise unchanged (i.e., a vote of the form [c1, . . . , ci−1, c, ci+1, . . . , ck] is re-
placed by [c1, . . . , cj−1, c, cj , . . . , ci−1, ci+1, . . . , ck] (j < i). The monotonicity
criterion states that, if c is elected using the ballot box B, then c must also be
elected using B′. Surprisingly, some real-world voting schemes – including STV
– do not satisfy monotonicity [14].

A further simple criterion is the fill-all-seats criterion, which states that all
available seats are filled provided that there are sufficient candidates, i.e., C ≥ S.
In practice, this criterion is often used in a restricted form, e.g., candidates can
be elected only if they reach a certain minimal quota.

2.2 Criteria Characterising the Election Result

The majority criterion fully describes the election result for the simple case of
a single seat and a candidate with a majority of first preferences. But we desire
criteria characterising the “right” result in increasingly complex situations.

An example is the Condorcet criterion. A candidate c is a Condorcet winner
if c wins a one-to-one comparison against all other candidates, i.e., for all c′ �= c
there are more voters preferring c over c′ than there are voters preferring c′ over c.
The Condorcet criterion states that a Condorcet winner cmust be elected if there
is one. And, as long as there are open seats and there are Condorcet winners
among the remaining candidates, these must also be elected.

Note that Condorcet winners do not exist for all ballot boxes, so the Condorcet
criterion does not specify the election result for all situations (but only for those

On the Specification and Verification of Voting Schemes 29

where a clear winner exists). Moreover, it is well known that STV (which we use
as a case study) does not satisfy the Condorcet criterion.

2.3 Tailor-Made Criteria for Preferential Voting Schemes

As stated previously, many more voting scheme criteria have been developed and
are described in the literature. So, as a first approach to specifying and analysing
a particular voting scheme, one could select some of these to characterise the
scheme’s properties. For a detailed analysis, however, that is not sufficient. Gen-
eral criteria cannot distinguish between variants of the same voting scheme (or
the number of available general criteria would have to be very high). Moreover,
there is a trade-off between two goals when defining voting scheme criteria:

Coverage. For as many different ballot boxes as possible, the criterion should
apply and restrict the number of possible election results.

Restrictiveness. The number of possible election results for each ballot box
should be restricted as much as possible.

For example, the majority and Condorcet criteria are very restrictive (they spec-
ify exactly one winner), but they do not have good coverage (they only apply if
there is a clear winner). The fill-all-seats criterion, on the the other hand, has
full coverage (it restricts the possible outcome for all ballot boxes), but it is not
very restrictive.

Ideally, one would like to have an axiomatically defined criterion that allows
exactly one result for every possible ballot box, i.e., has full coverage and is fully
restrictive. But for many voting schemes used in practice, such criteria do not
exist. In these cases, we rely on tailor-made criteria that strike a compromise
between coverage and restrictiveness. For example, for our analysis of preferential
voting, we have devised two tailor-made criteria that capture the essence of
preferential voting (Criterion 2) with proportional representation (Criterion 1)
and are applicable to our case study STV:

(1) There must be enough votes for each elected candidate.
(2) If the preferences of all voters w.r.t. two particular candidates are consistent,

then that collective preference is not contradicted by the election result.

The first criterion only considers number of votes and ignores preferences, while
the second criterion only considers preferences and ignores number of votes. This
separation of the two dimensions (number of votes and preferences) is the key
to finding strong criteria that can be described declaratively.

The two criteria compromise in different ways on the two goals of generality
and restrictiveness: Criterion 1 has full coverage. It applies to all ballot-boxes
without being too restrictive (as the order of preferences is not considered).
Criterion 2 has lower coverage. It only applies if the voters’ preferences are
not contradictory. In that case, however, it is rather restrictive as only a small
number of election results are permissible.

30 B. Beckert, R. Goré, and C. Schürmann

Criterion 2 is a weaker version of the the Condorcet criterion that, in contrast
to Condorcet, is satisfied by STV. It assumes a preference to be collective if all
voters agree (or at least not disagree), while the Condorcet criterion assumes a
preference to be collective if it is supported by a majority of voters.

Criterion 1: Enough Votes for each Elected Candidate. This criterion
captures that the votes can be partitioned with an assignment of exactly one
class in the partition to each elected candidate such that, if Q is the quota, then:

1. There are exactly Q votes in each class that supports an elected candidate.
2. For each vote in a class that supports a candidate, that candidate occurs

somewhere among the preferences of the supporting vote.

In the second condition above, the actual order of preferences is not taken into
consideration. Thus, this is a weak property that can be satisfied by a wide
variety of STV variants. But it is strict in that each vote counts only once.

Example 1. Assume there are four candidates A,B,C,D for two vacant seats,
the votes to be counted are [A,B,D], [A,B,D], [A,B,D], [D,C], [C,D], and the
quota is Q = 2. The election result [A,D] satisfies Criterion 1 using the partition
{[A,B,D], [A,B,D]}, {[C,D], [D,C]}, {[A,B,D]}. The election result [B,D]
violates the majority criterion (as A despite its majority of first preferences is
not elected). Nevertheless it satisfies Criterion 1 choosing the same partition
as above (because the ordering of A and B is not considered), which shows
that the criterion compromises on restrictiveness. But, the result [A,B], which
contradicts proportional representation, is not supported by this or any other
partition (which shows that this criterion is indeed related to the requirement
of proportional representation).

Formalisation. To formalise the criteria, we use first-order logic over the theories
of natural numbers and arrays with the following notation in addition to the
notation defined previously:

b: is the ballot box, where b[i, j] ∈ {1, . . . , C} is the number of the candidate that
is ranked by vote i in the jth place. Thus i’s preference is [b[i, 1], b[i, 2], . . .].
If vote i ranks only k ≤ C candidates, then b[i, j] = 0 for k < j ≤ C.

r: is the result, where r[i] is the ith candidate that is elected (1 ≤ i ≤ S). If
less than S candidates are elected, then r[i] = 0 for the empty seats.

Our criterion is formalised by a formula φ in which all the above (free) variables
occur. We also use an existentially quantified variable a of type array that rep-
resents the partition and the assignment of classes in the partition to elected
candidates as follows:

a[i] = k if the ith vote supports the kth elected candidate r[k]. If the ith vote
does not support any elected candidate, then a[i] = 0.

On the Specification and Verification of Voting Schemes 31

Then, the formula φ = ∃a(φ1 ∧ . . . ∧ φ4) is the existentially quantified
conjunction:

∀i(1 ≤ i ≤ V→ 0 ≤ a[i] ≤ S
)

(φ1)

∀i(1 ≤ i ≤ V→ (a[i] �= 0→ r[a[i]] �= 0
)

(φ2)

∀i((1 ≤ i ≤ V ∧ a[i] �= 0)→ ∃j(1 ≤ j ≤ C ∧ b[i, j] = r[a[i]])
)

(φ3)

∀k((1 ≤ k ≤ S ∧ r[k] �= 0)→
∃count(count [0] = 0 ∧

∀i(1 ≤ i ≤ V→ (a[i] = k → count [i] = count [i− 1] + 1) ∧
(a[i] �= k → count [i] = count [i− 1])) ∧

count [V] = Q)
)

(φ4)

Formulae φ1 and φ2 express well-formedness of the partition. Formula φ3 ex-
presses that only votes can support a candidate in which that candidate is
somewhere ranked. Formula φ4 expresses that each class supporting a partic-
ular elected candidate has exactly Q elements. To formalise this, we use an array
count such that count [i] is the number of supporters among votes 1, . . . , i that
support the kth elected candidate.

Note, that this criterion assumes all seats to be filled and has to be relaxed
if a voting scheme does not satisfy the fill-all-seats criterion or there are not
enough candidates that can reach the quota.

2.4 Criterion 2: Election Result Consistent with Preferences

The idea of our second criterion is that, if there are two candidates a, b such that
in the union of all votes’ preferences there is an argument for ranking a over b
but no argument for ranking b over a (i.e., a and b are not part of a cycle of
preferences), then b must not be ranked higher than a in the election result.

Formalisation. That there is an argument for ranking a over b means that there
are candidates a = c[0], . . . , c[k] = b and there are votes v[1], . . . , v[k] such that
v[i] prefers c[i− 1] over c[i] (1 ≤ i ≤ k).

That vote v[i] prefers candidate c1 over candidate c2 can be formalised by:

φ(v, i, c1, c2) = ∃j(1 ≤ j ≤ C ∧ b[v[i], j] = c1 ∧
∀j′(1 ≤ j′ < j → b[v[i], j′] �= c2))

The first line of the above formula says that voter v[i] gives the preference j to
candidate c1. The second line says that v does not give a higher preference j′ < j
to c2, i.e., gives c2 lower preference or no preference at all.

Now, we can formalise that there is an argument for ranking a over b by:

Φ(a, b) = ∃v∃c∃k(a = c[0] ∧ b = c[k] ∧
∀i(1 ≤ i ≤ k → (1 ≤ v[i] ≤ V ∧ 1 ≤ c[i] ≤ C ∧

φ(v, i, c[i − 1], c[i]))))

32 B. Beckert, R. Goré, and C. Schürmann

In a similar way as with φ, we can formalise the fact that the voting result gives
a higher ranking to candidate c1 than to candidate c2 as follows:

ψ(c1, c2) = ∃j(1 ≤ j ≤ C ∧ r[j] = c1 ∧
∀j′(1 ≤ j′ < j → r[j′] �= c2))

Then, using the formulas Φ and ψ the criterion can be formalised as follows:

∀a∀b((1 ≤ a ≤ C ∧ 1 ≤ b ≤ C ∧ a �= b ∧ Φ(a, b) ∧ ¬Φ(b, a)) → ¬ψ(b, a))
2.5 Determinism

Another important criterion for voting schemes is determinism. Voting schemes
can contain various non-determinisms that occur when candidates have the same
number of votes or preferences. While that may not be a problem on an abstract
level, for concrete elections it is important to clearly specify how these are to
be resolved. Otherwise, choices by the election officials (or their computers)
when counting the ballots could influence the election result, which is clearly
undesirable.

3 Bounded Model Checking for Analysing Voting
Schemes

In this section we discuss a technique for verifying that a voting scheme satisfies
any of the aforementioned semantic criteria. This technique is called bounded
model checking. It is well understood, and its application to voting schemes has
been discussed in an earlier paper [1]. A bounded model checker examines an
(arbitrarily small or large) finite state space of ballot boxes and tries to check if
the provided semantic criteria hold for each box. If a model check run does not
find a bad state, we have established that the criteria are satisfied, which by itself
is not a proof but indicates the absence of programming bugs and conceptual
problems. If the model checker finds a bad state, it is possible to extract a counter
example for future inspection.

Besides a logical formulation of the criteria, the bounded model checking
requires a formal description of the voting scheme, i.e. an implementation of
the voting scheme in programming languages whose semantics is clearly defined.
Fragments of programming languages with a clear mathematical foundation are
preferred to capture the essence of the voting algorithm. In our earlier work we
have shown that linear logic is adequate to express voting schemes, and that
proof search within linear logic is tantamount to bounded model checking.

4 Case Study:
Variants of the Single Transferable Vote Scheme

Single transferable vote (STV) is a preferential voting scheme [15] for multi-
member constituencies aiming to achieve proportional representation according
to the voters’ preferences.

On the Specification and Verification of Voting Schemes 33

4.1 The Standard Version of STV

There are many versions of STV, but most are an extension or variant of the
standard version that is shown in Figure 1.

For input and output of the algorithm, we use the same notation and encoding
as in Section 2. There are V voters electing S of C candidates, and:

b: is the input ballot box, where b[i, j] is the number of the candidate that is
ranked by vote i in the jth place. If the vote does not rank all candidates,
then b[i, j] = 0 for the empty places.

r: is the output election result, where r[i] is the ith candidate that is elected
(1 ≤ i ≤ S). If less than S candidates are elected, then r[i] = 0 for the empty
seats.

We assume the input for the algorithm to satisfy the following conditions (which
are pre-conditions for running the standard STV algorithm): (1) C ≥ S, (2) V ≥ 1.
and (3) votes are linear orders of a subset of the candidates, i.e., for all 1 ≤ i ≤ V

and all 1 ≤ j, j′ ≤ C:

– 0 ≤ b[i, j] ≤ C,
– if b[i, j] �= 0 and j �= j′ then b[i, j] �= b[i, j′],
– if b[i, j] = 0 then b[i, j′] = 0 for all j′ ≥ j.

The initialisation part of the STV algorithm in particular computes a quota
necessary to obtain a seat (line 5). Different definitions of quotas are used in
practice, and the most common is the Droop quota Q = 	V/(S+ 1)
+ 1.

To determine the election result, STV uses an iterative process, which repeats
the following two steps until either a winner is found for every seat or the number
of remaining candidates equals the number of open seats (lines 10–33).

1. If no candidate reaches the quota of first-preference votes, a candidate with
a minimal number of first-preference votes is eliminated and that candidate
is deleted from all ballots (lines 17–19).

2. Otherwise one of the candidates with Q or more first-preference votes is
chosen (line 23) and declared elected (line 24). Of the first-preference votes
for that candidate, Q are chosen and erased (lines 26–29). These are the
votes that are considered to have been “used up”. If the candidate has more
than Q votes, the surplus votes remain in the ballot box. Finally, the elected
candidate is deleted from all ballots still in the box.

The procedure for deleting a candidate c (lines 40–47 works by searching for the
candidate in each vote and, if c is found to have preference j, then the candidate
with preference j +1 moves to preference j, the candidate with preference j +2
moves to preference j + 1, and so on.

When the main loop of the standard STV algorithm as shown in Figure 1
terminates, either (a) all seats are filled, or (b) the number cc of remaining
candidates is equal to the number of open seats. In case (b), a further step
is needed to distribute some or all of the remaining candidates to the equal

34 B. Beckert, R. Goré, and C. Schürmann

Standard Version of STV
1 // Initialisation
2 r := [0, ..., 0]; // no one elected yet
3 e := 1; // e is the next seat to be filled
4 cc := C; // cc is the number of (continuing) candidates
5 Q := �V/(S+ 1)�+ 1; // Droop quota

7 // Main loop: While not all seats filled and
8 // there are more continuing candidates than open seats
9 // In each iteration one candidate is elected or one candidate eliminated

10 ����� (e ≤ S) ∧ (cc > S− e + 1) ��

11 // QuotaReached is the set of candidates for which the number of
12 // first-preference votes reaches or exceeds the quota Q
13 QuotaReached := {c | 1 ≤ c ≤ C ∧ #{v | 1 ≤ v ≤ V ∧ b[v, 1] = c} ≥ Q};
14 �� QuotaReached = ∅ 	��

15 // no one has reached the quota,
16 // eliminate a weakest candidate by deletion from the ballot box
17 Weakest := {c | 1 ≤ c ≤ C ∧ #{v | 1 ≤ v ≤ V ∧ b[v, 1] = c} is minimal};
18 ������ c ∈ Weakest;
19 delete(c);
20 ����

21 // one or more candidates have reached the quota,
22 // elect one of them
23 ������ c ∈ QuotaReached;
24 r[e] := c; // put c in the next free seat
25 e := e + 1; // increase the number e of the next seat to be filled
26 �� Q 	�
�� // Q of the votes that
27 ������ i ∈ {i | 1 ≤ i ≤ V ∧ b[i, 1] = c}; // give c top preference
28 ��� j = 1 	� C �� b[i, j] := 0; �� // get erased
29 ��

30 delete(c); // delete c from the ballot box
31 ��

32 cc := cc− 1; // in any case we have one less continuing candidate
33 ��

35 // Fill the empty seats
36 �� e < S 	��

37 fill the remaining seats r[e, . . . , S] with the remaining cc candidates

39 // procedure for deleting candidate c from votes in b
40 ��������� delete(c) ����

41 ��� i = 1 	� V �� ��� j = 1 	� C ��

42 �� b[i, j] = c 	��

43 ��� k = j 	� C− 1 �� b[i, k] := b[i, k + 1] ��;
44 b[i, C] := 0;
45 ��

46 �� ��

47 �
�

Standard Version of STV

Fig. 1. The standard STV algorithm

number of remaining seats. The default is to fill all the remaining seats with the
remaining candidates (line 37). Alternatively, one may continue the main STV
loop to see if the further candidates get elected (which may leave seats open).

Example 2. We consider the same situation as in Example 1, i.e., there are
four candidates A,B,C,D for two vacant seats, and the votes to be counted
are [A,B,D], [A,B,D], [A,B,D], [D,C], [C,D]. The Droop quota in this case is
Q = 	5/(2 + 1)
+ 1 = 2.

On the Specification and Verification of Voting Schemes 35

In the first iteration of the main loop, candidate A meets the quota and is
hence elected. Two of the votes [A,B,D] are erased, the third is a surplus vote.
It is transformed into [B,D] by deleting A from the ballots.

In the second iteration no candidate reaches the quota, thus the weakest of
the remaining candidates B,C,D is eliminated – which one depends on the
kind of tie-breaker used as all three have exactly one first-preference vote at
that point. (1) If the tie-break eliminates B, the aforementioned transformed
vote [B,D] will be transformed again and will become a vote for D, so that D
will be elected in the next iteration. (2) If the tie-break eliminates C, the vote
[C,D] will be transformed into a vote for D, and thus D will be elected. (3) If the
tie-break eliminates D, then C will be elected, analogously, in the next iteration.
In summary, the algorithm reports either [A,D] or [A,C] as the election result
but not, for example, [A,B] or [B,D]. If the number of second-preference votes
is used as a tie-breaker, then B is eliminated first (case 1 above).

The standard STV algorithm has three choice points that are sources of non-
determinism. These are resolved in different ways by different variants of STV:

1. Who is eliminated if several candidates have the same minimal number of
first preferences (line 18)?

2. Who is elected if several candidates have reached the quota (line 23)?
3. How are the votes chosen that are deleted when an elected candidate has

more than quote votes (line 27)?

Choice points (1) and (2) are typically handled – to some extent at least – by
defining various kinds of tie-break rules. They can also be handled by declaring
all weakest candidates eliminated resp. declaring all strongest candidates elected.
That, however, is not always possible (there may not be enough open seats). And
it can affect the election result in unexpected ways.

Choice point (3) can be eliminated using the notion of fractional votes. Instead
of erasing a fraction of the votes that needs to be chosen, the same fraction of
each vote is erased and the remaining fraction remains in the ballot box. This is
done in many versions of STV used in real-world elections.

The above considerations illustrate that the STV algorithm as presented in
this section is not only one but an entire family of vote counting algorithms.
There are a number of parameters to play with: the quota, the choice of tie-
breakers, placement of candidates once there are as many free seats as remaining
candidates.

There are further options that – we argue in Section 4.2 – lead to election
systems that can no longer be considered part of the STV family.

4.2 The CADE-STV Election Scheme

The bylaws of the Conference on Automated Deduction (CADE) specify an
algorithm for counting the ballots cast for the election of members to its Board
of Trustees [4]. The intention of the bylaws is to design a voting algorithm that
takes the voters’ preferences into account. The algorithm has been implemented

36 B. Beckert, R. Goré, and C. Schürmann

in Java and used by several CADE Presidents and Secretaries in elections for
the CADE Board of Trustees. It has later on also been used by TABLEAUX
Steering Committee Presidents, including one of the authors, for the election of
members to the TABLEAUX Steering Committee.

Pseudo code for the CADE-STV scheme is included in the CADE bylaws [4],
which makes it an interesting target for formal analysis. CADE-STV differs from
the standard version of STV as shown in Figure 1 in several ways:

Quota. Instead of the Droop quota, CADE-STV uses a quota of 50% of the
votes – independently of the number of seats to be filled. That is, line 5 in
Fig. 1 is changed to “Q := 	V/2
+ 1”.

Empty seats. CADE-STV does not fill seats that remain open at the end of
the main loop, i.e., lines 36–37 are removed.

Restart. Each time a candidates c reaches the quota Q of first-preference votes
and gets elected, the election for the next seat restarts with the original
ballot box – with the only exception that the elected candidate c is deleted.
Thus, (a) the Q votes used to elect c are not erased but are only changed by
deleting c, and (b) weak candidates that have been eliminated are “resur-
rected” and take part in the election again. That is, (a) the code for erasing
votes (lines 26–29) is removed and (b) replaced by code for resurrecting the
eliminated candidates.

4.3 Effects of the Differences between CADE-STV
and Standard STV

Effects of Restart. To illustrate the effect of the restart mechanism in CADE-
STV on the election result, we consider an example:

Example 3. Let us run CADE-STV on Example 1. First, we compute the major-
ity quota Q = 3. In the first iteration, A has three first preferences, which means
that A is the majority winner and is seated. Since CADE-STV uses restart,
A’s votes are not deleted but are redistributed at the end of the first iteration.
Now the ballot box contains [B,D], [B,D], [B,D], [D,C], [C,D]. Following the
algorithm, we observe that now B is the majority candidate with 3 first prefer-
ence votes and is seated. The election is over, and the election result is [A,B]
(which is different from the possible results [A,D] or [A,C] of standard STV).

Running our bounded model checker for analysing STV schemes that we have
described in [1] on CADE-STV confirms that the election results computed by
CADE-STV do not always satisfy Criterion 1, which is closely related to propor-
tional representation (see Sect. 2.3). Indeed, our bounded model checker finds
smaller counter examples than the one shown in Example 3, but these are not
as illustrative.

The effect of the differences between standard STV and CADE-STV is further
clarified by the following theorem and its corollary: in certain cases, there is no
proportional representation in the election results computed by CADE-STV. See
also Example 4 below.

On the Specification and Verification of Voting Schemes 37

Theorem 1. If a majority of voters vote in exactly the same way [c1, . . . , ck],
then CADE-STV will elect the candidates preferred by that majority in order of
the majority’s preference.

Proof. Since a majority of voters choose c1 as their first preference, no other
candidate can meet the “majority quota”. Thus c1 is elected in the first round.
When redistributing the ballots, each of the majority of ballots with c1 as first
preference have c2 as second preference. All become first preferences for c2. Thus
candidate c2 is guaranteed to have a majority of first preferences and is elected
in round two, and so on until all vacancies are filled. ��
Corollary 1. If the electorate consists of two diametrically opposed camps that
vote for their candidates only, in some fixed order, then the camp with a majority
will always get their candidates elected and the camp with a minority will never
get their candidate elected.

Standard STV does not use the restart mechanism and so it will elect the first
ranked candidate of the majority, but will then reuse only the surplus votes
and not all votes as done by CADE-STV. Thus the second preference from the
majority is not necessarily the second person elected. Consequently, majorities
do not rule outright in standard STV.

Effects of High Quota and No Filling of Empty Seats. No matter how
many candidates there are and how many seats need to be filled, a candidate can
only be seated by CADE-STV if he or she accumulates more than 50% of the
votes. Any candidate with less than 50% of the vote is defeated. Thus, CADE-
STV obviously violates the fill-all-seats criterion. But because of the high quota
it also prevents proportional representation as candidates supported by a large
minority can neither be elected via reaching the quota nor via filling seats left
empty at the end of the main loop.

In fact, if the high quota of 50% and no filling of empty seats were the only
changes w.r.t. standard STV, only a single candidate could be elected because
more than 50% of the votes would be used up by electing that candidate. CADE-
STV requires the restart mechanism to elect further candidates.

Example 4. Assume that there are 100 seats and two parties nominating can-
didates A1, . . . , A100 and B1, . . . , B100, respectively. Further assume that there
are 51% of A-voters and 49% of B-voters. All A-voters vote [A1, . . . , A100] and
all B-voters vote [B1, . . . , B100]. Standard STV elects A1, . . . , A51, B1, . . . , B49,
i.e., the result is a perfect proportional representation.

With a quota of 50% and no filling of empty seats, only A1 gets elected and
then nothing further happens, which is clearly undesirable. But CADE-STV uses,
in addition, the restart mechanism. Therefore, like standard STV, it fills all seats.
The result is different, however, because the votes used to elect A1, . . . , A51 do
not get erased. CADE-STV produces the election result [A1, ..., A100].

38 B. Beckert, R. Goré, and C. Schürmann

The above example again shows that the majority can rule with CADE-STV
and there is no proportional representation in that case (Corollary 1).

4.4 Observations on the History of CADE-STV

We discuss the history of the CADE-STV scheme because it illustrates the prob-
lem of evolving an election scheme without using formally specified semantic
criteria and a formal definition of the input to the scheme. It is publicly known
that there were lots of discussions among the CADE Trustees over a long period
of evolving CADE-STV. But we do not know what the non-public delibera-
tions actually where. The following is based on our interpretation of the publicly
available material.

The Violation of Proportional Representation. The CADE-STV voting
scheme is the result of a long discussion among the board of trustees that took
place in the years 1994–1996. David A. Plaisted published various concerns about
the existing voting scheme which can be found on his homepage [12].

One of Plaisted’s concerns was that a minority supporting candidates standing
for re-election could re-elect these candidates against the wishes of the majority
as that majority is not sufficiently coordinated in its behaviour to elect alterna-
tive candidates [12]:

Of course, one of the main purposes of a democratic scheme is to permit
the membership to vote a change in the leadership if there is a need for
this. However, the new bylaws make this more difficult in several ways.
The problem is that those who are unsatisfied with the scheme will tend
to split their votes among many candidates (unless they are so disgusted
as to put the trustee candidates at the very bottom of the list), but those
who are satisfied will tend to vote for the trustee nominees. This means
that the trustee nominees tend to be elected even if only a minority is
happy with the scheme.

We believe that because of Plaisted’s concerns the board introduced the high
50% quota and did not include a mechanism for filling seats that remain empty.
On first sight, this seems good because it solves the problem illustrated in
Plaisted’s scenario. But, as explained above, this deviation from the standard
STV setup not only violates the fill-all-seats criterion but also the goal of propor-
tional representation (see Example 4). Thus, the CADE-STV scheme protects
the majority at the expense of the minority.

Also, as explained above, if the high quota and the remaining empty seats
were the only changes, only a single candidate could be elected. So, in effect,
one was forced to change the algorithm further. The result was that the restart
mechanism was added to the algorithm, that reuses the original ballot box for
each seat and does not erase votes (because then more candidates can be elected,
see Example 4).

On the Specification and Verification of Voting Schemes 39

There would have been a different solution than using a restart that would
have solved Plaisted’s problem without restricting proportional representation as
much: One could have used Standard STV with an additional rule that – before
the main algorithm is started – anybody who does not appear (with arbitrary
preference) on at least 50% of the votes is immediately eliminated.

Example 5. Using the same input ballots as in Example 4, the algorithm would
then elect [A1, ..., A51], which still suppresses the B minority, but at least gives
the A party only those seats that are proportional to the A votes.

Well-Formedness and Interpretation of Input. Apparently, during some
CADE elections, there was some confusion about the meaning of not listing a
candidate at all on a ballot and how that should be translated into input for the
CADE-STV voting scheme.

The instruction was given to the voters that not listing a candidate is the same
as giving that candidate the lowest possible preference. But that is not the correct
interpretation. It is easy to see that for both standard STV and CADE-STV,
there is a difference between giving a candidate the lowest possible preference
and not listing the candidate at all. For example, if there are candidates A,B,C,
then [A,B] is different from [A,B,C]. When candidates A and B get eliminated,
[A,B,C] turns into a vote for C and may help to elect C, which [A,B] does not.
One could transform a ballot of the form [A,B] into an input vote [A,B,C] (and,
thus, make them equal by definition). But that only works if a single candidate
is missing from the ballot. If more are missing, they would have to be put in
the same spot on the ballot, which is not possible. Indeed, CADE-STV does not
work correctly if input votes contain candidates with equal preference, i.e., if
the pre-condition that a vote is a partial linear order is violated. As that pre-
condition was never clearly specified, fixing the problem in CADE-STV was a
lengthy process that took several years.

This shows that not formalising the pre-conditions which the input must sat-
isfy is problematic. Besides the possibility of errors or unintended behaviour of
the algorithm, it is important that the voters understand how their ballot is
transformed into input for the algorithm.

5 Conclusion

We have discussed semantic criteria for desired properties of voting schemes. And
our case study demonstrates the importance of such criteria both for formal
analysis of voting schemes and their evolution and the development process.
Semantic criteria need to be explicitly stated. A discussion of voting schemes
using anecdotal descriptions of individual voting scenarios is not a good basis
for making electoral laws.

In future work, we plan to implement more efficient analysis tools based on
SMT solvers for checking that criteria are satisfied. This will allow to investigate
larger classes of voting schemes and to use more complex criteria. We also plan
to extend our analysis to criteria that measure the quality of election results
based on difference measures [10] in addition to yes/no criteria.

40 B. Beckert, R. Goré, and C. Schürmann

References

1. Beckert, B., Goré, R., Schürmann, C.: Analysing vote counting algorithms via logic.
And its application to the CADE election system. In: Bonacina, M.P. (ed.) CADE
2013. LNCS, vol. 7898, pp. 135–144. Springer, Heidelberg (2013)

2. Brams, S., Sanver, R.: Voter sovereignty and election outcomes (2003),
http://www.nyu.edu/gsas/dept/politics/faculty/brams/sovereignty.pdf

(accessed March 21, 2013) (retrieved)
3. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiss, G.

(ed.) Multiagent Systems. MIT Press (2012) (forthcoming),
http://www.illc.uva.nl/~ulle/pubs/files/BrandtEtAlMAS2012.pdf

4. CADE Inc.: CADE Bylaws (effective November 1, 1996; amended July/August
2000), http://www.cadeinc.org/Bylaws.html (accessed January 20, 2013) (re-
trieved)

5. Cochran, D.: Formal Specification and Analysis of Danish and Irish Ballot Counting
Algorithms. Ph.D. thesis, ITU (2012)

6. Court, F.C.: Provisions of the federal electoral act from which the effect of negative
voting weight emerges unconstitutional. Press release no. 68/2008 (2008)

7. Hill, I.D., Wichmann, B.A., Woodall, D.R.: Single transferable vote by Meek’s
method. Computer Journal 30(3) (1987)

8. Kiniry, J.R., Cochran, D., Tierney, P.E.: Verification-centric realization of elec-
tronic vote counting. Tech. rep., School of Computer Science and Informatics, Uni-
versity College Dublin (2007)

9. McGaley, M., Gibson, J.P.: Electronic voting: A safety critical system. Tech. Rep.
NUIM-CS-TR2003-02, Department of Computer Science, National University of
Ireland, Maynooth (March 2003)

10. Meskanen, T., Nurmi, H.: Closeness counts in social choice. In: Braham, M., Steffen,
F. (eds.) Power, Freedom, and Voting. Springer (2008)

11. Pacuit, E.: Voting methods. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy (Winter 2012)

12. Plaisted, D.A.: A consideration of the new cade bylaws,
http://www.cs.unc.edu/Research/mi/consideration.html (accessed March 22,
2013) (retrieved)

13. Sun, Y., Zhang, C., Pang, J., Alcalde, B., Mauw, S.: A trust-augmented voting
scheme for collaborative privacy management. Journal of Computer Security 20(4),
437–459 (2012)

14. Wikipedia: Monotonicity criterion,
http://en.wikipedia.org/wiki/Monotonicity_criterion (accessed March 21,
2013) (retrieved)

15. Wikipedia: Single transferable vote,
http://en.wikipedia.org/wiki/Single_transferable_vote (accessed January
20, 2013) (retrieved)

http://www.nyu.edu/gsas/dept/politics/faculty/brams/sovereignty.pdf
http://www.illc.uva.nl/~ulle/pubs/files/BrandtEtAlMAS2012.pdf
http://www.cadeinc.org/Bylaws.html
http://www.cs.unc.edu/Research/mi/consideration.html
http://en.wikipedia.org/wiki/Monotonicity_criterion
http://en.wikipedia.org/wiki/Single_transferable_vote

Formal Model-Based Validation

for Tally Systems

Dermot Cochran1 and Joseph R. Kiniry2

1 Siemens A/S, Ballerup, Denmark
dermot.cochran@siemens.com

2 Technical University of Denmark, Lyngby, Denmark
jkin@imm.dtu.dk

Abstract. Existing commercial and open source e-voting systems have
horrifically poor testing frameworks. Most tally systems, for example,
are tested by re-running all past elections and seeing if the new system
gives the same answer as an older, perhaps erroneous, system did. This
amounts to a few dozen system tests and, typically, few-to-no unit tests.
These systems are used today in a dozen countries to determine the out-
come of national elections. This state-of-affairs cannot continue because
it calls into question the legitimacy of elections in major European and
North American democracies.

In this work, the ballot counting process for one of the most complex
electoral schemes used in the world, Proportional Representation by Sin-
gle Transferable Vote (PR-STV), is mechanically formally modeled. The
purpose of such a formalization is to generate, using an algorithm of our
design, a complete set of non-isomorphic test cases per electoral scheme,
once and for all. Using such a system test suite, any digital election
technology (proprietary or open source) can be rigorously evaluated for
correctness. Doing so will vastly improve the confidence experts have—
and can only improve the level of trust citizens have—in these digital
elections systems.

1 Introduction

The electoral process consists of various different stages, from voter registration,
through vote casting and tallying, to the final declaration of results. Some, but
not all, aspects of the election process are apparently suitable for automation.
For example, voter registration records can be stored in computer databases, and
ballot counting can be done by machine. However, many attempts to introduce
electronic counting of ballots have failed, or at least received much criticism,
due to software and hardware errors, including potential counting errors, many
of which are avoided through the appropriate use of formal methods and careful
testing. The security aspects of elections, including voter privacy and election
integrity, are an important concern, but are beyond the scope of this paper.

One of the potential advantages from automation is the accuracy of vote
counting, so it is important to be able to prove that software can actually count
ballots more accurately than the manual, labor-intensive process of counting

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 41–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

42 D. Cochran and J.R. Kiniry

paper ballots by hand, especially for complex voting schemes. Measured error
rates for manual tallying of even simple electoral schemes range from around
0.5% to 1.5%. Mechanical tallying of (well-formed, unadulterated) digital ballots
must have an error rate of 0%.

In this paper we focus mainly on the Irish voting scheme, as a case study, as
it is one of the most complex electoral schemes in the world. By virtue of the
design of this scheme and the manner in which we formalize it, we also mechanize
two other popular voting schemes. We use the Alloy model finder [9] to describe
the elections in terms of scenarios, consisting of equivalence classes of possible
outcomes for each candidate in the election, where each outcome represents one
branch through the algorithm. We show how test data is generated from a first-
order logic representation of the counting algorithm using the Alloy model finder.
This algorithm guarantees that we find the smallest number of ballots needed
to test each scenario.

1.1 The Irish Voting Scheme

The Republic of Ireland uses Proportional Representation by Single Transferable
Vote (PR-STV) for its national, local and European elections. Ireland uses In-
stant Runoff Voting (IRV) for its presidential elections and for by-elections to fill
casual vacancies in Dáil Éireann. PR-STV is a multi-seat ranked choice voting
system in which each voter ranks the candidates from first to last preference.
IRV is PR-STV with just one remaining seat.

Manual recounts are often called for closely contested seats, as the results
often vary slightly, indicating small errors in the manual process of counting
votes. Paper-based voting with counting by hand is popular in Ireland, and
recent attempts at automation were frustrated by subtle logic errors in the ballot
counting software [2]. The potential for logic errors exist, in part, due to the
complexities and idiosyncrasies with regard to tie breaking, especially involving
the rounding up or down of vote transfers.

There has been some desire in Ireland to simplify matters. Referenda to in-
troduce plurality (first past the post, where the candidate with the most votes
is the winner, as is used in the U.S.A. and the U.K.) voting were rejected twice
by the Irish electorate, once in 1959 and again in 1968 [20]. Since then, there
have been no further legislative proposals to change the voting scheme used in
Ireland.

The following are selected quotes from the Irish Commission on Electronic
Voting (CEV) report on the previous electronic voting system used in Ireland
(emphasis added) [3]:

– Design weaknesses, including an error in the implementation of the
count rules that could compromise the accuracy of an election, have
been identified and these have reduced the Commission’s confidence
in this software.

– The achievement of the full potential of the chosen system in terms
of secrecy and accuracy depends upon a number of software and

Formal Model-Based Validation for Tally Systems 43

hardware modifications, both major and minor, and more signifi-
cantly, is dependent on the reliability of its software being adequately
proven.

– Taking account of the ease and relative cost of making some of these
modifications, the potential advantages of the chosen system, once
modified in accordance with the Commission’s recommendations, can
make it a viable alternative to the existing paper system in terms of
secrecy and accuracy.

Thus, Ireland wishes to keep its current complicated voting scheme, is critical of
the existing attempts to implement that scheme in e-voting, but keeps the door
slightly ajar for the introduction of e-voting in the future.

1.2 Proportional Representation by Single Transferable Vote

Proportional Representation by Single Transferable Vote (PR-STV) achieves
proportional representation in multi-winner elections, and reduces to IRV for
single-winner elections.

The following flowchart outlines the algorithm used for counting preferences
ballots by PR-STV. A quota of preferences is chosen so that at most N − 1
candidates can reach the quota, where N is the number of seats to be filled. A
threshold number or percentage of votes is introduced to discourage unserious
candidates—to be on a ballot a candidate must put down a non-trivial deposit
(say, e1,000) and, if the number of vote for them does not reach the threshold,
they lose their deposit. The threshold is always less than the quota. The surplus
for a candidate is the number of votes in excess of the quota.

Start
Calculate quota
and threshold

Sort ballots into piles for
each remaining candidate

More remaining
candidates than
unfilled seats?

Elect all
remaining
candidates

Does highest
candidate have a

quota?

Eliminate lowest
candidate and
transfer votes

Finished

Elect highest
candidate and

transfer surplus votes

NO

YES

YES NO

1.3 Vótáil

Vótáil is an open source Java implementation of Irish Proportional Representa-
tion by Single Transferable Vote (PR-STV). Its functional requirements, derived

44 D. Cochran and J.R. Kiniry

from Irish electoral law, were formally specified using the Business Object No-
tation (BON) and refined to a model-based Java Modeling Language (JML)
specification. While Normal and Extended Static Checking (ESC) were used to
help verify and validate the correctness of the software, the system was not rigor-
ously validated using system testing when it was first developed. Consequently,
this new research enables us to rigorously validate this (lightly, formally) verified
tally system, further increasing ones confidence in the system’s correctness.

1.4 Related Work

Related work in this area is thin in peer-reviewed publication venues, as few
groups in the world work on applying software engineering to electronic election
systems. Some industrial and governmental work exists, but much that we are
aware of is either under NDA or is word-of-mouth summaries of development
practices at commercial firms.

Academic Work. Meagher wrote a Z and B specification (both are traditional
formal methods with tool support [23]) for election to the board of Waterford
Institute of Technology, which uses a variant of the Irish PR-STV system [17].
Kjölbro used a similar methodology for specification and implementation of the
Danish Voting System [12]. Neither system has been rigorously validated through
unit or system testing.

We are also aware of some unpublished work relating to a formalization of
PR-STV in λ-Prolog by Lee Naish. It is our understanding that this system was
verified but not validated.

Researchers at the Radboud University Nijmegen attempted to test two closed-
source binaries implementing Scotland’s tally system to ensure its compliance
with the WIG-rule [18]. To do so they did a clean-room implementation of the
Scottish STV system in the purely functional programming language CLEAN
and then compared nearly 6,000 hand-written and automatically generated test
runs between all three implementations [13,14]. It is perhaps surprising that they
found a number of errors in the commercial implementations, given the ad hoc
nature of their testing.

Researchers at the University College Dublin performed a similar exercise on
behalf of the aforemented CEV to test the closed source “PowerVote” tally sys-
tem. Their clean-room implementation was run in parallel to the closed source
binary on a network of workstations for over one month on millions of randomly
generated elections. Using this completely ad hoc technique they too found cor-
rectness errors in the closed source tally system.

Also of interest is a protocol for the tallying of encrypted STV ballots [22]
and other work verifying properties of voting protocols (e.g., several papers by
Delaune and colleagues), but none of this work focuses on rigorously developed
or validated tally systems.

Formal Model-Based Validation for Tally Systems 45

All of these systems, even those that are semi-rigorously validated (like those
from Nijmegen), and especially all of those that are formally verified benefit
from this new work. The latter is true since formally verified system often have
errors due to un- or under-stated simplifications in the reasoning framework or
verification tools that introduce soundness and completeness problems. Likewise,
commercial systems that we and others have examined (research, open source,
closed source, or leaked) tally systems all benefit from our work as well.

1.5 Outline of Paper

The next section of the paper describes voting schemes in more detail. The third
section describes the system-under-test using a mathematical theory of ballots
and ballot boxes. The fourth section outlines the process of deriving test data
needed for each election configuration. The final section contains our conclusions
and plans for future work.

2 Formalisation

We must represent the input data space in a precise mathematical way to for-
mally reason about its properties with respect to the algorithm. In the follow-
ing, all components of our model are described verbally, but of course the entire
election model has been mechanically formalized. We do not have the space
to review this entire first-order model, as it is nearly 1,000 lines of Alloy. The
interested reader can download the specifications from http://www.javaforge.

com/repository/5298.
The simplicity of our model and the underlying approach should not color

the novelty of the approach nor the impact of the work. In fact, we believe that
a simple model and algorithm are a strength of the work, as one need not be
a logician or an expert in interactive theorem proving to understand and apply
the results to new electoral schemes or to validate existing tally systems.

2.1 Mathematical Models

In this example, the core concepts of elections must all be modeled: ballots, ballot
boxes, candidates, and election results.

Candidates. Citizens running for an election are identified by (distinct) names.
The set of all candidates is denoted C.

Ballot. An ordinal or preference ballot b is a strict total order on a set of can-
didates C. The length of a ballot, |b|, is the number of preferences expressed.
The minimum number of preferences is one, except in systems like that used in
Australia where all preferences must be used. In a plurality voting scheme the
maximum number of preferences is one. Otherwise, the maximum length of a
ballot is the number of candidates in the election.

http://www.javaforge.com/repository/5298
http://www.javaforge.com/repository/5298

46 D. Cochran and J.R. Kiniry

Ballot Box. An unordered ballot box is a bag (multiset) of ballots; an ordered
ballot box is a vector of ballots, [b1b2 . . .]. Both are ballot boxes, denoted B. As
a bag can be modeled by a vector where order does not matter, we only use
the latter formalization in the following. An ordered ballot box is used to model
voting schemes in which surplus ballots are chosen randomly.

As a ballot is a vector, a ballot box is encoded as a matrix, where each column
represents a single ballot. In such a representation, the top row of the matrix
identifies the first preference candidate for each ballot. Each following row con-
tains either a dash (‘-’), meaning no preference, or the identifier of the next
preference candidate.

2.2 Methodology

Here we describe the methodology we used to write the formal specification of
PR-STV using the formalized candidate, ballot, and ballot box datatypes.

To write such a formal model one must be precise and meticulous. Our method
is to go through the law, line by line, and identify every definition, algorith-
mic step, and claim therein. Definitions are mapped to datatype definitions
(above). Informal algorithms are mapped to abstract state machines using these
datatypes. And claims are mapped to theorems. All artifacts in the formal spec-
ification are carefully annotated with comments providing traceability to and
from the law text.

Alloy permits one to specify formal models using a concise, typed first-order
language. Theorems are written as assertions and are checked by the Alloy model
finder by exploring the explicit state space of the model in a breadth-first fashion.
The author of the specification stipulates the size of the primitive datatypes
involved (e.g., the number of bits in an integer) so as to restrict the state space
of exploration. For this case study, around 1,000 lines of Alloy specifications were
written.

Consequently, by the time the specification is complete, the Alloy system
has both guaranteed that the model is well-typed and gives strong evidence
that it is sound because all theorems are checked using the model finder. Note
that this automated consistency checking is not the same as providing a full
interactive proof of a soundness theorem in a higher-order logical framework.
Such formalization is an interesting and useful exercise, but we did not do it for
this case study. Instead, checking the dozens of theorem stipulated in law text is
more akin to the kind of validation that we are advocating in this work. It gives
us high confidence, but not a proof, that the mechanical formalization is sound
and complete.

3 Election Outcomes

A naive approach to validating/testing electoral systems (if they are tested at
all) is to randomly generate enormous numbers of random ballot boxes and then
to compare the results of executing two or more different implementations of the

Formal Model-Based Validation for Tally Systems 47

same voting scheme. If different results are found, then the ballots are counted
manually to determine which result is correct [2].

This methodology is inadequate because, even if one generates billions of
ballots in non-trivial election schemes, the fraction of the state space explored
is vanishingly small. To make this fact clear, we analyze below the number
of distinct ballot boxes in various schemes. Further examples are found in the
Appendices.

3.1 Last Two Continuing Candidates

When there are just two continuing candidates and one remaining seat, the algo-
rithm reduces to single winner plurality (first-past-the-post). In this case there
are six possible election results (candidate outcome events) for each candidate.

Event Description
W The candidate is the poll-topper with the most votes.
W The candidate is joint highest and only wins by tie-breaker.
L The candidate loses, but receives enough votes to reach the threshold.
L The candidate is joint highest and only loses by tie-breaker.
S The candidate loses and does not reach the threshold.
S The candidate is joint highest and loses by tie-breaker, but does not

reach the threshold.

In plurality there is only one winner, so the winner is either in event W or W.
If there is one loser, the 3 possible outcomes are:

Sub-Scenario 1st Event 2nd Event
1 W L

2 W S

3 W L

Consequently, to test this particular election scenario, that of two continu-
ing/remaining candidates and one remaining seat, there are three possible out-
comes that must be exercised: one in which one candidate clearly wins and the

other clearly loses, but showed well for himself (W L), another in which the

loosing candidate was so unpopular as to not get his deposit back (W S),
and the final outcome is when the two candidates tied and the outcome of the
election was determined by a tie-breaking mechanism (W L).

Clearly, even when analyzing as simple an election scenario such as this one,
hand-identifying each outcome is complex, and hand-writing a test for each
outcome is foolhardly.

Now, lets turn our attention to a slightly more complex scenario to start to
see how the number of events impacts the number of scenarios.

48 D. Cochran and J.R. Kiniry

3.2 Filling of Last Seat

When there is one remaining seat, but at least three continuing candidates,
then the algorithm reduces to Instant Runoff Voting (IRV). For each continuing
candidate the following event outcomes are possible.

Event Description
H The candidate is the poll-topper with a majority of the first preferences

and is elected.
Q The candidate is elected during an intermediate round by receiving

transfers.
W The candidate receives enough transfers to have a majority of the votes

and is elected in the last round.
W The candidate is elected by tie-breaker in last round.
L The candidate is defeated as the lowest candidate in any round but

reached the threshold.
L The candidate is defeated by tie-breaker in any round, but reached the

threshold.
S The candidate is excluded as the lowest candidate in any round and did

not reach the threshold.

Based upon these events, lets consider one simple scenario, focusing on two
candidates, the winner and the highest loser (runner-up). In this scenario the
following combinations of events are possible (the outcome Q is not possible
because there are only two candidates and thus there will be no intermediate
round).

1st Event 2nd Event Description
W L The winner gets a majority and the loser reaches the

threshold.
W S The winner gets a majority and loser does not reach the

threshold.
W L The winner is elected by tie-breaker and the loser reaches

the threshold.

Consequently, even though there are seven possible events, only three scenar-
ios are possible. Thus, an increase in the number of possible events does not
necessarily mean an increase in the number of scenarios.

3.3 PR-STV

PR-STV significantly complicates the picture of event types. For any winning
candidate one of eight events can happen.

Formal Model-Based Validation for Tally Systems 49

Event Description
N The candidate is elected in the first round with a surplus containing at

least one non-transferable vote
T The candidate is elected in the first round with at least one surplus vote
H The candidate is elected in the first round without surplus votes
X The candidate is elected after receiving vote transfers and then has a

surplus with at least one non-transferable vote
A The candidate is elected during an intermediate round by receiving

transfers and has a surplus to distribute
Q The candidate is elected during an intermediate round by receiving

transfers, but without a surplus
W The candidate is elected as the highest continuing candidate on last

round.
W The candidate is elected by tie-breaker on the last round.

And for any losing candidate one of eight events can happen.

Event Description
L The candidate is defeated as the lower continuing candidate on the last

round.
L The candidate is defeated by tie-breaker on last round.
E The candidate is excluded as the lowest candidate in an earlier round

but reached the threshold, all ballots are transferable
D The candidate is excluded in an earlier round and is below the threshold,

all ballots are transferable
S The candidate is defeated in the last round and is below the threshold.
S The candidate is excluded by tie-breaker and is below the threshold.
F The candidate is excluded as the lowest candidate in an earlier round

but reached the threshold, with at least one non-transferable ballot
U The candidate is excluded in an earlier round and is below the threshold

with at least one non-transferable ballot

Deriving all possible outcomes for a simple election (say, five candidates run-
ning for three seats) is now a seriously non-trivial exercise. Thus, we need some
means by which to automatically generate all possible legal outcomes of an elec-
tion, and from that outcome, derive test data (i.e., a concrete ballot box) to
exercise this particular corner of the election algorithm. This is the purpose of
our formalization and algorithm, as presented in the sequel.

4 Procedure for Automated Test Generation

The question arises, how do we find witnesses for each outcome? That is, how
do we find the smallest set of test ballots required for each outcome, while also

50 D. Cochran and J.R. Kiniry

showing that the system can scale to accept larger numbers of test ballots. Such
stress testing can be achieved by running one test with the maximum number
of ballots, but otherwise we would prefer to find the smallest sample ballot box
for each outcome. When stress or performance tests are required then the same
approach could be used to find both the smallest and largest set of input data
for each outcome.

Ballot counting system tests are identified and generated in a complete and
formal way, complementing existing hand-written unit tests [11]. To accomplish
this task, one needs to be able to generate the ballots in each distinct kind
of ballot box identified using the results of the earlier sections of this paper.
Effectively, the question is one of, “Given the election outcome R, what is a
legal set of ballots B that guarantees R holds?”

What follows is a fairly straightforward exercise of applying model finding to
the problem of test case generation. While this idea, at its core, is not novel [19],
the use of Alloy for such generation, particularly for critical systems such as
election tally systems, is completely novel. The automatic generation of system
tests in this space is far beyond what any research group or e-voting corporation
has accomplished to-date.

4.1 Generation of Ballot Boxes

We outline a simple example to show how it is possible to derive test data from
the equivalence class of ballot boxes.

Based upon the mechanized model of PR-STV, we used the SAT4J solver with
Alloy running concurrently in a thread pool to perform this test generation. We
suspect that a native solver would be faster, but might not be thread safe; see
http://stackoverflow.com/tags/alloy for an explanation of why JNI solvers
might not be thread safe.

Recall that each election outcome O is described by a single election scenario,
S, as described by a vector of candidate outcome events. We must derive from an
outcome O a vector of ballots B that guarantees, when counted using the ballot
counting algorithm of the election, exactly O, assuming that ties are broken in
a deterministic way. We write B �S O to mean counting B results in outcome O

under scenario S. Such a combination of ballots, outcome, and scenario is called
an election outcome configuration.

In general, there are a large number of vectors of ballots that guarantee an
election outcome. For practical reasons in validation, we wish to find the smallest
vector that guarantees the outcome; i.e., given O and S, find B such that ∀b.b �S
O.|B| ≤ |b|.

For a given outcome O, the conditions that a vector of ballots B must meet
to fulfill scenario S is described using a first-order logical formula whose validity
indicates B �S O holds. We denote this description Φ. Thus, B �S O ⇔ Φ(B),
or alternatively, Φ(B)B �S O.

Encoding in Alloy Modeling Language. Formally this is achieved using bounded
checks in the Alloy Analyser [10].

http://stackoverflow.com/tags/alloy

Formal Model-Based Validation for Tally Systems 51

Informally, to find the minimal sized B, we iteratively describe election config-
urations B �S O with monotonically increasing numbers of ballots, starting with
a ballot box of size one. These descriptions consist of a set of definitions that
describe the outcome and a single theorem that states that O is not possible.
If the number of ballots is too small to produce the desired outcome, then the
formulation of B �S O will be inconsistent, and Alloy will return a satisfiable
solution.

Alternatively, if the ballot box size is just large enough, Alloy will insist that
the predicate is invalid and provide a counterexample proof context, whose val-
ues indicate the necessary values of all of the ballots in B.

Example: Instant Runoff Voting. Consider 3 candidate IRV. Two possible out-
come classes are QLE and WLE–no candidate has a majority so one is eliminated
and then in the next round, one candidate has a majority. These are two distinct
cases: firstly a ballot box of 3 ballots for A, 2 ballots for B, 1 ballot for C, and
secondly a ballot box of 2 ballots for A, 2 ballots for B, and 1 ballot with (1st=C
2nd=A).

In both cases, no one has a majority, C is eliminated, and then A wins with
a 3 to 2 majority. In both cases the threshold would be one vote. In both cases
C is an Early Loser (E) and B is a Loser (L).

An Election Configuration Example. Consider a plurality election with
two candidates (|C| = 2). As discussed in the earlier examples, there are three
scenarios associated with this election configuration: [WL], [WS], and [WL].

In the following, let T be a tiebreaker function that chooses a winner from a
set of candidates.

As earlier, let B denote a ballot box and b a ballot. Let b[n] be the nth

preference of ballot b. Finally, as earlier, let τ be the threshold of votes for a
given electoral system.

Formalization. Each candidate outcome is described by an definition that
expresses the relationship between the number of votes that candidate receives
and the outcome. Since most first-order theorem provers do not provide native
support for the generalized summation quantifier, we use a generic encoding
described by Leino and Monahan [15].

Axiomatization. We first need definitions that stipulate the well-formedness of
ballots.

∀b ∈ B . b[1] ∈ |C|
(
∑
B

b[1] = A) + (
∑
B

b[1] = B) = |B|

Definition wfb describes the well-formedness of ballots, while definition wfB de-
scribes the well-formedness of the ballot box. If an electoral system permits
empty preferences then this latter definition is modified to accommodate such.

52 D. Cochran and J.R. Kiniry

Formalizing Scenarios. Next, we need to formalize the scenarios of this partic-
ular two candidate plurality election as follows, where the label of each formula
indicates the semantics of event of the same name e.g., formula W describes the
meaning of event W.

As we commonly quantify over all ballots in B, we write the quantifications
over B rather than the more wordy b ∈ B. Finally, we encode the set of ballots
as the first index in the map b i.e., the second ballot’s third preference is b[2][3].
Note that these summations are generalized quantifiers:

∑
(b[1] = A) means

“count the number of ballots whose first preference is candidate A.”

∑
B

(b[1] = A) >
∑
B

(b[1] = B) (W)

∑
B

(b[1] = A) =
∑
B

(b[1] = B) ∧ (T = A) (W)

τ ≤
∑
B

(b[1] = B) (L)

∑
B

(b[1] = B) < τ (S)

Note that the rightmost clause of formula W states that the coin-flip function
picked candidate one as the winner. Also remember that these are axioms of
our theory of PR-STV elections, and thus redundant clauses repeating earlier
axioms are unnecessary (e.g., repeating W’s inequality in L’s definition).

The Outcome Theorem. Now, we wish to try to prove a theorem that stipulates
that, for a given scenario, an expected outcome is not possible for a given number
of ballots.

After asserting to the theorem prover the above definitions (accomplished with
the BG PUSH command in the Alloy SAT4J solver and either the definition

attribute or a push command in SMT-LIB [4,21]), we ask the prover to check
the validity of the following theorem (by simply stating the theorem in Alloy
or using the check-sat command in SMT-LIB), that captures the meaning of
scenario [WL]:

|B| = 1⇒ ¬(W ∧ L)

If the prover responds with “valid,” then we know that we need more than one
ballot, and we make a new attempt:

|B| = 2⇒ ¬(W ∧ L)

Consequently, if that attempt also fails, we attempt to prove the theorem with
three ballots:

|B| = 3⇒ ¬(W ∧ L)

Formal Model-Based Validation for Tally Systems 53

at which time the prover returns an “invalid” response with a counterexample.
The counterexample for this particular theorem will be of the form

b[1][1] = A ∧ b[2][1] = A ∧ b[3][1] = B

thereby providing a minimal ballot box that guarantees election outcome [WL].
Note that to check minimality we can attempt to prove the theorem (W∧L)⇒
3 ≤ |B|, though such a theorem is quite difficult for automated solvers to prove
give the implicit quantification over ballot boxes and is, in general, can only be
proven with an interactive theorem prover.

4.2 Open Source Implementation

The source code for all software and all mechanized theory is available under
the terms of the MIT open source license and can be found the open source
repository mentioned earlier.

5 Evaluation and Threats to Validity

To test our approach, we have used our methodology to test Vótáil, the afore-
mentioned rigorously engineered tally system for Irish PR-STV. Vótáil was de-
veloped using a rigorous methodology with the application of several formal
methods tools for design and implementation formal verification.

To test Vótáil (and other Irish PR-STV tally systems) we executed our elec-
tion generator on a large sixteen core system for nearly one month. The specific
algorithm we used gradually added candidates and seats to the election defini-
tion, essentially exploring all elections scenarios in a breadth-first fashion. The
resulting log file tracing every election generation is over 700MB in size and we
generated 137,000 elections. We terminated our test generation after generating
elections with seven candidates vying for three seats as generating more complex
election scenarios becomes increasingly computationally expensive.

To evaluate the quality of our system tests we executed all tests on Vótáil
using Emma to perform coverage analysis [5]. Recall that Vótáil was developed
using a rigorous development method including several static checkers and had
already been lightly verified using ESC/Java2. Consequently, it would be some-
what surprising to find errors in the implementation.

With our original model Emma reported that executing this test suite resulted
a fraction below 100% statement coverage and 100% condition coverage. In order
to achieve full statement coverage, the original Alloy model was expanded to
include extra outcomes; in particular, we needed to model the possibility that a
winning candidate might have no surplus votes.

Using this test suite we discovered two errors in its implementation, namely
a null pointer exception and possible non-termination of a loop. On closer ex-
amination we discovered that both of these errors were not caught during the
original formal verification of Vótáil due to under-specification (a missing loop
invariant).

54 D. Cochran and J.R. Kiniry

Of course, this level of coverage (100% statement and condition coverage)
does not prove that the system is error-free. One could easily take the fixed set
of system tests and code around its model coverage with sufficient effort. But
what it does do is (a) provide strong evidence, especially when combined with a
rigorous development method and formal verification, that the system is correct,
and (b) raise the state-of-the-art for election tally system testing enormously.

6 Conclusions

The fact that we found errors in a tally system that was engineered using EAL
level 7 methods and tools strongly supports our hypothesis that this kind of auto-
mated, domain-specific validation is critical for digital electronic voting systems
worldwide.

Moving forward, we believe that it would be of great value to democracies
around the world to formalize the other large handful of popular election schemes
worldwide using the same software framework. By doing so we can generate a
complete set of system tests for every tally scheme in widespread use. The lack of
a standardized format for election data from the IEEE or similar is unfortunate,
so perhaps we can make recommendations in this regard.

Of course, having all of these system tests generated is a useful outcome for
everyone building election systems, academic and industrial alike, but is not a
panacea. As advocated by others using applied formal methods, verification and
validation of mission- and safety-critical systems is mandatory. Techniques go
hand-in-hand toward ensuring that our critical software systems, like those of
election software, are correct. This work simply provides a strong touchstone for
the runtime validation side of things, while much work remains to be done with
regards to verification and certification.

References

1. Bowler, S., Grofman, B.: Elections in Australia, Ireland, and Malta under the Single
Transferable Vote: Reflections on an embedded institution. University of Michigan
Press (2000)

2. Coyle, L., Cunnigham, P., Doyle, D.: Appendix 2D - second report of commission on
electronic voting in Ireland: Secrecy, accuracy and testing of the chosen electronic
voting system: Reliability and accuracy of data inputs and outputs (December
2004)

3. Department of Environment and Local Government, Commission on Electronic
Voting in Ireland. Count requirements and commentary on count rules (June 23,
2000)

4. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
Journal of the Association of Computing Machinery 52(3), 365–473 (2005)

5. https://github.com/jacoco
6. Farrell, D.M., McAllister, I.: The Australian electoral system: origins, variations,

and consequences. New South Wales University Press, Ltd. (2006)
7. Gallagher, M.: Comparing proportional representation electoral systems: Quotas,

thresholds, paradoxes and majorities. British Journal of Political Science 22(4),
469–496 (1992)

https://github.com/jacoco

Formal Model-Based Validation for Tally Systems 55

8. Gilmour, J.: Detailed description of the STV count in accordance with the rules in
the Scottish local government elections order 2007. Representation 43(3), 217–229
(2007)

9. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology 11(2), 290 (2002)

10. Jackson, D.: Software Abstractions: logic, language and analysis. MIT Press, MA
(2012)

11. Kiniry, J.R., Cochran, D., Tierney, P.E.: Verification-centric realization of elec-
tronic vote counting. In: Proceedings of the USENIX/Accurate Electronic Vot-
ing Technology on USENIX/Accurate Electronic Voting Technology Workshop.
USENIX Association Berkeley, CA (2007)

12. Kjölbro, O.: Verifying the Danish Voting System. Master’s thesis, IT University of
Copenhagen (May 2011)

13. Koopman, P., Hubbers, E., Pieters, W., Poll, E., de Vries, R.: Testing the eSTV
program for the Scottish local government elections. Technical report, Radboud
University Nijmegen (2007)

14. Koopman, P., Plasmeijer, R.: Testing with functional reference implementations.
In: Page, R., Horváth, Z., Zsók, V. (eds.) TFP 2010. LNCS, vol. 6546, pp. 134–149.
Springer, Heidelberg (2011)

15. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order
SMT solvers. In: Proceedings of the 24th Annual ACM Symposium on Applied
Computing, SAC 2009 (2009)

16. McGaley, M., Gibson, J.P.: Electronic voting: A safety critical system. Final Year
Project Report, NUI Maynooth Department of Computer Science (2003)

17. Meagher, M.: Towards the development of an electronic count system using formal
methods, MPhil thesis, University of Southampton (2001)

18. The Scottish Ministers, Scottish local government elections order 2007, rule 45–52
(December 2006)

19. Rayadurgam, S., Heimdahl, M.P.E.: Coverage based test-case generation using
model checkers. In: Proceedings of the IEEE International Conference on the En-
gineering of Computer Based Systems (ECBS 2001), pp. 83–91. IEEE (2001)

20. Sinnott, R.: Irish voters decide: Voting behaviour in elections and referendums
since 1918. Manchester Univ. Pr. (1995)

21. SMT-LIB: The satisfiability modulo theories library,
http://combination.cs.uiowa.edu/smtlib/

22. Teague, V., Ramchen, K., Naish, L.: Coercion-resistant tallying for STV voting.
In: Proceedings of the USENIX/Accurate Electronic Voting Technology Workshop
(2008)

23. Wing, J.M.: A specifier’s introduction to formal methods. Computer 23(9), 8–22
(1990)

A Appendix: Voting Schemes

To analyze this challenge, a number of definitions are necessary to establish
a clear nomenclature for the later formalisms of this paper. We focus first on
voting schemes for context. Section 2, provided the formal definitions of all of
the components informally mentioned here.

http://combination.cs.uiowa.edu/smtlib/

56 D. Cochran and J.R. Kiniry

A voting scheme is an algorithm for counting ballots. A preference voting
scheme requires the voter to rank two or more candidates (C) in order of prefer-
ence from first to last. A plurality voting scheme requires the voter to pick one
candidate, and thus is equivalent to the preference scheme when the ranking list
has unitary size.

The election result (W,L) consists of (1) the identification of the winner or
winners of the election and (2) the identification of those candidates who achieved
a certain threshold (denoted τ) of votes, e.g., 5 percent, needed either to qualify
for public funding in future elections or to recoup a deposit paid. This threshold
facet of our election model is not universal, but is a critical component in many
electoral systems. Note that winners and losers are disjoint.

We denote a ballot box B as a set of ballots b. Mathematically, a voting
scheme E is a function that takes a ballot box (a set of ballots) as its input, and
produces an election result as its output. More formally, E : B→ (W,L) where
W ⊆ C, L ⊂ C, and W ∩ L = ∅.

Single Winner Plurality Voting. Plurality voting is one of the simplest
possible voting schemes. The candidate with the most votes is the winner. When
there is only one remaining seat and just two continuing candidates, then PR-
STV reduces to single-winner Plurality.

Instant Runoff Voting (IRV). IRV allows the voter to rank one or more
candidates in order of relative preference, from first to last.

IRV usually has a single winner, but the candidate with the most votes must
also have a majority of all votes, otherwise the candidate with least votes is
excluded and each ballot for that candidate is transferred to the next candidate
in order of preference. This evaluation-and-transfer continues until one of the
candidates achieves an overall majority.

When there is just one remaining seat, or a special election to fill a vacancy
in one seat, then PR-STV reduces to IRV.

Order of Elimination. The candidate with the least number of votes credited to
him or her in the curent round is selected for elimination. If there is an equality
of votes, then previous rounds are considered. If two or more candidates have
equal lowest votes in all rounds, then random selection is used.

Variants of PR-STV. To highlight the complexities of election schemes, consider
the following variants of PR-STV. As schemes vary, so must testing/validation
strategies. For example, Australia, Ireland, Malta, Scotland, and Massachusetts
use different variants of PR-STV for their elections [1].

– Australia - Australia uses IRV to elect its House of Representatives and an
open list system for its Senate, where voters can choose either to vote for
individual candidates using all available preferences or to vote “above-the-
line” for a party [6]. Australians (in many elections) vote either above the
line or below the line, but ATL votes are still counted using PR-STV, after

Formal Model-Based Validation for Tally Systems 57

being transformed into a full preference ranking. (Effectively, an ATL vote
proxies the vote to the chosen party.)

– Ireland - Ireland uses PR-STV for local, national and European elections.
Transfers are rounded to the nearest whole ballot, so the order in which
ballots are transferred makes a difference to the result [16]. Not all prefer-
ences need to be used, so voters may choose to use only one preference, as
in Plurality voting, if desired.

– Malta - Malta uses PR-STV for local, national and European elections. For
national elections Malta also adds additional members so that the party with
the most first preference votes is guaranteed a majority of seats.

– Scotland, UK - Scotland uses PR-STV for local elections. Rather than
randomly select which ballots to include in the surplus, fractions of each
ballot are transferred, that gives a more accurate result but takes much
longer to count if counted by hand [8].

– Massachusetts, USA - Cambridge in Massachusetts uses PR-STV for city
elections. Candidates with less than fifty votes are eliminated in the first
round and surplus ballots are chosen randomly.

The fact that a single complex voting scheme like PR-STV has this many variants
in use highlights the challenges in reasoning about and validating a given software
implementation. This fact makes our work that much more valuable, as each
algorithm only need be analyzed once to derive a complete validation that may
be used again and again over arbitrary implementations of a ballot counting
algorithm.

Irish PR-STV. To give context, we now discuss the mechanics of Irish PR-STV
in more detail.

Preference Ballots. The voter writes the number “1” beside his or her favorite
candidate. There can only be one first preference.

The voter then considers which candidate would be his or her next preference
if his or her favorite candidate is either excluded from the election or is elected
with a surplus of votes.

The second preference is marked with “2” or some equivalent notation. The
can be only one second preference; there cannot be a joint second preference.
Likewise for third and subsequent preferences. Not all preferences need to be
used.

Multi-seat constituencies. Each constituency is represented by either three, four
or five seats.

The Droop Quota. The quota is calculated so that not all winners can reach the
quota. The droop quota is 1 + V

1+S , where V is the total number of valid votes
cast and S is the number of vacancies (or seats) to be filled [7]. The quota is
chosen so that any candidate reaching the quota is automatically elected, and so
that the number of candidates that might reach the quota less than the number
of seats.

58 D. Cochran and J.R. Kiniry

For example, in a five-seat constituency a candidate needs just over one-sixth
of the total vote to be assured of election.

Surplus. The surplus for each candidate, is the number of ballots in excess of
the quota (if any). The surplus ballots are then available for redistribution to
other continuing candidates.

The selection of which ballots belong to the surplus is a complex issue, de-
pending on the round of counting. In the first round of counting, any surplus is
divided into sub-piles for each second preference, so that the distribution of the
ballots in the surplus is proportional to the second-preferences. In later rounds
the surplus is taken from the last parcel of ballots received from other candi-
dates. This surplus is then sorted into sub-piles according to the next available
preference.

For example, if the quota is 9,000 votes and candidate A receives 10,000 first
preference votes. The surplus is 1,000 votes. Suppose 5,000 ballots had candidate
B as next preference, 3,000 had candidate C and 2,000 had candidate D. Then
the surplus consists of 500 ballots taken from the 5000 for candidate B, 300 from
the 3000 for candidate C and 200 from the 2000 for candidate D. Ideally each
subset would also be sorted according to third and subsequent preference, but
this does not happen under the current procedure for counting by hand, nor was
it mandated in the previous guidelines for electronic voting in Ireland.

Exclusion of weakest candidates. When there are more candidates than available
seats, and all surplus votes have been distributed, the continuing candidate with
least votes is excluded. If two or more candidates have equal lowest votes (at all
stages of the count) then one is chosen randomly for exclusion.

All ballots from the pile of the excluded candidate are then transferred to
the next preference for a continuing candidate, or to the pile of non-transferable
votes.

This continues until another candidate is elected with a surplus or until the
number of continuing candidates equals the number of remaining seats.

Filling of Last Seat and Bye-elections. When there is only one seat remaining
to be filled, i.e., the number of candidates having so far reached the quota is
one less than the number of seats, or in a bye-election for a single vacancy,
then the algorithm becomes the same as Instant Runoff Voting; no more surplus
distributions are possible, and candidates with least votes are excluded until
only two remain.

Last Two Continuing Candidates. When there are two continuing candidates
and one remaining seat, then the algorithm becomes the same as single-seat
first-past-the-post plurality; the candidate with more votes than the other is
deemed elected to the remaining seat, without needing to reach the quota. If
there is a tie then one candidate is chosen randomly.

Formal Model-Based Validation for Tally Systems 59

B Appendix: Detailed Examples

This appendix contains some more detailed examples for estimation the number
of possible ballots, number of possible outcomes, and the number of distinct
permutations of ballot papers.

B.1 Number of Distinct Ballots

The number of distinct permutations of non-empty preferences is

C∑
l=1

(C)l, where

C = |C| and partial ballots are allowed, so that the number of preferences used
range in length from one to the number of candidates. For a ballot of length l,
(C)l is the number of distinct preferences that can be expressed.

Examples and Encoding Ballots. This distinct ballot count is best under-
stood, particularly for those unexcited by combinatorics, by examining cases for
small C and enumerating all possible ballots.

Two Candidates. There are four different ways to vote for two candidates (named
Alice and Bob): two ballots of length 1, and two ballots of length 2, that is
(2)1 + (2)2:

Ballot Alice Bob Encoding of Ballot

1 1st - A −
2 - 1st B −
3 1st 2nd A B

4 2nd 1st B A

A − has a different meaning than A B . If we had an election with two

ballots B − and A B , then Bob would be the winner.
Note the symmetry of these four ballots. There are effectively only two differ-

ent ballots if the candidates cannot be differentiated.

Number of Distinct Outcomes. If B is the number of distinct non-empty ballots
that can be cast, and V = |B| is the number of votes cast, then the number of
possible combinations of ballots is BV if the order of ballots is important, and
BV

V !
if not.

A typical electoral configuration in Ireland is a five seat constituency with
a typical voting population of 100,000 and 24 candidates. Consequently, the

number of possible ballot boxes is (
24∑
l=1

(24)l)
100,000, an astronomical number of

tests that would be impossible to run.

60 D. Cochran and J.R. Kiniry

To avoid this explosion, we partition the set of all possible ballot boxes into
equivalence classes with respect to the counting algorithm chosen. We consider
the equivalence class of election results for all three counting schemes.

Each election outcome is described by an election scenario that is a vector of
candidate outcome events. Both of these terms are defined in the following.

The key idea is that election scenarios represent an equivalence class of election
outcomes, thereby letting us collapse the testing state space due to symmetries
in candidates. We will return to this point in detail below in the early examples.

Three Candidates. There are 15 legal ways to vote for three candidates called
Alice, Bob, and Charlie:

Ballot Alice Bob Charlie Encoding

1 1st - - A − −
2 - 1st - B − −
3 - - 1st C − −
4 1st 2nd - A B −
5 1st - 2nd A C −
6 2nd 1st - B A −
7 - 1st 2nd B C −
8 2nd - 1st C A −
9 - 2nd 1st C B −
10 1st 2nd 3rd A B C

11 1st 3rd 2nd A C B

12 2nd 1st 3rd B A C

13 3rd 1st 2nd B C A

14 2nd 3rd 1st C A B

15 3rd 2nd 1st C B A

There are 3 ballots of length 1, 6 ballots of length 2 and 6 ballots of length 3,
that totals (3)1 + (3)2 + (3)3 = 15. Again, note the symmetry of these ballots,
as there are only three different kinds of ballots in these fifteen ballots.

More than Three Candidates. Each additional candidate number n means one
extra ballot of length 1, plus another C ballots in which the extra candidate is
the last preference, plus every other way in which the candidate could be inserted
into the existing set of ballots, in one of n positions along that ballot.

For example, when there are four candidates, the number of single preference
ballots increases to 4, the number of length 2 ballots is 4× (4− 1), the number
of length 3 ballots is 4× (4− 1)× (4 − 2) and the number of full length ballots
is 4!, for a total of 64 ballots, of which there are only three equivalence classes.

Vote Casting in Any Preferred Constituency:

A New Voting Channel

Jurlind Budurushi1, Maria Henning2, and Melanie Volkamer1

1 CASED / TU Darmstadt, Germany
2 provet, Universität Kassel, Germany

{jurlind.budurushi,melanie.volkamer}@cased.de,

{maria.henning}@uni-kassel.de

http://www.secuso.cased.de

http://www.uni-kassel.de/fb07/institute/iwr/

Abstract. In our society a rising number of people change their resi-
dence regularly. Insofar, mobility seems to be necessary even on Election
Day, which is the reason why an increasing number of eligible voters use
the opportunity of postal voting. Thereby, the abidance by the election
principles, especially the freedom and secrecy of elections, is automat-
ically transferred into the private sector. This would not be necessary
if eligible voters had the possibility to cast their vote in any preferred
constituency within the electoral area. Therefore, we investigate in this
work if and how vote casting in any constituency can be constitution-
ally compliant, while maintaining the current electoral system. We also
consider the integration of the new German electronic ID card for voter
identification and authentication.

1 Introduction

The use of various services over the Internet is part of many peoples’ everyday
life. Through this, it is no longer required that the individual is present at a
particular time or place to conduct its business. The need for this kind of mo-
bility exists independent of special events, thus also on Election Day. For this
reason, some countries provide postal voting in order to enable as many people
as possible to participate in the election. Postal voting was established in Ger-
many in 1956 with the third Federal Electoral Act [7]. Through this, voters who
were not able to visit a polling station because of health reasons or any other
issues were enabled to cast their vote at home. While in 1957 only 4,9 % used
this option, for the elections to the 17th German Bundestag in 2009, about 21,4
% took the opportunity of postal voting (ref. to Table 1 in [2]). The increase of
postal voters may be justified due to both: the rising mobility of the citizens, and
the relaxation of application requirements for postal voting. But the shift of a
democratic legitimized election to the private sector raises the question whether
postal voting in its present form is still constitutionally compliant and in par-
ticular if it complies with the public nature of elections [25]. However, postal
voting is an indispensable opportunity for voters, who cannot be present in the

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 61–75, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.secuso.cased.de
http://www.uni-kassel.de/fb07/institute/iwr/

62 J. Budurushi, M. Henning, and M. Volkamer

polling station of their constituency because of health reasons or for those that
cannot be in the election area on Election Day. In contrast, voters who are able
to visit a constituency within the electoral area should be offered the additional
opportunity to cast their vote in any preferred constituency. Through this new
voting channel, voters would be as mobile and flexible as when using the oppor-
tunity of postal voting, but they would cast their vote in an environment that
is controlled by the electoral committee. In addition the compliance with the
election principles would be guaranteed.

In the following, we consider vote casting in any preferred constituency in the
context of the elections for the German Bundestag on Election Day. Thereby,
we investigate different possibilities of this new voting channel. Furthermore, we
identify the advantages and disadvantages and compare all possibilities against
each other from a legal and technical perspective. We do not aspire to change
or suggest changes concerning the German electoral system, which means the
composition of the German Bundestag and vote casting by selecting a candidate
and the list of a party. While maintaining the current electoral system but voting
from any constituency, two issues should be considered carefully: one is how to
authenticate voters that vote in foreign constituencies and provide them with
the respective ballot, and the other one is how to return the ballot to the local
constituency in order to tally the votes.

This work considers legal implications of allowing voters to cast their vote
from any constituency in Germany and respective technical solutions in order to
realise this ambition. The findings of this work might also apply in countries that
have similar legal requirements to Germany, especially member countries of the
European Union (EU). However, legal requirements might be slightly different
even within the EU. Therefore, a similar analysis, which could consider or could
be based on this work, must be conducted for each country, individually.

2 General Possibility of Vote Casting in any Preferred
Constituency

According to § 1.2 in conjunction with § 2.2 Federal Electoral Act the territory
of Germany is divided into 299 electoral districts. Every electoral district is sub-
divided into constituencies. Thus, constituencies are the lowest spatial division
of the electoral area from an organisational point of view (ref. to § 2, m.n. 5 in
[29]). They are important in the context of casting the votes because they define
the place where to do so. According to § 14.2 Federal Electoral Act, voters can
cast their vote only in that constituency, in whose electoral register they are
recorded in. According to § 14.3 a) Federal Electoral Act, the casting of votes in
any preferred constituency within the electoral district requires the ownership of
a ballot record which is only given in case of applying for it within a prescribed
period.1

1 A ballot record entitles the voter to do postal voting or to cast her vote in any
constituency within the electoral district. For further information please see section
3.1.

Vote Casting in Any Preferred Constituency 63

The casting of votes in any preferred constituency of the electoral area is not
compatible with the current regulations of electoral law. However, this is owned
to the election process and not to the constitutional regulations. For instance,
Article 38.1 sentence 1 of the Basic Law does not require that eligible voters cast
their votes only in the constituency they are registered in. In case the checking
of the eligibility to vote is guaranteed and it can be ensured that every eligible
voter casts his or her vote only once and personally (see section 3), voters shall
be able to cast their vote in any preferred constituency, not only in the one they
are registered in. As the election system shall be maintained, it must be ensured
that the cast vote is tallied in the constituency the respective voter is related to
(see section 4).

3 Checking of Eligibility

The following remarks apply in case voters cast their vote in the constituency
they are assigned to or in any preferred constituency.

3.1 Ballot Record

Voting by people from foreign constituencies could be made dependent on the
submission of a ballot record. Insofar, it could be referred to the current regu-
lations, whereas the grant of a ballot record is possible only on request, § 17.2
Federal Electoral Act, and voting by submission of a ballot record requires the
presentation of an official identity document, § 59 Federal Electoral Code. Thus,
in contrast to § 14.3 a) of the Federal Electoral Act, the possession of a ballot
record would qualify for vote casting in any preferred constituency within the
electoral area (and not only within the electoral district). This approach has the
advantage that no new infrastructure is required in order to check the eligibility
of voters in a foreign constituency. In that regard, the existing electoral registers
can be used for checking the eligibility of voters in a foreign constituency, similar
to postal voting. Those voters who have applied for a ballot record could cast
their vote in any preferred constituency. Those who have not applied for a ballot
record could cast their vote only in the constituency they are registered in.

However, this approach also has a number of disadvantages (which exist in the
current implementation as well, but would affect a larger number of voters in our
approach): The voter loses her right to vote in case she loses the ballot record.
Furthermore, a coercer could conduct a forced-abstention attack by requiring the
voter to hand out the ballot record. Both threats also exist in the current election
system. Voters, who have received a ballot record and lost it subsequently, cannot
refer to the issuance of it. The replacement of a lost ballot record is generally
not considered in order to prevent a double vote (ref. to § 17, m.n. 15 in [29]).
According to § 28.10 sentence 2 of the Federal Electoral Code, a new ballot
record can be issued only with a credible assurance of a lack of access until 12
o’clock the day prior to the election. A further disadvantage of this approach is
that only voters who have applied for a paper record within the prescribed period

64 J. Budurushi, M. Henning, and M. Volkamer

are able to cast their vote in an optional constituency. This could be solved by
sending paper records to all eligible voters. However, this would strengthen all
the disadvantages outlined above.

3.2 Centralised / Decentralised Electoral Register

If voting in any preferred constituency was provided the electoral committee
could - according to the current regulations - only check the eligibility of voters
registered in the respective electoral register. Thus, for checking the eligibility to
vote of voters from foreign constituencies, the electoral committee would have to
check the electoral register of the constituency the voter is registered in - easier
to implement - a centralised electoral register2, if this is legally permitted and
feasible.

A centralised electoral register could easily be produced in the presence of a
centralised Federal Register of Residents. However, a centralised Federal Register
of Residents is neither provided in the current Framework Registration Act [8]
nor in the Registration System Act for further development of the registration
system, which passed the Germany Bundestag on 6/28/2012 but stands in a
conciliation committee at the moment [11]. A draft which was written by a con-
sultant and published on 12/6/2007 [24] focused the application of a centralised
Federal Register of Residents. However, this concept was rejected by various data
privacy experts. The criticism was not against such a register in general, but ex-
plicitly against the number and type of data, which were listed and considered in
§ 3 of the draft to be stored in the register. This includes an unjustifiable inter-
vention in the law of informational self-determination, which results from Article
2.1 in conjunction with Article 1.1 Basic Law. Therefore, the establishment of
a centralised electoral register cannot be fundamentally rejected. According to
the principle of dedicated use in the Data Protection Law, voters’ personal data
may be used only for the specified purpose, namely to check the eligibility to
vote. Beyond that, the centralised electoral register may store only that data
which is required to check the eligibility to vote: first- and surname, birthday
and current residential address.3

3.3 Voter Identification and Authentication, and Access to the
Electoral Register

Classical Voter Identification and Authentication (I/A). Verification of
the eligibility to vote requires a prior identification and authentication of the
citizen. Currently eligible voters are notified in writing about their registration
in the electoral register. This election notification also serves as a proof of iden-
tity (ref. to § 14, m.n. 9 in [29]). According to § 56.3 of the Federal Electoral

2 The information on the centralised electoral register (server) can be replicated among
several servers in order to avoid a single point of failure.

3 The electoral registers get compiled on the basis of the population registers stored
in the registry offices. Insofar, the surname, the first name, the date of birth and the
residential address of eligible voters are transferred from one register to another one.

Vote Casting in Any Preferred Constituency 65

Code, voters shall submit the election notification on demand of the electoral
committee. In case they do not submit the election notification, they must iden-
tify themselves. The submission of the election notification and the identification
document is not necessary in any case, but at the behest of the electoral commit-
tee. It is not required in case of personal acquaintance between the voter and the
electoral committee. However, the Federal Electoral Code does not permit the
inference, whether a particular identity document shall be submitted. In that
regard, each official document needs to be sufficient in order to provide a proof
of identity. Therefore, the document should include a photo, as otherwise the
verification of the identity is not guaranteed.

Electronic Electoral Register (EER). The right to vote can be checked
against the voters personal data, which are stored on the de-/centralised elec-
toral register. The transmission of personal data from the registration office to
public authorities is already intended in § 18 Framework Registration Act and
§ 34 Registration System Act in case the personal data is necessary to fulfill
their jurisdiction or necessary by the jurisdiction of the receiver to fulfill its cor-
responding tasks. In addition, according to § 14.1 sentence 2 Federal Electoral
Code, the electoral register can be maintained through an automatic process as
well.

The transmission of voters’ personal data, namely first- and surname and
current residential address, is necessary in order to check if the citizen is eligible
to vote and whether he or she already cast a vote. The personal data could be
transferred over a secured communication channel, for instance over telephone or
Internet, which is already intended according to § 39.3 Registration System Act.
The use of a telephone is impractical and therefore not further considered in this
work. The access to the electoral register over the Internet would be secured by
the application of standard cryptographic protocols for secure communication,
like SSL/TLS [31]. The main disadvantages of an electronic electoral register,
which is accessible over the Internet, are DoS/DDoS attacks. However, there are
a number of techniques in order to mitigate such attacks, e.g. as presented in [30]
and [21].

Regarding the transmission of personal data it is questionable, whether the
electoral committee, as the receiver of the mentioned data, can be classified as
a public authority in the context of the outlined regulations. On one hand, the
municipal authorities carry out the statutory work assigned by the Federal Elec-
toral Act on behalf of the federal government (ref. to No. 43 in [29]). On the
other hand the electoral committee acts as an election body for the municipal
authority. Insofar the personal data of voters could be transferred to the elec-
toral committee directly. Thus, the access of the electoral committee to electoral
registers of other constituencies is not generally forbidden.

EER and Classical Voter I/A. By checking the eligibility to vote over
the Internet and maintaining the classical identification and authentication of
voters, the electoral committee would have to enter the necessary data of the
voter manually. The personal data of the voter could be taken by the presented

66 J. Budurushi, M. Henning, and M. Volkamer

document, captured electronically and sent as a request to check the eligibility
to vote for the respective voter.

With this form of checking the eligibility to vote, a corresponding Public Key
Infrastructure (PKI) [19] needs to be provided in order to ensure secure transmis-
sion of the personal data. This introduces additional costs. Another disadvantage
of this approach is that the personal data transferred is confidential and secure
only until the provided cryptographic encryption scheme is secure. Thus, an
attacker who intercepts the encrypted personal data, which is transferred over
the network, is able to determine who has participated in the election and who
has not. Furthermore, this could violate the secrecy of the vote, depending on
whether the ballot is electronically transferred and how it is transferred.

EER and (German) Electronic Identity Card for Voter I/A. Electronic
identity cards (e-ID cards) have been already used in electronic voting for legally
binding elections. Hereby, the most prominent examples are Estonia [12] and
Austria [1]. Furthermore, the use of e-ID cards in electronic voting has been
proposed in many scientific works, for instance [3], [4], [9], [20] and [26], and has
been also analysed in [6]. In particular, the authors in [3] and [4] propose the
use of the German electronic identity card ”Der neue Personalausweis” (German
e-ID card) in electronic voting.

Thus, the eligibility to vote could also be checked with the German e-ID card.
The German e-ID card enables, due to its data fields, shown in Figure 1, and
particularly due to its eID-Functionality, the so-called Restricted-ID, a unique
service-related online authentication [16].

Fig. 1. Data fields of the German e-ID card (Source: [17], Figure. 13)

Vote Casting in Any Preferred Constituency 67

Furthermore, the German e-ID card supports age verification, a query of the
place of residence and a pseudonymisation (Restricted-ID). These functionalities
could be used for checking the eligibility to vote as they provide the necessary
data, which can be compared to the corresponding personal data stored in the
electoral register. Figure 2 shows an abstract infrastructure and the interaction
between the involved components.

Fig. 2. Abstract Infrastructure and Interaction between involved Components

By using the Restricted-ID functionality, neither the PC of the electoral com-
mittee4 nor the electoral register would know for which voter the eligibility to
vote is being checked. The electoral register can respond to the request, if a
Restricted-ID (voter) is eligible to vote or not, without knowing the particular
voter behind the Restricted-ID. However, the identity of the voter could be re-
vealed in case the cryptographic algorithms, which are used for the generation
of the Restricted-ID and for securing the Internet communication, are broken.
Besides intercepting the data transferred over the network to the electoral reg-
ister, an attacker also needs to know the public key of each German e-ID card
and the public key of the electoral register (eID-Server) [17].

Furthermore, if the electoral register (eID-Server) and the Certification Au-
thority of the German e-ID cards cooperate, even today they can assign each
Restricted-ID stored on the electoral register to the identity of the voter [4].
Therefore, storing the Restricted-IDs on the electoral server permanently must
be forbidden and the deletion of the stored Restricted-IDs must be verified by
the corresponding data protection expert. A long-term storage of data might
only be acceptable in case of a pending complaint requesting the scrutiny of an
election. However, the storage must be set up by the Federal Returning Officer
and controlled by the responsible data protection expert.

4 In Germany the authorisation of voters and the tallying of votes is carried out at
the constituency where votes have been cast.

68 J. Budurushi, M. Henning, and M. Volkamer

The authentication with the German e-ID card has a number of advantages
with respect to data privacy in comparison with the classical approach. Instead
of the voter’s personal data a pseudonym is transferred over the network. As the
Restricted-ID is unique in the context of the election, a voter trying to vote more
than once will easily be detected. Furthermore, citizens who have lost their right
to vote according to § 13 of the Federal Electoral Act can easily be identified as
well. Therefore, the so-called Country Verifying Certificate Authority (CVCA)
can publish a corresponding revocation list, which contains all election-specific
Restricted-IDs that are not allowed to exercise their right to vote. Depending on
the implementation, the successful checking of the eligibility to vote could either
be accepted by the electoral committee or by a voting machine which then might
enable the voter to start the vote casting process.

In addition, the electoral committee is not expected to enter the personal data
of voters manually, which is error prone and time consuming. However, it must
be considered that currently not all citizens are in possession of a German e-ID
card and therefore not all citizens can use the German e-ID card in the context of
checking their eligibility to vote. But the authentication with the German e-ID
card could optionally be offered to those eligible voters, who already possess this
document and have activated the eID-Functionality. Although, the principle of
the equal elections requires that every citizen shall be able to exercise his right
to vote in the same formal way (besides the equality of counter value and result
value), this does not mean that there can be only one option for vote casting.
In that regard, postal voting provides a different way of voting too but it is
constitutionally compatible since it is offered as an option and it strengthens
the principle of universal elections (ref. to page 125 in [13]). Finally, it has to
be said that since 11/1/2010 citizens applying for an identification document
only receive the German e-ID card. However, there is no obligation to exchange
the ”old” identity card. According to identity card law (ref. to § 6.1 in [22]),
German identity cards are valid for ten years. Therefore, ”old” identity cards
will be present until 10/31/2020. After this date, all eligible voters shall possess
a German e-ID card and could subsequently use it for authentication, if the eID-
Functionality has been activated. However, even after 10/31/2020, an additional
option besides the German e-ID card must be provided for identification and
authentication.

A regulation, which requires that voters can only be identified by providing
the German e-ID card, is not compatible with Article 38.1 sentence 1 Basic Law
because it violates the principle of universal elections. Thus, it is possible that
voters lose their German e-ID card just before the election or the German e-ID
card is stolen or missing. Therefore, the submission of another official document
which is suitable and intended for proving the identity of the owner shall be con-
sidered. Since the election technique proposed in this work allows vote casting
in any preferred constituency within the electoral area, the identification docu-
ment must contain the place of residence of the voter as well. This is necessary
in order to identify the corresponding electoral district, thus the votes will count
for the intended candidates. In this context, a German driving license is not

Vote Casting in Any Preferred Constituency 69

appropriate because it does not provide information of the place of residence of
the owner. Thus, the election notification could still be sent to all eligible voters
in order to enable identification and authentication. The personal data of voters
on the election notification could be entered manually into the system by the
electoral committee. This is not objectionable from a legal point of view, because
according to § 14.1 sentence 2 Federal Electoral Code, the electoral register can
be maintained through an automatic process. Thereby, it must be ensured that
necessary data for checking the eligibility to vote is used only for the intended
purpose and can be transferred securely, for instance, by using cryptography.

Table 1 summarizes the advantages and disadvantages of using manual (Poll
Workers) or automatic (German e-ID card) electronic voters’ identification and
authentication.

Table 1. Manual v.s. automatic electronic voters’ identification and authentication

Manually (Poll Workers) Automatically (German e-ID)

Advantages Disadvantages

Compliant with the principle of - (not all citizens posses it)
universal elections

Disadvantages Advantages

Not long-term secure + (adversary needs more effort)

Error prone +

Time consuming +

– Transmit a pseudonym instead of voter’s identity

– Neither the PC of the electoral committee
nor the electoral register knows the voter’s identity

– Eligibility check can be performed
by the electronic voting machine

4 Vote Casting and Tallying

While maintaining the current election system and providing vote casting in any
preferred constituency, it must be ensured that each voter is provided with the
corresponding ballot of her constituency and that her vote is also counted in her
constituency.

4.1 Paper Ballot

In case vote casting is still done with paper ballots, there are two possibili-
ties to provide the corresponding voting ballot: either each constituency keeps
enough paper ballots from all electoral districts or the electoral committee prints
the corresponding paper ballot on demand. The first approach requires that each

70 J. Budurushi, M. Henning, and M. Volkamer

constituency provides enough paper ballots from all electoral districts in order
to enable vote casting for all eligible voters. This approach appears impractical,
because in Germany there are approximately 299 different ballots, and there-
fore not further considered. The tallying of votes can take place either in the
constituency, where the voter casts her vote or in the constituency the voter is
registered in. The first option violates the principle of the secret ballot in case
only one voter (or few voters) casts her vote in a foreign constituency. In this
case, the electoral committee knows what the respective voter voted for. The
second approach requires that the paper ballot is sent to the constituency the
voter is assigned to. Sending the paper ballot by post is not recommended be-
cause of the associated time delay. Another possibility would be to transfer the
paper ballot electronically over the Internet. In that regard, the only remaining
option is to scan and subsequently transfer the paper ballot to the respective
constituency. In order to ensure the principle of free and secret elections the
paper ballots would have to be scanned and transferred by the voter person-
ally. Afterwards, the electronically recorded ballot must be encrypted right after
scanning and transferred to the respective constituency over a secure channel,
e.g. using standard cryptographic protocols for secure communication over the
Internet, like SSL/TLS5. The votes (cast paper ballots) of other constituencies
must finally be sent to a central location, whereas ballot secrecy must be ensured,
for instance similar to postal voting.

This approach can be implemented in two ways: either using canonical ballots
or encoded ballots, like in [27], [23], and [10]. In the canonical ballot approach,
two major disadvantages are identified: First, electronic emissions might leak the
voter’s choice, thereby violating ballot secrecy. Second, it is technically not pos-
sible for the voter to verify, if the scanner has encrypted and sent her cast vote
without changing it. The major disadvantage in the encoded ballot approach
are the costs for special purpose equipment, special printers that are able to
print scratch fields, like in [27], or two layered paper ballots, like in [23]. Fur-
thermore, the verifiability of the proper ballot encoding is difficult to implement,
as poll workers must have access to the corresponding private key(s) of foreign
constituencies.

4.2 Electronic Ballot

As an alternative, voters could cast their vote electronically, directly on an elec-
tronic voting machine. In this case, the electronic vote could be transferred to
the respective constituency just at the point of voting or afterwards. In order
to ensure the principle of free and secret elections, the cast vote must be en-
crypted subsequently. For the sake of not interfering with ballot secrecy, two
different machines should be used for voter authentication and vote casting and
transmission.

5 In this context, tow technical “unresolved” issues must be considered: First, poll
workers must be able to check the SSL/TLS server’s certificate. Second, secrecy is
provided only as long as the used cryptographic mechanisms remain unbroken.

Vote Casting in Any Preferred Constituency 71

A number of technical proposals for end-to-end verifiable electronic voting
schemes/systems, which enable electronic vote casting, can be considered for
directly implementing this approach, for example [5], [18], and [28].

In section 4.1, electronic emissions are an issue with respect to ballot secrecy.
Furthermore, costs for the provision and maintenance of electronic voting ma-
chines arise.6 However, end-to-end verifiable electronic voting schemes/systems
provide an increased level of verifiability in comparison with postal voting and
the traditional voting in the ”home constituency”. By using electronic voting
ballots, voters could also comprehend the impact of their cast vote much bet-
ter as the system provides appropriate feedback (e.g. regarding invalid votes).
Furthermore, this approach enables visually impaired people to cast their vote
personally. This strengthens the principle of direct elections as well as the prin-
ciple of secret elections, because these voters - in contrast to the regulations in §
57 of the Federal Electoral Code - do not need to take an auxiliary person into
the voting booth. Thus, they can cast their vote secret and personally. Thus, it
is conceivable that voters are informed about the validity of their vote.

Table 2 summarizes the advantages and disadvantages of using canonical pa-
per ballots or electronic ballots on electronic voting machines for vote casting.

Table 2. Canonical paper v.s. electronic ballot on electronic voting machine

Canonical Paper Ballot Electronic Ballot
(on demand)

Advantages Disadvantages

Established method –

+ Costs for the provision and maintenance
of electronic voting machines

Disadvantages Advantages

– Provides an increased level
of cryptographic verifiability

– Enables visually impaired people
to cast their vote personally

Time for returning the ballots +
to the appropriate constituency

– Voters can comprehend the impact of
their cast vote much better

Table 3 summarizes the advantages and disadvantages of using encoded paper
ballots or electronic ballots on electronic voting machines for vote casting.

The comparisons in table 2 and 3 show that electronic ballots on electronic
voting machines have more advantages, especially with respect to cryptographic
verifiability.

6 Note, these costs are lower than the one for special printers.

72 J. Budurushi, M. Henning, and M. Volkamer

Table 3. Encoded paper v.s. electronic ballot on electronic voting machine

Encoded Paper Ballot Electronic Ballot
(on demand)

Advantages Disadvantages

Electronic emissions do not –
endanger ballot secrecy

Disadvantages Advantages

Cryptographic verifiability +
is difficult to implement

– Enables visually impaired people
to cast their vote personally

Higher costs for special printers + (less costs for electronic voting machines)

– Voters can comprehend the impact of
their cast vote much better

5 Summary and Discussion

In this paper we have analysed the application of vote casting in any preferred
constituency using the German parliamentary elections as an example. Thereby,
we have shown that a centralised electoral register cannot be declined in general.
Different approaches of voter identification and authentication, and checking the
eligibility to vote were discussed. The ballot record and the telephone are no
adequate solutions, while the manual input of personal data and the use of the
German e-ID card have both their advantages and disadvantages. With regard
to the vote casting and tallying, we have shown that both processes shall be
carried out electronically in order to provide vote secrecy towards the electoral
committee or any third party (e.g. an eavesdropping attack over the Internet) in
the best way. In this case cryptographic mechanisms are essential. This means
that the cast votes must be transferred in an encrypted form. Thus, the question
remains whether this approach complies with the principle of the public nature
of elections which has been modified by the Federal Constitutional Court of
Germany in 2009. Thereafter, it must be possible for the citizen to check the
essential steps in the election act and in the ascertainment of the results reliably
and without special expert knowledge [14].

Cryptography is based on mathematical processes, which can be visualized to
some extent, but until now these processes cannot be illustrated in a way that
everyone is able to understand them, regardless of expert knowledge. Thus, the
principle of the public nature of elections - just as the election principles in Arti-
cle 38.1 sentence 1 Basic Law - is guaranteed without any reservation. However,
the nature of things entails that not all election principles can be fulfilled in total
purity (ref. to page 124 in [13]). Insofar, the restriction of one election principle
is not unconstitutional per se, but may be justified as long as the constitution
contains a respective authorisation, the deviation ensures the national political
objectives or if the restriction is necessary in the interests of another election
principle (ref. to page 369) in [15]). Vote casting in any preferred constituency

Vote Casting in Any Preferred Constituency 73

could strengthen the principle of universal elections significantly. Thereby, those
people, who decided to travel on Election Day in the short term or to be ab-
sent because of any other reason, are given the opportunity to participate in the
election. Postal voting cannot provide this opportunity, as it requires an early
application for a ballot paper. Furthermore, in contrast to postal voting, the
moment of casting a vote would not be carried out in a private environment,
but would remain in a controlled environment.7 While voting in any preferred
constituency, the compliance with all election principles could be ensured and
controlled by the public, because everyone can see that the voter enters and
leaves the polling booth alone. Although postal voting is an indispensable vot-
ing channel for all citizens who are not able to visit a constituency within the
electoral area, it can be assumed based on the increasing number of postal vot-
ers, that this voting channel is also used by citizens who would not actually need
it. However, in order to ensure the election principles in the best possible way,
vote casting in any preferred constituency should be considered as an additional
voting channel.

In future work we will further analyse, if its application is constitutionally
compliant also in the context of regional and local elections. In that regard it
needs to be said that German states often establish the active right to vote with
a certain period of residence in the particular state.8 Furthermore, it must be
noticed that regional and local elections do not take place at the same time.
Therefore, vote casting outside the corresponding federal state or municipality
is only possible with very large organisational effort. Based on the findings of
this work, we aim to concretise the legal requirements for the establishment of a
centralised electoral register and to provide a practical solution for accessing the
currently distributed electoral register infrastructure. Thereby, we will focus on
both options for identification and authentication of voters, namely by using the
election notification, the German e-ID card or a combination of both. Finally,
we will analyse, if existing proposals for end-to-end verifiable electronic voting
schemes/systems, namely [5], [18], and [28] that could implement the approach
treated in section 4.2, comply with the findings of this work and fulfill the tech-
nical and legal requirements for electronic voting in Germany.

Acknowledgments. This paper has been developed within the project
’VerkonWa’ - Verfassungskonforme Umsetzung von elektronischen Wahlen -
which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Science
Foundation).

References

1. Austrian Ministry for Science and Research: Evaluierungsbericht: E-Voting bei
den Hochschülerinnen- und Hochschüler-schaftswahlen 2009, E-voting evaluation
report, Wien (2010) (in German)

7 This criticises Richter [25].
8 For example § 2.1 No. 3 Electoral Act for the parliament of the State of Hessen.

74 J. Budurushi, M. Henning, and M. Volkamer

2. Briefwahl, http://www.bundeswahlleiter.de/de/glossar/texte/
Briefwahl.html (online: accessed May 10, 2013) (in German)

3. Bräunlich, K., Kasten, A., Grimm, R.: Der neue Personalausweis zur Authen-
tifizierung bei elektronischen Wahlen. In: Der 12. Deutsche IT-Sicherheitskongress
- Sicher in die digitale Welt von morgen, pp. 211–225 (2011) (in German)

4. Bräunlich, K., Grimm, R., Kasten, A., Vowé, S., Jahn, N.: Der neue Person-
alausweis zur Authentifizierung von Wählern bei Onlinewahlen (2011) (in German)

5. Budurushi, J.: End-to-End Verifiable and Coercion Resistant Electronic Voting
Protocol for Distributed Voting Machines in Polling Stations. Master thesis. Darm-
stadt (2012)

6. Budurushi, J., Neumann, S., Volkamer, M.: Smart Cards in Electronic Voting:
Lessons Learned from Applications in Legally binding Elections and Approaches
Proposed in Scientific Papers. In: Kripp, M.J., Volkamer, M., Grimm, R. (eds.)
5th International Conference on Electronic Voting 2012, vol. 205, pp. 257–270.
Gesellschaft für Informatik, Bregenz (2012)

7. Bundesgesetzblatt I, No. 21, pp. 383–388 (May 9, 1956),
http://www.bgbl.de/Xaver/start.xav?startbk=Bundesanzeiger BGBl&bk=

Bundesanzeiger BGBl&start=//*%5B@attr id=%27bgbl156s0383.pdf%27%5D

(online: accessed May 10, 2013) (in German)
8. Bundesgesetzblatt I, No. 26, pp. 1342–1350 (April 26, 2002),

http://www.bgbl.de/Xaver/start.xav?startbk=Bundesanzeiger BGBl&bk=

Bundesanzeiger BGBl&start=//*%5B@attr id=%27bgbl102s1342.pdf%27%5D

(online: accessed May 10, 2013) (in German)
9. Carracedo Gallardo, J., Belleboni, P.E.: Use of the New Smart Identity Card to Re-

inforce Electronic Voting Guarantees. In: 4th International Conference for Internet
Technology and Secured Transactions, pp. 1–6. IEEE Press, London (2009)

10. Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman, T.A.,
Vora, L.P.: Scantegrity: End-to-End Voter-Verifiable Optical-Scan Voting. IEEE
Security & Privacy, 40–46 (2008)

11. Deutscher Bundestag, Drucksache 17/10158,
http://dipbt.bundestag.de/dip21/btd/17/101/1710158.pdf (online: accessed
May 10, 2013) (in German)

12. Estonian National Electoral Committee: E-voting System General Overview,
http://www.vvk.ee/public/dok/General_Description_E-Voting_2010.pdf

(online: accessed May 10, 2013)
13. Federal Constitutional Court of Germany: Entscheidungen des Bundesverfassungs-

gerichts (BVerfGE) 59, pp. 119–128 (1981)
14. Federal Constitutional Court of Germany: Entscheidungen des Bundesverfassungs-

gerichts (BVerfGE) 123, pp. 39–88 (2009)
15. Federal Constitutional Court of Germany: Entscheidungen des Bundesverfassungs-

gerichts (BVerfGE) 95, pp. 335–407 (1996)
16. Federal Office for Information Security: Advanced Security Mechanism for Machine

Readable Travel Documents - Part 2. Technical report, BSI-TR-03110-2 (2012)
17. Federal Office for Information Security: Functional Specification eID-Server - Part

1. Technical report, BSI-TR-03130-1 (2012)
18. Gibson, J.P., Lallet, E., Raffy, J.-L.: Engineering a Distributed e-Voting System

Architecture: Meeting Critical Requirements. In: Giese, H. (ed.) ISARCS 2010.
LNCS, vol. 6150, pp. 89–108. Springer, Heidelberg (2010)

19. Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile, http://tools.ietf.org/html/rfc5280 (online: accessed May
10, 2013)

http://www.bundeswahlleiter.de/de/glossar/texte/Briefwahl.html
http://www.bundeswahlleiter.de/de/glossar/texte/Briefwahl.html
http://www.bgbl.de/Xaver/start.xav?startbk=Bundesanzeiger_BGBl&bk=Bundesanzeiger_BGBl\&start=//*%5B@attr_id=%27bgbl156s0383.pdf%27%5D
http://www.bgbl.de/Xaver/start.xav?startbk=Bundesanzeiger_BGBl&bk=Bundesanzeiger_BGBl\&start=//*%5B@attr_id=%27bgbl156s0383.pdf%27%5D
http://www.bgbl.de/Xaver/start.xav?startbk=Bundesanzeiger_BGBl\&bk=Bundesanzeiger_BGBl\&start=//*%5B@attr_id=%27bgbl102s1342.pdf%27%5D
http://www.bgbl.de/Xaver/start.xav?startbk=Bundesanzeiger_BGBl\&bk=Bundesanzeiger_BGBl\&start=//*%5B@attr_id=%27bgbl102s1342.pdf%27%5D
http://dipbt.bundestag.de/dip21/btd/17/101/1710158.pdf
http://www.vvk.ee/public/dok/General_Description_E-Voting_2010.pdf
http://tools.ietf.org/html/rfc5280

Vote Casting in Any Preferred Constituency 75

20. Meister, G., Hühnlein, D., Araujo, R.: eVoting with the European Citizen Card.
In: Brömme, A., Busch, C., Hühnlein, D. (eds.) Proceedings of the Special Interest
Group on Biometrics and Electronic Signatures, vol. 137, pp. 67–78. Gesellschaft
für Informatik, Darmstadt (2008)

21. Mishra, A., Gupta, B.B., Joshi, R.C.: A Comparative Study of Distributed Denial
of Service Attacks, Intrusion Tolerance and Mitigation Techniques. In: European
Intelligence and Security Informatics Conference (EISIC), pp. 286–289 (2011)

22. Personalausweisgesetz (PAuswG),
http://www.gesetze-im-internet.de/pauswg/BJNR134610009.html (online: ac-
cessed May 10, 2013) (in German)

23. Popoveniuc, S., Hosp, B.: An Introduction to PunchScan. In: Chaum, D., Jakobs-
son, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.)
Towards Trustworthy Elections. LNCS, vol. 6000, pp. 242–259. Springer, Heidel-
berg (2010)

24. Referentenentwurf Bundesmeldegesetz (MG),
http://philipbanse.de/docs/Referenenentwurf_Meldegesetz.pdf (online: ac-
cessed May 10, 2013) (in German)

25. Richter, P.: Briefwahl für alle? - Die Freigabe der Fernwahl und der Grundsatz der
Öffentlichkeit der Wahl. In: Die Öffentliche Verwaltung, pp. 606–610. W. Kohlham-
mer GmbH (2010) (in German)

26. Rössler, T.: Electronic Voting Using Identity Domain Separation and Hardware
Security Modules. In: Godart, C., Gronau, N., Sharma, S., Canals, G. (eds.) I3E
2009. IFIP AICT, vol. 305, pp. 1–12. Springer, Heidelberg (2009)

27. Ryan, Y.A.P., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a
voter-verifiable voting system. IEEE Transactions on Information Forensics and
Security, 662–673 (2009)

28. Sandler, D.R., Wallach, D.S.: The case for networked remote voting precincts.
In: Proceedings of the 3rd USENIX/ACCURATE Electronic Voting Technology
Workshop, San Jose, CA (2008)

29. Schreiber, W.: Bundeswahlgesetz: Kommentar. Carl Heymanns Verlag, Köln (2009)
(in German)

30. Subramani, S.: Denial of Service attacks and mitigation techniques: Real time
implementation with detailed analysis. SANS Institute InfoSec Reading Room,
http://www.sans.org/reading room/whitepapers/detection/denial-service-

attacks-mitigation-techniques-real-time-implementation-detailed-

analysi 33764 (online: accessed May 10, 2013)
31. The Transport Layer Security (TLS) Protocol Version 1.2,

http://tools.ietf.org/html/rfc5246 (online: accessed May 10, 2013)

http://www.gesetze-im-internet.de/pauswg/BJNR134610009.html
http://philipbanse.de/docs/Referenenentwurf_Meldegesetz.pdf
http://www.sans.org/reading_room/whitepapers/detection/denial-service-attacks-mitigation-techniques-real-time-implementation-detailed-analysi_33764
http://www.sans.org/reading_room/whitepapers/detection/denial-service-attacks-mitigation-techniques-real-time-implementation-detailed-analysi_33764
http://www.sans.org/reading_room/whitepapers/detection/denial-service-attacks-mitigation-techniques-real-time-implementation-detailed-analysi_33764
http://tools.ietf.org/html/rfc5246

Attacking the Verification Code Mechanism

in the Norwegian Internet Voting System

Reto E. Koenig, Philipp Locher, and Rolf Haenni

Bern University of Applied Sciences, CH-2501 Biel, Switzerland
{reto.koenig,philipp.locher,rolf.haenni}@bfh.ch

Abstract. The security of the Norwegian Internet voting system de-
pends strongly on the implemented verification code mechanism, which
allows voters to verify if their vote has been cast and recorded as in-
tended. For this to work properly, a secure and independent auxiliary
channel for transmitting the verification codes to the voters is required.
The Norwegian system assumes that SMS satisfies the necessary require-
ments for such a channel. This paper demonstrates that this is no longer
the case today. If voters use smartphones or tablet computers for receiv-
ing SMS messages, a number of new attack scenarios appear. We show
how an adversary may exploit these scenarios in systems providing vote
updating and point out the consequences for the vote integrity in the
Norwegian system. We also give a list of possible counter-measures and
system enhancements to prevent and detect such attacks.

1 Introduction

In the design and implementation of secure Internet voting systems, the secure
platform problem is one of the most challenging obstacles to overcome [23]. Given
the manifold vulnerabilities of today’s computers, particularly those caused by
malicious software, it is inappropriate to assume that voters will have access to
a reliable machine that works correctly under all possible circumstances. Voting
protocols must therefore be designed to deal with the possibility that some voters
will use machines that are infected by various types of possibly very sophisticated
malware. In a worst-case scenario, the malware is designated to attack particular
voting events, while remaining completely silent and therefore hard to detect at
other times. Attacks of such a type can be launched with a few mouse clicks.
Since the correct outcome of an election is of great significance for the whole
electorate, infected computers become immediately a problem for everybody.

Recent malware attacks in other application areas have demonstrated that
they represent a real and serious threat today. In 2012, for example, estimated
36 million Euros were stolen from several ten thousand bank customers all across
Europe by a smart Trojan called Eurograbber [14]. In a recent report, the number
of new Windows-based malware in 2012 is estimated as almost 1.4 million [2]. In-
creasing numbers of new malware are reported for other platforms, in particular
in the emerging area of mobile devices (smartphones and tablet computers).

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 76–92, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Attacking the Verification Code Mechanism in the Norwegian System 77

1.1 Existing Approaches

A malware attack against an Internet voting system may aim at violating either
the secrecy or the integrity of the vote (or both). Full protection against both
types of attacks is very hard to achieve. Possible full protection approaches are
based on distributing trustworthy hardware devices to the voters, but this is
very expensive [8]. Some other approaches suggest using trusted out-of-band
channels such as regular postal mail. The idea is to securely exchange additional
information between the voting system and the voters, which allows them to
protect the privacy or to verify the integrity of the vote. There are two related
ways of using such an auxiliary channel, each of which with its own pros and
cons.

Code Voting [10,13,19,22]. The idea of code voting is to enter candidate codes
instead of candidate names when casting a vote. These codes are distributed
over a separate secure channel in form of personalized code sheets and differ
from voter to voter. This prevents the voter’s insecure platform from learning
the actual candidate choice and from guessing the codes of other candidates.
This simple mechanism thus provides privacy and integrity in the presence of
designated malware, but it does not prevent the malware from not casting the
vote at all or from casting votes with invalid codes. Another major problem
of code voting is the restricted usability.

Verification Codes [3,9,11,16,21]. The setting here is similar to code voting,
but instead of entering the codes of the selected candidates as printed on
the personalized code sheet, voters only need to check if the codes match
with what is displayed by the voting system after casting the vote. If the
codes match, the voter has a strong indication that the vote has been cast
and recorded as intended.1 Since verifying the codes is an optional step,
usability is not so much of an issue as in code voting. On the other hand,
verification codes alone cannot prevent malware from breaking the secrecy
of the vote.

Code voting and verification codes can be applied separately or in combination.
If applied in combination, the vote secrecy is protected and a strong indication is
given that the vote has been cast and recorded as intended. A general problem
that affects all possible scenarios is the secure printing of the code sheets. It
is usually solved by organizational and non-cryptographic technical measures.
Another general problem is the possibility that malware can learn the codes in
a system that supports vote updating. As soon as several codes are known to
the malware, it can start fooling the voter and possibly cast a final vote that is
different from the voter’s intention.

1 Some existing systems, for example the system used in the canton of Geneva in
Switzerland [4, 27], use a simplified type of verification code in form of a picture,
which differs from voter to voter, but not from candidate to candidate. In such a
case, a correct verification code only implies that some vote has reached the voting
server, but it does not guarantee its integrity.

78 R.E. Koenig, P. Locher, and R. Haenni

The Norwegian Internet voting system is based on verification codes and sup-
ports vote updating [7, 18, 25].2 To avoid that malware learns the verification
codes, the existence of two separate out-of-band channels is assumed: Initially,
the code sheets are sent by postal mail to the voter’s home address (pre-channel),
and after vote casting, an SMS message with the verification codes of the selected
candidates is sent to the voter’s mobile device (post-channel). This introduces
additional trust assumptions, for example that SMS provides a sufficiently se-
cure and truly out-of-band channel, which is strictly detached and completely
independent from the Internet (voting channel). Since SMS-based one-time pass-
words are used for voter authentication, these assumptions are even more critical
and may have much farther-reaching consequences when violated.

1.2 Contribution and Overview

In this paper, we provide evidence that SMS is no longer a sufficiently secure
candidate for the out-of-band post-channel in the Norwegian Internet voting
system. The main problem is the widespread use of smart mobile devices today,
which provide all sorts of new attack scenarios. Eurograbber is a prominent
example that illustrates the practicability and efficiency of such attacks. In a
recent report [15], two students of ours demonstrated that such attacks can be
executed using even less infrastructure than was required by Eurograbber. Not
surprisingly, the attacks presented in the report are directly transferable to the
Norwegian system, as they rely on equivalent trust assumptions.

Based on these findings, we provide a systematic overview and detailed de-
scription of the attacks that result from using the SMS channel—as proposed in
the Norwegian system—in combination with vote updating. Our analysis gives
enough technical detail to understand the attacks not only from a conceptual
point of view, but also from the perspective of implementing corresponding mal-
ware. For each attack scenario discussed in our overview, we point out the conse-
quences with respect to the secrecy and integrity of the vote. We also discuss the
effectiveness of each attack in terms of practicability, scalability, and detectabil-
ity. Finally, we propose some counter-measures for preventing or detecting such
attacks, and therefore contribute to the improvement of the Norwegian system.

2 The Norwegian E-Voting System

In this section, we provide a high-level description of the Norwegian voting sys-
tem as described in the available literature [5–7, 9, 25]. The system overview is
given from the voter’s perspective, as the attacks presented in Section 3 are not
targeted towards the server infrastructure. Then we explain precisely the role of
the verification codes and the underlying trust assumptions.

2 In the available documents about the Norwegian system, verification codes are called
return codes [6] or receipt codes [7]. To avoid any ambiguity with the concept of a
receipt in the sense of receipt-free voting systems, we prefer to call them verification
codes. Furthermore, code sheets are called poll cards [6] or voting cards [7]. We prefer
to call them code sheets, as it is common in the code voting literature.

Attacking the Verification Code Mechanism in the Norwegian System 79

2.1 Overview of the Voting Process

According to the analysis of the Norwegian system in [7], the main actors in-
volved in the vote casting process are the voter V , the voter’s computer P , the
ballot box B, the receipt generator R, the decryption service D, and the auditor
A. It is assumed that they communicate over secure, authenticated channels, as
shown in Figure 1 (or in [7]). Unidirectional channels are represented by single-
ended arrows. All other channels are bidirectional. The offline pre-channel for
sending the personalized code sheets to the voters by postal mail is not shown. In
this paper, we adopt the assumptions that both the printing service and postal
mail are sufficiently reliable and secure, i.e., we presume that voters receive their
code sheet before the voting period begins, and that the candidate codes remain
secret during the printing and transmission process.

V P B D

R A

Fig. 1. The simplistic view of the communication channels of the Norwegian system as
presented in [7]. This picture ignores the fact that most voters today receive SMS mes-
sages on smartphones or other mobile devices, which may be infected by malware. The
direct arrow from the receipt generator to the voter is therefore an oversimplification
of today’s reality.

During the voting period, the voter first initiates the voter authentication
mechanism provided by MinID, a two-level authentication service that was cre-
ated to offer standardized authentication for various governmental services in
Norway.3 For this, the voter enters the personal credentials consisting of an
identification number and a secret password. The MinID server then generates a
one-time password (a five-digits code called SMS code) and sends it to the voter
by SMS.4 Finally, if the voter enters the correct SMS code, the authentication
process succeeds.

After authentication, the voter selects the voting options using the computer
and submits the vote. The submitted vote is encrypted and signed by the com-
puter and sent to the ballot box. The ballot box blinds the vote and passes the
blinded vote together with voter’s personal identification number to the receipt
generator. Based on the identification number the receipt generator computes
the personalized verification codes of the blinded vote and sends them back to

3 In upcoming Internet voting pilots, additional external authentication mechanisms
will be supported (BankID, Buypass, Commfides).

4 MinID users can order a sheet with multiple one-time passwords by postal mail.

80 R.E. Koenig, P. Locher, and R. Haenni

the voter by SMS. Finally, the voter checks the received verification codes with
those on the code sheet. At the end of the voting period, all encrypted votes are
sent to the decryption service, where the votes are mixed and decrypted and the
final tally is calculated. An auditor supervises the entire process.

Since vote updating is allowed in the Norwegian system, voters can repeat the
above vote casting procedure multiple times, in the same or in different MinID
sessions.5 It is also possible to cast a final paper vote at the polling station,
where any electronic vote is overridden. Note that vote updating provides some
protection against vote buying and coercion.

2.2 Adversary Model and Trust Assumptions

The main purpose of the verification code mechanism is to give voters some
feedback on whether the vote has been cast and recorded as intended. Matching
verification codes should provide voters with strong evidence that everything
worked properly, at least with very high probability, whereas non-matching or
missing verification codes should provide strong evidence that something went
wrong somewhere, which should then encourage voters to vote again, possibly on
paper. For this mechanism to work—in addition to the assumption that the code
sheets were generated, printed, and mailed securely—it is necessary to assume
that the adversary’s capabilities are restricted as follows [1, 7]:

1. The server infrastructure is not under the adversary’s control, in particular
– the MinID authentication service,
– the ballot box,
– the receipt generator.

2. The SMS post-channel cannot be intercepted, interrupted, or manipulated
by the adversary.

3. The component on the voter’s device used to receive and display SMS mes-
sages is not compromised or controlled by the adversary.

4. The adversary is polynomially bounded and thus incapable of breaking cryp-
tographic primitives.

Otherwise, we consider an external adversary capable of controlling the Internet
voting channel and compromising an arbitrary number of voting computers.
Internal adversaries are excluded by the first assumption in the above list.

As the security of the Norwegian Internet voting system depends strongly on
the verification code mechanism, any violation of the above assumptions may
potentially lead to incorrect votes and thus to an incorrect election outcome.
Of particular importance is the assumed security and independence of the SMS
post-channel, over which the verification codes are transmitted to the voters. Ac-
cordingly, the post-channel as shown in Figure 1 goes from the receipt generator
directly to the voter. Note that this is clearly a simplistic view, which does not

5 The available protocol specification does not define whether vote updating in the
same MinID session is supported or not [6,7]. Therefore, we take this possibility into
account in our analysis.

Attacking the Verification Code Mechanism in the Norwegian System 81

V P B D

R AM

V M B D

R A

Fig. 2. A more complete picture of the communication channels in the Norwegian
system: With two separate devices, a computer P and a mobile device M (left), or
with a single mobile device M (right)

take into account that most users today use smartphones or tablet computers
for sending and receiving SMS messages. Since these device are more and more
comparable to ordinary computers, it is no longer legitimate to consider them
immune against malware or other types of external attacks. Figure 2 shows two
updates of Figure 1, one with an additional mobile device M and one with M
replacing the voter’s computer (e.g., when using a tablet computer for vote cast-
ing and as an SMS receiver). In comparison with Figure 1, this obviously creates
a number of additional attack scenarios. We will discuss them in detail in the
following section.

3 Attacking the SMS Channel in the Norwegian System

The verification mechanism in the Norwegian Internet voting system is thought
to be a solution for the secure platform problem. It does not prevent malware
from taking full control over the voter’s computer or its web browser, but it aims
at making such an attack detectable. In this section, we assume that the voter’s
computer is infected by malware, but that the voter is not aware of the infection.
We suppose that the malware mainly resides inside the voter’s web browser
and is therefore capable of launching all sorts of man-in-the-browser (MITB)
attacks against arbitrary web applications, including the web application of the
Norwegian system. It may therefore modify the content of the displayed web
pages, modify incoming or outgoing transactions, insert additional transactions,
communicate with other computers over the network, or even use the computer’s
local WLAN, Bluetooth, IrDA (infrared communication), or audio interfaces.
This can all happen in a completely covert fashion invisible to both the voter
and the web application.

If such an MITB malware resides on the voter’s computer, it can easily break
the secrecy of the vote, for example by observing the voter’s interaction with
the web application and by transmitting a transcript to a remote computer. But
this is not what the vote verification mechanism tries to avoid, its goal is only to
protect the integrity of the vote. For this, the verification codes cannot simply
be displayed on the screen of the voter’s computer, because this would allow the

82 R.E. Koenig, P. Locher, and R. Haenni

malware to silently submit a vote update without the voter noticing. This is why
the codes need to be delivered out-of-band.

In this section, we discuss three different attack scenarios for breaking the vote
integrity in the Norwegian system. They correspond to the three pictures shown
in Figures 1 and 2. In the first scenario, the SMS channel is attacked directly, by
operating a fake GSM base transceiver station in the voter’s proximity. In the
second and third scenario, the mobile device used to receive SMS messages is at-
tacked with additional malware. The practicability, scalability, and detectability
of corresponding attacks is different in each scenario.

3.1 Attacking the Security of the SMS Channel

There are two different ways of attacking the SMS channel by an external ad-
versary. Since SMS messages are transmitted over the GSM network, the airway
traffic between the closest base transceiver station (BTS) and the mobile de-
vice is (optionally) encrypted with the weak and broken stream cipher A5/1 or
A5/2. A passive attack consists in intercepting this traffic and by decrypting the
A5-encrypted content. This attack requires only low-budget hardware (less than
$100) and open-source software such as AirProbe and OsmocomBB.6

The practicability of an active attack with a fake GSM base transceiver sta-
tion (also called IMSI catcher) has been shown by Chris Paget during a live
demonstration at the Defcon conference in 2010 with a $1500 device made from
of-the-shelf hardware and an open-source software called OpenBTS.7 Once such
a fake BTS is operating, it can serve as a proxy between the real GSM network
and the GSM phones of any kind, covering an area of up to 35km radius. As
GSM does not provide any kind of sender authentication, it is a simple task for
a proxy to intercept, block, or fabricate SMS messages [12, 17, 20, 24, 26].

V P B D

R A

Fig. 3. A combined and synchronized attack against the voter’s computer and the SMS
channel

If the SMS post-channel in the Norwegian system is attacked as explained
above, it can no longer protect the integrity of the vote, even if the SMS verifi-
cation codes obtained after vote casting match. The attack scenario in Figure 3

6 See http://bb.osmocom.org and https://svn.berlin.ccc.de/projects/airprobe.
7 See http://wush.net/trac/rangepublic.

http://bb.osmocom.org
https://svn.berlin.ccc.de/projects/airprobe
http://wush.net/trac/rangepublic

Attacking the Verification Code Mechanism in the Norwegian System 83

shows a situation where both the voter’s computer and the SMS post-channel
are under attack. If these attacks are coordinated by the same adversary, it is
easy to bypass the verification code mechanism in the following way.

Attack 3.1. Silent vote updating with blocked verification codes by fake BTS.

1. When a vote is cast, the MITB malware informs the fake BTS to withhold
the second next SMS message from the receipt generator.

2. The fake BTS transmits the first SMS message from the receipt generator to
the voter’s mobile phone.

3. Within the same MinID session, but possibly with some delay to not attract
too much attention, the MITB malware silently casts a second vote (vote
updating).

4. The fake BTS blocks the second SMS message from the receipt generator.

This attack is executed every time the voter casts a vote. The confirmation codes
obtained over the SMS channel will always match and thus let the voter think
that everything worked properly. As nothing suspicious happens on either side,
except maybe for an increased percentage of vote updates, the attack is likely to
remain unnoticed by both the voter and the voting system. However, the presence
of a fake BTS is something that will draw somebody’s attention sooner or later. In
such a case, determining the location of the fake BTS is clearly not very difficult.

This attack clearly violates the vote integrity of the voters under attack,
and thus leads to an incorrect election outcome. It is thus a serious security
problem for the Norwegian Internet voting system. On the other hand, as the
attack requires hardware infrastructure and maintenance from the adversary,
and is geographically limited to the signal perimeter of the fake BTS, it has a
very limited scalability and is therefore mainly applicable to local municipality
elections.

3.2 Attacking the Independence of the SMS Channel

The key of the attack in the previous section is the adversary’s ability to block
the SMS message with the verification codes. This allows the MITB malware
to silently submit a second vote without any noticeable consequences. The two
attacks presented in this section are based on the same idea, but they do not
require any hardware infrastructure to interrupt the SMS channel between the
receipt generator and the voter. Figure 4 shows two different attack scenarios
in which the required independence between the voting channel and the SMS
post-channel is violated. This means that verification codes can no longer be
transmitted out-of-band. In the first scenario, the adversary controls both the
voter’s computer P and the SMS-receiving mobile device M . In the second sce-
nario, the adversary controls the single mobile device M used for casting votes
and receiving SMS messages.

Attacking Two Devices. We consider now a combined attack against both
the voter’s computer and the voter’s mobile device. Installing respective malware

84 R.E. Koenig, P. Locher, and R. Haenni

V P B D

R AM

V M B D

R A

Fig. 4. Two attack scenarios of blocking the SMS post-channel for voters using a smart
mobile device

on two different devices may appear nearly impossible, but one can easily think
of a sophisticated social engineering attack, possibly launched by the malware
of the first infected device to finally infect the other device with its malicious
counterpart. For example, suppose the MITB malware on the voter’s computer
gets into possession of the voter’s mobile phone number. Then it can send an
SMS message to the voter’s mobile device with a download invitation for a
seemingly useful free app, for instance one the presents the political profiles of
the candidates in the forthcoming election. If the voter follows the instructions,
the double infection is established. The infection in the Eurograbber attack,
where an SMS message instructed the victims to install a security update on
their mobile device, was a social engineering attack of that type [14].

Recent technology advances may allow even simpler ways of infecting two de-
vices simultaneously. A general trend pushed by the major technology providers
today is to offer a uniform user experience on multiple devices with cloud-based
synchronization of personal data and apps. Already today, both the Android
and the iOS operating systems allow automatic app installation across multiple
devices. The MITB malware on the voter’s computer could therefore silently
select its free malicious counterpart in the app store and therefore initiate the
installation on the mobile device with ease, and without attracting too much
attention.

If we suppose that both involved devices are infected by malware and thus
controlled by the adversary, the attack is almost straightforward.

Attack 3.2. Silent vote updating with blocked verification codes on the voter’s
mobile device.

1. When a vote is cast, the MITB malware informs its counterpart on the mobile
device to withhold the second next SMS message from the receipt generator.

2. When the first SMS message from the receipt generator arrives, it is stored
and displayed as usual on the mobile device.

Attacking the Verification Code Mechanism in the Norwegian System 85

3. Within in the same MinID session, but possibly with some delay to not attract
too much attention, the MITB malware silently casts a second vote (vote
updating).

4. When the second SMS message from the receipt generator arrives, it is
blocked and immediately deleted by the malware on the mobile device.

In Step 1 of this attack, the two malware counterparts need to setup a unidirec-
tional communication channel from the voter’s computer to the mobile device.
We consider four attack options for doing so:

a) One of the simplest options is Bluetooth. Provided that the two devices are
already paired, a Bluetooth connection can be established very easily and
without the user noticing. Since Bluetooth connections are point-to-point,
no traces are left on devices other than the ones involved in the attack.
Sophisticated malware takes care of removing all possible local traces such
as entries in log files or in the device’s usage history.

b) A standard TCP/IP network connection is another simple option, provided
that the mobile device is connected at the time of the attack. If both devices
are connected to the same LAN, ’finding’ each other is rather simple, for
example by locally broadcasting an inconspicuous handshake message. If they
are not connected to the same LAN, for instance if the mobile device is
connected over a cellular data network (GPRS, UMTS, EDGE, LTE), then
a remote server to which each malware connects is needed to establish the
connection. In both cases, some inevitable traces are left along the path that
the message has taken in the network. These traces may help to uncover the
attack in suspicious cases.

c) If the malware on the voter’s computer knows the mobile device’s phone
number, then sending an SMS message or making a call to alert the mobile
device might be another easy-to-implement option. When the mobile phone
receives such an alert SMS, it silently blocks and immediately deletes the
message. If it receives a call, the call is suppressed and deleted from the list
of incoming calls. Traces are only left at the voter’s mobile network carrier,
through which the SMS message or call is delivered.

d) Another interesting option is to use the audio output of the voter’s computer
to emit a ultrasonic audio signal (>20kHz), which is not audible by humans,
but which can be captured by the mobile device’s microphone.8 This leaves
no traces at all on both sides.

The fact that most of these options leave almost no evident traces, they are very
hard to detect in real-time and almost impossible to uncover in retrospect. Fur-
thermore, as no external command-and-control mechanism is needed in order to
execute the attack on the voter’s side, there is no channel back to the adversary.

8 While almost all microphones are capable of capturing ultrasonic signals, only so-
called piezoelectric loudspeakers are able to emit them. If no piezoelectric loudspeak-
ers are available at the voter’s computer, an audible acoustic signal could be used
to carry out the attack. This may attract the voter’s attention, but not necessarily
raise much suspicion if obfuscated properly.

86 R.E. Koenig, P. Locher, and R. Haenni

This simplifies the preparation and execution of the attack and decreases the
chance of being detected.

Several of the above attack options have been implemented in the attack
against mTAN-based online banking applications as presented in [15]. This re-
port demonstrates that implementing such an attack is surprisingly simply and
only requires basic knowledge in IT security and limited skills in programming
mobile devices. For example, taking full control over the SMS functionality in
the Android operating system is done in a few lines of code, including the dele-
tion of corresponding log file entries.9 Even sending and receiving messages over
an ultrasonic channel is just a matter of using the right software libraries.10

Attacking a Single Device. Finally, we suppose that the voter uses the same
device for casting the vote and for receiving the verification code. Today’s tablet
computers provide both a full-featuredwebbrowserwith a sufficiently large display
andGSMcommunication for sending and receiving SMSmessages.This attack sce-
nario with a single mobile device M is shown on the right hand side of Figure 4.
Among the scenarios discussed in this section, it is clearly the simplest one. Com-
pared to Attack 3.1, no additional hardware equipment is needed to execute the at-
tack. Compared to Attack 3.2, only a single device needs to be infected bymalware
and no additional communication channel needs to be established. As themalware
needs to control both the web browser and the SMS component of the voter’s mo-
bile device, it must be slightly more powerful than a simple MITB malware. The
concrete steps for the malware to execute the attack are the following.

Attack 3.3. Silent vote updating with blocked verification codes on a single
mobile device.

1. When a vote is cast, the malware on the voter’s mobile device starts moni-
toring the incoming SMS messages.

2. When the first SMS message from the receipt generator arrives, it is stored
and displayed as usual on the mobile device.

3. Within in the same MinID session, but possibly with some delay to not attract
too much attention, the malware silently casts a second vote (vote updating).

4. When the second SMS message from the receipt generator arrives, it is
blocked and immediately deleted.

Besides its simplicity, this attack has the advantage of only affecting the voter’s
mobile device and thus not leaving any traces at all at other places. Even the
traces left on the infected device can be entirely removed, if the malware is
sophisticated enough to delete all entries in corresponding log files, in the device’s
usage history, or in the list of notifications. Therefore, the adversary’s risk of
being detected is even smaller than in the two attacks presented before. On the

9 SMS Popup provides free source code for programming SMS applications in the
Android operating system, see http://code.google.com/p/android-smspopup.

10 SSCConnect is an example of an ultrasonic communication tool for both the Android
and the iOS operating systems, see
http://www.sonicom.co.kr/main eng/m 3 1.php.

http://code.google.com/p/android-smspopup
http://www.sonicom.co.kr/main_eng/m_3_1.php

Attacking the Verification Code Mechanism in the Norwegian System 87

other hand, as long as only a minority of voters is using a single mobile device for
both vote casting and verification, the scalability of the attack is fairly limited.

3.3 Attacking the MinID Authentication Service

All three attacks presented so far are based on the assumption that the SMS
post-channel is under the adversary’s control. If this is actually the case, a more
general attack with much farther-reaching consequences can be launched in a
very similar way against the MinID authentication service. It is also based on
blocking incoming SMS messages, the ones that contain the one-time passwords
from the MinID authentication server. The attack scenario here is identical to
the online banking attacks presented in [15].

The attack works in all three scenarios presented so far. As an example, we
consider here the scenario with two devices, one for accessing the MinID-based
web application and one for receiving the SMS message with the one-time pass-
word. As before, we suppose that both devices are infected by malware from
the same adversary. To prepare an attack, the MITB malware intercepts the
victim’s MinID credentials during the login process of a MinID-based service.
The credentials are either stored locally on the victim’s computer, sent over the
network to a remote server, or transmitted to the malware’s counterpart on the
victim’s mobile device (using one of the unidirectional communication channels
proposed in Attack 3.2). The place where the credentials are stored or sent to
determines the location from where the actual attack will be launched.

The simplest possibility for executing the attack is the third one. In that case,
the malware on the mobile device knows the MinID credentials and is able to
block incoming SMS messages. It can then initiate the MinID login process,
submit the victims’s correct credentials, retrieve the one-time password from
the incoming SMS message, block the SMS message from being displayed to the
user, and finally submit the one-time password to complete the authentication
process. The web application will then accept the malware as a legitimate user
and give access to its resources and functionalities. All this happens silently in
the background, possibly while the user is not using the device.

All MinID-based applications are affected equally by this attack. In an attack
against the Norwegian voting system, it could be used to postpone the final vote
cast to a different MinID session, which obfuscates the attack further. Note that
the attack is even easier to implement in the scenario with a single device.

4 Preventing and Detecting the Attack

What should the people behind the Norwegian system do in the light of the at-
tacks presented in the previous section? In this section, we suggest some counter-
measures and enhancements, which may help detecting or even preventing such
attacks. Recall that all attacks depend on the vote updating feature of the Norwe-
gian system and on the adversary’s ability to silently block and discard incoming
SMS messages from the receipt generator. The proposition listed below can be
implemented separately or in combination.

88 R.E. Koenig, P. Locher, and R. Haenni

No Vote Updating. The simplest but most radical counter-measure against
all proposed attacks is to discard vote updating on the electronic channel. This
feature offers some protection against vote buying and coercion, but it is also
responsible for undermining the verification code mechanism in the proposed
attacks. Without vote updating, the first submitted vote is the one that counts.
This does not prevent the malware on the voter’s computer from submitting a
different vote, but then the verification codes will no longer match. The malware
on the voter’s mobile device could also try to block the SMS message from the
receipt generator, but this would immediately make the voter suspicious. In both
cases, voters are instructed to cast a final vote on paper. This shows that the
verification code mechanism perfectly works without vote updating. To allow
or to discard vote updating is therefore a trade-off between solving the secure
platform problem or preventing vote buying and coercion.

Vote Updating in Different Sessions. A less drastic counter-measure is
to allow vote updating, but to require different MinID sessions for doing so.11

This would clearly prevent the malware from executing the third step in each of
the Attacks 3.1 to 3.3, but the adversary would still have the option of attacking
the MinID authentication service as presented in Section 3.3. The people behind
the Norwegian system could then argue that they are not responsible for the
MinID security, but this does not solve the problem. Note that the MinID se-
curity could be improved by delivering multiple one-time passwords beforehand
by postal mail (which is currently an option for users with no registered phone
number) or on a secure hardware token.

Voting TAN. Another possible counter-measure is based on the fact that a
secure pre-channel already exists for delivering the code sheets to the voters by
postal mail. This channel could therefore be used for other purposes without
much additional effort. We propose to include an indexed list of additional one-
time passwords. Such a password plays the role of a transaction authentication
number (TAN), which voters need to enter for casting a vote. As the malware
will always be unaware of the correct next voting TAN, this would again prevent
the third step in each of the Attacks 3.1 to 3.3. The adversary could then try to
get into possession of some voting TANs with a phishing attack, but this would
clearly lower the overall effectiveness of the attack. Enhancing the Norwegian
voting system with voting TANs seems therefore to be a viable solution, even if
it slightly decreases the usability. Note that it also restricts the number of vote
updates, which could be exploited by a vote buyer or a coercer.

CAPTCHA. Each attack presented in this paper exploits the fact that the
voting servers cannot distinguish if a vote has been cast by the voter or by
the malware on the voter’s computer. CAPTCHA is a widely applied challenge-
response test to prevent automated software from performing actions in behalf

11 From showing a draft of this paper to Christian Bull, the Chief Security Officer
of the Norwegian e-voting project, we have learned that the actual implementation
already prevents vote updating within the same MinID session.

Attacking the Verification Code Mechanism in the Norwegian System 89

of humans. Voters could therefore be asked to solve a CAPTCHA when casting
a vote. Under the assumption that CAPTCHAs cannot be solved automatically
by the malware (using sophisticated OCR software or cheap human labor), this
would again prevent the execution of the third step in each of the Attacks 3.1
to 3.3. Note that enhancing the Norwegian system with CAPTCHAs is very easy
to implement, but it would decrease the overall usability.

Trusted SMS Receiver. If we neglect the threat of Attack 3.1, in which a
hardware infrastructure is needed to interrupt the SMS post-channel, we can
assume that the SMS message from the receipt generator reaches the mobile
device to which it is sent. The remaining problem then is the malware’s ability
to block the SMS message from being displayed, as proposed in Attack 3.2 and
Attack 3.3. To solve this problem, voters could be equipped with a trusted tiny
SMS receiver, which does nothing else than displaying incoming SMS messages
from a dedicated set of certified senders (receipt generator, MinID authentication
service). If produced in large numbers, we expect the price for such tiny SMS
receivers with a small display and an integrated SIM card to be reasonably small.

An additional measure to prevent Attack 3.1 is to attach a one-time password
to the SMS message from the receipt generator. After checking the verification
codes, the voter needs to enter the password to finalize the vote cast. To prevent
the adversary from intercepting this password when the SMS message passes
through the fake BTS, it must be encrypted by the receipt generator and de-
crypted by the trusted SMS receiver. Another possible counter-measure against
Attack 3.1 is to let the trusted SMS receiver automatically send a digitally signed
SMS acknowledgment back to the receipt generator.

Trusted Hardware Token. In the previous solution with the trusted SMS
receiver, we suggested a digitally signed SMS acknowledgment as an ultimate
measure to prevent Attack 3.1. Note that the same idea works independently of
using SMS as transmission channel. The SMS receiver could therefore be replaced
by a trusted hardware token with the ability to receive and display encrypted
messages and to return a signed acknowledgment to the receipt generator. Such
devices are available on the market, for example the Zone Trusted Information
Channel (ZTIC), which establishes an end-to-end TLS connection via the user’s
untrusted computer to a remote server [28,29]. Under the assumption that such
devices are trustworthy in displaying all incoming messages, the MITB mal-
ware could still block the final acknowledgment message, but this would attract
attention on the server side where the acknowledgment is expected.

Analyzing Vote Update Patterns. The common denominator of the attacks
presented in this paper is that they all exploit the vote updating feature of the
Norwegian system. Shortly after a vote has been cast from an infected computer,
a vote update from the same voter is initiated by the malware. This obviously
generates statistical patterns in the electronic ballot box, which differ from nor-
mal usage patterns. Even the vote updating frequency may already be a good

90 R.E. Koenig, P. Locher, and R. Haenni

Table 1. Overview of the strengths and weaknesses of the three attacks and corre-
sponding options presented in this paper

Practicability Scalability Non-Detectability Overall Risk

Attack 3.1 low low low low

Attack 3.2

a.

medium

medium high medium
b. high medium medium
c. high medium medium
d. high high high

Attack 3.3 high medium high high

indicator for detecting an attack on a statistical basis. Corresponding plausibility
tests could be added to the Norwegian system.12

5 Conclusion

In this paper, we analyzed the security of the verification code mechanism in
the Norwegian Internet voting system. Our analysis takes the perspective of
an adversary, who tries to interrupt the SMS post-channel, which is needed to
transmit the verification codes to the voter after casting a vote. We investigated
three different attack scenarios, in which the adversary is able to submit a fake
vote update in the name of an eligible voter. The key for the adversary to execute
such an attack is to block the SMS message from the receipt generator, which
would make the voter suspicious when delivered. In each attack scenario, the
interruption of the SMS channel is achieved in a different way.

In Table 1, we summarize the three attack scenarios by rating them with
respect to the most relevant criteria: practicability, scalability, non-detectability.
Attack 3.1 is clearly the least practical and scalable one, and the presence of
a fake BTS is likely to attract attention. Hence, it receives our weakest overall
rating. Much more practical and scalable is Attack 3.2, even if infecting two
devices simultaneously with malware poses a supplementary challenge to get
started. In Attack 3.3, only a single device needs to be infected, but the scalability
is limited to the percentage of voters to which this attack scenario applies. Since
Attack 3.2 (depending on the chosen option) and Attack 3.3 are also very hard
to detect, we evaluate them both as highly risky for the Norwegian system.

Our final conclusion and general recommendation for the persons in charge
of the Norwegian system is not to underestimate these types attacks. Similar
attacks against online banking services have already demonstrated that they
represent a real threat, and we know from our students that they are not very
difficult to implement. Therefore, we recommend making the Norwegian system
more resistant against these types of attack, for example by implementing some
of the proposed counter-measures.

12 In the 2011 pilots of the Norwegian Internet voting system, 3.6% of the voters eligible
to vote electronically submitted multiple votes.

Attacking the Verification Code Mechanism in the Norwegian System 91

As a final note, we want to emphasize that the main threat results from the
smartphone, which is an insecure platform per se. Implementing the verification
code mechanism as a smartphone app is therefore not a viable solution.13

Acknowledgments. We thank the anonymous reviewers for their thorough re-
views and appreciate the comments and suggestions. This research has been sup-
ported by the Swiss National Science Foundation (project No. 200021L 140650).

References

1. Ansper, A., Heiberg, S., Lipmaa, H., Øverland, T.A., van Laenen, F.: Security and
trust for the Norwegian e-voting pilot project E-Valg 2011. In: Jøsang, A., Maseng,
T., Knapskog, S.J. (eds.) NordSec 2009. LNCS, vol. 5838, pp. 207–222. Springer,
Heidelberg (2009)

2. Benzmüller, R.: MalwareReport: Half-yearly report (January-June 2012). Tech.
rep., G Data SecurityLabs (2012)

3. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan,
P.Y.A., Shen, E., Sherman, A.T., Vora, P.L.: Scantegrity II: End-to-end verifiability
by voters of optical scan elections through confirmation codes. IEEE Transactions
on Information Forensics and Security 4(4), 611–627 (2009)

4. Chevallier, M., Warynski, M., Sandoz, A.: Success factors of Geneva’s e-voting
system. Electronic Journal of e-Government 4(2), 71–78 (2006)

5. Cortier, V., Wiedling, C.: A formal analysis of the Norwegian E-voting protocol.
In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 109–128.
Springer, Heidelberg (2012)

6. Gebhardt Stenerud, I.S., Bull, C.: When reality comes knocking–Norwegian experi-
ences with verifiable electronic voting. In: 5th International Workshop on Electronic
Voting, EVOTE 2012, Bregenz, Austria, pp. 21–33 (2012)

7. Gjøsteen, K.: Analysis of an internet voting protocol. IACR Cryptology ePrint
Archive 2010/380 (2010)

8. Haenni, R., Koenig, R.E.: Voting over the Internet on an insecure platform. In:
Design, Development, and Use of Secure Electronic Voting Systems. IGI Global
(accepted, 2013)

9. Heiberg, S., Lipmaa, H., van Laenen, F.: On e-vote integrity in the case of malicious
voter computers. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 373–388. Springer, Heidelberg (2010)

10. Helbach, J., Schwenk, J.: Secure internet voting with code sheets. In: Alkassar,
A., Volkamer, M. (eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 166–177. Springer,
Heidelberg (2007)

11. Helbach, J., Schwenk, J., Schäge, S.: Code voting with linkable group signatures. In:
Krimmer, R., Grimm, R. (eds.) 3rd International Workshop on Electronic Voting,
EVOTE 2008. Lecture Notes in Informatics, vol. P-131, pp. 209–222. Gesellschaft
für Informatik E.V., Bregenz (2008)

12. Hubacher, I.: Management Demo: Intercepting SMS. Bachelor thesis, Bern Univer-
sity of Applied Sciences, Biel, Switzerland (2011)

13 In a recent talk at the Verifiable Voting Schemes Workshop in Luxembourg on March
22nd, 2013, Jan Willemson suggested such a solution for the Estonian system.

92 R.E. Koenig, P. Locher, and R. Haenni

13. Joaquim, R., Ribeiro, C., Ferreira, P.: Improving remote voting security with code-
Voting. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J.,
Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000,
pp. 310–329. Springer, Heidelberg (2010)

14. Kalige, E., Burkey, D.: A case study of Eurograbber: How 36 million euros was
stolen via malware. Tech. rep., Versafe & Check Point Software Technologie (2012)

15. Klaus, S., Brei, D.: Sicherheit von E-Banking auf Smart-Platforms. Bachelor thesis,
Bern University of Applied Sciences, Biel, Switzerland (2013)

16. Lipmaa, H.: Two simple code-verification voting protocols. IACR Cryptology
ePrint Archive 2011/317 (2011)

17. Meyer, U., Wetzel, S.: On the impact of GSM encryption and man-in-the-middle
attacks on the security of interoperating GSM/UMTS networks. In: 15th IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications,
PIMRC 2004, Barcelona, Spain, vol. 4, pp. 2876–2883 (2004)

18. Øberg, M.W.: Improving the Norwegian Internet Voting Protocol. Master’s thesis,
Norwegian University of Science and Technology (2011)

19. Oppliger, R., Schwenk, J., Helbach, J.: Protecting code voting against vote selling.
In: 4. Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Informatik
e.V., Sicherheit 2008, Saarbrücken, Germany, pp. 193–204 (2008)

20. Perez, D., Pico, J.: A practical attack against GPRS/EDGE/UMTS/HSPA mobile
data communications. White paper, Taddong S.L. (2011)

21. Ryan, P.Y.A.: Prêt à voter with confirmation codes. In: Shacham, H., Teague, V.
(eds.) Electronic Voting Technology Workshop/Workshop on Trustworthy Elec-
tions, EVT/WOTE 2011, San Francisco, USA (2011)

22. Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B., Malcolm,
J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp.
111–130. Springer, Heidelberg (2013)

23. Schläpfer, M., Volkamer, M.: The secure platform problem: Taxonomy and analysis
of existing proposals to address this problem. In: 6th International Conference on
Theory and Practice of Electronic Governance, ICEGOV 2012, Albany, USA (2012)

24. Song, Y., Zhou, K., Chen, X.: Fake BTS attacks of GSM system on software radio
platform. Journal of Networks 7(2), 275–281 (2012)

25. Spycher, O., Volkamer, M., Koenig, R.: Transparency and technical measures to
establish trust in Norwegian Internet voting. In: Kiayias, A., Lipmaa, H. (eds.)
VoteID 2011. LNCS, vol. 7187, pp. 19–35. Springer, Heidelberg (2012)

26. van den Broek, F.: Catching and Understanding GSM-Signals. Master’s thesis,
Radboud University Nijmegen (2010)

27. von Bergen, P.: Analyse du code source de l’application d’e-voting de Genève.
Project report, Bern University of Applied Sciences, Biel, Switzerland (2013)

28. Weigold, T., Hiltgen, A.: Secure confirmation of sensitive transaction data in mod-
ern Internet banking services. In: World Congress on Internet Security, WorldCIS
2011, London, U.K., pp. 125–132 (2011)

29. Weigold, T., Kramp, T., Hermann, R., Höring, F., Buhler, P., Baentsch, M.: The
Zurich Trusted Information Channel – An efficient defence against man-in-the-
middle and malicious software attacks. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M.
(eds.) Trust 2008. LNCS, vol. 4968, pp. 75–91. Springer, Heidelberg (2008)

A Formal Model for the Requirement

of Verifiability in Electronic Voting
by Means of a Bulletin Board

Katharina Bräunlich and Rüdiger Grimm

University of Koblenz-Landau, Department of Computer Science, Koblenz, Germany
{hupfi,grimm}uni-koblenz.de

Abstract. Trust in an electronic voting system is an essential premise
for electronic elections. Trust in a system can be strengthened by con-
trolling its correct functioning. There are two ways to assure the correct
functioning of a system. Firstly, before using a system, neutral experts
can evaluate and certify the security of its implementation. Secondly,
while using the system, its users can verify its outcome by appropri-
ate verification tools. Verifiability is a specific security function, which
is subject to certification itself. This paper presents a formal security
requirements model for the verifiability of electronic voting systems by
means of a Bulletin Board that publishes all important communication
steps without violating the secrecy of voting.

Keywords: Electronic Voting, Verifiability, Formal Specification, Com-
mon Criteria, IT System Evaluation and Certification, Bulletin Board.

1 Introduction

Trust in the electronic voting system is an essential premise for electronic voting.
One way to strengthen the trust of the voters in the electronic voting system, is
the assurance of system security by means of verifiability. In order to grant end-
to-end-verifiability [1], the essential steps of the election have to be retraceable
by the voters. The essential steps of the election are the marking and encryption
of the vote, the casting of the encrypted vote (=ballot)1 and the counting of the
ballots from the ballot box. Thus, the success of the following steps has to be
verifiable:

(V1) Cast-as-intended
The voter can ascertain himself that the ballot is correctly encrypted and
thus, represents his voting decision correctly. In order to protect ballot
secrecy, cast-as-intended can only be verified by the voter himself. Fur-
thermore, the voter can only verify cast-as-intended before the ballot has
been cast into the ballot.2

1 In traditional paper-based voting, a ballot is a vote sheet covered by an envelope
against unauthorized eyes. Encryption is a cryptographic means to cover the elec-
tronic vote against unauthorized eyes.

2 Due to this restriction, the use of decoy credentials or decoy receipts is not covered
in this paper.

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 93–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

94 K. Bräunlich and R. Grimm

(V2) Recorded-as-cast
The voter can retrace that his ballot is correctly transmitted and stored in
the ballot box. In order to protect receipt-freeness, recorded-as-cast has to
be implemented such that the voter cannot prove his voting decision (to
others). The verification of recorded-as-cast can take place directly after
the ballot casting or after the voting phase.

(V3) Counted-as-recorded
The voter as well as the broad public can verify the election result. I.e.
it has to be verifiable that all ballots from the ballot box are counted-as-
recorded.

End-to-end-verifiability as described above is one way to assure system security
and thus, to strengthen the trust of the voters in the electronic voting system.
Another way is the certification of the electronic voting system. As discussed
in [2], these approaches are not exclusive but should be combined in order to
obtain the best possible result.

The Common Criteria for Information Technology Security Evaluation (CC)
[3] are a common standard to evaluate and certify the security of IT systems
while the Common Evaluation Methodology (CEM) [3] specifies the framework
for the evaluation of such systems. An advantage of the CC is the structured
and systematic specification of security requirements for an IT system in terms
of Protection Profiles or Security Targets. A Protection Profile (PP) specifies
a product-independent description of security requirements in a group of prod-
ucts, e.g. online voting products in general. A Security Target (ST) represents
a product-specific and thus, implementation-dependent specification of security
requirements for a specific product, e.g. an implemented online voting system.
The CC allows to evaluate (and then, to certify) a PP or the implemented secu-
rity functions of a product against a specified ST. The ST may refer to a certified
PP.

A PP is evaluated with respect to its completeness and consistence. It has
to be proven that the identified threats, assumptions and security policies are
completely covered by the security objectives of the system or its operational
environment. Furthermore, the CC define seven Evaluation Assurance Levels
(EAL). These EAL indicate the evaluation depth from EAL 1 ’functional tested’
to EAL 7 ’formally verified and tested’. They are hierarchically ordered such that
each EAL represents more assurance than all lower EALs. The increase in as-
surance is not only achieved by an increasing evaluation depth but also by an
increasing scope of the evaluation, i.e. which documents are required and in-
cluded in the evaluation (from software and documentation to a formal model).
For instance, the CC Protection Profile 0037 [4] defines a basic set of security
requirements for online voting products and requires an evaluation according to
EAL2+ (structural tested). EAL2+ seems to be sufficient for non-parliamentary
elections. However, parliamentary elections demand a evaluation depth of EAL
5 or higher. A CC evaluation according to EAL 5 or higher claims for the appli-
cation of formal methods [3] and requires the proof that the security functions
enforce the security properties [5].

Formalization of Verifiability by Means of a Bulletin Board 95

This paper presents a formal model for the requirement of verifiability in
electronic voting. We do not describe verifiability as an abstract property of
a voting system. Instead we select a bulletin board as a concrete verification
mechanism and specify verifiability as a security property of the bulletin board.
A bulletin board is a public channel like, for example, a website [6]. Information
(e.g. ballots) are published on the bulletin board such that the voter and the
public can verify the election without losing ballot secrecy.

The formalization of verifiability in this paper helps to clarify and better
understand the requirement of verifiability. It can also serve as a formal security
model for electronic voting systems which enables the CC evaluation of online
voting products according to EAL5 or higher.

This paper is organized as follows: In section 2 related work is discussed. In
section 3 the formal basics that are needed for the formalization of verifiability
are explained. In section 4 a formal security model for electronic voting systems
concerning verifiability is presented. For a better readability, the formalisms
in section 3 and 4 are enriched with examples. In terms of the CC, the formal
model in this paper addresses the PP and thus, the implementation-independent
requirements. Due to the implementation-independent und universal character
of the PP, the examples are chosen from different products/protocols. In section
4.4 it is described how our formal model guarantees end-to-end-verifiability. This
description is complemented with an example. Section 5 presents a conclusion
and future work.

2 Related Work

The following related work is (according to the focus of this paper) restricted to
the formal specification of the requirement of verifiability in electronic voting,
particularly with regard to a CC evaluation according to EAL 5 or higher.

There exist several works concerning the formal specification of privacy prop-
erties as for example [7],[8],[9],[10]. While the authors in [11] give a formalization
of fairness and eligibility, [12] presents a formalization of eligibility, vote integrity
and nonreuseability. Furthermore, [13] and [14] define eligibility and protection
against precipitance (haste) of the voter in a formal way. But none of these works
considers vote verifiability.

Indeed, the concept of verifiability or the development of voter verifiable vot-
ing schemes is subject to many publications in the academic literature as for
example [1],[6],[15], [16],[17], [18]. However, only few works address the formal-
ization of verifiability. In [19] and [20] a formalization of individual and universal
verifiability is applied to a concrete protocol, namely the protocol by Fujioka et
al. [21]. But these two works do not provide a generic approach to verify security
properties in the sense of a CC evaluation.

In [22] a bulletin board for electronic voting systems is modelled. However,
this formal framework is used to specify privacy issues as coercion-resistance and
forced vote spoiling but do not address verifiability.

[23] presents a formalization of verifiability in the applied pi calculus and
thus, in a process-oriented formalism. According to [5], it has to be proven in

96 K. Bräunlich and R. Grimm

the course of a CC evaluation (a) that the security functions enforce the security
properties and (b) that the evaluated product conforms to the formal model.
Compliance of the product with the formal model (b) is verified by analyzing
the product’s implementation of the security functions with respect to the formal
model. Thus, a formal security model for a CC product evaluation requires the
specification of state transition rules. A process-oriented formalization like [23]
is suitable to verify properties of protocols. However, it is unsuitable to evaluate
concrete electronic voting products according to the CC.

In this work a state-oriented formal security model w.r.t. verifiability is pre-
sented which provides with the security theorem (sec. 4.3) a proof of the en-
forcement of the security properties (see (a) above) as demanded for the CC
evaluation.

3 Formal Basics

The formalization of verifiability requires some formal basics which are described
in this section.

Let Agents be the set of all communication partners who communicate with
each other by exchanging messages. Messages denote the set of all messages
like for example startElection, stopElection or castBallot.

According to the Dolev-Yao model [24], we assume that an attacker has full
control of the public network. Thus, we differentiate between messages that are
sent via public or private channels. The attacker can read any message which is
exchanged via a public channel, as, for example, a plaintext message which is
transmitted over an insecure network. However, private channels are not under
the control of the attacker. The attacker cannot read privately exchanged mes-
sages as, for example, an encrypted message which is transmitted between the
voting server and the voting client.

Definition 1. (Events)
Let Channel := private, public. Then Events denotes the set of all possible
events and is defined as:

Events ⊆ ±Messages×Agents×Agents× Channel

Let m ∈Messages and a, b ∈ Agents. A negative sign of a message m indicates
that the associated event is being sent; a positive sign indicates the reception
of an event. For instance, (m, a, b, pub) represents the event that a receives the
message m from b via a public channel. Accordingly, (−m, b, a, priv) specifies
the event that b sends the message m to a via a private channel.

Definition 2. (Projection)
Let 1 ≤ k ≤ n. Then πk denotes the set-theoretic projection of a Cartesian
product of n sets on its k-th component.

Let x ∈ Events. Then π1(x) returns the messagem of the associated event, π2(x)
returns a who is the sender of the message m if a negative sign is associated with

Formalization of Verifiability by Means of a Bulletin Board 97

m or the recipient otherwise, π3(x) returns b who is the sender of the message
m if a positive sign is associated with m or the recipient otherwise and π4(x)
returns the type of the communication channel.

Definition 3. (Lists)
Let LQ := {(qj ∈ Q)j∈{1,...,k} | k ∈ N} be the set of all possible lists (= tuples)
whose elements are members of the set Q.

In this paper, we use lists to collect events. Let L be a list of elements of a set Q
and q ∈ Q. Then we will use the following functions on lists: set(L) denotes the
(unordered) set that consists of all elements of L. L ‖ q appends the element q
at the end of the list L.

We now define the voting specific formalism. Let Wtotal be the set of all
registered and eligible voters, whereWtotal ⊆ Agents holds. We remark that each
member of Wtotal or Agents is considered as a potential attacker. Furthermore,
let V be the set of all plaintext votes, representing the voting decisions of the
voters. And let B be the set of all ballots, i.e. encrypted votes stored in the
ballot box. We assume that the votes as well as the ballots are unique.

The formal model in this paper is based on a bulletin board [6]. A bulletin
board is a public channel like for example a website. As the authors in [22] we
focus on the communication between the bulletin board and its communication
partners and do not specify its internal behavior. We assume, that it can be read
by everyone, but it can only be written by authorized persons. Furthermore,
we assume that all messages received by the bulletin board are automatically
published, that only new messages can be added and old messages cannot be
altered nor deleted.

The bulletin board is part of the electronic voting system. Thus, its formal
definition is included in the definition of the state of the electronic voting system
below.

Definition 4. (State of the electronic voting system)
An electronic voting system is driven by events e1, e2, e3,, that carry the
system through the states S1, S2, S3, The state of the remote electronic
voting system is a tuple Si = (Bi, Vi,Wi, BBi) where

– Bi denotes the set of the ballots (=encrypted votes) in the ballot box.
– Vi denotes the set of plaintext votes which are used by the election authority for

the tallying process. Vi are only taken from the ballot boxBi (see def. 13 below).
– Wi denotes the set of eligible voters, i.e. those voters who have not cast

their ballot, yet.
– BBi denotes the list of messages that are published on the bulletin board

with BBi ∈ LMessages. If the bulletin board receives a message via an event,
the corresponding message will be appended to the end of the list. Or more
formally: Let ei be the last event which carried to state Si and let mi = π1(ei)
be the corresponding message that was exchanged by event ei. Then

98 K. Bräunlich and R. Grimm

BBi :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if i = 0

BBi−1 ‖ mi if (π2(ei) = BB ∧ sign(mi) > 0) or

(π3(ei) = BB ∧ sign(mi) < 0)

BBi−1 otherwise

The initial state is S0 :=< B0 = ∅, V0 = ∅,W0 = Wtotal, BB0 = ∅ >.

In our model, the bulletin board is modeled as a list of received messages contain-
ing ballots and votes (see definition 12 and 14) or even more data that is needed
for the verification process. Thus, we define getV ote and getBallot. getVote ex-
tracts all plaintext votes from a set of messages, whereas getBallot extracts all
ballots from a set of messages. These functions are used to filter information
from the bulletin board.

Definition 5. (choice)
choice : Wtotal ∪ {ε} → V ∪ {ε}

choice(a) =

{
ε if a = ε or a has not voted yet

v ∈ V if v is the vote of voter a

choice specifies how the voters vote. As soon as the voter has marked the voting
form, choice returns the voter’s voting decision v. Otherwise, it returns the empty
word ε.

Definition 6. (encrypt, decrypt)
Let Params be the set of all (public and private) keys.

encrypt : V × Params→ B
decrypt : B × Params→ V

encrypt models the encryption of votes and maps a plaintext vote v ∈ V and
an encryption key p ∈ Params onto a ballot b ∈ B. While encrypt models
the encryption of the votes, decrypt models the decryption of the ballots. To
ensure ballot secrecy, we demand that all ballots have the same size, i.e. the
ballots do not allow any conclusions about the number of marks and/or their
positions on the vote. Furthermore, we assume that encrypt ◦ decrypt = idV
and encrypt ◦ decrypt = idB holds for a proper selection of the parameter. In
addition, we assume that without knowledge of the proper Params value, it
is unfeasible to construct encrypt or decrypt. We also assume that there exists
exactly one parameter p ∈ Params which enables the decryption of a ballot.

In case of postal voting, encrypt corresponds to the inner envelope which hides
the voter’s voting decision and that does not contain any link to the voter.

Definition 7. (ballot)

ballot : Wtotal → B ∪ {ε}
ballot(a) =

{
b if choice(a) �= ε ∧ ∃p ∈ Params : b = encrypt(choice(a), p)

ε otherwise

Formalization of Verifiability by Means of a Bulletin Board 99

ballot associates a voter with his ballot. If the voter has made his voting decision
(choice(a) �= ε), ballot returns the correspondingballot (b= encrypt(choice(a), p)).
Otherwise, ballot returns ε.

In case of postal voting, ballot complies with the identification of a voter’s
ballot by means of the outer envelope (which is labelled with the voter’s name
and address).

Definition 8. (voter)

voter : B →Wtotal ∪ {ε}
voter(b) =

{
a if b = ballot(a) ∧ b /∈ Bi

ε otherwise

voter maps a ballot onto its producer. In order to ensure vote secrecy, the voter
function has to be restricted. Only ballots that are not yet cast into the ballot
box (b /∈ Bi) can be mapped onto their producers. Otherwise, voter returns ε.
Thus, voter can only be applied to the ballot which is produced during the active
state transition, namely b ∈ Bi+1 \Bi. This complies to traditional paper-based
elections, where ballots from the ballot box are not linkable to their producers.

Definition 9. (verifyEncryption)

verifyEncryptiona∈Agents : B → {true, false} ∪ {ε}

verifyEncryptiona(b) =

⎧⎪⎨⎪⎩
ε if a �= voter(b)

true if ∃p ∈ Params : decrypt(b, p) = choice(a)

false if ∀p ∈ Params : decrypt(b, p) �= choice(a)

verifyEncryptiona represents the verification that a ballot encodes the voting
decision correctly. To guarantee ballot secrecy, only the producer of a ballot
himself can verify the encryption of his vote. Thus, a ∈ Agents only has ac-
cess to function verifyEncryptiona. In case that the voter a himself invokes
verifyEncryptiona, verifyEncryptiona returns true if the ballot encodes the
voter’s voting decision correctly. Otherwise, verifyEncryptiona returns false.
If the function is invoked by a person who is not the producer of that particular
ballot (a �= voter(b)), it returns ε.

In order to ensure receipt-freeness, verifyEncryptiona does not return the
plaintext vote. Though, implemented by an electronic voting system it must
enable the voter to ascertain himself that the ballot is correctly encrypted. In
case of Bingo Voting [15] verifyEncryptiona complies with the check if the
number shown by the random number generator is equivalent to the number
on the ballot that is associated with the chosen candidate or party, respectively.
verifyEncryptiona is a mathematical function which returns a value indepently
from the moment of its invocation. Implemented in an electronic voting system
its invocation has to be restricted, in order to protect the voter from coercion.

invoke verifyEncryptiona(Si, b)

if(b ∈ Bi) then return ε;

else return verifyEncryptiona(b);

100 K. Bräunlich and R. Grimm

If verifyEncryptiona is invoked in a state Si in which a ballot b is already
stored in the ballot box (b ∈ Bi), the empty word ε is returned. If the ballot
is not yet stored in the ballot box, verifyEncryptiona is successfully applied.
As soon as a ballot is stored in the ballot box it cannot longer be verified with
respect to cast-as-intended. This complies to traditional paper-based elections
where a ballot can only be unfolded and checked by the voter as long as it is not
put into the ballot box.

Definition 10. (tally)
Let k ∈ N be the number of choices (candidates or parties). Then tally is defined
as follows:

tally : 2V → N0
k

tally returns for a set of plaintext votes the number of marks for each choice.
In analogy to verifyEncryption, the access to tally has to be controlled. I.e.
implemented in an electronic voting system, it has to be restricted when tally
can successfully be executed.

invoke tally(Si)

if(|Bi| = |Vi|) then return tally(Vi);

else return ε;

This access control ensures completeness of the tally. Completeness means that
all ballots which are cast into the ballot box are actually used to calculate the
election result. Thus, tally can only be invoked if all ballots from the ballot box
are decrypted at that particular moment (|Bi| = |Vi|). Otherwise, ε is returned,
which means that no election result is obtained.

Note, that invoke tally allows for intermediate results. If a legal system pro-
hibits the calculation of intermediate results, the invocation of tally must be
further restricted such that it can only be invoked after the official closing of the
voting phase.

4 A Formal Security Model with Respect to Verifiability

Verifiability is some kind of “meta”-function which ensures the integrity of the
election from beginning to end. In the context of electronic voting, it cannot be
detached from ballot secrecy. Verifiability has to be provided without the vio-
lation of ballot secrecy. In practice, information (e.g. ballots or plaintext votes)
are published on a public channel as a bulletin board. To preserve ballot secrecy,
only some parts of the data are published, while others are kept secret. By all
means, it has to be ensured that the plaintext vote cannot be mapped onto
its producer/voter (directly or indirectly/transitively). Nonetheless, the logical
chain of the published data has to provide full coverage of the voting procedure
and exclude undetected manipulations with a probability bordering on certainty.
In this paper, we do not model an abstract verification requirement but we model
verifiability by means of a bulletin board.

Formalization of Verifiability by Means of a Bulletin Board 101

4.1 Secure States

In this subsection we define secure states. For a better readability, we present
the constraints one by one (def. 11-16). An electronic voting system is secure
if and only if all constraints specified by def. 11-16 are fulfilled. Note, that in
this subsection we define secure states, but not (yet) their enforcement. Enforce-
ment of states security will be supported by the allowed state transitions in the
following subsection 4.2.

Definition 11. A state Si is a secure state only if
∀b ∈ Bi : ∃j ≤ i : verifyEncryption(b, voterj(b)) = true

Explanation of the definition: The constraint above addresses the integrity of the
ballot box. Thus, a state is secure only if all ballots from the ballot box (∀b ∈ Bi)
in some previous state (∃j ≤ i) would verify properly (verifyEncryption(b,
voterj(b)) = true) if this were attempted.

Definition 12. A state Si is a secure state only if
Bi = getBallot(set(BBi))

Explanation of the definition: The constraint above addresses the integrity and
completeness of the ballots published on the bulletin board. It states that all
ballots from the ballot box are published on the bulletin board. And vice versa,
that no ballots are inserted nor manipulated. Remark that due to the unique
character of the ballots (see p. 5) this definition does not allow more than one
copy of one ballot in the ballot box as well as on the bulletin board. The same
holds for the votes in definition 14.

Definition 13. A state Si is a secure state only if
Vi ⊆ decrypt(Bi)

Explanation of the definition: This constraint addresses the integrity of the de-
cryption process. It denotes that Vi is constructed only from encrypted votes
from the ballot box Bi. Thus, no vote stuffing takes place. It allows, however,
that some ballots are not yet decrypted, but not vice versa.

Lemma 1. Let Si be a secure state, then encrypt(Vi) ⊆ Bi holds as well.

According to definition 13 Vi ⊆ decrypt(Bi) holds. Furthermore, (encrypt ◦
decrypt) (Bi) = Bi holds due to definition 6. Thus, lemma 1 holds as well.

Definition 14. A state Si is a secure state only if
Vi = getV ote(set(BBi))

Explanation of the definition: The constraint above addresses the integrity and
completeness of the plaintext votes published on the bulletin board. It states
that all plaintext votes correspond to ballots from the bulletin board and the
other way round, all published plaintext votes are actually contained in the
set of plaintext votes. Thus, no plaintext vote has been deleted, inserted nor
manipulated.

102 K. Bräunlich and R. Grimm

The constraints specified by definitions 11-14 ensure that all ballots are cor-
rectly cast, stored, decrypted and published and that no vote stuffing took
place. However, these four constraints do not guarantee the completeness of the
tally. Without further restrictions, ballots which have been cast into the ballot
box could be deleted and thus, incomplete election results could be obtained.
Nonetheless, the electronic voting system would remain in a secure state accord-
ing to definitions 11-14, as long as the corresponding ballot would be deleted
from the bulletin board as well. Therefore, the following definition 15 is added.

Definition 15. A state Si is a secure state only if
∀i, j ∈ N : b ∈ getBallot(set(BBi)) =⇒ b ∈ getBallot(set(BBi+j))

Explanation of the definition: The constraint above addresses the completeness
of the ballots on the bulletin board. It ensures that once a ballot is published on
the bulletin board it cannot be removed.

Note that the definition above does not address the ballots in the ballot box
directly. This definition takes into account that the content of the bulletin board
is publicly accessible while the content of the ballot box may not. However, in
a secure state according to the property of definition 12 the set of ballots in the
ballot box equals the set of ballots published on the bulletin board.

However, definition 15 does not rule out that ballots from the ballot box are
not included in the tally. Therefore, definition 16 completes the definition of
secure states.

Definition 16. A state Si is a secure state only if
tally(decrypt(Bi)) = tally(getV ote(set(BBi)))

Explanation of the definition: The constraint above addresses the completeness
of the tally. I.e. the result obtained from the ballots which are cast into the ballot
box equals the result obtained from the plaintext votes which are published on
the bulletin board.

Note a state is secure iff all constraints specified by definitions 11-16 hold
and that the initial state is secure with respect to the definition of secure states
above.

4.2 Allowed State Transitions

The rules for allowed state transitions represent the system’s behavior and thus,
the security functions that need to be implemented by the electronic voting
system. In the following, three rules for allowed state transitions are specified
to build up the content of the bulletin board and enforce the integrity and
completeness of the bulletin board and thus, of the tally. A state transition is
allowed if one of the three rules holds. For a better readability, we present these
rules one by one.

Definition 17. ([Rule 1], no ballot is cast, no ballot is decrypted)
A state transition from state Si to state Si+1 by event ti+1 is permitted if:

Bi+1 = Bi ∧ Vi+1 = Vi ∧ Wi+1 = Wi ∧ BBi+1 = BBi

Formalization of Verifiability by Means of a Bulletin Board 103

Explanation of the definition: This represents a state transition during which no
ballot is cast into the ballot box nor decrypted. For example, this rule allows for
the verification of the election or for the closing of the polling phase.

Definition 18. ([Rule 2], one ballot is cast, no ballot is decrypted)
A state transition from state Si to state Si+1 by event ti+1 is permitted if:

Vi+1 = Vi ∧ [∃b ∈ Bi+1 : Bi+1 = Bi ∪ {b} ∧ BBi+1 = BBi ‖ b ∧
voter(b) ∈Wi ∧ Wi+1 = Wi \ {voter(b)} ∧
verifyEncryption(b, voter(b)) = true]

Explanation of the definition: This rule models a state transition during which
a ballot is cast into the ballot box. In order to ensure that each eligible voter
can cast exactly one vote, only eligible voters (voter(b) ∈ Wi) can cast a ballot
into the ballot box (Bi+1 = Bi ∪ {b}) and then are eliminated from the list of
eligible voters (Wi+1 = Wi \ {voter(b)}). In addition, a ballot can only be cast
into the ballot box if the voter was able to verify his ballot with respect to cast-
as-intended (verifyEncryption(b, voter(b)) = true). Furthermore, this ballot is
published on the bulletin board (BBi+1 = BBi ‖ b)).

In this formal model, ballot casting and its publication on the bulletin board
are defined as a closed transaction. I.e. it is assumed that both, storage and pub-
lication of a ballot, happen simultaneously during one atomic state transition. In
practice storage and publication of a ballot may not be executed simultaneously
but consecutively. However, then it has to be ensured that the execution of these
two steps are performed directly one after the other and that they cannot be
interrupted nor aborted.

Definition 19. ([Rule 3], no ballot is cast, one ballot is decrypted)
A state transition from state Si to state Si+1 by event ti+1 is permitted if:

Bi+1 = Bi ∧ [∃v ∈ Vi+1 \ Vi : Vi+1 = Vi ∪ {v} ∧ BBi+1 = BBi ‖ v ∧
∃p ∈ Params : encrypt(v, p) ∈ Bi]

Explanation of the definition: Typically this rule is applied after the voting phase
is closed. It represents a state transition during which a ballot is decrypted. The
decrypted ballot is added to the set of plaintext votes (Vi+1 = Vi ∪ {v}) and
published on the bulletin board (BBi+1 = BBi ‖ v). However, plaintext votes
are only obtained from the ballot box (encrypt(v, p) ∈ Bi). Moreover, because
encrypt and decrypt are injective functions, a new ballot must be taken for every
invocation of decrypt. Otherwise, the obtained plaintext vote v was already in
Vi and thus, Vi+1 \Vi is empty. Therefore, no votes are inserted, double counted
or manipulated.

As well as the ballot casting, the decryptiion of a ballot and its publication
are modeled as a closed transaction. If the decryption of a ballot and the publi-
cation of the corresponding plaintext vote are not realized simultaneously in an
electronic voting system, it has to be ensured that once a ballot is decrypted its
publication on the bulletin board cannot be interrupted nor aborted.

104 K. Bräunlich and R. Grimm

4.3 Security Theorem

We now prove the security theorem that a permitted state transition always
carries a secure state into another secure state.

Theorem 1. If the state Si of a voting system is secure and if the state transi-
tion ti+1 is permitted, then the succeeding state Si+1 is also secure.

Proof

A state is secure, if all constraints specified by def. 11-16 are fulfilled. A state
transition is permitted if one of the rules [Rule 1]-[Rule 3] specified by def. 17-19
holds.

If Si is secure and the state transition ti+1 follows [Rule 1] then state Si+1

is obviously secure as well, because no ballot is cast, no vote is obtained nor is
any information published on the bulletin board.

Let Si be secure and ti+1 be a state transition according to [Rule 2] . Then
the voting phase is still active and exactly one ballot b is cast into the ballot box
and published on the bulletin board during state transition ti+1.

– Since [Rule 2] demands verifyEncryptioni(b, voter(b)) = true, def. 11 is
fulfilled in Si+1.

– Due to [Rule 2] and the secure state property of Si, Bi+1 = Bi ∪ {b} =
getBallot(set(BBi ‖ b)) = getBallot(set(BBi+1)) holds. I.e. def. 12 is true
in Si+1.

– According to [Rule 2] Vi+1 = Vi holds. Because Si was secure, Vi+1 = Vi ⊆
decrypt(Bi). Thus, Vi+1 ⊆ decrypt(Bi ∪ {b}) = decrypt(Bi+1) holds even
more. Therefore, def. 13 is true in Si+1.

– According to [Rule 2] one ballot and no plaintext vote is added on the bulletin
board during ti+1. Because Si is secure, Vi = getV ote(set(BBi)) holds. Thus,
getV ote(set(BBi)) = getV ote(set(BBi ‖ b)) = getV ote(set(BBi+1)) =
Vi = Vi+1 holds as well. Therefore, def. 14 is true in Si+1.

– It has to be proven that no ballot is removed from the bulletin board during
the active state transition. According to [Rule 2], BBi+1 = BBi ‖ b hold.
Thus, getBallot(set(BBi)) ⊂ getBallot(set(BBi+1)) hold and therefore, def.
15 is fulfilled in Si+1.

– If Si is secure and ti+1 follows [Rule 2], then there are two possible options.
|Bi| = |Vi| holds in Si. Then |Bi+1| = |Bi ∪ {b}| = |Bi| + 1 �= |Vi| = |Vi+1|.
Thus, tally returns ε (see def. 10) and def. 15 is true in Si+1.
Let |Bi| �= |Vi| hold in Si. Since Si is secure, Vi ⊆ decrypt(Bi) holds. Thus,
|Bi| > |Vi|. Then |Bi+1| = |Bi| + 1 > |Vi| holds even more. Thus, tally
returns ε and the constraint specified by def. 16 is true in Si+1.

This completes the proof that ti+1 according to [Rule 2] carries a secure state
Si into a secure state Si+1.

Now let Si be secure and ti+1 be a state transition according to [Rule 3] .
Then exactly one ballot is decrypted and the obtained vote v is published on
the bulletin board during state transition ti+1.

Formalization of Verifiability by Means of a Bulletin Board 105

– Due to [Rule 3]Bi+1 = Bi and getBallot(set(BBi+1)) = getBallot(set(BBi))
hold. Thus, def. 11 and 12 both are fulfilled in Si+1.

– Because Si is secure, it is sufficient to prove that the new plaintext vote
v is generated from a ballot in the ballot box, or more formally that v ∈
decrypt(Bi+1) = decrypt(Bi). According to [Rule 3] for that particular ballot
encrypt(v) ∈ Bi holds. Based on Lemma 1 v ∈ decrypt(Bi) holds as well.
Thus, the constraints specified by def. 13 is fulfilled in Si+1.

– Due to [Rule 3], BBi+1 = BBi ‖ v and Vi+1 = Vi ∪ {v} hold. Thus,
getV ote(set(BBi+1)) = getV ote(set(BBi ‖ v)) = getV ote(set(BBi)) ∪ {v}
holds as well. Because Si is secure, getV ote(set(BBi))∪{v} = Vi∪{v} = Vi+1

holds. Therefore, the constraint specified by def. 14 is true in Si+1.
– According to [Rule 3], getBallot(set(BBi)) = getBallot(set(BBi+1)) holds.

Because Si was secure and def. 15 was fulfilled in Si, def. 15 is fulfilled in
Si+1 as well.

– Let Si be secure and ti+1 a state transition according to [Rule 3].
|Bi| = |Vi| holds in Si. Then [Rule 3] cannot be applied because all ballots

from the ballot box are already decrypted. Or more formally, Vi+1 \ Vi = ∅
Assume that |Bi| > |Vi| holds in Si and |Bi+1| > |Vi+1| holds in Si+1 as
well. Then, the decrypting process isn’t completed yet. Thus, tally returns
ε and the constraint specified by def. 15 is true in Si+1.

Let |Bi| > |Vi| holds in Si and let v = decrypt(b) be the last ballot from
the ballot box which is decrypted during the active state transition. Then
|Bi+1| = |Vi+1| holds in Si+1. Based on that equality and the 1:1-mapping
of encrypt and decrypt, then Vi+1 = decrypt(Bi+1) holds. Due to def. 14
Vi+1 = getV ote(set(BBi+1)) holds as well. Thus, the constraint specified
by def. 16 is true in Si+1.

This completes the proof that ti+1 according to [Rule 3], carries a secure state
Si into a secure state Si+1.

Therefore, it has been proven that a permitted state transition carries a secure
state always into another secure state. �

4.4 Discussion of the Formal Model and Example Explanation

In this section it is explained how the constraints for secure states enable the
retraceability of the election from beginning to end and an example is given.

Before a voter casts a ballot into the ballot box, he can check his ballot
according to [Rule 2] such that it is cast-as-intended as specified by def. 11
(fig.1, step (1)). In case of Prêt-à-voter [18] the verification of cast-as-intended
conforms to the check if the correct party or candidate is marked on the right
side of the voting form, before the voting form is teared apart and the left side
of the voting form (with the randomized candidate order) is destroyed.

As soon as the voter has cast his ballot into the ballot box, his ballot is pub-
lished on the bulletin board according to [Rule 2] (fig.1, step (2)). The voter can
identify his ballot on the bulletin board and verify that his ballot is published-as-
cast according to def. 12. If the ballot was cast-as-intended and published-as-cast,

106 K. Bräunlich and R. Grimm

Fig. 1. Relationship between secure states and allowed state transitions w.r.t.
verifiability

the voter can conclude that his ballot was recorded-as-cast. Prêt-à-voter does not
publish the ballots immediately but after the voting is closed. But then the voter
can identify his ballot by means of the ballot onion and verify that his ballot has
been correctly transmitted and published.

Whenever a ballot is decrypted, the decryption process is executed according
to [Rule 3] (fig.1, step (3)). Thus, the decryption is restricted to ballots from the
ballot box as specified by def. 13 and enforced by [Rule 3]. Therefore, no vote
stuffing or manipulation is possible.

To allow for public verification all obtained plaintext votes are published on
the bulletin board (fig.1, step (4)). As specified by def. 14 and enforced by [Rule
3], all obtained plaintext votes are published-as-decrypted. If the ballots were
recorded-as-cast and the plaintext votes were published-as-decrypted, the public
as well as the individual voters can conclude that the ballots were decrypted-as-
recorded (fig.1, step (5)).

However, this verification step is sensitive w.r.t. ballot secrecy. To ensure
both, ballot secrecy and verifiability, the link between the encrypted and the
corresponding plaintext vote has to be eliminated while the decryption has to be
retraceable. For the calculation of the plaintext votes, Prêt-à-voter uses tellers
to perform anonymising mixes and decrypt the ballots in order to eliminate
the link between ballots and plaintext votes. The tellers can be audited using
Randomized-Partial-Checking. Bingo Voting [15] accomplishs this verification
step by means of Zero-Knowledge-Proofs.

Furthermore, the public can tally the votes from the bulletin board (fig.1, step
(7)). If the votes are decrypted-as-recorded and published-as-decrypted and the
announced election result equals the self-obtained election result, the public as
well as the individual voters can conclude that counted-as-recorded holds as well.

Formalization of Verifiability by Means of a Bulletin Board 107

5 Conclusion and Future Work

In this paper a formal IT security model specifying the requirement of verifi-
ability by means of a bulletin board is presented. The security properties are
specified by means of secure states (section 4.1) and enforced by rules for al-
lowed state transitions (section 4.2). The security theorem in section 4.3 proves
that by following the rules for allowed state transitions the system remains in
secure states. In section 4.4 it is shown how verifiability is provided by the given
definition of secure states.

The formal IT security model in this paper presents a formal sub model w.r.t.
verifiability. It is a step towards the evaluation of online voting products against
the CC Protection Profile [4] according to EAL5 or higher. The CC evalua-
tion according to EAL5 or higher demands the application of formal methods.
According to [5], this evaluation depth includes the verification (a) that the se-
curity functions enforce the security requirements and (b) that the electronic
voting system complies with the formal model. The first part of the proof is
presented in this paper with the security theorem. The second part of the proof
addresses the compliance of a concrete electronic voting product with the formal
model. This can be (manually or automatically) done by analyzing an electronic
voting system whether or not it implements the security functions specified in
our formal model by the rules for allowed state transitions.

Our next research step is the integration of receipt-freeness into our formal
model and in case of a conflict between verifiability and receipt-freeness, the
solution of this conflict. That way this formal security model can be evolved into
a complete formal security model which covers all requirements for electronic
voting and enables the evaluation of online voting products against the CC
according to EAL5 or higher. Furthermore, as a proof of concept a case study
concerning the application to a concrete voting protocol is desirable.

Acknowledgment. The research of this paper is funded by the Deutsche
Forschungsgenmeinschaft (DFG) under the project ’Modellierung von Internet-
wahlen II’ (ModIWa II).

References

1. Adida, B., Neff, C.: Ballot casting assurance. In: USENIX/Accurate Electronic
Voting Technology Workshop, p. 7. USENIX Association, Berkeley (2006)

2. Volkamer, M., Schryen, G., Langer, L., Schmidt, A., Buchmann, J.: Elektronische
Wahlen: Verifizierung vs. Zertifizierung. In: GI Jahrestagung, pp. 1827–1836 (2009)

3. Common criteria for information technology security evaluation, and common
methodology for information technology security evaluation, version 3.1 (2006)

4. Volkamer, M., Vogt, R.: Common criteria protection profile for basic set of security
requirements for online voting products. BSI-CC-PP-0037, Version 1.0 (April
18, 2008), https://www.bsi.bund.de/SharedDocs/Zertifikate/PP/aktuell/

PP/aktuell/PP 0037.html (May 02, 2013)
5. Mantel, H., Stephan, W., Ullmann, M., Vogt, R.: Guideline for the development

and evaluation of formal security policy models in the scope of itsec and common
criteria. BSI, DFKI, Tech. Rep. (2004)

https://www.bsi.bund.de/SharedDocs/Zertifikate/PP/aktuell/PP_0037.html
https://www.bsi.bund.de/SharedDocs/Zertifikate/PP/aktuell/PP_0037.html

108 K. Bräunlich and R. Grimm

6. Benaloh, J.D.C.: Verifiable secret-ballot elections. Ph.D. dissertation, Yale Univer-
sity, Department of Computer Science, Technical Report number 561 (1987)

7. Bräunlich, K., Grimm, R.: Formalization of receipt-freeness in the context of elec-
tronic voting. In: ARES, pp. 119–126 (2011)

8. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435–487 (2009)

9. Jonker, H.L., Pieters, W.: Receipt-freeness as a special case of anonymity in epis-
temic logic. In: Proc. IAVoSS Workshop on Trustworthy Elections (2006)

10. Jonker, H.L., de Vink, E.P.: Formalising receipt-freeness. In: Katsikas, S.K., López,
J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 476–
488. Springer, Heidelberg (2006)

11. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005)

12. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: CSF, pp. 195–209 (2008)

13. Grimm, R., Hupf, K., Volkamer, M.: A Formal IT-Security Model for the Correction
and Abort Requirement on Electronic Voting. In: EVOTE (2010)

14. Volkamer, M., Grimm, R.: Development of a formal it security model for remote
electronic voting systems. In: Electronic Voting, pp. 185–196 (2008)

15. Bohli, J.-M., Müller-Quade, J., Röhrich, S.: Bingo voting: Secure and coercion-free
voting using a trusted random number generator. In: Alkassar, A., Volkamer, M.
(eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 111–124. Springer, Heidelberg (2007)

16. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

17. Popoveniuc, S., Hosp, B.: An introduction to punchScan. In: Chaum, D., Jakobs-
son, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.)
Towards Trustworthy Elections. LNCS, vol. 6000, pp. 242–259. Springer, Heidel-
berg (2010)

18. Ryan, P.Y.A., Peacock, T.: Prêt-à-voter: A Systems Perspective. Technical Report
CS-TR 929, School of Computing Science, Newcastle University (2005)

19. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting
protocols. In: TARK, pp. 62–71 (2007)

20. Talbi, M., Morin, B., Tong, V.V.T., Bouhoula, A., Mejri, M.: Specification of elec-
tronic voting protocol properties using ADM logic: FOO case study. In: Chen, L.,
Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308, pp. 403–418. Springer,
Heidelberg (2008)

21. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993)

22. Jonker, H., Pang, J.: Bulletin boards in voting systems: Modelling and measuring
privacy. In: ARES. IEEE Computer Society Press (2011)

23. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389–404. Springer, Heidelberg (2010)

24. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. In: Proceedings of
the 22nd Annual Symposium on Foundations of Computer Science, pp. 350–357.
IEEE Computer Society, Washington, DC (1981)

Analysis of an Electronic Boardroom Voting System�

Mathilde Arnaud, Véronique Cortier, and Cyrille Wiedling

LORIA - CNRS, Nancy, France

Abstract. We study a simple electronic boardroom voting system. While most
existing systems rely on opaque electronic devices, a scientific committee of a
research institute (the CNRS Section 07) has recently proposed an alternative
system. Despite its simplicity (in particular, no use of cryptography), each voter
can check that the outcome of the election corresponds to the votes, without hav-
ing to trust the devices.

In this paper, we present three versions of this system, exhibiting potential
attacks. We then formally model the system in the applied pi-calculus, and prove
that two versions ensure both vote correctness (even if the devices are corrupted)
and ballot secrecy (assuming the devices are honest).

Keywords: Ballot Secrecy, Boardroom Voting, Correctness, Formal Methods.

1 Introduction

Electronic voting has garnered a lot of attention in the past years. Most of the results
in this field have been focused on two main types of settings: distant electronic voting
and voting machines. Distant electronic voting corresponds to systems where voters
can vote from their own computers, provided they are connected to the Internet. Many
systems have been devised, including academic ones (e.g. Helios [2], Civitas [5], or
FOO [10]). Voting machines are used in polling stations and speed up the tally. Ex-
amples of voting machines are e.g. the Diebold machines [9] or the Indian voting ma-
chines [19], both of them having been subject to attacks [9,19].

Several security notions have been proposed for voting systems and can be split
into two main categories: privacy [8] and verifiability [14]. Privacy ranges from bal-
lot secrecy to coercion-resistance and ensures that no one can know how a particular
voter voted. Verifiability enables voters to audit the voting process, e.g. by checking
that their ballots appear on the bulletin board (individual verifiability), or checking that
the outcome of the election corresponds to the ballots on the bulletin board (universal
verifiability).

In this paper, we focus on a different and particular setting: boardroom meetings.
Many committee meetings require their members to vote on several motions/decisions.
Three techniques are typically used.

– Show of hands: this is a simple and cheap technique, which offers no privacy and
requires to count the raised hands.

� The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 258865, project ProSecure.

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 109–126, 2013.
© Springer-Verlag Berlin Heidelberg 2013

110 M. Arnaud, V. Cortier, and C. Wiedling

– Paper ballot: this solution offers privacy but may be tedious, in particular when
there are several rounds of vote during a meeting.

– Use of electronic devices.

Electronic devices seem to offer both simplicity of use and privacy: committee mem-
bers simply need to (privately) push a button corresponding to their choice on their own
device and a central device computes and publishes the result. However, these systems
are opaque: what if someone controls the central device and therefore falsifies the result
of the election? In many committees such as boarding committees or scientific councils,
controlling the result of the election (e.g. choice of a new president, decision on the fu-
ture of a company, etc.) is even more important in terms of impact than breaking privacy.
Even if the system is not malicious, it can simply dysfunction with no notifications, as
witnessed e.g. by the "CNRS Section 07" committee members (the scientific council
in Computer Science of the CNRS, a French national research institute). In response to
these dysfunctions, a subgroup of the CNRS Section 07 committee members, namely
Bruno Durand, Chantal Enguehard, Marc-Olivier Killijian and Philippe Schnoebelen,
with the help of Stefan Merz and Blaise Genest, have proposed a new voting system
that is meant to achieve:

– simplicity: it could be easily adapted to existing devices
– privacy
– full verifiability, even if the electronic devices are corrupted

A few other systems tailored to boardroom election have been proposed such as [11,12].
A feature of the "CNRS Section 07" system is that it does not use cryptography, which
makes the system easier to understand and trust, for non experts.

Our contributions. We provide a full review of the voting system proposed by the
CNRS Section 07, illustrating the applicability of formal models and in particular,
the applicability of the latest definitions and the proof techniques in formal methods.
The key idea of the CNRS Section 07 voting system is that each vote appears on the
screen, together with a unique identifier (randomly generated by the central device).
This unique identifier allows voters to check that their votes have been counted. Due to
our attacks on the initial version (that called F2FV1), two variants of it have been pro-
posed: in F2FV2, the random identifier is generated by both the ballot box and the voter
while in F2FV3, the random identifier is generated by the voter only. It is interesting
to note that this last version is actually close to the protocol devised by Bruce Schneier
in [18].

We first describe the three versions and we review in details the possible attacks:

– The initial version F2FV1 is subject to a “clash-attack”, using the terminology
of [16]. The attack works roughly as follows: if the same identifier is used for
two different voters that voted the same way, then a dishonest ballot box may re-
place one of the ballots by any ballot of its choice. The last version F2FV3 (and
thus the Schneier’s protocol as well) suffers from the same attack (with relatively
small probability) if the random numbers are small, which is likely to be the case
in practice.

Analysis of an Electronic Boardroom Voting System 111

A

BB B

BB

B

B

Fig. 1. Schema of the election

– The other attacks are against privacy. Obviously, a dishonest ballot box may know
how any voter voted. We discuss other ways for a dishonest ballot box to break
privacy. One of the attack works even if the ballot box does not initially know to
which a ballot belongs to.

To conduct a more thorough security analysis, we formally model these systems in the
applied pi-calculus [1], a process algebra well adapted to security protocols. Compu-
tational models where attackers are modeled by polynomial time probabilistic Turing
machines are, as a rule, more accurate. However, since the systems here involve no cryp-
tography, we chose the simplicity of the applied pi-calculus, for which several security
analyses of voting protocols have already been conducted (e.g. [6,7]).

We focus on two main security properties: vote correctness and privacy. The CNRS
Section 07 voting system is primarily designed to ensure that, even if all the electronic
devices are corrupted, any approved election outcome reflects the votes of all voters.
This property has been introduced by Benaloh and Tuinstra [3] and more precisely de-
fined by Catalano et al in [13] and is called correctness. We provide a formal definition
of this property and prove that the two versions F2FV2 and F2FV3 ensure vote correct-
ness, even if all devices are corrupted (but assuming voters use random numbers). In
contrast, privacy cannot be ensured when the central device is corrupted. However, pri-
vacy is guaranteed against external users (including voters). Formally, we show privacy
for the well established notion of privacy defined in [8], assuming that the electronic
devices are honest.

2 Setting

We consider a particular setting, typically for boardroom meetings, where all voters
are present in the same room and are given a dedicated voting equipment. In what
follows, we assume the individual devices to be linked to a central device. The central
device is responsible for collecting the ballots and publishing them. Such systems are
standard in many committees (e.g. parliamentary assembly, corporate boards, etc.). The
particularity of the voting system (and its variants) proposed by the CNRS Section 07
is that it assumes the presence of a screen that each voter can see. This screen ensures
that all voters simultaneously see the same data and is the key element for the voting
system.

112 M. Arnaud, V. Cortier, and C. Wiedling

Specifically, the system involves voters and their electronic voting devices, a ballot
box (the central device), and a screen. Moreover, a voter is chosen to take on the role
of an assessor (for example the president of the committee or her secretary). This is
illustrated in Figure 1.

Ballot box. The ballot box is the central device that collects the ballots and tallies the
votes. It communicates with the electronic devices of the voters over private individual
channels. Once the voting phase is over, the ballot box publishes the outcome of the
election on the screen.

Screen. The screen displays the outcome of the election for validation by the voters and
the assessor. Since the voters are in the same room, they all see the same screen.

Voter. The voter role has two phases. In the first phase, he casts his vote through her
electronic device. In the second phase, he performs some consistency checks looking
at the screen and lets the assessor know whether his checks were successful, in which
case he approves the procedure.

Personal voting device. Each individual voting device has a pad or some buttons for the
voter to express her choice. The device communicates the value of the vote entered by
the voter directly to the ballot box.

Assessor. The assessor is a role that can be performed by any voter. He does not hold any
secret. He is chosen before the execution of the protocol. The assessor is responsible of
some additional verifications. In particular, he checks that each voter has approved the
procedure. If one voter has not, he must cancel the vote and start a new one.

3 Face-to-Face Voting System

We describe in details the electronic boardroom voting system designed by the CNRS
Section 07 committee. We actually present three versions of it. The three versions have
in common the fact that the central device and/or the voters generate a random number
that is attached to the vote. Both the vote and the random number are displayed on the
screen. This way, each voter can check that his vote (uniquely identified by its random
number) is counted in the tally. We could have presented the version that offers the best
security guarantees but we think the flaws in the other versions are of interest as well.
The three versions differ in who generates the randomness:

– Initial version: The ballot box generates the random identifier for each voter.
– Second version: Both the ballot box and voters generate a random identifier.
– Third version: The voters generate their identifiers.

The three voting systems are summarized in Figure 2 and are described in details in
the rest of the section. Since the votes are transmitted in clear to the central device on
uniquely identified wires, ballot secrecy is clearly not guaranteed as soon as the central
device is corrupted. So for ballot secrecy, we assume that the central device behaves
honestly, that is, the secrecy of the ballots will be guaranteed only against external users
(including the voters themselves). The major interest of the CNRS Section 07 system is
that it ensures vote correctness even if the central device is corrupted, that is the voters
do not need to trust any part of the infrastructure.

Note that in practice, the “random numbers” used in the remaining of the paper
should typically be numbers of 3-4 digits, so that they are easy to copy and compare.

Analysis of an Electronic Boardroom Voting System 113

Initial version (F2FV1)
B → Vi : ri
Vi → B : 〈ri, vi〉

Screen

〈r1, v1〉

〈r2, v2〉

〈r3, v3〉

Second version (F2FV2)
B → Vi : ri
Vi → B : 〈ri, ki, vi〉

Screen

〈r1, k1, v1〉

〈r2, k2, v2〉

〈r3, k3, v3〉

Third version (F2FV3)

Vi → B : 〈ki, vi〉
Screen

〈k1, v1〉

〈k2, v2〉

〈k3, v3〉

Fig. 2. Voting processes

3.1 Initial System F2FV1

Voting Phase. The ballot box B starts the election by generating a random number r
for each voter V , and sends this random number to the voter. The voter V receives the
random number r, uses it to form his ballot 〈r, v〉 where v is his vote, and sends his
ballot to the ballot box. Finally, all the ballots 〈r, v〉 are displayed on the screen E. This
marks the end of the voting process.

Validation Phase. The validation part can then begin. Each voter checks that his ballot
is correctly included in the list of ballots displayed on the screen. The assessor waits for
each voter to state that his vote appears on the screen. He also checks that the number
of ballots matches the number of voters. If all checks succeed, the assessor approves
the outcome of the election.

Possible Attacks. The key idea of this system is that each random identifier should
be unique, ensuring a one-to-one correspondence between the votes that appear on the
screen and the votes cast by the voters. However, a corrupted ballot box may still insert
ballots of its choice, mounting a so-called “clash-attack” [16]. The attack works as
follows: the (dishonest) ballot box guesses that two voters Alice and Bob are going to
vote in the same way. (This could be a pure guess or based on statistical analysis of the
previous votes.) The ballot box then sends the same nonce r to Alice and Bob. Since
Alice and Bob cast the same vote v, they both send back the same ballot 〈r, v〉. The
ballot box is then free to display 〈r, v〉 only once and then add any ballot of its choice.
Both Alice and Bob would recognize 〈r, v〉 as their own ballot so the result would be
validated.

For example, assume there are three voters A, B, and C and the ballot box guesses
that A and B vote identically. Suppose A and B cast 0 and C casts 1. The ballot box
can replace the two votes for 0 by one vote for 0 and one vote for 1, making the “1” vote
win. This can be done by simply sending the same randomness ra to both A and B.

B(I)→ VA : ra B(I)→ VB : ra B(I)→ VC : rc
VA → B(I) : 〈ra, 0〉 VB → B(I) : 〈ra, 0〉 VC → B(I) : 〈rc, 1〉

B(I)→ E : 〈ra, 0〉
B(I)→ E : 〈rb, 1〉
B(I)→ E : 〈rc, 1〉

114 M. Arnaud, V. Cortier, and C. Wiedling

3.2 Second System F2FV2

The attack on the initial system F2FV1 is due to the fact that the ballot box may cheat
when generating random unique identifiers. So a second solution has been proposed,
where both the voters and the ballot box generate a part of the random identifier.

Voting Phase. The ballot box B starts the election by generating a random number r
for each voter V , then sends this random number to the voter. The voter V receives the
random number r, picks a new random number k (possibly using a pre-generated list),
and uses it to form his ballot 〈r, k, v〉 where v is his vote, and then sends his ballot to
the ballot box. Finally, all the ballots 〈r, k, v〉 are displayed on the screen E.

The validation phase works like for the protocol F2FV1.

Possible Attacks. As we shall see in Section 5.2, this second version ensures vote cor-
rectness, even if the ballot box is corrupted. As for the two other variants, privacy is
not guaranteed as soon as the central device (the ballot box) is corrupted. Indeed, the
central device may leak how each voter has voted or may record it on some memory.
However, such attacks against privacy assume a rather strong control of the ballot box,
where the attacker can access to the device either during or after the election. We further
discuss some more subtle flaws which require a lower level of corruption We describe
two different attacks.

Encoding information in the randoms. As already mentioned, a fully corrupted ballot
box may transmit how each voter voted since it receives the votes in the clear, from
uniquely identified wires. However, F2FV2 (and F2FV1) also suffers from offline at-
tacks, where an attacker simply logs the election outcome. Indeed, it makes sense any-
way to keep a copy of the screen after each election. The attack works as follows.
Instead of generating fully random numbers, the ballot box could be programmed to
provide a voter i (where i is the number identifying the voting device used by the voter)
with a nonce ri such that ri ≡ i mod p, where p is larger than the number of voters. In
this way, an intruder could deduce from a ballot 〈r, k, v〉 the identity of the voter, simply
by computing r modulo p. Of course, the identity of the voters could be encoded in the
randomness in many other ways, making the detection of such an attack very unlikely.
This attack simply assumes the attacker had access to the central device, at least once
prior to the election (e.g. during its manufacturing). It does not require the attacker to
access the ballot box during nor after the election.

Swallowing ballots. There is a more direct (but easily detectable) way to break privacy,
as sketched in Figure 3. Indeed, assume an attacker wants to know to whom a ballot
〈r2, k2, v2〉 belongs to. In case the attacker simply controls the display of the screen,
he can send a modified set of ballots to the screen. E.g. if he sends 〈r2, k2, v′2〉 instead
of 〈r2, k2, v2〉), or if he simply remove this ballot, the voter who submitted the ballot
〈r2, k2, v2〉 would then complain, revealing his identity.

Security Guarantees. We show in Section 5 that this second version ensures vote
correctness, even if the ballot box is corrupted. It also ensures ballot secrecy, assuming
the ballot box is honest.

Analysis of an Electronic Boardroom Voting System 115

Ballot box

〈r1, k1, v1〉

〈r2, k2, v2〉

〈r3, k3, v3〉

Screen

〈r1, k1, v1〉

〈r3, k3, v3〉

The ballot 〈r2, k2, v2〉 is not
sent on the screen. Voter V2

reports his ballot is missing,
leaking how he voted to the
attacker.

Fig. 3. Attack against ballot secrecy

3.3 Third System F2FV3

To circumvent the privacy issue of the second system, when the ballot box is somewhat
honest (the attacker cannot access not interfere with it) but has been maliciously pro-
grammed, a third version has been proposed, where the random identifier is generated
by the voter only.

Voting Phase. Each voter V picks a random number k and uses it to form his ballot
〈k, v〉 where v is his vote, and then sends his ballot to the ballot box. All the ballots
〈k, v〉 are displayed on the screen E.

The validation phase works like for systems F2FV1 and F2FV2.

Possible Attack. This third system is vulnerable to the same kind of attacks against
vote correctness as the one described for system F2FV1. Indeed, in case two voters pick
the same random number and vote for the same candidate, for instance (kA, vA) =
(kB , vB), the ballot box could remove one of these ballots and replace it by a ballot
of its choice without being detected. Note that, due to the birthday theorem, it is not
so unlikely that two voters use the same random number. For example, assume voters
use 4 digits numbers. Then there is a probability of more than 0.2 to have a collision
in a room of 67 members and more than 0.5 in a room of 118 members. In case, only
3 digits numbers are used, there is already a probability of collision of about 0.5 for
only 37 members. These figures assume that the voters pick true random numbers. In
case they generate numbers “manually”, the entropy is usually much lower (e.g. users
are sometimes reluctant to generate numbers with repeated digits). In such cases, the
probability of collision increases accordingly.

As mentioned in the introduction, the voting protocol proposed by Bruce Schneier
in [18] being very similar, it suffers from the same attack.

Security Guarantees. We show in Section 5 that this third version ensures vote cor-
rectness, even if the ballot box is corrupted (providing voters generate true randomness).
It also ensures ballot secrecy, assuming the ballot box is honest.

3.4 Common Weaknesses

If a voter claims that her ballot does not appear on the screen, then the election round
is canceled and everyone has to vote again. This means that a dishonest voter may
choose to cancel an election (e.g. if she’s not happy with the result), simply by wrongly

116 M. Arnaud, V. Cortier, and C. Wiedling

claiming that her vote does not appear. This is mitigated by the fact that the advantage
of the attack is small (the election just takes place again) and the voter could be blamed
as being dishonest or inattentive if this happens too often.

4 Formal Model

The remaining of the paper is devoted to the formal proof of security of ballot privacy
and vote correctness for the two systems F2FV2 and F2FV3. We use the applied pi-
calculus [1] for the formal description of the voting systems. We briefly recall here all
the definitions of the applied pi-calculus.

4.1 Syntax

Messages are represented by terms built on an infinite set N of names (used to name
communication channels or atomic data), a set X of variables and a signature Σ, which
is a finite set of function symbols representing primitives. Since our voting systems do
not use any cryptography, we adopt the following simple signature:

Σpair = {ok, fail, fst, snd, pair}

where ok and fail are constants ; fst and snd are unary functions and pair is a binary
function. The term pair(m1,m2) represents the concatenation of two messages m1 and
m2, while fst and snd represent the projections on the first and second component re-
spectively. The set of terms T (X ,N) is formally defined by the following grammar:

t, t1, t2, · · · ::= x | n | pair(t1, t2) | fst(t) | snd(t) x ∈ X , n ∈ N .

We write
{
M1/x1 , . . . ,

Mn /xn

}
for the substitution that replaces the variables xi by

the terms Mi. The application of a substitution σ to a term N is denoted Nσ. A
term is ground if it does not contain variables. We also use the following notations:
〈u1, . . . , un〉 for pair(u1, pair(. . . , pair(un−1, un))) and Πn

i (u) for retrieving the ith

element of a sequence of n elements: Πn
i (u) = fst(sndi−1(u)) for i < n and Πn

n (u) =
sndn−1(u). In particular, Πn

i (〈u1, . . . , un〉) = ui. We also write x ∈n y for [x =
Πn

1 (y)] ∨ · · · ∨ [x = Πn
n (y)], that is, if x is one of the elements of the sequence y.

The properties of the pair are modeled by an equational theory Epair that states that
it is possible to retrieve the two elements of a pair:

fst(pair(x, y)) = x snd(pair(x, y)) = y.

We consider equality modulo this equational theory, that is, equality of terms is the
smallest equivalence relation induced by Epair, closed under application of function
symbols, substitution of terms for variables and bijective renaming of names. We write
M == N for the syntactic equality.

Protocols themselves are modeled by processes and extended processes, as defined in
Figure 4. Processes contain the basic operators to model a small programming language:
0 represents a process which does nothing, the parallel composition of the two processes

Analysis of an Electronic Boardroom Voting System 117

φ, ψ ::= formulae
M = N | M �= N | φ ∧ ψ | φ ∨ ψ

P,Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output
event(M).P event

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Fig. 4. Syntax for processes

P and Q is denoted by P | Q, while !P denotes the unbounded replication of P (that
is, the unbounded parallel composition of P with itself). The process νn.P creates a
fresh name n and behaves like P . Tests are modeled by the process if φ then P else Q,
which behaves like P if φ holds and like Q otherwise. Note that like in [6], we extend
the applied pi-calculus by letting conditional branches now depend on formulae instead
of just equality of terms. Process u(x).P inputs some message (stored in the variable x)
on channel u and then behaves like P while u〈M〉.P outputs M on channel u and then
behaves like P . event(M).P behaves like P , the event is there to record what happens
during the execution of the protocol and is typically used to express properties. We write
νũ for the (possibly empty) series of pairwise-distinct binders νu1.νun. The active
substitution {M/x} can replace the variable x by the term M in every process it comes
into contact with and this behavior can be controlled by restriction, in particular, the
process νx

({M/x} | P
)

corresponds exactly to let x = M in P .

Example 1. Let P (a, b) = c(x).c(y).(c〈〈x, a〉〉 | c〈〈y, b〉〉). This process waits for
two inputs x and y on channel c then performs two outputs, 〈x, a〉, 〈y, b〉, in a non-
deterministic order, on the same channel.

The scope of names and variables are delimited by binders u(x) and νu. The different
sets of bound names, bound variables, free names and free variables are respectively
written bn(A), bv(A), fn(A) and fv(A). Occasionally, we write fn(M) (respectively
fv(M)) for the set of names (respectively variables) which appear in term M . An ex-
tended process is closed if all its variables are either bound or defined by an active
substitution. An context C [_] is an extended process with a hole.

A frame is an extended process built up from the null process 0 and active substi-
tutions composed by parallel composition and restriction. The domain of a frame ϕ,

118 M. Arnaud, V. Cortier, and C. Wiedling

denoted dom(ϕ), is the set of variables for which ϕ contains an active substitution
{M/x} such that x is not under restriction. Every extended process A can be mapped
to a frame ϕ(A) by replacing every plain process in A with 0.

4.2 Semantics

The operational semantics of processes in the applied pi-calculus is defined by three
relations: structural equivalence (≡), internal reduction (→) and labelled reduction
(
α−→), formally defined in [1]. Structural equivalence is the smallest equivalence rela-

tion on extended processes that is closed under application of evaluation contexts, by
α-conversion of bounded names and bounded variables. Internal reductions represent
evaluation of condition and internal communication between processes while labelled
reductions represent communication with the environment. For example, the input and
output rules are represented by the following two rules:

(IN) c(x).P
c(M)−−−→ P{M/x}

(OUT-ATOM) c〈u〉.P c〈u〉−−−→ P

Example 2. Let us consider the process P (a, b) defined in Example 1 and the process
Q = νr.c〈r〉.c〈r〉 that generates a random r and send it twice. A possible sequence of
transitions for the process P (a, b) | Q is:

P (a, b) | Q νr1.c〈r1〉−−−−−−→ P (a, v) | νr.c〈r〉 | {r/r1}
νr2.c〈r2〉−−−−−−→ P (a, b) | {r/r1 ,r /r2}

c(r1)−−−→ c(y).(c〈〈r, a〉〉 | c〈〈y, b〉〉) | {r/r1 ,r /r2}
c(r2)−−−→ c〈〈r, a〉〉 | c〈〈r, b〉〉 | {r/r1 ,r /r2}

νy1.c〈y1〉−−−−−−→ c〈〈y, b〉〉 | {r/r1 ,r /r2 ,〈r,a〉 /y1}
νy2.c〈y2〉−−−−−−→ {r/r1 ,r /r2 ,〈r,a〉 /y1 ,〈r,b〉 /y2}.

At the end of the execution, the process is reduced to a frame that contains the terms
emitted by the initial process.

Privacy properties are often stated as equivalence relations [8]. Intuitively, if a protocol
preserves ballot secrecy, an attacker should not make a distinction between a scenario
where a voter votes 0 from a scenario where the voter votes 1. The applied pi-calculus
comes with the notion of observational equivalence, which formally defines what it
means for two processes to be indistinguishable for any attacker. Since observational
equivalence has been shown to coincide [1,17] with labelled bisimilarity, which is easier
to reason with, we adopt the latter in this paper. Labelled bisimilarity intuitively states
that processes should be bisimilar and send indistinguishable messages. In our context,
given that the only primitive we consider is pairing, two sequences of messages are
indistinguishable to an attacker (formally defined as static equivalence [1]) if and only
if they are equal. We therefore present here a simplified version of labelled bisimilarity,
which is labelled bisimilarity for the special case of pairing.

Definition 1 (Labelled bisimilarity). Labelled bisimilarity (≈l) is the largest symmet-
ric relationR on closed extended processes such that ARB implies:

Analysis of an Electronic Boardroom Voting System 119

1. ϕ(A) = ϕ(B);
2. if A −→ A′, then B −→∗ B′ and A′RB′ for some B′;
3. if A

α−→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B −→∗ α−→−→∗
B′ and A′RB′ for some B′.

Example 3. Let us consider A = P (a, b) | Q and B = P (b, a) | Q. Is A ≈l B ? Let us
consider the same evolution as in Example 2 except that c(r1) and c(r2) are replaced
by c(M) and c(N) which represents an action of the intruder, replacing what is sent by
Q by something of her choice. In that case, we will have :

ϕ(A) = {r/r1 ,r /r2 ,〈M,a〉 /y1 ,
〈N,b〉 /y2} and ϕ(B) = {r/r1,r /r2 ,〈M,b〉 /y1,

〈N,a〉 /y2}.

Since ϕ(A) �= ϕ(B) we have that A �≈l B.

4.3 Modeling Protocols in Applied pi-Calculus

We provide a formal specification of the two last variants of the CNRS voting system,
in the applied pi-calculus. We do not describe the formal model of the initial voting
system since it does not ensure ballot secrecy nor vote correctness.

We model the communications of the ballot box with the voters and the screen by
secure channels (resp. ci and cB). These channels may be controlled by the adversary
when the ballot box is corrupted. The voters and the assessor look at the screen. This
communication cannot be altered and is modeled by an authenticated channel ceyes.
The assessor also communicates with each voter to check that the voter found his/her
ballot on the screen. This is again modeled by an authenticated channel cAi since we
assume that voters cannot be physically impersonated. The channel connections are
summarized in Figure 5.

Remark 1. The applied-pi calculus provides an easy way to model both public and se-
cure channel. Public channels are simply modeled by unrestricted names: the attacker
can both read and send messages. Secure channels are modeled by restricted names:
the attacker cannot read nor send any message on these channels. In contrast, an at-
tacker may read authenticated channels but only authorized users may send messages
on them. Since the applied pi-calculus does not provide us with a primitive for authen-
ticated channels, we model authenticated channel by a secure channel, except that a
copy of each emission is sent first on a public channel. In particular, we use the notation
c〈M〉 for cp〈M〉.c〈M〉 with cp a public channel.

Remark 2. The role of the individual voting device is limited: it simply receives the
vote from the voter and transmit it to the Ballot Box. W.l.o.g and for simplicity, we
identify the voter and her individual device in the model of the voting systems.

Model of F2FV2. The process for the voter is parametrized by the number n of voters,
its secure channel with the ballot box c, its authenticated channel with the screen (ce)
and the auditor (ca), the public channel cp and its vote v.

120 M. Arnaud, V. Cortier, and C. Wiedling

ABB C

D E BEF AE ABB C

Fig. 5. Players of the Protocol

Vn(c, ce, ca, cp, v) =
νk . c(x) . % Creates fresh nonce and waits for input on c.
c〈〈x, k, v〉〉 . % Sends ballot on c to the ballot box.
ce(y) . % Waits for input on ce (results on the screen).
if 〈x, k, v〉∈n y % Checks his vote.
then ca〈ok〉 else ca〈fail〉 % Sends result on ca to the assessor.

The process for the ballot box is parametrized by the number n of voters, the secure
channels c1v, . . . , c

n
v with each voter and its secure channel with the screen cbe.

Bn(c
1
v, . . . , c

n
v , cb) =

νr1, . . . , rn . % Creates fresh randomness.
c1v〈r1〉 cnv 〈rn〉 . % Sends randomness to voters.
c1v(y1) c

n
v (yn) . % Waits for inputs of ballots.

(cb〈y1〉 | · · · | cb〈yn〉) % Sends ballots in random order to E.

The screen is modeled by a process En that simply broadcasts the result given by Bn.
It is parametrized by the number n of voters, the authenticated channels ce with each
voter, the secure channel with the bulletin box cb, and the public channel cp.

En(cb, ce, cp) =
cb(t1) cb(tn) . % Waits for votes from ballot box.
let r = 〈t1, . . . , tn〉 in
cp〈r〉 . (! ce〈r〉) % Displays info for all the boardroom.

The last role is the role of the assessor. It is modeled by a process An that waits for the
result displayed by the screen and the confirmation of the voters. Then it verifies the out-
come and validates the election if everything is correct. The process An is parametrized
by the number n of voters, the authenticated channels c1a, . . . , c

n
a with each voter, the

secure channel with the screen ce, and the public channel cp.

An(ce, c
1
a, . . . , c

n
a , cp) =

ce(z
′) . % Waits to see result on the screen.

c1a(z1) c
n
a(zn) . % Waits for decision of voters.

if Ψn(z
′, z1, . . . , zn) % Checks if everything is fine.

then cp〈ok〉 else cp〈fail〉 % Sends confirmation or rejection.

Analysis of an Electronic Boardroom Voting System 121

where Ψn(p
′, p1, . . . , pn) = (

n∧
i=1

pi = ok) ∧ (p′ = 〈Πn
1 (p
′), Πn

2 (p
′), . . . , Πn

n (p
′)〉).

The test Ψn ensures that each voter approved the vote (pi = ok) and that the result
contains as many ballots than the number of voters.

Finally the system F2FV2 is represented by the voter’s role Vn and the voting context:

P 2
n [_] = ν ω̃. [_ |Bn(c1, . . . , cn, cB)|En(cB, ceyes, cout)|An(ceyes, cA1 , . . . , cAn , cout)]

where ω̃ = (c1, . . . , cn, cA1 , . . . , cAn , cB, ceyes) are restricted channels (cout is public).

Model of the Protocol F2FV3. The third protocol only differs from the second one
by the fact that the ballot box does not generate any randomness. Therefore, the models
of the screen and of the assessor are unchanged. The voter and ballot box models are
modified as follows.

V ′n(c, ce, ca, cp, v) =
νk . c〈〈k, v〉〉 . ce(x) .
if 〈k, v〉 ∈n x then ca〈ok〉 else ca〈fail〉

B′n(c
1
v, . . . , c

n
v , cb) =

c1v(y1) c
n
v (yn) .

(cb〈y1〉 | · · · | cb〈yn〉)
The system F2FV3 without the voters is represented by the voter’s role V ′n and the
voting context:

P 3
n [_] = ν ω̃. [_ |B′n(c1, . . . , cn, cB)|En(cB, ceyes, cout)|An(ceyes, cA1 , . . . , cAn , cout)]

where ω̃ = (c1, . . . , cn, cA1 , . . . , cAn , cB, ceyes) are restricted channels.

5 Security Properties

We study two crucial properties for voting systems: ballot secrecy and vote correctness.
We consider two cases depending on whether the ballot box is corrupted or not. We
always assume the screen to be honest. This is however not a limitation. Indeed, requir-
ing the screen to be honest reflects the fact that everyone sees the same screen, which is
always the case for people in the same room.

5.1 Ballot Secrecy

Formalizing ballot secrecy may be tricky. For example, even a good voting system
reveals how anyone voted in case of unanimity. Early definitions of privacy appear for
example in [3]. In what follows, we use a well established definition of ballot secrecy
that has been formalized in terms of equivalence by Delaune, Kremer and Ryan in [8].
Several other definitions of privacy have been proposed (see e.g. [15,4]), which measure
the fact that the attacker may learn some information, even if he does not know how a
certain voter voted.

A protocol with voting process V (v, id) and authority process A preserves ballot se-
crecy if an attacker cannot distinguish when votes are swapped, i.e. it cannot distinguish
when a voter a1 votes v1 and a2 votes v2 from the case where a1 votes v2 and a2 votes
v1. This is formally specified by :

νñ. (A | V {v2/x,a1 /y} | V {v1/x,a2 /y}) ≈l νñ. (A | V {v1/x,a1 /y} | V {v2/x,a2 /y})

122 M. Arnaud, V. Cortier, and C. Wiedling

where ñ represents the data (keys, nonces, channels, . . .) initially shared between the
authority and the voters.

Ballot Secrecy for Voting Protocol F2FV2. The voting protocol F2FV2 preserves
ballot secrecy, even when all but two voters are dishonest, provided that the ballot box,
the screen and the assessor are honest. For the sake of clarity, we use the following
notation for the ith voter: V i(v) = Vn(ci, ceyes, cAi , cout, v).

Theorem 1. Let n ∈ N, let (P 2
n , Vn) be the process specification for n voters of the

voting protocol F2FV2 as defined in Section 3.2, and let a, b be two names. Then

P 2
n

[
V 1(a) | V 2(b)

] ≈l P
2
n

[
V 1(b) | V 2(a)

]
Proof sketch: The proof of Theorem 1 consists in two main steps. First we build a
relationR such that

P 2
n

[
V 1(a) | V 2(b)

] R P 2
n

[
V 1(b) | V 2(a)

]
and such that for any two processes P RQ, any move of P can be matched by a move of
Q such that the resulting processes remain in relation. This amounts to characterizing all
possible successors of P 2

n

[
V 1(a) | V 2(b)

]
and P 2

n

[
V 1(b) | V 2(a)

]
. The second step

of the proof consists in showing that the sequences of messages observed by the attacker
are equal (due to the shuffle performed by the ballot box).

Ballot Secrecy for Voting Protocol F2FV3. Similarly, the voting protocol F2FV3

preserves ballot secrecy, even when all but two voters are dishonest, provided that the
ballot box, the screen and the assessor are honest.

Theorem 2. Let n ∈ N, let (P 3
n , V

′
n) be the process specification for n voters of the

voting protocol F2FV3 as defined in Section 3.3, and let a, b be two names. Then

P 3
n

[
V ′1(a) | V ′2(b)

]
≈l P

3
n

[
V ′1(b) | V ′2(a)

]
The proof of Theorem 2 is adapted from the proof of Theorem 1.

5.2 Vote Correctness

We define vote correctness as the fact that the election result should contain the votes of
the honest voters. Formally, we assume that the voting protocol records the published
outcome of the election t in an event event(t).

Definition 2 (Correctness property). Let n be the number of registered voters, and
m be the number of honest voters. Let v1, . . . , vm ∈ N be the votes of the honest
voters. Let V 1, . . . , V m be the processes representing the honest voters. Each V i is
parametrized by its vote vi. Let Pn be a context representing the voting system, besides
the honest voters. We say that a voting specification (Pn, Ṽ) satisfies vote correctness
if for every v1, . . . , vm, for every execution of the protocol leading to the validation of
a result tr, i.e. of the form

Analysis of an Electronic Boardroom Voting System 123

Pn[V
1(v1)| . . . |Vm(vm)]→∗ νñ · (event(tr) ·Q | Q′)

for some names ñ and processes Q,Q′, then there exist votes vm+1, . . . , vn and a per-
mutation τ of �1, n� such that tr = 〈vτ(1), . . . , vτ(n)〉, that is, the outcome of the elec-
tion contains all the honest votes plus some dishonest ones.

To express vote correctness in the context of the CNRS Section 07 voting system, we
simply add an event that records the tally, at the end of the process specification of
the assessor (see Appendix for the corresponding modified process A′n). We show vote
correctness for a strong corruption scenario, where even the ballot box is corrupted.
Formally, we consider the following context that represents the three voting systems,
the only difference between the systems now lying in the definition of voters.

Pn
′ [_] = ν ω̃. [_ | En(cB, ceyes, cout) | A′n(ceyes, cA1 , . . . , cAn , cout)]

where ω̃ = (cA1 , . . . , cAn , ceyes), which means that the intruder has access in this sce-
nario to channels c1, . . . , cn and cB in addition to cout.

To illustrate the correctness property, let first show that F2FV1 does not satisfy vote
correctness when the ballot box is corrupted. First, we introduce V̂ the process of an
honest voter in F2FV1:

V̂ (c, ce, ca, cp, v) = c(x) . c〈〈x, v〉〉 . ce(y) . if 〈x, v〉 ∈n y then ca〈ok〉 else ca〈fail〉

Let V̂ i = V̂ {ci/c,ceyes /ce,cAi /ca,cout /cp}. It represents the i-th honest voter. Suppose
now, that the first m honest voters cast the some vote: ∀i ∈ �1,m�, vi = v. We show
how the attack described in Section 3.1 is reflected. Each honest voter receives the same
random number r:

P ′n[V̂
1(v1) | · · · | V̂ m(vm)]

∀i∈�1,m�, ci〈r〉−−−−−−−−−−→ P ′n[V̂
1
r (v1) | · · · | V̂ m

r (vm)]

where V̂ i
r (vi) = ci〈〈r, vi〉〉 . ceyes(y) . if 〈r, vi〉 ∈n yi then cAi〈ok〉 else cAi〈fail〉. Then,

the honest voters output their vote on channels c1, . . . , cm which will always be 〈r, v〉.

P ′n[V̂
1
r (v1) | · · · | V̂ m

r (vm)]
∀i∈�1,m�, ci〈〈r,vi〉〉−−−−−−−−−−−−−→ P ′n[V̂

1
e (v1) | · · · | V̂ m

e (vm)]

where V̂ i
e (vi) = ceyes(y) . if 〈r, vi〉 ∈n yi then cAi〈ok〉 else cAi〈fail〉. Corrupted voters

also submit their votes (which is transparent in transitions) and we move to the next
phase: the corrupted ballot box just has to output one of the honest votes to the screen
and n−1 other votes. Thus, the final tally tr showed by the screen will contain only one
〈r, v〉 but each honest voters will send ok to the assessor since their test will succeed
anyway. In that case, we would have P ′n[V̂

1(v1)| . . . |V̂ m(vm)] →∗ νñ · event(tr) for
some ñ, but, clearly, tr is not satisfying the property of the Definition 2 since it only
contains one vote v instead of m votes v.

In contrast, the two voting systems F2FV2 and F2FV3 satisfy vote correctness, even
when the ballot box is corrupted, assuming that the voters check that their ballots appear
on the screen.

124 M. Arnaud, V. Cortier, and C. Wiedling

Table 1. Results for the F2FV1,F2FV2, and F2FV3 protocols. A � indicates provable security
while × indicates an attack. We assume an arbitrary number of dishonest voters.

RESULTS Privacy Correctness
���������System

Corr. Players
None

Ballot
Assessor None

Ballot
Assessor

Box Box

F2FV1 � × � � × ×

F2FV2 � × � � � ×

F2FV3 � × � � � ×

Theorem 3. The voting specifications (P ′n, V) and (P ′n, V ′) satisfy vote correctness.

Proof sketch. The assessor records the result of the election in an event only if
Ψn(p

′, p1, . . . , pn) holds. This formula intuitively represents the fact that every voter
has told to the assessor that his ballot was included in the tally, and that the number
of ballots in the tally matches the number of voters, i.e. n. Using this information and
the fact that each honest voter has generated a random nonce uniquely identifying his
ballot, we can show that the voting specifications satisfy vote correctness.

Correctness requires that at least one person in the room checks that no one has
complained and that the number of displayed ballots correspond to the number of voters.
If no one performs these checks then there is no honest assessor and correctness is no
longer guaranteed.

A summary of our findings is displayed on Table 1. The proofs of correctness of
F2FV2 and F2FV3 in the honest case follow from the proofs in the dishonest case.
Privacy is not affected by a corrupted assessor as it actually only performs public veri-
fication. So its corruption does not provide any extra power to the attacker. Privacy and
correctness for F2FV1 (in the honest case) follow from the proofs for F2FV2.

6 Discussion

We believe that the voting system proposed by the CNRS Section 07 committee for
boardroom meetings is an interesting protocol that improves over existing electronic
devices. We have analyzed the security of three possible versions, discovering some in-
teresting flaws. We think that the two last versions are adequate since they both preserve
ballot secrecy and vote correctness. The choice between the two versions depends on
the desired compromise between ballot secrecy and vote correctness: the second ver-
sion ensures better correctness but less privacy since the randomness generated by the
ballot box may leak the identity of the voters. Conversely, the third system offers better
privacy but slightly less assurance about vote correctness, in case the voters do not use
proper random identifiers.

Analysis of an Electronic Boardroom Voting System 125

In both cases, vote correctness is guaranteed as soon as:

– Voters really use (unpredictable) random numbers. In practice, voters could print
(privately and before the meeting) a list of random numbers that they would use at
their will (erasing a number once used). This list of random numbers could typically
be generated using a computer. Alternatively, voters may also bring dice to the
meeting.

– Each voter casts a vote (possibly blank or null) and checks that his vote (and asso-
ciated randomness) appears on the screen.

Correctness does not require any trust on the devices while privacy does. This is un-
avoidable unless the communication between the voters on the ballot box would be
anonymized, which would require a much heavier infrastructure. Note that the system
is not fair if the ballot box is compromised since dishonest voters may then wait for
honest voters to cast their votes, before making their own decision.

In this paper, we have focused on ballot secrecy and vote correctness. As future work,
we plan to study stronger notions of privacy. Clearly, the voting system is not coercion
resistant. Indeed, an attacker may provide a voter with a list of random numbers, that
he should use in a precise order, allowing the attacker to control the votes. However, we
believe these systems ensure some form of receipt-freeness, assuming the attacker is
given access to the screen only after the election is over but cannot interact with voters
before nor during the election.

A weakness of the system relies in the fact that a voter may force to re-run an elec-
tion by (wrongly) claiming that her vote does not appear on the screen. As already men-
tioned in Section 3.4, this is mitigated by the fact that the voter could then be blamed
if this happens to often. This also means that an honest voter could be blamed if a dis-
honest Ballot Box intentionally removes her ballot at each turn. It would be interesting
to devise a mechanism to mitigate this issue.

Acknowledgment. We would like to thank the anonymous reviewers for their numer-
ous remarks and propositions that helped us to improve the paper.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: 28th
ACM Symp. on Principles of Programming Languages (POPL 2001), pp. 104–115 (2001)

2. Adida, B.: Helios: web-based open-audit voting. In: 17th Conference on Security Sympo-
sium, SS 2008, pp. 335–348. USENIX Association (2008)

3. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: Proceedings of the 26th An-
nual ACM Symposium on Theory of Computing (STOC 1994), pp. 544–553. ACM (1994)

4. Bernhard, D., Cortier, V., Pereira, O., Warinschi, B.: Measuring vote privacy, revisited. In:
19th ACM Conference on Computer and Communications Security (CCS 2012), Raleigh,
USA. ACM (October 2012)

5. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In: 2008
IEEE Symposium on Security and Privacy, pp. 354–368 (2008)

6. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy. In: 24th
IEEE Computer Security Foundations Symposium (CSF 2011), pp. 297–311 (2011)

126 M. Arnaud, V. Cortier, and C. Wiedling

7. Cortier, V., Wiedling, C.: A formal analysis of the norwegian E-voting protocol. In: Degano,
P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 109–128. Springer, Heidelberg
(2012)

8. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security 17(4), 435–487 (2009)

9. Feldman, A., Halderman, A., Felten, E.: Security Analysis of the Diebold AccuVote-TS Vot-
ing Machine. In: 2007 USENIX/ACCURATE Electronic Voting Technology Workshop, EVT
2007 (2007)

10. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections.
In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer,
Heidelberg (1993)

11. Groth, J.: Efficient maximal privacy in boardroom voting and anonymous broadcast. In: Juels,
A. (ed.) FC 2004. LNCS, vol. 3110, pp. 90–104. Springer, Heidelberg (2004)

12. Hao, F., Ryan, P.Y.A., Zielinski, P.: Anonymous voting by two-round public discussion. IET
Information Security 4(2), 62–67 (2010)

13. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Chaum,
D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.)
Towards Trustworthy Elections. LNCS, vol. 6000, pp. 37–63. Springer, Heidelberg (2010)

14. Kremer, S., Ryan, M.D., Smyth, B.: Election verifiability in electronic voting protocols. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
389–404. Springer, Heidelberg (2010)

15. Küsters, R., Truderung, T., Vogt, A.: Verifiability, Privacy, and Coercion-Resistance: New
Insights from a Case Study. In: IEEE Symposium on Security and Privacy (S&P 2011), pp.
538–553. IEEE Computer Society (2011)

16. Küsters, R., Truderung, T., Vogt, A.: Clash Attacks on the Verifiability of E-Voting Systems.
In: IEEE Symposium on Security and Privacy (S&P 2012), pp. 395–409. IEEE Computer
Society (2012)

17. Liu, J.: A proof of coincidence of labeled bisimilerity and observational equivalence in ap-
plied pi calculus. Technical report (2011)

18. Schneier, B.: Applied Cryptography, ch. 6. John Wiley & Sons (1996)
19. Wolchok, S., Wustrow, E., Halderman, J.A., Prasad, H.K., Kankipati, A., Sakhamuri, S.K.,

Yagati, V., Gonggrijp, R.: Security analysis of India’s electronic voting machines. In: 17th
ACM Conference on Computer and Communications Security, CCS 2010 (2010)

Dispute Resolution in Accessible Voting

Systems: The Design and Use of Audiotegrity

Tyler Kaczmarek1, John Wittrock1, Richard Carback2, Alex Florescu1,
Jan Rubio1, Noel Runyan3, Poorvi L. Vora1, and Filip Zagórski4

1 Department of Computer Science, The George Washington University�

2 Network and Information Concepts Group, Charles Stark Draper Laboratories
3 Personal Data Systems

4 Institute of Mathematics and Computer Science,
Wroclaw University of Technology��

Abstract. We describe in detail dispute resolution problems with cryp-
tographic voting systems that do not produce a paper record of the
unencrypted vote. With these in mind, we describe the design and use of
Audiotegrity—a cryptographic voting protocol and corresponding voting
system with some of the accessibility benefits of fully-electronic voting
systems and some of the dispute resolution properties of paper-ballot-
based systems. We also describe subtle issues with coercion-resistance if
accessible systems are not well-designed.

Audiotegrity was designed in response to a request by Takoma Park
election officials, tested in a public test organized by the city in June 2011,
and used in its municipal election in November 2011. We are not aware
of any other precinct-based end-to-end independently-verifiable election
for public office where the protocol enabled participation by voters with
visual disabilities.

Keywords: end-to-end voting systems, accessible, dispute resolution.

1 Introduction

Several cryptographic voting protocols have been proposed for polling place elec-
tions, where voters use voting systems that they do not trust. Many of the cor-
responding voting systems use paper ballots (Prêt à Voter [20,10], Scantegrity
II [8]) scanned after the voter marks her choice(s). Paper ballots are severely
limiting from a usability and accessibility perspective. On the other hand, the
straightforward replacement of interactions on paper with similar interactions

� This work was supported in part by NSF Award Nos. 0831149, 0937267 and
1137973 and by Research Experience for Undergraduates (REU) enhancements to
these awards. It was determined to be Exempt, Category 2—GW IRB application
061109.

�� This research was partially supported by NCN scientific project 2010-2013 - grant
number N N206 369839.

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 127–141, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

128 T. Kaczmarek et al.

over an electronic medium does not always preserve a protocol’s security prop-
erties. This paper makes the following contributions. First, it describes in detail
the dispute resolution weaknesses of voting systems where voters do not manu-
ally mark ballots. Second, it presents the design and deployment of Audiotegrity,
a protocol and corresponding voting system, that seeks a balance between the
strong accessibility and usability properties of fully-electronic voting systems and
the strong dispute resolution properties of paper-ballot-based ones. Audiotegrity
was used by the city of Takoma Park for its municipal election in November 2011.

Audiotegrity provides an electronic interface for the voter to enter a vote, and
produces a marked Scantegrity II ballot which is then scanned and processed
in the same manner as a hand-marked paper Scantegrity II ballot. From the
available descriptions, the version of Prêt à Voter proposed for use in Victoria [6]
and STAR-Vote [4] use similar interfaces. The focus of this paper is twofold. First,
it presents the security implications of the use of paper vs. electronic interactions
in various protocol steps. Second, it describes the design of a protocol that takes
these into consideration, and the use of the corresponding system in tests in
June 2011 and a real election in November 2011. In particular, we observe that
paper ballots or ballot summaries play a role not only in manual recounts, but in
the protocol itself, even when the voting system is a good cryptographic system.
Paper and physical procedures enable some aspects of dispute resolution and
coercion-resistance for human voters, who are not able to make and check digital
commitments and signatures in the polling booth.

We note at the outset that we focused on the vote-casting experience. We did
not implement interfaces for voters to interact with the website that displays
confirmation numbers and audit information. However, voters can use accessi-
ble devices, in general, for electronic information displayed on appropriately-
designed websites. Voters cannot use personal accessible devices while voting, as
such a device would learn the vote.

In section 2 we provide background, and in section 3 we describe related work.
In 4 we describe the dispute resolution and coercion-resistance problems with
voting systems that do not show the voter a paper record of her unencrypted
vote. In section 5 we describe the Audiotegrity protocol and its security prop-
erties. In section 6 we describe the dispute resolution and coercion-resistance
properties of paper-ballot protocols Prêt à Voter and Scantegrity II and compare
them with those of Audiotegrity. In section 7 we describe the use of Audiotegrity
in Takoma Park in 2011. We conclude in section 8.

2 Background

In the typical cryptographic voting protocol, each vote is encrypted and all en-
crypted votes are broadcast on an election website. Voters may treat encrypted
votes as receipts and take them home to check that they are correctly broadcast.
Encrypted votes are processed in a verifiable manner to obtain the tally.

The Design and Use of Audiotegrity 129

Vote Encryption: We will focus on precinct-based protocols—where the voter
votes from a polling booth, and the cast/audit paradigm proposed by Benaloh
[3].

Some protocols use specially-designed paper ballots with the property that a
voter can encrypt her vote simply by filling the ballot, see Figure 1.

1239

Bob

Alice

Carol

1239

X

1769

Alice

Carol 3792

Fig. 1. Marked ballots: Left: Prêt à Voter Right: Scantegrity II

For example, Prêt à Voter ballots list the candidates in a pseudo-random
permutation on the left side of the ballot. The voter marks her choice on the right
side and then separates the two ballot halves along a central perforation. The
half with the candidate order is shredded and the marked half cast. The serial
number provides the information necessary for the voting system to interpret
the mark, and the position of the mark is the encryption of the vote.

For another example, the Scantegrity II voter marks ballots that are very
similar to optical scan ballots, with a single important difference. Each oval has
printed on it, in invisible ink, a confirmation number—the encryption corre-
sponding to this vote choice. When voters filled the oval with a special pen, the
confirmation number becomes visible. The same functionality can be achieved
through the use of scratch-off surfaces.

Other protocols like Votebox and simple-verifiable voting rely on encryption
machines in the polling place to perform the encryption.

Once the vote is encrypted, it is cast or audited, see Figure 2. If the encryption
(i.e. the receipt) is audited, the voting system provides a proof that it encrypted
the vote correctly, and the proof is public. The corresponding vote cannot be
cast as the correspondence between the encryption and the vote is now public,
and the vote no longer secret. The voter goes through a fresh encryption process
which will again end in a cast or audit.

Voters take home copies of the final cast encryption as well as voting sys-
tem responses to audits. They may check the presence of these on the election
website, and the correctness proofs of the audited encryptions using software
obtained from any—and, in fact, several—sources. Thus the voter need not have
access to trusted software in the polling booth. The tally is computed in a verifi-
able manner from the encrypted votes posted on the website. After the election
outcome is announced, the tally computation is publicly audited. Anyone can
write software to check the audits.

130 T. Kaczmarek et al.

Voter Voting System
Receipt
139578

Vote

Cast or Audit

If Audit: Randomization Values on public channel

Fig. 2. The Benaloh Cast/Audit Paradigm

3 Related Work

Accessible Interfaces forVoters:TheVoting-on-PaperAssistiveDevice (Vote-
PAD) [1] enables voters with visual or dexterity impairments to complete paper
ballots. The device consists of a plastic ballot-sleeve, tactile indicators and an au-
dio tape recording, customized for each election and ballot design. Similar devices,
called Tactile Ballots, have been used in elections in Rhode Island [13]. Prime III
[12] provides a multimodal interface to a voting machine with a voter-verifiable
video audit trail (VVVAT) that is a video record of all interactions with the vot-
ing machine. A preliminary proposal for accessible audio-based electronic proto-
cols appears in [11]. These protocols, however, are not practical enough for use in
real elections.

Dispute Resolution: Saltman [21] and Mercuri [19] were among the first to
describe problems with voting systems not following instructions. They demon-
strated these problems in non-cryptographic voting systems. We show, in section
4, that similar (though not identical) problems can persist in cryptographic vot-
ing systems. Kiayias and Yung provide a dispute-free protocol [16] in the clas-
sical cryptographic protocol model (all participants are interactive probabilistic
polynomial time Turing machines) which was followed by proposals for several
dispute-free protocols in the same model. We examine the problems that arise
because voters are not probabilistic polynomial-time Turing machines, as pro-
posed by Adida [2]. Küsters, Truderung and Vogt provide a rigorous definition
of accountability for voting and other cryptographic protocols [18]. The defini-
tions used is closely related to our notion of dispute resolution. The problems
they identify are not, however, related to the cast/audit paradigm, nor to the
use of paper. We have referred briefly to dispute resolution problems with the
cast/audit paradigm in [9].

Use of Accessible Voting Systems in Real Elections: The protocol we
describe in section 5 is very similar to the STAR-Vote proposal and the version
of Prêt à Voter proposed for use in Victoria. Neither proposal describes how
voters commit to casting or auditing ballots. The STAR-Vote proposal does not
distinguish among spoiled and audited ballots and does not describe how to

The Design and Use of Audiotegrity 131

resolve disputes regarding whether a ballot was audited or cast. The STAR-Vote
proposal also does not describe if blank paper ballots are available for voters in
case the voting machine does not print the vote as directed.

4 Problems with Dispute Resolution in the Absence
of Paper

We first consider a protocol that does not use paper at all: VoteBox. In this
instance of the cast/audit paradigm (see figure 3), the voter enters a vote into
a voting machine, which provides an encryption of the vote; this encryption is
immediately published on the bulletin board. The voter then chooses whether
to cast the ballot or audit it. If she chooses to audit it, the machine publishes
(or provides) the randomization used in the encryption. If she chooses to cast
it, the encrypted value is published among cast ballots. All communication is
electronic.

Voter Voting System
Receipt
139578

Vote

Cast or Audit

If Audit: Randomization Values on public channel

Fig. 3. The channel from voter to voting system is electronic. A dashed line shows in-
teractions that are not verifiable by a third party and hence result in dispute resolution
weaknesses.

We consider two problems with VoteBox because the machine may deviate
from protocol and not follow the voter’s instructions.

The voter provides two sets of instructions: the vote and whether to cast or
audit. We consider each separately below.

1. Machine encrypts a vote other than that cast: The voter is able to
detect the deviation on audit. Hence, if the machine changes a large enough
number of votes in this manner, the probability of at least one voter detecting
this on audit is large. However, the protocol does not enable the voter to
prove such deviation. The channel from voter to voting machine is electronic
and there is no record—other than that held by the voting machine—of
the voter’s command. Hence a third party would not be able to determine
whether the voter or the voting machine was lying.

2. Machine does not follow cast/audit instruction: The voter is always
able to detect the deviation. However, as above, the voter is not able to prove
the deviation to a third party.

132 T. Kaczmarek et al.

The reason the above deviations cannot be proven to a third party is that—in
both instances—there is no record of the voter’s instruction, see figure 3. The
fact that the dispute cannot be resolved is an important problem. In particular,
the general public cannot distinguish between (a) an incorrect election outcome
and (b) a group of dishonest voters calling an honest election into question.

It has been proposed that other approaches—such as auditing a machine in
public during the election—may be used to determine whether a machine is truly
behaving honestly. However, as with parallel testing, such approaches are vulner-
able to “cryptic knocks”. An insider present at the polling location might easily
warn the votingmachine through a side channel that it is being audited. The chan-
nel may be implemented in various ways, including a modified election console
which can send to the booth a packet that satisfies a predefined property. The
channel can also be implemented using different machines working in the same
sub-network (i.e. ARP packets) or by equipping the booth with an additional net-
work (3G/WiFi/...) connection. In fact, such an attack is far simpler than the
many fairly complex attacks against non-cryptographic systems described in the
secure voting systems literature. Source code analysis does not help since the ma-
licious code can be injected at the hardware level (eg. Rakshasa [5]).

We now consider the original version of the simple verifiable voting approach.
It proposes that the vote encryption may be provided to the voter on paper (the
receipt in figure 3 is provided on paper). The voter may then take the paper to
another device to cast or audit it. Here too the two instructions from the voter—
the vote and the cast/audit command—are communicated to an electronic device
using an electronic interface, where the electronic device holds all records of the
commands. Again, disputes between the machine and the voter such as those
described above are not resolvable by a third party.

As mentioned earlier, Saltman and Mercuri both pointed out similar prob-
lems with fully-electronic non-cryptographic voting systems: the machine need
not follow voter instructions. There is a major difference between the (fully-
electronic) cryptographic and non-cryptographic voting systems, however: using
the cryptographic voting system, a voter can catch a cheating system, even if he
or she cannot prove this to others. In the non-cryptographic voting system, the
voter does not know whether the system followed instructions.

The ability of the machine to ignore instructions (without the voter being able
to prove this) can be used in multiple ways to change the election outcome. First,
the machine can encrypt votes for a particular candidate. Second, it can choose
to always encrypt the correct vote, audit it on occasion (ignoring whether the
voter wanted to cast or audit) and then immediately cast one of its own choice
(claiming the voter audited and then entered a vote and chose to cast it). Third,
it may claim a vote was audited after a voter thought he or she had cast it.
There would be many other combinations.

Note that the weaknesses we demonstrate are not weaknesses of the cast/audit
approach which greatly simplifies the user experience. These are weaknesses
resulting from the type of channel used for communication.

The Design and Use of Audiotegrity 133

5 Audiotegrity

We describe only the front end of Audiotegrity, designed around the cast/audit
paradigm. The back-end corresponds to the voting system used—in our case,
Scantegrity II. The voter enters her votes on an electronic interface that produces
a printed marked ballot and cryptographic receipt, face down. Before the voter
can look at the ballot (which, in the Scantegrity II case contains the receipt value
in the form of confirmation numbers), she must declare publicly, at the polling
site, whether she wishes to cast or audit the ballot. This is to prevent coercion
attacks, such as described in [15]. She may then check that the ballot is marked
correctly and make a copy to take home if it is an audited ballot, or else cast it
at the scanner.

We first describe the aspects of Scantegrity II relevant to Audiotegrity, and
then describe Audiotegrity in more detail.

5.1 Scantegrity

The Scantegrity confirmation numbers are chosen—pseudo-randomly per ballot
and per candidate—by the voting system before the election. Also before the
election, the voting system publishes commitments to (a) the correspondence
between candidates and confirmation numbers for each ballot and (b) the sorted
list of confirmation numbers by ballot number. Voters do not need to know this
information to cast a valid vote.

Voters who manually fill out paper Scantegrity ballots also fill out the con-
firmation card manually if they wish to check the numbers later, writing down
confirmation numbers they see. There is nothing special about the confirmation
card, which is simply provided as an aid to the voter; the voter may note these
numbers on any paper or memorize if they can and wish to do so. Those who
do not wish to check later may ignore the confirmation numbers.

Immediately after the election, the system publishes the following on the
election website:

1. all voted ballot IDs and corresponding voted confirmation numbers (without
corresponding candidates);

2. all audited ballot IDs with the correspondence between candidates and con-
firmation numbers;

3. the tally and that part of the digital audit trail required for tally-correctness
audits.

The voter may check the confirmation numbers on her receipt and any copies
of audited ballots with those on the election website. Note that a voter who
does not care to verify may simply ignore this step. If a voter finds that her
confirmation number is not correctly displayed on the website, she may file
a dispute, declaring the number she claims should be on the website instead.

134 T. Kaczmarek et al.

The Scantegrity scanner may be programmed to reject overvoted ballots, so
that a voted ballot may not be later over-voted by an insider with access to the
ballots. (This was not implemented for the election and can result in a dispute
resolution problem, but is not a problem with the protocol).

After the period for filing disputes is over (generally a few days after the elec-
tion), the voting system publishes all voted ballot IDs and the corresponding
sorted list of all confirmation numbers. It also provides the information neces-
sary to check the commitments to these values. All disputes by voters may be
checked against this information. If, while filing the dispute, the voter provided
a confirmation number that is on the list of confirmation numbers committed
to for the ballot, but was not listed as a voted confirmation number, it is very
likely that the voter was correct. This is because the probability that the voter
would correctly guess a voted confirmation number is low. On the other hand,
if the number provided by the voter is not on the list of numbers committed to
by the voting system, it is unlikely that the voter is correct if ballot audits do
not detect problems. Thus dispute resolution in Scantegrity, unlike that in Prêt
à Voter), does not depend on digital signatures or an authenticated receipt. The
receipt is not what the voter has, but what the voter knows. The purpose of a
digital signature is served by the fact that the confirmation numbers on a single
contest consist of a very small set of all possible confirmation numbers.

While dispute resolution in Scantegrity is probabilistic and depends on a large-
enough number of ballot audits, the dispute resolution problems we identify
in section 4 are not resolved by a large-enough number of audits unless we
make different assumptions, such as a large enough number of honest voters (an
assumption not required by paper ballot systems Scantegrity and Prêt à Voter).

5.2 Audiotegrity

The station has a privacy screen and is not visible from the voting floor. The
printer attached to the station is preferably visible to the public and to poll
workers, just as the scanner is (it can be outside the privacy-screened area, for
example, or the privacy-screened area may be designed so that the voter may
vote privately while the printer is visible).

The ballot and confirmation card are of distinct sizes so that it is easy to
know the difference by touch and/or sight.

An audio record of the confirmation numbers would be useful (we currently
do not provide this). We attempted to match the colors of the marked ovals and
the confirmation codes on both types of ballots—the Scantegrity ballots marked
manually by voters and the Audiotegrity machine-marked ballots—so that they
would be difficult to distinguish on casual, distant examination.

Figure 4 provides a summary of Audiotegrity as a cast/audit protocol, and
figure 5 an illustration of the voting process. We follow this with a more detailed
description of the protocol.

The Design and Use of Audiotegrity 135

Voter Voting System

Vote

Cast or Audit (Public Channel)

If Audit: Randomization Values on public channel

Commitment to Ballot and Receipt

Fig. 4. A summary of the Audiotegrity voting protocol. A dashed line shows interac-
tions that are not verifiable by a third party and hence result in dispute resolution
weaknesses.

Audiotegrity sends
marked

Scantegrity-style
ballot and

confirmation card
to printer

Audiotegrity provides video and
audio output to the voter

Voter provides input to Audiotegrity using a
number pad and microphone

1

2

3

4

Scantegrity sends some
electronic ballots to

Audiotegrity and prints
the rest for hand-marking

Printer prints ballot and card face down

5

6
Voter chooses to cast or audit

Cast Audit

Takes copies home

Fig. 5. The Audiotegrity Voting Protocol

136 T. Kaczmarek et al.

Audiotegrity Ballot Casting Protocol

1. Voter is Authenticated: The voter is authenticated for voting by the physical
process used by the jurisdiction.

2. Voter Arrives at Station: The voter is escorted to the station. The voter is
assisted in putting on a headset. The location of the keypad designated for
input and the printer that will output the ballot is described to the voter, and
the voter’s Ward number is input to the voting machine.

3. Set Preferences: The voter sets her preferences for audio speed and volume
(and optionally for text size).

4. Make Selections: The voter makes selections. She can record a speak-in choice,
which is later interpreted by election officials (write-in votes on Scantegrity
ballots are also interpreted by election officials).

5. Confirm Selections: The voter confirms her selections.
6. Ballot Printed: The voting station prints out face-down:

– ballot an appropriately-marked Scantegrity ballot with Scantegrity confir-
mation numbers printed in the ovals next to the chosen candidate(s).

– confirmation card a Scantegrity confirmation card which lists the ballot
ID and the confirmation numbers for each choice. The voter takes the
card home with her; the confirmation numbers reveal nothing about the
vote.

7. Cast or Audit: Before the voter leaves the station, touches the ballot or identi-
fies any information on it, the voter decides whether to cast or audit the ballot
and publicly informs a poll worker of her decision. (Note that if the voter de-
cides to cast or audit her ballot after seeing the confirmation numbers, the
protocol is vulnerable to the coercion attack of [15].)
If the ballot is:
cast it is treated the same as any other ballot:

(a) the voter looks at it and checks that it is correctly marked,
(b) the voter checks that the confirmation card lists the correct confir-

mation numbers or makes a separate note if she desires,
(c) the voter is then directed to the scanner where the ballot is cast and

scanned in.
The voter with visual disability is protected by other voters using the
same station and detecting printing errors.
The sighted voter may notice that the ballot is not marked correctly. In
the event that this happens, the voter may choose to spoil the ballot and
restart the voting process from the head of the line. Spoiled ballots are
not treated the same as audited ballots. As with the Scantegrity voting
system, spoiled ballots are not revisited.

audited an election official helps the voter make a copy of the ballot (with
confirmation numbers) to take home with her and sets up the machine so
she may vote again.
Both the original audited ballot and the copy bear signatures of both: the
voter and the election official. The voter cannot cast an audited ballot be-
cause the correspondence between confirmation numbers and candidates
is made public in an audited ballot.

8. Voter Leaves: The voter leaves, with a ballot receipt corresponding to her
single cast ballot and any ballot copies of audited ballots.

The Design and Use of Audiotegrity 137

5.3 Properties

Note that if the system provides wrong confirmation numbers for the voter’s
choice of candidate, it is caught during an audit. The voter can prove that the
system provided the wrong confirmation number, because her vote is marked on
the ballot. If the voting system posts a number online that the voter claims is
incorrect, this can be resolved as with Scantegrity, described in section 5.1.

The voting system can mark the wrong candidate on the ballot. This will
be detected every time a ballot is marked incorrectly and not only during an
audit; however, the voter will not be able to prove that the machine marked the
wrong candidate. This is because the channel between the voter and the voting
machine is electronic, and all records are held by the voting machine. The voter
may spoil the incorrectly-marked ballot and vote again. Because information on
spoiled ballots is not made public, this does not introduce a coercion threat.

The proof of incorrect printing is not transferable, and each voter must con-
vince his or herself that the printer is printing correctly. This aspect can, however,
be checked without special effort by sighted voters. Voters with visual disability
can avail of independent verification provided at the polling place (as defined
by the Voluntary Voting Systems Guidelines 1.1 [22, section 7.8]). (We were not
able to provide this for the 2011 election). However, because the independent
verification is not guaranteed to be independent, voters with visual disability
also rely on others using the same stations, and on the system itself not be-
ing able to tell the difference between voters. Because personal electronic ballot
readers would know the correspondence between vote and confirmation number,
voters cannot use these to read unaudited ballots. It would be difficult to moni-
tor and enforce the use of personal readers only on audited ballots. When there
is no complaint of incorrect printing, voters with visual disability can rely on
the printers printing correctly.

The Audiotegrity audit checks only a single correspondence between candidate
and confirmation number for each choice, unlike the Scantegrity II audit which
checks all confirmation numbers on the ballot. This does not appear to result in
any coercion or integrity related problems.

The machine knows the codes for all Audiotegrity ballots, and no others. Its
knowledge of codes is no different from that of the printer for Prêt à Voter or
Scantegrity II.

Finally, unlike fully-electronic protocols, this protocol is not “fully-accessible”.
A voter might need assistance to take the filled-in ballot to the scanner.

6 Comparison of Protocol Properties

We now provide a comparison of the properties of Scantegrity II, Audiotegrity,
simple verifiable voting and voting by DRE.

Suppose a cheating Scantegrity II voting system provides incorrect confirma-
tion numbers. This is caught through a ballot audit, and there is never an unre-
solved dispute that it is cheating in this manner. That is, the proof of cheating is
transferable to another voter, and one voter checking helps other voters too.

138 T. Kaczmarek et al.

A cheating Audiotegrity voting system can:
(a) mark the wrong oval (with the confirmation number corresponding to this
oval; that is, cast a valid vote for a candidate other than the voter’s choice). This
is caught without an audit — i.e. it is almost always caught. However, a dispute
cannot be resolved and proof of it cheating in this manner is not transferable.
Because a voter catches the cheating, she can vote again, including with a paper
ballot. This is an unresolved issue for voters with visual disability (in any voting
system, to our knowledge).
(b) mark the correct oval with the wrong confirmation number. This is caught in
the manner of Scantegrity II, and the dispute is resolvable. The proof of cheating
is transferable.

A cheating system based on simple verifiable voting can
(a) print a valid encryption of an incorrect vote, in the manner of the first Au-
diotegrity attack (a). The system is detected to be cheating by the voter only
on audit. A dispute between voter and system—each claiming to be correct—is
not resolvable and the proof is not transferable. Repeated instances can prevent
a voter from voting. While many complaining voters can draw attention to this
problem, the absence of paper ballots means there is no other way to vote. Ad-
ditionally, a small group of voters can call an honest election into unresolvable
dispute. Finally, this is detected by the voter only on audit, so many valid in-
correct votes may be cast.
(b) print an invalid encryption, similar to the second Audiotegrity attack (b).
This is caught on audit and the dispute is resolvable.

A cheating DRE need not reveal it is cheating, and hence will not be caught
cheating as it provides no information about the election.

Voting systems that maintain paper trails such as Scantegrity II and STAR-
Vote are vulnerable to coercion from insiders with access to the paper trail, as
a voter’s ballot ID reveals her entire vote.A level of indirection can be provided
through distinct serial numbers and online verification numbers (with a corre-
spondence protected by a shared secret), with the latter being torn off before
the ballot is cast (this, again provides a usability challenge) such as described
for Scantegrity II [8]. Prêt à Voter, where one half of the ballot is destroyed
after the ballot is marked, does not maintain a paper trail. However, the printer
that prints Prêt à Voter ballots before the election, or the machine that prints a
marked ballot in the proposed solution for elections in Victoria, does know the
vote too. Perhaps Prêt à Voter ballots can be printed using the independent-
ballot-sheet approach of Punchscan [14]. Clearly, voting systems that do not
maintain paper trails cannot carry out statistical manual audits through hand
counting of paper ballots.

7 Audiotegrity in Takoma Park

The City of Takoma Park neighbors the city of Washington DC and has a pop-
ulation of about 17,000 with about 10,000 registered voters. The turnout in
municipal elections is about 15-25%. In municipal elections, the city elects a

The Design and Use of Audiotegrity 139

mayor and six council members and ballots can also list referendums. Each con-
test has a write-in option. Takoma Park uses instant-runoff voting, and voters
may rank candidates. Ballots are in English and Spanish. There was a single
precinct for the 2011 election.

Both city officials and the voting population had experience with crypto-
graphic voting systems as the city had used Scantegrity II in their 2009 mu-
nicipal election [7]. Election officials wished to use Scantegrity II in 2011 too,
but also wished to provide a more accessible alternative. In previous municipal
elections that used optical scan technology (including the 2009 election) voters
with difficulties handling paper ballots had voted with assistance. We began the
design of the system in early 2011, when approached by the Board, and pro-
vided demonstrations of prototypes in a couple of election board meetings in the
first half of 2011. We received no compensation from Takoma Park for its use of
Audiotegrity.

The city of Takoma Park held an open test of Audiotegrity on June 8, 2011
in the Takoma Park Community Center. The test was publicized in the local
news media and election officials sent announcements to various special-interest
listservs. The test was not restricted to Takoma Park residents, and all who were
interested were allowed to test the system. About 25-30 individuals tested the
system and about 24 individuals filled out a survey. The purpose of the survey
was not usability research, but to obtain feedback on the system in an informal
manner, and to make potential users of the interface aware that Takoma Park
might choose to use it in the election. A remote voting system was tested at the
same time and place. Because we collected the data informally and interacted
considerably with participants while they were testing the system, and the num-
ber of participants was very small, we do not present the data from our surveys.
To obtain a qualitative, independent, albeit brief, assessment of the test, the
reader may refer to a blog article [17, last paragraph].

We made some changes based on the criticisms and concerns of some par-
ticipants: we provided variable speed and volume for the audio and obtained a
professional recording for the real election. We also changed the instructions to
make them more understandable.

The Audiotegrity system was deployed on November 8, 2011, as an accessible
interface to be used alongside Scantegrity II. The protocol used in Takoma Park
was different from that described in section 5.2 in a few aspects. No public
declaration was required to cast or audit, and the ability to audit the ballot
was not publicized widely. This was to simplify the process for the first use
of the system. We chose to give audio confirmation codes to the voter before
the printing began. Again, this was a consequence of the fact that we were not
planning on many voter audits in this election and we wanted to provide voters
with visual disability some of the information that sighted voters got. A better
way to do this would be to provide digital media with confirmation codes on it.

Audiotegrity was used to cast a few votes including by poll workers and audi-
tors. Audits were made on the system by the election auditor, Neal McBurnett.
This election marks one of the first times (if not the first) where the voting

140 T. Kaczmarek et al.

system design did not prevent a voter with visual disability from independently
casting an E2E ballot in a secret ballot precinct-based public election.

We are not able to provide information on how Audiotegrity votes were au-
dited. We consciously do not keep information on Audiotegrity ballot IDs after
the election, in order to reduce the ability to distinguish between Audiotegrity
and Scantegrity ballots.

At the election certification meeting, Audiotegrity was called out as a valuable
contribution by the chair of the board of elections and a council member.

8 Conclusions

In conclusion, what appear to be small details play an important role in pro-
tocol security. Cryptographic protocols assume secure authenticated channels
between probabilistic-polynomial-time Turing machine participants. Real elec-
tions involve human voters who cannot compute signatures or commitments.
Paper plays a role in providing authenticated communication between the voter
and the untrusted voting machine. Additional, small changes in procedures can
make a difference to security properties. We designed Audiotegrity with these
issues in mind. It was used by the City of Takoma Park in its 2011 city election.

Acknowledgements. The Board of Elections and the City Clerk of Takoma
Park were very generous with their time and knowledge of electoral practices and
voter behavior. Assistant City Clerk, Irma Andia, translated English script into
Spanish and read most of the audio. The Communications Department of the
city provided the audio recording. Veronica Elsea of Laurel Creek Music shared
with us her considerable expertise in audio recording. Neal McBurnett audited
ballots.

References

1. Accessible voting without computers, http://www.vote-pad.us/

2. Adida, B.: Advances in Cryptographic Voting Systems. PhD thesis. MIT (2006)

3. Benaloh, J.: Simple verifiable elections. In: EVT (2006)

4. Benaloh, J., Byrne, M., Kortum, P.T., McBurnett, N., Pereira, O., Stark, P.B.,
Wallach, D.S.: STAR-Vote: A secure, transparent, auditable, and reliable voting
system. CoRR, abs/1211.1904 (2012)

5. Brossard, J.: Hardware backdooring is practical. In: DEFCON (2012)

6. Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S.,
Teague, V., Wen, R., Xia, Z.(J.), Srinivasan, S.: Using Pret a Voter in Victoria
State Elections. In: EVT/WOTE (2012)

7. Carback, R., Chaum, D., Clark, J., Essex, A., Mayberry, T., Popoveniuc, S., Rivest,
R.L., Shen, E., Sherman, A.T., Vora, P.L.: Scantegrity II Municipal Election at
Takoma Park: The First E2E Binding Governmental Election with Ballot Privacy.
In: USENIX Security Symposium (2010)

http://www.vote-pad.us/

The Design and Use of Audiotegrity 141

8. Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L., Ryan,
P.Y.A., Shen, E., Sherman, A.T., Vora, P.L.: Scantegrity II: end-to-end verifiability
by voters of optical scan elections through confirmation codes. IEEE Transactions
on Information Forensics and Security 4(4), 611–627 (2009)

9. Chaum, D., Florescu, A., Nandi, M., Popoveniuc, S., Rubio, J., Vora, P.L.,
Zagórski, F.: Paperless independently-verifiable voting. In: Kiayias, A., Lipmaa,
H. (eds.) VoteID 2011. LNCS, vol. 7187, pp. 140–157. Springer, Heidelberg (2012)

10. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

11. Popoveniuc, S., Chaum, D., Hosp, B., Vora, P.L.: Accessible voter verifiability.
Cryptologia 33(3), 283–291 (2009)

12. Vincent Cross II, E., McMillian, Y., Gupta, P., Williams, P., Nobles, K., Gilbert,
J.E.: Prime III: a user centered voting system. In: CHI 2007 Extended Abstracts
on Human Factors in Computing Systems (2007)

13. Fresolone, M.: Tactile ballots alternative voting method for the blind,
http://www.votersunite.org/info/tactileballots.asp

14. Carback III, R.T., Popoveniuc, S., Sherman, A.T., Chaum, D.: Punchscan with
independent ballot sheets: Simplifying ballot printing and distribution with inde-
pendently selected ballot halves. In: WOTE (2007)

15. Kelsey, J., Regenscheid, A., Moran, T., Chaum, D.: Attacking paper-based E2E vot-
ing systems. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J.,
Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000,
pp. 370–387. Springer, Heidelberg (2010)

16. Kiayias, A., Yung,M.: Self-tallying elections and perfect ballot secrecy. In: Naccache,
D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer, Heidelberg
(2002)

17. Kiser, M.: Internet voting 2.0 and other advances in election technology in takoma
park. FairVote Blog (June 9, 2011)

18. Küsters, R., Truderung, T., Vogt, A.: Accountability: Definition and Relationship
to Verifiability. In: ACM CCS (2010)

19. Mercuri, R.: Electronic Vote Tabulation Checks and Balances. PhD thesis, Univer-
sity of Pennsylvania, Philadelphia, PA (October 2000)

20. Ryan, P.Y.A.: A variant of the Chaum voter-verifiable scheme. Technical Report
864, School of Computing Science, University of Newcastle upon Tyne (2004)

21. Saltman, R.G.: Effective use of computer technology in vote-tallying. Technical
report, NIST (1975)

22. Technical Guidelines Development Committee, Election Assistance Commission.
Voluntary voting system guidelines 1.1 (2007), http://www.eac.gov/assets/1/
AssetManager/VVSG Version 1-1 Volume 1 - 20090527.pdf

http://www.votersunite.org/info/tactileballots.asp
http://www.eac.gov/assets/1/AssetManager/VVSG_Version_1-1_Volume_1_-_20090527.pdf
http://www.eac.gov/assets/1/AssetManager/VVSG_Version_1-1_Volume_1_-_20090527.pdf

Mental Models of Verifiability in Voting

Maina M. Olembo, Steffen Bartsch, and Melanie Volkamer

Technische Universität Darmstadt / Center for Advanced Security Research
Darmstadt, Germany

Name.Surname@cased.de

Abstract. In order for voters to verify their votes, they have to carry
out additional steps besides selecting a candidate and submitting their
vote. In previous work, voters have been found to be confused about the
concept of and motivation for verifiability in electronic voting when con-
fronted with it. In order to better communicate verifiability to voters, we
identify mental models of verifiability in voting using a questionnaire dis-
tributed online in Germany. The identified mental models are, Trusting,
No Knowledge, Observer, Personal Involvement and Matching models.
Within the same survey, we identify terms that can be used in place of
‘verify’ as well as security-relevant metaphors known to the voters that
can be used to communicate verifiability.

Keywords: Mental Models, Verifiability, Internet Voting, Voting.

1 Introduction

Internet voting continues to generate great interest, with a recent survey in Ger-
many [1] finding that more than 50% of eligible voters would cast their vote over
the Internet for federal elections. Despite this interest, security experts have ex-
pressed concern over the integrity of Internet voting, for example Simons and
Jones [2]. Verifiability offers some assurance of the integrity of votes cast in
an election - both in traditional as well as in Internet-based elections. Voters
however, have to carry out additional steps to verify the integrity of their indi-
vidual votes (and if they are interested, all votes) cast in an election. While in
traditional paper-based elections voters are not confronted with verifying (e.g.
assuming that poll workers do not ask voters to remain behind to verify that
votes are properly tallied), they are in Internet based elections: In the vote cast-
ing interface, there might be a button to click on to verify, a link to the bulletin
board, or voters get a receipt to verify later on.

Sherman et al. [3] and Volk et al. [4] found that voters are confused about the
concept of and motivation for verifiability. Similarly, Schneider et al. [5] report
that voters expressed confusion over use of the term ‘receipt’. This confusion
and lack of understanding and motivation in voters shows the need to investi-
gate mental models of verifiability in voting to base future communication of
verifiability on these models. It also shows the need to use a different term or
phrase for ‘verifying’. In this work we seek to identify mental models of and

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 142–155, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Mental Models of Verifiability in Voting 143

terms for verifiability. We define mental models as ‘voters’ knowledge, beliefs
and attitudes of verifiability as they cast votes in postal voting and paper-based
voting at the polling station’. We use a questionnaire distributed online.

The mental models are identified as Trusting, No Knowledge1, Observer, Per-
sonal Involvement and Matching models. The most appropriate term identified
is check. While we concentrate in this work on Internet-based verifiable voting
systems, our findings are relevant to verifiable e-voting systems in general, as
the mental models identified are based on traditional voting systems.

The remainder of this paper is structured as follows: we give background infor-
mation in Section 2 on verifiability and voting procedures in Germany, followed
by a discussion of related work in usable verifiable electronic voting in Section
3. We present the methodology of our study in Section 4, the results in Section
5, and discuss the implications of our findings and future work in Section 6.

2 Background

Background information is provided on the verifiability definitions, and the vot-
ing processes in Germany are introduced briefly as the questionnaire was dis-
tributed to German citizens.

Verifiability definitions. Verifiability addresses the following three aspects: Cast
as intended - the voter can verify that his vote has been cast as he intended;
Stored as cast - the voter can verify that his vote is stored for tabulation as he
cast it; and Tallied as stored - anybody can verify that all votes have been tallied
as they were stored2.

Voting processes in Germany. In Germany, voters can cast paper votes at the
polling station, or register for absentee voting and use postal voting. Postal vot-
ing has been provided in Germany since 1956 to cater for voters who for one
reason or another cannot cast their vote in person at a polling station [7]. Fur-
thermore, postal voting has continued to experience increasing use, with 21.4%
of voters using postal voting for the 2009 federal elections [7]. Another special
provision for German elections is that ordinary voters and interested parties are
allowed to remain at the polling station, including the location where postal
votes are stored and tallied, to observe election processes during set up, voting
and the tallying of votes, as long as they do not disrupt the proceedings [8].

3 Related Work

Different techniques have been applied to identify mental models in voting.
Schneider et al. [5] carried out a series of focus group sessions to evaluate, among

1 By no knowledge, we refer to participants who were uncertain how to verify votes in
postal voting, and paper voting, despite the fact that voters are allowed to observe
voting processes in Germany.

2 While these are the definitions selected for this work, other definitions of verifiability
exist in the literature, for example [6].

144 M.M. Olembo, S. Bartsch, and M. Volkamer

other issues, voters’ understanding of security mechanisms in an early version of
Prêt à Voter. Storer et al. [9] also interacted with participants in focus groups
and additionally used videotaped scenarios to study voters’ attitudes towards a
pollsterless remote voting system. Campbell and Byrne [10] investigated voters’
mental model of straight party voting using an online survey, while Yao and
Murphy [11], used a paper-based survey to evaluate voters’ perceptions of, and
their intention to use, telephone and web-based interfaces of remote electronic
voting systems.

Since few studies have been carried out to specifically investigate voters’ men-
tal models in voting, we also considered literature in the field of computer se-
curity. Raja et al. [12] carried out a lab study of Vista Basic firewall, and a
firewall prototype that included contextual information of the current and fu-
ture network states. Almuhimedi et al. [13] used a survey and a lab study in web
certificate management.

Using semi-structured interviews, Raja et al. [14] explored participants’ knowl-
edge, requirements, perceptions and misconceptions about personal firewalls.
Friedman et al. [15] tested users’ conceptions of web security using semi-structured
interviews that included a drawing task. Ho et al. [16] interviewed caretakers of
wireless home computer networks to understand how they deployed and secured
the networks. Wash [17] conducted interviews to understand users’ folk models of
attackers and security technologies. Dourish et al. [18] carried out semi-structured
interviews to identify people’s perceptions of security.

Mental models of computer security [19] and privacy and security [20] were
identified from literature and tested in a two-card sorting experiment [21], [22],
[23] involving experts and non-experts. Bravo-Lillo et al. [24] used scenarios in
open-ended interviews to evaluate mental models of computer security warnings.

We see a variety of approaches used to identify mental models in voting and
in computer security. In this study, we distributed a questionnaire online to
participants, integrating scenario diagrams to elicit terms for verifiability.

4 Methodology

The research questions and study instruments, participant recruitment, data
analysis, and ethical considerations for the study, are described in this section.
All study materials were written in English and translated into German. The
data collected was translated into English for analysis and reporting. The trans-
lations were verified for accuracy by the authors. Additionally, the data collected
on terms for verifiability was analyzed in German since future work will investi-
gate their use in Germany.

4.1 Research Questions and Study Instruments

The research question is: What mental models do participants have of verifiabil-
ity in postal voting and paper voting at the polling station? This was explored
by asking participants the following questions addressing different aspects of
verifiability:

Mental Models of Verifiability in Voting 145

– how they could tell that their individual postal vote was not modified or
removed on its way to the town hall and into the ballot box (Q1postal).

– how they could tell that their postal or paper vote was not modified or
removed from the ballot box, (Q2postal) and (Q2paper).

– how they could tell that their postal or paper vote was included in the final
tally, (Q3postal) and (Q3paper).

– how they could tell that all postal or paper votes were included in the final
tally, (Q4postal) and (Q4paper).

These questions were derived from the stored as cast and tallied as stored ver-
ifiability definitions. Note the problem with the first verifiability step: cast as
intended, i.e. making sure that the vote is not modified before being sent is
not a concern in paper-based elections and thus is not addressed here. The
questionnaire is shown in Table 5 in the Appendix. Participants first answered
demographic questions which acted as screening questions to allow exclusion of
data from participants who did not meet the requirements (see Subsection 4.2).
Scenario diagrams, shown in Figures 1 to 6, were developed by a professional
graphic designer and used to obtain terms for verifiability.

4.2 Participant Recruitment

Participants were recruited to form a convenience sample [25]. We did not seek
participants representative of the German population, rather we aimed to carry
out an exploratory study to identify research questions for further investigation
on mental models of verifiability. We therefore do not generalize our findings to
the entire population. Invitation emails were first sent to an initial pool of partici-
pants known to the authors, then a second email, containing a URL and password
to access the questionnaire, was sent to those participants who expressed inter-
est in the study. This approach has been shown to improve response rates [26].
These participants were requested to forward the email to other persons whom
they thought would be interested in participating, in a snowballing technique
[27]. Participants represented different age groups and professional backgrounds
including retired workers. Eligible participants were German citizens, used the
Internet, and were over the age of 18 (in order to be eligible to vote in elections).
Participants were not offered compensation, instead we asked those interested to
provide their email addresses3 to receive information on the results of the survey
[28].

Out of 55 participants who filled out the questionnaire online, 11 did not
complete it. We therefore consider data from 44 participants. There were 31
male and 13 female respondents. Ten participants had been educated up to
high school level, and 34 had university education. Forty participants reported
using the Internet everyday, while four used it every two to three days. Data on
participants’ age ranges and level of computer proficiency (measured by asking
participants whether they install computer programs on their computers) are
shown in Table 1 and Table 2, respectively.

3 Participants’ email addresses were not linked to their responses.

146 M.M. Olembo, S. Bartsch, and M. Volkamer

Table 1. Participants’ Age Ranges

Age Number

19 - 34 16
35 - 44 9
45 - 54 8
55 - 64 8
65+ 3

Table 2. Participants’ Computer Proficiency

Computer Proficiency Number

Install on their own 20
Need help to install 10
Others ask them for help 13
Do not install 1

4.3 Data Analysis

Responses were analyzed using content analysis and open coding [29]. In con-
tent analysis, participants’ responses are analyzed and categorized using ex-
plicit rules. Open coding was used in order to obtain emerging themes from
participants’ responses, rather than beginning the data analysis with pre-selected
themes. If one participant mentioned several concepts, each was coded under an
appropriate theme. We used spreadsheets to assign the different concepts and
themes to each question. For example, a response such as No knowledge, only
trust in regulated procedures and sanctions and mutual control during the count
by the people present, as well as to this day minor known cases of abuse was
identified to have the following relevant concepts: No Knowledge, Trust in pro-
cesses, and Observers present. These concepts were grouped into themes, which
form the mental models. One participant could have expressed several concepts
that would be classified under different mental models. The concepts identified in
this example were then categorized under No Knowledge, Trusting and Observer
models.

Two researchers independently reviewed a subset of the data and identified
concepts and emerging themes from participants’ responses. A Cohen’s Kappa
of 0.65 was obtained. Any value above 0.60 indicates acceptable inter-rater re-
liability [29]. The remaining responses were then analyzed. In coding the data,
one question was analyzed in its entirety before researchers moved on to analyze
the next question. This process was repeated until all participants’ responses to
all questions had been analyzed, and emerging themes identified.

We analyzed participants’ responses based on the meaning of phrases and the
response as a whole, first identifying concepts and themes and then the mental
models. We observed that two themes, specifically, trusting and no knowledge,
were identified in participants’ responses to (Q1postal). The remaining themes
were identified while analyzing responses from (Q2postal) to (Q4postal) and from
(Q2paper) to (Q4paper). Concepts within the themes primarily remained the same
for the different questions, though there was a slight change, reflecting the dif-
fering situations presented in the questions, that is, moving from vote storage to
tallying of votes. As such, it is likely that theoretical saturation [30] was attained
at this point and unlikely that introducing more participants would reveal any
new themes.

Mental Models of Verifiability in Voting 147

Fig. 1. The Ballot Box is Empty Fig. 2. The Voter is Eligible

Fig. 3. The Voter goes alone into
the Voting Booth

Fig. 4. Eligible Voters’ Votes are in
the Ballot Box

Fig. 5. The Seal is Broken and the
Ballot Box is Empty

Fig. 6. All Votes are Properly Tal-
lied

148 M.M. Olembo, S. Bartsch, and M. Volkamer

4.4 Ethical Considerations

Ethical requirements for research involving human participants are provided
by an ethics commission at the university4. The relevant ethical requirements
regarding participant consent and data privacy were met. Participants were first
informed about the purpose of the study, after which they could decide whether
or not to proceed to the questionnaire. They were informed that the purpose of
the study was to better understand preferences for Internet voting based on use
of traditional voting systems, to avoid causing bias by referring to integrity in
voting or verifiability. In order to meet the data privacy requirement, a privacy
statement was provided on the questionnaire, assuring participants that their
data would only be collected for research purposes, their identity would not be
linked to their responses, and their data would not be passed on to third parties.
Furthermore, participants’ data was only handled by researchers involved in the
project.

5 Results

We present the results of this work, first discussing the different mental models
of verifiability in voting that have been identified, and metaphors and terms that
can be used in reference to verifiability processes.

5.1 Mental Models

A number of mental models were identified from participants’ responses. Specif-
ically, Trusting, No Knowledge, Observer, Personal Involvement, and Matching
models were identified. Examples of the concepts identified and accompanying
mental models are shown in Table 4 in the Appendix. As mentioned above,
themes overlapped with respect to the concepts, for instance, for the Trusting
and Observer models, in the case where participants trust that observers will
notice manipulations.

We first discuss each of the mental models and then propose metaphors and
terms participants used while answering the questions and which might be used
to improve the communication of verifiability. The mental models are reported
in this section based on the number of concepts identified; those with a high
number of concepts are listed first.

Trusting Model: Participants’ responses indicated that they had blind trust,
trust in persons, or trust in processes for integrity of their individual votes and
all votes cast in an election. Another new concept was trust (no option), with the
participant stating ‘I have to trust in it’. As participants moved from question
Q1postal to question Q4postal, new concepts emerged such as: trust in observers
in Q2postal, trust the count in Q3postal, and trust in the public count of votes
in Q4postal, as an example, one participant stated ‘... one also has to trust

4 http://www.intern.tu-darmstadt.de/gremien/ethikkommisson/index.en.jsp

http://www.intern.tu-darmstadt.de/gremien/ethikkommisson/index.en.jsp

Mental Models of Verifiability in Voting 149

in the count’. The concept of the envelope used in postal voting being sealed
was observed, with a participant stating ’...I trust that the sealed envelope is
only opened to count my vote’. Similarly, new concepts were observed across the
responses in Q2paper through to Q4paper, for example, trust in the public count
of votes.

No Knowledge Model: Participants’ responses indicated they were either
not sure how to ascertain the integrity of their individual vote and other voters’
votes, or they considered that there was no way for this to be done. Participants
stated, for example, ‘I don’t know’, ‘You can never know’, and ‘Not at all’. We
also noted that many concepts in this model were linked to other concepts from
different mental models, for example, one participant responded ‘I don’t know;
I trust’, and another, ‘I don’t know; I trust that the procedure of the election is
properly monitored’.

Observer Model: Participants referred mostly to observers being present dur-
ing the vote casting process and the tallying of votes. One participant referred
to the presence of observers which assured him of the integrity of his individ-
ual vote in Q1postal and a few referred to the presence of observers in Q2postal
to Q4postal. As an example, one participant said ‘Therefore election observers
are permitted...’, in response to Q3postal. In paper voting, participants expressed
assurance of how their vote was handled because observers were present. Since
different election workers were present and likely to have different party affilia-
tions, participants also considered them as playing a role in ensuring the integrity
of the voting process. Additionally, participants referred to election workers ob-
serving each other, and the results being verified by several people. The election
workers were referred to more times in response to Q2paper to Q4paper, which
could be because participants interact with them more during the voting pro-
cess, in comparison to postal voting, where voters might never interact with the
election workers in person.

Additionally, participants were assured of the integrity of their votes and all
votes since they were counted in public. Relevant concepts were observed in
Q3postal and Q4postal with one participant indicating ‘Due to the fact that the
count is done in public...’. Relevant concepts were identified from Q2paper to
Q4paper. In the responses given, participants did not specify how the public
count could ensure the integrity of individual votes and all votes.

Personal Involvement Model: Participants made reference to being person-
ally involved in the tallying process by observing the tallying of votes in person
(Q4postal) with this participant stating ‘I can watch the count of the absentee
votes...’. Other concepts were submitting the vote personally (Q2paper), observing
in person (Q3paper) and participating in the public count (Q4paper).

Matching Model: Participants responses made reference to checking that the
final results matched the observed results (Q4postal) and that the number of votes
matched the number of participating voters(Q2paper).

150 M.M. Olembo, S. Bartsch, and M. Volkamer

5.2 Further Results

We identified a number of metaphors from participants’ responses, which can be
tailored to communicate verifiability. Furthermore, terms that participants use
to describe verifiability are reported.

Metaphors: A number of metaphors were identified from participants’ re-
sponses. The ballot box was referred to as being sealed (in both postal voting
and paper voting), and physically protected (in postal voting). The envelope be-
ing sealed gave assurance to one participant that any tampering with his postal
vote would be detected ‘...because the envelope would have to be opened and the
vote then becomes invalid’ (Q2postal).

Terms For Verifiability: Terms were obtained from participants’ responses to
describe the action of the man in black (Figures 1 to 6). These and accompanying
English translations are shown in Table 3. Some participants used multiple terms
to describe the action. Responses that only appeared once are grouped together
under ‘Other’.

Table 3. Terms for Verifiability

English translation German term Count

To observe beobachten 18
To check kontrollieren 10
To verify überprüfen 6
To monitor überwachen 5
Other 11

6 Discussion

User studies of voters’ interaction with verifiable voting systems, for example
in [3] and [31], show that voters are confused about the concept of verifiability.
In this work, we have identified the mental models of verifiability of German
voters to gain insights on how to improve voters’ understanding of verifiabil-
ity. Specifically, we have identified Trusting, No Knowledge, Observer, Personal
involvement, and Matching mental models.

Our results indicate that there are gaps in voters’ knowledge, beliefs and
attitudes towards verifiability in voting as more concepts were identified for the
Trusting and No Knowledge mental models. These gaps need to be closed by
communicating verifiability. One approach could be to inform voters that the
trust-inducing elements present in traditional (paper-based) voting systems, for
example, observers, are not the same in Internet voting. The argument could
then follow that voters need to personally act as observers, or that they need to
carry out extra steps.

Mental Models of Verifiability in Voting 151

Our findings on the mental models can be employed to improve user interfaces
for verifiable voting. While one option would be to first identify voters’ mental
models and then communicate verifiability according to the model(s) that voters
have, legal requirements are that all voters receive the same information. Cor-
respondingly, in future work, we will investigate designing an interface that is
adequate for several – ideally all – identified mental models. Future work will
also consider the effect that this improved communication has on voters checking
their votes.

Moreover, the metaphors and terms for verifiability identified in this work
will be applied in the improved communication. The identified metaphors, sealed
and protected ballot box and sealed envelope, can be exploited to communicate
individual verifiability. One option could be in providing a contrast, for example,
informing voters that while these aspects are present in postal voting and paper-
based voting at the polling station, they are not available in Internet voting, thus
prompting the voter to participate in verifiability processes.

Similarly, further research will utilize the German terms that participants used
to refer to verifying. While ‘observe’ is the highest ranking term, we consider
that the term ‘check’ offers more options for use in communicating verifiability
to voters. Some sample phrases are ‘check the vote preparation process’, and
‘check the correctness of the counting process’. The appropriateness of these
and other phrases will be evaluated in future work.

Since this study targeted German voters, it would be of interest to identify
and compare additional mental models in other cultures, as well as to conduct
additional quantitative work to determine each mental model’s prevalence.

Acknowledgment. Support for this work was provided by CASED
(www.cased.de) and Micromata (www.micromata.de). The authors would like
to thank the anonymous reviewers for their helpful insights that helped improve
the presentation of this work.

References

1. Microsoft: Forsa-Umfrage: Jeder zweite würde online wählen. Digitale Tech-
nologien stärken die Demokratie. Bürgerbeteiligung über das Internet fördert
Vertrauen in die Politik (2013), http://www.microsoft.com/germany/newsroom/
pressemitteilung.mspx?id=533684 (accessed March 22, 2013)

2. Simons, B., Jones, D.W.: Internet voting in the U.S. Communications of the
ACM 55(10), 68–77 (2012)

3. Sherman, A.T., Carback, R., Chaum, D., Clark, J., Essex, A., Herrnson, P.S.,
Mayberry, T., Stefan, P., Rivest, R.L., Shen, E., Sinha, B., Vora, P.: Scantegrity
Mock Election at Takoma Park. In: Electronic Voting 2010 (EVOTE 2010), pp.
45–61 (2010)

4. Karayumak, F., Kauer, M., Olembo, M.M., Volk, T., Volkamer, M.: User Study
of the Improved Helios Voting System Interface. In: Socio-Technical Aspects in
Security and Trust (STAST), pp. 37–44. IEEE (2011)

http://www.microsoft.com/germany/newsroom/pressemitteilung.mspx?id=533684
http://www.microsoft.com/germany/newsroom/pressemitteilung.mspx?id=533684

152 M.M. Olembo, S. Bartsch, and M. Volkamer

5. Schneider, S., Llewellyn, M., Culnane, C., Heather, J., Srinivasan, S., Xia, Z.: Focus
Group Views on Prêt à Voter 1.0. In: International Workshop on Requirements
Engineering for Electronic Voting Systems (2011)

6. Langer, L., Schmidt, A., Buchmann, J., Volkamer, M.: A Taxonomy Refining the
Security Requirements for Electronic Voting: Analyzing Helios as a Proof of Con-
cept. In: International Conference on Availability, Reliability, and Security, ARES
2010, pp. 475–480. IEEE (2010)

7. Krimmer, R., Volkamer, M.: Bits or Paper? Comparing Remote Electronic Vot-
ing to Postal Voting. In: Andersen, K., Grönlund, A., Traunmüller, R., Wimmer,
M. (eds.) Workshop and Poster Proceedings of the Fourth International EGOV
Conference, pp. 225–232 (2005)

8. Demirel, D., Henning, M., Ryan, P.Y.A., Schneider, S., Volkamer, M.: Feasibility
Analysis of Prêt à Voter for German Federal Elections. In: Kiayias, A., Lipmaa,
H. (eds.) VoteID 2011. LNCS, vol. 7187, pp. 158–173. Springer, Heidelberg (2012)

9. Storer, T., Little, L., Duncan, I.: An Exploratory Study of Voter Attitudes Towards
a Pollsterless Remote Voting System. In: Chaum, D., Rivest, R., Ryan, P.Y.A.
(eds.) IaVoSS Workshop on Trustworthy Elections (WOTE 2006) Pre-Proceedings,
pp. 77–86 (2006)

10. Campbell, B.A., Byrne, M.D.: Straight-Party Voting: What Do Voters Think?
IEEE Transactions on Information Forensics and Security 4(4), 718–728 (2009)

11. Yao, Y., Murphy, L.: Remote Electronic Voting Systems: An Exploration of Voters’
Perceptions and Intention to Use. European Journal of Information Systems 16(2),
106–120 (2007)

12. Raja, F., Hawkey, K., Beznosov, K.: Revealing Hidden Context: Improving Mental
Models of Personal Firewall Users. In: Proceedings of the 5th Symposium on Usable
Privacy and Security, SOUPS 2009 (2009)

13. Almuhimedi, H., Bhan, A., Mohindra, D., Sunshine, J.S.: Toward Web Browsers
that Make or Break Trust. In: Proceedings of the Sixth Symposium on Usable
Privacy and Security, SOUPS 2008 (2008)

14. Raja, F., Hawkey, K., Jaferian, P., Beznosov, K., Booth, K.S.: It’s Too Compli-
cated, So I turned It Off!: Expectations, Perceptions, and Misconceptions of Per-
sonal Firewalls. In: Proceedings of the 3rd ACMWorkshop on Assurable and Usable
Security Configuration, SafeConfig 2010, pp. 53–62 (2010)

15. Friedman, B., Hurley, D., Howe, D.C., Felten, E., Nissenbaum, H.: Users’ Concep-
tions of Web Security: A Comparative Study. In: Extended Abstracts on Human
Factors in Computing Systems, CHI EA 2002, pp. 746–747. ACM (2002)

16. Ho, J.T., Dearman, D., Truong, K.N.: Improving Users’ Security Choices on Home
Wireless Networks. In: Symposium of Usable Privacy and Security, SOUPS 2010
(2010)

17. Wash, R.: Folk Models of Home Computer Security. In: Proceedings of the Sixth
Symposium on Usable Privacy and Security, SOUPS 2010 (2010)

18. Dourish, P., Grinter, B., Delgado de la Flor, J., Joseph, M.: Security in the wild:
User Strategies for Managing Security as an Everyday, Practical Problem. Personal
and Ubiquitious Computing 8(6), 391–401 (2004)

19. Camp, L.J.: Mental models of computer security. In: Juels, A. (ed.) FC 2004. LNCS,
vol. 3110, pp. 106–111. Springer, Heidelberg (2004)

20. Camp, L.: Mental Models of Privacy and Security. IEEE Technology and Society
Magazine 28(3), 37–46 (2009)

21. Asgharpour, F., Liu, D., Camp, L.J.: Mental Models of Computer Security Risks.
In: Workshop on the Economics of Information Security (2007)

Mental Models of Verifiability in Voting 153

22. Liu, D., Asgharpour, F., Camp, L.J.: Risk Communication in Security Using Mental
Models. In: Usable Security (2008)

23. Camp, J., Asgharpour, F., Liu, D.: Risk Communication in Computer Security
Using Mental Models. In: Workshop on the Economics of Information Security,
WEIS 2007 (2007)

24. Bravo-Lillo, C., Cranor, L.F., Downs, J.S., Komanduri, S.: Bridging the Gap in
Computer Security Warnings: A Mental Model Approach. IEEE Security and Pri-
vacy 9(2), 18–26 (2011)

25. Charmaz, K.: Constructing Grounded Theory: A Practical Guide through Quali-
tative Analysis, 1st edn. Sage Publications Limited (2006)

26. Andrews, D., Nonnecke, B., Preece, J.: Conducting Research on the Internet: On-
line Survey Design, Development and Implementation Guidelines. International
Journal of Human-Computer Interaction 16(2), 185–210 (2003)

27. Oppenheim, A.N.: Questionnaire Design, Interviewing and Attitude Measurement.
Continuum (2000)

28. Wright, K.B.: Researching Internet-based Populations: Advantages and Disadvan-
tages of Online Survey Research, Online Questionnaire Authoring Software Pack-
ages, and Web Survey Services. Journal of Computer-Mediated Communication 10
(2005)

29. Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer In-
teraction. John Wiley and Sons (2010)

30. Guest, G., Bunce, A., Johnson, L.: How many interviews are enough? An experi-
ment with data saturation and variability. Field Methods 18(1), 59–82 (2006)

31. Karayumak, F., Michaela, K., Maina, O., Melanie, V.: Usability Analysis of Helios
- An Open Source Verifiable Remote Electronic Voting System. In: Proceedings of
the 2011 USENIX Electronic Voting Technology Workshop/Workshop on Trust-
worthy Elections. USENIX (2011)

154 M.M. Olembo, S. Bartsch, and M. Volkamer

A Relevant Study Data

Table 4. Some Identified Concepts Grouped Under Mental Models

Mental Model Sample of Concepts in Model

Trusting

Trust(Blind)
Trust(Processes)
Trust(Employees)
Trust(Postal service)
Trust(Sealed envelope)
Trust(Public count of votes)
Trust(Observers)

No Knowledge
Don’t know
No way

Matching
Published results match observed ones
Number of voters match number of votes

Observer

Observers
Different election workers
Public count of votes

Personal Involvement Can observe personally

Mental Models of Verifiability in Voting 155

Table 5. Questions from the Study Questionnaire

SECTION QUESTIONS

Demographics

Please select your age range.
[18 and under, 19 - 34, 35 - 44, 45 - 54, 55 - 64, over 65]

What is your gender?
[Male, Female]

What is your highest level of education?
[High school or less, Some college, Bachelor’s degree, Master’s
degree, PhD]

How often do you use the Internet?
[Every day, Every two or three days, Once a week, Once every
two weeks, Once a month]

Which of the following statements is true in most cases?
[I need help to install programs on my computer, I install com-
puter programs on my computer, Other people ask me to help
them install programs on their computers, I do not install pro-
grams on my computer]

Mental Model (Paper Voting)

How can you tell that the paper vote you cast at the polling
station was not modified or removed from the ballot box?

How can you tell that the paper vote you cast at the polling
station was included in the final tally, that is, as it was stored
in the ballot box?

How can you tell that the paper votes cast at the polling stations
are included in the final tally, as they were stored in the ballot
box?

Mental Model (Postal Voting)

How can you tell that your postal vote was not modified or
removed on its way to the town hall and into the ballot box?

How can you tell that your postal vote was not modified or
removed from the ballot box?

How can you tell that your postal vote was included in the final
tally, that is, as it was stored in the ballot box?

How can you tell that all postal votes are included in the final
tally, as they were stored in the ballot box?

Verifiability Terms Kindly give one word or phrase to describe what the man in
black (in reference to the scenario diagrams) is doing

Prêt à Voter Providing Everlasting Privacy

Denise Demirel1, Maria Henning2, Jeroen van de Graaf3, Peter Y.A. Ryan4,
and Johannes Buchmann1

1 Technische Universität Darmstadt / CASED, Germany
2 Project Group Constitutionally Compatible Technology Design (provet),

Universität Kassel, Germany
3 Departamento de Ciência da Computação, Universidade Federal de Minas,

Gerais,CEP 31270-901, Brazil
4 University of Luxembourg/ Interdisciplinary Centre for Security and Trust,

Luxembourg

Abstract. This paper shows how Prêt à Voter can be adjusted in order
to provide everlasting privacy. This is achieved by adapting the bal-
lot generation and anonymisation process, such that only unconditional
hiding commitments and zero knowledge proofs are published for veri-
fication, thus ensuring privacy towards the public. This paper presents
a security analysis carried out in a collaboration between computer sci-
entists and legal researchers. On the technical side it is shown that the
modified Prêt à Voter provides verifiability, robustness, and everlasting
privacy towards the public. Everlasting privacy towards the authorities
can be achieved by implementing several organisational measures. A le-
gal evaluation of these measures demonstrates that the level of privacy
achieved would be acceptable under German law.

Keywords: Prêt à Voter, everlasting privacy, legal issues, design and
evaluation of e-Voting systems, cryptographic voting schemes.

1 Introduction

1.1 Motivation

The principle of secret suffrage is essential for every democratic election. In order
to fulfil this requirement, the privacy of the ballot cast must not only be assured
at the moment of voting but also after the election. It follows that an election
system must provide everlasting privacy, meaning that even a computationally
unbounded attacker cannot violate voter privacy. This is not only of high im-
portance for secret suffrage but also for free suffrage. The casting of votes would
not be free if voters have to fear the disclosure of their vote on the day of the
election or afterwards. Therefore the validity of vote privacy cannot be bounded
to a specific period of time [13].

Computer based voting brings up huge challenges for technology as how to
guarantee the integrity of the result on the one hand, and ballot privacy on the
other. These challenges can be overcome by issuing cryptographically secured

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 156–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Prêt à Voter Providing Everlasting Privacy 157

voting receipts, as given in the voting system of Prêt à Voter. Then voters are
able to verify that their vote is recorded as cast and that all votes included
in the input batch of the count are tallied as recorded. However, in order to
provide a private and free election the voters should not be able to generate
a proof for their voting decision using the receipt. Especially with respect to
everlasting privacy this is not ensured by most verifiable voting systems. If the
receipt, for instance, contains the voting decision in encrypted form, an attacker
can determine the voting decision as soon as the underlying cryptosystem has
been broken.

This paper analyses the use of unconditionally hiding commitments, instead
of an encryption scheme in order to guarantee everlasting privacy with the vot-
ing system of Prêt à Voter. We chose Prêt à Voter because this is one of the
best explored electronic voting systems which provides verifiability on one hand
but a familiar way of paper voting one the other hand. Furthermore, Prêt à
Voter is planned to be used in the Victoria State Election in Australia [6,7].
However, since electronic voting systems need to fulfil the election principles,
not only technical but also legal considerations are important. For this reason,
interdisciplinary work is indispensable while looking for electronic voting which
is constitutionally compatible. Therefore, in this paper a technical solution for
Prêt à Voter is described and evaluated regarding the properties verifiability, ev-
erlasting privacy, and robustness, followed by a legal evaluation of the provided
level of privacy.

1.2 Related Work

Since its introduction in 2004 [32], Prêt à Voter has been continuously developed
and improved. In [31], for instance, Ryan et al. describe the key elements and
compare two approaches that use different cryptographic primitives. In [34] a
threat analysis is carried out and enhancements are proposed and in [42] Xia et
al. show how various election methods can be handled. Furthermore, the authors
of [14] analyse the feasibility of Prêt à Voter for German Federal Elections from
a technical and legal point of view. However, despite the numerous publications,
this is the first paper addressing the aspect of everlasting privacy.

In [19], a voting system is proposed merging the Prêt à Voter ballot layout
and the PunchScan tallying and auditing process. The votes are encoded using
unconditionally hiding bit commitments providing a simple and everlasting pri-
vate voting scheme. However, due to the PunchScan back end, an audit table is
used instead of a mix-net.

There are other poll-site voting systems where privacy is independent of com-
putational assumptions, for instance, the voting scheme introduced by Moran
and Noar [26] and Bingo Voting [4]. But the first solution is based on direct-
recording electronic voting machines that keep the cast vote secret while the
second one assumes a trusted number generator. Prêt à Voter, where the vot-
ers generate an encoded vote by filling out a ballot paper, does not rely on the
security of hardware used in the polling station.

158 D. Demirel et al.

Paper based poll-site voting systems that do not depend on computational
assumptions regarding privacy are, for instance, ThreeBallot [30], Farnel [3,2],
and Split-Ballot [27,28]. The privacy of the ThreeBallot voting system can be
violated by a statistical attack [40] and the Farnel voting system enforces a more
complex vote casting procedure. Each time a voter casts a vote in the Farnel box
a receipt is generated by spinning the box and scanning a subset of its content.
Furthermore, the order in which votes are cast determines the probability of each
vote to be handed out as a receipt and be verified by other voters. Using Prêt à
Voter each voter verifies his or her own vote and the receipts can be generated
fast by simply printing the scanned information.

Split-Ballot requires that each ballot paper consists of several layers which are
filled out by the voter simultaneously. Two layers are cast and both are needed
to reconstruct the vote. Thus, this scheme also provides everlasting privacy but
requires a more complex ballot layout and vote casting procedure.

Scantegrity [10,39] uses a commitment scheme and can thus be modified to
provide unconditional privacy. However, verifiability is implemented by confir-
mation codes shown to the voters during the vote casting process. Thus, by
making a photo of the filled ballot while the codes are still visible allows the
voters to generate a proof of their cast vote. Prêt à Voter ballots are not unique
because several ballots show the same candidate order and all information that
allows to identify one single ballot paper, like the ID, are hidden under scratch
fields (introduced in [33]). Thus, a photo would prove how the voter filled out a
ballot but not that this ballot has been cast.

How everlasting privacy can be introduced to a voting system by using a
universally verifiable and everlasting private mix-net [5] has been shown for the
online voting system Helios [15]. When using a paper based poll-site voting sys-
tem the mix-net cannot be simply replaced. In this case it needs to be elaborated
how the ballots are generated and printed, and how the votes cast can be de-
coded and counted. Furthermore, the presented Helios voting system provides
only everlasting privacy towards the public while in this paper we also discuss
under which assumptions the privacy can be ensured towards the authorities.

The structure is as follows: In Section 2, a high-level overview of the classic
Prêt à Voter voting scheme is given. In order to provide everlasting privacy the
design does not have to be changed but the used cryptographic primitives are
different. Thus, in Section 3 the technical details of our solution are described. In
Section 4, a security analysis and in Section 5 a legal evaluation of the approach
are carried out, followed by conclusion in Section 6.

2 System Overview of the Classic Scheme

2.1 Roles

The following parties participate in the election process.

Prêt à Voter Providing Everlasting Privacy 159

Fig. 1. Ballot Paper Layout used in Prêt à Voter

Election committee. The election committee is responsible for the correct
execution of the election procedures. The head of the election committee, for
instance, opens and closes the vote casting process, overviews the counting
of votes, and announces the election result of the constituency.

Poll workers. The poll workers assist the election committee during the elec-
tion procedures, for instance, by checking the eligibility of the voters, handing
out ballot papers in the polling station, and supervising the vote casting and
auditing process.

Voters. Voters are people who cast a vote.
Help Organisation. Help organisations support voters in performing the ver-

ification processes.
Auditors. Auditors are experts who run the verification process and check the

published proofs. Further, they are in charge of guaranteeing and verifying
the randomness of the challenge.

Authorities. The set of authorities consists of all private authorities, e.g. the
election committee, poll workers, auditors, printers, and mixes.

Key holders. The set of key holders is a subset of authorities who hold shares
of private or access keys, needed to decrypt data or access hardware.

Clerks. The set of clerks is a subset of authorities that generate the ballot data
in distributed fashion.

Observers. Observers are interested parties like voters, authorities, and third
parties, who verify the correctness of the election process and result.

2.2 System Overview

This section provides a high-level overview of the system and the voter’s view.
For more information please consult [7,34].

Ballot Form Layout. The Prêt à Voter ballot form consists of two halves which
can be separated by a perforation down the middle. The lefthand side shows the
candidates in random order. The righthand side contains a box against each
name where the voters can mark their choice and includes a link to the used
encrypted candidate order (See Fig. 1). This can, for instance, be a hash or a
serial number which refers to corresponding data published. The information on
the righthand side, which allows reconstruction of the candidate order, is hidden
by a scratch field.

160 D. Demirel et al.

Auditing of Ballot Forms. Before the vote casting process, the poll workers
publicly audit the well-formedness of a set of randomly selected ballots. This
is performed by revealing the scratch fields and verifying that the printed
candidate list matches with the encrypted candidate order. In addition voters
should be able to perform their own checks. Thus, each voter receives two
or more ballots from which he or she chooses one for vote casting while the
remaining ballots are audited.

Vote Casting and Vote Capture. The voter authenticates him- or herself,
receives a set of ballot papers, audits all ballots except one, and enters the
secret polling booth. Then he or she votes for a subset of candidates, e.g. by
marking the corresponding boxes with an “x”. In order to cast the vote, only the
righthand side containing the selected positions and the link to the encrypted
candidate order have to be scanned. Thus, the voter detaches and destroys the
left hand side, showing the candidate list, and leaves the polling booth. The poll
worker checks whether the scratch field is still intact, reveals the information at
the bottom of the righthand side, and scans the ballot paper. Then the scanner
displays the digitalisation of the receipt (i.e. righthand side of the ballot) and
asks the voter to confirm whether it has been recorded correctly. Thus, the
voter can cast a fresh ballot, if the information shown does not reflect his or her
vote. If the scanned information is correct, the voter confirms. Then his or her
encrypted vote is added to the list of votes cast and the voter receives a receipt
containing a record of the scanned information signed by the electronic ballot
box. In addition, the filled out righthand side is cast to a conventional ballot
box allowing to re-scan in case of a malfunction or breakdown.1

Anonymisation and Tallying. After the vote casting process, all cast en-
crypted votes, consisting of the marked positions and the encrypted candidate
order, are made anonymous followed by decrypting and tallying.2 The anonymi-
sation process is usually performed with the help of a mix-net. This technique
was introduced by David Chaum in 1981 [9] and allows to make a set of input
messages anonymous while the content of the input batch remains unchanged.
Prêt à Voter uses an enhancement, the so called reencryption mix-net [29], which
permits that the whole anonymisation process can be verified by any interested
party. The input set consists of all published encrypted votes. Then each mix of
the mix-net successively reencrypts the probabilistic encryption, i.e. by changing
the random values of the ciphertexts, and shuffles its input batch. The output
of the mix-net is a set of anonymised encrypted votes which is then decrypted
and tallied.

1 There are also other specifications of Prêt à Voter where the voter keeps the right-
hand side as a receipt. However, in order to provide robustness we recommend to
collect them in a conventional ballot box.

2 Another approach is to tally the cast votes homomorphically and decrypted the elec-
tion outcome. However, in this paper we will focus on the mix-net based approach.

Prêt à Voter Providing Everlasting Privacy 161

Verification. After the voters received their receipt, they should check the va-
lidity of the signature3, for instance, by using a smart phone App or a device
which is made available in the polling station. After the vote casting process
all cast encrypted votes are published and the voters can check whether their
encrypted vote, printed on the receipt, appears. Furthermore, the whole tallying
process can be verified by any interested party. More precisely, during mixing,
each mix of the mix-net publishes enough information so that the observers are
able to check whether the mixing process was performed correctly, i.e. that the
input and the output batch encrypts the same set of votes. There are several ap-
proaches to prove correct mixing, e.g. by using a non-interactive zero knowledge
argument [20,25] or a generic verification method [36]. In addition, the voting
system publishes enough information to allow any observer to verify that the
output of the mix-net was decrypted and tallied correctly.

3 Technical Details of Prêt à Voter Providing Everlasting
Privacy

This section describes the technical details of the proposed voting scheme. The
early Prêt à Voter approaches using re-encryption mix-nets only support cyclic
shifts of candidate lists [11,35]. However, if the voter selects more than one can-
didate per ballot, the distance between various marks reveals information about
the vote cast. Thus, later developments [21,41,43] provide arbitrary permuta-
tions requiring one encrypted information for each candidate. For legibility, we
will describe the improved scheme only for ballots containing a shifted candidate
order. However, like elaborated for the original approach [42,37] the described
process can easily be adapted to support other tallying methods and ballot pa-
pers with arbitrary candidate lists.

3.1 Assumptions Regarding the Operational Environment

In order to provide everlasting privacy and robustness we make the following
assumptions regarding the operational environment.

Assumption A. The electoral roll is accurately maintained and voters can cast
their vote in a secret polling booth.

Assumption B. There exists a private key server, e.g. a hardware security
module [1], that provides only limited access to authorities. The access key
is distributed between several key holders such that no single authority has
access to the device. The key server is used to store some key material and
is not needed during the vote casting process. Thus, it can be stored safely,
for instance, in the town hall.

3 The voters can verify the signature by themselves. Nevertheless, they should have
the opportunity to ask poll workers for help.

162 D. Demirel et al.

Assumption C. As with most end-to-end verifiable voting schemes, we assume
the existence of a secure bulletin board, i.e. one to which only authorised
entities can append, nothing can be deleted, and everyone has a consistent
read access [22].

Assumption D. The authorities choose the parameters (e.g. keys) for the used
cryptographic primitives in a way that the underlying computational prob-
lem cannot be broken before the election result has been announced.

Assumption E. A non-trivial subset of authorities acts honestly meaning that
they follow the process correctly and do not reveal information private to
them (e.g. access or private key shares).

Assumption F. All random values used during the ballot generation, tallying
and, verification phase are unpredictable and are chosen at random.

Assumption G. The IT environment provides private channels, which are
modification proof and secure against side channel attacks, between the pri-
vate key server and the first printer, the private key server and the first mix
of the mix-net, and successive mixes in the mix-net.

Assumption H. At least one mix of the mix-net is honest and keeps the per-
mutation, used to shuffle its input set, secret.

Assumption I. After each printing step the ballot papers are shuffled before
they are loaded to the next printer to prevent that neither poll workers nor
printers learn the association between IDs and candidate lists.

Assumption J. After processing encrypted data, all hardware components de-
stroy the information private to them.

Assumption K. A threshold subset of key holders attend the tallying process
so that the private key server can be accessed and encrypted data can be
decrypted.

The internal data stored on the private key server must be sent to the printer
in order to generate the ballot papers and to the mix-net to anonymise the
votes cast. Thus, both procedures should be carried out in public to allow any
interested party to observe that the printing process is performed correctly (As-
sumption I), that private channels, like direct cable connection, are used for the
communication (Assumption G), and that the hardware components delete all
information private to them, for instance, by destroying their memory (Assump-
tion J). For a legal evaluation of these assumptions see Section 5.

3.2 Technical Details

Key Generation. In this section we give a high-level overview of the used
cryptographic primitives. For more information please consult [5]. In order to
provide everlasting privacy and universal verifiability we need a homomorphic
and unconditional hiding commitment scheme (GenCom,Com,Unv) to encode
the published auditing information. First a commitment key ck = GenCom(1κ)
for security parameter κ is generated and made public. Then for any message
m ∈ M and randomly chosen decommitment value r ∈ R a commitment
c = Comck(m, r) ∈ C can be generated. Unvck(c,m, r) returns m if m ∈ M

Prêt à Voter Providing Everlasting Privacy 163

and r ∈ R are the correct opening values of c ∈ C and ⊥ if not. Note that the
used instantiation for the commitment scheme has to be correct, non-interactive,
computational binding, unconditional hiding, and must be additive homomor-
phic, i.e. Com(m, r) ·C Com(m′, r′) = Com(m+Mm′, r+R r′) for all m,m′ ∈M
and r, r′ ∈ R.

In order to process the opening values in addition to the commitment scheme,
a matching homomorphic public key encryption scheme (GenEnc,Enc,Dec) is
used. GenEnc(1κ) generates a key pair for security parameter κ consisting of a
private key sk and a public key pk. The algorithm Enc(m) encrypts message m ∈
M′ using random value r ∈ R′. The function Dec(c) = m denotes the decryption
of ciphertext Enc(m) = c ∈ C′ to message m ∈ M′. Possible instantiations are
Paillier encryption with slightly adapted Pedersen Commitments like proposed
in [28] and the cryptographic primitive proposed in [12].

For our approach we need two instances of the encryption scheme. One which
is homomorphic over the message spaceM, denoted by (GenEncM,EncM,DecM)
and (GenEncR,EncR,DecR) which is homomorphic over the randomisation space
R of the used commitment scheme. More precisely, having two commitments
c0 = Com(m0, r0) and c1 = Com(m1, r1), where m0,m1 ∈ M and r0, r1 ∈ R,
and the corresponding opening values in encrypted form EncM(m0), EncR(r0),
EncM(m1), and EncR(r1). Then the encrypted opening values to the commit-
ment c0 · c1 = Com(m0 +m1, r0 + r1) can be computed by multiplying the en-
cryptions: EncM(m0) ·EncM(m1) = EncM(m0+m1) and EncR(r0) ·EncR(r1) =
EncR(r0 + r1).

Prior to an election two key pairs are generated. The public keys pkM and pkR
are published while the corresponding private keys skM and skR are distributed
in threshold fashion among several key holders. During the ballot printing pro-
cess three printers are used. The second printer generates a key pair (skR′ , pkR′)
and the third printer a key pair (skM′ , pkM′) using (GenEncR) and (GenEncM)
respectively. The public keys are published together with the other key material.

Ballot Generation. For the Prêt à Voter voting system providing everlasting
privacy, the conventional ballot layout is adopted but instead of the encrypted
shift value Enc(s) the ballot refers to a commitment Com(s, t) of the used can-
didate order. Furthermore, the ballot is extended by a third “auditing” strip,
containing the “decommitment value” t, which can be detached by a perforation
(See Figure 2). After vote casting, all scanned ballots are published showing the
position marked by the voter and a unique commitment to the shifted candidate
list. In order to provide vote secrecy, no single authority or electronic device
must be able to reconstruct the association between the published information
and the corresponding secret candidate order. Thus, similar to the original ap-
proach the ballot data, i.e. shifted candidate order, commitment, and encrypted
opening values, is generated in distributed fashion by the clerks. To generate a
set of M ballots each clerk j ∈ [1, L] performs the following steps:

164 D. Demirel et al.

Fig. 2. Ballot Paper Layout of the new version

1. Generate a batch of random seeds 〈sji ∈M〉Mi=1 denoting a cyclic shift of the
candidate names computed (mod n) where n is the number of candidates.
The seeds are drawn uniformly at random from the message space.

2. A commitment to each seed i ∈ [1,M] is generated 〈Comck(s
j
i , t

j
i)〉 using

a randomly chosen decommitment value tji ∈ R. Furthermore, the opening
values are encrypted with the public keys pkM and pkR of the key holders,
〈EncM(sji),EncR(t

j
i)〉, and the public keys pkR′ and pkM′ of the second and

third printer, 〈EncM′(sji),EncR′(tji)〉. The output of each clerk is securely
stored on the private key server.

3. The “full” encrypted information (ΘC
i , Θ

E
i , Θ

S
i , Θ

T
i) for ballot i is generated

by the private key server by multiplying the output of various clerks:
ΘC

i =
∏L

j=0 Comck(s
j
i , t

j
i),

ΘE
i = 〈∏L

j=0 EncM(sji),
∏L

j=0 EncR(t
j
i)〉,

ΘS
i =

∏L
j=0 EncM′(sji) and

ΘT
i =

∏L
j=0 EncR′(tji).

4. The private key server generates a link, IDi, for each ballot i ∈ [1,M] and
publishes the IDs together with the commitments {ΘC

i }Mi=1 on the bulletin
board. Then the set of IDs, {IDi}Mi=1, is sent together with {ΘS

i }Mi=1 and
{ΘT

i }Mi=1 to the first printer while the corresponding opening values {ΘE
i }Mi=1

are kept secret by the key server.

Ballot Printing. The generated ballot data is printed by a quorum of printers
(See Figure 3) similar to the process described in [34]4. Note that in order to
ensure voter privacy assumption E, G, I, and J must hold. Furthermore, the bal-
lots should be printed in public to assure that the described process is performed
correctly. For a discussion on this topic from a legal point of view see Section 5.

1. The first printer prints the encrypted seed ΘS on the lefthand side of the
ballot paper, the link ID to the commitment ΘC at the center, and the
encrypted “decommitment value” ΘT on the righthand side.

2. The printed ID is covered by a scratch field, the ballot papers are shuffled,
and loaded into the next printer.

4 Another opportunity is to print the ballots on demand in the polling-station. How-
ever, a legal analysis showed that printing in advance should be preferred [14].

Prêt à Voter Providing Everlasting Privacy 165

Fig. 3. Ballot printing process

3. The second printer scans and decrypts ΘT = EncR′(t) and prints the decom-
mitment value t at the bottom of the righthand side. Then t is covered by a
scratch field, ΘT is removed, the ballot papers are shuffled, and loaded into
printer three.

4. The last printer scans and decrypts the seed ΘS = EncM′(s) and prints
the candidate list shifted by −s (mod n) on the lefthand side. Finally the
encrypted seed value ΘS is removed.

Auditing Process. Auditing of ballot forms is very important for the robust-
ness of the voting system. If the ballot papers were not generated properly,
the votes cast are not decoded correctly afterwards. In order to check the well-
formedness of a ballot paper one simply has to reveal the “decommitment value”
t and the link to the commitment Com(s, t) hidden under the scratch fields. Then
he or she can verify whether the value s used to shift the candidate names and
t are the opening values of Com(s, t). This proves integrity of the ballot due to
the computational bindingness of the used commitment scheme. In addition, the
auditors should check that the revealed shift and “decommitment” values were
derived from the defined uniform distribution.

Note that the commitments printed on the ballot forms are published
during the tallying process. Thus, if voters get to see the “decommitment”
and shift value they can use this information to open the commitment, prove
the candidate order of their ballot, and thus the cast vote. Therefore, if a
ballot paper is used to cast a vote, the auditing strip, containing the hidden
decommitment value t, must be detached and destroyed by the poll workers

166 D. Demirel et al.

before the voter enters the secret polling booth. Furthermore, ballot papers
used for auditing must not be used for vote casting.

Anonymisation, Tallying, and Verification Process. Like the conventional
Prêt à Voter tallying process, first, the marked position ui on each cast bal-
lot i ∈ [1,K] is publicly encoded and homomorphically added to the commit-
ment, that is Com(si, ti) · Com(ui, 0) = Com(si + ui, ti) = Com(vi, ti). Note
that the marked position and the shift value add up to the position of the
chosen candidate with respect to the initial, unshifted candidate list (mod n).
Then the commitment to the vote cast, Com(vi, ti), is published next to the
scanned ID and marked position on the bulletin board. In addition, the pri-
vate key server adapts the securely stored encrypted shift values accordingly,
EncM(si) · EncM(ui) = EncM(si + ui) = EncM(vi).

Afterwards, the votes aremade anonymouswith the help of amix-net that reran-
domises the commitments and encrypted opening values, for instance, by using the
mixingprocedurepresented in [5].Thepublic commitments,U = {Com(vi, ti)}Ki=1,
and the privately stored opening values consisting of the encrypted votes, V =
{EncM(vi)}Ki=1, and the encrypted “decommitment” values,W = {EncR(ti)}Ki=1,
are sent to the first mix using a private channel. The mix-net publicly outputs a
set of mixed commitments, C′ = {Com(v′j , t

′
j)}Kj=1, and privately outputs a set

of associated anonymised encrypted votes, V ′ = {EncM(v′j)}Kj=1, and encrypted

“decommitment” values, W ′ = {EncR(t′j)}Kj=1. Note that the correctness of the
mixing process can be universally verified. After the mixing process, the votes can
be decoded and published without violating voter privacy, because the link be-
tween single inputs and single outputs has been removed. In order to determine the
election outcome, first, the key holders decrypt and publish the votes {v′j}Kj=1 and

“decommitment values” {t′j}Kj=1. Then any interested party can verify that these

are the opening values to the published commitments C′ = {Com(v′j , t
′
j)}Kj=1. Af-

terwards, the chosen candidates are determined by publicly computing the votes
{v′′j }Kj=1, where v

′′
j := v′j (mod n) for all j ∈ [1,K], revealing the position marked

with respect to the initial, unshifted candidate list. Finally, the number of votes per
candidate are counted and the election outcome is announced.

4 Security Analysis from a Technical Point of View

Individual Verifiability. The proposed scheme provides individual verifiability
such that the voters can verify that their vote was encoded as intended, cast as
encoded, and recorded as cast. If the voter successfully audited some ballots,
the correctness of the ballot generation process is ensured with high probability,
i.e. the candidate order matches the information the ID refers to. Thus, the
auditing process allows the voters to ascertain themselves that using these
ballots the vote is encoded as cast. Furthermore, after scanning the encoded
vote, the scanner shows its interpretation to the voter and prints a receipt if
he or she confirms. Thus, the voter can check that the filled ballot matches
the vote printed on the receipt and therefore that the vote is cast as encoded.

Prêt à Voter Providing Everlasting Privacy 167

Finally, after the vote casting process, the entire input of the tally is published.
Thus, each voter can verify that his or her encoded vote printed on the receipt is
recorded as cast, such that it is included in the input batch of the tallying process.

Universal Verifiability. The proposed Prêt à Voter voting scheme provides
universal verifiability such that any observer can verify that all votes were
tallied as recorded. During mixing the mix-net publishes enough information
for the observers and the auditors to verify that the commitments to the votes
have been processed correctly. After the anonymisation, the commitments are
opened what also proves the integrity of the privately processed, encrypted
opening values, consisting of the votes and the “decommitment values”. Note
that if a mix would be able to modify a vote undetected such that the associated
commitment can be opened, this is a contradiction to the computational
bindingness of the used commitment scheme. For a proof on this statement
please consult [5]. In addition, during the subsequent tallying process all
intermediate results are published on the bulletin board allowing any interested
party to recount the election outcome.

Correctness. It can be shown that by verifying the processing of commitments
also the integrity of the associated encrypted opening values is ensured.
Assume an authority manipulated one vote, for instance, by adapting the
encrypted opening values during ballot generation or by manipulating the
key server. Thus, the output of the mix-net contains Com(vi, ti), EncM(v′i),
and EncR(ti) where vote i has been manipulated such that v′i �= vi. After
carrying out the mixing process and proving its correctness, the opening values,
v′i and ti are determined. If the commitments could be opened using the
modified vote, the authority would have found a second pair of opening values,
Unv(Com(vi, ti), vi, ti) �= Unv(Com(vi, ti), v

′
i, ti) �=⊥, a contradiction to the

computational binding property of the commitment scheme.

Everlasting Privacy. The proposed voting system provides everlasting privacy
towards observers because only the voter gets to see the secret candidate order.
Furthermore, all data printed on the receipts and published on the bulletin
board for auditing, like commitments and zero knowledge proofs, provide
unconditional privacy. Everlasting privacy towards the authorities can only be
provided with the help of organisational measures and is discussed in Section 5
from a legal point of view.

Robustness. Regarding robustness the only difference between the classic Prêt
à Voter voting scheme and the solution proposed here is the use of a key server
to store the opening values. Without this information the votes cast cannot
be determined. Therefore, a backup and recovery concept must be developed
that provides a high security standard. However, in some applications even
a small probability that the ongoing election might be disturbed is unacceptable.

168 D. Demirel et al.

For such cases a two layer ballot paper, like proposed for Punch Scan [18], can
be used. The upper layer shows the secret candidate order and the bottom layer
contains the ID that links to the encoded shift value. The voters cast their
choices on the top sheet and the marked positions are recorded by the bottom
due to holes punched in the upper layer. After filling out the ballot, the top layer
containing the vote in plain text is not destroyed but collected in a conventional
ballot box for recount while the bottom sheet is scanned. This allows to tally
the votes even in case of a malfunction or breakdown of the key server.

5 Security Evaluation from a Legal Point of View

In this section the level of privacy provided by the new version of Prêt à Voter
is evaluated from a legal point of view. This evaluation is necessary since the
use of electronic voting systems depends on its legal compatibility. Note that
German law makes great demands on the legality of parliamentary elections,
implying that if a voting system passes the German criteria, it would probably
qualify in most countries. For instance, the principle of the public nature of
elections requires that all essential steps in the elections are subject to public
examinability. However, this issue is beyond the scope of this paper because here
we deal with secret suffrage (or, in other words, voter’s privacy) only. We refer to
[23] for a legal evaluation of the question if verifiability meets the public nature
of elections. For a legal analysis of other security properties please consult [14].

As clarified in [13], everlasting privacy is of high importance from a consti-
tutional point of view. Since a free vote is not possible if voters have to fear
the disclosure of their voting decision, the privacy of the ballot cast must be
assured forever after the election. So the legislator needs to provide a voting
procedure that fulfils both everlasting privacy towards the public and towards
the authorities. Especially data encrypted with public key cryptography must
be protected since this information is secure for several decades only. An exact
period of validity cannot be determined but data encrypted with RSA and a
key length of 2048 bit, for instance, could be revealed in approximately 20 to 30
years [24,17].

As the technical security analysis of the Section 4 showed, everlasting pri-
vacy towards observers can be ensured since only unconditional hiding com-
mitments are published. In order to provide everlasting privacy also towards
authorities and technical devices, procedural controls are necessary. It is ques-
tionable whether this guarantee can be made dependent on the observance of
organisational measures, since the system itself should fulfil the election princi-
ples as best as possible. But a comparison with traditional paper based elections
and the interpretation of the relevant jurisdiction shows that technical and or-
ganisational measures can be implemented in order to achieve such guarantees.
For a detailed legal analysis of this aspect please consult Appendix A.

In the following we will evaluate each election step and discuss the needed
organisational measures to ensure everlasting privacy towards the authorities.

Prêt à Voter Providing Everlasting Privacy 169

Key Generation. The parameters for the used cryptographic primitives have
to be chosen such that the computational problem cannot be broken before the
end of the election. According to § 31 Federal Electoral Act and § 54 Federal
Electoral Code, all essential steps in the elections are subject to public obser-
vation. Therefore, the public keys for the encryption and commitment scheme
have to be published on the bulletin board in order to allow any interested party
to verify that the parameters have been chosen properly. Furthermore, the key
holders must be chosen in a way that the probability of collaboration can be
kept low. According to the current regulations regarding the commonality of
the election committee, the key holders could be members of different parties.
As regulated in § 9.2 sent 4 Federal Electoral Act, the election committee
shall represent the parties of the respective electoral district. Furthermore,
when conferring specific competences on the election committee or in spe-
cific on the key holders, new penal provisions should be taken into consideration.

Ballot Generation. The ballot data is jointly generated by a set of clerks.
As it applies to the key holders, the clerks should be chosen carefully and in
correspondence with the existing parties of the respective electoral district. Fur-
thermore, since observers should be able to examine the essential steps of the
election, this process must be carried out in public as well.

The data needed to reveal the voting decisions cast on the generated ballots
is safely stored in encrypted form on a so-called key server. If an authorised
person or a single member of the election committee gets access to the key
server and to the data saved in here, particular votes can get linked to particular
receipts as soon as the used encryption scheme is broken. Thus, this device
must be protected by access control, and the keys are shared between a set of
key holders. Furthermore, a certification is indispensable because the key server
is an electronic device which is needed for the ballot generation and the ascer-
tainment of the result, and therefore has to be classified as an electronic voting
system as defined in § 1 Federal Voting Machine Ordinance. In dependence
on the regulations concerning the testing of voting machines, this certification
should be allocated to a technique authority, like, for elections in Germany, the
Physikalisch-Technische Bundesanstalt. This is the supreme technical authority
which has long experience with the testing of voting devices and other technical
systems [8, p. 2]. According to § 16.2 Federal Voting Machine Ordinance, the
key server should be sealed and stored in a way that it is secure against any
inspections of unauthorised persons.

Ballot Printing. The ballots are generated and printed in distributed fashion.
However, the printers have to process encrypted data, like the seed and random
values. It follows that a malicious authority could try to eavesdrop and store
this information, wait until the cryptosystem has been broken and reveal the
association between receipts and votes cast. Thus, voter privacy can be guaran-
teed only with the help of certain organisational measures. Private channels like

170 D. Demirel et al.

direct cable connections or CDs5 are used to transfer data from the key server
to the printer; the ballots are shuffled by the poll workers after each printing
step; and all data private to the printers is deleted afterwards, for instance, by
physically destroying the memory. Furthermore, in order to fulfil § 31 Federal
Electoral Act and § 54 Federal Electoral Code and the subsequent requirement
of public observation, the entire process regarding the application of the key
server, including the data transfer, must be carried out in public. All voters and
citizen should be able to check that only the authorities access the key servers
and that the private channels which are used for data transfer are not subject
to manipulation during the ballot printing process.

Without these procedural controls several attacks are possible. If the printing
process is not observable, a printer could remove all scratch fields, read and store
the encrypted information, and use this data to violate voter privacy. Even worse
is if this attack is carried out by the third printer, since this machine sees the
seed values in clear and thus does not have to wait until the cryptosystem is
broken.

Similar to the key servers the printers need a certification, must be protected
by a chain of custody, and have to be checked before use. According to the cur-
rent regulation of § 7.1 Federal Voting Machine Ordinance, the local authority
could be in charge for this. This additional security measures help to prevent that
the machines can contain unauthorized soft- or hardware that allows informa-
tion to be leaked or manipulating data. Furthermore, all electronic systems are
prone to eavesdropping of electromagnetic emanations. Therefore, this should
be evaluated prior to the election by the technique authority and corresponding
security preventive measures should be implemented.

Even though organisational measures would ensure voter privacy if only one
printer is used, a distributed printing process should be used. By doing so,
the relevant information is not located on one device and a successful attack
is harder to carry out. To manipulate a printer successfully, either one needs
to have access to the device within the limits of the certification, or one has
to manage to get possession of the printer in the polling station. This is more
difficult in case more than one printer is used. But to make successful attacks
even harder, additional technical measures can be considered. The replacement
of printed ballots, for instance, can be made more difficult by watermarks or
fingerprints6 on the ballots which allow verifying their integrity.

Auditing and Vote Casting Process. The auditing procedure must be ex-
ecuted under observation to allow the observers to verify that the process is
carried out and that the revealed decommitment values are derived from the
defined uniform distribution.

5 Note that if CDs are used they must be publicly destroyed immediately after the
printer read out the data.

6 Note that if fingerprints are used which make the ballot papers unique, the corre-
sponding information must be hidden or destroyed before the ballots are handed out
to the voters.

Prêt à Voter Providing Everlasting Privacy 171

In order to ensure voter privacy during the vote casting process, the electoral
roll has to be accurately maintained. A member of the election committee has
to remove the auditing strip and immediately destroy it before the ballot is
handed out to the voter. If the voter can detach and keep the auditing strip,
he or she is able to reveal the used decommitment value and prove a certain
candidate order towards an attacker. Furthermore, it has to be ensured that the
scratch field is intact after the voter left the polling booth. If the unique code is
revealed during the vote casting process, this allows the voter to take a photo of
the filled ballot and prove his or her cast voting decision towards a coercer. In
traditional paper based elections, a comparable attack is not possible since the
picture of a filled ballot paper never proves the insertion of it into the ballot box.

Anonymisation. Before the opening values are decrypted and the election out-
come is determined, the cast votes have to be anonymised such that the commit-
ments cannot be linked back to a receipt. Here the same organizational measures
as for the printing process are necessary. The hardware must have a certification
and be protected by a chain of custody. Furthermore, the whole process must be
carried out in public so that any observer can convince him- or herself that the
commitments are anonymised before they are opened, that during the process
no one tampers with the hardware, and that data is correctly transferred and
destroyed afterwards.

6 Conclusion

Despite the large number of poll-site voting systems proposed during the last
decades, only a small amount of solutions addresses the aspect of everlasting
privacy. A legal evaluation showed that privacy which relies on computational
assumptions is just not enough [13]. Thus, in this paper it is shown that everlast-
ing privacy can be introduced to Prêt à Voter by adapting the ballot generation
and anonymisation process. Then the proposed voting system is evaluated re-
garding technical properties and legal regulations. The security analysis shows
that the system provides robustness and verifiability. Furthermore, everlasting
privacy towards the public is achieved by publishing unconditionally hiding com-
mitments and zero knowledge proofs. The legal evaluation concentrates on the
organisational measures needed to ensure everlasting privacy towards the author-
ities and shows that they are acceptable from a legal point of view. Provided
that the use of key servers, private channels, printers, and mix-nets should be
observable, any citizen can verify that authorities only get access to the system.

Our results show the importance of interdisciplinary work during the devel-
opment of electronic voting systems. It allows to combine technical approaches
with organisational measures in order to design a solution that is secure and
constitutionally compatible.

172 D. Demirel et al.

Acknowledgement. This paper has been developed within the project
‘VerKonWa’ — Verfassungskonforme Umsetzung von elektronischen Wahlen —
which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Science
Foundation).

Peter Ryan thanks the FNR Luxembourg for funding the SeRTVS project.
Jeroen van de Graaf’s research was partially sponsored by PRPq/UFMG, Edital
12/2011.

References

1. Pci hardware security module (hsm),
https://www.pcisecuritystandards.org/documents

2. Araújo, R., Custódio, R.F., van de Graaf, J.: A verifiable voting protocol based
on Farnel. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J.,
Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000,
pp. 274–288. Springer, Heidelberg (2010)

3. Araujo, R., Ryan, P.Y.A.: Improving the Farnel voting scheme. In: Electronic
Voting, pp. 169–184 (2008)

4. Bohli, J.-M., Müller-Quade, J., Röhrich, S.: Bingo Voting: Secure and coercion-
free voting using a trusted random number generator. In: Alkassar, A., Volkamer,
M. (eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 111–124. Springer, Heidelberg
(2007)

5. Buchmann, J., Demirel, D., van de Graaf, J.: Towards a publicly-verifiable mix-net
providing everlasting privacy. In: Financial Cryptography (to appear, 2013)

6. Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S.,
Srinivasan, S., Teague, V., Wen, R., Xia, Z.: A supervised verifiable voting proto-
col for the victorian electoral commission. In: Electronic Voting, pp. 81–94 (2012)

7. Burton, C., Culnane, C., Heather, J., Peacock, T., Ryan, P.Y.A., Schneider, S.,
Teague, V., Wen, R., Xia, Z.J., Srinivasan, S.: Using Prêt à Voter in Victo-
ria State Elections. In: Proceedings of the Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections (2012)

8. Cabinet of Germany: Bundestags-Drucksache 16/5194 (2007),
http://dipbt.bundestag.de/dip21/btd/16/051/1605194.pdf

9. Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–88 (1981)

10. Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman, A.T.,
Vora, P.L.: Scantegrity: End-to-end voter-verifiable optical-scan voting. IEEE Se-
curity & Privacy 6(3), 40–46 (2008)

11. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

12. Cuvelier, E., Pereira, O., Peters, T.: Election verifiability or ballot privacy: Do we
need to choose? Cryptology ePrint Archive, Report 2013/216 (2013)

13. Demirel, D., Henning, M.: Legal analysis of privacy weaknesses in poll-site evoting
systems. Jusletter IT Editions Weblaw (September 2012) ISSN 1664-848X

14. Demirel, D., Henning, M., Ryan, P.Y.A., Schneider, S., Volkamer, M.: Feasibility
analysis of Prêt à Voter for German federal elections. In: Kiayias, A., Lipmaa, H.
(eds.) VoteID 2011. LNCS, vol. 7187, pp. 158–173. Springer, Heidelberg (2012)

https://www.pcisecuritystandards.org/documents
http://dipbt.bundestag.de/dip21/btd/16/051/1605194.pdf

Prêt à Voter Providing Everlasting Privacy 173

15. Demirel, D., van de Graaf, J., Araújo, R.: Improving Helios with everlasting pri-
vacy towards the public. In: Proceedings of EVT/WOTE 2012 (2012)

16. Federal Constitutional Court of Germany: Voting computer judgement. (BVer-
fGE) - Judicial decisions of the Federal Constitutional Court of Germany 123, 39
(2009), http://www.bverfg.de/entscheidungen/
rs20090303 2bvc000307en.html

17. Ferguson, N., Schneier, B.: Practical cryptography. Wiley (2003),
http://books.google.nl/books?id=ThVRAAAAMAAJ

18. Fisher, K., Carback, R., Sherman, A.T.: Punchscan: Introduction and system
definition of a high-integrity election system. In: Preproceedings of WOTE 2006
(2006)

19. Graaf, J.: Voting with unconditional privacy by merging Prêt à Voter and Punch-
Scan. IEEE Trans. Inf. Forensics Security 4(4), 674–684 (2009)

20. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

21. Heather, J.: Implementing STV securely in Prêt à Voter. In: CSF, pp. 157–169
(2007)

22. Heather, J., Lundin, D.: The append-only web bulletin board. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 242–256.
Springer, Heidelberg (2009)

23. Henning, M., Demirel, D., Volkamer, M.: Öffentlichkeit vs. verifizierbarkeit - in-
wieweit erfüllt mathematische verifizierbarkeit den grundsatz der öffentlichkeit
der wahl. In: IRIS 2012, pp. 213–220 (2012)

24. Kaliski, B.: Twirl and RSA key size (May 2003), http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.77.4447&rep=rep1&type=pdf

25. Lipmaa, H., Zhang, B.: A more efficient computationally sound non-interactive
zero-knowledge shuffle argument. In: Visconti, I., De Prisco, R. (eds.) SCN 2012.
LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012)

26. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting
privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392.
Springer, Heidelberg (2006)

27. Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust.
In: ACM Conference on Computer and Communications Security, pp. 246–255
(2007)

28. Moran, T., Naor, M.: Split-ballot voting: Everlasting privacy with distributed
trust. ACM Trans. Inf. Syst. Secur. 13(2) (2010)

29. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/Nothing
election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765,
pp. 248–259. Springer, Heidelberg (1994)

30. Rivest, R.L.: The ThreeBallot voting system (2006)
31. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à Voter: a

voter-verifiable voting system. IEEE Trans. Inf. Forensics Security 4(4), 662–673
(2009)

32. Ryan, P.Y.A., Bryans, J.: A simplified version of the chaum voting scheme. Tech-
nical Report CS-TR 843, University of Newcastle upon Tyne (May 2004)

33. Ryan, P.Y.A., Peacock, T.: Prêt à Voter: a systems perspective. Tech. rep. (2005)
34. Ryan, P.Y.A., Peacock, T.: A threat analysis of Prêt à Voter. In: Chaum, D.,

Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida,
B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 200–215. Springer,
Heidelberg (2010)

http://www.bverfg.de/entscheidungen/rs20090303_2bvc000307en.html
http://www.bverfg.de/entscheidungen/rs20090303_2bvc000307en.html
http://books.google.nl/books?id=ThVRAAAAMAAJ
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.4447&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.4447&rep=rep1&type=pdf

174 D. Demirel et al.

35. Ryan,P.Y.A., Schneider, S.A.:Prêt à Voterwith re-encryptionmixes. In:Gollmann,
D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 313–326.
Springer, Heidelberg (2006)

36. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - A practical solution to
the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

37. Schneider, S., Srinivasan, S., Culnane, C., Heather, J., Xia, Z.: Prêt á Voter
with write-ins. In: Kiayias, A., Lipmaa, H. (eds.) VoteID 2011. LNCS, vol. 7187,
pp. 174–189. Springer, Heidelberg (2012)

38. Schreiber, W.: Bundeswahlgesetz Kommentar. Carl Heymanns Verlag (2009)
39. Sherman, A.T., Fink, R.A., Carback, R., Chaum, D.: Scantegrity III: automatic

trustworthy receipts, highlighting over/under votes, and full voter verifiability. In:
Proceedings of EVT/WOTE 2011, pp. 7–23 (2011)

40. Strauss, C.: A critical review of the triple ballot voting system. Part2: Cracking
the triple ballot encryption. Draft Version 1.5, Verified Voting New Mexico (2006),
http://www.cs.princeton.edu/~appel/voting/

Strauss-ThreeBallotCritique2v1.5.pdf

41. Xia, Z., Schneider, S.A., Heather, J., Ryan, P.Y.A., Lundin, D., Peel, R., Howard,
P.: Prêt à Voter: All-in-one. In: Proceedings of WOTE 2007, pp. 47–56 (2007)

42. Xia, Z., Culnane, C., Heather, J., Jonker, H., Ryan, P.Y.A., Schneider, S., Srini-
vasan, S.: Versatile Prêt à Voter: Handling multiple election methods with a
unified interface. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 98–114. Springer, Heidelberg (2010)

43. Xia, Z., Schneider, S.A., Heather, J., Traoré, J.: Analysis, improvement, and sim-
plification of Prêt à Voter with paillier encryption. In: EVT 2008 (2008)

A Legal Analysis of Organisational Measurements

As the compliance with secret suffrage has to be addressed technically when
voting electronically, it is questionable if the guarantee of everlasting privacy
can be made dependent on the observance of specific organisational measures.

Since the German constitution does not purport a specific voting procedure
the legislator may choose any possible way in order to ensure the election princi-
ples as best as possible. The Federal Constitutional Court only reviews whether
it has remained within the boundaries of the latitude granted to it by the Ba-
sic Law, or whether it has violated a valid constitutional election principle by
overstepping these boundaries [16, para 117].

The German legislator imposes a set of security and functionality requirements
on electronic voting systems [38, p. 595][8]. Also the Federal Voting Machine
Ordinance provides a complex system of security measures that lasts from the
certification and the use authorisation up to the voting procedure including the
counting and tallying of votes [38, p. 595]. Therefore, organisational measures
can be used in order to guarantee the election principles. The same result arises
from the judgment of the German Federal Constitutional Court regarding the
permissibility of the deployment of electronic voting systems [16]. After this a
comprehensive bundle of technical and organisational security measures (e.g.
monitoring and safekeeping of the voting machines, comparability of the devices

http://www.cs.princeton.edu/~appel/voting/Strauss-ThreeBallotCritique2v1.5.pdf
http://www.cs.princeton.edu/~appel/voting/Strauss-ThreeBallotCritique2v1.5.pdf

Prêt à Voter Providing Everlasting Privacy 175

used with an officially checked sample at any time, criminal liability in respect of
election falsifications and local organisation of the elections) is not suited by itself
to compensate for a lack of controllability of the essential steps in the election
procedure by the citizen [16, para 126]. This means, as a corollary, that technical
and organisational security measures can support the required controllability and
the protection of the election principles in general.

These considerations can be transferred to the principle of secret suffrage.
Furthermore, even in a traditional paper based election, the guarantee of the
secret vote depends on the observance of organisational measures. For example,
in Germany the election committee needs to refuse all voters who marked or
folded their ballot paper outside of the polling booth. They will get a new ballot
paper after they destroyed the old one in the presence of a member of the elec-
tion committee. Therefore, this will prevent that voters violate the principle of
secret suffrage by casting the vote in a detectable way.However, as the legislator
purports behaviours which are essential for the guarantee of the secrecy of the
vote, it assumes that the election committee acts as intended. For example, in
Germany the election committee needs to refuse all voters who marked or folded
their ballot paper outside of the polling booth. They will get a new ballot pa-
per after they destroyed the old one in the presence of a member of the election
committee. Insofar, it will be prevented that voters violate the principle of secret
suffrage by casting their vote in the view of other voters. Therefore, the guar-
antee of the secrecy of the vote depends on organisational measures even in a
traditional paper based election. Consequently, this applies to electronic voting
systems as well. Thereby, the conversion of these measures should be control-
lable by the public since it is part of the election act. In Germany every person
is allowed to enter the polling station during the election act and the counting
and tallying of votes. Therefore, everyone is able to check whether the election
committee follows the provisions correctly. As a result assumptions regarding the
operational environment are allowed to a certain extend. But the permissibility
of assumptions needs to be questioned in particular cases and for every voting
system separately.

Towards a Practical Cryptographic Voting

Scheme Based on Malleable Proofs

David Bernhard1, Stephan Neumann2, and Melanie Volkamer2

1 University of Bristol, United Kingdom
2 CASED / TU Darmstadt, Germany

Abstract. Mixnets are one of the main approaches to deploy secret and
verifiable electronic elections. General-purpose verifiable mixnets how-
ever suffer from the drawback that the amount of data to be verified
by observers increases linearly with the number of involved mix nodes,
the number of decryptors, and the number of voters. Chase et al. pro-
posed a verifiable mixnet at Eurocrypt 2012 based on so-called malleable
proofs - proofs that do not increase with the number of mix nodes. In
work published at PKC 2013, the same authors adapted malleable proofs
to verifiable distributed decryption, resulting in a cryptographic voting
scheme. As a result, the amount of data to be verified only increases
linearly with the number of voters. However, their scheme leaves several
questions open which we address in this paper: As a first contribution,
we adapt a multi-party computation protocol to build a distributed key
generation protocol for the encryption scheme underlying their voting
scheme. As a second contribution, we decompress their abstract scheme
description, identify elementary operations, and count the number of
such operations required for mixing and verification. Based on timings
for elementary operations, we extrapolate the running times of the mix-
ing and verification processes, allowing us to assess the feasibility of their
scheme. For the German case, we conclude that the replacement of postal
voting by cryptographic voting based on malleable proofs is feasible on
an electoral district level.

Keywords: Malleable Proofs, Distributed Key Generation, Performance.

1 Introduction

Since Chaum’s seminal work [1], many cryptographic voting schemes have been
proposed aiming for secret and verifiable elections. Beside blind signatures and
homomorphic tallying, the use of mixnets has gained lots of interest in the re-
search community. The success of the mix-based approach is largely due to re-
cent mathematical achievements with respect to verifiable mixnets for large-scale
elections, e.g., Wikström [2–4], Lipmaa and Zhang [5], and Bayer and Groth [6].
In the mix-based approach, the election is usually conducted in the following
way: Voters individually encrypt their votes with the public key of the election
authority and publish the resulting ciphertexts on a bulletin board. After the
declared voting phase, a mixnet is used to anonymize all encrypted votes from

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 176–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards a Practical Cryptographic Voting Scheme 177

eligible voters such that after the anonymization process, individual, encrypted
votes can be decrypted by the election authority.

Mixnets are instantiated by independent mix nodes. Each mix node in turn
verifies the proofs of all predecessor mix nodes, re-randomises and shuffles the
encrypted votes, and adds a non-interactive zero-knowledge proof to its output
attesting that it has shuffled correctly. The election authority is instantiated
by a set of decryptors (often referred to as trustees). After the anonymization
process, each decryptor partially decrypts the list of anonymized ciphertexts and
generates a proof that it has partially decrypted this list correctly. Individual
plaintexts can be reconstructed by combining a threshold number of partial
decryptions. These plaintext votes are used afterwards to calculate the election
result. After the tallying, observers (who might be individual voters) verify all
proofs generated by all mix nodes and decryptors to convince themselves that
the announced election result is correct. The amount of data to be processed
by each observer depends linearly on the number of mix nodes, the number of
decryptors, and the number of voters.

At Eurocrypt 2012, Chase et al. invented the concept of malleable proof sys-
tems [7]. Rather than generating individual and independent proofs, malleable
proofs allow an individual mix node i+1 to “update” the zero-knowledge proof
πi of mix node i and to add another permutation and randomisation, resulting
in proof πi+1. The updated proof is of the same general form as the original one,
only the constants having changed. Therefore, the amount of data to be verified
only increases linearly with the number of decryptors and voters but is indepen-
dent of the number of mixers. Chase et al. propose using the DLIN encryption
scheme [8] and Groth-Sahai proofs [9] in the DLIN setting to instantiate their
construction. The appeal of malleable proofs has motivated work published re-
cently at PKC 2013 [10]. In this work, the authors adapt malleable proofs to
distributed decryption and thereby instantiate a cryptographic voting scheme
(henceforth referred to as the CKLM13 scheme), which forms the basis of the
current work. In CKLM13, the amount of data to be processed by each observer
only increases linearly with the number of voters.

Our Contribution. While the underlying ideas and constructions are of great
theoretical value, so far the practical use of malleable proofs within cryptographic
voting schemes was beyond the scope of the work by Chase et al. [10]. Specifi-
cally, two practical questions remain open, which are addressed in our paper. 1)
Though proposing a cryptographic voting scheme based on malleable proofs, to
date there is no distributed key generation protocol for DLIN known and there-
fore CKLM13 implicitly relies on a single trusted key distribution party. 2) The
concept and the instantiation of malleable proofs for cryptographic voting have
been highly theoretical and an evaluation of the real-world feasibility of tallying
and verification in terms of computational efficiency is pending.

To address the first problem, we propose a distributed key generation protocol
for the DLIN encryption scheme. This allows us to extend the CKLM13 scheme
to a fully distributed cryptographic voting scheme. We do so by adapting a multi-
party computation (MPC) protocol invented by Smart and Geisler [11] to the

178 D. Bernhard, S. Neumann, and M. Volkamer

DLIN encryption scheme. The distributed key generation protocol comes at the
cost of the assumption that at most t < n/3 election administrators (decryptors)
are actively cheating. While we concede that cryptographic elections should be
verifiable even if all administrators are dishonest, we point out that this problem
has not previously been addressed at all for the DLIN encryption scheme: to the
best of our knowledge, no DLIN key generation algorithm has been proposed to
date that is secure against even one dishonest participant.

In the remainder of this work, we refer to this extended version of CKLM13
as our modified CKLM13 scheme. To answer the second question, we investigate
the CKLM13 scheme in detail and expand its abstract description. This allows us
to identify and count elementary operations. Using timings from the MIRACL
pairing-based cryptography library [12], we draw conclusions about the real-
world feasibility of cryptographic voting schemes based on malleable proofs.
With reference to the election statistics of Darmstadt, Germany, we conclude
that the postal voting process can be replaced by cryptographic voting based on
malleable proofs, while on a city level the application of cryptographic voting
based on malleable proofs is beyond practical use.

Structure. The remainder of this work is structured as follows: In Section 2,
we provide the reader with preliminaries used throughout the paper. Section
3 is dedicated to the construction of a distributed key generation protocol for
the DLIN encryption scheme. Thereafter, in Section 4, we analyze the Groth-
Sahai proofs used in CKLM13 with respect to elementary operations. Based on
implementation timings of the underlying cryptography, we draw conclusions
about the feasibility of the modified scheme. Finally, we conclude our paper and
give directions for future work in Section 5.

2 Preliminaries

In this section we introduce the notation and cryptographic concepts that we
use in our work.

Notation. We denote assignment of value a to variable x by x ← a; assigning
to x a value chosen uniformly at random from set S we denote by x � S. In
cryptographic groups we denote group elements by capital letters and integers
(modulo the group order) by small ones. Algorithm names are set in SansSerif.

Public-Key Threshold Encryption. A public-key encryption scheme is a
triple of algorithms (KeyGen,Encrypt,Decrypt) where KeyGen takes a security
parameter as input and produces a public and a secret key; Encrypt takes a
message and a public key and produces a ciphertext and Decrypt is deterministic,
takes a secret key and a ciphertext as input and returns a message.

A threshold encryption scheme is characterised by two parameters, a number
of decryptors n and a security threshold t < n. Informally, the properties we
want are that any subset of at least t+ 1 decryptors can jointly decrypt cipher-
texts but no set of size at most t can gain any information from ciphertexts. In
particular, at no point in a setup–encryption–decryption cycle is any one party or

Towards a Practical Cryptographic Voting Scheme 179

subset of size at most t in possession of a full decryption key. Following Fouque,
Pointcheval and Stern [13], a threshold key generation scheme is defined by a 4-
tuple of algorithms1: KeyGen takes a security parameter as input and outputs a
public key pk and n key shares ski for the decryptors; Encrypt takes a message m
and a public key pk and outputs a ciphertext c; Decrypt takes a ciphertext c and
a key share ski and outputs a decryption share di; Combine takes a ciphertext
c and a set of at least t + 1 decryption shares di and outputs either a message
m or the special symbol ⊥ to denote failure. For any public key pk and set of
key shares (ski)

n
i=1 produced by KeyGen, for any message m and any ciphertext

c produced by Encrypt on m and pk and for any subset S ⊆ {1, . . . , n} of size
|S| = t + 1 it must hold that if for all s ∈ S we compute ds ← Decrypt(c, xs)
then Combine(c, (ds)s∈S) returns m. This property is known as correctness.

DLIN Encryption. As opposed to many other cryptographic voting schemes,
CKLM13 builds upon the DLIN (also known as BBS after its authors [8]) en-
cryption scheme, which relies on the weaker decisional linear Diffie-Hellman
(DLIN) assumption rather than the decisional Diffie-Hellman (DDH) assump-
tion to achieve IND-CPA security. The scheme lives in a cyclic group G with
generator G of some order q, a prime power.

A secret key is a pair (x, y) � Zq × Zq and the corresponding public key
is (X,Y) = (Gx, Gy). To encrypt a M ∈ G one picks a pair (r, s) � Zq ×
Zq and computes (A,B,C) ← (Xr, Y s,MGr+s). To decrypt one recomputes
M as C/(A1/xB1/y) where the inversions are taken over the field Fq. DLIN
encryption, like ElGamal, is homomorphic: the componentwise group operation
on two ciphertexts is a ciphertext for the group operation on the two underlying
messages. This property allows a ciphertext to be re-randomised by adding an
encryption of the neutral element in G which forms the basis for the use of DLIN
encryption in mixnets. Creating a threshold version of DLIN encryption is the
subject of Section 3.

Pairing-Based Cryptography. Apairing group is a triple of groups (G1,G2,GT)
of some order q with an efficiently computable bilinear, non-degenerate map e :
G1 × G2 → GT i.e. for generators G1, G2 of G1,G2 respectively and integers a, b
we have e(aG1, bG2) = e(G1, G2)

ab and e(G1, G2) is again a generator of GT .
The only known implementations of such groups that are useful for cryptog-

raphy are based on elliptic curves; such an implementation is called symmetric
if G1 = G2 and asymmetric if the two groups are different and no efficient
homomorphisms are known between them.

Shamir’s Secret Sharing Scheme. Shamir’s secret sharing scheme [14] allows
a party to share a secret among any n parties such that any subset of t ≤ n
parties can reconstruct the secret but any smaller subset gains no information
about the secret. Each party obtains as a share the value of a degree-t bounded
polynomial at a distinct index over a suitable finite field such that the secret is

1 The original definition also contains verification keys, which we view as part of the
public key, and mentions decryption proofs explicitly which we view as part of the
decryption shares.

180 D. Bernhard, S. Neumann, and M. Volkamer

the value at some other index (usually 0). Given any t shares, the secret can be
reconstructed by interpolation using Lagrange coefficients.

3 Key Generation with Multi-party Computation

Voting is among the most security-sensitive applications that can be conducted
over the Internet. Therefore, complex trust distribution concepts are in place to
preventmalicious collaborations among internal/external attackers from violating
the desired security properties. As opposed to ElGamal, which is often considered
the standard in the cryptographic voting community, theDLIN encryption scheme
does not come with a distributed key generation protocol. Hence, the CKLM13
scheme [10] implicitly relies on a trusted key distribution party, which forms a cru-
cial security bottleneck of the overall scheme. This section is organised as follows:
First, we explain the distinction between a key generation algorithm and a proto-
col and show why we want the latter, but for DLIN this does not follow directly
from the former. Next, we give the key generation algorithm for DLIN, introduce
multi-party computation and deploy it to turn the algorithm into a protocol. We
analyse our new protocol with respect to efficiency and security. Finally, we show
how our protocol greatly simplifies the threshold decryption operation.

3.1 Security of Threshold Encryption: Algorithm versus Protocol

The definition of threshold encryption (for example, [13]) only postulates a key
generation algorithm which gives security if it is run by a trusted party who
then securely distributes the key shares to the decryptors. In practice, what
is required however is a key generation protocol that the decryptors can run
jointly and that, following our informal specification, never puts any one party
in possession of a key with which it could decrypt messages directly [16].

For the ElGamal encryption scheme, constructing a threshold key generation
protocol is comparatively easy although not without subtleties [17]. This may
be a reason that the distinction between threshold key generation algorithms
and protocols is usually not made in the literature. For DLIN however, it is not
an easy task to construct a secure key generation protocol from the algorithm,
without a trusted party.

DLIN encryption uses two public keys X and Y . Since their use is completely
symmetric, we discuss the problem relating only to a single public key X = Gx

for some secret x. During decryption, one raises a ciphertext component A to the
power 1/x. The threshold key generation algorithm therefore picks an x, creates
a public key Gx, computes x̄← 1/x and creates shares x̄i of x̄ — the decryptors
get shares of the inverse of the element used as the exponent of the public key.
One could try and build a protocol that starts with all parties generating shares
of x and interpolating Gx. However, the shares of the inverse 1/x are not the
same as the inverses of shares of x and there is no easy method to obtain one from
the other. One might think that one could simply start with shares of x̄ = 1/x
instead but then one cannot easily compute the public key which is now G1/x̄.

Towards a Practical Cryptographic Voting Scheme 181

3.2 A Threshold Algorithm

To construct a threshold scheme for DLIN encryption, we start with Shamir’s
secret sharing scheme. This gives a key generation algorithm but not yet a pro-
tocol: pick a DLIN key pair and Shamir-share the decryption keys. Shamir’s
scheme has homomorphic properties that allow shares to be used for decryption
without ever reconstructing the key. In more detail, if G is a cyclic group of order
q with generator G and (xi)i are Shamir-shares of a secret x in Fq then (Gxi)i
are Shamir-shares of Gx since G can be viewed as a vector space over Fq and
the polynomial p defined by the shares can be lifted from Fq to G. This leads to
the following threshold DLIN scheme.

KeyGen (algorithm.) For given t and n, pick secret keys x, y � Fq. Compute
x̄← 1/x and ȳ ← 1/y over Fq. Create a (t, n) Shamir-sharing of x̄ and give
each decryptor her share x̄i; repeat for ȳ. Output the public key (X,Y) ←
(Gx, Gy).

Encrypt Like for non-threshold DLIN encryption.
Decrypt(A,B,C) For the decryptor with shares x̄i, ȳi, create a decryption share

as Di ← Ax̄iBȳi .
Combine Given any set of at least t + 1 decryption shares (Ds)s∈S,|S|>t, inter-

polate D as the value at 0 of the degree-t-bounded polynomial p such that
p(s) = Ds for all s ∈ S. The final decryption is M ← C/D.

This scheme still leaves open two questions. The first is how to check if the
values Ds provided by the decryptors are correct - Chase et al. [10] suggest
using malleable proofs here. Our solution to the second problem will remove the
need for such proofs completely. The second problem to which Chase et al. do
not provide a solution is, as mentioned, how to turn the key generation algorithm
above into a protocol and eliminate the trusted party that generates keys.

3.3 Multi-party Computation

Multi-Party Computation (MPC) [18] is the theory of cryptographic protocols
in which a set of parties {Pi}, each holding some secret input xi, jointly compute
some function (yi)i = f((xi)i) of their inputs in a manner as secure as if everyone
sent their xi to a trusted party who computed f and returned the appropriate
yi to each Pi.

Our starting point is the MPC protocol by Smart and Geisler [11] for identity-
based schemes that require exponent inversion. The key technique in this pro-
tocol is a development of an idea by Bar-Ilan and Beaver [19] for group element
inversion. Smart and Geisler’s protocol was originally given for distributed de-
cryption in a class of identity-based encryption schemes making use of exponent
inversion; another protocol by Kate and Goldberg [20] achieves distributed key
generation for this class of schemes but their techniques do not translate into our
scenario: in IBE, one party ends up in possession of a decryption key whereas in
an election, no-one should ever be able to decrypt individual ballots.

182 D. Bernhard, S. Neumann, and M. Volkamer

We make two minor modifications to the Smart-Geisler protocol. First, we
adapt the protocol to DLIN encryption. Secondly, the original protocol runs a
fast key generation followed by comparatively costly MPC for decryption whereas
we are considering a scenario in which decryption operations are much more time-
critical than key generation so we prefer to use MPC to generate keys and a faster
decryption operation. (Technically, Smart and Geisler propose generating shares
of x where the public key is X = Gx and using MPC to raise an element to 1/x
at decryption time; we generate shares of x̄ = 1/x for decryption and use MPC
to compute the public key as G1/x̄.)

Security Threshold. Our protocol, as an artifact of the MPC protocol that we
use, requires a security threshold t < n/3. We assume that broadcasting a value
to all parties and sending a value privately to another party are possible. Our
protocol is then secure against up to t parties actively cheating i.e. sending false
values during the protocol. Constructing such a protocol for larger t we leave as
an open problem. In return for this restriction on the size of t, we obtain not
only the first threshold DLIN key generation protocol but also a very efficient
one that allows us to dispense with the zero-knowledge proofs that threshold
schemes usually require at decryption time.

Secure Interpolation. When reconstructing a degree-t Shamir-shared secret,
as long as at least t + 1 of the shares are correct the presence of any incorrect
shares can be detected if the following secure interpolation procedure is used.
Pick a set S ⊆ {1, . . . , n} of any t + 1 indices and interpolate the secret from
these (as the value at 0 of the degree-t bounded polynomial going through (i, xi)
for all i ∈ S, where xi is the share at index i). Next, again using the set S
interpolate the values of the polynomial at the indices of all other shares outside
S and check that these points correspond to the actual shares received. If any
of these checks fail, abort the setup protocol.

3.4 Our Protocol

Our MPC protocol will let each decryptor obtain a decryption key share x̄i and
all decryptors will obtain a public key X = Gx where x̄ = 1/x. (To obtain the
shares for the other public key component Y too, one runs the protocol twice
in parallel.) We give the protocol from the point of view of a party Pi. In our
protocol, we denote by x(j) a value received from party j, either as a broadcast
or a private message; for j = i this refers to the local variable x of party Pi (this
notation allows us to iterate or sum over indices). We denote values that are
common to all players with a star, i.e. u∗.

PRSS. We begin by setting up a Pseudo-Random Secret Sharing (PRSS) [15].
Details are in the full version of our paper. This allows all parties to repeatedly
draw values xl for any label l that form a sharing of some fresh random secret
x∗l . This need only be done once for each set of decryptors; they can generate
many sets of keys with the same PRSS by picking fresh labels each time.

Towards a Practical Cryptographic Voting Scheme 183

Decryption Key Shares. Once the PRSS is set up, draw a value x̄ that will
be your decryption key share. Also draw a further value r. (W.l.o.g. the labels
for x̄ and r are known to all parties.) Compute2 u ← x̄ · r. Since x̄ and r were
both degree-t shares of their respective secrets, the shares u are now degree-2t
shares of a value u∗.

Round 1: Sharing u. Locally create a degree-t sharing of u and send each
Pj her share uj . This can be achieved by letting c0 ← u and picking random

coefficients c1, . . . , ct � Zq to define a polynomial p(x) =
∑t

k=0 ckx
k and letting

uj ← p(j) for all j.

Round 2: Interpolating u′. Collect shares u(j) from all other parties and inter-
polate u′ from the values (u(j))nj=1 as the value at zero of a polynomial of degree
2t. This and all following interpolations must be done securely in the sense defined
above, i.e. check that all received shares lie on a polynomial of correct degree and
abort the protocol if any checks fail. Broadcast your value of u′ to all parties.

Round 3: Reconstructing u∗. Receive values u
′(j) from all other players and

interpolate u∗ from these values. All parties now hold a common value u∗ which
is the product of the secrets r∗ and x̄∗ defined by the shares r and x̄ respectively.
Compute your public key share X ← Gr/u∗

and broadcast this to all parties.

Round 4: Public Key. Receive sharesX(j) from all parties and interpolateX∗

from these values.X∗ is the public key.We repeat that interpolation must be done
securely, i.e. checking all other shares against the subset used for interpolation.

To generate the two public keys forDLIN encryption (X∗ andY ∗ in the notation
of this section) the respective rounds of the two protocols can be combined, giving
the same communication cost (number of messages) as for a single public key.

3.5 Efficiency and Security

Efficiency. It is well-known that MPC can in theory be used to compute any
functionality yet in practice, the resulting protocols are too slow to be usable,
usually due to a massive communication overhead. Our MPC protocol has a
communication cost (in number of rounds or messages sent) equivalent to one
single MPC multiplication, even for both public keys X and Y since they can be
computed in parallel. This is definitely efficient enough to be run in practice: the
cost of using MPC for the setup is dwarfed by the cost of malleable proofs so we
expect key generation to account for only a small proportion of the running time
of the whole protocol. Moreover, the PRSS setup which is the most expensive
part of the setup can be run once for a group of parties and the PRSS obtained
can then be re-used for many elections, generating new keys using fresh labels
each time. Further, setup is a much less time-critical operation than tallying in
a typical deployment of a voting scheme. Therefore, we omit a full analysis of
the computational cost of the setup protocol.

2 All operations take place in the ring Zq so “mod q” is implicit in any operation.

184 D. Bernhard, S. Neumann, and M. Volkamer

Security. Textbook MPC theory says that our MPC protocol is secure against
passive adversaries, i.e. who do not send false values during the protocol. How-
ever, the simple nature of our protocol together with the security threshold
t < n/3 yields active security for free. The only operations which parties per-
form on values that they have received from other, potentially malicious parties
are interpolations of polynomials of degree at most 2t. Therefore, since for each
such interpolation there are at least 2t+ 1 correct shares, the malicious parties
cannot send incorrect values without causing the protocol to abort. It is impor-
tant that all interpolations are done securely, i.e. after computing the desired
value from any set S of t+1 (or 2t+1) shares it must be verified that all further
shares lie on the polynomial defined by the shares in S of the correct degree-
bound. We do not care about resilience of the setup protocol against malicious
parties causing the protocol to abort: in an election scenario, if a decryptor is
caught cheating during key generation then one will probably want to choose a
new decryptor and re-run the whole setup.

3.6 Threshold Decryption

To decrypt a ciphertext (A,B,C), each decryptor Pi holding shares x̄i and ȳi
publishes Di = Ax̄iBȳi . This is again a degree-t Shamir-share of D = A1/xB1/y.
To combine decryption shares and complete a decryption, one interpolates D
securely from any t + 1 shares (Di)i (i.e. checks that all further shares lie on
the polynomial defined by the ones used to decrypt). This secure interpolation
ensures correctness of the decrypted result if t < n/3. On the other side, at
the current state, correctness of the election result cannot be ensured against
thresholds t ≥ n/3. As a consequence, zero-knowledge proofs do not provide any
benefit at decryption time, which allows us to discard them at decryption time.

If any shares appear incorrect then one can isolate the incorrect shares using
Reed-Solomon decoding [21] and still recover the correct decryption as long as
t < n/3, so up to t malicious decryptors can neither cause a false result to
be announced nor prevent the correct result from being computed. This is a
significant improvement of the efficiency of the decryption process compared to
the original CKLM13 scheme (in which it is proposed using another round of
malleable proofs) and could be applied to other voting schemes as well.

4 Computational Analysis of the Proofs in CKLM13

In this section we analyze the computational cost of the malleable proofs un-
derlying the mixnet in the CKLM13 scheme [10]. Since Chase et al. only give
an abstract description of their proofs we need to make a reasonable choice of
a concrete setting in which to instantiate them. The only known implementa-
tion that yields somewhat efficient malleable proofs is that of Groth-Sahai (GS)
proofs [9] in a pairing group; this is again an abstract concept for which we need
to choose specific groups.

Towards a Practical Cryptographic Voting Scheme 185

4.1 Choice of Setting

Elliptic curves form the basis of all known implementations of pairing groups
which are widely believed to have cryptographic security properties. For such
groups, the relevant parameters are q, the logarithm of the group size (roughly:
the bit length of group elements) and k, the embedding degree of the group [22].
As a rule of thumb, the cost of operations in such a group is proportional to
q2 whereas security is proportional to q · k; a rough estimate is that for given
q, k, the security level is equivalent to a qk/24 bit symmetric key. It is clear
that choosing k as large as possible results in the greatest efficiency at a desired
security level. The parameter k is determined by details of the construction of
the underlying elliptic curve; the best known choice is a Barreto-Naehrig (BN)
curve [23] which achieves k = 12. For this reason, BN curves are the standard
choice for implementing pairing-based cryptography nowadays. In this case, to
get the equivalent of 128-bit security [24] requires group elements of bit-length
q = 256 bits.

Choosing BN curves gives an asymmetric pairing group, i.e. a triple of groups
(G1,G2,GT) with a pairing e : G1 × G2 → GT such that no efficient homo-
morphisms between G1 and G2 are known in either direction3. However, the
CKLM13 scheme is given in a symmetric setting where G1 = G2 so to deploy
it on a BN curve requires some modifications that are well established in the
literature. Despite the cost of additional equations incurred in the transforma-
tion from symmetric to asymmetric settings, the resulting asymmetric protocols
usually greatly outperform their symmetric ancestors. We therefore choose to
analyse the cost of the CKLM13 malleable proofs in a q = 256 bit BN curve
with the necessary modifications to the protocol.

For CKLM13, we require two modifications. First, instead of the DLIN as-
sumption (which only applies to a single group), we require what is technically
known as SDLIN (symmetric DLIN) [25], the assumption simply states that
DLIN holds in both groups G1 and G2 of the setting. This is commonly be-
lieved to be the case in groups derived from elliptic curves and the switch from
DLIN to SDLIN does not change the protocol. Secondly, since we are using an
asymmetric setting, any group element that appears both in groups G1 and
G2 in the symmetric protocol needs to be replaced by a pair of elements in the
asymmetric protocol and “guarded” by an additional equation in the proof. This
technique is standard in converting pairing-based schemes from the symmetric
to the asymmetric setting.

4.2 Overview of Groth-Sahai Proofs

Groth-Sahai (GS) proofs are based on pairing groups and can be instantiated
under several assumptions for several types of equations. We assume an initial
set of parameters is given that describe groups (G1,G2,GT) of some order p a

3 All three groups are in fact isomorphic but security stems in part from the fact that
no efficient way to compute isomorphisms between G1 and G2 is known.

186 D. Bernhard, S. Neumann, and M. Volkamer

prime or prime power, with generators (G1, G2, GT) respectively and a bilinear
map e : G1×G2 → GT . This setting is provided by BN curves; we can abstract
away any further details of the curves for the moment. Of interest to us are so-
called Pairing Product Equations (PPE) under the SDLIN security assumption.
A PPE is an equation with vectors of variables a over G1 and b over G2 of the
form

v • b · a •w · a • Γ • b = t

where · is the group operation in GT and • is a scalar product over the pairing,
i.e. a•b :=

∏
i e(ai, bi) and a•Γ •b :=

∏
i

∏
j e(ai, bj)

Γij . v,w and t are constants
in G1,G2 and GT respectively.

A GS proof proves that the prover knows an assignment of values to a number
of variables which satisfies a set of equations. These values are often known as
a witness. The prover starts by making a commitment to each value and then
produces a proof pair4of elements for each equation. The entire proof consists of
a commitment for every variable appearing in the equations and a proof pair for
each equation. Verifying a GS proof involves evaluating a verification equation
for each given equation involving the commitments to the variables, the constants
in the original equation and the proof pair.

Mathematical Overview. In this section we give some of the mathematical
ideas necessary to understand how our costing of GS proofs works; the reader
can skip the mathematical overview if so inclined without missing the essence of
our paper.

The SDLIN GS proofs [25] use modules B1 := (G1)
3, B2 := (G2)

3, BT :=
(GT)

9 that can be seen as groups of vectors and matrices over the original
groups and inherit a bilinear pairing eB : B1×B2 → BT . Thus, a basic operation
(addition or multiplication) in a module costs 3 respectively 9 operations in the
underlying group; the pairing eB costs 9 e-pairings.

All variables must be committed to; for the vector a over G1 this is done by
picking a matrix R1 of random integers modulo p and computing commitments
c ← ι(a) + R1 · U1 where ι is an inclusion map from G1 to B1 and U1 is a
matrix of constants defined in the setup information. The process for b over G2

is analogous.
A GS proof of a PPE in the DLIN setting is a pair (θ, π) ∈ (B1)

3 × (B2)
3

computed according to the following equations.

π ← R�1 ι2(w) +R�1 Γι2(b) +R�1 ΓR2U2 − T�U2 (Π)

θ ← R�2 ι1(v) +R�2 Γ
�ι1(a) + TU1 (Θ)

Here R1, R2 are the random elements used to commit to elements in a, b re-
spectively, T is a matrix of random integers modulo p chosen to randomise the
proof of this PPE and U1, U2 are matrices of constants defined in the setup
information.
4 This is our terminology. Such a pair is commonly just called a “proof” but we wish
to distinguish between the elements associated with a particular equation and the
proof as a whole.

Towards a Practical Cryptographic Voting Scheme 187

Verification of such a proof involves checking the following equation. Here c,d
are the commitments to a, b respectively and ⊗ is the scalar product over the
pairing eB in the B-modules.

ι1(v)⊗ d · c⊗ ι2(w) · c⊗ Γd
?
= ιT (t) · U1 ⊗ π · θ ⊗ U2 (V)

To count the number of operations in the CKLM13 scheme, we must deal with
several small issues. First, the original paper describes the protocol in terms of
a set of equations that are “almost” PPEs — almost, because they use abbre-
viations in their notation and our first step is to expand these into actual PPE
that can be processed by the GS proof system. Secondly, we make the necessary
changes to deploy the protocol in an asymmetric setting. Thirdly, starting with
the equations to create and verify proofs of PPE we optimise them for the spe-
cific equations in CKLM13, i.e. we remove terms that cancel out or have all-zero
coefficients.

4.3 Results

We let L be the number of votes shuffled in a run of the mixnet. Of the 4L
variables and 11 equations given in CKLM13, equations 1–4 are simple PPE, 5
and 6 together require L supporting variables and equations to expand into a
full PPE, 7 and 8 are linear PPE, 9–11 are quantified (∀i : 1 ≤ i ≤ L) so are
in fact L PPE each. To map these into an asymmetric setting requires another
2L supporting variables and 4L supporting equations. All together we end up
with 8 + 8L equations of which the first 8 have L-fold products each and the
remaining 8L have only constant-size products; in total we have 4L variables in
G1 and 7L in G2.

Analysing the equations and taking into account components that have all-
zero coefficients (which therefore contribute nothing to the cost of computation),
we find an upper bound on the computation cost as presented in Table 1. De-
tailed calculations are in the full version of our paper.

Table 1. Number of elementary operations in proof creation and verification in
CKLM13

Task G1 mult. G2 mult. G1 op. G2 op. GT op. Pairing

Create proof 163L + 72 183L+ 72 134L+ 48 167L + 48
Verify proof 657L+ 252 657L + 324

For the remainder of this work, we refrain from considering group operations in
G1, G2, and GT , because these are about the factor bit-length of group elements
faster than multiplications [26] and consequently do not influence the feasibility
analysis significantly. The following formula allows us to estimate the running
time of an individual mix node and the voter’s verification:

188 D. Bernhard, S. Neumann, and M. Volkamer

Table 2. Operation timings for Barreto-Naehrig curve over 256-bit prime fields with
embedding degree 12 with the MIRACL library and the Beuchat et al. implementation

Elementary Operation MIRACL Beuchat et al.

G1 Multiplication 0.22 ms n.a.
G2 Multiplication 0.44 ms n.a.
Pairing 2.32 ms 0.39 ms

s(L) = (163× L+ 72)× G1 Multiplication Time +

(183× L+ 72)×G2 Multiplication Time +

(657× L+ 324)× Pairing Time

Optimisations. We stress that our results are only an upper bound on the cost
of computing a CKLM13 proof as there are several feasible optimisations that
we have not yet considered. We mention some possible optimisations in the full
version of our paper.

Timings. To the best of our knowledge, the MIRACL cryptography C library
[12] is the most established open-source library to support BN curves. Recent
timings taken on a 2.4 GHz Intel i5 520M processor [27] lead to the results
provided in Table 2 (second column). The fastest claimed results for pairings on
256-bit BN curves which we are aware of are from Beuchat et al. [28, 29] who
compute a pairing in 0.39 ms, compared to 2.32 ms currently achievable with
MIRACL. However, times for multiplications using their implementation are
not available (ref. to Table 2 third column). As pairings are the most expensive
operation in the CKLM13 scheme, in the following, we hypothetically assume
Beuchat et al.’s pairing time of 0.39 ms, while all other costs are assumed to be
equal to MIRACL. The hypothetical timings for Beuchat et al.’ implementation
are considered in parallel to the MIRACL timings.

To bring these numbers into relation to real-world elections, we consider cryp-
tographic voting as substitution for postal voting in the German case. In the
German federal election 2009, 62.2 millions citizens were eligible to vote [30].
On average, electoral districts in Darmstadt, Germany have a size of 1100 vot-
ers, while for postal votes on average 3.5 electoral districts are aggregated. In
2009, 21.4% of the eligible voters cast their vote via postal voting. Consider-
ing all eligible voters, this results in 13.3 millions postal votes, while for each
postal voting district in Darmstadt, Germany, this results in 824 postal votes.
Table 3 summarizes the expected running times for one mix node both for the
MIRACL library and the hypothetical Beuchat et al. implementation. It should
be noted that the running time for the voter’s verification is close to the run-
ning time of an individual mix node. These timings show that malleable proof
based cryptographic voting schemes are feasible for a moderate number of voters,
however their efficiency does not compare with Wikström’s work or Bayer and
Groth’s work that achieve mix proofs and their verification for 100.000 ElGamal
ciphertexts in around 2 minutes [3, 6].

Towards a Practical Cryptographic Voting Scheme 189

Table 3. Expected running times for individual mix nodes in the CKLM13 scheme
with different numbers of voters

Number of voters MIRACL Beuchat et al.

10 17.2 s 3.9 s
824 (Electoral District) ≈ 22, 5 min ≈ 5.1 min
1.000 ≈ 27, 3 min ≈ 6.2 min
100.000 ≈ 45 h ≈ 10 h
10.000.000 ≈ 190 d ≈ 43 d
13.300.000 (German Federal Election) ≈ 252 d ≈ 57 d

5 Conclusion

In this work, we build upon the CKLM13 cryptographic voting scheme [10],
which is based on the concept of malleable proofs invented in [7]. As opposed
to existing mix-based approaches, CKLM13 allows to generate verification data
which is independent of the number of mix nodes and the number of decryptors
involved in the tallying process. However, so far the theoretical innovations are
far from practical use. To bridge the gap between innovation and practice, in this
paper, we have addressed two crucial questions which remain open in CKLM13.
First, we propose a distributed key generation protocol for the DLIN encryption
scheme based upon a multi-party computation protocol due to Smart and Geisler
[11] and therefore succeed in ensuring security against up to n/3 misbehaving
participants. By construction of the protocol, we do not achieve security against
n/3 or more dishonest decryptors whatever happens in the decryption phase;
for fewer than n/3 dishonest decryptors however the correctness of the election
result is verifiable even without any proofs of correct decryption, allowing us
to omit them for the time being. Secondly, we investigate CKLM13 in detail
and identify elementary operations underlying their constructions. We count the
number of such operations used for a single mix node. Based on timings from
the MIRACL library, we calculate the running time for single mix nodes, which
is almost the same as the running time of a voter verifying the election result.

We base our conclusion upon data obtained from the German Federal election
in 2009. It turns out that the replacement of postal voting by cryptographic
voting based on malleable proofs would be feasible on an electoral district level.
Assuming that three mix nodes are in place with an average number of 824
absentee voters, tallying the election and the voter’s verification of the result can
be finalized in 90 minutes. This corresponds to the time needed to tally the postal
votes in Darmstadt, Germany [31]. However, the results obtained in this work
also show that the application of large-scale malleable proof based cryptographic
voting is not feasible today. The tallying process on a city level (100.000 eligible
voters) would require more mix nodes to be involved. Considering malleable
proof based cryptographic voting on city level with five mix nodes and the voter’s
verification would result in a running time close to two weeks.

190 D. Bernhard, S. Neumann, and M. Volkamer

We guide future research in several directions: The constructed distributed key
generation protocol for the DLIN encryption scheme is based on the assumption
that t < n/3 participants are actively cheating (for both privacy and verifiabil-
ity). Privacy against up to t < n/2 cheating administrators should be possible
with standard MPC techniques. According to Smart [32], implementing our key
generation protocol on top of SPDZ [33], for which a practical implementation
exists, should even give privacy and verifiability against up to t = n− 1 cheaters
[32]. For verifiability against even n out of n cheating decryptors, we believe
that this is achievable more cheaply than by using another round of malleable
proofs by exploiting the pairing operation directly, but leave this idea for future
work. Either way, the malleable proofs in the mixnet constitute the dominating
cost of the CKLM13 protocol (should one wish to use malleable proofs of correct
decryption, these can be based on a much simpler set of GS equations). This
justifies our choice to restrict our formal analysis of computational costs in the
CKLM13 protocol to the mixing phase. Even though carefully designed, we leave
the analysis and the correctness proof of the constructed protocol as a task for
future work.

The feasibility estimations of this work are an upper bound on the real cost
in a full implemented version of the modified CKLM13 scheme. For instance,
expressions of the form

∑l
i=1 viXi in a group Gj, j ∈ {1, 2} we counted as l

products and l − 1 sums, yet algorithms exist [22] to perform such operations
more efficiently. One might also consider applying batch techniques [34] because
proofs have large numbers of equations of very similar form. Thereby, the number
of pairings required to verify a proof might be significantly reduced. Finally, there
exist cryptographic libraries providing better performance than MIRACL. The
works of Beuchat et al. [28, 29] show that pairing times can be reduced to 1/5 of
the MIRACL timings, which would speed up the mixing and verification process
by a factor 5. For the future, Beuchat et al.’s implementation should be extended
towards a full cryptographic library such that ultimately an cryptographic voting
scheme based on malleable proofs can be deployed.

Acknowledgements. The authors would like to thank Dr. Essam Ghadafi for
comments on Groth-Sahai proofs and suggesting some optimisations, Prof. Nigel
P. Smart and Dr. Ashish Choudhary for comments on multi-party computation,
Markulf Kohlweiss for comments on the design of the CKLM12/13 protocols and
Dr. Hugo Jonker for organising a PhD workshop on voting in 2012 at which the
authors of this paper met and came up with the ideas for this paper. Finally, the
authors would like to thank the anonymous reviewers for their helpful comments.

This work has been supported in part by EPSRC via grant EP/H043454/1,
in part by the German Science foundation (DFG) via the project ”ModIWa2 -
Juristisch-informatische Modellierung von Internetwahlen”, and in part by the
German Federal Ministry of Education and Research (BMBF) via the project
”BoRoVo - BoardRoomVoting”.

Towards a Practical Cryptographic Voting Scheme 191

References

1. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2), 84–90 (1981)

2. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009)

3. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidelberg
(2010)

4. Wikström, D.: A commitment-consistent proof of a shuffle. Cryptology ePrint
Archive, Report 2011/168 (2011), http://eprint.iacr.org/

5. Lipmaa, H., Zhang, B.: A More Efficient Computationally Sound Non-Interactive
Zero-Knowledge Shuffle Argument. IACR Cryptology ePrint Archive, 394 (2011)

6. Bayer, S., Groth, J.: Efficient Zero-Knowledge Argument for Correctness of a Shuf-
fle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012)

7. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable Proof Sys-
tems and Applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)

8. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

10. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Verifiable Elections
That Scale for Free. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 479–496. Springer, Heidelberg (2013)

11. Geisler, M., Smart, N.P.: Distributing the Key Distribution Centre in Sakai–
Kasahara Based Systems. In: Parker, M.G. (ed.) Cryptography and Coding 2009.
LNCS, vol. 5921, pp. 252–262. Springer, Heidelberg (2009)

12. CertiVox: MIRACL Crypto SDK, https://certivox.com/solutions/
miracl-crypto-sdk/ (accessed March 22, 2013)

13. Fouque, P.A., Poupard, G., Stern, J.: Sharing Decryption in the Context of Voting
or Lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

14. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
15. Cramer, R., Damg̊ard, I., Ishai, Y.: Share Conversion, Pseudorandom Secret-

Sharing and Applications to Secure Computation. In: Kilian, J. (ed.) TCC 2005.
LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

16. Pedersen, T.: A Threshold Cryptosystem without a Trusted Party. In: Davies, D.W.
(ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)

17. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Gen-
eration for Discrete-Log Based Cryptosystems. In: Stern, J. (ed.) EUROCRYPT
1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

18. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty Computation, an Introduction,
http://www.cs.au.dk/~jbn/smc.pdf (accessed March 22, 2013)

http://eprint.iacr.org/
https://certivox.com/solutions/miracl-crypto-sdk/
https://certivox.com/solutions/miracl-crypto-sdk/
http://www.cs.au.dk/~jbn/smc.pdf

192 D. Bernhard, S. Neumann, and M. Volkamer

19. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Proceedings of the Eighth Annual ACM Sym-
posium on Principles of Distributed Computing, Edmonton, Alberta, Canada, Au-
gust 14-16, pp. 201–209. ACM (1989)

20. Kate, A., Goldberg, I.: Asynchronous distributed private-key generators for
identity-based cryptography. IACR Cryptology ePrint Archive, 355 (2009)

21. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Com-
munications of the ACM 24, 583–584 (1981)

22. Cohen, H., Frey, G. (eds.): Handbook of elliptic and hyperelliptic curve cryptog-
raphy. CRC Press (2005)

23. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

24. European Network of Excellence in Cryptology II: Ecrypt II Yearly Report on
Algorithms and Key Sizes, http://www.keylength.com/en/3 (accessed March 22,
2013)

25. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai Proofs Revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010)

26. Smart, N.P.: Personal communication
27. CertiVox: CertiVox Wiki, Benchmarks and Subs, https://wiki.certivox.com/

display/EXT/Benchmarks+and+Subs (accessed March 22, 2013)
28. Beuchat, J.L., Diaz, J.E.G., Mitsunari, S., Okamoto, E., Rodriguez-Henriquez, F.,

Teruya, T.: High-Speed Software Implementation of the Optimal Ate Pairing over
Barreto-Naehrig Curves. Cryptology ePrint Archive, Report 2010/354 (2010)

29. Mitsunari, S.: High-Speed Software Implementation of the Optimal Ate Pair-
ing over Barreto-Naehrig Curves, http://homepage1.nifty.com/herumi/crypt/
ate-pairing.html (accessed March 22, 2013)

30. Der Bundeswahlleiter: Pressemitteilung (February 16, 2009)
31. Citizens Registration Office, D.E.M.N.: Personal communication
32. Smart, N.P.: Personal communication
33. Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical

Covertly Secure MPC for Dishonest Majority — or: Breaking the SPDZ Limits.
Cryptology ePrint Archive, Report 2012/642 (2012)

34. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123,
pp. 218–235. Springer, Heidelberg (2010)

35. Knuth, D.: The Art of Computer Programming, vol. 4A. Addison-Wesley
Professional (2011)

http://www.keylength.com/en/3
https://wiki.certivox.com/display/EXT/Benchmarks+and+Subs
https://wiki.certivox.com/display/EXT/Benchmarks+and+Subs
http://homepage1.nifty.com/herumi/crypt/ate-pairing.html
http://homepage1.nifty.com/herumi/crypt/ate-pairing.html

A Practical Coercion Resistant Voting Scheme

Revisited

Roberto Araújo1 and Jacques Traoré2

1 Universidade Federal do Pará, Faculdade de Computação, Rua Augusto Corrêa 01,
66075-110, Belém/PA, Brazil

rsa@ufpa.br
2 Orange Labs, 42 rue des Coutures, BP 6243, 14066 Caen Cedex, France

jacques.traore@orange.com

Abstract. The scheme of ABRTY (Araújo et al., CANS 2010) is one of
the most promising solutions for internet voting nowadays. It fights re-
alistic coercive attacks and can be applied in large scale voting scenarios
as it has linear time complexity. However, this scheme has two intrinsic
drawbacks. As it does not allow revocation of credentials of ineligible vot-
ers, voters need to obtain fresh credentials before each new election. Also,
authorities could generate valid but illegitimate credentials unnoticed. In
this work, we present solutions for these drawbacks and show a modified
version of ABRTY’s scheme. In addition, we describe a weakness of a
receipt-free voting scheme proposed by Acquisti in 2004.

1 Introduction

A number of researchers consider internet voting as impracticable. The reason is
the risks inherent to its environment. Malwares, for instance, may infect voters’
computers to break the secrecy of the vote. Hackers, in turn, could compromise
voting systems around the world. In addition, due to its uncontrolled environ-
ment, internet voting is susceptible to coercion and vote-selling.

In order to deal with these problems, Juels, Catalano, and Jakobsson (JCJ)
[17] introduced the first coercion-resistant scheme that considers a powerful
adversary. This adversary cannot succeed in issuing receipts (receipt-freeness),
threatening voters to abstain from voting, revealing private data, or even casting
random votes.

The idea behind JCJ’s proposal is that a voter is able to deceive adversaries
about her true vote intention. That is, the voter receives a valid credential (e.g. an
alphanumeric string) in a secure manner. When she wants to cast her vote, she
uses this credential. A voter under coercion, however, can make a fake credential
and give it to the coercer. Later on, she can vote again using her valid credential.
The coercer has no way to distinguish between the credentials used. Unfortu-
nately, the earliest implementation of this idea is inefficient for large scale voting
scenarios. This idea, though, inspired efficient solutions such as Araújo et al. [3],
Spycher et al. [25], and Essex et al. [13].

J. Heather, S. Schneider, and V. Teague (Eds.): VoteID 2013, LNCS 7985, pp. 193–209, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

194 R. Araújo and J. Traoré

One of the requisites of coercion-resistant voting schemes as JCJ is that a voter
has to receive her credential in a trustworthy way. As this takes into account a
untappable channel between the registrars and the voter, this process is supposed
to be performed in a registration place. At this place, she obtains her credential
after proving to the registrars that she is eligible for voting in an election.

A desirable property of credentials is to employ them in more than one elec-
tion. In other words, once the voter obtained her credential, she can use it in
several upcoming elections. This reduces costs and affords more convenience as
voters do not need to revisit the registration place. However, it is necessary to
prevent a voter from participating in an election for which she is not eligible for.
To this end, authorities must be able to revoke credentials of these voters.

In contrast, if credentials cannot be used in a second election or more, voters
need to visit the registration place again before each new election. This would
be impractical for large scale voting scenarios.

Based on JCJ’s proposal, ABRTY [3] introduced one of the most promising
solutions for internet voting nowadays. The scheme is efficient for large scale sce-
narios as it has linear time complexity and was shown secure. ABRTY’s scheme,
though, has two intrinsic drawbacks that can discourage its use.

In ABRTY’s solution, authorities have no way to revoke credentials. That is,
they cannot disallow a voter in a specific election without performing this for
all voters. As a consequence, all voters need to revisit the registration place to
obtain fresh credentials.

Another drawback of ABRTY’s scheme is that a majority of malicious regis-
trars could generate valid (but illegitimate) credentials without being noticed.
This means that votes cast using these credentials could appear in the final tally.
Schläpfer et al. [21] and Spycher et al. [25] pointed out this problem.

These are important drawbacks of ABRTY’s solution, but fortunately they
can be fixed. In this work, we introduce techniques to fix these drawbacks and
present a modified version of ABRTY’s scheme accordingly. We also show that
Acquisti’s protocol [1] is not coercion-resistant and that its credentials can only
be used once.

This text is organized as follows: the next section presents an overview of
ABRTY’s scheme and its drawbacks. Section 3 shows the improvements to
ABRTY’s solution and introduces an improved variant scheme. Finally, we present
our conclusions in Section 4. In Appendices, we briefly describe the scheme of
Acquisti and show its weaknesses.

Related Work on Coercion-Resistance

Juels, Catalano, and Jakobsson (JCJ) presented the first coercion-resistant scheme
in 2005 at WPES [17]. Following JCJ’s work, several coercion-resistant schemes
were proposed. Acquisti [1] introduced a scheme in which the vote and the cre-
dential are combined, and which strongly relies on homomorphisms. Meng [18]
proposed a solution similar to Acquisti’s protocol. Clarkson et al. [11] presented

A Practical Coercion Resistant Voting Scheme Revisited 195

a variant of Prêt-à-Voter [7] scheme suitable for internet voting and based on de-
cryption mix nets.

Schweisgut [23] and more recently Clarkson et al. [10] proposed schemes which
mitigate the inefficiency problem of the JCJ’s solution. The former scheme relies
on decryption mix nets and a tamper-resistant hardware, whereas the latter is
a modified version of JCJ’s proposal. ABRTY [3] showed that the scheme of
Schweisgut is not coercion-resistant.

Smith [24] presented an efficient scheme with linear work factor. Weber et
al. [28], however, pointed out problems of Smith’s proposal and presented a
protocol that combines the ideas of JCJ with a variant of Smith’s mechanism.
Unfortunately, both solutions are not coercion-resistant as shown by Araújo et
al. [2]. The problem of Smith’s scheme was also noted independently by Clarkson
et al. [10].

Araújo, Foulle, and Traoré [2] presented the first practical and secure coercion-
resistant scheme. Their proposal, different from the previous ones, employs cre-
dentials with a special structure that allows the scheme to achieve a linear work
factor. Based on [2], ABRTY [3] introduced a different scheme that uses new
anonymous credentials derived from the group signature scheme of Boneh et
al. [4] and formally proved that their scheme is coercion-resistant.

From Araújo et al.’s proposals [2,3], other promising efficient schemes ap-
peared. Spycher et al. [25] introduced a protocol where voters indicate their cre-
dentials on an electoral roll. Spycher et al. [26] improved [25] later on. Clark et
al. [9] introduced a proposal that uses special passwords as credentials. Schläpfer
et al. [21] showed a scheme that links the votes to the voter roll.

However, the complexity of the schemes of Spycher et al. [25], Clark et al. [9],
and Schläpfer et al. [21] depends on a security parameter β to balance efficiency
against coercion-resistance: the complexity is in O(βN) for Clark et al. [9] and
Schläpfer et al. [21] and in O(N + βn) for Spycher et al. [25], where N is the
number of submitted ballots and n is the number of registered voters.

More recently, Essex at al. [13] introduced a promising scheme that authorizes
votes during the voting phase. Unfortunately, as pointed out by the authors, this
scheme is not efficient for real world elections as it “requires a registration process
that is quadratic in the number of eligible voters”.

As the schemes of Spycher et al. [25], Clark et al. [9], and Schläpfer et al. [21]
depend on a security parameter and the solution of Essex at al. [13] has an
inefficient registration phase, only the schemes of Araújo et al. [2,3] are truly
linear in N (see Schläpfer et al. [21] for a detailed performance comparison
analysis of these schemes). In addition, the security of [2,25,9,21,13] are only
conjectured.

2 The ABRTY’s Scheme and Its Drawbacks

In this section, we briefly introduce ABRTY’s scheme [3]. In addition, we recall
a drawback presented by Spycher et al. [25] and introduce another one.

196 R. Araújo and J. Traoré

2.1 An Overview of ABRTY’s Proposal

The scheme of ABRTY follows the principle introduced by JCJ. The voter re-
ceives a credential in a secure manner. She uses it to cast her valid vote and
may generate fake credentials to deceive adversaries. However, the credential
employed in ABRTY’s solution, which is based on Boneh et al.’s group signa-
ture scheme (BBS for short) [4], has a mathematical structure that ensures its
security.

Cryptographic Building Blocks. ABRTY’s scheme requires a set of cryp-
tographic building blocks. It relies on a threshold El Gamal cryptosystem and
a universally verifiable mix net. In addition, the scheme requires several zero-
knowledge proof protocols. It prevents adversaries from using El Gamal mal-
leability by means of Schnorr signatures [22]. It uses a protocol to prove that a
ciphertext contains a vote for a valid candidate such as the proposal of Hirt and
Sako [14]. ABRTY’s solution also uses a protocol for proving the equality of dis-
crete logarithms relative to different bases owing to Chaum and Pedersen [6], a
protocol for proving knowledge of a representation as Okamoto [19] and a plain-
text equivalence test [15]. Also, it requires a Web Bulletin Board (WBB). The
security of its credentials depends on the q-Strong Diffie-Hellman (q-SDH) [4]
and the Strong Decisional Diffie-Hellman Inversion (SDDHI) assumptions [3].

The Scheme. It considers a set of voters, a set of registrars that make valid
credentials for the voters and help the talliers in the tallying phase, and a set
of talliers that compute the final tally. Let EX(Y) be the encryption of Y with
the public key X . In the setup phase, a set of authorities generate the key mate-
rial and publish the corresponding public parameters on a WBB. In particular,
the authorities define a cyclic group G with prime order p and four generators
g1, g2, g3, o ∈ G. The Decision Diffie-Hellman problem (DDH) must be hard in
G. The talliers cooperate to generate a key pair by means of the threshold El
Gamal cryptosystem, i.e. the public key T and its corresponding private key
T̂ . The registrars also cooperate to generate a key pair, namely the public key
R = gy3 and its corresponding private key R̂ = y.

Registration Phase. After proving to the registrars that she is eligible, the
voter receives her credential securely, through a untappable channel. In order
to compute a credential, the registrars select two random numbers r, x ∈ Zp

and compute: A = (g1g
x
3)

1
y+r , where g1, g3 are public generators and y is

the secret key of the registrars. The credential σ is composed of three parts,
namely σ = (A, r, x). The voter must keep the value x in secrecy. The parts
(A, r) can be stored in a device or be sent by email to the voter without
compromising the security of the scheme.

Voting Phase. The voter selects a random number s ∈ Zp, uses her creden-
tial σ = (A, r, x) to compute B = As and makes a tuple containing: her
encrypted vote, her encrypted credential and a set of non-interactive zero-
knowledge proofs (NIZKPs). In other words, she makes the tuple 〈ET [v], B,

A Practical Coercion Resistant Voting Scheme Revisited 197

ET [B
s−1

], ET [B
rs−1

], ET [g
x
3], o

x, P 〉, where v is her vote intention, B = As,
g3 and o are public generators and P is a set of NIZKPs. This set is com-
posed of a proof that ET [v] contains a vote for a valid candidate, proofs
that the voter knows the plaintext underlying the ciphertexts, a proof that
the plaintext of ET [B

rs−1

] is different from 1 as well as a proof that the
discrete logarithm of ox in the basis o is equal to the discrete logarithm of
the plaintext of ET [g

x
3] in the basis g3. The voter then uses an anonymous

channel to send her tuple to the WBB and thereby casting her vote.
Tallying Phase. The tallying takes place after the voting phase. It comprises

5 steps. The talliers first read all tuples posted on the WBB and verify all
proofs on each tuple. They discard tuples with invalid proofs and then pro-
cess the tuples that passed the tests. A tuple now has the following format:
〈ET [v], ET [B

s−1

], ET [B
rs−1

], ET [g
x
3], o

x〉. The talliers then eliminate tuples
posted using the same credential (i.e duplicates). For this, they compare all
ox by means of a hash table. If the talliers detect a duplicate, they use the
time of posting on the WBB to verify the last posted tuple. The talliers keep
the last posted tuple that now is composed of: 〈ET [v], ET [B

s−1

], ET [B
rs−1

],

ET [g
x
3]〉. After that, they send all tuples 〈ET [v], ET [B

s−1

], ET [B
rs−1

], ET [g
x
3]〉

to a verifiable mix net. The mix net output a set of permuted and re-
encrypted tuples of the form: 〈ET [v]

′, ET [B
s−1

]′ , ET [B
rs−1

]′, ET [g
x
3]
′〉, where

ET [·]′ is the reencryption of ET [·].
The talliers now check the valid credentials. For this, they perform
the following steps: (1) they instruct the registrars to cooperatively compute

ET [B
s−1

]′y = ET [B
ys−1

]′ and ET [B
ys−1

]′ ·ET [B
rs−1

]′ = ET [B
ys−1+rs−1

]′ by
using the secret key y; (2) the talliers compute C = ET [B

ys−1+rs−1

g−11 g−x3]′

from ET [B
ys−1+rs−1

]′, ET [g
x
3]
′, and the public parameter g1. (3) they now

cooperatively select a random number z ∈ Zp, compute Cz and decrypt Cz .
If they obtain 1 after decrypting Cz , the credential is valid; otherwise, the
credential is invalid. In order to finish the tallying phase, the talliers discard
all tuples with invalid credentials, cooperatively decrypt ET [v]

′ of the tuples
with valid credentials, and publish the voting results on the WBB.

2.2 The Drawbacks

The scheme of ABRTY was shown secure in the random oracle model, under
the q-Strong Diffie-Hellman and Strong Decisional Diffie-Hellman Inversion as-
sumptions. It can be used in large scale voting scenarios as it has a linear time
complexity. Unfortunately, this scheme has two intrinsic drawbacks.

As Spycher et al. [25] presented, “a majority of colluding registrars could com-
pute valid (but illegitimate) credentials unnoticed”. In other words, after proving
that she is eligible, each voter receives a valid credential from the registrars. Al-
though an adversary cannot forge a credential after the registration because this
requires breaking the q-SDH assumption, a majority of registrars could act as
adversaries during this phase. These malicious registrars could make valid (but
illegitimate) credentials as the scheme does not verify whether they generated a

198 R. Araújo and J. Traoré

credential to an eligible voter (i.e. a legitimate credential) or not. Thus, a valid
(but illegitimate) credential would pass the tests performed in the tallying phase
such that the corresponding vote would be counted.

Besides the drawback presented by Spycher et al., the scheme has another
one: it does not allow revocation of credentials. In any new election, the number
of eligible voters may change. Some voters may have their right to vote revoked
after participating in an election, for instance. Also, a voter may be allowed to
vote in several elections, but may not vote in others. In order to satisfy these
scenarios, authorities must be able to revoke credentials when necessary.

The credentials employed in ABRTY’s scheme may be used in several elections
as long as the same key y is employed. However, in principle a credential cannot
be revoked. Because only the voters know their credentials, the authorities are
not able to revoke a credential. In addition, even if the authorities store all
credentials and put them in a black list, this would be of no help. There is no
way in the tallying phase to decide whether a revoked credential has been used
or not. Indeed the credentials are published on the WBB in an encrypted form.
Clark et al. [9] and Essex et al. [13] pointed out a similar drawback.

3 Improving ABRTY’s Scheme

As presented above, ABRTY’s scheme does not allow authorities to revoke cre-
dentials. In addition, a majority of colluding registrars could issue valid but
illegitimate credentials. Aiming at eliminating these drawbacks, we present here
new mechanisms that improve ABRTY’s solution. Also, we introduce a version
of ABRTY’s scheme that employs our mechanisms.

3.1 Revoking Credentials

Although the design of ABRTY’s scheme makes revocation difficult, it has some
properties that help accomplish this. Recall from ABRTY’s scheme that, upon
registering, a voter receives a credential σ = (A, r, x). The element x must be
transmitted via an untappable channel. Conversely, the elements 〈A, r〉 can be
sent by post or even by email. This does not compromise the credential’s security
as long as the SDDHI assumption holds.

Based on this, it is possible to use a similar method as the technique employed
by Boneh et al. [4] to revoke membership certificates in their group signature
scheme. That is, in order to revoke credentials and perform new elections, the
authorities could execute the following steps:

Besides generating and issuing a credential to a voter, the registrars store
the public part (A, r) of the credential in a list LC . Suppose we wish to revoke
the credential of a voter V ∗. To perform this, the registrars first retrieves from
LC the public part of the credential of V ∗ (i.e. (A∗, r∗)) and then update their

public key. The new public key is (g̃1, g̃3, R̃) where g̃1 = g
1/(y+r∗)
1 , g̃3 = g

1/(y+r∗)
3

and R̃ = g̃y1 . The secret key y remains unchanged. The registrars then publish

the values (g̃1, g̃3, R̃, r∗) in a revocation list RL.

A Practical Coercion Resistant Voting Scheme Revisited 199

Let us show now how unrevoked voters update their credentials. Consider an
unrevoked voter whose credential is (A, r, x). Given (g̃1, g̃3, R̃, r∗) obtained from

RL, the voter computes Ã = g̃
1

r−r∗
1 g̃

x
r−r∗
3 A

−1
r−r∗ and sets her new credential to

be (Ã, r, x). Notice that since the values r and r∗ are randomly chosen by the
registrars, then with high probability we have r �= r∗mod p.

One can verify that (Ã, r, x) is a valid credential for the new public key

(g̃1, g̃3, R̃) by computing:

Ãy+r = g̃
y+r
r−r∗
1 g̃

(y+r)x
r−r∗

3 A
−(y+r)
r−r∗

= g̃
y+r
r−r∗
1 g̃

(y+r)x
r−r∗

3 g
−1

r−r∗
1 g

−x
r−r∗
3

= g̃
y+r
r−r∗
1 g̃

(y+r)x
r−r∗

3 g̃
−(y+r∗)

r−r∗
1 g̃

−(y+r∗)x
r−r∗

3

= g̃1g̃
x
3

This process can be repeated several times if there are more than one credential
to revoke. Using similar arguments as the ones given in [4], one can prove that
under the q-SDH assumption the revoked voter V ∗ cannot construct a valid
credential for the new public key (g̃1, g̃3, R̃). However, if the revoked voter V ∗

was under coercion in a previous election, then the coercer can now check using
the new public key (g̃1, g̃3, R̃) if V ∗ previously revealed a fake credential or
a valid one. Indeed, if V ∗ gave him (A∗, r∗, x′), he just has to test whether

A∗ ?
= g̃1g̃

x′
3 = g

1/(y+r∗)
1 g

x′(1/(y+r∗))
3 .

We therefore propose another method in order to avoid this problem. It allows
credentials of eligible voters to be used in more than one election as follows:

– In the setup phase, besides generating their key pair (namely R = gy3 and

R̂ = y) as usual, the registrars cooperatively make a new key pair: 〈R, R̂〉.
R is the public key and R̂ is its corresponding shared private key. This key
pair will be used for the purpose of revocation later on.

– During the registration phase, the registrars cooperatively generate a creden-
tial σ = (A, r, x) for each voter. After that, the registrars use the public key
R to cooperatively compute the encryption of g1g

x
3 (namely ER[g1gx3]) and

store this ciphertext in a list L1.
– For each new election, instead of using the same shared private key R̂ = y,

the registrars generate a new shared private key y′ (i.e. now R = gy
′

3 and

R̂ = y′) and furnish the voters with new values 〈A′ = (g1g
x
3)

1
y′+r′ , r′〉. They

compute this from the values ER[g1gx3] stored in L1 and from a randomly

chosen value r′. That is, A′ = (g1g
x
3)

1
y′+r′ is cooperatively computed by

raising ER[g1gx3] to the power 1
y′+r′ using the technique of Wang et al. [27].

After that, ER[(g1gx3)
1

y′+r′] is cooperatively decrypted to retrieve A′.

200 R. Araújo and J. Traoré

– The new credential is the tuple 〈A′, r′, x〉 where x is the secret value obtained
by the voter during her first registration. The others elements of the creden-
tial (i.e. A′ and r′) could be sent by mail to the voter or even published on
a dedicated website.

This novel method makes possible the revocation of credentials in ABRTY’s
scheme. For each new election, the authorities need a new shared private key
y and the eligible voters receive fresh values 〈A′, r′〉. Voters who belong to a
revocation list or are not allowed to vote will not receive an updated credential.
The voter does not have to revisit the registration place and register again in
order to obtain her new credential. She can download the new parts of her
credential 〈A′, r′〉 from WBB, for instance. To complete her credential, the voter
employs the same x of the credential that she received when she registered for
the first time. Thus, the voter does not need to replace the whole credential
(i.e. σ = (A, r, x)) before each new election.

Note that, if a malicious voter has a revoked credential 〈Am, rm, xm〉 and
obtains the new values 〈A′, r′〉 of another voter, she may use the credential
〈A′, r′, xm〉 to vote. However, the vote tuple computed with this credential will
not pass the tests in the tallying phase. When the authorities use ER[g1gx3] to
generate the new parts 〈A′ = (g1g

x
3)

1
y′+r′ , r′〉 of the credential to a voter, they

employ the same exponent x that the voter received in the registration phase.
As the malicious voter does not have the correct exponent x, her vote tuple will
be removed from the tally during the verification process. That is, to verify the
valid credentials, the authorities use the values ET [g

xm
3], ET [B

s−1

], ET [B
r′s−1

]

from the malicious voter’s tuple and compute C = ET [B
y′s−1+r′s−1

g−11 g−xm
3]′

next, where B = (A′)s = ((g1g
x
3)

1
y′+r′)s for a random s. By performing this, the

authorities obtain the ciphertext C that encrypts gx−xm
3 instead of the value

1. This will make the tuple invalid after the authorities apply the plaintext
equivalence test.

3.2 Defeating a Majority of Colluding Registrars

ABRTY’s scheme allows the computation of valid (but illegitimate) credentials
by a majority of malicious registrars. These fraudulent credentials could be used
for ballot stuffing. Although this drawback reduces the security of the scheme,
fortunately it can be fixed. We present now a method that identifies any valid
(but illegitimate) credential and that allows removing these credentials from the
tallying. The method was inspired by the works of Smith [24] and Weber et
al. [28].

Comparison and Computation of Fingerprints. Before introducing our
solution, we briefly recall the method of comparison and computation of fin-
gerprints owing to Weber et al. This technique is used to blind and compare
plaintexts inside ciphertexts without leaking any information about the true
plaintexts. The method works as follows: in order to blind a plaintext of an El

A Practical Coercion Resistant Voting Scheme Revisited 201

Gamal ciphertext, a set of n authorities jointly generate a secret shared value z.
These authorities then apply their shares of z to each ciphertext to blind the cor-
responding plaintext. The authorities now decrypt all ciphertexts to obtain the
blinded plaintexts (i.e. fingerprints). For example, from a ciphertext C = ET [m]
of a message m, the fingerprint will be equal in this case to mz. To compare the
fingerprints, the authorities can use a hashtable algorithm.

Taking into account Weber et al. technique as a building block, we introduce
our solution as follows:

– In the registration phase, after computing a credential σ = (A, r, x) to the
voter, the registrars cooperatively compute: ET [A], where T is the public
key of the talliers. The registrars may issue a designated verifier proof [16]
to prove that ET [A] encrypts the same A of the voter credential.

– Let IDvoter be a voter unique identification number (i.e. a number associated
to the voter’s name in the electoral roll) and L2 be a public list of legiti-
mate credentials. For each voter, the registrars store in L2 the pair 〈ET [A],
IDvoter〉.

– In order to check that only legitimate credentials have been used in the
tallying phase, the talliers proceed as follows:
• After eliminating duplicates and invalid ballots (i.e. those with invalid
proofs or invalid credentials), the talliers obtain the list LV containing
the remaining ballots.

• The talliers send the ciphertexts ET [A] of L2 to a verifiable mix net and
obtain L′2;

• By means of Weber et al.’s technique, the talliers raise all the ciphertexts
in L′2 and LV (only the values ET [A]) to a random secret exponent and
decrypt the resulting ciphertexts. Let L′′2 and LV ′ denote the new lists;

• The talliers use a hashtable to verify whether every element in LV ′

belongs to L′′2 . If there is an element in LV ′ that does not match with
an element in L′′2 , then this means that either someone has broken the
Boneh et al. [4] group signature scheme or that the registrars produced
valid but illegitimate credentials. In any case, the talliers remove ballots
corresponding to illegitimate credentials from the list L′′2 .

3.3 The Improved Variant of ABRTY’s Scheme

Based on the mechanisms introduced above, we describe now an improved ver-
sion of ABRTY’s scheme. This version eliminates the drawbacks of the original
proposal while keeping the same security properties of it.

The new version employs the same cryptographic primitives as the original
one (see Section 2.1). In addition, the new scheme requires the global blind
comparison mechanism due to Weber et al. [28] and the method of Wang et
al. [27]. It has four phases: setup, registration, voting, and tallying.

However, there are two ways to perform the setup and the registration phases.
For a first election, the authorities execute these phases for the first time. All
voters need to visit the registration place once to obtain their credentials.

202 R. Araújo and J. Traoré

For a second election (or more), as there are previous election parameters and
registered voters, the authorities execute different setup and registration phases.
Voters that registered before do not need to visit the registration place again.
Authorities, in turn, can revoke credentials.

Therefore, there are two states for the scheme. It can be either used in a first
election or in several elections (i.e. a second election or more). The scheme is
described below.

For a first election, the scheme requires the following setup and registration
phases:

Setup phase for a first election. If the scheme is used for the first time, the
voters do not have any credential and need to obtain them to vote. In this
case, the authorities establish first a cyclic group G (the DDH must be hard
in G) with prime order p and five generators g1, g2, g3, g4, o ∈ G. The talliers
now cooperate to compute the El Gamal key pair for which the public key is
denoted by T and the private key is denoted by T̂ . The registrars cooperate
to compute two pair of keys: a public key R = gy3 and its secret key R̂ = y,

and an El Gamal public key R and its secret key R̂. The authorities publish
all public material on a WBB.

Registration phase for a first election. After authenticating a voter that
has an identification number IDvoter, the registrars select two random num-

bers r, x ∈ Zp and cooperatively computes A = (g1g
x
3)

1
y+r . Then, they issue

the credential σ = (A, r, x) to the voter via an untappable channel 1. The
registrars now cooperate to encrypt g1g

x
3 with their public key R and store

the pair 〈ER[g1gx3], IDvoter〉 in a list L1 on the WBB. In addition, they en-
crypt A with the public key T and store the pair 〈ET [A], IDvoter〉 in a list
L2 on the WBB.

After receiving her credential, a voter can participate in several elections. How-
ever, as the voter may not be allowed to vote in some elections, the authorities
have to update the credentials of the eligible voters before each new election. It
is not necessary for voters to revisit the registration place. Thus, if the scheme
is used in a second election (or more), it requires slightly different setup and
registration phases. These phases are presented next:

Setup phase for several elections. If the scheme is used a second time or
more, all voters (or some of them) already have their credentials. In this
case, the authorities (talliers and registrars) can either keep all credentials or
revoke some of them. If the authorities do not need to revoke credentials, they
can keep all but one parameter used in the last election. That is, they replace
the generator o ∈ G used in the last election by a new one: o′ ∈ G. The
authorities publish the new generator o′ ∈ G as well as the other parameters

1 Although we do not consider the issue of “panic passwords” [8] in this paper, we
would like to emphasize that the technique introduced by Clark et al. [9] to generate
such passwords also applies to our scheme.

A Practical Coercion Resistant Voting Scheme Revisited 203

of the last election, namely the cyclic group G with prime order p, the other
three generators g1, g2, g3 ∈ G, and the key pairs 〈T, T̂ 〉, 〈R, R̂〉 and 〈R, R̂〉.
Conversely, if the authorities need to revoke credentials, they replace the
generator o ∈ G as before and execute an extra step. The registrars replace
their key pair 〈R = gy3 , R = y〉 used in the last election by a new one. For

this, they cooperatively generate the new key pair: 〈R = gy
′

3 , R̂ = y′〉, where
R̂ = y′ is a secret key shared among the registrars. This new key pair is used
to update credentials of voters allowed to vote and to generate credentials
for new voters in the current election. All public material is published on the
WBB.

Updating the credentials of eligible voters. If some voters are not allowed
to vote in the new election, the authorities need to update the credentials
of the eligible voters. In order to perform this, the registrars read from L1

all tuples 〈ER(g1gx3), IDvoter〉. They created this list in the first election (see
the setup phase of the first election above). By inspecting the values IDvoter,
the registrars identify tuples of voters that can vote in the new election. For
each of these tuples, the registrars cooperatively select a random r′ ∈ Zp,

compute 1
y′+r′ using their new secret key R̂ = y′ and power ER(g1gx3) to

1
y′+r′ by means of the method of Wang et al. [27]. Then, they coopera-

tively decrypt ER[(g1gx3)
1

y′+r′] to obtain A′ = (g1g
x
3)

1
y′+r′ . Next, they pub-

lish 〈ID voter, A
′, r′〉 on the WBB. The voters allowed to vote can now visit

the WBB to identify their IDs and read their new pair 〈A′, r′〉. Because each
eligible voter employs the same secret x generated for the first election, the
new credential is: 〈A′, r′, x〉. Finally, for each voter 〈IDvoter〉 allowed to vote,
the registrars replace ET [A] by ET [A

′] in L2.

Observe that a voter without a credential can register to vote in any election
as long as she visits the registration place to obtain one. In order to issue this
credential, the registrars employ their secret key R̂ = y′ to generate the creden-
tial σ = (A, r, x). In addition, they update the lists L1 and L2 with the values
〈ER[g1gx3], IDvoter〉 and 〈ET [A], IDvoter〉, respectively.

From the setup and registration phases presented above, the voting and tal-
lying phases are described as follows:

Voting Phase. The voter performs the same steps as in the original scheme
(see Section 2). That is, she makes the tuple 〈ET [v], B,ET [B

s−1

] , ET [B
rs−1

],
ET [g

x
3], o

x, P 〉 and sends it through an anonymous channel to the WBB. Note
that if the voter can vote in several elections, she uses her updated credential
〈A′, r′, x〉 and the new generator o′.

Tallying Phase. The talliers first read all tuples from the WBB, verify all
proofs and discard tuples with invalid proofs. The remaining tuples are now

204 R. Araújo and J. Traoré

composed of 〈ET [v], ET [B
s−1

], ET [B
rs−1

], ET [g
x
3], o

x〉. After that, they elimi-
nate tuples posted using the same credential (i.e. duplicates). In other words,
the talliers use a hash table to compare all values ox. If a duplicate is de-
tected, they use the time of posting on the WBB to identify the last posted
tuple and keep only this last posted tuple. Then, the talliers exclude the
values ox of the remaining tuples and send these new tuples to a mix net.
After permuting and reencrypting these tuples, the mix net outputs tuples of
the form 〈ET [v]

′, ET [B
s−1

]′ , ET [B
rs−1

]′, ET [g
x
3]
′〉, where ET [·]′ is the reen-

cryption of ET [·]. Now, the talliers check whether the credentials are valid or
not and verify whether they are legitimate. For this, they perform the next
steps.

– They use the remaining tuples to check the validity of the credentials.
This process is similar to the original scheme (see Section 2.1). In case
of several elections, however, the registrars have to use their new key

〈R = gy
′

3 , R̂ = y′〉 generated for the current election;
– Let LV be a list containing the approved tuples (i.e. tuples with valid

credentials), the talliers send LV to a mix net and obtain LV ′. They
also send the ciphertexts ET [A] of L2 to a mix net and obtain L′2;

– By means of Weber et al.’s technique, they cooperate to compute a
random value r and raise all values ET [A] of LV

′ to r as well as the
values of L′2;

– They decrypt the resulting lists and verify whether every plaintext in
LV ′ belongs to an element in L′2. If a match does not exist, they remove
the corresponding tuple from the next step;

– In order to finish this phase, the talliers cooperatively decrypt ET [v]
′ of

the tuples with legitimate credentials and publish the voting results on
the WBB.

4 Conclusion

The voting scheme of ABRTY is coercion-resistant and has linear time com-
plexity. As presented, this solution has drawbacks that can limit its use. In this
paper, we presented solutions for these drawbacks. In addition, we introduced
a new version of ABRTY’s scheme which uses these solutions. The new version
allows for the revocation of credentials, and identifies valid (but illegitimate) cre-
dentials. This improves the original scheme as a collusion of malicious registrars
cannot succeed when issuing illegitimate credentials and eligible voters do not
need to register again before each new election.

Acknowledgements. The first author’s work was partially supported by the
“Fundação Amazônia Paraense (FAPESPA)” under the project: Rede de Pesquisa
em TIC. The second author’s work has been supported by the French “Agence
Nationale de la Recherche” under the LYRICS ANR-11-INSE-013 Project.

A Practical Coercion Resistant Voting Scheme Revisited 205

References

1. Acquisti, A.: Receipt-free homomorphic elections and write-in ballots. Cryptology
ePrint Archive, Report 2004/105 (2004), http://eprint.iacr.org/

2. Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant scheme
for remote elections. In: Chaum, D., Kutylowski, M., Rivest, R.L., Ryan, P.Y.A.
(eds.) Frontiers of Electronic Voting, Dagstuhl, Germany. Dagstuhl Seminar Pro-
ceedings, vol. 07311. Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl (2008)

3. Araújo, R., Ben Rajeb, N., Robbana, R., Traoré, J., Youssfi, S.: Towards practical
and secure coercion-resistant electronic elections. In: Heng, S.-H., Wright, R.N.,
Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 278–297. Springer, Heidelberg
(2010)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Brickell, E.F. (ed.): CRYPTO 1992. LNCS, vol. 740. Springer, Heidelberg (1993)

6. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell (ed.) [5],
pp. 89–105

7. Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

8. Clark, J., Hengartner, U.: Panic passwords: Authenticating under duress. In:
Provos, N. (ed.) HotSec. USENIX Association (2008)

9. Clark, J., Hengartner, U.: Selections: Internet voting with over-the-shoulder
coercion-resistance. In: Danezis (ed.) [12], pp. 47–61

10. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system. In:
IEEE Symposium on Security and Privacy, pp. 354–368. IEEE Computer Society
(2008)

11. Clarkson, M.R., Myers, A.C.: Coercion-resistant remote voting using decryption
mixes. Workshop on Frontiers in Electronic Elections (2005)

12. Danezis, G. (ed.): FC 2011. LNCS, vol. 7035. Springer, Heidelberg (2012)

13. Essex, A., Clark, J., Hengartner, U.: Cobra: toward concurrent ballot authoriza-
tion for internet voting. In: Proceedings of the 2012 International Conference on
Electronic Voting Technology/Workshop on Trustworthy Elections, EVT/WOTE
2012, p. 3. USENIX Association, Berkeley (2012)

14. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000)

15. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000)

16. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

17. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Atluri, V., De Capitani di Vimercati, S., Dingledine, R. (eds.) WPES, pp. 61–70.
ACM (2005)

18. Meng, B.: An internet voting protocol with receipt-free and coercion-resistant. In:
CIT, pp. 721–726. IEEE Computer Society (2007)

http://eprint.iacr.org/

206 R. Araújo and J. Traoré

19. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell (ed.) [15], pp. 31–53

20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

21. Schläpfer, M., Haenni, R., Koenig, R., Spycher, O.: Efficient vote authorization in
coercion-resistant internet voting. In: Kiayias, A., Lipmaa, H. (eds.) VoteID 2011.
LNCS, vol. 7187, pp. 71–88. Springer, Heidelberg (2012)

22. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

23. Schweisgut, J.: Coercion-resistant electronic elections with observer. In: Krimmer,
R. (ed.) Electronic Voting. LNI, vol. 86, pp. 171–177. GI (2006)

24. Smith, W.: New cryptographic election protocol with best-known theoretical prop-
erties. In: Workshop on Frontiers in Electronic Elections (2005)

25. Spycher, O., Koenig, R.E., Haenni, R., Schläpfer, M.: A new approach towards
coercion-resistant remote e-voting in linear time. In: Danezis (ed.) [12], pp. 182–189

26. Spycher, O., Koenig, R.E., Haenni, R., Schläpfer, M.: Achieving meaningful effi-
ciency in coercion-resistant, verifiable internet voting. In: Kripp, M.J., Volkamer,
M., Grimm, R. (eds.) Electronic Voting. LNI, vol. 205, pp. 113–125. GI (2012)

27. Wang, H., Zhang, Y., Feng, D.: Short threshold signature schemes without random
oracles. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT
2005. LNCS, vol. 3797, pp. 297–310. Springer, Heidelberg (2005)

28. Weber, S.G., Araújo, R., Buchmann, J.: On coercion-resistant electronic elections
with linear work. In: 2nd Workshop on Dependability and Security in e-Government
(DeSeGov 2007) at 2nd Int. Conference on Availability, Reliability and Security
(ARES 2007), pp. 908–916. IEEE Computer Society (2007)

A A Weakness of Acquisti’s Coercion-Resistant Scheme

A number of schemes proposed in the literature aim at satisfying the coercion-
resistant property. However, many of them do not accomplish this. In this ap-
pendix we show that Acquisti’s scheme [1] does not fulfills this property either.
In addition, we present another drawback of this scheme.

A.1 An Overview of the Scheme

The solution of Acquisti [1] employs an idea similar to the scheme of JCJ. A
voter obtains a valid credential from the authorities and use it when she want
to cast a valid vote. A voter under coercion may deceive adversaries by giving
them fake credentials. However, in Acquisti’s scheme, the voter receives from
the authorities encrypted shares of her credential and later on combines her
credential along with her vote intention. In the next paragraphs we give a short
description of Acquisti’s scheme.

In a setup phase, the authorities compute two sets of keys of an asymmet-
ric cryptosystem with homomorphic property (e.g. Paillier cryptosystem [20]).

A Practical Coercion Resistant Voting Scheme Revisited 207

One set encrypts credentials and has a public key TC . The other set encrypts
votes and contains a public key TV . In addition, the authorities compute another
set of asymmetric keys of a non-homomorphic cryptosystem. Each authority also
generates a share vi of a vote such that the sum of the shares of all authorities is
equal to a vote v for a valid candidate. This is performed for all valid candidates.
After computing the shares, each authority generates two ciphertexts for each
candidate. He encrypts his share vi with TC and TV apart. Each authority then
publishes his two ciphertexts on a bulletin board. Let ETC [vi] and ETV [vi] be
the resulting ciphertexts of a share vi.

Registration Phase. For each voter, each authority generates random numbers
as shares of credentials. Let σi represents a share produced by an authorityAi. Ai

encrypts σi with the public key for credentials TC , signs the resulting ciphertext,
and publishes the signed ciphertext on the bulletin board. After that, Ai encrypts
the share σi with the public key for votes TV and adds a designated verifier
proof [16] that the ciphertext published on the bulletin board and the ciphertext
computed using TV contain the same σi. Ai then encrypts the ciphertext and
the proof with the voter’s public key and sends the resulting ciphertext to the
voter. The authority does not publish the encryption with the public key TV .

Voting Phase. After decrypting the ciphertexts received from the authorities
and verifying that the proofs are correct, the voter multiplies all encrypted shares
of her credential (via the homomorphic property of the cryptosystem) and ob-
tains ETV [σ]. The voter then reads from the bulletin board the encrypted shares
ETV [vi] corresponding to the candidate she wants to vote for and multiplies
them to obtain ETV [v]. Now, the voter multiplies the two resulting ciphertexts
(i.e. ETV [σ] and ETV [v]) and obtains ETV [σ+ v]. To finish the process, the voter
encrypts ETV [σ + v] with the public key of the non-homomorphic cryptosystem
and then publishes the resulting ciphertext on the bulletin board.

Tallying Phase. When the voting phase ends, the authorities multiply the
shares of all valid encrypted credentials published in the registration phase. As
before, this is performed via the homomorphic property of the cryptosystem.
The result is a list of entire encrypted credentials ETC [σ] that is sent to a mix
net. The mix net outputs a list of ETC [σ]

′, where ETC [·]′ is the reencryption
of ETC [·]. The authorities then remove the encryption layer of the ciphertexts
(this is performed using the private key of the non-homomorphic cryptosystem)
posted by the voters and obtain a list of ciphertexts ETV [σ+ v]. The authorities
send this list to a mix net that outputs a new list containing ETV [σ + v]′.

For each candidate vi, the authorities read from the bulletin board the cor-
responding encrypted shares ETC [vi] and multiply them. After processing the
encrypted shares of all candidates, the authorities obtain a list of ciphertexts
ETC [v]

′ that contains an encrypted vote for each candidate. Now, for each en-
crypted credential ETC [σ]

′, the authorities choose an encrypted vote ETC [v]
′.

The authorities then decrypt the resulting multiplication of ETC [σ]
′ and ETC [v]

′

208 R. Araújo and J. Traoré

(i.e. ETC [σ+v]′), and decrypt all ciphertexts ETV [σ+v]′. If the resulting plaintext
of ETC [σ+v]′ matches one of the plaintexts of ETV [σ+v]′, the credential is valid
and the vote is counted. Otherwise, the authorities combine ETC [σ]

′ with another
encrypted vote ETC [v]

′ and repeat the process. If no match is found, the same
process is performed with another encrypted credential.

A.2 The Weakness

We show now that the scheme of Acquisti is not coercion-resistant. In particular,
an adversary can force a voter to reveal a credential and use a strategy to check
later on whether the credential he received is valid or not.

Suppose the voter gives the coercer an encrypted credential ETV [σ
′]. The

coercer then employs this ciphertext to compute a new ciphertext in such a
way that their underlying plaintexts satisfy a specific relation R. In order to
perform this, he first reads the encrypted shares of a vote ETV [vi] corresponding
to a particular candidate and multiplies them to obtain ETV [v]. After that, he
multiplies ETV [v] to ETV [σ

′] and obtains ETV [v + σ′]. Now, the coercer defines
the relation R. For example, he selects a value t as before and computes ETV [v+
σ′]t = ETV [t·(v+σ′)]. The adversary then encrypts ETV [t·(v+σ′)] and ETV [v+σ′]
apart with the public key of the non-homomorphic cryptosystem and publishes
the resulting ciphertexts on the bulletin board.

After the voting period, the coercer waits until the authorities compute the
voting results. As explained above, in this process, the authorities first mix the
ciphertexts ETV [σ + v] posted by the voters after removing the outer encryp-
tion layer. They then mix the valid credentials ciphertexts ETC [σ] after mul-
tiplying their encrypted shares ETC [σi]. After that, they multiply the mixed
values ETC [σ]

′ to ETC [v] after obtaining the entire encrypted votes from the
shares ETC [vi]; let ETC [X]′ be the mix net output of a ciphertext ETC [X], for a
message X .

The authorities then decrypt ETV [σ + v]′ and ETC [σ + v]′, and match their
plaintexts to verify whether a vote is valid or not. While processing all cipher-
texts, the authorities publish the ciphertexts related information on the bulletin
board. At the end of this phase, anyone can check which votes belong to the valid
credentials. Now, in order to verify the relation R, the adversary reads from the
bulletin board a plaintext σ + v corresponding to a ciphertext ETV [σ + v]′ and
computes t · (v + σ) from it. After that, he searches on the bulletin board for a
plaintext t · (v + σ) of ETV [t · (v + σ)]′ that matches the value t · (v + σ) he just
has computed. If a match exist (which means that, with overwhelming proba-
bility, he has identified the ballot σ′ + v he submitted in an encrypted form),
the adversary verifies whether σ + v of ETV [σ + v]′ has a corresponding valid
credential σ+v of ETC [σ+v]′ on the bulletin board. A match now indicates that
the credential received by the coercer is valid. If the value t · (v + σ) generated
by the adversary does not match any plaintext on the bulletin board, he chooses
another credential and repeats the process.

A Practical Coercion Resistant Voting Scheme Revisited 209

A.3 Another Drawback of Acquisti’s Solution

In many election scenarios, voters do not need to register again before each new
election. That is, once registered, a voter can vote in many forthcoming elections.
The solution of Acquisti, however, does not provide this convenience to voters.
They have to register before each new election.

Recall that in his scheme, in order to verify whether a ciphertext ETC [σ + v]
matches to a ciphertext ETV [σ+v], the authorities need to decrypt these cipher-
texts and publish their respective plaintexts on the bulletin board. Although the
credentials (σ) as well as the votes (v) are unknown to the voters as they only
know these values in an encrypted form, an adversary could exploit plaintexts
σ + v to retrieve several arbitrary credentials.

Indeed, suppose that the adversary wants to retrieve the credential of an
arbitrary voter V . Let σ′ be the credential of the adversary and v′ the candidate
he chooses. In order to identify his vote during the tallying phase, the adversary
first computes the ballot ETV [v

′ + σ′] and publish it on the bulletin board.
Then, he uses the same technique as described in the previous section. That is,
he chooses a random value t, computes ETV [t·(v′+σ′)], and sends this ciphertext
to the bulletin board. After the authorities decrypt all ciphertexts ETV [σ + v],
the coercer can identify his ballot σ′ + v′. Now, he just has to choose another
valid ballot for the same candidate v′. Let us denote this valid ballot by σ + v′.
Then, by subtracting σ′ + v′ from σ + v′, he will obtain σ − σ′. He can then
use the public key TV to encrypt σ − σ′ in order to obtain ETV [σ − σ′]. Since
he knows ETV [σ

′] (because this is his credential), he can retrieve ETV [σ] via the
homorphic property of the cryptosystem. To do this, he just has to multiply
ETV [σ − σ′] by ETV [σ

′]. We tacitly assume here that the computation operator
on the underlying homomorphic encryption scheme is multiplication.

Author Index

Araújo, Roberto 193
Arnaud, Mathilde 109

Bartsch, Steffen 142
Beckert, Bernhard 25
Bernhard, David 176
Bräunlich, Katharina 93
Buchmann, Johannes 156
Budurushi, Jurlind 61

Carback, Richard 127
Cochran, Dermot 41
Cortier, Véronique 109

Demirel, Denise 156

Florescu, Alex 127

Goré, Rajeev 25
Grimm, Rüdiger 93

Haenni, Rolf 76
Henning, Maria 61, 156

Kaczmarek, Tyler 127
Kiayias, Aggelos 1

Kiniry, Joseph R. 41
Koenig, Reto E. 76

Locher, Philipp 76

Neumann, Stephan 176

Olembo, Maina M. 142
Orfanou, Anthi 1

Rubio, Jan 127
Runyan, Noel 127
Ryan, Peter Y.A. 156

Schürmann, Carsten 25

Traoré, Jacques 193

van de Graaf, Jeroen 156
Volkamer, Melanie 61, 142, 176
Vora, Poorvi L. 127

Wiedling, Cyrille 109
Wittrock, John 127

Zagórski, Filip 127

	Preface
	Organization
	Table of Contents
	Scaling Privacy Guarantees
in Code-Verification Elections
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Cryptographic Preliminaries and Tools
	3 The Vote Verification Protocol
	3.1 Instantiation of the Vote Verification Protocol
	3.2 Security and Performance
	3.3 Instantiation of a Code Verification Protocol

	4 A Visual Vote Verification Protocol
	4.1 A 2-VSSD Instantiation
	4.2 Instantiation of the Visual Vote Verification Protocol

	References

	On the Specification and Verification
of Voting Schemes
	1 Introduction
	2 Semantic Criteria for Analysing Voting Schemes
	2.1 Basic Criteria
	2.2 Criteria Characterising the Election Result
	2.3 Tailor-Made Criteria for Preferential Voting Schemes
	2.4 Criterion 2: Election Result Consistent with Preferences
	2.5 Determinism

	3 Bounded Model Checking for Analysing Voting Schemes
	4 Case Study: Variants of the Single Transferable Vote Scheme
	4.1 The Standard Version of STV
	4.2 The CADE-STV Election Scheme
	4.3 Effects of the Differences between CADE-STV and Standard STV

	4.4 Observations on the History of CADE-STV

	5 Conclusion
	References

	Formal Model-Based Validation
for Tally Systems
	1 Introduction
	1.1 The Irish Voting Scheme
	1.2 Proportional Representation by Single Transferable Vote
	1.3 Votail

	1.4 Related Work
	1.5 Outline of Paper

	2 Formalisation
	2.1 Mathematical Models
	2.2 Methodology

	3 Election Outcomes
	3.1 Last Two Continuing Candidates
	3.2 Filling of Last Seat
	3.3 PR-STV

	4 Procedure for Automated Test Generation
	4.1 Generation of Ballot Boxes
	4.2 Open Source Implementation

	5 Evaluation and Threats to Validity
	6 Conclusions
	References

	Vote Casting in Any Preferred Constituency:
A New Voting Channel
	1 Introduction
	2 General Possibility of Vote Casting in any Preferred Constituency
	3 Checking of Eligibility
	3.1 Ballot Record
	3.2 Centralised / Decentralised Electoral Register
	3.3 Voter Identification and Authentication, and Access to the

	4 Vote Casting and Tallying
	4.1 Paper Ballot
	4.2 Electronic Ballot

	5 Summary and Discussion
	References

	Attacking the Verification Code Mechanism
in the Norwegian Internet Voting System
	1 Introduction
	1.1 Existing Approaches
	1.2 Contribution and Overview

	2 The Norwegian E-Voting System
	2.1 Overview of the Voting Process
	2.2 Adversary Model and Trust Assumptions

	3 Attacking the SMS Channel in the Norwegian System
	3.1 Attacking the Security of the SMS Channel
	3.2 Attacking the Independence of the SMS Channel
	3.3 Attacking the MinID Authentication Service

	4 Preventing and Detecting the Attack
	5 Conclusion
	References

	A Formal Model for the Requirement of Verifiability in Electronic Voting
by Means of a Bulletin Board
	1 Introduction
	2 Related Work
	3 FormalBasics
	4 A Formal Security Model with Respect to Verifiability
	4.1 Secure States
	4.2 Allowed State Transitions
	4.3 Security Theorem
	4.4 Discussion of the Formal Model and Example Explanation

	5 Conclusion and Future Work
	References

	Analysis of an Electronic Boardroom Voting System
	1 Introduction
	2 Setting
	3 Face-to-Face Voting System

	3.1 Initial System F2FV1

	3.2 Second System F2FV2

	3.3 Third System F2FV3

	3.4 CommonWeaknesses

	4 Formal Model

	4.1 Syntax
	4.2 Semantics
	4.3 Modeling Protocols in Applied pi-Calculus

	5 Security Properties

	5.1 Ballot Secrecy
	5.2 Vote Correctness

	6 Discussion
	References

	Dispute Resolution in Accessible Voting
Systems: The Design and Use of Audiotegrity
	1 Introduction
	2 Background
	3 Related Work
	4 Problems with Dispute Resolution in the Absence of Paper
	5 Audiotegrity
	5.1 Scantegrity
	5.2 Audiotegrity
	5.3 Properties

	6 Comparison of Protocol Properties
	7 Audiotegrity in Takoma Park
	8 Conclusions
	References

	Mental Models of Verifiability in Voting

	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	4.1 Research Questions and Study Instruments
	4.2 Participant Recruitment
	4.3 Data Analysis
	4.4 Ethical Considerations

	5 Results
	5.1 Mental Models
	5.2 Further Results

	6 Discussion
	References

	Pret a Voter Providing Everlasting Privacy

	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 System Overview of the Classic Scheme
	2.1 Roles
	2.2 System Overview

	3 Technical Details of Pret ˆa `Voter Providing Everlasting Privacy
	3.1 Assumptions Regarding the Operational Environment
	3.2 Technical Details

	4 Security Analysis from a Technical Point of View
	5 Security Evaluation from a Legal Point of View
	6 Conclusion
	References

	Towards a Practical Cryptographic Voting
Scheme Based on Malleable Proofs
	1 Introduction
	2 Preliminaries
	3 Key Generation with Multi-party Computation
	3.1 Security of Threshold Encryption: Algorithm versus Protocol
	3.2 A Threshold Algorithm
	3.3 Multi-party Computation
	3.4 Our Protocol
	3.5 Efficiency and Security
	3.6 Threshold Decryption

	4 Computational Analysis of the Proofs in CKLM13
	4.1 Choice of Setting
	4.2 Overview of Groth-Sahai Proofs
	4.3 Results

	5 Conclusion
	References

	A Practical Coercion Resistant Voting Scheme
Revisited
	1 Introduction
	2 The ABRTY’s Scheme and Its Drawbacks
	2.1 An Overview of ABRTY’s Proposal
	2.2 The Drawbacks

	3 Improving ABRTY’s Scheme
	3.1 Revoking Credentials
	3.2 Defeating a Majority of Colluding Registrars
	3.3 The Improved Variant of ABRTY’s Scheme

	4 Conclusion
	References

	Author Index

