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Abstract. The use of an artificial neural network (ANN) in many practical 
complicated problems encourages its implementation in the digital human 
modeling (DHM) world. DHM problems are complicated and need powerful 
tools like ANN to provide acceptable solutions. Human posture prediction is a 
DHM field that has been studied thoroughly in recent years. This work focuses 
on using a general regression neural network (GRNN) for human posture 
prediction. This type of ANN has advantages over others when incorporated in 
DHM problems like posture prediction. A new heuristic approach is also 
presented in this study to determine the GRNN parameters that lead to the best 
performance and prediction capability. The results are promising: a high 
success rate is obtained for predicting 41 outputs, which represent the upper-
body degrees of freedom of a human model. This work initiates future focus on 
embedding GRNN to generalize human posture prediction in a task-based 
manner. 

Keywords: Digital human modeling and simulation, artificial neural network, 
posture prediction. 

1 Introduction 

Digital human modeling (DHM) is a human representation on computer software or a 
computer model used to perform analyses and evaluations related to human 
performance. DHM studies have developed and facilitated the study of many human-
related fields. As one of these fields, human posture prediction is incorporated in 
studying and analyzing many ergonomic studies, human-machine workplaces, vehicle 
designs, etc. Hence, studying posture prediction is critical for understanding human 
performance when a powerful method or approach is needed to predict accurate and 
reliable postures. This reliability can be provided by incorporating prediction tools 
like an artificial neural network (ANN). ANN is a mathematical model for predicting 
system performance (i.e., system output) inspired by the structure and function of 
human biological neural networks. ANNs have been studied extensively and applied 
in various problems [1] and [2]. Their benefits have not yet been fully realized in the 
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context of human-posture models because there are many variations of ANNs, and 
selecting the appropriate form and associated parameters for a particular application 
can often be more of an art than a science. 

The applications of solving human posture prediction problems are not new; 
various approaches, including some types of ANN, have been used to address these 
problems. A simulation of in-vehicle seated reaching movements was presented with 
a seven-degree-of-freedom (7-DOF) linkage structure depending on an inverse 
kinematics approach [3]. Then, an efficient numerical formulation was developed for 
the prediction of real postures [4]. Moreover, ANN has been used to predict the next 
steps or postures for many types of postures [5], [6]. This paper presents the use of the 
general regression neural network (GRNN) type of ANN to predict human posture for 
the following reasons: 1) to investigate potential issues when using GRNN to simulate 
tasks that involve contact constraints or other conditions involving Cartesian 
locations, 2) to provide initial work in posture prediction to discover the limitations of 
using GRNN in this DHM problem, and 3) to demonstrate the feasibility of predicting 
a large number of outputs using GRNN. 

In general, the current state of the art does not demonstrate the use of ANNs for 
direct manipulation of joint angles in the context of a complete human model with a 
large number of DOFs. Most of the applied work was done using traditional ANN 
types like the feed-forward neural network, which has memory and training 
limitations when predicting a large number of outputs. Moreover, human posture 
prediction needs to be studied in a task-based manner like touching a point, box 
lifting, sitting/standing, etc. Thus, we propose not only exploring the use of ANNs for 
predicting upper-body posture but doing so in the context of a complete 41-DOF 
DHM. Furthermore, we demonstrate the determination of the appropriate ANN and 
ANN parameters for application to human posture prediction. Thus, the following 
contributions are achieved in this paper: 1) task-based posture predictions for a 41-
DOF human model using ANN, 2) the first use of GRNN in task-based posture 
prediction with highly reasonable results, 3) prediction of a relatively large number of 
outputs (41) for a 41-DOF human model, and 4) introduction of a new fully automatic 
strategy for determining the Gaussian width (GW) parameter for optimal network 
performance. 

2 Background 

2.1 Human Model 

The underlying human model used with this work is Santos [7], which is built on a 
biomechanically accurate musculoskeletal model with 55 DOFs. Santos’s 
anthropometry can be altered on the fly as can the range of motion (ROM) for each 
joint. Human posture prediction on Santos is done using an optimization-based 
approach; conceptually, the joint angles (one for each DOF) provide design variables. 
The objective function(s) is one or more human performance measures, such as 
energy, discomfort, joint displacement, etc. 



 Artificial Neural Network-Based Prediction of Human Posture 307 

2.2 Neural Networks 

ANN involves many neurons arranged in multiple interconnected layers. In much the 
same way that one learns, ANNs essentially provide a high-dimension surface 
(representing system output) fit to variables that control system behavior. The process 
of fitting the hyper surface to data points is called training, and the data points are 
called grid points. A single grid point represents a set of input parameters used to train 
the ANN. The term “off-grid points” refers to input parameters that were not actually 
used in a training case. This study uses GRNN, which is a type of radial-based neural 
network (RBNN) [8], [9]. The use of GRNN has advantages, including fast training, 
smooth prediction, and the ability to handle a relatively large number of inputs and 
outputs.  

In the GRNN architecture, ࢞ ൌ ሾݔଵ, ,ଶݔ … ,  ோሿ (R is the number of inputs)ݔ
provides the input for each neuron in the hidden layer. The hidden layer has Q 

neurons [1, 2, … , ܳ] (Q is the number of training cases). Inside each hidden neuron, 
there is a radial transfer function that produces output depending on the provided 
input, so the final output depends on the radial distance of the input from the basis 
function’s center [8]. The Gaussian function is the most popular type of radial 
function [8], so it is used in this study. The hidden neuron’s output enters all neurons 
in the output layer. Each neuron in the output layer essentially combines the received 
lines (the outputs of all hidden neurons) in a weighted sum to provide the final 
network outputs. The output layer has N number of neurons, which is the number of 
outputs ሾݕଵ, ,ଶݕ … ,   .ேሿݕ

Figure 1 shows a flow chart for the mathematical steps that are calculated inside 
each neuron in both the hidden and output layers. Once the neuron receives the input 
x, the sum of the absolute values between x and the components of the vector ࢃ௜ூ 
(Equation 1) is calculated in the “Distance Function” to produce ܣ௜, as in Equation 2. 
The dimension of the input weight matrix ࢃூ, as shown in Equation 3, is QxR. Each 
row of ࢃூ is referred to as an input weight vector associated with a corresponding 
hidden neuron. Then, the value ܣ௜ is multiplied by the bias constant B in the “scaling 
function” to provide ܽ௜ (Equation 4), which is called the radial distance. The bias B is 
responsible for the network sensitivity, which is directly calculated from a network 
parameter (GW). More detail about those two terms will be provided in the method 
section. The last step is to calculate the radial function outputs ݄௜ሺܽ௜ሻ to provide the 
neuron’s output ݄௜ (Equation 5), which represents the hidden neuron output. ࢎ ൌሾ݄ଵ, ݄ଶ, ݄ଷ, ݄ொሿ represents the output from Q hidden neurons, which are provided to 
each neuron in the output layer. The figure shows the kth output neuron, which 
provides the kth output ݕ௞  (Equation 6). This output is calculated by calculating the 
sum of the dot product between the provided ࢎ and the output weight vector ࢃ௞ை 
(Equation 7) and divided by the sum of ࢎ components. In the output weight 
matrix ࢃை (Equation 8), ࢃ௞ை refers to the kth weight vector associated with a 
corresponding output neuron. 
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Fig. 1. The ith neuron at the hidden layer (at left), and the neuron at the output layer (at right) 

௜ூࢃ  ൌ ሾݓ௜ଵூ ௜ଶூݓ   … . ௜ோூݓ   ሿ (1) 

௜ܣ  ൌ  ∑ หݓ௜௝ூ െ ௝หோ௝ୀଵݔ   (2) 

ூࢃ  ൌ ێێۏ
ۍ ଵଵூݓ ଵଶூݓ ଶଵூݓଵோூݓ … ଶଶூݓ …ଶோூݓ … … … … … … . ொଵூݓ. ொଶூݓ ொோூݓ … ۑۑے

ې
 (3) 

 ܽ௜ ൌ ௜ܣ כ  (4) ܤ

 ݄௜ ൌ  ሺܽ௜ሻ (5)݀ܽݎ

௞ݕ  ൌ  ∑ ௛೜ೂ೜సభ .௪ೖ೜೚∑ ௛೜ೂ೜సభ  (6) 

௞ைࢃ  ൌ ௞ଵ଴ݓൣ ௞ଶ଴ݓ   … . ௞ொ଴ݓ   ൧ (7) 

ைࢃ  ൌ ێێۏ
ۍ ଵଵ௢ݓ ଵଶ௢ݓ ଶଵ௢ݓଵொ௢ݓ … ଶଶ௢ݓ …ଶொ௢ݓ … … … … … … . ேଵ௢ݓ. ேଶ௢ݓ ேொ௢ݓ … ۑۑے

ې
 (8) 

The training process is done simply in two steps. First, define the GW, which is the 
width of the Gaussian transfer function. Second, set the values of ࢃூ and ࢃை to be 
the inputs and outputs, respectively, of the training cases. Each training case consists 
of a set of input x and output y. For the nth training case, the nth row of ࢃூ takes the 
input vector x, while the nth column of ࢃை takes the output vector y. The remaining 
question in constructing and training the GRNN is how to define the GW for such a 
network. 
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3 Method 

The network parameter (GW) is heuristically and automatically determined at any 
application. GW has a significant effect on the predicted results of the GRNN. The 
mathematical importance of the GW is that when the distance ܣ௜ equals GW, then the 
radial function’s output (݄௜ in Equation 5) equals 0.5. A larger GW results in a wider 
radial function and vice versa. Given the application-dependent nature of ANNs, it is 
impossible to calculate the optimal GW [10]. Having large GW decreases the 
accuracy of the output. While small GW provides accurate results for the training grid 
points, it provides poor results when evaluating off-grid points. Thus, selecting the 
most appropriate GW is a tradeoff between covering all space between training cases 
and getting accurate results. GW also determines the bias (B) in the first hidden layer, 
shown in Equation 9. The factor of 0.833 is provided in the literature [8]. 

ܤ  ൌ  (9)                                   ܹܩ/0.833

The heuristic strategy for finding the best GW is incorporated in the training and 
construction of the network. The collected training cases are split into two parts, 
testing cases and true training cases, where the true training cases have all training 
cases except three cases (testing cases) that are used to test the network 
performance and never participate in the training. Then, 40 GRNNs are created or 
built, one for each of 40 different GWs. The GW values range from 0.05 to 2 in 
increments of 0.05, where this range represents all possible GW values within the 
inputs range. This range of GW values is chosen because the inputs are all 
normalized between -1 and 1, so the maximum difference is 2. The selected 
increment is small enough to exactly follow and specify the most accurate GW. 
Larger increments might pass the proper GW, while lower increments are useless 
because they are too small to have a notable effect on the produced network. The 
GW should also be positive. Next, for each network, R-square values are calculated 
between the predicted results from the network and the exact postures for the three 
selected testing cases and three other randomly selected on-grid (training) cases. 
Then, average R-square value is calculated for all six cases. The final step is 
choosing the maximum value in the vector, which corresponds to the best GW. By 
the end of this step, the training and testing steps are finished, and the best GW 
value for proper network performance has been identified. 

Now, the proposed network along with the approach of finding its GW is applied 
on human posture prediction. The task is to touch a target point in front of the body 
with the right hand. The GRNN is used to predict 41 DOFs, which represent the upper 
body of the 55-DOF human model (Santos), to reach the fed target position. Figure 2 
shows the 31 collected true training cases, which are randomly collected from the 
whole reachable zone on the front side of the body. For this task, the network has 3 
inputs (target position in three dimensions) and 41 outputs (41 DOF). The optimal GW 
equals 0.25. The work of collecting the training cases and training the network was 
done on a Windows 7 computer with an Intel® Core™ 2 processor and 8 GB of RAM; 
the training and testing was done in a fraction of a second. 
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Fig. 2. Santos with the points that are used in the training cases shown in red; the figure has a 
front view (shown on left) and a side view (shown on right) 

4 Results 

Three off-grid cases are tested. On-grid points are not presented because testing 
the prediction of off-grid points reflects the general network prediction ability for 
any point in the training grid. Thus, if the GRNN predicts the off-grid points well, 
the general prediction ability for the network will be good. In addition, the network 
predicts on-grid points more accurately than off-grid points. The testing cases are 
selected randomly within the limits of training space (shown in Figure 2) and 
evaluated visually as well as statistically. Regarding the statistical results, adjusted 
R-squares are plotted for the three off-grid cases in Figure 3. These plots are for 
joint angles resulting from the network and actual Santos posture prediction 
outputs. The R-square values for all cases are above 0.97, which is highly 
acceptable from a statistical standpoint. Although these cases were not trained on 
the network, the results showed matching between predicted and actual values. 
These plots indicated that the network was able to interpolate all body joint angles 
properly to get acceptable accuracy. These results are statistically promising; the 
network is able to predict all joint angles quickly and accurately. 

 

 

Fig. 3. Adjusted R-square values for the results of GRNN versus Santos PP for 41 DOFs of 
three off-grid testing cases 
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Fig. 4. Three off-grid postures in the task of touching a point for Santos posture prediction (PP) 
and GRNN 

Visual comparisons for the three off-grid postures between posture prediction 
(exact posture) and predicted GRNN results are shown in Figure 4. In the figure, the 
red arrows refer to the target point locations. Note that there are some small errors in  
GRNN prediction for the joint angles, which lead the hand away from the required 
exact point location. The error was because the network is a general regression type, 
which interpolates between training cases, and it was not trained to predict the input 
target point with 100% accuracy. In all cases, Santos’s hand moves toward the proper 
direction and close to the target point but with a small error. In general, the results 
show that the predicted joint angles, including the head and neck, were all tuned with 
the body corresponding to the target point position. The error in predicting the joint 
angles was minor, but still has a clear effect on touching the target point. 

5 Discussion 

A study of posture prediction for touching a point using GRNN showed that there is a 
potential use of the GRNN type of ANN for quick prediction of realistic postures. 
This prediction could be also generalized in a task-based manner and by training the 
network using various sources like motion capture. The results from this study were 
statistically promising since the network was able to predict 41 DOFs quickly and 
accurately, but with small error that prevents touching the target points exactly. Note 
that these small errors in GRNN prediction for the joint angles can manifest 
themselves as significant errors in the space (x, y, and z space). In all cases, Santos’s 
hand moves toward the proper direction and close to the target point but with a small 
error. 
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The contact problem (touching an exact point or location) in this study was serious. 
Santos failed in exactly touching the target point for most of the tested cases. This 
problem occurred because the network GW value was relatively large for a task 
requiring highly accurate prediction ability from the network, touching a point exactly 
in the space. However, the GW value determined by the new heuristic method was 
reasonable for this task, because there were only 31 points collected for training from 
the whole reachable zone in front of the body, which left many gaps (empty spaces) 
between the training cases. Consequently, the used GW must be large enough to 
successfully predict the points that are located in these gaps. The large GW used in 
this study decreased the accuracy of predicting both on- and off-grid points. 
Generally, to solve the contact problem in posture-prediction tasks, there are two 
options: 1) collecting many training cases to decrease the gaps in the training grid or 
2) adding constraints to the network construction to force the predicted postures from 
the network to be exactly in the proper position. 

Along with the promising use of GRNN in posture prediction, there are some 
challenges and limitations in its current use that need to be addressed in future 
work. First, the accuracy of touching the target point was a problem when using 
GRNN. The type of inputs and outputs that form a task could be studied to improve 
the performance of the network used to maximize the accuracy. For example, 
training the network to predict joint center locations instead of joint angles has 
prospective success in producing more accurate results in posture prediction tasks. 
Second, the proper number of training cases to be chosen for such a task needs to be 
addressed. 
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