
F. McCaffery, R.V. O'Connor, and R. Messnarz (Eds.): EuroSPI 2013, CCIS 364, pp. 167–178, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Harmonizing Software Development Processes
with Software Development Settings – A Systematic

Approach

Simona Jeners1, Paul Clarke2, Rory V. O’Connor3,
Luigi Buglione4, and Marion Lepmets2

1 RWTH Aachen University, Research Group Software Construction, Germany
simona.jeners@swc.rwth-aachen.de

2 Regulated Software Research Group, Dundalk Institute of Technology, Ireland
{Paul.Clarke,Marion.Lepmets}@dkit.ie

3 Dublin City University, Ireland
roconnor@computing.dcu.ie

4 ETS Montréal / Engineering.IT SpA, Italy
luigi.buglione@eng.it

Abstract. The software process landscape is rich in complexity and many
alternative software development approaches have emerged over the past 40
years. However, no single software development approach is universally
implemented and it seems likely that no single approach can be universally
useful. One of the primary reasons that no single approach is universally useful
is that no two software development settings are identical. We have assembled a
team of recognized academics, who together with industrial collaborators, plan
to map the complex world of software processes with the context of software
development projects. The results of our initial mapping efforts, reported in this
paper, demonstrate that although there are challenges in an undertaking such as
this, the outcomes are potentially of considerable value to both software
researchers and practitioners.

Keywords: Software Process, Situational Factors, Process Improvement,
Mappings, Systematic Approach.

1 Introduction

When compared with some of the more established engineering disciplines, it has
been claimed that the profession of software engineering can be considered to be in its
youth [1]. However, arguments to the contrary also exist: that the practice of software
development may already be quite mature [2], and that software engineering may not
be a true engineering discipline at all [3]. Whether software development is or is not a
true engineering discipline may for many practitioners represent an academic debate.
In practice, software development is beset with many challenges and constraints. The
variety of problems to which software is proposed as a solution is very broad, and the
tooling and materials employed in software development are constantly evolving.

168 S. Jeners et al.

Nonetheless, many general models and frameworks for software development have
been published, and some of these approaches have proven to be beneficial.

Owing to the rich variety of software development settings (for example: the nature
of the application being developed, team size, requirements volatility), the
implementation of a set of practices for software development may be quite different
from one setting to another. Process capability and maturity frameworks (CMFs),
such as CMMI-DEV [4] and ISO/IEC 15504 [5], recognize that different
implementations of software processes are possible and provide mechanisms for
assessing any given implementation. Furthermore, CMFs also provide a roadmap for
process improvement. However, evidence of the benefits of CMFs is predominately
restricted to larger organisations [6], [7]. Limited evidence of the benefits of CMFs
for smaller software development settings also exists [8-10]. However, it has been
suggested that such approaches may not be suited to the needs of small software
development organizations – and it would appear that in practice, smaller
organizations tend not to adopt CMFs.

Together with other so-called traditional approaches, such as Quality Management
Standards (e.g. ISO-9001), CMFs have been criticized for being overly restrictive (or
heavy) in terms of their ability to support the innovative and speculative nature of
software development [11]. As a result, the Agile Manifesto [12] was devised as an
alternative philosophy to developing software, addressing some of the limitations of
traditional approaches. In particular, the agile manifesto emphasizes the need for
working software over extensive documentation, while also promoting the frequent
delivery of smaller usable features rather than waiting a long time to deliver a single
large system. A number of agile software development approaches, generally termed
agile methodologies, have been developed [13], [14]. Furthermore, published studies
have demonstrated the benefits of adopting an agile software development approach,
including increased productivity, improved time to market [15] and reduced code
defect densities [16]. While the advent of agile methodologies has delivered benefits
to software development initiatives, it has also been noted that the general philosophy
may suffer from a number of limitations. For example, it has been argued that agile
development methodologies may require a very skilled software developer, a
premium developer [17], and that some approaches place an impractical demand on
customer collaboration [18].

The preceding paragraphs describe just a small subset of the approaches to
software development (herein termed Improvement Reference Models (IRMs)) that
have been proposed over the past few decades. And despite the benefits of each
individual approach, no single approach has been universally adopted. Rather,
software development projects and organizations appear to choose a base model that
works for them, thereafter adapting and changing their specific processes to address
their own specific needs [19]. Therefore, the basic requirement of a software
development process is that it “should fit the needs of the project” [20]. Although it is
relatively straightforward to understand that a software development process should

 Harmonizing Software Development Processes with Software Development Settings 169

ideally be harmonized with the context within which the software must be developed
and delivered, no earlier published research has focused on identifying the
relationship between aspects of software development settings (which we term the
situational context) and the broad dimensions of software development processes.
Therefore, this research is motivated to address this gap, and in order to do so, the
authors have secured the participation of both industrial and academic collaborators.
Together, and over an extended period of time, these collaborators will develop a
systematic approach to identify the relationships between factors of situational
context and various aspects of the software development process. Our approach could
also support the IT projects or IT departments that use frameworks such as ITIL [21]
and CMMI-SVC [22]. However, we have chosen to focus first on the software
development area.

Our primary goal is to support projects to efficiently achieve their objectives by a
systematic improvement of their internal processes. A high Return on Investment
(ROI) is a prerequisite for this improvement, i.e. perform improvement initiatives that
bring the most benefit and can be managed by the project without risking the project
goals and constraints (time, cost and quality).

To support projects, we aim to develop a systematic approach that identifies best
practices from different improvement reference models (IRMs) that are best suited for
an IT project. Our approach considers the following aspects:

• Value/Benefit: The context of the project must be considered to identify the best
practices that bring the most benefit.

• Cost: The adoption cost of the best practice should not jeopardize the
achievement of the project goals.

The remainder of this paper is structured as follows: Section 2 introduces a systematic
approach wherein different contributors iteratively map factors of situational context
to software development processes. In Section 3 we report on the initial application of
this approach and in Section 4, we reflect on the challenges and efficacy of the
approach. Section 5 presents a conclusion as well as outlining future work plans.

2 Approach

This section outlines a systematic approach adopted in order to map situational factors
to IRMs practices. The approach has two main phases (fig. 1): (1) Trial Approach –
experts perform a subjective mapping between a subset of situational factors and IRM
practices; (2) Broader Mapping Program – more experts and IT project members
evaluate the mappings between a larger set of situational factors and IRMs that will
support the improvement of the systematic mapping approach. The Trial Approach
consists of the following steps:

T1. Secure the participation of experts for trial. Our goal is to involve many
experts to perform or evaluate mappings between situational factors and various IRM
practices.

170 S. Jeners et al.

Fig. 1. Overview of the proposed mapping approach

T2. Conduct multiple independent mappings for a subset of situational
factors and a single IRM. Our goal is to perform a series of independent mappings
on a subset of the factors and practices. A performer conducts subjective mappings of
the perceived strength of the relationship between a practice and a situational factor,
according to the following four-point ordinal scale:

• 3 – the practice highly supports the project in managing the situation described by
the situational factor

• 2 – the practice supports the project in managing the situation described by the
situational factor

• 1 – the practice weakly supports the project in managing the situation described
by the situational factor

 Harmonizing Software Development Processes with Software Development Settings 171

• 0 – the practice does NOT support the project in managing the situation described
by the situational factor

The independent results of each performer are consolidated to obtain an overview of
the mapping strength for each factor and IRM practice.

T3. Analyse consolidated mappings for deviations and commonalities.
Examine the contributions from the various performers and seek to confirm

common understandings for the different factors and practices. Note commonalities
and address instances of deviation as deemed appropriate. This may result in a revised
set of consolidated mappings.

T4. Evaluate the recorded mappings.
Conduct an independent evaluation of the consolidated mappings through the use

of an evaluator. The evaluator performs a review considering not just their subjective
opinion but also the previously consolidated performers input - leading to better
results.

T5. Improve the mapping approach based on feedback and analyses. Mark-up
the previous mappings based on the combined feedback. (Note that at once the
research advances to this stage, it is envisaged that a number of practitioners will be
engaged in the further improvement of the mapping approach prior to discharging the
broader mapping programme).

The Broader Mapping Programme comprises of the following steps:

MP1. Extend mapping exercise to accommodate a broader suite of situational
factors and IRMs. Based on our systematic approach, identify the mapping strength
for more situational factors and more IRMs (Note that our approach can be extended
to address IT projects from other domains (Services, Functional Safety)).

MP2.1. Invite greater number of experts to participate. Involve further experts
to participate in the evaluation and improvement of the mapping approach. An online
survey may help to get feedback on the method and on the results for additional
domains (e.g. Services, Functional Safety).

MP2.2. Perform Practice Tailoring with IT projects. Evaluate the mapping
results by using these results in practice. An industrial partner will choose
development projects with different characteristics aiming to identify IRM practices
that are best suited to the given project situation(s). We aim to conduct a Tailoring-
Workshop with the members of these projects: first, we identify the situational factors
that are most relevant for the project; secondly, we provide the project with our
mappings, as a recommendation for practice adoption. Based on the benefit and on the
cost for the adoption, the project makes a decision which practices should be adopted.
During the practice adoption, we aim to collect feedback from the project: did the
adoption of the practices bring the desired benefit, i.e. helped managing a certain
critical situation in the project?

MP3. Analyse feedback from experts and from project members. Consolidate
feedback from practitioners and the impact on the mapping framework.

MP4. Examine instances of large deviation. Identify the mappings where there
is a large deviation between our results and the feedback from the experts and project
members.

172 S. Jeners et al.

MP5. Re-engage with experts as required and improve mapping approach. In
a Retrospective-Workshop with selected experts and project members, examine the
large deviations and identify improvements to our systematic mapping approach.

MP6. Submit for peer-review publication. The mapping approach along with
implementation outcomes is submitted for academic peer-review.

MP7. Improve mapping approach and model based on peer-review feedback.
The findings collected during the peer-review are used to make final improvements to
the mapping approach.

The outputs from the two phases outlined above are (1) a systematic approach to
objectively map situational factors and IRM practices; (2) a matrix with the
relationships between software development settings and software development
processes.

3 Application and Results

This section outlines the steps performed so far (T1 to T4) and the results achieved:

T1. Secure the participation of experts for trial. Inviting and motivating
different experts to participate in the trial. The authors of this paper were all involved
in the trial.

T2. Conduct multiple independent mappings for a subset of situational
factors and a single IRM. First, a set of situational factors and IRMs was defined. To
identify the relationships between situational contexts and software development
processes, it is important that comprehensive and reliable reference frameworks are
employed. For the software development processes, any software process model
could potentially be employed. However, of all the process models published to date,
the two most comprehensive are ISO/IEC 12207 [23] and the CMMI-DEV. Both of
these two resources are comprehensive and have been widely applied in practice;
therefore, either was suited to our mapping task. Since our industrial collaborators
expressed a strong preference for CMMI-DEV (this was their area of expertise), it
was decided that the CMMI-DEV would be employed as the process reference for the
mapping exercise.

Regarding the situational context for software development, again a number of
possible reference frameworks existed. The work of Xu and Ramesh [24] identifies
twenty distinct situational factors, while later works include even greater numbers of
factors – for example, Petersen and Wohlin [25] identify twenty-one factors, and
Bekkers et al. [26] list thirty distinct factors. However, it is the situational factors
reference framework developed by Clarke and O’Connor [27] that is both the most
recent and the most comprehensive contribution to date regarding situational context.
Clarke and O’Connor [27] have systematically included the earlier identified works in
the development of their framework. Furthermore, their situational factors reference
framework also incorporates important seminal contributions from a range of related
domains, including risk factors for software development (e.g. [28]), software cost
estimation (e.g. [29]), and software process tailoring (e.g. [30]). For the initial

 Harmonizing Software Development Processes with Software Development Settings 173

mapping exercise, we randomly selected two different situational factors:
“performance of application(s)/product(s)”, and “changeability of requirements”.

As per the process outlined in Section 2, four performers attempted an initial
mapping, with a fifth academic performing the evaluation of the mappings. A
template was created to document the subjective mappings of each performer (Fig. 2
provides a snapshot). This template contains all the practices of CMMI-DEV ML2
and ML3 (since these two processes are widely used by organizations [31])
categorized by their process areas and maturity levels. For each practice, the
performer could specify the mapping strength 0-3 by marking the corresponding cell
with “x”. The number of "x" indicates the number of performers that agreed to a
certain mapping strength. As the mappings are subjective, we introduced a
justification column to document the reasoning of the experts for the chosen strength.
After the performers finished specifying their mappings independently, their
respective inputs were consolidated.

Fig. 2. A Fragment of the mapping

Justification

CMMI Process Area
Measurement and Analysis MA
Establish and maintain measurement objectives that
are derived from identified information needs and
objectives.

SP 1.1

x xxxx
Specify measures to address the measurement
objectives.

SP 1.2

xxxxx
Specify how measurement data will be obtained and
stored.

SP 1.3

xxxx x
Specify how measurement data will be analyzed and
reported.

SP 1.4

xxx xx
Obtain specified measurement data. SP 2.1

xxxx x
Analyze and interpret measurement data. SP 2.2

xxxxx
Manage and store measurement data, measurement
specifications, and analysis results.

SP 2.3

x xxxx
Report results of measurement and analysis activities
to all relevant stakeholders.

SP 2.4
x xxx x

Required performance of
application(s)/product(s)

Concerned with the performance demands that are placed
product(s)/application(s) under development. For example,

product(s)/application(s) may be required to process a high number of
transaction peRSecond.

3 2 1 0

IRM practices /
Situational factor

If there are specific performance
requirements, then it may be

necessary to set objectives and
measures in relation to the

performance of
application(s)/product(s).

Although the collection of
measurement data may be

importnant where performance
is an important consideration,
this does not imply that it is

necessary to specifiy how the
measurements will be obtained

or analysed.

If ther are specific performance
criteria to satisfy, then the

collection and analysis of the
measurement data is going to

be necessary.

If there are specific performance
criteria to satisfy, then the

measurement data/results may
need to be stored and

communicated to stakeholders.

Consolidated Independent Mappings

174 S. Jeners et al.

T3. Analyse consolidated mappings for deviations and commonalities. Based
on the mapping consolidation, we conducted a discussion based on three principles.

Principle 1: Instances of significant disparity would be prioritized for discussion.
For example, if each of the 4 participants had a different mapping strength for a
situational factor to a CMMI-DEV practice, then clearly there was considerable
disagreement on the strength of the relationship and hence, a discussion was
warranted to establish if there was a lack of common understanding.

Principle 2: Instances where one (or more than one) of the participants had
considered that there was no relationship between a situational factor and a CMMI-
DEV practice (and others disagreed) were also prioritized for discussion. This was
considered important as the decision to rule out any relationship between a factor and
a practice could have important implications for the overall work.

Principle 3: As a general rule, if the reported mapping strengths were clustered in
just two or three adjacent cells, such instances could be de-prioritized (with the
exception of rule number 2 above – i.e. one of the cells was a 0 [or no relationship]
mapping).

In the discussion, we use the idea of the “poker planning”-method for cost
estimation [32], asking the contributors with the minimum and maximum strength to
justify their selection. This often led to an adjustment to the initial inputs.

T4. Evaluate the recorded mappings. The consolidated and analysed mappings
were independently evaluated by an experienced academic evaluator (who was not
involved in the mapping process up to this point). The evaluator identified the
frequencies of provided mapping strengths as a mechanism for taking all views into
account and for assisting in calculating the overall mapping between a situational
factor and the CMMI-DEV procedure. This led to a series of evidences that as
follows:

Situational Factor 1 – Required Performance of Application(s)/Product(s):
Process Areas (PA) with the strongest mapping to the performance factor were
MA (Measurement & Analysis), PMC (Project Monitoring & Control), SAM
(Supplier & Agreement Management), RD (Req. Development) and REQM
(Requirement Management), and VAL (Validation). Adding process categories
of these PAs, we see that the Support and the Project Management categories
(two PAs for each category) were related to ML2; and the Engineering process
category (with two PAs) to ML3. When we look at the staged representation of
the CMMI-DEV, those four ML2 process areas are effectively requested to
have good performance as REQM defines guidelines to manage the project
requirements, SAM leads to a good relationship with (sub)providers and
assures the fulfillment of requirements for the supplier deliveries, PMC
requests monitoring the project results to fulfill its requirements and MA is the
basis for this monitoring using and analyzing different metrics. On ML3, RD is
the main input for any software lifecycle (SLC) activity.
Situational Factor 2 – Requirements Changeability: The PAs with the
strongest mapping to requirements changeability were CM (Configuration
Management), PMC (Project Monitoring & Control), PP (Project Planning),

 Harmonizing Software Development Processes with Software Development Settings 175

REQM (Requirement Management), IPM (Integrated Project Management),
RD (Requirement Development) and RSKM (Risk Management). In other
words, the process categories on ML2 were Support (one PA) and Project
Management (three PAs); and on ML3 Project Management (two PAs) and
Engineering (three PAs) categories.

In summary, both RD and REQM are grouping practices that aim to collect,
define, analyze and manage the requirements (incl. their changes), while PP
and PMC are their counter-side in terms of planning and controlling that
variability, often expressed in the so-called ‘scope creep’ phenomenon, as well
described in the IFPUG Function Point Analysis CPM (Counting Practice
Manual) [33]. At ML3, IPM defines practices to track and resolve critical
dependencies caused by requirements changes with the different stakeholders,
while RSKM helps identifying and analyzing the risks that can be caused by
the changes.

4 Retrospective

In this section we will briefly outline some of the key challenges encountered while
executing this study, the actions taken to address them and open challenges for the
continued evolution of the research.

An important early task to address was the selection of suitable expert participants
and the associated administrative and coordination issues for project execution. The
lead researcher used a network of personal contacts, which were initially established
at European and international software process conferences. From a starting point of 2
experts, a further 3 were recruited. All correspondence was conducted via email and
teleconference facilities (Skype), which was hindered by scheduling/availability of
experts, time differences, etc. However, the geographical co-location (Ireland) of 3 of
the experts alleviated some of these difficulties.

When conducting the initial mapping exercise, it became apparent that the various
experts had applied subjective interpretations regarding certain situational factors and
CMMI-DEV practices, which led to inconsistent initial mappings. For example, the
situational factor Commitment of Personnel was interpreted differently requiring
discussions during teleconferences. This led to a description of each situational factor
being added to the template to ensure a more consistent interpretation of the factors
(refer to Fig. 2, rightmost column, second row). Despite this addition, the situational
factor regarding human-centric activities still proved extremely difficult to reconcile
among experts regarding different interpretations, resulting in the decision to not
include such factors in the initial phase and to more carefully consider these issues at
a later stage.

In addition, during this initial exercise there was substantial discussion on the
usage of a four-point ordinal scale, with suggestions that a 5 or even 8-point scale
could be more appropriate as it could lead to a richer understanding of the
relationships. However, to date the decision is to maintain a 4-point scale.

176 S. Jeners et al.

A final point worthy of comment relates to the time and logistical issues
surrounding the consolidation of results. This required between 1.5 and 2 hours of
intensive discussion per situational factor for 3 experts to analyze and agree. Potential
logistical issues would arise here if a larger number of experts were used. In addition
the usage of a relatively simple Excel-based spreadsheet made progress with altering
and consolidating mappings slow. This could be aided by the creation of an enhanced
spreadsheet harnessing macros or possibly a database system. A final remaining
challenge to be addressed relates to the selection of an appropriate form of evaluation
for both the research approach and outputs. As this work progresses, this will become
a more critical consideration. However, at this early stage in the research, this remains
an open challenge.

5 Conclusion and Future Work

The software process landscape is rich in complexity and many alternative software
development approaches have been developed over recent decades. However, no
single software development approach is universally implemented or useful. One of
the primary reasons for this is the significant variation that is witnessed in software
development endeavors. Just one software developer completes some software
projects, while other projects require a large team. There is a broad range in the value
of software projects, and a wide spectrum to be satisfied in terms of the criticality of
operational domain. Some software development efforts are highly innovative with
emerging requirements, while other efforts may offer greater requirements certainty
earlier in the implementation cycle.

Given such variation in software development settings, it is not surprising to
discover a wide variety of approaches to software development. However, although a
variety of approaches exist, the authors of this paper contend that insufficient
guidance is offered on the activity of tailoring software processes and process
improvement efforts to individual settings. Therefore, it is important that further
research be dedicated to examining the relationship between software development
settings and software development processes. In this respect, we have assembled a
team of recognized academics, who together with industrial collaborators, plan to map
the complex world of software processes with the context of software development
projects.

In this paper, we have outlined an approach to identify mappings between
processes and project settings. We have reported on our initial experiences from the
application of the process. These initial findings highlight some of the significant
challenges that our mapping project has to overcome. For example, we have had to
expand the previously available descriptions of situational factors with concise
definitions that permit a more consistent interpretation of the role of individual
factors. We have also discovered that the role of human-centric factors, such as the
commitment of employees, is difficult to agree upon. Hence, the mapping of human-
centric factors has been postponed to a later phase. Since the broader mapping
program represents a very large undertaking, we plan to complete the work in an

 Harmonizing Software Development Processes with Software Development Settings 177

iterative fashion over a broad period of time. Therefore, the essential purpose of this
paper is to highlight the need for this research, identify an approach to ground the
mapping exercise, and to report on the initial mapping of two situational factors to all
of the practices of CMMI-DEV. In the future, we aim to decrease the subjectivity of
such mappings by proposing an approach to systematically map situational factors to
processes and by the involvement of more experts from research and industry.
Therefore, we envisage that later reports of this research activity will contain mapping
tables that will serve as valuable new resources for both practitioners and researchers.
Such mapping tables will identify, for the first time, the combined view of researchers
and practitioners on the relationship between aspects of situational contexts and
software development processes.

References

1. Jacobson, I., Ng, P., McMahon, P., Spence, I., Lidman, S.: The Essence of Software
Engineering: The SEMAT Kernel. Queue 10(10), 40–51 (2012)

2. Schaefer, R.: Software Maturity: Design as Dark Art. SIGSOFT Software Engineering
Notes 34(1), 1–36 (2009)

3. Denning, P.J., Riehle, R.D.: The Profession of IT. is Software Engineering Engineering?
Communications of the ACM 52(3), 24–26 (2009)

4. SEI: CMMI for development, version 1.3. Software Engineering Institute, CMU/SEI-
2006-TR-008, Pittsburgh, PA, USA (2010)

5. ISO/IEC: IS0/IEC 15504: Information technology - process assessment, part 1 to part 5.
International Organisation for Standardization, Geneva, Switzerland (2005)

6. Herbsleb, J., Goldenson, D.: A systematic survey of CMM experience and results. In:
Proceedings of the 18th International Conference on Software Engineering (ICSE 1996),
pp. 323–330. IEEE Computer Society, Los Alamitos (1996)

7. Gibson, D., Goldenson, D., Kost, K.: Performance results of CMMI-Based Process
Improvement. Software Engineering Institute, Carnegie Mellon University, CMU/SEI-
2006-TR-004, Pittsburgh, Pennsylvania, USA (2006)

8. Cepeda, S., Garcia, S.: Is CMMI Useful and Usable in Small Settings? CrossTalk. The
Journal of Defense Software Engineering 21(2), 14–18 (2008)

9. Cater-Steel, A., Rout, T.: SPI long-term benefits: Case studies of five small firms. In:
Oktaba, H. (ed.) Software Process Improvement for Small and Medium Enterprises -
Techniques and Case Studies. IGI Global, Hershey (2008)

10. Laporte, C.Y., Desharnais, J.M., Abouelfattah, M., Bamba, J.C., Renault, A., Habra, N.:
Initiating Software Process Improvement in Small Enterprises: Experiments with Micro-
Evaluation Framework. In: Proceedings of the International Conference on Software
Development, pp. 153–163 (2005)

11. Dyba, T., Dingsoyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology 50(9-10), 833–859 (2008)

12. Fowler, M., Highsmith, J.: The Agile Manifesto. Software Development, 28–32 (2001)
13. Beck, K.: Extreme programming explained: Embrace change. Addison-Wesley, Reading

(1999)
14. Schwaber, K., Beedle, M.: Agile software development with SCRUM. Prentice Hall,

Upper Saddle River (2002)
15. Reifer, D.J.: How Good are Agile Methods? IEEE Software 19(4), 16–18 (2002)

178 S. Jeners et al.

16. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising Agile Methods to Software Practices
at Intel Shannon. European Journal of Information Systems 15(2), 200–213 (2006)

17. Constantine, L.: Methodological Agility,
http://www.ddj.com/architect/184414743

18. Greer, D., Conradi, R.: Software Project Initiation and Planning - an Empirical Study. IET
Software 3(5), 356–368 (2009)

19. Coleman, G., O’Connor, R.: Investigating Software Process in Practice: A Grounded
Theory Perspective. Journal of Systems and Software 81(5), 772–784 (2008)

20. Feiler, P., Humphrey, W.: Software process development and enactment: Concepts and
definitions. SEI, Carnegie Mellon University, CMU/SEI-92-TR-004, Pittsburgh,
Pennsylvania, USA (1992)

21. Taylor, S., Cannon, D., Wheeldon, D.: ITIL The Cabinet Office (2011)
22. SEI: CMMI for Services, Version 1.3, CMU/SEI-2012-TR-034. Software Engineering

Institute, Pittsburgh, PA, USA (2010)
23. ISO/IEC: ISO/IEC 12207-2008 - systems and software engineering – software life cycle

processes. ISO, Geneva, Switzerland (2008)
24. Xu, P., Ramesh, B.: Software Process Tailoring: An Empirical Investigation. Journal of

Management Information Systems 24(2), 293–328 (2007)
25. Petersen, K., Wohlin, C.: Context in industrial software engineering research. In:

Proceedings of the 3rd International Symposium on Empirical Software Engineering and
Measurement, pp. 401–404. IEEE Computer Society, Washington (2009)

26. Bekkers, W., van de Weerd, I., Brinkkemper, S., Mahieu, A.: The Influence of Situational
Factors in Software Product Management: An Empirical Study. In: Proceedings of the
Second International Workshop on Software Product Management (IWSPM 2008), pp.
41–48. IEEE Computer Society, Los Alamitos (2008)

27. Clarke, P., O’Connor, R.V.: The Situational Factors that Affect the Software Development
Process: Towards a Comprehensive Reference Framework. Journal of Information and
Software Technology 54(5), 433–447 (2012)

28. Benaroch, M., Appari, A.: Financial Pricing of Software Development Risk Factors. IEEE
Software 27(5), 65–73 (2010)

29. Boehm, B., Clark, B., Horowitz, E., et al.: Software cost estimation with cocomo II.
Prentice Hall PTR, Upper Saddle River (2000)

30. Cameron, J.: Configurable Development Processes. Communications of the ACM 45(3),
72–77 (2002)

31. SEI: CMMI for SCAMPI SM Class A Appraisal Results 2012 Mid-Year Update, SEI,
CMU (2012)

32. Grenning, J.: Planning Poker. Renaissance Consulting – April 2012 (2002)
33. IFPUG: Counting Practices Manual (Version 4.3). International Function Points User

Group (October 2009), http://www.ifpug.org/?p=83

	Harmonizing Software Development Processes with Software Development Settings – A Systematic Approach
	1 Introduction
	2 Approach
	3 Application and Results
	4 Retrospective
	5 Conclusion and Future Work
	References

