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Preface

This volume contains the proceedings of the International SPIN Symposium
on Model Checking of Software (SPIN 2013), which was held at Stony Brook
University during July 8–9, 2013. SPIN 2013 marked the 20th anniversary of the
SPIN workshop series.

The SPIN series is an annual forum for researchers and practitioners inter-
ested in verification of software systems. The traditional focus of SPIN has been
on explicit-state model-checking techniques, as implemented in SPIN and other
related tools. While such techniques are still of key interest to the workshop, its
scope has broadened over recent years to include techniques for the verification
and formal testing of software systems in general.

SPIN 2013 featured an invited lecture by Dirk Beyer (University of Passau)
on “Reuse of Verification Results,” and an invited tutorial by Gerard Holzmann
(NASA/JPL) on “Proving Properties of Concurrent Programs.” In his lecture,
Dirk Beyer showed how the resources used in verification can be reduced by
making the results of verification runs reusable. In particular, he focused on using
conditional model checking, precision reuse, and verification witnesses to guide
future verification runs. In his tutorial, Gerard Holzmann cited the increasing
use of static analyzers in industrial software development, even though static
analyzers yield false negatives as well as false positives. He then showed how
SPIN can be used for analyzing multi-threaded programs, without false positives,
while retaining some of the usability and speed of static analyzers.

SPIN 2013 received 40 submissions, from which the Program Committee ac-
cepted 18 regular papers and two tool demonstration papers. All papers received
at least three reviews. The paper selection process involved extensive discussion
among the members of the Program Committee and external reviewers. The sta-
tus of the papers was decided once a consensus was reached in the committee.

We are extremely grateful to the members of the Program Committee and
their sub-reviewers for their insightful reviews and discussion. The editors are
also grateful to the authors of the accepted papers for revising the papers accord-
ing to the suggestions of the Program Committee and for their responsiveness
on providing the camera-ready copies within a tight deadline.

We would also like to thank Scott Smolka for serving as the General Chair,
and the members of the SPIN Steering Committee and the Program Chairs of
SPIN 2012, Alastair Donaldson and David Parker, for their advice on organizing
and running the symposium. Special thanks go to Scott Stoller for his handling
of all publicity-related matters while serving as the SPIN 2013 Publicity Chair.
We thank Stony Brook University, and in particular, Ann Brody and Kathy
Germana, for their valuable assistance with local organization. The EasyChair
conference management system was used in the submission, review, and revision
processes, as well as for the assembly of the symposium proceedings. We thank
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the developers of EasyChair for this invaluable service. Finally, we thank IBM,
Microsoft Research, NEC, and Nvidia for providing generous financial support
to SPIN 2013.

May 2013 Ezio Bartocci
C.R. Ramakrishnan
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Reuse of Verification Results
Conditional Model Checking, Precision Reuse,

and Verification Witnesses

Dirk Beyer and Philipp Wendler

University of Passau, Germany

Abstract. Verification is a complex algorithmic task, requiring large
amounts of computing resources. One approach to reduce the resource
consumption is to reuse information from previous verification runs. This
paper gives an overview of three techniques for such information reuse.
Conditional model checking outputs a condition that describes the state
space that was successfully verified, and accepts as input a condition that
instructs the model checker which parts of the system should be verified;
thus, later verification runs can use the output condition of previous runs
in order to not verify again parts of the state space that were already
verified. Precision reuse is a technique to use intermediate results from
previous verification runs to accelerate further verification runs of the
system; information about the level of abstraction in the abstract model
can be reused in later verification runs. Typical model checkers provide
an error path through the system as witness for having proved that a
system violates a property, and a few model checkers provide some kind
of proof certificate as a witness for the correctness of the system; these
witnesses should be such that the verifiers can read them and —with less
computational effort— (re-) verify that the witness is valid.

1 Introduction

Algorithms for automatic verification require large amounts of computing re-
sources [2, 18]. Furthermore, one verification run of a single verification tool is
often not sufficient to completely solve practical verification problems. The ver-
ifier might fail to give an answer for various reasons, for example due to the
lack of resources (time and memory), an architectural weakness or a missing
feature, or simply due to a bug in the verifier. In such cases, the verification
process would often be continued on a more powerful engine or using a differ-
ent verification approach. Sometimes automatic verifiers report wrong answers,
and thus, in safety-critical applications it might be desired to rely not only on
a single tool, but instead repeat the verification using several other verifiers in
order to increase the confidence in the result. A verification run might also be
repeated because it was run by an untrusted third party, and the result needs to
be re-checked. Some systems consist of many connected components that are ver-
ified independently (compositional verification), or of a series of similar products
that differ in the set of features that they contain (product-line verification) [1].

E. Bartocci and C.R. Ramakrishnan (Eds.): SPIN 2013, LNCS 7976, pp. 1–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 D. Beyer and P. Wendler

When a system is developed, it is desired to detect specification violations soon
after they are introduced in order to support early bug fixing; thus, verifica-
tion should be applied on each new version of the system (regression verifica-
tion) [21, 30], and even after each single change. This requires a large number
of verification runs and enormous computing resources. Regression checking is
state-of-the-art in testing, and regression test selection is a well-known and estab-
lished technique to reduce the number of tests [27]. Verification tools themselves
are also under development, and a regression-checking test suite consisting of
many verification tasks with known verification result [4] can be used to detect
new bugs in current versions of the verifier.

In all of the above-mentioned verification tasks it would be possible and ben-
eficial to store information from previous verification runs to reduce the compu-
tational effort, or to increase the quality of the verification result. More research
projects are necessary to provide solutions for more reuse of (intermediate) verifi-
cation results, and for making the existing verification technology more successful
in industrial applications.

We identified three categories in which information from a previous verifi-
cation run should be used in order to spare computational effort that would
otherwise be necessary: (1) the use of partial results of verification runs that
were not able to completely verify the system; (2) the reuse of auxiliary infor-
mation that was computed during previous verification runs in order to speed
up later verification runs; (3) the use of witnesses for verifying the correctness
of previous results.

For each of these categories we present one example from software verification
and illustrate the effectiveness of the approach by some experimental evaluation.
First, conditional model checking [8] is an approach in which a verifier takes as
input a condition that specifies which parts of the program should be verified,
and produces an output condition that specifies which parts of the state space
were successfully verified. The output condition of one verification run can be
used as the input condition of a subsequent run such that the latter can skip
the already-verified parts of the state space and focus on the remaining state
space. Second, many approaches that are based on CEGAR [17] use some form
of precision that specifies the level of abstraction of the abstract model that gets
constructed for the analysis of the system (e.g., predicate abstraction [3,7,19,20]).
This information about the precision can be dumped after a verification run and
read in before starting another run (e.g., [13]), reducing the verification time
of the latter run because the precision is already computed and many refine-
ment steps are automatically omitted. Third, model checkers typically provide
a counterexample (an error path) if a violation of the specification is found in
the system, in order to help the user identifying and eliminating the bug. Such
counterexamples can also be used —if exported in a machine-readable format—
for (re-)verifying if the result of the model checker is (still) correct.

Related Work. We restrict our discussion of related work to automated soft-
ware verification. Conditional model checking [8] allows to start the overall veri-
fication process using one verifier (depending on the abilities of the verifier, the
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result might be partial), and later use another verifier to further increase the ver-
ification coverage, i.e., check the remaining state space. For example, if model
checkers are not able to verify certain properties of the system, (guided) testing
tools can be used in a second step to increase confidence of correctness for the
remaining, not yet verified parts of the state space [16].

Reusing information from a successful verification run for previous versions
of a modified system is the basis of many approaches for regression verifica-
tion [30]. Different forms of information have been proposed for reuse: state-space
graphs [23,24,33], constraint-solving results [31,34], function summaries [29], and
abstraction precisions [13]. Some of the data can become quite large compared to
the system under investigation, and in most cases there needs to be a validation
check on whether it is sound to reuse the information (i.e., whether the infor-
mation still applies to a new version of the system). Precisions are concise and
can be reused by the same algorithm that produces them, without a separate
validation step.

Most state-of-the-art model checkers produce a counterexample for inspection
by the user if the system violates the property, in order to guide the user in the
defect-identification process. However, only a few verifiers support witnesses for
verification runs showing that the property holds: more verifiers should provide
witnesses for correctness. Well-known forms of witnesses for the correctness of
a program are proof-carrying code [26], program invariants [22], and abstract
reachability graphs [23]. A program for which a safety proof has been found
can also be transformed into a new program that is substantially easier to re-
verify [32], although verifying the transformed program does not guarantee that
the original program is correct.

Experimental Setup. In order to show that reusing verification results is ben-
eficial in many cases, we perform a series of experiments using the open-source
software-verification framework CPAchecker1. We use revision 7952 from the
trunk of the project’s SVN repository. CPAchecker integrates many successful
verification approaches. In particular, we use its predicate analysis [11] and its
explicit-value analysis [12]. Both are based on CEGAR and lazy abstraction.

The benchmark set that we use in this paper consists of the C programs from
the 2nd Competition on Software Verification 2 [5], except for the categories
“Concurrency” and “Memory Safety”, for which CPAchecker has no support.
Thus, our benchmark set contains a total of 2250 C programs, 480 of which
contain a known specification violation.

We use machines with an Intel Core i7-2600 3.4 GHz quad-core CPU and
32 GB of RAM, allowing the verifier to use two cores (plus two hyper-threading
cores) and 15 GB of RAM. The time limit is set to 15 minutes of CPU time.
We run two independent instances of the verifier in parallel on each machine,
in order to speed up the benchmarking. The operating system of the machines
is Ubuntu 12.04 with Linux 3.2 as kernel and OpenJDK 1.7 as Java virtual
machine.

1 http://cpachecker.sosy-lab.org
2 http://sv-comp.sosy-lab.org

http://cpachecker.sosy-lab.org
http://sv-comp.sosy-lab.org
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The CPU time is measured and reported in seconds with two significant digits.
The memory consumption is measured including the Java VM that CPAchecker
uses as well as the memory that all other components of the verification process
(e.g., the SMT solver) need and is given in megabyte with two significant digits.

We present our results using scatter plots that compare a configuration with-
out information reuse versus a configuration with information reuse. Each data
point in such a plot represents the performance results of one verification task,
where the x-value reports the verification time that is needed in the initial run,
and the y-value reports the verification time that is needed in the second run, in
which some information from the first run was reused. Thus, data points in the
lower-right triangle (with the x-value greater than the y-value) show a speedup
through information reuse, with the performance benefit increasing with the dis-
tance of the data point from the diagonal. Instances that cannot be verified due
to a timeout of the verifier are shown with a time of 900 s and are drawn at the
right or top of the plots.

2 Conditional Model Checking

In traditional model checking, the outcome of a verification run is either “safe”
or “unsafe”. However, it may also happen that a model checker fails and pro-
duces no result at all, for example due to resource exhaustion. In such cases, the
computational effort that was invested is lost. Conditional model checking [8]
redefines model checking in order to solve this problem. A conditional model
checker gives as output a condition Ψ that states under which condition the an-
alyzed program satisfies the given specification. This condition is produced even
in case of a failure, and thus, the consumed resources are not wasted because
every run produces some useful result. The previous outcome “safe” translates
to Ψ = true, and the outcome “unsafe” translates to Ψ = false, however, the
condition allows for more flexible outcomes. For example, in case of a timeout, a
conditional model checker would summarize the already verified part of the state
space in the condition, stating that the program is safe, as long as its execution
stays within this part. In case of an unsound analysis like bounded model check-
ing with a fixed loop bound, or an algorithm with an incomplete pointer-alias
analysis, these assumptions for program safety would also be explicitly given in
the output condition, e.g., the program is safe under the assumption “pointers p
and q are not aliased”.

Furthermore, a conditional model checker also takes as input a condition that
specifies parts of the state space that are already verified, i.e., which the model
checker can omit and should not verify again. This can be used to restrict the
analysis, e.g., to at most k loop unrollings (well-known as bounded model check-
ing [14]), to paths not longer than n states, or to some maximum amount of
time or memory.

Conditional model checking makes it possible to combine two (or more) ver-
ifiers and leverage the power of both. Figure 2 illustrates two example combi-
nations, sequential combination with information passing and combination by



Reuse of Verification Results 5

false

Model
Checker

1

Ψ1

Model
Checker

2

Ψ2

Model
Checker

1

Model
Checker

2

Ψ ¬Ψ

ϕ1 ϕ2

false

ϕ1 ∧ ϕ2

Fig. 1. Combination strategies using conditional model checkers; left: sequential com-
bination with information passing; right: combination by partitioning (compositional
verification)

partitioning; for more application examples, we refer the reader to the full arti-
cle [8]. In contrast to previous combinations of different techniques (e.g., reduced
product for combining different abstract domains [9, 15]), the techniques that
are combined using conditional model checking can be implemented in different
tools, can run on different platforms, even at different locations, or in the cloud;
because the interaction and information exchange is realized via implementation-
independent conditions.

Sequential Combination with Information Passing. Conditional model
checking supports a sequential combination of two verifiers, such that the output
condition of the first verifier (describing the successfully verified state space) can
be used as input condition for the second verifier. This way, the second verifier
will not attempt to verify the state space that was already proven safe by the
first verifier. The left part of Fig. 2 illustrates how information can be passed
from the first to the second model checker through condition Ψ1; per default, the
first model checker starts with false as input condition, i.e., nothing is already
verified. The condition Ψ1 represents the state space that the first model checker
was able to verify. The second model checker starts with Ψ1 as input and tries
to verify the state space outside of Ψ1, i.e., tries to weaken the condition. If
the second model checker terminates with output condition Ψ2 = true, then
the sequential combination was successful in completely solving the verification
problem. If already the first model checker returns Ψ1 = true, then the second
model checker has nothing to do; otherwise, the sequential combination is reusing
information from the first verification run in the second verification run, making
the analysis more powerful than any of them alone.

It is well known that different verification techniques have different strengths
and weaknesses on different kinds of programs; the same applies to program parts.



6 D. Beyer and P. Wendler

For example, consider a program that contains loops with many iterations as well
as non-linear arithmetic. An explicit-state analysis might fail on the loops due
to resource exhaustion, whereas a predicate-based analysis might not be able
to reason about non-linear arithmetic, and thus, none of the two techniques is
able to verify the program on its own. Given an implementation of each analysis
as conditional model checker, and a setup that reuses the output condition of
one as the input condition for the other, verification of such a program becomes
possible. One could run the (conditional) explicit-value analysis first, specifying a
maximum path length as input condition. Thus the analysis would not waste all
available resources on endlessly unwinding loops, but instead verify the rest of the
program, and summarize the results in the output condition. If the subsequent
run of the predicate analysis gets this information as input condition, it can focus
on the still-missing parts of the state space (the loops), and skip the rest (which
in this case, the predicate analysis would not be able to verify due to the non-
linear arithmetic). Thus, the complete analysis might prove the program safe,
although the same sequential combination without information reuse would not
be able to verify the program.

Combination by Partitioning. Conditional model checking also supports
compositional verification, which can be set up as a combination where the
state space is partitioned into two partitions and two verifiers are started each
with an input condition that represents its (negation of the) partition. This way,
each verifier concentrates on different aspects of the verification task. If both
verifiers succeed to relax the condition to true, then the verification task is com-
pletely solved. Otherwise, the output condition φ1∧φ2 represents the state space
that was successfully verified. This concept allows a convenient construction of
compositional verification strategies. In this paper, in which we focus on reuse
of verification results, we now concentrate on experiments with the sequential
composition.

Experimental Evaluation. We refer to previous experimental results
from 2012 [8] to give evidence that conditional model checking, and the combi-
nation of verifiers that it makes possible, can verify more programs in less time.
For those experiments, we used a benchmark set that consists of 81 programs
created from the programs in the categories “SystemC” and “DeviceDrivers64”
(two categories that were considered particularly hard) of the Competition on
Software Verification 2012 (SVCOMP’12) [4].

As an example for conditional model checking we show the results for a configu-
ration that combines two verifiers sequentially with information passing between
the verifiers. The first verifier that is used is an explicit-value analysis that is
quite fast for some programs but inefficient for other, more complex programs
due to state-space explosion. This analysis is configured to stop itself after at
most 100 s. If it terminates without a complete result “safe” or “unsafe” (due
to the timeout, or due to imprecision), it dumps a summary of the successfully
verified state space as an output condition. The second verifier, which uses a
powerful predicate analysis based on CEGAR, lazy abstraction, and adjustable-
block encoding [11], continues the verification for the remaining time up to the
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Fig. 2. Scatter plot comparing the verification time of a predicate analysis with the ver-
ification time of a conditional-model-checking configuration that uses both an explicit-
value analysis and a predicate analysis

global time limit of 900 s. This analysis takes the output condition that was pro-
duced by the first verifier as input condition such that it will ignore the already
verified state space and focus on the remaining parts. We compare this instance
of conditional model checking against a stand-alone predicate analysis, in the
configuration that was submitted to SVCOMP’12 [25].

The stand-alone predicate analysis is able to solve 58 of the 81 verification
tasks in 31 000 s. The configuration based on conditional model checking instead
verified 75 programs in only 14 000 s. Figure 2 presents the verification times for
both configurations for 78 out of the 81 benchmark verification tasks (excluding
3 cases where one verifier ran out of memory and aborted prematurely). The
majority of the data points is positioned in the lower-right triangle, which shows
the performance advantage of conditional model checking. In some cases, the ver-
ification time for conditional model checking is just over 100 s and the predicate
analysis alone needs only a few seconds. These are verification tasks for which
the explicit-value analysis, which is started first in our setup of conditional model
checking, is not able to solve the program in its time limit of 100 s, and the pred-
icate analysis that is started subsequently verifies the programs in a short time.
Note that there is a significant amount of data points to the right-most area of
the plot: these are the verification tasks on which the predicate analysis alone
times out. Some of these programs even take more than 100 s when verified with
conditional model checking, which means that they were successfully verified by
the predicate analysis after the explicit-value analysis terminated, although the
predicate analysis alone could not successfully verify them. The verification of
these programs is only possible by information reuse, that is, by restricting the
predicate analysis to the state space that the explicit-value analysis could not
successfully verify. A simple sequential combination of both analyses without
information passing would not have been able to verify those programs.
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3 Precision Reuse

There are many applications for re-verifying a program that was already verified.
Common to all these cases is the fact that information from previous verifica-
tion runs for the same program would in principle be available, and could be
used to speedup subsequent verification runs. Thus, it seems worthwhile to save
such information in a machine-readable way after each verification run for the
program, for later reuse.

Several successful software-verifiers are based on CEGAR, and continuously
refine an abstract model of the program to be analyzed, until the model is strong
enough to prove safety or find a violation of the property. The precision (level of
abstraction) that is used for constructing and verifying the abstract model is cru-
cial information for the success of such CEGAR-based analyses, and discovering
an appropriate precision is usually one of the most expensive tasks of the verifier
(possibly involving a large number of refinement steps). However, given the pre-
cision as input, the verifier can immediately construct an appropriate abstract
model and verify the abstract model without further refinements. Thus, such pre-
cisions are suited for being reused in subsequent verification runs, as was shown
in previous work for the application of this concept to regression verification [13].
For example, predicate analysis with CEGAR and lazy abstraction (e.g., [7]) is
a well-known analysis that uses precisions. In this case, the precision contains
the set of predicates over program variables that are tracked by the analysis,
and (in case of lazy abstraction) the program locations at which the predicates
are relevant. A precision can also be used for explicit-value model checking [12],
in which case the precision stores the program variables that are relevant for
the verification; all other program variables should be abstracted away by the
verifier. Similar precisions can be used for analyses based on other abstract do-
mains, such as intervals or octagons. Precisions are usually much smaller than
the program itself, and can be easily dumped after the verification run.

If a precision for a given program is present from a previous verification run,
it can easily be used as the initial precision of a subsequent verification run,
instead of the usual (coarse) initial precision. Thus, no refinements are necessary
anymore (given that the program was not changed). In contrast to other ap-
proaches like proof checking, where a separate algorithm is needed for verifying
the proof, precision reuse does not require a new algorithmic setup: the same
analysis and algorithm that produce the precision in a first verification run are
the components that use the precision in a subsequent verification run. Further-
more, if the provided precision does not fit to the program (for example because
the program was changed, or the user provided a wrong input file), there is no
risk of incorrect verification results. Instead, the verifier will simply detect that
the abstract model is not strong enough to verify the given property by finding
spurious counterexamples, and will use refinements to strengthen the abstract
model as it would in a verification run without a given input precision.

Experimental Evaluation. Both the predicate analysis and the explicit-value
analysis of CPAchecker are based on CEGAR and use a precision to define the
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Table 1. Results for precision reuse

Analysis Programs Without precision reuse With precision reuse

Solved CPU Memory Solved CPU Memory
Tasks Time Avg. Max. Tasks Time Avg. Max.

Explicit-Value Safe 1529 13000 270 9600 1529 6100 170 8200
Unsafe 298 23000 1400 8100 298 2000 320 3200

Predicate Safe 1518 27000 280 13000 1516 13000 210 12500
Unsafe 422 16000 480 8700 420 11000 360 8600

(a) Explicit analysis (safe programs) (b) Predicate analysis (safe programs)

(c) Explicit analysis (unsafe programs) (d) Predicate analysis (unsafe programs)

Fig. 3. Scatter plots comparing the verification time without input precision versus
with precision reuse
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level of abstraction. We used the existing implementation for writing precisions to
disk after each verification run and for reading an initial precision from disk before
the verification. We experimented with precision reuse for all 2 250 programs of
the benchmark set described in Sect. 1. A summary of all results can be found in
Table 1. Detailed results are provided on the supplementary web page 3.

Out of the 1 770 programs that are known to be safe, the explicit-value analysis
of CPAchecker successfully verified 1 529 instances in 13 000 s, using 270 MB
of memory on average. Out of the 480 unsafe programs, 298 were verified in
23 000 s, using 1 400 MB of memory on average. If we reuse the precisions that
were produced in these runs as initial precision in a second run, the verification
takes only 6 100 s, i.e., less than half of the time for the safe programs, and
2 000 s, i.e., less than 10 %, for the unsafe programs. The memory consumption
is also considerably lower if reusing a given precision, dropping (for the unsafe
programs) from 1400 MB on average to 320 MB.

The predicate analysis could successfully verify 1 518 out of 1 770 safe pro-
grams in 27 000 s. With the precisions reused, 1 516 programs can be verified in
only 13 000 s. There are two programs that were verified in the initial run in 480 s
and 680 s, respectively, but CPAchecker reached the timeout of 900 s when the
precision was given as input. Also there are three programs for which the veri-
fication with precision reuse needs significantly more time (factor 3 to 10). For
all five programs mentioned above, there was only a small number of refinements
(1 to 7) in the initial run, and only less than 4 s was spent on these refinements
per program (mostly even around only 0.5 s). This means that the potential ben-
efit was already small for these programs. Furthermore, CPAchecker uses lazy
abstraction and thus may have used different precisions on different paths of the
programs. Our implementation of precision reuse, however, assigns the same pre-
cision on all paths of the program, leading to a possibly stronger and thus more
expensive abstract model. This is not a general drawback of precision reuse.

The results for the unsafe programs are similar. The predicate analysis finds
a counterexample for 422 out of 480 unsafe programs in 16 000 s, and using the
generated precisions as input it finds 420 counterexamples in 11 000 s. Again, two
programs cannot be verified when a precision is reused, and there are a few cases
for which the necessary verification time is higher. For unsafe programs, there
are also other factors that influence the results. For example, depending on the
order in which the control-flow automaton is traversed, the analysis might find
the first counterexample sooner or later, and with more or less refinements, thus
with a different potential performance advantage by precision reuse.

Figure 3 illustrates the results using four scatter plots, one for each
CPAchecker configuration, and for the safe and the unsafe programs. Cases
in which the verifier timed out in the initial run and thus produced no reusable
precision are omitted. The graphs show that precision reuse is beneficial, because
the vast majority of data points are located in the lower-right triangle. For the
explicit-value analysis, there is no verification task for which the run time is
significantly increased by precision reuse.

3 http://www.sosy-lab.org/~dbeyer/cpa-reuse-gen/

http://www.sosy-lab.org/~dbeyer/cpa-reuse-gen/
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4 Verification Witnesses and Their Re-verification

It is common that model checkers produce a counterexample if the system vi-
olated the property, as witness of the verification result. The main purpose of
the counterexample is to convince the user of the verification result and to guide
the user in the defect-identification process. Below we argue that it is necessary
to (1) produce a counterexample in a machine-readable format, such that the
counterexample can be re-verified later, and to (2) analyze the counterexample
for feasibility not in isolation, but in relation to the program to be analyzed.

It would also be desirable to produce witnesses for verification runs that prove
that the property holds. It seems to be an open research question to achieve this,
perhaps because a witness for correctness can have a size exponential in the
size of the input program. There are important research results available on
witnesses for the correctness of a program, for example, proof-carrying code [26],
program invariants [22], and abstract reachability graphs [23]. Unfortunately, it
did not yet become state-of-the-art to support those techniques in verification
tools. Hopefully, since tools for software verification became more mature in the
last years, as witnessed by the competition on software verification [5], there will
be a need for certification of verification claims. That is, in the future, it will not
be sufficient to report a verification answer (“safe” or “unsafe”), but one has to
support the claim by a verification witness (proof certificate).

Re-verification of Counterexamples. The re-verification of previous verifi-
cation results can be supported by intermediate results, as outlined in the pre-
vious sections, but also by providing witnesses for the verification result. We
now consider the re-verification of verification results where a violation of the
property is reported and a counterexample is produced. It seems obvious that
verifying if only a single given path out of the program violates the specification
is more efficient than verifying the complete program and finding a specification-
violating path in it. Our experiments support this claim with encouraging num-
bers, showing that the benefit is indeed present, even if the counterexample
is re-verified against the original program. There are two important properties
that the witness-based re-verification has to fulfill: the use of machine-readable
counterexamples and the re-verification against the original program.

Machine-readable counterexamples. First, we need the verifier to dump informa-
tion about the found counterexample of an unsafe program in a machine-readable
format, which can later be reused in a re-verification run to restrict the verifica-
tion process to this single path (e.g., by giving the negation of the counterexam-
ple as input to a conditional model checker). One possibility would be to dump
the source code of a new program that corresponds to a single counterexample
of the original program. This new program would be free of loops and branches,
and thus hopefully easy to verify. However, in the case where the goal of re-
verifying a counterexample is increased confidence, this is not a good idea. If the
verifier that is used in the first verification run is imprecise and reports an infea-
sible counterexample, it might generate a witness program that does contain a
specification violation, but does not correspond to an actual path of the original
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CONTROL AUTOMATON PathGuidingAutomaton

INITIAL STATE s0;

STATE USEFIRST s0:
// match declaration statement of program and goto state s1
MATCH "int x;" -> GOTO s1;
// match all other statements and stop exploration of path
TRUE -> STOP;

STATE USEFIRST s1:
// match assume statement of program and signal specification violation
MATCH "[x==0]" -> ERROR;
// match all other statements and stop exploration of path
TRUE -> STOP;

END AUTOMATON

Fig. 4. Example automaton for guiding the verifier along a certain path (written in
CPAchecker’s specification language), which can be used for re-playing a previously
reported counterexample on the original program

program. In this case, the second verifier would correctly claim that the witness
program is indeed unsafe, leading the user to an incorrect conclusion about the
correctness of the original program.
“Re-playing” Counterexamples. Second, counterexamples should be re-verified
against the original program, not in isolation. This strategy is motivated by
verification results delivered from untrusted verification engines, the need to
re-verify slightly changed programs (regression verification), and excluding spu-
rious counterexamples that were reported by imprecise verification tools. For
the implementation of this strategy —using the original program as input for
the re-verification run— we propose to use a simple language for automata that
guide the verifier along a certain path, in order to have the verifier exactly re-
play the previously found counterexample. The automaton needs to be able to
match operations of the program (possibly by textual matching, or by line num-
bers), to guide the verification, preventing the exploration of unrelated paths,
and to specify a certain state of the program as a target state whose reachability
should be checked by the verifier. Previous work on specification languages based
on automata can be used to implement this strategy (e.g., [6, 10, 28]).

We can use the automaton language that the verifier CPAchecker accepts
as specification format for counterexamples without any changes. An example
for such an automaton is given in Fig. 4. An automaton for guiding the verifier
along a single path in a program consists of a set of states, where each state
has exactly one edge that matches a single program operation and leads to the
successor state. For all other program operations that cannot be matched, the
automaton instructs the verifier to stop exploring the path along that program
operation. At the end of this chain of states, the automaton switches to a special
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Table 2. Results for re-verification of counterexamples

Analysis Initial verification Re-verification

Solved CPU Memory Solved CPU Memory
Tasks Time Avg. Max. Tasks Time Avg. Max.

Explicit-Value 299 24000 1400 8400 299 870 140 890

Predicate 422 18000 490 8900 422 1300 120 590

error state, which informs the verifier that the corresponding program state is
a specification violation. If the verifier reaches this state, then it reports the
program as unsafe.

Such an automaton that matches program operations along a counterexample
path is easy to produce for all kinds of analyses that are able to reproduce a single
finite path through the control-flow of the verified program as a representation of
a counterexample. This includes analysis approaches based on creating abstract
reachability graphs (which are unrollings of the control flow), but also other
analyses like bounded model checking, if some information about the structure of
the control flow is encoded in the generated formula and a path is reconstructed
using the information from a model for the program formula.

The automaton is also easy to use as input for the re-verification step, if the
verifier is based on traversing the control-flow of the program. In this case, when-
ever the verifier follows a control-flow edge, it would also execute one edge of the
automaton and act accordingly (i.e., continue or stop exploring this path). Again,
this strategy is applicable to verifiers based on abstract reachability graphs, but
also to others. For bounded model checking, this can be implemented in the first
phase where the program is unrolled and a single formula is created representing
the program. With such an automaton, the unrolling would be restricted and the
generated formula represents only that single path, which could then be verified
by checking the formula for satisfiability as usual. The complexity of both gen-
erating and using the automaton is linear in the length of the counterexample.
Experimental Evaluation. To support experiments with re-verification
of counterexamples, we implemented the export of a counterexample as au-
tomaton in CPAchecker’s specification language. Our implementation in the
CPAchecker framework can be used with all available configurable program
analyses that are based on abstract reachability graphs and is available via the
project’s SVN repository.

We experimented again with the explicit-value analysis and the predicate
analysis. A summary of the results is presented in Table 2. Detailed results
are provided on the supplementary web page 4. The explicit-value analysis of
CPAchecker finds the bug in 299 out of the 480 unsafe programs from our
benchmark set (for the remainder, it fails or runs into a timeout). The produced
counterexample automaton can be used as verification witness, e.g., in a second
4 http://www.sosy-lab.org/~dbeyer/cpa-reuse-gen/

http://www.sosy-lab.org/~dbeyer/cpa-reuse-gen/
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(a) Explicit analysis (b) Predicate analysis

Fig. 5. Scatter plots comparing the run time for finding a counterexample in the com-
plete program vs. re-verifying a given counterexample

verification run of the original program in order to explicitly verify only this
single path. The re-verification confirms the counterexample for all verification
tasks. The run time for finding the counterexamples in the first run was 24 000 s
for the 299 programs. The run time for re-verifying the produced counterexam-
ples was only 870 s, i.e., less than 4 %. The average memory consumption was
1 400 MB for the initial runs, and 140 MB for the re-verification runs.

CPAchecker’s predicate analysis could find a counterexample for 422 pro-
grams in 18 000 s. The re-verification of these counterexamples took only 1 300 s.
There was only one verification task for which the re-verification took longer
than 13 s. For 40 verification tasks, the initial verification run to identify a coun-
terexample took longer than 100 s.

The maximum memory consumption per analyzed program, i.e., the amount
of memory that the machine needs to have available, is also lower for re-
verification. For the initial verification runs, the maximum memory consumption
was 8 400 MB (explicit-value analysis) and 8 900 MB (predicate analysis). During
the re-verification of the counterexamples, the maximum memory consumption
was 890 MB and 590 MB, respectively. This means the following: while for finding
the bugs in the complete programs, the machine needs to be powerful (more than
8 GB of RAM are still not common for developer machines), the re-verification
can be performed on practically any available machine (even machines older than
8 years and small netbooks tend to have at least 1 GB).

Scatter plots for the results of all successfully verified programs are shown in
Fig. 5. The results are interesting: the verification time for re-verifying a coun-
terexample is less than 4 s for most of the programs, regardless of the verification
time that was needed for finding the counterexample in the original program.
There are no verification tasks for which the verification time for re-verification
significantly exceeds the run time for the initial verification run.
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It is an important insight to have confirmed that the re-verification can be
performed on a much less powerful verification engine, and thus, is significantly
less expensive overall. This justifies the use of untrusted computing engines for
the verification process: it is reasonably inexpensive to confirm the correctness
of verification results that arrived with status “unreliable”.

5 Conclusion

We have shown that the reuse of verification results from previous verification
runs can save significant amounts of resources (time and memory). As exam-
ple applications, we explained three different strategies for reusing verification
results: conditional model checking, precision reuse, and verification witnesses.
We illustrated the benefits of reusing verification results by reporting on exper-
imental results. Reusing verification results from previous verification attempts
does not only improve the performance, but sometimes also the effectiveness,
i.e., more verification tasks can be solved. Systems that are currently still too
complex to be verified by one single verifier could be verified by combination
and information passing between verification runs. More such techniques need
to be developed and used in the future, in order to apply automatic verification
to large-scale industrial systems.

Important future work, in order to make information reuse practically applica-
ble, includes research on defining standardized formats. Such standard formats
are the key for combining different verification tools and for reusing (partial) ver-
ification results across different verification approaches. For example, a common
format for verification witnesses (proof certificates as well as counterexamples)
would increase the adoption of verification technology by verification engineers
in practice, by providing an easy way for re-verifying results and integrating ver-
ification within development tool chains. Besides the conditions of conditional
model checking and the witnesses, we demonstrated that intermediate results
such as precisions have a lot of potential for reuse. More research is necessary to
investigate which information is to be saved and reused.
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Abstract. How do you prove the correctness of multi-threaded code?
This question has been asked since at least the mid-sixties, and it has
inspired researchers ever since. Many approaches have been tried, based
on mathematical theories, the use of annotations, or the construction of
abstractions. An ideal solution would be a tool that one can point at
an arbitrary piece of concurrent code, and that can resolve correctness
queries in real-time. We describe one possible method for achieving this
capability with a logic model checker.

Keywords: software verification, logic model checking, statistical model
checking, model extraction, bitstate hashing, swarm verification, multi-
core, cloud computing.

Spin is a logic model checking tool that is designed to help the user find con-
currency related defects in software systems.[6] Originally the tool was designed
to analyze models of concurrent, or multi-threaded, software systems, but today
it is increasingly used to analyze implementation level code directly, without
the need to construct a design model first. The benefit of this approach is an in-
crease in convenience, but the penalty can be a notable increase in computational
complexity.

Formal methods tools are generally designed to produce reliable results: they
should be able to reveal true defects without omissions, and they should not
report non-defects, i.e., they should not allow either false negatives or false pos-
itives. Ideally, they should also be fast and easy to use.

This sets three requirements for the design of an effective verification tool:
reliability, ease-of-use, and efficiency. There are many software development tools
that satisfy all three, and that developers rely on daily. A good example is a
language compiler. Most modern compilers harness sound theory, yet they are
easy to use, fast, and reliable.

Although formal methods tools are generally reliable, they are rarely accused
of being fast or easy to use. On the contrary, a frequent complaint about these
tools is that they can require extensive training, and consume excessive, and

� This research was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Adminis-
tration. The work was supported by NSF Grant CCF-0926190.
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often unpredictable, amounts of time. Although there have been many successes
in the application of formal methods, the impact of formal methods tools on
general software development practice remains very limited.

Against this background it is interesting to note that in the last five to ten
years at least one verification technology did successfully emerge from relative ob-
scurity to evolve into a significant new force in industrial software development.
This technology is static source code analysis. After a long period of develop-
ment, static source code analysis tools have become very successful commercial
products, and they are now used broadly. The tools in this class require little or
no explanation to use well, and can execute reasonably quickly. But curiously,
they make no claim to be reliable as described above. The tools can, and do,
miss reporting true defects (false negatives), and they can, and so, mis-report
non-defects (false positives). Yet, it is clear that these tools have reached more
users, and have a greater impact on software development practice, than the
technically far more reliable formal methods tools.

In some cases then, ease of use and speed can outrank precision and reliability.
After all, perfect knowledge that is inaccessible has less practical value to the
end-user than partial knowledge that is easy to obtain. Phrased differently, it
can be better to get some results from a partial method that is easy to use, than
no results from a complete method that is too difficult to use.

We will describe how we can use the Spin model checker in a way that allows
it to replicate some of the speed and usability of static analyzers. When used
in the way we will describe, the model checker will be fast and easy to use,
while still retaining its accuracy by never reporting non-defects. We can call
this mode of allowing only false negatives but not false positives robustness, to
distinguish it from the informal definition of reliability we gave earlier. In return
for increased speed and ease of use, we must yield only the certainty of complete
coverage. No new algorithms are needed to deploy the model checker in this way.
All that is needed is to leverage the availability of already existing multi-core or
cloud computing networks. When used in this way, the model checker can return
robust and actionable results in seconds, even for large applications.

An Example. In 1999 we used the Spin model checker for the formal verifica-
tion of the call processing code from a new commercial switching system that
was marketed by Lucent Technologies, called the PathStar access server [5]. The
target of this work was to automate as much as possible of the logic verifica-
tion process, and to maximize its performance by parallelizing the verification
tasks. The system we developed consisted of 16 small networked computers, each
running at 500 MHz.

A few hundred correctness requirements were captured as part of this project,
and a first model extraction technique was developed that allowed us to me-
chanically extract Spin verification models from the implementation level code,
which was written in C. Once the requirements were formalized, the entire verifi-
cation process could then be automated, and executed as part of a regression test
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suite without user intervention. At the time, the verification process took roughly
40 minutes to verify all requirements, running independent verification tasks on
all computers in parallel.1

Today, integrated multi-core desktop systems larger and faster than the net-
work of standalone computers from 1999 have become ubiquitous. In an exper-
iment we repeated the same verification task from before on a single desktop
system with 32 cores (i.e., well below what is currently available), with each
core running at 2.5 GHz.

Generating the model checking code for all properties with Spin is virtually
instantaneous. A straight compilation of the generated code, without optimiza-
tion, takes a little under 5 seconds. With -O1 optimization that increases to 10
seconds, with -O2 it becomes 16 seconds, and with -O3 it reaches 45 seconds.
The use of compiler optimization affects how fast the model checking runs can be
executed, but there is of course a tradeoff that can be made between preparation
time and execution time.

The verification process itself is based on bitstate hashing with iterative search
refinement, to optimize the chances of finding errors fast [5]. This works remark-
ably well on the multi-core system. The first 11 counter-examples are generated
in just 1 second, and after 7 seconds a total of 38 counter-examples have been
generated.2

At this point the verification could be stopped, having yielded enough evidence
for developers to act on. If we allow the search process to continue, though, it
can find another 38 counter-examples in the next 11 minutes, with the number of
errors found per minute quickly decreasing. The total number of issues reported
is slightly larger than what was obtained in 1999. Using more cores, or faster
CPUs, could trivially increase the performance further. More specifically, a total
of 234 different properties were verified in this experiment, with each property
checked up to 5 times with the iterative search refinement method that we discuss
in more detail below. This means that up to 1,170 verification runs are performed
on 32 cores in parallel. If 1,170 CPUs were available, for instance with brief access
to the capacity of a cloud-computing platform, the performance could trivially
improve still further.

The minimum time that is required to locate the first counter-examples in this
experiment is measured in seconds, with the time dominated by compilation, and
not verification. It is also interesting to note that in this experiment we achieve
performance that is on par with, if not better than that of static analysis.

As we discuss in more detail below, the set of counter-examples that is gen-
erated with this system is not necessarily complete: there is no guarantee that
all errors are found, or even can be found. But this is also not necessary. The
speed and ease with which counter-examples are generated can add significant
practical value especially in the early phases of software development.

1 http://cm.bell-labs.com/cm/cs/what/feaver/
2 For this example we compiled the verifiers with -O3. The verification times can
double at lower optimization settings.



Proving Concurrent Programs 21

Key Enablers. There is a relatively small number of enabling technologies that
we used in this example, and we believe that each of these is essential to the
success of the method. They are:

– Model extraction [3],
– Bitstate hashing [2],
– Iterative search refinement [5], and
– Swarm verification [8].

Below we briefly discuss each of these, already existing, techniques, and consider
the potential of their combined use.

Model Extraction. The mechanical extraction of verification models directly
from implementation level source code would be fairly straightforward if it wasn’t
for one single complicating factor: the need to define and apply sound logical
abstractions. The abstractions can help to render complex verification tasks
computationally tractable, which is needed to secure logical soundness. If we
yield on soundness, though, the burden of finding strong abstractions is lessened,
and sometimes removed. The Modex3 tool, for instance, that can be used as a
front-end to the Spin model checker to extract verification models from C source
code, allows the user to define abstractions, but it can also operate without it.

The problem is that if we try to use model checking to exhaustively solve a
complex verification task without the benefit of prior abstraction, the tool can
take an unpredictable amount of time, and will likely eventually exhaust available
memory and abandon the search without completing the task. We then get a
partial answer to the verification task: the tool renders an incomplete result. But
the result is not just incomplete, it is also highly biased by the search algorithm to
fully explore only one part of the search space and ignore all of the remainder.
This type of incompleteness4 is not comparable to the incompleteness that is
inherent in static source code analyzers, precisely because it is systematically
biased. There is literally zero chance that an error in the unexplored part of the
search space can be reported.

All types of software analyses do of course face the same intractability issues
as logic model checkers do, but they handle it differently. A tool that performs an
incomplete analysis but provides a meaningful sampling of the complete search
space can still provide useful feedback to the user, as illustrated by the success
of static source code analyzers. So if we could modify the model checker to make
it work in a fixed amount of memory and provide a true sampling of the entire
search space, instead of a detailed search of one small unknown portion of it we
should be able to make a similar improvement in the practical value of model
checking of complex applications. This, though, is precisely the type of behavior
that is available through the use of bitstate hashing algorithms.

3 http://spinroot.com/modex/
4 For completeness: we mean the incompleteness of the set of results that could in
principle be provided, not the logical incompleteness that is shared by all program
analysis systems. Logical incompleteness refers to the impossibility to design a pro-
gram that could prove all true properties (e.g., halting) for any program.
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Bitstate Hashing. The bitstate hashing technique was introduced in 1987 [2],
and as we later discovered, can be theoretically founded in the still older theory
of Bloom filters from 1970.[1] Since the basic algorithms have in the last two
decades been described in detail in many sources, the method itself will need no
detailed explanation here. The key characteristics of the method are, though,
that it (1) allows us to define a fixed upper-bound on the amount of memory
that the model checking algorithm will use, and (2) that it allows us to predict
with some accuracy what the maximum runtime of a verification will be. (After a
fixed period of time all bits in the hash-array must have flipped from zero to one,
which limits the maximum search time.) The algorithm further has the desirable
feature that any counter-examples that are generated are necessarily accurate
(i.e., the algorithm permits no false positives). The fundamental properties of the
hashing method that is used further guarantees that in an incomplete search the
part of the search space that is verified will be a random sampling of the entire
search space: the search is not systematically biased. This means that all parts of
a large search space will be considered, though not necessarily exhaustively. By
selecting the size of the bitstate hash-array we can control both the accuracy of
the search and its speed. The two are always correlated, with accuracy increasing
as speed decreases.

Iterative Search Refinement. As noted, there is an inverse relation between
precision (or coverage of the search space) and speed. The size of the bitstate
hash array determines the maximum runtime for a bitstate hashing run. We can
now increase the probability of locating errors early by performing a series of
bitstate runs, starting with very small bitstate hash array sizes, and repeating
as necessary with larger sizes. The first runs performed will typically complete
in a fraction of a second. If they succeed in generating a counter-example, the
search has been successful and can stop. If not, we double the size of the hash
array to sample a larger part of the search space, and repeat. Each time the hash
array size is increased, the probability of locating defects also increases. In the
process we adopted in [5] the doubling of the hash array size continues until a
physical memory limit is reached, or a preset upperbound on the runtime that
can be used is reached. It would also be possible to terminate the search process
once the the time between new error reports drops below a given limit.

A series of bitstate searches can of course be executed purely sequentially on
a single CPU, but it would then consume more time than necessary. Since all
runs are in principle independent, we can also perform all these runs in parallel.
For the last key enabling technology we will now look at methods that further
leverage available parallelism by increasing the coverage of the sampling method
still further. We can achieve this effects with a swarm verification method.

Swarm Verification. If we have access to large numbers of CPU-cores, or
a cloud network of computers with potentially hundreds or thousands of com-
pute engines available, we can deploy large numbers of independent verification
tasks that jointly can solve a single large problem. Each task can, for instance, be
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defined by a small bitstate hashing run of the model checker. To increase the
quality of the statistical sampling of the search space, we can now configure each
of the verifiers to perform a slightly different type of search. We can achieve this
search diversity with the Swarm5 tool, a front-end to Spin, by:

– Using different types hash functions for each search,
– Using different numbers of hash functions for each search,
– Using different search orders in each search,
– Using randomized search methods, with different seed values.
– Using different search algorithms in each search (e.g., breadth-first, depth-

first, context-bounded search [7], depth-bounded search, different types of
heuristic search methods, etc.)

The variety thus added gives us the search diversity we need. It is not difficult to
define as many different search variants as there are CPUs available to perform
the search on, even for very large numbers.

All independent searches can be executed in parallel, using a fixed and pre-
determined amount of memory per CPU and completing in a known amount of
time, which can now be limited to a few seconds. As we saw in the example ap-
plication, the joint effectiveness of all these independent, small, and individually
incomplete searches can be impressive, and can contribute true practical value.

Based on the above, we believe to be near a tipping point in the application
of software model checking techniques that may be comparable in its effects on
multi-threaded software development to the introduction of static source code
analyzers in the last decade.
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Abstract. Concurrent data structures have found increasingly widespread use in
both multi-core and distributed computing environments, thereby escalating the
priority for verifying their correctness. Quasi linearizability is a relaxation of
linearizability to allow more implementation freedom for performance optimiza-
tion. However, ensuring the quantitative aspects of this correctness condition is
an arduous task. We propose a new method for formally verifying quasi lineariz-
ability of the implementation model of a concurrent data structure. The method
is based on checking the refinement relation between the implementation and a
specification model via explicit state model checking. It can directly handle con-
current programs where each thread can make infinitely many method calls, and it
does not require the user to write annotations for the linearization points. We have
implemented and evaluated our method in the PAT verification framework. Our
experiments show that the method is effective in verifying quasi linearizability or
detecting its violations.

1 Introduction

Linearizability [10,9] is a widely used correctness condition for concurrent data struc-
tures. A concurrent data structure is linearizable if each of its operations (method calls)
appears to take effect instantaneously at some point in time between its invocation and
response. Although being linearizable does not necessarily ensure the full-fledged cor-
rectness, linearizability violations are clear indicators that the implementation is buggy.
In this sense, linearizability serves as a useful correctness condition for implementing
concurrent data structures. However, ensuring linearizability of highly concurrent data
structures is a difficult task, due to the subtle interactions of concurrent operations and
the often astronomically many interleavings.

Quasi linearizability [1] is a quantitative relaxation of linearizability [12,17] to allow
for more flexibility in how the data structures are implemented. While preserving the
basic intuition of linearizability, quasi linearizability relaxes the semantics of the data
structures to achieve increased runtime performance. For example, when implementing
a queue for task schedulers in a thread pool, it is often the case that we do not need
the strict first-in-first-out semantics; instead, we may allow the dequeue operations to
be overtaken occasionally to improve the runtime performance. The only requirement
is that such out-of-order execution should be bounded by a fixed number of steps.
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Despite the advantages of quasi linearizability and its rising popularity (e.g., [12,17]),
such relaxed consistency property is difficult for testing and validation. Although there
is a large body of work on formally verifying linearizability, for example, the meth-
ods based on model checking [15,14,23,5], runtime verification [4], and mechanical
proofs [22], they cannot directly verify quasi linearizability. Quasi linearizability is
harder to verify because, in addition to the requirement of covering all possible inter-
leavings of concurrent events, one needs to accurately analyze the quantitative aspects
of these interleavings.

In this paper, we propose the first automated method for formally verifying quasi
linearizability in the implementation models of concurrent data structures. There are
several technical challenges. First, since the number of concurrent operations in each
thread is unbounded, the execution trace may be infinitely long. This precludes the use
of existing methods such as LineUp [4] because they are based on checking permuta-
tions of finite histories. Second, since the method needs to be fully automated, we do not
assume that the user will find and annotate the linearization points of each method. This
precludes the use of existing methods that are based on either user guidance (e.g., [22])
or annotated linearization points (e.g., [23]).

To overcome these challenges, we rely on explicit state model checking. That is,
given an implementation model Mimpl and a specification model Mspec, we check
whether the set of execution traces of Mimpl is a subset of the execution traces of
Mspec. Toward this end, we extend a classic refinement checking algorithm so that it
can check for the newly defined quantitative relaxation of standard refinement relation.
Consider a quasi linearizable queue as an example. Starting from the pair of initial states
of a FIFO queue specification model and its quasi linearizable implementation model,
we check whether all subsequent state transitions of the implementation model can
match some subsequent state transitions of the specification model. To make sure that
the verification problem remains decidable, we bound the capacity of the data structure
in the model, to ensure that the number of states of the program is finite.

We have implemented the new method in the PAT verification framework [20]. PAT
provides the infrastructure for parsing and analyzing the specification and implemen-
tation models written in a process algebra that resembles CSP [11]. Our new method
is implemented as a module in PAT, and is compared against the existing module for
checking standard refinement relation. Our experiments show that the new method is ef-
fective in detecting subtle violations of quasi linearizability. When the implementation
model is indeed correct, our method can also generate the formal proof quickly.

Paper Organization. We establish notations and review the existing refinement check-
ing algorithm in Section 2. We present the overall flow of our method in Section 3. In
Section 4, we present a manual approach for verifying quasi linearizability based on the
existing refinement checking algorithm, which is labor intensive and error prone. We
present our fully automated method in Section 5, based on our new algorithm for check-
ing the relaxed refinement relation. We present our experimental results in Sections 6.
We review related work in Section 7 and conclude in Section 8.
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2 Preliminaries

We define standard and quasi linearizability in this section, and review an existing al-
gorithm for checking the refinement relation between two labeled transition systems.

2.1 Linearizability

Linearizability [10] is a safety property of concurrent systems, over sequences of ac-
tions corresponding to the invocations and responses of the operations on shared ob-
jects. We begin by formally defining the shared memory model.

Definition 1 (System Models). A shared memory modelM is a 3-tuple structure (O,
initO, P ), where O is a finite set of shared objects, initO is the initial valuation of O,
and P is a finite set of processes accessing the objects. ��
Every shared object has a set of states. Each object supports a set of operations, which
are pairs of invocations and matching responses. These operations are the only means
of accessing the state of the object. A shared object is deterministic if, given the cur-
rent state and an invocation of an operation, the next state of the object and the return
value of the operation are unique. Otherwise, the shared object is non-deterministic. A
sequential specification1 of a deterministic (resp. non-deterministic) shared object is a
function that maps every pair of invocation and object state to a pair (resp. a set of pairs)
of response and a new object state. response and a new object state).

An execution of the shared memory model M = (O, initO, P ) is modeled by a
history, which is a sequence of operation invocations and response actions that can be
performed on O by processes in P . The behavior ofM is defined as the set, H , of all
possible histories together. A history σ ∈ H induces an irreflexive partial order <σ on
operations such that op1 <σ op2 if the response of operation op1 occurs in σ before the
invocation of operation op2. Operations in σ that are not related by <σ are concurrent.
A history σ is sequential iff <σ is a strict total order.

Let σ|i be the projection of σ on process pi, which is the subsequence of σ consisting
of all invocations and responses that are performed by pi in P . Let σ|oi be the projection
of σ on object oi in O, which is the subsequence of σ consisting of all invocations and
responses of operations that are performed on object oi. Every history σ of a shared
memory modelM = (O, initO, P ) must satisfy the following basic properties:

– Correct interaction: For each process pi ∈ P , σ|i consists of alternating invoca-
tions and matching responses, starting with an invocation. This property prevents
pipelining2 operations.

– Closedness3: Every invocation has a matching response. This property prevents
pending operations.

1 More rigorously, the sequential specification is for a type of shared objects. For simplicity,
however, we refer to both actual shared objects and their types interchangeably in this paper.

2 Pipelining operations mean that after invoking an operation, a process invokes another (same
or different) operation before the response of the first operation.

3 This property is not required in the original definition of linearizability in [10]. However adding
it will not affect the correctness of our result because by Theorem 2 in [10], for a pending invo-
cation in a linearizable history, we can always extend the history to a complete one and preserve
linearizability. We include this property to obviate the discussion for pending invocations.
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A sequential history σ is legal if it respects the sequential specifications of the objects.
More specifically, for each object oi, there exists a sequence of states s0, s1, s2, . . . of
object oi, such that s0 is the initial valuation of oi, and for all j = 1, 2, . . . according
to the sequential specification (the function), the j-th invocation in σ|oi together with
state sj−1 will generate the j-th response in σ|oi and state sj . For example, a sequence
of read and write operations of an object is legal if each read returns the value of the
preceding write if there is one, and otherwise it returns the initial value.

Given a history σ, a sequential permutation π of σ is a sequential history in which
the set of operations as well as the initial states of the objects are the same as in σ.

Definition 2 (Linearizability). Given a modelM = (O = {o1, . . . , ok}, initO, P =
{p1, . . . , pn}). Let H be the behavior ofM.M is linearizable if for any history σ in
H , there exists a sequential permutation π of σ such that

1. for each object oi (1 ≤ i ≤ k), π|oi is a legal sequential history (i.e., π respects the
sequential specification of the objects), and

2. for every op1 and op2 in σ, if op1 <σ op2, then op1 <π op2 (i.e., π respects the
run-time ordering of operations). ��

Linearizability can be equivalently defined as follows. In every history σ, if we assign
increasing time values to all invocations and responses, then every operation can be
shrunk to a single time point between its invocation time and response time such that
the operation appears to be completed instantaneously at this time point [16,3]. This
time point is called its linearization point.

2.2 Quasi Linearizability

For two histories σ and σ′ such that one is the permutation of the other, we define their
distance as follows. Let σ = e1, e2, e3, . . . , en and σ′ = e′1, e

′
2, e

′
3, . . . , e

′
n. Let σ[e]

and σ′[e] be the indices of the event e in histories σ and σ′, respectively. The distance
between the two histories, denoted Δ(σ, σ′), is defined as follows:

Δ(σ, σ′) = maxe∈σ{|σ′[e]− σ[e]|} .

In other words, the distance between σ and σ′ is the maximum distance that an event in
σ has to move to arrive at its position in σ′.

While measuring the distance between two histories, we often care about only a
subset of method calls. For example, in a concurrent queue, we may care about the
ordering of enqueue and dequeue operations while ignoring calls to size operation.
In the remaining of this work, we use words enq and deq for the interests of space.
Furthermore, we may allow deq operations to be executed out of order, but keep enq

operations in order. In such case, we need a way to add ordering constraints on a subset
of the methods of the shared object.

Let Domain(o) be the set of all operations of a shared object o. Let d ⊂ Domain(o)
be a subset of operations. Let Powerset(Domain(o)) be the set of all subsets of
Domain(o). Let D ⊂ Powerset(Domain(o)) be a subset of the powerset.
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Fig. 1. Execution traces of a queue. Only the first trace (at the top) is linearizable. The second
trace is not linearizable, but is 1-quasi linearizable. The third trace is only 2-quasi linearizable.

Definition 3 (Quasi Linearization Factor). A quasi-linearization factor is a function
QO : D → N, where D is a subset of the powerset and N is the set of natural numbers.

Example 1. For a bounded queue that stores a set X of non-zero data items, we have
Domain(queue) = {enq.x, deq.x, deq.0 | x ∈ X}, where enq.x denotes the enqueue
operation for data x, deq.x denotes the dequeue operation for data x, and deq.0 indi-
cates that the queue is empty. We may define two subsets of Domain(queue):

d1 = {enq.y | y ∈ Y }, d2 = {deq.y | y ∈ Y }.

Let D = {d1, d2}, where d1 is the subset of deq events and d2 is the subset of enq
events. The distance between σ and σ′, after being projected to subsets d1 and d2,
is defined as Δ(σ|d1 , σ

′|d2). If we require that the enq calls follow the FIFO order
and the deq calls be out-of-order by at most K steps, the quasi-linearization factor
Q{queue} : D → N is defined as Q{queue}(d1) = 0, Q{queue}(d2) = K .

Definition 4 (Quasi Linearizability). Given a modelM = (O = {o1, . . . , ok}, initO,
P = {p1, . . . , pn}). Let H be the behavior ofM.M is quasi linearizable under the
quasi factor QO : D → N if for any history σ in H , there exists a sequential permuta-
tion π of σ such that

– for every op1 and op2 in σ, if op1 <σ op2, then op1 <π op2 (i.e., π respects the
run-time ordering of operations), and

– for each object oi (1 ≤ i ≤ k), there exists another sequential permutation π′ of π
such that
1. π′|oi is a legal sequential history (i.e., π′ respects the sequential specification

of the objects) and
2. Δ((π|oi )|d, (π′|oi)|d) ≤ QO(d) for all d ∈ D.

This definition subsumes the definition for linearizability because, if the quasi factor
is QO(d) = 0 for all d ∈ D, then the objects behave as a standard linearizable data
structure, e.g., a FIFO queue.

Example 2. Consider the concurrent execution of a queue as shown in Fig. 1. In the
first part, it is clear that the execution is linearizable, because it is a valid permutation
of the sequential history where Enq(Y) takes effect before Deq(X). The second part
is not linearizable, because the first dequeue operation is Deq(Y) but the first enqueue
operation is Enq(X). However, it is interesting to note that the second history is not
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far from a linearizable history, since swapping the order of the two dequeue events
would make it linearizable. Therefore, flexibility is provided in dequeue events to allow
them to be reordered. Similarly, for the third part, if the quasi factor is 0 (no out-of-
order execution) or 1 (out-of-order by at most 1 step), then the history is not quasi
linearizable. However, if the quasi factor is 2 (out-of-order by at most 2 steps), then the
third history in Fig.1 is considered as quasi linearizable.

2.3 Linearizability as Refinement

Linearizability is defined in terms of the invocations and responses of high-level oper-
ations. In a real concurrent program, the high-level operations are implemented by al-
gorithms on concrete shared data structures, e.g., a linked list that implements a shared
stack object [21]. Therefore, the execution of high-level operations may have compli-
cated interleaving of low-level actions. Linearizability of a concrete concurrent algo-
rithm requires that, despite low-level interleaving, the history of high-level invocation
and response actions still has a sequential permutation that respects both the run-time
ordering among operations and the sequential specification of the objects.

For verifying standard (but not quasi) linearizability, an existing method [15,14] can
be used to check whether a real concurrent algorithm (we refer as implementation in this
work) refines the high-level linearizable requirement (we refer as specification in this
work). In this case, the behaviors of the implementation and the specification are mod-
eled as labeled transition systems (LTSs), and the refinement checking is accomplished
by using explicit state model checking.

Definition 5 (Labeled Transition System). A Labeled Transition System (LTS) is a
tuple L = (S, init, Act,→) where S is a finite set of states; init ∈ S is an initial state;
Act is a finite set of actions; and→ ⊆ S ×Act× S is a labeled transition relation.

For simplicity, we write s
α→ s′ to denote (s, α, s′) ∈ →. The set of enabled actions

at s is enabled(s) = {α ∈ Act | ∃s′ ∈ S. s
α→ s′}. A path π of L is a sequence of

alternating states and actions, starting and ending with states π = 〈s0, α1, s1, α2, · · · 〉
such that s0 = init and si

αi+1→ si+1 for all i. If π is finite, then |π| denotes the number
of transitions in π. A path can also be infinite, i.e., containing infinite number of actions.
Since the number of states are finite, infinite paths are paths containing loops. The set
of all possible paths for L is written as paths(L).

A transition label can be either a visible action or an invisible one. Given an LTS
L, the set of visible actions in L is denoted by visL and the set of invisible actions
is denoted by invisL. A τ -transition is a transition labeled with an invisible action. A
state s′ is reachable from state s if there exists a path that starts from s and ends with
s′, denoted by s

∗⇒ s′. The set of τ -successors is τ(s) = {s′ ∈ S | s α→ s′ ∧ α ∈
invisL}. The set of states reachable from s by performing zero or more τ transitions,
denoted as τ∗(s), can be obtained by repeatedly computing the τ -successors starting
from s until a fixed point is reached. We write s

τ∗→ s′ iff s′ is reachable from s via
only τ -transitions, i.e., there exists a path 〈s0, α1, s1, α2, · · · , sn〉 such that s0 = s,

sn = s′ and si
αi+1→ si+1 ∧ αi+1 ∈ invisL for all i . Given a path π, we can obtain

a sequence of visible actions by omitting states and invisible actions. The sequence,
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Algorithm 1. Standard Refinement Checking
1: Procedure Check-Refinement(impl, spec)
2: checked := ∅
3: pending.push((initimpl , initspec))
4: while pending �= ∅ do
5: (impl, spec) := pending.pop()
6: if enabled(impl) �⊆ enabled(spec) then
7: return false
8: end if
9: checked := checked ∪{(impl, spec)}

10: for all (impl′, spec′) ∈ next(impl, spec) do
11: if (impl′, spec′) /∈ checked then
12: pending.push((impl′, spec′))
13: end if
14: end for
15: end while
16: return true

denoted as trace(π), is a trace of L. The set of all traces of L, is written as traces(L)
= {trace(π) | π ∈ paths(L)}.

Definition 6 (Refinement). Let L1 and L2 be two LTSs. L1 refines L2, written as
L1 �T L2 iff traces(L1) ⊆ traces(L2). ��

In [15], we have shown that if Limpl is an implementation LTS and Lspec is the LTS of
the linearizable specification, then Limpl is linearizable iff Limpl �T Lspec.

Algorithm 1 shows the pseudo code of the refinement checking procedure in [15,14].
Assume that Limpl refines Mspec, then for each reachable transition in Mimpl, denoted
as impl

e→ impl′, there must exist a reachable transition in Lspec, denoted as spec
e→

spec′. Therefore, the procedure starts with the pair of initial states of the two models,
and repeatedly checks whether their have matching successor states. If the answer is no,
the check at lines 6-8 would fail, meaning that Limpl is not linearizable. Otherwise, for
each pair of immediate successor states (impl′, spec′), we add the pair to the pending
list. The entire procedure continues until either (1) a non-matching transition in Limpl

is found at lines 6-8, or (2) all pairs of reachable states are checked, in which case Limpl

is proved to be linearizable.
In Algorithm 1, the subroutine next(impl, spec) is crucially important. It takes the

current states of Limpl and Lspec as input, and returns a set of state pairs of the form
(impl′, spec′). Here each pair (impl′, spec′) is one of the immediate successor state
pairs of (impl, spec). They are defined as follows:

1. if impl
τ−→ impl′, where τ is an internal event, then let spec′ = spec;

2. if impl
e−→ impl′, where e is a method call event, then spec

e−→ spec′;

We have assumed, without loss of generality, that the specification model Lspec is de-
terministic. If the original specification model is nondeterministic, we can always apply
standard subset construction (of DFAs) to make it deterministic.
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3 Verifying Quasi Linearizability: The Overview

Our verification problem is defined as follows: Given an implementation model Mimpl,
a specification model Mspec, and a quasi factor QO, decide whether Mimpl is quasi
linearizable with respect to Mspec under the quasi factor QO.

Model
New Checking Algorithm

QF

Create Manually

Standard Refinement Checking
(Impl vs. Q−Lin Spec)

Yes/No

Quasi Refinement Checking
(Impl vs. Spec)

Yes/No

Specification
Sequential
Specification

Sequential
Implementation
Concurrent

Implementation
Concurrent

QF

Transitions
Relaxing the 

On Demand
Quasi−Lin Spec

Fig. 2. Verifying quasi linearizability: manual approach (left) and automated approach (right)

The straightforward approach for solving the problem is to leverage the procedure
in Algorithm 1. However, since the procedure checks for standard refinement relation,
not quasi refinement relation, the user has to manually construct a relaxed specification
model, denoted M ′

spec, based on the given specification model Mspec and the quasi
factor QO. This so-called manual approach is illustrated by Fig. 2 (left). The relaxed
specification model M ′

spec must be able to produce all histories that can be produced
by Mspec, as well as the new histories that are allowed under the relaxed consistency
condition in Definition 4.

Unfortunately, there is no systematic method, or general guideline, on constructing
such relaxed specification models. Each M ′

spec may be different depending on the type
of data structures to be checked. And there is significant amount of creativity required
during the process, to make sure that the new specification model is both simple enough
and permissive enough. For example, to verify that a K-segmented queue [1] is quasi
linearizable, we can create a relaxed specification model whose dequeue method ran-
domly removes one of the first K data items from the otherwise standard FIFO queue.
This new model M ′

spec will be more complex than Mspec, but can still be significantly
simpler than the full-fledged implementation model Mimpl, which requires the use of a
complex segmented linked list.

Since the focus of this paper is on designing a fully automated verification method,
we shall briefly illustrate the manual approach in Section 4, and then focus on develop-
ing an automated approach in the subsequent sections.



32 K. Adhikari et al.

Fig. 3. Implementations of a 4-quasi queue

H1-a H1-b H1-a H1-b
------- ------- ------- -------
enq(1) enq(1) enq(1) enq(1)
enq(2) enq(2) enq(2) enq(2)
enq(3) enq(3) enq(3) enq(3)
enq(4) enq(4) enq(4) enq(4)
deq()=1 deq()=1 deq()=2 deq()=2
deq()=2 deq()=2 deq()=1 deq()=1
deq()=3 deq()=4 deq()=3 deq()=4
deq()=4 deq()=3 deq()=4 deq()=3
------- ------- ------- -------

Fig. 4. Valid histories of a 1-quasi lin-
earizable queue, meaning that deq can be
out-of-order by 1. The first deq randomly
returns a value from the set {1, 2} and
the second deq returns the remaining one.
Then the third deq randomly returns a
value from the set {3, 4} and the forth deq
returns the remaining one.

Our automated approach is shown in Fig. 2 (right). It is based on designing a new
refinement checking algorithm that, in contrast to Algorithm 1, can directly check a re-
laxed version of the standard refinement relation between Mimpl and Mspec. Therefore,
the user does not need to manually construct the relaxed specification model M ′′

spec. In-
stead, inside the new refinement checking procedure, we systematically extend states
and transitions of the specification model Mspec so that the new states and transitions
as required by M ′

spec are added on the fly. This would lead to the inclusion of a bounded
degree of out-of-order execution on the relevant subset of operations as defined by the
quasi factor QO. A main advantage of our new method is that the procedure is fully
automated, thereby avoiding the user intervention, as well as the potential errors that
may be introduced during the user’s manual modeling process. Furthermore, by ex-
ploring the relaxed transitions on a need-to basis, rather than upfront as in the manual
approach, we can reduce the number of states that need to be checked.

4 Verifying Quasi Linearizability via Refinement Checking

In this section, we will briefly describe the manual approach and then focus on present-
ing the automated approach in the subsequent sections. Although we do not intend to
promote the manual approach – since it is labor-intensive and error prone – this section
will illustrate the intuitions behind our fully automated verification method.

Given the specification modelMspec and the quasi factorQO, we show how to manu-
ally construct the relaxed specification model M ′

spec in this section. We use the standard
FIFO queue and two versions of quasi linearizable queues as examples. The construc-
tion needs to be tailored case by case for the different types of data structures.

Specification Model Mspec: The standard FIFO queue with a bounded capacity can
be implemented by using a linked list, where deq operation removes a data item at one
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end of the list called the head node, and enq operation adds a data item at the other end
of the list called the tail node. When the queue is full, enq does not have any impact.
When the queue is empty, deq returns NULL. As an example, consider a sequence
of four enqueue events enq(1), enq(2), enq(3), enq(4), the subsequent dequeue
events would be deq.1, deq.2, deq.3, deq.4, which obey the FIFO semantics. This
is illustrated by the first history H1-a in Fig. 4. In PAT verification framework, the
specification model Mspec is written in a process algebra language, named CSP# [19].

Implementation Model Mimpl: The bounded quasi linearizable queue can be imple-
mented using a segmented linked list. This is the original algorithm proposed by Afek
et al. [1]. A segmented linked list is a linked list where each list node can hold K
data items, as opposed to a single data item in the standard linked list. As shown in
Fig. 3 (lower half), these K data items form a segment, in which the data slots are
numbered as 1, 2, . . ., K . In general, the segment size needs to be set to (QF + 1),
where QF is the maximum number of out-of-order execution steps. The example in
Fig. 3 has the quasi factor set to 3, meaning that a deq operation can be executed out
of order by at most 3 steps. Consequently, the size of each segment is set to (3+1)=4.
Since Q{queue}(Denq) = 0, meaning that the enq operations cannot be reordered, the
data items are enqueued regularly in the empty slots of one segment, before the head
points to the next segment. But for deq operations, we randomly remove one existing
data item from the current segment.

Relaxed Specification Model M ′
spec: Not all execution traces of Mimpl are traces of

Mspec. In Fig. 4, histories other than H1-a are not linearizable. However, they are all
quasi linearizable under the quasi factor 1. They may be produced by a segmented
queue where the segment size is (1+1)=2. To verify that Mimpl is quasi linearizable,
we construct a new model M ′

spec, which includes not only all histories of Mspec, but
also the histories that are allowed only under the relaxed consistency condition. In this
example, we choose to construct the new model by slightly modifying the standard
FIFO queue. This is illustrated in Fig. 3 (upper half), where the first K data items are
grouped into a cluster. Within the cluster, the deq operation may remove any of the
k data items based on randomization. Only after the first k data items in the cluster
are retrieved, will the deq move to the next k data items (a new cluster). The external
behavior of this model is expected to match that of the segmented queue in Mimpl: both
are 1-quasi linearizable.

Checking Refinement Relation: Once M ′
spec is available, checking whether Mimpl re-

fines M ′
spec is straightforward by using Algorithm 1. For the segmented queue imple-

mentation [1], we have manually constructedM ′
spec and checked the refinement relation

in PAT. Our experimental results are summarized in Table 1. Column 1 shows the differ-
ent quasi factors. Column 2 shows the number of segments – the capacity of the queue
is (QF + 1) × Seg. Column 3 shows the refinement checking time in seconds. Col-
umn 4 shows the total number of visited states during refinement checking. Column 5
shows the total number of state transitions activated during refinement checking. The
experiments are conducted on a computer with an Intel Core-i7, 2.5 GHz processor and
8GB RAM running Ubuntu 10.04.
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Table 1. Experimental results for standard refinement checking. MOut means memory-out.

Quasi Factor #. Segment Verification Time (s) #. Visited State #. Transition

1 1 0.1 423 778
1 2 0.1 2310 4458
1 3 0.1 8002 15213
1 4 0.4 22327 41660
1 5 0.9 55173 101443
1 6 2.0 126547 230259
1 10 55.9 2488052 4421583
1 15 MOut - -

2 1 0.6 26605 58281
2 2 12.6 456397 970960
2 3 130.7 4484213 8742485
2 4 MOut - -

3 1 8.8 284484 638684
3 2 MOut - -

4 1 124.4 3432702 7906856
4 2 MOut - -

The experimental results in Table 1 show an exponential increment in the verification
time when we increase the size of the queue or the quasi factor. This is inevitable since
the size of the state space grows exponentially. However, this method requires the user
to manually construct M ′

spec, which is a severe limitation.
For example, consider the seemingly simple random dequeued model in Fig. 3. A

subtle error would be introduced if we do not use the cluster to restrict the set of data
items that can be removed by deq operation. Assume that deq always returns one of
the first k data items in the current queue. Although it appears to be correct, such im-
plementation will not be k-quasi linearizable, because it is possible for some data item
to be over-taken indefinitely. For example, if every time deq chooses the second data
item in the list, we will have the following deq sequence: deq.2, deq.3, deq.4, . . .,
deq.1, where the dequeue of value 1 can be delayed by an arbitrarily long time. This
is no longer a 1-quasi linearizable queue. In other words, if the user constructed M ′

spec

incorrectly, the verification result becomes invalid.
Therefore, we need to design a fully automated method to directly verify quasi lin-

earizability of Mimpl against Mspec under the given quasi factor QF .

5 New Algorithm for Checking the Quasi Refinement Relation

We shall start with the standard refinement checking procedure in Algorithm 1 and ex-
tend it to directly check a relaxed version of the refinement relation between Mimpl and
Mspec under the given quasi factor. The idea is to establish the simulation relationship
from specification to implementation while allowing relaxation of the specification.

5.1 Linearizability Checking via Quasi Refinement

The new procedure, shown in Algorithm 2, is different from Algorithm 1 as follows:

1. We customize pending to make the state exploration follow a breadth-first search
(BFS). In Algorithm 1, it can be either BFS or DFS based on whether pending is a
queue or stack.
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Algorithm 2. Quasi Refinement Checking
1: Procedure Check-Quasi-Refinement(impl, spec,QF )
2: checked := ∅
3: pending.enqueue((initimpl , initspec))
4: while pending �= ∅ do
5: (impl, spec) := pending.dequeue()
6: if enabled(impl) �⊆ enabled relaxed(spec,QF ) then
7: return false
8: end if
9: checked := checked ∪{(impl, spec)}

10: for all (impl′, spec′) ∈ next relaxed(impl, spec,QF ) do
11: if (impl′, spec′) /∈ checked then
12: pending.enqueue((impl′ , spec′))
13: end if
14: end for
15: end while
16: return true

2. We replace enabled(spec) with enabled relaxed(spec,QF). It will return not only
the events enabled at current spec state in Mspec, but also the additional events
allowed under the relaxed consistency condition.

3. We replace next(impl,spec) with next relaxed(impl,spec,QF). It will return not only
the successor state pairs in the original models, but also the additional pairs allowed
under the relaxed consistency condition.

Conceptually, it is equivalent to first constructing a relaxed specification model M ′
spec

from (Mspec, QF ) and then computing the enabled(spec) and next(impl,spec) on this
new model. However, in this case, we are constructingM ′

spec automatically, without the
user’s intervention. Furthermore, the additional states and edges that need to be added
to M ′

spec are processed incrementally, on a need-to basis.
At the high level, the new procedure performs a BFS exploration for the state pair

(impl, spec), where impl is the state of implementation and spec is a state of specifi-
cation. The initial implementation and specification events are enqueued into pending
and each time we go through the while-loop, we dequeue from pending a state pair, and
check if all events enabled at state impl match with some events enabled at state spec
under the relaxed consistency condition (line 6). If there is any mismatch, the check
fails and we can return a counterexample showing how the violation happens. Other-
wise, we continue until pending is empty. Lines 10-14 explore the new successor state
pairs, by invoking next relaxed and add to pending if they have not been checked.

Subroutine enabled relaxed(spec,QF): It takes the current state spec of model Mspec,
along with the quasi factor QF , and generates all events that are enabled at state spec.

Consider the graph in Fig. 5 as Mspec. Without relaxation, enabled(s1)={e1}. This
is equivalent to enabled relaxed(s1, 0). However, when QF = 1, according to the
dotted edges in Fig. 6, the set enabled relaxed(s1, 1)={e1, e2, e3}.

The reason why e2 and e3 become enabled is as follows: before relaxation, starting
at state s1, there are two length-3 (2QF + 1) event sequences σ1 = e1, e2, e5 and
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σ2 = e1, e3, e4. When QF = 1, it means an event can be out-of-order by at most 1 step.
Therefore, the possilbe valid permutations of σ1 is π1 = e2, e1, e5 and π2 = e1, e5, e2,
and the possible valid permutations of σ2 is π3 = e3, e1, e4 and π4 = e1, e4, e3 for
QF = 1. In other words, at state s1, events e2, e3 can also be executed. We will discuss
the generation of valid permutation sequences in Section 5.2.

Subroutine next relaxed(impl, spec,QF ): It takes the current state impl of Mimpl

and the current state spec of Mspec as input, and returns a set of state pairs of the form
(impl′, spec′). Similar to the definition of next(impl, spec) in Section 2, we define
each pair (impl′, spec′) as follows:

1. if impl
τ−→ impl′, where τ is an internal event, then let spec′ = spec;

2. if impl
e−→ impl′, where e is a method call event, then spec

e−→ spec′ where event
e ∈ enabled relaxed(spec,QF ) is enabled at spec after relaxation.

For example, when spec = s1 in Fig. 5, and the quasi factor is set to 1 – meaning
that the event at state s1 can be out-of-order by at most one step – the procedure
next relaxed(impl,s1, 1) would return not only (impl′, s2), but also (impl′, s6) and
(impl′, s9), as indicated by the dotted edges in Fig. 6. The detailed algorithm for gen-
eration of the relaxed next states in specification is described in Section 5.2.

5.2 Generation of Relaxed Specification

In this subsection, we show how to relax the specification Mspec by adding new states
and transitions – those that are allowed under the condition of quasi linearizability –
to form a new specification model. Notice that we accomplish this automatically, and
incrementally, on a need-to basis.

For each state spec in Mspec, we compute all the event sequences starting at spec
with the length (2QF + 1). These event sequences can be computed by using a simple
graph traversal algorithm, e.g., a breadth first search.

Fig. 5 shows an example for the computation of these event sequences. The specifi-
cation model Mspec has the following set of states {s1, s2, s3, s4, s5}. Suppose that the
current state is s1 (in step 0), then the current frontier state set is {s1}, and the current
event sequence is 〈s1〉. The results of each BFS step are shown in Table 2. In step 1,
the frontier state set is {s2}, and the event sequence becomes 〈s1

e1→ s2〉. In step 2, the
frontier state set is {s3, s4}, and the event sequence is split into two sequences. One is
〈s1

e1→ s2
e2→ s3〉 and the other is 〈s1

e1→ s2
e3→ s4〉. The traversal continues until the

BFS depth reaches (2QF + 1).
After completing the (2QF+1) steps of BFS starting at state spec, as above, we have

to generate possible valid permutations first and then we will be able to evaluate the two
subroutines: enabled relaxed(spec,QF ) and next relaxed(impl, spec,QF ).

We transform the original specification model in Fig. 5 to the relaxed specification
model in Fig. 6 for QF = 1. The dotted states and edges are newly added to reflect the
relaxation. More specifically, for QF = 1, we will reach (2QF + 1) = 3 steps dur-
ing the BFS. At step 3, there are two existing sequences {e1, e2, e5} and {e1, e3, e4}.
For each existing sequence, we compute all possible valid permutation sequences.
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s1 s2

s3 s5
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e1 e3

e2
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e5

Fig. 5. Specification model before the addi-
tion of relaxed transitions for state s1
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Fig. 6. Specification model after adding re-
laxed edges for state s1 and quasi factor 1

Table 2. Specification Sequence Generation at State s1

BFS Steps (Frontier) EventSequences
step 0 {s1} 〈s1〉
step 1 {s2} 〈s1

e1→ s2〉
step 2 {s3, s4} 〈s1

e1→ s2
e2→ s3〉〈s1

e1→ s2
e3→ s4〉

step 3 {s5, s2} 〈s1
e1→ s2

e2→ s3
e5→ s5〉〈s1

e1→ s2
e3→ s4

e4→ s2〉

In this case, the valid permutation sequences are {e2, e1, e5},{e1, e5, e2} and {e3, e1, e6},
{e1, e3, e6}. For each newly generated permutation sequence, we add new edges and
states to the specification model. From an initial state s1, if we follow the new permuta-
tion {e2, e1, e5}, as shown in Fig. 6, the transition e2 will lead to newly formed pseudo
state s6, the transition e1 will lead to s7 from state s6 and from this state it is reconnected
back to the original state s5 via transition e5. Similarly, if we follow the new permutation
{e3, e1, e4}, the transition e3 will lead to newly formed pseudo state s9, the transition
e1 will lead to s10 from state s9 and from this state it is reconnected back to state s2 via
transition e4. We continue this process of state expansion for all the valid permutation
sequences. This relaxation process needs to be conducted by using every existing state
of Mspec as the starting point (for BFS up to 2QF + 1 steps) and then adding the new
states and edges. Note that this process is conducted on the fly.

Algorithm 3 explains the high level pseudo-code for expanding the state space for the
current specification state under the check. Let SEQ = {seq1, seq2, ..., seqk} be the
sequences which are reachable from the state s0 in Mspec such that each sequence has
less than or equal to 2QF + 1 events. Each sequence seq ∈ SEQ calls a genValidPer-
mut(seq,QF) (line 4) to generate all the possible valid permutation paths for that trace.
A new state is formed with a new transition for each event in the permuted sequences,
hence allowing the relaxed refinement checking of the implementation trace.

The valid permutations for a given sequence is generated using an Algorithm 4 which
is based on the cost associated with the event. Initially, for each events ei where 1 ≤
i < n associated with the seq, the cost is initialized to QF (line 2). We generate all
possible permutations and update cost with respect to the relative ordering of the events
for each reshuffled sequences. This cost attribute of an event stores the information on
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Algorithm 3. Pseudo-code for Expanding Specification Under Check
1: Let s0 be a specification state and QF be the quasi factor
2: Let SEQ = {seq1, seq2, seq3, · · · , seqk} be the set of all possible event sequences reach-

able from s0 in Mspec such that for 1 ≤ i ≤ k, each seqi has less than or equal to 2QF + 1
relaxed events

3: for all seq in SEQ do
4: PERMUT VALID = genV alidPermut(seq,QF )
5: for all perm in PERMUT VALID do
6: Let perm = 〈e1, e2, · · · , en〉
7: Let sn be the specification state reached from s0 via seq
8: if perm is not equal to seq then
9: for all ei where 1 ≤ i < n do

10: Create a new state si and a new transition from si−1 to si via event ei
11: end for
12: Create a new transition from sn−1 to sn via en
13: end if
14: end for
15: end for

Algorithm 4. genV alidPermut(seq,QF )

1: PERMUT VALID := ∅
2: Initialize cost associated with each event in seq to QF
3: Generate possible permutations PERMUT SEQ and update cost
4: for all p in PERMUT SEQ do
5: isValid = true
6: Let p = 〈e1, e2, · · · , en〉
7: for all ei where 1 ≤ i < n do
8: if ei.cost ≥ 2QF ∨ ei.cost ≤ 0 then
9: isValid = false

10: break
11: end if
12: end for
13: if isValid then
14: PERMUT VALID = PERMUT VALID

⋃
p

15: end if
16: end for
17: return PERMUT VALID

how many more steps an event may be postponed. Each time an event is postponed, the
cost associated with this event is decremented by 1. On the contrary, the event can also
be chosen upto QF steps ahead and for each step, the cost is increased by 1. So, the
cost attribute of the event that is allowed for relaxation is 2QF ≤ cost ≤ 0. We check
the validity of each of these sequences using this cost attribute (line 8). Finally, only
the valid permutations are appended in PERMUT VALID after each check and once the
check is completed for all permuted sequences, the function returns the valid traces.

Consider the event sequence {e1, e2, e5} from state s1 be seq as shown in Fig. 5. If
QF = 1, the cost for each of these events is initialized to 1. We generate all possible
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permutations by reshuffling the events and updating the cost based on the relative posi-
tioning of the event with respect to the initial sequence. There are as many as 6 possible
permutations including the original sequence in this case. If we consider reordering be
the sequence {e2, e1, e5}, then the cost associated with event e2 is 2 as it is chosen one
step earlier. For the event e1, it is postponed for one step meaning its cost is decreased
by 1 which makes the cost associated with it be 0. Event e3 is not reordered and hence
its cost is unchanged and is 1. This sequence is valid because cost associated with each
of the events in this sequence lies within the allowable range. Similarly, if we consider
another permuted sequence {e3, e1, e2}, then the cost associated with each of these
events is {3, 0, 0} which exceeds the allowable range. So, this permutation sequence is
not valid. We do this for all the permuted sequences to generate the valid traces.

6 Experiments

We have implemented and evaluated the quasi linearizability checking method in the
PAT verification framework [20]. Our new algorithm can directly check a relaxed ver-
sion of the refinement relation. This new algorithm subsumes the standard refinement
checking procedure that has already been implemented in PAT. In particular, when
QF = 0, our new procedure degenerates to the standard refinement checking proce-
dure. When QF > 0, our new procedure has the added capability of checking for the
quantitatively relaxed refinement relation. Our algorithm can directly handle the imple-
mentation model Mimpl, the standard (not quasi) specification model Mspec, and the
quasi factor QF , thereby completely avoiding the user’s intervention.

We have evaluated our new algorithm on a set of models of standard and quasi lin-
earizable concurrent data structures [1,12,17], including queues, stacks, quasi queues,
quasi stacks, and quasi priority queues. For each data structure, there can be several
variants, each of which has a slightly different implementation. In addition to the im-
plementations that are known to be linearizable and quasi linearizable, we also have
versions which initially were thought to be correct, but were subsequently proved to
be buggy by our verification tool. The characteristics of all benchmark examples are
shown in Table 3. The first two columns list the name of the concurrent data structures
and a short description of the implementation. The next two columns show whether the
implementation is linearizable and quasi linearizable.

Table 4 shows the results of the experiments. The experiments are conducted on a
computer with an Intel Core-i7, 2.5 GHz processor and 8 GB RAM running Windows
7. The first column shows the statistics of the test program, including the name and
the size of benchmark. The second column is the quasi factor showing the relaxation
bound allowed for the model. The next three columns show the runtime performance,
consisting of the verification time in seconds, the total number of visited states, and the
total number of transitions made. The number of states and the running time for each
of the models increase with the data size.

For 3 segmented quasi queue with quasi factor 2, the verification completes in 7.2
seconds. It is much faster than the first approach presented in Section 4, where the same
setting requires 130.7 seconds for the verification. Subsequently, as the size increases,
the time to verify the quasi queue increases. For queue with size 6 and 9, verification
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Table 3. Statistics of Benchmark Examples

Class Description Linearizable Quasi Lin.
Quasi Queue (3) Segmented linked list implementation (size=3) No Yes
Quasi Queue (6) Segmented linked list implementation (size=6) No Yes
Quasi Queue (9) Segmented linked list implementation (size=9) No Yes
Queue buggy1 Segmented queue with a bug (Dequeue on the empty No No

queue may erroneously change current segment)
Queue buggy2 Segmented queue with a bug (Dequeue may get No No

value from a wrong segment)
Lin. Queue A linearizable (hence quasi) implementation Yes Yes
Q. Priority Queue (6) Segmented linked list implementation (size=6) No Yes
Q. Priority Queue (9) Segmented linked list implementation (size=9) No Yes
Priority Queue buggy Segmented priority queue (Dequeue on the empty No No

priority queue may change current segment)
Lin. Stack A linearizable (hence quasi) implementation Yes Yes

Table 4. Results for Checking Quasi Linearizability with 2 threads

Class QF Verification Time (s) Number of Visited States Number of Visited Transitions
Quasi Queue (3) 2 7.2 126,810 248,122
Quasi Queue (6) 2 21.2 237,760 468,461
Quasi Queue (9) 2 114.5 1,741,921 3,424,280
Quasi Queue (4) 3 131.6 442,558 869,129
Quasi Queue (8) 3 1517.1 1,986,924 3,754,489
Queue buggy1 2 0.4 1,204 809
Queue buggy2 2 0.1 345 345
Lin. Queue 2 5.5 240,583 121,548
Q. Priority Queue (6) 2 34.3 472,981 918,530
Q. Priority Queue (9) 2 198.4 1,478,045 2,905,016
Q. Priority Queue (4) 3 343.1 1,408,763 2,566,427
Priority Queue buggy 2 5.4 894 894
Lin. Stack 2 0.2 2,690 6,896

is completed in 21.2 seconds and 114.5 seconds, respectively. As the quasi factor is
increased to 3, the verification time for quasi queue with size 4 and 8 is increased to
131.6 seconds 1517.1 seconds respectively, which is much higher in comparison to
the time for quasi factor 2. This is basically because of the significant increment in
state expansion for the higher quasi factor. For the priority queues where enqueue and
dequeue operations are performed based on the priority, the verification time is higher
than the regular quasi queue. Also, it is important to note that the counterexample is
produced with exploration of only part of the state space for the buggy models. The
verification time is much faster for the buggy queue, which shows that our approach
is effective if the quasi linearizability is not satisfied. In all test cases, our method was
able to correctly verify quasi linearizability or detect the violations.

7 Related Work

In the literature, although there exists a large body of work on formally verifying lin-
earizability in models of data structure implementations, none of them can verify quasi
linearizability. For example, Liu et al. [15,14] use a process algebra based tool to verify
that an implementation model refines a specification model – the refinement relation
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implies linearizability. Vechev et al. [23] use SPIN to verify linearizability. Cerný et
al. [5] use automated abstractions together with model checking to verify linearizabil-
ity properties. There also exists some work on proving linearizability by constructing
mechanical proofs, often with significant manual intervention (e.g., [22]).

There are also runtime verification algorithms such as Line-Up [4], which can di-
rectly check the actual source code implementation but for violations on bounded exe-
cutions and deterministic linearizability. However, quasi linearizable data structures are
inherently nondeterministic. For example, the deq operation in a quasi queue imple-
mentation may choose to return any of the first k items in a queue. To the best of our
knowledge, no existing method can directly verify quasi linearizability for execution
traces of unbounded length.

Besides (quasi) linearizability, there also exist many other consistency conditions
for concurrent computations, including sequential consistency [13], quiescent consis-
tency [2], and eventual consistency [24]. Some of these consistency conditions in prin-
ciple may be used for checking the correctness of data structure implementations, al-
though so far, none of them is as widely used as (quasi) linearizability. These consis-
tency conditions do not involve quantitative aspects of the properties. We believe that it
is possible to extend our refinement algorithm to verify some of these properties. work.

Outside the domain of concurrent data structures, serializability and atomicity are
two popular correctness properties for concurrent programs, especially at the applica-
tion level. There exists a large body of work on both static and dynamic analysis for
detecting violations of such properties (e.g., [8,6] and [26,7,18,25]). These existing
methods are different from ours because they are checking different properties. Al-
though atomicity and serializability are fairly general correctness conditions, they have
been applied mostly to the correctness of shared memory accesses at the load/store in-
struction level. Linearizability, in contrast, defines correctness condition at the method
call level. Furthermore, existing methods for checking atomicity and serializability do
not deal with the quantitative aspects of the properties.

8 Conclusions

We have presented a new method for formally verifying quasi linearizability of the im-
plementation models of concurrent data structures. We have explored two approaches,
one of which is based on manual construction of the relaxed specification model, whereas
the other is fully automated, and is based on checking a relaxed version of the refine-
ment relation between the implementation model and the specification model. For future
work, we plan to incorporate advanced state space reduction techniques such as sym-
metry reduction and partial order reduction.
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Abstract. Many Control Systems are indeed Software Based Control Systems,
i.e. control systems whose controller consists of control software running on a
microcontroller device. This motivates investigation on Formal Model Based De-
sign approaches for automatic synthesis of control software.

Available algorithms and tools (e.g., QKS) may require weeks or even months
of computation to synthesize control software for large-size systems. This moti-
vates search for parallel algorithms for control software synthesis.

In this paper, we present a Map-Reduce style parallel algorithm for control
software synthesis when the controlled system (plant) is modeled as a discrete
time linear hybrid system. Furthermore we present an MPI-based implementation
PQKS of our algorithm. To the best of our knowledge, this is the first parallel
approach for control software synthesis.

We experimentally show effectiveness of PQKS on two classical control syn-
thesis problems: the inverted pendulum and the multi-input buck DC/DC con-
verter. Experiments show that PQKS efficiency is above 60%. As an example,
PQKS requires about 16 hours to complete the synthesis of control software for
the pendulum on a cluster with 60 processors, instead of the 25 days needed by
the sequential algorithm implemented in QKS.

1 Introduction

Many Embedded Systems are indeed Software Based Control Systems (SBCSs). An
SBCS consists of two main subsystems: the controller and the plant. Typically, the
plant is a physical system consisting, for example, of mechanical or electrical devices
whereas the controller consists of control software running on a microcontroller. In an
endless loop, at discrete time instants (sampling), the controller reads plant sensor out-
puts from the plant and computes commands to be sent back to plant actuators. Being
the control software discrete and the physical system typically continuous, sensor out-
puts go through an Analog-to-Digital (AD) conversion (quantization) before being read
from the control software. Analogously, controller commands need a Digital-to-Analog
(DA) conversion before being sent to plant actuators. The controller selects commands
in order to guarantee that the closed-loop system (that is, the system consisting of both
plant and controller) meets given safety and liveness specifications (System Level For-
mal Specifications).

E. Bartocci and C.R. Ramakrishnan (Eds.): SPIN 2013, LNCS 7976, pp. 43–60, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Software generation from models and formal specifications forms the core of Model
Based Design of embedded software [1]. This approach is particularly interesting for
SBCSs since in such a case system level (formal) specifications are much easier to
define than the control software behavior itself.

1.1 Motivations

In this paper we focus on the algorithm presented in [2,3,4], which returns correct-
by-construction control software starting from system level formal specifications. This
algorithm is implemented in QKS (Quantized Kontroller Synthesizer), which takes as
input: i) a formal model of the controlled system, modeled as a Discrete Time Linear
Hybrid System (DTLHS), ii) safety and liveness requirements (goal region) and iii) b
and bu as the number of bits for, respectively, AD and DA conversions. Given this, QKS
outputs a correct-by-construction control software together with the controlled region
on which the software is guaranteed to work.

To this aim, QKS first computes a suitable finite state abstraction (control abstrac-
tion [4]) Ĥ of the DTLHS plant modelH, where Ĥ depends on the quantization schema
(i.e. number of bits b, bu needed for AD/DA conversions) and it is the plant as it can be
seen from the control software after AD conversion and before DA conversion. Then,
given an abstraction Ĝ of the goal states G, it is computed a controller K̂ that, starting
from any initial abstract state, drives Ĥ to Ĝ regardless of possible nondeterminism.
Control abstraction properties ensure that K̂ is indeed a (quantized representation of
a) controller for the original plant H. Finally, K̂ is translated into control software (C
code).

While effective on moderate-size systems, QKS requires a huge amount of compu-
tational resources when applied to larger systems. In fact, the most critical step of QKS
is the control abstraction Ĥ generation (which is responsible for more than 95% of the
overall computation, see [3]). This stems from the fact that Ĥ is computed explicitly, by
solving a Mixed Integer Linear Programming (MILP) problem for each triple (x̂, û, x̂′),
where x̂, x̂′ are abstract states of Ĥ and û is an abstract action of Ĥ. Thus QKS is based
on an hybrid approach, being both explicit in the abstract state space enumeration and
symbolic in the usage of MILP solvers. Since the number of abstract states is 2b, being
b the number of bits needed for AD conversion of all variables describing the plant,
and since the number of abstract actions is 2bu , we have that QKS computation time is
exponential in 2b+ bu. In QKS, suitable optimizations reduce the complexity to be ex-
ponential in b+ bu, and thus in b since bu << b. However, in large-size systems b may
be large for two typical reasons. First, since each plant state variable needs to be quan-
tized (if a state variable v is discrete, then the number of bits for v is not an input, since
�log2 |dom(v)|� + 1 bits are needed), the number of bits is necessarily high when the
plant model consists of many variables. As an example, the plane collision avoidance
control system in [5] is described by 4 continuous variables and 7 discrete variables.
Second, controllers synthesized by considering a finer quantization schema (i.e., with
an higher value of b) usually have a better behavior with respect to non-functional re-
quirements, such as ripple and set-up time. Therefore, when a high precision is required,
a large number of quantization bits must be considered.
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As an example, experimental results show that QKS takes nearly one month (25
days) of CPU time to synthesize the controller for a 26 bits quantized inverted pendulum
(which is described by only two continuous state variables, see Sect. 5.1). Moreover,
99% of those 25 days of computation is due to control abstraction generation. This may
result in a loss in terms of time-to-market in control software design when QKS is used.

This motivates search of parallel versions of QKS synthesis algorithm.

1.2 Main Contributions

To overcome the computation time bottleneck in QKS, we present a Map-Reduce style
parallel algorithm for control abstraction generation in control software synthesis.

Map-Reduce [6] is a (LISP inspired) programming paradigm advocating a form of
embarrassing parallelism for effective massive parallel processing. An implementation
of such an approach is in Hadoop (e.g., see [7]). The effectiveness of the Map-Reduce
approach stems from the minimal communication overhead of embarrassing paral-
lelism. This motivates our goal of looking for a Map-Reduce style parallel algorithm
for control software synthesis from system level formal specifications.

To this aim, we design a parallel version of QKS, that is inspired to the Map-Reduce
programming style and that we call Parallel QKS (PQKS in the following). PQKS is
actually implemented using MPI (Message Passing Interface [8]) in order to exploit
the computational power available in modern computer clusters (distributed memory
model). Such an algorithm will be presented in Sect. 4, after a discussion of the basic
notions needed to understand our approach (Sect. 2) and the description of the stan-
dalone (i.e. serial) algorithm of QKS (Sect. 3).

We show the effectiveness of PQKS by using it to synthesize control software for
two widely used embedded systems, namely the multi-input buck DC-DC converter [9]
and the inverted pendulum [10] benchmarks. These are challenging examples for the
automatic synthesis of correct-by-construction control software. Experimental results
on the above described benchmarks will be discussed in Sect. 5. Such results show
that we achieve a nearly linear speedup w.r.t. QKS, with efficiency above 60%. As an
example, PQKS requires about 16 hours to complete the above mentioned synthesis of
the 26-bits pendulum on a cluster with 60 processors, instead of the 25 days of QKS.

2 Background on Control Abstraction for DTLHSs

To make this paper self-contained, in this section we briefly summarize the notions
necessary to understand our parallel approach to control software synthesis. For more
details, we refer the reader to [4].

Guarded Constraints. We denote with [n] an initial segment {1, . . . , n} of the natu-
ral numbers. We denote with X = [x1, . . . , xn] a finite sequence of variables that we
may regard, when convenient, as a set. Each variable x ranges on a known (bounded
or unbounded) interval Dx either of the reals (continuous variables) or of the integers
(discrete variables). We denote with DX the set

∏
x∈X Dx. Boolean variables are dis-

crete variables ranging on the set B = {0, 1}. If x is a boolean variable, we write x̄
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for (1 − x). A linear expression over a list of variables X is a linear combination of
variables in X with rational coefficients. A linear constraint over X (or simply a con-
straint) is an expression of the form L(X) ≤ b, where L(X) is a linear expression over
X and b is a rational constant. Given a constraint C(X) and a fresh boolean variable
(guard) y �∈ X , a guarded constraint has either the form y → C(X) (if y then C(X))
or ȳ → C(X) (if not y then C(X)). A guarded predicate is a conjunction of either
constraints or guarded constraints.

Labeled Transition Systems. A Labeled Transition System (LTS) is a tuple S =
(S,A, T ) where S is a (possibly infinite) set of states, A is a (possibly infinite) set
of actions, and T : S × A × S → B is the transition relation of S. Let s ∈ S and
a ∈ A. We call self loop a transition of the form (s, a, s). A run or path for an LTS S
is a sequence π = s0, a0, s1, a1, s2, a2, . . . of states st and actions at such that ∀t ≥ 0
T (st, at, st+1). The length |π| of a finite run π is the number of actions in π.

Discrete Time Linear Hybrid Systems. A Discrete Time Linear Hybrid System is a
tupleH = (X, U, Y, N) where:

– X = Xr ∪ Xd is a finite sequence of real (Xr) and discrete (Xd) present state
variables. We denote with X ′ the sequence of next state variables obtained by dec-
orating with ′ all variables in X .

– U = U r ∪ Ud is a finite sequence of input variables.
– Y = Y r ∪ Y d is a finite sequence of auxiliary variables that are typically used to

model modes (e.g., from switching elements such as diodes) or “local” variables.
– N(X,U, Y,X ′) is a guarded predicate over X ∪U ∪Y ∪X ′ defining the transition

relation (next state).

The semantics of a DTLHS H is an LTS LTS(H) = (DX ,DU , Ñ) where Ñ : DX ×
DU × DX → B is a function s.t. Ñ(x, u, x′) ≡ ∃ y ∈ DY N(x, u, y, x′).

Quantizations for DTLHSs. A quantization function γ for a real interval I = [a, b] is
a non-decreasing function γ : I �→ Z s.t. γ(I) is a bounded integer interval. In the fol-
lowing we will only consider quantization functions γ s.t.: i) γ(I) = {0, . . . , 2b−1} for
some b ∈ N (number of bits); ii) γ divides the interval [a, b] into 2b equal subintervals,
so that γ(x) = i − 1 iff x is in the i-th subinterval. Thus we will specify quantiza-
tions by only defining the number of bits b. Finally, if I is a discrete set I ⊆ Z, then
γ(x) = x−min I .

Let H=(X,U, Y,N) be a DTLHS, and W = X ∪ U ∪ Y . A quantizationQ forH
is a pair (A,Γ ), where:

– A explicitly bounds each variable in W (i.e., A =
∧

w∈W αw ≤ w ≤ βw, with
αw, βw ∈ DW ). For each w ∈ W , we denote with Aw = [αw, βw] its admissible
region and with AW =

∏
w∈W Aw.

– Γ is a set of maps Γ = {γw | w ∈W and γw is a quantization function for Aw}.

Let W = [w1, . . . , wk] and v = [v1, . . . , vk] ∈ AV , with V ⊆ W . We write Γ (v)
for the tuple [γw1(v1), . . . , γwk

(vk)], Γ−1(v̂) for the set {v ∈ AV | Γ (v) = v̂}, and
Γ (AW ) = {Γ (v) | v ∈ AW }. Finally, we call abstract states (resp., actions) the
elements in the finite set Γ (AX) (resp., Γ (AU )).
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3 Control Abstraction Computation

As explained in Sect. 1.1, the heaviest computation step for QKS is the computation of
the control abstraction. In this section, we recall the definition of control abstraction, as
well as how it is computed by QKS.

In the following, letH = (X, U, Y, N) and Q = (A,Γ ) be, respectively, a DTLHS
and a quantization for H. We say that an abstract action û ∈ Γ (AU ) is Q-admissible
in an abstract state x̂ ∈ Γ (AX) iff actions in û always maintain the plant inside its
admissible region when starting from states in x̂ (i.e., for all plant states x ∈ Γ−1(x̂),
plant actions u ∈ Γ−1(û), and plant states x′, if (x, u, x′) is a transition in LTS(H)
then x′ ∈ AX ).

Definition 1. The Q control abstraction of a DTLHS H is an LTS Ĥ =
(Γ (AX), Γ (AU ), N̂), where for N̂ the following holds:

1. each abstract transition in N̂ stems from a concrete transition in N ;
2. each concrete transition (x, u, x′) in N is faithfully represented by an abstract

transition (Γ (x), Γ (u), Γ (x′)) in N̂ , provided that Γ (x) �= Γ (x′) and Γ (u) is
Q-admissible in Γ (x);

3. if there is no upper bound to the length of concrete paths in LTS(H) s.t. all states
are inside the counter-image of an abstract state x̂ and all actions are inside the
counter-image of an abstract action û, then there is an abstract self loop (x̂, û, x̂)
in N̂ .

Algorithm 1. Building a control abstraction
Input: DTLHS H = (X,U, Y,N), quantization Q = (A,Γ ).
function ctrAbs (H, Q)
1. N̂ ← ∅
2. for all x̂ ∈ Γ (AX) do
3. N̂ ← ctrAbsAux(H,Q, x̂, N̂)
4. return (Γ (AX), Γ (AU ), N̂)

Given a quantizationQ = (A,Γ ) for a DTLHSH = (X,U, Y,N), Function ctrAbs
in Alg. 1 computes aQ-control abstraction (Γ (AX), Γ (AU ), N̂) ofH following Def. 1.
Namely, the control abstraction transition relation N̂ is incrementally computed by
starting with the empty relation (line 1) and then adding, for all abstract states x̂ (line 2),
all transitions which starts from x̂ and fulfills Def. 1 (line 3). This is done by calling the
auxiliary function ctrAbsAux, which is detailed in Alg. 2. Namely, function ctrAbsAux
checks, for all abstract actions û (line 1) and all possible next abstract states x̂′ ∈ O
(line 5), if (x̂, û, x̂′) may be added to the current N̂ . Self loops are separately handled
in line 3. Note that the checks in lines 2, 3 and 6, and the computation in line 4 are per-
formed by properly defining MILP problems, which are solved using known algorithms
(available in the GLPK package).
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Algorithm 2. Building a control abstraction: transitions from a given abstract state

Input: DTLHS H, quantization Q, abstract state x̂, partial control abstraction N̂ .
function ctrAbsAux (H, Q, x̂, N̂)
1. for all û ∈ Γ (AU) do
2. if ¬ Q-admissible(H,Q, x̂, û) then
3. if selfLoop(H,Q, x̂,û) then N̂ ← N̂ ∪ {(x̂, û, x̂)}
4. O ← overImg(H,Q, x̂, û)
5. for all x̂′ ∈ Γ (O) do
6. if x̂ �= x̂′∧existsTrans(H,Q, x̂, û, x̂′) then
7. N̂← N̂ ∪ {(x̂, û, x̂′)}
8. return N̂

4 Parallel Synthesis of Control Software

In this section we present our novel parallel algorithm for the control abstraction gener-
ation of a given DTLHS. Such algorithm is a parallel version of the standalone Alg. 1.
In this way we significantly improve the performance on the control abstraction gener-
ation (which is the bottleneck of QKS), thus obtaining a huge speedup for the whole
approach to the synthesis of control software for DTLHSs.

In the following, let H = (X, U, Y, N), Q = (A,Γ ) be, respectively, the DTLHS
and the quantization in input to our algorithm for control abstraction generation. More-
over, let b be the overall number of bits needed in Q to quantize plant states (i.e.,
b =

∑
x∈X bx, where bx is the number of bits for γx ∈ Γ ). Finally, let p be the number

of processors available for parallel computation.
Our parallel algorithm rests on the observation that all calls to function ctrAbsAux

(see Alg. 2) are independent of each other, thus they may be performed by independent
processes without communication overhead. This observation allows us to use paral-
lel methods targeting embarrassingly parallel problems in order to obtain a significant
speedup on the control abstraction generation phase. To this aim, we use a Map-Reduce
based parallelization technique to design a parallel version of Alg. 1. Namely, our par-
allel computation is designed as follows (see Fig. 1 for an example).

1. A master process assigns (maps) the computations needed for an abstract state x̂
(i.e., the execution of a call to function ctrAbsAux of Alg. 2) to one of p computing
processes (workers, enumerated from 1 to p). This is done in a way so that each
worker approximately handles |Γ (AX)|

p abstract states, thus balancing the parallel

workload. Namely, abstract states are enumerated from 1 to 2b, and abstract state i
is assigned to worker 1 + ((i − 1) mod p). We denote with Γ (i,p)(AX) ⊆ Γ (AX)
the set of abstract states mapped to worker i out of p available workers. Note that
worker i may locally decide which abstract states are in Γ (i,p)(AX) by only know-
ing i and p (together with the overall input H and Q). This allows us to avoid
sending to each worker the explicit list of abstract states it has to work on, since it
is sufficient that the master sends i and p (plusH andQ) to worker i.
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2. Each worker works on its abstract states partitionΓ (i,p)(AX), by calling ctrAbsAux
for each abstract state in such partition. Once worker i has completed its task (i.e.,
all abstract states in Γ (i,p)(AX) have been considered), a local (partial) control
abstraction N̂i is obtained, which is sent back to the master.

3. The master collects the local control abstractions coming from the workers and
composes (reduces) them in order to obtain the desired complete control abstraction
for H. Note that, as in embarrassingly parallel tasks, communication only takes
place at the beginning and at the end of local computations.

Algorithm 3. Building a control abstraction in parallel: master process
Input: DTLHS H, quantization Q, workers number p
function ctrAbsMaster (H, Q, p)
1. for all i ∈ {1, . . . , p} do
2. create a worker and send H, Q, i and p to it
3. wait to get N̂1, . . . , N̂p from workers
4. return (Γ (AX), Γ (AU ),∪p

j=1N̂j)

x1

(a)

x2
MAP

x1

x2

(b)

1 2 3 1

2 3 1 2

3 1 2 3

1 2 3 1

WORK

Worker1 Worker2

Worker3

(c)

N̂1 N̂2

N̂3

REDUCE

x1

x2

(d)

N̂

Fig. 1. Example of execution of the parallel algorithm using 3 workers on a DTLHS H =
(X,U, Y,N) and a quantization Q for H s.t. X = [x1, x2] and Q discretizes both x1, x2 with
two bits. In (a) the starting point is shown, where each cell corresponds to an abstract state. In
(b), function ctrAbsMaster maps the workload among the 3 workers (abstract states labeled with
i ∈ [3] are handled by worker i). In (c) each worker i computes its local control abstraction N̂i,
which is assumed to have the shown transitions only. Finally, in (d) the master rejoins the local
control abstractions in order to get the final one, i.e. N̂ .

Our parallel algorithm is described in Algs. 3 (for the master) and 4 (for workers).

4.1 Implementation with MPI

We actually implemented Algs. 3 and 4 in PQKS by using MPI (Message Passing In-
terface, see [8]). Since MPI is widely used, this allows us to run PQKS on nearly all
computer clusters. Note that in MPI all computing processes execute the same program,
each one knowing its rank i and the overall number of computing processes p (Single
Program Multiple Data paradigm). Thus lines 1–2 of Alg. 3 are directly implemented by
the MPI framework. Moreover, in our implementation the master is not a separate node,
but it actually performs as worker with id 1 while waiting for local control abstractions
from other workers. Local control abstraction from other workers are collected once the
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Algorithm 4. Building a control abstraction in parallel: worker processes
Input: DTLHS H = (X,U, Y,N), quantization Q = (A,Γ ), index i, workers number p
function parCtrAbs (H, Q, i, p)
1. N̂i ← ∅
2. for all x̂ ∈ Γ (i,p)(AX) do
3. N̂i ← ctrAbsAux(H,Q, x̂, N̂i)
4. send N̂i to the master

master local control abstraction (i.e., N̂1) has been completed. This allows us to use p
nodes instead of p+ 1, as well as to save communication time (N̂1 is already available
to the master node, thus it needs not to be sent).

Note that lines 3 and 4 of, respectively, Algs. 3 and 4 require workers to send their
local control abstraction to the master. Being control abstractions represented as OB-
DDs (Ordered Binary Decision Diagrams [11]), which are sparse data structures, this
step may be inefficient if implemented with a call to MPI Send (as it is usually done
in MPI programs), which is designed for contiguous data. In order to make PQKS ef-
ficient, MPI Send is not used. Instead, workers use known algorithms (implemented
in the CUDD package) to efficiently dump the OBDD representing their local control
abstraction on the shared filesystem. Since current MPI implementations are typically
based on a shared filesystem, this is not a limitation for PQKS. Then each computing
process calls MPI Barrier, in order to synchronize all workers with the master. After
this, the master node collects local control abstraction from workers, by reloading them
from the shared filesystem, in order to build the final global one. Consequently, when
presenting experimental results in Sect. 5, we include I/O time in communication time.
Note that communication based on shared filesystem is very common also in Map-
Reduce native implementations like Hadoop [7].

Finally, we note that Algs. 3 and 4 may conceptually be implemented on multi-
threaded systems with shared memory. However, in our implementation we use GLPK
as external library to solve MILP problems required in computations inside function
ctrAbsAux (see Alg. 2). Since GLPK is not thread-safe, we may not implement Algs. 3
and 4 on multithreaded shared memory systems.

5 Experimental Results

We implement functions ctrAbsMaster and parCtrAbs of Algs. 3 and 4 in C program-
ming language using the CUDD package for OBDD based computations and the GLPK
package for MILP problems solving, and MPI for the parallel setting and communica-
tion. The resulting tool, PQKS (Parallel QKS), extends the tool QKS [3] by replacing
function ctrAbs of Alg. 1 with function ctrAbsMaster of Alg. 3.

In this section we present experimental results obtained by using PQKS on two
meaningful and challenging examples for the automatic synthesis of correct-by-
construction control software, namely the inverted pendulum and multi-input buck
DC-DC converter. In such experiments, we show the gain of the parallel approach with
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respect to the serial algorithm, also providing standard measures such as communication
and I/O time.

This section is organized as follows. In Sects. 5.1 and 5.2 we will present the inverted
pendulum and the multi-input buck DC-DC converter, on which our experiments focus.
In Sect. 5.3 we give the details of the experimental setting, and finally, in Sect. 5.4, we
discuss experimental results.

5.1 The Inverted Pendulum Case Study

The inverted pendulum [10] (see Fig. 2) is modeled by taking the angle θ and the angular
velocity θ̇ as state variables. The input of the system is the torquing force u ·F , that can
influence the velocity in both directions. Here, the variable u models the direction and
the constant F models the intensity of the force. Differently from [10], we consider the
problem of finding a discrete controller, whose decisions may be only “apply the force
clockwise” (u = 1), “apply the force counterclockwise” (u = −1)”, or “do nothing”
(u = 0). The behavior of the system depends on the pendulum mass m, the length of the
pendulum l, and the gravitational acceleration g. Given such parameters, the motion of

the system is described by the differential equation θ̈ =
g

l
sin θ +

1

ml2
uF , which may

be normalized and discretized in the following transition relation (being T the sampling
time constant, x1 = θ and x2 = θ̇): N(x1, x2, u, x

′
1, x

′
2) ≡ (x′

1 = x1 + Tx2) ∧
(x′

2 = x2 + T g
l sinx1 + T 1

ml2uF ). Such transition relation is not linear, as it contains
the function sinx1. A linear model can be found by under- and over-approximating
the non-linear function sinx on different intervals for x. Namely, we may proceed as
follows [12]. First of all, in order to exploit sinus periodicity, we consider the equation
x1 = 2πyk + yα, where yk represents the period in which x1 lies and yα ∈ [−π, π]1
represents the actual x1 inside a given period. Then, we partition the interval [−π, π]
in four intervals: I1 =

[
−π,−π

2

]
, I2 =

[
−π

2
, 0

]
, I3 =

[
0,

π

2

]
, I4 =

[π
2
, π

]
. In each

interval Ii (i ∈ [4]), we consider two linear functions f+
i (x) and and f−

i (x), such that
for all x ∈ Ii, we have that f−

i (x) ≤ sinx ≤ f+
i (x). As an example, f+

1 (yα) =
−0.637yα − 2 and f−

1 (yα) = −0.707yα − 2.373.

Fig. 2. Inverted Pendulum with Sta-
tionary Pivot Point
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Fig. 3. Multi-input Buck DC-DC converter

1 In this section we write π for a rational approximation of it.
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Let us consider the set of fresh continuous variables Y r = {yα, ysin} and the set of
fresh discrete variables Y d = {yk, yq, y1, y2, y3, y4}, being y1, . . . , y4 boolean vari-
ables. The DTLHS model IF for the inverted pendulum is the tuple (X,U, Y,N),
where X = {x1, x2} is the set of continuous state variables, U = {u} is the set of in-
put variables, Y = Y r ∪ Y d is the set of auxiliary variables, and the transition relation
N(X,U, Y,X ′) is the following guarded predicate:

(x′
1 = x1 + 2πyq + Tx2) ∧ (x′

2 = x2 + T
g

l
ysin + T

1

ml2
uF )

∧
∧

i∈[4] yi → f−
i (yα) ≤ ysin ≤ f+

i (yα)

∧
∧

i∈[4] yi → yα ∈ Ii ∧
∑

i∈[4] yi ≥ 1

∧ x1 = 2πyk + yα ∧ −π ≤ x′
1 ≤ π

Overapproximations of the system behaviour increase system nondeterminism. Since
IF dynamics overapproximates the dynamics of the non-linear model, the controllers
that we synthesize are inherently robust, that is they meet the given closed loop require-
ments notwithstanding nondeterministic small disturbances such as variations in the
plant parameters. Tighter overapproximations of non-linear functions makes finding a
controller easier, whereas coarser overapproximations makes controllers more robust.

The typical goal for the inverted pendulum is to turn the pendulum steady to the up-
right position, starting from any possible initial position, within a given speed interval.

5.2 The Multi-input Buck DC-DC Converter Case Study

The multi-input buck DC-DC converter [9] in Fig. 3 is a mixed-mode analog circuit
converting the DC input voltage (Vi in Fig. 3) to a desired DC output voltage (vO in
Fig. 3). As an example, buck DC-DC converters are used off-chip to scale down the
typical laptop battery voltage (12-24) to the just few volts needed by the laptop pro-
cessor (e.g. [13]) as well as on-chip to support Dynamic Voltage and Frequency Scal-
ing (DVFS) in multicore processors (e.g. [14]). Because of its widespread use, control
schemas for buck DC-DC converters have been widely studied (e.g. see [14,13]). The
typical software based approach (e.g. see [13]) is to control the switches u1, . . . , un in
Fig. 3 (typically implemented with a MOSFET) with a microcontroller.

In such a converter (Fig. 3), there are n power supplies with voltage valuesV1, . . . , Vn,
n switches with voltage values vu1 , . . . , v

u
n and current values Iu1 , . . . , I

u
n , and n input

diodes D0, . . . , Dn−1 with voltage values vD0 , . . . , vDn−1 and current iD0 , . . . , iDn−1 (in
the following, we will write vD for vD0 and iD for iD0 ).

The circuit state variables are iL and vC . However we can also use the pair iL, vO
as state variables in the DTLHS model since there is a linear relationship between iL,
vC and vO , namely: vO = rCR

rC+R iL + R
rC+RvC . We model the n-input buck DC-DC

converter with the DTLHS Bn = (X , U , Y , N ), with X = [iL, vO], U = [u1, . . ., un],
Y = [vD , vD1 , . . . , vDn−1, iD, Iu1 , . . ., Iun , vu1 , . . ., vun, q0, . . ., qn−1].

Finally, the transition relation N , depending on variables in X , U and Y (as well as
on circuit parameters Vi, R, Ron, Roff , rL, rC , L and C), may be derived from simple
circuit analysis [15]. Namely, we have the following equations:

i̇L = a1,1iL + a1,2vO + a1,3vD, v̇O = a2,1iL + a2,2vO + a2,3vD



A Map-Reduce Parallel Approach to Automatic Synthesis of Control Software 53

where the coefficients ai,j depend on the circuit parameters R, rL, rC , L and C in the
following way: a1,1 = − rL

L , a1,2 = − 1
L , a1,3 = − 1

L , a2,1 = R
rc+R [− rcrL

L + 1
C ],

a2,2 = −1
rc+R [ rcRL + 1

C ], a2,3 = − 1
L

rcR
rc+R . Using a discrete time model with sampling

time T (writing x′ for x(t + 1)) we have:

i′L = (1 + Ta1,1)iL + Ta1,2vO + Ta1,3vD

v′O = Ta2,1iL + (1 + Ta2,2)vO + Ta2,3vD.

The algebraic constraints stemming from the constitutive equations of the switching
elements are the following:

q0 → vD = RoniD

q0 → iD ≥ 0
n−1∧
i=1

qi → vDi = RonI
u
i

n−1∧
i=1

qi → Iui ≥ 0

n∧
j=1

uj → vuj = RonI
u
j

iL = iD +

n∑
i=1

Iui

q̄0 → vD = Roff iD

q̄0 → vD ≤ 0
n−1∧
i=1

q̄i → vDi = RoffI
u
i

n−1∧
i=1

q̄i → vDi ≤ 0

n∧
j=1

ūj → vuj = RoffI
u
j

n−1∧
i=1

vD = vui + vDi − Vi

vD = vun − Vn

The typical goal for a multi-input buck is to drive iL and vO within given goal intervals.

5.3 Experimental Setting

All experiments have been carried out on a cluster with 4 nodes and Open MPI im-
plementation of MPI. Each node contains 4 quad-core 2.83 GHz Intel Xeon E5440
processors with 25 GB of RAM. This allows us to run fully parallel experiments by
configuring the MPI computation to use up to 16 processes per node. However, in order
not to overload each node, we run maximum 15 processes per node, thus our upper
bound for the number of processes is 60.

In the inverted pendulum IF with force intensity F , as in [10], we set pendulum
parameters l and m in such a way that g

l = 1 (i.e. l = g) 1
ml2 = 1 (i.e. m = 1

l2 ).
As for the admissible region, we set Ax1 = [−1.1π, 1.1π] (we write π for a rational
approximation of it) and Ax2 = [−4, 4].

In the multi-input buck DC-DC converter with n inputs Bn, we set constant param-
eters as follows: L = 2 · 10−4 H, rL = 0.1 Ω, rC = 0.1 Ω, R = 5 Ω, Ron = 0 Ω,
Roff = 104 Ω, C = 5 ·10−5 F, and Vi = 10i V for i ∈ [n]. As for the admissible region,
we set AiL = [−4, 4] and AvO = [−1, 7].

As for quantization, we will use an even number of bits b, so that each state variable
of each case study is quantized with b

2 bits. We recall that the number of abstract states
is exactly 2b.
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We run QKS and PQKS on the inverted pendulum model IF with F = 0.5N (force
intensity), and on the multi-input buck DC-DC model Bn, with n = 5 (number of
inputs). For the inverted pendulum, we use sampling time T = 0.01 seconds. For the
multi-input buck, we set T = 10−6 seconds. For both systems, we run experiments
varying the number of bits b = 18, 20 (also 22 for the inverted pendulum) and the
number of processors (workers) p = 1, 10, 20, 30, 40, 50, 60. Furthermore, each single
experiment (corresponding to a (b, p) pair) is repeated 10 times, and all experimental
measures are obtained by averaging among the 10 different runs.
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Fig. 6. Inverted pendulum: scaling efficiency
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Fig. 7. Multi-input buck: scaling efficiency

In order to evaluate effectiveness of our approach, we use the following standard
measures: speedup, efficiency, communication time (in seconds) and I/O time (in sec-
onds). The speedup of our approach is given by the percentage ratio between the se-
rial CPU time and the parallel CPU time, i.e. Speedup = serial CPU

parallel CPU%. To evaluate
scalability of our approach, we define the scaling efficiency (or simply efficiency) as
the percentage ratio between speedup and number of processors p, i.e. Efficiency =
Speedup

p %. W.r.t. Algs. 3 and 4, the communication time is given by
∑p

i=2 ti, being ti
the time needed by worker i to communicate with the master (we recall that worker 1
coincides with the master). Essentially, each ti includes the time for MPI Barrier syn-
cronization (see Sect. 4.1) and local control abstraction N̂i sending. In agreement with
Sect. 4.1, the communication time is increased by the I/O time, that is the overall time
spent by processors in input/output activities. The I/O time measure will also be shown
separately in our experimental results.
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Figs. 4, 6, 8 and 10 show, respectively, the speedup, the scaling efficiency, the com-
munication time and the I/O time of Algs. 3 and 4 as a function of p, for the inverted
pendulum with b = 18, 20, 22. Analogously, Figs. 5, 7, 9 and 11 show the same mea-
sures for the multi-input buck with b = 18, 20.
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Fig. 8. Inverted pendulum: communication
time
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Fig. 9. Multi-input buck: communication
time
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Fig. 10. Inverted pendulum: I/O time
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Fig. 11. Multi-input buck: I/O time

We also show the absolute values for such experiments in Tabs. 1 (for the pendu-
lum) and 2 (for the buck). Tabs. 1 and 2 have common columns. The meaning of such
common columns is as follows. Column b is the number of bits used for quantiza-
tion. Column QKS reports the execution time in seconds (averaged on 10 runs, with
maximum standard deviation 0.9%) needed by QKS to compute the control abstraction
(i.e. Alg. 1). Columns PQKS report experimental values for PQKS. Namely, column
p shows the number of processors, column CPU reports the execution time in seconds
(averaged on 10 runs, with maximum standard deviation 4.2%) for Alg. 3 (i.e., the mas-
ter execution time, since it wraps the overall parallel computation), column CT shows
the communication time (averaged on 10 runs, with maximum standard deviation 21%;
we recall that I/O time is included in this measure), column IO shows the I/O time only
(averaged on 10 runs, with maximum standard deviation 31%), column Speedup re-
ports the speedup and column Efficiency reports the scaling efficiency. Finally, column
CPU K shows the execution time in seconds for the control software generation (i.e.,
the remaining computation of QKS, after the control abstraction generation).
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Table 1. Experimental Results for inverted pendulum

QKS PQKS
b CPU p CPU CT IO Speedup Efficiency CPU K

18 6.141e+03 10 8.378e+02 1.395e+03 2.545e+00 7.330 73.297 2.000e+01
18 6.141e+03 20 4.650e+02 1.195e+03 4.500e+00 13.206 66.032 2.000e+01
18 6.141e+03 30 3.083e+02 3.477e+02 7.900e+00 19.919 66.396 2.000e+01
18 6.141e+03 40 2.646e+02 2.176e+03 5.400e+00 23.209 58.022 2.000e+01
18 6.141e+03 50 1.926e+02 7.065e+02 1.600e+01 31.885 63.770 2.000e+01
18 6.141e+03 60 1.642e+02 6.254e+02 1.380e+01 37.400 62.333 2.000e+01
20 2.608e+04 10 3.551e+03 5.800e+03 9.222e+00 7.346 73.456 8.500e+01
20 2.608e+04 20 1.946e+03 4.680e+03 1.460e+01 13.402 67.008 8.500e+01
20 2.608e+04 30 1.306e+03 1.425e+03 3.390e+01 19.978 66.593 8.500e+01
20 2.608e+04 40 9.981e+02 4.511e+03 2.100e+01 26.135 65.337 8.500e+01
20 2.608e+04 50 8.145e+02 2.889e+03 4.840e+01 32.026 64.052 8.500e+01
20 2.608e+04 60 6.828e+02 1.991e+03 4.590e+01 38.203 63.672 8.500e+01
22 1.106e+05 10 1.484e+04 2.331e+04 3.240e+01 7.457 74.566 3.520e+02
22 1.106e+05 20 8.055e+03 1.675e+04 5.530e+01 13.736 68.681 3.520e+02
22 1.106e+05 30 5.494e+03 5.923e+03 1.279e+02 20.141 67.136 3.520e+02
22 1.106e+05 40 4.171e+03 1.742e+04 7.960e+01 26.526 66.314 3.520e+02
22 1.106e+05 50 3.404e+03 1.142e+04 1.767e+02 32.503 65.005 3.520e+02
22 1.106e+05 60 2.861e+03 6.491e+03 1.952e+02 38.672 64.453 3.520e+02

5.4 Experiments Discussion

From Figs. 4 and 5 we note that the speedup is almost linear, with a 3
5 slope. From

Figs. 6 and 7 we note that scaling efficiency remains high when increasing the number
of processors p. For example, for b = 22 bits, our approach efficiency is in a range from
74% (10 processors) to 64% (60 processors). In any case, efficiency is almost always
above 60%, especially for bigger values of b.

Figs. 8 and 9 show that communication time almost always decreases when p in-
creases. This is motivated by the fact that, in our MPI implementation, communication
among nodes takes place mostly when workers send their local control abstractions to
the master via the shared filesystem. Since in our implementation this happens only
after an MPI Barrier (i.e., the parallel computation may proceed only when all nodes
have reached an MPI Barrier statement), the communication time also includes waiting
time for workers which finishes their local computation before the other ones. Thus,
if all workers need about the same time to complete the local computation, then the
communication time is low. Note that this explains also the discontinuity when passing
from 30 to 40 nodes which may be observed in the figures above. In fact, each worker
has (almost) the same workload in terms of abstract states number, but some abstract
states may need more computation time than others (i.e., computation time of function
minCtrAbsAux in Alg. 2 may have significant variations on different abstract states).
If such “hard” abstract states are well distributed among workers, communication time
is low (with higher efficiency), otherwise it is high. Figs. 12 and 13 show such phe-
nomenon on the inverted pendulum quantized with 18 bits, when the parallel algorithm
is executed by 30 and 40 workers, respectively. In such figures, the x-axis represents
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computation time, the y-axis the workers, and hard abstract states are represented in
red. Indeed, in Fig. 12 hard abstract states are well distributed among workers, which
corresponds to a low communication time in Fig. 8 (and high speedup and efficiency in
Figs. 4 and 6). On the other hand, in Fig. 13 hard abstract states are mainly distributed
on only a dozen of the 40 workers (thus, about 30% of the workers performs the most
part of the total workload), which corresponds to a high communication time in Fig. 8
(and low speedup and efficiency in Figs. 4 and 6). Note that I/O time is nearly always
at least 2 orders of magnitude less than communication time, thus hard abstract states
distribution is indeed the cause of the above described phenomenon.

Fig. 12. Details about pendulum computa-
tion time (30 nodes, 18 bits)

Fig. 13. Details about pendulum computa-
tion time (40 nodes, 18 bits)

Finally, in order to show feasibility of our approach also on DTLHSs requiring a
huge computation time to generate the control abstraction, we run PQKS on the inverted
pendulum with b = 26. We estimate the computation time for control abstraction gen-
eration for p = 1 to be 25 days. On the other hand, with p = 60, we are able to compute
the control abstraction generation in only 16 hours.

Table 2. Experimental Results for multi-input buck DC-DC converter

QKS PQKS
b CPU p CPU CT IO Speedup Efficiency CPU K

18 6.484e+04 10 9.024e+03 1.666e+04 1.490e+01 7.185 71.847 2.600e+01
18 6.484e+04 20 4.849e+03 1.095e+04 1.850e+01 13.371 66.854 2.600e+01
18 6.484e+04 30 3.256e+03 3.721e+03 3.410e+01 19.914 66.381 2.600e+01
18 6.484e+04 40 2.460e+03 9.710e+03 2.260e+01 26.358 65.895 2.600e+01
18 6.484e+04 50 1.968e+03 6.677e+03 4.090e+01 32.945 65.889 2.600e+01
18 6.484e+04 60 1.650e+03 4.001e+03 4.240e+01 39.287 65.478 2.600e+01
20 2.629e+05 10 3.673e+04 6.938e+04 5.300e+01 7.159 71.590 8.000e+01
20 2.629e+05 20 1.962e+04 4.439e+04 7.400e+01 13.401 67.007 8.000e+01
20 2.629e+05 30 1.318e+04 1.484e+04 1.480e+02 19.945 66.484 8.000e+01
20 2.629e+05 40 9.862e+03 3.513e+04 9.000e+01 26.662 66.654 8.000e+01
20 2.629e+05 50 7.976e+03 2.645e+04 1.930e+02 32.966 65.932 8.000e+01
20 2.629e+05 60 6.697e+03 1.603e+04 1.840e+02 39.262 65.436 8.000e+01
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6 Related Work

Algorithms (and tools) for the automatic synthesis of control software under different
assumptions (e.g., discrete or continuous time, linear or non-linear systems, hybrid or
discrete systems, etc.) have been widely investigated in the last decades. As an exam-
ple, see [16,17,18,10,19,20,21,22] and citations thereof. However, no one of such ap-
proaches has a parallel version of any type, our focus here. On the other hand, parallel
algorithms have been widely investigated for formal verification (e.g., see [23,24,25]).

A parallel algorithm for control software synthesis has been presented in [26], where
however non-hybrid systems are addressed, control is obtained by Monte Carlo simu-
lation and quantization is not taken into account. Moreover, note that in literature “par-
allel controller synthesis” often refers to synthesizing parallel controllers (e.g., see [27]
and [28] and citations thereof), while here we parallelize the (offline) computation re-
quired to synthesize a standalone controller. Summing up, to the best of our knowledge,
no previous parallel algorithm for control software synthesis from formal specifications
has been published.

As discussed in Sect. 1.1, the present paper builds mainly upon the tool QKS pre-
sented in [2,3]. Other works about QKS comprise the following ones. In [29] it is shown
that expressing the input system as a linear predicate over a set of continuous as well
as discrete variables (as it is done in QKS) is not a limitation on the modeling power.
In [12] it is shown how non-linear systems may be modeled by using suitable lineariza-
tion techniques. The paper in [15] addresses model based synthesis of control software
by trading system level non-functional requirements (such us optimal set-up time, rip-
ple) with software non-functional requirements (its footprint, i.e. size). The procedure
which generates the actual control software (C code) starting from a finite states au-
tomaton of a control law is described in [30]. In [31] it is shown how to automatically
generate a picture illustrating control software coverage. Finally, in [32] it is shown that
the quantized control synthesis problem underlying QKS approach is undecidable. As
a consequence, QKS is based on a correct but non-complete algorithm. Namely, QKS
output is one of the following: i) SOL, in which case a correct-by-construction control
software is returned; ii) NOSOL, in which case no controller exists for the given spec-
ifications; iii) UNK, in which case QKS was not able to compute a controller (but a
controller may exist).

7 Conclusions and Future Work

In this paper we presented a Map-Reduce style parallel algorithm (and its MPI im-
plementation for computer clusters, PQKS) for automatic synthesis of correct-by-
construction control software for discrete time linear hybrid systems, starting from a
formal model of the controlled system, safety and liveness requirements and number
of bits for analog-to-digital conversion. Such an algorithm significantly improves per-
formance of an existing standalone approach (implemented in the tool QKS), which
may require weeks or even months of computation when applied to large-sized hybrid
systems.

Experimental results on two classical control synthesis problems (the inverted pen-
dulum and the multi-input buck DC/DC converter) show that our parallel approach
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efficiency is above 60%. As an example, with 60 processors PQKS outputs the control
software for the 26-bits quantized inverted pendulum in about 16 hours, while QKS
needs about 25 days of computation.

Future work consists in further improving the communication among processors by
making the mapping phase aware of “hard” abstract states (see Sect. 5.4), as well as de-
signing a parallel version for other architectures than computer clusters, such as GPGPU
architectures. Finally, future work also includes extending the presented approach so as
to provide a general parallelization framework for abstraction procedures (of a suitable
type).
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Abstract. The Model Based Design approach for Hybrid Systems con-
trol software synthesis is particularly appealing since Formal System
Level Specifications are usually much easier to define than the control
software itself. In this setting, Design Space Exploration has the goal to
find a suitable (with respect to costs and performance) choice for system
design parameters. Unfortunately, a substantial part of the time devoted
to design space exploration is spent trying to solve control software syn-
thesis problems that do not have a solution. We present an on-the-fly al-
gorithm to control software synthesis that enables effective design space
exploration by speeding-up termination when no controller is found. Our
experimental results show the effectiveness of our approach and how it
can support a concrete realizability and schedulability analysis.

1 Introduction

A Software Based Control System (SBCS) consists of two main subsystems,
the controller and the plant that together form the closed loop system. In an
endless loop, every T seconds (sampling time), output y from plant sensors go
through an analog-to-digital (AD) conversion, yielding a quantized value ŷ to
the control software implementing the control law. The control software then
computes the command û to be sent (after a digital-to-analog (DA) conversion)
to plant actuators in order to guarantee that the closed loop system satisfies
given safety and liveness specifications (System Level Formal Specifications).

Traditionally, the control software is designed using a separation-of-concerns
approach. That is, Control Engineering techniques (e.g., see [10]) are used to
design functional specifications (control law) from the closed loop system level
specifications, whereas Software Engineering techniques are used to design con-
trol software implementing functional specifications.

Motivations. In SBCS design the interface between Control Engineering and
Software Engineering activities is basically summarized by the choice of: 1) con-
trol law, 2) number of quantization bits b, 3) sampling time T . Taking into
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account that a SBCS is a real-time system, the control software Worst Case
Execution Time (WCET) must be less than or equal to T . As a result we have
contrasting requirements on the choice of design parameters b and T . Namely,
typically performance (e.g., set-up time and ripple) of the closed loop system
improves as b increases or T decreases. On the other hand, hardware/software
costs decrease when b decreases or T increases (e.g., a faster processor is needed
in order to guarantee that the control software WCET is less than T ).

In our context, one of the main goals of Design Space Exploration is to find a
suitable (with respect to costs and performance) choice for design parameters b
and T . The current approach is to define (using Control Engineering techniques)
a control law along with values for b and T and then to devise (using Software
Engineering techniques) a software implementation for it. Once the software is
implemented, its realizability and its schedulability must be evaluated. Namely,
the software is realizable if it fits in the microcontroller flash memory. Moreover,
it is schedulable if its WCET is smaller of the sampling time and small enough to
make feasible the schedulability of other periodic processes (as reading quantized
values from plant sensors) that run on the same microcontroller (see e.g. [15]
for a more-in-depth discussion). Performance of the closed loop system is then
evaluated using Hardware In the Loop Simulation (e.g., nicely supported by
Model Based tools like Simulink [20] or Reactis [34]).

One may wish to partially automate design space exploration by using tools
like QKS [25] that from the plant model, system level formal specifications for the
closed loop system and implementation parameters (namely, number of quan-
tization bits), automatically synthesize correct-by-construction control software
meeting the given requirements and with a guaranteed WCET. We note that,
for many choices of the design parameters b and T , QKS fails to find control
software solving the synthesis problem. As a result, a substantial part of the time
devoted to design space exploration will be spent trying to solve control soft-
ware synthesis problems that do not have a solution. Unfortunately the control
software synthesis algorithm presented in [25] takes about the same time both
when it finds a solution and when it cannot find one.

This paper investigates control software synthesis algorithms that can support
design space exploration by detecting as soon as possible when a solution to the
synthesis problem cannot be found.

Our Contributions. We model the plant as a Discrete Time Linear Hybrid
System (DTLHS), that is a (discrete time) hybrid system whose dynamics is
modeled with linear constraints over a set of continuous as well as discrete vari-
ables. Safety and liveness specifications for the closed loop system are defined
as linear constraints on state variables. A DTLHS H approximates a continuous
time system dynamics by sampling it only at discrete time points multiple of a
time step τ chosen on the base of physical considerations. Building on this, we
can approximate the dynamics of a system sampled each T = nτ seconds by it-
erating n times the dynamics of H. Using such an approach we can investigate in
our DTLHS framework existence of a controller for H for different configurations
of b and T = nτ . Our main contributions can be summarized as follows.
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On-the-fly control software synthesis algorithm. We present an on-the-fly al-
gorithm for DTLHS control software synthesis, in the same spirit of on-the-fly
Model Checking [19]. Such an approach enables effective design space explo-
ration by speeding-up termination of the control software synthesis algorithm in
the typical case occurring in the design space exploration phase, namely when
no controller is found for the given configuration parameters (b, T ).

Experimental results.We implemented our algorithm within the QKS tool [25].
To assess the effectiveness of our approach, we present results on its usage for
design space exploration of control software for the inverted pendulum, a chal-
lenging and widely studied example (e.g., see [22]). We carry out such a design
space exploration using both the on-the-fly algorithm presented here and the
synthesis algorithm presented in [25]. We have considered 18 choices for the de-
sign parameters b and T , 10 of which return a control software. Our experimental
results (Sect. 6) show that, using our on-the-fly algorithm we have a time saving
of nearly 80%. Finally, we show how our Model Based Design approach can ef-
fectively support a concrete realizability and schedulability analysis on a specific
family of microcontrollers.

Related Work. Model based design space exploration for embedded systems
(typically modeled as Hybrid Systems [5]) has been widely studied in the last
decades. Many tools and paradigms have been proposed to support designers in
this phase. For example, see [6] and citations thereof for a formal (using UP-
PAAL [17]) model based tool and a survey on available tools. In this respect
we note that all proposed methods focus on designing the software/hardware
system once the control law is given and, in particular, once b (number of quan-
tization bits) and T (sampling time) are given. To the best of our knowledge
none of them supports trading between Control Engineering wishes (large b and
small T ) and System/Software Engineering wishes (small b and large T ) before
the control law is designed. In such a framework our contribution complements
the available approaches by enabling trade-offs between the control law, b and
T before the control law is designed.

The sampling time T is one of the main requirements to take into account for
schedulability analysis. In [24] is proposed a scheduling algorithm that cleverly
trades, at run time, T (by delaying execution of control software) and closed
loop performances. The main difference with our contribution is that in [24] the
control law and b are both given whereas our approach enables exploring (off-
line) the possibility of changing any of them in order to increase T . It is worth
noticing that indeed the approach in [24] could be used to further increase (at
run time) the T resulting from our control software synthesis method.

We check performance of the closed loop system after control software syn-
thesis. Methods to synthesize control laws satisfying given performance indexes
on the closed loop system have been investigated, for example, in [21]. We differ
from such work since our plant model is a DTLHS rather than a multi-modal
system for [21].

Automatic synthesis of software from models has also been widely studied.
For example, see [23] and citations thereof. We differ from such approaches
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since our starting point is the plant model and closed loop specifications for
the closed loop system whereas model based software generation (e.g., as the
one also available in tools like Simulink) starts from a model based definition
(e.g., using Stateflow/Simulink diagrams) of the control law and then generates
a software implementation for such a control law model.

Control software synthesis from formal system level specifications for Discrete
Time (possibly non Linear) Hybrid Systems has been investigated in [25,26,3,2].
The on-the-fly algorithm presented here improves on the one in [25,26] by reduc-
ing of about 99% the time to terminate when it cannot find a controller, possibly
at a price of a 25% time penalty when it can find one. This, in turn, enables,
formal model based design space (i.e.: control law, b, T ) exploration.

On-the-fly algorithms for the analysis of Timed Games has been proposed
in [12]. Our backward algorithm has to handle linear constraints where both
continuous and discrete state variables may appear. In fact, we need to solve
many MILP problems to back-propagate a state region. This is quite different
from the class of Timed Automata considered in [12], where constraints have the
form x ∼ k, where x is a clock and ∼ is one of <,≤,≥, >,=.

In [31] it is presented a semi-automatic method that, taking as input a con-
tinuous time linear system and a goal specification, produces a control law (rep-
resented as an OBDD) through Pessoa [30,35]. Such an approach differs from
ours as follows. First, our method is fully automatic whereas the one in [31] is
not, since it relies on a user provided Lyapunov function, much in the spirit of
[22]. Second, [31] does not provide any guarantee on the WCET of the generated
software, thus it cannot be used for design space exploration in our context.

Verification and control law synthesis for Linear Hybrid Automata (LHA) [4]
has been investigated, e.g., in [18,38,16,9]. Control law synthesis for Piecewise
Affine Discrete Time Hybrid Systems (PWA-DTHS) has been investigated in
[7,8]. All such approaches, when dealing with control synthesis, do not account
for state feedback quantization since they all assume exact (i.e. real valued) state
measures and do not generate control software with a guaranteed WCET. As a
result they cannot be used for design space exploration in our context, where
the number of AD bits b and the software WCET play a crucial role.

2 Background

We denote with [n] an initial segment {1, . . . , n} of the natural numbers. We
denote with X = [x1, . . . , xn] a finite sequence of variables. We may regard X
as a set when convenient. Each variable x ranges over a bounded or unbounded
interval Γx, being either Γx ⊆ R or Γx ⊆ Z. We say that Γx is a typing for x and
ΓX =

∏
x∈X Γx is a typing for X . If, for all x ∈ X , Γx is a bounded interval, we

say that ΓX is a bounded typing for X .

Predicates. A linear expression L(X) over a list of variables X is a linear
combination of variables in X with rational coefficients,

∑
xi∈X aixi. A lin-

ear constraint over X (or simply a constraint) is an expression of the form
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L(X) ≤ b, where b is a rational constant. Predicates are inductively defined
as follows. A constraint C(X) is a predicate. If A(X) and B(X) are predicates
then (A(X) ∧ B(X)) and (A(X) ∨ B(X)) are predicates. Parentheses may be
omitted, assuming usual associativity and precedence rules of logical operators.
A conjunctive predicate is a conjunction of constraints. For conjunctive predi-
cates we will also write: L(X) ≥ b for −L(X) ≤ −b, L(X) = b for ((L(X) ≤ b)
∧ (L(X) ≥ b)), and a ≤ x ≤ b for x ≥ a ∧ x ≤ b, where x ∈ X .

A valuation over a list of variables X is a function v that maps each variable
x ∈ X to a value v(x) ∈ Γx. Given a valuation v, we denote with X∗ ∈ ΓX the
sequence of values [v(x1), . . . , v(xn)]. By abuse of language, we call valuation also
the sequence of values X∗. A satisfying assignment to a predicate P over X is a
valuation X∗ such that P (X∗) holds. If a satisfying assignment to a predicate P
overX exists, we say that P is feasible. Abusing notation, we may denote with P
the set of satisfying assignments to the predicate P (X). A variable x ∈ X is said
to be bounded in P if there exist a, b ∈ Γx such that P (X) implies a ≤ x ≤ b. A
predicate P is bounded if all its variables are bounded.

Given a constraint C(X) and a fresh boolean variable (guard) y �∈ X , the
guarded constraint y → C(X) (if y then C(X)) denotes the predicate ((y = 0)∨
C(X)). Similarly, we use ȳ → C(X) (if not y then C(X)) to denote the predicate
((y = 1) ∨ C(X)). A guarded predicate is a conjunction of either constraints
or guarded constraints. If a guarded predicate P is bounded, then P can be
transformed into a (bounded) conjunctive predicate [27].

A linear predicate P (X) is a (guarded) predicate or an expression of form
∃Z ∈ ΓZ P̃ (X,Z), where P̃ (X,Z) is a (guarded) predicate and Z is set of
auxiliary variables. Note that, if P̃ (X,Z) is bounded, then P (X) is also bounded.

Mixed Integer Linear Programming. A MILP problem with decision vari-
ables X is a tuple (max, J(X), A(X)) where: X is a list of variables, J(X)
(objective function) is a linear expression on X , and A(X) (constraints) is a
conjunctive predicate on X . A solution to (max, J(X), A(X)) is a valuation
X∗ such that A(X∗) and ∀Z (A(Z) → (J(Z) ≤ J(X∗))). J(X∗) is the op-
timal value of the MILP problem. A feasibility problem is a MILP problem
of the form (max, 0, A(X)). We write also A(X) for (max, 0, A(X)). We write
(min, J(X), A(X)) for (max,−J(X), A(X)).

Moore Automata. A Nondeterministic Moore Automaton (NMA) [13] is a
tupleM = (S,A,O, T,Ω) where: S is a set of states, A is a set of actions, O is a
set of outputs, T : S × A × S → B is the transition relation ofM, and Ω : S × O
→ B is the output predicate, such that ∀s ∈ S ∃o ∈ O Ω(s, o) (there is an output
for each state). We call a NMA M = (S, A, O, T , Ω) a Labelled Transition
System (LTS) whenever S = O and for all s1, s2 if Ω(s1, s2) holds then s1 = s2.
In such a case we may write simplyM = (S, A, T ). In the following, let s ∈ S,
a ∈ A and o ∈ O.

The set of actions enabled in s is denoted by En(M, s) = {a ∈
A | ∃s′T (s, a, s′)]}. An action a is enabled in o ∈ O, notation En(M, o) if there
exists a state s such that Ω(s, o) holds and a ∈ En(M, s). An action a is admissi-
ble in o, notation Adm(M, o, a) if it is enabled in o and for all s such that Ω(s, o)
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holds a is enabled in s. The image of s through a is denoted by Img(M, s, a) =
{s′ ∈ S | T (s, a, s′)}. We call transition ofM a tuple (s, a, s′) s.t. T (s, a, s′) and
self–loop a transition (s, a, s′) s.t. T (s, a, s′) ∧ ∃o[Ω(s, o) ∧Ω(s′, o)].

A run or path for an NMA M is a sequence π = s0, a0, s1, a1, s2, a2, . . . of
states st and actions at such that ∀t ≥ 0 T (st, at, st+1). The length |π| of a
finite run π is the number of actions in π. We denote with π(S)(t) the t-th state
element of π, and with π(A)(t) the t-th action element of π. That is π(S)(t) =
st, and π(A)(t) = at.

Given two NMAs M1 = (S, A, O, T1, Ω) and M2 = (S, A, O, T2, Ω), we
write M1 � M2 iff T1(s, a, s

′) implies T2(s, a, s
′) for each state s, s′ ∈ S and

action a ∈ A.

3 Output Feedback Control Problem

A controller restricts the dynamics of a system, so that all paths starting in a ini-
tial state, eventually reach a state in a goal region (liveness specifications), while
keeping the system in the safe region (safety specifications). In this section, we
formally define the notion of output feedback control problem and its solutions,
by extending to possibly infinite NMAs the definitions in [37,14] for finite LTSs.
With respect to [25], the output feedback control problem slightly generalize
the notion of quantized feedback control problem in order to provide a natural
framework for modelling control problems where plant state is not fully observ-
able. In what follows, letM = (S,A,O, T,Ω) be an NMA, and I,Σ,G ⊆ S be,
respectively, the initial, the safe, and the goal region.

An output feedback controller for M is a function K : O × A → B such
that ∀o ∈ O, ∀a ∈ A, if K(o, a) then Adm(M, o, a). We denote with dom(K)
the set of states for which a control action is defined. Formally, dom(K) =
{s ∈ S | ∃a∃o Ω(s, o) ∧ K(o, a)}. M(K) denotes the closed loop system, that
is the NMA (S,A,O, T (K), Ω), where T (K)(s, a, s′) = T (s, a, s′) ∧ ∃o[Ω(s, o) ∧
K(o, a)].MΣ denotes the safe system, that is the NMA (S,A,O, TΣ , Ω), where
TΣ(s, a, s

′) = T (s, a, s′) ∧ Σ(s′).
We call a path π fullpath if either it is infinite or its last state π(S)(|π|) has

no successors. We denote with Path(s, a) the set of fullpaths starting in state s
with action a, i.e. the set of fullpaths π such that π(S)(0) = s and π(A)(0) = a.
Given a path π inM, we define the measure j(M, G, π) on paths as the distance
of π(S)(0) to the goal on π. That is, if there exists n > 0 s.t. π(S)(n) ∈ G, then
j(M, G, π) = min{n | n > 0 ∧ π(S)(n) ∈ G}. Otherwise, j(M, G, π) = +∞.
We require n > 0 since our systems are nonterminating and each controllable
state (including a goal state) must have a path of positive length to a goal state.
Taking sup∅ = +∞, the worst case distance of a state s from the goal region G
is J(M, G, s) = sup{j(M, G, π) | π ∈ Path(s, a), a ∈ Adm(M, s)}.

Definition 1. An NMA output feedback control problem P is a tuple
(M, I, Σ,G). An LTS control problem is an NMA output feedback control prob-
lem whereM is an LTS and Σ = S, thus it is a triple (M, I, G).
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A strong solution (or simply, a solution) to P is a controller K forMΣ such

that I ⊆ dom(K), and for all s ∈ dom(K), J(M(K)
Σ , G, s) is finite.

An optimal solution to P is a solution K∗ to P such that for all solutions K

to P, for all s ∈ S, we have J(M(K∗)
Σ , G, s) ≤ J(M(K)

Σ , G, s).

The most general optimal (mgo) solution to P is an optimal solution K̃ to P
such that for all other optimal solutions K to P, for all o ∈ O, for all a ∈ A we
have that K(o, a) → K̃(o, a).

Intuitively, a strong solution takes a pessimistic view by requiring that for each
initial state, all runs in the closed loop system reach the goal, no matter nonde-
terminism outcomes.

0, 1−1, 1 1, 1

0, 2−1, 2 1, 2

0, 0−1, 0 1, 0

0 0

0

0 0

0

-1 1 -1 1 -1 1

0 0

0
1-1 1-1 1-1

Fig. 1. Transition relation of NMAs M1

and M2 in Example 1

Fig. 2. Inverted Pendulum with Station-
ary Pivot Point

Example 1. Let S = {−1, 0, 1}×{0, 1, 2},A = {−1, 0, 1}, and T : S×A×S → B
be defined by all arrows in Fig. 1. Let us consider the set of outputs O1 =
{−1, 0, 1}, the output relation Ω1 = {((s1, s2), s1) | (s1, s2) ∈ S}, and the NMA
M1 = (S,A,O1, T,Ω1). Let I = Σ = S and G = {(0, 1)}. The NMA output
feedback control problem P1 = (M1, I, Σ,G) has no solution, because on output
0 it is not possible to determine if the correct action to enable is 0 (as it is in
state (0, 1)), 1 (as it is in state (0, 0)), or −1 (as it is in state (0, 2)).

Let us now consider the set of outputs O2 = {0, 1, 2} and the output relation
Ω2 = {((s1, s2), s2) | (s1, s2) ∈ S}, and the NMA M2 = (S,A,O2, T,Ω2). The
NMA output feedback control problem P2 = (M2, I, Σ,G) has the mgo solution
K(o, a) = ((o = 0)→ (a = 1)) ∧ ((o = 1)→ (a = 0)) ∧ ((o = 2)→ (a = −1)).

4 Discrete Time Linear Hybrid Systems

Discrete Time Linear Hybrid Systems (DTLHSs) provide a uniform framework
to model both the plant and the closed loop system. In this section, we ex-
tend the definition of DTLHSs in [25] by considering outputs in order to model
measurements of system state (as usual in Control Theory [36]).

Definition 2. A Discrete Time Linear Hybrid Systems (DTLHS) H is a tuple
(X, U , Y , N , W , Γ ) such that:
1. X is a finite set of real and discrete present state variables. The set X ′ of

next state variables is obtained by decorating with ′ all variables in X.
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2. U is a finite set of discrete input (controllable) variables.
3. Y is a finite set of discrete output variables.
4. Γ = ΓX ∪ ΓU ∪ ΓY is a typing for all variables. Moreover, ΓX′ = ΓX .
5. N(X,U,X ′) is a bounded linear predicate defining the transition relation of
H.

6. W (X,Y ) is a linear predicate defining the output relation of H. We require
that there is always an output associated to any state, formally: ∀x ∈ ΓX

∃y ∈ ΓY W (x, y). We write W−1(y) the set of states that has output y.
Formally, W−1(y) = {x ∈ ΓX | W (x, y)}.

Observe that ΓU and ΓY are bounded discrete typings for U and Y . This models
the fact that software controllers can only read a finite set of discrete values
and can only choose one among a finite set of actions. For this reason we only
have discrete outputs. Moreover, our DTLHSs also include the model of the AD
conversion (always present in our SBCS setting) via predicate W .

Definition 3. Let H = (X, U , Y , N , W , Γ ) be a DTLHS. The dynamics of H
is defined by the Nondetermistic Moore Automata NMA(H) = (S,A,O, T,Ω),
where: S = ΓX , A = ΓU , O = ΓY , T (s, a, s′) holds if and only if N(s, a, s′)
holds, and Ω(s, o) holds if and only if W (s, o) holds. A state x for H is a state
x for NMA(H) and a run (or path) for H is a run for NMA(H).

Example 2. Let T be a positive constant (time step). We define the DTLHS
H = ([x1, x2], [u], [y1, y2], N, Γ,W ), where Γx1 = [−1, 1], Γx2 = [0, 2], Γu =
Γy1 = {−1, 0, 1}, Γy1 = {0, 1, 2}, and the transition relation N(x1, x2, u, x

′
1, x

′
2)

is defined by ((u = 0) → x′
1 = x1

2 ) ∧ ((u �= 0) → x′
1 = x1) ∧ (x′

2 = x2 + uT ).
Finally, let the output predicateW be the rounding of the continuous variables x1

and x2. Formally,W (x1, x2, y1, y2) is defined by (x1− 1
2 ≤ y1 ≤ x1+

1
2 )∧(x2− 1

2 ≤
y2 ≤ x2 +

1
2 ).

An output feedback control problem for a DTLHSH is the NMA output feedback
control problem induced by the dynamics of H.

Definition 4. Given a DTLHS H = (X, U , Y , N , W , Γ ) and linear predicates
I(X), Σ(X), G(X) the DTLHS output feedback control problem (H, I, Σ,
G) is the NMA output feedback control problem (NMA(H), I, Σ, G). Thus, a
controller K : ΓY × ΓU → B is a solution to (H, I, Σ, G) iff it is a solution to
(NMA(H), I, Σ, G).

Example 3. LetH be the DTLHS in Ex. 2 andX = [x1, x2]. Let I(X) = Σ(X) =
ΓX and G(X) = (− 1

2 ≤ x1 ≤ − 1
2 ) ∧ (− 1

2 ≤ x2 ≤ 1
2 ). The DTLHS output

control problem (H, I, Σ,G) has the solution K(y1, y2, u) = ((y2 = 1) → (u =
0)) ∧ ((y2 = 2)→ (u = −1)) ∧ ((y2 = 0)→ (u = 1)). Observe, that this solution
depends on the output variable y2 only. As a consequence, if we consider the
DTLHS H′ = ([x1, x2], [u], [y2], Γ,W

′) with the output predicate W ′ defined by
W (x1, x2, y1, y2) = (x2 − 1

2 ≤ y2) ∧ (y2 ≤ x2 +
1
2 ) (rounding of the variable x2),

we have that K is a solution also to the control problem (H′, I, Σ,G).
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4.1 A DTLHS Model for the Inverted Pendulum Case Study

In this section, we present the DTLHS model of the inverted pendulum, on
which our experiments focus. The inverted pendulum (see Fig. 2) is a classical,
hard control problem [22] whose DTLHS formulation is far from trivial [2]. The
inverted pendulum is modeled by taking the angle θ and the angular velocity θ̇
as state variables and the torquing force u ·F as the system input. The variable
u models the direction and the constant F models the intensity of the force.
Differently from [22], we consider the problem of finding a discrete controller,
whose decisions can be only “apply the force clockwise” (u = 1), “apply the
force counterclockwise” (u = −1)”, or “do nothing” (u = 0). A linear model
can be found by under- and over-approximating the non linear function sinx
with piecewise linear functions f−

i and f+
i (see [2] for details). The resulting

model is the DTLHS Ib = (X , U , Y , N , W b, Γ ) discretized with b bits, where
X = {x1, x2} is the set of continuous state variables with ΓX = ×2

i=1[cxi , dxi ]
(being cxi , dxi the lower and upper bound constants for variable xi), U = {u}
is the set of input variables with Γu = {−1, 0, 1}, Y = {y1, y2} is the set of
output variables (where y1 is a discretization for x1 and y2 for x2) with Γy1 =
Γy2 = {0, . . . , 2b − 1}, and the transition relation N(X,U,X ′) is the following
linear predicate (m is the pendulum mass, l is the pendulum length, and g is
the gravitational acceleration):

∃Z ∈ ΓZ(x
′
1 = x1 + 2πzq + τx2) ∧ (x′

2 = x2 + τ
g

l
zsin + τ

1

ml2
uF )

∧
∧

i∈[4] zi → f−
i (zα) ≤ zsin ≤ f+

i (zα)

∧
∧

i∈[4] zi → zα ∈ Ii ∧
∑

i∈[4] zi ≥ 1

∧ x1 = 2πzk + zα ∧ −π ≤ x′
1 ≤ π ∧ X ∈ ΓX ∧ U ∈ ΓU

Finally, the output predicate is W b(x1, x2, y1, y2) ≡
∧2

i=1 cxi +
dxi

−cxi

2b yi ≤ xi ≤
cxi +

(
dxi

−cxi

2b
+ 1

)
yi ∧ yi ∈ Γyi .

5 On-the-Fly Control Software Synthesis

Given a DTLHS output control problem P = (H, I, Σ,G), a typical approach to
the automatic synthesis of controllers consists of building a suitable finite state
representation ĤΣ of the plant H, computing an abstraction Î (resp. Ĝ) of the
initial (resp. goal) region I (resp. G) so that any solution to the control problem
(ĤΣ , Î , Ĝ) is a finite representation of a solution to P . For example, this can
be done by giving conditions ensuring that the abstract system satisfies some
equivalence relation with respect to the concrete system (e.g. see [33,1,25]).

To avoid useless computation, our on-the-fly control synthesis algorithm
(Sect. 5.2) simultaneously computes the finite abstraction ĤΣ and the solution
to the control problem (ĤΣ , Î, Ĝ). To make the algorithm description clear, we
first present in Sect. 5.1 the notion of output abstraction that adapts the notion
of control abstraction [25] to the output model considered in this paper.
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5.1 Output Abstraction

In our setting [25], the finite state representation induced by the output relation
of a DTLHS is a design constraint rather than a methodological tool, since it
models the finite precision of sensor measurements.

Definition 5. Let H = (X,U, Y,N,W, Γ ) be a DTLHS and (H, I, Σ,G) be
a DTLHS control problem. The output abstraction of H is the LTS ĤΣ =
(S,A, TΣ) such that S = ΓY , A = ΓU , and for all s, s′ ∈ S, a ∈ A we have
TΣ(y, a, y

′) iff a is an admissible transition in y and there exists x, x′ ∈ ΓX such
that W (x, y) ∧ W (x′, y′) ∧ N(x, a, x′).

The output abstraction could be a highly non-deterministic LTS, thus making
problematic the existence of a strong solution to the output feedback control
problem. In particular, for small values of the sampling time, the output ab-
straction may contain a large number of self-loops: for any output y that is not
in the goal region, a self-loop (y, a, y) of ĤΣ prevents the action a to be enabled
in y in any strong solution to the output control problem. On the other hand,
if by repeatedly performing an action a in an abstract state y, it is guaranteed
that the system will leave the region W−1(y) represented by the output y after
a finite number of steps, a self-loop (y, a, y) of ĤΣ can be eliminated and the
action a can be enabled by a strong controller in the state y.

Definition 6. Let H = (X,U, Y,N,W, Γ ) be a DTLHS, (H, I, Σ,G) be a
DTLHS control problem and let ĤΣ = (S,A, TΣ) be its output abstraction.

A self-loop (y, a, y) of ĤΣ is non-eliminable if there exists at least an infinite
run π = x0ax1ax2 . . . in H such that ∀t ∈ N xt ∈W−1(y). Otherwise, a self-loop
(y, a, y) of ĤΣ is said to be an eliminable self-loop.

We call adequate output abstraction any LTS Ĥ′ � ĤΣ that omits some
eliminable self-loops.

Example 4. Let P = (H, I, Σ,G) be the control problem in Ex. 3. An adequate
output abstraction of H is the automaton considered in Ex. 1. Observe that,
for all z ∈ Γy2 , the self-loops ((0, z), 0, (0, z)) are non-eliminable self-loops. In
fact, N((0, z), 0, (0, z)) holds, and hence there are runs of H which infinitely
cycle on (0, z) with action 0. Thus self-loops ((0, z), 0, (0, z)) belong to the out-
put abstraction and to all adequate output abstractions. On the contrary, the
output abstraction contains, for all (z1, z2) ∈ ΓY , self-loops ((z1, z2), 1, (z1, z2))
and ((z1, z2),−1, (z1, z2)), as well as self-loops ((z1, z2), 0, (z1, z2)) where z1 �= 0.
It is easy to see that all such self-loops are eliminable, thus adequate out-
put abstractions (as the one in Ex. 1) may not contain them. Finally, observe
that, for all z1 ∈ Γy1 , action 1 is not admissible in (z1, 2), since for example
N((z1, 2), 1, (z1, 2+T )) holds and Σ((z1, 2+T )) does not hold. Similarly, for all
z1 ∈ Γy1 , action −1 is not admissible in (z1, 0).

The following theorem [25] states that it is correct to consider output adequate
abstractions when looking for a strong solution to a output feedback DTLHS
control problem.
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Theorem 1. Let H = (X,U, Y,N,W, Γ ) be a DTLHS, let (H, I, Σ,G) be an
output feedback DTLHS control problem, and let ĤΣ be an adequate abstraction
of H. If Î , Ĝ ⊆ ΓY are such that I ⊆ W−1(Î) and G ⊇ W−1(Ĝ), then a strong
solution K̂ to the LTS control problem (ĤΣ , Î , Ĝ) is a strong solution to the
output feedback control problem (H, I, Σ,G).

5.2 On-the-Fly Computation of Output Abstraction

Stemming from Theorem 1, the solution of an output control problem
(H, I, Σ,G) can be found as the solution to the finite LTS control problem
(ĤΣ , Î , Ĝ). In [25], we presented a MILP-based approach to the computation of
the output abstraction ĤΣ . The solution to the finite LTS control problem is
computed by adapting the symbolic algorithm in [14]. Starting from goal states,
the most general optimal controller is found looping backward, adding at each
step to the set of states D controlled so far, the strong preimage of D, i.e. the
set of states for which there exists at least an action a that drives the system to
D, regardless of possible nondeterminism.

In order to determine as soon as possible if a solution to a given output control
problem cannot be found, and actually compute the solution otherwise, Alg. 1
implements an incremental approach to control software synthesis, in the same
spirit of on-the-fly Model Checking [19]. Instead of first fully computing ĤΣ , and
then solving the finite LTS control problem (ĤΣ , Î , Ĝ), function strongCtrInc
incrementally and simultaneously computes the abstraction ĤΣ and the solution
K̂ to the control problem (ĤΣ , Î , Ĝ) in such a way that, at the i-th iteration,
the computed abstraction Ĥi is large enough to correctly determine the set of
states that can be driven to the goal in at most i steps.

Function strongCtrIncr in Alg. 1. uses Ordered Binary Decision Diagrams
(OBDD) to represent sets and relations over sets. In Alg. 1, variable K̂ is the
OBDD representing the computed controller so far, D̂ is the domain of K̂, F̂ ⊆
D̂∪Ĝ is the set of outputs which have been added to D̂ in the last iteration, and
N̂ is the transition relation of ĤΣ computed so far. To save useless computation,
the OBDD Ê stores the set of pairs (y, u) ∈ ΓY × ΓU already considered in the
construction of N̂ .

Function strongCtrIncr first computes a finite underapproximation Ĝ of the
goal region G (line 1), and a finite overapproximation Î of the initial region I
(line 2). Then, in line 3, the controller K̂, the controllable region D̂, the set Ê,
and the transition relation N̂ are initialized to the empty set (i.e. the empty
OBDD) and F̂ is initialized to the set of abstract goal states Ĝ.

After this initialization phase, function strongCtrIncr enters a loop (lines 4–
18) in which, at iteration i, all states which may be strongly controlled in at most
i steps are added to K̂. To this aim, a nested loop (lines 5–15) is performed where,
at each iteration, the algorithm computes the part of the transition relation N̂
that is necessary to find all states that a controller can drive in one step to the
controllable region D̂ computed so far. To this end, for any output y ∈ F̂ and for
any action u, it is computed an overapproximation P̂ of the set of outputs that
can reach y in one step by performing action u (line 6). The overapproximation
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Algorithm 1. Incremental Controller Synthesis

Input: A DTLHS H = (X,U, Y,N,W, Γ ), a control problem (H, I , Σ, G).
function strongCtrInc(H, I , Σ, G)
1. Ĝ ← {y ∈ ΓY |¬∃x ∈ ΓX .W (x, y) ∧ ¬G(x)}
2. Î ← {y ∈ ΓY |∃x ∈ ΓX .W (x, y) ∧ I(x)}
3. K̂ ← ∅; D̂ ← ∅; N̂ ← ∅; F̂ ← Ĝ; Ê ← ∅
4. repeat
5. for all y ∈ F̂ , u ∈ ΓU do
6. P̂ ←overCounterImage(y, u)
7. for all ỹ ∈ P̂ do
8. if (ỹ, u) �∈ Ê then
9. Ê ← Ê ∪ {(ỹ, u)} {mark (ỹ, u) as “examined”}
10. if admissible(Σ, ỹ, u) then
11. if selfLoop(ỹ, u) then N̂ ← N̂ ∪ {(ỹ, u, ỹ)}
12. Ô ← overImg(ỹ, u)
13. for all ỹ′ ∈ Ô do
14. if ỹ �= ỹ′ ∧ existsTrans(ỹ, u, ỹ′) then
15. N̂← N̂ ∪ {(ỹ, u, ỹ′)}
16. Ĉnew←{(y, u) | y �∈ D̂,∃s′ N̂(y, u, y′) ∧ ∀y′ N̂(y, u, y′) ⇒ y′ ∈ D̂ ∪ Ĝ}
17. K̂ ← K̂ ∪ Ĉnew; F̂ ← {y | (y, u) ∈ Ĉnew}; D̂ ← D̂ ∪ F̂
18. until Cnew = ∅
19. if Î ⊆ D̂ then return 〈True, D̂, K̂〉
20. else return 〈False, D̂, K̂〉

P̂ is computed by function overCounterImg which, for each variable yi ∈ Y ,
computes the minimum and maximum value that yi can assume in a satisfying
assignment of N(x, a, x′) ∧ W (x, y) ∧ W (x′, y′) (thus 2|Y | MILP problems are
set up and solved). Since the set Ê contains all the output-action pairs already
considered in the construction of N̂ so far, to avoid the same part of N̂ to be
recomputed, only state-action pairs not in Ê will be considered (line 8).

As prescribed by the definition of adequate output abstraction, a transition
(y, u, y′), with y �= y′, is added to N̂ whenever u is an admissible action in y and
there exist x ∈ W−1(y), x′ ∈ W−1(y′) such that N(x, u, x′) (lines 10–15). As for
self-loops (y, u, y), we want to add them to N̂ only if they are non-eliminable
(line 11). Since self-loop elimination is an undecidable problem [29], we employ
function selfLoop [25] to check a sufficient gradient based condition for self-loop
elimination that in practice turns out to be very effective. Namely, for each
variable xi, selfLoop tries to establish if xi is either always increasing or always
decreasing inside W−1(y) by performing action u. If this is the case, we have
that, beingW−1(y) a compact set, no Zeno-phenomena may arise, thus executing
action u it is guaranteed that ĤΣ will eventually leave the region W−1(y).

Lines 16–17 update the controller K̂ (and its domain D̂) computed so far. The
set F̂ is updated with the set of new controlled states. Finally, the outermost
repeat-until loop (lines 4–18) is performed until no more new controlled states
have been found.
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Theorem 2. Let P = (H, I, Σ,G) be a DTLHS output feedback control problem.
If function strongCtrInc returns 〈True, D̂, K̂〉 then K̂ is a strong solution to P.

Finally, the actual control software (i.e., C code) for the DTLHS is synthesized
by translating K̂ as it is described in [28]. The guaranteed WCET (worst case
execution time) TK̂ of the synthesized control software is also computed.

6 Experimental Results

In this section we present our experiments that aim at evaluating the effective-
ness of our control software synthesis technique. We implemented strongCtrInc
in the C programming language using the CUDD package for OBDD based com-
putations and GLPK for solving MILP problems. The resulting tool, QKS otf ,
extends the tool QKS by adding the possibility of using the on-the-fly approach
described in Alg. 1.

The objective of our experiments is threefold. First, in Sect. 6.1 and 6.2 we
evaluate, on a meaningful case study, the speedup obtained with the on-the-fly
algorithm with respect to the exhaustive method presented in [25] in the context
of design space exploration. Second, in Sect. 6.3 we show how our on-the-fly
algorithm can be used for realizability and schedulability analysis issues [11] for
control software in design space exploration. Finally, in Sect. 6.4 we assess the
quality of our controllers, by evaluating their system level performances, such as
ripple and set-up time.

6.1 Experimental Setting: Design Space Exploration

In our experiments, we consider the inverted pendulum case study introduced in
Sect. 4.1. To this aim, we model the inverted pendulum with the DTLHS Ib =
(X , U , Y , N , W b, Γ ) defined in Sect. 4.1, where the state variables bounds are
fixed as follows: cx1 = −1.1π radiants, dx1 = 1.1π radiants, cx2 = −4 radiants
per second, dx2 = 4 radiants per second. As for pendulum parameters, we set
F = 0.5 N and, as in [22,2,3], we set l and m in such a way that g

l = 1 (i.e. l = g)
and 1

ml2 = 1 (i.e. m = 1
l2 ). Finally, the DTLHS control problem is (Ib, Σ, I,G),

where I(x1, x2) ≡
∧2

i=1 0.9cxi ≤ xi ≤ 0.9dxi, G(x1, x2) ≡
∧2

i=1 0.1 ≤ xi ≤ 0.1,

and Σ(x1, x2) ≡
∧2

i=1 xi ∈ Γxi . That is, the goal is to turn the pendulum nearly
steady to the upright position, starting from nearly any possible initial position
and without going out of the state variables bounds.

Our aim here is to carry out experiments for different values of the number
of quantization bits b and of the sampling time T , i.e., the time between two
samples of the system state in the closed loop system. On the other hand, the
DTLHS Ib approximates the continuous time pendulum dynamics by discretiz-
ing the corresponding differential equations with a time step τ (τ = 0.05 seconds
in our experiments). T is typically greater than τ . If we directly set τ = T in
Ib, we would obtain a not accurate model, since τ depends on physical consid-
erations [36] (such considerations are not our focus here). Building on this, we
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approximate the dynamics of the pendulum with sampling time T by iterating
n =

⌈
T
τ

⌉
times the transition relation N of Ib. Namely, we consider the tran-

sition relation Nn(X,U,X ′) ≡ ∃X̃(0), . . . , X̃(n)
∧n−1

i=0 N(X̃(i), U, X̃(i+1)) ∧ X =

X̃(0) ∧ X ′ = X̃(n), being X̃(0), . . . , X̃(n) sets of variables not occurring in N
(note that Nn is a linear predicate). Namely, Nn(x, u, x

′) holds if, by holding
action u for n transitions of step τ , the systems goes from x to x′. This allows
us to have a sampling time (at least) T , while retaining model accuracy. In the
following, we will use n instead of T , with the understanding that T = nτ . Thus,
the DTLHS reference model for our experiments is Ibn = (X , U , Y , Nn, W

b, Γ ),
and the DTLHS control problem is (Ibn, I, Σ,G).

In order to experimentally show that function strongCtrInc of Alg. 1 effec-
tively supports design space exploration, we will run both QKS otf and QKS on
Ibn for (b, n) ∈ {8, 9, 10}× {10, 8, 6, 4, 2, 1}, and then compare the corresponding
computation times.

6.2 Experimental Results for Design Space Exploration

All experiments have been carried out on an Intel(R) Xeon(R) CPU @ 2.27GHz,
with 23GiB of RAM, Kernel: Linux 2.6.32-5-686-bigmem, distribution Debian
GNU/Linux 6.0.3 (squeeze).

Results of QKS and QKS otf are in Table 1. Columns meaning in Table 1 are
as follows. Columns b and n have the same meaning as in Sect. 6.1. Columns
CPUexh (resp., CPUotf) shows the computation time in seconds of QKS (resp.,

Table 1. Experimental results for pendulum

b n CPUexh RAMexh CPUotf RAMotf |K̂| % Speedup Result

8 10 9.90e+04 1.70e+08 4.58e+02 3.03e+07 1.25e+02 99.54 216.16 FAIL

8 8 4.41e+04 1.68e+08 3.06e+02 3.05e+07 2.06e+02 99.31 144.12 FAIL

8 6 2.28e+04 1.65e+08 2.77e+04 9.12e+07 6.40e+03 -21.49 0.82 PASS

8 4 1.17e+04 1.63e+08 1.47e+04 8.68e+07 7.53e+03 -25.64 0.80 PASS

8 2 4.91e+03 1.63e+08 1.35e+01 2.98e+07 1.63e+02 99.73 363.70 FAIL

8 1 2.69e+03 1.53e+08 4.72e+00 2.98e+07 1.61e+02 99.82 569.92 FAIL

9 10 4.95e+05 2.39e+08 2.70e+03 3.16e+07 1.88e+02 99.45 183.33 FAIL

9 8 2.31e+05 2.31e+08 2.40e+05 2.70e+08 1.08e+04 -3.90 0.96 PASS

9 6 1.20e+05 2.18e+08 1.19e+05 2.71e+08 1.25e+04 0.83 1.01 PASS

9 4 5.66e+04 1.98e+08 5.34e+04 2.50e+08 1.55e+04 5.65 1.06 PASS

9 2 2.18e+04 1.91e+08 2.29e+04 2.43e+08 2.16e+04 -5.05 0.95 PASS

9 1 1.16e+04 1.78e+08 1.97e+01 3.02e+07 2.11e+02 99.83 588.83 FAIL

10 10 3.82e+06 6.08e+08 1.45e+04 3.65e+07 2.87e+02 99.62 263.45 FAIL

10 8 1.71e+06 5.40e+08 6.74e+03 3.83e+07 6.01e+02 99.61 253.71 FAIL

10 6 7.45e+05 4.72e+08 6.67e+05 8.81e+08 2.45e+04 10.47 1.12 PASS

10 4 3.05e+05 4.13e+08 2.77e+05 8.31e+08 2.99e+04 9.18 1.10 PASS

10 2 1.05e+05 3.29e+08 9.96e+04 8.12e+08 4.52e+04 5.14 1.05 PASS

10 1 5.29e+04 2.64e+08 5.09e+04 8.07e+08 6.31e+04 3.78 1.04 PASS

Overall 7.85e+06 6.08e+08 1.60e+06 8.81e+08 79.62 4.91
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QKS otf). Columns RAMexh (resp., RAMotf) shows the RAM memory usage peak
in bytes for QKS (resp., QKS otf). Column |K̂| shows the generated controller
size, i.e. the number of nodes in the OBDD representing K̂. Column Speedup

shows the speedup obtained by using QKS otf instead of QKS, that is CPUexh

CPUotf .
Column % shows the gain (in terms of computation time) obtained by using

QKS otf instead of QKS, that is % = 100(1 − CPUexh−CPUotf

CPUexh ). Column Result

is PASS if a controller for Ibn exist (i.e., if function strongCtrInc returns True),
FAIL otherwise. Finally, the last row in Table 1 shows the sum of all computation
times for QKS and QKS otf , the maximum RAM memory usage peak for QKS
and QKS otf , and the overall computation time gain of QKS otf w.r.t QKS.

From Table 1 we note that, as expected, QKS otf obtain a huge speedup (near
to 100%) for the cases in which a control software is not found, while it requires
approximately the same time of QKS otherwise. This is due to the fact that the
on-the-fly algorithm introduces both an overhead (mainly due to counterimages
computations at line 6 of Alg. 1 and OBDD Ê management) and a speedup
(even when the control software is found, the adequate output abstraction N̂
may be not fully computed). Summing up, our approach obtain an overall gain
of nearly 80% when performing design space exploration, with an acceptable
memory usage overhead. This shows effectiveness of QKS otf for design space
exploration.

6.3 Control Software Realizability and Schedulability

In order to verify if the control software works properly on a given microcon-
troller, two issues must be taken into account: realizability and schedulability.

A control software is realizable on a given microcontroller if the whole control
software fits in the microcontroller flash memory. Since our approach directly
outputs the C code for the control software, it is sufficient to compile the C code
on the given microcontroller architecture, obtain the hex file to be copied on the
microcontroller flash, and check if its size fits in the microcontroller flash.

As for schedulability, we note that the real-time requirement TW ≤ T = nτ
must hold, being TW an upper bound for the control software WCET. Since
our approach also outputs the synthesized control software guaranteed WCET,
we are able to directly check if this requirement is fulfilled. Namely, since 2b
(resp. 2) bits are needed to encode pendulum states (resp. actions), in all our
experiments the WCET is TW ≤ 4bTB, being TB an upper bound for the time
needed to compute an if-then-else C block of a given known structure [28].
More in detail, by directly looking at the assembly code generated for such an
if-then-else C block on a candidate microcontroller (an example is shown in
Fig. 3), and by considering the number of clock cycles needed for each assem-
bly instruction, we obtain the upper bound for the number of microcontroller
clock cycles A needed to compute such a block. Thus, given the microcontroller
frequency F = 1

TC
, we have that TB ≤ ATC .

The schedulability analysis of the control software has to consider that other
processes need to run with given periods together with the controller itself.
Namely, the controller computation (which in this setting is a process with
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period nτ) must be preceded by processes reading quantized values from plant
sensors (one process per plant state variable) and must be followed by a process
sending the computed action to plant actuators. Moreover, other processes may
be needed, e.g. to accept keyboard input for debugging. In the following, we
will assume each of such processes to require at most 100 clock cycles, and to
have a period of 10−3 seconds (which is less than nτ for all n). We consider the
schedulability test for the Rate-Monotonic Scheduling (RMS, see e.g. [11]), that

is
∑k+1

i=1
Ci

Ti
≤ (k + 1)(21/(k+1) − 1), being Ci the WCET and Ti the period for

process i and k the number of processes running together with the controller.
Supposing the controller to be the process with index (k + 1), we have that the
schedulability test is implied by 4bATC

nτ + k 100TC

10−3 < 0.69. Again, being all the re-
quired measures either known or computed by our model-based approach, we are
able to determine beforehand (i.e., without having to actually copy the control
software in the microcontroller and test it) if the control software is schedulable
in the given microcontroller.

Table 2. Experimental results for realizability
and schedulability

b n |K̂hex| Arch WCET α k

8 10 5.00e+03 atmega8 3.20e-04 6.40e-04 27

8 8 7.39e+03 atmega8 2.56e-04 6.40e-04 27

8 6 1.45e+05 atmega16 1.92e-04 6.40e-04 27

8 4 1.74e+05 atmega16 1.28e-04 6.40e-04 27

8 2 4.85e+03 atmega8 6.40e-05 6.40e-04 27

8 1 4.31e+03 atmega8 3.20e-05 6.40e-04 27

9 10 7.66e+03 atmega8 3.60e-04 7.20e-04 27

9 8 2.37e+05 atmega16 2.88e-04 7.20e-04 27

9 6 2.80e+05 atmega16 2.16e-04 7.20e-04 27

9 4 3.37e+05 atmega16 1.44e-04 7.20e-04 27

9 2 9.50e+05 ARM 4.32e-06 4.32e-05 344

9 1 5.98e+03 atmega8 3.60e-05 7.20e-04 27

10 10 1.20e+04 atmega8 4.00e-04 8.00e-04 27

10 8 2.18e+04 atmega8 3.20e-04 8.00e-04 27

10 6 1.06e+06 ARM 1.44e-05 4.80e-05 344

10 4 1.31e+06 ARM 9.60e-06 4.80e-05 344

10 2 1.96e+06 ARM 4.80e-06 4.80e-05 344

10 1 2.63e+06 ARM 2.40e-06 4.80e-05 344

.L398:
ldd r24,Z+10
cpi r24,lo8(1)
brne .L17

.L37:
ld r24,Z
cpi r24,lo8(1)
breq .L17
ldi r24,lo8(0)
ldi r25,hi8(0)
or r18,r19
brne .L38
ldi r24,lo8(1)
ldi r25,hi8(1)

.L38:
movw r18,r24

.L39:
ldd r24,Z+9
rjmp .L440

.L35:
ldi r18,lo8(0)
ldi r19,hi8(0)

Fig. 3. Snapshot of Atmel at-
mega16 assembly control soft-
ware

Our experimental results on control software schedulability and realizability
are shown in Table 2. Columns meaning in Table 2 are as follows. Columns b and
n have the same meaning as in Sect. 6.1. Column |K̂hex| shows the generated
controller size, as the number of bytes to be written in the target microcontroller
flash memory. Column Arch shows the microcontroller having the smallest fit
flash memory for |K̂hex|. We consider the following microcontrollers of the Atmel
family [32]: atmega8 (8K of flash), atmega16 (16K) and at91sam (1MB). For
both atmega8 and atmega16, the clock frequency F is 4MHz (i.e., each clock
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tick needs TC = 250 nanoseconds), and the upper bound of the number of clock
cycles needed to compute the greatest if-then-else C block in the software
implementing K̂ is A = 16. For at91sam, which, being ARM-based, is shown as
ARM in Table 2, F = 50 MHz, TC = 250 nanoseconds and A = 12. Column
WCET shows an upper bound for the control software WCET, i.e., 4bATC .
Column α shows the ratio between the WCET and the period of the controller
process (note that this is part of the schedulability test for RMS), i.e., α = WCET

nτ .
Let β be an upper bound for the ratio between WCET and period for all other
possible processes as computed in our strengthened RMS schedulability test,
i.e., β = 0.69 − α (β ≈ 0.69 in all cases of Table 2). Column k shows a lower
bound for the maximum number of processes which may be run together with the
controller on the given microcontroller, under the hypothesis that each process
requires 100 clock cycles and has a period of 10−3 seconds. Namely, following

again the RMS schedulability test, k = � 10
−3β

100TC
�. Note that k must be at least 3

for the inverted pendulum case study, since 2 processes are required to read the
quantized value plant state from sensors and a third process is needed to send
the computed action to the actuators. Indeed, in all cases we have k ≥ 27.

Summing up, our on-the-fly approach allows us to directly obtain the final
microcontroller implementation, by using a model-based methodology.

6.4 Control Software Performances

For the sake of completeness, though it is not the scope of our paper, we evaluate
performances of the generated control software for different values of b and n.

Namely, we simulate Ibn
(K̂)

, that is the pendulum closed loop system. In order to
show impact of parameter n, in Figs. 4 and 5, we show simulations (on setup time
and ripple) for a fixed value of b (namely, b = 10) and for n ∈ {1, 6}. Finally, in
order to show impact of parameter b, in Figs. 6 and 7, we show simulations (on
setup time and ripple) for a fixed value of n (namely, n = 6) and for b ∈ {8, 10}.
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angle with b = 10, n = 1
angle with b = 10, n = 6

Fig. 4. Pendulum
setup for b = 10,
n ∈ {1, 6} (angle x1

is shown, time is
in seconds)
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Fig. 5. Pendulum
ripple for b = 10,
n ∈ {1, 6} (angle x1

is shown, time is
in seconds)
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Fig. 6. Pendulum
setup for n = 6,
b ∈ {8, 10} (angle
x1 is shown, time is
in seconds)
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Fig. 7. Pendulum
ripple for n = 6,
b ∈ {8, 10} (angle
x1 is shown, time is
in seconds)
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7 Conclusion

In this paper, we address correct-by-construction control software synthesis from
Formal System Level Specifications for Discrete Time Linear Hybrid Systems.
Since in our approach the control software has a WCET known in advance, a
concrete schedulability analysis can be easily carried out. We present an on-the-
fly algorithm for control software synthesis that detects as soon as possible if it
can not find a solution to a given control problem. This property turns out to be
very useful in design space exploration. Looking for an optimal choice of design
parameter, it is typical to try to solve control software synthesis problems that
do not have a solution. As confirmed by our experimental results, our algorithm
effectively supports design space exploration. On the inverted pendulum bench-
mark, using our on-the-fly algorithm we get a time saving of about 80% with
respect to an exhaustive approach.
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1 LRDE, EPITA, Le Kremlin-Bicêtre, France
{badie,adl}@lrde.epita.fr

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbabiak, kretinsky, strejcek}@fi.muni.cz

Abstract. Recently, there was defined a fragment of LTL (containing
fairness properties among other interesting formulae) whose validity over
a given infinite word depends only on an arbitrary suffix of the word. Build-
ing upon an existing translation from LTL to Büchi automata, we intro-
duce a compositional approach where subformulae of this fragment are
translated separately from the rest of an input formula and the produced
automata are composed in a way that the subformulae are checked only
in relevant accepting strongly connected components of the final automa-
ton. Further, we suggest improvements over some procedures commonly
applied to generalized Büchi automata, namely over generalized accep-
tance simplification and over degeneralization. Finally we show how exist-
ing simulation-based reductions can be implemented in a signature-based
framework in a way that improves the determinism of the automaton.

1 Introduction

Linear Temporal Logic (LTL) is a standard formalism for description of temporal
properties of systems. LTL is mainly used as a specification formalism, typically
in the context of model checking or control synthesis. Algorithms taking an LTL
formula as input usually translate the formula (or its negation) to an equivalent
Büchi automaton (BA) and subsequently work with that automaton.

Since the publication of the first algorithm translating LTL to Büchi au-
tomata [18], 30 years ago, dozens of papers presenting different translation al-
gorithms and their optimizations have been published [e.g., 3, 11, 2, 12, 15, 10].
The quality of automata produced by current translators is much higher than
before: automata are substantially smaller and are more often deterministic. In
spite of this, we present several ideas to further improve the produced automata.

First, we introduce a compositional approach to suspension (or simply com-
positional suspension). It elaborates on the notion of suspension introduced re-
cently [1]. The idea is based on the observation that validity of many interesting
formulae (including fairness formulae) over an infinite word depends only on an
arbitrary suffix of the word. We say that these formulae are suspendable. The
original suspension technique, implemented in LTL3BA [1], was closely bound
to the translation of LTL to BA of Gastin and Oddoux [11]. The compositional

E. Bartocci and C.R. Ramakrishnan (Eds.): SPIN 2013, LNCS 7976, pp. 81–98, 2013.
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suspension technique presented in this paper is more effective and more general
as it can work on top of an arbitrary translation using generalized Büchi au-
tomata (GBAs) or transition-based generalized Büchi automata (TGBAs) as an
intermediate (or a target) formalism. Note that nearly all LTL to BA translation
algorithms use either a GBA or a TGBA in some form. (A notable exception
is the translation of Fritz [10].) We present our techniques using the TGBA for-
malism as it encompasses GBAs, and it has been used by translators such as
LTL2BA [11], Spot [6, 5], and LTL3BA [1] with a great success.

We also improve some post-processings used in LTL translators:

SCC-based simplifications of acceptance conditions reduce the number
of acceptance sets in a TGBA by studying the relation between accep-
tance sets in each accepting strongly connected component (SCC) separately.
The implementation of this technique requires careful fine-tuning, as it may
greatly affect final Büchi automata produced by the next two procedures.

Transition-based simulation reductions We show how to implement direct
and reverse simulation reductions of TGBAs in a signature-based framework,
and show how to adjust these to improve determinism as a side-effect.

SCC-based degeneralization We suggest some improvements to the stan-
dard transformation of a TGBA into an equivalent BA.

The rest of the paper is organized as follows. The next section recalls the defi-
nition of LTL and several kinds of automata. Section 3 introduces the composi-
tional suspension technique. Section 4 successively describes the other improve-
ments. Experimental results are presented in Section 5.

2 Preliminaries

Let AP be a finite set of (atomic) propositions, and let B = {ff, tt} represent
Boolean values. An assignment is a function � : AP → B that valuates each
proposition. BAP is the set of all assignments of AP . X∗ (resp. Xω) denotes the
set of finite (resp. infinite) sequences over a setX . In a sequence π = π1π2π3 . . . ∈
Xω, πi denotes the ith element and πi.. = πiπi+1πi+2 . . .. A word w ∈ (BAP )ω is
an infinite sequence of assignments. For � ∈ BAP , let �|AP ′ denote the restriction
of � to AP ′ ⊆ AP ; we extend this notation to words (w|AP ′) as well.

2.1 Linear Temporal Logic (LTL)

We define LTL with ϕ ::= tt | ff | a | ā |ϕ ∧ ϕ |ϕ ∨ ϕ |Xϕ |Fϕ |Gϕ |ϕ U ϕ |ϕRϕ
where a ∈ AP and ā denotes negation of a. We omit ∧ in conjunctions of
atomic propositions (e.g., ab̄ ≡ a∧ b̄). We allow negation only in front of atomic
propositions as it is well known that any LTL formula can be rewritten into this
form. The validity of a formula ϕ over a word w ∈ (BAP )ω , written w |= ϕ, is
defined by a structural induction on ϕ in the standard way. For example:

w |= a iff w1(a) = tt;
w |= ϕ U ψ iff ∃i ≥ 1, (wi.. |= ψ and ∀j ∈ {1, . . . , i− 1}, wj.. |= ϕ).

We say that ϕ holds at position i of w iff wi.. |= ϕ.
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2.2 Automata

A labeled transition system (LTS) is a tuple S = 〈AP , Q, q0, δ〉 where AP is a
finite set of atomic propositions, Q is a finite set of states, q0 ∈ Q is the initial
state, δ ⊆ Q × BAP × Q is the transition relation, labeling each transition by
an assignment. As an implementation optimization, and to simplify illustrations,
it is practical to use edges labeled by Boolean formulae to group transitions
with same sources and destinations: for instance two transitions (s1, ab̄, s2) and
(s1, ab, s2) will be represented by an edge from s1 to s2 and labeled by the
Boolean formula a. We use the terms transition and edge to distinguish between
these two representations.

An infinite sequence π = (s1, �1, d1)(s2, �2, d2) . . . ∈ δω is a run of S if s1 = q0
and ∀i ≥ 1, di = si+1. Run(S) denotes the set of all runs of S. Let InfQ(π)
(resp. Infδ(π)) denote the set of states (resp. transitions) that appear infinitely
often in π, and let Labels(π) = �1�2 . . . ∈ (BAP )ω be the word evaluated by π.

A Büchi automaton is a pair B = 〈S, F 〉 where S = 〈AP , Q, q0, δ〉 is an
LTS and F ⊆ Q is a set of accepting states. Let Acc(B) = {π ∈ Run(S) |
InfQ(π) ∩ F �= ∅} denote the accepting runs of B. The language of B is the set
of words evaluated by accepting runs: L (B) = {Labels(π) | π ∈ Acc(B)}.

A Transition-based Generalized Büchi automaton (TGBA) is a pair T = 〈S, F 〉
where S = 〈AP , Q, q0, δ〉 is an LTS and F ⊆ 2δ is a set of acceptance sets of
transitions. Let Acc(T ) = {π ∈ Run(S) | ∀Z ∈ F, Infδ(π) ∩ Z �= ∅} denote
the accepting runs of B, i.e., runs of S whose transitions visit each acceptance set
infinitely often. The language of T is the set of words evaluated by accepting runs:
L (T ) = {Labels(π) | π ∈ Acc(T )}. On figures, membership of transitions to
acceptance sets is indicated using one colored marker ( , , , . . . ) per set.

A Büchi automaton B = 〈S, FB〉 can easily be converted into a TGBA T =
〈S, FT 〉 such that L (B) = L (T ) by setting FT = {{(s, �, d) ∈ δ | s ∈ FB}}.
A similar view can be used to interpret state-based generalized Büchi automata
(which we do not define) as TGBAs. Although we describe our improvements on
TGBAs, they adapt easily to these classes of Büchi automata with such views.

The reverse operation, degeneralizing a TGBA with multiple acceptance sets
into a Büchi automaton, is discussed in Sec. 4.3.

A promise automaton is again a pair P = 〈S, F 〉 where F ⊆ 2δ is a set
of promise sets of transitions. The runs accepted by a promise automaton are
those which have no suffix that stays continuously in any promise set: Acc(P) =
{π ∈ Run(S) | ∀Z ∈ F, ∀i ≥ 1, πi.. �∈ Zω}. As expected, the language of P is
L (P) = {Labels(π) | π ∈ Acc(P)}.

Because a run that does not visit infinitely often a set of transitions Z will
have a suffix that stays continuously in the set δ � Z, T = 〈S, FT 〉 can be
converted into a promise automaton P = 〈S, FP 〉 such that L (T ) = L (P) by
complementing the acceptance sets: FP = {δ�Z | Z ∈ FT }. The converse holds
as well. The name of promise automaton comes from an interpretation of the
elements of FP = {Z1, . . . , Zn} as promises: a transition in the set Zi can be
seen as making the promise Zi. A promise Zi is fulfilled by a run that does not
stay in Zi continuously, and a run is accepting if it fulfills all promises.
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A strongly connected component (SCC) C ⊆ Q is a non-empty set of states
such that any ordered pair of states of C can be connected by a sequence of
transitions. Let Cδ = {(s, �, d) ∈ δ | s ∈ C, d ∈ C} denote the set of transitions
induced by C. An SCC C is said to be accepting if: C ∩ F �= ∅ on a Büchi
automaton, ∀Z ∈ F, Cδ ∩Z �= ∅ on a TGBA, ∀Z ∈ F, Cδ ∩Z �= Cδ on a promise
automaton. With these definitions, any accepting run π is necessarily ultimately
contained by some accepting SCC C, i.e., Infδ(π) ⊆ Cδ.

3 Compositional Approach to Suspension

3.1 Suspendable Formulae

A suspendable formula, originally called alternating formula [1]1, has at least
one F and at least one G operator on each branch of its syntax tree. The formal
definition is given by the following abstract syntax equations, where ϕ ranges
over general LTL formulae. Besides suspendable formulae ξ, these equations also
define pure eventuality formulae μ and pure universality formulae ν introduced
by Etessami and Holzmann [8].

μ ::= Fϕ | μ ∨ μ | μ ∧ μ | Xμ | ϕ U μ | μRμ | Gμ
ν ::= Gϕ | ν ∨ ν | ν ∧ ν | Xν | ν U ν | ϕR ν | Fν
ξ ::= Gμ | Fν | ξ ∨ ξ | ξ ∧ ξ | Xξ | ϕ U ξ | ϕR ξ | Fξ | Gξ

The class of suspendable formulae contains many specification patterns fre-
quently used in practical applications of LTL like model checking. For example,
unconditional fairness GFϕ, weak fairness FGϕ → GFρ (≡ GF(ϕ → ρ)), strong
fairness GFϕ→ GFρ, and their negation can be easily transformed into suspend-
able formulae (our definition of LTL does not allow →).

The following lemma states that a suspendable formula either holds at each
position of a word or at none of them.

Lemma 1 ([1]). Let ξ be a suspendable formula. For all u ∈ (BAP )∗, w ∈
(BAP )ω, we have uw |= ξ ⇐⇒ w |= ξ.

Consequently, every suspendable formula ξ satisfies ξ ≡ Xξ. This property pro-
vides a theoretical base for the suspension technique [1] that was used to improve
the translation of Gastin and Oddoux [11]. This translation uses a very weak al-
ternating automaton (VWAA) and a TGBA as intermediate formalisms. States
of the VWAA are identified with subformulae of the input formula. States of
the TGBA are sets of VWAA states. Transitions leaving from a TGBA state M
are computed as combinations of transitions leaving from the VWAA states in
M . If M contains a suspendable subformula ξ, the corresponding VWAA state
can be temporarily suspended: during the computation step, ξ is treated as Xξ
and hence it has only one transition leading back to ξ. As a result, the num-
ber of transition combinations is reduced and a smaller automaton is produced.

1 We change the terminology here as the original name seems to be ambiguous.
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Fig. 1. (a) Skeleton TGBA for ((a U b)R c) ∧ ξ. (b) Suspendable TGBA for ξ = FGd
(equipped with suspending arcs). (c) Composition of the previous two automata. (d)
Traditional translation of ((a U b)R c) ∧ FGd.

For correctness, ξ should not be suspended forever during any accepting run of
the TGBA, we therefore enable suspension only in TGBA states that are not on
any accepting cycle. Because the detection of such a cycle is complicated as the
TGBA is only under construction, a heuristic was used to detect some of the
TGBA states not lying on any accepting cycle [1].

3.2 Translation with Compositional Suspension

We now present a new version of the suspension technique that has two ad-
vantages over the original one: it can be combined with all LTL translation
algorithms producing a TGBA or GBA and it is more effective as it uses a more
precise detection of TGBA states not lying on any accepting cycle.

To explain the general idea, consider an LTL formulae of the form ϕ∧ξ where ξ
is a suspendable formula. If Tϕ and Tξ are TGBAs for ϕ and ξ, we can construct an
automaton for ϕ ∧ ξ by composing Tϕ and Tξ using a synchronous product. How-
ever, ξ is suspendable, so by Lemma 1 we can suspend its verification by any finite
prefix. In our composition we could delay the verification of ξ until Tϕ has entered
an accepting SCC. This remark calls for the implementation of a new synchronous
product, that synchronizes Tξ only in the accepting SCCs of Tϕ.

One way to describe this product is to introduce a new atomic proposition
[ξ] and its negation [ξ] to mark where the two automata should be synchronized.
Figure 1(a) shows a TGBA for ϕ = (aUb)R c equipped with these new properties
and ready to be composed: transitions induced by accepting SCCs {1} and {3}
carry the additional label [ξ], while all other transitions have [ξ]. We call such
an automaton a skeleton automaton for ϕ ∧ ξ because it indicates the places



86 T. Babiak et al.

where the suspended ξ should be composed. Figure 1(b) shows a TGBA Tξ
for ξ = FGd also equipped with the same labels: transitions from the original
translation of ξ carry the [ξ] label, and additional “suspending transitions” (the
dotted arcs) have been added to reset the automaton to its initial state when Tξ
leaves an accepting SCC (and thus suspend checking ξ by another step). We call
this a suspendable automaton for ξ. The synchronous product of both automata
can then be stripped of all occurrences of the auxiliary proposition [ξ] and its
negation, and [ξ] is removed from its set of atomic propositions. The resulting
Fig. 1(c), should be compared to the automaton of Fig 1(d) that we would get
by a traditional translation. The superfluous acceptance set we obtain can be
easily removed, as explained in Sec. 4.1.

We now focus on constructing a skeleton automaton for an arbitrary formula
ϕ that contains suspendable subformulae (not necessarily at the top level). We
first replace every maximal suspendable subformula ξ of ϕ by the subformula
G[ξ] with fresh auxiliary propositions [ξ]. The resulting formula, denoted ϕ′ is
translated into a TGBA Tϕ′ . This automaton can directly be used as a skeleton
for ϕ: whenever G[ξ] holds at some positions of a word accepted by this automa-
ton, the product with a suspendable TGBA for ξ will check the validity of ξ on
this word. Note that we do not say that validity of ξ will be checked exactly at
the positions where G[ξ] holds. Indeed, this is not needed as ξ is a suspendable
formula and thus it either holds at each position of a word or at none of them.

Even if Tϕ′ is a correct skeleton for ϕ, it is not what we typically use in
the synchronous product with a suspendable TGBA for ξ. To avoid checking ξ
whenever possible, we want to reduce the set of words w′ accepted by the skeleton
and such that G[ξ] holds at some positions of w′. We use two reductions:

– We replace [ξ] with [ξ] on transitions that are not induced by any accepting
SCC. (This is what we did in Fig 1(a).) The reduction is correct as for every
word w′ accepted by the original skeleton, there is a word w′′ accepted by the
reduced skeleton such that w′|AP = w′′|AP and G[ξ] holds at some positions
of w′ if and only if it holds at some position of w′′. The last equivalence
holds because we do not change transition labels in accepting SCCs.

– We remove transitions labeled with [ξ] from the skeleton if they are not
needed, i.e. there are analogous transitions that differ only in validity of [ξ].
Formally, we remove each transition (s, �, d) such that �([ξ]) = tt if there
exists a transition (s, �′, d) where �′|AP = �|AP , �

′([ξ]) = ff, and the two
transitions belong to the same acceptance sets. This reduction is correct as
for each w′ accepted before this reduction and such that G[ξ] holds at some
position of w′, there is another word w′′ accepted by the reduced skeleton
and satisfying w′|AP = w′′|AP . (Note that either G[ξ] holds at some positions
of w′′ too and then the product with suspendable automaton for ξ checks
validity of ξ on w′|AP anyway, or G[ξ] does not hold at any positions of w′′

and w′|AP satisfies ϕ regardless validity of ξ.)

We call susp(ϕ) the function that transforms ϕ into ϕ′,
make suspendable(T , [ξ]) the function that transforms a TGBA T for



Compositional Approach to Suspension and Other Improvements 87

01 2

tt tt
ab

ab̄

āb
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Fig. 2. (a) TGBA for (GF(a) ∧ GF(b)) ∨ GF(c), with three acceptance sets denoted by
, , and . (b) Same automaton after SCC-based acceptance simplification.

a suspendable subformula ξ into a suspendable automaton for ξ, and
reduce skel(T , {ξ1, ..., ξn}) the function that reduces a skeleton automaton
for a set of suspendable subformulae. They will be used in Fig. 6.

4 Other Improvements

4.1 SCC-Based Simplifications of Acceptance Conditions

While simplifying the acceptance sets of an automaton does not immediately
change the size of the underlying LTS, it can lead to smaller automata as it eases
the job of simulation-based reductions (Sec. 4.2) and degeneralization (Sec. 4.3).

Let T = 〈S, F 〉 be a TGBA with n acceptance sets: F = {Z1, Z2, . . . , Zn}.
Let {A1, . . . , Am} denote the set of all accepting SCCs of T and let Aδ = A1δ ∪
. . . ∪ Amδ be the set of all transitions induced by these accepting SCCs.

Because any accepting run will ultimately be contained in some accepting
SCC, any transition outside of Aδ can be removed from the acceptance sets
without changing the language. A typical simplification is therefore to restrict
all Zi to Aδ: we have L (〈S, F 〉) = L (〈S, {Z1 ∩Aδ, . . . , Zn ∩ Aδ}〉).

If there exists i �= j such that Zi ⊆ Zj , then any run that visits Zi infinitely
often will necessarily visit Zj infinitely often. In other words, Zj can be removed
from F without changing the language: L (〈S, F 〉) = L (〈S, F � {Zj}〉).

If we define U = {Zj ∈ F | ∃Zi ∈ F, (Zi � Zj) ∨ (Zi = Zj ∧ j > i)} to be the
set of useless acceptance sets, we have L (〈S, F 〉) = L (〈S, F � U〉). Note that
the definition of U carefully keeps one copy when two sets are equal. We view
this simplification as the standard way to diminish the number of acceptance
sets in an automaton [16]. For instance after restricting the acceptance sets of
Fig. 1c to the accepting SCCs {15}δ ∪ {35}δ, one of or can be removed
(not both).

Detecting inclusion between acceptance sets at the automaton level fails to
simplify the TGBA from Fig. 2(a): in this automaton there is no inclusion be-
tween acceptance sets. However, by considering such inclusions in each accepting
SCC, we can notice that is useless in SCC A1 = {1} (because includes either
or ), while and are both useless in SCC A2 = {2}. We can therefore

reorganize the acceptance sets of the automaton to use only two acceptance sets:
Fig. 2(b) shows one possibility.
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More formally, for an accepting SCC Ak, let Uk = {j ∈ {1, . . . , n} | ∃i ∈
{1, . . . , n}, (Zi ∩Akδ � Zj ∩Akδ)∨ (Zi ∩Akδ = Zj ∩Akδ ∧ j > i)} be the set of
indices of useless acceptance sets in the sub-automaton induced by Ak, and let
Nk = {1, . . . , n}� Uk be the set of needed acceptance sets. Because acceptance
sets are defined for the whole automaton, we may not use a different number
of acceptance sets for each SCC: n′ = maxk∈{1,...,n} |Nk| acceptance sets are
required to hold all needed acceptance sets. Let N ′

k be a copy of Nk in which we
have added n′−|Nk| items from Uk. Then for each accepting SCC Ak, |N ′

k| = n′

and let αk : {1, . . . , n′} → N ′
k be any bijection. We can define the new acceptance

sets F ′ = {Z ′
1, . . . , Z

′
n′} as:

Z ′
i =

⋃
k∈{1,...,m}

(Zαk(i) ∩Akδ) (1)

Then we have L (〈S, F 〉) = L (〈S, F ′〉). In the example of Fig. 2(a), with A1 =
{1} and A2 = {2}, let us assume that , , and respectively denote the
acceptance sets Z1, Z2, and Z3. We have U1 = {3}, N1 = {1, 2}, U2 = {1, 2},
N2 = {3}, n′ = 2, and we define N ′

1 = N1, N
′
2 = N2 ∪ {1}, α1(1) = 1, α1(2) = 2,

α2(1) = 1, α2(2) = 3 to get the TGBA of Fig. 2(b).
Note that there is a lot of freedom in the definition of the bijective function

αk for each accepting SCC. In our implementation we make sure αk is mono-
tonic so that the order of the acceptance sets are preserved: we have found that
this usually helps the degeneralization algorithm that is run afterwards. Further-
more, in accepting SCCs that require less than n′ acceptance sets, the n′− |Nk|
extra sets that are added could be defined in many different ways: instead of
reusing some of the useless acceptance sets, we could duplicate some of the
needed ones (making αk : {1, . . . , n′} → Nk a surjection), or adding all transi-
tions of Akδ into the extra sets (at the price of more complex definitions). Our
attempts at implementing these alternative definitions had a negative effect on
the simulation-based reductions described in the next section.

Note that Somenzi and Bloem [16, Theorem 4] proposed another SCC-based ac-
ceptance simplification, that simplifies Fig. 2(a) differently. If we have Zi∩Akδ ⊆
Zj ∩Akδ for some i, j, k, they remove the transitions Akδ�Zi from Zj . While this
reduces the size of Zi, it does not yet change the number of acceptance sets. On
Fig. 2(a), this would remove the bottom right loop from the sets and , after
which it would be possible to detect that includes all sets, and remove it.

4.2 Transition-Based Simulation Reductions

Spot has an implementation of simulation-based reductions described by
Somenzi and Bloem [16], but adapted to work on promise automata (easily
converted to and from TGBAs, see Sec. 2.2) instead of BAs. Intuitively, direct
simulation can merge states or remove transitions based on the inclusion of the
sets of infinite runs starting from these states, while reverse simulation is based
on the inclusion between sets of (finite or infinite) runs leading to these states.

Our implementation is a signature-based implementation of Moore’s classic
partition refinement algorithm: initially all states belong to the same class, and
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the partition is iteratively refined until fixpoint. Depending on the definition
of the signature, we compute a bisimulation or simulation relation, direct or
reverse.

Direct Bisimulation:We first explain how to perform a signature-based, direct
bisimulation of a promise automaton 〈S, F 〉, using a setup inspired fromWimmer
et al. [17]. The signature sigi(q) of a state q is a Boolean function that describes
the outgoing transitions of q, their membership to acceptance sets, and the class
of their destination at iteration i.

If the acceptance sets are F = {Z1, . . . , Zn}, and the partition of Q at iter-
ation i is P i = {Ci

1, . . . , C
i
m}, we use Boolean variables Ẑk and Ĉk to denote

membership to the sets Zk and Ci
k, and we define sigi(s) as:

sigi(q) =
∨

(s,�,d)∈δ
q=s

� ∧Acc(s, �, d) ∧ Classi(d);

where Acc(s, �, d) =
∧

Zk∈F
(s,�,d)∈Zk

Ẑk and Classi(d) = Ĉk ⇐⇒ d ∈ Ci
k.

With this encoding, two states that have the same outgoing transitions (same
labels, membership to acceptance sets, and destination class) will have the same
signature. Also if a state q has two outgoing transitions t1 = (q, a, d1) and
t2 = (q, a, d2) such that t1 ∈ Z1 is in a promise set but t2 �∈ Z1 we have
sigi(q) = a∧ ((Ẑ1 ∧Classi(d1))∨Classi(d2)). If the two classes are the same, the
signature simplifies to sigi(q) = a ∧ Classi(d2), as if t1 had been merged into t2.
This simplification, correct on promise automata, would be incorrect on TGBAs.

To compute a direct bisimulation relation we start with the partition P 0 =
{Q} that considers all states as equivalent, and then split the partition according
to the signatures of the states: P i+1 = {{s ∈ Q | sigi(s) ≡ sigi(q)} | q ∈ Q}.
Once a fixpoint has been reached (i.e., P j = P j+1 for some j), the partition
provides the set of states that are (direct) bisimilar and can therefore be merged.
It should be noted that the signature associated to each class can also be used
to reconstruct the quotient automaton. By extension, let sigi−1(C) denote the
signature common to all states of the class C ∈ P i.

Direct Simulation: To perform the (direct) simulation of a promise automaton,
we alter sig to include all the classes implied by the destination class:

sigi(q) =
∨

(s,�,d)∈δ
q=s

� ∧ Acc(s, �, d) ∧ Impliedi(d) where Impliedi(d) =
∧

Ci
k∈P i

sigi−1(d)→sigi−1(Ci
k)

Ĉk

We fix Implied0(q) = Ĉ1 for all q ∈ Q initially, as there is only one class. Then
partition refinement can be iterated until both P k = P k+1 and Impliedk =
Impliedk+1. The implication sigi−1(d) → sigi−1(Ci

k) can be tested easily since
signatures are encoded as BDDs.

Figure 3 illustrates this reduction on an example. Although all states start
in the same class, computing sig0 is enough to separate all states into four



90 T. Babiak et al.

0 1

2 3

a

a a

b

a
b tt

(a)
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Fig. 3. (a) A promise automaton to simplify. (b) The result of direct simulation reduc-
tion. (c) Detailed steps for the signature-based direct simulation.

classes. The refinement stops at iteration i = 2 because Class2 = Class1 and
Implied2 = Implied1. The signatures computed at the last iteration can be used
to reconstruct the automaton. Especially, the edge (0, a, 1) in the original au-
tomaton is dominated by edge (0, a, 2) in the computation of sig2(0) (intuitively,
the suffixes accepted via (0, a, 1) are included in those accepted via (0, a, 2)), so
only the latter edge appears in the resulting signature and in the final automaton.

An additional trick can be used to improve the determinism of the constructed
automaton. Because sig2(2) = bĈ3Ĉ4 ∨ aĈ4 is equivalent to ābĈ3Ĉ4 ∨ aĈ4, the
self-loop to state 2 (represented by Ĉ3Ĉ4 in the signature) can be labeled by
āb instead of just b. In practice, for each state q we iterate over all assignments
f ∈ BAP , and compute the possible destinations by rewriting sigi(q) ∧ f as an
irredundant sum of products.

Reverse Simulation: A reverse simulation can be built and used similarly by
computing a signature using the incoming transitions:

sigi(q) = Init(q)∨
∨

(s,�,d)∈δ
q=d

�∧Acc(s, �, d)∧Impliedi(d) with Init(q) =

{
Î if q = q0;

ff else.

Because the reverse simulation has to distinguish finite prefixes from infinite
prefixes we use an extra Boolean variable Î to distinguish the initial state.

In practice we alternate direct and reverse simulations until the automaton is
no longer reduced. Most of the time only one iteration is needed (meaning that
we do the second iteration just to discover that the produced automaton has the
same size). As an optimization, we abort this loop when the automaton produced
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Fig. 4. Three equivalent TGBAs. (a) is obtained from (b) with the acceptance simplifi-
cations of Sec. 4.1. (c) is obtained from (b) using the simulation reductions of Sec. 4.2,
however the latter reductions are unable to reduce (a) into (c).

by the direct simulation is deterministic: the reverse simulation cannot improve
a deterministic automaton since all prefixes leading to a state are unique.

Other simulations have been suggested, such as fair or delayed simulation [9],
both relaxing the handling of acceptance conditions, and these have also been
extended to (state-based) generalized Büchi automata [13]. All of these are pre-
sented in a game-theoretic framework that is not straightforward to implement,
especially in the generalized Streett game version required for generalized Büchi
automata. Conversely, our implementation of direct and reverse simulation easily
deals with TGBAs (when first converted as promise automata), augments the
determinism as a side-effect, and was simple to implement because it uses the
same BDD framework that Spot is already using for the LTL translation.

Although the operations described in Section 4.1 simplify the SCC-based ac-
ceptance conditions of a TGBA, there are situations where it worsens the results
of the simulation-based reductions. A typical example is given by Fig. 4.

Since Couvreur’s translation can produce automata with a configuration sim-
ilar to Fig. 4(b), we use an alternative acceptance simplification that preserves
the acceptance of all transitions entering an accepting SCC. This corresponds
to replacing Akδ by {(s, �, d) ∈ δ | d ∈ Ak} in equation (1). In our tests, this is
always favorable to the simulation.

Unfortunately, the situation depicted by Fig. 4(a) also occurs in the output
of some translations, even before acceptance simplification. This is even more
frequent with the compositional approach to suspension presented in Sec. 3.

4.3 SCC-Based Degeneralization

While any Büchi automaton can be converted into a TGBA without altering the
underlying LTS (see Sec. 2.2), the reverse is not generally true.

A TGBA T = 〈S, F 〉 with S = 〈AP , Q, q0, δ〉 and F = {Z1, . . . , Zn} can be
degeneralized into a BA B = 〈S ′, F ′〉 with S ′ = 〈AP , Q′, q′0, δ

′〉 as follows [11, 12]:
– Q′ = Q× {0, . . . , n}, i.e., the original automaton is cloned in n+ 1 levels,
– F ′ = Q× {n}, i.e., states from the last level are accepting,
– δ′ = {((s, j), �, (d, Lj((s, �, d)))) | (s, �, d) ∈ δ, j ∈ {0, . . . , n}} where

Lj(t) =

⎧⎪⎨⎪⎩
0 if j = n;

j + 1 if t ∈ Zj+1;

j otherwise.
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1

2

3 4

(a)

1,0 1,1

1,2

2,0 2,1

3,0 4,0 3,1 4,1

3,2

(b)

Fig. 5. Example of degeneralization of the TGBA (a) with F = { , } taken in this
order. Transition labels are omitted for clarity. The automaton (b) with the dashed part
is obtained by the classical degeneralization (with jumping of levels). Our redefinition
replaces the dashed part by the dotted transition.

i.e., for each level j < n the outgoing transitions that belong to Zj+1 are
redirected to the next level and all outgoing transitions from the last level
are redirected to the first one.

– q′0 = q0 × {0}, i.e., the initial state is on the first level (any level works).

This leveled setup guarantees that any accepting path in B correspond to an
infinite path that sees all acceptance conditions infinitely often in T . If T [q]
denotes the automaton T in which the initial state has been changed to q, we
have L (T [q]) = L (B[(q, j)]) for all states q ∈ Q and all levels j ∈ {0, . . . , n}.

The classical optimization is to “jump levels”, i.e., when a transition from level
j < n belongs to acceptance sets Zj+1, Zj+2, and Zj+3, it can be redirected to
the level j + 3. This corresponds to the following redefinition of Lj:

Lj(t) =

{
max{k ∈ {j, . . . , n} | t ∈ Zj+1 ∩ . . . ∩ Zk} if j < n;

max{k ∈ {0, . . . , n} | t ∈ Z1 ∩ . . . ∩ Zk} if j = n.

Of course only the reachable part of B is constructed, so it is not frequent to
construct the maximum number of (n+1)× |Q| states. Fig. 5 applies the above
definition to an example. The transition from (3, 0) to (3, 2) jumps level 1.

This construction offers several degrees of freedom: for instance there are n!
possible orderings of the acceptance sets, and n+1 possible levels for the initial
state. Giannakopoulou and Lerda [12] perform two degeneralizations starting
respectively at level 0 and n, then they keep the best. We are not aware on any
work on the selection of a suitable ordering. Empirical evidence shows that the
order in which these sets are created during translation is often favorable to the
degeneralization (the reverse order, at least, is catastrophic), this is why Sec. 4.1
defines α in a way that preserves the ordering.
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Staying away from these combinatorial possibilities, we suggest two ideas to
improve degeneralization procedures: level reset and level caching. Both require
knowledge of the set {A1, . . . , Am} of accepting SCCs of T .
Level Reset: Since non-accepting SCCs of T do not contain accepting cycles
(by definition), they do not need to be cloned on different levels. Therefore all
transitions that are not induced by any accepting SCC, are directed to level 0.

Level Caching: Consider a transition (s, �, d) that enters an accepting SCC
(∃i, s �∈ Ai ∧ d ∈ Ai): as with the initial state, the level associated to d can be
set to any arbitrary value. If a copy of d already exists on some level, we should
start on that level to avoid creating a new one. This optimization is of course
affected by the order chosen to construct the degeneralized automaton (we do a
simple DFS but there could be room for improvement).

These two optimizations can be implemented with Lj((s, �, d)) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
max{k ∈ {j, . . . , n} | (s, �, d) ∈ Zj+1 ∩ . . . ∩ Zk} if j < n ∧ ∃i, (s, d) ∈ A2

i ;

max{k ∈ {0, . . . , n} | (s, �, d) ∈ Z1 ∩ . . . ∩ Zk} if j = n ∧ ∃i, (s, d) ∈ A2
i ;

0 if �i, d ∈ Ai;

x if ∃i, s �∈ Ai ∧ d ∈ Ai.

Where x is any level such that the state (d, x) already exists, or 0 otherwise.
On the example of Fig. 5, the level reset alone is enough to replace transition

((1, 1), �, (2, 1)) by transition ((1, 1), �, (2, 0)), therefore avoiding state (2, 1) and
all its descendants. Using level caching without level reset, and assuming the
descendants of (2, 0) have been built before those of (2, 1), then state (2, 1)
would be connected to states (3, 0) and (4, 0) instead of states (3, 1) and (4, 1).
It is hard to find a small example to illustrate that both optimizations are useful
together: the smallest such occurrence in our benchmarks has 20 states.

5 Experimental Results

5.1 Translation Scenarios

All of the above improvements are implemented in Spot 1.12 on top of Cou-
vreur’s LTL to BA translation algorithm [2] (denoted by Cou99(ϕ) in the sequel
although it has been regularly improved over the past years [5]). Besides the
techniques discussed in this paper, Spot implements the WDBA-minimization
algorithm of Dax et al. [4] that converts any TGBA representing an obligation
property [14] into a minimal Weak Deterministic Büchi Automaton. The corre-
sponding function WDBA minimize(T , ϕ) requires the formula ϕ represented by
automaton T to check the validity of the minimized automaton.

There are cases where the deterministic BA produced byWDBA-minimization
is bigger than the nondeterministic automaton obtained via simulation and

2 http://spot.lip6.fr/. After download and installation, see the man pages of
ltl2tgba(1) and spot-x(7) for the options to enable the algorithms discussed here,
and see also bench/spin13/README.

http://spot.lip6.fr/
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“small size” scenario “determinism” scenario
co
m
p
o
si
ti
o
n

ϕ′, {ξ1, ..., ξn} ← susp(ϕ) ϕ′, {ξ1, ..., ξn} ← susp(ϕ)
T ← Cou99(ϕ′) T ′ ← Cou99(ϕ′)

T ← WDBA minimize(T ′, ϕ′)
if T could not be built:

(S) T ← iter simulations(T ) (S) T ← iter simulations(T ′)
T ← reduce skel(T , {ξ1, ..., ξn}) T ← reduce skel(T , {ξ1, ..., ξn})
for ξ ∈ {ξ1, ..., ξn} do: for ξ ∈ {ξ1, ..., ξn} do:

Tξ ← Cou99(ξ) Tξ ← Cou99(ξ)
(S) Tξ ← iter simulations(Tξ) (S) Tξ ← iter simulations(Tξ)

Tξ ← make suspendable(Tξ, [ξ]) Tξ ← make suspendable(Tξ, [ξ])
T ← product(T , Tξ) T ← product(T , Tξ)

p
o
st
-p
ro
ce
ss
in
g
s

T ← prune dead SCCs(T ) T ← prune dead SCCs(T )
(A) T ← acc simplify(T ) (A) T ← acc simplify(T )

T1 ← WDBA minimize(T , ϕ) T1 ← WDBA minimize(T , ϕ)
(S) T ← iter simulations(T ) if T1 could be built:
(D) T ← degeneralize(T ) return T1

(B) T ← iter simulations(T ) (S) T ← iter simulations(T )
if T1 could be built: (D) T ← degeneralize(T )
return smallest(T , T1) (B) T ← iter simulations(T )

return T return T

Fig. 6. Two translation scenarios that use compositional suspension (denoted “Comp”
in the sequel) to produce a BA. Automata are stored as TGBAs even when they
represent BAs. The scenarios without compositional suspension (denoted as “Cou99”)
arise by replacing all the composition lines by T ← Cou99(ϕ). To produce a TGBA
instead of a BA, we omit lines (D) and (B).

degeneralization. In the context of model checking, it is not clear when a deter-
ministic automaton should be favored over a small one. For instance, Sebastiani
and Tonetta [15] have shown that their larger and more deterministic automata
yield smaller synchronized products with a model than the smaller automata
produced by Gastin and Oddoux [11]. Spot implements two translation scenar-
ios: the “small size” scenario tries to reduces the size of the automaton, while the
“determinism” scenario tries to reduces the number of nondeterministic states.
According to our experience with Spot, automata produced by our “small size”
scenario tends to give smaller synchronized products.

Fig. 6 shows how the different techniques we have presented are chained in
these two scenarios. The function prune dead SCCs is a classical optimization
that removes states that may not reach an accepting SCC. susp, reduce skel,
make suspendable correspond to operations defined in Sec. 3.2. We will use keys
(S),(A),(D),(B) to denote lines that are enabled or disabled in our experiments.
For acceptance simplification (A) and degeneralization (D), we write (a) and
(d) to indicate that old definitions are used. For instance “Cou99 (a)” means
that Spot’s implementation of Couvreur’s translation was used to translate the
formulae, and that the only post-processings performed were prune dead SCCs,
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Table 1. Results for selected combinations of the presented techniques. Numbers are
accumulated over all translated formulae. Smaller numbers are better everywhere. Keys
A/a,S,D/d,B indicate when the corresponding lines of Fig. 6 have been enabled a/d
respectively denote the original acceptance simplification and degeneralization while
A/D apply the definitions from this paper. Compositional suspension is only enabled
on “Comp” lines.

“small size” scenario “determinism” scenario
|Q| |δ| |F | ns nA time |Q| |δ| |F | ns nA time

k
n
o
w
n
.
l
t
l
:
1
8
4
fo
rm

u
la
e

T
G
B
A 1 Cou99 (a) 672 10921 198 113 49 7.09 676 10805 198 105 45 7.13

2 Cou99 (A) 672 10921 195 113 49 7.24 676 10805 195 105 45 7.38
3 Cou99 (AS) 636 9848 195 88 50 7.50 641 9958 195 82 45 7.34
4 Comp (AS) 636 9838 195 85 50 7.63 644 9968 195 79 45 7.53

B
A

5 Cou99 (ad) 717 11653 184 124 49 6.93 721 11537 184 116 45 6.84
6 Cou99 (Ad) 717 11653 184 124 49 6.94 721 11537 184 116 45 6.97
7 Cou99 (ASd) 678 10511 184 97 50 7.28 683 10621 184 91 45 7.02
8 Cou99 (ASD) 675 10463 184 97 50 7.35 680 10573 184 91 45 7.08
9 Cou99 (ASDB) 673 10362 184 95 49 7.50 678 10472 184 89 44 7.14
10 Comp (ASDB) 673 10352 184 92 49 7.56 687 10530 184 86 44 7.32

w
e
a
k
3
.
l
t
l
:
1
0
0
fo
rm

u
la
e

T
G
B
A 1 Cou99 (a) 749 116312 361 324 92 6.81 749 116312 361 324 92 6.83

2 Cou99 (A) 743 115104 357 319 90 8.89 743 115104 357 319 90 8.94
3 Cou99 (AS) 618 84603 355 237 86 10.42 618 84603 355 237 86 10.36
4 Comp (AS) 617 83875 355 225 87 7.51 647 90771 355 195 69 7.84

B
A

5 Cou99 (ad) 2030 299376 100 776 92 7.75 2030 299376 100 776 92 7.76
6 Cou99 (Ad) 2018 296904 100 765 90 8.50 2018 296904 100 765 90 8.55
7 Cou99 (ASd) 1700 212984 100 549 86 10.04 1700 212984 100 549 86 9.92
8 Cou99 (ASD) 1565 193157 100 493 86 9.99 1565 193157 100 493 86 9.90
9 Cou99 (ASDB) 1525 188873 100 435 86 11.32 1525 188873 100 435 86 11.41
10 Comp (ASDB) 1530 188939 100 424 87 8.48 1588 201611 100 387 69 8.51

s
t
r
o
n
g
2
.
l
t
l
:
1
0
0
fo
rm

u
la
e

T
G
B
A

1 Cou99 (a) 6237 3524004 261 4633 100 82.32 6237 3524004 261 4633 100 82.65
2 Cou99 (A) 6183 3485348 257 4583 100 151.17 6183 3485348 257 4583 100 151.49
3 Cou99 (AS) 1900 508972 255 879 100 178.43 1900 508972 255 879 100 178.68
4 Comp (AS) 1731 434812 255 703 100 50.41 1801 464412 255 675 100 46.80

B
A

5 Cou99 (ad) 8207 3928868 100 5379 100 114.24 8207 3928868 100 5379 100 114.38
6 Cou99 (Ad) 8083 3876308 100 5290 100 151.76 8083 3876308 100 5290 100 151.57
7 Cou99 (ASd) 3488 782324 100 1368 100 178.83 3488 782324 100 1368 100 178.73
8 Cou99 (ASD) 3330 745280 100 1292 100 177.44 3330 745280 100 1292 100 178.14
9 Cou99 (ASDB) 3259 727416 100 1211 100 181.43 3259 727416 100 1211 100 182.34
10 Comp (ASDB) 3091 668768 100 1039 100 53.92 3201 713152 100 991 100 49.98
11 ltl3ba 5389 2473408 100 5041 100 2.38 8660 2281988 100 4515 100 4.77
12 ltl3ba susp. 5298 2458372 100 4950 100 2.38 5418 1424964 100 2409 100 2.56

the old version of acc simplify, and WDBA-minimization when applicable;
especially, no simulation-based reduction or degeneralization was performed.

We note that suspendable formulae are not obligation properties, so the
presence of a suspendable subformulae prevents the application of WDBA-
minimization except in pathological cases.

5.2 Experiments

Table 1 presents results of selected combinations of the presented techniques
applied according to the two scenarios to three different sets of formulae.3 For
each configuration, scenario, and set of formulae we show the cumulative size

3 More measures and details at http://www.lrde.epita.fr/~adl/spin13/.

http://www.lrde.epita.fr/~adl/spin13/
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of the automata produced for formulae in the set, namely numbers of states,
transitions, acceptance sets, nondeterministic states (ns.), and nondeterministic
automata (nd.). We also provide total translation time. Grey rectangles mark
the best results: smallest automata for the “small size” scenario and automata
with the least nondeterminism for the “determinism” scenario.

known.ltl contains 92 formulae and their negation, collected from the litera-
ture [7, 16, 8]. 122 of these 184 formulae describe obligation properties, for which
WDBA minimization computes a minimal deterministic automaton during the
post-processing. Only 14 formulae of the set require more than one acceptance
set for the translation. The potential for improvement on this set is very thin.

weak3.ltl contains 100 formulae combined with a weak fairness hypothesis.
Formulae have the form ϕi∧GFa∧GFb∧GFc where ϕi is a random LTL formula
with a syntax tree of 15..20 nodes, using up to 6 atomic propositions. The fairness
hypothesis GFa ∧ GFb ∧ GFc is a single suspendable subformula which can be
translated to a one-state deterministic TGBA.

strong2.ltl contains 100 formulae combined with a strong fairness hypoth-
esis. Formulae have the form ϕi ∧ (GFa → GFb)∧ (GFc → GFd) where ϕi are the
same as in the previous set.

For each formula set, the table can be read vertically to see the incremental
effect of improvements presented in Sec. 4 on translations “Cou99”. The differ-
ence between lines 1 and 2 shows that our acceptance simplification improvement
is rather small: situations such as the one depicted by Fig. 2 are rare. Apply-
ing simulations to move from line 2 to 3 shows a much greater improvement,
both in term of states and determinism. Analogous conclusions can be made by
comparing lines 5, 6, and 7 where the original degeneralization is additionally
applied to get BAs. The effect of the new degeneralization (line 8) defined in
Sec. 4.3 is very limited on known.ltl because most BAs come directly out of
the WDBA minimization function. It is much clearer in the other two sets of
formulae. Application of a final simulation on the BA (line 9) saves a few more
states.

The table also includes a compositional suspension with all other improve-
ments (line 10). Its results on known.ltl are not very relevant as only 18 formu-
lae of this set contain at least some suspendable subformula. The results are more
interesting on the other two sets. As suspendable subformula GFa ∧ GFb ∧ GFc
of each formula in weak3.ltl translates only to a one-state TGBA, one cannot
expect improvements in automata size. The improvement here comes from the
fact that the one-state TGBA is deterministic and the compositional approach
allows to apply WDBA minimization to skeletons (note that it cannot be applied
to the full formulae as fairness breaks obligation property). In many cases, we
get a deterministic skeleton and composition with a deterministic TGBA results
into a deterministic TGBA. To sum up, compositional suspension used in “de-
terministic” scenario produces substantially more deterministic automata (both
TGBAs and BAs) than any other translation. The situation regarding automata
size is different for strong2.ltl as (GFa → GFb) ∧ (GFc → GFd) is a suspend-
able formulae that translates into a nondeterministic TGBA with 5 states. As the
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suspended TGBA is relatively big, compositional suspension brings a nice reduc-
tion of automata size and also an interesting speedup (again, for both TGBAs
and BAs).

The table finally presents the results of ltl3ba [1] on strong2.ltl. ltl3ba
improves ltl2ba [11] in several ways including the original suspension technique
(see Sec. 3.1) and application of direct simulation on the final BA (but not
before). We run ltl3ba with options -S -A to enable the direct simulation
and disable the suspension and with option -S to enable both. Moreover, in
the “deterministic” scenario we add the option -M leading to more deterministic
automata. The lines 11 and 12 illustrate the gain that could be expected from
the on-the-fly suspension [1] implemented in ltl3ba. It can be compared to the
gain of compositional suspension from Sec. 3: the reduction between lines 11
and 12 should be compared to the reduction between lines 9 and 10.

6 Conclusion

We have presented four techniques to improve LTL-to-Büchi translators.
The compositional suspension improves the translations of suspendable subfor-

mulae (such as fairness constraints) and is especially effective in the case where
the suspendable subformulae are expressed with automata of more than one state:
in that case we avoid synchronizing the suspendable subformulae in non-accepting
SCCs of the resulting automaton. The technique can accommodate any translator,
by replacing the suspendable subformulae by fresh atomic propositions.

The other three contributions are improvements to the post-processings per-
formed on the translated automaton. The SCC-based acceptance simplifications is
an improvement over the transitional acceptance simplifications used in GBA. Its
effect is limited as the forms of automata it attempts to simplify are not frequent in
our benchmarks. Our simulation-based reductions build upon the existing direct
and reverse simulations, but have been adapted to generalized acceptance sets, and
implemented in a way that can be used to improve the determinism of the reduced
automaton. Finally, we have shown that the degeneralization procedure could also
benefit from the knowledge of the accepting SCCs.

In our experiments, we managed to reduce automata by a few states even on
set of simple formulae (known.ltl) where years of developments have left only
a little room for improvement. The bigger reduction were clearly achieved on
formulae using strong fairness hypotheses (strong2.ltl).

Along the way, we pointed a couple of opportunities for further improvements.
For instance in the degeneralization, and as far as we know, nobody has ever
studied the selection of a suitable ordering (maybe SCC-based), or the selec-
tion of the best initial level. Our simulation currently suffers from the fact that
Fig. 4(a) cannot be reduced to Fig. 4(c). Since suspendable subformulae are
best translated separately, maybe we could consider other class of subformulae
to translate separately (e.g., obligation properties are appealing since we already
know how to construct a minimal WDBA from them).

Acknowledgments. T. Babiak, M. Křet́ınský, and J. Strejček have been sup-
ported by The Czech Science Foundation, grant No. P202/12/G061.
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Abstract. Regression verification techniques are used to prove equiva-
lence of closely related program versions. Existing regression verification
techniques leverage the similarities between program versions to help im-
prove analysis scalability by using abstraction and decomposition tech-
niques. These techniques are sound but not complete. In this work, we
propose an alternative technique to improve scalability of regression ver-
ification that leverages change impact information to partition program
execution behaviors. Program behaviors in each version are partitioned
into (a) behaviors impacted by the changes and (b) behaviors not im-
pacted (unimpacted) by the changes. Our approach uses a combination of
static analysis and symbolic execution to generate summaries of program
behaviors impacted by the differences. We show in this work that check-
ing equivalence of behaviors in two program versions reduces to checking
equivalence of just the impacted behaviors. We prove that our approach
is both sound and complete for sequential programs, with respect to the
depth bound of symbolic execution; furthermore, our approach can be
used with existing approaches to better leverage the similarities between
program versions and improve analysis scalability. We evaluate our tech-
nique on a set of sequential C artifacts and present preliminary results.

1 Introduction

Various reduction, abstraction, and compositional techniques have been devel-
oped to help scale software verification techniques to industrial-sized systems.
Although such techniques have greatly increased the size and complexity of sys-
tems that can be checked, analysis of large software systems remains costly.
Regression analysis techniques, e.g., regression testing [16], regression model
checking [22], and regression verification [19], restrict the scope of the analy-
sis by leveraging the differences between program versions. These techniques are
based on the idea that if code is checked early in development, then subsequent
versions can be checked against a prior (checked) version, leveraging the results
of the previous analysis to reduce analysis cost of the current version.

Regression verification addresses the problem of proving equivalence of closely
related program versions [19]. These techniques compare two programs with a
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large degree of syntactic similarity to prove that portions of one program version
are equivalent to the other. Regression verification can be used for guaranteeing
backward compatibility, and for showing behavioral equivalence in programs
with syntactic differences, e.g., when a program is refactored to improve its
performance, maintainability, or readability.

Existing regression verification techniques leverage similarities between pro-
gram versions by using abstraction and decomposition techniques to improve
scalability of the analysis [10,12,19]. The abstraction- and decomposition-based
techniques, e.g., summaries of unchanged code [12] or semantically equivalent
methods [19], compute an over-approximation of the program behaviors. The
equivalence checking results of these techniques are sound but not complete—
they may characterize programs as not functionally equivalent when, in fact,
they are equivalent.

In this work we describe a novel approach that leverages the impact of the
differences between two programs for scaling regression verification. We partition
program behaviors of each version into (a) behaviors impacted by the changes
and (b) behaviors not impacted (unimpacted) by the changes. Only the impacted
program behaviors are used during equivalence checking. We then prove that
checking equivalence of the impacted program behaviors is equivalent to check-
ing equivalence of all program behaviors for a given depth bound. In this work we
use symbolic execution to generate the program behaviors and leverage control-
and data-dependence information to facilitate the partitioning of program be-
haviors. The impacted program behaviors are termed as impact summaries. The
dependence analyses that facilitate the generation of the impact summaries, we
believe, could be used in conjunction with other abstraction and decomposition
based approaches, [10,12], as a complementary reduction technique. An evalua-
tion of our regression verification technique shows that our approach is capable of
leveraging similarities between program versions to reduce the size of the queries
and the time required to check for logical equivalence.

The main contributions of this work are:

– A regression verification technique to generate impact summaries that can be
checked for functional equivalence using an off-the-shelf decision procedure.

– A proof that our approach is sound and complete with respect to the depth
bound of symbolic execution.

– An implementation of our technique using the LLVM compiler infrastructure,
the klee Symbolic Virtual Machine [4], and a variety of Satisfiability Modulo
Theory (SMT) solvers, e.g., STP [7] and Z3 [6].

– An empirical evaluation on a set of C artifacts which shows that the use of
impact summaries can reduce the cost of regression verification.

2 Motivation and Background

2.1 Checking Functional Equivalence

In this work, we focus on functional equivalence [12]. Two programs, P0 and P1,
are functionally equivalent iff for all possible input values to the programs, they
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1: int func(unsigned int val) {

2: if((val & 0x03) == 0) { //divisible by 4

3: val = val + 4; // change to val = val + 2;

4: return mod2(val)

5: } else return 0;

6: }

7: int mod2(unsigned int x) {

8: return ((x & 0x01) == 0); // divisible by 2

9: }

Fig. 1. Program behavior is unchanged when the constant value in line 3 is even

both produce the same output, i.e., they return the same value and result in the
same global state. In general, proving functional equivalence is undecidable, so
we prove functional equivalence with respect to a user-specified depth-bound for
loops and recursive functions. Note that this notion of equivalence is similar to
the k-equivalence defined in [19].

Equivalence checking techniques that use uninterpreted functions as a mech-
anism for abstraction and decomposition [10,12,19] produce sound but not com-
plete results. The example in Figure 1 demonstrates how the use of uninterpreted
functions can lead to false negatives. The input to methods func and mod2 is an
unsigned integer. If the input to func, val , is divisible by four, then in version
V0 of func, four is added to val and method mod2 is invoked with the updated
variable, val . Next, mod2 returns true if its input, x, is divisible by two; other-
wise it returns false. Suppose, a change is made to line 3 in V1 of fun and two is
added to val in lieu of four. Both versions of func are functionally equivalent,
i.e., for all possible inputs to func, the output is the same in both versions.

Symdiff is a technique which uses uninterpreted functions during equivalence
checking [10]. It modularly checks equivalence of each pair of procedures in
two versions of the program. To check the equivalence of the func method, it
replaces the call to mod2 at line 4 with an uninterpreted function. The inputs to
the uninterpreted function are parameters and global values read by the method.
In V0 of func the uninterpreted function for the call to mod2 is f mod2 (val +
4) while in V1 it is f mod2 (val + 2). The procedures are then transformed to
a single logical formula whose validity is checked using verification condition
generation. Symdiff will report V0 and V1 of func as not equivalent due to
the different input values to the uninterpreted function: f mod2. The use of
uninterpreted functions results in an over-approximation because equality logic
with uninterpreted functions (EUF) relies on functional congruence (consistency)
—a conservative approach to judging functional equivalence which assumes that
instances of the same function return the same value if given equal arguments [9].
Other equivalence checking techniques that rely on uninterpreted functions will
report similar false negatives.

2.2 Symbolic Execution

Symbolic execution uses symbolic values in lieu of concrete values for program
inputs and builds a path condition for each execution path it explores. A path
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1: int a, b;
2: void test(int x, int y){
3: if(x > 0) a = a+ 1; else a = a+ 2; //change x <= 0
4: if(y > 0) b = b+ 1; else b = b+ 2;
5: }

Fig. 2. An example where equivalence cannot be naively checked using DiSE

condition contains (a) a conjunction of constraints over the symbolic input values
and constants such that they represent the semantics of the statements executed
on a given path p and (b) the conjunction of constraints that represent the effects
of executing p—the return value and the final global state. The disjunction of all
the path conditions generated during symbolic execution is a symbolic summary
of the program behaviors. Version V0 of the test method in Figure 2 has two
integer inputs x and y whose values determine the updates made to the global
variables a and b. There are four path conditions for V0 generated by symbolic
execution:

1. x > 0 ∧ y > 0 ∧ a0 = a+ 1 ∧ b0 = b+ 1
2. ¬(x > 0) ∧ y > 0 ∧ a1 = a+ 2 ∧ b0 = b + 1
3. x > 0 ∧ ¬(y > 0) ∧ a0 = a+ 1 ∧ b1 = b + 2
4. ¬(x > 0) ∧ ¬(y > 0) ∧ a1 = a+ 2 ∧ b1 = b+ 2.

Each path condition has constraints on the inputs x and y that lead to the
update of global variables a and b. The variables a0, a1, b0, and b1 are temporary
variables that represent the final assignments to global variables a and b.

2.3 Change Impact Analysis

The DiSE framework, in our previous work, implements a symbolic execution
based change impact analysis for a given software maintenance task [13,17]. DiSE
uses the results of static change impact analyses to direct symbolic execution
toward the parts of the code that may be impacted by the changes. The output
of DiSE is a set of impacted path conditions, i.e., path conditions along program
locations impacted by differences in programs.

The inputs to DiSE are two program versions and a target client analysis.
DiSE first computes a syntactic diff of the program versions to identify locations
in the source code that are modified. Then DiSE uses program slicing-based tech-
niques to detect impacted program locations, i.e., locations that have control-
and data-dependencies on the modified program locations. The set of impacted
program locations is used to direct symbolic execution to explore execution paths
containing impacted locations. In the parts of the program composed of loca-
tions not impacted by the change, DiSE explores a subset of the feasible paths
through that section.

The dependence analyses and pruning within the DiSE framework are config-
urable based on the needs of the client analysis. To illustrate how DiSE computes
path conditions for generating test inputs to cover impacted branch statements,
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consider the example in Figure 2. Suppose a change is made to line 3 where
the condition x > 0 in V0 of test is changed to x <= 0 in V1. Due to this
change, the conditional statement and assignments to global variable a on line 3
are marked as impacted in both versions. The goal of the symbolic execution in
DiSE is to generate path conditions that cover both true and false branches of
the conditional branch statement, x <= 0, and explore any one of the branches
of the conditional branch statement, y > 0. The path conditions for program
version, V0, that may be generated by DiSE are:

1. x > 0 ∧ y > 0 ∧ a0 = a+ 1 ∧ b0 = b+ 1
2. ¬(x > 0) ∧ y > 0 ∧ a1 = a+ 2 ∧ b0 = b + 1;

Here both branches of the x ≤ 0 are explored while the true branch of the y > 0
is explored. Similarly the path conditions for version V1 that may be generated
by DiSE are:

1. x ≤ 0 ∧ ¬(y > 0) ∧ a0 = a+ 1 ∧ b1 = b + 2
2. ¬(x ≤ 0) ∧ ¬(y > 0) ∧ a1 = a+ 2 ∧ b1 = b+ 2.

In version, V1 both branches of x ≤ 0 are still explored but the false branch of the
y > 0 is explored. Note this is because DiSE does not enforce a specific branch
to be explored for an unimpacted conditional statement. These path conditions
can be solved to generate test inputs that drive execution along the paths that
contain impacted locations.

The path conditions generated for regression testing, related to impacted
branch coverage, in the DiSE framework under-approximate the program be-
haviors. The constraints on the variable y in the path conditions generated by
DiSE, shown above, can be different in V0 from those generated in V1—the path
conditions represent different under-approximations of the program behaviors.
This under-approximation does not allow the path conditions to be used for
equivalence checking. Furthermore the dependence analysis is also tailored to
suit the needs of the client analyses. The client analyses that are currently sup-
ported in DiSE are related to regression testing (test inputs to satisfy different
coverage criteria) and improving DARWIN based delta debugging.

In this work we add support for performing equivalence checking within the
DiSE framework. For this we define a set of static change impact rules that
allow us to precisely characterize the program statements as impacted or unim-
pacted such that checking equivalence of behaviors of two programs reduces to
the problem of checking equivalence of the behaviors encoded by the impacted
statements.

3 Regression Verification Using Impact Summaries

An overview of our regression verification technique is shown in Figure 3. Steps
1–3 in Figure 3 represent a static change impact analysis that is performed on
V0 and V1. The change impact analysis marks the program statements that are
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Fig. 3. Overview of regression verification using impact summaries

impacted by the differences between V0 and V1. The outputs from Step 3 are
the program behavior summaries (full summaries) for program versions V0 and
V1. Each symbolic summary consists of the path conditions representing the
program execution behaviors.

In order to facilitate the characterization of the program behaviors as im-
pacted or unimpacted, we first define a mechanism to distinguish between dif-
ferent behaviors encoded within a given path condition. For the example shown
in Figure 2 each path condition encodes two program behaviors; the first pro-
gram behavior is related to the input variable x and global variable a; while the
second program behavior is related to the input variable y and global variable
b. We can make this distinction because the operations on variables x and a are
completely disjoint from the operations on variables y and b. The constraints
on x and a represent one set of program behaviors for the example in Figure 2
while the constraints on y and b represent another set of behaviors. Based on
this distinction a path condition can contain num behaviors such that the set of
constraints encoding each behavior are completely disjoint from the constraints
encoding the other behaviors.

In this work, we partition the constraints in each path condition generated
by the change impact analysis as either impacted or unimpacted. An impacted
(unimpacted) constraint Ii (Ui) is a constraint that is added to the path condition
as a result of executing an impacted (unimpacted) program statement during
symbolic execution. The conjunction of the impacted constraints, Ii, in a path
condition represents impacted program behaviors, while the conjunction of the
unimpacted constraints, Ui in a path condition, represents unimpacted program
behaviors.

Definition 1. A full summary is a disjunction of the impacted constraints Ii
and the unimpacted constraints Ui for a program with n paths: sum =

∨n
i=1(Ii ∧

Ui).

For example, the full summary for V0 containing n paths is given by sum0 =∨n
i=1(I

0
i ∧U0

i ). The full summaries are post-processed in Step 4, as shown in Fig-
ure 3 to remove the unimpacted constraints and generate impact summaries.
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Table 1. Control and data dependence rules for computing impacted statements

(1) if Si ∈ I and Sj is control dependent on Si then I ∪ {Sj}
(2) if Si ∈ I and Sj uses (reads) the value of a variable defined (written) at Si

then I ∪ {Sj}
(3) if Si ∈ I an Si is control dependent on Sj then I ∪ {Sj}
(4) if Si ∈ I and Sj defines (writes) a variable whose value is used (read) at Si

then I ∪ {Sj}

Definition 2. An impact summary consists of a disjunction of the impacted
constraints Ii for a program with n paths: isum =

∨n
i=1(Ii).

The resulting impact summaries are then checked for functional equivalence [12]
in Step 5, by using an off-the-shelf SMT solver, e.g., STP [7] or Z3 [6] to check
for logical equivalence. In Section 4 we prove that the full summaries for two
programs are functionally equivalent iff their impact summaries are functionally
equivalent. Formally, we demonstrate that for a program V0 with n paths and a
program V1 with m paths, Formula 1 is a tautology.

[(

n∨
i=1

I0i )↔ (

m∨
i=1

I1i )]↔ [

n∨
i=1

(I0i ∧ U0
i )↔

m∨
i=1

(I1i ∧ U1
i )] (1)

3.1 Computing Impacted Program Statements and Behaviors

In this section we present the set of rules that are necessary to conservatively
compute, for sequential programs, the set of program statements that may be
impacted by added or deleted program statements. We then briefly discuss how
the set of impacted statements can be used to compute impacted program be-
haviors. The static analysis in this work uses standard control- and data-flow
analysis to compute the set of impacted statements. The rules for the forward
and backward flow analysis are shown in Table 1. Given the conservative nature
of the analysis, it may mark certain unimpacted statements as impacted. The
analysis, however, is guaranteed to find all impacted statements. We present a
high-level description of how the rules are applied in the steps below:

Step 1. A source-level syntactic diff is performed to generate the change sets for
the related program versions V0 and V1. The change set for V0 is C0. It contains
the set of statements in V0 that are removed in V1. The change set for V1 is C1

which contains statements in V1 that are added with respect to V0. Note that
all edited statements can be treated as removed in one version and added in
another.

Step 2. The impact set for program version V0 is initialized with statements in
the change set of V0: I0 := C0.

Step 3. To account for forward control- and data-flow dependence, rules (1) and
(2) in Table 1 are iteratively applied to I0 until they reach a fixpoint.
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Step 4. The impact set for program version V1 is initialized to the change set
of V1: I1 := C1.

Step 5. For all statements in the impact set of V0, ∀Si ∈ I0, if there exists
a corresponding statement S′

i ∈ V1 such that Si ∼ S′
i—then it is added to the

impact set of V1, I1 := I1∪{S′
i}. This step is performed to account for the impact

of the statements removed in V0.

Step 6. To compute the impact of the changes using forward control- and data-
flow dependences, rules (1) and (2) in Table 1 are iteratively applied to I1 until a
fixpoint is reached. Rule (3) is applied once to I1 to account for backward control-
flow dependence. Finally, Rule (4) is applied to I1 transitively to compute the
reaching definitions.

Step 7. Statements from the impact set of V1 are mapped to the impact set of
V0: ∀Si ∈ I1, if there exists a corresponding statement in S′

i ∈ V0, Si ∼ S′
i—then

it is added to the impact set of V0, I0 := I0 ∪ {S′
i}. This step accounts for the

impact of statements added to V1.
The constraints generated by symbolic execution at impacted program state-

ments on path i are added to the impact summary, Ii while the unimpacted
constraints are added to Ui. We can check functional equivalence of two pro-
grams using their impact summaries.

The static analysis rules presented in this section compute the set of im-
pacted program statements within a method, i.e., the analysis is intraprocedu-
ral. In [17] we present an interprocedural change impact analysis. The algorithm
in [17] statically computes the impacted program statements (impact set) for
all the methods disregarding the flow of impact through different method in-
vocations. During symbolic execution these impact sets are then dynamically
refined based on the calling context, propagating the impact of changes between
methods through method arguments, global variables and method return values.
Due to space limitations we present only the intraprocedural version of the im-
pact analysis in this paper. Our empirical evaluation of regression verification,
however, is performed using the interprocedural version of the algorithm. Next
we present an example to illustrate how impact summaries are computed for an
interprocedural program.

3.2 Example

Figure 4 shows two versions of the C function Init Data that invoke the same
function Set Struct (shown in Figure 4 (c)). Note that even though the analysis
is performed on the single static assignment form of the program, to enable better
readability we describe it in terms of the source. The Init Data function first
initializes two arrays, Data0 and Data1, and the pointer to a data structure,
StructA. Then, if the value of capacity is greater than the constant length
defined for arrays Data0 or Data1, the function returns zero; otherwise, it returns
one. V1 is a refactored version of V0. In V1, a single value specifies the length of
both arrays, Data0 and Data1. The refactoring also moves the initialization of
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1: #define Len0 512
2: #define Len1 512
3: int Data0 [Len0 ], Data1 [Len1 ];
4: struct A∗ StructA;
5: int Init Data(int capacity)
6: for(int i = 0; i < capacity∧i < Len0 ; i++)

7: Data0 [i] = 0;
8: for(int i = 0; i < capacity∧i < Len1 ; i++)

9: Data1 [i] = 0;
10: StructA = Set Struct(StructA)
11: if(capacity > Len0 )
12: return 0;
13: if(capacity > Len1 )
14: return 0;
15: return 1;

(a) V0

1: #define Len0 512
2: int Data0 [Len0 ], Data1 [Len0 ];
3: struct A∗ StructA;
4: int Init Data(int capacity)
5: for(int i = 0; i < capacity∧i < Len0 ; i++)

6: Data0 [i] = 0;
7: Data1 [i] = 0;
8: StructA = Set Struct(StructA)
9: if(capacity > Len0 )
10: return 0;
11: return 1;

(b) V1

1: struct A ∗ Set Struct(struct A ∗ st)
2: if(st == NULL)
3: return newStructA();
4: else
5: return ClearContents(st);

(c) the Set Struct function

Fig. 4. Two related versions of Init Data that are functionally equivalent

Data1 into the upper for loop. The two versions of Init Data in Figure 4 are
functionally equivalent; given same value of capacity, both implementations
produce the same output, i.e., return the same value, and Data0, Data1, and
StructA will point to the same initialized memory1.

The edits to the refactored program version in Figure 4 are related to state-
ments that access and edit the array Data1 and the constant Len1. These edits,
however, do not impact the program statements that reference the data struc-
ture StructA and Data0. First, let us consider the accesses to StructA (via
st in function Set Struct); these are completely disjoint from the operations
related to Data1 and Len1. Hence, the program behaviors related to the oper-
ations on st in this context are not impacted by the changes. The constraints
related to StructA and st generated at line 10 in V0 and line 8 in V1 of function
Init Data and at lines 2 − 5 in function Set Struct are unimpacted and can
safely be discarded from the full summaries before checking equivalence. Now,
consider the accesses to Data0 and its interactions with accesses to Data1. Al-
though the assignments to both Data0 and Data1 are control dependent on the
for loop at line 6, in the context of V0, the assignment to Data0 is not impacted
by the changes. Consequently, the constraints on Data0 at line 7 can also be
discarded before checking equivalence. Moreover, functional equivalence of V0

and V1 in Figure 4 can be proven using impact summaries that do not contain
constraints over Data0, StructA, or st.

The arrays Data0 and Data1, the pointer to StructA, and the input variable
capacity are defined as symbolic in this example. In Figure 5(a) we show a

1 We make no claims about the initialized memory’s location (the value of the point-
ers), only the contents of the memory.
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(i0 = 0) ∧ (i0 < capacity) ∧ (i0 < 512) ∧ (Data0 [i0] = 0) ∧ (Data1 [i0] = 0)∧
(i1 = 1) ∧ (i1 < capacity) ∧ (i1 < 512) ∧ (Data0 [i1] = 0) ∧ (Data1 [i1] = 0)∧
. . .
(i511 = 511) ∧ (i511 < capacity) ∧ (i511 < 512) ∧ (Data0 [i511 ] = 0) ∧ (Data1 [i511 ] = 0)∧
st = 0 ∧ st = objRef ∧
StructA = st ∧ capacity <= 512 ∧ ret = 1

(a)

(i0 = 0) ∧ (i0 < capacity) ∧ (i0 < 512) ∧ (Data1 [i0] = 0) ∧
(i1 = 1) ∧ (i1 < capacity) ∧ (i1 < 512) ∧ (Data1 [i1] = 0) ∧
. . .
(i511 = 511) ∧ (i511 < capacity) ∧ (i511 < 512) ∧ (Data1 [i511 ] = 0) ∧
capacity <= 512 ∧ ret = 1

(b)

Fig. 5. (a) A conjunction of an unimpacted and impacted constraints along path i in
V1: I

1
i

∧
U1

i . (b) An impacted constraint along path i in V1: I
1
i .

summary for the path in program V1 shown in Figure 4(b) that contains both
impacted and unimpacted constraints. There are 512 iterations of the for loop
that are encoded in the path using the loop index i, and there are constraints
over StructA, st, and capacity as well. In contrast, Figure 5(b) contains only
the set of impacted constraints from the same path. From this example, we can
see that discarding unimpacted constraints can dramatically reduce the size of
the summaries used in regression verification.

4 Correctness Proofs

In this section we compare two program versions V0 and V1. We eventually show
that the equivalence of their respective summaries, sum0 and sum1, can be
implied by proving the equivalence of isum0 and isum1. Likewise, we show that
if isum0 and isum1 are not equivalent, then sum0 and sum1 are not equivalent.

To simplify the presentation of our work, we discuss the correctness of the
equivalence checking using the intraprocedural change impact analysis. The
same correctness argument holds for an interprocedural analysis that dynami-
cally tracks the flow of impact through method parameters and global variables.
The change impact analysis described in Section 3 is conservative for sequential
programs; it adds every statement that may be impacted by a change to the
impact sets I0 and I1. We argue that the statements that are considered unim-
pacted by the analysis are not relevant to a proof of equivalence of the program
versions.

Lemma 1. Given closely related program versions V0 and V1, if a program state-
ment is common to both versions, then it is either impacted in both versions or
unimpacted in both versions.

Proof. This follows from Steps 5 and 7 of the static impact analysis shown
in Table 1 (Section 3). Step 5 assigns I1 to be equal to I0 after performing the
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data- and control-flow analysis on V0 (except for statements that are removed in
V1 or added in V0). Then Step 7 adds statements from I1 to I0 after performing
the data-flow, control-flow, backward control-flow, and reaching definition anal-
ysis on V1 (except for statements added to V1 or removed from V0). Therefore,
the only statements that differ between I0 and I1 are those that have been added
or removed.

Next we argue that for every path i in V0, there exists a path j in V1 such that
i and j contain the same set of unimpacted statements and, similarly, for every
path j in V1, there exists a path i in V0 such that i and j contain the same set
of unimpacted statements.

Lemma 2. Given closely related program versions V0 and V1, for every path
(I0i ∧ U0

i ) there exists a path (I1j ∧ U1
j ) such that U0

i ≡ U1
j . Likewise, for every

path (I1j ∧ U1
j ) there exists a path (I0i ∧ U0

i ) such that U1
j ≡ U0

i

Proof. By contradiction. Assume there is some path containing a certain se-
quence of unimpacted instructions in one program version but not the other.
This implies that the result of some conditional statement Sc differs between
the two versions and that the set of unimpacted instructions is control depen-
dent on Sc. Clearly the predicate in Sc uses the result of an impacted write
statement or Sc is control dependent on another impacted conditional state-
ment. According to Rules (1) – (4) in Table 1, Sc is impacted. Furthermore,
because the unimpacted statements are control dependent on Sc, they are also
impacted.

Corollary 1. The set of unique unimpacted constraints in V0 is the same as the
set of unique unimpacted constraints in V1. This implies Formula 2

(

n∨
i=1

U0
i )↔ (

m∨
i=1

U1
i ) (2)

As defined in Section 3, a program’s symbolic summary consists of the disjunc-
tion of the constraints along each possible execution path in the program. Each
path consists of a set of impacted and unimpacted constraints. In Theorem 1 we
show that the unimpacted and impacted constraints can be effectively de-coupled
from each other in a program’s summary.

Theorem 1. Given a program version V0 with n paths, Formula 3 is valid.

n∨
i=1

(I0i ∧ U0
i )↔ [(

n∨
i=1

I0i ) ∧ (

n∨
i=1

U0
i )] (3)

Proof. See extended technical report for this proof [1].

In Theorem 2 we consider the overlap between the space of assignments to pro-
gram variables that satisfy impacted constraints and the space of assignments
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to program variables that satisfy unimpacted constraints. Specifically, we claim
that for some path in a program summary, if there is some concrete assignment
to the program variables that satisfies the impacted constraints, then there is a
concrete assignment to the remaining variables (those only present in the unim-
pacted constraints) that satisfies the unimpacted constraints.

Theorem 2. Consider a program version V0 with n paths and a closely related
program version V1 with m paths. Let u1, u2, . . . uk be program variables present
in the unimpacted statements of V0 (V1). Let AU be the set of possible concrete
assignments to these variables. Let AI0 (AI1) be the set of possible concrete
assignments to all other variables in V0 (V1). For any assignment x ∈ AI0
(x ∈ AI1) that satisfies the impacted constraints, there exists an assignment
y ∈ AU that satisfies the unimpacted constraints. Formally, Formulas 4 and 5
are valid.

∀x∈AI0∃y∈AU (I
0
i [x]→ U0

i [y]) (4)

∀x∈AI1∃y∈AU (I
1
i [x]→ U1

i [y]) (5)

Proof. Rule (4) in Table 1 dictates that the statements defining the value of
every variable used in an impacted statement are also impacted. Accordingly,
the variables that are common to the impacted and unimpacted statements are
not constrained by the unimpacted statements. I.e., the result of an unimpacted
statement cannot affect the result of an impacted statement. Therefore, if it is
possible to satisfy the constraints of I0i (I1j ), then it is possible to satisfy the

constraints of U0
i (U1

j ).

Now we show that the impact summaries for two programs versions V0 and V1

are equivalent if and only if the summaries for V0 and V1 are equivalent. We use
the result of Theorem 1 to prove the forward direction (if the impact summaries
are equivalent, then the summaries are equivalent). Then we use the result of
Theorem 2 to prove the reverse direction (if the summaries are equivalent, then
the impact summaries are equivalent).

Theorem 3. Given program version V0 with n paths and a closely related pro-
gram version V1 with m paths. isum0 and isum1 are equivalent if and only if
sum0 and sum1 are equivalent. This is formally stated in Formula 1 and is also
shown below.

[(
n∨

i=1

I0i )↔ (
m∨
i=1

I1i )]↔ [
n∨

i=1

(I0i ∧ U0
i )↔

m∨
i=1

(I1i ∧ U1
i )]

Proof. (⇒)We begin by assuming Formula 6 is valid

(

n∨
i=1

I0i )↔ (

m∨
i=1

I1i ) (6)
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Conjoining the term representing the disjunction of unimpacted constraints of
V0 to the left and right side of Formula 6 yields Formula 7.

(

n∨
i=1

I0i ) ∧ (

n∨
i=1

U0
i )↔ (

m∨
i=1

I1i ) ∧ (

n∨
i=1

U0
i ) (7)

Applying Formula 2 yields Formula 8.

(
n∨

i=1

I0i ) ∧ (
n∨

i=1

U0
i )↔ (

m∨
i=1

I1i ) ∧ (
m∨
i=1

U1
i ) (8)

Applying Formula 3 yields Formula 9.

n∨
i=1

(I0i ∧ U0
i )↔

m∨
i=1

(I1i ∧ U1
i ) (9)

This proves the forward direction, i.e., (isum0 ↔ isum1) → (sum0 ↔ sum1).
The latter half of the proof, (sum0 ↔ sum1) → (isum0 ↔ isum1), is more
complex than the first half and is available in the technical report [1].

5 Evaluation

To empirically evaluate the regression verification technique described in this
work, we implemented a DiSE framework, Proteus, for analyzing C programs.
Note that the earlier DiSE framework implementation was an extension of the
Java PathFinder, [21], toolkit to analyze Java programs [13,17]. A large number
of safety critical systems are developed in C; Proteus was developed at NASA
to assist in the analysis of these systems.

In Proteus, we use the GNU DiffUtils2 to compute the initial change set con-
taining the actual source level differences between program versions. The static
analysis is implemented as a customized LLVM optimization pass [11]. The out-
put of the static analysis is the set of impacted program statements. The parti-
tioning of constraints during symbolic execution is implemented as an extension
to the klee symbolic execution engine [4]. As an optimization for discarding
unimpacted constraints, we employ the directed search in the DiSE algorithm to
prune execution of paths that differ only in unimpacted constraints [13,17]. The
final post-processing of the symbolic summaries is performed using a custom ap-
plication that iterates over the impacted path conditions, removing constraints
that are not impacted by the differences. We use the Z3 constraint solver to
check for logical equivalence of impact summaries [6].

We present the results for the different versions of the six artifacts in Table 2.
The details of the artifacts and their versions are described in further detail in
the technical report [1]. The experiments are run on a 64-bit Linux machine,
with a 2.4GHz processor, and 64GB memory. The Example column lists the

2 http://www.gnu.org/software/diffutils

http://www.gnu.org/software/diffutils
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Table 2. Equivalence Checking Results

Example Versions Equiv Paths Constraints Time Symbc (s) Time Solver (s)
Full iDiSE Full iDiSE iSum Full iDiSE Full iDiSE iSum

Init Data V0V1 yes 400 400 103400 103400 82800 51.87 50.67 1.94 1.94 0.76

tcas1 V0V1 yes 118 12 4748 524 332 1.62 0.60 0.09 0.04 0.04
V1V2 yes 118 118 4772 4772 3956 1.64 1.92 0.09 0.09 0.06
V2V3 yes 118 118 4796 4796 2908 1.62 1.91 0.08 0.08 0.05

tcas2 V0V1 no 150 12 6052 520 328 2.21 0.63 0.12 0.06 0.05

replace1 V0V1 yes 18 8 98 68 48 0.31 0.25 0.01 0.03 0.03
V1V2 yes 18 10 98 98 78 0.31 0.32 0.01 0.04 0.04
V2V3 no 18 2 98 8 4 0.31 0.18 0.01 0.03 0.03

replace2 V1V2 yes 604 604 23736 23736 20980 1.14 1.35 0.11 0.11 0.10

wbs1 V0V1 yes 336 190 13416 11478 9158 1.18 1.63 0.10 0.10 0.08
V1V2 yes 336 336 13416 13416 10784 1.25 1.42 0.10 0.10 0.09
V2V3 yes 336 190 13416 11478 10784 1.19 1.34 0.11 0.09 0.08

wbs2 V0V1 no 336 134 13388 5601 4551 1.18 0.83 0.11 0.06 0.06

cornell1 V0V1 yes 10 8 62 48 24 0.10 0.11 0.03 0.03 0.03
cornell2 V0V1 yes 18 10 1864 810 663 0.27 0.29 0.01 0.01 0.01

kernel1 V0V1 yes - 4 - 282 226 - 21.09 - 218 200
V1V2 yes - 4 - 282 226 - 21.32 - 211 208

kernel2 V0V1 yes 4 2 130 114 88 1.56 1.92 0.20 0.13 0.04
kernel3 V0V1 no 4 2 118 58 48 0.67 0.78 0.19 0.12 0.12

name of the artifact and the Versions column lists the version numbers of the
artifacts compared. The Equiv column shows whether the versions are equiv-
alent or not. The results contain data from three different configurations: (1)
Full symbolic execution explores all paths, (2) iDiSE prunes paths that only
differ in unimpacted constraints (iDiSE refers to the interprcoedural extension
of the DiSE framework as defined in [17]), and (3) iSum represents the final im-
pact summaries. The Paths column lists the number of paths, the Constraints
column presents the number of constraints in the summaries, and Time Symbc

column lists the time in seconds. The time reported for iDiSE includes the time
to perform the static analysis and incremental symbolic execution. Finally, the
Time Solver column lists the time taken by Z3 to solve the equivalence queries
generated by full symbolic execution, iDiSE, and iSum. The rows marked with
‘-’ indicate that the analysis does not finish within the time bound of one hour.

Overall, the results in Table 2 indicate that reducing the size of the queries
reduces the time to check equivalence. In the tcas2 example, full symbolic ex-
ecution generates 150 paths while iDiSE only generates 12 paths and we can
see corresponding reductions in the number of constraints and time taken to
check equivalence. The iDiSE overhead for the set of artifacts is quite small,
and the total analysis time (Symbc + Solver) can be considerably less for iDiSE
combined with constraint pruning over full symbolic execution. In the two ver-
sions of the kernel1 example, full symbolic execution is unable to complete the
analysis within the time bound of one hour, while only four paths are gener-
ated by iDiSE. There is a loop in kernel1 that does not contain any impacted
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Table 3. Evaulation of artifacts using SymDiff

Example Modular (s) Non-modular (s) Example Modular (s) Non-modular (s)

tcas1V0V1 12.9 17.4 tcas1V2V3 13.6 15

tcas1V1V2 13.6 15 tcas2V0V1 14.3 18.2

wbs1V0V1 13.8 13.8 wbs1V2V3 13.7 14.1

wbs1V0V2 13.8 13.8 wbs2V0V1 14.6 14.4

replace2 V1V2 31.9 29:53.2

statements; iDiSE is able to ignore paths through the loop and quickly generate
the impact summaries. For this example, we can see how leveraging program
similarities can dramatically improve the performance of regression verification.
Although the time taken for equivalence checking for the other examples is rel-
atively small – just a few seconds – the artifacts themselves are relatively small.
We believe that the reductions will be applicable to larger examples as well. For
the replace example, the solver time for the summaries without pruning is much
faster than those with pruning. The tool we used to translate the CVC formula
generated by klee into SMTLIB format (to be interpreted by Z3) parsed the
CVC query into a trivial SMTLIB query for these examples. It is unclear to us
why this occurred with the full summaries but not the impact summaries.

Limitations. The regression verification technique presented in this work cur-
rently supports checking equivalence between two sequential programs without
exceptional flow. The equivalence checking reports generated by Proteus are
sound and complete for programs that do not have runtime errors or make calls
to unsupported libraries. For examples that have runtime errors or make calls
to unsupported libraries, the tool reports warnings and continues execution; the
equivalence result are reported as inconclusive in the presence of such warnings.
The sound and complete reasoning about the equivalence is with respect to a
loop bound. It is possible to leverage automatic loop invariant generation and
loop summarization techniques in the context of symbolic execution to reason
about equivalent programs without a depth bound.

6 Discussion

Revisiting Table 2, the data in the Full columns can be considered representative
of results in UC-KLEE [15]. The results demonstrate that UC-KLEE can benefit
from using our reduction techniques, when analyzing related program versions.

In order to evaluate how other tools perform equivalence checking, we ran
SymDiff [10]. We set up the experiments for SymDiff and ran them on a Windows
7 machine with a 1.8 GHz processor and 6 GB of RAM. We experimented with
two SymDiff configurations (a) modular, where the methods are summarized
as uninterpreted functions, and (b) non-modular, where the invocations to the
different methods are inlined. The non-modular approach is sound and complete
with respect to a depth-bound as well. The kernel and the cornell examples
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contain constructs that are not currently supported by the C front-end in the
current version of SymDiff, so we report on experiments for the rest of the
examples. Table 3 shows the total wall clock time in seconds. In the modular
approach, SymDiff does not report any false negatives for the examples shown
in Table 3. We used a loop bound of four for the replace example, the same as
the one used in Table 2. We also used the flag in Symdiff to analyze only callers
and callees that are reachable from the changed methods to ensure that the set
of methods analyzed by SymDiff and Proteus is the same. SymDiff runs on a
Windows platform while Proteus runs on a Unix-based platform; we had to run
the experiments on different machines and it is not possible to make empirical
comparative claims between the two in terms of time. Furthermore, SymDiff and
Proteus encode the program behaviors differently, therefore, it is not possible to
compare the approaches in terms of the size of the generated formulas. SymDiff
does not use any slicing techniques based on change impact analysis, and we
believe that it can be beneficial to add such a reduction technique to SymDiff.

Abstract Syntax Tree. To calculate the precise initial change sets we can use
standard algorithms to match Abstract Syntax Trees (ASTs), [14], and discard
differences due to variable renaming and simple re-ordering before we perform
the data and control flow analysis. The syntatic differences based on the ASTs
are more precise compared to those generated by the GNU DiffUtils. We have
support for the AST based syntatic diff in the Java implementation of the DiSE
framework and we are currently working on adding it to Proteus.

Static Encoding vs. Bounded Unrolled Program Encoding. The cor-
rectness of Eq. (1) does not rely on any specific encoding of constraints. We
choose, however, to encode the program behaviors generated by symbolic exe-
cution (bounded unrolled programs) as constraints rather than use a static en-
coding for the constraints because (a) the static constraints on heap and array
operations are often harder to solve than those generated by symbolic execution
and (b) scalable static slicing techniques for interprocedural programs often ig-
nore calling context and are imprecise; we leverage work in [17] to dynamically
compute impact information for interprocedural programs.

7 Related Work

Several techniques have been developed for checking equivalence. Differential
Symbolic Execution (DSE) uses uninterpreted functions to represent unchanged
blocks of code [12]. SymDiff [10] summarizes methods as uninterpreted func-
tions, and uses verification conditions to summarize observable behavioral dif-
ferences. Regression verification techniques by Strichman et al. [8,19] use the
Context-BoundedModel Checker (CBMC) to check equivalence of closely related
C programs. It establishes partial equivalence of functions using a bottom-up de-
composition algorithm. Another approach [18] performs an increment upgrade
checking in a bottom-up manner similar to regression verification, using func-
tion summaries computed by means of Craig interpolation. These techniques



Regression Verification Using Impact Summaries 115

are sound but not complete. Techniques from [18] are used in the PINCETTE
project [5]. To curb over-approximations, the PINCETTE project also employs
dynamic techniques (e.g., concolic testing) to generate regression tests for sys-
tem upgrades. There is also ongoing work to support program slicing based on
the program differences in CBMC.

Similar to our work, UC-KLEE [15] is built on top of KLEE. UC-KLEE is
designed to run two functions under test with the same input values and check
if they produce the same outputs. As an optimization, UC-KLEE is able to skip
unchanged instructions. However, it neither produces nor leverages the impacted
behavior information. Partition-based regression verification, [3], computes par-
titions on-the-fly using concolic execution and dynamic slicing techniques. Each
partition contains behaviors generated from a subset of the input space common
to two program versions. The goal of the technique is to find test cases that
depict semantic differences rather than prove equivalence.

Approaches that cache or reuse constraints to speed up performance (e.g.,
Green [20]) are orthogonal to our reduction technique. Such techniques are com-
plementary to this work and can be leveraged to achieve higher reduction factors.

8 Conclusions and Future Work

In this work on regression verification we leverage control- and data-flow in-
formation to partition the program behavior summaries as either impacted or
unimpacted based on the differences between two program versions. We then
prove that the impacted constraints of two closely related programs are function-
ally equivalent iff their entire program behavior summarizations are functionally
equivalent. An empirical evaluation on a set of sequential C artifacts shows that
reducing the size of the summaries helps reduce the cost of equivalence checking.

In future work, we plan to study the effects of other more compact program
summarization encoding schemes such as large-block encoding [2] in combination
with the work proposed here. Another avenue of future work is to develop an
abstraction-refinement technique using uninterpreted functions to abstract large
parts of the program as done in [12,19], but, use the information about the
impacted parts of the code to refine the abstraction when required. We believe
such techniques can further improve checking equivalence of large programs.

Acknowlegements. We thank Shuvendu Lahiri at Microsoft Research for his
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Abstract. Hybrid systems represent an important and powerful formal-
ism for modeling real-world applications such as embedded systems. A
verification tool like SpaceEx is based on the exploration of a symbolic
search space (the region space). As a verification tool, it is typically opti-
mized towards proving the absence of errors. In some settings, e.g., when
the verification tool is employed in a feedback-directed design cycle, one
would like to have the option to call a version that is optimized towards
finding an error path in the region space. A recent approach in this di-
rection is based on guided search. Guided search relies on a cost function
that indicates which states are promising to be explored, and preferably
explores more promising states first. In this paper, an abstraction-based
cost function based on pattern databases for guiding the reachability
analysis is proposed. For this purpose, a suitable abstraction technique
that exploits the flexible granularity of modern reachability analysis al-
gorithms is introduced. The new cost function is an effective extension
of pattern database approaches that have been successfully applied in
other areas. The approach has been implemented in the SpaceEx model
checker. The evaluation shows its practical potential.

1 Introduction

Hybrid systems are extended finite automata whose discrete states correspond
to the various modes of continuous dynamics a system may exhibit, and whose
transitions express the switching logic between these modes [1]. Hybrid sys-
tems have been used to model and to analyze various types of embedded
systems [23,28,13,7,14,4,24].
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A hybrid system is considered safe if a given set of bad states cannot be
reached from the initial states. Hence, reachability analysis is a main concern for
hybrid systems. Since the reachability analysis of hybrid systems is in general
undecidable [1], modern reachability-analysis tools such as SpaceEx [16] resort to
semi-decision procedures based on over-approximation techniques [10,16]. In this
paper, we explore the utility of guided search in order to improve the efficiency
of such techniques.

Guided search is an approach that has recently found much attention for
finding errors in large systems [21,9]. As suggested by the name, guided search
performs a search in the state space of a given system. In contrast to standard
search methods like breadth-first or depth-first search, the search is guided by
a cost function that estimates the search effort to reach an error state from the
current state. This information is exploited by preferably exploring states with
lower estimated costs. If accurate cost functions are applied, the search effort
can significantly be reduced compared to uninformed search. Obviously, the cost
function therefore plays a key role within the setting of guided search, as it
should be as accurate as possible on the one hand, and as cheap to compute as
possible on the other. Cost functions that have been proposed in the literature
are mostly based on abstractions of the original system. An important class of
abstraction-based cost functions is based on pattern databases (PDBs). PDBs
have originally been proposed in the area of Artificial Intelligence [11] and also
have successfully been applied to model checking discrete and timed systems
[26]. Roughly speaking, a PDB is a data structure that contains abstract states
together with abstract cost values based on an abstraction of the original sys-
tem. During the concrete search, concrete states s are mapped to corresponding
abstract states in the PDB, and the corresponding abstract cost values are used
to estimate the costs of s. Overall, PDBs have demonstrated to be powerful for
finding errors in different formalisms. The open question is if guided search can
be applied equally successfully to finding errors in hybrid systems.

A first approach in this direction [9] is to estimate the cost of a symbolic state
based on the Euclidean distance from its continuous part to a given set of error
states. This approach appears to be best suited for systems which behavior is
strongly influenced by the (continuous) differential equations. However, it suffers
from the fact that discrete information like mode switches is completely ignored,
which can lead to arbitrary degeneration of the search. To see this, consider the
example presented in Fig. 1. It shows a simple hybrid system with one continuous
variable which obeys the differential equation ẋ = 1 in every location (differential
equations are omitted in the figure). The error states are given by the locations
le1, . . . , len and invariants 0 ≤ x ≤ 8. In this example, the box-based distance
heuristic wrongly explores the whole lower branch first (where no error state
is reachable) because it only relies on the continuous information given by the
invariants. More precisely, for the box-based distance heuristic, the invariants
suggest that the costs of the “lower” states are equal to 0, whereas the costs of
the “upper” states are estimated to be equal to 4 (i. e., equal to the distance of
the centers of the bounding boxes of the invariants).
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l1

l2 l3 le1 . . . len

l4 l5 l6 . . . ln

0 ≤ x ≤ 0 0 ≤ x ≤ 0 0 ≤ x ≤ 8 0 ≤ x ≤ 8

0 ≤ x ≤ 8 0 ≤ x ≤ 8 0 ≤ x ≤ 8 0 ≤ x ≤ 8

Fig. 1. A motivating example

In this paper, we introduce a PDB-based cost function for hybrid systems
to overcome these limitations. In contrast to the box-based approach based on
Euclidean distances, this cost function is also able to properly reflect the dis-
crete part of the system. However, compared to the “classical” discrete setting,
the investigation of PDBs for hybrid systems becomes more difficult for several
reasons. First, hybrid systems typically feature both discrete and continuous
variables with complex dependencies and interactions. Therefore, the question
arises how to compute a suitable (accurate) abstraction of the original system.
Second, computations for symbolic successors and inclusion checks become more
expensive than for discrete or timed systems – can these computations be per-
formed or approximated efficiently to get an overall efficient PDB approach as
well? In this paper, we provide answers to these questions, leading to an effi-
cient guided search approach for hybrid systems. In particular, we introduce a
technique leveraging properties of the set representations used in modern reach-
ability algorithms. By simply using much coarser parameters for the explicit
representation, we obtain suitable and cheap abstractions for the behaviors of a
given hybrid system. Furthermore, we adapt the idea of partial PDBs, which has
been originally proposed for solving discrete search problems [5], to the setting
of hybrid systems in order to reduce the size and computation time of “clas-
sical” PDBs. Our implementation in the SpaceEx tool [16] shows the practical
potential.

The remainder of the paper is organized as follows. After introducing the
necessary background for this work in Sec. 2, we present our PDB approach for
hybrid systems in Sec. 3. This is followed by a discussion about related work in
Sec. 4. Afterwards, we present our experimental evaluation in Sec. 5. Finally, we
conclude the paper in Sec. 6.

2 Preliminaries

In this section, we introduce the preliminaries that are needed for this work.

2.1 Notations

We consider models that can be represented by hybrid systems. A hybrid system
is formally defined as follows.
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Definition 1 (Hybrid System). A hybrid system is a tuple H =
(Loc,Var , Init ,Flow ,Trans , Inv) defining

– the finite set of locations Loc,
– the set of continuous variables Var = {x1, . . . , xn} from Rn,
– the initial condition, given by the constraint Init(�) ⊂ Rn for each location

�,
– for each location �, a relation called Flow(�) over the variables and their

derivatives. We assume Flow(�) to be of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ Rn, A is a real-valued n × n matrix and U ⊆ Rn is a closed
and bounded convex set,

– the discrete transition relation, given by a set Trans of discrete transitions;
a discrete transition is formally defined as a tuple (�, g, ξ, �′) defining
• the source location � and the target location �′,
• the guard, given by a linear constraint g,
• the update, given by an affine mapping ξ, and

– the invariant Inv(�) ⊂ Rn for each location �.

The semantics of a hybrid system H is defined as follows. A state of H is a tuple
(�,x), which consists of a location � ∈ Loc and a point x ∈ Rn. More formally, x
is a valuation of the continuous variables in Var . For the following definitions, let
T = [0, Δ] be an interval for some Δ ≥ 0. A trajectory of H from state s = (�,x)
to state s′ = (�′,x′) is defined by a tuple ρ = (L,X), where L : T → Loc and
X : T → Rn are functions that define for each time point in T the location and
values of the continuous variables, respectively. Furthermore, we will use the
following terminology for a given trajectory ρ. A sequence of time points where
location switches happen in ρ is denoted by (τi)i=0...k ∈ T k+1. In this case, we
define the length of ρ as |τ | = k. Trajectories ρ = (L,X) (and the corresponding
sequence (τi)i=0...k) have to satisfy the following conditions:

• τ0 = 0, τi < τi+1, and τk = Δ – the sequence of switching points increases,
starts with 0 and ends with Δ
• L(0) = �, X(0) = x, L(Δ) = �′, X(Δ) = x′ – the trajectory starts in
s = (�,x) and ends in s′ = (�′,x′)
• ∀i ∀t ∈ [τi, τi+1) : L(t) = L(τi) – the location is not changed during the
continuous evolution
• ∀i ∀t ∈ [τi, τi+1) : (X(t), Ẋ(t)) ∈ Flow (L(τi)), i.e. Ẋ(t) = AX(t) + u(t)
holds and thus the continuous evolution is consistent with the differential
equations of the corresponding location
• ∀i ∀t ∈ [τi, τi+1) : X(t) ∈ Inv(L(τi)) – the continuous evolution is consistent
with the corresponding invariants
• ∀i ∃(L(τi), g, ξ, L(τi+1)) ∈ Trans : Xend(i) = limτ→τ−

i+1
X(τ)∧Xend(i) ∈ g∧

X(τi+1) = ξ(Xend(i)) – every continuous transition is followed by a discrete
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one, Xend(i) defines the values of continuous variables right before the dis-
crete transition at the time moment τi+1 whereas Xstart(i) = X(τi) denotes
the values of continuous variables right after the switch at the time mo-
ment τi.

A state s′ is reachable from state s if there exists a trajectory from s to s′.
In the following, we mostly refer to symbolic states. A symbolic state s = (�, R)

is defined as a tuple, where � ∈ Loc, and R is a convex and bounded set consisting
of points x ∈ Rn. The continuous part R of a symbolic state is also called region.
The symbolic state space of H is called the region space. The initial set of states
Sinit of H is defined as

⋃
�(�, Init(�)). The reachable state space R(H) of H is

defined as the set of symbolic states that are reachable from an initial state in
Sinit , where the definition of reachability is extended accordingly for symbolic
states.

In this paper, we assume there is a given set of symbolic bad states Sbad that
violate a given property. Our goal is to find a sequence of symbolic states which
contains a trajectory from Sinit to a symbolic error state, where a symbolic error
state se has the property that there is a symbolic bad state in Sbad that agrees
with se on the discrete part, and that has a non-empty intersection with se on
the continuous part. A trajectory that starts in a symbolic state s and leads to
a symbolic error state is called an error trajectory ρe(s).

2.2 Guided Search

In this section, we introduce a guided search algorithm (Algorithm 1) along the
lines of the reachability algorithm used by the current version of SpaceEx [16].
It works on the region space of a given hybrid system. The algorithm checks if a
symbolic error state is reachable from a given set of initial symbolic states Sinit .
As outlined above, we define a symbolic state se in the region space of H to be
a symbolic error state if there is a symbolic state s ∈ Sbad such that s and se
agree on their discrete part, and the intersection of the regions of s and se is
not empty (in other words, the error states are defined with respect to the given
set of bad states). Starting with the set of initial symbolic states from Sinit ,
the algorithm explores the region space of a given hybrid system by iteratively
computing symbolic successor states until an error state is found, no more states
remain to be considered, or a (given) maximum number of iterations imax is
reached. The exploration of the region space is guided by the cost function such
that symbolic states with lower cost values are considered first.

In the following, we provide a conceptual description of the algorithm using
the following terminology. A symbolic state s′ is called a symbolic successor state
of a symbolic state s if s′ is obtained from s by first computing the continuous
successor of s, and then by computing a discrete successor state of the resulting
(intermediate) state. Therefore, for a given symbolic state scurr , the function
continuousSuccessor (line 7) returns the symbolic state which is reachable
from scurr within the given time horizon according to the continuous evolution
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Algorithm 1. A guided reachability algorithm

Input: Set of initial symbolic states Sinit , set of symbolic bad states Sbad , cost function
cost

Output: Can a symbolic error state be reached from a symbolic state in Sinit ?
1: compute cost(s) for all s ∈ Sinit

2: Push (Lwaiting , {(s, cost(s)) | s ∈ Sinit})
3: i := 0
4: while (Lwaiting �= ∅ ∧ i < imax ) do
5: scurr := GetNext (Lwaiting)
6: i := i+ 1
7: s′curr := continuousSuccessor(scurr)
8: if s′curr is a symbolic error state then
9: return “Error state reached”
10: end if
11: Push (Lpassed , s

′
curr)

12: S′ := discreteSuccessors(s′curr )
13: for all s′ ∈ S′ do
14: if s′ /∈ Lpassed then
15: compute cost(s′)
16: Push (Lwaiting , (s

′, cost(s′)))
17: end if
18: end for
19: end while
20: if i = imax then
21: return “Maximal number of iterations reached”
22: else
23: return “Error state not reachable”
24: end if

described by the differential equations. Accordingly, the function discreteSuc-

cessor (line 12) returns the symbolic state that is reachable due to the outgoing
discrete transitions.

A symbolic state s is called explored if its symbolic successor states have been
computed. A symbolic state s is called visited if s has been computed but not
yet necessarily explored. To handle encountered states, the algorithm maintains
the data structures Lpassed and Lwaiting . Lpassed is a list containing symbolic
states that are already explored; this list is used to avoid exploring cycles in the
region space. Lwaiting is a priority queue that contains visited symbolic states
together with their cost values that are candidates to be explored next. The
algorithm is initialized by computing the cost values for the initial symbolic
states and pushing them accordingly into Lwaiting (lines 1 – 2). The main loop
iteratively considers a best symbolic state scurr from Lwaiting according to the
cost function (line 5), computes its symbolic continuous successor state s′curr
(line 7), and checks if s′curr is a symbolic error state (lines 8 – 10). (Recall that
s′curr is defined as a symbolic error state if there is a symbolic bad state s ∈ Sbad

such that s and s′curr agree on their discrete part, and the intersection of the



Abstraction-Based Guided Search for Hybrid Systems 123

regions of s and s′curr is not empty.) If this is the case, the algorithm terminates.
If this is not the case, then s′curr is pushed into Lpassed (line 11). Finally, for
the resulting symbolic state s′curr , the symbolic discrete successor states are
computed, prioritized and pushed into Lwaiting if they have not been considered
before (lines 12 – 18). Obviously, the search behavior of Algorithm 1 is crucially
determined by the cost function that is applied. In the next section, we give a
generic description of pattern database cost functions.

2.3 General Framework of Pattern Databases

For a given system S, a pattern database (PDB) in the classical sense (i. e., in
the sense PDBs have been considered for discrete and timed systems) is repre-
sented as a table-like data structure that contains abstract states together with
abstract cost values. The PDB is used as a cost estimation function by mapping
concrete states s to corresponding abstract states s# in the PDB, and using the
abstract cost value of s# as an estimation of the cost value of s. The computation
of a classical PDB is performed in three steps. First, a subset P of variables and
automata of the original system S is selected. Such subsets P are called pattern.
Second, based on P , an abstraction S# is computed that only keeps the variables
occurring in P . Third, the entire state space of S# is computed and stored in
the PDB. More precisely, all reachable abstract states together with their
abstract cost values are enumerated and stored. The abstract cost value for
an abstract state is defined as the shortest length of a path from that state to
an abstract error state. The resulting PDB of these three steps is used as the
cost function during the execution of Algorithm 1; in other words, the PDB is
computed prior to the actual model checking process, where the resulting PDB
is used as an input for Algorithm 1. In the next section, we will consider this
PDB approach as a basis for a cost function for hybrid systems.

3 Pattern Databases for Hybrid Systems

In Sec. 2.3, we have described the general approach for computing and using
a PDB for guiding the search. However, for hybrid systems, there are several
problems using the classical PDB approach. First, it is not clear how to effec-
tively compute suitable abstractions for hybrid systems with complex variable
dependencies. In Sec. 3.1, we address this problem with an abstraction technique
based on varying the granularity of the reachability analysis. Second, in Sec. 3.2,
we address the general problem that the precomputation of a PDB is often quite
expensive. Moreover, in many cases, only a small fraction of the PDB is actu-
ally needed for the search [18]. This is undesirable in general, and specifically
becomes problematic in the context of hybrid systems because reachability anal-
ysis in hybrid systems is typically much more expensive than, e. g., for discrete
systems. In Sec. 3.2, we introduce a variant of partial PDBs for hybrid systems
to address these problems.



124 S. Bogomolov et al.

3.1 Abstractions Based on Coarse-Grained Space Exploration

A general question in the context of PDBs is how to compute suitable
abstractions of a given system. For hybrid systems, one could apply one of the
abstraction techniques that have been proposed based on simplifying the dy-
namics [17,6]. In this paper, we propose a simpler yet elegant way to obtain a
coarse grained and fast analysis: For the computation of the PDB, we observe
that the LeGuernic-Girard (LGG) algorithm implemented in SpaceEx [16] uses
support function representation (based on the chosen set of template directions)
to compute and store over-approximations of the reachable states. Therefore, a
reduced number of template directions and an increased time step results in an
abstraction of the original region space in the sense that the dependency graph
of the reachable abstract symbolic states is a discrete abstraction of the sys-
tem. The granularity of the resulting abstraction is directly correlated with the
parameter selection: Choosing coarser parameters in the reachability algorithm
makes this abstraction coarser, whereas finer parameters lead to finer abstrac-
tions as well. This is a significant difference compared to the classical approaches
that have been proposed in the literature for pattern databases (see Sec. 2.3):
Instead of computing a (projection) abstraction based on a subset of all vari-
ables, we keep all variables (and hence, the original system), and instead choose
a coarser exploration of the region space.

3.2 Partial Pattern Databases

A classical PDB for a hybrid system H is represented by a data structure that
contains abstract states together with corresponding abstract cost values of a
suitable abstraction H# of H (according to Sec. 3.1). The abstract states and
corresponding cost values are obtained by a region space exploration of H#. The
abstract cost value of an abstract state s# is defined as the length of the shortest
found trajectory in H# from s# to an abstract error state. The PDB computes
the cost function

costP (s) := cost#(s#),

where s is a symbolic state, s# is a corresponding abstract state to s in the
PDB (see below for a more detailed description of corresponding abstract state),
and cost# is the length of the corresponding trajectory from s# to an abstract
error state as defined above. In this context, an abstract state s# is called a
corresponding state to s if s and s# agree on their discrete part, the symbolic
part of s is included in the symbolic part of s#, and s# is an abstract state with
minimal abstract costs that satisfies these requirements.

As already outlined, a general drawback of classical PDBs is the fact that their
precomputation might become quite expensive. Even worse, in many cases, most
of this precomputation time is often unnecessary because only a small fraction of
the PDB is actually needed during the symbolic search in the region space [18].
One way that has been proposed in the literature to overcome this problem is to
compute the PDB on demand: So-called switchback search maintains a family of
abstractions with increasing granularity; these abstractions are used to compute



Abstraction-Based Guided Search for Hybrid Systems 125

the PDB to guide the search in the next-finer level [22]. In the following, we
apply a variant of partial PDBs for hybrid systems to address this problem:
Instead of computing the whole abstract region space for a given abstraction,
we restrict the abstract search to explore only a fraction of the abstract region
space while focusing on those abstract states that are likely to be sufficient for
the concrete search.

Definition 2 (Partial Pattern Database). Let H be a hybrid system. A par-
tial pattern database for H is a pattern database for H that contains only ab-
stract state/cost value pairs for abstract states that are part of some trajectory
of shortest length from an initial state to an abstract error state. The partial
pattern database computes the function

costPP (s) :=

{
cost#(s#) if there is corresponding s# to s
+∞ otherwise

where s, s#, and cost# are defined as above, and +∞ is a default value indicating
that no corresponding abstract state to s exists.

Informally, a partial PDB for a hybrid system H only contains those abstract
states ofH# that are explored on some shortest trajectory (instead of containing
all abstract states of a complete abstract region space exploration to all abstract
error states as it would be the case for a classical PDB). In other words, partial
PDBs are incomplete in the sense that there might exist concrete states with
no corresponding abstract state in the PDB. In such cases, the default value
+∞ is returned with the intention that corresponding concrete states are only
explored if no other states are available. Obviously, this might worsen the overall
search guidance compared to the fully computed PDB. However, in special cases,
a partial PDB is sufficient to obtain the same cost function as obtained with
the original PDB. For example, this is the case when only abstract states are
excluded from which no abstract error state is reachable anyway. More generally,
a partial PDB suffices to deliver the same search behavior as the original PDB
if at least one abstract error trace is feasible in the original, i. e., in the concrete
region space. The search behavior is defined as the sequence of symbolic states
the search algorithm explores.

Proposition 1. Let H be a hybrid system. If there is a symbolic abstract error
state sp = (l,R) in the partial PDB such that there is an error state s = (l,x)
with x ∈ R, where s is reachable in H from some initial state of H, and the
length of a shortest trajectory in H to reach s is equal to the length of a shortest
abstract trajectory to reach s in the partial PDB, then the search behavior of
Algorithm 1 with costPP is equal to the search behavior of Algorithm 1 with
costP , i.e., with respect to the fully computed PDB.

Intuitively, if the preconditions of Prop. 1 are satisfied, then the abstract states in
the partial PDB suffice to guide the search in the same way as the fully computed
PDB would do (because we never “leave” the partial PDB). If the requirements
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are not satisfied, we can end up with less accurate cost functions. However, in
practice, partial PDBs turn out to be powerful because even if Prop. 1 does not
apply, they can often be computed significantly faster than full PDBs, and still
contain enough abstract states to accurately guide the search. Overall, although
in case the requirements of Prop. 1 are not fulfilled, partial PDBs can still be a
good heuristic choice that lead to cost functions that are efficiently computable
on the one hand, and that accurately guide the concrete search on the other
hand. We will come back to this point in the evaluation section.

3.3 Discussion

Abstraction techniques for verification of hybrid systems have been studied in-
tensively. Our pattern database approach for finding error states is based on a
similar idea, but exploits abstractions in a different way than in common ap-
proaches for verification. Most notably, the main focus of our abstraction is to
provide the basis for the cost function to guide the search, rather than to prove
correctness (although, under certain circumstances, it can be efficiently used for
verification as well – we will come back to this point in the experiments section).
As a short summary of the overall approach, we first compute a symbolic ab-
stract region space (as described in Sec. 3.1), where the encountered symbolic
abstract states s# = (L#, R#) are stored in a table together with the corre-
sponding abstract cost values of s#. To avoid the (costly) computation of an
entire PDB, we only compute the PDB partially (as described in Sec. 3.2). This
partial PDB is then used as the cost function of our guided reachability algo-
rithm. As in many other approaches that apply abstraction techniques to reason
about hybrid systems, the abstraction that is used for the PDB is supposed to
accurately reflect the “important” behavior of the system, which results in ac-
curate search guidance of the resulting cost function and hence, of our guided
reachability algorithm.

An essential feature of the PDB-based cost function is the ability to reflect
the continuous and the discrete part of the system. To make this more clear,
consider again the motivating example from the introduction (Fig. 1). As we
have discussed already, the box-based distance function first wrongly explores
the whole lower branch of this system because no discrete information is used
to guide the search. In contrast, a partial PDB is also able to reflect the discrete
behavior of the system. In this example, the partial PDB consists of an abstract
trajectory to the first reachable error state, which is already sufficient to guide
the (concrete) region space exploration towards to first reachable error state as
well. In particular, this example clearly shows the advantage of partial PDBs
compared to fully computed PDBs (recall that fully computed PDBs would
include all error states, whereas the partial PDB only contains the trajectory
to the shortest one). In general, our PDB-approach is well suited for hybrid
systems with a non-trivial amount of discrete behavior. However, the continuous
behavior is still considered according to our abstraction technique as introduced
in Sec. 3.1. Overall, partial PDBs appear to be an accurate approach for guided
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search because they accurately balance the computation time for the cost func-
tion on the one hand, and lead to efficient and still accurately informed cost
functions on the other hand.

Finally, let us discuss the relationship of PDBs to counterexample-guided ab-
straction refinement (CEGAR) [3,2]. Our approach shares with CEGAR the
general idea of using an abstraction to analyze a concrete system. However, in
contrast to CEGAR, where abstract counterexamples have to be validated and
possibly used in further abstraction refinement, abstractions for PDBs are never
refined and only used as a heuristic to guide the search within the concrete
automaton. In other words, in contrast to CEGAR, the accuracy of the abstrac-
tion influences the order in which concrete states are explored and therefore the
performance of the resulting model checking algorithm. Therefore, a crucial dif-
ference lies in the fact that CEGAR does the search in the abstract space, replays
the counterexample in the concrete space, and stops if the error path cannot be
followed. In contrast, our approach does the search in the concrete space and
uses the PDBs for guidance, only. If an abstract path cannot be followed, the
search does not stop, but tries other branches until either a counterexample is
found, or all paths have been exhausted.

4 Related Work

Techniques to efficiently find error states in faulty hybrid systems have recently
found increasing attention in the hybrid systems community. Bhatia and Frazzoli
[8] propose using rapidly exploring random trees (RRTs). In the context of hybrid
systems, the objective of a basic RRTs approach is to efficiently cover the region
space in an “equidistant” way in order to avoid getting stuck in some part of
the region space. Recently, RRTs were extended by adding guidance of the input
stimulus generation [12]. However, in contrast to our approach, RRTs approaches
are based on numeric simulations, rather than symbolic executions. Applying
PDBs to RRTs would be an interesting direction for future work. In a further
approach, Plaku, Kavraki and Vardi [25] propose to combine motion planning
with discrete search for falsification of hybrid systems. The discrete search and
continuous search components are intertwined in such a way that the discrete
search extracts a high-level plan that is then used to guide the motion planning
component. In a slightly different setting, Ratschan and Smaus [27] apply search
to finding error states in hybrid systems that are deterministic. Hence, the search
reduces to the problem of finding an accurate initial state. SpaceEx [16] is a
recently developed, yet already prominent model checker for hybrid systems. As
suggested by the name, it explores the region space by applying search. The
most related approach to this paper has recently been presented by Bogomolov
et al. [9], who propose a cost function based on Euclidean distances of the regions
of the current state and error states. The resulting guided search algorithm is
implemented in SpaceEx and has demonstrated to achieve significant guidance
and performance improvements compared to the uninformed search of SpaceEx.
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Table 1. Experimental results for the navigation benchmarks. Abbreviations: Unin-
formed DFS: Uninformed depth-first search, Box-heuristic: box-based distance heuris-
tic, PDB: our PDB cost function costPP , #loc: number of locations, #it: number of
iterations, length: length of the found error trajectory, time: total time in seconds in-
cluding any preprocessing. For our PDB approach, the fraction of the total time that
is needed for the PDB computation is additionally reported in parenthesis.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 400 122 15 145.756 62 15 70.548 16 15 20.04 (1.984)
2 400 183 33 186.93 86 33 120.428 34 33 53.998 (7.553)
3 625 75 33 70.717 34 33 36.609 34 33 44.718 (7.472)
4 625 268 158 261.86 231 158 209.637 159 158 127.458 (10.458)
5 625 85 79 118.8 26 25 37.775 26 25 42.117 (3.728)
6 625 96 53 110.816 101 53 104.938 54 53 76.296 (9.849)
7 625 227 34 198.95 105 34 96.978 35 34 47.612 (9.385)
8 625 178 25 266.142 86 25 137.291 26 25 43.541 (7.09)
9 625 297 17 356.042 102 17 131.965 18 17 30.789 (7.595)
10 625 440 30 534.041 136 30 201.843 31 30 60.91 (13.64)
11 900 234 72 269.314 129 21 149.086 22 21 32.744 (8.107)
12 900 317 43 339.093 174 61 198.326 44 43 62.829 (15.764)
13 900 367 37 421.902 148 37 190.355 38 37 70.748 (20.132)
14 900 411 32 434.555 278 32 297.89 33 32 57.692 (10.934)
15 900 379 44 445.863 107 44 137.757 45 44 69.912 (9.011)

Moreover, guided search has been intensively and successfully applied to find-
ing error states in a subclass of hybrid systems, namely to timed systems. In par-
ticular, PDBs have been investigated in this context [20,21]. In contrast to this
paper, the PDB approaches for timed systems are “classical” PDB approaches,
i. e., a subset of the available automata and variables are selected to compute
a projection abstraction. To select this subset, Kupferschmid et al. [20] com-
pute an abstract error trace and select the automata and variables that occur
in transitions in this abstract trace. In contrast, Kupferschmid and Wehrle [21]
start with the set of all automata and variables (i. e., with the complete system),
and iteratively remove variables as long as the resulting projection abstraction
is “precise enough” according to a certain quality measure. In both approaches,
the entire PDB is computed, which is more expensive than the partial PDB
approach proposed in this paper.

5 Evaluation

We have implemented costPP in the SpaceEx tool [16] and evaluated it on a
number of challenging benchmarks. The implementation and the benchmarks are
available at http://www.informatik.uni-freiburg.de/~bogom/spin2013.

http://www.informatik.uni-freiburg.de/~bogom/spin2013
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Table 2. Experimental results for the satellite benchmarks. Abbreviations: Uninformed
DFS: Uninformed depth-first search, Box-heuristic: box-based distance heuristic, PDB:
our PDB cost function costPP , #loc: number of locations, #it: number of iterations,
length: length of the found error trajectory, time: total time in seconds including any
preprocessing, OOM: out of memory. For our PDB approach, the fraction of the total
time that is needed for the PDB computation is additionally reported in parenthesis.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 36 116 32 27.112 75 10 13.44 16 10 10.317 (7.413)
2 36 464 24 101.252 473 13 116.991 30 13 16.306 (12.24)
3 64 718 87 31.514 278 87 11.04 263 121 20.362 (9.543)
4 100 111 107 38.085 44 15 21.073 23 14 14.802 (6.029)
5 100 109 104 262.944 45 15 178.617 23 14 62.985 (5.893)
6 159 2170 ∞ 78.95 1352 ∞ 49.853 0 ∞ 15.587 (15.587)
7 324 323 102 105.589 1289 106 457.702 25 24 32.102 (8.767)
8 557 1637 42 45.76 936 42 26.297 156 42 44.147 (39.674)
9 574 7113 41 223.648 561 10 17.45 14 10 6.607 (6.224)
10 575 9092 4 284.783 387 5 12.315 15 4 2.439 (2.032)
11 576 5693 3769 816.596 257 13 36.479 15 13 9.937 (5.866)
12 576 32966 13 7059.52 826 13 118.947 15 13 10.012 (5.813)
13 576 n/a n/a OOM 579 52 579.738 58 52 163.206 (82.013)
14 1293 13691 ∞ 436.164 7719 ∞ 249.554 0 ∞ 135.507 (135.507)
15 1296 n/a n/a OOM 1806 142 1869.72 206 139 617.423 (434.675)

5.1 Benchmarks

We consider benchmark problems with problem spaces with a large discrete part,
with a large branching factor and paths with dead-ends where search involves
heavy backtracking.

As a first set of benchmarks, we consider a variant of the well-known navi-
gation benchmark [15]. This benchmark models an object moving on the plane
which is divided into a grid of cells. The dynamics of the object’s planar position
in each cell is governed by the differential equations ẋ = v, v̇ = A(v− vd) where
vd stands for the targeted velocity in this location. Compared to the originally
proposed navigation benchmark problem, we address a slightly more complex
version with the following additional constraints. First, we add inputs allowing
perturbation of object coordinates, i. e., the system of differential equations is
extended to: ẋ = v + u, v̇ = A(v − vd), umin ≤ u ≤ umax. Second, to make the
search task even harder, the benchmark problems also feature obstacles between
certain grid elements. This is particularly challenging because, in contrast to the
original benchmark system, one can get stuck in a cell where no further transi-
tions can be taken, and consequently, backtracking might become necessary. The
size of the problem instances varies from 400 to 900 locations, and all instances
feature 4 variables.

Second, we consider benchmarks that result from hybridization. For a hy-
brid system H with nonlinear continuous dynamics, hybridization is a technique
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for generating a hybridized hybrid automaton from H. The hybridized automa-
ton has simpler continuous dynamics (usually affine or rectangular) that over-
approximate the behavior of H [6], and can be analyzed by SpaceEx. For our
evaluation, we consider benchmarks from this hybridization technique applied to
nonlinear satellite orbital dynamics [19], where two satellites orbit the earth with
nonlinear dynamics described by Kepler’s laws. The orbits in three-dimensional
space lie in a two-dimensional plane and may in general be any conic section,
but we assume the orbits are periodic, and hence circular or elliptical. Fixing
some orbital parameters (e.g., the orientations of the orbits in three-space), the
states of the satellites in three-dimensional space x1, x2 ∈ R3 can be completely
described in terms of their true anomalies (angular positions). Likewise, one
can transform between the three-dimensional state description and the angular
position state description. The nonlinear dynamics for the angular position are
ν̇i =

√
μ/p3i (1 + ei cos νi)

2 for each satellite i ∈ {1, 2}, where μ is a gravita-
tional parameter, pi = ai(1− e2i ) is the semi-latus rectum of the ellipse, ai is the
length of the semi-major axis of the ellipse, and 0 ≤ ei < 1 is the eccentricity
of the ellipse (if ei = 0, then the orbit is circular and pi simplifies to the radius
of the circle). These dynamics are periodic with a period of 2π, so we consider
the bounded subset [0, 2π]2 of the state-space R2, and add invariants and tran-
sitions to create a hybrid automaton ensuring νi ∈ [0, 2π]. For the benchmark
cases evaluated, we fixed μ = 1 and varied pi and ei for several scenarios. For
more details, we refer to the work of Johnson et al. [19]. The size of the problem
instances varies from 36 to 1296 locations, and all instances feature 4 variables.

The verification problem is conjunction avoidance, i. e., to determine whether
there exists a trajectory where the satellites come too close to one another and
may collide. Some of the benchmark instances considered are particularly chal-
lenging because they feature several sources of non-determinism, including sev-
eral initial states and several bad states. As an additional source of nondetermin-
ism, some benchmarks model thrusting. A change in a satellite’s orbit is usually
accomplished by firing thrusters. This is usually modeled as an instantaneous
change in the orbital parameters ei and ai. However, the angular position νi in
this new orbit does not, in general, equal the angular position in the original
orbit, and a change of variables is necessary, which can be modeled by a re-
set of the νi values when the thrusters are fired. The transitions introduced for
thrusting add additional discrete nondeterminism to the system.

5.2 Experiments

The experiments have been performed on a machine running under Ubuntu 11.10
with a four-core Intel Core i3 2.4GHz processor and 4GB memory. In the fol-
lowing, we report results for our PDB implementation of costPP in SpaceEx.
For the navigation benchmarks, while conducting search in the concrete state
space, we use octagonal template directions and sampling time equals to 0.05.
In the abstract run, we use box template directions and sampling time equals
to 0.5. For different satellite benchmark instances, we used different choices of
the directions and sampling times for the concrete and abstract runs, based on
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Fig. 3. Box-based heuris-
tic search error trajectory
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Fig. 4. PDB search error
trajectories (abstract: light
gray, concrete: dark gray)

the choice of the ei and pi parameters in the nonlinear dynamics prior to hy-
bridization, since higher values of ei result in greater overapproximation error
from hybridization. We compared costPP with uninformed depth-first search as
implemented in SpaceEx, and with the recently proposed box-based distance
function [9]. We compare the number of iterations of SpaceEx, the length of the
error trajectory found as well as the overall search time (including the computa-
tion of the PDB for costPP ) in seconds. For the PDB approach, we also report
the fraction of the total time to compute the PDB in parenthesis. The results
are reported in Table 1 and Table 2. Considering the overall run-time, the best
results are given in bold fonts.

Our results in Table 1 and Table 2 show that the precomputation time for the
PDB mostly pays off in terms of guidance accuracy and overall run-time. Specif-
ically, the overall run-time could (sometimes significantly) be reduced compared
to uninformed search and also compared to the box-based heuristic. For exam-
ple, in satellite instance 5, the precomputation for the PDB only needs around
6 seconds, leading to an overall run-time of around 60 seconds, compared to
around 178 seconds with the box-based heuristic and about 263 seconds with
uninformed search. This search behavior for instance 5 is also visualized in Fig. 2,
Fig. 3, and Fig. 4, where we observe that the part of the covered search space
with our PDB approach is lower compared to the box-based heuristic and un-
informed search. Fig. 4 particularly shows the part of the search space that is
covered by the abstract run (which can be performed efficiently due to our ab-
straction as described in Sec. 3.1), showing that our partial PDB approach finds
an accurate balance between the computation time and the accuracy of the re-
sulting cost function. Generally, in our benchmarks, we observed a large range
of computation time savings when using partial PDBs compared to full PDBs
(approximately, up to a factor of 1.5 in the navigation benchmarks, and up to a
factor of 350 in the satellite benchmarks).

Looking at the results in more detail, we first observe that the number of
iterations of SpaceEx and also the length of the found error trajectories are
mostly at most as high with PDB as with uninformed search and the box-based
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heuristic. In particular, our PDB approach could solve instances from the satel-
lite problem where uninformed search ran out of memory. In some cases, the
precomputation of the PDB does not pay off compared to the box-based heuris-
tic (recall that the box-based heuristic does not have any precomputation time
at all), however, in these cases, the pure search time is still similar to the pure
search time of the box-based approach. Second, we observe that the length of
the trajectories found by the box-based heuristic and the PDB heuristic is of-
ten similar or even equal, while the number of iterations is mostly decreased.
This again shows that the search with the PDB approach is more focused than
with the box-based heuristic in such cases, and less backtracking is needed. In
particular, the box-based heuristic always tries to find a direct path to an error
state, while ignoring possible obstacles. Therefore, the search can get stuck in
a dead-end state if there is an obstacle, and as a consequence, backtracking be-
comes necessary. Furthermore, the box-based heuristic can perform worse than
the PDB if several bad states are present. In such cases, the box-based heuris-
tic might “switch” between several bad states, whereas the better accuracy of
the PDB heuristic better focuses the search towards one particular bad state. In
contrast, in problems that are structured more easily (e. g., where no “obstacles”
exist and error states are reachable “straight ahead”), the box-based heuristic
might yield better performance because the precomputation of the PDB does
not pay off.

Finally, we remark that our approach is also able to effectively and efficiently
verify systems where no bad states exist – this is the case in the satellite in-
stances 6 and 14. In these instances, the abstract run (which is supposed to
build the PDB) does not reveal any reachable error state. As our abstraction is
an over-approximation, we can safely conclude that no reachable error state in
the concrete system exists either, and do not need to start the concrete search
at all. Being able to efficiently verify hybrid systems with PDBs (that are rather
supposed to guide the search) is a significant advantage compared to the box-
based heuristic.

6 Conclusion

We have explored the application of pattern databases (PDBs) for hybrid sys-
tems. For a given safety property and hybrid system with linear dynamics in
each location, we compute an abstraction by coarsening the over-approximation
SpaceEx computes in its reachability analysis. The abstraction is used to con-
struct a PDB, by associating to each abstract symbolic state the distance in
number of transitions to the symbolic error state. This distance is then used in
guiding SpaceEx in the concrete search. Given a concrete symbolic state, the
guiding heuristics returns the smallest distance to the error state of an enclosing
abstract symbolic state. This distance is used to choose the most promising con-
crete symbolic successor. In our implementation, we have taken advantage of the
SpaceEx parametrization support, and were able to report a significant speedup
in counterexample detection and even for verification. Our new PDB support for
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SpaceEx can be seen as a nontrivial extension of our previous work on guided
reachability analysis for hybrid systems where the discrete system structure was
ignored completely [9]. For the future, it will be interesting to further refine and
extend our approach by, e. g., considering even more fine grained abstraction
techniques, or by combinations of several abstraction techniques and therefore,
by combining several PDBs. We expect that this will lead to even more accurate
cost functions and better model checking performance.
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Abstract. Robots are increasingly used to perform a wide variety of
tasks, especially those involving dangerous or inaccessible locations. As
the complexity of such tasks grow, robots are being deployed in teams,
with complex coordination schemes aimed at maximizing the chance of
mission success. Such teams operate under inherently uncertain condi-
tions – the robots themselves fail, and have to continuously adapt to
changing environmental conditions. A key challenge facing robotic mis-
sion designers is therefore to construct a mission – i.e., specify number
and type of robots, number and size of teams, coordination and plan-
ning mechanisms etc. – so as to maximize some overall utility, such as
the probability of mission success. In this paper, we advocate, formal-
ize, and empirically justify an approach to compute quantitative utility
of robotic missions using probabilistic model checking. We show how to
express a robotic demining mission as a restricted type of discrete time
Markov chain (called αPA), and its utility as either a linear temporal
logic formula or a reward. We prove a set of compositionality theorems
that enable us to compute the utility of a system composed of several
αPAs by combining the utilities of each αPA in isolation. This ame-
liorates the statespace explosion problem, even when the system being
verified is composed of a large number of robots. We validate our ap-
proach empirically, using the probabilistic model checker prism.

1 Introduction

Robots are increasingly used to perform a wide variety of tasks. Examples in-
clude situations where the task is dangerous (e.g., demining) or involves phys-
ically inaccessible localities (e.g., a disaster area). They are often deployed in
teams to provide fault tolerance, and to accommodate a wider variety of plans.
The tasks consist of both unpredictable and known parts. For example, the op-
erating conditions change unpredictably, and robots might malfunction, become
indisposed, or be unable to complete its task due to the lack of capability. These
are unknown. On the other hand, there are known parameters, e.g., the number
of robots, the capabilities of each robot, the set of plans available to each robot,
and the coordination algorithms used by the robots, that are within the control
of the mission designer. The goal of the designer is to select these parameters so
as to increase overall mission utility.

E. Bartocci and C.R. Ramakrishnan (Eds.): SPIN 2013, LNCS 7976, pp. 135–153, 2013.
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We focus on missions that involve foraging-and-reacting (FAR), where robots
have to explore an arena, look for specific objects, and react to them in specific
ways. Examples of such missions are demining a minefield [16] where robots
attempt to defuse detected mines, and search-and-rescue of a disaster area where
robots report the location and status of discovered survivors to authorities.

Designing FAR missions requires assessing two aspects: (a) success : estimate
the probability of mission success within a certain deadline; and (b) coverage:
compute the expected amount of terrain covered within a given deadline. Cur-
rently, designers rely on their prior knowledge as well as field tests and sim-
ulations to solve these two problems. Both have limitations. Relying on prior
knowledge is an ad-hoc approach, limited, and typically does not cover unknown
and unforeseen situations. Full scale field tests are expensive, time-consuming,
and may not be conducted in a way that permits a generalization of the relative
impacts of certain parameter settings to similar missions in other contexts.

In this paper, we propose a more systematic, repeatable, and analytic method,
based on probabilistic model checking, to solve both success and coverage prob-
lems. Specifically, we show how to model a robotic demining mission as a prob-
abilistic automaton (PA). In addition, we show how to express success as a
probabilistic LTL [1] formula, and coverage as a cumulative reward over the PA.
This is our first contribution. Further details are presented in Section 5.

Our second contribution is tackling the statespace explosion problem during
probabilistic model checking of FAR missions. We leverage two types of restric-
tions commonly found in such missions. First, robots are divided into teams, and
each team operates independently on a separate portion of the arena. We call
this property independence (IND). Second, the PAs for the teams “synchronize”
over a common action corresponding to a clock tick since the robot teams oper-
ate under the same global clock. We call this property synchronization (SYNC).
In our approach, these two restrictions are incorporated by modeling each team
as a αPA, i.e., a PA with a singleton alphabet {α}. When αPAs are composed,
they synchronize over the common action α. The result is also a αPA.

Our requirement of synchronization between robotic teams is a purely model-
ing construct. The teams do not have to possess physically synchronized clocks.
However, the time taken by a team for an action must respect the timing con-
straint on the action used in the model. For example, if the model assumes that
sensing a mine requires 40 units of time, and 1 unit equals 1 second, then each
team must complete the mine sensing activity within 40 seconds. Otherwise, the
predictions made by the model checker will be invalid. Therefore, the model must
be constructed based on realistic values for timing constraints and probabilities.

The restricted nature of αPAs enables us to obtain two compositionality re-
sults: (a) probability of satisfying an LTL formula accumulates multiplicatively
over αPAs (cf. Theorem 1 and 2); and (b) expected reward accumulates addi-
tively over αPA (cf. Theorem 3 and 4). Our compositionality theorems hold for
an arbitrary (but finite) number of αPAs. Further details are presented in Sec-
tion 4. These theorems enable us to solve success and coverage for our demining
case study in a completely compositional manner by model checking the αPA
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for each team individually. Note that these compositionality results do not hold
if we remove the restriction to singleton (and identical) alphabets.

Our third and final contribution is an empirical validation of our results by
using the state-of-the-art probabilistic model checker prism [11] to compute
the values of success and coverage for our demining case study using both the
compositional approach and the direct non-compositional approach. We show
how the non-compositional model checking runs out of resources even for two
robotic teams, while the compositional approach scales easily to even thirty
teams. Further details are presented in Section 6.

The rest of the paper is structures as follows. In Section 2 we survey related
work. In Section 3, we present basic definitions. In Section 4 we present our com-
positionality theorems. In Section 5, we present our robotic demining scenario
and its αPA model, as well as the properties we want to verify. In Section 6, we
present experimental results, and in Section 7, we conclude.

2 Related Work

This paper builds on a wide body of work in modeling and verifying probabilis-
tic systems [14]. In particular, probabilistic model checking has been used to
verify systems ranging from pacemakers [3], root contention protocols [13] and
biological pathways [8]. Our work explores the application of probabilistic model
checking to yet another domain – coordinated multi-robot missions.

The connection between probabilistic systems and compositionality has been
studied by a number of researchers. For example, de Alfaro et al. [4] provide
a semantic notion of compositionality in the context of probabilistic reactive
modules. Our notion of probabilistic automata and parallel composition is bor-
rowed from that proposed by Stoelinga [15] and others. In essence, αPA are
a restricted, yet useful, version of probabilistic automata that admit to strong
compositionality results.

A number of projects on compositional verification of probabilistic systems [12]
use automated assume-guarantee algorithms that are based on learning [6,7].
There is also work on learning-based assume-guarantee reasoning for synchronous
probabilistic systems [5], assume-guarantee and abstraction refinement for proba-
bilistic systems [9], and on compositional reasoning for probabilistic model check-
ing of hardware designs [10]. Our approach is also compositional, but does not in-
volve assume-guarantee reasoning.

A preliminary version of the demining scenario presented here, its proba-
bilistic model, and experimental results were reported in our previous work [2].
The model was less elaborate, e.g., it did not include uncertainty when moving
from cell to cell. Also, it was a DTMC, not αPA, and hence not amenable to
the compositionality theorems presented here. Indeed, our prior work [2] did
not include any compositionality theorems, nor empirical results showing their
effectiveness.
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3 Preliminaries

We adopt the formalism of probabilistic automata [15], modifying it in two ways:
(a) extending it by labeling states with atomic propositions; and (b) restricting
the alphabet to be a singleton. The result is a class of automata we call αPA.
Let Dist(X) be the set of all probability distributions over any set X .

Definition 1 (αPA). A αPA is a 6-tuple (S, Init , Σ, δ,AP,L) where: (i) S is
a countable set of states; (ii) Init ∈ S is the initial state; (iii) Σ = {α} is the
singleton alphabet; (iv) δ : S �→ Dist(S) is the transition relation; (v) AP is a
set of atomic propositions; and (vi) L : S �→ 2AP is a mapping from states to
sets of atomic propositions, such that L(s) is the set of propositions true in s.

If M = (S, Init , Σ, δ,AP,L) is a αPA, we write S(M), Init(M), Σ(M), δ(M),
AP(M), and L(M) to mean S, Init , Σ, δ, AP and L, respectively.

Definition 2 (Execution). Let M be a αPA. An execution π is a (finite or
infinite) sequence of states s0, s1, . . . such that:

∀i ≥ 0 � δ(M)(si)(si+1) > 0

The execution π starts from s0. The set of all executions starting from s is denoted
by Ex (s,M), and Ex(M) means Ex (Init(M),M). The set of all finite executions

starting from s is denoted by Êx (s,M) and Êx (M) means Êx (Init(M),M). We

omit M from Ex(s,M) and Êx (s,M) when it is clear from the context.

Given two probability distributions μ1 ∈ Dist(X1) and μ2 ∈ Dist(X2), the
distribution (μ1 × μ2) ∈ Dist(X1 ×X2) is defined as follows:

∀(x1, x2) ∈ X1 ×X2 � (μ1 × μ2)(x1, x2) = μ1(x1)× μ2(x2)

For any set X and an element x ∈ X , the Dirac distribution Δ(x) ∈ Dist(X)
maps x to 1 and every other element of X to 0. αPAs synchronize via the
common action α. Let M1 and M2 be two αPAs. We write M1 "M2 to mean
AP(M1)∩AP (M2) = ∅. Formally, the composition of αPA is defined as follows.

Definition 3. Let M1 and M2 be αPAs such that M1 "M2. Their parallel com-
position M1 ‖M2 is the αPA (S, Init , Σ, δ,AP,L) where:

S = S(M1)× S(M2) Init = (Init(M1), Init(M2))

Σ = {α} δ(s1, s2) = δ(M1)(s1)× δ(M2)(s2)

AP = AP(M1) ∪ AP(M2) L(s1, s2) = L(M1)(s1) ∪ L(M2)(s2)

Properties. We assume that properties are specified as LTL [1] formulas. The
syntax of a LTL formula Ψ over the set of atomic propositions AP is given by:

Ψ := true | a | ¬Ψ | Ψ ∧ Ψ | XΨ | ΨUΨ
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where a ∈ AP is an atomic proposition. We write π |= Ψ to mean that the infinite
execution π satisfies the formula Ψ . Consider a PAM . We write Ex(s, Ψ) to mean
the infinite executions starting from s that satisfy Ψ , i.e.,

Ex(s, Ψ) = {π ∈ Ex (s) | π |= Ψ}

Cylinders. Every finite execution π̂ induces a set of infinite executions for which
π̂ is a prefix. This is known as the cylinder of π̂, or Cyl(π̂). A finite execution π̂
satisfies Ψ , denoted π̂ |= Ψ , if ∀π ∈ Cyl(π̂) � π |= Ψ . We write π̂1 � π̂2 to mean
that π̂1 is a prefix of π̂2. A set of finite executions E is minimal if it has no two
distinct elements π̂1 and π̂2 such that π̂1 � π̂2. For every LTL formula Ψ and
state s, there is a unique minimal subset [17] of Êx (s), denoted B(s, Ψ), such
that:

Ex (s, Ψ) =
⋃

π̂∈B(s,Ψ)

Cyl(π̂)

Informally, B(s, Ψ) is a “finite basis” of Ψ whose cylinders generate all (and

exactly all) executions from s that satisfy Ψ . Let Êx (s, k) be the subset of Êx (s)

containing only executions with k+1 states. Let π̂ = s0, . . . , sn ∈ Êx (s0, n). Let
us define p(π̂) as follows:

p(π̂) = 1 if n = 0 and p(π̂) =
∏

0≤i<n

δ(M)(si)(si+1) otherwise

Definition 4. Given a state s and a LTL formula Ψ , P(s, Ψ) is the probability
that s satisfies Ψ , and is defined as:

P(s, Ψ) =
∑

π̂∈B(s,Ψ)

p(π̂)

Rewards. We write P(M,Ψ) to mean P(Init(M), Ψ). A reward structure on a
αPA M is a pair (ρ, ι) such that ρ : S(M) �→ R and ι : S(M)×S(M) �→ R map
states and transitions of M , respectively, to real-valued rewards. Each transition
of M corresponds to a discrete unit of time.

Definition 5. The cumulative reward due to a reward structure R = (ρ, ι) from
state s up to time k (i.e., up to k transitions of M from s), denoted by C≤k(s,R)
is defined recursively as follows:

C≤0(s,R) = 0

∀k > 0 � C≤k(s,R) = ρ(s) +
∑

s′∈S(M)

δ(M)(s)(s′)× (ι(s, s′) + C≤(k−1)(s
′, R))

4 Compositional Verification

In this section, we present our compositionality theorems. We begin by defin-
ing the “product” of two executions. Let M1 ∈ αPA and M2 ∈ αPA. Let π̂1 =
s0, . . . , sn ∈ Êx (M1, n) and π̂2 = s′0, . . . , s

′
n ∈ Êx (M2, n) be two finite executions.
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Then, π̂1 × π̂2 ∈ Êx (M1 ‖ M2, n) is the execution (s0, s
′
0), . . . , (sn, s

′
n). If π̂ =

π̂1 × π̂2, then we write π � 1 and π � 2 to mean π̂1 and π̂2, respectively.
This extends to executions of different length as follows. Given a finite execu-

tion π̂ = s0, . . . , sm, and n ≥ m, the set of n-extensions of π̂, denoted by π̂+n,
is defined as follows:

π̂+n = {π̂′ ∈ Êx (s0, n) | π̂ � π̂′}
π̂1 × π̂2 = {π̂′

1 × π̂′
2 | π̂′

1 ∈ π̂1
+n ∧ π̂′

2 ∈ π̂2
+n ∧ n = max(|π̂1|, |π̂2|)}

E1 × E2 =
⋃

(π̂1,π̂2)∈E1×E2

π̂1 × π̂2

Note that if π̂ ∈ π̂1 × π̂2, then π̂1 � π̂ � 1 and π̂2 � π̂ � 2. Next we present two
lemmas (proofs in extended version: http://works.bepress.com/chaki/24).

Lemma 1. Let M1 ∈ αPA, M2 ∈ αPA be αPAs such that M1 " M2. Let
s1 ∈ S(M1), s2 ∈ S(M2), and Ψ1 and Ψ2 be LTL formulas over AP(M1) and
AP(M2), respectively. Then:

B((s1, s2), Ψ1 ∧ Ψ2) = B(s1, Ψ1)× B(s2, Ψ2)

Lemma 2. Let E1 and E2 be two minimal sets of finite executions. Then:

∑
π̂∈E1×E2

p(π̂) =

⎛⎝ ∑
π̂1∈E1

p(π̂1)

⎞⎠×
⎛⎝ ∑

π̂2∈E2

p(π̂2)

⎞⎠
Now we present and prove our first compositionality theorem.

Theorem 1. Let M1 ∈ αPA, M2 ∈ αPA be αPAs such that M1 "M2. Let Ψ1

and Ψ2 be LTL formulas over AP(M1) and AP(M2), respectively. Then:

P(M1 ‖M2, Ψ1 ∧ Ψ2) = P(M1, Ψ1)× P(M2, Ψ2)

Proof. The proof proceeds as follows:

� using Definition 4

P(M1 ‖M2, Ψ1 ∧ Ψ2) =
∑

π̂∈B((Init1,Init2),Ψ1∧Ψ2)

p(π̂)

� using Lemma 1

=
∑

π̂∈B(Init1,Ψ1)×B(Init2,Ψ2)

p(π̂)

� using Lemma 2

=

⎛⎝ ∑
π̂1∈B(Init1,Ψ1)

p(π̂1)

⎞⎠×
⎛⎝ ∑

π̂2∈B(Init2,Ψ2)

p(π̂2)

⎞⎠
� again using Definition 4

= P(M1, Ψ1)× P(M2, Ψ2)

��

http://works.bepress.com/chaki/24
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Theorem 1 generalizes from 2 to n αPAs as follows.

Theorem 2. Let M1, . . . ,Mn be αPAs such that ∀1 ≤ i < j ≤ n �Mi "Mj. Let
Ψ1, . . . , Ψn be LTL formulas over AP(M1), . . . ,AP(Mn), respectively. Then:

P(M1 ‖ · · · ‖Mn, Ψ1 ∧ · · · ∧ Ψn) =

n∏
i=1

P(Mi, Ψi)

We omit the proof of Theorem 2 for brevity, and turn our attention to rewards.
Let M1 and M2 be αPAs and let R1 = (ρ1, ι1) and R2 = (ρ2, ι2) be reward
structures defined on them. The composition of R1 and R2, denoted by R1⊕R2,
is the reward structure (ρ, ι) on M1 ‖M2 defined as follows:

ρ(s1, s2) = ρ1(s1) + ρ2(s2) ι((s1, s2), (s
′
1, s

′
2)) = ι1(s1, s

′
1) + ι2(s2, s

′
2)

Our second compositionality theorem relates to rewards, as stated next.

Theorem 3. Let M1 ∈ αPA, M2 ∈ αPA be αPAs such that M1 "M2. Let R1

and R2 be reward structures M1 and M2, respectively. Then:

∀k � C≤k((s1, s2), R1 ⊕R2) = C≤k(s1, R1) + C≤k(s2, R2)

Proof. The proof is by induction on k. If k = 0, then it follows from Definition 5.
Let R1 ⊕R2 = (ρ, ι), δ(M1) = δ1, δ(M2) = δ2, δ(M1 ‖M2) = δ. If k > 0, then:

� using Definition 5

C≤k((s1, s2), R1 ⊕R2) = ρ(s1, s2)+∑
(s′1,s

′
2)

δ(s1, s2)(s
′
1, s

′
2)× (ι((s1, s2), (s

′
1, s

′
2)) + C≤(k−1)((s

′
1, s

′
2), R1 ⊕R2))

� expanding ρ and ι and applying inductive hypothesis

= ρ1(s1) + ρ2(s2)+⎛⎝ ∑
s′1∈S(M1)

∑
s′2∈S(M2)

δ1(s1, s
′
1)× δ2(s2, s

′
2)× (ι1(s1, s

′
1) + C≤(k−1)(s

′
1, R1))

⎞⎠+

⎛⎝ ∑
s′1∈S(M1)

∑
s′2∈S(M2)

δ1(s1, s
′
1)× δ2(s2, s

′
2)× (ι2(s2, s

′
2)) + C≤(k−1)(s

′
2, R2))

⎞⎠
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� rewriting

= ρ1(s1) + ρ2(s2)+⎛⎝ ∑
s′2∈S(M2)

δ2(s2, s
′
2)

⎞⎠
︸ ︷︷ ︸

=1

×

⎛⎝ ∑
s′1∈S(M1)

δ1(s1, s
′
1)× (ι1(s1, s

′
1) + C≤(k−1)(s

′
1, R1))

⎞⎠+

⎛⎝ ∑
s′1∈S(M1)

δ1(s1, s
′
1)

⎞⎠
︸ ︷︷ ︸

=1

×

⎛⎝ ∑
s′2∈S(M2)

δ2(s2, s
′
2)× (ι2(s2, s

′
2)) + C≤(k−1)(s

′
2, R2))

⎞⎠

= ρ1(s1) +

⎛⎝ ∑
s′1∈S(M1)

δ1(s1, s
′
1)× (ι1(s1, s

′
1) + C≤(k−1)(s

′
1, R1))

⎞⎠+

ρ2(s2) +

⎛⎝ ∑
s′2∈S(M2)

δ2(s2, s
′
2)× (ι2(s2, s

′
2)) + C≤(k−1)(s

′
2, R2))

⎞⎠

� using Definition 5

= C≤k(s1, R1) + C≤k(s2, R2)

��

Theorem 3 generalizes from 2 to n αPAs as follows.

Theorem 4. Let M1, . . . ,Mn be αPAs such that ∀1 ≤ i < j ≤ n �Mi "Mj. Let
R1, . . . , Rn be reward structures over M1, . . . ,Mn, respectively. Then:

∀k � C≤k(M1 ‖ · · · ‖Mn, R1 ⊕ . . .⊕Rn) =
∑

1≤i≤n

C≤k(Mi, Ri)

We omit the proof of Theorem 4 for brevity. The power of Theorems 2 and 4
is that they enable compositional verification of αPAs. Specifically, Theorem 2
enables us to compute probabilities satisfying a conjunctive LTL formula on
the composition of several αPAs from the probabilities of satisfying individual
conjuncts on each component αPA. Similarly, Theorem 4 enables us to compute
rewards on the composition of several αPAs from the individual rewards on
each component αPA. This avoids having to computes the reachable statespace
of the composed αPA, and therefore the statespace explosion.

In the next section, we present an example that is compositionally verifiable
using Theorem 2 and Theorem 4. After that, in Section 6, we present empiri-
cal evidence about the improvement in verification due to the compositionality
enabled by Theorem 2 and Theorem 4.
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5 The Scenario: Robotic Demining

We consider a two-dimensional area (modeled as a grid of cells with Row rows
and Col columns) randomly seeded with mines. Robots are organized into T
teams, each comprising of N robots. The teams sweep the area, detect each
mine, and either defuse it or (failing which) mark it. The mission succeeds if
all mines are detected and defused (or marked) within a specified deadline D.
The mission is parameterized not only by Row, Col, T , N , and D, but also the
capabilities of each robot, the terrain, and coordination algorithm used by the
robots. We first describe how each team is modeled as a αPA.

5.1 Modeling a Team

Each team has a pre-defined initial cell cInit , final cell cFinal , and a path plan
P that dictates how to move cell-to-cell from cInit to cFinal . At any point, the
team has a leader, and zero or more followers. In each cell, the team (specifically,
the leader) first attempts to sense a mine. If a mine is detected, the leader
attempts to defuse it. On successfully defusing, the team moves on to the next
cell according to its path plan P . If defusing fails, then the cell is first marked as
being mined, and then the team moves on to the next cell according to its path
plan P . If the mine explodes (thereby destroying the leader) the followers elect a
new leader using a pre-defined leader election algorithm. We are concerned with
several sources of uncertainty in this scenario:

1. Due to the terrain and the quality of the leader’s sensing capability, it fails
to detect a mine.

2. Due to the terrain, the time required to defuse a mine varies.
3. Due to the quality of the leader’s defusing capability, the mine explodes

while it is being defused.
4. Due to the quality of the leader’s marking capability, the mine explodes

while the cell is being marked.
5. Due to communication problems, the leader election algorithm fails.
6. Due to the terrain and the team’s locomotion capability, the team fails to

move to the next cell in its path plan.

To express these uncertainties as part of the team’s behavior, we model each
team as a αPA. The αPA is composed of two sub-αPAs – Mcell corresponding
to the team’s behavior within a cell, and Mstep corresponding to the team’s
locomotion from the current cell to the next. Figure 1(a) shows the overall αPA
for a team, and its decomposition into the two sub-αPAs Mcell and Mstep . The
initial state is INIT, and the αPA ends up in one of three possible end-states –
DONE indicates that the team has covered all cells; STUCK indicates that the
team is unable to move to its next cell; BLOWNUP indicates that the team has
been destroyed by exploding mines.
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(a) (b)

Fig. 1. (a) αPA for a team, and its decomposition into sub-αPAs Mcell and Mstep ; (b)
αPA Mstep ; transitions are numbered for ease of reference, and labeled by associated
probabilities (green), guards (black) and commands (red); tk = transition number k;
true guards and implied probabilities are omitted for brevity, e.g., the probability of
t1 is 1.0, the guard of t5 is true, and the probability of t12 is (1 − p skip). Note that
Y MIN=0 and Y MAX=Row-1. All transitions are labeled by action tick, i.e., α = tick.

αPA Mstep . We assume that the teams follow a pre-determined path through
the grid. Specifically, if there is a single team (i.e., T = 1), then it follows the
path shown in Fig. 2(a). If T > 1, then each team operates independently on a
distinct fragment of the path that is pre-allocated to it. For example, if T = 4,
the starting and ending cells, and the path of each team is shown in Fig. 2(b).

Figure 1(b) shows the αPA Mstep . The team maintains: (a) its current posi-
tion in the grid – using variables x and y which are initialized to values (X INIT
and Y INIT, respectively) corresponding to cInit ; and (b) the direction of move-
ment – using variable dir which is initialized according to P and takes two
possible values UP and DOWN. All transitions are labeled by the action tick.

Let tk mean transition number k in Figure 1(b). From the initial state NEXT,
the team first checks if it has reached cFinal . In this case (t1), the team moves
to state DONE and stutters (t14). Otherwise, the team attempts to move to
the next cell (t2). This involves two cases: (a) the team moves to the next col-
umn (t3) which involves two turns (t5, t7), a skip (t6), and a change in direc-
tion; or (b) the team moves to the next row (t4) which involves just a skip
(t11). Skips and turns succeed with probability p skip and p turn, respectively.
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(a) (b)

Fig. 2. Path followed by the teams: (a) path with one team; (b) path with four teams;
cIniti, cFinal i, and Pi are the starting cell, ending cell, and path plan for i-th team.

These probabilities are determined by the terrain and the team’s locomotion
capability, as discussed later. If a skip or a turn fails, the team moves to a
STUCK state (t8, t9, t10, t12) and stutters (t13).

αPA Mcell . The αPA Mcell is shown in Fig. 3. We model whether a mine was
missed using variable failed, initialized to false. We also model the number of
remaining robots in the team using variable sz, initialized to N . In the following,
tk means the transition labeled k in Fig. 3. The teams begins in state INIT and
the leader attempts to detect a mine. The result of mine detection is either an
explosion with probability p explode detect (t2), a mine found with probability
p detect mine (t1), or no mine found (t3).

If no mine was detected (state NOT DETECTED), then we assume that with
probability p false neg, there is actually a mine. In this case, with equal likeli-
hood, the leader either explodes (t4) or the team moves to the next cell (t5). In
the latter case, we indicate mission failure (since a mine has been missed) by
setting failed to true. Finally, with probability (1 - p false neg), the team moves
to the next cell (t6), continuing with its mission. The probability p false neg is a
function of the leader’s detecting capability and the terrain, as discussed later.

If a mine was detected, the leader attempts to defuse it. We assume that
the leader is in one of three defusing situations with increasing difficulty – easy,
medium and hard. Initially (DEFUSE1), the leader assumes that it is in the easy
defusing situation. The result is either an explosion with probability (p d1 ×
p ed1) (t8), successful defusing of the mine with probability (p d1× (1− p ed1))
(t7), or a decision to move on to the medium defusing scenario (t9). Here, p d1
is the probability that the leader is actually in an easy defusing situation, and
p ed1 is the probability that there is an explosion given that the leader is trying
to defuse in an easy situation. As discussed later, while p d1 is a function of the
terrain, p ed1 is a function of the leader’s defusing capability.
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Fig. 3. αPA Mcell ; transitions are numbered and labeled, and guards and probabilities
are omitted as in Figure 1(b); states LEADER and NEXT are repeated to reduce clutter;
all transitions are labeled by action tick, i.e., α = tick.

In the medium defusing scenario (DEFUSE2), the leader either blows up (t11),
successfully defuses the mine (t10), or moves to the hard defusing scenario (t12).
The probabilities involved in this step are: p d2 – the terrain-dependent prob-
ability that the leader is actually in a medium defusing situation, and p ed2 –
the probability (dependent on the leader’s defusing capability) that there is an
explosion given that it is trying to defuse in a medium situation.

In the hard defusing scenario (DEFUSE3), the leader either blows up (t14),
successfully defuses the mine (t13), or attempts to mark the cell (t15) as being
mined. The probabilities involved in this step are: p d3 – the terrain-dependent
probability that the leader is actually in a hard defusing situation, and p ed3 –
the probability (dependent on the leader’s defusing capability) that there is an
explosion given that it is trying to defuse in a hard situation.

Finally, when the leader attempts to mark the cell, it either blows up (t17)
with probability p em, or succeeds (t16) and the team continues to the next cell.
The probability p em of an explosion during the marking operation is a function
of the leader’s defusing capability, as discussed later.

If the leader blows up, the team elects a new leader from state LEADER.
If there are no remaining robots in the team (i.e., sz=0), the team moves to
BLOWNUP (t18) and stutters. Otherwise, with probability p elect leader, a new
leader is elected successfully and the team moves on to the next cell (t20), and
with probability (1 - p elect leader) leader election fails and the team moves to
STUCK (t19) and stutters.
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5.2 Team αPA Parameters

The αPA for a team is parameterized by the following:

1. The number of robots N , and the coordinates for cInit and cFinal .
2. The probability (p detect mine) of detecting a mine in a cell.
3. The probability (p elect leader) of successful leader election.
4. The remaining probabilities were computed from the terrain and the robot’s

capabilities as discussed next.

Modeling Terrain and Robot Capabilities. The robot’s mine detection ca-
pability was modeled by a parameter DET with three possible values – LOW,
MEDIUM and HIGH. The robot’s mine defusing capability was modeled by a
parameter DEF with three possible values – LOW, MEDIUM and HIGH. The
robot’s locomotion capability was modeled by a parameter LOC with three pos-
sible values – LOW, MEDIUM and HIGH. The terrain was modeled by eighteen
independent parameters: (i) p fn dc0, p fn dc1 and p fn dc2 are the probabili-
ties of a false negative (i.e., mine present but not detected) given that DET =
LOW, MEDIUM and HIGH, respectively; (ii) p d1, p d2 and p d3 are the proba-
bilities of being in an easy, medium, or hard defusing situation, respectively; (iii)
p edet dc0, p edet dc1 and p edet dc2 are the probabilities of an explosion dur-
ing mine detection given that DET = LOW, MEDIUM and HIGH, respectively;
(iv) p edef dc0, p edef dc1 and p edef dc2 are the probabilities of an explosion
during mine defusing given that DEF = LOW, MEDIUM and HIGH, respectively;
(v) p skip lc0, p skip lc1 and p skip lc2 are the probabilities of successful skip
given that LOC = LOW, MEDIUM and HIGH, respectively; and (vi) p turn lc0,
p turn lc1 and p turn lc2 are the probabilities of successful turn given that LOC
= LOW, MEDIUM and HIGH, respectively. For our experiments, all terrain pa-
rameters were assigned constant values, but in practice we expect that these
atomistic probabilities will be obtained empirically.

Remaining Probabilities. The probability of a false negative in Fig. 3 are
computed as follows:

p false neg =

⎧⎨⎩p fn dc0 if DET = LOW,
p fn dc1 if DET = MEDIUM,
p fn dc2 if DET = HIGH.

The probability of an explosion while detecting a mine is computed as follows:

p explode detect =

⎧⎨⎩p edet dc0 if DET = LOW,
p edet dc1 if DET = MEDIUM,
p edet dc2 if DET = HIGH.

The probabilities of an explosion while defusing or marking a cell are computed
as follows:

p ed1 = p ed2 = p ed3 = p em =

⎧⎨⎩p edef dc0 if DEF = LOW,
p edef dc1 if DEF = MEDIUM,
p edef dc2 if DEF = HIGH.
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The probability of successful skip is computed as follows:

p skip =

⎧⎨⎩p skip lc0 if LOC = LOW,
p skip lc1 if LOC = MEDIUM,
p skip lc2 if LOC = HIGH.

Finally, the probability of successful turn is computed as follows:

p turn =

⎧⎨⎩p turn lc0 if LOC = LOW,
p turn lc1 if LOC = MEDIUM,
p turn lc2 if LOC = HIGH.

5.3 Multiple Teams and Properties

Let Mi = (Si, Init i, Σi, δi,AP i,Li) be the αPA for the i-th team. Recall that all
transitions in the αPA for a team are labeled by the action tick, i.e., Σi = {tick}.
A state of Mi is a valuation to the variables x, y, dir, failed, sz and pc, where pc
is the program counter whose value indicates the position of the αPA w.r.t. the
state machines in Figure 1(b) and Figure 3. For example, pc = LEADER means
that the team is about to elect a new leader. Note that all variables have a finite
domain, hence Si is finite as well. In addition, Mi has three atomic propositions:
(i) donei which is true in all states where pc = DONE; (ii) succi which is true in
all states where failed = false; and (iii) init i which is true in all states where pc
= INIT. Now consider a scenario with T teams. Clearly, the αPAs M1, . . . ,MT

satisfy the conditions of Theorem 2.
Success. The first property we consider is true for all executions where all

teams cover all their cells without missing a single mine within a deadline D.
Let us write F≤kΨ to mean Ψ ∨ XΨ ∨ XXΨ ∨ · · · ∨ XX . . .X︸ ︷︷ ︸

k times

Ψ . Then our first

property is expressed by the following path formula:

successD ≡ (F≤D(done1 ∧ succ1)) ∧ · · · ∧ (F≤D(doneT ∧ succT ))

Note that successD satisfies the conditions of Theorem 2.
Coverage. The second property we consider is coverage. Informally, this is the

number of cells processed by all the teams within a deadline D. Formally, it is
expressed as the cumulative reward:

coverageD ≡ C≤D((Init1, . . . , InitT ), R1 ⊕ . . .⊕RT )

where, for 1 ≤ i ≤ T , Ri = (ρi, ιi) is the reward structure such that:

∀s ∈ Si � ρi(s) = 1 if Init i ∈ Li(s) and ρi(s) = 0 otherwise

∀(s, s′) ∈ Si × Si � ιi(s, s′) = 0

In other words, Ri assigns a reward 1 whenever the i-th team enters a new cell.
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6 Experiments

We performed a set of experiments using the αPA model of the robotic demining
scenario presented in Section 5. The goal was to demonstrate the suitability of
our approach to make appropriate tradeoff decisions when designing robotic
missions, and to demonstrate the effectiveness of our compositionality theorem
in improving scalability. All our experiments were performed on an Intel Core i7
machine with four cores (each running at 2.7GHz) and 8GB of RAM. We used
a timeout of 1800s, and fixed certain parameters as follows:

p fn dc0 = 0.05 p fn dc1 = 0.01 p fn dc2 = 0.005

p d1 = 0.25 p d2 = 0.33 p d3 = 0.5

p edet dc0 = 0.05 p edet dc1 = 0.04 p edet dc2 = 0.03

p edef dc0 = 0.05 p edef dc1 = 0.04 p edef dc2 = 0.03

p skip lc0 = 0.9999 p skip lc1 = 0.99999 p skip lc2 = 0.999999

p turn lc0 = 0.9999 p turn lc1 = 0.99999 p turn lc2 = 0.999999

p detect mine = 0.5 D = 250 p elect leader = 0.9

We also set Row=10, and Col=12. Other parameters were varied based on the
experiment. We used prism version 4.0.3, which was the latest version avail-
able at the start of this project. We modeled αPAs in prism as DTMCs with
every transition labeled by an action called tick. Thus, the default synchro-
nization semantics for DTMCs used by prism coincided with the semantics of
composition of αPAs. All our prism models, results, as well as instructions
to reproduce them are available at www.contrib.andrew.cmu.edu/ schaki/

discover/spin13.tgz.

Experiments about success. The first set of experiments were designed to evaluate
the impact of DET, DEF, LOC, T andN on successD. The results are summarized
in Table 1. We consider eight possible combinations of DET, DEF, and LOC.

The first five rows are the values of successD for each of these eight combina-
tions using T = 2 and different values of N . We observe that changing DET from
LOW to HIGH has a much bigger impact on the value of successD compared to
changing DEF or LOC. This suggests that using robots with good mine detection
capability should be of high priority during mission design.

The next five rows show the value of successD with different values of T and
N such that T × N = 30, i.e., different team configurations with 30 robots.
They indicate that three teams with ten robots each provide optimal values of
successD. Note that successD drops off sharply for N < 5 since small teams have
a high chance of being blown up completely before mission completion.

The final column shows the average time required to compute successD over
all eight combinations of DET, DEF, and LOC considered. The average is a good

www.contrib.andrew.cmu.edu/~schaki/discover/spin13.tgz
www.contrib.andrew.cmu.edu/~schaki/discover/spin13.tgz


150 S. Chaki and J.A. Giampapa

Table 1. Results for successD with different T , N , DET, DEF and LOC; second row
entries indicate values of DET, DEF and LOC; e.g., LLL = (DET=LOW, DEF=LOW,
LOC=LOW); LHL = (DET=LOW, DEF=HIGH, LOC=LOW), etc.; Time = average time
to compute successD over all combinations of DET, DEF and LOC.

T N successD Time

LLL LLH LHL LHH HLL HLH HHL HHH seconds

2 2 0.000 0.000 0.000 0.000 0.013 0.014 0.035 0.035 21

2 3 0.001 0.001 0.003 0.004 0.065 0.066 0.129 0.131 26

2 5 0.018 0.018 0.030 0.031 0.256 0.259 0.355 0.359 38

2 10 0.073 0.074 0.086 0.087 0.386 0.391 0.443 0.449 62

2 15 0.076 0.077 0.087 0.089 0.386 0.391 0.443 0.449 87

3 10 0.088 0.090 0.100 0.101 0.435 0.441 0.491 0.498 46

6 5 0.080 0.081 0.094 0.095 0.429 0.434 0.488 0.494 29

10 3 0.046 0.047 0.062 0.063 0.354 0.359 0.435 0.441 35

15 2 0.011 0.012 0.020 0.020 0.175 0.177 0.261 0.264 48

30 1 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.003 100

Table 2. Results for coverageD with different T , N , DET, DEF and LOC; second row
entries indicate values of DET, DEF and LOC; e.g., LLL = (DET=LOW, DEF=LOW,
LOC=LOW); LHL = (DET=LOW, DEF=HIGH, LOC=LOW), etc.; Time = average time
to compute coverageD over all combinations of DET, DEF and LOC.

T N DET:DEF:LOC Time

LLL LLH LHL LHH HLL HLH HHL HHH seconds

2 2 43.3 43.3 48.3 48.4 61.8 62.0 70.6 70.8 7

2 3 60.1 60.2 66.2 66.4 80.8 81.0 89.1 89.3 7

2 5 82.1 82.4 87.5 87.7 97.8 98.1 102.5 102.8 7

2 10 93.5 93.8 96.2 96.5 101.7 102.0 104.6 105.0 7

2 15 93.6 93.9 96.2 96.5 101.7 102.0 104.6 105.0 7

3 10 101.6 101.8 103.5 103.8 107.5 107.7 109.6 109.8 9

6 5 110.3 110.4 111.4 111.5 113.6 113.8 114.7 114.9 16

10 3 112.9 113.0 113.9 114.0 115.8 115.9 116.6 116.7 25

15 2 112.4 112.4 113.6 113.6 115.8 115.8 116.7 116.8 37

30 1 105.3 105.3 106.9 107.0 110.2 110.3 111.9 111.9 84

indicator since the standard deviation was quite low. These times were measured
when we performed our experiments compositionally, i.e., computing successD
for each team individually, and multiplying the results (in accordance with The-
orem 2). When we used the monolithic approach, i.e., all teams composed in the
same model, prism timed out at 1800 seconds in all cases.
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Experiments about coverage. The next set of experiments were designed to eval-
uate the impact of DET, DEF, LOC, T and N on coverageD. The results are
summarized in Table 2. Each cell of the table corresponds to the same values of
DET, DEF, LOC, T and N as in the corresponding cell in Table 1.

Not surprisingly, we again observe that changing DET from LOW to HIGH has
a much bigger impact on the value of coverageD compared to changing DEF or
LOC. This suggests that using robots with good mine detection capability is a
good tradeoff for not only successD, but coverageD as well.

The results for different values of T (last five rows of Table 1) are somewhat
different. The optimal coverageD is observed for ten teams with three robots
each. This reflects a subtle difference between coverageD and successD – a cell
is covered as soon as the team reaches it, but that does not contribute to suc-
cess unless the team avoids being blown up as well. In general, the benefit of
smaller teams extends further for coverageD simply because more teams are
able to “reach” more cells even if they get blown up. However, for T > 15, even
coverageD falls off.

The final column shows the average time required to compute coverageD over
all eight combinations of DET, DEF, and LOC considered. Once again, these
times are for the compositional approach, i.e., computing coverageD for each
team individually, and adding the results (in accordance with Theorem 4). For
the monolithic approach, prism timed out at 1800 seconds in all cases.

7 Conclusion

We present an approach to compute quantitative utility of robotic missions using
probabilistic model checking. We show how to express a robotic demining mission
as a αPA, its success as a LTL formula, and its coverage as a reward. We prove
a set of compositionality theorems that enable us to compute the success prob-
ability (or, coverage) of a system composed of several αPAs by combining the
success probability (or, coverage) of each αPA in isolation. This ameliorates the
statespace explosion problem, even when the system being verified is composed
of many αPAs. We validate our approach empirically, using the probabilistic
model checker prism for our experiments.

We envision building on this work in several directions. One issue is that
our model for the demining mission is based on several atomistic probabilities
(e.g., p fn dc0). We assume that these probabilities are available with sufficient
accuracy. Otherwise, the predictions made via probabilistic model checking will
be correspondingly inaccurate. As part of our ongoing work, we are developing
ways to estimate these probabilities via field experiments. Another direction is
to adapt probabilistic model checking to create a more generative approach –
one that constructs an optimal mission – that can handle an expressive range of
mission configurations and constraints.
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Abstract. We present an extension of the MGSyn toolbox that allows synthesiz-
ing parallelized controller programs for industrial automation with performance
guarantees. We explain the underlying design, outline its algorithmic optimiza-
tions, and exemplify its usage with examples for controlling production systems.

1 Introduction

Game-based synthesis is a technique that automatically generates controllers imple-
menting high-level specifications. A controller in the game-based setting corresponds
to the finite representation of a winning strategy of a suitable game. Recent algorithmic
improvements allow synthesis to be applied in research domains such as programming
languages, hardware design and robotics. Within the domain of industrial automation,
we created the MGSyn toolbox [3] to synthesize centralized controller programs for
industrial automation that orchestrate multiple processing stations. Uncertainties from
sensor readings are modeled as uncontrollable (but fully specified) environment moves,
thereby creating a game. The use of game-based modeling even allows the automation
plant to be dependable with respect to the introduction of faults. Although the initial ex-
periment is encouraging, the road to a solid methodology applicable to useful industrial
settings is still long. One crucial requirement is to generate efficient controllers, where
efficiency can be referred to several measures in production such as processing time,
throughput or consumed power.

In this paper, we present an extension of MGSyn that allows synthesis of programs
that not only win the corresponding game (i.e., successfully accomplish production
tasks), but also provide explicit guarantees concerning specified quantitative measures.
Admittedly, efforts within the research community target to synthesize optimal con-
trollers [1,7,2,4]. Nevertheless, we argue that finding optimal controllers can be diffi-
cult in practice – apart from complexity considerations, the optimality criteria are often
multiple yet independent measures and no global optimum exists in general. Creating
engines that synthesize controllers and guarantee performance is a reasonable alterna-
tive to the typical approach of listing performance criteria as secondary specifications
that need to be guaranteed.

The extensions of MGSyn presented in this paper target the following aspects:

• Enable an intuitive method to select performance measures in a cost-annotated
model. For every type of performance measure, provide a corresponding synthe-
sis engine.

E. Bartocci and C.R. Ramakrishnan (Eds.): SPIN 2013, LNCS 7976, pp. 154–159, 2013.
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Table 1. Semantics of sequential (�) and parallel (⊗) composition (WC = worst case, ET =
execution time).

cost ≈ ET � := max � := sum

⊗ := max
WCET of any Total
single action WCET

⊗ := sum –
Total ET

of all actions

cost ≈ power � := max � := sum

⊗ := max
Peak power consumption

–
of any single action

⊗ := sum
WC peak power WC total power

consumption consumption

• Identify sets of actions that may be executed in parallel, as efficient execution of
production tasks requires the exploitation of parallelization.
• Synthesize controllers that guarantee performance under non-cooperative scenar-

ios. For many problems, completing the task is only possible when the environment
cooperates. Our approach allows a synthesized controller to loop as long as the en-
vironment does not cooperate. The control task is achieved when the environment
(e.g., a human operator) turns cooperative.

2 Approach

Cost annotation. For quantitative synthesis, the common model of computation is based
on weighted automata [5], where costs of actions are annotated on edges. The quantita-
tive extension of MGSyn allows specifying costs as a performance metric with the fol-
lowing restrictions: (1) Cost is annotated on a parameterized action as an upper bound
and every concretized action (i.e., action instance with concrete parameter values) in-
herits that cost. (2) All costs are non-negative integers. (3) Uncontrollable actions (i.e.,
environment moves) have zero cost. The first restriction is due to the syntactic format of
the PDDL language [6]. The second restriction is used for symbolic encoding in binary
decision diagrams (BDD).

MGSyn allows selecting a sequential composition operator % that calculates a new
value from the value of the existing trace and the current cost associated with the se-
lected edge. Two common operators are max and sum. For example, if cost annotation
in the weighted automaton corresponds to power consumption, then a sequential com-
position based on the max operator models peak power consumption, whereas the sum
operator models total power consumption.

Parallel execution. MGSyn by default generates a sequence of control actions that
achieve the specified task. However, executing independent actions in parallel can be
of advantage, for example by reducing the overall execution time. MGSyn assumes
that two or more actions can in principle be executed in parallel when the workspaces
affected by the actions are disjoint and the actions have disjoint parameters (i.e., no “re-
source sharing”). When parallel execution of degree d is used, MGSyn generates com-
binations of d actions with syntactic guards to prevent dependent actions from being
executed in parallel1. Consider conveyor belt action belt-move(dev,wp, pa, pb) which
allows to use device dev to move a work piece wp from position pa to position pb.

1 We currently do not consider executing multiple sequential actions in parallel with another
action.
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For d = 2, MGSyn automatically derives action PAR belt-move belt-move(dev1,wp1,
p1a, p1b, dev2,wp2, p2a, p2b) for moving two different work pieces on two different
conveyor belts at the same time. In the precondition of this action, the constraints
dev1 �= dev2, wp1 �= wp2, p1a �= p2a, p2b and p1b �= p2a, p2b are automatically
added to ensure that parameter values are different2.

To use quantitative synthesis, we provide parallel composition operators orthogonal
to sequential composition operators. Table 1 lists some examples for cost semantics
with respect to execution time and power consumption and the two operators sequential
composition (%) and parallel composition (⊗), where “–” indicates that no meaningful
semantics was found. The effects of parallel composition operators are statically created
in MGSyn and are independent of the synthesis algorithm. For example, if action belt-
move has cost 3, MGSyn creates parallel action PAR belt-move belt-move with cost 6 if
⊗ := sum and cost 3 if ⊗ := max.

Synthesis engine. We outline how the synthesis engine supports sequential operators.

• For max, given a performance (i.e., cost) bound k, the engine statically removes
every parameterized control action whose cost is greater than k. Notice that as the
cost of any environment action is always zero (cf. restriction 3), we never restrict the
ability of the environment. Then the game is created as if no cost is used. Therefore,
max can be used in all game types.
• For sum, the support of quantitative synthesis is mainly within reachability games

where a synthesized strategy does not contain a loop, since any loop with nonzero
cost implies the overall cost to be infinite. Given a performance bound k, the syn-
thesis engine starts with the set of goal states whose cost equals k and computes
the reachability attractor. Let the state be (q, α), where q is the state of the non-
quantitative reachability game and α is the cost. During the attractor computation,
if (q, α) is in the attractor, one can reach the goal state from q with cost k − α,
because the environment has no control over the cost (cf. restriction 3). This allows
reusing our existing game engine with reachability winning conditions. The con-
troller wins the game if the attractor contains the initial state whose cost is greater
than zero.

Non-cooperative environment. Lastly, MGSyn allows the backend solver to find
strategies for goal-or-loop specifications. This extension focuses on specifying non-
cooperative scenarios as a looping invariant. Whenever a run of the game leaves the
invariant, the goal (i.e. the accomplishment of the task) should eventually be reached.
This concept can also be applied to synthesize low-level controllers realizing parameter-
ized actions. For example, consider the action belt-move of the conveyor belt. Realizing
such a controller requires a specification which checks when the work piece has ap-
peared at the start of the belt, and the synthesized program should allow to loop as long
as the work piece is not detected.

It is undesirable that an automation system behaves arbitrarily during the looping
process (although still conforming to the specification), because this would consume
excessive energy. This problem can be handled by a game reduction that sets the cost

2 MGSyn does not generate constraints such as dev1 �= p2a, because dev1 and p2a are of
different types.
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of idle or sensor-triggering actions to be zero and all other actions greater than zero.
When specifying an upper bound on the total accumulated cost, the synthesis engine
will ensure that the cost accumulation is zero during the looping process, because this
is the only way to ensure that the accumulated cost does not exceed the threshold.

Given a looping condition Loop and a goal condition Goal, where both are sets
of states, the synthesis algorithm is based on an approach that solves reachability and
safety games in sequence: first apply reachability game solving and compute the con-
trol attractor A := Attr0(Goal) where states within A can eventually enter the goal
regardless of choices made by the environment. Then use safety game to compute the
environment attractorB := Attr1(¬Loop∧¬A) where the environment can guarantee to
reach ¬Loop ∧ ¬A for every state s ∈ B regardless of choices made by the controller.
If a state is within A, a strategy to reach the goal exists. Otherwise, if a controllable
state s is not within B, it has a strategy to stay outside ¬Loop∧ ¬A, i.e., to stay within
Loop ∨ A. As s is not within A, it is within Loop.

Therefore, with the above computation, a feasible strategy can guarantee to loop
within Loop, or reach a state that is within A. From that state, the reachability strat-
egy is used to guide the run towards the goal. The complexity of solving goal-or-loop
specifications is linear to the size of the arena, making it feasible to be applied in larger
scenarios. By annotating actions with cost, MGSyn allows to synthesize controllers that
guarantees efficiency in looping (i.e., looping cannot increase cost).

3 Using MGSyn for Quantitative Synthesis

In the following, we demonstrate how quantitative synthesis is achieved in MGSyn in
a simplified scenario. The FESTO Modular Production System (MPS)3 is a modular
system of mechatronic devices that model industrial automation tasks by processing
simple work pieces. Our demonstration comprises two FESTO MPS units that form
a circular processing chain, namely storage and processing (compare Figure 1). The
formal model derived from this setup consists of:

• A list of formal predicates that describe the system state space, for example
at(?work-piece ?position), drilled(?work-piece) and color(?work-piece ?value).
• A list of devices (instances of the predefined device types robot arm storage RAS,

conveyor belt CB, lever Lever, rotary plate RP, height sensor HS, drill Drill) with
operating positions.
• Behavioral interfaces (actions) associated with each device type (e.g., belt-move,

plate-rotate, trigger-color-sensor) with annotated individual costs. Formally, a be-
havioral interface specifies preconditions and effects on the system state space.
• Quantitative properties (i.e., goal conditions over the system state space) with an-

notated cost bounds as well as sequential and parallel composition operators. Com-
position operators can be either sum or max as presented in Section 1.

We formulate a formal specification in PDDL which resembles the following informal
specification: initially, work pieces wp1 and wp2 are located at CB01-mid and CB02-
mid, respectively. The goal is to drill wp1 if it is facing up (which means the work

3 http://www.festo-didactic.com/int-en/learning-systems/
mps-the-modular-production-system/

http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/
http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/
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Fig. 1. FESTO MPS automation system and its simplified abstract model

Table 2. Results of synthesis from quantitative specifications. For comparison, results for ex-
periments without cost model are provided. Times refer to a 3 GHz system with 4 GB of RAM
(single-threaded algorithm).

Experiment
Max. degree of Cost � ⊕ WC WC Synthesis

parallelization d bound moves cost time (sec)

1. WCET optimization
2 28 sum max inf.1 inf.1 18.7
2 29 sum max 15 29 19.4
2 302 sum max 14 29 22.1

2. WC total power consumption optimization
2 41 sum sum inf.1 inf.1 20.8
2 42 sum sum 15 42 21.0
2 432 sum sum 14 42 21.1

3. WC peak power consumption optimization
2 2 max sum inf.1 inf.1 14.93

2 3 max sum 18 3 16.3
2 42 max sum 15 4 19.2

Parallelization disabled

1 41 sum N/A inf.1 inf.1 6.5
1 42 sum N/A 22 42 7.1
1 432 sum N/A 21 42 7.6
1 2 max N/A inf.1 inf.1 5.4
1 32 max N/A 21 3 6.3

Non-quantitative (no consideration of cost)
1 ∞ N/A N/A 21 N/A 6.4
2 ∞ N/A N/A 14 N/A 19.0

1 Infeasible (i.e., no solution) due to cost bound being too restrictive.
2 The same strategy is generated also for higher cost bounds, only synthesis time differs.
3 Since it is not obvious whether behavioral interfaces with cost 3 are actually used in the

generated strategy, the infeasibility of this scenario cannot be directly decided from the cost
annotation/bound.

piece’s orientation is correct) and to move it to CB02-mid. wp2 should be stored in the
storage rack level that corresponds to its color (red work pieces go to upper level and
silver work pieces to middle level), but when the rack is already occupied, it should be
moved to CB01-mid. Costs are annotated as follows: behavioral interfaces robot-move
(for RAS01) and belt-move (for CB01 and CB02) have cost 3, plate-rotate for RP-01
has cost 2 and all other behavioral interfaces (including sensor triggerings) have cost 1.
Furthermore, we formulate the following optimization goals:

1. WCET optimization: Synthesize a strategy that does not exceed a specified maximal
execution time. Cost corresponds to execution time with % := sum, ⊗ := max.
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2. WC total power consumption optimization: Synthesize a strategy not exceeding
a given WC total power consumption. Cost represents power consumption with
% := sum, ⊗ := sum.

3. WC peak power consumption optimization: Synthesize a strategy not exceeding
a given WC peak power consumption. Cost represents power consumption with
% := max, ⊗ := sum.

Table 2 summarizes the results. In case of feasibility, synthesis times also include C
code generation for execution on real hardware or simulation. Worst case (WC) num-
bers of moves were directly extracted from the generated strategy. Worst case costs were
derived by inspecting all possible paths in the generated strategy using simulation.

The results show that about one third of the control moves can be parallelized and
that parallelization requires about three times the synthesis time of the non-parallel case
for the given specification. Higher cost bounds require a slightly higher synthesis time.
When the cost bound is very tight, the tool synthesizes a strategy with more, but cheaper
moves (e.g., 15 instead of 14). The generated strategy for experiment 3 significantly
differs from the strategy for 1 and 2.

4 Conclusion

In this paper, we report how MGSyn is extended to synthesize controllers with per-
formance guarantees. The key factors are (1) flexible interpretation of cost as a perfor-
mance bound using sequential and parallel composition operators as well as (2) suitable
integration into the symbolic synthesis engine. Experiments show that the resulting con-
trollers are quantitatively better than controllers being synthesized without cost analy-
sis. The extra synthesis time can be tolerated when controllers are generated offline.
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Abstract. We apply executable Graph Transformation Systems for the
formal specification of the Gafni-Bertsekas algorithm, a Link Reversal
Routing algorithm for Mobile Ad Hoc Networks. The considered case-
study and the corresponding correctness properties require the combina-
tion of graph production rules with operations on data fields,
control strategies and temporal properties defined over graph patterns.
The model is automatically validated via the GROOVE model checker.

1 Introduction

Following a recently established connection between graph grammars and ver-
ification (see e.g. [14,2,16,15,18]), we propose to apply Graph Transformation
Systems (GTS) as an automated validation method for distributed algorithms.
As a case-study we consider here the Gafni-Bertsekas algorithm [11], an in-
stance of the more general class of Link Reversal Routing (LRR) algorithms
used for route maintenance in Mobile Ad Hoc Networks [22]. In this version of
the protocol heights (tuples of integers) are associated to individual nodes. The
lexicographic order of heights specifies the direction of an overlay network that
points towards a fixed destination node. A virtual link between two nodes is well-
defined only if they are connected in the underlying communication topology,
made of undirected links. The main feature of the protocol is that link reversal
steps maintain the virtual network in form of a DAG.

In our approach we specify the protocol via executable graph production rules
as provided by the GROOVE tool [12]. GROOVE has been developed as an au-
tomated support for object-oriented program transformations. Its specification
language however can easily be adapted to model dynamically changing networks
[15]. We exploit this feature to express link updates that describe unexpected
network modifications (link deletion and addition) as well as route maintenance
phases. Conditions and updates on data fields are combined with graph pro-
duction rules in order to reason on a height-based version of the protocol. All
specifications are given by exploiting symmetries induced by the use of trans-
formations that work modulo graph isomorphism. To validate our model, we
use the GROOVE model checker for a CTL temporal logic on transitions. The
model checker operates on the labelled transition system (LTS) induced by a set
of graph productions. CTL propositions are defined on top of transition names.
This way it is possible to state properties on graph patterns that define the
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enabling of a rule. This is particularly useful when considering enabling condi-
tions defined via regular expressions on edge labels. E.g., they can be used to
formally specify reachability of partitioned configurations. Strategies for gener-
ating the LTS can be defined by associating priorities to production rules and by
using control programs. The combination of priorities, rich patterns expressing
bad configurations, and temporal properties allows to specify all the correctness
requirements of the Gafni-Bertsekas algorithm.

In the paper we report on experimental results obtained with the model
checker by varying both the size of the initial configuration and the number
of dynamic link modifications. Starting from fully connected topologies and ad-
mitting dynamic modifications, we manage to handle networks with up to six
nodes. Our study can be viewed as a preliminary step towards the application of
GROOVE as a model checker for Link Reversal Routing and, more in general,
of distributed fault-tolerant algorithms.

Outline. In Section 2 we introduce the main concepts underlying the GROOVE
tool. In Section 3 we describe Link Reversal Routing and the Gafni-Bertsekas
protocol. In Section 4 we describe in detail the specification of the protocol in
GROOVE, and, in Section 5, the results of our analysis. In Section 6 we compare
our work with other approaches for the specific classes of protocol considered
here.

2 Graph Grammars as Executable Specifications

GROOVE is based on a graph representation of system states and on a represen-
tation of state updates via graph transformations. Graph production rules spec-
ify both matching patterns and negative application conditions (NAC). Graph
matching is used to select the pattern in the host graph that has to be rewritten
into a new graph (obtained by deleting/adding/merging nodes and edges). A
NAC specifies a sub-pattern that must be absent in the host graph in order for
the rule to be applicable (e.g. they specify global conditions).

2.1 Graph Transformation Systems (GTS)

To define a GTS, we follow the style of [7,13]. A graph G = 〈N,E,L〉 consists of
a finite set N of nodes, a finite set E ⊆ N ×N of edges, and a labelling function
L of nodes and edges. We use G to denote the set of all graphs, ranged over by
G,H, . . .. A graph matching m : G → G is a graph morphism that preserves node
and edge labels, i.e., for G = 〈N,E,L〉 and G′ = 〈N ′, E′, L′〉, if e = 〈n, n′〉 ∈ E,
then e′ = 〈m(n),m(n′)〉 ∈ E′, L(n) = L′(m(n)), L(n′) = L′(m(n′)), and L(e) =
L′(e′). A graph transformation rule p ∈ R specifies how the system evolves when
going from one state to another: it is identified by its name (Np ∈ N , where
N is a global set of rule names) and consists of a left-hand side graph (Lp), a
right-hand side graph (Rp), and a set of so-called negative application conditions
(NACp, which are super-graphs of Lp).
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Definition 1. A Graph Production System (GPS) P = 〈I, R〉 consists of a
graph I (the initial state), and a set of graph transformation rules R.

The application of a graph transformation rule p transforms a graph G, the
source graph, into a graph H , the target graph, by looking for an occurrence
of Lp in G (specified by a graph matching m that cannot be extended to an
occurrence of any graph in NACp) and then by replacing that occurrence with
Rp, resulting in H . Such a rule application is denoted as G→p,m H . Each GPS
P = 〈R, I〉 specifies a (possibly infinite) state space which can be generated by
repeatedly applying the graph transformation rules on the states, starting from
the initial state I.

Definition 2. A GTS T = 〈S,→, I〉 generated by P = 〈R, I〉 consists of a set
S ⊆ G of graphs representing states, an initial state I ∈ S, and a transition
relation →∈ S ×R× [G → G]× S, such that 〈G, p,m,H〉 ∈→ iff there is a rule
application G→p,m H ′ with H ′ isomorphic to H.

2.2 The GROOVE Simulator and Model Checker

GROOVE [12] consists of a GUI that allows editing of rules and graphs and
animated simulations of a specification. The state space is stored as an LTS. The
strategy according to which the state space is explored can be set as a parameter.
In the latest versions of GROOVE there are several specification facilities. We
will hereafter refer to the latest version to date, version 4.8.6. Node labels can
either be node types or flags. A flag is used to model a boolean condition which
is true for a node if and only if the flag is present. To specify data fields ranging
over basic types like booleans, integers, and strings, we can use node attributes.
Attributes are treated as special edges that do not point to a standard node, but
to a node that corresponds to a data value. The type of a node specifies the set
of allowed flags and edge labels and and the type of its data fields. Operations
over data fields are specified as node relations (evaluated automatically in data
fields corresponding to the results) or as typed expressions with constructs for
both updates (e.g. let) and nested expressions.

Universal quantification is another interesting feature of the input language.
A universally quantified (sub)rule is a rule that is applied to all subgraphs that
satisfy the relevant application conditions, rather than just a single one as in
the standard case. The use of universally quantified rules allows to naturally
define parametric transformations (thus saving space in both the input model
and in the state space). Universal quantification can be nested within existential
quantifiers to define shared patterns between multiple applications of the same
production (e.g. to rewrite all nodes that have a field/data in common with a
specific node). The documentation of the feature is not very detailed, so we will
use it in a restricted way.

GROOVE provides different means for controlling the rewriting process. The
first method is based on priorities. Low-priority rules may only be applied if no
higher-priority rule is applicable. Another method is via control programs, which
can be used to restrict the system to specific sequences of rule applications.
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A control program can be viewed as an automata whose language specifies ad-
missible sequences of transition applications.

Finally, another interesting feature is the use of regular expressions to define
nested conditions on configurations. They extend graph matching with paramet-
ric pattern conditions such as the existence of a path between two nodes. For
instance, an edge with label a+ between two nodes matches any (non null) path
in which edges have only labels in a. Such a pattern can then be used to update
the host graph.

2.3 An Example: Linked List

To illustrate how graph productions are specified in the GROOVE visual lan-
guage we consider an example in which graphs represent dynamically created
linked lists with tail insertion (put) and head removal (get). In the initial con-
figuration we use two nodes as sentinels to denote the empty list. The first node
has two forward pointers (h=head, t=tail) both pointing to the second node.

The put operation inserts a new node pointed by the tail pointer. The GROOVE
visual language adopts coloured nodes and edges to denote deletion and addition
of edges, nodes, and label updates. Indeed, the rule is specified as follows.

The dashed line denotes the deletion of the old t-edge. A deletion acts both as a
guard (the edge being removed has to exist) and as a postcondition (the edge is
removed from the graph). The thick lines denote the addition of two new edges.
This notation can be expanded into a graph production containing a graph Lp

with two nodes L and C connected via a t-edge in the left-hand side, and a graph
Rp with three nodes L, C and C, with an n-edge connecting the last two nodes
and a t-edge connecting the first and last node. The Lp graph is removed and
the nodes and edges of Rp are created at its place. The nodes of Rp are linked to
the nodes of Lp via a further graph morphism (usually denoted by using extra
numerical labels to put in relation nodes in the left- and right-hand side).

Deletion of a cell is specified via the following rule.

Dashed lines denote removal of old h- and n-edges. The thick line denotes the
addition of a new h-edge. Clearly, the two productions assume that in the trans-
formed graph there exists only one h-edge and only one t-edge (this property is
invariant under applications of the productions). Starting from the initial con-
figuration, the firing of put produces the following sequence of configurations.
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. . .

The transformation can continue either back to the previous states, or to a
list with an additional cell. Therefore, the considered graph production system
generates lists of arbitrary length.

GROOVE provides a GUI with a Simulator for the step-by-step visualization
of the behaviour of a system, in which it is possible to highlight the matching
pattern for a specific rule. Rules are partitioned in accord to the associated pri-
orities. The simulator guides the execution via the corresponding rule ordering.

The built-in verifier generates the LTS of a given graph production system
in form of a reachability graph. Based on this representation of the state-space,
the model checker supports verification of CTL/LTL specifications that can be
defined over graph patterns. This is achieved by using rule names as proposi-
tions. Specifically, the left-hand side of a formula (and the corresponding NAC)
is used to check for the presence of a given sub-pattern in the current config-
uration. Consider a rule with name bad, whose left-hand side denotes a bad
pattern (e.g. a cycle in a graph). Then, the firing of bad denotes the occurrence
of the bad pattern in the reachability graph. Formulas are built over predicates
defined over rule names, temporal operators like A, E (for CTL only), F , G, X
(for CTL/LTL), and of their Boolean combinations (and/or/negation). A CTL
formula like AG !bad can then be used to specify the safety property ”the bad
pattern can never be reached”. In our linked list example we could specify bad
patterns like self-loops with regular expressions on h- and t-edges (unreachable
in our model). If a property does not hold, the model checker returns a counter-
example.

3 Link Reversal Routing Algorithms

Link Reversal Routing (LRR) [22] algorithms are designed for large, dynamically
changing networks, in which topology changes are too frequent to make flooding
of routing informations a viable solution. The main goal is to quickly repair a
corrupted route with a new valid, but not necessarily optimal, one. The adaptiv-
ity and scalability of LRR algorithms make them suitable for Ad Hoc Networks.
We assume here to work on networks in which nodes are connected via bidi-
rectional channels (i.e. the communication layer is an undirected graph). LRR
works with an overlay network used to identify routes to a specific destination
node. The overlay network is defined via a Directed Acyclic Graph (DAG) with
exactly one destination node (a node with only incoming links). Other nodes
have either incoming and outgoing links or just outgoing links. When the last
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outgoing link of a node breaks, the node becomes a sink for the network and it
starts route maintenance. One possible strategy, called full reversal, is to reverse
all incoming edges. After link reversal, the maintenance procedure is recursively
applied to the surrounding nodes. The algorithm stabilizes after finitely many
steps if the graph is not partitioned.

3.1 The Gafni-Bertsekas Algorithm

We consider here the partial reversal version of the Gafni-Bertsekas algorithm
[11]. In this setting a node that becomes a sink tries to minimize the number
of links to be reversed. The partial reversal method can be implemented using
heights. More in detail, every node u has a tuple of values 〈αu, βu, idu〉, where
αu is a non negative integer, βu is an integer, and idu is an integer that denotes
a unique identifier for the node. Initially, αu is 0 for every node u. Furthermore,
heights are totally ordered using the lexicographic ordering, namely

〈αu, βu, u〉 < 〈αv, βv, v〉

if and only if αu < αv or (αu = αv and βu < βv) or (αu = αv and βu = βv

and idu < idv). The latter condition is used to break the tie whenever the
other values cannot be used to order a pair of nodes. For every pair u and v of
adjacent nodes, v points to u in the overlay network via a virtual edge if and
only if 〈αu, βu, u〉 < 〈αv, βv, v〉. The destination node is always considered as a
global minimum, i.e., its height is 〈0, 0, 0〉 and it has only incoming virtual edges
that must never be reversed. Route maintenance is triggered when a node u has
no more incoming edges, i.e., the node is a local minimum w.r.t. <. Let Nu be
the set of neighbours of node u. The node tries to repair the configuration by
updating the value of αu with a value that is larger than the minimum value of
the α’s for nodes in Nu,

α′
u = (minv∈Nuαv) + 1

After the update, all edges directed to nodes with smaller α will be reversed. To
minimize the number of reversals for nodes with the same value for α we operate
on β. Namely, we set the new value of βu to be strictly less than the minimum
value of the β’s for those nodes in Nu with a value for α equal to α′

u, i.e.,

β′
u = (minv∈{v′∈Nu|αv′=α′

u}βv)− 1

If the graph is connected, the algorithm is guaranteed to terminate and to pro-
duce a new DAG pointing to the destination node (Propositions 1 and 2 in [11]).
As in the scenario considered in the original algorithm, we assume here that
route maintenance is performed after the failure of a single link and terminated
before the subsequent link failure (the algorithm is designed for networks with
such a relation between the frequency of the two types of events). We show an
example of reversal steps in Figure 1.
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Fig. 1. Execution of Height-based Reversal

We remark that the full reversal algorithm can be obtained by ignoring β and
changing the updates of α as follows:

α′
u = (maxv∈Nuαv) + 1

This way all incoming edges of a sink node are reversed into outgoing edges.
Only when passing from informal specifications to formal ones, we can uncover
details that must be taken into account in a real implementation of the protocol.
Since the informal specification of the LRR algorithm is based on graph trans-
formations, it seems a natural case-study for a tool like GROOVE in order to
fully exploit symmetries and compactness of graph production rules.

4 Formal Specification using GROOVE

In this section we describe a formal specification of the Gafni-Bertsekas algorithm
using the GROOVE input language. The model has a type system which defines
three types of nodes, together with the flags and edges which they support:
Node is the type for nodes which execute the LRR protocol, Counter is used
for the unique node keeping a global counter for generating fresh node identifiers,
and, finally, Lock is the type of a control node used to serialize application of a
specific set of rules.
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Fig. 2. Initial configuration with four nodes

4.1 Network Initialization

An initial configuration for the protocol consists of a graph where adj edges
represent communication links between adjacent nodes. All nodes are initially
labelled with the init flag. In Figure 2 we show a initial configuration with four
nodes. To model undirected edges we use pairs of directed edges connecting the
same nodes. We will discuss in Section 5 how to specify rules that can dynami-
cally rearrange the connection topology of the network (add and delete edges).
On top of the communication topology, the protocol builds a virtual DAG, that
we will represent via next edges, with a single destination node. One of the
properties that we will have to ensure is that, after dynamic modifications that
do not partition the network and after route maintenance, every node maintains
a path of next-edges leading to the destination node.

To define an initial consistent DAG w.r.t. next-edges, we first select a destina-
tion node and then initialize the heights of all other nodes by choosing increasing
identifiers. For this purpose, we use the rules in Figure 3, 4, and 5. They are
all given the maximum priority level, in order to ensure no other rule will be
fired before the initialization of the system is complete. For clarity, we remark
that flags and attributes added or removed as a postcondition of a rule are re-
spectively preceded by a plus or a minus sign, whereas nodes [resp. edges] with
thick green borders [resp. green lines] are created as a side effect of the rule.

Fig. 3. INIT-DEST: Non-deterministic choice of destination node and counter initial-
ization
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Fig. 4. INIT-LRR: Initialization of active LRR nodes

Rule INIT-DEST of Fig. 3 introduces a newCounter node with fields deleteOnly
and edits used in the validation phase (see Section 5), and nextId used for the
generation of fresh identifiers. In addition it non-deterministically selects a des-
tination node. INIT-DEST may fire only if the system is still uninitialized, i.e.,
both the Counter and a destination node are missing. This negative conditions
(NAC) are expressed through nodes with thick red dashed borders. The rule
INIT-LRR (Figure 4) fires once for each Node still labelled by init. It intro-
duces the integer fields alpha and beta initialized to 0, and it assigns a unique
identifier id. The flag of the node is changed to lrr to mark it as ready, and
the nextId field of Counter is increased by one. When INIT-LRR is done (i.e.

Fig. 5. INIT-DONE: Removal of nextId field

there are no more init nodes), INIT-DONE (Figure 5) marks the end of the
initialization phase and the beginning of the simulation of the Gafni-Bertsekas
LRR protocol.

4.2 Virtual DAG of next-edges

At first no virtual edges (labelled by next) towards the destination exist, as the
nodes did not interact with each other, yet. In such a case the preconditions
to fire NEW-LINKS (Figure 6) are satisfied. NEW-LINKS creates next-edges
between pairs of adjacent nodes in accord to their relative heights (a next-edge
goes from higher to lower heights). The special syntax a : Node fixes an identi-
fier a for the node of type Node. Such identifier can be used in expressions, e.g.,
a.alpha, to concisely access fields of node a. Thick, dashed edges are treated
as negative preconditions. The rule selects each pair of adjacent nodes a and
b without any next edge connecting them (negative condition specified by a
dashed edges with label next) and creates an next edge from a to b iff a has
an height lexicographically greater than b. The comparison of triples is speci-
fied as a test label inside node a. Since nodes a and b are universally quantified,
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Fig. 6. NEW-LINKS: Creation of next-edges

the considered pattern is applied to all matching subgraphs of the host graph at
the same time. In other words, with just one firing of the rule every missing next
edge is added. When the network is initialized and all of the next edges are ready,

Fig. 7. Fully-initialized network with four nodes and next edges

a configuration with four nodes may look like that of Figure 7. This configuration
contains an example of a sink node (with id = 1), i.e., a node other than the
destination without outgoing next edges. The considered graph is a DAG w.r.t.
the next relation. We remark that even though next edges are redundant w.r.t.
the information on heights, they are useful for several reasons. Indeed, they
represent an abstraction of data maintained in local tables as specified by the
protocol, with the purpose of minimizing the number of height comparisons.
This is useful also in our model, because by looking at next edges rather than at
the heights many rules can be significantly simplified. Furthermore, the heights
cannot be exploited when checking properties like, e.g., the existence of a route
of arbitrary length to the destination. Instead, the presence of edges encoding
the same information enables us to write such properties as regular expressions
on paths, like next+ (we will discuss this point in Section 5).
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It is also important to remark that, since the initialization of the heights is
done non-deterministically, even for a fixed initial topology, the creation of next-
edges can generate several different DAGs that depend on the order in which
identifiers are assigned to nodes. During state-exploration GROOVE applies
symmetry reduction to avoid generation of isomorphic (w.r.t. both adj- and
next-links) graphs.

4.3 Sink Detection

Sink nodes (e.g. the node with id = 1 in Fig. 7) trigger the route maintenance
phase. The rules in Figures 8 and 9 have a decreasing priority in order to execute

Fig. 8. SINK-ALPHA: Detection of a sink node and update of alpha

Fig. 9. SINK-BETA: Update of beta

them in the correct order. We also use a Lock node in order to ensure that each
rule is applied at most once, depending on the cases.

In a situation such as in Figure 7, a new sink can be detected through rule
SINK-ALPHA. The preconditions require that Lock is not present, there are no
sink nodes, and that the node has no outgoing next edges. All these negative
conditions are marked with dashed lines. The chosen lrr node n is marked with
the sink label, and a fresh Lock node is generated to enable SINK-BETA (and
forbid other applications of SINK-ALPHA). To update the value of the alpha
attribute of n, say n.alpha, we first select a neighbour node y with minimum
value v for alpha and then we assign v + 1 to n.alpha. Note that to select the
node y with minimum alpha, we reason by contraposition and require that no
other neighbour x has a value strictly smaller than y.alpha (NAC that combines
edges and conditions on fields).
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Once alpha is updated, the LRR protocol can proceed with the update of
beta, which is performed via the rule SINK-BETA of Figure 9. SINK-BETA
requires the presence of a Lock node without the beta flag, which is added as a
post-condition in order to let the rule fire at most once. Differently from alpha,
beta has only to be compared w.r.t. the neighbours sharing the same alpha as
the sink. Since it is not always the case that there are such neighbours, this rule
may be skipped. The rule exploits again negative conditions and test labels to
select the neighbour node with adequate values for alpha and beta.

4.4 Link Reversal

At this point both alpha and beta in the sink have been updated, so we can
proceed with the reversal of all incoming next edges in the sink which originate
from neighbours with a smaller height. Rule REVERSAL of Figure 10 works

Fig. 10. REVERSAL: Reversal of virtual edges according to the new height

lexicographically w.r.t. the heights of the sink’s neighbours, exactly as NEW-
LINK, except that it changes the orientation of all incoming next edges instead
of adding new ones. The dashed blue edge next is used to remove an existing next
edge. The dashed thick red edge next is used to test the absence of a reversed
next edge, while the green edge specifies the addition of the reversed next edge.
Via universal quantification, we specify that the same updates must be applied
to all subgraphs of the host graph that match the specified pattern. The rule
must be read as existentially quantified on s (to fix a sink node) and universally
quantified on x (to specify reversal of edges from x to s for every neighbour of x
of s). The rule also deletes the sink label from the selected node s, and removes
the Lock node to terminate the reversal phase of the selected sink. New sink
nodes may appear as a result of the first series of reversals. This would trigger
another sequence of rule applications to propagate the height update, starting
again from SINK-ALPHA. In the case of the example configuration in Figure 7,
a complete run of link reversal in the sink node with id = 1 would result in the
configuration of Figure 11. Its alpha has been updated from 0 to 1, beta is still
0 (since there is no neighbour with alpha = 1), and all of its next edges have
been reversed.
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Fig. 11. Example network without sinks

In the next section we will discuss how to apply GROOVE to validate our
model.

5 Bounded Model Checking

Based on our model, we have performed different types of analysis using the
GROOVE model checker for configurations of fixed size.

The analysis starts from a fixed initial topology, i.e., we fix the number of
nodes and the adj-edges as in the four nodes example in Fig. 2. Since the protocol
addresses route maintenance in wireless networks, in order to test our implemen-
tation we have to introduce rules to model dynamic changes to the underlying
connectivity network. Such changes will trigger the link reversal phases. Since
updates non-deterministic, the initial topology can change in arbitrary ways.

The rules LINK-ADD (Figure 12) and LINK-DEL (Figure 13) have the lowest
possible priority. In this way changes to the network will occur only when the
protocol is stable, i.e., when there are no more sinks.

Fig. 12. LINK-ADD: Addition of a new link between two nodes

We put an upper bound to the number of dynamic changes to the network in
the following way. The boolean field deleteOnly of the Counter node is used to
distinguish between two variants of bounded model checking. When it is set to
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Fig. 13. LINK-DEL: Deletion of a link between two adjacent nodes

true, rule LINK-ADD is disabled while LINK-DEL may fire without restrictions.
When deleteOnly is set to false, both rules are enabled, but just for a limited
number of times decided by the edits field of the Counter.

Link deletions may lead to partitionings, i.e., configurations where subsets of
lrr nodes do not have a path of adj edges to the destination. In such cases the
Gafni-Bertsekas protocol is known to diverge, as there is no mechanism to detect
partitions. With rule BOUND-PARTITION (Figure 14) we filter out every such
divergent execution. This means also that we do not need a bound for the heights

Fig. 14. BOUND-PARTITION: Detection of a partitioning

of the nodes, because only terminating executions are left. The rule has a rather
high priority and no side effects because we want to block the computation
as soon as a partitioning arises (matching configurations become final states).
Thanks to a NAC expressed as a regular expression, the rule matches as soon as
the current configuration contains an lrr node without a path to the destination.

The objective of our analysis is to check loop-freedom and ensure that, when
the protocol is stable, every lrr node has at least a route to the destination. The
rule LOOP (Figure 15) has high priority and, provided the network is sink-free,
matches as soon as a node exposes a loop of any length of next edges. The rule

Fig. 15. LOOP: Loop detection in routes

DISCONNECTED (Figure 16) has the lowest possible priority and it is very
similar to BOUND-PARTITION, except that the regular expression on paths to
the destination uses next instead of adj.
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Fig. 16. DISCONNECTED: Bad routes detection

5.1 Correctness Requirements

We formally specify the correctness of the algorithm via the following CTL
formula.

AG !(DISCONNECTED || LOOP)

For a fixed initial configuration, the formula requires that in every derivation
π of the LTS associated to our model (temporal connective A), and in every
configurations G occurring in π (temporal connective G), it is never possible to
fire the transitions DISCONNECTED and LOOP (! [resp. ||] denotes negation
[resp. disjunction]).

Following from the order induced by the priorities associated to the rules, the
formula is true only if after each route maintenance phase that does not parti-
tion the topology, the protocol repairs the routes for every sink node. Thus the
combination of execution strategies and CTL property can be used to formalize
the correctness of the Gafni-Bertsekas algorithm.

5.2 Experiments and Evaluation

We checked the CTL property for a number of different bounds on the number
of nodes and edits (link modifications). The tests were conducted on a com-
mon laptop with an Intel i5 CPU @ 2.53GHz and 4GB of RAM. The results of
state-space exploration are listed in Table 1. For each number n of nodes con-
sidered, with deleteOnly equal to true we started the exploration from the fully
connected configuration with n nodes (dynamic modifications are used then to
generate arbitrary topologies). On the other hand, when deleteOnly is equal to
false, we fix an initial configuration with n nodes and some missing edges. This
is to ensure both LINK-ADD and LINK-DEL have different options to edit the
connectivity graph right from the start.

The CTL correctness specification holds in every considered test-case. As
expected, by removing the detection of partitionings the algorithm does not
terminate (heights grows unboundedly).

The analysis scales up to 6 nodes with only deletions or at most 3 edits. With
4 [resp. 5] nodes we managed to consider at most 16 [resp. 8] edits. The low
number of nodes considered in initial configurations is due to the fast growing
of the state space (e.g. more than 750000 graphs with 7 nodes). The high num-
ber of combinations is also due to the presence of heights and, in particular,
identifiers. On one hand they are a basic feature of the height-based version of
the protocol. The consistency between these information and the virtual DAG
is part of the correctness requirements of the algorithm. On the other hand they
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Table 1. Experimental results

#nodes deleteOnly edits #states time (s)

4 true - 143 1

false 7 4503 4
8 7642 5
9 13040 6

10 20963 8
11 34028 11
12 52120 16
13 80690 22
14 118060 32
15 174644 48
16 244769 78

5 true - 3556 4

false 3 4416 4
4 10732 7
5 24541 10
6 55487 19
7 124001 35
8 279591 109

6 true - 172166 67

false 2 65936 22
3 271035 99

reduce the application of symmetry reduction (graph isomorphism) during state
exploration. The use of symmetry reductions guided by user-defined observa-
tions (e.g. restricting isomorphisms to adj- and next-edges) could be useful here
as an heuristics to reduce state-space.

6 Conclusions and Related Work

In this paper we have proposed a non-standard application of GROOVE and
Graph Transformation Systems to the validation of a distributed algorithm taken
from the class of Link Reversal Routing algorithms [22].

Specification and verification of routing protocols dates back to the semi-
nal work on HOL/SPIN for AODV in [3]. More recently, model checking tools
(e.g. SPIN [9] and Uppaal[8]) and constraint-based engines [19,20,21] have been
applied to verification of Ad Hoc and wireless protocols. In these approaches
executions of a fixed number of agents are explored via enumerative or sym-
bolic methods [9,8], or by generating positive/negative constraints on links in a
lazy manner [19,20,21]. Parameterized verification of models of broadcast com-
munication has been studied from a theoretical point of view in [5,6,4], where
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decidability and complexity frontiers have been given for problems like control
state reachability (reachability of a state in which a node has a certain state).
Applications of the invisible invariant method to distributed algorithms has been
considered in [1]. Cut-off properties for link reversal routing has been considered
in [10]. The manifesto on automated verification of distributed algorithms is
presented in [17].

The use of graph transformation systems for automated validation of dynamic
systems has been proposed in [15] using GROOVE. In [18] symbolic backward
exploration with subgraph relation as termination test has been applied to pa-
rameterized verification of routing protocols like LUNAR. In the same line of
thoughts, in [14] the graph minor ordering is used as termination test for sym-
bolic analysis of ring protocols. Decidability of reachability problems for Graph
Transformation Systems are studied in [2]. A comparison of the performance
of GROOVE, used as a verification tool for dynamical systems, and SPIN is
considered in [15].
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Abstract. We present a symbolic extension of dependency graphs by
Liu and Smolka in order to model-check weighted Kripke structures
against the logic CTL with upper-bound weight constraints. Our ex-
tension introduces a new type of edges into dependency graphs and lifts
the computation of fixed-points from boolean domain to nonnegative
integers in order to cope with the weights. We present both global and
local algorithms for the fixed-point computation on symbolic dependency
graphs and argue for the advantages of our approach compared to the
direct encoding of the model checking problem into dependency graphs.
We implement all algorithms in a publicly available tool prototype and
evaluate them on several experiments. The principal conclusion is that
our local algorithm is the most efficient one with an order of magni-
tude improvement for model checking problems with a high number of
“witnesses”.

1 Introduction

Model-driven development is finding its way into industrial practice within the
area of embedded systems. Here a key challenge is how to handle the growing
complexity of systems, while meeting requirements on correctness, predictabil-
ity, performance and not least time- and cost-to-market. In this respect model-
driven development is seen as a valuable and promising approach, as it allows
early design-space exploration and verification and may be used as the basis for
systematic and unambiguous testing of a final product. However, for embedded
systems, verification should not only address functional properties but also a
number of non-functional properties related to timing and resource constraints.

Within the area of model checking a number of state-machine based modeling
formalisms has emerged, allowing for such quantitative aspects to be expressed.
In particular, timed automata (TA) [1], and the extensions to weighted timed
automata (WTA) [6,2] are popular and tool-supported formalisms that allow for
such constraints to be modeled.

Interesting behavioural properties of TAs and WTAs may be expressed in
natural weight-extended versions of classical temporal logics such as CTL for

E. Bartocci and C.R. Ramakrishnan (Eds.): SPIN 2013, LNCS 7976, pp. 178–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Local Model Checking of Weighted CTL with Upper-Bound Constraints 179

branching-time and LTL for linear-time. Just as TCTL and MTL provide ex-
tensions of CTL and LTL with time-constrained modalities, WCTL and WMTL
are extensions with weight-constrained modalities interpreted with respect to
WTAs. Unfortunately, the addition of weight now turns out to come with a
price: whereas the model-checking problems for TAs with respect to TCTL and
MTL are decidable, it has been shown that model-checking WTAs with respect
to WCTL is undecidable [9].

In this paper we reconsider this model checking problem in the setting of
untimed models, i.e. essentially weighted Kripke structures, and negation-free
WCTL formula with only upper bound constraints on weights. As main contri-
butions, we show that in this setting the model-checking problem is in PTIME,
and we provide an efficient symbolic, local (on-the-fly) model checking algorithm.

Our results are based on a novel symbolic extension of the dependency graph
framework of Liu and Smolka [16] where they encode boolean equation systems
and offer global and local algorithms for computing minimal and maximal fixed
points in linear time. Whereas a direct encoding of our model checking prob-
lem into dependency graphs leads to a pseudo-polynomial algorithm1, the novel
symbolic dependency graphs allow for a polynomial encoding and a polynomial
time fixed-point computation. Most importantly, the symbolic dependency graph
encoding enables us to perform a symbolic local fixed-point evaluation. Exper-
iments with the various approaches (direct versus symbolic encoding, global
versus local algorithm) have been conducted on a large number of cases, demon-
strating that the combined symbolic and local approach is the most efficient
one. For model-checking problems with affirmative outcome, this combination is
often one order or magnitude faster than the other approaches.

Related Work

Laroussinie, Markey and Oreiby [14] consider the problem of model checking
durational concurrent game structures with respect to timed ATL properties,
offering a PTIME result in the case of non-punctual constraints in the formula.
Restricting the game structures to a single player gives a setting similar to ours,
as timed ATL is essentially WCTL. However, in contrast to [14], we do allow
transitions with zero weight in the model, making a fixed-point computation
necessary. As a result, the corresponding CTL model checking (with no weight
constraints) is a special instance of our approach, which is not the case for [14].
Most importantly, the work in [14] does not provide any local algorithm, which
our experiments show is crucial for the performance. No implementation is pro-
vided in [14].

Buchholz and Kemper [10] propose a valued computation tree logic (CTL$)
interpreted over a general set of weighted automata that includes CTL in the
logic as a special case over the boolean semiring. For model checking CTL$
formulae they describe a matrix-based algorithm. Their logic is more expressive
than the one proposed here, since they support negation and all the comparison

1 Exponential in the encoding of the weights in the model and the formula.
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operators. In addition, they permit nested CTL formulae and can operate on
max/plus semirings in O(min(log(t) ·mm, t · nz)) time, where t is the number
of vector matrix products, mm is the complexity of multiplying two matrices of
order n and nz is the number of non-zero elements in special matrix used for
checking “until” formulae up to some bound t. However, they do not provide
any on-the-fly technique for verification.

Another related work [8] shows that the model-checking problem with respect
to WCTL is PSPACE-complete for one-clock WTAs and for TCTL (the only
cost variable is the time elapsed).

Several approaches to on-the-fly/local algorithms for model checking the
modal mu-calculus have been proposed. Andersen [3] describes a local algorithm
for model checking the modal mu-calculus for alternation depth one running in
O(n · log(n)) (where n is the product of the size of the assertion and the labeled
transition system). Liu and Smolka[16] improve on the complexity of this ap-
proach with a local algorithm running in O(n) (where n is the size of the input
graph) for evaluating alternation-free fixed points. This is also the algorithm
that we apply for WCTL model checking and the one we extend for symbolic
dependency graphs. Cassez et. al. [11] present another symbolic extension of the
algorithm by Liu and Smolka; a zone-based forward, local algorithm for solving
timed reachability games. Later Liu, Ramakrishnan and Smolka [15] also intro-
duce a local algorithm for the evaluation of alternating fixed points with the
complexity O(n+(n+ad

ad )ad), where ad is the alternation depth of the graph. We
do not consider the evaluation of alternating fixed points in the weighted setting
and this is left for the future work.

Outline. Weighted Kripke structures and weighted CTL (WCTL) are presented
in Section 2. Section 3 then introduces dependency graphs. Model checking
WCTL with this framework is discussed in Section 4. In Section 5 we propose
symbolic dependency graphs and demonstrate how they can be used for WCTL
model checking in Section 6. Experimental results are presented in Section 7 and
Section 8 concludes the paper.

2 Basic Definitions

Let N0 be the set of nonnegative integers. A Weighted Kripke Structure (WKS)
is a quadruple K = (S,AP , L,→), where S is a finite set of states, AP is a finite
set of atomic propositions, L : S → P(AP) is a mapping from states to sets of
atomic propositions, and →⊆ S × N0 × S is a transition relation.

Instead of (s, w, s′) ∈→, meaning that from the state s, under the weight w,

we can move to the state s′, we often write s
w→ s′. A WKS is nonblocking if for

every s ∈ S there is an s′ such that s
w→ s′ for some weight w. From now on we

consider only nonblocking WKS2.

2 A blocking WKS can be turned into a nonblocking one by introducing a new state
with no atomic propositions, zero-weight self-loop and with zero-weight transitions
from all blocking states into this newly introduced state.
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A run in an WKS K = (S,AP , L,→) is an infinite computation

σ = s0
w0→ s1

w1→ s2
w2→ s3 . . .

where si ∈ S and (si, wi, si+1) ∈→ for all i ≥ 0. Given a position p ∈ N0 in the
run σ, let σ(p) = sp. The accumulated weight of σ at position p ∈ N0 is then

defined as Wσ(p) = Σp−1
i=0 wi.

We can now define negation-free Weighted Computation Tree Logic (WCTL)
with weight upper-bounds. The set of WCTL formulae over the set of atomic
propositions AP is given by the abstract syntax

ϕ ::= true | false | a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
EX≤k ϕ | AX≤k ϕ | E ϕ1 U≤k ϕ2 | A ϕ1 U≤k ϕ2

where k ∈ N0 ∪ {∞} and a ∈ AP. We assume that the ∞ element added to N0

is larger than any other natural number and that ∞ + k = ∞− k = ∞ for all
k ∈ N0. We now inductively define the satisfaction triple s |= ϕ, meaning that a
state s in an implicitly given WKS satisfies a formula ϕ.

s |= true

s |= a if a ∈ L(s)

s |= ϕ1 ∧ ϕ2 if s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 if s |= ϕ1 or s |= ϕ2

s |= E ϕ1 U≤k ϕ2 if there exists a run σ starting from s and a position p ≥ 0

s.t. σ(p) |= ϕ2,Wσ(p) ≤ k and σ(p′) |= ϕ1 for all p′ < p

s |= A ϕ1 U≤k ϕ2 if for any run σ starting from s, there is a position p ≥ 0

s.t. σ(p) |= ϕ2,Wσ(p) ≤ k and σ(p′) |= ϕ1 for all p′ < p

s |= EX≤k ϕ if ∃s′ s.t. s w→ s′, s′ |= ϕ and w ≤ k

s |= AX≤k ϕ if ∀s′ s.t. s w→ s′ where w ≤ k it holds that s′ |= ϕ

3 Dependency Graph

In this section we present the dependency graph framework and a local algo-
rithm for minimal fixed-point computation as originally introduced by Liu and
Smolka [16]. This framework can be applied to model checking of the alternation-
free modal mu-calculus, including the CTL logic. Later, in Section 4, we demon-
strate how to extend the framework from CTL to WCTL.

Definition 1 (Dependency Graph). A dependency graph is a pair G =
(V,E) where V is a finite set of configurations, and E ⊆ V × P(V ) is a fi-
nite set of hyper-edges.

Let G = (V,E) be a dependency graph. For a hyper-edge e = (v, T ), we call v the
source configuration and T the target (configuration) set of e. For a configuration
v, the set of its successors is given by succ(v) = {(v, T ) ∈ E}.
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a

b c

d

∅

a = b ∧ c
c = b ∨ (a ∧ d)
b = true

a b c d

A0 0 0 0 0
F (A0) 0 1 0 0
F 2(A0) 0 1 1 0
F 3(A0) 1 1 1 0
F 4(A0) 1 1 1 0

Fig. 1. A dependency graph, function F , and four iterations of the global algorithm

An assignment A : V → {0, 1} is a function that assigns boolean values to
configurations of G. A pre fixed-point assignment of G is an assignment A where,
for every configuration v ∈ V , holds that if (v, T ) ∈ E and A(u) = 1 for all u ∈ T
then also A(v) = 1.

By taking the standard component-wise ordering � on assignments, where
A � A′ if and only if A(v) ≤ A′(v) for all v ∈ V (assuming that 0 < 1), we get
by Knaster-Tarski fixed-point theorem that there exists a unique minimum pre
fixed-point assignment, denoted by Amin .

The minimum pre fixed-point assignment Amin of G can be computed by
repeated applications of the monotonic function F from assignments to assign-
ments, starting from A0 where A0(v) = 0 for all v ∈ V , and where

F (A)(v) =
∨

(v,T )∈E

( ∧
u∈T

A(u)

)

for all v ∈ V . We are guaranteed to reach a fixed point after a finite number
of applications of F due to the finiteness of the complete lattice of assignments
ordered by �. Hence there exists an m ∈ N0 such that Fm(A0) = Fm+1(A0),
in which case we have Fm(A0) = Amin . We will refer to this algorithm as the
global one.

Example 1. Figure 1 shows a dependency graph, its corresponding function F
given as a boolean equation system, and four iterations of the global algorithm
(sufficient to compute the minimum pre fixed-point assignment). Configurations
in the dependency graph are illustrated as labeled squares and hyper-edges are
drawn as a span of lines to every configuration in the respective target set.

In model checking we are often only interested in the minimum pre-fixed point
assignment Amin(v) for a specific configuration v ∈ V . For this purpose, Liu
and Smolka [16] suggest a local algorithm presented with minor modifications3

in Algorithm 1. The algorithm maintains three data-structures throughout its
execution: an assignment A, a dependency set D for every configuration and a
set of hyper-edges W . The dependency set D(v) for a configuration v maintains

3 At line 12 we added the current hyper-edge e to the dependency set D(u) of the suc-
cessor configuration u, i.e. D(u) = {e}. The original algorithm sets the dependency
set to empty here, leading to an incorrect propagation.
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Algorithm 1. Liu-Smolka Local Algorithm

Input: Dependency graph G = (V,E) and a configuration v0 ∈ V
Output: Minimum pre fixed-point assignment Amin(v0) for v0

1 Let A(v) = ⊥ for all v ∈ V
2 A(v0) = 0; D(v0) = ∅
3 W = succ(v0)
4 while W �= ∅ do
5 let e = (v, T ) ∈ W
6 W = W \ {e}
7 if A(u) = 1 for all u ∈ T then
8 A(v) = 1; W = W ∪D(v)
9 else if there is u ∈ T such that A(u) = 0 then

10 D(u) = D(u) ∪ {e}
11 else if there is u ∈ T such that A(u) = ⊥ then
12 A(u) = 0; D(u) = {e}; W = W ∪ succ(u)

13 return A(v0)

a list of hyper-edges that were processed under the assumption that A(v) = 0.
Whenever the value of A(v) changes to 1, the hyper-edges from D(v) must be
reprocessed in order to propagate this change to the respective sources of the
hyper-edges.

Theorem 1 (Correctness of Local Algorithm [16]). Given a dependency
graph G = (V,E) and a configuration v0 ∈ V , Algorithm 1 computes the mini-
mum pre-fixed point assignment Amin(v0) for the configuration v0.

As argued in [16], both the local and global model checking algorithms run in
linear time.

4 Model Checking with Dependency Graphs

In this section we suggest a reduction from the model checking problem of WCTL
(on WKS) to the computation of minimum pre fixed-point assignment on a
dependency graph.

Given a WKS K, a state s of K, and a WCTL formula ϕ, we construct a
dependency graph where every configuration is a pair of a state and a formula.
Starting from the initial pair 〈s, ϕ〉, the dependency graph is constructed accord-
ing to the rules given in Figure 2.

Theorem 2 (Encoding Correctness). Let K = (S,AP , L,→) be a WKS,
s ∈ S a state, and ϕ a WCTL formula. Let G be the constructed dependency
graph rooted with 〈s, ϕ〉. Then s |= ϕ if and only if Amin(〈s, ϕ〉) = 1.

Proof. By structural induction on the formula ϕ. ��
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〈s, true〉

∅
(a) True

〈s, a〉

∅

if a ∈ L(s)

(b) Proposition

〈s, ϕ1 ∧ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(c) Conjunction

〈s, ϕ1 ∨ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(d) Disjunction

〈s,E ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤k−w1 ϕ2〉 〈sn,E ϕ1 U≤k−wn ϕ2〉· · ·

let {(s1, w1), . . . , (sn, wn)}={(si, wi) |s
wi→ si and wi≤k}

(e) Existential Until

〈s,A ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤k−w1 ϕ2〉 〈sn,A ϕ1 U≤k−wn ϕ2〉· · ·

if wi ≤ k for all wi s.t s
wi→ si

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(f) Universal Until

〈s,EX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, s2, . . . , sn} = {si | s
wi→ si, wi ≤ k}

(g) Existential Next

〈s,AX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, . . . , sn} = {si | s
wi→ si, wi ≤ k}

(h) Universal Next

Fig. 2. Dependency graph encoding of state-formula pairs
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s 1

{a}

〈s,E a U≤1000 b〉

〈s,E a U≤999 b〉 〈s, a〉〈s, b〉

∅

〈s,E a U≤998 b〉

〈s,E a U≤997 b〉
...

〈s,E a U≤0 b〉

Fig. 3. A WKS and its dependency graph for the formula E a U≤1000 b

Clearly, to profit from the local algorithm by Liu and Smolka [16] presented in
the previous section, we construct the dependency graph on-the-fly whenever
successor configurations are requested by the algorithm. Such an exploration
gives us often more efficient local model checking algorithm compared to the
global one (see Section 7).

However, the drawback of this approach is that we may need to construct
exponentially large dependency graphs. This is demonstrated in Figure 3 where
a single-state WKS on the left gives rise to a large dependency graph on the
right where its size depends on the bound in the formula. Hence this method
gives us only a pseudo-polynomial algorithm for model checking WCTL.

5 Symbolic Dependency Graph

We have seen in previous section that the use of dependency graphs for WCTL
model checking suffers from the exponential explosion as the graph grows in
proportion to the bounds in the given formula (due to the unfolding of the until
operators). We can, however, observe that the validity of s |= E a U≤k b implies
s |= E a U≤k+1 b. In what follows we suggest a novel extension of dependency
graphs, called symbolic dependency graphs, that use the implication above in
order to reduce the size of the constructed graphs. Then in Section 6 we shall
use symbolic dependency graphs for efficient (polynomial time) model checking
of WCTL.

Definition 2 (Symbolic Dependency Graph). A symbolic dependency graph
(SDG) is a triple G = (V,H,C), where V is a finite set of configurations,
H ⊆ V × P(N0 × V ) is a finite set of hyper-edges, and C ⊆ V × N0 × V is
a finite set of cover-edges.
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ab

c d ∅

5

3

(a) A symbolic dependency graph

i a b c d

A0 ∞ ∞ ∞ ∞
F (A0) ∞ ∞ ∞ 0
F 2(A0) ∞ ∞ 0 0
F 3(A0) ∞ 3 0 0
F 4(A0) 0 3 0 0
F 5(A0) 0 3 0 0

(b) Minimum pre fixed-point computation

Fig. 4. Computation of minimum pre fixed-point assignment of a SDG

The difference from dependency graphs explained earlier is that for each
hyper-edge of a SDG a weight is added to all of its target configurations and a
new type of edge called a cover-edge is introduced. Let G = (V,H,C) be a sym-
bolic dependency graph. The size of G is |G| = |V |+ |H |+ |C| where |V |, |H | and
|C| is the size the of these components in a binary representation (note that the
size of a hyper-edge depends on the number of nodes it connects to). For a hyper-
edge e = (v, T ) ∈ H we call v the source configuration and T the target set of e.
We also say that (w, u) ∈ T is a hyper-edge branch with weight w pointing to the
target configuration u. The successor set succ(v) = {(v, T ) ∈ H}∪{(v, k, u) ∈ C}
is the set of hyper-edges and cover-edges with v as the source configuration.

Figure 4(a) shows an example of a SDG. Hyper-edges are denoted by solid lines
and hyper-edge branches have weight 0 unless they are annotated with another
weight. Cover-edges are drawn as dashed lines annotated with a cover-condition.
We shall now describe a global algorithm for the computation of the minimum
pre fixed-point. The main difference is that symbolic dependency graphs operate
over the complete lattice N0∪{∞}, contrary to standard dependency graphs that
use only boolean values.

An assignment A : V → N0 ∪ {∞} in an SDG G = (V,H,C) is a mapping
from configurations to values. We denote the set of all assignments by Assign .
A pre fixed-point assignment is an assignment A ∈ Assign such that A = F (A)
where F : Assign → Assign is defined as

F (A)(v) =

⎧⎨⎩0 if ∃(v, k, v′) ∈ C s.t. A(v′) ≤ k <∞, or A(v′) < k =∞
min

(v,T )∈H

(
max{w +A(v′) | (w, v′) ∈ T }

)
otherwise.

(1)

If we consider the partial order � over assignments of a symbolic dependency
graph G such that A � A′ if and only if A(v) ≥ A′(v) for all v ∈ V , then
the function F is clearly monotonic on the complete lattice of all assignments
ordered by �. It follows by Knaster-Tarski fixed-point theorem that there exists
a unique minimum pre fixed-point assignment of G, denoted Amin .
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Notice that we write A � A′ if for all configurations v we have A(v) ≥ A′(v)
in the opposite order. Hence, A0(v) =∞ for all v ∈ V is the smallest element in
the lattice.

As the lattice is finite and there are no infinite decreasing sequences of weights
(nonnegative integers), the minimum pre fixed-point assignment Amin of G can
be computed by a finite number of applications of the function F on the smallest
assignment A0, where all configurations have the initial value∞. So there exists
an m ∈ N0 such that Fm(A0) = Fm+1(A0), implying that Fm(A0) = Amin is
the minimum pre fixed-point assignment of G. Figure 4(b) shows a computation
of the minimum pre fixed-point assignment on our example.

The next theorem demonstrates that fixed-point computation via the global
algorithm (repeated applications of the function F ) on symbolic dependency
graphs still runs in polynomial time.

Theorem 3. The computation of the minimum post fixed-point assignment for
an SDG G = (V,H,C) by repeated application of the function F takes time
O(|V | · |C| · (|H |+ |C|)).

We now propose a local algorithm for minimum pre fixed-point computation on
symbolic dependency graphs, motivated by the fact that in model checking we
are often interested in the value for a single given configuration only, hence we
might be able (depending on the formula we want to verify) to explore only a
part of the reachable state space.

Given a symbolic dependency graphG = (V,H,C), Algorithm 2 computes the
minimum pre fixed-point assignment Amin(v0) of a configuration v0 ∈ V . The
algorithm is an adaptation of Algorithm 1. We use the same data-structures as in
Algorithm 1. However, the assignment A(v) for each configuration v now ranges
over N0∪{⊥,∞} where ⊥ once again indicates that the value is unknown at the
moment.

Table 1 lists the values of the assignment A, the set W (implemented as
queue) and the dependency set D during the execution of Algorithm 2 on the
SDG Figure 4(a). Each row displays the values before the i’th iteration of the
while-loop. The value of the dependency set D(a) for a is not shown in the table
because it remains empty.

In order to prove the correctness of Algorithm 2, we extend the loop invariant
for the local algorithm on dependency graphs [16] with weights.

Lemma 1. The while-loop in Algorithm 2 satisfies the following loop-invariants
(for all configurations v ∈ V ):

1) If A(v) �= ⊥ then A(v) ≥ Amin(v).
2) If A(v) �= ⊥ and e = (v, T ) ∈ H, then either

a) e ∈ W ,
b) e ∈ D(u) and A(v) ≤ x for some (w, u) ∈ T s.t. x = A(u) + w, where

x ≥ A(u′) + w′ for all (w′, u′) ∈ T , or
c) A(v) = 0.

3) If A(v) �= ⊥ and e = (v, k, u) ∈ C, then either
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Algorithm 2. Symbolic Local Algorithm

Input: A SDG G = (V,H,C) and a configuration v0 ∈ V
Output: Minimum pre fixed-point assignment Amin(v0) for v0

1 Let A(v) = ⊥ for all v ∈ V
2 A(v0) = ∞; W = succ(v0)
3 while W �= ∅ do
4 Pick e ∈ W
5 W = W \ {e}
6 if e = (v, T ) is a hyper-edge then
7 if ∃(w,u) ∈ T where A(u) = ∞ then
8 D(u) = D(u) ∪ {e}
9 else if ∃(w,u) ∈ T where A(u) = ⊥ then

10 A(u) = ∞; D(u) = {e}; W = W ∪ succ(u)
11 else
12 a = max{A(u) + w | (w, u) ∈ T}
13 if a < A(v) then
14 A(v) = a; W = W ∪D(v)

15 let (w, u) = argmax
(w,u)∈T

A(u) + w

16 if A(u) > 0 then
17 D(u) = D(u) ∪ {e}

18 else if e = (v, k, u) is a cover-edge then
19 if A(u) = ⊥ then
20 A(u) = ∞; D(u) = {e}; W = W ∪ succ(u)
21 else if A(u) ≤ k < ∞ or A(u) < k == ∞ then
22 A(v) = 0
23 if A(v) was changed then
24 W = W ∪D(v)

25 else
26 D(u) = D(u) ∪ {e}

27 return A(v0)

a) e ∈ W ,
b) e ∈ D(u) and A(u) > k, or
c) A(v) = 0.

These loop-invariants allow us to conclude the correctness of the local algorithm.

Theorem 4. Algorithm 2 terminates and computes an assignment A such that
A(v) �= ⊥ implies A(v) = Amin(v) for all v ∈ V . In particular, the returned
value A(v0) is the minimum pre fixed-point assignment of v0.

We note that the termination argument is not completely straightforward as
there is not a guarantee that it terminates within a polynomial number of steps
as depicted on the SDG in Figure 5 where for technical convenience, we named
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Table 1. Execution of Algorithm 2 on SDG from Figure 4(a)

i A(a) A(b) A(c) A(d) W D(b) D(c) D(d)

1 ∞ ⊥ ⊥ ⊥ (a, 5, b)
2 ∞ ∞ ⊥ ⊥ (b, {(0, c), (3, d)}) (a, 5, b)
3 ∞ ∞ ∞ ⊥ (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)})
4 ∞ ∞ ∞ ∞ (d, ∅) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
5 ∞ ∞ ∞ 0 (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
6 ∞ ∞ 0 0 (b, {(0, c), (3, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
7 ∞ 3 0 0 (a, 5, b) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
8 0 3 0 0 (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})

s0 s1 s2 s3 sn ∅. . .

0

b1

0

b2

0

b3

0

b4

0

bn

20

a1

21

a2

22

a3

23

a4

2n−1

an
z

Fig. 5. A SDG where the local algorithm can take exponential running time

the hyper-edges a1, . . . , an, b1, . . . , bn and z. Consider now an execution of Al-
gorithm 2 starting from the configuration s0. Let us pick the edges from W at
line 4 according to the strategy:

– if z ∈ W then pick z, else
– if ai ∈W for some i then pick ai (there will be at most one such ai), else
– pick bi ∈W with the smallest index i.

Then the initial assignment of A(s0) =∞ is gradually improved to 2n−1, 2n−2,
2n − 3, . . . 1, 0. Hence, in the worst case, the local algorithm can perform
exponentially many steps before it terminates, whereas the global algorithm
always terminates in polynomial time. However, as we will see in Section 7,
the local algorithm is in practice performing significantly better despite its high
(theoretical) complexity.

6 Model Checking with Symbolic Dependency Graphs

We are now ready to present an encoding of a WKS and a WCTL formula as
a symbolic dependency graph and hence decide the model checking problem via
the computation of the minimum pre fixed-point assignment.

Given a WKS K, a state s of K and a WCTL formula ϕ, we construct the
corresponding symbolic dependency graph as before with the exception that the
existential and universal “until” operators are encoded by the rules given in
Figure 6.
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〈s,E ϕ1 U≤k ϕ2〉

〈s,E ϕ1 U≤? ϕ2〉

k

(a) Existential Until

〈s,A ϕ1 U≤k ϕ2〉

〈s,A ϕ1 U≤? ϕ2〉

k

(b) Universal Until

〈s,E ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤? ϕ2〉 〈sn,E ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(c) Existential Until

〈s,A ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤? ϕ2〉 〈sn,A ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(d) Universal Until

Fig. 6. SDG encoding of existential and universal ‘until’ formulas

Theorem 5 (Encoding Correctness). Let K = (S,AP , L,→) be a WKS,
s ∈ S a state, and ϕ a WCTL formula. Let G be the constructed symbolic
dependency graph rooted with 〈s, ϕ〉. Then s |= ϕ if and only if Amin(〈s, ϕ〉) = 0.

Proof. By structural induction on ϕ. ��

In Figure 7 we depict the symbolic dependency graph encoding of E a U≤1000 b
for the configuration s in the single-state WKS from Figure 3. This clearly
illustrates the succinctness of SDG compared to standard dependency graphs.
The minimum pre fixed-point assignment of this symbolic dependency graph is
now reached in two iterations of the function F defined in Equation (1).

We note that for a given WKS K = (S,AP , L,→) and a formula ϕ, the size
of the constructed symbolic dependency graph G = (V,H,C) can be bounded as
follows: |V | = O(|S| · |ϕ|), |H | = O(|→| · |ϕ|) and |C| = O(|ϕ|). In combination
with Theorem 3 and the fact that |C| ≤ |H | (due to the rules for construction
of G), we conclude with a theorem stating a polynomial time complexity of the
global model checking algorithm for WCTL.

Theorem 6. Given a WKS K = (S,AP , L,→), a state s ∈ S and a WCTL
formula ϕ, the model checking problem s |= ϕ is decidable in time O(|S|·|→|·|ϕ|3).
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〈s,E a U≤1000 b〉 〈s,E a U≤? b〉

〈s, b〉 〈s, a〉 ∅

1000

1

Fig. 7. SDG for the formula s |= E a U≤1000 b and the WKS from Figure 3

As we already explained, the local model checking approach in Algorithm 2
may exhibit exponential running time. Nevertheless, the experiments in the sec-
tion to follow show that this unlikely to happen in practice.

7 Experiments

In order to compare the performance of the algorithms for model checking
WCTL, we developed a prototype tool implementation. There is a web-based
front-end written in CoffeeScript available at

http://wktool-spin2013.jonasfj.dk

and the tool is entirely browser-based, requiring no installation. The model
checking algorithms run with limited memory resources but the tool allows a
fair comparison of the performance for the different algorithms. All experiments
were conducted on a standard laptop (Intel Core i7) running Ubuntu Linux.

In order to experiment with larger, scalable models consisting of parallel com-
ponents, we extend the process algebra CCS [17] with weight prefixing as well
as proposition annotations and carry out experiments with weighted models of
Leader Election [12], Alternating Bit Protocol [5], and Task Graph Scheduling
problems for two processors [13]. The weight (communication cost) is associated
with sending messages in the first two models while in the task graph scheduling
the weight represents clock ticks of the processors.

7.1 Dependency Graphs vs. Symbolic Dependency Graphs

In Table 2 we compare the direct (standard dependency graph) algorithms with
the symbolic ones. The execution times are in seconds and OOM indicates that
verification runs out of memory. For a fixed size of the problems, we scale the
bound k in the WCTL formulae. In the leader election protocol with eight pro-
cesses, we verified a satisfiable formula E true U≤k leader, asking if a leader
can be determined within k message exchanges, and an unsatisfiable formula
E true U≤k leader > 1, asking if there can be more than one leader selected
within k message exchanges. For the alternating bit protocol with a communica-
tion buffer of size four, we verified a satisfied formula E true U≤k delivered = 1,
asking if a message can be delivered within k communication steps, and an un-
satisfied formula E true U≤k (s0 ∧ d1) ∨ (s1 ∧ d0), asking whether the sender
and receiver can get out of synchrony withing the first k communication steps.

http://wktool-spin2013.jonasfj.dk
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Table 2. Scaling of bounds in WCTL formula (time in seconds)

Leader Election

Direct Symbolic

k Global Local Global Local

200 3.88 0.23 0.26 0.02 S
a
tisfi

ed

400 8.33 0.25 0.26 0.02
600 OOM 0.24 0.26 0.02
800 OOM 0.25 0.26 0.02

1000 OOM 0.26 0.27 0.02

200 7.76 8.58 0.26 0.26 U
n
sa
tisfi

ed

400 17.05 20.23 0.26 0.26
600 OOM OOM 0.26 0.26
800 OOM OOM 0.26 0.26

1000 OOM OOM 0.26 0.26

Alternating Bit Protocol

Direct Symbolic

k Global Local Global Local

100 3.87 0.05 0.23 0.03 S
a
tisfi

ed

200 8.32 0.06 0.23 0.03
300 OOM 0.10 0.28 0.04
400 OOM 0.11 0.23 0.03
500 OOM 0.13 0.23 0.03

100 3.39 3.75 0.27 0.23 U
n
sa
tisfi

ed

200 6.98 8.62 0.30 0.25
300 OOM 15.37 0.28 0.24
400 OOM OOM 0.27 0.24
500 OOM OOM 0.27 0.22

For the satisfied formula, the direct global algorithm (global fixed-point compu-
tation on dependency graphs) runs out of memory as the bound k in the formulae
is scaled. The advantage of Liu and Smolka [16] local algorithm is obvious as on
positive instances it performs (using DFS search strategy) about as well as the
global symbolic algorithm. The local symbolic algorithm clearly performs best.
We observed a similar behaviour also for other examples we tested and the sym-
bolic algorithms were regularly performing better than the ones using the direct
translation of WCTL formulae into dependency graphs. Hence we shall now focus
on a more detailed comparison of the local vs. global symbolic algorithms.

7.2 Local vs. Global Model Checking on SDG

We shall now take a closer look at comparing the local and global symbolic
algorithms. In Table 3 we return to the leader election and alternating bit pro-
tocol but we scale the sizes (number of processes and buffer capacity, resp.) of
these models rather than the bounds in formulae. The satisfiable and unsatisfi-
able formulae are as before. In the leader election the verification of a satisfiable
formula using the local symbolic algorithm is consistently faster as the instance
size is incremented, while for unsatisfiable formulae the verification times are
essentially the same. For the alternating bit protocol we present the results for
the bound k equal to 10, 20 and ∞. While the results for unsatisfiable formulae
do not change significantly, for the positive formula the bound 10 is very tight in
the sense that there are only a few executions or “witnesses” that satisfy the for-
mula. As the bound is relaxed, more solutions can be found which is reflected by
the improved performance of the local algorithm, in particular in the situation
where the upper-bound is ∞.

We also tested the algorithms on a larger benchmark of task graph schedul-
ing problems [4]. The task graph scheduling problem asks about schedulability
of a number of parallel tasks with given precedence constraints and process-
ing times that are executed on a fixed number of homogeneous processors [13].
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Table 3. Scaling the model size for the symbolic algorithms (time in seconds)

Leader Election

k = 200

n Global Local

7 0.08 0.01 S
a
tisfi

ed

8 0.26 0.02
9 1.06 0.03
10 5.18 0.03
11 23.60 0.03
12 Timeout 0.04

7 0.08 0.08 U
n
sa
tisfi

ed

8 0.26 0.26
9 1.05 1.06
10 4.97 4.96
11 23.57 24.07
12 Timeout Timeout

Alternating Bit Protocol

k = 10 k = 20 k = ∞
n Global Local Global Local Global Local

5 0.33 0.10 0.33 0.07 0.33 0.04 S
a
tisfi

ed

6 0.78 0.18 0.77 0.17 0.80 0.06
7 1.88 0.34 1.92 0.14 1.96 0.05
8 4.82 0.82 4.71 0.72 4.78 0.09
9 13.91 10.60 12.41 1.67 12.92 0.20
10 OOM OOM OOM 6.29 OOM 0.23

4 0.27 0.24 0.27 0.23 0.29 0.24 U
n
sa
tisfi

ed

5 0.54 0.43 0.51 0.37 0.57 0.40
6 1.42 0.98 1.21 0.93 1.31 1.02
7 2.70 2.05 2.93 2.06 3.14 2.21
8 6.15 4.98 7.08 5.57 6.86 5.34
9 OOM OOM OOM OOM OOM OOM

Table 4. Scaling task graphs by the number of initial tasks (time is seconds)

T0 T1 T2

n Global Local Global Local Global Local

2 0.24 0.04 0.06 0.01 0.07 0.01

S
a
tisfi

ed

3 3.11 0.01 0.15 0.08 0.19 0.01
4 4.57 1.13 0.18 0.08 0.88 0.19
5 6.09 0.03 2.73 0.01 7.05 0.02
6 OOM OOM 5.27 1.08 OOM 1.44
7 OOM 0.02 OOM 0.02 OOM 0.01
8 OOM 0.03 OOM OOM OOM 2.75
9 OOM OOM OOM OOM OOM 1.86

10 OOM 0.03 OOM OOM OOM OOM

2 0.22 0.20 0.05 0.05 0.08 0.01 U
n
sa
tisfi

ed

3 2.91 2.55 0.14 0.13 0.20 0.01
4 6.35 4.45 0.16 0.14 0.91 0.20
5 7.45 5.00 2.31 1.69 7.48 0.03
6 OOM OOM 4.67 4.40 OOM 1.40
7 OOM OOM OOM OOM OOM OOM

We automatically generate models for two processors from the benchmark con-
taining in total 180 models and scaled them by the number of initial tasks that
we include from each case into schedulability analysis.

The first three task graphs (T0, T1 and T2) are presented in Table 4. We

model check nested formulae and the satisfiable one is E true U≤90 (treadyn−2 ∧
A true U≤80 done) asking whether there is within 500 clock ticks a configuration
where the task tn−2 can be scheduled such that then we have a guarantee that
the whole schedule terminates within 500 ticks. When the upper-bounds are
decreased to 5 and 10 the formula becomes unsatisfiable for all task graphs in
the benchmark.
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Table 5. Summary of task graphs verification (180 cases in total)

180 task graphs for k = 30 k = 60 k = 90

Algorithm global local global local global local

Number of finished tasks 32 85 32 158 32 178
Accumulated time (seconds) 50.4 12.9 47.6 2.30 47.32 0.44

Finally, we verify the formula E true U≤k done asking whether the task graph
can be scheduled within k clock ticks. We run the whole benchmark through the
test (180 cases) for values of k equal to 30, 60 and 90, measuring the number
of finished verification tasks (without running out of resources) and the total
accumulated time it took to verify the whole benchmark for those cases where
both the global and local algorithms provided an answer. The results are listed
in Table 5. This provides again an evidence for the claim that the local algorithm
profits from the situation where there are more possible schedules as the bound
k is being relaxed.

8 Conclusion

We suggested a symbolic extension of dependency graphs in order to verify
negation-free weighted CTL properties where temporal operators are annotated
with upper-bound constraints on the accumulated weight. Then we introduced
global and local algorithms for the computation of fixed-points in order to answer
the model checking problems for the logic. The algorithms were implemented and
experimented with, coming to the conclusion that the local symbol algorithm is
the preferred one, providing order of magnitude speedup in the cases where the
bounds in the logical formula allow for a larger number of possible witnesses of
satisfiability of the formula.

In the future work we will study a weighted CTL logic with negation that
combines lower- and upper-bounds. (The model checking problem for a logic
containing weight intervals as the constraints is already NP-hard; showing this
is easy.) From the practical point of view it would be worth designing good
heuristics that can guide the search in the local algorithm in order to find faster
the witnesses of satisfiability of a formula. Another challenging problem is to
adapt our technique to support alternating fixed points.
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Abstract. Because of shorter software development cycles for commu-
nication protocol stacks, the risk of design failures rises. Therefore, even
within the protocol specification phase, appropriate validation should be
performed in order to detect failures as early as possible. In the light of
electric vehicle integration in a smart grid environment, the complexity of
charging processes increases e.g. for demand management, and thus also
complexity of requirements for associated communication protocols in-
creases. Accordingly, it lends to describe the behavior of communication
protocols by abstraction in form of models. The use of model checking
processes can validate properties of future behavior, hence failures may
be detected earlier. COMPLeTe is a toolchain for validation of communi-
cation protocols, represented in an adapted version of UML-Statecharts.
The toolchain uses the SPIN model checker and its composition is based
on techniques of Model-Driven Software Development (MDSD).

Keywords: Communication Protocol Validation, COMPLeTe, SPIN,
UML-Statecharts, Electric Mobility.

1 Introduction

Communication protocols in general, define the way of information exchange be-
tween devices or other entities on a network. To reach an agreement by involved
parties about the way of information flow, the protocol description should be
developed as a technical standard. Some standards already include a formal de-
scription, however only in rare cases. Furthermore, the description of the protocol
behavior may also have a high level of complexity.

Especially in the context of electric mobility, a future widespread use of elec-
tric vehicles requires the deployment of reliable, uniform and comprehensive bat-
tery charging infrastructures. Therefore, the communication between all systems
becomes an important factor for future acceptance.

By use of model checking techniques, the behavior of new communication
protocol standards can be validated within the specification process. For this
purpose, it is required to describe the behavior in a formal description lan-
guage, which can be used by state-of-the-art model checking tools like SPIN[5].
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COMPLeTe combines the possibility of an abstract behavior description repre-
sented as Unified Modeling Language (UML)-Statechart models, with a formal
representation in PROMELA, which is used by SPIN as input language. Accord-
ingly, COMPLeTe facilitates the formal description process.

The remainder of this paper is structured as follows. In Section 2 the concept
and design of the toolchain is described and their functionality is illustrated.
Section 3 closes with a conclusion and an outlook including future work.

2 Concept and Design of COMPLeTe

COMPLeTe realizes a COMmunication Protocol vaLidation Toolchain, by using
formal and model-based specifications and descriptions. The concept takes the
following requirements into account.

First, the support for creation and modification of graphical models which rep-
resent the behavior of communication protocols. This is realized by the front-end
component, which is depicted at the left part of Figure 1. Moreover, an auto-
matic transformation of the constructed graphical models to the input language
of a corresponding model checker is realized. This transformation builds the link
between the front-end and the back-end component in Figure 1. The back-end
component integrates a model checker tool. Furthermore, editing the transformed
models, based on the input language of the model checker is supported for eval-
uation purposes. In addition, properties can be defined with which models are
checked against.

Graphical 
model

e.g. UML-
Statecharts

Formal 
description

e.g. 
PROMELA

Model 
Checker

e.g. SPIN

Results produced from Model Checker; Representation of property violations

Properties derived from protocol specification

Front-end component Back-end component

Input

Input
Invariants

COMPLeTe

Extension for Conformance- and Interoperability Testing
Input

Protocol 
specification
e.g. Standard 

document

-----------------------
-----------------

------------
---------

-------------------
---------------------

Syntax
Invariant 1
Invariant 2
Invariant 3

Invariant n
...

Fig. 1. Architecture of COMPLeTe

Secondly, beside the more functional requirements the toolchain is used within
the Eclipse Integrated Development Environment (IDE). This ensures that com-
ponents within the toolchain can easily be exchanged or modified (modularity
and extensibility) and new components can be integrated in a simple way. Fur-
thermore, open-source or free available existing tools are used in order to consider
reusability.
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2.1 Realization of Front-End Component

The front-end component realization of COMPLeTe utilizes a combination of
approaches described in [2] and [8] to use UML-Statecharts for modeling com-
munication protocols and SPIN as model checker for verification purposes. The
central question for a formal verification of UML-Statecharts is mostly the
informal semantics of UML. Several approaches have been developed on this
research topic. In [3] an overview of approaches for formal verification of UML-
Statecharts is given. One representative approach which handles the transfor-
mation of UML-Statecharts to PROMELA is described in [7]. COMPLeTe uses
an similar approach described in [2] which uses a transformation from UML-
Statecharts based on the domain-specific UML-Statecharts Description Lan-
guage (UDL) to PROMELA. Typical UDL models are created in a textual
description, so that an appropriate graphical editor needs to be created for
COMPLeTe. In [8] a concept for meta-models for UDL and PROMELA is con-
structed in order to define a Model-to-Model (M2M) transformation, which rep-
resents a homomorphic mapping between meta-model elements. Because of an
already existing UDL meta-model in [2], only a PROMELA meta-model is re-
quired.

Modeling Transformation

Meta-modeling

Step D1

Step D2 Step D5 Step D3

PROMELA Model Instance PROMELA Source Code

Development

Usage

Step D4

UDL Model Instance

Step U1 Step U2 Step U3
Model

Designer

PROMELA
Meta-model

UDL
Meta-model

GMF Module M2M Module M2T Module

Fig. 2. Development process of front-end component in COMPLeTe

Figure 2 shows the development process (steps D1 - D5) which is grouped
into the categories meta-modeling, transformation and modeling. These con-
form to the paradigm of Model-Driven Software Development (MDSD) and
ensure modularity and extensibility of the toolchain. For this reason, the com-
bination of the two approaches was chosen. The generation of meta-models for
UDL and PROMELA is realized by use of Xtext and the Eclipse Modeling
Framework (EMF) giving an Extended Backus-Naur Form (EBNF) grammar for
UDL and PROMELA. The Model-to-Model (M2M) transformation from UDL to
PROMELA model instances is provided by mapping rules between elements of
the generated meta-models in the Atlas Transformation Language (ATL). There-
fore the rules described in [2] are used as a basis for the appropriate mapping.
The Model-to-Text (M2T) transformation from PROMELA model instances into
PROMELA source code is achieved by the Xpand template language. The graph-
ical editor for UDL respectively UML-Statecharts is built by use of the Graphical
Modeling Framework (GMF).
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(a) Statechart editing

 1 //Mtype ModuleDeclaration
 2 mtype = { 
 3 Pev_plug_detect_signal_pev, 
 4 Pev_control_pilot_switched_on_stateA, 
 5 Pev_control_pilot_five_percent, 
 6 Pev_dhcp_fails, 
 7 Pev_ip_address_assigned, 
 8 Pev_cpd_response_timout, 
 9 Pev_cpd_response_ok
10 // ...
11 }
12 //...
13 //Proctype ModuleDeclaration
14 proctype Pev(){
15 goto start;
16 //STMNT Labeled Statement
17 start:
18 if
19 :: 
20 empty(Pev_queue[Pev_queue_access(_pid)]) ; 
21 goto disconnected
22 :: 
23 Pev_queue[Pev_queue_access(_pid)]?Pev_plug_detect_signal_pev, _ ; 
24 goto start
25 :: 
26 Pev_queue[Pev_queue_access(_pid)]?Pev_control_pilot_switched_on_stateA, _ ; 
27 goto start
28 :: 
29 Pev_queue[Pev_queue_access(_pid)]?Pev_control_pilot_five_percent, _ ; 
30 goto start
31 :: 
32 Pev_queue[Pev_queue_access(_pid)]?Pev_dhcp_fails, _ ; 
33 goto start
34 :: 
35 Pev_queue[Pev_queue_access(_pid)]?Pev_ip_address_assigned, _ ; 
36 goto start
37 :: 
38 Pev_queue[Pev_queue_access(_pid)]?Pev_cpd_response_timout, _ ; 
39 goto start
40 :: 
41 Pev_queue[Pev_queue_access(_pid)]?Pev_cpd_response_ok, _ ; 
42 goto start
43 fi;
44 }

(b) Generated PROMELA code

Fig. 3. Front-end component in COMPLeTe

With the COMPLeTe front-end component, a model designer is able to cre-
ate abstractions of communication protocols in form of UML-Statechart mod-
els which can be transformed into PROMELA models and subsequently into
PROMELA source code. This is indicated in Figure 2 by the steps U1-U3,
whereas Figure 3 gives an exemplary impression of the realized front-end com-
ponent by showing a communication setup behavior model for electric vehicle
charging in (a) and the resulting PROMELA code in (b).

2.2 Realization of Back-End Component

The development of a back-end component comprises the invocation of SPIN
model checker as an Eclipse Plugin. Figure 4 summarizes the implemented func-
tionality of COMPLeTe. The bottom layer shows the prerequisites and basic
functions for the usage of SPIN. These are also partly described and supported
by similar approaches in [4] and [6]. The basic invocation calls are also found in
the Tcl/Tk based iSpin/xSpin graphical user interface, which is already shipped
within the SPIN distribution.

In addition, several extensions are implemented in COMPLeTe which build
on top of these basic functions. As an example the invocation of an interactive
and interactive-random simulation can be conducted enabling user-interaction.
Furthermore, a MSC-View is included to allow visualization of the communica-
tion flow between PROMELA processes during simulations. This view is com-
plemented with a SimData-View which shows variable values and queues of
the PROMELA model. For verification purposes a specific LTLProperty-View is
built to simplify the user interface. In addition it provides support of a so called
Multi-verification. Thereby, for a given PROMELA model it can be invoked on
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MSC-
View

SimData-
View

Automata-
ViewSpinNavigator LTLProperty-

View

SpinConsole

FSMSimulation

Basic functions

Extensions

Prerequisites

Interactive 
Simulation

SyntaxCheck Verification

SpinProject
Wizard

PROMELA Model Wizard

CNI Perspective
Simulation

Spin PreferencePages

PROMELA MultiPageEditor

SPIN ExecutablesPROMELA Model LTL formula (Invariants)

Fig. 4. Functions of back-end component of COMPLeTe

a number of selected invariants. In case of a violation the Multi-verification is
terminated. Another extension is the Automata-View, in which the finite state
machines of a corresponding PROMELA model are displayed by use of the Zest/-
DOT tooling. The FSMSimulation represents a combination of the Automata-

(a) SimData-View and MSC-View (b) Automata-View

Fig. 5. Back-end component of COMPLeTe

View and a simulation. This allows to display a complete simulation-path by
highlighting the visited states, from the beginning up to the occurrence of the
invariant violation. Figure 5 depicts these extensions realized in COMPLeTe.

3 Conclusion and Future Work

In this paper the concept and realization of COMPLeTe was introduced, which
enables validation of communication protocols. The toolchain can be applied in
the context of electric mobility as well as in further domains of interest. The
communication protocol behavior described in UDL can be represented in a
graphical statechart form by use of the UDL Editor. A conversion into an equiv-
alent PROMELA code is accomplished via a M2M and a M2T transformation.
For verification purposes, COMPLeTe integrates the SPIN model checker and
allows simplified usage by enabling mechanisms to specify invariant properties
as LTL formulas and additional analysis extensions. Since COMPLeTe is still
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under development to integrate extensions for conformance testing in the con-
text of electric mobility, it has not yet a public release. However, a future open
source version is intended.

For future work, the construction of a "complete" model for the upcoming
ISO/IEC 15118 [1] standard is planned, in order to validate its related protocol
behavior. Furthermore interoperability and conformance testing capabilities of
COMPLeTe shall be considered.

Acknowledgment. The work in this paper was funded by the NRW Ziel 2
Program 2007-2013 (EFRE) of the European Union, the MBWSV and the
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A Oral Tool Presentation

A.1 Structure of the Presentation

This section gives a structure of the demonstration of COMPLeTe and is divided
into the following three parts.

1. Motivation for designing COMPLeTe

– COMPLeTe in the electric mobility context
– Protocol validation including verification (SPIN/PROMELA)

and testing
2. Detailed development of COMPLeTe

– Front-end: Model design and transformation
– Back-end: SPIN integration and extensions

3. Case study: Application of a binding process for EV charging in COMPLeTe

– Description of the binding process
– Front-end component: Presenting UDL model and invoke automatic

transformation into PROMELA source code
– Back-end component: Demonstrate several functions of back-end com-

ponent → PromelaEditor, MSC-View, SimData-View, FSMSimulation,
Automata-View, LTLProperty-View, SyntaxCheck, Various simulation
runs (random, guided, interactive simulation runs), Verification and
Multi-Verification runs, Definition of invariants with regard to the gen-
erated PROMELA source code of the binding process and at last show
analysis capabilities of COMPLeTe by explaining the failed verification

A.2 Front-End: Model Design and Transformation

In the meta-modeling steps D1 and D2 (see Figure 2) appropriate meta-models
on basis of an EBNF grammar, Xtext and EMF for both UDL and PROMELA
are generated. The Listing 1.1 offers an excerpt of UDL grammar rules for cre-
ation of a corresponding UDL meta-model. Listing 1.2 shows an excerpt of the
PROMELA grammar representing a rule for a PROMELA proctype.

Step D3 indicates the M2M transformation from UDL to PROMELA model
instances via ATL. Listing 1.3 gives an exemplary M2M mapping rule in ATL
describing the translation of UDL Enumerations into PROMELA mtypes.

1 Model:
2 (imports+= UDLInclude )*
3 (variable += UDLData)*
4 (behaviour =UDLBehaviour )? ;
5
6 // State Rules
7 UDLState:
8 UDLSimpleState |
9 UDLCompositeState |

10 UDLFinalState |
11 UDLInitialState ;
12
13 UDLSimpleState :
14 "simplestate " name=ID
15 "{"
16 (entry=UDLEntryAction )?
17 (exit= UDLExitAction )?
18 (out += UDLTransition )+
19 "}";

Listing 1.1. Excerpt of UDL grammar
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The M2T transformation from PROMELA model instances to PROMELA source
code via Xpand templates is conducted in step D4. Listing 1.4 offers an excerpt of
a Xpand template rule which shows the transformation of a PROMELA proctype
element into its corresponding code fragment.

1 spec: // PARSER RULES
2 (specname=ID)?
3 (modules += module+);
4
5 module:
6 proctype /* proctype declaration */
7 | init /* init process - max 1 per model */
8 | never /* never claim - max 1 per model */
9 | trace /* event trace - max 1 per model */

10 | utype /* user defined types */
11 | mtype /* mtype declaration */
12 | decl_lst /* global vars , chans */
13 | inline
14 | preprocess ;
15
16 proctype:
17 (active=active)?
18 PROCTYPELABEL name=ID PARENOPEN
19 (dlist=decl_lst)?
20 PARENCLOSE
21 (priority=priority)?
22 (enabler=enabler)?
23 BLOCKBEGIN
24 seq= sequence
25 BLOCKEND
26 (SEMICOLON )* ;

Listing 1.2. Excerpt of PROMELA grammar

1 -- @path UDLMM=/ com.statechartverification /src -gen/com/statechartverification /UDL.ecore
2 -- @path PMLMM=/ org.xtext.draft.promela/src -gen /org/xtext/draft/promela/PromelaDSL .ecore
3
4 module UDL2PML;
5 create OUT : PMLMM from IN: UDLMM;
6
7 -- Transform UDLEnumDeclare into Promela mtype declaration
8 rule UDLEnumDeclare2Promela {
9 from

10 udl_enum_declare_in : UDLMM!UDLEnumDeclare
11 to
12 pml_out: PMLMM!mtype (
13 name <- udl_enum_declare_in .getFirstEnumElementName (),
14 name <- udl_enum_declare_in .next
15 -> collect(e |
16 udl_enum_declare_in .getEnumDeclareNamePrefix () + e.name)
17 )
18 }

Listing 1.3. Excerpt of ATL transformation file

1 «IMPORT promelaDSL»
2
3 «DEFINE generateSpec FOR spec»
4 «IF this.specname != null»
5 «FILE this.specname+".promela"»
6 «EXPAND generateModules FOR this -»
7 «ENDFILE»
8 «ELSE»
9 «FILE "Test.promela"»

10 «EXPAND generateModules FOR this»
11 «ENDFILE»
12 «ENDIF»
13 «ENDDEFINE »
14
15 «DEFINE generateModule FOR proctype»
16 // Proctype ModuleDeclaration
17 «IF this.active != null»
18 «EXPAND generateActive FOR this.active»
19 «ENDIF -»proctype «this.name -»(
20 «IF this.dlist != null»
21 «EXPAND generateDeclarationList FOR this.dlist -»
22 «ENDIF»)
23 «IF this.priority != null»
24 «EXPAND generatePriority FOR this.priority»
25 «ENDIF -»
26 «IF this.enabler != null»
27 «EXPAND generateEnabler FOR this.enabler»
28 «ENDIF -» {
29 «IF this.seq != null»
30 «EXPAND generateSequence FOR this.seq »
31 «ENDIF»
32 }
33 «ENDDEFINE »

Listing 1.4. Excerpt of Xpand template file representing the M2T transformation
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Step D5 describes the development of a graphical UDL Editor in Eclipse via
GMF. Figure 6 shows the constructed graphical UDL Editor and the corre-
sponding textual UDL Editor from [2].

Fig. 6. Comparison textual UDL Editor and generated graphical UDL GMF Editor

A.3 Back-End: SPIN Integration and Extensions

The result of SPIN integration in COMPLeTe as Eclipse Plugin is shown in
Figure 7. With regard to simulation and verification capabilities Figure 5 shows
the MSC-View, SimData-View and Automata-View.

SpinNavigator PROMELA Editor

LTLProperty View
Automata View

SimData View SpinConsole MSC View

Fig. 7. Overview of the Spin Eclipse Plugin within COMPLeTe
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A.4 Case Study: Application of a Binding Process for EV Charging
in COMPLeTe

The applicability of COMPLeTe is demonstrated by modeling an exemplary com-
munication setup for electric vehicle charging. In general the binding process en-
sures a successful setup of a point-to-point connection between a Charge Point
(CP) and an Electric Vehicle (EV) on IP-Level. The sequence of the binding pro-
cess between a Charge Point and an EV is explained in Figure 8. At first the front-
end component is used in order to model the binding process and to transform
the models into executable PROMELA source code. Afterwards the source code
is applied to SPIN model checker via the back-end component of COMPLeTe.

EV1

CP-1-1

CP-1-2

IP via DCHP

CPD-Request

CPD-Response

CSCC 1

SNB

DHCP

CPD

Electric Vehicle

CP-2-1

CP-2-2

CSCC 2

SNB

DHCP

CPD

…

CP: Charge Point
CPD: Charge Point Discovery
CSCC: Charge Spot Communication Controller
DHCP: Dynamic Host Configuration Protocol
EV: Electric Vehicle
IP: Internet Protocol
SNB: Silent Neighborhood Broadcast

3
2

4

5

6

SNB-Start
SNB-Stop

CP-n-1

CP-n-p

CSCC n

SNB

DHCP

CPD …

Shared Communication Channel e.g. 
Power Line Communications

1

Connection of an EV to a 
charge point through a 
charge cord

Fig. 8. Binding process for EV charging

Front-end Component: Presenting UDL Model and invoke Automatic
Transformation into PROMELA Source Code. The front-end component
of COMPLeTe is used to model a simplified binding process resulting in UDL
models respectively in UML-Statecharts for the Charge Point and the EV. The
EV model is illustrated in Figure 9. Afterwards an automatic M2M and M2T
transformation takes place, which produces corresponding PROMELA source
code from the constructed UDL models. Listing 1.5 shows an excerpt of the
generated PROMELA source code for the binding process for EV charging.

Back-end Component: Demonstrate Several Functions of Back-end
Component. The generated PROMELA source code of the binding process is
taken as input for SPIN. Therefore the invocation of a Syntax Check as well
as several simulation runs are presented. For verification purposes the following
example properties are defined in the LTLProperty-View :
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Listing 1.5. Generated PROMELA source code of the binding process for EV charging
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– Eventually the binding process will be completed. " bindingComplete
– The connection of EV and CP always implies the completion of the binding

process (invariant property). � (instancesConnected =⇒ bindingComplete)

Especially the invocation of verifications is a crucial point in evaluation of
COMPLeTe’s capabilities. The verification of the binding process in PROMELA
is demonstrated by use of aforementioned LTL formulas. For illustration pur-
poses Figure 9 depicts the statemachine of the EV in the Automata-View.

(a) UDL-Statechart of EV (b) EV statemachine in Automata-View

Fig. 9. EV models

(Spin Version 6.1.0 -- 4 May 2011)
+ Partial Order Reduction

Full statespace search for:
never claim         + 

(ltl_invariant_eventually_bindingComplete)
assertion violations + (if within scope of claim)
non-progress cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 72 byte, depth reached 68, errors: 0
      390 states, stored
      213 states, matched
      603 transitions (= stored+matched)
        2 atomic steps
hash conflicts:         0 (resolved)

    Stats on memory usage (in Megabytes):
    0.033 equivalent memory usage for states 
(stored*(State-vector + overhead))
    0.242 actual memory usage for states 
(unsuccessful compression: 738.11%)
         state-vector as stored = 634 byte + 16 byte 
overhead
    2.000 memory used for hash table (-w19)
    0.343 memory used for DFS stack (-m10000)
    2.539 total actual memory usage

pan: elapsed time 0 seconds

(Spin Version 6.1.0 -- 4 May 2011)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim         + 

(ltl_invariant_instancesConnected_then_bindingComplete)
assertion violations + (if within scope of claim)
non-progress cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 72 byte, depth reached 45, errors: 1
      158 states, stored
       94 states, matched
      252 transitions (= stored+matched)
        2 atomic steps
hash conflicts:         1 (resolved)

    Stats on memory usage (in Megabytes):
    0.013 equivalent memory usage for states 
(stored*(State-vector + overhead))
    0.242 actual memory usage for states 
(unsuccessful compression: 1822.18%)
         state-vector as stored = 1588 byte + 16 byte 
overhead
    2.000 memory used for hash table (-w19)
    0.343 memory used for DFS stack (-m10000)
    2.539 total actual memory usage

pan: elapsed time 0.102 seconds

Invariants

Number of errors

State space size

Fig. 10. Comparison of SPIN output for a successful and failed verification run
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(a) CP statemachine (b) EV statemachine

Fig. 11. Paths of EV and Charge Point statemachines for the error case

The verification of the first defined property succeeds without any errors but
the second property fails. Figure 10 shows an contrasting comparison of the
generated SPIN outputs. For analysis purposes, a guided simulation is conducted.
Within COMPLeTe the message flow is visualized in the MSC-View. In addition,
the FSMSimulation shows the traversing of the states, which are iteratively
highlighted in the Automata-View. An example of the FSMSimulation for the
Charge Point and the EV is shown in Figure 11. By analyzing the model using
the MSC-View and the FSMSimulation, the failed verification results in a loss
of a message during the binding process. Thus, it is necessary to adapt the
simplified UDL model in order to correct the error.
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Abstract. Fault-tolerant distributed algorithms are central for building
reliable, spatially distributed systems. In order to ensure that these algo-
rithms actually make systems more reliable, we must ensure that these
algorithms are actually correct. Unfortunately, model checking state-of-
the-art fault-tolerant distributed algorithms (such as Paxos) is currently
out of reach except for very small systems.

In order to be eventually able to automatically verify such fault-
tolerant distributed algorithms also for larger systems, several problems
have to be addressed. In this paper, we consider modeling and verifi-
cation of fault-tolerant algorithms that basically only contain threshold
guards to control the flow of the algorithm. As threshold guards are
widely used in fault-tolerant distributed algorithms (and also in Paxos),
efficient methods to handle them bring us closer to the above mentioned
goal.

As a case study we use the reliable broadcasting algorithm by Srikanth
and Toueg that tolerates even Byzantine faults. We show how one can
model this basic fault-tolerant distributed algorithm in Promela such
that safety and liveness properties can be efficiently verified in Spin. We
provide experimental data also for other distributed algorithms.

1 Introduction

Even formally verified computer systems are subject to power outages, electri-
cal wear-out, bit-flips in memory due to ionizing particle hits, etc., which may
easily cause system failures. Replication is a classic approach to ensure that a
computer system is fault-tolerant, i.e., continues to correctly perform its task
even if some components fail. The basic idea is to have multiple computers in-
stead of a single one (that would constitute a single point of failure), and ensure
that the replicated computers coordinate, and for instance in the case of repli-
cated databases, store the same information. Ensuring that all computers agree
on the same information is non-trivial due to several sources of non-determinism,
namely, faults, uncertain message delays, and asynchronous computation steps.

To address these issues, fault-tolerant distributed algorithms for state ma-
chine replication were introduced many years ago [33]. As they are designed to
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increase the reliability of computing systems, it is crucial that these algorithms
are indeed correct, i.e., satisfy their specifications. Due to the various sources of
non-determinism, however, it is very easy to make mistakes in the correctness
arguments for fault-tolerant distributed algorithms. As a consequence, they are
very natural candidates for model checking. Still, model checking fault-tolerant
distributed algorithms is particularly challenging due to the following reasons:

(i) Due to their inherent concurrency and the many sources of non-determinism,
fault-tolerant distributed algorithms suffer from combinatorial explosion in
the state-space, and in the number of behaviors. Moreover, distributed al-
gorithms usually involve parameters such as the system size n and the
maximum number of faulty components t.

(ii) Correctness and even solvability of problems like distributed agreement de-
pend critically upon assumptions on the environment, in particular, degree
of concurrency, message delays, and failure models; e.g., guaranteeing cor-
rect execution is impossible if there is no restriction on the number of faulty
components in the system and/or the way how they may fail.

(iii) There is no commonly agreed-upon distributed computing model, but rather
many variants, which differ in (sometimes subtle) details such as atomicity
of a computing step. Moreover, distributed algorithms are usually described
in pseudocode, typically using different (alas unspecified) pseudocode lan-
guages, which obfuscates the relation to the underlying computing model.

A central and important goal of our recent work is hence to initiate a systematic
study of distributed algorithms from a verification point of view, in a way that
does not betray the fundamentals of distributed algorithms. Experience tells that
this has not always been observed in the past: The famous bakery algorithm [22]
is probably the most striking example from the literature where wrong specifica-
tions have been verified or wrong semantics have been considered: Many papers
in formal methods have verified the correctness of the bakery algorithm as an
evidence for their practical applicability. Viewed from a distributed algorithms
perspective, however, most of these papers missed the fact that the algorithm
does not require atomic registers but rather safe registers only [23]—a sub-
tle detail that is admittedly difficult to extract from the distributed algorithms
literature for non-experts. Still, compared to state-of-the-art fault-tolerant dis-
tributed algorithms—and even the algorithms considered in this paper—the
bakery algorithm rests on a quite simple computational model, which shows the
need for a structured approach to handle distributed algorithms.

Contributions. In this paper, we present a structured approach for modeling
an important family of fault-tolerant distributed algorithms, namely, threshold-
guarded distributed algorithms discussed in Section 2. As threshold-guarded
commands are omnipresent in this domain, our work is an important step to-
wards the goal of verifying state-of-the-art fault-tolerant distributed algorithms.
In Section 3, we obtain models of distributed algorithms expressed in slightly
extended Promela [20] to capture the notions required to fully express fault-
tolerant distributed algorithms and their environments, including resilience
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conditions involving parameters like n and t, fairness conditions, and atomic-
ity assumptions. This formalization allows us to (i) instantiate system instances
for different system sizes in order to perform explicit state model checking using
Spin as discussed in Section 4, and (ii) build a basis for our parameterized model
checking technique based on parametric interval abstraction discussed in [21].

Using our approach, we can already formalize and model check several basic
fault-tolerant distributed algorithms for fixed parameters, i.e., numbers of pro-
cesses and faults. These algorithms include several variants of the classic asyn-
chronous broadcasting algorithm from [34] under various fault assumptions, the
broadcasting algorithm from [6] tolerating Byzantine faults, the classic broad-
casting algorithm found, e.g., in [9], that tolerates crash faults, as well as a
condition-based consensus algorithm [27] that also tolerates crash faults.

This captures the most interesting problems that are solvable [16] by dis-
tributed algorithms running in a purely asynchronous environment with faults.
Our verification results build a corner stone for the verification of more ad-
vanced fault-tolerant distributed algorithms [13,9,26,37,10,18]. These algorithms
use threshold-guarded commands as a building block, yet contain other features
that call for additional model checking techniques.

2 Threshold-Guarded Distributed Algorithms

Processes, which constitute the distributed algorithms we consider, exchange
messages, and change their state predominantly based on the received messages.
In addition to the standard execution of actions, which are guarded by some
predicate on the local state, most basic distributed algorithms (cf. [24,3]) add
existentially or universally guarded commands involving received messages:

i f r e c e i v ed <m>
from some proce s s

then act ion (m) ;

(a) existential guard

i f r e c e i v ed <m>
from a l l p r o c e s s e s

then act ion (m) ;

(b) universal guard

Depending on the content of the message <m>, the function action performs a
local computation, and possibly sends messages to one or more processes. Such
constructs can be found, e.g., in (non-fault-tolerant) distributed algorithms for
constructing spanning trees, flooding, mutual exclusion, or network synchroniza-
tion [24]. Understanding and analyzing such distributed algorithms is already far
from being trivial, which is due to the partial information on the global state
present in the local state of a process. However, faults add another source of non-
determinism. In order to shed some light on the difficulties facing a distributed
algorithm in the presence of faults, consider Byzantine faults [28], which allow a
faulty process to behave arbitrarily: Faulty processes may fail to send messages,
send messages with erroneous values, or even send conflicting information to
different processes. In addition, faulty processes may even collaborate in order
to increase their adverse power.
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Fault-tolerant distributed algorithms work in the presence of such faults and
provide some “higher level” service: In case of distributed agreement (or consen-
sus), e.g., this service is that all non-faulty processes compute the same result
even if some processes fail. Fault-tolerant distributed algorithms are hence used
for increasing the system-level reliability of distributed systems [30].

If one tries to build such a fault-tolerant distributed algorithm using the con-
struct of Example (a) in the presence of Byzantine faults, the (local state of
the) receiver process would be corrupted if the received message <m> originates
in a faulty process. A faulty process could hence contaminate a correct process.
On the other hand, if one tried to use the construct of Example (b), a correct
process would wait forever (starve) when a faulty process omits to send the
required message. To overcome those problems, fault-tolerant distributed algo-
rithms typically require assumptions on the maximum number of faults, and
employ suitable thresholds for the number of messages which can be expected
to be received by correct processes. Assuming that the system consists of n
processes among which at most t may be faulty, threshold-guarded commands
such as the following are typically used in fault-tolerant distributed algorithms:

i f r e c e i v ed <m> from n−t d i s t i n c t p r o c e s s e s
then act ion (m) ;

Assuming that thresholds are functions of the parameters n and t, threshold
guards are a just generalization of quantified guards as given in Examples (a)
and (b): In the above command, a process waits to receive n− t messages from
distinct processes. As there are at least n− t correct processes, the guard cannot
be blocked by faulty processes, which avoids the problems of Example (b). In
the distributed algorithms literature, one finds a variety of different thresholds:
Typical numbers are (n/2+1) (for majority [13,27]), t+1 (to wait for a message
from at least one correct process [34,13]), or n− t (in the Byzantine case [34,2]
to wait for at least t+ 1 messages from correct processes, provided n > 3t).

In the setting of Byzantine fault tolerance, it is important to note that the
use of threshold-guarded commands implicitly rests on the assumption that a
receiver can distinguish messages from different senders. This can be achieved,
e.g., by using point-to-point links between processes or by message authentica-
tion. What is important here is that Byzantine faulty processes are only allowed
to exercise control on their own messages and computations, but not on the
messages sent by other processes and the computation of other processes.

Reliable Broadcast and Related Specifications. The specifications considered in
the area of fault tolerance differ from more classic areas, such as concurrent
systems where dining philosophers and mutual exclusion are central problems.
For the latter, one is typically interested in local properties, e.g., if a philosopher i
is hungry, then i eventually eats. Intuitively, dining philosophers requires us to
trace indexed processes along a computation, e.g., ∀i. G (hungryi → (F eatingi)),
and thus to employ indexed temporal logics for specifications [7,11,12,14].

In contrast, fault-tolerant distributed algorithms are typically used to achieve
global properties. Reliable broadcast is an ongoing “system service” with the
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following informal specification: Each process i may invoke a primitive called
broadcast by calling bcast(i,m), where m is a unique message content. Processes
may deliver a message by invoking accept(i,m) for different process and message
pairs (i,m). The goal is that all correct processes invoke accept(i,m) for the same
set of (i,m) pairs, under some additional constraints: all messages broadcast by
correct processes must be accepted by all correct processes, and accept(i,m) may
not be invoked, unless i is faulty or i invoked bcast(i,m). Our case study is to
verify that the algorithm from [34] implements these primitives on top of point-
to-point channels, in the presence of Byzantine faults. In [34], the instances for
different (i,m) pairs do not interfere. Therefore, we will not consider i and m.
Rather, we distinguish the different kinds of invocations of bcast(i,m) that may
occur, e.g., the cases where the invoking process is faulty or correct. Depending
on the initial state, we then have to check whether every/no correct process ac-
cepts. To capture this kind of properties, we have to trace only existentially or
universally quantified properties, e.g., a part of the broadcast specification (re-
lay) [34] states that if some correct process accepts a message, then all (correct)
processes accept the message, that is, G ((∃i. accepti)→ F (∀j. acceptj)).

We are therefore considering a temporal logic where the quantification over
processes is restricted to propositional formulas. We will need two kinds of quan-
tified propositional formulas that consider (i) the finite control state modeled as a
single status variable sv , and (ii) the possible unbounded data. We introduce the
set APSV that contains propositions that capture comparison against some sta-
tus value Z from the set of all control states, i.e., [∀i. sv i = Z] and [∃i. sv i = Z] .

This allows us to express specifications of distributed algorithms. To express
the mentioned relay property, we identify the status values where a process has
accepted the message. We may quantify over all processes as we only explicitly
model those processes that follow their code, that is, correct or benign faulty
processes. More severe faults that are unrestricted in their internal behavior
(e.g., Byzantine faults) are modeled via non-determinism in message passing.
For a detailed discussion see Section 3.

In order to express comparison of data variables, we add a set of atomic
propositions APD that capture comparison of data variables (integers) x, y, and
constant c; APD consists of propositions of the form [∃i. xi + c < yi] .

The labeling function of a system instance is then defined naturally as dis-
junction or conjunction over all process indices; cf. [21] for complete definitions.

Given an LTL \ X formula ψ over APD expressing justice [29], an LTL \ X
specification ϕ over APSV , a process description P in Promela, and the number
of (correct) processes N , the problem is to verify whether

P ‖ P ‖ · · · ‖ P︸ ︷︷ ︸
Ntimes

|= ψ → ϕ.

3 Threshold-Guarded Distributed Algorithms in Promela

Algorithm 1 is our case study for which we also provide a complete Promela

implementation later in Figure 4. To explain how we obtain this implementation,
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Algorithm 1. Core logic of the broadcasting algorithm from [34]

Code for processes i if it is correct:
Variables
1: vi ∈ {false,true}
2: accepti ∈ {false,true} ← false

Rules
3: if vi and not sent 〈echo〉 before then
4: send 〈echo〉 to all;
5: if received 〈echo〉 from at least t+ 1 distinct processes

and not sent 〈echo〉 before then
6: send 〈echo〉 to all;
7: if received 〈echo〉 from at least n− t distinct processes then
8: accepti ← true;

we proceed in three steps where we first discuss asynchronous distributed algo-
rithms in general, then explain our encoding of message passing for threshold-
guarded fault-tolerant distributed algorithms. Algorithm 1 belongs to this class,
as it does not distinguish messages according to their senders, but just counts
received messages, and performs state transitions depending on the number of
received messages; e.g., line 7. Finally we encode the control flow of Algorithm 1.
The rationale of the modeling decisions are that the resulting Promela model
(i) captures the assumptions of distributed algorithms adequately, and (ii) allows
for efficient verification either using explicit state enumeration (as discussed in
this paper) or by abstraction as discussed in [21]. After discussing the modeling
of distributed algorithms, we will provide the specifications in Section 3.4.

3.1 Computational Model for Asynchronous Distributed
Algorithms

We recall the standard assumptions for asynchronous distributed algorithms. A
system consists of n processes, out of which at most t may be faulty. When
considering a fixed computation, we denote by f the actual number of faulty
processes. Note that f is not “known” to the processes. It is assumed that
n > 3t∧ f ≤ t ∧ t > 0. Correct processes follow the algorithm, in that they take
steps that correspond to the algorithm. Between every pair of processes, there
is a bidirectional link over which messages are exchanged. A link contains two
message buffers, each being the receive buffer of one of the incident processes.

A step of a correct process is atomic and consists of the following three parts.
(i) The process possibly receives a message. A process is not forced to receive
a message even if there is one in its buffer [16]. (ii) Then, it performs a state
transition depending on its current state and the (possibly) received message.
(iii) Finally, a process may send at most one message to each process, that is, it
puts a message in the buffers of the other processes.

Computations are asynchronous in that the steps can be arbitrarily inter-
leaved, provided that each correct process takes an infinite number of steps.
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(Algorithm 1 has runs that never accept and are infinite. Conceptually, the
standard model requires that processes executing terminating algorithms loop
forever in terminal states [24].) Moreover, if a message m is put into process p’s
buffer, and p is correct, then m is eventually received. This property is called
reliable communication.

From the above discussion we observe that buffers are required to be un-
bounded, and thus sending is non-blocking. Further, receiving is non-blocking
even if no message has been sent to the process. If we assume that for each mes-
sage type, each correct process sends at most one message in each run (as in Al-
gorithm 1), non-blocking send can in principle natively be encoded in Promela

using message channels. In principle, non-blocking receive also can be imple-
mented in Promela, but it is not a basic construct. We discuss the modeling
of message passing in more detail in Section 3.2.

Fault Types. In our case study Algorithm 1 we consider Byzantine faults, that
is, faulty processes are not restricted, except that they have no influence on the
buffers of links to which they are not incident. Below we also consider restricted
failure classes: omission faults follow the algorithm but may fail to send some
messages, crash faults follow the algorithm but may prematurely stop running.
Finally, symmetric faults need not follow the algorithm, but if they send mes-
sages, they send them to all processes. (The latter restriction does not apply to
Byzantine faults which may send conflicting information to different processes).

Verification Goal. Recall that there is a condition on the parameters n, t, and f ,
namely, n > 3t ∧ f ≤ t ∧ t > 0. As these parameters do not change during a
run, they can be encoded as constants in Promela. The verification problem
for a distributed algorithm with fixed n and t is then the composition of model
checking problems that differ in the actual value of f (satisfying f ≤ t).

3.2 Efficient Encoding of Message Passing

In threshold-guarded distributed algorithms, the processes (i) count how many
messages of the same type they have received from distinct processes, and change
their states depending on this number, (ii) always send to all processes (including
the process itself), and (iii) send messages only for a fixed number of types (only
messages of type 〈echo〉 are sent in Algorithm 1).

Fault-Free Communication. We discuss in the following that one can model
such algorithms in a way that is more efficient in comparison to a straightfor-
ward implementation with Promela channels. In our final modeling we have
an approach that captures both message passing and the influence of faults on
correct processes. However, in order to not clutter the presentation, we start our
discussion by considering communication between correct processes only (i.e.,
f = 0), and add faults later in this section.

In the following code examples we show a straightforward way to implement
“received 〈echo〉 from at least x distinct processes” and “send 〈echo〉 to all”
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using Promela channels: We declare an array p2p of n2 channels, one per pair
of processes, and then we declare an array rx to record that at most one 〈echo〉
message from a process j is received by a process i:

mtype = { ECHO }; /∗ one message type ∗/
chan p2p[NxN] = [1] of { mtype }; /∗ channels o f capaci ty 1 ∗/
bit rx[NxN]; /∗ a b i t map to implement ” d i s t i n c t ” ∗/
active[N] proctype STBcastChan() {
int i, nrcvd = 0; /∗ nr . o f echoes ∗/

Then, the receive code iterates over n channels: for non-empty channels it re-
ceives an 〈echo〉 message or not, and empty channels are skipped; if a message
is received, the channel is marked in rx:

i = 0; do
:: (i < N) && nempty(p2p[i * N + _pid]) ->

p2p[i * N + _pid]?ECHO; /∗ r e t r i e v e a message ∗/
if
:: !rx[i * N + _pid] ->

rx[i * N + _pid] = 1; /∗ mark the channel ∗/
nrcvd++; break; /∗ rece i ve at most one message ∗/

:: rx[i * N + _pid]; /∗ i gnore dup l i c a t e s ∗/
fi; i++;

:: (i < N) ->
i++; /∗ channel i s empty or postpone recept ion ∗/

:: i == N -> break;
od

Finally, the sending code also iterates over n channels and sends on each:

for (i : 1 .. N) { p2p[_pid * N + i]!ECHO; }

Recall that threshold-guarded algorithms have specific constraints: messages
from all processes are processed uniformly; every message is carrying only a
message type without a process identifier; each process sends a message to all
processes in no particular order. This suggests a simpler modeling solution. In-
stead of using message passing directly, we keep only the numbers of sent and
received messages in integer variables:

int nsnt; /∗ one shared va r i a b l e per a message type ∗/
active[N] proctype STBcast() {
int nrcvd = 0, next_nrcvd = 0; /∗ nr . o f echoes ∗/
...

step: atomic {
if /∗ rece i ve one more echo ∗/

:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd; /∗ or nothing ∗/
fi;
...
nsnt++; /∗ send echo to a l l ∗/

}
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active[F] proctype Byz() {
step: atomic {

i = 0; do
:: i < N -> sendTo(i); i++;
:: i < N -> i++; /∗ some ∗/
:: i == N -> break;
od

}; goto step;
}

active[F] proctype Omit() {
step: atomic {
/∗ rece i ve as a correc t ∗/
/∗ compute as a correc t ∗/
if :: correctCodeSendsAll ->
i = 0; do
:: i < N -> sendTo(i); i++;
:: i < N -> i++; /∗ omit ∗/
:: i == N -> break;

od
:: skip;

fi
}; goto step;

}

active[F] proctype Symm() {
step: atomic {

if
:: /∗ send a l l ∗/

for (i : 1 .. N)
{ sendTo(i); }

:: skip; /∗ or none ∗/
fi

}; goto step;
}

active[F] proctype Clean() {
step: atomic {
/∗ rece i ve as a correc t ∗/
/∗ compute as a correc t ∗/
/∗ send as a correc t one ∗/
};
if

:: goto step;
:: goto crash;

fi;
crash:
}

Fig. 1. Modeling faulty processes explicitly: Byzantine (Byz), symmetric (Symm),
omission (Omit), and clean crashes (Clean)

As one process step is executed atomically (indivisibly), concurrent reads and
updates of nsnt are not a concern to us. Note that the presented code is based
on the assumption that each correct process sends at most one message. We
show how to enforce this assumption when discussing the control flow of our
implementation of Algorithm 1 in Section 3.3.

Recall that in asynchronous distributed systems one assumes communica-
tion fairness, that is, every message sent is eventually received. The statement
∃i. rcvd i < nsnt i describes a global state where messages are still in transit. It
follows that a formula ψ defined by

GF¬ [∃i. rcvd i < nsnti] (RelComm)

states that the system periodically delivers all messages sent by (correct) pro-
cesses. We are thus going to add such fairness requirements to our specifications.

Faulty Processes. In Figure 1 we show how one can model the different types
of faults discussed above using channels. The implementations are direct con-
sequences of the fault description given in Section 3.1. Figure 2 shows how the
impact of faults on processes following the algorithm can be implemented in
the shared memory implementation of message passing. Note that in contrast to



218 A. John et al.

/∗ N > 3T ∧ T ≥ F ≥ 0 ∗/
active[N-F] proctype ByzI() {
step: atomic {

if
:: (next_nrcvd < nsnt + F)
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N > 2T ∧ T ≥ F ≥ 0 ∗/
active[N] proctype OmitI() {
step: atomic {

if
:: (next_nrcvd < nsnt) ->
next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N > 2T ∧ T ≥ Fp ≥ Fs ≥ 0 ∗/
active[N-Fp] proctype SymmI() {
step: atomic {
if
:: (next_nrcvd < nsnt + Fs)
-> next_nrcvd = nrcvd + 1;

:: next_nrcvd = nrcvd;
fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

/∗ N ≥ T ∧ T ≥ Fc ≥ Fnc ≥ 0 ∗/
active[N] proctype CleanI() {
step: atomic {
if
:: (next_nrcvd < nsnt - Fnc)

-> next_nrcvd = nrcvd + 1;
:: next_nrcvd = nrcvd;

fi
/∗ compute ∗/
/∗ send ∗/

}; goto step;
}

Fig. 2. Modeling the effect of faults on correct processes: Byzantine (ByzI), symmetric
(SymmI), omission (OmitI), and clean crashes (CleanI)

Figure 1, the processes in Figure 2 are not the faulty ones, but correct ones whose
variable next nrcvd is subject to non-deterministic updates that correspond
to the impact of faulty process. For instance, in the Byzantine case, in addition
to the messages sent by correct processes, a process can receive up to f messages
more. This is expressed by the condition (next nrcvd < nsnt + F).

For Byzantine and symmetric faults we only model correct processes explic-
itly. Thus, we specify that there are N-F copies of the process. Moreover, we
can use Property (RelComm) to model reliable communication. Omission and
crash faults, however, we model explicitly, so that we have N copies of processes.
Without going into too much detail, the impact of faulty processes is modeled by
relaxed fairness requirements: as some messages sent by these f faulty processes
may not be received, this induces less strict communication fairness:

GF¬ [∃i. rcvd i + f < nsnt i]

By similar adaptations one models, e.g., corrupted communication (e.g., due to
faulty links) [31], or hybrid fault models [4] that contain different fault scenarios.

Figure 3 compares the number of states and memory consumption when mod-
eling message passing using both solutions. We ran Spin to perform exhaustive
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Fig. 3. Visited states (left) and memory usage (right) when modeling message passing
with channels (ch) or shared variables (var). The faults are in effect only when f > 0.
Ran with SAFETY, COLLAPSE, COMP, and 8GB of memory.

state enumeration on the encoding of Algorithm 1 (discussed in the next sec-
tion). As one sees, the model with explicit channels and faulty processes ran
out of memory on six processes, whereas the shared memory model did so only
with nine processes. Moreover, the latter scales better in the presence of faults,
while the former degrades with faults. This leads us to use the shared memory
encoding based on nsnt variables.

3.3 Encoding the Control Flow

Recall Algorithm 1, which is written in typical pseudocode found in the dis-
tributed algorithms literature. The lines 3-8 describe one step of the algorithm.
Receiving messages is implicit and performed before line 3, and the actual send-
ing of messages is deferred to the end, and is performed after line 8.

We encoded the algorithm in Figure 4 using custom Promela extensions
to express notions of fault-tolerant distributed algorithms. The extensions are
required to express a parameterized model checking problem, and are used by
our tool that implements the abstraction methods introduced in [21]. These
extensions are only syntactic sugar when the parameters are fixed: symbolic is
used to declare parameters, and assume is used to impose resilience conditions
on them (but is ignored in explicit state model checking). Declarations atomic
<var> = all (...) are a shorthand for declaring atomic propositions that
are unfolded into conjunctions over all processes (similarly for some). Also we
allow expressions over parameters in the argument of active.

In the encoding in Figure 4, the whole step is captured within an atomic block
(lines 20–42). As usual for fault-tolerant algorithms, this block has three logical
parts: the receive part (lines 21–24), the computation part (lines 25–32), and
the sending part (lines 33–38). As we have already discussed the encoding of
message passing above, it remains to discuss the control flow of the algorithm.

Control State of the Algorithm. Apart from receiving and sending messages,
Algorithm 1 refers to several facts about the current control state of a process:
“sent 〈echo〉 before”, “if vi”, and “accept i ← true”. We capture all possible
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1 symbolic int N, T, F; /∗ parameters ∗/
2 /∗ the resilience condition ∗/
3 assume(N > 3 * T && T >= 1 && 0 <= F && F <= T);
4 int nsnt; /∗ number of echoes sent by correct processes ∗/
5 /∗ quantified atomic propositions ∗/
6 atomic prec_unforg = all(STBcast:sv == V0);
7 atomic prec_corr = all(STBcast:sv == V1);
8 atomic prec_init = all(STBcast@step);
9 atomic ex_acc = some(STBcast:sv == AC);

10 atomic all_acc = all(STBcast:sv == AC);
11 atomic in_transit = some(STBcast:nrcvd < nsnt);
12

13 active[N - F] proctype STBcast() {
14 byte sv, next_sv; /∗ status of the algorithm ∗/
15 int nrcvd = 0, next_nrcvd = 0; /∗ nr. of echoes received ∗/
16 if /∗ ini t ia l i ze ∗/
17 :: sv = V0; /∗ vi = false ∗/
18 :: sv = V1; /∗ vi = true ∗/
19 fi;
20 step: atomic { /∗ an indivisib le step ∗/
21 if /∗ receive one more echo (up to nsnt + F) ∗/
22 :: (next_nrcvd < nsnt + F) -> next_nrcvd = nrcvd + 1;
23 :: next_nrcvd = nrcvd; /∗ or nothing ∗/
24 fi;
25 if /∗ compute ∗/
26 :: (next_nrcvd >= N - T) ->
27 next_sv = AC; /∗ accepti = true ∗/
28 :: (next_nrcvd < N - T && sv == V1
29 || next_nrcvd >= T + 1) ->
30 next_sv = SE; /∗ remember that <echo> is sent ∗/
31 :: else -> next_sv = sv; /∗ keep the status ∗/
32 fi;
33 if /∗ send ∗/
34 :: (sv == V0 || sv == V1)
35 && (next_sv == SE || next_sv == AC) ->
36 nsnt++; /∗ send <echo> ∗/
37 :: else; /∗ send nothing ∗/
38 fi;
39 /∗ update local variables and reset scratch variables ∗/
40 sv = next_sv; nrcvd = next_nrcvd;
41 next_sv = 0; next_nrcvd = 0;
42 } goto step;
43 }
44 /∗ LTL−X formulas ∗/
45 ltl fairness { []<>(!in_transit) } /∗ added to other formulas ∗/
46 ltl relay { [](ex_acc -> <>all_acc) }
47 ltl corr { []((prec_init && prec_corr) -> <>(ex_acc)) }
48 ltl unforg { []((prec_init && prec_unforg) -> []!ex_acc) }

Fig. 4. Encoding of Algorithm 1 in Promela with symbolic extensions
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control states in a finite set SV . For instance, for Algorithm 1 one can collect
the set SV = {V0,V1, SE,AC}, where:

– V0 corresponds to vi = false, accepti = false and 〈echo〉 is not sent.
– V1 corresponds to vi = true, accepti = false and 〈echo〉 is not sent.
– SE corresponds to the case accepti = false and 〈echo〉 been sent. Observe

that once a process has sent 〈echo〉, its value of vi does not interfere anymore
with the subsequent control flow.

– AC corresponds to the case accepti = true and 〈echo〉 been sent. A process
only sets accept to true if it has sent a message (or is about to do so in the
current step).

Thus, the control state is captured within a single status variable sv over SV
with the set SV 0 = {V0,V1} of initial control states.

3.4 Specifications

Specifications are an encoding of the broadcast properties [34], which contain a
safety property called unforgeability, and two liveness properties called correct-
ness and relay:

G ([∀i. sv i �= V1]→ G [∀j. sv j �= AC]) (U)

G ([∀i. sv i = V1]→ F [∃j. sv j = AC]) (C)

G ([∃i. sv i = AC]→ F [∀j. sv j = AC]) (R)

4 Experiments with SPIN

Figure 4 provides the central parts of the code of our case study. For the ex-
periments we have implemented four distributed algorithms that use threshold-
guarded commands, and differ in the fault model. We have one algorithm for
each of the fault models discussed. In addition, the algorithms differ in the
guarded commands. The following list is ordered from the most general fault
model to the most restricted one. The given resilience conditions on n and t are
the ones we expected from the literature, and their tightness was confirmed by
our experiments:

Byz. tolerates t Byzantine faults if n > 3t,
symm. tolerates t symmetric (identical Byzantine [3]) faults if n > 2t,
omit. tolerates t send omission faults if n > 2t,
clean. tolerates t clean crash faults for n > t.

In addition, we verified a folklore reliable broadcasting algorithm that tolerates
crash faults, which is given, e.g., in [9]. Further, we verified a Byzantine tolerant
broadcasting algorithm from [6]. For the encoding of the algorithm from [6] we
were required to use two message types—opposed to the one type of the 〈echo〉
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Table 1. Summary of experiments related to [34]

# parameter values spec valid Time Mem. Stored Transitions Depth

Byz

B1 N=7,T=2,F=2 (U) ✓ 3.13 sec. 74 MB 193 · 103 1 · 106 229
B2 N=7,T=2,F=2 (C) ✓ 3.43 sec. 75 MB 207 · 103 2 · 106 229
B3 N=7,T=2,F=2 (R) ✓ 6.3 sec. 77 MB 290 · 103 3 · 106 229
B4 N=7,T=3,F=2 (U) ✓ 4.38 sec. 77 MB 265 · 103 2 · 106 233
B5 N=7,T=3,F=2 (C) ✓ 4.5 sec. 77 MB 271 · 103 2 · 106 233
B6 N=7,T=3,F=2 (R) ✗ 0.02 sec. 68 MB 1 · 103 13 · 103 210

omit

O1 N=5,To=2,Fo=2 (U) ✓ 1.43 sec. 69 MB 51 · 103 878 · 103 175
O2 N=5,To=2,Fo=2 (C) ✓ 1.64 sec. 69 MB 60 · 103 1 · 106 183
O3 N=5,To=2,Fo=2 (R) ✓ 3.69 sec. 71 MB 92 · 103 2 · 106 183
O4 N=5,To=2,Fo=3 (U) ✓ 1.39 sec. 69 MB 51 · 103 878 · 103 175
O5 N=5,To=2,Fo=3 (C) ✗ 1.63 sec. 69 MB 53 · 103 1 · 106 183
O6 N=5,To=2,Fo=3 (R) ✗ 0.01 sec. 68 MB 17 135 53

symm

S1 N=5,T=1,Fp=1,Fs=0 (U) ✓ 0.04 sec. 68 MB 3 · 103 23 · 103 121
S2 N=5,T=1,Fp=1,Fs=0 (C) ✓ 0.03 sec. 68 MB 3 · 103 24 · 103 121
S3 N=5,T=1,Fp=1,Fs=0 (R) ✓ 0.08 sec. 68 MB 5 · 103 53 · 103 121
S4 N=5,T=3,Fp=3,Fs=1 (U) ✓ 0.01 sec. 68 MB 66 267 62
S5 N=5,T=3,Fp=3,Fs=1 (C) ✗ 0.01 sec. 68 MB 62 221 66
S6 N=5,T=3,Fp=3,Fs=1 (R) ✓ 0.01 sec. 68 MB 62 235 62

clean

C1 N=3,Tc=2,Fc=2,Fnc=0 (U) ✓ 0.01 sec. 68 MB 668 7 · 103 77
C2 N=3,Tc=2,Fc=2,Fnc=0 (C) ✓ 0.01 sec. 68 MB 892 8 · 103 81
C3 N=3,Tc=2,Fc=2,Fnc=0 (R) ✓ 0.02 sec. 68 MB 1 · 103 17 · 103 81

Fig. 5. Spin memory usage (left) and running time (right) for Byz

messages in Algorithm 1. Finally, we implemented the asynchronous condition-
based consensus algorithm from [27]. We specialized it to binary consensus, which
resulted in an encoding which requires four different message types.

The major goal of the experiments was to check the adequacy of our formal-
ization. To this end, we first considered the four well-understood variants of [34],
for each of which we systematically changed the parameter values. By doing so,
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Table 2. Summary of experiments with algorithms from [9,6,27]

# parameter values spec valid Time Mem. Stored Transitions Depth

Folklore Broadcast [9]

F1 N=2 (U) ✓ 0.01 sec. 98 MB 121 7 · 103 77
F2 N=2 (R) ✓ 0.01 sec. 98 MB 143 8 · 103 48
F3 N=2 (F) ✓ 0.01 sec. 98 MB 257 2 · 103 76
F4 N=6 (U) ✓ 386 sec. 670 MB 15 · 106 20 · 106 272
F5 N=6 (R) ✓ 691 sec. 996 MB 24 · 106 370 · 106 272
F6 N=6 (F) ✓ 1690 sec. 1819 MB 39 · 106 875 · 106 328

Asynchronous Byzantine Agreement [6]

T1 N=5,T=1,F=1 (R) ✓ 131 sec. 239 MB 4 · 106 74 · 106 211
T2 N=5,T=1,F=2 (R) ✗ 0.68 sec. 99 MB 11 · 103 465 · 103 187
T3 N=5,T=2,F=2 (R) ✗ 0.02 sec. 99 MB 726 9 · 103 264

Condition-based consensus [27]

S1 N=3,T=1,F=1 (V0) ✓ 0.01 sec. 98 MB 1.4 · 103 7 · 103 115
S2 N=3,T=1,F=1 (V1) ✓ 0.04 sec. 98 MB 3 · 103 18 · 103 128
S3 N=3,T=1,F=1 (A) ✓ 0.09 sec. 98 MB 8 · 103 42 · 103 127
S4 N=3,T=1,F=1 (T) ✓ 0.16 sec. 66 MB 9 · 103 83 · 103 133
S5 N=3,T=1,F=2 (V0) ✓ 0.02 sec. 68 MB 1724 9835 123
S6 N=3,T=1,F=2 (V1) ✓ 0.05 sec. 68 MB 3647 23 · 103 136
S7 N=3,T=1,F=2 (A) ✓ 0.12 sec. 68 MB 10 · 103 55 · 103 135
S8 N=3,T=1,F=2 (T) ✗ 0.05 sec. 68 MB 3 · 103 17 · 103 135

we verify that under our modeling the different combination of parameters lead
to the expected result. Table 1 and Figure 5 summarize the results of our exper-
iments for broadcasting algorithms in the spirit of [34]. Lines B1 –B3, O1 –O3,
S1 – S3, and C1 –C3 capture the cases that are within the resilience condition
known for the respective algorithm, and the algorithms were verified by Spin.
In Lines B4 –B6, the algorithm’s parameters are chosen to achieve a goal that is
known to be impossible [28], i.e., to tolerate that 3 out of 7 processes may fail.
This violates the n > 3t requirement. Our experiment shows that even if only 2
faults occur in this setting, the relay specification (R) is violated. In Lines O4 –
O6, the algorithm is designed properly, i.e., 2 out of 5 processes may fail (n > 2t
in the case of omission faults). Our experiments show that this algorithm fails
in the presence of 3 faulty processes, i.e., (C) and (R) are violated.

Table 2 summarizes our experiments for the algorithms in [9], [6], and [27].
The specification (F) is related to agreement and was also used in [17]. Prop-
erties (V0) and (V1) are non-triviality, that is, if all processes propose 0 (1),
then 0 (1) is the only possible decision value. Property (A) is agreement and
similar to (R), while Property (T) is termination, and requires that every correct
process eventually decides. In all experiments the validity of the specifications
was as expected from the distributed algorithms literature.

For slightly bigger systems, that is, for n = 11 our experiments run out of
memory. This shows the need for parameterized verification of these algorithms.
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5 Related Work

As fault tolerance is required to increase the reliability of systems, the verification
of fault tolerance mechanisms is an important challenge. There are two classes
of approaches towards fault tolerance, namely fault detection, and fault masking.

Methods in the first class follow the fault detection, isolation, and recovery
(FDIR) principles: at runtime one tries to detect faults and to automatically
perform counter measures. In this area, in [32] Spin was used to validate a
design based on the well-known primary backup idea. Under the FDIR approach,
validation techniques have also been introduced in [15,8,19].

However, it is well understood that it is not always possible to reliably detect
faults; for instance, in asynchronous distributed systems it is not possible to
distinguish a process that prematurely stopped from a slow process, and in
synchronous systems there are cases where the border between correct and faulty
behavior cannot be drawn sharply [1]. To address such issues, fault masking has
been introduced. Here, one does not try to detect or isolate faults, but tries to
keep those components operating consistently that are not directly hit by faults,
cf. distributed agreement [28]. The fault-tolerant distributed algorithms that we
consider in this paper belong to this approach.

Specific masking fault-tolerant distributed algorithms have been verified, e.g.,
a consensus algorithm in [36], and a clock synchronization algorithm in [35].
In [25], a bug has been found in a previously published clock synchronization
algorithm that was supposed to tolerate Byzantine faults.

Formalization and verification of a class of fault-tolerant distributed algo-
rithms have been addressed in [5]. Their formalization uses the fact that for
many distributed algorithms it is relevant how many messages are received, but
the order in which they are received is not important. They provide a framework
for such algorithms and show that these algorithms can be efficiently verified
using partial order reduction. While in this work we consider similar message
counting ideas, our formalization targets at parameterized model checking [21]
rather than partial order reductions for systems of small size.

6 Conclusions

In this paper we presented a way to efficiently encode fault-tolerant threshold-
guarded distributed algorithms using shared variables. We showed that our en-
coding scales significantly better than a straightforward approach. With this
encoding we were able to verify small system instances of a number of broad-
casting algorithms [34,6,9] for diverse failure models. We could also find counter
examples in cases where we knew from theory that the given number of faults
cannot be tolerated. We also verified a condition-based consensus algorithm [27].

As our mid-term goal is to verify state-of-the-art fault-tolerant distributed
algorithms, there are several follow-up steps we are taking. In [21] we show
that the encoding we described in this paper is a basis for parameterized model
checking techniques that allow us to verify distributed algorithms for any system
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size. We have already verified some of the algorithms mentioned above, while we
are still working on techniques to verify the others. Also we are currently working
on verification of the Paxos-like Byzantine consensus algorithm from [26], which
is also threshold-guarded. The challenges of this algorithm are threefold. First, it
consists of three different process types—proposers, accepters, learners—while
the algorithms discussed in this paper are just compositions of processes of the
same type. Second, to tolerate a single fault, the algorithm requires at least four
proposers, six acceptors, and four learners. Our preliminary experiments show
that 14 processes is a challenge for explicit state enumeration. Third, as the
algorithm solves consensus, it cannot work in the asynchronous model [16], and
we have to restrict the interleavings of steps, and the message delays.
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Abstract. This paper aims at making partial-order reduction indepen-
dent of the modeling language. Our starting point is the stubborn set
algorithm of Valmari (see also Godefroid’s thesis), which relies on nec-
essary enabling sets. We generalise it to a guard-based algorithm, which
can be implemented on top of an abstract model checking interface.

We extend the generalised algorithm by introducing necessary dis-
abling sets and adding a heuristics to improve state space reduction.
The effect of the changes to the algorithm are measured using an imple-
mentation in the LTSmin model checking toolset. We experiment with
partial-order reduction on a number of Promela models, some with LTL
properties, and on benchmarks from the BEEM database in the DVE
language.

We compare our results to the Spin model checker. While the reduc-
tions take longer, they are consistently better than Spin’s ample set and
even often surpass the ideal upper bound for the ample set, as established
empirically by Geldenhuys, Hansen and Valmari on BEEM models.

1 Introduction

Model checking is an automated method to verify the correctness of concur-
rent systems by examining all possible execution paths for incorrect behaviour.
The main difficulty is the state space explosion, which refers to the exponential
growth in the number of states obtained by interleaving executions of several
system components. Model checking has emerged since the 1980s [3] and several
advances have pushed its boundaries. Partial-order reduction is among those.

Partial-order reduction (POR) exploits independence and commutativity bet-
ween transitions in concurrent systems. Exhaustive verification needs to consider
only a subset of all possible concurrent interleavings, without losing the global
behaviour of interest to the verified property. In practice, the state space is
pruned by considering a sufficient subset of successors in each state.

The idea to exploit commutativity between concurrent transitions has been
investigated by several researchers, leading to various algorithms for computing
a sufficient successor set. The challenge is to compute this subset during state
space generation (on-the-fly), based on the structure of the specification.

Already in 1981, Overman [20] suggested a method to avoid exploring all
interleavings, followed by Valmari’s [28,31,30] stubborn sets in 1988, 1991 and
1992. Also from 1988 onwards, Peled [16] developed the ample set [23,24], later
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extended by Holzmann and Peled [14,25], Godefroid and Pirottin [8,10] the per-
sistent set [9], and Godefroid and Wolper [11] sleep sets. These foundations have
been extended and applied in numerous papers over the past 15 years.

Problem andContributions. Previouswork defines partial-order reduction in terms
of either petri-nets [35] or parallel components with local program counters, called
processes [14,9]. While this allows the exploitation of certain formalism-specific
properties, like fairness [24] and token conditions [33], it also complicates the ap-
plication to other formalisms, for instance, rule-based systems [12]. Moreover, cur-
rent implementations are tightly coupled to a particular specification language in
order to compute a good syntactic approximation of a sufficient successor set. In
recognition of these problems, Valmari started early to generalise the stubborn set
definition for “transition/variable systems” [29,31].

To address the same problem for model checking algorithms, we earlier
proposed the Pins interface [2,19], separating language front-ends from verifi-
cation algorithms. Through Pins (Partitioned Interface to the Next-State func-
tion), a user can use various high-performance model checking algorithms for
his favourite specification language, cf. Figure 1. Providing POR as Pins2Pins
wrapper once and for all benefits every combination of language and algorithm.

Wrappers

mCRL2 Promela DVE UPPAAL

 Variable reordering

Symbolic

Specification

Transition
caching

 Partial−order
Transition grouping  reduction

PINS

PINS

Distributed Multi−core

Languages

Tools
Reachability

Pins2pins

Fig. 1. Modular Pins architecture of LTSmin

An important ques-
tion is whether and how
an abstract interface like
Pins can support partial-
order reduction. We pro-
pose a solution that is
based on stubborn sets.
This theory stipulates
how to choose a subset
of transitions, enabled
and disabled, based on a
careful analysis of their
independence and com-
mutativity relations. These relations have been described on the abstract level
of transition systems before [31]. Additionally, within the context of petri-nets,
the relations were refined to include multiple enabling conditions, a natural dis-
tinction in this formalism [33].

We generalise Valmari’s work to a complete language-agnostic setting, by
assuming that transitions consist of guard conditions and state variable assign-
ments (Section 3). In Section 4, we extend Pins with the necessary information: a
do-not-accordmatrix and optional; necessary enabling matrix on guards. In addi-
tion, we introduce novel necessary disabling sets and a new heuristic-based selec-
tion criterion. As optimal stubborn sets are expensive to compute precisely [33],
our heuristic finds reasonably effective stubborn sets fast, hopefully leading to
smaller state spaces. In Section 5, we show how LTL can be supported.

Our implementation resides in the LTSmin toolset [2], based on Pins. Any
language module that connects to Pins now obtains POR without having to
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bother about its implementation details, it merely needs to export transition
guards and their dependencies via Pins. We demonstrate this by extending
LTSmin’s DVE and Promela [1] front-ends. This allows a direct comparison
to Spin [13] (Section 6), which shows that the new algorithm generally pro-
vides more reduction using less memory, but takes more time to do so. It also
yields more reduction than the theoretically best reduction using ample sets, as
reported by Geldenhuys et al. [7] on the Dve BEEM benchmarks [22].

Summarising, these are the main contributions presented in this work:

1. Guard-based partial-order reduction, which is a language-independent gener-
alisation of the stubborn set method based on necessary enabling sets;

2. Some improvements to efficiently compute smaller stubborn sets:
(a) A refinement based on necessary disabling sets;
(b) A heuristic selection criterion for necessary enabling sets;
(c) A more dynamic definition of visibility, yielding better reduction for LTL;

3. Two language module implementations exporting guards with dependencies;
4. An empirical evaluation of guard-based partial-order reduction in LTSmin:

(a) A comparison of resource consumption and effectiveness of POR between
LTSmin [2] and Spin [13] on 18 Promela models/3 LTL formulas.

(b) An impact analysis of necessary disabling sets and the heuristic selection.
(c) A comparison with the ideal ample set from [7], on Dve BEEM models.

2 The Computational Model of Guarded Transitions

In the current section, we provide a model of computation comparable to [7], leav-
ing out the notion of processes on purpose. It has three main components: states,
guards and transitions. A state represents the global status of a system, guards
are predicates over states, and a transition represents a guarded state change.

Definition 1 (state). Let S = E1× . . .×En be a set of vectors of elements with
some finite domain. A state s = 〈e1, . . . , en〉 ∈ S associates a value ei ∈ Ei to
each element. We denote a projection to a single element in the state as s[i] = ei.

Definition 2 (guard). A guard g : S → B is a total function that maps each
state to a boolean value, B = {true, false}. We write g(s) or ¬g(s) to denote that
guard g is true or false in state s. We also say that g is enabled/disabled.

Definition 3 (structural transition). A structural transition t ∈ T is a tuple
(G, a) such that a is an assignment a : S → S and G is a set of guards, also
denoted as Gt. We denote the set of enabled transitions by en(s) := {t ∈ T |∧

g∈Gt
g(s)}. We write s

t−→ when t ∈ en(s), s
t−→ s′ when s

t−→ and s′ = a(s), and

we write s
t1t2...tk−−−−−→ sk, when ∃s1, . . . , sk ∈ S : s

t1−→ s1
t2−→ s2 . . .

tk−→ sk.

Definition 4 (state space). Let s0 ∈ S and let T be the set of transitions.
The state space from s0 induced by T is MT = (ST , s0, Δ), where s0 ∈ S is the
initial state, and ST ⊆ S is the set of reachable states, and Δ ⊆ ST × T × ST

is the set of semantic transitions. These are defined to be the smallest sets such

that s0 ∈ ST , and if t ∈ T , s ∈ ST and s
t−→ s′, then s′ ∈ ST and (s, t, s′) ∈ Δ.
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Valmari and Hansen [33, Def. 6] also define guards (conditions), which take the
role of enabling conditions for disabled transitions. We later generalise this role
to enabled transitions as well for our necessary disabling sets (Section 4.2).

In the rest of the paper, we fix an arbitrary set of vectors S = E1 × . . .×En,
initial state s0 ∈ S, and set of transitions T , with induced reachable state space
MT = (ST , s0, Δ). We often just write “transition” for elements of T .

It is easy to see that our model generalises the setting including processes
(as in [7]). One can view the program counter of each process as a normal state
variable, check for its current value in a separate guard, and update it in the
transitions. But our definition is more general, since it can also be applied to
models without a natural notion of a fixed set of processes, for instance rule-
based systems, such as the linear process equations in mCRL [12].

Besides guarded transitions, structural information is required on the exact
involvement of state variables in a transition.

Definition 5 (disagree sets). Given states s, s′ ∈ S, for 1 ≤ i ≤ n, we define
the set of indices on which s and s′ disagree as δ(s, s′) := {i | s[i] �= s′[i]}.
Definition 6 (affect sets). For t = (G, a) ∈ T and g ∈ G, we define
1. the test set of g is Ts(g) ⊇ {i | ∃s, s′ ∈ S : δ(s, s′) = {i} ∧ g(s) �= g(s′)},
2. the test set of t is Ts(t) :=

⋃
g∈G Ts(g),

3. the write set of t is Ws(t) ⊇
⋃

s∈ST
δ(s, s′) with s

t−→ s′,

4. the read set of t is Rs(t) ⊇ {i | ∃s, s′ ∈ S : δ(s, s′) = {i} ∧ s
t−→ ∧s′ t−→ ∧

Ws(t) ∩ δ(a(s), a(s′)) �= ∅} (notice the difference between S and ST ), and
5. the variable set of t is Vs(t) := Ts(t) ∪ Rs(t) ∪Ws(t).

Although these sets are defined in the context of the complete state space, they
may be statically over-approximated (⊇) by the language front-end.

Example 1. Suppose s ∈ S = N3, consider the transition: t := IF (s[1] = 0 ∧
s[2] < 10) THEN s[3] := s[1] + 1. It has two guards, g1 = (s[1] = 0) and g2 =
(s[2] < 10), with test sets Ts(g1) = {1},Ts(g2) = {2}, hence: Ts(t) = {1, 2}.
The write set Ws(t) = {3}, so Vs(t) = {1, 2, 3}. The minimal read set Rs(t) = ∅
(since s[1] = 0), but simple static analysis may over-approximate it as {1}.

3 Partial-Order Reduction with Stubborn Sets

We now rephrase the stubborn set POR definitions. We follow the definitions
from Valmari [30] and Godefroid’s thesis [9], but avoid the notion of processes.

An important property of a stubborn set Ts ⊆ T is that it commutes with
all paths of non-stubborn transitions t1, . . . , tn ∈ T \ Ts. If there is a path
s t1,...,tn−−−−−→ sn and a stubborn transition t ∈ Ts such that s t−→ s′, then there exists
a state s′n such that: s′ t1,...,tn−−−−−→ s′n and sn

t−→ s′n. Or illustrated graphically:

s

s′

s1 · · · sn−1 snt1−→ tn−→

t−→ ⇒
s′ s′1 · · · s′n−1 s′n

sn

t1−→ tn−→

t−→
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s

sd

t1

t2

t3

Ts

t1

t2

t3

Fig. 2. Stubborn set

Moreover a stubborn set Ts at s is still a stub-
born set at a state s1 reached via the non-stubborn
transition t1. Since t1 is still enabled after taking a
stubborn transition, we can delay the execution of
non-stubborn transitions without losing the reacha-
bility of any deadlock states. Figure 2 illustrates this;
since s is not a deadlock state, sd is still reachable
after executing a transition from Ts. The benefit is
that, for the moment, we avoid exploring (and stor-
ing) states such as s1, . . . , sn. “For the moment”,
because these states may still be reachable via other
stubborn paths, therefore smaller stubborn sets are
only a heuristic for obtaining smaller state spaces.

This theoretical notion of stubborn sets is a se-
mantic definition. Therefore, we now present the notion of a (static) stubborn
set, as developed by Valmari. While this definition is stronger, it efficiently (al-
gorithmically) describes how to compute these sets (without referring to the
entire state space). While researchers have attempted to identify even weaker
notions that include more stubborn sets, increasing the chance to find one which
yields a larger reduction [32, Sec. 7.4], we rely on the strong notion, which is
still compatible for extension to LTL model checking [31] (cf. Section 5).

Definition 7 (Do not accord [30]). First, we define according with as:

A ⊆ {(t, t′) ∈ T×T | ∀s, s′, s1 ∈ S : s t−→ s′∧s t′−→ s1 ⇒ ∃s′1 : s′ t′−→ s′1∧s1 t−→ s′1},
or illustrated graphically: s s1

s′

t′−→

t−→ ⇒
s s1

s′ s′1

t′−→

t−→ t−→

t′−→
And for do not-accord: DNA = T 2\A. We denote DNAt = {t′ | (t, t′) ∈ DNA}.

Each of the following criteria on t, t′ ∈ T is sufficient to conclude accordance:
1. shared variables Vs(t)∩Vs(t′) are disjoint from the write setsWs(t)∪Ws(t′),
2. t and t′ are never co-enabled, e.g. have different program counter guards, or
3. t and t′ do not disable each other, and their actions commute, e.g. write and

read to a FIFO buffer or performing atomic increments/decrements.

Definition 8 (necessary enabling set [9]). Let t ∈ T be a disabled transition
in state s ∈ ST , t /∈ en(s). A necessary enabling set for t in s is a set of
transitions Nt, such that for all sequences of the form s t1,...,tn−−−−−→ s′ t−→ , there is
at least one transition ti ∈ Nt (for some 1 ≤ i ≤ n).

Again, both relations can be safely over-approximated.
We used Valmari’s definition for the do-not-accord relation instead of relying

on a definition of “dependent”, since it allows that transitions modify the same
variable, provided they are commuting. As the definition is equivalent to Gode-
froid’s definition of do-not-accord for enabled transitions, we can safely reuse the
latter’s stubborn set definition:
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Definition 9 (stubborn set [9]). A set Ts of transitions is stubborn in a state
s, if Ts ∩ en(s) = ∅ ⇐⇒ en(s) = ∅, and for all transitions t ∈ Ts:
1. If t is disabled in s, then ∃Nt ⊆ Ts (multiple sets Nt can exist), and
2. If t is enabled in s, then DNAt ⊆ Ts.

Theorem 1. Let Ts be a stubborn at a state s. Then Ts is dynamically stubborn
at s. A search over only stubborn enabled transitions finds all deadlocks in ST .

Algorithm 1 from [9] implements the closure method from [32, Sec. 7.4]. It builds
a stubborn set incrementally by making sure that each new transition added to
the set fulfills the stubborn set conditions (Definition 9).

Example 2. Suppose Figure 2 is a partial run of Algorithm 1 on state s, and
transition t3 does not accord with some transition t ∈ Ts. The algorithm will
proceed with processing t and add all transitions that do-not-accord, including t3,
to the work set. Since t3 is disabled in state s, we add the necessary enabling set
for t3 to the work set. This could for instance be {t2}, which is then added to
the work set. Again, the transition is disabled and a necessary enabling set for t2
is added, for instance, {t1}. Since t1 is enabled in s, and has no other dependent
transitions in this example, the algorithm finishes. Note that in this example, t1
now should be part of the stubborn set.

To find a necessary enabling set for a disabled transition t (i.e. find nes(t, s)),
Godefroid uses fine-grained analysis, which depends crucially on program coun-
ters. The analysis can be roughly described as follows:

1. If t is not enabled in global state s, because some local program counter has
the “wrong” value, then use the set of transitions that assign the “right”
value to that program counter as necessary enabling set;

2. Otherwise, if some guard g for transition t evaluates to false in s, take all
transitions that write to the test set of that guard as necessary enabling set.
(i.e. include those transitions that can possibly change g to true).

In the next section, we show how to avoid program counters with guard-based
POR.

1 function stubborn(s)
2 Twork = {t̂} such that t̂ ∈ en(s)
3 Ts = ∅
4 while Twork �= ∅ do
5 Twork = Twork − t, Ts = Ts ∪ {t} for some t ∈ Twork

6 if t ∈ en(s) then
7 Twork = Twork ∪ {t′ ∈ Σ | (t, t′) ∈ DNA} \ Ts

8 else
9 Twork = Twork ∪N \ Ts where N ∈ find nes(t, s)

10 return Ts

Algorithm 1. The closure algorithm for finding stubborn sets



Guard-Based Partial-Order Reduction 233

4 Computing Necessary Enabling Sets for Guards

The current section investigates how necessary enabling sets can be computed
purely based on guards, without reference to program counters. We proceed by
introducing necessary enabling and disabling sets on guards, and a heuristic
selection function. Next, it is shown how the Pins interface can be extended to
support guard-based partial-order reduction by exporting guards, test sets, and
the do-not-accord relation. Finally, we devise an optional extension for language
modules to provide fine-grained structural information. Providing this optional
information further increases the reduction power.

4.1 Guard-Based Necessary Enabling Sets

We refer to all guards in the state space MT = (ST , s0, Δ) as: GT :=
⋃

t∈T Gt.

Definition 10 (necessary enabling set for guards). Let g ∈ GT be a guard
that is disabled in some state s ∈ ST , i.e. ¬g(s). A set of transitions Ng is a nec-

essary enabling set for g in s, if for all states s′ with some sequence s t1,...,tn−−−−−→ s′

and g(s′), for at least one transition ti (1 ≤ i ≤ n) we have ti ∈ Ng.

Given Ng, a concrete necessary enabling set on transitions in the sense of Defi-
nition 8 can be retrieved as follows (notice the non-determinism):

find nes(t, s) ∈ {Ng | g ∈ Gt ∧ ¬g(s)}

Proof. Let t be a transition that is disabled in state s ∈ ST , t /∈ en(s). Let there
be a path where t becomes enabled, s t1,...,tn−−−−−→ s′ t−→ , On this path, all of t’s
disabled guards, g ∈ Gt ∧ ¬g(s), need to be enabled, for t to become enabled
(recall that Gt is a conjunction). Therefore, any Ng is a Nt. ��

Example 3. Let ch be the variable for a rendez-vous channel in a Promela

model. A channel read can be modeled as a Promela statement ch? in some
process P1. A channel write can be modeled as a Promela statement ch! in
some process P2. As the statements synchronise, they can be implemented as a
single transition, guarded by process counters corresponding to the location of
the statements in their processes, e.g.: P1.pc = 1 and P2.pc = 10. The set of
all transitions that assign P1.pc := 1, is a valid necessary enabling set for this
transition. So is the set of all transitions that assign P2.pc := 10.

Instead of computing the necessary enabling set on-the-fly, we statically assign
each guard a necessary enabling set by default. Only transitions that write to
state vector variables used by this guard need to be considered (as in [21]):

Nmin
g := {t ∈ T | Ts(g) ∩Ws(t) �= ∅}
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4.2 Necessary Disabling Sets

Consider the computation of a stubborn set Ts in state s along the lines of
Algorithm 1. If a disabled t gets in the stubborn set, a necessary enabling set
is required. This typically contains a predecessor of t in the control flow. When
that one is not yet enabled in s, its predecessor is added as well, until we find a
transition enabled in s. So basically a whole path of transitions between s and t
ends up in the stubborn set.

Example 4. Assume two parallel processes P1 and P2, with DNA(t1, t7) and
DNA(t6, t7). Initially en(s0) = {t1, t7}; both end up in the stubborn set, since
they do-not-accord and may be co-enabled. Then t7 in turn adds t6, which is
disabled. Now working backwards, the enabling set for t6 is t5, for t5 it is t4, etc,
eventually resulting in the fat stubborn set {t1, . . . , t7}.

P1 P2

t1

t2· · ·t5

t6

t7

t8

D,MC

How can this large stubborn set be avoided? The crucial
insight is that to enable a disabled transition t, it is nec-
essary to disable any enabled transition t′ which cannot
be co-enabled with t. Quite likely, t′ could be a successor
of the starting point s, leading to a slim stubborn set.

Example 5. Consider again the situation after adding
{t1, t7, t6} to Ts, in the previous example. Note that t1
and t6 cannot be co-enabled, and t1 is enabled in s0. So it
must be disabled in order to enable t6. Note that t1 is dis-
abled by itself. Hence t1 is a necessary enabling set of t6,
and the algorithm can directly terminate with the stub-
born set {t1, t7, t6}. Clearly, using disabling information
saves time and can lead to smaller stubborn sets.

Definition 11 (may be co-enabled for guards). The may be co-enabled
relation for guards, MC g ⊆ GT × GT is a symmetric, reflexive relation. Two
guards g, g′ ∈ GT may be co-enabled if there exists a state s ∈ ST where they
both evaluate to true: ∃s ∈ ST : g(s) ∧ g′(s)⇒ (g, g′) ∈ MC g.

Example 6. Two guards that can never be co-enabled are: g1 := v = 0 and
g2 := v ≥ 5. In e.g. Promela, these guards could implement the channel empty
and full expressions, where the variable v holds the number of buffered messages.
In e.g. mCRL2, the conditions of a summand can be implemented as guards.

Note that it is allowed to over-approximate the maybe co-enabled relation. Typ-
ically, transitions within a sequential system component can never be enabled
at the same time. They never interfere with each other, even though their test
and write sets share at least the program counter.

Definition 12 (necessary disabling set for guards). Let g ∈ GT be a guard
that is enabled in some state s ∈ ST , i.e. g(s). A set of transitions N g is a nec-
essary disabling set for g in s, if for all states s′ with some sequence s t1,...,tn−−−−−→ s′

and ¬g(s′), for at least one transition ti (1 ≤ i ≤ n) we have ti ∈ N g.
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The following disabling set can be assigned to each guard. Similar to enabling
sets, only transitions that change the state indices used by g are considered.

Nmin

g := {t ∈ T | Ts(g) ∩Ws(t) �= ∅}

Using disabling sets, we can find an enabling set for the current state s:

Theorem 2. If N g is a necessary disabling set for guard g in state s with g(s),
and if g′ is a guard that may not be co-enabled with g, i.e. (g, g′) /∈ MC g, then
N g is also a necessary enabling set for guard g′ in state s.

Proof. Guard g′ is disabled in state s, since g(s) holds and g′ cannot be co-
enabled with g. In any state reachable from s, g′ cannot be enabled as long as
g holds. Thus, to make g′ true, some transition from the disabling set of g must
be applied. Hence, a disabling set for g is an enabling set for g′. ��

Given Ng and N g, we can find a necessary enabling set for a particular transition
t = (G, a) ∈ T in state s, by selecting one of its disabled guards. Subsequently,
we can choose between its necessary enabling set, or the necessary disabling set
of any guard that cannot be co-enabled with it. This spans the search space of
our new find nes algorithm, which is called by Algorithm 1:

find nes(t, s) ∈ {Ng | ¬g(s)} ∪
⋃

g′∈GT

{N g′ | g′(s) ∧ (g, g′) �∈ MC g}

4.3 Heuristic Selection for Stubborn Sets

Even though the static stubborn set of Definition 9 is stronger than the dy-
namic stubborn set, its non-determinism still allows many different sets to be
computed, as both the choice of an initial transition t̂ at Line 2 and the find nes
function in Algorithm 1 are non-deterministic. In fact, it is well known that the
resulting reductions depend strongly on a smart choice of the necessary enabling
set [33]. A known approach to resolve this problem is to run an SCC algorithm
on the complete search space for each enabled transition t̂ [32] (but even more
complicated means exist, like the deletion algorithm in [35]). The complexity of
this solution can be somewhat reduced by choosing a ‘scapegoat’ for t̂ [35].

We propose here a practical solution that does neither; using a heuristic, we
explore all possible scapegoats, while limiting the search by guiding it towards a
local optimum. (This makes the algorithm deterministic, which has other bene-
fits, cf. Section 7). An effective heuristics for large partial-order reductions should
select small stubborn sets [9]. To this end, we define a heuristic function h that
associates some cost to adding a new transition to the stubborn set. Here enabled
transitions weigh more than disabled transitions. Transitions that do not lead
to additional work (already selected or going to be processed) do not contribute
to the cost function at all. Below, Ts and Twork refer to Algorithm 1.

h(N , s) =
∑
t∈N

cost(t, s), where cost(t, s) =

⎧⎨⎩1 if t /∈ en(s) and t /∈ Ts ∪ Twork

n if t ∈ en(s) and t /∈ Ts ∪ Twork

0 otherwise
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Here n is the maximum number of outgoing transitions (degree) in any state,
n = max

s∈S
(|en(s)|), but it can be over-approximated (for instance by |T |).

We restrict the search to the cheapest necessary enabling sets:

find nes ′(t, s) ∈ {N ∈ find nes(t, s) | ∀N ′ ∈ find nes(t, s) : h(N , s) ≤ h(N ′, s)}

4.4 A Pins Extension to Support Guard-Based POR

In model checking, the state space graph of Definition 4 is constructed only
implicitly by iteratively computing successor states. A generic next-state inter-
face hides the details of the specification language, but exposes some internal
structure to enable efficient state space storage or state space reduction.

The Partitioned Interface for the Next-State function, or Pins [2], provides
such a mechanism. The interface assumes that the set of states S consists of
vectors of fixed length N , and transitions are partitioned disjunctively in M
partition groups T . Pins also supports K state predicates L for model check-
ing. In order to exploit locality in symbolic reachability, state space storage,
and incremental algorithms, Pins exposes a dependency matrix DM, relating
transition groups to indices of the state vector. This yields orders of magnitude
improvement in speed and compression [2,1]. The following functions of Pins are
implemented by the language front-end and used by the exploration algorithms:

– InitState: S
– NextStates: S → 2T×S and
– StateLabel: S × L→ B
– DM: BM×N

Extensions to Pins. POR works as a state space transformer, and therefore can
be implemented as a Pins2Pins wrapper (cf. Figure 1), both using and providing
the interface. This POR layer provides a new NextStates(s) function, which
returns a subset of enabled transitions, namely: stubborn(s)∩ en(s). It forwards
the other Pins functions. To support the analysis for guard-based partial-order
reduction in the POR layer, we introduced four essential extensions to Pins:
– StateLabel additionally exports guards: GT ⊆ L,
– a K ×N label dependency matrix is added for Ts ,
– DM is split into a read and a write matrix representing Rs and Ws , and
– an M ×M do-not-accord matrix is added.

Mainly, the language front-end must do some static analysis to estimate the do-
not-accord relation on transitions based on the criteria listed below Definition 7
While Criterium 1 allows the POR layer to estimate the relation without help
from the front-end (using Rs andWs), this will probably lead to poor reductions.

Tailored Necessary Enabling/Disabling Sets. To support necessary disabling sets,
we also extend the Pins interface with an optional maybe co-enabled matrix.
Without this matrix, the POR layer can rely solely on necessary enabling sets.
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Both Nmin and Nmin
can be derived via the refined Pins interface (using Ts and

Ws). In order to obtain the maximal reduction performance, we extend the Pins

interface with two more optional matrices, called N pins

g and N pins

g . The language
front-end can now provide more fine-grained dependencies by inspecting the
syntax as in Example 3. The POR layer actually uses the following intersections:

Ng := Nmin
g ∩N pins

g N g := Nmin

g ∩ N pins

g

A simple insight shows that we can compute both N pins

g and N pins

g using one
algorithm. Namely, for a transition to be necessarily disabling for a guard g,
means exactly the same as for it to be necessarily enabling for the inverse: ¬g.
Or by example: to disable the guard pc = 1, is the same as to enable pc �= 1.

5 Partial-Order Reduction for On-the-Fly LTL Checking

Liveness properties can be expressed in Linear Temporal Logic (LTL) [26]. An
example LTL property is �♦p, expressing that from any state in a trace (� =
generally), eventually (♦) a state s can be reached s.t. p(s) holds, where p is a
predicate over a state s ∈ ST , similar to our definition of guards in Definition 2.

In the automata-theoretic approach, an LTL property ϕ is transformed into
a Büchi automaton Bϕ whose ω-regular language L(Bϕ) represents the set of all
infinite traces the system should adhere to. Bϕ is an automaton (MB, Σ,F) with
additionally a set of transition labels Σ, made up of the predicates, and accepting
states: F ⊆ SB. Its language is formed by all infinite paths visiting an accepting
state infinitely often. Since Bϕ is finite, a lasso-formed trace exists, with an
accepting state on the cycle. The system MT is likewise interpreted as a set of
infinite traces representing its possible executions: L(MT ). The model checking
problem is now reduced to a language inclusion problem: L(MT ) ⊆ L(Bϕ).

Since the number of cycles in MT is exponential in its size, it is more efficient
to invert the problem and look for error traces. The error traces are captured by
the negation of the property: ¬ϕ. The new problem is a language intersection
and emptiness problem: L(MT )∩L(B¬ϕ) = ∅. The intersection can be solved by
computing the synchronous cross product MT ⊗B¬ϕ The states of SMT⊗B¬ϕ are
formed by tuples (s, s′) with s ∈ SMT and s′ ∈ S¬ϕ, with (s, s′) ∈ F iff s′ ∈ F¬ϕ.
The transitions in TMT⊗B¬ϕ are formed by synchronising the propositions Σ on
the states s ∈ SMT . For an exact definition of TMT⊗B¬ϕ , we refer to [34]. The
construction of the cross product can be done on-the-fly, without computing
(and storing!) the full state space MT . Therefore, the NDFS [4] algorithm is
often used to find accepting cycles (= error traces) as it can do so on-the-fly as
well. In the absence of accepting cycles, the original property holds.

Table 1. POR provisos for the LTL model checking of MT with a property ϕ

C2 No a ∈ stubborn(s) is visible, except when stubborn(s) = en(s).

C3 �a ∈ stubborn(s) : a(s) is on the DFS stack, except when stubborn(s) = en(s).
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NDFS emptiness check

LTL crossproduct

Partial order reduction

Language module

system specification ϕ

MT

MR
T

MR
T ⊗ B¬ϕ

Σ,G,Ts
MCg ,N pins

g

Tvis

�a ∈ stubborn(s)
: s ∈ stack

Pins

Pins

Pins

Fig. 3. Pins w. LTL POR

To combine partial-order reduction with LTL
model checking, the reduced state space MR

T

is constructed on-the-fly, while the LTL cross
product and emptiness check algorithm run on
top of the reduced state space [25]. Figure 3
shows the Pins stack with POR and LTL as
Pins2Pins wrappers.

To preserve all traces that are captured by
the LTL formula, POR needs to fulfill two ad-
ditional constraints: the visibility proviso en-
sures that traces included in B¬ϕ are not pruned
from MT , the cycle proviso ensures the nec-
essary fairness. The visible transitions Tvis are
those that can enable or disable a proposition
of ϕ (p ∈ Σ). Table 1 shows sufficient condi-
tions to ensure both provisos (stubborn sets
allow the use of the weaker conditions V and
L1/L2 [32]). These can easily be integrated in
Algorithm 1, which now also requires Tvis and access to the DFS stack.

We extend the NextStates function of Pins with a boolean, that can be set
by the caller to pass the information needed for C3. For C2, we extend Pins

with Tvis, to be set by the LTL wrapper based on the predicates Σ in ϕ:

Tmin
vis := {t ∈ T |Ws(t) ∩

⋃
p∈Σ

Ts(p) �= ∅}

Peled [23, Sec. 4.1] shows how to prove correctness. However, this is a coarse over-
approximation, which we can improve by inputting ϕ to the language module,
so it can export Σ as state labels, i.e. Σ ⊆ G, and thereby obtain N/N for it:

T nes
vis :=

⋃
p∈Σ

N (p) ∪ N (p)

A novel idea is to make this definition dynamic:

T dyn
vis (s) :=

⋃
p∈Σ

{
N (p) if p(s)

N (p) if ¬p(s)

Finally, we can improve the heuristic (Section 4.3) to avoid visible transitions:

cost ′(t, s) =

{
n2 if t ∈ en(s) ∩ Tvis and t /∈ Ts ∪ Twork

cost(t, s) otherwise

To summarise, we can combine guard-based partial-order reduction with on-the-
fly LTL model checking with limited extensions to Pins: a modifiedNextStates

function and a visibility matrix Tvis : T → B. For better reduction, the language
module needs only to extend the exported state labels from G to G ∪ Σ and
calculate the MC (and N pins/ N pins

) for these labels as well.
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6 Experimental Evaluation

Experimental Setup. The LTSmin toolset implements Algorithm 1 as a language-
independent Pins layer since version 1.6. We experimented with BEEM and
Promela models. To this end, first the DiVinE front-end of LTSmin was
extended with the new Pins features in order to export the necessary static
information. In particular, it supports guards, R/W-dependency matrices, the
do-not-accord matrix, the co-enabled matrix, and disabling- and enabling sets.
Later the Promela front-end SpinS [1] was extended, with relatively little effort.

We performed experiments and indicate performance measurements with
LTSmin 2.01 and Spin version 6.2.12. All experiments ran on a dual Intel E5335
CPU with 24GB RAM memory, restricted to use only one processor, 8GB of
memory and 3 hours of runtime. None of the models exceeded these bounds.

We compared our guard-based stubborn method with the ample set method,
both theoretically and experimentally. For the theoretical comparison the same
BEEM models were used as in [7] to establish the best possible reduction with
ample sets. For the experimental comparison, we used a rich set of Promela

models3, which were also run in Spin with partial-order reduction.

BEEM Models. Table 2 shows the results obtained on those models from the
BEEM database [22] that were selected by Geldenhuys, Hansen and Valmari [7].
The table is sorted by the best theoretical ample set reduction (best first). These
numbers (column ample) are taken from [7, column ample2 Df/Rf]. They indi-
cate the experimentally established best possible reduction that can be achieved
with the deadlock-preserving ample set method (without C2/C3), while con-
sidering conditional dependencies based on full information on the state space.

The amount of reduction is expressed as the percentage of the reduced state
space compared to the original state space (100% means no reduction). The next
three columns show the reduction achieved by the guard-based stubborn ap-
proach, based on necessary enabling sets only (nes), the heuristic selection func-
tion (nes+h), and the result of including the necessary disabling sets (nes+h+d).

The results vary a lot. For instance, the best possible ample set reduction
in cyclic scheduler.1 is far better than the actual reduction achieved with
stubborn sets (nes). However, for cyclic scheduler.2 the situation is reversed.
Other striking differences are mcs.1 versus leader election. Since we compare
best case ample sets (using global information) with actual stubborn sets (using
only static information), it is quite interesting to see that guard-based stubborn
sets can provide more reduction than ample sets. One explanation is that the
ample set algorithm with a dependency relation based on the full state space
(Df/Rf, [7]) is still coarse. However, further comparison reveals that many models
yield also better reductions than those using dynamic relations (Dd/Rd, [7]),
e.g. protocols.3 with 7% vs 70%. This prompted us to verify our generated

1 http://fmt.cs.utwente.nl/tools/ltsmin/
2 http://spinroot.com
3 http://www.albertolluch.com/research/promelamodels

http://fmt.cs.utwente.nl/tools/ltsmin/
http://spinroot.com
http://www.albertolluch.com/research/promelamodels
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Table 2. Comparison of guard-based POR results with [7] (split in two columns)

ample nes nes nes

Model +h h+d

cyclic scheduler.1 1% 58% 1% 1%

mcs.4 4% 16% 16% 16%

firewire tree.1 6% 8% 8% 8%

phils.3 11% 14% 16% 16%

mcs.1 18% 87% 85% 85%

anderson.4 23% 58% 46% 46%

iprotocol.2 26% 19% 17% 16%

mcs.2 34% 64% 64% 64%

phils.1 48% 60% 48% 48%

firewire link.2 51% 24% 21% 19%

krebs.1 51% 94% 93% 93%

leader election.3 54% 13% 12% 6%

telephony.2 60% 95% 95% 95%

leader election.1 61% 23% 22% 11%

szymanski.1 63% 68% 65% 65%

production cell.2 63% 26% 24% 24%

at.1 65% 96% 95% 95%

szymanski.2 66% 66% 64% 64%

leader filters.2 66% 57% 53% 53%

lamport.1 66% 95% 95% 95%

protocols.2 68% 18% 13% 13%

collision.1 68% 88% 59% 56%

ample nes nes nes

Model +h h+d

driving phils.1 69% 99% 68% 78%

protocols.3 71% 13% 7% 7%

peterson.2 72% 82% 82% 82%

driving phils.2 72% 99% 45% 45%

collision.2 74% 75% 40% 39%

production cell.1 74% 23% 19% 19%

telephony.1 75% 95% 95% 95%

lamport.3 75% 96% 95% 96%

firewire link.1 79% 42% 37% 33%

pgm protocol.4 81% 93% 56% 55%

bopdp.2 85% 90% 73% 73%

fischer.1 87% 87% 87% 87%

bakery.3 88% 99% 96% 96%

exit.2 88% 94% 94% 94%

brp2.1 88% 95% 80% 79%

public subscribe.1 89% 81% 79% 76%

firewire tree.2 89% 84% 63% 47%

pgm protocol.2 89% 96% 72% 72%

brp.2 96% 76% 42% 42%

extinction.2 96% 25% 24% 21%

cyclic scheduler.2 99% 46% 28% 27%

synapse.2 100% 93% 93% 93%

stubborn sets, but we found no violations of the stubborn set definition. So we
suspect that either the relations deduced in [7] are not entirely optimal or the
POR heuristic of selecting the smallest ample set fails in these cases.

We also investigated the effects of the necessary disabling sets (Sec. 4.2)
and heuristic selection (Sec. 4.3). Heuristic selection improves reductions (col-
umn nes+h). For instance, for cyclic scheduler.1 it achieves a similar reduc-
tion as the optimal ample set method. The reduction improves in nearly all
cases, and it improves considerably in several cases. Using Necessary Disabling
Sets (nes+nds) in itself did not yield an improvement compared to plain nes,
hence we didn’t include the results in the table. Combined with the heuristic
selection, necessary disabling sets provide an improvement of the reduction in
some cases (column nes+h+d). In particular, for leader election the reduction
doubles again. Also some other examples show a small improvement.

We can explain this as follows: Although nds allows smaller stubborn sets
(cf. Example 5), there is no reason why the eager algorithm would find one.
Only with the heuristic selection, the stubborn set algorithm tends to favour
small stubborn sets, harvesting the potential gain of nds.

We conclude that, the heuristic selection is more important to improve re-
ductions, than the necessary disabling sets. In terms of computation time the
situation is reversed: the selection heuristics is costly, but the disabling sets lower
the computation time. In the next section, we investigate computation times.
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Table 3. Guard-based POR in LTSmin vs ample set POR in Spin (seconds and MB)

No Partial-Order Reduction Guard-based POR Ample-set POR

LTSmin Spin LTSmin Spin

Model States |ST | Trans |Δ| time time |ST | |Δ| mem time |ST | |Δ| mem time

garp 48,363,145 247,135,869 166 267 4% 1% 21 68 18% 9% 932 25.2

i-protocol2 14,309,427 48,024,048 28 30 16% 10% 29 31 24% 16% 240 6.0

peterson4 12,645,068 47,576,805 23 17 3% 1% 6 3 5% 2% 37 0.5

i-protocol0 9,798,465 45,932,747 29 38 6% 2% 7 21 44% 29% 362 12.3

brp.prm 3,280,269 7,058,556 6.0 5.6 29% 15% 15 14 58% 39% 161 2.4

philo.pml 1,640,881 16,091,905 9.8 10 5% 2% 1.2 4.8 100% 100% 125 10.7

sort 659,683 3,454,988 2.8 3.8 182 181 0.0 0.3 182 182 0.3 0.0

i-protocol3 388,929 1,161,274 1.0 0.7 14% 7% 0.9 0.9 26% 16% 6.6 0.1

i-protocol4 95,756 204,405 0.5 0.1 28% 18% 0.5 0.6 38% 28% 2.5 0.0

snoopy 81,013 273,781 0.6 0.2 12% 4% 0.2 0.7 17% 7% 1.2 0.0

peterson3 45,915 128,653 0.4 0.0 8% 3% 0.1 0.4 10% 4% 0.5 0.0

SMALL1 36,970 163,058 0.5 0.0 18% 9% 0.1 0.4 48% 45% 0.9 0.0

SMALL2 7,496 32,276 0.4 0.0 19% 10% 0.0 0.4 48% 44% 0.4 0.0

X.509.prm 9,028 35,999 0.4 0.0 10% 4% 0.0 0.4 68% 34% 1.1 0.0

dbm.prm 5,112 20,476 0.4 0.0 100% 100% 0.1 0.5 100% 100% 0.7 0.0

smcs 5,066 19,470 0.4 0.1 17% 7% 0.0 0.4 25% 11% 0.7 0.0

Promela Models. Additionally, we compared our partial-order reduction results
to the ample set algorithm as implemented in Spin. Here we can also compare
time resource usage. We ran LTSmin with arguments --strategy=dfs -s26

--por, and we compiled Spin with -O2 -DNOFAIR -DNOBOUNDCHECK -DSAFETY,
which enables POR by default. We ran the pan-verifier with -m10000000 -c0

-n -w26. To obtain the same state counts in Spin, we had to turn off control
flow optimisations (-o1/-o2/-o3) for some models (see ltsmin/spins/test/).

Table 3 shows the results. Overall, we witness consistently better reductions
by the guard-based algorithm (using nes+h+d). The reductions are significantly
larger than the ample set approach in the cases of garp, dining philosophers
(philo.pml) and iprotocol. As a consequence, guard-based POR in LTSmin re-
duces memory usage considerably more than ample-based POR in Spin (Though
we included memory use for completeness, it only provides an indirect compar-
ison, due to a different state representation and compression in LTSmin [18]).

On the other hand, the additional computational overhead of our algorithm
is clear from the runtimes. This was expected, as the stubborn-set algorithm
considers all transitions whereas the ample-set algorithm only chooses amongst
the less numerous process components of the system. Moreover, the heuristic
search still considers all enabled transitions — we do not select a scapegoat —
increasing the search space. Finally, the choice to store information on a guard
basis requires our implementation to iterate over all guards of a transition at
times. Unfortunately, this cannot be mitigated by combining this information
on a transition basis, since enabled guards are treated differently from disabled
guards. However, the runtimes never exceed the runtimes of benchmarks without
partial-order reduction by a great margin.
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Table 4. Reductions (%|ST |) and runtimes (sec) obtained for LTL model checking

LTSmin (%|ST |) Spin LTSmin (sec) Spin (sec)

Model States |ST | Tmin
vis Tnes

vis Tdyn
vis color %|ST | Full Tmin

vis Tnes
vis Tdyn

vis color Full POR

garp 72,318,749 35% 32.6% 25.4% 3.6% 18.3% 1,162 1,156 1,069 843 135 2,040 127

i-prot. 20,052,267 100% 32.0% 29.3% 28.1% 41.4% 193 598 152 137 132 103 37

leader 89,771,572 94% 0.1% 0.1% 0.1% 1.2% 3,558 9,493 4 4 4 1,390 5

LTL Model Checking. To compare the reductions under LTL model checking
with Spin, we used 3 models that were verified for absence of livelocks, using an
LTL property �♦progress . Table 4 shows the results of POR with C2/C3.

In LTSmin, we used three implementations of the visibility matrix (see Sec-
tion 5) and the color proviso [6] (--proviso=color). To obtain Tmin

vis , we defined
progress with a predicate on the program counter (Proc. pc = 1). For T nes

vis ,
we exported an np label through pins and defined ϕ := �♦¬np . Spin also
predefines this label, hence we used the same property (though negated [13]).

The results in Table 4 show that approximation Tmin
vis is indeed too coarse.

Reductions with T nes
vis improve considerably; the novel dynamic visibility T dyn

vis

and the color proviso provide the best results, also reducing more than Spin.

7 Conclusions

We proposed guard-based partial-order reduction, as a language-agnostic stub-
born set method. It extends Valmari’s stubborn sets for transition systems [31]
with an abstract interface (Pins) to language modules. It also generalises previ-
ous notions of guards [33], by considering them as disabling conditions as well.
The main advantage is that a single implementation of POR can serve multiple
specification languages front-ends and multiple high-performance model checking
back-ends. This requires only that the front-end exports guards, guarded transi-
tions, affect sets, and the do-not-accord matrix (DNA). Optional extensions are

matrices MC g, N pins and N pins

(computing the latter merely requires negating
the guards), which expose more static information to yield better reduction.

We implemented these functions for the Dve and Promela front-ends in
LTSmin. It should now be a trivial exercise to add partial-order reduction to the
mCRL2 and UPPAAL language front-ends. Since the linear process of mCRL2
is rule-based and has no natural notion of processes, our generalisation is crucial.

We introduced two improvements to the basic stubborn set method. The first
uses necessary disabling sets to identify necessary enabling sets of guards that
cannot be co-enabled. This allows for the existence of smaller stubborn sets. Most
of the reduction power of the algorithm is harvested by the heuristic selection
function, which actively favours small stubborn sets.

Compared to the best possible ample set with conditional dependencies, the
stubborn set can reduce the state space more effectively in a number of cases.
Compared to Spin’s ample set, LTSmin generally provides more reduction, but
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takes more time to do so, probably because of the additional complexity of the
stubborn set method, but also due to overhead in the guard-based abstraction.

Comparing our stubborn set computation against earlier proposals, we see the
following. While other stubborn set computation methods require O(c|T |) [32,
Sec. 7.4] using scapegoat selection and resolving the dependencies of find nes
arbitrarily (where c depends on the modeling formalism used), our algorithm
resolves non-deterministic choices heuristically potentially reducing the search
space. It would therefore be interesting to compare our heuristic algorithm to
other approaches like the deletion algorithm [35], selecting a scapegoat [35] and
the strongly connected components method [32], or one of these combined with
the heuristics. This would provide more insight in the trade-off between time
spent on finding stubborn sets and state space reductions.

Challenges remain, as not all of LTSmin’s algorithmic backends can fulfill the
POR layer’s requirements. For example, the C3 proviso relies on a DFS stack,
and because DFS can probably not be parallelised efficiently, other methods have
to be found. We partly solved this problem for a subset of LTL with the parallel
DFSFIFO algorithm [17, end of Sec. 5], but for other parallel algorithms, like
CNDFS [5], this is still future work. One benefit for the parallel algorithms is that
the heuristic selection algorithm can find small stubborn sets deterministically,
which avoids well-known problems with possible re-explorations [15,27].

Acknowledgments. We are grateful to Antti Valmari, Patrice Godefroid and
Dragan Bošnački for their useful feedback on this paper.
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On the Synergy of Probabilistic Causality

Computation and Causality Checking
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Abstract. In recent work on the safety analysis of systems we have
shown how causal relationships amongst events can be algorithmically
inferred from probabilistic counterexamples and subsequently be mapped
to fault trees. The resulting fault trees were significantly smaller and
hence easier to understand than the corresponding probabilistic coun-
terexample, but still contain all information needed to discern the causes
for the occurrence of a hazard. More recently we have developed an ap-
proach called Causality Checking which is integrated into the state-space
exploration algorithms used for qualitative model checking and which is
capable of computing causality relationships on-the-fly. The causality
checking approach outperforms the probabilistic causality computation
in terms of run-time and memory consumption, but can not provide a
probabilistic measure. In this paper we combine the strengths of both
approaches and propose an approach where the causal events are com-
puted using causality checking and the probability computation can be
limited to the causal events. We demonstrate the increase in performance
of our approach using several case studies.

1 Introduction

Model Checking [11] is an established technique for the verification of systems.
For a formal model of the system and a formalized requirement the model checker
automatically checks whether the model satisfies the requirement. In case the
requirement is not satisfied, a trace from the initial system state into a state
violating the requirement is produced by the model checker. This error trace is
called a counterexample. Counterexamples can be used to retrace the steps of
the system that lead to a particular requirement violating state, but they do
not provide any insight into which event did cause the requirement violation.
Consequently, debugging a system using counterexamples is a difficult iterative
and hence time-consuming process.

In the case of probabilistic model checking [6] the debugging of the system be-
comes even more difficult. While in qualitative model checking a single trace often
provides valuable information for the debugging of the system, a single trace is
most often not sufficient to form a probabilistic counterexample [4,17] since the
violation of a probabilistic property with a probability-bound can hardly ever
be traced back to a single error trace. In almost all cases a set of error traces is
needed to provide an accumulated probability mass that violates the probability-
bound of the specified probabilistic property. With an increasing number of error

E. Bartocci and C.R. Ramakrishnan (Eds.): SPIN 2013, LNCS 7976, pp. 246–263, 2013.
© Springer-Verlag Berlin Heidelberg 2013



On the Synergy of Probabilistic Causality Computation 247

traces that are needed to form the probabilistic counterexample, an increasing
number of different error traces need to be manually retraced and interpreted in
order to get insight into why the property was violated.

In recent work [22,26] we have developed two approaches that help to debug
complex systems:

1. The probabilistic causality computation approach described in [22], where
causal relationships of events are algorithmically inferred from probabilistic
counterexamples and subsequently mapped to fault trees [32]. Fault trees
are a method widely used in industry to visualize causal relationships. The
resulting fault trees were significantly smaller and hence easier to understand
than the corresponding probabilistic counterexample, but still contain all
information to discern the causes for the occurrence of a hazard.

2. The Causality Checking approach [26], where the causality computation algo-
rithm is integrated into the state-space exploration algorithms used for qual-
itative model checking. This algorithm is capable of computing the causality
relationships on the fly.

The obvious advantage of the probabilistic causality computation approach over
the causality checking approach is that it computes a quantitative measure,
namely a probability, for a combination of causal events and hazards to oc-
cur. The probability of an event combination causing a property violation to
occur is an information that is needed for the reliability and safety analysis of
safety-critical systems. An important shortcoming of the probabilistic causality
computation approach compared to the causality checking approach is that the
causality computation requires a complete probabilistic counterexample consist-
ing of all traces that violate the property. The high amount of run-time and mem-
ory that is needed to compute the probabilities of all traces in the probabilistic
counterexample limits the scalability of the probabilistic causality computation
approach.

The goal of this paper is to leverage the causality checking approach in order
to improve the scalability of the probabilistic causality computation approach.
The key idea is to first compute the causal events using the causality checking
approach and to then limit the probability computation to the causal event
combinations that have first been computed. Our proposed combined approach
can be summarized by identifying the following steps:

– The probabilistic PRISM model is mapped to a qualitative Promela model.
– The causality checking approach is applied to the qualitative model in order

to compute the event combinations that are causal for the property violation.
– The information obtained through causality checking is mapped back via

alternating automata to the probabilistic model. The probabilities for the
different event combinations that are causal for the property violation to
occur are computed using a probabilistic model checker.
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Fig. 1. Overview of the approach

Figure 1 gives an overview of the approach.
The remainder of the paper is structured as follows: In Section 2 we briefly in-

troduce probabilistic model checking, the PRISM language, and causality check-
ing. We discuss the translation of probabilistic PRISM models to qualitative
Promela models in Section 3. Section 4 is devoted to the translation of the in-
formation returned by the causality checker to the PRISM model and the prob-
ability computation of the causal events. In Section 5 we evaluate the usefulness
of the proposed approach on several case studies. Related work is discussed
throughout the paper and in Section 6. We conclude the paper and give an
outlook on future research in Section 7.

2 Preliminaries

2.1 Probabilistic Model Checking

Probabilistic model checking [6] requires two inputs: a description of the system
to be analyzed, typically given in some model checker specific modeling language,
and a formal specification of quantitative properties of the system, related for
example to its performance or reliability that are to be analyzed.

From the first of these inputs, a probabilistic model checker constructs the
corresponding probabilistic model. The probabilistic models that we use in this
paper are continuous-time Markov chains (CTMCs) [21] where transitions are
assigned positive, real values that are interpreted as rates of negative exponential
distributions.

The quantitative properties of the system that are to be analyzed are speci-
fied using a variant of temporal logic. The temporal logic we use is Continuous
Stochastic Logic (CSL) [1,5].

2.2 The PRISM Language

We present an overview of the input language of the PRISM model checker [23],
for a precise definition of the semantics we refer to [19]. A PRISM model is com-
posed of a number of modules which can interact with each other. A module con-
tains a number of local variables. The values of these variables at any given time
constitute the state of the module. The global state of the whole model is deter-
mined by the local state of all modules. The behavior of each module is described
by a set of commands. A command takes the form: “[action label] guard→ rate1 ∶
update1&...& updaten;”. The guard is a predicate over all variables in the model.
The update commands describe a transitionwhich themodule can take if the guard
is true. A transition is specified by giving the new values of the variables in the
module, possibly as a function of other variables. A rate is assigned to each tran-
sition. The action label is used for synchronizing transitions of different modules.
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If two transitions are synchronized they can only be executed if the guards of both
transitions evaluate to true. The rate of the resulting synchronized transition is
the product of the two individual transitions. An example of a PRISM model is
given in Listing 1.1. The module named moduleA contains two variables: var1,
which is of type Boolean and is initially false, and var2, which is a numeric vari-
able and has initially the value 0. If the guard (var2 < 4) evaluates to true, the
update (var2′ = var2 + 1) is executed with a rate of 0.8. If the guard (var2 = 2)
evaluates to true, the update (var1′ = true) is executed with a rate of 1.0.

module moduleA

var1: bool init false;

var2: [0..11] init 0;

[Count] (var2 < 4) -> 0.8: ( var2 ’= var2 + 1);

[End] (var2 = 4) -> 1.0: ( var1 ’= true);

endmodule

module moduleB

var3: [0..2] init 0;

[Count] (var3 < 2) -> 1.0: ( var3 ’= var3 + 1);

[Count] (var3 = 2) -> 1.0: ( var3 ’= 0);

endmodule

Listing 1.1. A module in the PRISM language.

2.3 Railroad Crossing Example

In this paper we will use the example of a railroad crossing for illustrative pur-
poses. In this example a train can approach the crossing (Ta), enter the crossing
(Tc) and finally leave the crossing (Tl). Whenever a train is approaching, the
gate should close (Gc) and open when the train has left the crossing (Go). It
might also be the case that the gate fails (Gf). The car approaches the cross-
ing (Ca) and enters the crossing (Cc) if the gate is open and finally leaves the
crossing (Cl). We are interested in computing the causal events for the violation
of the property “it is never the case that both the car and the train are in the
crossing at the same time”.

2.4 Causality Reasoning

The probabilistic causality computation approach and the causality checking
approach are based on an adoption of the structural equation model (SEM) by
Halpern and Pearl [16]. The SEM is an extension of the counterfactual reasoning
approach and the alternative world semantics by Lewis [28,12]. The “näıve”
counterfactual causality criterion according to Lewis is as follows: event A is
causal for the occurrence of event B if and only if, were A not to happen, B would
not occur. The testing of this condition hinges upon the availability of alternative
worlds. In our setting possible system execution traces represent the alternative
worlds. The SEM introduces the notion of causes being logical combinations of
events as well as a distinction of relevant and irrelevant causes. In the SEM
events are represented by variable values and the minimal number of causal
variable valuation combinations is determined. In our precursory work [22,26],
we extended the SEM by considering the order of the occurrences of events as
possible causal factors. In order to be able to reason about event orderings we
defined a temporal logic called event order logic (EOL).
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We will now give a brief overview of the EOL as originally defined in [26]. The
EOL allows one to connect variables representing the occurrence of events with
the boolean connectives ∧, ∨ and ¬. To express the ordering of events we intro-
duced the ordered conjunction operator �. The formula a � b with events a and b
is satisfied if and only if events a and b occur in a trace and a occurs before b. In ad-
dition to the � operator we introduced the interval operators �

[
, �
]
, and �< φ �>,

which define an interval in which an event has to hold in all states. These interval
operators are necessary to express the causal non-occurrence of events.

Definition 1. Syntax of Event Order Logic (EOL). Simple EOL formulas over
a set A of event variables are formed according to the following grammar:

φ ∶∶= a ∣ φ1 ∧ φ2 ∣ ¬φ ∣ φ1 ∨ φ2

where a ∈ A and φ, φ1 and φ2 are simple EOL formulas. Complex EOL formulas
are formed according to the following grammar:

ψ ∶∶= φ ∣ ψ1 ∧ψ2 ∣ ψ1 ∨ψ2 ∣ ψ1 � ψ2 ∣ ψ �[ φ ∣ φ �] ψ ∣ ψ1 �< φ �> ψ2

where φ is a simple EOL formula and ψ1 and ψ2 are complex EOL formulas.
Note that the ¬ operator binds more tightly than the �, �

[
, �
]
, and �< φ �>,

operators and those bind more tightly than the ∨ and ∧ operator.

The formal semantics of this logic is defined over execution traces. Notice that
the �, �

[
, �
]
, and �< φ �> operators are linear temporal logic operators and that

the execution trace σ is akin to a linearly ordered Kripke structure.

Definition 2. Semantics of Event Order Logic (EOL). Let T = (S,Act,→, I,AP,
L) a transition system, let φ, φ1, φ2 simple EOL formulas, let ψ, ψ1, ψ2 complex
EOL formulas, and let A a set of event variables, with aαi ∈ A, over which φ,
φ1, φ2 are built. Let σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace of T and
σ[i..r] = si, αi+1, si+1, αi+2, . . . αr, sr a partial trace. We define that an execution
trace σ satisfies a formula ψ, written as σ ⊧e ψ, as follows:

sj ⊧e aαi iff sj−1
αi

→ sj

sj ⊧e ¬φ iff not sj ⊧e φ

σ[i..r] ⊧e φ iff ∃j ∶ i ≤ j ≤ r . sj ⊧e φ

σ ⊧e ψ iff σ[0..n] ⊧e ψ, where n is the length of σ.

σ[i..r] ⊧e φ1 ∧ φ2 iff σ[i..r] ⊧e φ1 and σ[i..r] ⊧e φ2

σ[i..r] ⊧e φ1 ∨ φ2 iff σ[i..r] ⊧e φ1 or σ[i..r] ⊧e φ2

σ[i..r] ⊧e ψ1 ∧ ψ2 iff σ[i..r] ⊧e ψ1 and σ[i..r] ⊧e ψ2

σ[i..r] ⊧e ψ1 ∨ ψ2 iff σ[i..r] ⊧e ψ1 or σ[i..r] ⊧e ψ2

σ[i..r] ⊧e ψ1 � ψ2 iff ∃j, k ∶ i ≤ j < k ≤ r . σ[i..j] ⊧e ψ1 and σ[k..r] ⊧e ψ2

σ[i..r] ⊧e ψ �[ φ iff (∃j ∶ i ≤ j ≤ r . σ[i..j] ⊧e ψ and (∀k ∶ j ≤ k ≤ r . σ[k..k] ⊧e φ))

σ[i..r] ⊧e φ �] ψ iff (∃j ∶ i ≤ j ≤ r . σ[j..r] ⊧e ψ and (∀k ∶ 0 ≤ k ≤ j . σ[k..k] ⊧e φ))

σ[i..r] ⊧e ψ1 �< φ �> ψ2 iff (∃j, k ∶ i ≤ j < k ≤ r . σ[i..j] ⊧e ψ1 and σ[k..r] ⊧e ψ2

and (∀l ∶ j ≤ l ≤ k . σ[l..l] ⊧e φ))
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We define that the transition system T satisfies the formula ψ, written as T ⊧e ψ,
iff ∃σ ∈ T . σ ⊧e ψ.

A system execution trace σ = s0, α1, s1, α2, . . . αn, sn induces an EOL formula
ψσ = aα1� . . .�aαn . For reasons of readability we omit the states in the execution
traces from now on. For instance, the execution σ = Ta, Ca, Cc, Gc, Tc of the
railroad example induces the EOL formula ψσ = Ta �Ca �Cc �Gc �Tc.

The adopted SEM defined in [22,26] can be used to decide whether the EOL
formula ψσ, induced by an excution trace σ and which violates some target
property ϕ actually represents a combination that is causal for the violation of
ϕ. In the following the term property refers to the target property for which
we want to compute the causal events that lead to its violation. The conditions
imposed by the adopted SEM for some ψ to be causal can be summarized as
follows:

– AC1: This condition is the positive side of the counterfactual test. It checks
whether there exists an execution trace σ that violates the property and
satisfies the EOL formula ψ.

– AC2(1): This condition resembles the counterfactual test, where it is checked
whether there exists an execution trace σ′ where the order and occurrence
of the events is different from ψ and the property is not violated.

– AC2(2): This condition says that for a ψ to be causal it can not be possible
to add an event so that causality is voided. This test serves to reveal causal
non-occurrence.

– AC3: This condition ensures minimality of the causal event combinations
and requires that no sub-formula of ψ satisfies AC1 and AC2.

– OC1: This condition checks for all events in ψ whether the order in which
they occur is causal or not.

For all executions where the property is violated the conditions imposed by the
adopted SEM are checked. For instance, the safety property for the railroad
crossing example is violated on the execution trace σ = Ta, Ca, Cc, Gc, Tc
because the car is on the crossing when the gate closes and the train enters
the crossing. Condition AC1 is fulfilled for ψσ = Ta � Ca � Cc � Gc � Tc since
σ exists and the property is violated. AC2(1) is fulfilled in this example since
there exists the execution trace σ′ = Ta, Ca, Gc, Tc where the occurrence and
order of the events is different from that specified by ψσ. For the AC2(2) test
all good execution traces are needed to check whether there exists an event that
can void the causality of ψσ. The condition AC2(2) reveals that there exists a
good execution trace σ′′ = Ta, Ca, Cc, Cl, Gc, Tc where the property is not
violated because the car leaves the crossing before the gate closes (Gc) and the
train enters the crossing (Tc). In other words, the non-occurrence of the event
Cl between the event Cc and the events (Gc ∧ Tc) is causal and its occurrence
can void the causality of ψσ.

According to the procedures defined in [26] the causal non-occurrence of Cl
is reflected by adding ¬Cl to ψσ. We then obtain a new formula ψσ = Ta �
Ca � Gf � Cc �< ¬Cl �> Tc. AC3 is satisfied for ψσ because no subset of ψσ
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satisfies AC1 and AC2. Finally, OC1 checks for all events whether their order
is causal or not. If their order is not causal the � operator is replaced by the
∧ operator. In our example, the order of the events Gf, Cc, ¬Cl, Tc is causal
since only if the gate fails before the car and the train are entering the crossing,
and the car does not leave the crossing before the train is entering the crossing
an accident happens. Consequently after OC1 we obtain the EOL formula ψσ =
(Ta ∧ (Ca � Cc)) �< ¬Cl �> (Gc ∧ Tc). The disjunction of all ψσ1 , ψσ2 , ..., ψσn

that satisfy the conditions AC1-AC3 and OC1 is the EOL formula describing
all possible causes of the hazard. For the railroad crossing example the EOL
formula returned by the causality checker is ψ = (Gf∧((Ta∧(Ca�Cc))�<¬Cl�>
Tc)) ∨ ((Ta ∧ (Ca �Cc)) �< ¬Cl �> (Gc ∧Tc)).

Probabilistic Causality Computation. In order to apply the probabilistic
causality computation described in [22] to a PRISM model all traces in the
counterexample as well as all good execution traces first need to be computed.
We use the DiPro tool [3] for this step. The causality computation is subsequently
performed by checking conditions AC1-AC3 and OC1 for all bad traces. Once
the causality computation is completed, the probabilities of the execution traces
in the probabilistic counterexample are assigned to the disjuncts of the EOL
formula generated by the causality computation. The resulting EOL formula is
then mapped onto a Fault Tree.

Causality Checking [26]. The algorithms used for causality checking are in-
tegrated into the state-space exploration algorithms commonly used in explicit-
state model checking. The state space of the model is traversed using breadth-
first or depth-first search. Whenever a bad trace violating the property or a good
trace not entailing a property violation is found, this trace is added to a data
structure called sub-set graph. The conditions AC1-AC3 and OC1 are reduced
to sub-execution test. Whether a combination of events is causal or not can be
determined based on its position in the sub-set graph. This allows for an on the
fly decision whether a good trace needs to be stored for later perusal by the
AC2(2) test, or whether it can be discarded.

2.5 Alternating Automata

In this paper we translate EOL formulas generated by the causality checker
into alternating automata on finite words [10,33]. Alternating automata are a
generalization of nondeterministic automata in which choices along a path can
be marked as either existential, which indicates that some branch has to reach an
accepting state, or as universal, which means that all branches have to reach an
accepting state. We use the definition of alternating automata from [15]. We note
that this definition differs from the definitions in [10,33] in that the automata
are not defined with input symbols labeling the edges, but with input symbols
labeling the nodes instead.
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Definition 3. Alternating Automaton. An alternating automaton A is defined
recursively as follows:
A ∶∶= εA (empty automaton)
∣ ⟨v, δ, f⟩ (single node)
∣ A1 ∧A2 (conjunction of two automata)
∣ A1 ∨A2 (disjunction of two automata)

where v is a state formula, δ is an alternating automaton expressing the next-
state relation, and f indicates whether the node is accepting (denoted by +) or
rejecting (−). We require the automaton be finite. The set of nodes of an au-
tomaton A, denoted by N(A) is formally defined as
N(εA) = ∅
N(⟨v, δ, f⟩) = ⟨v, δ, f⟩ ∪N(δ)
N(A1 ∧A2) = N(A1) ∪N(A2)
N(A1 ∨A2) = N(A1) ∪N(A2)

A path through a nondeterministic automaton is a sequence of nodes. A “path”
through an alternating automaton is, in general, a tree.

Definition 4. Tree. A tree is defined recursively as follows:
T ∶∶= εT (empty tree)
∣ T ⋅ T (composition)
∣ ⟨⟨v, δ, f⟩, T ⟩ (single node with child tree)

Definition 5. Run of an Alternating Automaton. Given a finite sequence of
states σ = s0, ..., sn−1 and an automaton A, a tree T is called a run of σ in A if
one of the following conditions holds:
A = εA and T = εT
A = ⟨v, δ, f⟩ and n > 1, T = ⟨⟨v, δ, f⟩, T ′⟩, s0 ⊧ v and T ′ is a run of s1, ..., sn−1

in δ, or n = 1, T = ⟨⟨v, δ, f⟩, εT ⟩ and s0 ⊧ v
A = A1 ∧A2 and T = T1 ⋅ T2, where T1 is a run of A1 and T2 is a run of A2

A = A1 ∨A2 and T is a run of A1 or T is a run of A2

Definition 6. Accepting Run. A run is accepting if every path through the tree
ends in an accepting node.

For each alternating automaton A there exists a nondeterministic finite automa-
ton An such that L(An) = L(A), which was shown in [10,9,33].

3 Translating PRISM Models to Promela Models

Our goal is to compute causal events in a first step using the non-probabilistic
causality checking approach.We then limit the probability computation in the sec-
ond step to the causal events events computed in the first step. To achieve this goal
we need to translate the model given by a continuous-timeMarkov chain (CTMC)
[21] specified in the PRISM language to a labeled transition system in the Promela
language [20]. The translation is necessary since the causality checking approach
is based on the SpinJa toolset [13] which uses Promela as its input language.
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The reachability property describing the hazard is specified inContinuous Stochas-
tic Logic (CSL) [1,5]. This CSL formula needs to be translated into a formula in
linear temporal logic [29]. This translation is straight forward: If the CSL formula
is a state formula, then it is also an LTL formula. If the CSL formula is a path
formula, then the path formula is an LTL formula if we replace a bounded-until
operator included in the formula with an unbounded LTL until operator. For the
time being we do not support CSL formulas containing nested path-operators.

We base our translation of PRISM models to Promela models on work de-
scribed in [31]. Since no implementation of the described approach is available
and the approach translates Markov Decision Processes specified in PRISM to a
Promela model we need to provide an adopted translation method. In addition,
the translation proposed in [31] maps synchronizing action labels to rendezvous
channel chaining in Promela which is not consistent with the PRISM seman-
tics specified in [19]. Our translation algorithm maps the CTMC to a labeled
transition system.

Definition 7. Labeled Continuous-time Markov Chain (CTMC) [21]. A labeled
Continuous-time Markov Chain C is a tuple (S, s0,R,L), where S is a finite set
of states, s0 ∈ S is the initial state, R ∶ S × S → R≥0 is a transition rate matrix
and L ∶ S → 2AP is a labeling function, which assigns to each state a subset of
the set of atomic propositions AP.

Definition 8. Labeled Transition System [6]. A transition system TS is a tuple
(S,Act, →, I,AP, L) where S is a finite set of states, Act is a finite set of
actions, → ⊆ S ×Act×S is a transition relation, I ⊆ S is a set of initial states,
AP is a set of atomic propositions, and L ∶ S → 2AP is a labeling function.

Definition 9. Transition System Induced by a CTMC. Let C = (S, s0,R,L) a
CTMC then T = (S,Act, →, I,AP, L) is the transition system induced by C if:
The set S of states in T is S = S, the set I of initial states in T is I = {s0}, and
for all pairs s, s′ ∈ S we add a transition to → and a corresponding action to Act
if R(s, s′) > 0.

We translate the transition system induced by the CTMC into Promela. PRISM
modules are translated to active proctypes in Promela consisting of a do-block
which contains the transitions. Transitions that are synchronized are translated
according to the parallel composition semantics of PRISM [19]. All variables in
the PRISM model are translated to global variables of the corresponding type
in the Promela model. This permits reading variables from other proctypes, as
permitted in PRISM. Listing 1.2 shows the output of the PRISM to Promela
translation of the PRISM code in Listing 1.1 from Section 2.2. The comments
at the end of each transition are merely added to make the Promela model more
readable but are not necessary for the translation.

Our approach requires that each command in the PRISM module is labeled
with an action label representing the occurrence of an event. If a command of
the PRISM model is not already labeled with an action label a unique action
label is added to this command during the translation. This does not change the
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bool var1 = false; byte var2 = 0; byte var3 = 0;

active proctype moduleA (){

do

:: atomic {(( var3 <2) && (var2 <4)) -> var2=var2+1; var3=var3+1;}/* Count*/

:: atomic {(( var3==2) && (var2 <4)) -> var2=var2+1; var3=0;}/* Count*/

:: atomic {( var2==4) -> var1=true;}/*End */

od;}

active proctype moduleB (){

do

:: atomic {(( var2 <4) && (var3 <2)) -> var3=var3+1; var2=var2+1;}/* Count*/

:: atomic {(( var2 <4) && (var3==2)) -> var3=0; var2=var2+1;}/* Count*/

od;}

Listing 1.2. Example Promela translation of the PRISM model from Section 2.2.

behavior of the PRISM model since the action label is unique and consequently
is not synchronized with any other command.

After translating the PRISM model to Promela, qualitative causality checking
can be performed. The results of this step can them be used to perform the
probability computation, as described in Section 4.

4 Computing Probabilities for Causal Events

For the railroad crossing example from Section 2.3, the EOL formula returned
by the causality checker is ψ = (Gf∧((Ta∧(Ca�Cc))�<¬Cl�>Tc))∨((Ta∧(Ca�
Cc))�< ¬Cl�> (Gc∧Tc)). Intuitively, each disjunct of this formula represents a
class of execution traces on which the events specified by the EOL formula cause
the violation of the property.

In the rail road crossing example there are two classes of execution traces on
which the hazard occurs.

1. If the gate fails (Gf) at some point of the execution and a train (Ta) and
a car (Ca) are approaching, this results in a hazardous situation if the car
is on the crossing (Cc) and does not leave the crossing (Cl) before the train
(Tc) enters the crossing: (Gf ∧ ((Ta ∧ (Ca �Cc)) �< ¬Cl �> Tc)).

2. If a train (Ta) and a car (Ca) are approaching but the gate closes (Gc) when
the car (Cc) is already on the railway crossing and is not able to leave (Cl)
before the gate is closing and the train is crossing (Tc), this also corresponds
to a hazardous situation: ((Ta ∧ (Ca �Cc)) �< ¬Cl �> (Gc ∧Tc)).

For instance, the execution traces σ = Ca,Ta,Gf,Cc,Tc and σ′ = Ca,Ta,Gc,Tc,
Tl,Go,Ta,Gf, Cc,Tc are traces that belong to the first class of traces. The trace
σ′′ = Ca,Ta,Cc,Gc,Tc is an example for a trace in the second class.

We now formalize the observation that each disjunct of the EOL formula
represents a class of traces by the notion of causality classes.

Definition 10. Causality Class. Let T = (S,Act, →, I,AP, L) a transition sys-
tem and σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace of T. The set ΣB

is the set of traces for which some LTL property ϕ is violated. The causality
classes CC1, ...,CCn defined by the disjuncts of the EOL formula ψ = ψ1∨ ...∨ψn

decompose the set ΣB into sets ΣBψ1
,..., ΣBψn

with ΣBψ1
∪ ... ∪ΣBψn

= ΣB.

Note that it can be the case that σ ∈ ΣBψ1
∧ σ ∈ ΣBψ2

if σ ⊧e ψ1 ∧ σ ⊧e ψ2.
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All causal information that is needed in order to debug the system is rep-
resented by the causality classes that we compute. We can leverage this fact
and compute the probability sum of all traces represented by a causality class
instead of computing the probability of all traces belonging to this class indi-
vidually. This means that the number of probabilistic model checking runs is
reduced to the number of causality classes instead of the number of traces in the
counterexample.

We will now show how the probability sum of all traces represented by a
causality class can be computed using the PRISM model checker [23]. In order
to compute the probability of all traces represented by a causality class we trans-
late the EOL formula representing the causality class to an automaton which
accepts exactly those execution traces that are represented by the corresponding
causality class. Subsequently we show how we can synchronize the execution of
this automaton with a PRISM model, such that the probability of all sequences
which are accepted by the automaton is the probability sum of all traces repre-
sented by the corresponding causality class.

Note that since causality checking is limited to reachability properties, a non-
deterministic finite automaton (NFA) is sufficient to represent the finite execu-
tion traces represented by the causality class [6]. Since all orders of the events
characterizing the causality class need to be considered, the size of the result-
ing NFA can be exponential in the size of the formula. To prevent this we use
alternating automata on finite words [10,33] as defined in Section 2.5.

Given an EOL formula ψ we can construct an alternating automaton A(ψ)
such that L(A(ψ)) = L(ψ). The construction of the automaton is by structural
induction over the syntax of an EOL formula.

Definition 11. Alternating Automaton for an EOL formula. Let ψ an EOL
formula that is built over the set of event variables a ∈ A. The automaton A(ψ)
for the EOL formula ψ can be constructed recursively following the structure of
the formula as follows: For an event variable a: A(a) = ⟨a, εA,+⟩, and for EOL
formulas ψ1, ψ2 and φ1:

A(ψ1 ∧ ψ2) = A(ψ1) ∧A(ψ2)
A(ψ1 ∨ ψ2) = A(ψ1) ∨A(ψ2)
A(ψ1 � ψ2) = ⟨true,A(ψ1 � ψ2),−⟩ ∨A1 where A1 = A(ψ1) ∧A2

and A2 = ⟨true,A2,−⟩ ∨A(ψ2)
A(φ1 �] ψ1) = A(ψ1) ∨ (⟨true,A(φ1 �] ψ1),−⟩ ∧A(φ1))
A(ψ1 �< φ1 �> ψ2) = ⟨true,A(ψ1 �< φ1 �> ψ2),−⟩ ∨ (A(ψ1)

∧(⟨true,A(ψ1 �< φ1 �> ψ2),−⟩ ∨ ⟨true,A(φ1 �] ψ2),−⟩))

Note that since we consider only reachability properties, it can not be the case
that an event voiding causality appears at the end of an execution trace. The
EOL operator �

[
can hence not be added to an EOL formula as a consequence

of AC2(2) and consequently we do not specify a translation rule for this opera-
tor. Notice that the only way for a ¬ operator to be added to an EOL formula
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by the causality checking algorithm is when the non-occurrence of the negated
event in the specified interval is causal. To illustrate the proposed translation
consider that for the EOL formula ψ = (Ta ∧ (Ca � Cc)) �< ¬Cl �> (Gc ∧ Tc)
of the railroad crossing example the first application of the recursive definition
creates the following rewriting: A(ψ) = ⟨true,A((Ta∧(Ca�Cc))�< ¬Cl�> (Gc∧
Tc)),−⟩ ∨ (A((Ta ∧ (Ca � Cc))) ∧ (⟨true,A((Ta ∧ (Ca � Cc)) �< ¬Cl �> (Gc ∧
Tc)),−⟩ ∨ ⟨true,A(¬Cl �

]
(Gc ∧Tc)),−⟩)).

In order to compute the probability of a causality class we need to translate the
corresponding alternating automaton into the PRISM language and synchronize
it with the PRISM model. Each action label in the PRISM model corresponds
to an event variable in the set A over which the EOL formulas were built. As a
consequence, each alternating automaton accepts a sequence of PRISM action
labels.

We will now define translation rules from alternating automata to PRISM
modules. We call a PRISM module that was generated from an alternating au-
tomaton a causality class module. The transitions of the causality class modules
are synchronized with the corresponding transitions of the PRISM model. The
transition rates of the causality class modules are set to 1.0, as a consequence,
the transitions synchronizing with the causality class modules define the rate for
the synchronized transition. In Listing 1.3 we present the pseudo-code of the al-
gorithm that generates a causality class module from an alternating automaton
representing an EOL formula.

The key idea is that for each event we add a boolean variable representing
the occurrence of the event and a transition labeled with the action label of
the event. The order constraints specified by the EOL formula are encoded by
guards. Synchronized transitions can only be executed if for each other module
containing transitions with the same action label the guard of at least one transi-
tion per module evaluates to true. It might hence be the case that the causality
class module prevents the execution of transitions in the PRISM model with
which the causality class module is synchronized. Since this would change the
behavior of the PRISM model and affect the probability mass distribution, we
add for each transition of the causality class module for which the guard is not
always true a transition with the negated guard and without updates.

A PRISM formula acc ψ, which is true whenever the corresponding sub-
automaton is accepting the input word, is added for each sub-automaton. These
formulas are used to construct a CSL formula of the form P=?[(true)U(acc ψ)]
for each causality class. The CSL formulas can then be used to compute the prob-
ability of all possible sequences that are accepted by the causality class module,
which is the probability sum of all traces that are represented by the causality
class. Since it its possible that a trace belongs to more than one causality class,
we add an additional CSL formula that computes the probability of all traces
that are only in the causality class defined by ψ. This CSL formula has the form
of P=?[(true)U(acc ψ)&!(acc ψi∣...∣acc ψj))], where acc ψi∣...∣acc ψj are the for-
mulas of all causality classes except ψ.
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global var var_def = "", trans = "", formulas = "";

function EOL_TO_PRISM (A(ψ)){

PRISM_CODE (A(ψ), true)

print "module ψ /n" + var_def +"/n"+ trans

+ " /n endmodule /n" + formulas; }

function PRISM_CODE (A(ψ), cond){

IF A(ψ) = ’A(a)’ THEN

var_def += ’s_ψ: bool init false;’

IF cond = ’true ’ THEN

trans += ’[a] (cond) -> 1.0 : (s_ψ’=true);’

ELSE

trans += ’[a] (cond) -> 1.0 : (s_ψ’=true);’

trans += ’[a] !( cond) -> 1.0 : true;’

ENDIF

formulas += ’formula acc_ψ = s_ψ;’

ELSE IF A(ψ) = ’A(ψ1) ∧A(ψ2)’ THEN

PRISM_CODE (A(ψ1), cond); PRISM_CODE (A(ψ2), cond);

formulas += ’formula acc_ψ = acc ψ1 & acc ψ2;’

ELSE IF A(ψ) = ’A(ψ1 ∧ψ2)’ THEN

PRISM_CODE (A(ψ1), cond); PRISM_CODE (A(ψ2), cond);

formulas += ’formula acc_ψ = acc ψ1 & acc ψ2;’

ELSE IF A(ψ) = ’A(ψ1 ∨ψ2)’ THEN

PRISM_CODE (A(ψ1), cond); PRISM_CODE (A(ψ2), cond)

formulas += ’formula acc_ψ = acc ψ1 | acc ψ2;’

ELSE IF A(ψ) = ’A(ψ1) ∨A(ψ2)’ THEN

PRISM_CODE (A(ψ1), cond); PRISM_CODE (A(ψ2), cond);

formulas += ’formula acc_ψ = acc ψ1 | acc ψ2;’

ELSE IF A(ψ) = ’A(ψ1 �ψ2)’ THEN

PRISM_CODE (A(ψ1), cond); PRISM_CODE (A(ψ2), acc ψ1 );

formulas += formula acc_ψ = acc ψ2;

ELSE IF A(ψ) = ’A(φ1 �] ψ1)’ THEN

PRISM_CODE (A(¬φ1), cond); PRISM_CODE (A(ψ1 ), cond & !(acc ¬φ1 ));

formulas += ’formula acc_ψ = acc ψ1;’

ELSE IF A(ψ) = ’A(ψ1 �< φ1 �> ψ2)’ THEN

PRISM_CODE (A(ψ1), cond); PRISM_CODE (A(¬φ1), acc ψ1 )

PRISM_CODE (A(ψ2), (acc ψ1 & !(acc ¬φ1 ))

formulas += ’formula acc_ψ = acc ψ2 ;’

ENDIF }

Listing 1.3. Pseudo-code of the EOL to PRISM algorithm.

Due to space restrictions we can not show the causality class modules that
are generated for the railroad crossing example here, they can be found in [27].

In the railroad example the total probability of a state where both the train
and the car are on the crossing is p total = 2.312 ⋅10−4. The proposed combined
approach returns for the causality class characterized by ψ1 = Gf ∧ ((Ta ∧ (Ca �
Cc)) �< ¬Cl �> Tc) the total probability of pψ1 = 4.386 ⋅ 10

−5 and the exclusive
probability of pψ1 excl = 3.464 ⋅ 10−5. For the causality class characterized by
ψ2 = (Ta ∧ (Ca �Cc)) �< ¬Cl �> (Gc ∧Tc) the total probability is computed as
pψ2 = 1.970 ⋅ 10−4, and the exclusive probability as pψ2 excl = 1.914 ⋅ 10−4. We
use the EOL to fault tree mapping proposed in [22] to visualize this results as a
fault tree.

5 Experimental Evaluation

In order to evaluate the proposed combined approach, we have extended the
SpinCause tool. SpinCause is based on the SpinJa toolset [13], a Java
re-implementation of the explicit state model checker Spin [20]. The following
experiments were performed on a PC with an Intel Xeon Processor (3.60 Ghz)
and 144 GBs of RAM. We evaluate the combined approach on a case study from
the PRISM benchmark suite [24] and two industrial case studies [2,7] for which
the PRISM models where automatically generated by the QuantUM tool [25]
from a higher-level architectural modeling language. The extended SpinCause
tool and the PRISM models used in this paper can be obtained from http://

se.uni-konstanz.de/research1/tools/spincause.

http://se.uni-konstanz.de/research1/tools/spincause
http://se.uni-konstanz.de/research1/tools/spincause
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5.1 Case Studies

Embedded Control System [30]. The PRISMmodel of the embedded control
system is part of the PRISM benchmark suite [24]. The system consists of a main
processor, an input processor, an output processor, 3 sensors, and two actuators.
Various failure modes can lead to a shutdown of the system. We are interested
in computing the causal events for an event of the type “system shut down
within one hour”. Since one second is the basic time unit in our system one
hour corresponds to a mission time of T=3,600 time units. The formalization
of this property in CSL reads as P=?(true U≤T down). We set the constant
MAX COUNT, which represents the maximum number of processing failures
that are tolerated by the main processor, to a value of 5.

Airbag System [2]. This case study models an industrial size airbag system. It
contains a behavioral description of all system components that are involved in
deciding whether a crash has occurred. It is a pivotal safety requirement that an
airbag is never deployed if there is no crash situation. We are interested in com-
puting the causal events for an inadvertent deployment of the airbag. In CSL, this
property can be expressed using the formula P=?(noCrash U≤T AirbagIgnited).
The causality checker returns 5 causality classes. The total probability for an
inadvertent deployment of the airbag within T=100 computed by the combined
approach is p total = 0.228.

Train Odometer Controller [7]. The train odometer system consists of two
independent sensors used to measure the speed and the position of a train. A
monitor component continuously checks the status of both sensors. It reports fail-
ures of the sensors to other train components that have to disregard temporarily
erroneous sensor data. If both sensors fail, the monitor initiates an emergency
brake maneuver and the system is brought into a safe state. Only if the monitor
fails, any subsequent faults in the sensors will no longer be detected. We are
interested in computing the causal events for reaching an unsafe state of the
system. This can be expressed by the CSL formula P=?[(true)U

<=T (unsafe)].

5.2 Discussion

As we would expect, for all case studies the total probability returned by the
combined approach is equal to the probability returned for the respective prob-
abilistic property by PRISM after a probabilistic model checking run. If we sum
up the probabilities of the traces computed by DiPro for each causality class
and only consider traces that belong to exactly one causality class, then the sum
of the probability of each causality class is equal to the corresponding pψ excl
value of that causality class computed by the combined approach. If, on the
other hand, we sum up the probabilities of of the traces computed by DiPro for
each causality class and also consider the probability mass of traces that belong
to more than one causality class, then the sum of each causality class is equal
to the corresponding pψ value of that causality class computed by the combined
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Table 1. This table shows the experiment results with the combined approach and the
probabilistic causality computation approach

Combined Approach Probabilistic Causality Comp.
Run time (sec.) Memory (MB) Run time (sec.) Memory (MB)

Embedded: States: 6,013 Transitions: 25,340
T=10 3.06 19.27 2,003.00 409
T=3600 4.79 19.29 2,102.00 409
Airbag: States: 2,952 Transitions: 14,049
T=10 10.88 52.44 682.00 154
T=1000 33.63 52.44 874.00 154
Train Odometer Controller: States: 117,222 Transitions: 66,262
T=10 91.37 195.29 16,191.00 1,886
T=1000 2,572.74 195.29 44,356.00 1,886

approach. These observations make us confident that the combined approach
computes correct probabilities.

Table 1 shows the run time and memory consumption of the combined ap-
proach and the probabilistic causality computation approach for each of the case
studies. The runtime and memory values for the combined approach include the
runtime and memory needed for all steps of the approach, namely translation
from PRISM to Promela, causality checking, alterning automata derivation and
mapping to PRISM, and the PRISM model checking. The combined approach
consumes significantly less run time and memory than the probabilistic causality
computation approach. This difference can be explained by the fact that for the
probabilistic causality approach the probability of each traces in the counterex-
ample needs to be computed individually, which requires a probabilistic model
checking of a part of the model for each trace. The combined approach reduces
the number of probabilistic model checking runs to the number of the computed
causality classes. The run time of the combined approach increases with the mis-
sion time T because the time needed by the PRISM model checker to compute
the probability for the different causality classes increases with an increasing
T. The relatively low runtime that is needed by the combined approach for the
embedded case study as compared to the other case studies can be explained by
the relatively short length of the traces in the causality classes of the embedded
case study.

6 Related Work

A translation from Markov decision processes (MDPs) into the PRISM lan-
guage has been proposed in [31], but no implementation of the tool is publicly
available. Furthermore, the proposed translation of synchronizing action labels
to rendezvous channel chaining in Promela is not consistent with the PRISM
semantics specified in [19].

In [8], a formalization of the semantics of dynamic fault trees (DFTs) [14]
and a probabilistic analysis framework for DFTs based on interactive Markov
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chains [18] is presented. The approach in [8] takes the DFT as the only input.
As a consequence, while this approach allows for a probabilistic analysis of the
events in the DFT, there is no possibility to combine the analysis with a model
containing the events of the DFT.

The approach of [7] computes minimal-cut sets, which are minimal combina-
tions of events that are causal for a property violation, and their corresponding
probabilities. Our approach extends and improves this approach by considering
the event order as a causal factor. Work in [17] documents how probabilistic
counterexamples for discrete-time Markov chains (DTMCs) can be represented
by regular expressions. While the regular expressions define an equivalence class
for some traces in the counterexample, it is possible that not all possible traces
are represented by the regular expression and consequently not all causal event
combinations are captured by the regular expression. In [4,34] probabilistic coun-
terexamples are represented by identifying a portion of an analyzed Markov chain
in which the probability to reach a safety-critical state exceeds the probability
bound specified by an upper-bounded reachability property. The method pro-
posed in this paper improves these approaches by identifying not only a portion
of the Markov chain, but all event combinations and their corresponding or-
der. Furthermore, the approach presented in [34] is applicable to DTMCs and
MDPs, whereas our approach is applicable to CTMCs. In addition none of the
approaches in [7,17,4,34] is able to reveal that the non-occurrence of an event is
causal.

To the best of our knowledge there is no approach in the literature that com-
bines qualitative causality reasoning with probabilistic causality computation.

7 Conclusion

We have discussed how the qualitative causality checking approach can be lever-
aged in order to improve the scalability of the probabilistic causality computation
approach. Furthermore, we have proposed and implemented a mapping of CTMC
models in the PRISM language to transition systems in the Promela language.
In addition, we have shown how an EOL formula generated by the qualitative
causality checking approach can be translated into an equivalent alternating
automaton, and how the resulting alternating automaton can be translated to
a causality class module in the PRISM language. The resulting causality class
module can then be used to compute the probability sum of all traces represented
by the causality class. We have demonstrated the performance increase of the
proposed synergy approach compared to the probabilistic causality computation
on several case studies from academia and industry.

In future work we plan to extend the combined approach to support DTMC
and MDPs models and to implement a version of the causality checking approach
that works directly on the probabilistic model.
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Abstract. Concurrent systems are often modeled using an interleaving
semantics. Since system designers tend to think sequentially, it is highly
probable that they do not foresee some interleavings that their model
encompasses. As a consequence, one of the main sources of failure in
concurrent systems is unforeseen interleavings. In this paper, we devise
an automated method for revealing unforeseen interleavings in the form
of sequences of actions derived from counterexamples obtained by ex-
plicit state model checking. In order to extract such sequences we use a
data mining technique called sequential pattern mining. Our method is
based on contrasting the patterns of a set of counterexamples with the
patterns of a set of correct traces that do not violate a desired prop-
erty. We first argue that mining sequential patterns from the dataset of
counterexamples fails due to the inherent complexity of the problem. We
then propose a reduction technique designed to reduce the length of the
execution traces in order to make the problem more tractable. We finally
demonstrate the effectiveness of our approach by applying it to a number
of sample case studies.

Keywords: concurrency bugs, counterexample explanation, sequential
pattern mining, model checking.

1 Introduction

Concurrency bugs are among the most difficult software bugs to detect and di-
agnose. This is mainly due to the inherent inability of humans to comprehend
concurrently executing computations and to foresee the possible interleavings
that they can entail. The interleaving semantics commonly used to interpret the
computation of concurrent systems imposes a total order on the execution of con-
current actions in a system. Concurrency is then interpreted as non-deterministic
choices between different interleavings. System designers are used to thinking
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sequentially when designing the model of a system. In concurrent systems it
is therefore highly probable that they do not foresee some interleavings that
their model encompasses. It is therefore a widely held view that one of the main
sources of failure in concurrent systems is unforeseen interleavings resulting in
undesired system behavior.

Model checkers are particularly well-suited for detecting concurrency bugs
due to the exhaustive exploration of all possible interleavings of the concurrent
actions that they perform. They can therefore reveal bugs which are impossible
or difficult to find by testing methods. However, counterexamples generated by
model checking tools only indicate symptoms of faults in a model, they do not
offer aid in locating faults in the code of the model. In order to locate a root
cause for a counterexample in the code of a model a significant amount of manual
analysis is required. Since the manual inspection of lengthy counterexamples of
sometimes up to thousands of events is time consuming and error prone, an
automatic method for explaining counterexamples that assists model designers
in localizing faults in their models is highly desirable.

In this paper we aim at developing an automated method for explaining coun-
terexamples indicating the violation of a desired property in concurrent systems.
Our method benefits from the analysis of a large number of counterexamples that
can be generated by a model checking tool such as SPIN [9]. We refer to the
set of counterexamples that show how the model violates a given property as
the bad dataset. With the aid of SPIN, it is also possible to produce a set of
execution traces that do not violate the desired property. We refer to this set of
non-violating traces as the good dataset.

For explaining counterexamples, we examine the differences in the traces of the
good and bad datasets, which is the foundation of a large number of approaches
for locating faults in program code (see, for instance, [27]). Lewis’ theory of
causality and counterfactual reasoning provides justification for this type of fault
localization approaches [13].

To reveal unforeseen interleavings in the form of sequences of actions, we use
a data mining technique called sequential pattern mining or frequent subsequence
mining [1,4]. This data mining technique has diverse applications in areas such
as the analysis of customer purchase behavior, the mining of web access patterns
and the mining of motifs in DNA sequences. Frequent subsequence mining is an
active area of research and a number of algorithms for mining frequent subse-
quences have been developed which have been proven to be efficient in practice
with respect to various test datasets [26,25,20].

By contrasting the sequential patterns of the good and bad datasets, we ex-
tract a set of sequences of actions that are only common in the bad dataset but
not common in the good dataset. We refer to this approach as contrast mining
and to the resulting patterns as anomalies. We assume that these anomalies can
reveal to the model designer unforeseen interleavings or unexpected sequences
of actions that cause the violation of a desired property.
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The contributions of this work are as follows:

1. We propose an automated method based on contrast mining for explaining
concurrency bugs.

2. We propose a length reduction technique to make the mining problem more
tractable.

3. We show how concurrency bugs can be explained in general by only analyzing
the good and the bad traces and without exploiting the characteristics of
specific bugs such as data races or atomicity violations.

In our precursory work on explaining counterexamples [12] we extract ordered
sequences of events consisting of contiguous events inside counterexamples. In
this work, we improve our explanation by extracting sequences of events which
do not necessarily occur contiguously inside counterexamples.

Structure of the Paper. Section 2 gives the definition of the problem and also
motivates the problem by introducing a running example. Section 3 describes
in detail our proposed method for explaining counterexamples. We then present
experimental results in Section 4. Section 5 discusses closely related work from
different domains. Section 6 concludes with a note on future work.

2 Problem Definition

2.1 Basic Concepts

Our goal is to identify ordered sequences of non-contiguous events that explain
the violation of a safety property in a concurrent system. Such a violation repre-
sents that there exist undesired or unsafe states which are reachable by system
executions. We use the explicit state model checker SPIN [9] in order to compute
system executions represented as sequences of events that lead from an initial
state of the system into a property violating state, often referred to as coun-
terexamples. We use linear temporal logic (LTL) [2] to specify properties and we
use σ �|= ϕ to express that a counterexample σ violates an LTL property ϕ.

Definition 1. Let Act denote the finite set of actions in a concurrent system. If
counterexample σ violates the safety property ϕ, then σ will be a finite sequence
of events denoted as 〈e1, e2, ..., en〉 where each ei corresponds to the execution of
an action in the system.

In fact, the finite set of actions, Act, corresponds to the Promela statements [9]
of the concurrent system models verified by the SPIN model checker. According
to Def. 1, we may use the terms occurrence of an event and execution of an
action interchangeably since both refer to the same concept. When we refer to
an execution trace or a trace, we mean a finite sequence of events according to
Def. 1.

Although counterexamples are typically lengthy sequences of events, only a
small number of events inside them are relevant to a property violation. In a
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concurrent system, the order of the events inside a counterexample can also be
causal for the occurrence of a failure and can hence point to a bug. As we argue
above, system failures are often due to an unexpected order of the occurrence of
events in concurrent systems.

In this paper we explain concurrent counterexamples by identifying explana-
tory or anomalous sequences inside the counterexamples. Such sequences reveal
specific orders between some events inside a counterexample which are presumed
to be causal for the property violation.

Definition 2. ψ = 〈e0, e1, e2, ..., em〉 is a subsequence of σ = 〈E0, E1, E2, ..., En〉
denoted as ψ � σ, if and only if there exist integers 0 ≤ i0 < i1 < i2 < i3... <
im ≤ n such that e0 = Ei0 , e1 = Ei1 , ..., em = Eim . We also call σ a super-
sequence of ψ.

Notice that a subsequence is not necessarily contiguous in the super-sequence.
To capture the notion of a contiguous subsequence we introduce the concept of
a substring.

Definition 3. ψ is a substring of σ, if and only if there exist consecutive integers
from 0 ≤ i0 to (i0 +m) ≤ n such that e0 = Ei0 , e1 = Ei0+1, ..., em = Ei0+m.

Definition 4. The sequence ψ = 〈e0, e1, e2, ..., em〉 is an explanatory sequence,
if for all execution traces σ, it holds that ψ � σ ⇒ σ �|= ϕ.

In the following subsection we will use a motivating example to illustrate that
in concurrent systems such explanatory sequences occur in general as the sub-
sequences of counterexamples. In our previous work, the sequences isolated for
explaining counterexamples are the substrings of counterexamples containing
contiguous events inside the counterexamples.

2.2 A Motivating Example

Using an example case study we now illustrate how a deadlock can occur due to
the temporal order of execution of a set of actions in the model of a concurrent
system. Referring to this example we then argue that contrasting sequential
patterns of the bad and good datasets can reveal the anomalous sequences of
actions that can help to explain the violation of a property, such as a deadlock
in a concurrent system. We use the model of a preliminary design of a plain old
telephony system (POTS)1 as an example. This model was generated with the
visual modeling tool VIP [10] and contains a number of deadlock problems. It
comprises four concurrently executing processes corresponding to two users and
two phone handlers. Each user in this model talks to a phone handler for making
calls. The phone handlers are communicating with each other in order to switch
and route user calls.

1 The Promela code of the POTS case study is available at
http://www.inf.uni-konstanz.de/soft/tools/CEMiner/

POTS7-mod-07-dldetect-never.prm

http://www.inf.uni-konstanz.de/soft/tools/CEMiner/POTS7-mod-07-dldetect-never.prm
http://www.inf.uni-konstanz.de/soft/tools/CEMiner/POTS7-mod-07-dldetect-never.prm
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A portion of a counterexample indicating the occurrence of a deadlock in the
POTS model is given in Fig. 1. The events in this figure are displayed along with
the name of the proctypes2 to which they belong. The events are, in fact, Promela
statements [9] that are separated by a “.” from the name of the proctypes to
which they belong. The events highlighted by the arrows on the left hand side of
the trace reveal a problematic sequence of actions which can be interpreted as
giving an explanation for the occurrence of a deadlock. This identified sequence
for explaining the deadlock is, in fact, an example of an unforeseen interleaving
of concurrent events. The presumed assumption of the model designer is that the
User1 and PhoneHandler1 proctypes are synchronized so that when the Phone-
Handler1 proctype sends a dialtone message, the User1 proctype subsequently
receives it before taking any other action. However, as Fig. 1 indicates the model
contains faults so that the events 6 and 15, which correspond to the sending of
a “dialtone” message by the PhoneHandler1 proctype, are not followed by a
receiving event of the User1 proctype. The statements executed by the User1
proctype after events 6 and 15 are !onhook and phone number = 0, respectively,
which causes an unread message to remain in the channel between the User1 and
PhoneHandler1 proctypes. While the unread message of the event 6 is received
by event 14, there is no corresponding receive event for the message of the event
15. Since the channels have a capacity of one message, the unread message of
the event 15 causes the PhoneHandler1 proctype to block after event 22 when
it tries to send a “busytone” message to the User1 proctype. Because of the
blocking of the PhoneHandler1 proctype, the User1 proctype also blocks after
the event 23. Due to the symmetry in the model, a similar interaction can occur
between the User2 and PhoneHandler2 proctypes, which finally leads the system
to a deadlock state.

1 User1.!offhook
2 PhoneHandler1.?offhook
3 User2.!offhook
4 PhoneHandler2.?offhook
5 PhoneHandler2.!dialtone
6 PhoneHandler1.!dialtone
7 User1.!onhook
8 PhoneHandler1.?onhook
9 User2.?dialtone
10 User2.phone_number=0
11 User2.!dialdigit
12 User1.!offhook
13 PhoneHandler1.?offhook
14 User1.?dialtone
15 PhoneHandler1.!dialtone
16 PhoneHandler2.?dialdigit
17 PhoneHandler2.phone_number!=1
18 PhoneHandler2.!busytone
19 User1.phone_number=0
20 User1.!dialdigit
21 PhoneHandler1.?dialdigit
22 PhoneHandler1.phone_number!=1
23 User1.!onhook
…..

Fig. 1. Part of a counterexample in POTS model

2 proctype is the keyword used in Promela for defining a process.
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One interesting characteristic of the explanatory sequence in Fig. 1 is that
the events belonging to this sequence do not occur adjacently inside the coun-
terexample. Instead they are interspersed with unrelated events belonging to
the interaction of the User2 and Phonehandler2 proctypes. In general, events
belonging to an explanatory sequence can occur at an arbitrary distance from
each other due to the non-deterministic scheduling of concurrent events imple-
mented in SPIN. From this observation, it can be inferred that the explanatory
sequences are, in fact, subsequences of the counterexamples. In conclusion, we
maintain that sequential pattern mining algorithms, which extract the frequent
subsequences from a dataset of sequences without limitations on the relative
distance of events belonging to the subsequences, are an adequate and obvious
choice to extract explanatory sequences from large sets of counterexamples.

3 Counterexample Explanation

3.1 Generation of the Good and the Bad Datasets

In order to use sequential pattern mining and perform the contrast mining for
explaining counterexamples we use the SPIN model checker to generate two sets
of counterexamples, namely the ”good” and the ”bad” datasets. With the aid of
the option “-c0 -e”, which instructs SPIN to continue the state space search even
when a counterexample has been found, we generate a set of counterexamples
violating a given property ϕ, called the bad dataset, denoted by ΣB: ΣB =
{σ | σ �|= ϕ}. The good dataset includes the traces that satisfy ϕ. Such traces
can be generated by producing counterexamples to ¬ϕ. This is justified by the
following lemma:

Lemma 1. For an execution σ, if σ satisfies ϕ, which is denoted as σ |= ϕ, then
it holds that σ |= ϕ⇔ σ �|= ¬ϕ [2].

If ϕ is a safety property, the negation of this property yields a liveness prop-
erty. The counterexamples violating a liveness property are infinite lasso shaped
traces.

Definition 5. Let φ̂ and (φ′) denote finite traces. We call φ = φ̂.(φ′)ω an infi-

nite lasso shaped trace where φ̂ is the finite prefix of φ and ω denotes that φ′ is
repeated infinitely.

For the purpose of our analysis we produce finite traces from the infinite good
traces by concatenating φ̂ with one occurrence of φ′. We use ΣG to denote a
good dataset: ΣG = {φ | φ |= ϕ ∧ φ is finite}

3.2 Sequential Pattern Mining

We now give a brief overview of terminology used in sequential pattern mining,
for a more detailed treatment we refer the interested reader to the cited literature
and in particular to [4].
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A sequence dataset S, {s1, s2, ..., sn}, is a set of sequences. The support of
a sequence α is the number of the sequences in S that α is a subsequence
of: supportS(α) = |{s | s ∈ S ∧ α � s}|. Given a minimum support threshold,
min sup, the sequence α is considered a sequential pattern or a frequent subse-
quence if its support is no less thanmin sup: supportS(α) ≥ min sup. We denote
the set of all sequential patterns mined from S with the given support threshold
min sup by FSS,min sup, i.e., FSS,min sup = {α | supportS(α) ≥ min sup}.

Since mining all sequential patterns will typically result in a combinatorial
number of patterns, some algorithms, such as [26,25] only mine closed sequential
patterns. When a sequential pattern does not have any super sequence with the
same support, it is considered as a closed pattern. The set of all closed sequential
patterns mined from S with the given support threshold min sup, denoted by
CSS,min sup, is defined as follows:

Definition 6. CSS,min sup = {α | α ∈ FSS,min sup ∧ �β ∈ FSS,min sup such
that α � β ∧ supportS(α) = supportS(β)}.
In fact, the support of a closed sequential pattern is different from that of its
super-sequences. Since every frequent pattern is represented by a closed pattern,
mining closed patterns leads to a more compact yet complete result set. In other
words, closed patterns are the lossless compression of all the sequential patterns.

As an example, consider a sequence dataset S that has five sequences, S =
{abced, abecf, agbch, abijc, aklc}. If the min sup is specified as 4, FSS,4 = {a :
5, b : 4, c : 5, ab : 4, ac : 5, bc : 4, abc : 4} where the numbers denote the
respective supports of the patterns. However, CSS,4 contains only two patterns,
{abc : 4, ac : 5}.

For explaining counterexamples, we first mine closed sequential patterns from
the bad and the good datasets with the given support thresholds TB and TG,
respectively. We call the sets of closed patterns mined from the bad and the
good datasets, CSΣB ,TB and CSΣG,TG , respectively. Contrasting the sequential
patterns of the good and the bad datasets results in the patterns which are only
frequent in the bad dataset. We call these patterns anomalies.

Definition 7. We call ASTB ,TG = {α | α ∈ CSΣB ,TB ∧ α �∈ CSΣG,TG} =
CSΣB ,TB − CSΣG,TG the set of all anomalies.

The anomalies computed according to Def. 7 are, in fact, a set of ordered se-
quences of events which give an explanation for the property violation. We main-
tain that the extracted set of anomalies is indicative of one or several faults inside
the model. These anomalies can hence be used as the clues to the exact location
of the faults inside the model and thereby greatly facilitate the manual fault
localization process.

3.3 Complexity Issues

One of the major challenges in applying sequential pattern mining algorithms for
explaining counterexamples is the scalability of these algorithms. In our precur-
sory work [12] we discuss that mining sequential patterns from the datasets of
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counterexamples generated from typical concurrent system models is intractable.
As we argue, this observation is due to inherent characteristics of those datasets,
in particular the average length of the sequences that they include as well as their
denseness. We conclude that we need some technique for reducing the length of
the counterexamples in order to make the use of sequential pattern mining in
this application domain tractable. We will propose a length reduction technique
in the subsequent subsection.

Reducing the Length of the Traces. We are mainly analyzing the behavior
of non-terminating communication protocols. By inspecting the structure of the
finite traces of these protocols in ΣB and ΣG it becomes obvious that events
belonging to particular processes, for instance some event a, may occur repeat-
edly. For example, inside a trace of the POTS model in Fig. 3 we can observe
multiple executions of the actions User1.!offhook and User1.!onhook. In order
to reduce the length of the execution traces in the good and the bad datasets,
we exploit repetitions of the execution of actions inside the traces. Instead of
analyzing the temporal order between all the events of a trace, we decompose
each trace into a number of subtraces and examine the temporal order of the
events that they contain in isolation. A possible choice for decomposing a trace
into subtraces is via breaking the traces at the execution of a repeating action
a. Thus, the obtained subtraces contain the events occurring between each two
subsequent executions of a. We define the notion of a subtrace as follows:

Definition 8. Let φ denote a finite trace and action a executed n times inside φ.
By breaking φ at the executions of a, n subtraces will be generated. The (i+1)th

subtrace is defined as φi+1,a = 〈ai, bi,0, ..., bi,m〉 where ai is the ith execution of
the action a in φ and bi,j is jth event between the occurrence of ai and ai+1. The
event that occurs next to bi,m is ai+1.

The subtraces φi,a reveal the temporal order between the events that are pre-
ceded by the execution of a in the traces, and hence by analyzing these subtraces
we can only extract the anomalous sequences of events that precede the execu-
tion of a to explain counterexamples. Hence, the extracted anomalous sequences
for explaining counterexamples will only contain one execution of the action a.
Notice that as a consequence of this abstraction we lose access to the causes of
failures that spread over multiple cycles, for instance the repeated occurrence of
event a itself without the occurrence of some other event in between.

Instead ofmining patterns from the datasetsΣB andΣG, wemine patterns from
the datasets ΣBRa and ΣGRa containing the subtraces of the traces in ΣB and
ΣG, respectively: ΣBRa = {σa | σa is a subtrace of σ and σ ∈ ΣB} and ΣGRa =
{φa | φa is a subtrace of φ and φ ∈ ΣG}. In fact, for producingΣBRa , we break up
each trace inΣB and accumulate the resulting subtraces inΣBRa . We do the same
for ΣGRa . In analogy with Def. 7, anomalies are then computed by

ASTB ,TG,a = CSΣBRa ,TB − CSΣGRa ,TG . (1)

For instance, the identified sequence in the example of Sect. 2.2 for explaining
the deadlock in the POTS model has portions 〈1, 2, 6, 7, 8〉 and 〈12, 13, 14, 15,
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19, 20, 21, 22, 23〉 which can be mined from the subtraces achieved by breaking
the traces at the execution of User1.!offhook. As we have seen in Sect. 2.2, each
of these portions reveals a problematic sequence of actions that gives clues about
the location of the fault in the model.

As we will see in the experimental results section, this reduction technique can
reduce the average sequence length of the datasets significantly, and hence can
make mining sequential patterns from them feasible. Table 1 shows the amount of
the length reduction for the bad and good datasets of the POTS model obtained
by applying this length reduction technique.

Table 1. Average sequence length before and after reduction, POTS model datasets

Model Datasets #seq. before
reduction

#seq. after
reduction

avg. seq.
len. before
reduction

avg. seq. len.
after reduction

POTS
bad 4109 497595 1677 13
good 107029 43668 3079 21

Determining an action a at which to break up the traces is a heuristic decision.
In principle, any action whose execution is recurrent inside the execution traces
can be used for breaking up the traces. However, considering the functionality
of the model some actions may seem to be more interesting to be analyzed
with respect to their ordering relationships with other actions. Such actions
of interest can correspond, for instance, to the start of interactions between
different concurrent processes in a communication protocol. For example, in the
POTS model many interactions start with the execution of User1.!offhook. It
initiates a sequence of events handling a telephone call and is hence a candidate
for the event a. Apparently, we lose some ordering relationships between the
actions of a model by shortening the traces via breaking them at the execution
of some specific action. However, if we use the actions corresponding to the
start of interactions between concurrent processes for breaking the traces, we
may lose less important temporal orders from the user perspective. Currently, in
our case studies we detect the first action that is taken by one of the processes
in the system and use it for breaking up the traces. An alternative strategy
for determining the action to break up the traces is by calculating how much
reduction can be gained on the average from each individual action, and then to
choose the one with the highest reduction ratio. Another heuristic is choosing
those actions which divide the traces evenly or result in subtraces with similar
length. For example, Table 2 shows different amount of length reduction gained
from different actions in the POTS model. In the experimental results section,
we report on the results achieved by breaking the traces at actions U1.!offhook
(117) and P1.?offhook which give us the most length reduction.

Threats to Validity. It should be noted that this reduction technique is mainly
applicable to execution traces that include repeating patterns of execution of ac-
tions, such as non-terminating communication protocols. For some large models
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Table 2. Length reduction for different actions in the bad dataset of POTS model, U1
and P1 refer to User1 and PhoneHandler1 processes, respectively.

Action U1.!offhook U1.?ringtone U1.!offhookU1.!onhook U1.!onhook P1.?offhook
line no. 117 101 146 351 294 464

avg. seq. len. 14 343 1442 548 47 13

the proposed reduction technique may still not sufficiently reduce the length of
the execution traces. As we have seen the produced anomalies for explaining
counterexamples only contain one execution of the action a. If however for un-
derstanding the cause of the property violation inside the counterexample, the
isolation of an ordered sequence of events containing more than one execution of
a is required, then the analysis of the subtraces would not be sufficient. In other
words, since we lose some temporal order by analyzing only the subtraces, we
may not be able to explain some concurrency bugs.

3.4 Contrasting Sequential Patterns

For mining closed sequential patterns we use an algorithm called CloSpan [26].
The flowchart of our method is given in Fig. 2.

Reducing the trace lengths

Bad & Good datasets

Bad & Good reduced
dataset

Mining sequential patterns

Bad & Good sequential patterns

Filtering sequential patterns

Contrasting bad & good sequential patterns

Anomalies

Grouping anomalies

Ranking grouped anomalies

Potential faults

Action

Threshold

Fig. 2. Flowchart of explaining counterexamples method

The final result set of the method contains the distinguishing patterns repre-
senting the set of sequences of actions that are only frequent or typical in the
bad dataset. This set is generated by equation (1). The user defined threshold
values, TB and TG in equation (1) are, in fact, the parameters of our method.
By decreasing the value of the support threshold, the number of the generated
sequential patterns from a dataset of traces increases. In order to reduce the
number of the mined patterns, we remove the patterns which are substrings of
some other generated pattern. This is because the ordering relationship that can
be inferred from these patterns can also be inferred from the longer patterns
that these patterns are substrings of.
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In order to facilitate the interpretation of the result set obtained by equation
(1) we divide the anomalies into a number of groups so that each group contains
patterns which are all subsequences of the longest pattern in that group. Fig. 4
shows an example of such a group of patterns. One temporal order that can be
inferred from the longest pattern in Fig. 4 is 〈334, 1426, 444〉. From the subse-
quences of the longest pattern, it can be inferred that not always “1426” occurs
between “334” and “444” because 〈334, 444〉 is also frequent, and not always
“1426” is preceded by “334” because 〈1406, 1426, 444〉 is also frequent.

User1.!offhook
PhoneHandler1.?offhook
…
PhoneHandler1.?onhook
User1.!offhook
PhoneHandler1.?offhook
…
PhoneHandler1.?onhook
User1.!offhook
PhoneHandler1.?offhook
User1.?dialtone
…

Fig. 3. Multiple occurrence of events
inside an execution trace

64 1406 334 1426 444 484 1806 644 1986

64 1406 1426 444 484 1806 644 1986

64 1406 334 444 484 1806 644 1986

Fig. 4. Patterns inside one group

The groups of patterns are then ordered based on the length of the longest
pattern inside them. Groups with the shorter length of the longest pattern will
be ranked higher because the analysis of these patterns by the user requires less
effort.

4 Experimental Evaluation

The experiments that we report on in this section were performed on a 2.67 GHz
PC with 8 GB RAM and Windows 7 64-bit operating system. The prototype
implementation of our method was realized using the programming language
C#.Net 2010. We discuss the results obtained by applying our method to a
number of case studies.

Case Study 1: POTS Model. We first applied our method to the POTS model
(see Sect. 2.2) in order to obtain explanations for the occurrence of deadlocks.
The execution traces were shortened in length by breaking the original traces at
the execution of the action User1.!offhook as it has been explained in Sect. 3.3.
In order to study the effect of the threshold value on the number of the gen-
erated patterns in the result set we applied different threshold values, starting
with a comparatively high threshold value of 90%. Fig. 5 shows how the number
of the generated patterns is reduced after our filtering step. The reduction is by
a factor of approximately 0.5. It also illustrates how the number of the closed
sequential patterns increases when decreasing the threshold. Mining closed se-
quential patterns from the good dataset of POTS with the min sup of 10% takes
359.651 sec. and consumes 31.327 MB of main memory while with the min sup
of 90% it takes only 0.074 sec. and consumes only 3.69 MB of main memory.
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Fig. 5. Number of the closed sequential patterns in the bad and good datasets before
and after filtering

In Fig. 6, the number of the anomalies obtained by equation (1) along with
the number of the groups that these anomalies are divided into are given. From
the figures 5 and 6, it can be inferred that although the number of the generated
closed sequential patterns from the bad and good datasets can be quite high,
the number of the anomalies that the user needs to inspect to understand the
root cause of the deadlock is mostly less than 10, at least for thresholds of not
less than 20. In Fig. 6, the precision of the method shows the number of the
sequences in the result set which actually reveal some anomalous behavior. As
this figure shows, only for the thresholds of 30%, 20% and 10% the precision
is less than 100%. Considering the way that we generate the good and the bad
datasets, these datasets may not include all the possible good and bad traces
that can be produced by the execution of the model. In the final result set of
the method, therefore, we may get some false positives that do not reveal any
problematic behaviors in the model. The computed precision measure for each
case study shows the number of the true anomalous sequences among all the
sequences of the result set. This precision was calculated manually.
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Fig. 6. Number of the anomalies, number of the groups of anomalies and the precision

The manual inspection of the anomalous sequences in the result set of the
method reveals some faults in the model. In fact, two faults can be detected from
the result sets generated by the thresholds 20% and 10%. Other result sets which
are generated by higher threshold values only reveal one fault. For example, one
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of the anomalous sequences for the support threshold of 90% is User1.!offhook,
PhoneHandler1.?offhook, User1.?dialtone, while according to the behavior of the
model the expected sequence from the user perspective is User1.!offhook, Phone-
Handler1.?offhook, PhoneHandler1.!dialtone, User1.?dialtone. Considering the
expected sequence a receiving dialtone message should always be preceded by a
sending dialtone message. The anomalous sequence reveals a deviation from the
expected sequence because in this sequence the receiving dialtone messages is not
preceded by a corresponding sending dialtone message. This implicitly reveals
the presence of an unread message in the channel. Finally, it can be inferred
that there is a lack of synchronization between the user and the phone handler
proctypes so that when the phone handler sends a dialtone message, the user
instead of receiving that message takes another action.

By breaking the traces at PhoneHandler1.?offhook instead of User1.!offhook,
by the support threshold of 90% a result set containing of 5 anomalies will be
generated. In fact, these anomalies also reveal the same fault as explained above.

It must be noted that our method is not supposed to be complete, and we
use the method as part of an iterative debugging process. After each run of the
method, aided by the revealed anomalous sequences the user will try to remove
as many causes of property violation as possible. In case the model still contains
faults after being modified, the user will apply the method again. This procedure
can be iterated until all the causes of property violation in the model have been
removed. For example, we tried to remedy the problem in POTS by adding some
code in the user proctype which removes a message dialtone from the channel
between the user and the phone handler proctypes, if it is present, when sending
an onhook message. After this modification, we again applied our method on
the resulting model, this time the number of the generated counterexamples
decreased from 4109 to 2229. The produced result set reveals that there is still
a lack of synchronization between the user and the phone handler proctypes.

Case Study 2: Rether Model. The second model is a Real-time Ethernet proto-
col named Rether. It was obtained from [21]. In order to reduce the size and
complexity of the original model from [21] we have reduced the values of its
parameters. A detailed description of this model can be found in [12]. We ap-
plied our method to this model in order to explain the occurrence of a deadlock.
The statement “i=0” of the Token proctype was used for breaking the execution
traces because the interaction between the processes in this model starts with
the execution of this statement. Table 3 shows the extent of the length reduction
of the traces for this case study.

Table 3. Results of length reduction in the Rether model datasets

datasets #seq. before
reduction

#seq. after
reduction

avg. seq. len. before
reduction

avg. seq. len. after
reduction

bad 8 92 322 28

good 78 812 298 29
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A threshold value of 2% was applied to the reduced length bad and good
datasets for generating the sequential patterns. In Table 4 the number of the
generated sequential patterns before and after filtering along with the number
of the anomalies obtained by equation (1) and the number of the faults detected
by the user inspection are given.

Table 4. Rether model results

datasets #seq.
patterns

#seq. patterns
after filtering

#anomalies #groups of
anomalies

precision #detected
faults

bad 182 170
23 11 7 1

good 466 244

Even though appr. 65% of the extracted groups reveal some problematic be-
havior in the system, the inspection of only 2 of them, corresponding to the first
and the 8th groups in the ranked result set, is required for localizing an atomicity
violation in one of the proctypes of the model. Due to space limitations we refer
the interested reader to our previous work [12] for an extensive discussion of
which specific sequence of actions reveals an atomicity violation in this model.

Comparison with Our Previous Work. The fault localization method that we
proposed in a precursory paper [12] aids the user in locating unforeseen inter-
leavings inside the counterexamples of concurrent systems by extracting a set
of short substrings of mainly length two that only occur in the bad dataset.
These short substrings along with the corresponding counterexamples are given
to the user for further analysis. For example, for this case study, this method
generates 3 short distinguishing substrings of length two which are given to
the user along with the corresponding counterexamples. With the aid of these
substrings, the user needs to inspect on the average 30 events inside the corre-
sponding counterexamples in order to identify the anomalous sequences pointing
to an atomicity violation bug in the model. However, the anomalous sequences
detected with the aid of the method proposed in this paper are in themselves
indicative of the atomicity violation bug in the model. In other words, as op-
posed to our precursory work an inspection of counterexamples is not required
at all. Specifically, in order to detect an atomicity violation in this case study,
an anomalous sequence of at least length 30 needs to be isolated inside a coun-
terexample. With the aid of the short substrings of length 2 extracted by our
previous method, the user still needs to inspect the counterexample in order to
isolate an anomalous sequence of length 30, even though these substrings facili-
tate the user inspection greatly. However, the groups of anomalies generated by
the method of this paper contain the anomalous sequence of length 30 required
for locating the atomicity violation in the model. In fact, the last 7 events of
this sequence appear in the first group of the ranked result set and the rest of
the events are included in the 8th group. We contend that the current method
imposes less inspection effort on the user for locating the faults in the model.
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Table 5. Railway model results

datasets #seq. avg. seq.
len.

#seq.
patterns

#seq. patterns
after filtering

#anomalies #detected
faults

bad 28 15 1 1
1 1

good 85 15 6 2

Case Study 3: Railway Model. We finally applied our method to explain coun-
terexamples indicating the violation of a safety property in the small railroad
crossing example which is also used as a sample case study in [11]. The desired
safety property is that the car and the train should never be in the crossing si-
multaneously, which is considered a hazardous state of the system. In this small
model, the length reduction step was not necessary.

Table 5 summarizes all the figures related to this model and the achieved re-
sults by applying the high support threshold value of 90%. The detected anoma-
lous sequence reveals a sequence of actions that leads the system to an undesired
state in which the variables “carcrossing” and “traincrossing” have both the
value “1”. This indicates that both a car and a train are in the crossing at the
same time, which is equivalent to a hazard state. This sequence, in fact, guides
the user to the location of an atomicity violation bug in the “Gate” proctype.
The presumed intention of the model designer is that the transmission of the
signal “1” through the gateCtrl channel would be performed atomically with the
changing of the global variable “gatestatus” to “1”. However, due to the fault in
the model, the execution of these two statements is interleaved with some other
concurrent actions and leads the system to a hazard state.

Dataset Generation. As it has been explained in Sect. 3, we use the option
“-c0 -e” in SPIN, for generating the good and the bad datasets which can be
time-consuming for some case studies. For example, for the POTS model SPIN
generates 303,589 good traces which takes around 14 hours. However, the dataset
generation for the other two case studies takes less than a minute. If the gen-
erated datasets have fewer numbers of traces than the ones generated with the
option “-c0 -e”, our method is still applicable to them since the method is not
guaranteed to be complete. However, when the datasets offer a higher coverage
of the good and the bad behaviors, the output of the method is more precise
and the number of the false positives among the explanations is reduced.

5 Related Work

In this section, we briefly discuss closely related work that has not yet been
addressed in earlier sections.

Pattern Mining in Software Analysis. Data mining techniques have proven to
be useful in the analysis of very large amounts of data produced in the course
of different activities during various states of the software system development
cycle. Frequent pattern mining techniques which find commonly occurring pat-
terns in a dataset are broadly used for mining specifications and localizing faults
in program code [15,14,19,5,22]. The work documented in [15] adapts sequential
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pattern mining techniques in order to mine specifications from recorded traces of
software system executions. It seems that the patterns generated by this method
can also be used for counterexample explanation. However, we faced scalability
issues when applying this method to the POTS model case study that we intro-
duce in Section 2.2. The longest distinguishing patterns between the bad and the
good datasets that could be generated by this method were only 2 events long and
did not carry any interesting information with respect to ordering relationships
amongst events. CHRONICLER [22] is a static analysis tool which infers func-
tion precedence protocols defining ordering relationships among function calls
in program code. For extracting these protocols a sequence mining algorithm is
used. The methods in [14,19,5] use graph and tree mining algorithms for localiz-
ing faults in sequential program code. A commonality of these methods is that
they first construct behavior graphs such as function call graphs from execution
traces. They then apply a frequent graph or tree mining algorithm on the passing
and failing datasets of constructed graphs in order to determine the suspicious
portions of the sequential program code. As opposed to this approach, our goal
is to identify sequences of interleaved actions in concurrent systems, which the
above cited works are unable to provide.

Concurrency Bug Detection Methods. AVIO [16] only detects atomicity viola-
tions and, as opposed to our method, is tailored to only identify single variable
bugs. Examples of tools which only focus on detecting data races are lockset bug
detection tools [23] and happens-before bug detection tools [18]. In contrast to
these approaches, which lack generality and rely on heuristics that are specific
to a class of bugs, the output of our method in the form of anomalous sequences
can be indicative to any type of concurrency bugs in the program design that
can be characterized by a reachability property.

The work described in [17] proposes a more general approach for finding con-
currency bugs based on constructing context-aware communication graphs from
execution traces. Context-aware communication graphs use communication con-
text to encode access ordering information. A key challenge of this method is,
however, that if the relevant ordering information is not encoded, bugs may not
lead to graph anomalies and therefore remain undetected. Our method does not
rely on such an encoding but directly analyzes the temporal ordering of the
event. It therefore appears to be more general than the approach in [17].

Counterexample Explanation Methods. In [12], we provide a detailed comparison
of our method with a closely related work by Groce and Visser [7]. For that
comparison, the arguments given in [12] are also valid for our current work,
because, in fact, the current method is the enhancement of our precursory work.
The causality checking method proposed in [11] computes automatically the
causalities in system models by adapting the counterfactual reasoning based
on the structural equation model (SEM) by Halpern and Perl [8]. This method
identifies sequences of events that cause a system to reach a certain undesired
state by extending depth-first search and breadth-first search algorithms used
for a complete state space exploration in explicit-state model checking. It seems
that the main superiority of our method is less computational cost in terms
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of memory and running time for detecting at least one fault in the model. The
causality checkingmethod considers all the possible finite good and bad execution
traces for identifying the combination of events which are causal for the violation
of a safety property. Since we do not seek completeness, our mining method is
still applicable even if the datasets do not include all the possible good and bad
execution traces, which can be an impediment in practice.

Some other automated counterexample explanation techniques such as [3,24,6]
only take the values of program or model variables into account when computing
which variable values along a counterexample trace cause a violation of some
desired property. In contrast, the method we propose here considers the order
of execution of actions and can hence explain property violations which are due
to a specific order of execution of actions.

6 Conclusion

We have presented an automated method for the explanation of model checking
counterexamples for concurrent system models. From a dataset of counterexam-
ples we extract a number of anomalous sequences of actions that prove to point
to the location of the fault in the model by leveraging a frequent pattern mining
technique called sequential pattern mining. An experimental analysis showed the
effectiveness of our method for a number of indicative deadlock checking case
studies.

In future work we plan to reduce the computational effort that our method
entails by imposing a limit on the number of context switches in generation of
the good and the bad traces.

Acknowledgements. We wish to gratefully acknowledge a careful review of
this work by Georg Weissenbacher.
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Automatic Equivalence Checking of UF+IA
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Abstract. Proving the equivalence of programs has several important
applications, including algorithm recognition, regression checking, com-
piler optimization verification, and information flow checking.

Despite being a topic with so many important applications, program
equivalence checking has seen little advances over the past decades due
to its inherent (high) complexity.

In this paper, we propose, to the best of our knowledge, the first
algorithm for the automatic verification of partial equivalence of two
programs over the combined theory of uninterpreted function symbols
and integer arithmetic (UF+IA). The proposed algorithm supports, in
particular, programs with nested loops.

The crux of the technique is a transformation of uninterpreted functions
(UFs) applications into integer polynomials, which enables the summa-
rization of loops with UF applications using recurrences. The equivalence
checking algorithm then proceeds on loop-free, integer only programs.

We implemented the proposed technique in CORK, a tool that au-
tomatically verifies the correctness of compiler optimizations, and we
show that it can prove more optimizations correct than state-of-the-art
techniques.

1 Introduction

Proving the equivalence of programs has several important applications, includ-
ing, but not limited to, algorithm recognition [2], regression checking [11,13,24],
compiler optimization verification [18, 23] and validation [30, 32, 40, 43, 46, 47],
and information flow proofs [5, 42].

The objective of algorithm recognition is to identify known algorithms (such
as a sorting algorithm, or even a specific algorithm like quicksort) out of large
and complex programs. This can be useful, for example, to improve code com-
prehension and for automatic documentation generation. Algorithm recognition
can be accomplished by searching for an equivalent algorithm in a database.

Regression verification aims at tracking the functional differences in a program
in each code change. The idea is that a tool that performs regression verification
can pinpoint the parts of the programwhere the semantics were changed since the
previous code revision, so that the developer can manually confirm if those were
the intended changes. Additionally, these tools can help the developer confirm
if some code refactoring or manual optimization preserved the semantics or not.

E. Bartocci and C.R. Ramakrishnan (Eds.): SPIN 2013, LNCS 7976, pp. 282–300, 2013.
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Compiler optimization verification consists in verifying that a given optimiza-
tion is semantic preserving for all allowed code inputs, i.e., that the original and
optimized code templates are equivalent. Optimization validation verifies that
an optimization ran correctly by checking the original and optimized pieces of
code for equivalence (after the optimization was run).

In the domain of information flow, proofs for the non-existence of informa-
tion leaks can be accomplished by establishing the equivalence of the program
with itself (self-composition). Since the programs have some non-determinism
associated (the private information), a program will not be equivalent to itself
if some of the non-determinism may be observable (meaning that it may leak
secure information).

Uninterpreted function symbols (UFs) are frequently used in software ver-
ification tasks, including in the applications mentioned above. UFs are quite
appealing because they allow certain details of the programs to be abstracted
out by replacing with UFs the parts whose specifics are irrelevant to the proof
being done.

Despite being an important area with several applications, state-of-the-art
software verification tools, such asARMC [33],Blast [20,21],CPAchecker [9],
FSoft [22], HSF [15], Impact [27], and Slam [3], are unable to prove equiv-
alence of most programs containing loops. These tools are usually not able to
automatically derive sufficiently strong loop invariants to complete equivalence
proofs of looping programs, even if just considering the theory of integer arith-
metic, let alone the combined theory of uninterpreted function symbols and
integer arithmetic (UF+IA).

In this paper, we present, to the best of our knowledge, the first algorithm to
automatically prove the equivalence of programs consisting of integer arithmetic
operations and applications of UFs. The proposed algorithm is applicable, in
particular, to programs containing zero or more (nested) loops.

Applications of UFs are first rewritten to integer arithmetic expressions (poly-
nomials over the inputs of the applications), and then our equivalence checking
algorithm works on purely integer manipulating programs. Loops are summa-
rized as recurrences, for which we compute the closed-form solution. The prov-
ably correct conversion of UF applications to integer expressions makes possible
the representation of loops with UF applications using recurrences.

We have implemented the proposed algorithm in CORK, a tool that verifies
the correctness of compiler optimizations, and we show that CORK can prove
more optimizations correct than state-of-the-art techniques.

The rest of the paper is organized as follows. Section 2 gives an intuition of how
our algorithm proves the equivalence of programs with a simple example. Section
3 presents the program model that we consider and gives preliminary definitions.
Section 4 describes our algorithm for automatic partial equivalence checking
of programs over the UF+IA theory. Section 5 presents CORK, a tool that
verifies the correctness of compiler optimizations automatically, and provides an
evaluation on how CORK compares with PEC [23], a state-of-the-art tool for
compiler optimization verification. Section 6 presents the related work.
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i := 0
while i < N do

k := UF(k, i)
i := i+ 1

i := N
while i ≥ 1 do

k := UF(k, N − i)
i := i− 1

if N ≤ 0 then
i := 0

else
i := N

Fig. 1. Example of two equivalent programs

2 Illustrative Example

We illustrate our algorithm for program equivalence checking on a simple exam-
ple. Figure 1 shows two equivalent example programs. Our objective is to prove
that these two programs are indeed equivalent.

The first step of the algorithm is to replace the applications of uninterpreted
functions (UFs) with expressions over integers. In the left program, we replace
the UF application with the following expression (a polynomial of degree one):

a× k + b× i+ c

where a, b, and c are free variables not occurring in the input programs, and
are associated with this specific UF symbol. Other UF symbols occurring in the
program would have different sets of free variables associated with each input
parameter. Similarly, for the UF application of the right program we obtain:

a× k + b× (N − i) + c

These expressions (polynomials) have a unique value for each set of UF symbol
and input parameters, which is not reproducible through any other sequence of
operations. This is because free variables are universally quantified, and therefore
there always exists an assignment to the variables a, b, and c that leads to
different results for different UF applications.

As we shall see later, the degree of the polynomials that replace UF applica-
tions is not always one. We give a lower bound for this degree in Section 4.2.

The second step that the algorithm performs is removing the loops. This is
accomplished by replacing each loop with a set of assignments to the variables
modified in the loop. The expressions assigned to each variable are expressed
over the closed-form solution of a system of recurrences that summarizes the
loop.

For the left program, we obtain the following system of recurrences:

Ri(n) = Ri(n− 1) + 1

Ri(0) = 0

Rk(n) = a×Rk(n− 1) + b×Ri(n− 1) + c

Rk(0) = k0



Automatic Equivalence Checking of UF+IA Programs 285

i := 0
if i < N then

assume Ri(n−1) < N ∧ Ri(n) ≥ N
k := Rk(n)
i := Ri(n)

i := N
if i ≥ 1 then

assume Vi(n−1) ≥ 1 ∧ Vi(n) < 1
k := Vk(n)
i := Vi(n)

if N ≤ 0 then
i := 0

else
i := N

Fig. 2. Programs of Figure 1 with loops and UF applications removed

where n represents the loop iteration number, and k0 is the (arbitrary) value
of k when the program starts (required since k is not initialized before its first
usage). A recurrence for N is not needed, since it is not modified in the loop.

The recurrence Rx(y) represents the value of variable x at iteration number
y. For example, the recurrence Ri(n) defined previously means that the value of
i in any given iteration is equal to the value of i in the previous iteration plus
one. Moreover, before the loop starts, i has the value zero.

Similarly, for the right program we obtain the following system of recurrences:

Vi(n) = Vi(n− 1)− 1

Vi(0) = N

Vk(n) = a× Vk(n− 1) + b× (N − Vi(n− 1)) + c

Vk(0) = k0

Figure 2 shows the programs of Figure 1 after both transformations (elimination
of loops and UF applications) have been applied.

The assume command ensures that its input boolean expression is satisfi-
able, or the program execution is blocked otherwise. We use this command to
implicitly compute the trip count of loops.

Intuitively, if m is the number of iterations performed by a loop, in the itera-
tions numbered 0 . . . (m−1) the loop guard is true, and it is false in the following
iteration (m). Therefore, m is the first iteration when the loop guard becomes
false.

After the assume command in the example is evaluated, the value of n is
the number of times that the corresponding loop would have been executed and
therefore Rx(n) represents the value of the variable x after the loop terminates.

We can now compute the closed-form solution of the previously given systems
of recurrences. For the left program we obtain the following solution (computed
by Wolfram Mathematica 8):

Ri(n) = n

Rk(n) =
b (an − an+ n− 1) + (a− 1) (an((a− 1)k0 + c)− c)

(a− 1)2
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assume i = ī ∧ k = k̄ ∧ N = N̄

i := 0
if i < N then

assume Ri(n− 1) < N ∧ Ri(n) ≥ N
k := Rk(n)
i := Ri(n)

ī := N̄
if ī ≥ 1 then

assume Vi(n̄− 1) ≥ 1 ∧ Vi(n̄) < 1
k̄ := Vk(n̄)
ī := Vi(n̄)

if N̄ ≤ 0 then
ī := 0

else
ī := N̄

assert i = ī ∧ k = k̄ ∧ N = N̄

Fig. 3. Sequential composition of the programs of Figure 2. The right program is
renamed, so that each variable v becomes v̄.

For the right program, the solution for Vk(n) is equal to Rk(n) of the left pro-
gram, and for Vi is:

Vi(n) = N − n

The final step of the algorithm is to prove equivalent the transformed programs
(that are now only over integer arithmetic and loop-free). To accomplish this,
we first do the sequential composition of the two programs, where the second is
renamed to operate over a distinct set of variables from the first program. We
then add an assertion at the end of the composed program to verify that the
value of the corresponding variables of the two programs are equal when the
programs terminate.

The sequential composition of the programs of Figure 2 is shown in Figure 3.
The references to recurrences were not replaced by their closed-form solutions
to avoid cluttering the example.

If we prove that the composed program is safe, i.e., that the condition of the
assert command is true for all inputs, then we have proved that the two input
programs are equivalent.

To prove program safety, and since the number of symbolic paths of the com-
posed programs is always finite (as we remove the loops), we can use a simple
algorithm that enumerates all paths and checks if the assertion is violated in any
of them.
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e ::= n | v | e1 ⊕ e2 | UF(e1, . . . , en)

b ::= e ≤ 0 | b1 ⊗ b2

c ::= skip | v := e | c1 ; c2 | if b then c1 else c2 | while b do c1 | assume b

| assert b

Fig. 4. WHILE language syntax. n is an integer number, v is a variable name, UF is
an uninterpreted function symbol, ⊕ is a binary operator over integer expressions (e.g.,
+, −), and ⊗ is a binary operator over boolean expressions (e.g., ∧, ∨).

3 Program Model

We assume that programs are specified in the WHILE language, whose syntax
is given in Figure 4, and with customary semantics. The expressions are over
the combined theory of uninterpreted function symbols and integer arithmetic
(UF+IA). The evaluation of expressions is parameterized on an interpretation
for each UF symbol.

For the sake of ease of reading, in the examples given throughout the paper,
we relax the syntax of expressions (e.g., to accept more operators than ≤), but
those examples can be trivially converted to the WHILE language we present.

Let σ be a program state, which is a valuation of the program variables. Let
σ(v) be the value of the variable v in the program state σ. This notation is
extended for expressions, such that σ(e) is the expression e with each variable
replaced with its value in state σ. Let σ[v �→ n] be a program state that is
identical to state σ, except for the value of variable v, which is n. Let σ0 be the
initial state of an execution of a program. We have that σ0(v) = v0 for each
variable v used in the program, with variable v0 being fresh.

A configuration 〈c, σ〉 is a pair where c is a command and σ is a state. Let
〈c, σ〉 → 〈c′, σ′〉 be the reduction of the configuration 〈c, σ〉 to the configura-
tion 〈c′, σ′〉 in one step. Let 〈c, σ〉 → σ′ be the reduction in one step of the
configuration 〈c, σ〉 to the state σ′ when there are no further commands left to
execute. Finally, let 〈c, σ〉 →∗ σ′ be the reduction in one or more steps of the
configuration 〈c, σ〉 to the state σ′.

Let Vars(P) be the set of variables of program P (a command). A variable v
is fresh in program P if v /∈ Vars(P). Let Out(P) ⊆ Vars(P) be the set of output
observable variables of a program P. Let σ ↓ V be the projection of the state σ
over the set of variables V and let σ ↓ Out(P) be the observable state of σ of
program P.

Two programs are considered partially equivalent iff starting in the same
arbitrary state, they terminate in the same observable state for all possible UF
interpretations, i.e., P1 and P2 are partially equivalent iff the following holds:

〈P1, σ0〉 →∗ σ1 ∧ 〈P2, σ0〉 →∗ σ2 =⇒ σ1 ↓ Out(P1) = σ2 ↓ Out(P2)

with Out(P1) = Out(P2).
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4 Program Equivalence Checking

In this section, we present the new algorithm to check if two programs over the
UF+IA theory are partially equivalent.

4.1 Restrictions

We impose the following restrictions on the programs that our equivalence check-
ing algorithm can handle:

1. UFs must have exactly one output parameter.
2. There can be no branching (i.e., if statements) inside loops. Nested loops,

however, are allowed.
3. The trip count of inner loops may not depend on the outer loops, i.e., the

number of times that inner loops iterate is constant relative to outer loops.
4. Loop conditions cannot involve UF applications.

Restriction 1 can be lifted by splitting UFs with more than one output into newly
created UFs (one per output). Restriction 2 can be relaxed by allowing branching
conditions that always evaluate to the same value in all loop iterations. In that
case, the program can be rewritten to move the branches out of the loop.

4.2 Algorithm

The algorithm runs in three steps:

1. Eliminate UF applications.
2. Replace loops with recurrences.
3. Check resulting programs for equivalence.

Applications of UFs are abstracted using polynomials, in order to obtain pro-
grams with integer operations only. This allows us to compute the closed-form
of loops using recurrences.

Although our algorithm is sound and complete (under the stated restrictions),
computing the closed-form solution of recurrences is undecidable, and therefore
the overall method is incomplete.

In the following sections, we describe each step of the algorithm separately.

Eliminate UF Applications. The first step of the algorithm is to eliminate
UF applications. This is accomplished by replacing each UF application with a
polynomial over its inputs, as defined by the transformation T:

T (e) =

n∑
i=1

u(UF,i)∑
j=0

UFi,j × (T(ei))
j , if e = UF(e1, . . . , en)

The other trivial (do nothing) cases are omitted for brevity.
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The function u(f, i) used by transformation T defines the degree of the poly-
nomial that replaces an UF application. The value of u(f, i) is the maximum
number of times that the given UF f is applied with distinct values in the ith
parameter in each and every program path minus one. Only function applications
whose value is possibly used in a boolean expression need to be considered.

Intuitively, two programs with UF applications are equivalent iff, for each
possible input and for each observable output, the number of times the UFs are
applied is equal in both programs, and the values of the input parameters of
each application are equal as well.

Transformation T captures this information precisely by replacing each UF
application with a polynomial over the inputs of the application. Each UF symbol
is assigned a set of fresh variables UFi,j that is used only by applications of that
symbol. Therefore, the value of an UF application cannot be reproduced by any
sequence of commands that does not include exactly the same UF application.

For example, the following boolean expression

f(x) = 0 ∧ f(y) = 1 ∧ f(z) = 2 ∧ g(x) ≤ 0 ∧ y < z ∧ z < x

is translated to (assuming no more applications of f nor g in the rest of the
program):

f1,2 × x2 + f1,1 × x+ f1,0 = 0 ∧ f1,2 × y2 + f1,1 × y + f1,0 = 1 ∧
f1,2 × z2 + f1,1 × z + f1,0 = 2 ∧ g1,0 ≤ 0 ∧ y < z ∧ z < x

where f1,2, f1,1, f1,0, and g1,0 are fresh variables. These variables are never
written by the program, and are only read by transformed expressions that
originally contained the same UF symbols (f and/or g).

The applications of the uninterpreted function f were transformed into poly-
nomials of degree two, since we have three applications of f with (possibly)
different input parameters.

A polynomial with a lower degree would not be sufficient to represent this
boolean expression without imposing constraints on the input parameters that
did not exist in the original expression with UFs. For example, if we use a
polynomial of degree one for the applications of f , we obtain (excluding the
constraint with g):

f1,1 × x+ f1,0 = 0 ∧ f1,1 × y + f1,0 = 1 ∧ f1,1 × z + f1,0 = 2 ∧ y < z ∧ z < x

This formula is not satisfiable, while its original UF form is. A polynomial of
degree two (as shown above) or of higher degree, however, is guaranteed to yield a
satisfiable formula for all distinct x, y, and z (by the Unisolvence Theorem [41]).

Computing the value of u(f, i) as defined is hard, and may require prior static
analysis. This value can, however, be safely over-approximated by the number
of applications of f in the whole program, at the expense of generating more
complex expressions.

For example, the optimal values for u in the following program excerpt are
u(f, 1) = 1 and u(f, 2) = 0 (assuming no other UF applications in the rest of
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while i < n do
k := 2× k
j := 0
while j < m do

k := k + j
j := j + 1

i := i+ 1

Rj(x) = Rj(x− 1) + 1

Rj(0) = 0

Rk(x) = Rk(x− 1) +Rj(x− 1)

Rk(0) = 2 · Vk(y − 1)

Vi(y) = Vi(y − 1) + 1

Vi(0) = i0

Vk(y) = Rk(x)

Vk(0) = k0

Fig. 5. An example program and the corresponding system of recurrences that sum-
marizes the two loops, where Rj and Rk represent the behavior of the inner loop on
the variables j and k, respectively, and Vi and Vk represent the outer loop

the program). Although there are three applications of f with a different first
parameter, only two applications are ever encountered and used in a boolean
expression in a single path.

if . . . then
j := f(y, 3)

else
k := f(z, 3)

if f(x, 3) ≤ 0 ∧ j ≤ 0 ∧ k ≤ 0 then
. . .

The value of u(f, i) must be computed over the composed program (and not over
each of the two input programs independently), including the assert command
that is added at the end of it (Section 4.2).

Replace Loops with Recurrences. The second step of the algorithm is to
eliminate loops, by replacing each loop with a system of recurrences. The trans-
formation is carried out as follows. Each variable that is assigned in the loop
gets a recurrence over a newly introduced variable that represents the loop trip
count. For nested loops, the initial value of a recurrence in an inner loop is the
value of the previous iteration of the outer loop.

An example program and its system of recurrences is shown in Figure 5.
The recurrence Rv(n) represents the value of the variable v at the inner loop
iteration n, and Vv(n) in the outer loop. For example, the value of variable k
in the iteration x of the inner loop, Rk(x), is equal to the sum of the values of
variables k and j of the previous (inner loop) iteration. The value of k in the
beginning of the first inner loop iteration, Rk(0), is equal to twice the value of
k in the previous outer loop iteration.
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The closed-form solution for the system of recurrences is the following:

Rj(x) = x Rk(x) =
4 · Vk(y − 1) + x2 − x

2

Vi(y) = i0 + y Vk(y) =
k0 · 2y+1 + (x− 1) · x · (2y − 1)

2

We note that while the solution of Rk(x) still includes a reference to a recurrence
— Vk(y − 1) — it is only used to compute the solution of Vk(y) and it is never
used directly by the next steps of the algorithm. We only need the value of k
after the outer loop terminates, which is represented by Vk(y).

After computing the closed-form solution for the system of recurrences, each
loop of the form “while b do c” is replaced with the following code:

if b then
assume σn−1(b) ∧ σn(¬b)
vi := σn(vi)

else
assume n = 0

The fresh variable n represents the number of iterations performed by the loop.
σn is a state where each variable maps to the closed-form solution of its cor-
responding recurrence at point n, or to itself if the variable is not modified in
the loop body c. Variable vi ranges over all variables that are possibly modified
in the loop body. For the previous example, we have for the inner loop, e.g.,
σx(j) = Rj(x) = x and σx(n) = n.

Intuitively, a loop executes n times if the loop guard is true for the first n
iterations (iterations 0 . . . (n − 1)) and false in the following iteration (iteration
n). The number of iterations is implicitly computed when the assume command
is evaluated. Its expression states that the loop guard of iteration n− 1 should
be true, and that at iteration n the guard should be false instead.

We note that there can be multiple solutions for the expression given to the
assume command if the loop guard is non-linear. In this case, the number of
loop iterations is the smallest positive n that makes the formula satisfiable.
Computing the smallest n can be achieved, for example, by using an optimizing
solver or by doing multiple calls to an SMT solver.

For the example in Figure 5, the program after removing the loops is shown
in Figure 6. The command “assume y = 0” at the end can be removed as an
optimization, since there are no further uses of y afterward.

Equivalence Checking. The third and final step of the algorithm is to prove
the equivalence between the two programs after they undergo the transforma-
tions previously described.

We do this by sequentially composing the first programwith a renamed version
of the second. The second program is renamed so that it operates over a different
set of variables from the first.
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if i < n then
assume Vi(y − 1) < n ∧ Vi(y) ≥ n
j := 0
if j < m then

assume Rj(x− 1) < m ∧ Rj(x) ≥ m
j := Rj(x)

else
assume x = 0

k := Vk(y)
i := Vi(y)

else
assume y = 0

Fig. 6. Program of Figure 5 after replacing the loops with a set of assignments over
the system of recurrences including Vi(n), Vk(n), and Rj(n)

Let P ′
1 and P ′

2 be, respectively, the programs P1 and P2 after removing the
UF applications and the loops. The composed program is as follows.

assume ∀v ∈ Vars(P ′
1) ∩ Vars(P ′

2) : v = v̄

P ′
1

P̄ ′
2

assert ∀v ∈ Out(P ′
1) : v = v̄

Program P̄2
′
is the same as the program P ′

2, but where each variable v was
renamed to v̄. Moreover, Out(P ′

1) = Out(P ′
2).

If the composed program is safe, i.e., if the condition of the assert command
is true for all inputs, then the two original programs are partially equivalent.

To prove program safety, and since the number of symbolic paths is finite, we
can use an algorithm that enumerates all paths and tests if any of those makes
the condition of the assert command false.

Note that the value of u(f, i) defined in Section 4.2 for the composed program
above must take into account the paths that pass through programs P1 and P2,
as well as the assert command (which takes a boolean expression by itself).

5 Verification of Compiler Optimizations

To evaluate the proposed algorithm, we implemented a prototype to prove the
correctness of compiler optimizations. This is an important topic, since all main-
stream compilers were shown recently to have several bugs in the optimization
passes [45]. Moreover, if the compiler is not proved correct, properties verified
on the source-code level of a program are not carried to the binary code, since
the compiler may introduce bugs during the translation process.
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while I < N do
S
I := I + 1

⇒

while (I + 1) < N do
S
I := I + 1
S
I := I + 1

if I < N then
S
I := I + 1

Fig. 7. Loop unrolling: the source template is on the left, and the transformed template
on the right. Template statement S cannot modify template variables I and N .

5.1 From Compiler Optimizations to Program Equivalence

We specify a compiler optimization as a transformation function from a source
template program to a target template program. These template programs can
be modeled as UF+IA programs, where UFs represent arbitrary statements, or
expressions that should be matched within a program under optimization.

We show an example optimization (loop unrolling) in Figure 7. This optimiza-
tion transforms a loop into a new loop that performs only half of the iterations
of the original loop, but where each iteration of the new loop performs twice the
work of an iteration of the original loop.

The template statement S is a placeholder for an arbitrary statement (e.g.,
variable assignments, function calls, or other loops) that may be present in a loop
under optimization. Template variables I and N are placeholders for arbitrary
program variables. The transformation function states how each template state-
ment/expression is transformed (e.g., moved, duplicated, eliminated) to produce
the optimized program.

As an example, we apply loop unrolling to the following program.

while i < n do
x := i+ 2
i := i + 1

Running the optimization with S instantiated to “x := i + 2”, I to “i”, and N
to “n” yields the following program:

while i < n do
x := i+ 2
i := i + 1
x := i+ 2
i := i + 1

if i < n then
x := i+ 2
i := i + 1
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To verify a compiler optimization correct, we split the transformation function
into two programs (the source and target templates), and then we convert the
template programs into UF+IA programs. Finally, we use the proposed equiv-
alence checking algorithm to prove that the source and target templates are
equivalent, which implies that the optimization is correct.

Preconditions of optimizations are specified as read and write sets of the
template statements/expressions, which contain the variables that the template
statements/expressions may read and write, respectively. For example, the read
set of S in loop unrolling is R(S) = {c1, I, N}, and the write set is W (S) = {c1},
since the precondition is that S cannot modify variables I and N .

The conversion of a template program to an UF+IA program is done by
replacing each template statement S with a set of assignments of the following
form:

vi := Si(r1, . . . , rn)

where vi ∈ W (S) and R(S) = {r1, . . . , rn}. The transformation of template
expressions is done similarly.

In the loop unrolling example, S is replaced with a single assignment (with
S1 being a fresh UF symbol):

c1 := S1(c1, I, N)

Variable c1 is what we call a context variable. These fresh variables ci represent
the variables that are possibly in scope where a template may be instantiated
(possibly none) and that do not appear in the template function.

In our example, c1 represents the effects of S in x. While variable x does not
appear explicitly in the transformation function, S does indeed modify x in the
example instantiation.

The values computed for the function u are the following: u(S1, 1) = 1 and
u(S1, 2) = 1, since there are two applications of S1 with possibly different values
that are used in a boolean expression (the assert command); and u(S1, 3) = 0,
since N is constant.

At least one context variable is added to each program.Moreover, the read and
write sets of each template statement must include at least one context variable,
unless the precondition of the optimization states that, e.g., a given statement
does not read any other variable than x. Similarly, template expressions may
read a variable that is not present in the transformation function (again, unless
stated otherwise in the precondition), and therefore their read set must include
a context variable.

We may add more than one context variable to a program to express certain
preconditions over template statements. For example, if a statement S is idem-
potent, we have that R(S) ∩W (S) = ∅. Therefore, we have to have at least two
distinct context variables c1 and c2 to have, e.g., R(S) = {c1} and W (S) = {c2}
to state that S cannot read a variable that it writes to, nor vice versa.

Similarly, to state that template statements S and T commute, we have
W (S) ∩R(T) = W (T) ∩R(S) = W (S) ∩W (T) = ∅. In this case, we also need at
least two distinct context variables.
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5.2 Evaluation

We implemented a prototype named CORK1, which stands for Compiler Opti-
mization coRrectness checKer. CORK is implemented in OCaml (∼ 1,100 LoC),
and uses Wolfram Mathematica 8.0.4 for both constraint and recurrence solving.

CORK takes as input a transformation function in the format of the exam-
ple in Figure 7. CORK then derives two programs over the UF+IA theory as
described in the previous section, and subsequently checks if they are equiva-
lent. The equivalence check is done by enumerating each path of the composed
program, since the number of paths is finite and small. If the equivalence check
fails, CORK prints a counterexample path.

CORK performs three optimizations to improve the performance. First, CORK
discharges by itself equality tests of syntactically equal expressions. Second,
CORK performs equality propagation on the satisfiability queries sent to Math-
ematica. Finally, CORK checks the equality of program variables (arising from
the assert command at the end of the composed program) one-by-one, instead
of just one satisfiability query per path. CORK then uses the established equal-
ities in the following queries. Moreover, variable equality checks are ordered so
that first are checked the induction variables, and the remaining variables are
ordered by the length of their value expressions. Establishing first the equality of
expressions involving induction variables improves the performance significantly.

We ran CORK over a set of optimizations (mostly loop-manipulating). The
experiments were run on a machine running Linux 3.6.2 with an Intel Core 2
Duo 3.00 GHz CPU, and 4 GB of RAM. The results are shown in Table 1.

We first note that the number of recurrence solving queries is higher than
expected (more than one per loop), since we compute the recurrences per path
and we do not cache any information across paths. Optimizations that do not
manipulate loops explicitly do not generate any recurrence.

We compare the results of CORK with the state-of-the-art tool PEC [23].
Since PEC is not publicly available, we compare only with the published results.

The table is divided in four sets of optimizations (described in, e.g., [1]). The
first part is a set of optimizations that do not manipulate loops explicitly, which
are trivially proven correct by both CORK and PEC. The second part is a set
of optimizations that PEC can prove correct without the help of heuristics. The
third part is a set of optimizations that PEC can only prove correct by using
the permute heuristic [14, 47], since otherwise it could not find a bisimulation
relation automatically. The fourth and last part of the table contains a set of
optimizations that PEC cannot prove correct, since it cannot find a bisimulation
automatically, even with the permute heuristic. CORK, on the other hand, is
able to prove correct the loop strength reduction and loop tiling optimizations.
CORK fails to prove correct the loop flattening optimization, since Mathemat-
ica is unable to compute the closed-form solution of recurrences with integer
division.

1 Prototype and benchmarks available from
http://web.ist.utl.pt/nuno.lopes/cork/.
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Table 1. List of compiler optimizations [1], how PEC performs (�p means PEC needs
the permute heuristic), the number of satisfiability and recurrence solving queries issued
to Mathematica, and the time that CORK took to prove each optimization correct

Optimization PEC # Sat. queries # Recurrences Time

Code hoisting � 2 0 0.32s
Constant propagation � 0 0 0.33s
Copy propagation � 0 0 0.33s
If-conversion � 2 0 0.34s
Partial redundancy elimin. � 2 0 0.34s

Loop invariant code motion � 7 5 3.48s
Loop peeling � 9 5 3.26s
Loop unrolling � 13 8 12.17s
Loop unswitching � 14 14 8.19s
Software pipelining � 9 5 8.02s

Loop fission �p 10 12 23.45s
Loop fusion �p 10 12 23.34s
Loop interchange �p 15 24 29.30s
Loop reversal �p 7 5 8.41s
Loop skewing �p 16 24 8.50s

Loop flattening × — — FAIL
Loop strength reduction × 6 4 5.63s
Loop tiling × 7 9 10.94s

The execution time of PEC and CORK is within the same order of magnitude,
but CORK advances the state-of-the-art by being able to prove correct more
optimizations than PEC.

6 Related Work

Proving the equivalence of programs is undecidable. However, there has been
advances over the last decades to solve the problem under certain assumptions.

Several alternative approaches exist to prove the equivalence of programs,
namely manual or semi-automated (with the help of an iterative theorem prover)
approaches, bisimulation relation synthesis, symbolic execution, recurrence equiv-
alence, and software model checking based techniques.

Manual and Semi-automated Proofs. Relational Hoare logic [7] is a proof
system that enables the verification of equivalence between two programs. The
system only supports the verification of structurally equivalent programs (yet,
for example, many compiler optimizations do not obey this constraint). Barthe
et al. [4] lift some of the restrictions of this work through the usage of product
programs. The set of structural differences that the programs under equivalence
checking may exhibit is still dependent on the set of built-in proof rules. Liang
et al. [25] adapted relational Hoare logic to the setting of concurrent programs.
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Bisimulation. Parameterized equivalence checking (PEC [23]) is a technique
to verify the correctness of compiler optimizations automatically. It works by
automatically finding a bisimulation relation [37] between the original and the
optimized template programs. For structurally different loops, PEC relies on a
set of heuristics inspired in [14, 47].

Recurrence Equivalence. Barthou et al. [6] and Shashidhar et al. [39] present
different algorithms to prove the equivalence of systems of affine recurrence equa-
tions that are structurally similar. Verdoolaege et al. [44] propose an algorithm
to prove the equivalence of integer affine programs where loops are described as
recurrences. The algorithm does not compute the closed-form solution for the
recurrences, but instead uses widening to reach a fixed point. The algorithm
handles commutative operators by trying all possible permutations.

Symbolic Execution. Matsumoto et al. [26] and Person et al. [31] present
different techniques to detect differences between two programs that are mostly
equal. Ramos and Engler [34] present an algorithm to check for program equiv-
alence automatically up to a bounded number of loop unrollings.

Software Verification and Invariant Synthesis. State-of-the-art software
verification tools are unable to prove equivalence of most programs containing
loops, since they are usually unable to automatically derive sufficiently strong
loop invariants to complete the proof, even if just considering the theory of
integer arithmetic, let alone the UF+LIA theory.

Beyer et al. [8] present an algorithm to synthesize loop invariants over the
UF+LIA theory, and Rybalchenko and Stokkermans [36] present an algorithm
to synthesize interpolants over the same theory. McMillan [28] introduced an
algorithm to generate interpolants from the unsatisfiability proofs of Z3 [12].
However, the language of interpolants/invariants supported by these algorithms
is not able to express an unbounded number of UF applications, which is often
required to prove equivalence of programs that have UF applications inside loops.

Polynomial loop invariant generation techniques (e.g., [29, 35, 38]) can only
generate invariants with bounded exponents, which is not sufficient for the verifi-
cation of the integer programs we generate (after removing the UF applications),
since these programs often require loop invariants with unbounded exponents.

Gupta et al. [19] present an algorithm to solve recursion-free Horn clauses in
the theory of UF+LIA. Grebenshchikov et al. [15] extend this work to recursive
Horn clauses in order to support the verification of recursive programs. The
interpolation algorithm used suffers from the same limitations as the others.

Gulwani and Tiwari [17] present an algorithm for the verification of programs
over the UF+LIA theory. However, only equalities over UF applications are
supported, and conditional branches are abstracted non-deterministically, which
is too weak for the application of equivalence checking.

Blanc et al. [10] and Gulwani et al. [16] present algorithms to compute sym-
bolic bounds of loop trip counts. However, the computed trip counts may not
be sufficiently precise for equivalence checking proofs.
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7 Conclusion

In this paper we presented, as far as we know, the first algorithm for the equiv-
alence checking of looping programs over the combined theory of uninterpreted
function symbols and integer arithmetic (UF+IA).

For evaluation purposes, we developed CORK, a tool that proves the cor-
rectness of compiler optimizations, which is based on the proposed equivalence
checking algorithm. CORK proves correct more optimizations than other tools
known as state-of-the-art.
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putation for loops. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 103–118. Springer, Heidelberg (2010)

[11] Chaki, S., Gurfinkel, A., Strichman, O.: Regression verification for multi-threaded
programs. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 119–135. Springer, Heidelberg (2012)

[12] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)



Automatic Equivalence Checking of UF+IA Programs 299

[13] Godlin, B., Strichman, O.: Regression verification. In: DAC (2009)
[14] Goldberg, B., Zuck, L., Barrett, C.: Into the loops: Practical issues in translation

validation for optimizing compilers. Electron. Notes Theor. Comp. Sci. 132 (2005)
[15] Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-

ware verifiers from proof rules. In: PLDI (2012)
[16] Gulwani, S., Mehra, K.K., Chilimbi, T.: SPEED: precise and efficient static esti-

mation of program computational complexity. In: POPL (2009)
[17] Gulwani, S., Tiwari, A.: Assertion checking over combined abstraction of linear

arithmetic and uninterpreted functions. In: Sestoft, P. (ed.) ESOP 2006. LNCS,
vol. 3924, pp. 279–293. Springer, Heidelberg (2006)

[18] Guo, S.-Y., Palsberg, J.: The essence of compiling with traces. In: POPL (2011)
[19] Gupta, A., Popeea, C., Rybalchenko, A.: Solving recursion-free horn clauses over

LI+UIF. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 188–203. Springer,
Heidelberg (2011)

[20] Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL (2004)

[21] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
(2002)
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Abstract. Symbolic binary execution is a dynamic analysis method
which explores program paths to generate test cases for compiled code.
Throughout execution, a program is evaluated with a bit-vector theo-
rem prover and a runtime interpreter as a mix of symbolic expressions
and concrete values. Left untended, these symbolic expressions grow to
negatively impact interpretation performance.

We describe an expression reduction system which recovers sound,
context-insensitive expression reduction rules at run time from programs
during symbolic evaluation. These rules are further refined offline into
general rules which match larger classes of expressions. We demonstrate
that our optimizer significantly reduces the number of theorem solver
queries and solver time on hundreds of commodity programs compared
to a default ad-hoc optimizer from a popular symbolic interpreter.

1 Introduction

The importance of program reliability, robustness, and correctness, has fueled
interest for automated, unassisted program analysis and bug detection. As bug
finding systems improve, they report deep bugs which are hard to explain and
expensive to discover. It is often difficult or impractical to confirm these error
reports by hand; instead, test cases establish logical soundness by serving as
certificates against false positives. Likewise, amortizing the cost of the analysis
process, so bugs are found in the first place, is subject to considerable study.

Symbolic execution is a popular technique [18] for automated test-case gen-
eration. These test cases are created with a goal of finding paths to bugs or
interesting program properties in complicated or unfamiliar software. Concep-
tually, variant data (e.g., file contents) in a program is marked as symbolic and
evaluated abstractly. When the program state reaches a control decision based
on a symbolic condition, a satisfiability query is submitted to a theorem prover
backed solver. If the symbolic condition is contingent the state is forked into two
states, and a corresponding predicate is made into a path constraint which is
added to each state’s constraint set. Solving for the state’s constraint set creates
an assignment, or test case, which follows the state’s path.

The convenience of applying dynamic analysis to unmodified program binaries
led to the development of symbolic binary execution. Under symbolic binary
execution, compiled executables are symbolically evaluated as-is; there is no
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need for recompilation, annotations, special linking, or limited languages. This
contrasts with older systems [4,12,19,20] which were built to process source code
or a metadata-rich byte code. A typical system pairs a symbolic interpreter
with a dynamic binary translation front-end [5,10,14,16,21]; the binary translator
converts a program’s machine code into instructions for the symbolic interpreter.

Shifting from specialized symbolic interpretation to general binary translation
imposes a performance challenge. First, compilers target machine architectures.
Fast code on hardware may be slow to interpret due to expensive solver queries.
Next, resource mismatches from translation incur some overhead. For instance,
register access may be translated into an intermediate value access plus an ac-
cess into a region of memory representing a register file. Furthermore, type in-
formation, control structures, and other metadata from the source code, which
is useful for inferring execution traits, is often unavailable at the binary level.
Finally, simple ad-hoc tuning fails to scale to the variety of programs, compilers,
and optimization configurations in the wild.

In practice, solver requests dominate symbolic execution running time. Fig-
ure 1 illustrates query overhead; of several hundred programs after running five
minutes, 80% spend more time solving for satisfiability than dispatching instruc-
tions. Hence, reducing or eliminating queries can be expected to yield gains.

There is ample opportunity to optimize queries. Based on Figure 2, the total
number of external calls made to the solver for the same programs, a typical
symbolic execution session may submit thousands of queries to the solver. These
solver calls primarily determine branch satisfiability for symbolic conditionals
(e.g., whether a state should fork) and are inhrent to symbolic execution.

The expressions which define queries are redundant and suitable for optimiza-
tion. As an example, a loop that increments an expression x every iteration might
produce the bulky expression (+ ... (+ (+ x 1) 1) ... 1) which should fold into
a svelte (+ x c). Binary code worsens the problem because translation overhead
leads to more operations and hence larger expressions.

We propose an expression optimizer which learns reduction rules from sym-
bolic evaluation of programs. During the learning phase, expressions produced
at run time are keyed by a hash of samples and stored to a global database. Can-
didate rules are constructed by matching the sample hash against the hashes of
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shorter expressions in the database. Each candidate rule is validated using the
theorem prover, applied in the interpreter, and saved for future use. Rules are
further processed into generalized rules suitable for larger classes of expressions.

We implement and evaluate the expression optimizer in a symbolic binary
executor, klee-mc. The optimizer is evaluated at scale with over two thousand
commodity programs from a stock desktop Linux system. Rules are collected
during a brief learning period and are shown to lessen the total number of queries
dispatched during symbolic execution. Furthermore, rules improve running and
solver time by at least 10% on average over the baseline interpreter.

2 Symbolic Execution and Expressions

Symbolic expressions are a byproduct of symbolic execution. A program is sym-
bolically executed by marking its inputs as symbolic and evaluating abstractly.
This evaluation emits expressions to represent operations on symbolic data.

The symbolic executor, klee-mc, is a machine code extension of the klee [4]
symbolic LLVM interpreter. klee-mc simulates a program from the host ma-
chine by dynamically translating a snapshot’s machine code into LLVM for the
klee interpreter. First, a process snapshot is built from a running program bi-
nary through data gleaned from the operating system’s debugging facilities (e.g.,
ptrace). klee-mc loads the snapshot where it is on-demand translated into
LLVM operations. Machine code is translated by VEX [17] into VEX-IR super
blocks (i.e., multiple exit basic blocks) which model the target machine archi-
tecture as operations on memory, registers, and control flow. Each super block
is rendered into unary LLVM functions of the form f : RegisterF ileAddress→
JumpAddress. Finally, klee-mc loops, translates code on-the-fly, interprets the
LLVM bitcode, and models a symbolic Linux system call interface.

A mix of concrete values and symbolic expression data are manipulated by
evaluating LLVM operations. LLVM operations are those defined by the LLVM
IR, such as arithmetic, logical, and memory operations, as well as a handful
of specialized LLVM intrinsics. Expressions are a subset of the SMTLIB [3]
language, but operators will be written in shorthand notation when convenient.
For instance, the expression to add two bit-vector expressions a and b is (+ a b).

Large, redundant expressions are expensive. A large expression slows query
serialization to the solver and is costly to evaluate into a constant on variable
assignment. Expanded tautologies (e.g., (x ∨ ¬x)), or expressions that evaluate
to one value for all interpretations, pollute solver caches and incur unnecessary
calls to the theorem prover. Worse, a large expression may linger as a path
constraint, slowing future queries that must use the constraint set.

There are two strategies for shedding expression bloat: expression optimiza-
tion and concretization. Expression optimization applies sound identities to re-
duce an expression to fewer terms. For instance, the bit-wise or expression
(or 0 x) is identical to x. The drawback is vital identities are program-dependent;
it is infeasible to encode all useful reductions by hand. Alternatively, concretiza-
tion of symbolic terms reduces expressions to constants but at the cost of com-
pleteness; x becomes {c} instead of x ⊂ N.
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The original klee interpreter used both expression optimization and con-
cretization. A hand-written optimizer folds constants and reduces excess terms
from dozens of common redundancies. For concretization, path constraints are
inspected through implied value concretization (IVC) to find and concretize vari-
ables which are constant for all valid interpretations. For instance, under IVC
the constraint (= x 1) replaces x with 1 in the program state.

We consider the problem of expression node minimization. Given an expres-
sion, we wish to find a semantically equivalent expression with the fewest possible
terms. Formally, we define expression node minimization as follows: given an ex-
pression e the minimized expression e′ is such that for all tautological expressions
(= e ei), the number of nodes in e′, |e′|, satisfies |e′| ≤ |ei|. It is worth noting e′

is not unique under this definition. To solve this, first define an ordering operator
on expressions ≤ where ei ≤ ej when there are fewer nodes, |ei| < |ej |, or by
lexical comparison, |ei| = |ej | ∧ lex(ei) ≤ lex(ej). Uniqueness is given by the
expression minimization problem of finding e′ where e′ ≤ ei.

A node minimizing optimizer has several advantages. Theoretically, it is
bounded when greedy; optimization stops once the expression stops shrinking. If
a conditional expression reduces to a constant, a solver call may be avoided. Con-
tingent conditionals also benefit, such as through better independence analysis.
Furthermore, smaller expressions improve the likelihood that IVC will discover
concretizing implications. On the other hand, smaller expressions may lead to
slower queries because some operations (e.g., divide) are slow; however, we ob-
serve performance improvements from our implementation in Section 7.

3 Rules from Programs

Expression minimizations form a reduction relation, →. The theory of contrac-
tions is a classic formalization for converting terms in lambda calculus [6]. This
theory was developed further in abstract rewriting systems as reduction relations
under the notion of confluence [11]. We use reduction relations as a theoretical
framework for reasoning about properties of the expression rewriting system.

The problem of discovering elements of → is handled with a database of
reducts. The database, referred to as the EquivDB, is globally populated by ex-
pressions made during symbolic execution of binary programs. As expressions are
created, they are matched against the EquivDB with assistance from a theorem
prover to find smaller, but semantically equivalent, expressions. If equivalent,
the expression reduces to the smaller expression and is related under →.

Information about → is maintained as a set of rewrite rules. Each rule has a
from-pattern and a to-pattern which describe classes of elements in → through
expression templates. Once shown to be sound by the theorem prover, rules are
used as the expression optimization directive format in the symbolic interpreter.

3.1 Reductions on Expressions

A reduction from one expression to another is cast in terms of reduction relations.
A reduction relation is used to convert one λ-term to another λ-term. We omit
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the trivial proof of the existence of the correspondence from expressions to λ-
terms, ΛE : Expr → Λ, but note all expressions for our purposes are in the set of
closed sentences Λ0. All variables are bound; arguments to ΛE(e) are De Bruijn
indexes of 8-bit symbolic array read operations (select in SMTLIB) from e.

The reduction relation → is defined as the binary relation

→= {(ΛE(e), ΛE(e
′)) | (e, e′) ∈ Expr2 , e′ ≤ e ∧ (= e′ e)}

The immediate reduction relation 	 is defined as

	= {(e, e′) ∈→ | ∀(e, e′′) ∈→ . Λ−1
E (e′) ≤ Λ−1

E (e′′)}

An expression is reduced by → through β-reduction. The reduction a → b is
said to reduce the expression e when there exists an index assignment σ for
ΛE(e) where ΛE(e)σ is syntactically equal to a. β-reducing b with the terms in
e substituted by σ on matching variable indices yields the shorter expression
[a → b][e]. The new [a → b][e] is guaranteed by referential transparency to be
semantically equivalent to e and can safely substitute occurrences of e.

For instance, consider the following 8-bit expressions e and e′.

e = (bvand bv128[8] (sign extend[7] (= bv0[8] (select a bv0[32]))))

e′ = (concat (= bv0[8] (select b bv0[32])) bv0[7])

Expressions e and e′ are (nearly) semantically equivalent; both return the value
127 when index 0 of a symbolic array is zero. Applying ΛE yields λ-terms,

ΛE(e) = (λx1.(and 128 (sgnext7 (= 0 x1))))

ΛE(e
′) = (λx1.(concat (= 0 x1) 07))

Any expression syntactically equivalent to e up to the variable select term
is reducible by ΛE(e) → ΛE(e

′). For instance, suppose the variable term were
replaced with (∗ 3 (select c 1)). Applying the reduction rule with a β-reduction
replaces the variable with the new term,

ΛE(e
′)(∗ 3 (select c 1))→β (concat (= 0 (∗ 3 (select c 1))) 07)

Finally, the new λ-term becomes an expression for symbolic interpretation,

(concat (= bv0[8] (bvmul bv3[8] (select c bv1[32])) bv0[7])

.
3.2 EquivDB

Elements of → are discovered by observing expressions made during symbolic
execution. Each expression is stored to a file in a directory tree, the EquivDB,
to facilitate a fast semantic lookup of expression history across programs. The
stored expressions are shorter candidate reducts. The expression and reduct are
checked for semantic equivalence, then saved as a legal reduction rule.
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Fig. 3. Storing and checking an expression against the EquivDB

Generating Candidate Reducts. The expressions generated by programs are
clues for reduction candidates. The intuition is several programs may share local
behavior once a constant specialization triggers a compiler optimization. A path
in symbolic execution reintroduces specializations on general code; expressions
from the constrained path match the specialized code’s semantics.

In the rule learning phase, candidate reducts are collected by the interpreter’s
expression builder, which are submitted to the EquivDB. Only top-level ex-
pressions are considered to avoid excess overhead from intermediate expressions
which are generated by optimization rewrites during construction. To store an
expression into the EquivDB, it is sampled, the values are hashed, and is written
to the file path <bit-width>/<number of nodes>/<sample hash>. Entries are
capped at 64 nodes maximum to avoid excessive space utilization.

Samples from expressions are found by assigning constant values to all array
select accesses. The set of array assignments include all 8-bit values (e.g., for
1, all symbolic bytes are set to 1), non-zero values strided by up to 17 bytes (i.e.,
> 2× the 64-bit architecture word width to reduce aliasing), and zero strings
strided by up to 17 bytes. The expression is evaluated for each array assignment
and the sequence of samples is combined with a fast hashing algorithm [1]. It is
worth noting this has obviously poor collision properties; for instance, the 32-bit
comparisons (= x 12345678) and (= x 12345679) would have the same sample
hashes because neither constant appears in the assignment set. Presumably, more
samples would improve hash hit rates at the expense of additional computation.

The EquivDB storage and lookup facility is illustrated by Figure 3. At the
top of the diagram, an expression from the interpreter is sampled with a set
of assignments and the values are hashed. The expression is looked up by the
sample hash in the EquivDB and saved for future reference. A lookup match is
found and checked against the starting expression for semantic equality. Finally,
the equality is found valid and the corresponding rule is stored into the rule set.

Reduction by Candidates. Before an expression e is stored in the EquivDB,
the learning phase attempts to construct a reduction rule. Based on e’s sample
hash, the EquivDB is scanned for matching hashes with the same bit-width and
fewer terms. Expression equivalence is checked using the theorem prover and, if
valid and contracting, a rule is saved and applied to the running program.

A smaller expression is loaded from the EquivDB based on matching sample
hash and bit-width. The candidate reduct e∗ is parsed from an SMT file in the
EquivDB to an expression and assigned temporary arrays for each symbolic read.
The temporary arrays in e∗ are replaced by index in ΛE(e

∗) with the matching
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index terms from ΛE(e) to get e
′. If the reduct is contracting, e′ < e, and (= e e′)

is valid by the solver, then (e, e′) ∈→ and e → e′ is saved as a rule for future
reference. If e→ e′ is valid, the shorter e′ is produced instead of e.

:extrafuns ((x Array[32:8]))
:formula
(= (ite (= bv0xffffffff00[40] (extract[63:24]

(bvadd bv0xffffffff00000001[64]
(zero extend[56] (select x bv0[32])))))

bv1[1] bv0[1]) bv0[1])

Fig. 4. A translation check query. The to-expression 0xffffffff0040 is compared
with the from-expression extract(63, 24, 0xffffffff0000000164 + x8)40. Negation of
the translation equality is unsatisfiable, hence the translation is valid.

An example query for a candidate rule validity check is given in Figure 4.
The equality expression on an arithmetic expression (e) and a constant value
(e′) is sent to the solver and a ”sat” or ”unsat” string is returned. To determine
soundness of the rule e → e′ with one query, the equality is negated so that
validity is given by unsatisfiability.

Care is taken to handle several edge cases. Expressions e are often equivalent
to a constant, but storing and accessing constant values from the EquivDB is
needless overhead. Instead, the sample hash predicts e is constant by observing
unchanging sample values c; the constant c serves as a candidate reduct e 	 c
before falling back to the EquivDB. To avoid infinite recursion, if an expression
is built by solver code, then it is queued for rule checking until the interpreter
builds an expression directly through an LLVM operation. For reliability, if the
solver fails or takes too long to check a rule’s validity, then the query is aborted
and e is returned for symbolic interpretation.

3.3 Rewrite Rules

Reductions in→ are represented through rewrite rules. Every rewrite rule traces
back to a sound primordial expression equality originating from the EquivDB.
Each rewrite rule covers a class of reductions with expression template patterns
that match and materialize classes of expressions. These rules direct expression
optimization and are managed through persistent storage.

Every candidate rule taken from the EquivDB is verified by the solver. The
equivalent expressions e, from the interpreter, and e′, from the EquivDB, are
converted into a from-pattern a and to-pattern b which are combined to make a
rule a → b. Once a → b is verified, all future applications of the rule a → b are
conducted without invoking the interpreter.

Patterns in rules are flattened expressions with extra support for labeling re-
placement slots. Symbolic array reads are labeled as 8-bit slots which correspond
to the variables from the expression transform ΛE . These slots are used in pat-
tern matching which is described in Section 4 and are important for correspon-
dence between the from-pattern and to-pattern. Dummy variables, which are
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only matched on expression width and ignore structure, replace useless subex-
pressions through rule generalization (Section 6). Likewise, there are constrained
slots for constants, also introduced through generalization, which match when a
constant is a satisfying assignment for an expression bundled with the rule.

Rules are sent to persistent storage with a binary format and may be serialized
into files and read in by the interpreter. Serialization flattens expressions into
patterns by a pre-order traversal of all nodes. On disk, each rule is given a header
which lets the rule loader gracefully recover from corrupted rules, specify version
features, and overlook deactivated tombstone rules.

Manipulating rules, such as for generalization or other analysis, often requires
materialization of patterns. A pattern, which represents a class of expressions, is
materialized by building an expression from the class. Rules can be materialized
into a validity check or by individual pattern into expressions. The validity check
is a query which may be sent to the solver to verify that the relation a → b
holds. Each materialized expression is assigned independent temporary arrays
for symbolic data to avoid assuming properties from state constraint sets.

4 Rule-Directed Optimizer

The optimizer applies rules to a target expression to produce smaller, equiva-
lent expressions. A set of reduction rules is loaded from persistent storage at
interpreter initialization for the rule-directed expression builder. There are two
phases for applying reduction rules when building a target expression. First,
efficient pattern matching finds the arguments for a β-reduction from a rule’s
from-pattern to a target expression. When a rule match is found, the β-reduction
applies the arguments to the rule’s to-pattern to make a smaller expression.

4.1 Pattern Matching

Over the length of a program path, a collection of rules is applied to every
expression. The optimizer analyzes every expression seen by the interpreter, so
finding a rule must be fast and never call to the solver. Furthermore, thousands
of rules may be active at any time, so matching rules must be efficient.

The optimizer has three ways to find a rule r which reduces an expression e.
The simplest, linear scan, matches e against one rule at a time until reaching
r. The next method hashes e ignoring constants and selects (skeletal hashing)
then matches some r with the same hash for its from-expression. Flexible match-
ing on the entire rule set, which includes subexpression replacement, is handled
with a backtracking trie that is traversed in step with e. Both skeletal hashing
and the trie are used by default to mitigate unintended rule shadowing.

Linear Scan. The expression and from-pattern are scanned and pre-order tra-
versed with tokens checked for equality. Every pattern variable token assigns its
label to the current subexpression and skips its children. If a label has already
been assigned, the present subexpression is checked for syntactic equivalence to
the labeled subexpression. If distinct, the variable assignment is inconsistent and
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the rule is rejected. All rules must match through linear scan; it is always applied
after rule lookup to double-check the result.

Skeletal Hashing. Expressions and from-patterns are skeletal hashed [8] by
ignoring selects and constants. A rule is chosen from the set by the target
expression’s skeletal hash. The hash is invariant with respect to array indexes
and is imprecise; a hash matched rule will not necessarily reduce the expression.
Lookup is made sound by checking a potential match by linear scanning.

Backtracking Trie. The tokenization for every from-pattern is stored in a
trie. The expression is scanned and the trie matches on traversal. As nodes are
matched to pattern tokens, subexpressions are collected to label the symbolic
read slots. Choosing between labeling or following subexpressions is tracked with
a stack and is backtracked on match failure. On average, an expression is scanned
about 1.1 times, so the cost of backtracking is negligible.

Many expressions never match a rule because they are optimal or there is
no known optimization. Since few expressions match on the rule set, rejected
expressions are fast-pathed to avoid unnecessary lookups. Constants are the
most common type expression and are already optimal; they are ignored by the
optimizer. Misses are memoized; each non-constant expression is hashed and
only processed if no expression with that hash failed to match a rule.

4.2 β-Reduction

Given a rule a→ b which reduces expression e, a β-reduction contracts e to the
b pattern structure. Subexpressions labeled by a on the linear scan of e serve as
the variable index and term for substitution in b. There may be more labels in
a than variables in b; superfluous labels are useless terms. On the other hand,
more variables in b than labels in a indicates an inconsistent rule. To get the
β-reduced, contracted expression, the b pattern is materialized and its selects
on temporary arrays are substituted by label with subexpressions in e.

5 Building Rule Sets

Rules are organized by program into rule set files for offline refinement. Rule
set files are processed by kopt, an independent program which uses expression
and solver infrastructure from the interpreter. The kopt program checks rules
for integrity and builds new rules by reapplying the rule set to materializations.

A rule set is checked for integrity at several points. Without integrity, the
expression optimizer could be directed by a faulty rule to corrupt the symbolic
computation. Worse, if a bogus rule is used to make more rules, such as by
transitive closure, the error propagates, poisoning the entire rule set.

Additional processing refines a rule set’s translations when building expres-
sions. When rules are applied in aggregate, rather than in isolation, one rule
may cause another rule’s materialization to disagree its pattern; this introduces
new structures unrecognized by the rule set. These new structures are recognized
by creating new rules to transitively close the rule set. Further, to-patterns are
normalized to improve rule set matching by canonicalizing production templates.
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5.1 Integrity

Rules are only applied to a program when they are verified to be correct by the
solver. Output from the learning phase is marked as pending and is verified by
the solver independently. Rules are further refined past the pending stage into
new rules which are checked as well. At program run time the rule set translations
can be cross-checked against the baseline builder for testing composition.

Rule sets are processed for correctness. A rule set is loaded into kopt and
each rule is materialized into an equivalence query. The external theorem prover
verifies the equivalence is valid. Syntactic tests follow; components of the rule
are constructed and analyzed. If the rule was not effective when materialized
through the optimizer, it is thrown out.

A rule must be contracting to make forward progress. When expressions mak-
ing up a rule are heavily processed, such as serialization to and from SMT or
rebuilding with several rule sets, the to-expression may have more nodes than
the from-expression. In this case, although the rule is valid, it is non-contracting
and therefore removed. The rule can be recovered by swapping the patterns and
checking validity, which is similar to the Knuth-Bendix algorithm [13].

As an end-to-end check, rule integrity is optionally verified at run time for a
program under the symbolic interpreter. The rule directed expression builder is
cross-checked against the default expression builder. Whenever a new expression
is created from an operator ◦ and arguments x̄, the expression (◦ x̄) is built
under both builders for e and e′ respectively. If (= e e′) is not valid according
to the solver, then one builder is wrong and the symbolic state is terminated
with an error and expression debugging information. Cross-checking also works
with a fuzzer to build random expressions which trigger broken translations.

5.2 Transitive Closure

Rules for large expressions may be masked by rules from smaller expressions.
Once rules are applied to a program’s expressions, updated rules may be neces-
sary to optimize the new term arrangement. Fortunately, rules are contracting,
and therefore expression size monotonically decreases; generating more rules
through transitivity converges to a minima.

An example of how bottom-up building masks rules: consider the rules r1 =
[(+ a b) → 1] and r2 = [a → c]. Expressions are built bottom-up, so a in
(+a b) reduces to c by r2, yielding (+ c b). Rule r1 no longer applies since r2
eagerly rewrote a subexpression. However, all rules are contracting, so |(+ c b)| <
|(+ a b)|. Hence, new rules may be generated by applying known rules, then
added to the system with the expectation of convergence to a fixed point.

New rules inline new patterns as they are observed. For every instance of
pattern materialization not matching the pattern itself (as above), a new rule is
created from the new from-pattern materialization. Following the example, the
rule r1 must now match (+ c b), so define a new rule r3 = [(+ c b)→ 1].

The convergence rate is influenced by the EquivDB. The database may hold
inferior translations which bubble up into learned rules. However, since smaller
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expressions are stored to the database as the rules improve, the database im-
proves along with the rules. Hence, a database of rule derived expressions con-
tinues to have good reductions even after discarding the initial rule set.

5.3 Normal Form Canonicalization

Expressions of same size may take different forms. Consider, (= 0 a) and (=
0 b) where a = a1 . . . an and b = an . . . a1. Both are equivalent and have the
same number of nodes but will not be reducible under the same rule because of
syntactic mismatch. Instead, a normal form condition is imposed by selecting for
the minimum of the expression ordering operator ≤ on semantic partitions on
to-patterns. With normal forms, fewer rules are necessary because semantically
equivalent to-patterns must materialize to one minimal syntactic representation.

The to-pattern materializations are collected from the rule set and partitioned
by sample hashes. Each partition P of to-expressions is further divided by se-
mantic equivalence by choosing the minimum expression e⊥ ∈ P , querying for
valid equality over every pair (e⊥, e) where e ∈ P . If the pair is equivalent, the
expression e is added to the semantic partition P (e⊥). Once P (e⊥) is built, a
new e′⊥ is chosen from P\P (e⊥) and the process is repeated until P is exhausted.

Rules are replaced by their normal forms. Once the to-expressions are parti-
tioned, the rule set is scanned for rules with to-expressions e where there is some
P (e⊥) with e ∈ P (e⊥) where e⊥ �= e. The rule’s to-pattern is replaced with the
to-pattern for e⊥ and the old rule is removed from the rule set file.

6 Rule Generalizations

The class of expressions a rule matches may be extended by selectively relaxing
terms in the from-pattern. The process of generalization goes beyond transi-
tive closure by inserting new variables into expressions. Useless subterms are
relaxed with dummy variables by subtree elimination. Constants with a set of
equisatisfiable values are relaxed by assigning constraints to a constant label.

6.1 Subtree Elimination

Useless terms in from-expressions are marked as dummy variables in the from-
pattern through subtree elimination. A rule’s from-expression e has its subex-
pressions post-order replaced with dummy, unconstrained variables. For each
new expression e′, the solver finds for the validity of (= e e′). If e′ is equivalent,
the rule’s from-pattern is rewritten with e′ so that it has the dummy variable.

As an example, let e = (= 0 (or 1023 (concat (select 0 x) (select 1 x)))).
The or term is always non-zero, so e 	 0. Traversal will first mark the 0, or, and
1023 terms as dummy variables but the solver rejects equivalence. The concat

term, however, may take any value so it is marked as a 16-bit dummy variable
v16, yielding the pattern (= 0 (or 1023 v16)), which matches any 16-bit term.
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6.2 Constant Relaxation

A large class of expressions generalize from a single expression by perturbing
the constants. In a rule, constant slots serve as constraints on the expression.
Consider the 16-bit expression e, (and 0x8000 (or 0x7ffe (ite (x) 0 1)).
The values of the ite if-then-else term never set the 15th bit, so e 	 0. By mark-
ing 0x8000 as a labeled constant c, this reduction generalizes to the rule (and

0x8000 (or c (ite (x) 0 1)) where c < 0x8000 is the constant constraint,
which expands the rule’s reach from one to thousands of elements in 	.

To find candidates for constant relaxation, rules are partitioned by from-
pattern expression materialization into constant-free equivalence classes. The
constant-free syntactic equivalence between expressions e and e′ is written as
e ≡c e′. Let the function αc : Expr → Expr α-substitute all constants with a
fixed sequence of distinct free variables. When the syntactic equivalence αc(e) ≡
αc(e

′) holds, then constant-free equivalence e ≡c e
′ follows.

A cumulative distribution of equivalence class sizes in ≡c from hundreds of
rules is given in Figure 5. Constants in rules are α-substituted with a dummy
variable by bit-width from 64-bit only to all byte multiples. Singleton equivalence
classes hold rules that are syntactically unique. In constrast, rules in large classes
are syntactically common modulo constants. Aside from admitting more rules
total, the distribution is insensitive to constant width past 64-bits; few rules are
distinct in ≡c and one large class holds nearly a majority of rules.

Constants are selected from a rule one at a time. The constant term t is
replaced by a unique variable c. The variable c is subjected to various constraints
to find a new rule which matches a set of constants on c. This generalizes the
base rule where the implicit constraint is (= c t).

Constant Disjunction. The simplest way to relax a constant is to constrain
the constant by all values seen for its position in a class of rules in ≡c. A constant
is labeled and the constraint is defined as the disjunction of a set of observed
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values for all similar rules. The resulting rule is a union of observed rules with
similar parse trees pivoted on a certain constant slot.

The disjunction is built by greedily augmenting a constant set. The first in
the set of values S is the constant c from the base rule. A new constant value
v is taken from the next rule and a query is sent to the solver to check if v can
be substituted into the base rule over c. If the validity check fails, v is thrown
away as a candidate. If v is a valid substitution, it is added to S. When all
candidate values from the rule equivalence class are exhausted, the constraint
on the labeled constant slot c is

∨
s∈S(= c s)

Ranges. Range constraints restrict a constant to a contiguous region of values.
The values for the range [a, b] on the constant substitution x are computed
through binary search in the solver. The constant from the base rule c is used as
the initial pivot for the search so c ∈ [a, b] to match the base rule. Starting from
c, one binary search finds a from [0, c] and another finds b from [c, 2n − 1]. The
constraint a ≤ x ≤ b is placed on the new rule and the solver verifies equivalence
to the from-expression from the base rule.

Bit masks. A constant in a rule may only depend on a few bits being set or
zeroed, leaving all other bits unconstrained. Ranges on constants only support
contiguous ranges, so it is necessary to introduce additional constraint analysis.
Constant constraints on a constant x’s bits are found by creating a mask m and
value c which is valid for a predicate of the form x & m = c.

The solver is used to find the mask m bit by bit. Since the base rule is valid,
the rule’s constant value a must satisfy a & m = c. Bit k of the mask is
computed by solving for the validity of (= x (a & 2k)) when x is constrained
by the base rule. Each set bit k implies bit k of x must match bit k of a.

7 Evaluation

The expression optimizer is evaluated in terms of performance, effects on queries,
and system characteristics on two thousand programs. Foremost, rules improve
running time and solver performance on average. Total queries are reduced on
average from baseline by the optimizer. The space overhead and expression dis-
tribution of the EquivDB illustrate properties of the learning phase. Rule effec-
tiveness is measured by number of rules used and rate of sharing.

7.1 Implementation

The expression reduction system was written on top of a modern symbolic exe-
cution stack. The core symbolic binary executor is based on a heavily modified
version of klee (klee-mc), LLVM-3.1, valgrind-3.8.1, and the latest SVN of
STP [9]. To attain a degree of confidence in interpreter fidelity, intermediate
interpreter results are tested through replay against intermediate LLVM JIT
results. For stability, STP is invoked as a separate process.
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Table 1. Lines of code for expression optimization

Component Lines of Code

EquivDB/Learning 645
Rule Builder 1900
kopt 2519

Hand-written Builder 1315

Table 1 shows the lines of C++ code for major components of the expres-
sion handling system. Qualitatively, the code for the new optimizer represents a
modest effort compared to the ad-hoc version. The largest component is kopt,
the offline rule analysis program, where the cost of complexity is low. The rule
builder, which applies the vetted rules as expressions are built inside the inter-
preter, is primarily focused on the fast matching trie. The EquivDB learning
builder uses the least code since creating candidate rules is relatively simple.

7.2 Test System

Programs. All experiments are performed over a set of approximately 2300 pro-
grams.The programs are from the system binary directories /{usr/,}{sbin,bin}
of an up-to-date x86-64 Gentoo Linux system. Each program is breakpointed at
its entry point and snapshotted. All future accesses to the program reuse the snap-
shot for reproducibility purposes; every snapshot contains the full processmemory
image, including linked shared libraries, such as the C library glibc.

Programs are set to run under the symbolic interpreter for at most five min-
utes. Each program is allocated five minutes on one core of an 8-core desktop chip
with 16GB of memory. There is minor additional processing and book keeping;
overall, one symbolic run of the program set takes slightly more than a day.

Path Replay. Two sets of runs are taken for basis of comparison: one with
only the ad-hoc optimizer and the other with the rule-directed optimizer as well.
The same paths must be followed to give an accurate comparison between the
baseline symbolic interpreter and the optimizer. Since paths are known a priori,
persistent query caches are disabled to avoid distorted times.

klee-mc supports two kinds of path replay: concrete tests and branch paths.
A concrete test is a solution to path constraints which replaces symbolic values
with constants to duplicate the path. A branch path is a list of branch decisions.

Each branch path is a log of taken branch indexes (e.g., true, false) for some
completed state. Branch replay reads an entry from the log for every branch
decision and directs the replaying state toward the desired path. As an opti-
mization, if a branch replay forks off a state with a branch log which is a prefix
for another branch path, the branch path replay begins at the forked state.

Branch path equivalence is not guaranteed between paths with different rules,
despite all rules being sound. Mismatched branch paths arise between distinct
rule sets when the interpreter syntactically checks for constant expressions to
avoid extra work; a decision is elided on a constant for one rule set, but recorded
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for a non-constant on another set, so the logs are no longer synchronized. A
concrete test, on the other hand, is a semantic interpretation, and therefore
insensitive to expression structure. Concrete tests preserve paths across rule sets
so they are used to rebuild branch paths.

7.3 Performance

The effect of rules on running time and solver time is given sorted in Figure 7.
Overall, there are significant performance gains made on average with the rule
directed optimizer. Additionally, the correlation between run and solver time is
evident by solver improvements closely following run time gains.

On average, the optimizer improves performance of the symbolic interpreter
on a wide variety of programs. The optimizer improved times by producing
shorter expressions and syntactic structures favorable to solver optimizations.
The fastest 50th percentile decreases running time by at least 10%. Limited to
the fastest 25th percentile, programs see decreased running time of at least 27%.

A few programs do not benefit from the optimizer. Either no improvement
or a performance loss were observed in slightly fewer than 13% of all programs.
Only five programs (0.2%) took more than 2× of baseline execution time. There
is no requirement, however, to run the optimizer, so applications which exhibit a
performance penalty with rules can simply go without and retain baseline speed.

Ultimately, less time is spent in the solver. A 94% majority of the programs
spent less time in the solver by using the optimizer. A sizeable 36% of all pro-
grams are at least twice as fast in the solver. The 6% minority of programs, like
for running time, incurred additional solver overhead. Solver time improvement
and running time improvement appear related; only 5% of faster programs had
running time decrease more than solver time.

The percent change in queries submitted to the solver is shown ordered in
Figure 6. On average, the total number of solver queries dispatched for consider-
ation is lower with the optimizer than without. Within the best 50th percentile,
at least 17% of queries submitted to the solver were eliminated. In total, fewer
queries were dispatched for 87% of the programs. The query histogram in Fig-
ure 8 illustrates a shift toward faster queries from slower queries.
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7.4 EquivDB

The EquivDB reduct distribution is given in Figure 9. Data for the EquivDB was
collected from a single run of all programs with a five minute learning period. On
the file system, the EquivDB uses approximately 4GB of storage and contains
1.2 million expressions, a modest overhead. Ridges appear at 8 bit multiples,
indicating expressions are often byte aligned; possibly because symbolic arrays
have byte granularity and most machine instructions are byte-oriented. Some
ridges appear to extend past the node limit, suggesting the cut-off could be
raised. Blank areas, such as those between 32 and 40 bits indicate no entries. As
an outlier, there are 63485 expressions with seven nodes at 64 bits.
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7.5 Rules

A large number of rules is indicative of poor rule efficiency. If rules are applied
as one-off translations, then it is unlikely a fixed rule set will be effective in
general. However, as illustrated in Figure 11, most programs have fewer than a
few thousand rules and fewer than a hundred generalized rules. Rule explosion
is from only a few programs interacting poorly with the optimizer.
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Code sharing is common through shared libraries, so it is reasonable to expect
rules to be shared as well. Figure 10 counts the frequency of rules found across
programs and confirms sharing. There are 41795 shared rules out of a total
of 240052 rules; 17% of rules are shared. The most common rule, with 2035
programs, is an equality lifting rule: (= −132 (concat −124 x8))→ (= −18 x8).

8 Related Work

Peephole optimizers using a SAT solver to find optimal short instruction se-
quences on machine code is a well-known technique [2,15]. Our expression opti-
mization is similar because it seeks minimal operations. The benefit of applying
optimization at the expression level over the instruction level is rules can path-
specialize expressions regardless of the underlying code.

For compilers, HOP [8] automatically generated peephole rules by using a
formal specification of the target machine. PO simulates runs of register transfers
symbolically, using primitive abstract interpretation. It speculatively translates
the combined effects back into assembly code. If successful, it replaces the original
with the shorter code segment. HOP improved PO by demonstrating skeletal
hashes to memoize the rewrite rules for a faster peephole optimizer.

Prior work on symbolic execution uses rule based term rewriting for optimiz-
ing solver queries. F-Soft [20] applies a term writing system [7] to expressions
generated through symbolic interpretation of C sources. The term rewrite sys-
tem is seeded with a hundreds of handwritten rules from formal systems (e.g.,
Presburger arithmetic, equational axiomatization), was applied to a handful of
programs, and found improved solver times. However, from the total rules ob-
served in our system and poor performance of hand-written rules in klee, we
believe manual rule entry alone is best suited to carefully selected workloads.
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Abstract. We present a model checking based method for verifying list-based
concurrent data structures. Concurrent data structures are notorious for being hard
to get right and thus, their verification has received significant attention from the
verification community. These data structures are unbounded in two dimensions:
the list size is unbounded and an unbounded number of threads access them.
Thus, their model checking requires abstraction to a model bounded in both the
dimensions.

In previous work, we showed how the unbounded number of threads can be
model checked by reduction to a finite model. In that work, we used the CMP
(CoMPositional) method which abstracts the unbounded threads by keeping one
thread as is (concrete) and abstracting all the other threads to a single environ-
ment thread. Next, this abstraction was iteratively refined by the user in order to
prove correctness. However, in that work we assumed that the number of list ele-
ments was bounded by a fixed value. In practice this fixed value was small; model
checking could only complete for small sized lists.

In this work, we overcome this limitation and model check the unbounded
list as well. While it is possible to show correctness for unbounded threads by
keeping one concrete thread and abstracting others, this is not directly possible
in the list dimension as the nodes pointed to by the threads change during list
traversal. Our method addresses this challenge by constructing an abstraction for
which the concrete nodes can change with program execution and allowing for
refinement of this abstraction to prove invariants. We show the soundness of our
method and establish its utility by model checking challenging concurrent list-
based data structure examples.

1 Introduction

We present a method for model checking list-based concurrent data structures. These
data structures are highly efficient concurrent list-based implementations of popular
data structures such as sets, queues etc. and are increasingly available in libraries such
as Intel Thread Building Blocks and Java.util.concurrent. These list-based implementa-
tions utilize sophisticated synchronization techniques, such as fine-grained locking or
lock free synchronization, to achieve high efficiency. Due to the complex synchroniza-
tion used, these data structures are notorious for being highly error prone, as exemplified
by bugs in published algorithms [15]. Consequently, verification of these data structures
has been of interest to the verification community [1–4, 6, 7, 11, 23, 25, 26, 28, 29].
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Linearizability [10] is the widely accepted correctness criterion for concurrent data
structures. Intuitively, Linearizability implies that the execution of every access method
of the concurrent data structure appears to occur atomically at some point – the lin-
earization point – between the invocation and the response of the method.

In previous work [21], we showed how to model check Linearizability for concur-
rent data structures. Concurrent list-based data structures are unbounded in two dimen-
sions – they have an unbounded number of list nodes and an unbounded number of
threads accessing the list items. In our work, we verified these data structures for an un-
bounded number of threads. This was accomplished by using the CMP (CoMPositional)
method [5]. The CMP method is used to verify symmetric parameterized systems of the
form P (N), with N identical threads 1..N . The properties verified are candidate in-
variants of the form ∀i ∈ [1..N ].Φ(i), where Φ(i) is a propositional logic formula on
the variables of thread i and shared variables.

The CMP method exploits symmetry and locality; i.e., it assumes that the violation
occurs at a particular thread, say thread 1. Consequently, the CMP method constructs
an abstract model which consists of one thread from the original system (say thread
1 since the system is symmetric) and an environment thread (named Other) that over-
approximates the remaining threads. Then, if the property Φ(1) holds on thread 1 in the
abstract model, ∀i ∈ [1..N ].Φ(i) holds for P (N) by symmetry. The verification of the
abstract model is done by using a model checker. The refinement of the abstract model is
done in a loop, referred to as the CMP loop. In the loop, if the abstract model is falsified
by the model checker, the model is refined by the user by supplying non-interference
lemmas, in order to constrain the Other thread [21].

The key advantage of using the CMP method is that the user-added lemmas also get
verified. Thus, the CMP method is sound in the sense that if the CMP loop converges
and the property is verified, all user-added lemmas along with the property under check
hold. Another advantage of the CMP method is that it uses a model checker as a proof
assistant. Thus, the added lemmas together with the property under check need not add
up to be inductive, unlike most theorem proving based approaches [22]. These features
in practice have been instrumental in making the CMP method useful in verifying com-
plex cache coherence protocols [17, 22].

Since the CMP method does not handle unbounded list size, in our initial work [21],
we had assumed the list size to be bounded. Further, in practice, we were only able to
scale to a small number of list nodes. This, we believe was primarily due to the large
number of interleavings in the execution of concurrent data structures and is consis-
tent with the limited success of other model checking based efforts for concurrent data
structures [4, 26, 28, 29]. The limited scalability in bounding the number of list nodes
motivated us to study possible extensions of the CMP method approach in order to
model check Linearizability for data structures with an unbounded list size as well.

1.1 Challenges in Extending the CMP Method to the List Dimension

The list dimension has some key differences from the thread dimension which make the
extension of the CMP method to the list dimension challenging. First, unlike the thread
dimension, the list dimension lacks symmetry: the heap elements are connected asym-
metrically depending on the heap shape. Second, in the list dimension, while checking
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the correctness can be localized to the few nodes that are being updated (additions and
deletions), these localized nodes will change as the list is traversed. This dynamic na-
ture of the nodes of interest precludes consideration of one or a small set of fixed nodes
for the abstract model.

1.2 Extending the CMP Method to List Dimension

In this work we extend the CMP method to the list dimension and show how abstraction
and refinement can be done in this dimension.

Abstraction Intuition: The abstraction in the list dimension has been used earlier [20]
and is straightforward. It proceeds by retaining the nodes pointed to by the pointers in
the program as is. These retained nodes are referred to as concrete nodes. Next, all nodes
which are not pointed to by any pointers are abstracted. This is done by replacing all
chains of nodes, such that no node in the chain is pointed to by any pointer, by abstract
nodes. Fig 1a shows the intuition behind replacing a chain of concrete nodes by an
abstract node. In the figure, nodes 2 and 3 are replaced by the abstract node (shown by
a rectangle) on abstraction.

Observe that as the program state evolves, the pointers move. This moves the po-
sition of the concrete nodes as well. This movement of concrete nodes happens when
the abstract nodes are accessed by pointers during transitions. Intuitively, access to an
abstract node can be understood as a non-deterministic access to some concrete node
which is a part of the chain of concrete nodes represented by the abstract node.

As an example in Fig 1b, when pointer p3 accesses the abstract node, the abstract
node is split into a concrete node with an abstract node on each side. The concrete node
is assigned a non-deterministic value v. The pointer p3 then points to this newly created
concrete node. Since this newly created node v has a non-deterministic value, it may
lead to a violation of the property under check. Thus, a refinement step may be required
to constrain the value taken by v.

Refinement Intuition: Refinement is done by constraining the value v. This is done
by specifying list lemmas (invariants on the heap) which v should not violate. As an

(a) Abstraction: nodes 2 and 3 are replaced by an abstract node
(represented by a rectangle)

(b) Splitting: abstract node is split into multiple nodes.

Fig. 1. Abstract node creation and splitting: the concrete nodes are shown as circles with indicated
values and the abstract nodes are represented as rectangles
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example, a list lemma could state that the list elements are ordered (also referred to as
ordering invariant). Then, the splitting may be done by assuming the invariant that the
list nodes are ordered; and thus v ∈ (1, 4).

1.3 Framework Description

Fig 2 shows the extended CMP method loop with the extensions circled. As shown in
the figure, the loop proceeds by first abstracting the threads as in the prior CMP method
approach. Next, the unbounded list is abstracted.1 On abstraction, in case the model is
falsified by the model checker, the user inspects the counter-example. If the counter-
example is a valid counter-example, a real bug has been found and the loop terminates.
On the other hand, if the counter-example is spurious, the user refines the model in
either the thread or list dimension.

Fig. 2. Extended CMP Method: the circled steps indicate the key extensions in this work

1.4 Key Contributions

Our extension preserves the advantages of the CMP method: in case the extended CMP
loop converges, both the property under check and the added invariants to constrain the
list are proven to be correct. Thus the extended CMP loop is sound. Further, as in the
CMP method, the added invariants need not add up to be inductive.

We make the following contributions in this work:

– We extend the CMP method to the list dimension and provide a syntactic abstrac-
tion of the unbounded list (Section 3) and mechanisms for refinement in the list
dimension (Section 4).

– We show the soundness of the extended CMP method and show how the added list
lemmas are also proven correct if the extended loop converges (Section 4).

1 In general, the abstractions are commutative. But, we present them in the order of the thread
abstraction first and then the list abstraction.
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– We establish the utility of our method by model checking Linearizability of the
Fine-grained [9] and Optimistic [9] data structures (Section 5).

Key Limitations: (1) The user has to manually come up with lemmas to refine the model.
However due to the small length of concurrent data structure implementations (most
implementations fit in one page [9]), this has not been a problem in practice. (2) The
abstraction used for verifying certain key properties of the Optimistic algorithm did not
scale well. This is because of a large number of interleavings.

1.5 Related Work

Concurrent data structures have been proposed as a promising approach to harness the
power of multi-core processors [9]. Given their importance and the challenges asso-
ciated with proving them right, verification of concurrent data structures is garnering
much recent attention [1–4, 6, 23, 25, 26, 28, 29].

In [25], verification of concurrent data structures was done using a mechanical proof
assistant and the interference between concurrent threads was specified using rely and
guarantee conditions. These approaches allow both arbitrary number of accessing threads
and elements but they are manual effort intensive.

Among model checking approaches, Vechev et al. [26] describe their experience with
verifying Linearizability using the SPIN model checker. Similarly, the work by Zhang
et al. [28, 29] and Liu et al. [13] also performs model checking to verify concurrent
data structures. Both these approaches use a refinement based proof approach and scale
to not more than a small number of threads and list nodes. A different approach is
taken by Alur et al. [4]: they treat a list as a string and the thread as an automaton
and then derive conditions on the automaton to prove decidability of Linearizability.
The key focus of their work is on decidability instead of scalability; while they handle
unbounded list size, they do not scale to more than 2-3 threads. Noll et al. [16] handle
unbounded lists and unbounded number of threads. Their list abstraction is similar to
ours. In the thread dimension, instead of fully throwing away threads 2..N, they do a
counter abstraction which results in increased state. Further, their refinement approach
in both list and thread dimensions results in more added state, thus limiting scalability
(they only apply their method to a small example).

Verification of concurrent data structures has been of significant interest to the sepa-
ration logic community [7,11,23,24]. Among these, the RGSep based approach [23,24]
is closest to our work. It works by combining separation logic with rely-guarantee rea-
soning into a logic called RGSep. Their approach is automatic for a subset of RGSep.
While automatic, the designer still needs to specify concurrent actions which model the
interference, just like in rely-guarantee reasoning, for proving assertions. Further, the
designer also has to have an understanding of RGSep. In contrast to separation logic
based approaches, our method requires the user to refine the abstraction by specifying
lemmas, which are standard Boolean formulas. Further, these lemmas are checked for
correctness as well: any false lemmas will be weeded out. Next, shape analysis based
approaches, like based on the tool TVLA [1] and thread modular analysis [8], are able
to verify unbounded concurrent data structures. The primary focus of these approaches
is to lift the heap abstractions for single threaded programs to concurrent programs.
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In [27], multiple threads in the same local state are abstracted into one abstract configu-
ration and mechanisms for refinement through addition of more predicates are provided.
In contrast to these approaches, our method focusses on mechanisms for efficient ab-
straction and refinement without the addition of extra state, to enable efficient model
checking. Further, the user-supplied lemmas for refinement are also checked.

Finally, while the CMP (CoMPositional) method [5] is a highly successful param-
eterized verification technique, numerous work has been done in the area of param-
eterized verification, for e.g. [12, 18, 19]. While some of these classical methods are
potentially applicable to concurrent data structures as well, given the success of the
CMP method in verifying industrial cache coherence protocols [17], we believe that
our method, which has a similar flavor to the CMP method, provides a scalable and
effective alternative approach.

2 Modelling Concurrent Data Structures

2.1 Preliminaries

We model a concurrent list-based data structure as a program P with M heap nodes
and N identical threads with ids 1..N , where M and N are arbitrary but fixed. The set
of threads is denoted by Threads and the set of heap nodes is denoted by List.

Each node n of the heap consists of the fields key, next, lock and {l1, l2, . . .}, a
finite set of local fields with values from a finite domain. The key field is defined on
a generic data domain D which has comparison (<) and equality (=) operations. The
next field is used to indicate the adjacent node. If nj = ni.next, we say that nj is a
successor of ni (or next to ni), and that ni is the predecessor of nj . Finally, the lock
field takes values from 0..N , where 0 represents unlocked and value i represents locked
by thread i.

The heap nodes are pointed to by global pointers and by threads. Each thread i
consists of a finite number of local state variables (with finite domain) for program
execution and a finite number of pointer variables which access the heap nodes. We
assume that the local variables of all threads (both local state and pointer variables) are
stored in arrays ranging over thread ids [1..N]. Thus, a local variable v of thread i is
written as v[i]. Similarly, p[i] represents a local pointer of thread i.

Verification of concurrent data structures is done by checking for refinement against
a specification set [25]. The specification set, denoted by S, is a sequential specification
of the set implemented by the concurrent data structure implementation. The set S
consists of key values which are from the same domain D as the key fields of the heap
nodes.

Transitions: Following the approach of [4], we model each statement of thread i as a
transition of the form (li, G, Act, Ins, l′i), where li and l′i are initial and final states of
thread i for the transition, G is the guard, Act is an action on the heap and Ins is the
instrumented action on the set S. The guards G are Boolean expressions constructed on
the global pointers, thread local state variables, and thread local pointer variables.
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The thread actions are defined as follows:

Heap Traversal: pa[i] := pb[i], pa[i] := pb[i].next,
Heap shape update: pa[i].next := pb[i], and
Heap node update: p[i].f ield = val, where val is a value of appropriate type.2

Finally, the instrumented action Ins can either be (1) a nil action or, (2) an addition
of e ∈ D to S, denoted by seqAdd(e) or, (3) a removal of an element e ∈ D from S,
denoted by seqRemove(e) or, (4) a check for containment of an element e ∈ D in S,
denoted by seqContains(e).

Definitions: We define predicate Rp1(p) to indicate that the node pointed to by p is
reachable from that pointed to by p1. R̂p refers to the set of all the nodes reachable
from p. This definition extends in an obvious way to a set of pointers. Next, we call
a node a referred node if it is pointed to by a thread pointer or a global pointer. We
write Refi(n) to indicate that some pointer in thread i points to node n. Further, we
use Ref(n) to indicate that the node n is pointed to by some pointer (thread local or
global pointer) in the system. Finally, we define isMuInt(ni, nj) to indicate that no
node from the list segment ni to nj is referred to by any thread or global pointer in the
program and further, the predecessor of ni and successor of nj are both referred nodes.
Such a list segment is also referred to as a maximally uninterrupted list segment.

Property: In this paper we focus on verifying invariants specified on the above program.
These invariants are of the form ∀i : φ(i), where φ(i) is an invariant involving the local
variables of thread i and global variables quantified on the heap.

2.2 Running Example

We present the ideas in this paper through a Fine-grained list-based set ( [9]) implemen-
tation. This implementation uses a linked list to implement a standard set. The methods
in the implementation are the standard Add, Remove and Contains methods. The linked
list consists of nodes with fields: 1) a key field holding values as integers, 2) a next
pointer for accessing the next node in the list, and 3) a lock field representing whether
that node is currently locked. In addition, there are two special (sentinel) nodes, the
node Head and the node Tail, that can neither be added nor be removed. These nodes
are pointed to by global pointers H and T respectively.

The concurrent implementation consists of potentially an unbounded number of
threads. These threads are assumed to be symmetric.3 Instead of locking the entire list,
each method of the Fine-grained data structure traverses the list by using hand-in-hand
locking. Fig 3a shows the implementation of the Remove function of the Fine-grained
data structure. The Remove method uses hand-in-hand locking during traversal: p0[i]
is unlocked (line 6), pointed to successor p1[i] (line 7), p1[i] is advanced (line 8) and
locked again (line 9). This locking and unlocking is done by calling the lock() and
unlock() methods for each node: these methods have standard semantics.

2 This includes synchronization mechanisms; i.e., updates to the lock field.
3 While the threads are symmetric, they can execute different methods (such as Add or Remove

or Contains) by non-deterministically calling any of these methods.
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The concurrent list-based implementation implements a sequential set specification,
denoted by S. The methods of the specification set are denoted by seqAdd, seqRemove
and seqContains. These methods have standard sequential set semantics.

Murphi Encoding: We show the encoding of the Remove method in the Murphi lan-
guage for model checking. Our choice of Murphi was based on the powerful model
checker which comes along with Murphi, and the legacy implementation of both, our
abstraction tool (Abster [22]) and Fine-grained and Optimistic data structures.

Murphi uses a standard guard-action based syntax: the applications are written as a
collection of rules of the form ρ → a, where ρ is the guard and a is the action. Fig 3b
shows the guard-action based encoding of a few statements of the method.4 Observe that
the variable pc[i] represents the program counter and is used to enforce a sequential
execution of the rules. This is done in order to simulate the sequential execution of
statements within a thread, since we assume a sequentially consistent memory model.
This guard-action based encoding is useful in presenting the ideas in this paper.

Remove (key)
1: p0[i] := H ;
2: p0[i].lock();
3: p1[i] := p0[i].next;
4: p1[i].lock();
5: while (p1[i].key < key)
6: p0[i].unlock();
7: p0[i] := p1[i];
8: p1[i] := p0[i].next;
9: p1[i].lock();

10: if p1[i].key = key then
11: p2[i] := p1[i].next;
12: p0[i].next := p2[i];

[*SeqRemove(key)]
13: result := true;
14: else
15: result := false;

[*SeqRemove(key)]
16: p0[i].unlock();
17: p1[i].unlock();

(a) Pseudo-code for linked list-based Fine-grained
set algorithm. The linearization points are marked
with a ∗.

∀i ∈ Threads : (pc[i] = 1) → {
p0[i] := H ;
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 3) → {
p1[i] := p0[i].next;
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 12) → {
p0[i].next := p2[i];
pc[i] + +;
[*SeqRemove(key)] }

(b) Murphi based guard-action pairs for
statements with line numbers 1,3 and 12

Fig. 3. Remove function and Murphi encoding

Example State: Fig 4 shows an example of a state in the execution of the list-based
implementation. In this state, the linked list is accessed by 3 threads, with ids 1, 2 and
3. Further, the value of the specification set S is also shown in the figure. Observe that

4 The complete guard-action based encoding of the Remove method is provided in Ap-
pendix A.1.
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Fig. 4. Heap accessed by pointers of threads 1,2 and 3. pj [i] denotes the jth pointer of thread i.

ConcSet and S match, where ConcSet is the set of key values of all the nodes reach-
able from H . Thus, 4 is not in S since node 4 is note reachable from H . Next, observe
that Ref(1) is false but Ref(0) is true. Further, isMuInt(1, 1), isMuInt(9, 9) are
true and isMuInt(ni, nj) is false for all other pairs of ni and nj , as all the other nodes
are referred nodes.

Property under Verification. In this work, we verify Linearizability [10] by a re-
finement based approach, as described in [25]. The refinement is proven against the
specification set S. This is done by matching the results of the call to S (inserted at
linearization point) against the return value of the implementation method.

As an example, for the Remove method shown in Fig 3a, the linearization point for
Remove in case the call is successful is marked with [*SeqRemove(key)] on Line 12.
Similarly, [*SeqRemove(key) ] on Line 15 denotes the linearization point in the failing
case. If both, the concurrent methods and the embedded specification methods return the
same value, the concurrent data structure is Linearizable. Formally, for each Method ∈
{Add,Remove,Contains}, we check that Method(key)⇔ SeqMethod(key).

Another key property of interest checks if the list nodes refine the specification set
S. This invariant is referred to as the refinement map. The refinement map states that S
matches with the set of values of nodes reachable from the head node, the ConcSet.
Formally, the refinement map is then stated as: ∀v.v ∈ S ⇔ v ∈ ConcSet, where
ConcSet = {

⋃
∀n∈ ̂RH

: n.key}.
Finally, another key property is the ordering invariant. This states that if n1 is the

successor of n2, then the key of n1 is greater than the key of n2.

3 Abstraction

In this section we show how the unbounded threads and list nodes can be abstracted to
obtain a finite model.

3.1 Abstracting Unbounded Threads

We abstract the unbounded number of threads by using data type reduction [14]. This
abstraction keeps thread 1 unchanged and creates an environment thread Other repre-
senting threads [2..N ]. The abstraction operation involves throwing away all the state
variables of threads [2..N ] and over-approximating expressions in the guards involving
them. For instance pc[i] = 12 for i ∈ [2..N ] is thrown away and replaced by true or
false (depending on which replacement leads to an over-abstraction). Next, the action
in the transitions of thread Other may refer to the heap using local pointers. Since the
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thread Other is stateless, the local pointers do not have any stored value. Then, the local
pointer values are non-deterministically chosen to complete the actions. This abstrac-
tion is completely syntactic in nature [21].

Example. Consider for example, the transition corresponding to line 12 in Fig 3a, the
Murphi rule for which is shown in Fig 3b. In the constructed abstraction, the transition
for thread 1 is obtained by substituting i with 1 in the rule . Next, for the Other thread,
the transition is obtained by first over-abstracting the guard with true and second, by
replacing p0[i] and p2[i] by non-deterministic pointers Np0 and Np2. The obtained rule
is as follows:

∀Np0, Np2 ∈ List : (true)→ { Np0.next := Np2; } .

3.2 Abstracting Unbounded List

Abstracting the State: The list abstraction consists of two components: first, the shape
of the list, and second, the values (key values in particular) of the nodes.
Shape Abstraction Since the unbounded number of threads have been abstracted to
only a single thread, certain nodes in the model may not be reachable from the pointer
variables of thread 1 or the global pointers. These nodes are discarded and replaced
by a representative node n̂d.5 The shape abstraction of the remaining heap proceeds
by replacing all maximally uninterrupted chains of nodes by abstract nodes. Thus, an
abstract node in the abstraction represents a chain of one or more concrete nodes.

Value Abstraction: In order to prove the refinement map, the correspondence ofConcSet
and S must be checked. This requires defining key values for the abstract nodes also.
This is done by replacing D with Dabs, where Dabs is an interval set induced on D and
has a comparison operator. In Dabs (a, b) < (c, d), if b < c in D.

Specification set abstraction: Correspondingly, the specification set S is also abstracted
to Sabs with values from Dabs. The sequential methods are also abstracted: as an exam-
ple, seqContains is abstracted to seqContainsabs. seqContainsabs(e) is specified
for e being a singleton set only. It returns true if e ∈ Sabs and false if ∀interval ∈
Sabs : e /∈ interval. Otherwise, it has a non-deterministic behavior. The methods of
Sabs are straightforward and are provided in Appendix A.4.

Example: Fig 5 shows the state obtained after doing the list abstraction followed by
thread abstraction of Fig 4. The node corresponding to node 4 is thrown away. Next,
the node 1 and nodes 7-9 are replaced by abstract nodes. Finally, the key values as well
as the values of the abstracted specification set Sabs are replaced by values from the
interval set induced on [0,∞).

Abstracting the Transitions: A key requirement for abstracting the transitions is that
they over-abstract the original transitions and they transition from one valid abstract
state to another. The abstracted transitions proceed in 3 phases: (1) a setup phase where

5 Nodes which become a part of n̂d can, in practice, never become reachable from any thread
pointer again. This is true for the list-based concurrent set data structures we have seen in [9]
and is discussed in the Appendix A.2.
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Fig. 5. Abstracting unbounded nodes: maximally uninterrupted nodes replaced by abstract nodes
(rectangles)

the abstract nodes are split if required, (2) a transition phase, where the transition from
the original program is executed, and (3) a cleanup phase, where after the transition the
newly obtained state is lifted to a valid abstract state. We explain these in detail below.
Setup phase: interaction with abstract nodes Since the list abstraction is intuitively
designed to have threads accessing only concrete nodes, any access to an abstract node
is resolved by non-deterministically splitting the abstract node into a chain of concrete
and abstract nodes. The accessing thread then accesses the created concrete node.

Accesses to an abstract node happen in two cases:

(a) Access to next field of a node with an abstract node as successor. This, is resolved
by, intuitively, selecting the leftmost node in the chain of concrete nodes represented by
the abstract node. This is implemented by the GETNEXT function shown in Fig 7a. The
GETNEXT function returns the next value by splitting the next abstract node (pointed
by p.next) non-deterministically in the following two cases: (1) it splits the abstract
node into a concrete node followed by an abstract node, and (2) it assumes that the
abstract node represents exactly one concrete node and so replaces it by a concrete node.
This is accomplished by calling the SPLIT method. The SPLIT method also assigns
non-deterministic field values to the newly created nodes by calling the ASSIGNKEYS

function. Fig 6 shows how this works for our running example.

Fig. 6. List traversal by thread 1 by the operation: p2[1] := getNext(p2[1]). A new concrete
node with key 7 and an abstract node with key (7,∞) are created. The node with key 6 becomes
an abstract node.

(b) Thread Other accesses an abstract node: In this case the abstract node is split by
calling the GETNODE function shown in Fig 7b. This function splits the abstract node
non-deterministically in one of four ways: (1) it assumes that the concrete node to be
returned on splitting is the leftmost node and so splits into a concrete node followed
by an abstract node, (2) it assumes that the concrete node is the rightmost node and
so splits into an abstract node followed by the concrete node, (3) it assumes that the
concrete node is some central node and so splits into an abstract node followed by the
concrete node followed by another abstract node, and (4) it assumes that abstract node
represents exactly one concrete node and so replaces it by the concrete node. Non-
deterministic values are assigned to the newly created nodes by the SPLIT function by
calling ASSIGNKEYS. Fig 8 shows how this is done for our running example.
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GETNEXT(p)
if p.next is concrete

return p.next;
else
n, n1 := new nodes;
Switch(non-det value v ∈ {1, 2})
Case 1:

SPLIT (p.next, (n, n1));
Case 2:

SPLIT (p.next, (n));
return n;

END

(a)

GETNODE(pi[o])
if pi[o] is concrete

return pi[o];
else
n, n1, n2, n3 := new nodes;
Switch(non-det value v ∈ {1, 2, 3, 4})
Case 1:

SPLIT (pi[o], (n, n1));
return n;

Case 2:
SPLIT (pi[o], (n2, n));

return n;
Case 3:

SPLIT (pi[o], (n2, n, n1));
return n;

Case 4:
SPLIT (pi[o], (n));

return n;
END

(b)

SPLIT (absNode, n list)
pred, succ := predecessor, successor

of absNode;
replace pred → absNode

→ succ by
pred → n list0 → ...

n listk → succ;
Sabs := Sabs − absNode.key;

ASSIGNKEYS (n list);
END

(c)

ASSIGNKEYS (node list)
for each node n ∈ node list

assign non-det value to n.key;
Sabs := Sabs + n.key;

END

(d)

Fig. 7. The GETNEXT and GETNODE methods

Transition phase. Since all the pointers now refer to concrete nodes, and further, the
reads of the next nodes of any pointers also are concrete nodes, the transitions can be
executed as though they were executing on the original program with no list abstraction.
This is essential in enabling syntactic construction of the list abstraction, as discussed
in Section 4.2.

Cleanup phase: canonicalizing to a valid abstract state. Once the transition executes
as described above, the new state may not be a valid abstract state; i.e., there may be
nodes which are not pointed to by any thread pointer which need to be replaced by
abstract nodes. Further, there may be nodes which are not reachable from any pointer
in the system. The mapping of the new state to a valid abstract state is accomplished by
calling the CANONICALIZE method at the end of the transition, as shown in Fig 9.

Example: As an example, consider the transition corresponding to line 3 in Fig 3a, the
corresponding Murphi rule for which is shown in Fig 3b (rule with pc[i] = 3). For that
transition, on doing the list abstraction to the rule for thread 1 (which is obtained by
thread abstraction), the following rule is obtained:

(pc[1] = 3)→ { p1[1] := getNext(p0[1]); pc[1] + +;
CANONICALIZE (); }
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Fig. 8. Splitting of abstract node when a pointer of the Other thread non-deterministically ac-
cesses it. There are four possibilities: the concrete node (1) is the rightmost node (2) is the left-
most node (3) is some node in middle or (4) is the only node in the chain of nodes represented by
the abstract node.

For the Other thread, the above rule becomes a no-op since no update to the heap is
involved.

Next, for the rule corresponding to pc[i] = 12, the rule obtained by doing a list
abstraction of the rule for thread Other (obtained after thread abstraction) is:
∀Np0, Np2 ∈ List : (true)→ { getNode(Np0).next := getNode(Np2);

CANONICALIZE (); } .

CANONICALIZE:
P : Set of all thread local & global point-

ers
Throw away nodes n /∈ R̂P ;
for each ni, nj ∈ R̂P

if (ISMUINT (ni, nj ))
JOIN (ni, nj );

JOIN (ni, nj):
pni := predecessor of ni;
snj := successor of nj ;
pni.next := nA

ij ;
nA
ij .next := snj ;

for each node n in ni → ... → nj

Sabs = Sabs − n.key;
ASSIGNKEYS (nA

ij);

ISMUINT (ni,nj ):
pni := predecessor of ni;
snj := successor of nj ;
if (Ref(pni) ∧ Ref(snj))

node n := pni;
while(n.next! = snj ) do
n := n.next;
if(Ref(n)) then

return false;
return true;

else
return false;

Fig. 9. CANONICALIZE Method

Syntactic construction of the abstraction: The thread and list abstractions can be con-
structed syntactically. The syntactic construction of the thread abstraction is discussed
in our previous work [21]. The syntactic construction of the list abstraction can be done
in the following 3 steps: (1) replace accesses to all nodes by pointer Np of the Other
thread with GETNODE (Np). (2) Next, replace all reads to the next field of any node,
say of the form p.next, with GETNEXT (p). (3) Finally, at the end of each transition,
insert a call to CANONICALIZE () function.

While the syntactic construction of the thread abstraction has been implemented in a
tool called Abster [22], extension to the list dimension is part of our ongoing work.
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4 Refining the Abstraction: Extended CMP Method

The above defined abstraction may be too coarse to prove the property. This may be due
to two reasons: (1) the environment thread, Other, may non-deterministically execute
transitions which spuriously violate the property, and (2) the method ASSIGNKEYS

called by SPLIT and JOIN may non-deterministically assign key values to the newly
created nodes which violate the property. Thus, to prove the property, the above ab-
straction may have to be refined either in the thread dimension (refining Other) or in the
list dimension (by constraining values assigned by ASSIGNKEYS).

The abstraction and refinement is then done in a loop which is shown in Fig 2. The
loop proceeds by iteratively model checking the system model. If the system model at
any stage in the refinement loop passes the model checker, the property is proven. If, on
the other hand, there is a counterexample for the system model, the user must examine
the counterexample. In case the counterexample is valid, a bug has been found. On the
other hand, if the counterexample is invalid, the user needs to distinguish between two
possible cases. 1) The spurious counterexample is caused due to a spurious transition
non-deterministically executed by the Other thread. 2) The spurious counterexample is
due to a new node introduced by the ASSIGNKEYS method.

4.1 Refinement in Thread Dimension

Since the environment thread Other non-deterministically selects nodes and executes
transitions, it may exhibit spurious behaviors. In order to constrain the Other thread, the
user adds candidate lemmas which are conjoined with the guards of the rules. Formally,
suppose that the candidate lemma L is used. Now consider a rule r of the program P
defined as: ρ → a, where ρ is the guard and a is an action. Then, refining P with L
involves strengthening the guard by L to obtain the strengthened rule ρ ∧ L ⇒ a and
strengthening the property under check, say Φ, to Φ ∧ L. The new program is then re-
abstracted to obtain the refined abstraction. Observe that in this refinement approach,
no extra state gets added to the abstract model. This is important for efficiency.

Example: Consider our example for rule with pc = 12, for which the abstracted rule
for thread Other is discussed in Section 3.2. Since that rule is highly unconstrained
and may lead to a spurious counterexample, the user may add the lemma that p2[i] is
the successor of p1[i] which is the successor of p0[i]. This lemma can be expressed as
p0[i].next = p1[i] ∧ p1[i].next = p2[i]. Thus, the strengthened rule is now:

(pc[i] = 12 ∧ p0[i].next = p1[i] ∧ p1[i].next = p2[i]) → { p0[i].next := p2[i];
pc[i] + +; }
Re-abstraction leads to a more constrained abstract rule for the Other thread.

∀Np0, Np1, Np2 ∈ Nodes : (true ∧ Np0.next = Np1 ∧ Np1.next = Np2)→ {
getNode(Np0).next := getNode(Np2);

CANONICALIZE (); }
Further, the above lemma is also added to the property under verification and thus is
also verified when the model checking is done on the refined model.
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4.2 Refinement in List Dimension

In order to prevent property violations due to non-deterministic values assigned by AS-
SIGNKEYS method, the user strengthens the model by adding list lemmas (i.e., candi-
date invariants on list variables). These lemmas are then used to constrain the values
assigned to the newly created node.

This list lemma based strengthening is implemented in the GETNODE and GET-
NEXT functions by modifying the ASSIGNKEYS function to ASSIGNKEYS’, as shown
in Fig 10. The ASSIGNKEYS’ method checks the added list lemmas before assigning
the key values and exits the while loop when such values are found. Note that the list
lemmas checked by ASSIGNKEYS’ are also added to the property under check. Thus
these lemmas also get verified during model checking. Finally, observe that refinement
in the list dimension also does not add extra state to the abstract model.

ASSIGNKEYS’ (node list)
while(true)

for (node n ∈ node list)
assign non-det value to n.key and update S;

if (list lemmas satisfied)
break;

END

Fig. 10. The ASSIGNKEYS’ method

Example: As an example, the keys of the nodes are assumed to be sorted (ordering
invariant). Thus, in case the new node is assigned a value such that the ordering invariant
is violated, it will lead to a violation of properties like Linearizability as well. The user
then adds the ordering lemma during the refinement process.

We show how the strengthening in the list dimension with the ordering lemma affects
the following operations: (1) list traversal by thread 1 through call to GETNEXT and (2)
list updates by thread Other by call to GETNODE.

Fig 6 shows how after list traversal (p2[1] := p2[1].next) from the original state
shown in Fig 5, the key value of the newly created nodes respect the ordering lemma.

Next, Fig 8 shows that when the Other thread accesses an abstract node, the node is
split non-deterministically in one of four ways. Observe that after splitting, the values
to the newly created nodes are assigned such that the ordering lemma holds.

Proof of Correctness: The correctness of the refinement in the list dimension can be
established by the following theorem, the proof for which is provided in Appendix A.3.6

Theorem. Let P be the original program, let P abs be the abstracted program and let
P abs
g be the program obtained by strengthening the list with list lemmas g1, g2, ... Then,

if the strengthened program P abs
g satisfies φ ∧ g, where g is g1 ∧ g2 ∧ g3 . . . and φ is

any invariant, the original program P also satisfies φ ∧ g.

Note that the above theorem implies that if P abs
g satisfies φ ∧ g, the added list lemmas,

g, hold for P as well.
6 For the proof of correctness of the refinement in the thread dimension, we refer the interested

reader to [22].
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5 Experiments

We verified properties of the Fine-grained and Optimistic algorithms presented in [9]
using our method. The Optimistic algorithm differs from the Fine-grained algorithm in
the sense that it reduces contention by traversing the list without locking.

We modeled the two concurrent data structures and their access methods in the Mur-
phi language (CMurphi 5.4.6). The abstraction was implemented by hand. This step is
fully automatable but the abstraction tool we used in our earlier work [21] does not yet
handle lists (this extension is part of our ongoing work). The strengthening was carried
out manually as well. All the experiments were run on a 2.40 GHz, Intel Core 2 Quad
processor, with 3.74 GB RAM.

Verifying Linearizability. As discussed in Section 2.2, we verify Linearizability by a
refinement based approach.

Added Lemmas: The list lemmas which had to be added to verify Linearizability were:
(1) the ordering lemma, which states that the ordering invariant holds, and (2) the re-
finement lemma 7, which states that the refinement map holds.

Next, in order to refine the thread dimension, the following (classes of) thread lem-
mas were added. (1) Lemmas specifying relationships between thread pointers while
the thread makes updates. For example, for line 12 of the Remove method, a lemma
stating that the node pointed to by p1[i] is next to that pointed to by p0[i] was added.
And (2), synchronization lemmas for stating that certain updates be made only when
the node pointed to by the pointer is locked by that thread. As an example, in lines 11
and 12 of Remove method, the pointers p0[i], p1[i] and p2[i] should have the nodes they
point to locked. In all, we had to add 5 thread lemmas for Fine-grained algorithm and
6 for the Optimistic algorithm.

Runtime: The model checking of the Fine-grained algorithm took about 0.97 hours to
finish, with 463385 states explored and 344365137 rules fired. The model checking
of the Optimistic algorithm on the other hand took 24 hours with 6851860 states and
7591017821 rules.8

The increased model checking time is due to the large number of fired rules and state
space explored. This is due to the large number of interleavings due to fine-grained syn-
chronization and is consistent with similar scalability challenges faced by other model
checking efforts in this domain [4, 26, 28, 29].

Verifying Ordering. Since just verifying the ordering invariant does not require check-
ing refinement against S, there is no need to prove the refinement map. Then, the point-
ers H and T can be dropped thus reducing the abstraction size.

The runtime for checking ordering with above approach was about 79 secs for Fine-
grained algorithm, with 19620 explored states and 2264535 fired rules. For the Opti-
mistic algorithm the runtime was 35 min with 408834 states and 143706285 rules.

7 The refinement lemma is not explicitly added to ASSIGNKEYS’; it is implicitly a part of SPLIT

and JOIN. This special treatment is given to it because, strictly speaking, it is a lemma across
both, the list and the specification set S.

8 We did some manual optimizations for the Optimistic algorithm to reduce the maximum num-
ber of list nodes in the abstraction, in order to reduce the runtime.
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While no list lemmas had to be added to verify ordering, 6 lemmas had to be added
to constrain the Other thread for Fine-grained and 7 for Optimistic algorithms. Note
that most of the non-interference lemmas added for proving Linearizability got reused
for proving ordering as well.

6 Conclusion and Future Work

We have presented a powerful approach for verifying concurrent list-based data struc-
tures and have successfully applied it to verify challenging examples. The key advan-
tage of our approach is that, though it involves some manual guidance, it is largely
automatic and it scales to both unbounded number of threads and list nodes.

There are two natural directions in which our work can be extended. Firstly, we
can minimize the number of user supplied lemmas by automatically discovering useful
lemmas similar to the approach we take in [21]. Secondly, the model checking time for
verifying Linearizability can be reduced by designing more efficient abstractions. These
abstractions can be used as a part of our overall abstraction-refinement based extended
CMP method approach. We plan to take this up next.

In conclusion, our approach opens up a new way for verifying list-based concurrent
data structures, which thus far have been handled mainly by separation logic. The pre-
liminary experimental results presented in this paper clearly establish our approach as
an alternative model checking based method to verify such data structures.
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A Appendix

A.1 Murphi Encoding of the Complete Remove Method

The Murphi encoding of the complete Remove method is shown in Fig 11.

∀i ∈ Threads : (pc[i] = 1) → {
p0[i] :=H ;
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 2 ∧
p0[i].lock = 0) → {
p0[i].lock := i;
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 3) → {
p1[i] := p0[i].next;
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 4 ∧
p1[i].lock = 0) → {
p1[i].lock := i;
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 5) → {
if(p1[i].key < Key);
pc[i] + +;
else pc[i] = 10;
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 6) → {
p0[i].lock := 0;
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 7) → {
p0[i] := p1[i];
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 8) → {
p1[i] := p0[i].next;
pc[i] + +; }

∀i ∈ Threads : (pc[i] = 9 ∧
p0[i].lock = 0) → {
p1[i].lock := i;
pc[i] := 5; }

∀i ∈ Threads : (pc[i] = 10) → {
if (p1[i].key = Key)
then pc[i] + +;
else pc[i] = 15; }

∀i ∈ Threads : (pc[i] = 11) → {
p2[i] := p1[i].next; pc[i] + +; }

∀i ∈ Threads : (pc[i] = 12) → {
p0[i].next := p2[i]; pc[i] + +; }

∀i ∈ Threads : (pc[i] = 13) → {
result[i] := true;
pc[i] := pc[i] + 3; }

∀i ∈ Threads : (pc[i] = 14) → {
[else] pc[i] + +; }

∀i ∈ Threads : (pc[i] = 15) → {
result[i] := false; pc[i] + +; }

∀i ∈ Threads : (pc[i] = 16) → {
p0[i].lock := 0; pc[i] + +; }

∀i ∈ Threads : (pc[i] = 17) → {
p1[i].lock := 0; }

Fig. 11. Murphi model for method Remove for thread i: each rule corresponds to a line in the
Remove method shown in Fig 3a.

A.2 Nodes in n̂d

Nodes in n̂d are those nodes which have been allocated but have become unreach-
able from any node in the system. In this section we explain why nodes in n̂d can
never become reachable in the system again and thus affect the abstraction state space.
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Note that this condition gets automatically verified in the model checking because of
the relationship lemma, discussed in Section 5.

We informally explain the reasoning for this as applied to the Remove method of the
Fine-grained algorithm. For n̂d to become reachable again, there must be a node n, such
that n is reachable in the system and n.next is assigned to n̂d. Since the relationship
lemma holds, there must exist a node n1, such that n.next is n1 and n1.next is n̂d.
But, if this holds, n̂d is reachable from n and thus reachable in the system. Since this is
a contradiction, such a node n1 does not exist.

A.3 Proof of Correctness

Theorem. Let P be the original program, let P abs be the abstracted program and let
P abs
g be the program obtained by strengthening the list with list invariants g1, g2, ...

Then, if the strengthened program P abs
g satisfies φ ∧ g, where g is g1∧ g2∧ g3 . . . and

φ is any invariant, the original program P also satisfies φ ∧ g.

Proof. We show that any counter-example in the original program is also a counter-
example in P abs

g .
Suppose the original program does not satisfy φ ∧ g and let s0 →t0 s1 →t1 . . .

sn−1 →tn−1 sn be the counterexample, where ti are transitions and si are states. Fur-
ther, the counterexample is assumed to be of minimal length, i.e., sn is the first state in
which φ ∧ g is violated.

We prove this in two parts: first we show that the correct part of the counterexample
can be simulated (part 1) and next, we show that the bug is also simulatable (part 2).

Part 1: We first show that s0 →t0 s1 →t1 . . . sn−1 →tn−2 sn−1 can be simulated in
the program. We prove this by induction on the counterexample trace. Suppose s0 →t0

s1 →t1 . . . si−1 →ti−1 si can be simulated in P abs
g . We show that the transition ti can

also be simulated. Suppose ti involves reading or writing to nodes n1, n2..., nk in the
original program. Since i < n and the counterexample is minimal, the list satisfies g.
This includes the nodes n1, n2..., nk.

For the corresponding execution in P abs
g , some of the nodes from n1, n2..., nk might

be created from splitting abstract nodes. In order to show that the transition ti is pos-
sible in P abs

g , we need to show that if any nodes are created from splitting the abstract
nodes, they can still take the field values which are taken by these nodes in the original
program. In other words, we need to show that constraining the nodes obtained by split-
ting abstract nodes to satisfy g by ASSIGNKEYS’ does not constrain the nodes to take
values taken by n1, n2, . . . in P . But, since n1, n2, . . . satisfy g in the original program,
constraining by g in P abs

g will not prevent the newly created nodes from taking these
values. Thus, the transition will be simulated.

Part 2: Next we show that a violation of tn−1 will also be simulated, assuming the
rest of the counterexample has been simulated thus far. Without loss of generality, by
symmetry, we assume that tn−1 is a transition of thread 1. Now, if this happens, we
have the following 2 cases:
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Case 1: The property φ is violated. In this case, like in part 1, assumption of g by AS-
SIGNKEYS’ does not rule out any transitions. Thus, the error-prone transition violating
φ will be simulated, leading to a violation of φ in P abs

g as well.

Case 2: The list-lemma g is violated. In this case, we need to show that the violation
occurs in P abs

g and occurs at the transition phase. The violation occurs, due to the same
reasoning as for case 1. We show that it occurs in the transition phase.

In case g is violated, the transition tn−1 in P can not be a transition with a heap
traversal action (as defined in Section 2.1), since it lead to a violation of a list invariant.
This is because list invariants depend only on heap values (and potentially on S for
refinement map): none of these change in list traversal in P .

Thus tn−1 can only be a transition with a heap update action (either heap shape up-
date or heap node update). Such transitions, for thread 1, are mapped to transitions in
P abs
g for which the following two conditions hold: (1) all actions by thread 1 occur

on concrete nodes, and (2) the nodes which are referred nodes do not change. Conse-
quently, the setup and cleanup phases of this mapped transition do not make any updates
to the heap. Thus the violation of the property will occur exclusively at the transition
phase. Then, this violation will be simulated in P abs

g as well.
Thus we have shown that any counter-example in the original program P has a

corresponding counter-example in P abs
g . Then, our abstraction-refinement method is

sound.

A.4 Methods of Sabs

seqContainsabs(e) : {
if (e not singleton) unspecified;
else if (∀interval ∈ Sabs : e �⊆ interval) then return false;
else if (e ∈ Sabs ) then return true;
else return non-det;}

seqAddabs(e) : {
if (e not singleton) unspecified;
else if (∀interval ∈ Sabs : e �⊆ interval) then Sabs:= Sabs + e; return true;
else if (e ∈ Sabs ) then return false;
else return non-det;}

seqRemoveabs(e) : {
if (e not singleton) unspecified;
else if (∀interval ∈ Sabs : e �⊆ interval) then return false;
else if (e ∈ Sabs ) then Sabs:= Sabs- {e}; return true;
else return non-det;}

Fig. 12. Methods of the sequential set Sabs
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Abstract. We present a systematic approach to the automatic genera-
tion of platform-independent benchmarks of tailored complexity for eval-
uating verification tools for reactive systems. Key to this approach is
a tool chain that essentially transforms a set of automatically gener-
ated LTL properties into source code for various formats, platforms, and
competition scenarios via a sequence of property-preserving steps. These
steps go through dedicated representations in terms of Büchi Automata,
Mealy machines, Decision Diagram Models, Code Models, and finally
the source code of the chosen scenario. The required transformations
comprise LTL synthesis, model checking, property-oriented expansion,
path condition extraction, theorem proving, SAT solving, and code mo-
tion. This combination allows us to address different communities via
a growing set of programming languages, tailored sets of programming
constructs, different notions of observation, and the full variety of LTL
properties – ranging from mere reachability over general safety prop-
erties to arbitrary liveness properties. The paper illustrates the whole
tool chain along accompanying examples, emphasizes the current state
of development, and sketches the envisioned potential and impact of our
approach.
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1 Motivation

Twenty years ago, at CAV 1993 in Elounda, Crete, the essence of the business
meeting could have been summarized as “We have developed numerous powerful
methods and tools, what we are missing are appropriate problems.” Since then,
numerous impressive case studies have been presented, competitions and chal-
lenges have been organized, and industrial cooperations have been conducted,
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but all these initiatives remained very partial: they focused on very specific sce-
narios, thus limiting their potential for the generalization of the results and fair
comparison of technologies, let alone for establishing a clear application profile
for the wealth of academic and industrial tools. What is needed for an unbiased
evaluation of the tools’ application profiles is an infinite source of benchmark
problems of tailored size and complexity, with known properties of varying dif-
ficulty that are accessible to everybody.1 Only this way one can fine-tune the
experimental tool analysis, reproduce analysis results, and explore and compare
the conceptual limitations of the proposed solutions. All these are preconditions
for an in-depth and responsible, profile-based recommendation for a tool or a
technology.

In short, what is missing is a systematic way to obtain classified benchmark
suites that are expressive enough to reveal the individual tools’/technologies’
strengths and weaknesses both at the conceptual and the pragmatic level.

In this paper, we present a systematic approach to the automatic generation
of platform-independent benchmarks of tailored complexity for evaluating veri-
fication tools for reactive systems. In order to optimally clarify 1) the intuition
behind our approach, 2) the three major challenges, and 3) its technical ingredi-
ents we explain each dimension in a separate subsection. The overall benchmark
generation process has its own full section (cf. Sec. 2), followed by individual sec-
tions on its steps (cf. Secs. 3–9). The paper closes in Sec. 10 with our conclusions
and directions to future work.

1.1 The Intuition

The intuition behind our approach is quite similar to that of the now popular
outdoor game geocaching2: in geocaching, recognizing the points of interest once
one is there is trivial. In our case we simply leave a mark that is easily recogniz-
able by any tool. The point of the game is to reach the correct location despite
dedicated hurdles. Our corresponding “riddles” are of course program analysis
questions to be solved in the overall game. With this mindset, the intuition
behind our automatic benchmark generation process is easy to explain:

– We randomly place “treasures” and connect them with an envisioned feasible
path, i.e., a path that the player will have to follow. In our case, this results
in a Mealy machine that we obtain as a result of a synthesis process from a
more declarative specification in terms of LTL properties.

– We randomly insert “riddles” along the path. In our case, these are ran-
domly generated program structures that need to be correctly analyzed to
win the game. The point is that the insertion of these obstacles is property
preserving. This is realized by applying a sequence of elementary, provably
property-preserving insertion/transformation steps.

1 Of course, dedicated real(-istic) problems are also extremely important, but because
of their “singularity” and a priori unknown properties, they are not suitable for a
careful, wide-range profile analysis.

2 In particular “mystery” and “multi” caches. See http://www.geocaching.com/

http://www.geocaching.com/
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Like in geocaching, even though recognizing the treasures is simple, it is possible
to construct problems of almost arbitrary complexity simply by changing the
riddles. This could mean moving from simple reachability problems to safety,
liveness or even arbitrary LTL properties in program structures of increasing
complexity that may comprise complex conditions, data structures, loops, or as
new vision even polymorphism and virtual methods. The configurable scale and
randomization of the generation process guarantees that each of the problems is
entirely distinct from any other.

What is truly different from geocaching is the fact that once given the com-
plexity profile, these problems are fully automatically generated without any
human interaction. Consequently, the solution can be kept secret even from the
organizers of a challenge/competition, enabling them to participate themselves
without any advantage – provided that the profile and the code/specification of
the benchmark generator is made public.

1.2 The Three Major Challenges

Three quite general questions need to be answered when aiming at quality bench-
mark problem generation:

– Where and how to throw the dice: In order to get balanced benchmarks
of challenging size, one needs a fine granular concept of randomization. Our
multi-step generation process (cf. Sec. 2) is explicitly designed for aspect-
specific randomization, as will be illustrated in the main sections of the
paper.

– How to impose/guarantee the properties: Obviously, this must be done
by construction, as extracting the properties from the final benchmark is
meant to be a challenging (open) problem. Central throughout the whole
process is therefore the fact that maintaining language inclusion wrt. the
ω-language of the Büchi automaton synthesized from the LTL formulas is
sufficient to guarantee property preservation. This simple principle is strictly
followed during the whole generation process depicted in Fig. 1, and it can
be applied straightforwardly to further enhance the program structure with
almost arbitrarily complex program elements.

– How to avoid generator footprints (hints): An important goal of bench-
mark generation must be that the generated problems are not biased (beyond
their abstract profile), and that it does not make sense to exploit any knowl-
edge about the generation process. Optimally, even the developers of the
benchmark generator should have no (significant) advantage.

1.3 Summary of the Involved Technologies

Technical key to this approach is a tool chain that essentially transforms a set
of automatically generated (or hand-selected) LTL properties via a series of
property-preserving steps into source code for various formats, platforms, and
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competition scenarios. These steps pass various phases characterized by repre-
sentations in terms of Büchi automata, Mealy machines, code models, and finally
the source code of the chosen scenario. The required transformations are based
on LTL synthesis [1, 2], model checking [3], property-oriented expansion [4],
path condition extraction [5], theorem prover/SAT solver-based linking of pre
and post conditions [6, 7], and (semantic) code motion [8–13].

In order to make the benchmarks accessible by most tools and interesting for
different communities, we aim at supporting

– a growing set of programming languages (e.g. Java, Scala, C/C++, C#,
Promela,...),

– a tailored use of programming constructs (loops, linear and non-linear arith-
metics, methods calls, virtual methods...) and diverse data structures (inte-
gers, arrays, lists, floating-point numbers, ...),

– different notions of observation: reached program labels, exceptions being
thrown, output written to the console, method invocations, ...

– the full variety of LTL properties, ranging from mere reachability over general
safety properties to liveness properties and arbitrary mixtures thereof.

Section 2 sketches the process (cf. Fig. 1) connecting all these technologies to fully
automatically generate randomized benchmark problems of guaranteed property
profile (cf. Theorem 1).
The paper illustrates the whole tool chain along accompanying examples, em-
phasizes the current state of development, discusses our experience with our
first version gained during the RERS Challenge 2012 [14], and sketches the envi-
sioned potential and impact of our approach. We will use the corresponding tool
to generate the problems for the RERS Challenge 2013, which will take place as
a satellite event of ASE 2013 in Mountain View (USA) in November.

In the next section, we will summarize the tool chain (cf. Fig. 1) before we
sketch its seven conceptual steps each in its own dedicated section. Subsequently,
Sec. 10 discusses our conclusions and perspectives.

2 The Generation Process from a Bird’s Eye View

Our solution is centered around a property-driven benchmark generation process
(cf. Fig. 1). It starts with a randomized property selection that can be trans-
formed to Büchi automata using standard techniques, and then it successively
enriches/changes the representations via various property-preserving model and
code transformations to provide problems of almost arbitrary complexity and
size. Its characteristic conceptual steps, which will be discussed in more detail
in the remainder of the paper, can be sketched as follows from a bird’s eye view:

Pattern-Based LTL Generation: In this step we randomly choose and then
instantiate LTL property specification patterns [15] that we partition into a small
defining set used in the subsequent synthesis step, and a larger set of additional
properties whose validity is later checked on the synthesized model via model
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Fig. 1. Overview of property-preserving steps

checking. Typically, we generate around 100 properties, about ten of which can
be defining, in order to still allow for automated synthesis.

LTL Synthesis: Here we can apply any of the standard algorithms that trans-
late an LTL formula into a Büchi automaton representing all its models (satisfy-
ing paths). Our current implementation uses LTL2Buchi [2], but, e.g., LTL2BA [1]
could have been chosen as well.

From Büchi to Mealy: Completing the Property Profile: The point of this
step is the generation of a concrete reactive system model (e.g. a Mealy machine)
from the Büchi automaton that represents all words/paths satisfying the defining
properties. The construction of this Mealy machine is randomized and can be
customized in various dimensions, e.g., the size of the model, the size of the input
and output alphabets, the density of the transition graph etc.. Important is only
that the construction obeys our language inclusion-based correctness principle
which guarantees that all the defining properties remain valid.

The subsequent completion step for the property profile can straightforwardly
be realized by model checking the additional (non-defining) properties on the
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generated Mealy machine. After this step the property profile for this benchmark
is determined once and for all, as all remaining steps also obey our correctness
principle. More concretely, the observable language of all the generated artifacts
is guaranteed to be included in the language of the synthesized Büchi automaton.

Mealy Machine Expansion: These Mealy Machines are then enlarged via ran-
domized property-oriented expansion (POE) [16] and by introducing unreachable
states. Both transformations are incremental and can be stopped at any moment,
e.g. when a certain threshold of states is reached.

Mealy-to-Program Model Transformation: The transformation is based
on viewing Mealy machines operationally as simple loops of guarded commands,
whose guards precisely check for the correct state identification. The idea be-
hind the transformation is to replace this simple guard structure with a complex,
semantically equivalent decision structure in terms of a discrimination tree [6],
which essentially resembles a complex nested “if-then-else”. The discrimination
tree itself is randomly generated both in its branching structure and its node
labeling with predicates, which may well use multiple variables, arithmetics,
relations, and data structures. The states of the Mealy machine are modeled
by equivalence classes of a randomly constructed partition of the discrimination
tree’s leaves. Key to the required property preserving transformation is to estab-
lish the correct wiring by means of adequate assignments that guarantee that
the postcondition of a transition implies the precondition of the target state,
and to extract corresponding complex guarded commands. Path condition gen-
eration and SAT solving/theorem proving provide a powerful basis for deriving
non-trivial conditional structures (cf. Sec. 7).

Elaboration of the Program Model Structure: We employ data-flow anal-
ysis and transformation techniques to randomly elaborate the program model
structure along both the logical and the control structure:

– Overcoming the Simple Loop Structure: Up to here, the programs are still
reminiscent of Event Condition Action Systems [17, 18] or PLC programs [19],
a structure the 2012 RERS Challenge focused on [14]. Using randomized
property-oriented expansion [4], this structure can be generalized to obtain
quite general “while”-program-like structures [20].

– De-Localization of the Logical Reasoning: Our approach for establishing post-
conditions that match the required preconditions characterizing the subse-
quent state is local, i.e., a Mealy machine can be reconstructed essentially
by a pairwise check of the various preconditions and postconditions. We
therefore employ code motion techniques [8–13, 21, 22] for de-localizing the
information and therefore require a global analysis for reconstructing the
transition relation.

Language Extraction: Currently we have implemented a simple template
mechanism which works for Java and C/C++ and maintains the behavioral and
structural properties of its argument code models. Currently, we are extending
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our template mechanism to capture many more target languages in order to
approach our goal of serving the needs of as many tool developers as possible

As all steps of our benchmark generation process are designed to obey our cor-
rectness principle, it is guaranteed that the observable language of all the gen-
erated artifacts is included in the language of the synthesized Büchi automaton.
This means that all LTL properties are maintained! Thus we have:

Theorem 1 (Correctness). The language-specific code generated by our bench-
mark generation process is guaranteed to satisfy the property profile established
during the profile completion (step 3).

The idea of a language specific export is quite general and was in essence also
used by the winning team of the RERS Challenge 2012 to generate Promela
input for their tool landscape centering around the LTSmin model checker [23].
In order to support cross-community challenges, we currently aim at lowering the
entry hurdle for participants by providing them with various language formats. It
should be noted, however, that providing e.g. Promela code is not quite the same
as providing code of the other mentioned programming languages as it requires
non-trivial design decisions concerning the adequate abstraction. Thus we are
considering to provide a Promela generator instead, which is parameterized in
the abstraction.

3 Property Generation

The goal of fully automatically generating a large set of interesting benchmarks
inevitably calls for the random generation not only of system models, but also of
their underlying properties. While this could be achieved by randomly generating
LTL syntax trees, the resulting formulae would most likely be very different from
what real-life property specifications look like.

Instead of randomly generating whole formulae, we therefore randomly instan-
tiate specification patterns, like for example those described in the seminal work
of Matthew Dwyer et al. [15]. Additionally to producing more realistic proper-
ties, this approach also yields the benefit that an intuitive textual description
can be provided for each LTL formula. Such properties might include, but are
not limited to, the following:

– Absence, e.g. G¬bad: “Action bad does never occur”
– Existence, F good: “Eventually, action good will be performed”
– Response, G(a ⇒ F b): “Whenever event a occurs, this will lead to action b

being observed eventually”

In a challenge scenario, each of these properties (plus dozens of others) would
have to be checked separately on the given system.
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In the generation phase, however, a small subset of all properties is selected
to constrain the randomized on-the-fly construction of the initial Mealy machine
model [24].3 This step is prepared by synthesizing a Büchi automaton from the
selected properties, as the next section will detail.

4 Büchi Synthesis

Formally, from the set Φ of all generated properties we select two subsets Φ+, Φ−

which should (resp. should not) hold by construction. A Büchi automaton Aψ is
created from the conjunct of the selected property sets

ψ =
∧

φ∈Φ+

φ ∧
∧

φ∈Φ−
¬φ,

Generating Büchi automata from LTL formulae is a very expensive task for larger
formulae, thus the choice of the size of the sets Φ+ and Φ− crucially depends
on how much computing power should be invested in this step. Usually, we
obtain fairly good results already with very small sets: the problems of the RERS
challenge 2012 were generated using between four and six defining properties.

In the example of the previous section, the conjunct of all non-negated spec-
ification formulae is

ψ = G¬bad ∧F good ∧G(a⇒ F b).

Figure 2 shows the corresponding Büchi automaton, which already contains a
significant number of transitions given the rather small and simple specification
formula. This Büchi automaton was generated using the LTL2BA algorithm [1],
but other algorithms such as LTL2Buchi [2] could have been used as well. Note
that this automaton, as it is, is not a valid model fulfilling the given properties:
first, assuming a granularity of one action/observation per step, some of the
transitions such as !bad && good && b can never be realized, as either action
good or action b occurs. Similarly, transitions like !bad && b can be shortened
to just b. The second aspect regards the set of allowed input symbols (events).
The transition label !bad represents an otherwise unrestricted set of alphabet
symbols, although generally we assume that the set of observable events is con-
strained in one way or the other.

Finally, there is no equivalent for accepting states in a Mealy machine: in
each concrete instantiation of a system it has to be ensured that the reflexive
transition labeled (!bad && !a) || (!bad && b) of state init cannot be taken
infinitely often in a row.

In the next section, we will describe how to construct a Mealy machine whose
infinite runs all satisfy the constraints imposed by this Büchi automaton.

3 We chose Mealy machines as our intermediate model structure because of their in-
put/output distinction. Of course also labeled transition systems [25] or IO automata
[26] could have been chosen as well.
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Fig. 2. Resulting Büchi automaton for set ψ

5 From Büchi to Mealy: Completing the Property Profile

The construction of a concrete Mealy machine from a constraining Büchi au-
tomaton is based on the idea of constructing on-the-fly a product automaton.
Starting with the initial state of the Büchi automaton and a freshly created
initial state of the Mealy machine, successor states are either newly generated
or taken from the set of existing Mealy machine states. This has to be done
consistently with the Büchi automaton, i.e., a transition between two states in
the Mealy machine needs to match a transition between the associated Büchi
states. When creating states in the Mealy machine, several Büchi states might
be eligible for being associated with the new state due to non-determinism. In
this case, one can be chosen at random. This selection might eliminate accepting
runs during the model construction, but does not affect correctness.

Special care has to be taken when transitions to existing states in the Mealy
machine are created: this introduces loops. The Büchi acceptance criterion re-
quires every loop in the model includes at least one accepting state. At first, this
can be easily achieved by creating back edges only to accepting states. As the
model construction proceeds, a set of safe states gradually emerges: these are
states where all the outgoing infinite paths are accepting. These safe states can
be used as targets for cross edges. If no back or cross edge to a safe state can
be created even if some given hard limit on the number of states is reached, the
transition is completely discarded and we may need to backtrack in order to en-
sure that there are no states with zero outdegree (deadlocks). This is important
to guarantee our correctness principle, which is based on the fact that diminish-
ing the set of (infinite) traces preserves ω-language inclusion and therefore the
validity of LTL properties.
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Fig. 3. Property-Oriented Expansion (POE) with random boolean property (0/1)

Obviously, each formula φ ∈ Φ+ is satisfied on the resulting Mealy machine by
construction, whereas each formula in Φ− is unsatisfied. However, at this point
it is unknown whether the remaining properties in Φ \ (Φ+ ∪ Φ−) hold as well,
and this cannot be deduced from the construction itself.

The property profile therefore has to be completed by model checking the
remaining properties on the model. This is a comparatively quite easy task:
whereas generating a Büchi automaton for the conjunct of all formulae in Φ is
beyond tractability, an automaton A¬φ for each single φ ∈ Φ can be synthesized
quite efficiently. Using A¬φ to model check the generated Mealy machine is
straightforward and can be achieved by standard techniques [3]. We currently
use our own implementation, which performs a language emptiness test on the
product automaton by analyzing reachability of strongly connected components
with accepting states, but of course one could also resort to an external LTL
model checker.

6 Mealy Machine Expansion

Once the Mealy machine is constructed from the LTL/Büchi specification, we
increase its size (i.e. number of states) artificially while preserving the properties.
This is done by iteratively applying the following steps:

– addition of unreachable nodes and model structures,
– splitting nodes with POE according to some randomly set property,
– pruning outgoing transitions.

Adding unreachable structures. The first operation simply adds nodes or even
arbitrary new Mealy machines over the same alphabet into the original model. To
increase the analysis complexity, the states of those newly added model fragments
may have transitions into the original Mealy machine. As no transition leads from
the original model into the newly added parts, the new nodes remain unreachable
and therefore do not alter the original models’ behavior.
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Splitting under Property-Oriented Expansion. The second operation introduces
new reachable states by splitting existing ones. This is done by defining arbi-
trary new properties and assigning them randomly to every transition. Figure 3
illustrates the POE transformation pattern by expanding a four node directed
graph according to properties resembling a simple coin toss, i.e., a single boolean
property that randomly assumes the values 0 or 1 to each transition.4 Whenever
a node is reached via incoming transitions that have different values for this
property, it is duplicated. Figure 3 shows the effects in detail: the highlighted
state d is reached from b with property value 0 and from c with property value
1, causing it to be split into states d and d′, connected to the same successor
states of the original d (here a) via transitions that inherit the resp. property
value. Now a becomes reachable with property values 0 and 1 respectively, so it
must be split too. This introduces a new transition from a′ to b with a different
property value, so finally also b is split. Already from this small example it be-
comes apparent that randomized property-oriented expansion is a flexible way
to significantly increase a model while preserving the set of its traces.

Pruning. These two steps affect only the structure of the model, but not its be-
havior: the set of traces remains unchanged, and hence a minimization operation
would result in the original Mealy machine. This trivially guarantees property
preservation, but on the other hand does not truly increase the state space.

A way to overcome this is to prune arbitrary transitions in the intermediate
model. Looking at the same example, pruning the dashed transition from a′ to
c would truly distinguish a′ from a, as only in one case there is a transition to c.
This transformation is legal (i.e., property preserving) as it only reduces the set
of all infinite traces in the model, hence it is impossible to introduce unsatisfying
paths by pruning outgoing transitions.

7 Mealy-to-Program Model Transformation

This transformation is based on viewing Mealy machines operationally as simple
loops of guarded commands, whose guards precisely check for the correct state
identification. Its aim is to replace this simple guard structure with a complex,
semantically equivalent decision structure in terms of a discrimination tree [6],
which essentially resembles a complex nested “if-then-else”. This is achieved in
two steps.

In the first step, a discrimination tree is randomly generated both in its
branching structure and its node labeling with predicates. The idea is to rep-
resent the states of the Mealy machine by equivalence classes of a randomly
constructed partition of the discrimination tree’s leaves. This step is illustrated
in Fig. 4 which shows a three state Mealy machine in part (a) and a correspond-
ing discrimination tree in part (b). In this tree, p1 . . . pn represent arbitrary
predicates, and, e.g., the state s is represented by by the leaves labeled s1 to s4.
4 In order to emphasize the essence of the POE pattern, we decided to illustrate it on

a simple directed graph rather than on a deterministic Mealy machine.
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Fig. 4. Discrimination Tree over Mealy machine

Fig. 5. Code model construction

The point of the second step is to maintain property preservation during the
transformation step, which essentially requires to establish the correct’ wiring’
by means of adequate assignments that guarantee that the postcondition of a
transition implies the precondition of the target state, and to extract corre-
sponding complex guarded commands. This steps also leaves a lot of room for
randomization:

– As there are multiple ways of using the members of the equivalences classes
associated to the states, we can first randomly select adequate represen-
tations for each transition of the Mealy machine. The dotted lines at the
bottom of Fig. 4(b) show the representation of just one such transition: the
b/1 transition from u to s.

– Fig. 5 sketches an excerpt of a program model which may have been derived
from the discrimination tree (including the dotted lines) shown in Fig. 4(b).
The big box summarizes the condition required at leave u2 to properly im-
plement the b/1 transition from u to s: in response to b, the output 1 needs
to be generated and either s1 or s3 needs to be reached. In our setting this
means that the required reachability constraint must be realized by inserting
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a statement S that make the correctness assertion (which can technically be
regarded as a Hoare triple)

{p1 ∧ p2 ∧ ¬p4 ∧ ¬p9}S{(p1 ∧ p2 ∧ p4 ∧ ¬p8) ∨ (p1 ∧ ¬p2 ∧ ¬p5 ∧ p11)}

valid [27, 28], or equivalently, that satisfies the following implication:

�S�(p1 ∧ p2 ∧ ¬p4 ∧ ¬p9) ⇒ (p1 ∧ p2 ∧ p4 ∧ ¬p8) ∨ (p1 ∧ ¬p2 ∧ ¬p5 ∧ p11)

The selection of S also leaves plenty of room for random choices.

A deeper discussion of this step, which involves SAT solving/theorem proving
[6, 7] is beyond the scope of this paper. Of course, the deeper the analysis the
more sophisticated conditional structures can be built. For the RERS Challenge
2012 we first considered a quite simple setting which only uses integers and no
arithmetic. As this turned out to be too easy to be truly discriminating, we added
arithmetic in the second round. This, from the generation point of view minor
change, had a dramatical effect. E.g., it excluded exhaustive symbolic execution,
which was still successful in round one. This shows the power of being able to
fine-tune the benchmarks’ profiles.

8 Elaboration of the Program Model Structure

Program models constructed from Mealy machines and discrimination trees are
still quite cycle-oriented and may allow for a reconstruction of the defining Mealy
machine, as introduced conditions are locally checkable leaving the transition
“wiring” transparent. This can be overcome by applying known global program
analysis and transformation techniques:

– Applying randomized POE [4, 29] together with some pruning heuristics
allows one to almost arbitrarily “obfuscate” the original cycle orientation,
and it provides room for

– a subsequent application of (global) code motion techniques, ranging from
merely syntactical analyses reminiscent of partial redundancy elimination
[8, 11, 13, 21, 30–33] to more semantic transformations in terms of semantic
code motion [9, 10, 22, 34, 35], which shifts the original local reasoning
problem to the global level.

9 Language-Specific Export

The last step in the benchmark generation process is the process of generat-
ing language-specific code. The basis for that is the fully developed abstract
code representation that resulted from the previous step. Some of the supported
languages are

– Java
– C/C++/C#
– Promela [36]
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Ideally the abstract code representation does not contain any real code snippets
yet, as this would immediately restrict the generation process to a specific set of
programming languages. Even the semantics of simple operations like boolean
operators may differ slightly from one language to another. However, as long
as the operation semantics are well defined on an abstract level, it is possible
to map these operations to concrete language constructs. Adding support for
another programming language simply amounts to defining in a template file
instantiating patterns for the abstract operations in the target language.

if((((((((178 < a12) && (395 >= a12)) && ((95 < a23) && (264 >= a23)) )
&& a26) && (a1==2)) && (a19==11)) && a13)){
throw new IllegalStateException( "error_48" );

}

Fig. 6. Java code fragment from problem 13 of RERS 2012

The benefits of template-based code generation were used in the course of the
2012 RERS challenge, where we were able to adapt the problems for the specific
needs of some of the contestants’ tools in order to attract a larger community.
An example is the support of C code along with the specifics of the language. For
example, considering the Java code in Figure 6, it makes use of boolean variables
and exceptions, both of which are not part of the C language. However, by the C
template those constructs are automatically translated to 0/1 integer variables
and assert statements with corresponding labels, respectively. The resulting
code fragment is shown in Figure 7.

if((((((((178 < a12) && (395 >= a12)) && ((95 < a23) && (264 >= a23)) )
&& (a26==1)) && (a1==2)) && (a19==11)) && (a13==1))){
error_48: assert(0);

}

Fig. 7. C code using integers and assert

10 Conclusion and Perspectives

We have presented a systematic approach to automatically generating platform-
independent benchmarks of tailored complexity. Key to this approach is a tool
chain that essentially transforms a set of automatically generated LTL properties
in property-preserving steps into source code for various formats, platforms, and
competition scenarios. We have illustrated the whole tool chain, which allows us
to address different communities via a growing set of programming languages,
tailored sets of programming constructs, different notions of observation, and
the full variety of LTL properties, along accompanying examples.
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Central throughout the whole process is the fact that maintaining language
inclusion wrt. the ω-language of the Büchi automaton synthesized from the LTL
formulae is sufficient to guarantee property preservation. This simple preserva-
tion principle has been strictly followed during the whole generation process
depicted in Fig. 1, which, in fact, generated very challenging problems for the
RERS Challenge 2012, and which will be used with slight extensions for the
RERS Challenge 2013. We plan to release our benchmark generation frame-
work to the public in 2014 in order to support the wide range profile analysis of
analysis tools. In particular, this will allow research groups across the world to
generate benchmarks tailored to their specific needs and profile, and provide a
constant source of problems for further development and improvement of their
respective tools.

The preservation principle is not bound to the current “while program”-like
structure. It can also be followed when introducing almost arbitrary language
and data structure extensions. Those might include, but are not limited to, the
procedural abstraction-based construction of methods, pattern-based generation
of object structures, or the introduction of further (structured) data types like
arrays, lists, structs, as well as object-oriented principles like polymorphism
and virtual methods. Of course, each of these extensions needs its own reasoning
for keeping up to our correctness principle, and therefore introduce their own
line of research.

The situation changes when switching from linear time to branching time prop-
erties, as this requires to base the correctness principle on simulation rather than
simply on language inclusion.5 On the other hand, it would allow one to consider
also structural properties like points of decision [37], and checking e.g. mu calculus
formulae even for procedural models/programs is known for a long time [38, 39].

We are currently developing a service-oriented framework for graphically mod-
eling tailored benchmark generators on the basis of a library for property preserv-
ing transformations, on top of our service-oriented process modeling framework
jABC [40]. Based on this development we envisage to be able to provide an easy
to use open version of our benchmark framework early next year. Its flexibility
should allow us to address different communities via a growing set of program-
ming languages, tailored sets of programming constructs, different notions of
observation, and the full variety of LTL properties. In fact, we envisage people
to develop their own benchmark generators that supply whole communities with
an infinite source of tailored benchmarks.
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Abstract. Interface theories are compositional theories where compo-
nents are represented as abstract, formal interfaces which describe the
component’s input/output behavior. A key characteristic of interface the-
ories is that interfaces are non-input-complete, meaning that they al-
low specification of illegal inputs. As a result of non-input-completeness,
interface theories use game-theoretic definitions of composition and re-
finement, which are both conceptually and computationally more com-
plicated than standard notions of composition and refinement that work
with input-complete models. In this paper we propose a lossless transfor-
mation, called error-completion, which allows to transform a non-input-
complete interface into an input-complete interface while preserving and
allowing to retrieve completely the information on illegal inputs. We show
how to perform composition of relational interfaces on the error-complete
domain. We also show that refinement of such interfaces is equivalent to
standard implication of their error-completions.

1 Introduction

Interface theories such as the theory of interface automata are compositional the-
ories proposed by Alfaro and Henzinger in the early 2000s [9,10], and since then
studied extensively (e.g., see [7,11,20,22,12]). Generally speaking, an interface
theory provides the following:

– A notion of interface which is an abstract, formal description of a compo-
nent’s interface behavior. Different notions of interfaces exist in the liter-
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dynamic logical formulas.

– One or more composition operators which allow to compose interfaces and
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– A set of theorems, typically including:

• Preservation of refinement by composition, e.g., if A′ refines A and B′

refines B, then the composition of A′ and B′ refines the composition of
A and B.

• Preservation of certain properties by refinement, e.g., if A′ refines A and
A satisfies, say, a safety property p, then A′ also satisfies p.

Theorems such as the above support incremental design methodologies and re-
configurability. For instance, if we have shown that a certain system consisting
of the composition of A and B satisfies p, and later A needs to be replaced by A′,
proving that A′ refines A is sufficient to ensure that p will not be compromised
by such a replacement, i.e., it will continue to hold on the new system composed
of A′ and B.

A key characteristic of interface theories such as interface automata [9] and
relational interfaces [22] is that interfaces in these theories are generally non-
input-complete, that is, they may specify that certain inputs are illegal.1 This is
in contrast with other compositional theories such as I/O automata [16], FO-
CUS [5,6], and reactive modules [2], where specifications are assumed to be
input-complete. As argued in [22], non-input-completeness is essential to obtain a
theory which allows a lightweight verification methodology, akin to type-checking.
In particular, non-input-completeness allows to define semantic or behavioral no-
tions of interface compatibility. These go beyond syntactic compatibility notions
like correct port matching.

As a result of non-input-completeness, and the fact that components are gen-
erally non-deterministic (meaning that for a given input they may produce differ-
ent outputs) the definitions of composition and refinement in interface theories
are game-theoretic in nature.

Although game-theoretic notions such as demonic composition and alternat-
ing refinement are relatively well-understood, they are more complex than the
corresponding standard notions, and generally involve computing strategies in
a two-player game [3,10,8,22]. It makes sense, then, to ask whether there exists
a transformation from non-input-complete to input-complete interfaces, which
allows to reduce the above operations into standard composition and refinement.

In this paper we answer the above question in the affirmative for the setting
of relational interfaces of [22]. In particular, we propose a lossless transforma-
tion called error-completion. Given a (generally non-input-complete) interface φ,
error-completion returns an input-complete interface EC(φ), with an additional
boolean output variable which captures illegal inputs. The main results of the
paper are:

– We show that EC(φ) does not lose any information contained in φ, by pro-
viding an inverse transformation EC−1 and showing that EC−1(EC(φ)) ≡ φ
for all φ.

1 We use the term input-complete following [22]. Other terms used in the literature
are input-enabled, receptive, or total.
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– We show that serial and parallel composition of relational interfaces can be
performed in the error-complete domain, and the result can be transformed
backwards using EC−1 to obtain the equivalent composition in the original
domain.

– We show that the (alternating) refinement relation φ1 � φ2 is equivalent to
the standard implication EC(φ1)→ EC(φ2).

We point out that error-completion is discussed in [22]. However, the definition
of error-completion given in [22] is not satisfactory because, as already observed
in [22], it does not allow to reduce refinement checking of general relational
interfaces to checking standard implication on their error-completed versions.
In this paper we propose a new definition of error-completion which achieves
this, among other properties. We also provide an in-depth discussion of error-
completion and possible alternatives.

The rest of the paper is organized as follows. Section 2 summarizes the the-
ory of [22]. Section 3 describes error-completion. Section 4 discusses possible
extensions. Section 5 presents related work. Section 6 concludes the paper.

2 Preliminaries

In this section we summarize the relational interface framework developed in [22].

2.1 Relational Interfaces

Let V be a finite set of variables. A property over V is a first-order logic formula
φ such that any free variable of φ is in V . We write F(V ) for the set of all
properties over V . Assuming that every variable is associated with a certain
domain, an assignment over V is a function mapping every variable in V to a
certain value in the domain of that variable. The set of all assignments over V
is denoted by A(V ).

Assume a component with inputs X and outputs Y . We identify states with
observational histories, i.e., a state of the component is an element of A(X∪Y )∗.

Definition 1 (Relational interface). A relational interface (RI) is a tuple
(X,Y, f) where X and Y are two finite and disjoint sets of input and output
variables, respectively, and f is a function from states to contracts, i.e., for
every s ∈ A(X ∪ Y )∗, f(s) ∈ F(X ∪ Y ).

Note that we allow X or Y to be empty. If X = ∅ then the interface is a source.
If Y = ∅ then the interface is a sink.

In order to simplify the presentation we will restrict the definitions and the
rest of the formalization to the case of stateless interfaces, i.e. interfaces that
specify the same contract for each state or input-output history. We also often
omit the term relational and speak simply of interfaces, for the sake of brevity.

Definition 2 (Stateless interface). An interface I = (X,Y, f) is stateless iff
for all s, s′ ∈ A(X ∪ Y )∗, f(s) = f(s′).



Error-Completion in Interface Theories 361

For the sake of simplicity, we will specify a stateless interface as a triple (X,Y, φ),
where φ ∈ F(X ∪ Y ).

An example of a stateless relational interface is shown in Figure 1. This in-
terface, called Div, is the interface of a component that is supposed to perform
division. The component has two inputs x1 and x2 and produces the result
y = x1

x2
on its output. There are different properties of this component that one

might want to capture in its interface Div. Two possible contracts for Div, φ1

and φ2, are shown in Figure 1. Both specify that input x2 has to be different
than 0. Note that the first contract φ1 completely determines the behavior of
the component; it is an example of a deterministic contract: given legal inputs,
outputs are unique. Contract φ2, on the other hand, only provides guarantees
about the sign of the output.

Div
y

x1

x2

φ1 : x2 �= 0 ∧ x2 · y = x1

φ2 : x2 �= 0 ∧ (y ≥ 0 ≡ (x1 ≥ 0 ∧ x2 > 0))

Fig. 1. Component Div outputs at y the division of its inputs x1/x2

The theory does not separate requirements on inputs from guarantees on the
outputs. A single formula on input and output variables captures the behavioral
specification of a stateless interface. We can however extract the requirements
a contract makes on the inputs by existentially quantifying over the output
variables.

Definition 3 (Input requirement). Given a contract φ ∈ F(X ∪ Y ), the
input requirement of φ is the formula in(φ) := ∃Y : φ.

A note on notation: if φ is a formula over a set of variables V , and U ⊆ V , with
U = {u1, u2, ..., uk}, then ∃U : φ is shorthand notation for ∃u1, u2, ..., un : φ.
Note that U is allowed to be empty. If U = ∅, then (∃U : φ) ≡ φ.

in(φ) is a property over X only, and represents the requirements that the
contract places on the component inputs. For example, for the division com-
ponent with contract φ ≡ (x2 �= 0 ∧ x2 · y = x1), the input requirement is
in(φ) ≡ (∃y : x2 �= 0 ∧ x2 · y = x1) ≡ x2 �= 0. Note that if φ belongs to a source
(that is, if X = ∅), and φ is satisfiable, then in(φ) ≡ true. If φ belongs to a sink
(i.e., if Y = ∅), then in(φ) ≡ φ. In all cases, φ→ in(φ).

Definition 4 (Input-completeness). An interface I = (X,Y, φ) is input-
complete iff in(φ) is valid.

Going back to the examples of Figure 1, note that in(φ1) ≡ in(φ2) ≡ x2 �= 0.
Therefore, both φ1 and φ2 are not input-complete. If, however, the contract was
specified as φ3 ≡ (x2 �= 0 → x2 · y = x1), then in(φ3) would be true. φ3 is thus
an example of an input-complete contract.
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Definition 5 (Well-formedness). An interface I = (X,Y, φ) is well-formed
iff φ is satisfiable.

At this point it is worth making the following remark. Syntactically, relational
interfaces are represented by formulas. Semantically, they are relations between
input and output assignments, that is, subsets of A(X∪Y ) (hence the term rela-
tional). Clearly, different formulas correspond to the same relation. For example,
both x ∧ ¬x and false represent the same relation (in this case the empty set).
What we are mainly interested in is the semantics, not the syntax. For formulas
φ1 and φ2, we can check whether they represent the same relation by checking
whether they are equivalent, φ1 ≡ φ2.

Based on the above discussion, the canonical non-well-formed interface can
be represented by false.

C

I = (X,Y, φ)

E

X Y

Fig. 2. Component C specified by interface I in feedback with environment E

A relational interface I = (X,Y, φ) can be seen as specifying a game between a
component and its environment. In Figure 2, the component and the environment
are represented by blocks C and E respectively. The game proceeds in a sequence
of rounds. At the end of each round, an assignment a ∈ A(X ∪ Y ) is chosen.
Typically, the environment plays first and chooses an assignment for the inputs
X of the component, aX ∈ A(X). If aX does not satisfy in(φ) then this is not
a legal input and the environment loses. Otherwise, the component plays by
choosing an assignment for the outputs Y , aY ∈ A(Y ). If (aX , aY ) does not
satisfy φ then this is not a legal output for this input, and the component loses
the game. Otherwise, the round is complete, and the game moves to the next
round.

2.2 Composition

We can compose two interfaces I1 and I2 in series by connecting some of the
output variables of I1 to some of the input variables of I2. Variables that have
the same name are implicitly connected. As it was argued in [22], composition by
conjunction of the interface contracts is not sufficient, and instead a “demonic”
definition of serial composition needs to be used.

Definition 6 (Serial composition). Let I1 = (X1, Y1, φ1) and I2 = (X2, Y2, φ2)
be two interfaces. I1 and I2 are said to be composable if X1 ∩ X2 = X1 ∩ Y2 =
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Y1 ∩ Y2 = ∅. If I1 and I2 are composable, then we can define the serial composi-
tion of I1 and I2, denoted I1 
 I2, as the interface I = (X,Y, φ1 
 φ2) where
X = X1 ∪ (X2 \ Y1), Y = Y2 ∪ Y1 and

φ1 
 φ2 := φ1 ∧ φ2 ∧ ∀Y1 :
(
φ1 → in(φ2)

)
(1)

It is often convenient to automatically hide the connected outputs Y1 ∩X2 right
after the composition. For that purpose, we introduce the additional operator
of serial composition with hiding, denoted I1 
∗ I2, which defines interface
I ′ = (X,Y ′, φ1 
∗ φ2), where X is as above, Y ′ = Y2 ∪ (Y1 \X2), and

φ1 
∗ φ2 := ∃(Y1 ∩X2) : (φ1 
 φ2) (2)

Note that in the definition above, Y1 and X2 could also be disjoint, which means
that no connections exist between I1 and I2. This can be used to model the
parallel composition of I1 and I2, which then becomes a special case of serial
composition.

x2 �= 0

C
x2 �= 0

D
y

x1

x2

(a) φ1 
∗ φ2 ≡ true

x2 = 0

C
x2 �= 0

D
y

x1

x2

(b) φ1 
∗ φ2 ≡ false

true

C
x2 �= 0

D
y

x1

x2

(c) φ1 
∗ φ2 ≡ false

x2 ≥ z

C
x2 �= 0

D
y

x1

x2

z

(d) φ1 
∗ φ2 ≡ z > 0

Fig. 3. Four examples of serial composition of relational interfaces

Four serial composition examples are shown in Figure 3. In all of them, a
component C with different guarantees is connected to a component D that is
expecting its second input, x2, to be different than zero.

In case (a), the contract of C guarantees that its output x2 will be non-zero,
and indeed, the composite interface contract is equal to true and thus well-
formed.

In cases (b) and (c), where the contracts of C are x2 = 0 and true, the resulting
contract of the composition is false, i.e., C 
 D is not well-formed in these two
cases. In case (b) this is not surprising since we know that x2 = 0 is an illegal
input for D. In case (c), the contract of C is too weak, therefore it cannot be
guaranteed that the input to D will be legal.
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Case (d) presents a more interesting example. In this case the interface of C
is ({z}, {x2}, x2 ≥ z). The requirement that x2 �= 0 induces a new requirement
in the resulting contract, namely, that input z be strictly positive. This is the
weakest requirement on z that allows to ensure x2 �= 0.

Definition 7 (Compatibility). Let I1 = (X1, Y1, φ1) and I2 = (X2, Y2, φ2) be
two composable interfaces. We say that I1 and I2 are compatible if I1 
 I2 is
well-formed.

In Figure 3, in examples (a) and (d), the interfaces of C and D are compatible,
whereas in examples (b) and (c) they are not.

We remark that we view compatibility as a key differentiating aspect of input-
complete theories and interface theories. Compatibility is a local correctness
property, akin to type checking. As the examples of Figure 3 illustrate, we can
speak of compatibility between components without proving any property about
the entire system. We view this as more lightweight than full system verification.
In addition, example (d) illustrates how composition can be used to induce new
input constraints, which is akin to type inference.

The difference between 
 and standard composition, i.e., conjunction, lies
in the last conjunct of Formula (1), namely ∀Y1 :

(
φ1 → in(φ2)

)
. The latter is

a condition on the free inputs of the composite interface (because φ1 → in(φ2)
is a formula on X1 ∪ Y1 ∪ X2). This conjunct states that, for a given input to
the composite interface, any outputs that satisfy φ1 will be legal inputs for φ2.
It can be easily seen that if φ2 is input-complete, then this conjunct evaluates
to true, so φ1 
 φ2 becomes equivalent to φ1 ∧ φ2. The same holds when φ1 is
deterministic, so standard composition is a special case of 
.

Theorem 1 (Special cases of composition [22]). Let I1 = (X1, Y1, φ1) and
I2 = (X2, Y2, φ2) be two composable interfaces. If I2 is input-complete or I1 is
deterministic, then φ1 
 φ2 ≡ φ1 ∧ φ2.

2.3 Refinement

Definition 8 (Refinement). We say that an interface I ′ = (X ′, Y ′, φ′) refines
an interface I = (X,Y, φ), written I ′ � I, iff X ′ ⊆ X, Y ′ ⊇ Y , and the following
formula is valid:

in(φ)→
(
in(φ′) ∧ (φ′ → φ)

)
(3)

The condition can be written as the conjunction of two conditions:

in(φ)→ in(φ′) (4)

(in(φ) ∧ φ′)→ φ (5)

The first condition guarantees that any input assignment that is legal in I will
also be legal in I ′. The second states that for every input assignment that is
legal in I, all output assignments that can be possibly computed by I ′ from that
input, can also be produced by I.
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Theorem 2 (Refinement preserves well-formedness [22]). Let I, I ′ be
stateless interfaces such that I ′ � I. If I is well-formed, then I ′ is well-formed.

Theorem 3 (Composition preserves refinement [22]). Let I1, I2, I
′
1, and

I ′2 be interfaces such that I ′1 � I1 and I ′2 � I2. Then I ′1 
 I ′2 � I1 
 I2.

We can conclude from Theorems 2 and 3 that refinement preserves compatibility:

Corollary 1 (Refinement preserves compatibility [22]). Let I1, I2 be com-
patible interfaces. Let I ′1, and I ′2 be interfaces such that I ′1 � I1, I

′
2 � I2. Then

I ′1 and I ′2 are also compatible.

3 Error-Completion

Error-completion is a lossless transformation from (possibly non-input-complete)
relational interfaces to input-complete relational interfaces. The idea is to cap-
ture illegal inputs using an extra boolean output variable. This has already been
proposed in [22]. However, the way in which error-completion is defined in [22] is
too strict, and does not allow us to reduce checking refinement of RIs to checking
implication of their error-completed versions. We explain this further below.

In this paper we provide a less restrictive version of error-completion:

Definition 9 (Error-completion). Let I = (X,Y, φ) be an interface. Let e be
a new output variable, such that e �∈ X ∪ Y . The error-completion of φ is the
formula EC(φ) over X ∪ Y ∪ {e}, defined as follows:

EC(φ) := in(φ)→ (φ ∧ ¬e) (6)

It is easy to verify that EC(φ) is input-complete, for any φ. Also note that if φ
is input complete, then EC(φ) ≡ (φ ∧ ¬e).

In the example of the division component in Figure 1 where φ ≡ (x2 �= 0∧x1 =
y · x2), the error-completion of φ is:

EC(φ) ≡ x2 �= 0→ (x1 = y · x2 ∧ ¬e)

Definition 10 (Inverse transformation). Let I = (X,Y, φ) be an interface
and let φe = EC(φ) be the error-completion of φ. We can retrieve φ from φe

using the following transformation:

EC−1(φe) := (∃e : φe) ∧ (∀Y ∪ {e} : φe → ¬e) (7)

It can be shown that the two conjuncts of the definition of EC−1 correspond to
φ ∨ ¬in(φ) and in(φ), respectively. Intuitively ∃e : φe adds all illegal inputs to
the domain of φ and ∀Y ∪ {e} : φe → ¬e removes them. Formally, EC−1 is a left
inverse of EC:

Lemma 1. Any formula φ over X ∪ Y is equivalent to EC−1(EC(φ)), i.e.:

φ ≡ EC−1(EC(φ)) (8)
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Proof. If we expand the definitions of EC and EC−1, EC(EC−1(φ)) is equal to:

EC(EC−1(φ)) ≡ (∃e : (in(φ)→ (φ∧¬e)))∧ (∀Y ∪{e} : (in(φ)→ (φ∧¬e))→ ¬e).

We examine the two conjuncts separately. The first conjunct is:

∃e : (in(φ)→ (φ ∧ ¬e)) = in(φ)→ (φ ∧ ∃e : ¬e)
= in(φ)→ φ.

Let Φ be the formula (in(φ)→ (φ ∧ ¬e))→ ¬e.
For e = true, Φ is equal to (in(φ)→ false)→ false ≡ in(φ).
For e = false, Φ is equal to (in(φ)→ φ)→ true ≡ true.
Therefore the second conjunct is equivalent to ∀Y : in(φ) or in(φ) since the

latter does not depend on Y variables.
Going back to EC−1(EC(φ)), we get:

EC−1(EC(φ)) ≡ (in(φ)→ φ) ∧ in(φ) ≡ φ ∧ in(φ) ≡ φ.

��

It can be easily shown that any function that has a left inverse is injective.
Therefore, φ1 �≡ φ2 implies EC(φ1) �≡ EC(φ2).

Lemma 1 is an important result, as it proves that the transformations EC,EC−1

are lossless. In addition, as we shall show next, Lemma 1 allows to prove that
EC forms a bijection between relational interfaces and an appropriate subclass
of error-complete interfaces.

3.1 Meaningful ECI

We have seen that EC−1 is a left inverse of EC. Note, however, that it is not
the case that EC−1 is a right inverse of EC, that is, EC(EC−1(φe)) is not always
equivalent to φe. For example, if φe := (y = e) where y is an output, then:

EC−1(φe) ≡ (∃e : y = e) ∧ (∀Y ∪ {e} : (y = e)→ ¬e) ≡ true ∧ false ≡ false

while

EC(EC−1(φe)) ≡ EC(false) ≡ in(false)→ (false ∧ ¬e) ≡ false→ false ≡ true.

The same can be shown for less elementary contracts. For instance, if φe := (x =
0→ ¬e) ∧ (x = 1→ e), then EC−1(φe) = (x = 0) but EC(x = 0) �= φe.

In fact we can prove that φe is generally stronger than EC(EC−1(φe)).

Lemma 2. Any formula φe over X ∪ Y ∪ {e} is equivalent or stronger than
EC(EC−1(φe)):

φe → EC(EC−1(φe)) (9)



Error-Completion in Interface Theories 367

As the above results show, even though, by Lemma 1, EC is injective, it is not
surjective. This means that there are error-complete interfaces which do not cor-
respond to any meaningful relational interfaces. However, note that it was never
our intention to handle arbitrary error-complete interfaces, that is, arbitrary for-
mulas over X ∪ Y ∪ {e}. Instead, what we are interested in is a transformation
from contracts over X ∪ Y to input-complete contracts over X ∪ Y ∪ {e}. We
are thus only interested in the subclass of error-complete interfaces which are
obtained from relational interfaces via EC. That is, we are only interested in the
image of EC. We call this subclass the class of meaningful error-complete inter-
faces (MECI). MECI is a strict subset of the set of all input-complete interfaces
over X ∪ Y ∪ {e}, which we denote by ECI.

Definition 11 (Meaningful error-complete interfaces). Let φe be a for-
mula over X ∪ Y ∪ {e}. φe is said to be meaningful iff there exists a formula φ
over X ∪ Y such that EC(φ) ≡ φe.

Theorem 4. Let φe be a formula over X ∪ Y ∪ {e}. φe is meaningful iff
EC(EC−1(φe)) ≡ φe.

Proof. Suppose EC(EC−1(φe)) ≡ φe. By definition of EC−1, EC−1(φe) is a for-
mula over X ∪ Y . Therefore, setting φ := EC−1(φe), we have EC(φ) ≡ φe, thus
φe is meaningful.

In the other direction, suppose φe is meaningful. Then there is a formula φ
overX∪Y such that EC(φ) ≡ φe. EC(φ) ≡ φe implies EC−1(EC(φ)) ≡ EC−1(φe).
By Lemma 1, EC−1(EC(φ)) ≡ φ, therefore, φ ≡ EC−1(φe). This implies EC(φ) ≡
EC(EC−1(φe)). Since EC(φ) ≡ φe, we get φe ≡ EC(EC−1(φe)). ��

Theorem 4 is an important result which shows that EC, restricted to the class
MECI, is a bijection. This is illustrated in Figure 4. Note that we interpret the
spaces RI, ECI, MECI, and so on, as containing semantic rather than syntactic
objects, that is, relations rather than formulas. Alternatively, and equivalently,
a point in each of these spaces represents the equivalence class of all equivalent
formulas.

3.2 Composition in the ECI Domain

Beyondmerely having a lossless transformation from relational interfaces to error-
complete interfaces and back, we are interested in using the error-completion to
perform operations on relational interfacesmore efficiently. In this sectionwe show
how error-completion can be used to compute serial composition of relational in-
terfaces by avoiding the universal quantification formula ∀Y1 :

(
φ1 → in(φ2)

)
used

in the definition of
. The idea is to delay computing the game-theoretic demonic
composition as much as possible. In that sense, we can perform serial composition
on the error-complete domain, and use the inverse transformationEC−1 (which in-
troduces the universal quantification) to return to the non-input-complete domain

whenever necessary. To achieve this, we define a serial composition operator
e
on

error-completions:



368 S. Tripakis et al.

RI ECI

MECI

EC

EC−1
x2 �= 0 → ¬e

x2 �= 0

y = e

Fig. 4. Meaningful error-complete interfaces

Definition 12. Let I1 = (X1, Y1, φ1), I2 = (X2, Y2, φ2) be two composable in-
terfaces. Let e1, e2 be two fresh variables, i.e., e1, e2 /∈ X1 ∪ Y1 ∪ X2 ∪ Y2. Let
ψ1, ψ2 be two predicates over X1 ∪ Y1 ∪ {e1} and X2 ∪ Y2 ∪ {e2} respectively,
such that ψ1 = EC(φ1)[e/e1] and ψ2 = EC(φ2)[e/e2] where ξ[e/ei] denotes the
formula ξ′ obtained by ξ by replacing e with ei. We define the composition of ψ1

and ψ2 as:

ψ1
e
ψ2 := ∃e1, e2 :

(
ψ1 ∧ ψ2 ∧ e = (e1 ∨ e2)

)
(10)

The operator
e
is illustrated in Figure 5 for the simple case of single-input/single-

output components.

EC(φ1) EC(φ2)
x y z

e1
e2 e

Fig. 5. Illustration of serial composition in the error-complete domain

We can now state a main result which allows to compute serial composition
losslessly on the error-complete domain:

Theorem 5. Let I1 = (X1, Y1, φ1), I2 = (X2, Y2, φ2) be two composable inter-
faces. Then the following is true:

EC−1
(
EC(φ1)

e
EC(φ2)

)
≡ φ1 
 φ2 (11)
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Examples. Let us look at the composition examples of Figure 3 and see how serial
composition is performed in the error-complete domain. We first look at example
(c) and compute the error-completion of the contracts of the two components:

ψ1 := EC(true)[e/e1] ≡ true→ (true ∧ ¬e1) = ¬e1

ψ2 := EC(x2 �= 0)[e/e2] ≡ in(x2 �= 0)→ (x2 �= 0 ∧ ¬e2)
≡ x2 �= 0→ (x2 �= 0 ∧ ¬e2)
≡ x2 �= 0→ ¬e2

The serial composition contract in the error-complete domain is:

ψ1
e
ψ2 ≡ ∃e1, e2 : true ∧ (x2 �= 0→ ¬e2) ∧ (e = e1 ∨ e2)

≡ ∃e1, e2 : (x2 �= 0→ ¬e2) ∧ (e = e1 ∨ e2)

≡ true

If we apply the EC−1 operator, we indeed get back the serial composition contract
we had computed before:

EC−1(true) ≡ (∃e : true) ∧ (∀x2∀e : true→ ¬e)
≡ (∀x2∀e : ¬e)
≡ false

In case (d) of Figure 3, the error-completion of the contract of the division
component, ψ2, is the same as before, and for component C we get:

ψ1 := EC(x2 ≥ z)[e/e1] ≡ in(x2 ≥ z)→ (x2 ≥ z ∧ ¬e1)
≡ (∃x2 : x2 ≥ z)→ (x2 ≥ z ∧ ¬e1)
≡ x2 ≥ z ∧ ¬e1

The serial composition contract in the error-complete domain is:

ψ := ψ1
e
ψ2 ≡ ∃e1, e2 : (x2 ≥ z ∧ ¬e1) ∧ (x2 �= 0→ ¬e2) ∧ (e = e1 ∨ e2)

≡ (x2 ≥ z ∧ ¬e) ∨ (x2 ≥ z ∧ x2 = 0 ∧ e)

≡ x2 ≥ z ∧ (¬e ∨ (x2 = 0 ∧ e))

We examine the two conjuncts of EC−1 separately:

∃e : ψ ≡ ∃e : (x2 ≥ z ∧ (¬e ∨ (x2 = 0 ∧ e)))

≡ x2 ≥ z ∧ ∃e : (¬e ∨ (x2 = 0 ∧ e)) ≡ x2 ≥ z

∀x2∀e : ψ → ¬e ≡ ∀x2∀e : (x2 ≥ z ∧ (¬e ∨ (x2 = 0 ∧ e)))→ ¬e
≡ ∀x2 : (x2 ≥ z ∧ (false ∨ (x2 = 0 ∧ true)))→ false

≡ ∀x2 : ¬(x2 ≥ z ∧ x2 = 0)

≡ ¬∃x2 : (x2 ≥ z ∧ x2 = 0)

≡ z > 0

Thus EC−1(ψ1
e
ψ2) ≡ x2 ≥ z ∧ z > 0, and if we hide the connected input x2

we get ∃x2 : (x2 ≥ z ∧ z > 0) ≡ z > 0 which is equal to φ1 
∗ φ2.
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3.3 Refinement in the ECI Domain

In the previous section we showed how to perform composition on the error-
complete domain. In this section we show that checking refinement of rela-
tional interfaces can be reduced to checking standard implication on their error-
completions.

Theorem 6. Let I1 = (X1, Y1, φ1), I2 = (X2, Y2, φ2) be two interfaces such that
X1 ⊆ X2 and Y1 ⊇ Y2. Then I1 � I2 iff EC(φ1)→ EC(φ2) is valid.

Proof. (only if) We repeat Formula (3) for convenience:

in(φ2)→
(
in(φ1) ∧ (φ1 → φ2)

)
We need to show that if Formula (3) is valid then(

in(φ1)→ (φ1 ∧ ¬e)
)
→

(
in(φ2)→ (φ2 ∧ ¬e)

)
(12)

is also valid. To show that Formula (12) is valid, consider a valuation a that
satisfies

(
in(φ1) → (φ1 ∧ ¬e)

)
∧ in(φ2). We need to show that a also satisfies

φ2 ∧ ¬e. Because a satisfies in(φ2) and Formula (3) is valid, a also satisfies
in(φ1) ∧ (φ1 → φ2). Because a satisfies in(φ1) and also

(
in(φ1) → (φ1 ∧ ¬e)

)
, it

also satisfies φ1 ∧ ¬e. And because it satisfies φ1 and φ1 → φ2 it also satisfies
φ2. Thus, it satisfies φ2 ∧ ¬e.

(if) We need to show that if Formula (12) is valid then Formula (3) is also
valid. It suffices to show that if the negation of Formula (3) is satisfiable then
the negation of Formula (12) is also satisfiable.

The negation of Formula (3) is

in(φ2) ∧
(
¬in(φ1) ∨ (φ1 ∧ ¬φ2)

)
(13)

The negation of Formula (12) is(
in(φ1)→ (φ1 ∧ ¬e)

)
∧ in(φ2) ∧ (¬φ2 ∨ e) (14)

Suppose a satisfies Formula (13). Notice that a is an assignment over variables
in X2 ∪ Y1. In particular, a does not assign a value to e. There are two cases:

1. a satisfies in(φ2) ∧ ¬in(φ1): We extend assignment a to assignment a′ over
X2∪Y1∪{e}, such that a′ sets e to true and keeps the values of a for all other
variables. Clearly, a′ satisfies the last conjunct ¬φ2∨e of Formula (14). Also,
because a satisfies the first two conjuncts of Formula (14) and because these
conjuncts do not refer to e, a′ satisfies them as well. Therefore, a′ satisfies
Formula (14).

2. a satisfies in(φ2)∧φ1 ∧¬φ2: As before we extend a to a′ but now a′ sets e to
false. It can be seen that this a′ satisfies the consequent of the first conjunct
and the last two conjuncts of Formula (14) and thus satisfies Formula (14).

Thus, in both cases Formula (14) is satisfiable. ��
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We can now fulfill our promise to explain why the error-completion transforma-
tion defined in [22] is not satisfactory. The definition given in [22] is:

ECstrict(φ) := (¬in(φ) ∧ e) ∨ (φ ∧ ¬e) (15)

Unfortunately, Theorem 6 does not hold if we replace EC by ECstrict. Intuitively,
this is because ECstrict is too strict. It requires that the error variable is true
when an input is given that does not satisfy in(φ). This demand goes against
the contravariant definition of refinement: a refinement of φ can accept more
inputs than φ. To give a concrete example, consider two interfaces I, I ′ with
contracts φ ≡ x > 0 and φ′ = true respectively. true accepts more inputs than
x > 0, therefore we have I ′ � I. Indeed if we consider the error-completions
ψ := EC(φ) and ψ′ := EC(φ′) we get:

ψ ≡ x > 0→ ¬e and ψ′ ≡ ¬e

and it is true that ψ′ → ψ.
However, if we consider the strict error-completions we get:

ψstrict := ECstrict(φ) ≡ (x > 0 ∧ ¬e) ∨ (x ≤ 0 ∧ e)

ψ′
strict := ECstrict(φ

′) ≡ ¬e

and it is not the case that ψ′
strict → ψstrict.

4 Discussion

4.1 Extension to Stateful

We first discuss how the ideas of error-complete interfaces can be applied in
the case of stateful interfaces. For the sake of brevity, we do this by means of
an example. Nonetheless, we are confident that the results in the paper extend
without problem to the general case of stateful interfaces.

¬(R∧S)∧¬Q ¬(R ∧ S) ∧Q

¬S ¬RS

R

R

S

Q

Fig. 6. Stateful interface example



372 S. Tripakis et al.

Stateful interfaces can be represented as extended automata whose states are
annotated with contracts. Figure 6 shows the stateful interface of an SR flip-flop.
An SR flip-flop has two inputs, S for set, R for reset, and an output Q which is
equal to the current flip-flop state. When neither S nor R are present, the flip-flop
maintains its state. When S is present and R is not, the output Q is set to true.
When R is present and S is not, the output Q is set to false. The combination of
both S and R being present is illegal; in that case, in real implementations, the
output depends on gate propagation delays, and hence it is considered an error
state. In the game interpretation of interfaces, after the environment decides on
the values of R and S, the interface will move to the correct state and produce
an output Q that satisfies the contract of that state.

Performing error-completion on stateful interfaces is straightforward: it
amounts to perform error-completion on the contract of every state. In the case
of the SR flip-flop interface shown above, it amounts to adding a new boolean
output variable e and modifying its two contracts as follows:

EC(¬(R ∧ S) ∧ ¬Q) ≡ in(¬(R ∧ S) ∧ ¬Q)→ (¬(R ∧ S) ∧ ¬Q ∧ ¬e)
≡ ¬(R ∧ S)→ (¬(R ∧ S) ∧ ¬Q ∧ ¬e)
≡ ¬(R ∧ S)→ (¬Q ∧ ¬e)

EC(¬(R ∧ S) ∧Q) ≡ ¬(R ∧ S)→ (Q ∧ ¬e)

4.2 Value-Completion

An alternative way to achieve a notion of error-completion is to introduce error
values in the domains of the original output variables, without adding new error
variables. Let us discuss this alternative.

Let φ be a formula over input and output variables X ∪Y . In this subsection,
we assume that Y is non-empty. For each variable v, let Dv denote the domain of
v, i.e., the set of all possible values that v can take. Let ⊥ be a new value, not in
Dv, for any v. Let D⊥

v := Dv∪{⊥}. The value-completion of φ is a formula VC(φ)
over X ∪Y , where every output variable y is assumed to range over domain D⊥

y .
VC(φ) is defined as follows:

VC(φ) := in(φ)→ (φ ∧
∧
y∈Y

y �= ⊥) (16)

As with EC(φ), it is easy to verify that VC(φ) is input-complete, for any φ.
For example, the contract φ ≡ (x2 �= 0 ∧ x2 · y = x1) has the following

value-completion:

VC(φ) ≡ x2 �= 0→ (x2 · y = x1 ∧ y �= ⊥)

Consider a value-complete formula φb. Interpreting φb as a relation, we can
define the inverse operation VC−1 which yields a formula over X ∪ Y , where
each output variable y ranges over Dy. VC−1(φb) will contain all valuations
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(aX , aY ) over A(X ∪ Y ), such that (aX , aY ) ∈ φb and if there exists a′Y such
that (aX , a′Y ) ∈ φb, then for all y ∈ Y , a′Y (y) �= ⊥. Formally:

VC−1(φb) := {(aX , aY ) ∈ A(X ∪ Y ) | (aX , aY ) ∈ φb ∧
∀a′

Y : (aX , a′
Y ) ∈ φb → ∀y ∈ Y : a′

Y (y) �= ⊥ }

We can show that VC−1 is a left inverse of VC:

VC−1(VC(φ)) ≡ φ

In a similar way that we used to define MECI, we can now define a space of
meaningful value-complete interfaces, or MVCI, which is a subclass of VCI, the
set of all value-complete interfaces. Doing so, we obtain a bijection, VC, between
RI and MVCI. We also have the bijection EC between RI and MECI. Therefore,
there exists a bijection between MECI and MVCI, which means that MECI and
MVCI are isomorphic. This is illustrated in Figure 7, which expands our previous
Figure 4.

RI ECI

MECI

EC

EC−1

VC

VC−1

VCI

MVCI

Fig. 7. Meaningful value-complete and error-complete interfaces

5 Related Work

Component-based design is one of the holy grails of computer science, and as
a result, a large number of compositional specification and design frameworks
exist in the literature. See, for instance, [21,1,15,17,4], and the related work dis-
cussion in [22]. As mentioned in the introduction, our work follows the approach
of interface theories [9,10], where specifications can be non-input-complete. This
is in contrast with other compositional theories such as I/O automata [16], FO-
CUS [5,6], and reactive modules [2], where specifications are assumed to be
input-complete.

Input-completion of finite automata is a folklore technique. Given a finite au-
tomaton with a partial transition function, input-completion consists in adding
one extra, non-accepting, state to the automaton, and directing all missing tran-
sitions to that state. This results in an equivalent automaton which accepts the
same language as the original one. Moreover, the resulting automaton has a
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total transition function, thus can be seen as being “input-complete”. Input-
completion can be adapted to interface automata [10] in a straightforward way:
add an error state, direct all missing inputs to that state, and add a self-loop
for any possible (input or output, and assuming no internal) action to the error
state. This transformation appears to correctly reduce the alternating refinement
relation between interface automata to a standard simulation relation, however,
we were unable to find a reference in the literature to corroborate this.

In the context of viewing programs as predicates or relations [19,14], the
question arises whether these relations should be total or partial. This question
naturally arises in sequential programs that contain “while” loops, and where
modeling program (non-)termination is a concern. The question has received a lot
of attention in the literature (see [18] for a survey) and has also generated some
controversy [13]. In this paper we accept as a fact that partial relations (i.e., non-
input-complete interfaces) are useful, so non-input-completeness is our starting
point. An extensive argument on the usefulness of non-input-completeness can
be found in [22], which also introduces the framework of relational interfaces
used in this paper.

Finally, as already mentioned in the introduction, the error-completion oper-
ator introduced in [22] is different from the one defined in this paper, which we
believe is the right one.

6 Conclusions and Future Work

We presented a set of transformations EC,EC−1, which allow to transform non-
input-complete relational interfaces into input-complete ones, so that compo-
sition and refinement can be computed using standard methods on the error-
complete domain. We emphasize that we do not propose error-complete inter-
faces as a new interface theory. We merely suggest them as convenient lossless
representations of non-input-complete relational interfaces, which can make com-
putation of composition and refinement easier.

Regarding future work, a number of algorithmic issues need to be resolved to
make the relational interface theory (with or without error-completion) practical,
including effective procedures for formula simplification and quantifier elimina-
tion. Another interesting question is raised in [22]: can feedback composition be
defined for general interfaces, rather than for a subclass of stateful interfaces?
This question remains open. Another issue is how to extend the relational in-
terface theory to liveness properties. Finally, value-completion also deserves a
more thorough study. In particular, it is not entirely obvious how to perform
value-completion on sink components, that is, those with no outputs.
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