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Abstract. In this paper, we propose a modeling framework of rational human 
actions in human-environment systems by evaluating probable human actions in 
physical and psychological dimensions. In the affordance theoretic perspective, 
an environment offers certain physical and psychological limitations to filter a 
finite number of feasible human actions that lead to desired system states in a 
spatio-temporal dimension. By integrating physical and psychological con-
straints in human decision making processes, a value-based Bayesian-
affordance model is proposed using Markov Decision Model. To this ends, two 
different types of filters, ‘F1’ and ‘F2’ are proposed, where ‘F1’ is a prefe-
rence-based numerical filter conceived at the planning level for psychological 
constraints and ‘F2’ an affordance-based numerical filter at the  execution lev-
el in which agent’s perception of physical action availability plays a big role. 
Finally, a simple example based on the proposed model is illustrated to verify 
the proposed framework and the analysis results are discussed. 

Keywords: Affordance, way-finding, dynamic programming, Markov Decision 
Process. 

1 Introduction 

Predicting human action is a challenging task, if not impossible due to many uncertain 
factors involving decision making of an agent [1]. However, the degree of difficulty 
can be tremendously reduced by acquiring more related information on the agent’s 
perceptions and understanding of environments, such as its belief, its purpose as well 
as its environment [2].   

According to Daniel Dennett, in his theory of intentional stance, predicting a rational 
agent is not somehow impossible task [2]. Predicting human action offers a boost in 
simulating human actions in space and time dimensions, which in turn provides a neces-
sary tool to understand   human-environment interactions. Gimblett et al. 1997  
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explains how human action simulation not only allows examining but also testing 
different observation of a system behavior [3]. 

Despite many theories suggesting the unpredictability of human action, within a 
given space and time, the environment tend to offer plenty of constraints that give less 
and less options and choices to the agent, therefore making it easier to predict proba-
ble human actions to reach his/her goal. In some of human-environment interactions 
such as way-findings, there is a clear and a stable goal and human tend to perceive 
action opportunities and different cues in a somehow a consistent way.  In this paper, 
action opportunities and constraints are modeled using the theory of affordance [4, 5] 
which will be discussed further in detail in section 2.  

Way-finding can be seen as a combination of human factors and environment fac-
tors where a human decision making is led by his or her perception of the environ-
ment. Arthur and Passini define wayfinding process as the combination of Decision 
making, Decision executing, and Information processing [6]. The wayfinding is 
heavily affected by the agent perceptual capabilities, fundamental information-
processing capabilities, previously acquired knowledge, and motor capabilities [7]. 

This research intend to assist designers or modelers of human-involved systems in 
understanding and mapping human decision process with respect to the environmental 
affordances therefore helping them to create effective and efficient cues to guide hu-
man in making appropriate decision. Furthermore, due to limitations of human expe-
rimentation, the resulting agent will be very useful tool in simulating human behavior 
in an environment that was otherwise impossible or inappropriate for real human 
experimentation.  

The rest of paper is composed as follows; in section 2,related works are briefly re-
viewed; in section 3, we present our model framework; in section 4, an example is  
given to illustrate the proposed framework; finally, a brief conclusion follows to wrap 
up the discussion.  

2 Related Works 

2.1 Affordance Theory and Human Decision Modeling 

The word affordance was first introduced by Gibson in 1979 to refer to the environ-
ment property that provides or furnishes the animal to take an action, either for the 
good or ill of the system [4]. Since its introduction, the affordance theory got a lot of 
attention from researchers in various field such as artificial intelligent, usability, etc. 
[8-10], however, less has been done to incorporate it in human decision modeling. Joo 
et al. developed Conceptual Framework for Affordance-Based Simulation of Human 
Behavior using Finite State Automata (FSA) [11]. Whereas Joo et al. deeply consider 
the agent-environment interaction; there is no much focus on the agent abilities and 
preferences, therefore leading every agent in making exactly same choice. Chris et al. 
presented a Bayesian goal inference model, in which a Markov decision process was 
used to approximate action probabilities [12], however, among others, a systematic 
description of agent and environment interaction was given little attention.  
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3 Modeling Framework 

Rational agent are assumed to choose the most cost effective way to achieve a goal; 
however, limited information and different uncertainties within the agent environment 
makes it harder for the agent to effectively choose the optimal path to reach the in-
tended goal. Due to these uncertainties, the agent makes a decision using the available 
information and updates his/her choices along the execution process when new infor-
mation is revealed along the process [13]. 

To further understand, let’s consider a system that consists of a human in a multi-
story building. In this system, we consider the floors as states of the system from 
which a human transit to another state (floor) by taking series of relevant actions. The 
actions can include: walking, running, taking an elevator, taking an escalator, jump, 
use a rope and so on. A rational agent choice of action usually correlates with the 
cost-effective way of reaching the goal. Agents encounter different types of costs 
while trying to reach a goal [14]. The computational model for representation of ra-
tional human agents should include the formal process of incurring a goal-directed 
and perception-based action as shown in Fig 1.  

 

 

Fig. 1. Action selection process frameworkAction Selection- Physical Domain 

We define an environment as anything not intrinsic to the agent, within the system. 
Within the system, there is an interaction between an agent and an environment. Ac-
cording to theory of affordance, this interaction is the essence of action and result in 
the changing of the agent’s state. Agents are believed to have belief and desires [2]. 
These beliefs and desires differentiate one agent to another, and they do not only de-
termine the agent’s goal (g) but also its inner resources that lead the agent to choosing 
an action.  As it is defined in the Markov decision process; our agent gets a reward 
r(t) for performing action a(t) and reaching state s(t+1) from state s(t). C(a) is the cost 
it takes an agent to take action a.  

Using dynamic programming we assign optimal value to each state based on the 
optimal policy. A policy is a mapping of action to state. Since the agents are assumed 
to be rational, the probability of choosing an action is proportional to Q, the expected 
value of taking the action. In the proposed model, the agents make a finite number of 
steps to reach the goal. Let π be the best policy to reach the goal with the maximum 
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total reward ߨ.ݎ maps the series of actions that minimize total cost from the current 
state to the goal state, ߨ: ݏ א ܵ ՜ ሻݏሺߨ א  where ܵ denotes the set of states of the , ܣ
system, and A denotes the set of available actions.  By following the optimum policy 
the value of state s will be 

   

ேܸగሺݏሻ ൌ ෍ ,௧ݏሺݎగሾܧ ܽ௧|ݏ଴ ൌ ,ݏ ݃, ሻሿ௧ୀேିଵ௧ୀ଴ݓ  

, where: ேܸగሺݏሻ: The expected value of state s  given that he executes policy ݏ ,ߨ௧: State at time t, ݃: Agent’s goal, ݓ: Environment state, ܽ௧: Agent action at time t, and ܰ: Finite number of steps to reach the goal. 
 
While in state ݏ, an agent can choose any available action within the state. To better 
understand the value of action a in state s,ܳగሺݏ, ܽ|݃,  ሻ  is defined, which is theݓ
expected value when starting from s executing action a  and then follow policy π 
afterwards. ܳగሺݏ, ܽ|݃, ሻݓ ൌ ,ݏሺݎ ܽሻ ൅ ∑ ,ݏ|௧ݏሺ݌ ܽ, ݃, ௧ሻ௦೟ݏሻܸగሺݓ . Since we consider 
our agents to be rational at a given degree, the probability P (a) to choose a given 
action in a given state will be proportional to its action-value of ܳగሺݏ, ܽ|݃,   .ሻ [15]ݓ

3.1 Action Selection-Psychological Domain 

In 1956, Simon argued that people are satisfied with a good enough solution that ap-
proximate the accuracy of optimal algorithms without placing too heavy demand on 
the cognitive system [16], which mainly refers to the effect of psychological cost on 
human decision making. After rating different actions based on physical cost, the 
proposed model employs the psychological factors of preference as filters in the pro-
posed framework of human action selection model. These filters use the subjective 
perception and interpretation of environmental affordances as well as the effectivity 
of the agent, not only in the planning level but also at the execution process. 

Planning Level. The planning level filtration is an expected affordance-based psy-
chological filtration of activities required to create a desired goal on some scale. By 
considering each action in the database of actions, each action is given a binary score 
i with respect to both affordance and effectivities. For example, for an agent consi-
dering climbing stairs, his binary score on effectivity is 1 if he has physical ability to 
climb and the affordance score is 1 if there are stairs on which climbing is possible. If 
the stairs had missing steps, that makes it impossible for an agent to climb, the rating 
score would be 0 instead 1 for the affordance. It is important to understand that at the 
planning level, both affordance and effectivities are imaginary and approximated 
through different cues and prior experiences without a direct perception.  

Among the possible actions, some are more affordable than others due to not only 
the energy or time spent performing these actions but also to different level of  
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meditation [16]. In this sense, the meditation level is applied to model a function of 
stress, attention, or any other mental or emotional cost associated with taking any 
given action. Using the expected meditation level, the agent filters the available action 
using ܨଵ, which is a numerical filter representing possibility to choose an action at the 
planning level. Let ݌ଵ be a numerical score to denote the complexity of performing a 
given action a in a given environment. In other words, ݌ଵ denote how mentally easy 
to perform a given action in a given environment within a given state. In the proposed 
model, ݌ଵ takes a continuous value from 0 to 1. Thus, more mentally challenging 
actions get relatively lower rating. The lower the stress, the higher the value of p, thus 
a stress-free state would mean p valued nearly to 1. As specified earlier, ܨଵ  is a 
product of not only the environment score but also the agent score with respect to a 
given action. In our model the agent score is denoted by ݍଵ.  ݍଵ denotes the agent  
relative level of expertise, skill, risk taking behavior and other  subjective advantage 
or disadvantage in terms of taking a given action in a given state and a given envi-
ronment state. Before determining the value of ݍଵ a reference agent should be deter-
mined by which other agents must be compared to. The reference agent should be a 
typical agent with characteristics of an average agent and its ݍଵ  value should be 0.5. 

ଵܨ  ൌ ݅. .ଵ݌ ,ଵݍ where (1) 

 ݅=ቄ1 ݂݅ ݁ݏ݅ݓݎ݄݁ݐ݋                                                                                                 0ݏ݁݅ݐ݅ݒ݅ݐ݂݂ܿ݁ܧ  ݁ܿ݊ܽ݀ݎ݋݂݂ܽ ݋ݐ ݐݎݓ ݈ܾ݁݅ݏݏ݋݌ ݏ݅ ݊݋݅ݐܿܽ ݄݁ݐ, and 

,ଵݍ               ଵ݌ א ሾ0,1ሿ. 
Incorporating the filter into the cost based selection gives us the new action probability. 

 P(a)=P1.F1. (2) 

Execution Level. An agent does not necessarily follow the path conceived in the 
planning level; instead, he/she may adapt to the real situation by updating his/her 
decision based on updated information. In the planning level, human agents expect 
specific action opportunities that might help them to reach the goal state in the imagi-
nary spatial-temporal dimension. However, a real action opportunity of the affor-
dance-effectivity dual is only available in a certain space and time. The expected  
environmental situation can change and it inevitably makes the agent change the plan 
to reach the goal state frequently. To account the change between the expected envi-
ronment and the real environment, the agent applies the second filter ‘ܨଶ’, which in-
corporates the agent’s real-time perception of environmental affordance as opposed to 
the expected affordance in the planning level. When the expected action opportunity 
conceived at the planning level matches the real time affordance, the agent should 
stick to the decision made in the planning level. Therefore ܨଶ must penalize any 
action for which the existence of affordance-effectivity dual is less probable than 
expected. Also, ܨଶ must promote the actions for which the affordance-effectivity 
duals are more probable than expected. Similarly, ܨଶ is defined as follow: 

 F2=i. pଶ. ୮మ୮ ଵ , where (5) 
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݅ ൌ ቄ1 ݂݅ ݌ ,݁ݏ݅ݓݎ݄݁ݐ݋                                                                                                 0ݏ݁݅ݐ݅ݒ݅ݐ݂݂ܿ݁ܧ  ݁ܿ݊ܽ݀ݎ݋݂݂ܽ ݋ݐ ݐݎݓ ݈ܾ݁݅ݏݏ݋݌ ݏ݅ ݊݋݅ݐܿܽ ݄݁ݐଶ ൌ ଶݍ and ,݃݊݅ݐܽݎ ݁ܿ݊ܽ݀ݎ݋݂݂ܽ ݈ܽ݁ݎ ൌ  .݃݊݅ݐܽݎ ݕݐ݅ݒ݅ݐ݂݂ܿ݁݁ ݈ܽ݁ݎ
 

Let ܲሺܽሻ  denote the probability of a given action at the planning level. ܲᇱሺܽሻ~ܲሺܽሻ.  .ଶ, where ܲᇱሺܽሻ is the action probability at the execution levelܨ

4 An Illustrative Example 

For verification of the proposed model, we illustrate two different environment states 
separately in the analysis of the multi-story building. 

4.1 Optimum Policy 

In this illustration we consider a policy as any combination of action-state that result 
in reaching the goal. For example, for an agent in 4th floor whose goal is to exit the 
building, taking an elevator to the first floor and then exit the building can be consi-
dered as one of the policies. Fig 2 illustrates few possible policies. A policy is optimal 
if and only if it reaches the goal while maximizing total rewards; in our case, mini-
mizing the total cost of reaching the goal.  
 

 

Fig. 2. Policy options 

For each policy ߨ௜ሺsሻ there is an associated value ܸగሺݏሻ which is the function of 
rewards collected throughout the process to reach the goal. In this illustration we ex-
press the rewards in function of the total cost of reaching the goal following 
cy ߨ௜ሺsሻ.  ܸగሺݏሻ is inversely proportional to the cost function. Let  ܿ௜ be the cost of 
reaching the goal following the policy ௜ሺsሻߨ ௜ሺsሻߨ . ൌ ௢௣௧௜௠௔௟ሺsሻߨ  if and only 
if  ܿ௢௣௧ ൌ  ሺ ܿ௜ሻ for all ݅. In this stage, dynamic programing algorithm is used to ݊݅ܯ
assign the optimal policy to each state as well as the associated values. Based on the 
optimal values of each state obtained following a given policy, the agent compute 

 
 
 
 
 
 
 
 
 
 
 

  
Elevator WalkElevator Walk

  Walk WalkWW
 

Stairs 
 

Elevator 

…
 

…
 

……

… 

kkkk

  



 Bayesian Affordance-Based Agent Model 303 

ܳగሺݏ, ܽ|݃, -ሻ which is the expected value when starting from state, s, executing acݓ

tion a and then follow policy )'(s
i

π   afterwards. 

4.2 Normal Working Environment 

We consider the building floors as state of the system and the exit being the final state 
which is the goal in this case. First of all, we compute the cost of taking a given action 
from a given state in a given environment. Only three states are considered in this 
example: 5th floor, 1st floor and goal which is to exit the building. The following 
table shows the energy cost as well as the time required to perform a given action 
from 5th floor. It was computed based on little references1and intuition. 

Table 1. Cost of action 

Action Time Energy Cost  ࢖ሺܛ/′ܛ,  ሻ܉

,ࢍ/ࢇ૚ሺࡼ ࢙, ࢝ሻ 

Take stairs 1min 10 Cal 2 1  0.089766607 
Take  elevator 30sec 1 Cal 0.1 1  0.897666068 
jump 5 sec 1 Cal 0.016667 0.001  0.010771993 
Use a rope 2min 200 Cal 80 0.8  0.001795332 

 
Since time and energy have different units, it is hard to add up the total cost in or-

der to compare different actions. A clear research on agent indifference curve for time 
and energy is needed to better decide their weight in the cost function. In this illustra-
tion, the cost is the product of both time and energy where 30 seconds of time and 10 
calories of energy are both equivalent to one unit of cost. Using the cost value we 

compute the  
πQ  value of every available action. The reward of performing an ac-

tion is proportional to the probability of reaching the next state and inversely propor-
tionally to the cost. The action probabilities based on the physical cost of performing 
the action are stored in Table 1. As discussed earlier, psychological cost also play a 
major role in this probability distribution, as shown in Table 2. 

Table 2. Psychological filters –Normal environment 

Action p1 i q1 F1 
Take elevator 0.9 1 0.5 0.4 
Walk Stairs 0.8 1 0.5 0.45 
Jump 0.01 1 0.5 0.005 
Use a rope 0.3 1 0.5 0.15 

 
Recall that p1 denotes how mentally easy to perform a given action in a given en-

vironment whereas q1 denote the agent relative level of expertise, skill,  risk taking 
behavior and other  subjective advantage or disadvantage in terms of taking a given 
action in a given state and a given environment state. Note that the ratings given in 

                                                           
1 http://www.healthstatus.com/calculate/cbc 
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Table 2 are for a reference agent. The ratings are intuitive in this illustrative example. 
By using our model framework, the action probabilities are depicted in the chart be-
low. Despite being hard to know the real probability in real life situation, it is still 
understandable to assume that more than 90 percent of people in 5th floor will plan to 
take an elevator when they are trying to exit the building. At the execution level, the 
probability may change depending on the real situation. For example if there are 
many people waiting for the elevator, some people may opt to take stairs instead of 
waiting for the elevator. Similarly, in case of unexpected emergency like fire, F2 must 
be used to adjust the new and real situation as discussed in the next section. 

4.3 Evacuation in Emergency 

In case of fire emergency, an agent must figure out the right action given the urgent 
and dangerous environment. While taking an elevator was safe in the normal situa-
tion, in case of emergency, taking an elevator, becomes more risky, which explains 
why F1 in both environment must differ as shown in Table 3, since the underlying 
psychological cost is different. 

Table 3. Psychological filters –Fire emergency 

Action p1 i q1 F1 
walk the stairs 0.8 1 0.5 0.4 
take an elevator 0.2 1 0.5 0.1 
jump 0.1 1 0.5 0.05 
Use a rope 0.4 1 0.5 0.2 

 
As shown in Fig 3, in case of fire emergency, the majority of people obviously use 

the stairs as expected. In emergency situation F2 plays a major role since there is a 
big gap between information available to the agent at the planning level and the real-
time information. For example, the location of the fire and its propagation speed will 
certainly affect the agent action selection and F2 ensures that the real-time informa-
tion is incorporated into the proposed model. F2 
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5 Conclusion 

Although affordance theory has explained much of goal-directed and perception-
based human actions within environments, it has been a different story to build a 
computational model based on the theory of affordance to represent human behavior 
in the system. Thus, in this paper, we propose a Bayesian affordance-based model for 
human decision making behavior for representation of a rational agent. The model 
uses MDP to estimate action-state values for the optimal policy while different affor-
dance-based filters are used to capture the possible actions at the planning level as 
well as the execution level. In the execution level of the action taking/decision mak-
ing process of the human agent model, the state transitions (human actions) are prob-
abilistically occurred based on the state values as well as series of affordance-based 
numerical filters which are a preference-based numerical filter of F1 in planning level 
and physical filter of F2 in the execution level. The model is expected to mimic ra-
tional human behaviors and to be used for agent-based modeling and simulation of 
human-included complex systems. From the planning level to the execution level, the 
proposed framework covers dynamic decision making processes with consideration of 
MDP for planning level and affordance-based model for execution level. We adopt 
the probability based action selection model to present the uncertainty of human ac-
tions within the dynamic environments. 

A simple numerical illustration has been used to explain our model. The illustrative 
example shows how the proposed framework can work with MDP and affordance 
concept in the planning and execution levels. We confess that the model has not been 
validated and tested in real situation. However, we still think that the proposed model 
can be used to investigate the influence of human-involvement into the system and 
show the effect of interactions among the system and human agents under dynamic 
and uncertain situations. In this regard, we are planning to build a more sophisticated 
illustrative example using agent-based simulation, and validate it to the real life situa-
tion (e.g., building evacuation under fire) in the future.  
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