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Abstract. Dysarthria is a set of congenital and traumatic neuromotor
disorders that impair the physical production of speech. These
impairments reduce or remove the normal control of the vocal articu-
lators. The acoustic characteristics of dysarthric speech is very different
from the speech signal collected from a normative population, with rel-
atively larger intra-speaker inconsistencies in the temporal dynamics of
the dysarthric speech [I] [2]. These inconsistencies result in poor audible
quality for the dysarthric speech, and in low phone/speech recognition
accuracy. Further, collecting and labeling the dysarthric speech is ex-
tremely difficult considering the small number of people with these dis-
orders, and the difficulty in labeling the database due to the poor quality
of the speech. Hence, it would be of great interest to explore on how to
improve the efficiency of the acoustic models built on small dysarthric
speech databases such as Nemours [3], or use speech databases collected
from a normative population to build acoustic models for dysarthric
speakers. In this work, we explore the latter approach.

1 Introduction

Dysarthria [4] is a speech disorder due to a brain, nerve or muscle damage
resulting in lack of control on the muscles of tongue, mouth, larynx or vocal
cords that produce speech. The muscles may be weak, completely paralyzed,
or the coordination between them might have failed. The speech of dysarthric
patients is poorly audible, improperly pronounced, or without any rhythm or
speed and of very poor quality. Due to the poor quality of dysarthric speech data,
the performance of a speech recognition system build on speech data collected
from the normative population will be very bad.

In most kinds of motor speech disorders articulatory gestures are typically
slow, even when the speaking syllable rate is faster than normal as in the case of
dysarthria associated with Parkinsons disease [I]. Speech temporal impairments
can include unclear distinction between adjacent phonemes due to imprecise
placement of articulators, slower speech rates, and rhythmic disturbances, to
name a few [2]. Thus, it may be seen that the distorted temporal dynamics
of the speech signal is one of the important reasons that causes degradation
in the quality of dysarthric speech[2]. Further, it is also observed that formant
trajectories of dysarthric patients are inconsistent across repetitions [I].
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There are many difficulties in building a good quality acoustic model for
dysarthric speech:

1. Collecting large dysarthric database is extremely difficult, due to the small
percentage of the population with this disorder.

2. Labeling dysarthric speech is extremely difficult due to the poor quality of
the speech signal.

Yet, the importance of acoustic models for computer assisted recognition of
dysarthric speech is no less important. Usually, people with dysarthria needs
treatment from specialist clinics, mainly for the therapy sessions to improve
the patient’s speaking skills. Often, this means traveling long distances for the
therapy. A good quality acoustic model, and fairly reasonable recognition accu-
racy can help build low cost computer assisted therapy tools for the dysarthric
patients.

Since it is difficult to get large dysarthric speech databases for languages
across the world, it would be of great interest if we can build acoustic models
using speech databases of the normative population, and then transform these
models to dysarthric speech for improved performance.

2 Maximum A Posteriori (MAP) Adaptation

Maximum a posteriori adaptation(MAP)[5] can be used for adapting the existing
phone models. MAP is a speaker independent adaptation technique. It uses prior
knowledge about the model parameters to adapt the present models. In this
approach, model parameters are estimated and modified in such a way that
the likelihood of the adaptation data to be generated by the adapted model is
maximized. In MAP, the model parameter estimate is considered as a random
variable, which has prior probability distribution. Using this prior probability,
we calculate the posterior probability, the maximum posterior probability is
considered as the adapted model estimates. The new model with adapted model
parameters are generated with the MAP estimate, utilizing the knowledge about
the prior parameters, weights and the adaptation data.

The update formula for a single stream system for state j and mixture com-
ponent m is,
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where 7 is a weighting of the a priori knowledge to the adaptation speech data
and N is the occupation likelihood of the adaptation data, defined as,
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The amount of adaptation data required for MAP adaptation is relatively high.
The performance goes down as the amount of adaptation data available becomes
less. In this work the MAP adaptation is performed for the phone models trained
on the speech data collected form normative population feeding sufficient amount
of the adaptation data collected from dysarthric patients.

3 Maximum Likelihood Linear Regression(MLLR)

Unlike MAP adaptation, Maximum Likelihood Linear Regression(MLLR)[6]
needs relatively less amount of adaptation data, and is usually used for speaker
adaptation of the speaker independent acoustic model. In this technique, the
parameters of the speaker independent (MAP adapted) phone models are mod-
ified based on the linear transformation (regression) matrix . MLLR adaptation
makes use of the available adaptation data to formulate the regression matrix.
This regression matrix is calculated and refined using the forward-backward al-
gorithm [7] and it maximizes the likelihood of the adaptation data.

A particular distribution, s, is characterized by a mean vector, pus and a co-
variance matrix Cy. Given a parameterized speech frame vector o, the probability
density of that vector being generated by distribution s is bs(0)
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where n is the dimension of the observation vector.
The adaptation of the mean vector is achieved by applying a regression matrix
W, to the extended mean vector &, to obtain an adapted mean vector (i,

,Ujs - ngs (5)

where Wy is an n x (n + 1) matrix which maximizes the likelihood of the adap-
tation data, and & is defined as

gs = [wnula“'nu’ny (6)

where w is the offset term for the regression.
For distribution s, the probability density function for the adapted system
becomes
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In our work, we use MLLR technique to adapt only the mean vectors of the
MAP adapted phone models as it requires relatively less training data compared
to adapting mean, variance and mixture weights.

4 Experiments and Results

Our baseline system uses mel frequency cepstral coefficients(MFCC), with zero
mean subtraction, and delta and acceleration coefficients appended. We use 13
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MFCC coefficients, and this makes the total number of features in the acoustic
model to 39. For training the acoustic models, we split the data speakerwise into
training and test set. Training data consisted of data from speakers, BB, BK, BV,
FB, JF, KS, LL. Speakers MH, RK, RL, and SC are used for testing. 20 per cent
of the speech from every speaker is used for adaptation of the acoustic models,
and the remaining 80 per cent for testing. Nemours database is phonetically
transcribed using the TIMITH transcriptions. The database is recorded at 16
kHz. Acoustic models trained on the training data are MLLR adapted using the
adaptation data to generate the speaker dependent acoustic models. For small
amounts of adaptation data, MAP adaptation was seen to be ineffective, and
hence not MAP adaptation was not performed on this acoustic model. Table 1
lists the phone recognition accuracy of the acoustic model trained on Nemours
data and tested on Nemours data, with and without adaptation.

Table 1. Phone recognition accuracy of the baseline acoustic model trained using the
TIMIT, and Nemours databases on the Nemours test set

Train data Adaptation Accuracy

NEMOURS NO 31.83%
NEMOURS MLLR 36.31%

Next, we built another acoustic model using the TIMIT database, recorded at
16 kHz desktop quality speech. We then MAP adapted this acoustic model using
the Nemours training data to transform the acoustic model from the normative
population feature space to the dysarthric feature space. It was observed that
the performance of the MAP adapted acoustic model is better than the baseline
acoustic models trained using the Nemours database. Fig.1 illustrates schemat-
ically how different adaptation techniques are applied on the baseline system
built using the TIMIT database. Table 2 lists the performance of the acoustic
model trained on TIMIT, when tested without any adaptation, and with MAP,
and MAP+MLLR adaptation using the Nemours data.

Table 2. Phone recognition accuracy after MLLR adaptation

Train data Adaptation Accuracy
TIMIT NO 29.69%
TIMIT MAP 32.67%
TIMIT MAP + MLLR 39.61%

It may be noted from Tables 1 and 2 that training the acoustic model on speech
data from a normative population, and adapting the models to the dysarthric
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speech is better than training the models on the dysarthric speech. This is per-
haps due to the ability of the acoustic models built using TIMIT to learn the
consistent aspects of the speech better than the acoustic model trained using
the Nemours database. Subsequently, adaptation transforms the models to the
Nemours feature space for improved performance.

Train HMM-GMM MAP adaptation MLLR adaptation Test using
models on TIMIT using NEMOURS using NEMOURS NEMOURS test
data train data adaptation data data

Fig. 1. Sequence of model training, adaptations and testing

All phone recognition experiments in this work are performed using a phone
loop without using any language models. All phones has three states each, and
evry phone state use 64 Gaussians to model the probability distribution, as this
was found to be the optimum configuration empirically. No Gaussians are shared
between phone states [8][9].

It may be noted that the performance of the acoustic models may be further
enhanced by using bigram/trigram phone language models, or performing the
experiments for word recognition with word language models. Using triphone
acoustic models also may considerably enhance the phone recognition accuracy
of the acoustic models.

5 Conclusion

Dysarthric phone/speech recognition has always been very challenging mainly
due to the unavailability of enough amount of well labeled speech data, and the
poor quality of the dysarthric speech. Often getting a labelled dyarthric speech
database for many of the world languages is extremely difficult, if not impossible.
It would be of great interest to explore building acoustic models using speech
from a normative population that is much easily available, and then adapt these
acoustic models using a small amount of dysarthric speech. It was seen that for
small amounts of speech data, it is advantageous to train acoustic models on
speech from a normative population and then adapt the acoustic models to the
dysarthric feature space. By doing this, we may be able to get an improved phone
recognition accuracy over a phone recognition system built on the dysarthric
speech alone.
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