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Abstract. Advanced Driver Assistance Systems (ADAS) operate more
and more autonomously and take over essential parts of the driving task
e.g. keeping safe distance or detecting hazards. Thereby they change the
structure of the driver’s task and thus induce a change in driver’s behav-
ior. Nevertheless it is still the driver who is ultimately responsible for the
safe operation of the vehicle. Therefore it is necessary to ensure that the
behavioral changes neither reduce the controllability of the vehicle nor
the controllability of the hazardous events. We introduce the Threshold
Uncertainty Tree Search (TUTS) algorithm as a simulation based ap-
proach to explore rare but critical driver behavior in interaction with
an assistance system. We present first results obtained with a validated
driver model in a simple driving scenario.

Keywords: Guided Co-Simulation, Driver Model, Hybrid Simulation,
Risk Analysis, Monte Carlo.

1 Introduction

ADAS have a strong impact on the behavior of drivers and the controllability of
vehicles and thus it needs to be demonstrated that the use of an ADAS does not
reduce the controllability. The European Code of Practice for the Design and
Evaluation of ADAS [4] proposes in more details, how to address these issues dur-
ing the system development process. It recommends empirical experiments with
human drivers as primary instrument for the evaluation process. Unfortunately
these experiments are often time consuming and costly. Another option, which
is proposed in this paper, is to use a model based approach which integrates
executable models of environment, driver and ADAS into a co-simulation.

Although the driver model we use is only an abstraction and does not cover
all aspects of human behavior, it still provides some advantages for speeding
up the evaluation process. First of all, replacing the human driver by a driver
model enables a fully automated simulation and thus a huge amount of different
situations can be evaluated in a short amount of time. Such an approach can be
useful during an early evaluation phase to identify scenarios which may deserve
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Fig. 1. Setup for the guided simulation as used for the present work

a more detailed analysis by doing experiments with human subjects. Another
important issue addresses the risk assessment of the ADAS. Since risky situations
are typically very infrequent and the number of tests in empirical experiments
is limited, rare events are normally not observed. This issue can be addressed
by doing large numbers of simulation as it increases the probability of observing
rare events. But performing pure Monte Carlo simulations is not very efficient
for this matter, because the largest amount of simulation samples show typically
non-critical and mostly similar behavior. As risk assessment is not interested
in the average behavior, we present in this paper a heuristic algorithm that
guides the simulated driver behavior into critical situations. We furthermore
present a first evaluation study of our guided simulation approach. It utilizes a
driving simulator study that was conducted with 17 human drivers. Data of this
experiment were used to create a cognitive driver model. Human participant and
driver model have to interact with an in-vehicle system while driving. We used
the TUTS algorithm to guide the driver model behavior into critical situations,
where it may hits the pillar of a bridge.

2 Simulation Infrastructure

We propose to use closed-loop simulations of the driver-vehicle-environment sys-
tem to support the analysis of newly introduced in-vehicle systems. A high-level
view on the connection of the driver model, the driving environment and the
simulation guide based on the TUTS algorithm is shown in Figure 1. The guide
is application independent and is thus not aware of what kind of simulation
model it is guiding. In the setup used in the present work, it only guides the
behavior of the driver model and not the environment. The driver model, which
we employ in our experiments is created using the Cognitive Architecture for
Safety Critical Task Simulation (CASCaS). Cognitive architectures are a means
to simulate human behavior in a psychologically plausible way. The objective of
CASCaS is to supplement the development process of new assistance systems
with the possibility of a virtual-human-in-the loop simulation in early design
phases. To account for the variations in human behavior, a lot of processes in-
volved in CASCaS contain probabilistic elements (PEs). The TUTS algorithm
adjusts the PEs in order to simulate rare behavior. We will give a brief overview
on CASCaS and some of its most important probabilistic elements. For more
detailed information see [6].

CASCaS is a hybrid architecture consisting of a set of components which
are related to different aspects of the human behavior. Like most other CAs,
CASCaS simulates goal oriented human behavior. Multitasking is achieved by
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switching between a set of task goals. A scheduling algorithm dynamically selects
in a probabilistic manner from a set of weighted goals the current goal to be exe-
cuted. The main knowledge processing unit of CASCaS is based on a rule engine,
which probabilistically selects from a set of weighted rules in a similar manner as
the goal selection algorithm. The rules describe how the cognitive model solves
its tasks and achieves its goals. Beyond the selection between finitely many dis-
crete choices, CASCaS also makes use of continuous probability distributions.
For a realistic timing of different processes like hand and eye movements or fix-
ation durations, CASCaS adds noise to the calculated durations. The noise is
drawn from continuous probability distributions.

3 Threshold Uncertainty Tree Search

In safety-critical environments critical situations are often associated with ex-
treme behavior, which shows up very rarely. Exploring the model behaviour for
these rare situations using a pure MC approach is very inefficient. Hence Puch,
et al. [3] introduced a concept of an algorithm, that probabilistically guides the
simulation into critical situations. We applied this algorithm to the driver model
use case presented in section 4. Unfortunately the search speed was very unsat-
isfying. We elaborated on this aspect and present now as a result the Threshold
Uncertainty Tree Search (TUTS) algorithm. TUTS is Monte Carlo-based, mean-
ing that it repeatedly simulates a scenario starting from some initial state, while
taking different probabilistic choices. Let S be the set of reachable states and
S0, St ⊆ S sets of initial states respectively terminal states which all satisfy a
user defined initial condition respectively termination condition. Each simulation
run starts in an initial state and stops once a terminal state is reached.

The simulation model (in this case the CASCaS driver model) has to make
several choices for all probabilistic elements, that occur during simulation, e.g.
the probabilistic selection of a goal. PEs can be divided into two classes: discrete
probabilistic elements (DPE) and continuous probabilistic elements (CPE). A
DPE ed is associated with a categorical distribution for a finite set of options
denoted by Oed . A CPE ec is associated with a continuous probability density
function (PDF) denoted by fec . We initially assume, that the simulation model
only contains DPEs and no CPE. Given an initial state s ∈ S0 the model behavior
b can be characterized by the sequence of probabilistic events b = o1, o2, . . . , onb

,
with oi being the option taken at the i-th event and nb being the number of events
that occur until a terminating state is reached, which might vary for different
behaviors. By starting in the same initial state and taking the same sequence of
options in different simulation runs, we obtain deterministic behaviors. We call
a guidance algorithm with this property a deterministic guidance.

The left part of Figure 2 illustrates an event tree, that was derived by taking
successively different available options during multiple simulation runs. Because
CASCaS contains many different processes with probabilistic elements, each be-
havior typically contains a great number of options. This results in very large
event trees, because the tree size increases exponentially with its depth.
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Fig. 2. Only considering events at the gray nodes strongly reduces the event tree

The size of the event tree can be reduced drastically by only considering a
subset of important PEs. Let us consider that we are only interested in the
events of some PEs that occur in the gray-marked states in Figure 2. The guide
will not consider the events of other PEs, which leads to a smaller graph shown
in the right part of the figure. This however introduces the problem, that the
same sequence of options on two different simulation runs results in the same
path of the event tree although the model behavior might differ. Thus the guide
is no longer deterministic. If the ignored PEs contribute only marginally to the
behavior of the agent, we expect that the observed behaviors in one node are at
least similar. Thus a node of the event tree represents a class of similar driving
behavior. In section 4 we analyze the similarity of driving behavior within nodes.

In order to deal with CPEs a further source of variance is introduced. Each
CPE ec is discretized by splitting fec into a set of q PDFs with equal probability
density. The guide selects one of these PDFs and draws a random value, which
introduced additional variance. See [3] for details.

In order to drive the model into interesting situations, the TUTS algorithms
requires a user defined function, which returns a numerical measure of the criti-
cality c̃ for each simulation run, e.g., the minimum time-to-crash value observed
during the simulation run. A user defined threshold τ is used to define the level
that separates the acceptable and unacceptable critical situations. The TUTS
algorithms attempts to guide the simulation into a region close to the threshold
of acceptable and unacceptable situations. Let C(s) be the set of criticality
values, that have been observed in all simulation runs, which passed the node s.
Consider the event tree on the right side in Figure 2. Being in node s0 the guide
should choose an option (o1 = 0 or 1), that most likely results in a criticality
close to τ . We measure the closeness to τ in standard deviations according to
the distribution of C(s), by calculating the z-score of τ :

z(s) =
τ − μ(C(s))

σ(C(s))
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To increase the likelihood of observing a criticality of τ when passing s, the
guide should prefer options which lead to small absolute z-scores. This is done
in a probabilistic way by weighting all options, that the guide can select. A
weight w(s) is defined for each node s. With S′

s the set of child nodes of s are
denoted. These are the nodes that are reached when selecting an option in state
s. The function t : S,O −→ S defines the parent-child relationship. t(s, o) gives
the node, that is reached when option o is selected while in node s. The guide
uses the weights of the nodes to probabilistically select from the current set of
options Õ. The probability of selecting option o ∈ Õ if the current node is s:

P(o) =
w(t(s, o))

∑

p∈Õ

w(t(s, p))
(1)

This means that options that leads to highly weighted states are selected with
higher probability. Therefore the states with low z-values should have high
weights. The weights are defined by:

w(s) =
1

(z + 1)f(sp)
(2)

Unless s has been visited twice, σ(C(s)) does not exist and z is undefined.
Therefore, if any selectable child node has not yet been visited twice, the guide
selects one of these randomly. In this way the guide explores each branch at least
two times. The f(sp) exponent is used to adjust the weights the more confidence
is gained about the distribution of criticality values in C(s). Let sp be the parent
node of s. Thus each sibling uses the same exponent.

Especially for nodes at the top of the event tree the variance of criticality
values σ(C(s)) is high and sibling nodes often have similar mean values μ(C(s)).
These nodes are at the beginning of the simulations. Many subsequent decisions
influence the criticality of a simulation. This results in high variances and in
uncertain mean values for early nodes. In order to take the uncertainty about
the z-values into account the function f is used. This function should rise with the
certainty of the z-values. This leads to a spreading of weights, the more confident
the z-values are. For our use case scenario we used a simple definition of f that
creates identical values for the set SÕ = {t(s, o)|o ∈ Õ} of all sibling nodes, that

can be reached with the current set of options Õ. Let nmin = min(ns′ |s′ ∈ SÕ)
be the minimum number of visits of any node in SÕ, then we used the following
definition for f , with free parameters a and b to adjust the search speed:

f(s) = a+ b · nmin, with a = 0.5, b = 0.5 (3)

4 Evaluation

In order to evaluate the TUTS algorithm we utilize the setup of a recent driving
simulator study [6,7]. Aim of this study was to investigate drivers attention
distribution when driving on a curvy road while interacting with a secondary
in-vehicle task. We briefly describe aspects of the study that are relevant for the
present work. For more details see [6,7].
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Fig. 3. Distance of bridge pillar to the center of the lane in the driving scenario

4.1 Scenario

The driving scenario consists of a winding road with curve radii between 375m
and 750m. The drivers were instructed to focus on three goals: (1) Keep the
car in the middle of the lane. (2) Keep a constant speed of 100 km/h as closely
as possible. (3) Solve some tasks displayed on an in-vehicle display in varying
time intervals as soon as possible. This third task is used representatively for
the interaction with an infotainment or assistance system displayed in the center
console. To meet the requirements of all goals the attention has to be switched
between this three tasks and their respective areas of interest (road, speedometer,
in-vehicle display).The structure of this scenario is simple. There is no complex
task for the driver, no surrounding traffic, road signs or intersections. The most
crucial aspect is how drivers distribute their attention among the three goals.
If too few attention is paid to keeping the car within the lane, the driver might
cross the lane border. Due to this simple structure, we used this scenario as a
first use case for the TUTS algorithms, to identify driver model behaviors, where
the interaction with the in-vehicle task leads to critical situations.

To demonstrate the functioning of our algorithm, we introduced a single criti-
cal point in the scenario. This was done by placing a bridge over the road, which
was not present in the original scenario (see Figure 3). The minimum distance
from the center of the car to the right bridge pillar was used as a measure for the
consequence c̃ of the driving behavior. The pillar of the bridge is placed 2.5m
away from the center of the left lane.

4.2 Simulation

Wortelen, et al. [6,7] developed a driver model using CASCaS, which was able
to drive this scenario. The driving behavior and the visual scanning behavior of
the driver model has been validated against the behavior of 17 human drivers.

The simulation of the driver model is divided in two phases. In the begin-
ning of each simulation run the driver model accelerates to 100 km/h. Reaching
100km/h defines the initial states S0. A simulation run ends 20m after the car
passed the pillar or if a predefined time limit is reached. This defines the terminal
states St. The time span between initial and terminal state is typically around
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8 seconds with small variations. The smallest distance to the pillar is reached
approximately 7 seconds after the initial state.

As mentioned CASCaS contains several PEs. It can be configured which
classes of PEs the simulation guide considers and which not. The most critical
aspect in this scenario is the way in which the driver model switches attention
between the three tasks [7]. We therefore assume that the probabilistic element
in the selection process for task goals is most relevant for the guiding algorithm.
The way in which the driver model executes the tasks is in great parts described
by a set of rules, which are selected and executed in a probabilistic manner
similar to the goal selection process.

In order to compare the results of our guided simulation we performed three
sets of simulations of this scenario. First we did 10,000 simulation runs in a
Monte Carlo way without any guidance (MC). Then we used the simulation
guide and did 10,000 runs considering only the goal selection DPEs (GS) and
10,000 runs while additionally considering rule selection DPEs (GS+RS). All
other PEs are drawn randomly according to their distribution.

4.3 Results

In the algorithm description we assumed that each node of the event tree repre-
sents similar behaviors. The PEs not considered by the simulation guide intro-
duce behavioral variance within each node. The variance should be smaller the
more PEs the guide considers. But at the same time this increases the size of
the event tree. This effect is illustrated in Figures 4. The figures should be read
as follows. Every time a node is entered during a simulation the current time
distance (Δt) to the point in time when the initial state was reached, and the
current lateral position dL is recorded. The lateral position is measured in meter
and is 0m, if the car is in the center of the lane and increases, when the car
drifts to the right lane border and decreases if it drifts to the left lane border. At
the end of each 10,000 simulations we calculated for each node the mean values
for Δt and dL and their standard deviation. In the following we only consider
nodes that have been visited at least twice and thus have a standard deviation.
The x-axis is discretized in 500ms steps. All nodes with a mean time within each
500ms window are aggregated.

The solid lines in Figure 4(a) show the mean standard deviation for Δt of all
nodes in a 500ms window. It can indeed be seen that the standard deviation for
the GS+RS simulation are much smaller than for the GS simulation, showing
that the range of behaviors represented by a node is narrower when goal and
rule selection are considered. But at the same time the size of the tree growths
much faster in the GS+RS configuration. This can be seen by the dashed lines,
which show the number of nodes which have been aggregated in each window.

Data for the lateral position has been aggregated in the same way. In Fig-
ure 4(b) the mean standard deviation for dL within each time window is shown
by the thick solid lines. The dashed lines show the total standard deviation,
which is calculated over all observed dL values from all nodes within each time
window. If the assumption, that taking the same paths in the event tree leads



Evaluation of Drivers Interaction 115

(a) Number of nodes and variance in time (b) Lateral position

Fig. 4. μ(x) is the mean over all observations of all nodes with a time interval an σ(x)
is the standard deviation. μ(σ(x)) calculates the standard deviation within a node and
averages it over all nodes within a time interval. All values are aggregated over all
nodes within a time interval of 0.5 s.

to similar behavior holds, then the standard deviation in each node should be
much lower than the total standard deviation. For the GS configuration it can
be seen that especially for the last four seconds the mean standard deviation is
indeed smaller than the total deviation. However the difference is not very big.
By also considering the rule selection DPEs in the GS+RS configuration this
difference can be increased. It can be seen that for both configurations during
the first 4 seconds the standard deviation does not change much. The same holds
for the mean lateral position as indicated by the thin solid lines. Afterwards the
mean lateral position of the car in the GS and in the GS+RS configurations
drifts towards the bridge pillar. This happens earlier in the GS configuration,
where the highest lateral deviation is reached approximately at Δt = 6 seconds,
while the pillar is reached at around Δt = 7 seconds. In contrast the GS+RS
configuration reaches the highest lateral deviation at that time. In future work
we will investigate on these differences. A possible reason is, that the guide in
the GS configuration controls less aspects of the driver model and is thus not
able to guide it as precisely.

The main objective is to explore the driver model behavior and to simulate
valid behaviors that show rare and critical consequences far more often than pure
Monte Carlo simulations would. In Figure 5 the results for all three configurations
are compared. Shown are the frequency distributions of the consequence values
c̃ discretized in 0.1m steps each for 10,000 simulation runs. The distribution for
the Monte Carlo simulation is very narrow. In fact 7,272 of the 10,000 runs show
a consequence value of around 2.4m. Nearly all deviations are within the lane
boundaries, even though the driver model is interacting with the secondary task.

This is different for the GS and GS+RS configurations. The distributions
are strongly biased toward low c̃ values. Especially the GS+RS configuration
shows a high number of simulations close to c̃ = 0. For the guided simulation
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Fig. 5. Frequency distributions of criticality values for all three configurations

configurations also high c̃ values are observed more often. The reason for this is
that the guide has to explore the behavior of the model, which might also lead
to higher c̃ values. Another reason is, that many options selected by the guide
destabilize the lateral control of the driver model, which not only leads to drifts
to the right side, but also to the left side.

5 Related Work

A similar approach to ours is found in Hu’s work [1]. He presents an efficient
model-based simulation engine for risk assessment of complex systems consisting
of software, hardware and human elements. Furthermore, he developed a guided
simulation process to avoid the slow coverage of Monte Carlo methods. The dif-
ference to our approach is that the engineering knowledge about the system is
used prior to the simulation to generate a plan as a high level guide. The plan it-
self contains a list with scenarios of interests and is used as a map for exploration
during simulation. Our approach is similar, but does not need a predefined event
tree, which is used by Hu. Our tree structure is automatically derived during the
simulation. The level of detail of the event tree can be adjusted, ranging from a
small and abstract tree up to a fully deterministic one.

The basic idea of the TUTS algorithm was introduced on a conceptual level by
Puch, et al.[3]. After first tests with the initial implementation we observed a slow
search speed and elaborated on this aspect. The resulting algorithm presented in
section 3 is similar to some game theoretic approaches. It shares important ideas
of the UCT algorithm (Upper Confidence Bounds applied to Trees) [2], which is
a game theoretic planning approach based on rollout Monte Carlo search tech-
niques [5]. Like the UTC algorithm TUTS implements a weighted search within
the event tree, that adjusts the search weights according to the confidence of the
results achieved during the previous simulations. Though the search criterion of
TUTS is different in its nature. This will be described in section 3.
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6 Discussion

In this paper we have presented results from a first study to efficiently explore
and simulate rare and critical model behavior in a cosimulation of environment,
driver and ADAS. We therefore demonstrated the TUTS algorithm and pointed
out promising achievements. However the use case was very simple and in future
work we aim at more complex scenarios and driver tasks. Currently a driver
model is under development which is intended to simulate a number of different
highway scenarios like car following, overtaking and merging into traffic flows. An
advanced highway assistance system is introduced into the simulation, instead of
using an artificial in-vehicle task. Data from simulator experiments with human
drivers already have been performed and will be used to validate the driver
model. Furthermore we want to provide a concept for the analysis of the resulting
event tree. The most relevant paths in the tree should be identified and presented
to the system developer in order to reveal critical interaction sequences.
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