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Abstract. We propose a rather general construction method for bivariate copulas,
generalizing some construction methods known from the literature. In some special
cases, the constraints ensuring the output of the proposed method to be a copula are
given. Our approach opens several new problems in copula theory.
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1 Introduction

We suppose readers to be familiar with the basics of copula theory. In the opposite
case, we recommend the lecture notes [12]. Recently, several construction methods
for bivariate copulas have been proposed. Recall, for example, conic copulas [10],
univariate conditioning method proposed in [15], UCS (univariate conditioning sta-
ble) copulas [8], a method proposed by Rodríguez–Lallena and Úbeda–Flores [17]
and its generalization in [11], another method introduced by Aguilló et al. in [1],
quadratic construction introduced in [13], several construction methods based on
diagonal or horizontal (vertical) sections discussed in [5, 3, 7], etc.

Radko Mesiar · Magda Komorníková
Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11
813 68 Bratislava, Slovakia
e-mail: {mesiar,magda}@math.sk

Jozef Komorník
Faculty of Management Comenius University, Odbojárov 10, P.O. BOX 95
820 05 Bratislava, Slovakia
e-mail: Jozef.Komornik@fm.uniba.sk

H. Bustince et al. (eds.), Aggregation Functions in Theory and in Practise, 39
Advances in Intelligent Systems and Computing 228,
DOI: 10.1007/978-3-642-39165-1_7, c© Springer-Verlag Berlin Heidelberg 2013



40 R. Mesiar, J. Komorník, and M. Komorníková

We recall two of the above mentioned methods. Recall that a function N : [0,1]→
[0,1] which is a decreasing involution is called a strong negation. We denote its
unique fixed point as e, N(e) = e. Due to [1, Theorem 23], the next result holds.

Proposition 1. Let N : [0,1]→ [0,1] be a strong negation such that it is 1–Lipschitz
on the interval [e,1]. Then the function CN : [0,1]2 → [0,1] given by

CN(x,y) = max(0,x∧ y−N(x∨ y)) (1)

is a copula.

Inspired by the form of the Farlie–Gumbel–Morgenstern copulas (FGM–copulas)

CFGM
λ (x,y) = x · y+λx · y · (1− x) · (1− y), (2)

where λ ∈ [−1,1], Kim et al. have studied in [11] the constraints for λ so that the
function C : [0,1]2 → [0,1] given by

C(x,y) =C∗(x,y)+λ f (x) ·g(y) (3)

is a copula, where C∗ is an a priori given copula, f ,g : [0,1]→ [0,1] are Lipschitz
continuous functions satisfying f (0) = g(0) = f (1) = g(1) = 0.

Note that a special case of (3) when C∗ =Π under consideration was the product
copula, was studied in [17].

The aim of this paper is to find a formula generalizing all above introduced for-
mulae (5), (2), (3) and to study some of its new instances.

The paper is organized as follows. In the next section, we introduce our general
formula and discuss a special case of (5) yielding Mayor–Torrens copulas [14] and
open a related problem based on our generalized formula. Section 3 is focused on
the product copula based constructions exploiting our generalized formula. Finally,
in concluding remarks we sketch some problems for further investigations.

2 A General Formula for Constructing Bivariate Copulas

Observe that denoting by M the strongest bivariate copula, M = min, formula (5)
can be rewritten as

CN(x,y) = max(0,M(x,y)−M (N(x),N(y))) . (4)

Similarly, formulae (2) and (3) can be written as

C(x,y) = max(0,C∗(x,y)+λΠ( f (x),g(y))) . (5)

Denote by p the pentuple (C1,C2,λ , f ,g), where C1,C2 : [0,1]2 → [0,1] are bivariate
copulas, λ is a real constant and f ,g : [0,1]→ [0,1] are real functions. It is evident
that the formula
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Cp(x,y) = max(0,C1(x,y)+λC2( f (x),g(y))) (6)

is a well defined real function, Cp : [0,1]2 → ℜ. Clearly, formulae (5) and (4) cor-
respond to p = (M,M,−1,N,N), while formula (2) is linked to p = (Π ,Π ,λ , f , f )
with λ ∈ [−1,1] and f (x) = x(1− x). Similarly, formulae (3) and (5) are related to
p = (C∗,Π ,λ , f ,g). Recall a trivial result Cp =C1 whenever λ = 0.

Example 1. Consider p = (CH ,Π ,λ , f , f ), where CH is the Hamacher product, i.e.,
a copula given by

CH(x,y) =
x · y

x+ y− x · y
whenever x · y �= 0, and f (x) = x2 · (1− x). After some processing with software
MATHEMATICA it can be shown that Cp is a copula if and only if λ ∈ [−2,1].
Moreover, then Cp is an absolutely continuous copula given by

Cp(x,y) =
x · y

x+ y− x · y +λx2 · y2 · (1− x) · (1− y).

On the other hand, putting r = (CH ,Π ,λ ,g,g), where g(x) = x · (1− x), compare
(2), Cr is a copula only if λ = 0, i.e., when Cr =CH .

Consider an arbitrary copula C : [0,1]2 → [0,1] and its diagonal section δ : [0,1]→
[0,1] given by δ (x) =C(x,x). Recall that δ is non–decreasing, 2–Lipschitz, δ (0) =
0, δ (1) = 1 and δ (x)≤ x for all x ∈ [0,1]. Then the function f : [0,1]→ [0,1] given
by f (x) = x− δ (x) is 1–Lipschitz, f (0) = f (1) = 0. For p = (M,M,−1, f , f ), it
holds

Cp(x,y) = max(0,M(x,y)−M(x− δ (x),y− δ (y))) . (7)

Applying formula (5) considering N = f , one gets

Cf (x,y) = max(0,x∧ y− f (x∨ y)) = max(0,δ (x∨ y)−|x− y|) =CMT
δ (x,y),

where CMT
δ is a Mayor–Torrens copula [14] derived from the diagonal section δ .

On the other hand, Cp given by formula (7) for diagonal sections of 3 basic
copulas W,Π ,M yields copulas W,Cq,M, where q = (M,M,−1, fΠ , fΠ ), fΠ (x) =
x · (1− x). Observe that the copula Cq : [0,1]2 → [0,1] is described in Fig. 1.

On the other side, consider the ordinal sum copula C =
(〈

0, 1
2 ,W

〉
,
〈 1

2 ,1,W
〉)

,
i.e., f : [0,1]→ [0,1] given by

f (x) =

{
min

(
x, 1

2 − x
)

if x ∈ [
0, 1

2

]
min

(
x− 1

2 ,1− x
)

else .

Then for r = (M,M,−1, f , f ) the resulting function Cr : [0,1]2 → [0,1] satisfies

Cr(x,
3
4
) = 2x− 1 if x ∈

[
1
4
,

1
2

]
,

violating the 1–Lipschitz property of Cr. Thus Cr is not a copula.
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Fig. 1 Formulae for the copula Cq

We open a problem of characterizing all diagonal sections δ of bivariate semicop-
ulas such that the formula (7) yields a copula. Note also that if a function Cp given
by (7) is a copula, then Cq with q = (M,M,λ , f , f ) is a copula for any λ ∈ [−1,0].

3 Product–Based Construction of Copulas

Inspired by (5), consider a pentuple p = (C,C,−1,N,N) where N is a strong nega-
tion, i.e., consider a function Cp : [0,1]2 → [0,1] given by

Cp(x,y) = max(0,C(x,y)−C(N(x),N(y))) . (8)

Evidently, Cp is non–decreasing in both coordinates and satisfies the boundary con-
ditions for copulas, i.e., Cp is a semicopula [2, 4]. For arbitrary Frank copula [9] and
the standard negation Ns : [0,1]→ [0,1] given by Ns(x) = 1− x, we see that Cp =W
is a copula.

For the 3 basic copulas, the case C = M was discussed in [1], see Proposition 1.
For the case C = W , observe that Cp is a copula if and only if N ◦Ns ≤ Ns ◦N and
then Cp = W (this is, e.g., the case of a convex strong negation N). We focus now
on the third basic copula C = Π , i.e., we will consider p = (Π ,Π ,−1,N,N), i.e.,
Cp : [0,1]2 → [0,1] given by

Cp(x,y) = max(0,x · y−N(x) ·N(y)). (9)

Proposition 2. Let N : [0,1] → [0,1] be a differentiable convex strong negation.
Then the function Cp given by (9) is a negative quadrant dependent copula.

Proof. Observe first that under requirements of this proposition, Cp(x,y) = 0 if and
only if y ≤ N(x). Moreover, if x · y = N(x) ·N(y), then N′(x) ·N′(y) = 1. As for as
Cp is a semicopula, it is enough to show its 2–increasingness on its positive area.
Consider 0 < x1 < x2 ≤ 1, 0 < y1 < y2 ≤ 1 such that x1 · y1 ≥ N(x1) ·N(y1). Then
the volume VCp of the rectangle [x1,x2]× [y1,y2] is non–negative if and only if
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(x2− x1) · (y2− y1)≥ (N(x1)−N(x2)) · (N(y1)−N(y2)) =

= (x1− x2) ·N′(x0) · (y1− y2) ·N′(y0),

where x0 is some point from ]x1,x2[ and y0 is some point from ]y1,y2[.
Equivalently, it should hold N′(x0) ·N′(y0)≤ 1. Due to the fact that x0 ·y0 > x1 ·y1

and N(x0)< N(x1), N(y0)< N(y1), it holds x0 · y0 > N(x0) ·N(y0).
Consequently, x0 · y0 > x0 · y = N(x0) ·N(y), where y = N(x0) < y0. Due to the

convexity and monotonicity of N, it holds

N′(y)< N′(y0)< 0, N′(x0)< 0,

and hence
N′(x0) ·N′(y0)< N′(x0) ·N′(y) = 1.

Thus Cp is a copula. Obviously, Cp ≤Π , i.e., Cp is a NQD copula. �

Remark 1. As a by–product of the proof of Proposition 2, we see that for a con-
vex differentiable strong negation N, the copula Cp given by (9) has its zero–area
bounded by the graph of the function N. The same zero area is also obtained by
some other kinds of constructing copulas by means of N. For example, this is the
case of conic copulas based on N [3], or UCS copulas introduced by Durante and

Jaworski in [8], CN(x,y) = x ·N
(

min
(

1, N(y)
x

))
.

We expect that Proposition 2 is also valid for convex strong negations N which are
not differentiable.

Example 2. For c ∈]0,1[, define a function Nc : [0,1]→ [0,1] by

Nc(x) =

{
1− 1−c

c x if x ∈ [0,c]
c(1−x)

1−c else .

Then Nc is a strong negation which is convex if and only if c ∈]0, 1
2 ].

Applying formula (9), we see that Cp : [0,1]2 → [0,1] is given by

Cp(x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2x+c2y−c2+(1−2c)x·y
(1−c)2 if (x,y) ∈ [c,1]2,

(1−c)x+(y−1)c
1−c if x ∈ [0,c] and y≥ c−(1−c)x

c ,
(1−c)y+(x−1)c

1−c if y ∈ [0,c] and x≥ c−(1−c)y
c ,

0 else .

Observe that for each c ∈]0,1[, Cp is a semicopula which is Lipschitz with constant

max
(

1,
(

c
1−c

)2
)

, i.e., for c > 1
2 , Cp is not a copula. On the other hand, for each

c ∈]0, 1
2 ], Cp is a copula.
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Open problems:

i) For each convex strong negation N, putting p = (Π ,Π ,λ ,N,N), the function Cp
is a copula for λ ∈ {−1,0}. Is this claim valid for each λ ∈ [−1,0]? Are there
some other constant λ so that Cp is a copula?

ii) For two convex strong negations N1,N2, and some λ ∈ℜ, does p = (Π ,Π ,λ ,
N1,N2) generate a copula Cp applying (9)?

Example 3. Consider the standard negation Ns. Applying formula (9) to p = (Π ,Π ,
λ ,Ns,Ns), it holds

Cp(x,y) = max(0,x · y+λ (1− x) · (1− y))= max(0,(1+λ )x · y−λ (x+ y−1)),

which is a copula (Sugeno–Weber t-norm, see [12]) for each λ ∈ [−1,0]. For λ >
0, Cp is not monotone and thus not a copula (even it is not an aggregation function).
For λ <−1, Cp is Lipschitz with constant −λ , and thus not a copula.

As another interesting fact consider the pentuple p = (Π ,M,λ , f , f ) with f (x) =
x(1−x). After a short processing it is not difficult to check that then Cp given by (6)
is a copula if and only if λ = 0 and then Cp =Π .

This observation opens another problem, namely whether it can be shown that
for any differentiable functions f ,g such that f (0) = f (1) = g(0) = g(1) = 0 and
f ′(0), f ′(1),g′(0),g′(1) are different from 0, compare [11], Cp for p=(Π ,M,λ , f ,g)
is a copula only if λ = 0 (and then Cp =Π ).

4 Concluding Remarks

We have proposed a rather general formula (6) transforming a given copula into a
real function, which in several special cases leads to new parametric families of cop-
ulas. We have discussed some of such families, but also some negative cases leading
to trivial solutions only. Our proposal opens several problems for a deeper study. For
example, problems of fitting copulas with special properties, such as symmetric cop-
ulas which are NQD but with Spearman’s rho close to 0 (then copulas discussed in
Example 1 can be of use). For several special types of p with fixed C1,C2, f ,g, the
problem of characterizing all constants λ such that Cp is a copula generalizes the
problem opened by Kim et al. in [11]. For example, consider p = (M,M,λ , f , f )
with f : [0,1]→ [0,1] non–increasing and f (0) = 0. Obviously, Cp is then a semi-
copula if and only if λ ≤ 0, independently of non–zero function f . As another par-
ticular problem, we can consider pentuples p1,p2 applied consecutively. Indeed, for
p1 = (C1,C2,λ , f ,g) such that Cp1 is a copula, and p2 = (Cp1 ,C3,τ,h,q) one can
define Cp1,p2 = (Cp1)p2 , which in the case λ ,τ ≤ 0 can be written as

Cp1,p2(x,y) = max(0,C1(x,y)+λC2( f (x),g(y))+ τC3(h(x),q(y))) .
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