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Abstract. The main goal of this paper is to characterize all fuzzy implications with
continuous natural negation that satisfy the law of importation with a given con-
tinuous t-norm T . Particular cases when the fixed t-norm T is the minimum, the
product and the Łuukasiewicz t-norm are deduced from the general result and the
corresponding characterizations are presented separately.
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1 Introduction

One of the most important connectives used in fuzzy control and approximate rea-
soning are fuzzy implications. This is because they are the generalization of binary
implications in classical logic to the framework of fuzzy logic and consequently
they are used to perform fuzzy conditionals [15, 18, 24]. In addition of modelling
fuzzy conditionals, they are also used to perform backward and forward inferences
in any fuzzy rules based system through the inference rules of modus ponens and
modus tollens [17, 24, 33].

Moreover, fuzzy implications have proved to be useful in many other fields like
fuzzy relational equations [24], fuzzy DI-subsethood measures and image process-
ing [11, 1], fuzzy morphological operators [19], computing with words [24], data
mining [41] and rough sets [32], among others. Thus, it is not surprising that fuzzy
implications have attracted the efforts of many researchers not only from the point
of view of their applications, but also from the purely theoretical perspective. See
for instance the surveys [6] and [24] and the book [5], entirely devoted to fuzzy
implications.

S. Massanet · J. Torrens
University of the Balearic Islands, Palma de Mallorca 07122, Spain
e-mail: {s.massanet,jts224}@uib.es

H. Bustince et al. (eds.), Aggregation Functions in Theory and in Practise, 417
Advances in Intelligent Systems and Computing 228,
DOI: 10.1007/978-3-642-39165-1_40, c© Springer-Verlag Berlin Heidelberg 2013



418 S. Massanet and J. Torrens

From this theoretical point of view, there are several lines of research that have
been specially developed. Among them we can highlight the following ones:

1. The study of the different classes of fuzzy implications and their axiomatic
characterization (see [5] and the references therein, but also the recent works
[1, 8]).

2. The relationship among these classes and the intersections between them (see
again [5] and the references therein, as well as the recent works [9] and [26]).

3. The study of new construction methods of fuzzy implications (see [5, 27, 28,
31, 30, 36]).

4. The analysis of additional properties of fuzzy implications.

In the last line, there are a lot of properties that have been studied in detail by many
authors. In almost all the cases the interest of each property comes from its specific
applications and its theoretical study usually reduces to the solution of a functional
equation. Some of the most studied properties are:

a) The modus ponens, because it becomes crucial in the inference process through
the compositional rule of inference (CRI). Some works on this property are
[21, 38, 39, 40].

b) The distributivity properties over conjunctions and disjunctions. In this case,
these distributivities allow to avoid the combinatorial rule explosion in fuzzy
systems ([13]). They have been extensively studied again by many authors, see
[2, 3, 7, 10, 34, 35, 37].

c) The law of importation. This property is extremely related to the exchange prin-
ciple (see [25]) and it has proved to be useful in simplifying the process of
applying the CRI in many cases, see [16] and [5]. It can be written as

I(T (x,y),z) = I(x, I(y,z)) for all x,y,z ∈ [0,1],

where T is a t-norm (or a more general conjunction) and I is a fuzzy implication.
The law of importation has been studied in [5, 16, 22, 23, 25]. Moreover, in this
last article the law of importation has also been used in new characterizations
of some classes of implications like (S,N)-implications and R-implications. Fi-
nally, it is a crucial property to characterize Yager’s implications (see [29]).

Although all these works devoted to the law of importation, there are still some open
problems involving this property. In particular, given any t-norm T , it is an open
problem to find all fuzzy implications I such that they satisfy the law of importation
with respect to this fixed t-norm T . That is, find all fuzzy implications such that

I(T (x,y),z) = I(x, I(y,z)) for all x,y,z ∈ [0,1], (LI)

being T any fixed (continuous) t-norm.
In this paper we want to deal with this problem and we will give some partial

solutions (in the sense that we will find all solutions involving fuzzy implications
with an additional property). Specifically, we will characterize all fuzzy implications
with continuous natural negation that satisfy the law of importation with any given
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continuous t-norm T . Particular cases when the fixed t-norm T is the minimum, the
product and the Łuukasiewicz t-norm are deduced from the general result and the
corresponding characterizations are presented separately.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms. For more de-
tails in this particular topic, we refer the reader to [20]. To make this work
self-contained, we recall here some of the concepts and results used in the rest of
the paper. First of all, the definition of fuzzy negation is given.

Definition 1. (Definition 1.1 in [14]) A decreasing function N : [0,1] → [0,1] is
called a fuzzy negation, if N(0) = 1, N(1) = 0. A fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous,
(ii) strong, if it is an involution, i.e., N(N(x)) = x for all x ∈ [0,1].

Next lemma plays an important role in the results presented in this paper. Essentially,
given a fuzzy negation, it defines a new fuzzy negation which in some sense can
perform the role of the inverse of the original negation.

Lemma 1. (Lemma 1.4.10 in [5]) If N is a continuous fuzzy negation, then the func-
tion RN : [0,1]→ [0,1] defined by

RN(x) =

{
N(−1)(x) if x ∈ (0,1],
1 if x = 0,

where N(−1) stands for the pseudo-inverse of N given by

N(−1)(x) = sup{z ∈ [0,1] | N(z) > x}

for all x ∈ [0,1], is a strictly decreasing fuzzy negation. Moreover,

R
(−1)
N = N,

N ◦RN = id[0,1],

RN ◦N|Ran(RN)
= id|Ran(RN)

,

where Ran(RN) stands for the range of function RN.

Next, we introduce the concept of automorphism and conjugate function.

Definition 2. A function ϕ : [0,1]→ [0,1] is an automorphism if it is continuous
and strictly increasing and satisfies the boundary conditions ϕ(0) = 0 and ϕ(1) = 1,
i.e., if it is an increasing bijection from [0,1] to [0,1].
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Definition 3. Let ϕ : [0,1]→ [0,1] be an automorphism. Two functions f ,g : [0,1]n

→ [0,1] are ϕ-conjugate if g = fϕ , where

fϕ (x1, . . . ,xn) = ϕ−1( f (ϕ(x1), . . . ,ϕ(xn))), x1, . . . ,xn ∈ [0,1].

Note that given an automorphism ϕ : [0,1]→ [0,1], the ϕ-conjugate of a t-norm T ,
that is Tϕ , and the ϕ-conjugate of an implication I (see Definition 4), that is Iϕ , are
again a t-norm and an implication, respectively.

Now, we recall the definition of fuzzy implications.

Definition 4. (Definition 1.15 in [14]) A binary operator I : [0,1]2 → [0,1] is said to
be a fuzzy implication if it satisfies:

(I1) I(x,z)≥ I(y,z) when x≤ y, for all z ∈ [0,1].
(I2) I(x,y)≤ I(x,z) when y≤ z, for all x ∈ [0,1].
(I3) I(0,0) = I(1,1) = 1 and I(1,0) = 0.

Note that, from the definition, it follows that I(0,x) = 1 and I(x,1) = 1 for all
x ∈ [0,1] whereas the symmetrical values I(x,0) and I(1,x) are not derived from the
definition. Fuzzy implications can satisfy additional properties coming from tautolo-
gies in crisp logic. In this paper, we are going to deal with the law of importation,
already presented in the introduction.

The natural negation of a fuzzy implication will be also useful in our study.

Definition 5. (Definition 1.4.15 in [5]) Let I be a fuzzy implication. The function
NI defined by NI(x) = I(x,0) for all x ∈ [0,1], is called the natural negation of I.

Remark 1
(i) If I is a fuzzy implication, NI is always a fuzzy negation.
(ii) Given a binary function F : [0,1]2 → [0,1], we will denote by NF(x) = F(x,0)
for all x ∈ [0,1] its 0-horizontal section. In general, NF is not a fuzzy negation. In
fact, it is trivial to check that NF is a fuzzy negation if, and only if, F(x,0) is a
decreasing function satisfying F(0,0) = 1 and F(1,0) = 0.

3 On the Satisfaction of (LI) with a Given T-norm T

In this section, we want to characterize all fuzzy implications with a continuous nat-
ural negation which satisfy the Law of Importation (LI) with a fixed t-norm T . Until
now, all the previous studies on the law of importation have focused on the satisfac-
tion of (LI) by concrete classes of fuzzy implications. Thus, some results involving
this property and (S,N)-implications are presented in [16] and [25]; R-implications
in [16]; QL-implications in [5] and [22] and Yager’s implications in [4]. On the
other hand, fixed a concrete t-norm T , it is still an open problem to know which
fuzzy implications satisfy (LI) with this T .

First of all, it is worth to study if fixed a concrete t-norm T , any fuzzy negation
can be the natural negation of a fuzzy implication satisfying (LI) with T . In fact,
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there exists some dependence between the t-norm T and the natural negation of
the fuzzy implication I. Thus, not all fuzzy negations can be natural negations of
a fuzzy implication satisfying (LI) with a concrete t-norm. To characterize which
fuzzy negations are compatible with a t-norm T in this sense, the following property
will be considered:

if N(y) = N(y′) for some y,y′ ∈ [0,1], then N(T (x,y)) = N(T (x,y′)) ∀x ∈ [0,1].
(1)

Proposition 1. Let I : [0,1]2 → [0,1] be a binary function such that NI is a fuzzy
negation. If I satisfies (LI) with a t-norm T , then NI and T satisfy Property (1).

The following example illustrates the previous result.

Example 1. Let N be the continuous (non-strict) fuzzy negation given by

N1(x) =

⎧⎨
⎩
−2x+ 1 if 0≤ x < 0.25,
0.5 if 0.25≤ x≤ 0.75,
2− 2x otherwise,

and T = TP, the product t-norm. Consider now a fuzzy implication I with NI = N1.
Then it can not satisfy (LI) with TP since in this case Property (1) does not hold:
N1(0.25) = 0.5 = N1(0.75) but

N1(TP(0.1,0.25)) = N1(0.025) = 0.95 �= 0.85 = N1(0.075) = N1(TP(0.1,0.75)).

This implies that on the one hand,

I(0.1, I(0.25,0)) = I(0.1,N1(0.25)) = I(0.1,N1(0.75)) = I(0.1, I(0.75,0)),

but on the other hand,

I(TP(0.1,0.25),0) = N1(TP(0.1,0.25)) �= N1(TP(0.1,0.75)) = I(TP(0.1,0.75),0),

and (LI) does not hold.

Next result gives the expression of any binary function with NI a continuous fuzzy
negation satisfying (LI) with a t-norm T . The binary function only depends on the
t-norm T and its natural negation.

Proposition 2. Let I : [0,1]2→ [0,1] be a binary function with NI a continuous fuzzy
negation satisfying (LI) with a t-norm T. Then

I(x,y) = NI(T (x,RNI (y))).

From now on, we will denote these implications generated from a t-norm T and a
fuzzy negation N by IN,T (x,y) = N(T (x,RN(y))).



422 S. Massanet and J. Torrens

Remark 2. Instead ofRNI , we can consider any function N1 such that N(−1)
1 =NI and

NI ◦N1 = id[0,1]. This is a straightforward consequence of the satisfaction of Prop-
erty (1) in this case. Since NI(RNI (y)) = NI(N1(y)), then using the aforementioned
property, NI(T (x,RNI (y))) = NI(T (x,N1(y))) and therefore, INI ,T can be computed
using either RNI or N1.

This class of implications is contained into the class of (S,N)-implications generated
from a continuous negation N. This fact is coherent with the characterization of
(S,N)-implications, where (LI) is involved, given in Theorem 22 in [25].

Theorem 1. Let N be a continuous negation and T a t-norm satisfying Property (1).
Then IN,T is an (S,N)-implication generated from S(x,y) = N(T (RN(x),RN(y)))
and N.

Moreover, this class of implications satisfies (LI) with the same t-norm T from
which they are generated.

Proposition 3. Let N be a continuous fuzzy negation and T a t-norm satisfying
Property (1). Then IN,T satisfies (LI) with T .

Now, we are in condition to fully characterize the binary functions I with NI a con-
tinuous fuzzy negation satisfying (LI) with a t-norm T .

Theorem 2. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation and T a t-norm. Then

I satisfies (LI) with T ⇔ NI and T satisfy Property (1) and I = INI ,T .

Note that it remains to know when NI and T satisfy Property (1). From now on, we
will try given a concrete continuous t-norm T , to determine which fuzzy negations
satisfy the property with T .

4 Characterization of Fuzzy Implications Satisfying (LI) with a
Continuous T-norm

In the previous section, Example 1 shows that Property (1) does not hold for any
t-norm and fuzzy negation. Consequently, given a fixed t-norm T , in order to char-
acterize all fuzzy implications with a continuous natural negation satisfying (LI)
with T , we need to know which fuzzy negations are compatible with the t-norm T .
In this section, we will answer this question for some continuous t-norms presenting
for each one, which fuzzy negations can be considered and which fuzzy implications
satisfying (LI) with T are generated in that case.

First of all, some negations satisfy Property (1) with any t-norm T (not necessar-
ily continuous).

Proposition 4. Let N be a continuous fuzzy negation. If there exists x0 ∈ [0,1) such
that N(x0) = 1 and N is strictly decreasing in (x0,1) then Property (1) holds for any
t-norm T.



Implications Satisfying the Law of Importation with a Given T-norm 423

Remark 3. Note that the previous result includes strict fuzzy negations which are
compatible with any t-norm T .

4.1 Minimum T-norm

The first t-norm we are going to study is the minimum t-norm TM(x,y) = min{x,y}.
This t-norm performs well with any continuous negation not restricting the choice
of the fuzzy negation.

Proposition 5. If T = TM, then Property (1) holds for any continuous negation N.

At this point, we can characterize all fuzzy implications with continuous natural
negation satisfying (LI) with TM .

Theorem 3. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation. Then the following statements are equivalent:

(i) I satisfies (LI) with TM.
(ii) I is given by I(x,y) = max{NI(x),y}.
Remark 4. The fuzzy implications satisfying (LI) with TM are, in fact, the so-called
generalized Kleene-Dienes implications. In particular, if NI(x) = NC(x) = 1− x,
we retrieve the Kleene-Dienes implication IKD(x,y) = max{1− x,y}. On the other
hand, note that there are other implications satisfying (LI) with TM than those given
in Theorem 3. Of course, they must have non-continuous natural negation like the
Gödel implication given by

IGD(x,y) =

{
1 if x≤ y,
y if x > y,

which satisfies (LI) with TM using Theorem 7.3.5 in [5].

4.2 Continuous Archimedean T-norms

In contrast with the minimum t-norm, not all continuous fuzzy negations are com-
patible with Archimedean t-norms.

Proposition 6. If T is an Archimedean t-norm, Property (1) holds if, and only if, N
is a continuous fuzzy negation being strictly decreasing for all x ∈ (0,1) such that
N(x)< 1.

Remark 5. Note that if we consider Archimedean t-norms, compatible fuzzy nega-
tions are strict ones and those given by the expression:

N(x) =

{
1 if x ∈ [0,x0],

N′
(

x−x0
1−x0

)
otherwise,

(2)
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where x0 ∈ (0,1) and N′ is a strict negation. Thus, if the fuzzy negation is a con-
tinuous (non-strict) negation, it can only have a unique constant region and it must
value 1 there.

Recall that continuous Archimedean t-norms are divided in two subsets: nilpotent
t-norms and strict t-norms. So, from now on, we will study these two cases sepa-
rately.

4.2.1 Nilpotent T-norms

Nilpotent t-norms are ϕ-conjugated with the Łuukasiewicz t-norm TLK(x,y) =
max{x+ y− 1,0}, i.e., T = (TLK)ϕ for some automorphism ϕ . The following re-
sult characterizes completely fuzzy implications satisfying (LI) with these t-norms.

Theorem 4. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation and ϕ : [0,1]→ [0,1] an automorphism. Then the following statements are
equivalent:

(i) I satisfies (LI) with (TLK)ϕ .
(ii) One of the following two cases hold:

(a) If NI is strict, then I is given by

I(x,y) =

{
1 if y > (NI ◦ (NC)ϕ)(x),
f−1( f (NI(x))+ f (y)− 1) if y≤ (NI ◦ (NC)ϕ)(x).

where f = ϕ ◦N−1
I , and NC(x) = 1− x denotes the classical negation.

(b) If NI is given by Equation (2) with x0 ∈ (0,1) and N′ a strict negation, then
I is given by I(x,y) =

=

⎧⎪⎪⎨
⎪⎪⎩

1 if y > N
′
(
ϕ−1 (1−ϕ(x)+ϕ(x0 ))−x0

1−x0

)
,

N ′
(
ϕ−1(ϕ(x)+ϕ(x0 +(1− x0)N ′−1(y))−1)− x0

1− x0

)
if y≤ N

′
(
ϕ−1 (1−ϕ(x)+ϕ(x0 ))−x0

1−x0

)
.

Taking ϕ(x) = x, a particular result for the Łuukasiewicz t-norm can be deduced.

Corollary 1. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation. Then the following statements are equivalent:

(i) I satisfies (LI) with TLK.
(ii) One of the two following cases hold:

(a) If NI is strict, then I is given by

I(x,y) =

{
1 if y > (NI ◦NC)(x),
NI(x+N−1

I (y)− 1) if y≤ (NI ◦NC)(x).

(b) If NI is given by Equation (2) with x0 ∈ (0,1) and N′ a strict negation, then
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I(x,y) =

⎧⎪⎨
⎪⎩

1 if y > N
′ ( 1−x

1−x0

)
,

N′
(

N′−1(y)− 1− x
1− x0

)
if y≤ N′

(
1−x
1−x0

)
.

Remark 6. Taking NI = NC, the Łuukasiewicz implication ILK(x,y) = min{1,1− x+
y} is obtained from case (a) in the previous corollary. Again note that there are other
implications satisfying (LI) with TLK than those given in Corollary 1. Of course,
they must have non-continuous natural negation like the Weber implication, which
satisfies (LI) with TLK by Example 7.3.3-(ii) in [5] and is given by

IWB(x,y) =

{
1 if x < 1,
y if x = 1.

4.2.2 Strict T-norms

Strict t-norms are those t-norms T which are ϕ-conjugated with the product t-norm
TP(x,y) = xy, i.e., T = (TP)ϕ for some automorphism ϕ . Example 1 shows that
strict t-norms do not satisfy Property (1) with every fuzzy negation, as it is stated in
Proposition 6.

The following result allows us to characterize fuzzy implications satisfying (LI)
with a fixed strict t-norm.

Theorem 5. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation and ϕ : [0,1]→ [0,1] an automorphism. Then the following statements are
equivalent:

(i) I satisfies (LI) with (TP)ϕ .
(ii) One of the two following cases hold:

(a) If NI is strict, then I is given by

I(x,y) = g−1(g(NI(x)) ·g(y))

where g = ϕ ◦N−1
I .

(b) If NI is given by Equation (2) with x0 ∈ (0,1) and N′ a strict negation, then

I(x,y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if y≥ N
′
⎛
⎝ ϕ−1

(
ϕ(x0 )
ϕ(x)

)
−x0

1−x0

⎞
⎠ ,

N ′
(
ϕ−1(ϕ(x) ·ϕ(x0 +(1− x0) ·N ′−1(y)))− x0

1− x0

)
if y < N

′
⎛
⎝ ϕ−1

(
ϕ(x0 )
ϕ(x)

)
−x0

1−x0

⎞
⎠ .

Remark 7. The fuzzy implications obtained in case (a) of the previous result are
in fact ϕ-conjugates of Yager’s f -generated implications with f (0) < ∞ such that
f = g ◦ϕ−1, since

(I f )ϕ (x,y) = ϕ−1( f−1(ϕ(x) · f (ϕ(y)))) = g−1(g(NI(x)) ·g(y)).
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Recall that ϕ-conjugates of Yager’s f -generated implications with f (0) < ∞ are
characterized as the only binary operations satisfying (LI) with (TP)ϕ and with NI a
strict fuzzy negation (see Theorem 8 in [29]).

Taking ϕ(x) = x, a particular result for the product t-norm can be deduced.

Corollary 2. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation. Then the following statements are equivalent:

(i) I satisfies (LI) with TP.
(ii) One of the two following cases hold:

(a) If NI is strict, then I is given by

I(x,y) = NI(x ·N−1
I (y)).

(b) If NI is given by Equation (2) with x0 ∈ (0,1) and N′ a strict negation, then

I(x,y) =

⎧⎪⎨
⎪⎩

1 if y≥ N
′ ( x0(1−x)

x(1−x0)

)
,

N′
(

x · (x0 +(1− x0) ·N′−1(y))− x0

1− x0

)
if y < N

′ ( x0(1−x)
x(1−x0)

)
.

Remark 8. The fuzzy implications obtained in case (a) of the previous result are in
fact Yager’s f -generated implications with f (0)<∞ such that f = N−1

I . Recall that
Yager’s f -generated implications with f (0)<∞ are characterized as the only binary
operations satisfying (LI) with TP and with NI a strict fuzzy negation (see Theorem
6 in [29]).

Remark 9. Note that there are other implications satisfying (LI) with TP than those
given in Corollary 2. Of course, they must have non-continuous natural negation
like the Yager implication given by

IY G(x,y) =

{
1 if x = 0 and y = 0,
yx if x > 0 or y > 0,

which satisfies (LI) with TP using Theorem 7.3.4 in [5].

5 Conclusions and Future Work

In this paper, we have characterized all fuzzy implications satisfying (LI) with a
t-norm T when the natural negation of the implication is continuous. Moreover, we
have determined in particular the expression of these implications when some con-
tinuous t-norms are considered: the minimum t-norm and the Archimedean continu-
ous ones. The fuzzy implications obtained in these cases are always
(S,N)-implications but often, they belong also to other well-known classes as
Yager’s f -generated implications with f (0)< ∞ and their conjugate implications.
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As a future work, we want to study the case when an ordinal sum t-norm is con-
sidered in order to cover all continuous t-norms. In addition, some non-continuous
t-norms as the drastic t-norm and the nilpotent minimum worth to be studied.
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[4] Baczyński, M., Jayaram, B.: Yager’s classes of fuzzy implications: some properties and
intersections. Kybernetika 43, 157–182 (2007)
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