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Abstract. In this paper we generate fuzzy relations and fuzzy operators using dif-
ferent kind of generators and we study the relationship between them. Firstly, we
introduce a new fuzzy preorder induced by a fuzzy operator. We generalize this
preorder to a fuzzy relation generated by two fuzzy operators and we analyze its
properties. Secondly, we introduce and explore two ways of inducing a fuzzy opera-
tor, one from a fuzzy operator and a fuzzy relation and the other one from two fuzzy
operators. The first one is an extension of the well-known fuzzy operator induced
by a fuzzy relation through Zadeh’s compositional rule. Finally, we aggregate these
operators using the quasi-arithmetic mean associated to a continuous Archimedean
t-norm. The aim is to compare the operator induced by the quasi-arithmetic mean of
the generators with the quasi-arithmetic mean of the generated operators.

1 Introduction

Fuzzy relations and fuzzy consequence operators are main concepts in fuzzy logic.
The fuzzy relation induced by a fuzzy operator and the fuzzy operator induced by a
fuzzy relation through Zadeh’s compositional rule are notions that have been exten-
sively explored (see for instance [2, 3, 5, 6, 7, 9]).

In Section 2 we recall the main definitions and results that will be used throughout
the paper.
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In Section 3 we introduce a fuzzy preorder Rc
c induced by a fuzzy operator c

such that collects the information of c over all the fuzzy subsets of the universal
set. Recall that the classical relation induced by a fuzzy operator only considers the
information over the singletons. We generalize this preorder to a fuzzy relation Rg

f
induced by two fuzzy operators f and g and study its properties. From a logical
point of view, Rg

f stablishes a crossed relation between the consequences of g and
the consequences of f .

In Section 4 we define two new operators Cg
R and Cg

f . The first one is induced by
a fuzzy relation and a fuzzy operator and the second one is induced by two fuzzy
operators. We explore the properties that are transmitted from the generators. In
particular, we show for wich cases the properties of a fuzzy consequence operator
(inclusion, monotony and idempotence) and the coherence property hold.

In Section 5 we use the quasi-arithmetic mean associated to a continuous Archi-
medean t-norm to aggregate these induced fuzzy operators. We study the differ-
ence between two cases. In the first one, we consider the operator generated by the
quasi-arithmetic mean of some fuzzy operators. In the second one, we aggregate the
operators induced by each of fuzzy operators individually.

Finally, in Section 6 we present the conclusions.

2 Preliminaries

Let 〈L,∧,∨,∗,→,0,1〉 be a complete commutative residuated lattice in the sense of
Bělohlávek [1]. That is, a complete lattice 〈L,∧,∨,0,1〉, where 0 denotes the least
element and 1 denotes the greatest one, such that (L,∗) is a commutative monoid
i.e. ∗ is associative, commutative and with neutral element 1, and the operations ∗
and→ satisfy the adjointness property:

x∗ y≤ z ⇔ y≤ x→ z

where ≤ denotes the lattice ordering.
Let us recall in Propositions 1 and 2 the following properties of commutative

residuated lattices (residuated lattices for short) [1] that will be used in the paper.

Proposition 1. Each residuated lattice 〈L,∧,∨,∗,→,0,1〉 satisfies the following con-
ditions for all x,y,z ∈ X:

1. x→ x = 1
2. 1→ x = x
3. x≤ y⇔ x→ y = 1

4. x∗ 0 = 0
5. x∗ (x→ y)≤ y
6. (x→ y)∗ (y→ z)≤ (x→ z)

Proposition 2. Let 〈L,∧,∨,∗,→,0,1〉 be a residuated lattice. The following condi-
tions hold for each index set I whenever both sides of the (in)equality exist. In the
first case, if the left hand side makes sense, so does the right one. For all x,yi ∈ L
with i ∈ I,
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1. x∗∨i∈I yi =
∨

i∈I(x∗ yi)
2. x∗∧i∈I yi ≤∧

i∈I(x∗ yi)

The frame for our work will be the complete commutative residuated lattice
〈[0,1],∧,∨,∗,→,0,1〉 where ∧ and ∨ are the usual infimum and supremum, ∗
is a left continuous t-norm and → is the residuum of ∗ defined for ∀a,b ∈ X as
a→ b = sup{γ ∈ [0,1] | a ∗ γ ≤ b}. Recall that a t-norm is monotone in both argu-
ments and the residuum is antitone in the first argument and monotone in the second
one.

In this paper, X will be a non-empty classical universal set, [0,1]X will be the set
of all fuzzy subsets of X , Γ ′ will denote the set of all fuzzy relations defined on X
and Ω ′ the set of fuzzy operators defined from [0,1]X to [0,1]X .

Definition 1. (Fuzzy Consequence Operator) A fuzzy operator C ∈ Ω ′ is called a
fuzzy consequence operator when it satisfies for all μ ,ν ∈ [0,1]X :

(C1) Inclusion μ ⊆C(μ)
(C2) Monotony μ ⊆ ν ⇒C(μ)⊆C(ν)
(C3) Idempotence C(C(μ)) =C(μ)

The inclusion of fuzzy subsets is given by the puntual order, i.e. μ ⊆ ν if and only
if μ(x)≤ ν(x) for all x ∈ X .

Definition 2. (Coherent Fuzzy Operator) Let C ∈Ω ′ be a fuzzy operator inΩ ′. We
say that C is coherent if it satisfies for all x,a ∈ X and μ ∈ [0,1]X

μ(a)∗C({a})(x))≤C(μ)(x)

Let us look back on some properties of fuzzy relations. A fuzzy relation on X is said
to be:

(R) Reflexive if R(x,x) = 1 ∀x ∈ X
(S) Symmetric if R(x,y) = R(y,x) ∀x,y ∈ X
(T) ∗-Transitive if R(x,y)∗R(y,z)≤ R(x,z) ∀x,y,z ∈ X

A fuzzy relation satisfying (R) and (T) is called a fuzzy preoder. If it also satisfies
(S), then it is called a fuzzy similarity or indistinguishability operator. Given R and
S fuzzy relations, we say that R≤ S if and only if R(x,y)≤ S(x,y) for all x,y ∈ X .

For a given fuzzy relation R, a fuzzy subset μ of X is called ∗-compatible with R
if μ(x)∗R(x,y)≤ μ(y) for all x,y ∈ X . From its logical implications, these sets are
also called true-sets or closed under modus ponens. This notion gets special interest
when R is a preorder [3]. When R is not only a preorder but also an indistinguisha-
bility operator, these sets are called extensional sets and the set of all these subsets
has very interesting properties [9].

Every fuzzy operator induces a fuzzy relation in a very natural way and every
fuzzy relation also induces a fuzzy operator using Zadeh’s compositional product:
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Definition 3. Let C be a fuzzy operator in Ω ′. The fuzzy relation induced by C is
given by

RC(x,y) =C({x})(y) (1)

where {x} denotes the singleton x.

Definition 4. Let R ∈ Γ ′ be a fuzzy relation on X. The fuzzy operator induced by R
through Zadeh’s compositional rule is defined by

C∗R(μ)(x) = sup
w∈X
{μ(w)∗R(w,x)} (2)

These concepts are strongly connected and they have been extensively explored in
several contexts (see for instance [2, 3, 5, 6, 7, 9]).

3 Relation Induced by Fuzzy Operators

Notice that the relation induced by (1) only takes into account the behaviour of C
over the singletons and not over more general fuzzy subsets. In order to include
this information, we define a new fuzzy relation induced by a fuzzy operator in a
different way.

Definition 5. Let c be a fuzzy operator in Ω ′. The fuzzy relation Rc
c induced by c is

given by
Rc

c(x,y) = inf
μ∈[0,1]X

{c(μ)(x)→ c(μ)(y)} (3)

It is easy to see that this relation is a fuzzy preorder on X since it is the infimum of
a family of preorders. From a logical point of view, the crisp interpretation of this
relation would be

x≤ y (or related to y)⇔ ∀A⊆ X , if x is a consequence of A then y is also a
consequence of A

Notice that if c is an inclusive operator, then Rc
c ≤ Rc. In fact, for all x,y∈ X we have

Rc
c(x,y) = infμ∈[0,1]X {c(μ)(x)→ c(μ)(y)} ≤ c({x})(x)→ c({x})(y) = Rc(x,y).

In Definition 6 we generalize the previous definition to the fuzzy relation Rg
f

induced by two fuzzy operators f and g. Rg
f is a crossed relation whose logical

interpretation in the crisp case would be the following

x is related to y⇔ whenever x is a consequence by g of some subset A, then y is a
consequence of the same subset by f .

Definition 6. Let f and g be fuzzy operators in Ω ′. The fuzzy relation Rg
f induced

by f and g is defined by

Rg
f (x,y) = inf

μ∈[0,1]X
{g(μ)(x)→ f (μ)(y)}

g and f will be called the upper and lower generators of Rg
f respectively.



On the Induction of New Fuzzy Relations 299

In Propositions 3 and 4 we study the reflexive and ∗-trasitive properties of Rg
f .

Proposition 3. Let f and g be fuzzy operators in Ω ′. Then, Rg
f is reflexive if and

only if g≤ f , i.e. g(μ)(x)≤ f (μ)(x) for all μ ∈ [0,1]X and x ∈ X.

Proof.

Rg
f is reflexive ⇔ Rg

f (x,x) = 1 ∀x ∈ X

⇔ inf
μ∈[0,1]X

{g(μ)(x)→ f (μ)(x)} = 1 ∀x ∈ X

⇔ g(μ)(x)→ f (μ)(x) = 1 ∀μ ∈ [0,1]X , ∀x ∈ X

⇔ g(μ)(x)≤ f (μ)(x) ∀μ ∈ [0,1]X , ∀x ∈ X ⇔ g≤ f �

Proposition 4. Let f ,g ∈Ω ′ be fuzzy operators with f ≤ g. Then, the induced fuzzy
relation Rg

f is ∗-transitive.

Proof.

Rg
f (x,y)∗Rg

f (y,z) = inf
μ∈[0,1]X

{g(μ)(x)→ f (μ)(y)} ∗ inf
μ∈[0,1]X

{g(μ)(y)→ f (μ)(z)}

≤ inf
μ∈[0,1]X

{(g(μ)(x)→ f (μ)(y))∗ (g(μ)(y)→ f (μ)(z))}

≤ inf
μ∈[0,1]X

{(g(μ)(x)→ g(μ)(y))∗ (g(μ)(y)→ f (μ)(z))}

≤ inf
μ∈[0,1]X

{g(μ)(x)→ f (μ)(z)} = Rg
f (x,z) �

4 Inducing Fuzzy Operators from Different Generators

In this section we introduce two new operators Cg
R and Cg

f . Their construction is
based on Zadeh’s compositional rule in a very similar way to the construction given
by (2). In this case, it involves either a fuzzy relation R and a fuzzy operator g or
two fuzzy operators f ,g (generators).

Definition 7. Let g ∈ Ω ′ be a fuzzy operator and let R ∈ Γ ′ be a fuzzy relation on
X. We define the operator Cg

R induced by g and R as

Cg
R(μ)(x) = sup

w∈X
{g(μ)(w)∗R(w,x)} (4)

R and g are called the generators of Cg
R.

Notice that C∗R is a particular case of Cg
R. Taking g= id, where id denotes the identity

operator on [0,1]X , we obtain Cid
R =C∗R.
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Definition 8. Let g, f ∈Ω ′ be fuzzy operators. The operator Cg
f induced by g and f

is defined by
Cg

f (μ)(x) = sup
w∈X
{g(μ)(w)∗ f ({w})(x)} (5)

g and f will be called the upper and lower generators of Cg
f respectively.

The following result shows some basic properties of Cg
R and Cg

f .

Proposition 5. Given g1,g2, f1, f2 fuzzy operators and R1,R2 fuzzy relations, the
following holds

1. If g1 ≤ g2, then Cg1
R ≤Cg2

R ∀R ∈ Γ ′
2. If R1 ≤ R2 then Cg

R1
≤Cg

R2
∀g ∈Ω ′

3. If f1 ≤ f2 then Cg
f1
≤Cg

f2
∀g ∈Ω ′

4. If g1 ≤ g2 then Cg1
f ≤Cg1

f ∀ f ∈Ω ′

Proof. All implications directly follow from the monotony of ∗. To illustrate it, we
will prove 4. For any μ ∈ [0,1]X and x ∈ X we have

Cg1
f (μ)(x) = sup

y∈X
{g1(μ)(y)∗ f ({y})(x)} ≤ sup

y∈X
{g2(μ)(y)∗ f ({y})(x)}=Cg2

f (μ)(x)

There exists a close relationship between the operators Cg
f and Cg

R.

Theorem 1. For every pair (g, f ) of fuzzy operators, there exists a fuzzy relation R
such that Cg

R =Cg
f . R is uniquely determined. Conversely, for every pair (g,R) of a

fuzzy operator and a fuzzy relation, there exists at least a fuzzy operator f such that
Cg

f =Cg
R.

Proof. To prove the first statement of the theorem, notice that given (g, f ) and using
the usual definition R f (x,y) = f ({x})(y), Cg

f coincides with Cg
R f

. The unicity follows
from the construction.

To prove the second statement, notice that for every fuzzy relation R ∈Γ ′ we can
define a fuzzy operator fR as follows:

fR(μ)(y) =

⎧⎨
⎩

R(x,y) if μ is the singleton {x}

μ(y) if μ is not a singleton

Then, for all μ ∈ [0,1]X and x ∈ X ,

Cg
fR
(μ)(x) = sup

w∈X
{g(μ)(w)∗ fR({w})(x)}= sup

w∈X
{g(μ)(w)∗R(w,x)}=Cg

R(μ)(x) �

Remark 1. Observe that there are infinite choices for the operator fR since we are
only concerned about its effect over the singletons.
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Remark 2. From Theorem 1 we can conclude that every property satisfied for Cg
f for

arbitrary f will also be satisfied for Cg
R for arbitrary R. Conversely, every property

satisfied for Cg
R for arbitrary R will also be satisfied for Cg

f for arbitrary R.
Given f ,g two operators and Cg

f the operator that they generate, there is a fuzzy
relation R such that Cg

f =Cg
R and it is exactly R f . Suppose that a property is satisfied

for Cg
R for every R ∈Γ ′. It will particulary be satisfied for Cg

R f
. Hence, it will also be

satisfied for Cg
f .

On the other hand, for any relation R ∈ Γ ′ and g ∈ Ω ′ there exist an infinite
number of operators fR for which Cg

fR
coincides with Cg

R. Every property satisfied
for Cg

f for an arbitrary f will be satisfied for Cg
fR

independently of the fR chosen.
Hence, it will also be satisfied for Cg

R.

Let us study which properties of Cg
f and Cg

R are transmitted from the generators. Our
main interest is to characterize for which generators we obtain fuzzy consequence
operators (FCO).

Lemma 1. Let g ∈Ω ′ and R ∈ Γ ′. If R is reflexive, then Cg
R ≥ g.

Proof. Cg
R(μ)(x) = supw∈X{g(μ)(w)∗R(w,x)} ≥ g(μ)(x)∗R(x,x) = g(μ)(x)

Proposition 6. Let g ∈ Ω ′ be an inclusive fuzzy operator and R ∈ Γ ′ a reflexive
fuzzy relation. Then, Cg

R is also an inclusive fuzzy operator.

Proof. From lemma 1 and the inclusion of g, Cg
R(μ)(x)≥ g(μ)(x)≥ μ(x).

We have an equivalent result for the inclusion of Cg
f .

Proposition 7. Let g ∈ Ω ′ be an inclusive fuzzy operator and f ∈ Ω ′ a fuzzy op-
erator which is inclusive over the singletons. Then, Cg

f is also an inclusive fuzzy
operator.

Proof. Since f is inclusive over the singletons, the relation R f (x,y) = f ({x})(y) is
reflexive. From the proof of Theorem 1, we know that Cg

f = Cg
R f

. Then, it follows

from the previous proposition that Cg
f is also inclusive.

Proposition 8. Let g ∈Ω ′ be a monotone fuzzy operator. Then, Cg
R is also a mono-

tone fuzzy operator for any R ∈ Γ ′.
Proof. Suppose μ1 ⊆ μ2. Then, g(μ1)(x)≤ g(μ2)(x) for all x ∈ X and it follows that

Cg
R(μ1)(x) = sup

w∈X
{g(μ1)(w)∗R(w,x)} ≤ sup

w∈X
{g(μ2)(w)∗R(w,x)}=Cg

R(μ2)(x) �

Remark 3. Notice that Proposition 8 and Remark 2 ensure that if g is a monotone
fuzzy operator , then Cg

f is also monotone for any f ∈Ω ′.
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Thus, Cg
f and Cg

R inherit the monotony of its upper generator g. This is due to the
fact that g has an effect over general fuzzy subsets. Notice that neither the lower
generator f nor R do. Hence, the monotony of the lower generator f does not imply
the monotony of Cg

f as it is shown in the following simple example.

Example 1. Let f be the identity operator which is trivially monotone. Let g be any
operator which is not monotone. Then, Cg

f (μ)(x) = supy∈X{g(μ)(y)∗ f ({y})(x)}=
{g(μ)(x)∗ {x}(x)}= g(μ)(x). Since g is not monotone, neither is Cg

f .

The idempotence does not follow from the idempotence of the generators as directly
as the inclusion or the monotony do. In order to generate a FCO from another FCO,
we require an additional property. We need the subsets from the image of the upper
generator g to be ∗-compatible with the given relation.

Definition 9. Let g be a fuzzy operator and R a fuzzy relation. We will say that g is
∗-concordant with R if all the subsets from the image of g are ∗-compatible with R.

Theorem 2. Let R ∈ Γ ′ be a reflexive fuzzy relation and let g ∈Ω ′ be a FCO. Sup-
pose that g is ∗-concordant with R. Then, the operator Cg

R induced by g and R is also
a FCO.

Proof. Propositions 6 and 8 give us the properties of inclusion and monotony of
Cg

R. It only remains to prove the idempotence. To prove the first inclusion notice
that, since g(μ) belongs to Im(g), it is ∗-compatible with R, so g(μ)(y)∗R(y,x) ≤
g(μ)(x) for all y,x ∈ X . Hence, supy∈X{g(μ)(y) ∗R(y,x)} ≤ g(μ)(x) for all x ∈ X .
Using this fact, the monotony and idempotence of g and the monotony of ∗ we get

Cg
R(C

g
R(μ))(x) = sup

w∈X
{g(Cg

R(μ))(w)∗R(w,x)}

= sup
w∈X
{g(sup

y∈X
{g(μ)(y)∗R(y,w)})∗R(w,x)}

≤ sup
w∈X
{g(g(μ)(w))∗R(w,x)}

= sup
w∈X
{g(μ)(w)∗R(w,x)}=Cg

R(μ)(x)

The other inclusion follows immediately from the inclusion property.

Remark 4. We can state an equivalent result for the operator Cg
f . Let g and f be two

fuzzy operators such that g is FCO and f is inclusive over the singletons. If g is
∗-concordant with R f (x,y) = f ({x})(y), then Cg

f is a FCO.

Let us prove that the coherence property is inherited from the upper generator.

Proposition 9. Let g ∈Ω ′ be a coherent fuzzy operator and R a fuzzy relation in X.
Then, Cg

R is also a coherent fuzzy operator.

Proof. Using property 1 from Proposition 2 we have that ∀a ∈ X and ∀μ ∈ [0,1]X ,

μ(a)∗Cg
R({a})(x) =μ(a)∗ sup

y∈X
{g({a})(y)∗R(y,x)}
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=sup
y∈X
{μ(a)∗ g({a})(y)∗R(y,x)}

=sup
y∈X
{(μ(a)∗ g({a})(y))∗R(y,x)}

≤sup
y∈X
{g(μ)(y)∗R(y,x)}=Cg

R(μ)(x)

where the inequality holds because of the coherence of g.

Remark 5. From remark 2 we can state the same about the coherence of Cg
f . That is,

if g is a coherent fuzzy operator, then Cg
f is also a coherent fuzzy operator.

5 Aggregation of Fuzzy Operators through the
Quasi-arithmetic Mean

In this section, we will assume that ∗ is not only a left-continuous t-norm, but also
Archimedean and with an additive generator t. Let us recall that a t-norm is Archi-
medean if for each x,y ∈ (0,1) there is an n∈N with xn = x∗ n· · · ∗x < y. An additive
generator of a t-norm is a strictly decreasing function t : [0,1]→ [0,∞], right contin-
uous in 0, with t(1) = 0 and satisfying t(x)+ t(y) ∈ Ran(t)∪ [t(0),∞] such that

x∗ y = t(−1) (t(x)+ t(y))

where t(−1) denotes the pseudo-inverse of t defined as:

t(−1)(y) = sup{x ∈ [0,1]|t(x)> y}

The left-continuity of a t-norm ∗ with additive generator t, implies its continuity and
therefore, the continuity of its generator. In this case, the pseudo-inverse becomes
the usual inverse of t [8].

Given a continuous Archimedean t-norm ∗ with additive generator t, there is a nat-
ural way to define the extended quasi-arithmetic mean associated to ∗,
mt :

⋃
n∈N[0,1]n −→ [0,1] (see [4]):

mt(x1, ...,xn) = t−1(
1
n

n

∑
i=1

t(xi)) (6)

Given a finite family of fuzzy operators, we can aggregate them using the
quasi-arithmetic mean associated to ∗ in order to obtain another fuzzy operator.

Definition 10. (Quasi-arithmetic mean of fuzzy operators) Let t : [0,1]→ [0,∞] be
an additive generator of a continuous Archimedean t-norm ∗. Let {g1, ..,gn} be a
finite family of fuzzy operators. The n-ary quasi-arithmetic mean generated by t is
the fuzzy operator given by
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mt(g1, ...,gn) = t−1

(
1
n

n

∑
i=1

t(gi)

)
(7)

such that for every fuzzy subset μ ∈ [0,1]X and every x ∈ X is

mt(g1, ...,gn)(μ)(x) = t−1

(
1
n

n

∑
i=1

t(gi(μ)(x))

)
(8)

The extended quasi-arithmetic mean generated by t is the function mt :
⋃

n∈N(Ω ′)n→
Ω ′ that maps any finite family of n fuzzy operators to their n-ary quasi arithmetic
mean.

The quasi-arithmetic mean can be defined more generally [4]. Indeed, it can be
defined for any continuous and strictly increasing or strictlty decreasing function f :
[0,1]−→ [−∞,∞]. In this case, the expression ∞−∞ needs to be defined (it is often
considered−∞). However, we will focus on the natural case where the generator of
mt is the additive generator of the given continuous Archimedean t-norm ∗.
Remark 6. Observe that, if g1, ..,gn ∈Ω ′ are fuzzy operators. Then, their arithmetic
mean satisfies that

min(g1, ...,gn)≤ mt(g1, ...,gn)≤max(g1, ...,gn)

It is known that the quasi-arithmetic mean mt generated by t is strictly increasing
and idempotent (in the sense that mt(g, ...,g) = g) if the generator is continuous and
stricly increasing or strictly decreasing [4]. From this fact, the next two propositions
follow:

Proposition 10. Let g1, ..,gn ∈Ω ′ be inclusive fuzzy operators. Then, its quasi arith-
metic mean is also an inclusive fuzzy operator.

Proposition 11. Let g1, ..,gn ∈ Ω ′ be monotone fuzzy operators. Then, its quasi
arithmetic mean is also a monotone fuzzy operator.

Remark 7. Observe that the idempotence of the gi is in general not translated into
the idempotence of their quasi-arithmetic mean. Consider for example the quasi
arithmetic mean of g1 = id and g2 =

1
2 id with the product t-norm.

Consider the operators Cg
f and Cg

R from the previous section. Given a finite family of
fuzzy operators, let us compare two different processes of aggregation through the
quasi-arithmetic mean. The first one by aggregating the generators, the second one
by aggregating the generated operators.

Theorem 3. Let g1, ..,gn ∈ Ω ′ be fuzzy operators and t : [0,1]−→ [0,∞] be an ad-
ditive generator of the continuous Archimedean t-norm ∗. Let mt be the extended
quasi-arithmetic mean generated by t. Then, for every f ∈Ω ′ and every R ∈ Γ ′

Cmt (g1,...,gn)
f ≤ mt(C

g1
f , ...,Cgn

f ) and Cmt (g1,...,gn)
R ≤ mt(C

g1
R , ...,Cgn

R )
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Proof. We prove the first inequality:

Cmt(g1,...,gn)
f (μ)(x) = sup

w∈X
{mt(g1, ...,gn)(μ)(w)∗ f ({w})(x)}

= sup
w∈X

{
t−1

(
∑n

i=1 t(gi(μ)(w))
n

)
∗ f ({w})(x)

}

= sup
w∈X

{
t−1

(
t

[
t−1

(
∑n

i=1 t(gi(μ)(w))
n

)]
+ t ( f ({w})(x))

)}

= sup
w∈X

{
t−1

(
t(g1(μ)(w))+ · · ·+ t(gn(μ)(w))

n
+ t( f ({w})(x))

)}

= sup
w∈X

{
t−1

(
t(g1(μ)(w))+ · · ·+ t(gn(μ)(w))+n · t( f ({w})(x))

n

)}

= sup
w∈X

{
t−1

(
t(g1(μ)(w))+ t( f ({w})(x))

n
+ · · ·+ t(gn(μ)(w))+ t( f ({w})(x))

n

)}

= sup
w∈X

{
t−1

(
t(g1(μ)(w)∗ f ({w})(x))

n
+ · · ·+ t(gn(μ)(w)∗ f ({w})(x))

n

)}

≤t−1
(

t (supw∈X{g1(μ)(w)∗ f ({w})(x)})
n

+ · · ·+ t (supw∈X{gn(μ)(w)∗ f ({w})(x)})
n

)

=t−1

(
1
n

n

∑
i=1

t

(
sup
w∈X

{gi(μ)(w)∗ f ({w})(x)}
))

= mt(C
g1
f , ...,Cgn

f )(μ)(x) �

Finally, we can prove the following Theorem similarly to the previous one:

Theorem 4. Let f1, ..., fn ∈ Ω ′ be fuzzy operators and t : [0,1]−→ [0,∞] be an ad-
ditive generator of the continuous Archimedean t-norm ∗. Let mt be the extended
quasi-arithmetic mean generated by t. Then, for every g ∈Ω ′,

Cg
mt ( f1,..., fn)

≤ mt(C
g
f1
, ...,Cg

fn
)

6 Conclusions

In this paper we have generated fuzzy relations and fuzzy operators using different
kind of generators and we have studied their properties. We have defined a fuzzy
relation induced by two operators f ,g that uses more information than the behaviour
of f and g over the singletons. We have proved that this relation is reflexive if and
only if g≤ f , ∗-transitive when f ≤ g and a preorder when f = g.

We have defined two fuzzy operators Cg
R and Cg

f , the first one induced by a fuzzy
relation and a fuzzy operator and the second one induced by two fuzzy operators.
We have shown that they are equivalent in the following sense: For every Cg

f , there
exists R such that Cg

f =Cg
R. Conversely, for every Cg

R there exists f such that Cg
R =Cg

f .
We have defined the ∗-concordance of a fuzzy operator with a fuzzy relation

and we have shown that for a FCO g which is ∗-concordant with a reflexive fuzzy
relation R, the generated Cg

R is also a FCO. The same holds for Cg
f if g and the

relation R f induced by f in the classical way satisfy the mentioned conditions. We
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have also shown that the coherence property is directly transmitted from the upper
generator.

We have studied the aggregation of these induced operators using the
quasi-arithmetic mean associated to a continuous Archimedean t-norm. On one
hand, we have considered the operators generated by the quasi-arithmetic mean of
a family of fuzzy operators. On the other hand, we have considered the aggregation
of the individually induced fuzzy operators. For a finite family of fuzzy operators, it
holds that Cmt(gi)

f ≤mt(C
gi
f ), Cg

mt ( fi)
≤mt(C

g
fi
) and Cmt(gi)

R ≤ mt(C
gi
R ) .

Acknowledgements. We ackowledge the partial support of the project FIS2011-28820-
C02-02 from the Spanish Government and N.C. acknowledges the financial support of the
"Asociación de Amigos de la Universidad de Navarra".

References
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