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Abstract. The ordered weighted average (OWA) is an aggregation operator that pro-
vides a parameterized family of aggregation operators between the minimum and
the maximum. This paper studies the use of the OWA operator with norms. Sev-
eral extensions and generalizations are suggested including the use of the induced
OWA operator and the OWA weighted average. This approach represents a general
frameworkof the aggregation operators when dealing with distance and similarity
measures. Some key particular cases are studied including the addition OWA and
the subtraction OWA operator

1 Introduction

The ordered weighted average (OWA) [17] is an aggregation operator that provides a
parameterized family of aggregation operators between the minimum and the max-
imum. It has been used in a wide range of applications [1, 28] and has been ex-
tended and generalized in a wide range of directions. For example, Fodor et al. [2]
presented a generalization by using quasi-arithmetic means. Yager and Filev [27]
introduced the induced OWA (IOWA) operator providing a more general reordering
process. Merigó and Gil-Lafuente [9] extended this approach by using generalized
and quasi-arithmetic means. Other authors have studied the use of distance mea-
sures with the OWA operator [3, 10, 15, 29]. In this direction, it is worth noting a
recent development by Yager [28] regarding the use of OWA operators with norms
that generalizes distance and similarity measures under the same framework.
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A further interesting approach is those aggregation operators that integrate the
OWA operator with the weighted average. Several approaches have been proposed
in this direction by many authors including the weighted OWA (WOWA) [12], the
hybrid average [19], the importance OWA [21] and the immediate weights [11, 6].
Recently, Merigó [6] has suggested the OWA weighted average (OWAWA) as a
generalization that unifies both concepts in the same formulation and considering
the degree of importance they have in the specific aggregation taken into account.

The aim of this paper is to develop further extensions regarding the use of OWA
operators with norms. It is presented the use of the IOWA operator with norms form-
ing the IOWA norm (IOWAN) aggregation. Thus, it is possible to represent a wide
range of norm aggregations from the minimum to the maximum and under complex
reordering processes. Next, it is introduced the use of the OWAWA operator obtain-
ing the OWAWA norm (OWAWAN) that provides a unified framework between the
usual weighted average norm and the OWAN operator. Several families and particu-
lar cases are studied including the addition OWAWA (A-OWAWA), the subtraction
OWAWA (S-OWAWA) and many other cases. These operators seem to be of great
importance because they may provide a new methodology for dealing with arith-
metic operations. The use of the variance [20, 25] as a particular type of norm is
also considered.

This paper is organized as follows. Section 2 reviews some basic preliminaries
regarding the OWA and the OWAWA operator and norm aggregations. Section 3
introduces the use of the OWAWA operator with norms and Section 4 studies a wide
range of particular cases. Section 5 ends the paper summarizing the main conclu-
sions of the paper.

2 Preliminaries

This section briefly reviews the OWA operator, the OWAWA operator and norm
aggregations.

2.1 The OWA Operator

The OWA operator is an aggregation operator that considers a wide range of aver-
aging operators that move between the minimum and the maximum. It permits to
aggregate the information considering the degree of optimism or pessimism that a
decision maker wants to use in the aggregation. It has been used in a wide range of
applications including soft computing, decision making and statistics [1, 28]. It can
be defined as follows.

Definition 1. An OWA operator of dimension n is a mapping OWA : Rn → R that

has an associated weighting W and
n
∑
j=1

wj = 1, such that:
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OWA(a1, ...,an) =
n

∑
j=1

wjb j (1)

where b j is the jth largest of the ai .

Several properties could be studied including different families of OWA operators
and measures for characterizing the weighting vector [17, 18]. Note that in most of
the OWA literature, the arguments are reordered according to a weighting vector.
However, it is also possible to reorder the weighting vector according to the initial
positions of the arguments ai [22] and this is of great importance in order to integrate
the weighted average and the OWA in the same formulation.

The OWA operator can be extended by using induced aggregation operators [9,
24] forming the induced OWA (IOWA) operator [27]. Therefore, it is possible to
consider a more general reordering process that deals with complex situations.

2.2 The OWAWA Operator

The ordered weighted averaging - weighted average (OWAWA) [6] is a model that
unifies the OWA operator and the weighted average in the same formulation con-
sidering the degree of importance that each concept has in the analysis. Therefore,
both concepts can be seen as a particular case of a more general one. One of its key
advantages is that it can be reduced to the usual weighted average or to the OWA.
Therefore, any study that uses the OWA or the weighted average can be revised
and extended with the OWAWA operator provides a more complete analysis of the
information considered. It can be defined as follows.

Definition 2. An OWAWA operator of dimension n is a mapping OWAWA : Rn → R

that has an associated weighting W of dimension n such that wj ∈ [0,1] and
n
∑
j=1

wj =

1, according to the following formula:

OWAWA(a1, ...,an) =
n

∑
j=1

v̂ jb j (2)

where b j is the jth largest of the ai, each argument ai has an associated weight (WA)

vi with
n
∑

i=1
vi = 1 and vi ∈ [0,1], v̂ j = βwj +(1−β )wj with β ∈ [0,1] and v j is the

weight (WA) vi ordered according to b j, that is, according to the jth largest of the
ai.

It provides a parameterized family of aggregation operators from the minimum to
the maximum. The difference against the OWA is that it also considers subjective
information. Thus, it is possible to consider a partial boundary condition that con-
siders the minimum and maximum adjusted with the weighted average [6]. Note
that if β = 1, we get the OWA operator and if β = 0, the WA. The OWAWA op-
erator accomplishes similar properties than the usual OWA aggregation operators
including the symmetry, the use of mixture operators and so on [6].
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2.3 Norm Aggregations

Norm aggregations provide a more general representation of the aggregation when
dealing with distance measures because they allow us to include more complex
operations in the analysis. A norm associates with some vector or tuple X =
(x1,x2, ...,xn) a unique non-negative scalar. A norm is a function f : Rn → [0,∞)
that has the following properties [1, 28]:

1. f (x1,x2, ...,xn) = 0 if and only if all xi = 0.
2. f (aX) = |a| f (X).
3. f (X)+ f (Y )≥ f (X +Y ), that is, the triangle inequality.

When dealing with averaging functions, norms can be used following a similar
methodology as it is used with distance measures [7]. Thus, with the weighted av-
erage it can be formulated the following expression:

f (a1,a2, ...,an) = G(|a1| , |a2| , ..., |an|) =
n

∑
i=1

wi |ai|, (3)

Recently, Yager [25] has suggested the use of norms in the OWA operator by using:

f (a1,a2, ...,an) = G(|a1| , |a2| , ..., |an|) =
n

∑
j=1

wjNj, (4)

where Nj is the jth largest of the |ai|.
Note that norms can be used in order to get a distance or a metric function as-

suming that if f is a norm then d(X ,Y ) = f (a = |X−Y |).

3 Norms with OWAWA Operators

Norms are useful in a wide range of situations because they include many aggrega-
tion operators and distance measures as particular cases. Among others, it is worth
noting the usual average, the Hamming distance [4] and the variance.This paper
presents several extensions and generalizations by using a wide range of averag-
ing aggregation operators with norms. First, let us consider the use of the induced
OWA (IOWA) operator with norms forming the IOWA norm (IOWAN) operator. Its
main advantage is that it considers complex reordering processes in the aggrega-
tion of norms providing a parameterized family of norms from the minimum to the
maximum one. Note that this is of great interest because when dealing with norms,
not always the highest or the lowest one is the preferred one. It can be defined as
follows.

Definition 3. An IOWAN operator of dimension n is a mapping IOWAN : Rn×
Rn → R that has an associated weighting W with wj ∈ [0,1] and

n
∑
j=1

wj = 1, such

that:
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IOWAN (〈u1, |a1|〉 ,〈u2, |a2|〉 , ...,〈un, |an|〉) =
n

∑
j=1

wjNj , (5)

where Nj is the ai value of the IOWAN pair 〈ui,ai〉 having the jth largest ui, ui is
the order-inducing variable and |ai| is the argument variable represented in the form
of individual norms.

Note that the IOWAN operator is reduced to the usual IOWA operator when |ai|= ai.
It can also be seen as a distance measure when d(X ,Y ) = f (a = |X−Y |) becom-
ing the induced OWA distance (IOWAD) operator [7]. Furthermore, it is also pos-
sible to formulate it by using generalized means forming the induced generalized
OWA (IGOWA) operator (|a|= aλ ) [9] and the induced Minkowski OWA distance
(IMOWAD) (d(X ,Y ) = f (a = |X−Y |λ )) [8].

Next, let us look into a more general framework by using the OWAWA operator
with norms forming the OWAWA norm (OWAWAN) operator. Thus, it is possible
to integrate norms with weighted averages (Eq. 3) and OWA operators in the same
formulation and considering the degree of importance that each concept has in the
aggregation. Thus, all the particular types of norms used previously can also be
included in this framework including the use of distance and similarity measures. It
can be defined as follows.

Definition 4. An OWAWAN operator is a mapping OWAWAN : Rn → R of dimen-

sion n, if it has an associated weighting vector W , with
n
∑
j=1

wj = 1 and wj ∈ [0,1]

and a weighting vector V that affects the WA, with
n
∑

i=1
vi = 1 and vi ∈ [0,1], such

that:

OWAWAN (|a1| , |a2| , ..., |an|) = β
n

∑
j=1

wjNj +(1−β )
n

∑
i=1

vi |ai| (6)

where Nj is the jth smallest of the |ai|, each argument |ai| is the argument variable
represented in the form of individual norms and β ∈ [0,1].

Note that the OWAWAN operator can be formulated integrating both equations into
a single one as it is done with the OWAWA operator [6] as follows:

OWAWAN (|a1| , |a2| , ..., |an|) =
n

∑
j=1

v̂ jNj, (7)

where Nj is the jth smallest of the |ai|, each argument |ai| is the argument variable
represented in the form of individual norms and has an associated weight vi with

n
∑

i=1
vi = 1 and vi ∈ [0,1], v̂ j = βwj +(1−β )v j with β ∈ [0,1] and v j is the weight

(WA) vi ordered according to Nj, that is, according to the jth smallest of the |ai|.
Observe that this is possible only when dealing with arithmetic averaging func-

tions. If it is used a generalized or quasi-arithmetic mean with λ �= 1 or g(a) �= a, it
is not possible to integrate it in this way.
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As we can see, if β = 1, the OWAWAN operator becomes the OWAN opera-
tor and if β = 0, the weighted averaging norm (WAN). The OWAWAN operator
accomplishes similar properties than the norm aggregation operators [28].

Note that Eq. (6) has been presented adapting the ordering of the weighted av-
erage to the OWA operator. However, it is also possible to formulate the OWAWA
operator adapting the ordering of the OWA operator to the weighted average as:

OWAWAN (|a1| , |a2| , ..., |an|) = β
n

∑
i=1

wi |ai|+(1−β )
n

∑
i=1

vi |ai|, (8)

where each argument ai has an associated weight wi that represents the weight wj

ordered according to the ordering of the arguments ai and β ∈ [0,1].
A further interesting issue appears when the weighting vector is not normalized,

i.e., W = ∑n
j=1 wj �= 1 or V = ∑n

i=1 vi �= 1. In these situations and without consider-
ing the concept of heavy aggregations [23], the OWAWAN operator can be formu-
lated in the following way:

OWAWAN (|a1| , |a2| , ..., |an|) = β
W

n

∑
j=1

wjNj +
(1−β )

V

n

∑
i=1

vi|ai|, (9)

Similarly to the IOWAN, the OWAWAN operator can also be seen as a distance
metric by using d(X ,Y ) = f (a = |X−Y |). Thus, it becomes the OWAWA distance
(OWAWAD) operator [11] that can be formulated as follows:

OWAWAD(|x1,y1| , |x2,y2| , ..., |xn,yn|) = β
n

∑
j=1

wjD j +(1−β )
n

∑
i=1

vi|xi− yi|, (10)

where D j is the jth smallest of the |xi− yi|, each argument |xi− yi| is the argument
variable represented in the form of individual distances and β ∈ [0,1].

Note that the main advantage of the OWAWAD is that it integrates the weighted
Hamming distance (WHD) and the OWA distance (OWAD) [10, 15] in the same
formulation considering the degree of importance that each concept has in the for-
mulation. As we can see, if β = 1, the OWAWAD operator becomes the OWAD
operator and if β = 0, the WHD.

Furthermore, it is also possible to use generalized and quasi-arithmetic means
in the analysis. Thus, the OWAWAN operator becomes the GOWAWA and the
Quasi-OWAWA operator. With generalized means this is obtained when |a| = aλ

and with quasi-arithmetic means if |a|= g(a).
An interesting issue when analysing these aggregation operators is to character-

ize the weighting vector. This can be done following the OWA literature where it is
considered the degree of orness (attitudinal character) [6, 17], the entropy of disper-
sion [6, 17] and the divergence of the weights [6, 23]. When dealing with OWAWA
operators, the degree of orness can be formulated from two different perspectives.
A first perspective assumes that the weighted average can also be studied with this
measure being the objective to determine the tendency of the aggregation to the
minimum or to the maximum:
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α(V̂ ) = β
n

∑
j=1

wj

(
n− j
n− 1

)
+(1−β )

n

∑
j=1

v j

(
n− j
n− 1

)
. (11)

It is straightforward to calculate the andness measure by using the dual. That is,
Andness(V̂) = 1−α(V̂). The other perspective is focussed on the attitudinal char-
acter. In this case, the weighted average is seen as a neutral aggregation because
it only considers the subjective opinion. Thus, it is reasonable to assume that the
orness measure for this part of the equation should be 0.5 obtaining the following
expression:

α(V̂ ) = β
n

∑
j=1

wj

(
n− j
n− 1

)
+(1−β )× 0.5. (12)

In this case it is also trivial to form the andness measure or the degree of pessimism.
The entropy of dispersion measures the amount of information being used in the

aggregation. If we extend this approach to the OWAWAN operator, it is obtained the
following formulation:

H(V̂ ) =−
(
β

n

∑
j=1

wjln(wj)+ (1−β )
n

∑
i=1

viln(vi)

)
. (13)

As we can see, if β = 1, we obtain the Yager entropy of dispersion for the OWAN
operator and if β = 0, we get the classical Shannon entropy [13].

The divergence [6, 23] measures the divergence of the weights against the attitu-
dinal character. It is useful in various situations, especially when the attitudinal char-
acter and the entropy of dispersion are not enough to correctly analyse the weighting
vector of an aggregation. If we extend the divergence to the OWAWAN operator, we
get the following divergence:

Div(V̂ ) = β

(
n

∑
j=1

wj

(
n− j
n− 1

−α(W )

)2
)
+(1−β )

(
n

∑
j=1

v j

(
n− j
n− 1

−α(V)

)2
)
.

(14)
Note that if β = 1, we get the OWAN divergence and if β = 0, the WAN divergence.
Moreover, it is also possible to consider a variation of Eq. (14) by using Eq. (12). In
this case, the divergence of the weighted average is 0 and it is only considered the
divergence of the OWAN operator.

Finally, let us consider the use of norms under other frameworks that unifies the
OWA operator and the weighted average in the same formulation. Among others, let
us consider the use of hybrid averages [19], WOWA operators [15] and immediate
weights [11, 6]. By using the hybrid average it is formed the hybrid averaging norm
(HAN) that can be formulated as follows.

HAN (|a1| , |a2| , ..., |an|) =
n

∑
j=1

wjNj, (15)
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where Nj is the jth smallest of the |âi| (âi = nωi |ai| , i = 1,2, ...,n),

ω = (ω1,ω2, ...,ωn) is the weighting vector of the|ai|, with ωi ∈ [0,1] and
n
∑

i=1
ωi = 1.

With the WOWA operator it is obtained the WOWA norm (WOWAN) operator. It is
formulated in the following way.

Definition 5. Let P and W be two weighting vectors of dimension n, with P =

(p1, p2, ..., pn) and W = (w1,w2,...,wn), such that pi ∈ [0,1] and
n
∑

i=1
pi = 1, and

wj ∈ [0,1] and
n
∑
j=1

wj = 1. A mapping WOWAN : Rn×Rn → R is a WOWAN oper-

ator of dimension n if:

WOWAN (|a1| , |a2| , ..., |an|) =
n

∑
i=1

ωi|aσ(i)|, (16)

where {σ(1), ...,σ(n)} is a permutation of {1, ...,n} such that aσ(i−1) ≥ aσ(i) for all
i = 2, ...,n, and the weight ωi is defined as:

ωi = w∗
(
∑
j≤i

pσ( j)

)
−w∗

(
∑
j<i

pσ( j)

)
, (17)

with w∗ a monotone increasing function that interpolates the points (i
/

n, ∑ j≤i w j)
together with the point (0,0). w∗ is required to be a straight line when the points
can be interpolated in this way.

The use of immediate weights forms the immediate weighted averaging norm
(IWAN) and it is constructed by using the following expression:

IWAN (|a1| , |a2| , ..., |an|) =
n

∑
j=1

v̂ j
∣∣Nj

∣∣, (18)

where Nj is the jth smallest of the |ai|, each |ai| has associated a weight vi, v j is the
associated weight of Nj, and v̂ j = (wjv j/∑n

j=1 wjv j).
Note that this expression can only be used when dealing with arithmetic aver-

aging operators as in the OWAWAN operator because with generalized aggregation
operators, the formulation may have some incorrect deviations.

Furthermore, observe that similar extensions and generalizations could also be
studied with induced and generalized aggregation operators [9, 30] and by using
distance measures as it has been explained before.

4 Families of OWAWAN Operators

The OWAWAN operator includes a wide range of particular cases. First, it is pos-
sible to study several families by analyzing the weighting vector [6, 18]. Thus, it is
possible to form the following cases:
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• Simple averaging norm: wj = 1
/

n and vi = 1
/

n, for all i, j.
• Arithmetic WAN (AWAN): wj = 1

/
n, for all j.

• Arithmetic OWAN (AOWAN): vi = 1
/

n, for all i.
• Min-WAN: w1 = 1 and wj = 0, for all j �= 1.
• Max-WAN: wn = 1 and wj = 0, for all j �= n.
• Step OWAWAN: wk = 1 and wj = 0, for all j �= k.
• Hurwicz WAN: w1 = 1−α , wn = α and wj = 0 for all j �= 1,n.
• Window OWAWAN: wj = 1

/
m for k ≤ j ≤ k +m− 1 and wj = 0 for all j >

k+m, j < k.
• Median odd OWAWAN: If n is odd we assign w(n+1)/2 = 1 and wj = 0 for all

others.
• Median even OWAWAN: If n is even we assign wn/2 = w(n/2)+1 = 0.5 and wj = 0

for all others.
• Olympic OWAWAN: w1 = wn = 0, and for others wj = 1

/
(n− 2).

Some other interesting cases are found by analyzing a different expression in the
norm. Among others, it is worth noting the following ones:

• If OWAWAN(X ,Y ) = f (X +Y ), we obtain the addition OWAWA (A-OWAWA)
operator that can be formulated as:

A−OWAWA(|x1 + y1| , ..., |xn + yn|) = β
n

∑
j=1

wjA j +(1−β )
n

∑
i=1

vi|xi + yi|, (19)

where A j is the jth smallest of the |xi + yi| and β ∈ [0,1].
• If OWAWAN(X ,Y ) = f (X −Y ), the subtraction OWAWA (S-OWAWA) operator

and it is expressed as follows:

S−OWAWA(|x1− y1| , ..., |xn− yn|) = β
n

∑
j=1

wjS j +(1−β )
n

∑
i=1

vi(xi− yi), (20)

where S j is the jth smallest of the (xi− yi) and β ∈ [0,1].
• If OWAWAN(X ,Y )= f (X×Y ), we get the multiplication OWAWA (M-OWAWA)

operator that is defined in the following way:

M−OWAWA(|x1× y1| , ..., |xn× yn|) = β
n

∑
j=1

wjMj+(1−β )
n

∑
i=1

vi|xi× yi|, (21)

where Mj is the jth smallest of the |xi× yi| and β ∈ [0,1].
• If OWAWAN(X ,Y ) = f (X ÷Y ), we obtain the division OWAWA (D-OWAWA)

operator:

D−OWAWA(|x1÷ y1| , ..., |xn÷ yn|) = β
n

∑
j=1

wjD j +(1−β )
n

∑
i=1

vi|xi÷ yi|, (22)

where D j is the jth smallest of the |xi÷ yi| and β ∈ [0,1].
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• If OWAWAN(X ,Y ) = f ((X − Y )2), it is formed the variance OWAWA
(Var-OWAWA) operator:

Var−OWAWA
(
(x1− y1)

2, ...,(xn− yn)
2
)
= β

n

∑
j=1

wjA j+(1−β )
n

∑
i=1

vi(xi− yi)
2,

(23)
where A j is the jth smallest of the (xi− yi)

2 and β ∈ [0,1].

Note that all these cases can be reduced to the OWA and the weighted average
version forming the addition OWA, subtraction OWA, multiplication OWA, addition
WA, and so on. Moreover, observe that many other cases could be studied including
the OWAWAD operator explained in Section 3 and OWAWA operators with other
similarity measures or operations.

5 Conclusions

This paper has suggested the use of OWAWA operators with norms. The main advan-
tage of this approach is that it considers a unified framework between the OWA and
the weighted average when aggregating information with norms. Thus, it is possible
to consider subjective opinions and the attitudinal character of the decision maker in
the same formulation. Several fundamental properties have been studied. It has been
shown that the OWAWAD operator is also a particular case of this approach.

Some other extensions have also been considered including the use of induced ag-
gregation operators (IOWAN operator) and the use of other approaches for unifying
the OWA with the weighted average that have formed the HAN operator, the WOWA
operator and the IWAN operator. Several key families of OWAWAN operators have
also been studied including the addition OWAWA, the subtraction OWAWA, the
multiplication OWAWA, the division OWAWA and the variance OWAWA operator.
These aggregation operators have shown the potential for developing a new frame-
work for arithmetic operations.
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