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Preface

Aggregation functions are nowadays one of the most powerful theoretical tools in
any field of research where merging or fusing information either from homogeneous
or from heterogeneous sources is required. Their value has been established in many
different fields, such as image processing, decision making, classification, robotics,
control, and a very long etc.

This volume collects the extended abstracts of 45 contributions of participants to
the Seventh International Summer School on Aggregation Operators (AGOP 2013),
held at Pamplona in July, 16-20, 2013. These contributions cover a very broad range,
from the purely theoretical ones to those with a more applied focus. Moreover,
the summaries of the plenary talks and tutorials given at the same workshop are
included. Together they provide a good overview of recent trends in research in
aggregation functions which can be of interest to both researchers in Physics or
Mathematics working on the theoretical basis of aggregation functions, and to engi-
neers who require them for applications.
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VI Preface

The 7th International Summer School on Aggregation Operators has been par-
tially supported by Universidad Publica de Navarra: Vicerrectorado de Proyec-
ción Universitaria, Vicerrectorado de Investigación, Escuela Técnica Superior de
Ingenieros Industriales y de Telecomunicación and Departamento de Auomtática
y Computación; European Society for Fuzzy Logic and Technology (EUSFLAT);
Ayuntamiento de Pamplona and Apezteguia Architects.
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Functional Equations Involving Fuzzy
Implications and Their Applications in
Approximate Reasoning

Michał Baczyński

Abstract. Research on fuzzy implications, where the truth values belong to the unit
interval [0,1], are carried out from the beginning of fuzzy set theory and fuzzy logic.
In recent years, investigations has been deepened, which resulted in publishing some
surveys [6] and two research monographs [1, 3] entirely devoted to this class of
fuzzy connectives.

In our talk we concentrate on different functional equations (or inequalities) in-
volving fuzzy implications and their role in approximate reasoning. Firstly, based on
[3] and [5], we discuss the role of distributivity equations of fuzzy implications over
other fuzzy connectives in equivalent transformation of the compositional rule of
inference (CRI) or similarity based reasoning (SBR) to mitigate the computational
cost. Secondary, based on [4] and [7], we discuss the role of the law of importation
in equivalency of the Hirarchical CRI with the classical CRI proposed by Zadeh.
Next, based on [8], we show the importance of T -conditionality inequalities in gen-
eralized modus ponens.

For each of the above functional equation with fuzzy implications, we describe
the current state of theoretical research and we show what are the open problems.
Finally, we also mention other functional equations (or inequalities) involving fuzzy
implications and considered in the scientific literature.

References

[1] Baczyński, M., Beliakov, G., Bustince, H., Pradera, A.: Adv. in Fuzzy Implication Func-
tions. STUDFUZZ, vol. 300. Springer, Heidelberg (2013)
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Aggregation Operators and Observable
Properties of Human Reasoning

Jozo Dujmović

Abstract. In this paper we investigate properties of aggregation operators that are
necessary to create mathematical models that are consistent with observable prop-
erties of human reasoning. Such models are required in many applications where
mathematical modeling is used to suggest a justifiable decision and a subsequent
course of action. No decision can be acceptable unless it is fully compatible with
intuitive reasoning, common sense, and expert knowledge. In this paper we focus
on necessary properties of aggregators and aggregation structures that are used in
the weighted compensative logic and applied in evaluation decision models, and
investigate interactions between formal logic properties and semantic properties of
aggregation models.

Keywords: Partial conjunction, partial disjunction, partial absorption, threshold
andness, threshold orness, sensitivity analysis, missingness-tolerant aggregation.

1 Introduction

The theory of aggregation operators and the practice of aggregation operators are
two different things. Theoretical developments are not restricted by conditions of ap-
plicability, and/or consistency with observable properties of human decision logic.
Consequently, the theory of aggregation operators is a rather wide and expanding
area. On the other hand, aggregation operators that are used in practical applications
must satisfy restrictive conditions of the selected application area. In particular, a
mandatory prerequisite for all applications is to show that aggregation operators are
models of observable properties of human reasoning. It is not acceptable to build
applied decision models using aggregators that behave in a way that is inconsistent

Jozo Dujmović
San Francisco State University, Computer Science Department, 1600 Holloway Ave., San
Francisco, CA 94132, USA
e-mail: jozo@sfsu.edu

H. Bustince et al. (eds.), Aggregation Functions in Theory and in Practise, 5
Advances in Intelligent Systems and Computing 228,
DOI: 10.1007/978-3-642-39165-1_2, c© Springer-Verlag Berlin Heidelberg 2013



6 J. Dujmović

with intuitive reasoning of decision makers. In this paper we focus on necessary
properties of aggregation operators and aggregation processes that are used in deci-
sion engineering, primarily in the design of criteria for evaluation, comparison, and
selection of alternatives. In this area we assume that each alternative is described
by a set of n suitability degrees that are used as inputs for a stepwise aggregation
process that generates an overall suitability degree.

Empirical research on aggregators is an area that attracts negligible attention
of the research community -everything else belongs primarily to theory. Zimmer-
mann’s book [24] seems to be the only book in this field that has a chapter enti-
tled "Empirical Research on Aggregators"’ and should be commended for explicitly
asking the fundamental question "How do human beings aggregate subjective cate-
gories, and which mathematical models describe this procedure adequately?" One
would expect this crucial question in the first chapter of the book. It is indicative,
however, that this question appears only on p. 390 of [24], in the very last chapter
of the book.

Human reasoning is an observable process that includes formal logic and seman-
tic components. Empirical research on aggregators assumes design of experiments
with human subjects and a quantitative evaluation of mathematical models that are
expected to adequately describe the analyzed aggregation process. Such models
must include both formal logic aspects and semantic aspects of reasoning. In the
context of evaluation logic the formal logic aspects reflect modeling of compound
logic relationships by combining basic models of simultaneity (partial conjunction),
replaceability (partial disjunction) and negation. As an addition to formal logic as-
pects, most realistic models of reasoning must also include semantic components
that reflect the meaning of variables and their relationships with the environment
in which the decisions are made. Such components depend on the goals of decision
maker and an assessment of possible consequences of the decision. Thus, the seman-
tic components include the overall importance of decision, the relative importance
of individual attributes, classification of inputs as mandatory, sufficient, desired, and
optional, etc. Even without sophisticated experiments, all significant properties of
aggregation operators can be investigated, discussed, and validated from the stand-
point of their compatibility with observed properties of human reasoning. This is
the primary goal of this paper.

A general mathematical approach to aggregation functions and their properties
can be found in [15], where aggregation functions are classified using a very fine
mathematical granularity. Since applicability has little significance in mathematical
investigations of various classes of aggregation functions, it is not surprising that
the distribution of the aggregation function applicability is very nonuniform. In this
paper we will focus on compensative aggregators that are most frequent in applica-
tions that use a continuous logic or a fuzzy logic for modeling decisions [13, 23].
The corresponding aggregators can be defined as mappings A : In → I, I = [0,1],
n > 1, that are nondecreasing in each variable and satisfy the boundary conditions
A(0, . . . ,0) = 0, A(1, . . . ,1) = 1. Of course, such mappings can have a spectrum of
other mathematical properties that are carefully studied in [15, 1, 13, 3, 20].
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A rather coarse and application oriented classification of fundamental logic ag-
gregators that are models of simultaneity (conjunction) and replaceability (disjunc-
tion) can be based on three characteristic intensities of simultaneity and replace-
ability: weak, medium, and strong [7, 8]. This classification is suitable in the case of
n-tuple x=(x1, . . . ,xn) whose all components belong to interval D= [xmin,xmax]⊆ I,
0≤ xmin = x1∨·· ·∨xn , x1∧ . . . ,∧xn = xmax ≤ 1. Medium aggregators are compen-
sative aggregators based on mappings A : Dn →D. These are averaging aggregators
used to model simultaneity and replaceability and implemented as various means,
characterized by the global andness α ∈ I and the global orness ω = 1−α ∈ I.
In addition, we have xmin ≤ A(x1, . . . ,xn) ≤ xmax and idempotency A(x, . . . ,x) = x.
Strong aggregators are characterized by mapping A : Dn → [0,xmin]∪ [xmax,1]; these
aggregators show very strong conjunctive and disjunctive properties and are imple-
mented using t-norms and t-conorms [19]. Weak aggregators realize the mapping
A : Dn → C, C ⊆ D where C is the reduced D interval limited by weighted con-
junction and weighted disjunction [8]. Weak simultaneity/replaceability models are
compensative functions based on means that use implicative weights [17, 18, 7].

While weak and strong aggregators have modest applicability [4, 18, 24], the
vast majority of applications in the area of evaluation are based on medium ag-
gregators, primarily because the internality, idempotency and compensativeness are
very visible in human reasoning and desirable in mathematical models of evalua-
tion decisions. In addition, these aggregators are means, and the theory of means
is well developed and widely used in science. In particular, the literature on means
[12, 21, 1] always includes a detailed presentation of properties of various classes
of means, and that is useful when selecting aggregation functions.

The paper is organized as follows. In the next section we shortly discuss tradi-
tional mathematical properties of means and aggregation functions. The remaining
sections are devoted to characteristic properties of human reasoning that affect the
selection and use of aggregation structures: sensitivity analysis of aggregation oper-
ators, the problem of adjustability of threshold andness/orness, semantic properties
(the concept of overall importance and its decomposition to derive andness, orness
and relative importance), penalty controlled missingness tolerant aggregation (ag-
gregation of incomplete inputs), and canonical aggregation structures.

2 Basic Mathematical Properties of Aggregators and Means

Basic mathematical properties of means and aggregators can be assessed from the
standpoint of their relevance in evaluation decision models and their adequacy to
describe human reasoning. Following are the most important properties:

• Monotonicity

x = (x1, . . . ,xi, . . . ,xn) , x′ = (x1, . . . ,x
′
i, . . . ,xn) ,xi < x′i i ∈ {1, . . . ,n}

⇒
{

A(x)≤ A(x′) (nondecreasing)

A(x)< A(x′) (strict)
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The monotonicity is a property that looks necessary, simple and self- evident: the
overall suitability of a complex (multi-component) system must not decrease (or
must strictly increase) when the suitability of any of its components increases.
Monotonicity also affects the sensitivity to improvements. However, there are
delicate questions related to the character of monotonicity because some forms
of monotonicity do not occur in human reasoning and consequently cannot be
acceptable. For example:

◦ For some aggregators the monotonicity must be strict (e.g. the soft partial
conjunction/disjunction [7]), and for others it must be nondecreasing (e.g. the
hard partial conjunction/disjunction).

◦ There are important aggregators where the nature of monotonicity is not the
same for all inputs: e.g., if xm is a mandatory input of a partial absorption [7]
and all other inputs are optional, then xm = 0 implies ∀i �= m ∂A/∂xi = 0.
However, if xm > 0 then ∂A/∂xi > 0, i = 1, . . . ,n.

◦ The compatibility with human reasoning imposes limitations on the properties
of derivatives ∂A/∂xi i = 1, . . . ,n. In human reasoning it is not observable that
insignificant increments of input suitability can cause significant increments
of output suitability. Consequently, the values of first derivatives must be lim-
ited: |∂A/∂xi|< L i= 1, . . . ,n. Monotonicity beyond this limit is regularly not
acceptable.

Therefore, the monotonicity is not a simple issue, because it quickly expands
into the sensitivity analysis that investigates the acceptability of variations of
A(x1, . . . ,xn) caused by variations of xi, i = 1, . . . ,n. In the next section we will
investigate this issue in more detail.

• Internality: xmin ≤ A(x1, . . . ,xn) ≤ xmax. If the suitability is understood as a de-
gree of satisfaction of justifiable requirements, then the overall suitability of a
system in almost all cases cannot be greater than the maximum component suit-
ability or less than the minimum component suitability. For example, it would
be counterintuitive that the GPA of a student is greater than the highest course
grade, or less than the lowest course grade of the student.

• Idempotency (reflexivity). ∀x ∈ I, A(x, . . . ,x) = x. This property is easily de-
rived from internality, both formally and intuitively. Indeed, if we insert x1 =
· · · = xn = x in the internality relation, then idempotency directly follows from
x= xmin≤ A(x1, . . . ,xn)≤ xmax = x. If the degree of satisfaction of all component
requirements is the same, then the degree of overall satisfaction with the system
as a whole should not be different from that value (a student whose all course
grades are x should also have a GPA equal to x). In some rare cases, however,
both internality and idempotency can be questionable properties. For example,
if suitability xi is interpreted as a probability that a candidate can satisfy a com-
ponent requirement, then for independent component requirements the overall
suitability might be a t-norm Πxi. Of course, proving independence is almost
impossible (good students are good in most courses, and bad students are bad in
most courses, making course grades, or component suitability, significantly cor-
related). However, this example shows a semantic dimension of internality and
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idempotency: they depend on the nature or interpretation of the values x1, . . . ,xn.
Aggregation operators should not be defined without understanding the identity
of values that are being aggregated. The values that we call suitability or prefer-
ence can be interpreted as degrees of truth of statements, degrees of membership
in a fuzzy set, probabilities, percents of satisfied requirements, scores, etc. Be-
fore defining an aggregator it is necessary to precisely specify what is going to be
aggregated, regardless the fact that x1, . . . ,xn are just real numbers from [0,1] that
have no physical unit. In evaluation logic, we assume the aggregation of degrees
of truth. mean

• Commutativity (Symmetry). ∀x∈ In, A(x) = A(xperm, where xperm denotes any
of n! permutations of the n-tuple x. Commutativity is a property primarily used
in the theory of means. In the area of aggregation that property implies that all
aggregated inputs have equal status (equal importance) and can be aggregated in
any order of the inputs. Of course, the commutativity is generally not acceptable
in any practical aggregation problem because it contradicts the basic semantic
component visible in human reasoning: the perception of importance. Indeed, in
all aggregations of degrees of truth we assume that each degree of truth corre-
sponds to a specific value statement, and each value statement may have a differ-
ent importance for a given decision maker. Adjustable importance is necessary
in all multiple criteria decision problems [2].

• Associativity and distributivity. These properties enable aggregation of suit-
ability in any grouping order and they are observable in human reasoning. Strictly
increasing averaging aggregators cannot be associative, but the errors of associa-
tivity and distributivity relations are small [7] and do not reduce the applicability
of averaging aggregators.

3 The Problem of Hypersensitivity

Variations of input suitability and/or selected parameters cause the variations of out-
put suitability of aggregators. In human reasoning the observed sensitivity of output
suitability with respect to input suitability (or model parameters) is always a limited
value. It is highly unlikely that decision makers can perceive significant variations
of output suitability caused by minute (indiscernible) variations of inputs or param-
eters. Consequently, if z denotes the output of an aggregator and x is one of inputs
then the sensitivity coefficient ∂ z/∂x should have a limited value, and aggregators
that violate such limitations are inconsistent with observable properties of human
reasoning. In addition, many types of aggregators that appear in literature (particu-
larly in the families of t-norms, t-conorms, and mixed functions [1]) have points and
lines where z or ∂ z/∂x have discontinuities. This property needs verification (i.e. a
proof that it reflects human reasoning).

Let δ be the indiscernibility zone in the sense that if degrees of suitability a and b
are sufficiently close (|a− b|< δ ), then decision-makers cannot feel the difference
and perceive a≈ b . The same holds for selecting andness and orness. For example,
if a = 0.66 and b = 0.67 , then decision-makers cannot discern the difference and
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only feel a≈ b≈ 2/3 . The value of δ depends on evaluator’s training and according
to experiments reported in [6] it can grow up to 0.05.

Aggregation operators should not have regions of hypersensitivity where indis-
cernible variations of inputs cause significant variations of output. The hypersensi-
tivity is visible even in the simplest case of geometric mean z = xwy1−w, w ∈]0,1[,
because the sensitivity coefficient ∂ z/∂x = w(y/x)1−w has excessive values in the
vicinity of x = 0. If y = 1 and w has a small value, then insignificant changes of x
can cause explosive changes of z. For example, if w = 0.02 and x changes from 0
to 0.02 (which is an increase within a human indiscernibility zone) than z changes
from 0 to 0.925 (the truth amplification of 46 times). Even for larger weights, e.g.
w = 0.05 and discernible change of x from 0 to 0.05, z changes from 0 to 0.86 (the
truth amplification of 17 times). The dramatic increase of output caused by a negli-
gible increase of input (excessive truth amplification) is certainly not an observable
property in human reasoning. Of course, this property of geometric mean is not the
reason to disqualify the geometric mean as an aggregator, but it shows that even the
most useful aggregators may have regions where their behavior is unacceptable and
such regions should be identified and avoided in applications. That is attainable in
two ways: (1) by avoiding inputs that have values in the domain of excessive truth
amplification (e.g. binary inputs 0/1 cannot cause such problems), and (2) by ensur-
ing the consistency of logic conditions (because the hypersensitivity is primarily a
consequence of inconsistent logic conditions).

4 Inconsistent Logic Conditions

Formal logic and semantic aspects of aggregators are not independent and must be
consistent. There are combinations of properties of aggregation operators that can
be considered extreme, infrequent in human reasoning, or even counter-intuitive.
Some extreme combinations of andness/orness and weights, and some combinations
of andness/orness and mandatory/sufficient requirements may be questionable and
interpreted as inconsistent logic conditions. They include the following:

(a)High andness (in the region of a hard partial conjunction) or a high orness (in the
region of a hard partial disjunction) and a very low weight of an input.

(b)Very high andness and nonmandatory inputs.
(c)Very high orness and nonsufficient inputs.
(d)Low andness (slightly above the neutrality level α = ω = 1/2 ) and mandatory

requirements.
(e)Low orness (slightly above ω = 1/2 ) and sufficient requirements.

To illustrate these problems let us investigate a combination of high simultaneity
(high andness, in the region of hard partial conjunction, α ≥ 2/3 ) and low relative
importance. If we request a high simultaneity, then all inputs are expected to be pos-
itive and uniformly high. This indirectly implies that every input is rather important,
because its low presence is not acceptable. If an evaluation model combines a very
low weight and a high andness, then such combination is most likely a contradic-
tion. The low weight asserts that the input is not important and the high andness



Aggregation Operators and Observable Properties of Human Reasoning 11

claims that the input is very important. Obviously, such contradiction is inconsistent
with observable properties of human reasoning.

A similar situation occurs if the desired andness is very high but the requirement
is not mandatory. It does not seem logical to first firmly insist that all inputs must be
strictly simultaneously satisfied, and then to fail to sufficiently punish alternatives
that do not satisfy such requirements. Equally inconsistent might be the requirement
for a low level of andness combined with the ultimate level of punishment in the case
of failing to satisfy even the least important input. These combinations of andness
and mandatory requirements are theoretically possible, but they are regularly not a
part of human reasoning.

5 Semantic Properties: Decomposition of Overall Importance

If aggregation functions are considered abstract mappings A : In → I then we deal
with aggregation of real numbers that have no additional meaning. On the other
hand, if these real numbers represent the area of home, the number of bedrooms,
the number of bathrooms and other parameters of a home, then each homebuyer
can identify the overall importance of such a group of inputs, and there is a specific
meaning associated with the aggregation process. The meaning of individual and
aggregated arguments and the associated perception of importance of aggregated
values represent semantic properties of aggregators and links the design of aggrega-
tors with the area of perceptual computing [22]. A careful observation of intuitive
reasoning shows that in the case of compensative averaging aggregators both se-
mantic and formal logic components originate in the evaluator’s perception of the
overall importance of aggregated inputs. The evidence that supports that claim is
clearly visible in extreme and irregular cases of aggregators where the perception of
high overall importance simultaneously necessitates the use of high andness/orness
and prevents the use of low weights. That makes weights and andness/orness look
dependent, and the combinations of high andness/orness and very low weighs in-
compatible and unacceptable. If semantic and formal logic aspects of aggregation
originate in the perception of overall importance, then the perception of overall im-
portance can be decomposed, in order to derive an appropriate degree of andness
and an appropriate set of weights. A decomposition method proposed in [10] is il-
lustrated in Fig. 1. In the case of Generalized Conjunction/Disjunction (GCD) based

on weighted power means: y = W1x1 � · · · �Wnxn = limp→r(W1xp
1 + · · ·+Wnxp

n)
1
p ,

−∞ ≤ r ≤ ∞ the specification of the overall importance can be based on a verbal-
ized table with levels of importance going from the lowest (0), to the highest (L).
For example, if we want a model of simultaneity, and the inputs have the overall
importance levels Si ∈ {0, . . . ,L}, i = 1, . . . ,n, then the simplest of methods pro-
posed in [10] generates the global andness α = (S1 + · · ·+ Sn)/nL and weights
Wi = Si/(S1 + · · ·+ Sn).
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Fig. 1 Generating a GCD aggregator from the overall importance of inputs

6 Adjustability of Threshold Andness and Threshold Orness

The fundamental GCD aggregator has the following properties that depend on the
threshold andness αθ and the threshold orness ωθ .

W1x1�· · ·�Wnxn

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
= 0,xi = 0,x j ≥ 0, j �= i, i ∈ {1, . . . ,n}, j ∈ {1, . . . ,n},α ≥ αθ
> 0,xi > 0,x j ≥ 0, j �= i, i ∈ {1, . . . ,n}, j ∈ {1, . . . ,n},α < αθ
< 1,xi < 1,x j ≤ 1, j �= i, i ∈ {1, . . . ,n}, j ∈ {1, . . . ,n},ω < ωθ
= 1,xi = 1,x j ≤ 1, j �= i, i ∈ {1, . . . ,n}, j ∈ {1, . . . ,n},ω < ωθ

If α ≥ αθ then GCD is called the hard partial conjunction (HPC) [7], and if 1/2 <
α < αθ then GCD is called the soft partial conjunction (SPC). Similarly, if ω ≥
ωθ then GCD is called the hard partial disjunction (HPD) and if 1/2 < ω < ωθ
then GCD is called the soft partial disjunction (SPD). Generally, both the threshold
andness αθ and the threshold orness ωθ can be adjustable.

Experiments that include both experts and non-experts show a distribution of
desired threshold andness that has a mean value αθ = 0.81 and a standard de-
viation σ = 0.1. In this population, 80% of all participants propose the threshold
andness/orness in the range [0.71,0.91]. Obviously, aggregators based on weighted
power means are not consistent with these experiments because their global thresh-
old andness is insufficient: αθ = 2/3 (for n= 2 and the geometric mean). A method-
ology for creating aggregators with adjustable threshold andness/orness can be
found in [9]. For example, for n = 2 let us select αθ = ln16− 2 ≈ 0.77 that cor-
responds to the harmonic mean. In the range 0.5 ≤ α ≤ 1 we can use the partial
conjunction Δα , and in the range 0.5 ≤ ω ≤ 1 its symmetric De Morgan dual, the
partial disjunction ∇ω , as follows:

W1x1ΔαW2x2 =

{ αθ−α
αθ−0.5(W1x1 +W2x2)+

α−0.5
αθ−0.5(

W1
x1

+ W2
x2
)−1 0.5≤ α ≤ αθ

1−α
1−αθ (

W1
x1

+ W2
x2
)−1 + α−αθ

1−αθ (x1∧ x2), αθ ≤ α ≤ 1,αθ = ln16− 2

W1x1∇ωW2x2 = 1−W1(1− x1)∇ωW2(1− x2), 0.5≤ ω ≤ 1, ωθ = αθ

In this case the threshold orness and the threshold andness have the same value.
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7 Missingness-Tolerant Aggregation

The availability of arguments is an implicit assumption for all aggregation opera-
tors. Unfortunately, in many real life decision problems we regularly face missing
data. For example, Internet real estate web sites typically provide up to 40 input
attributes characterizing homes for sale. Our experiments with Internet real estate
data in San Francisco show the average input data availability of 70% (i.e. on the
average 30% of attribute values are simply not available). Similarly, the majority
of car buyers know car attributes that are undoubtedly relevant but their values are
missing. Everybody would like to have a car that has good safety and reliability
records, but majority of car buyers have difficulties to precisely define and get such
data; they usually must select a car with incomplete or missing safety, reliability,
and other data.

Human reasoning is normally performed with incomplete and imprecise data,
and we cannot avoid aggregation only because of missing data. Thus, we have to
be ready for missingness-tolerant aggregation. A method for solving this problem
in the context of the LSP evaluation criteria was proposed in [11], based on the
following concepts:

• Generally, any subset of input arguments can be missing. Consequently, a way to
deal with this problem is to replace missing data with data that are expected to
be the least damaging for the evaluation process.

• Whenever a missing input is replaced by an estimated value, we unavoidably
make an error: we either reward an undeserving alternative, or we punish an
innocent alternative. Thus, it is necessary to minimize such errors.

• The missing data replacement process also depends on the estimation of the rea-
son for missingness. If the missingness is caused by deliberate attempt to hide
inconvenient properties, such practice must be discouraged using an appropri-
ate penalty. In cases where the missingness has other origins, the missing data
should be replaced with neutral values that are selected so that the output values
only depend on available inputs.

These concepts yield a penalty controlled missingness tolerant aggregation, where
we aggregate known and unknown suitability degrees. Known suitability degrees
belong to [0,1], and unknown suitability degrees belong to [−1,0], so that missing-
ness tolerant aggregators are mappings A : [−1,1]n → [−1,1]. Let νi be the value
of input suitability degree xi and let Pi ∈ I be a penalty if νi is unknown. If Pi = 0
there is no penalty for missing data, and Pi = 1 denotes the maximum missingness
penalty. If νi is known we use xi = νi and if it is unknown then xi = Pi−1. So, xi = 0
denotes either the zero suitability or the maximum penalty.

According to Kolmogoroff/Nagumo theorem [12] for all aggregators based on
quasi-arithmetic means a subset of values can be replaced by their mean with
no effect on the total mean: An(x1, . . . ,xk,xk+1, . . . ,xn) = An(x, . . . ,x,xk+1, . . . ,xn),
where x = Ak(x1, . . . ,xk) (associativity property). A similar property [21] is the fol-
lowing: An(x1, . . . ,xn−1,An−1(x1, . . . ,xn−1)) = An−1(x1, . . . ,xn−1). So, if xn is miss-
ing/unknown then it can be replaced by the mean of remaining inputs and the result
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will be the same, An−1(x1, . . . ,xn−1). That is the result of aggregation in the case of
zero penalty; if Pn > 0 , then we return An(x1, . . . ,xn−1,(1−Pn)An−1(x1, . . . ,xn−1)).
The same approach can be extended for cases of multiple unknown variables. If all
inputs of an aggregator are missing, then we return−An(1−P1, . . . ,1−Pn) and that
negative value propagates to the next layer of the aggregation structure. However, if
at least one of n inputs is positive, the result of aggregation will be nonnegative.

8 Canonical Forms of Aggregation Structures

Some aggregation structures encountered in human reasoning occur with higher fre-
quency than others. That is not surprising because it is natural that any successful
form of reasoning becomes a repetitive pattern. A detailed analysis of canonical ag-
gregation operators and structures can be found in [11]. The most important canon-
ical structures are the following:

(a)Layered aggregation tree with andness that increases from SPC to HPC along the
paths from leaves to the root.

(b)Layered aggregation tree with orness that increases from SPD to HPD along the
paths from leaves to the root.

(c)Asymmetric logic aggregators: conjunctive partial absorption [7] (CPA, aggre-
gating a mandatory input and an optional input) and disjunctive partial absorption
(DPA, aggregating sufficient and optional inputs)

(d)Nested partial absorption (mandatory, desired, and optional inputs)
(e)Multi-input partial absorption (multiple mandatory inputs are aggregated using a

HPC, and used as a mandatory input of CPA and multiple optional inputs are ag-
gregated using a SPC and used as the optional input of CPA. A similar canonical
form can be made using HPD, SPD, and DPA.

9 Conclusions

Aggregation operators in weighted compensative logic are predominantly used for
creating decision models. Such models cannot be incompatible with common sense
and intuitive expert reasoning. Quite contrary, in decision making practice the ag-
gregation operators are used to derive decisions that are refinement and enhance-
ment of sound and prudent intuitive human reasoning. Therefore, the compatibility
with observable properties of human reasoning is a prerequisite for applicability of
aggregation operators in the area of decision models.

Requirements for the applicability of aggregators generate various specific con-
ditions that aggregators must satisfy. If we view aggregators strictly from the stand-
point of applicability and compatibility with expert reasoning, then even the most
elementary mathematical properties such as monotonicity, idempotency, and com-
mutativity may become questionable and need proper justification.

Semantic aspects of aggregation operators are present in all applications. These
are aspects related to interpretation of variables and their role in decision models.
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Typical examples of the semantic aspects of aggregation are all issues related to the
overall and relative importance of inputs in a given aggregation process. In addition,
all aggregators should be verified from the standpoint of sensitivity analysis. In each
intuitive aggregation process, human reasoning is based on a mix of formal logic and
semantic components. This fact must affect the design of aggregation operators and
the selection of their properties.

Properties of aggregation operators are also conditioned by the environment in
which the aggregators are expected to operate. Consequently, it is useful to differen-
tiate internal and environmental properties or aggregators. The missingness- tolerant
aggregation is a typical example of the environmental conditions that affect aggre-
gators. In addition, most aggregation operators do not function in isolation, but must
operate as components in canonical aggregation structures.

The main message of this paper is that the properties of aggregation operators
must be established taking simultaneously into account formal logic, semantic, and
environmental aspects of the aggregation process. More empirical research on ag-
gregators is necessary if we want to move further in that direction.
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Copulas, Tail Dependence and Applications to
the Analysis of Financial Time Series

Fabrizio Durante

Abstract. Tail dependence is an important property of a joint distribution func-
tion that has a huge impact on the determination of risky quantities associated to
a stochastic model (Value-at-Risk, for instance). Here we aim at presenting some
investigations about tail dependence including the following aspects: the determi-
nation of suitable stochastic models to be used in extreme scenarios; the notion of
threshold copula, that helps in describing the tail of a joint distribution. Possible
applications of the introduced concepts to the analysis of financial time series are
presented with particular emphasis on cluster methods and determination of possible
contagion effects among markets.

1 Introduction

Copulas are mathematical objects that fully capture the dependence structure among
random variables and hence, offer a great flexibility in building multivariate stochas-
tic models. As such, since their introduction in the early 50s, they have gained a lot
of popularity in several fields like finance, insurance, reliability theory and environ-
mental sciences (see, e.g., [3, 10, 11, 35] and the references therein).

Generally, the problem of constructing and/or selecting a suitable joint distribu-
tion function (and, hence, a suitable copula) describing a multivariate random vector
(shortly, r.v.) X is a preliminary step in the determination of derived quantities as-
sociated to the model, like Value-at-Risk of a financial portfolio [31] or joint return
periods [18]. In such cases, special care should be devoted to the description of the
dependence in the tails of the distribution function (shortly, d.f.) FX of X. Especially
for financial risk management, in fact:

Extreme, synchronized crises and falls in financial markets occur infrequently but they
do occur. The problem with the models is that they did not assign a high enough chance
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of occurrence to the scenario in which many things go wrong at the same time – the
perfect storm scenario [31].

For such problems, it is necessary to consider models with increasing dependencies
in the tails, since a dramatic underestimation of the risk can be obtained when one
tries to use copulas that do not exhibit any peculiar behaviour in the tails. This was
exactly one of the main pitfalls of the criticized Li’s model (see [29]) for credit risk
(see, for example, [26, 36]). In fact, as clarified, for instance, in [4], using Gaussian
copulas (as Li did) “will always underestimate joint extremal events”.

For a better specification of the tail of a distribution, Joe [25] introduced the
so-called tail dependence coefficients, in order to quantify the amount of dependence
on the tails of a joint bivariate distribution, and, hence, distinguish, among several
possibilities, the joint d.f.’s that are able to describe such extreme situations. The
formal definitions of these coefficients are given here.

Definition 1. Let X and Y be continuous r.v.’s with d.f.’s FX and FY , respectively.
The upper tail dependence coefficient λU of (X ,Y ) is defined by

λU = lim
t→1−

P
(

Y > F [−1]
Y (t) | X > F [−1]

X (t)
)

; (1)

and the lower tail dependence coefficient λL of (X ,Y ) is defined by

λL = lim
t→0+

P
(

Y ≤ F [−1]
Y (t) | X ≤ F [−1]

X (t)
)

; (2)

provided that the above limits exist. Note that F [−1]
X (t) = inf{s ∈ [0,1] | FX(s) ≥ t}

and F [−1]
Y (t) = inf{s ∈ [0,1] | FY (s) ≥ t} are the quantile inverses associated with

FX and FY , respectively.

Thus, λL and λU are defined in terms of limiting conditional probabilities of quantile
exceedances. Now, it is important to note that the tail dependence coefficients are
rank-invariant, and hence they can be calculated just from the copula C of (X ,Y ),
by means of the following formulas:

λL = lim
u→0+

C(u,u)
u

and λU = lim
u→1−

1− 2u+C(u,u)
1− u

. (3)

Here we concentrate our attention to some selected investigations about tail depen-
dence (as described by means of copulas) and to possible applications in the de-
scription of extreme behaviour of financial time series, as we are going to illustrate.

2 Copulas with Given Diagonal Sections

As it can be seen from (3), the tail dependence coefficients are actually con-
nected with the diagonal section of the bivariate copula C, defined as the function
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δC : [0,1]→ [0,1], δC(t) =C(t, t). Thus, tail dependence lies in the behaviour of the
diagonal of the copula.

Therefore, over the years, a number of investigations has been focused on the
construction of copulas with different diagonals (and, hence, eventually admitting
non-zero tail dependence coefficients). The related is quite vast; just to make few
references, one may consider, [6, 7, 10, 18, 22, 28, 32] and the references therein.

Here we restrict to present a family of multivariate copulas, whose bivariate
marginals are the so-called semilinear copulas, that are linear on specific segments
of the unit square. Semilinear copulas have been considered in [9, 16], even if the
general idea originated in a seminal paper by A. Marshall [30]. For an extension of
this idea, see [27].

Specifically, for any natural number d ≥ 2, we consider d–dimensional copulas
Cd that can be written in the following form:

Cd(u1, . . . ,ud) = u[1]
d

∏
i=2

f (u[d]), (4)

where f is a function from [0,1] to [0,1], and u[1], . . . ,u[d] denote the components of
(u1, . . . ,ud) rearranged in increasing order.

The family (4) is a starting point of related ideas concerning the construction of
copulas. For instance, in [19] it has been used in order to derive methods for gen-
erating multivariate extreme value laws that have a suitable number of parameters,
and that can be efficiently simulated and easily fitted to empirical data. Finally, the
probabilistic interpretation that can be derived for copulas of type (4) has originated
other similar methods for obtaining copulas that can be interpreted in terms of suit-
able shock models [14].

3 Threshold Copulas and Financial Contagion

Apart from its advantages, the tail dependence coefficient is a single number, so it
cannot contain the whole information concerning the tails of a bivariate copula. A
more informative way for describing the dependence in the tails is represented by
the concept of threshold copula, which has been recently considered in risk manage-
ment and reliability theory (see, for instance, [3, 11]). Intuitively, a threshold copula
is the copula that describes the dependence structure of two r.v.’s X and Y given that
they belong to a suitable Borel set.

The use of threshold copulas has been recently applied to the determination
of financial contagion among markets (see, e.g., [15]). In this case, contagion be-
tween two markets arises when significant increases in comovements across mar-
kets appear, conditional on a crisis occurring in one market or group of markets (see
[2, 15, 21]), namely when the positive association among the markets increases in
crisis period with respect to tranquil period.

Here, we introduce and discuss a non-parametric test and a related index to detect
and measure the contagion effects. As an empirical application, the proposed test is
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exploited in order to detect contagion in the Euro area (for a complete overview
about these methods, see [12, 13]).

4 Cluster Methods Based on Tail Dependence

In portfolio risk analysis a current practice for minimizing the whole risk consists
of adopting some diversification techniques that are based, loosely speaking, on
the selection of different assets from markets and/or regions that one believes to
be weakly (or negatively) correlated. Such an approach tries to reduce the impact
of joint losses that might occur simultaneously in different markets. To this end,
cluster techniques for multivariate time series have been proposed in the literature
in order to give a guideline to practitioners for the selection of a suitable portfolio.
Such techniques span from the use of correlation coefficient (see, for instance, [1])
to the use of techniques based on the comparisons among the coefficients of the
underlying processes (see, for instance, [20, 33]).

However, it has been stressed several times that diversification principle may
fail when there is some tail dependence (or contagion) among the markets under
consideration. To this end, it could be useful to introduce some clustering methods
that focus their attention to the behaviour of financial markets in presence of extreme
dependence scenarios. An innovative work in this direction has been recently done
in [8], where it is proposed a clustering procedure that aims at grouping time series
with an association between extremely low values, measured by a tail dependence
coefficient.

Starting with these, we present some new clustering procedures for extreme sce-
nario. Such a methodology is grounded on the conditional (Spearman’s) correlation
coefficient between time series. It aims at creating cluster of time series that are
homogeneous, in the sense that they tend to be comonotone in their extreme low
values (where the degree of extremeness is specified by a given threshold). The re-
sults have been discussed in details in [17] and are expected to be useful for portfolio
management in crisis periods.
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On Quadratic Constructions of Copulas

Anna Kolesárová

1 Introduction

In the lecture we will present quadratic constructions of two-dimensional copulas
(copulas for short). Basic properties of copulas can be found, e.g., in the monographs
[1, 4]. We say that a function KC is obtained by a quadratic construction from a
copula C, if it is defined on [0,1]2 by composition of a quadratic polynomial P of
three variables with real coefficients,

P(x,y,z) = ax2 + by2 + cz2 + dxy+ exz+ f yz+ gx+ hy+ iz+ j, (1)

and a copula C in the following way

KC(x,y) = P(x,y,C(x,y)), (x,y) ∈ [0,1]2. (2)

Note that this construction requires for determining the values KC(x,y) of a new
function KC the knowledge of x, y and C(x,y) only. In general, functions KC defined
in this way need not be copulas. There are polynomials whose composition with an
arbitrary copula C is again a copula, but there are polynomials whose compositions
only with some copulas lead to new copulas, and finally, there are also completely
negative examples. As a completely positive example we can mention the polyno-
mial P(x,y,z) = xz+ yz− z2 whose composition with a copula C, i.e., the function

KC(x,y) = xC(x,y)+ yC(x,y)−C2(x,y) (3)

is a copula for any copula C. Note that this function is equal to the function DC

defined by
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DC(x,y) =C(x,y)(x+ y−C(x,y)), (x,y) ∈ [0,1]2, (4)

studied in detail in [2]. As another completely positive example we recall the com-
position of the polynomial P(x,y,z) = z2 + xy− xz− yz+ z and a copula C, giving
the function

KC(x,y) =C2(x,y)+ xy− xC(x,y)− yC(x,y)+C(x,y), (5)

which is also a copula for each copula C, see [3]. It can be checked that the function

KC in (5) is equal to the function
(

DC0,1

)
0,1

, where C0,1 is the flipped copula [4],

C0,1(x,y) = x−C(x,1− y), and DC0,1 is defined by (4). It will be shown that both
functions given in (4) and (5) play a key role in a complete characterization of
general quadratic constructions.

On the other hand, using, e.g., the polynomial P(x,y,z) = z2, we never ob-
tain by composition (2) a copula. As a partially positive example we can men-
tion the polynomial P(x,y,z) = z2− xz− yz+ 2z, whose composition with copula
W , W (x,y) = max{x+ y− 1,0}, is equal to W , i.e., KW = W , while KM , where
M(x,y) = min{x,y} is the greatest copula, is not a copula. Indeed, as KM(x,y) =
min{x,y}(2−max{x,y}), it holds KM > M, thus KM cannot be a copula [4]. Finally,
let us note that composition of the considered polynomial P with the product cop-
ula Π , Π(x,y) = xy, gives the function KΠ , KΠ (x,y) = xy+ xy(1− x)(1− y), i.e., a
member of the Farlie-Gumbel-Morgenstern family of copulas.

2 Results

In our contribution we will characterize all quadratic polynomials of the form (1)
having the property that the composite function P(x,y,C(x,y)) is a copula for each
copula C.

The complete characterization of quadratic constructions is given in the following
theorem.

Theorem 1. The function KC defined on [0,1]2 by KC(x,y) = P(x,y,C(x,y)), where
P is a quadratic polynomial given in (1) and C a copula, is a copula for any copula
C if and only if it is of the form

KC(x,y) = cC2(x,y)+ dxy− cxC(x,y)− cyC(x,y)+ (1+ c−d)C(x,y), (6)

with coefficients c, d satisfying conditions

0≤ d− c≤ 1, 0≤ d ≤ 1, −1≤ c≤ 1.

The set Ω = {(c,d) ∈ R
2 | 0 ≤ d− c ≤ 1, 0 ≤ d ≤ 1, −1 ≤ c ≤ 1} of all pos-

sible ordered pairs (c,d) of coefficients described in the previous theorem is il-
lustrated in Fig. 1. The restriction of coefficients of a polynomial P in (1) to the
pairs (c,d) ∈Ω and other coefficients equal to zero, has been obtained by requiring
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Fig. 1 The domain Ω of possible pairs of coefficients (c,d)

KC(x,y) = P(x,y,C(x,y)) to be a copula for any copula C, i.e., Theorem 1 charac-
terizes “universal" quadratic polynomials for the proposed construction. For some
special copulas C the restrictions can be relaxed.

In the lecture we will also present invariant copulas with respect to quadratic
constructions.

For a given pair (c,d) ∈ Ω and a copula C, let Kc,d
C denote the copula given

by (6). We will say that a copula C is invariant with respect to the quadratic con-
struction with coefficients (c,d), if the equation Kc,d

C (x,y) = C(x,y) holds for all
(x,y) ∈ [0,1]2. The previous equation can be written as

cC2(x,y)+dxy−cxC(x,y)−cyC(x,y)+(1+c−d)C(x,y)=C(x,y), (x,y)∈ [0,1]2.
(7)

Clearly, if c = 0 and d = 0, the equation is trivially satisfied by all C. If c = 0 and
d �= 0, the only copula satisfying the equation, is the product copula C = Π . If we
suppose that c �= 0 and put θ = d

c , then the previous equation is equivalent to the
quadratic equation

C2(x,y)− (x+ y− 1+θ )C(x,y)+θxy= 0. (8)

As c ∈ [−1,0[∪ ]0,1], d ∈ [0,1] and d ≥ c, we obtain θ ∈]−∞,0] ∪ [1,∞[.
Solutions of this equation are functions C =Cθ given by

Cθ (x,y) =
1
2

(
x+ y− 1+θ+

√
(x+ y− 1+θ )2− 4θxy

)
if θ ≤ 0, (9)

Cθ (x,y) =
1
2

(
x+ y− 1+θ−

√
(x+ y− 1+θ )2− 4θxy

)
if θ ≥ 1. (10)

It can be proved that they are copulas and the following theorem holds.
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Theorem 2. Let (c,d) be in Ω , c �= 0. Then the only copula invariant with respect
to the quadratic construction with coefficients (c,d) is the copula Cθ with θ = d

c ,
given by (9) if θ ≤ 0, or by (10) if θ ≥ 1.

On the other hand, each copula Cθ , θ ∈]−∞,0]∪ [1,∞[, is invariant with re-
spect to the quadratic construction with an arbitrary pair of coefficients (c,d) ∈ Ω
satisfying d

c = θ .

Note that solving the problem of invariantness of copulas wrt. quadratic construc-
tions has led us to two new parametric classes of copulas, (Cθ )θ≤0 and (Cθ )θ≥1.
The relationship between their members is for all admissible values θ given by the
formula

Cθ (x,y) = x−C1−θ(x,1− y), (x,y) ∈ [0,1]2.

Both classes are decreasing with respect to parameter θ . Marginal members of the
class (Cθ )θ≤0 are copulas C0 =W and C−∞ = lim

θ→−∞
Cθ≤0 =Π , and marginal mem-

bers of the class (Cθ )θ≥1 are C1 = M and C∞ = lim
θ→∞

Cθ≥1 = Π . These properties

are illustrated in Fig. 2.

Fig. 2 All pairs (c,d) ∈Ω with d
c = θ have the same invariant copula Cθ

Besides the complete characterization of quadratic constructions of copulas and
determining invariant copulas with respect to these constructions, we also show sev-
eral properties of newly constructed copulas a their statistical consequences. For
more details we refer to [2, 3].
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Compatible Group Decisions

Gabriella Pigozzi

Abstract. Individuals may draw different conclusions from the same information.
For example, members of a jury may disagree on the verdict even though each
member possesses the same information regarding the case under discussion. This
happens because individuals can hold different reasonable positions based on the
information they share. The field of judgment aggregation studies how individual
positions on the same information can be aggregated into a collective one. After a
gentle introduction to judgment aggregation, I will offer an analysis of judgment
aggregation problems using an argumentation approach. One of the principles of ar-
gumentation theory is that an argumentation framework can have several labellings.
If the information the group shares is represented by an argumentation framework,
and each agent’s reasonable position is a labelling of that argumentation framework,
the question becomes how to aggregate the individual positions into a collective one.
Whereas judgment aggregation focuses on the observation that the aggregation of
individual logically consistent judgments may lead to an inconsistent group out-
come, I will present an approach that not only ensures collective rationality but also
social outcomes that are ‘compatible’ with the individuals’ evaluations. This ensures
that no individual member has to become committed to a group position that is in
conflict with his own individual position. (Part of my presentation will be based on
a joint work with Martin Caminada and Mikolaj Podlaszewski.)
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A Review of the Relationships between
Aggregation, Implication and Negation
Functions

Ana Pradera

Abstract. Aggregation functions, on one hand, and implication functions, on the
other, play different although important roles in the field of fuzzy logic. Both have
been intensively investigated in the last years, revealing the tide relationship that
exists between them. The present work reviews the most relevant aspects of this
relation, which most of the times also involves negation functions. In addition to
the well-known use of aggregation and negation functions to build and to charac-
terize implication functions, we analyze how new families of aggregation functions
and negation functions can be obtained from implications, and we recall the main
equations and inequations involving these three classes of functions.

Extended Abstract

Aggregation functions, which perform the combination of several inputs into a single
output, are successfully used in many practical applications, and the interest on them
is unceasingly growing (see e.g. the recent monographs on the topic [24, 5, 13]).
Although they are defined for inputs of any cardinality, in this work we will only deal
with bivariate aggregation functions, i.e., non-decreasing functions A : [0,1]2 →
[0,1] verifying the boundary conditions A(0,0) = 0 and A(1,1) = 1.

In turn, fuzzy implication functions (or implications, for short), which generalize
to the fuzzy world the classical Boolean implication, have proved to be essential in
many different fields, ranging from approximate reasoning or fuzzy control to fuzzy
mathematical morphology and image processing (see the survey [17] and the mono-
graphs [4, 3] for details and appropriate references). Different definitions of fuzzy
implication have been proposed in the literature, but nowadays the most established
one is the following ([12, 17, 4]): a (fuzzy) implication is a function I : [0,1]2→ [0,1]
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which is non-increasing in the first variable, non-decreasing in the second variable
and that satisfies the boundary conditions I(0,0) = I(1,1) = 1 and I(1,0) = 0.

Aggregation and implication functions appear to have a close relation which, in
most of the cases, is set up via negation functions (non-increasing functions N :
[0,1]→ [0,1] verifying the boundary conditions N(0) = 1 and N(1) = 0; the most
usual negation is NC(x) = 1− x). In this work we will review the main aspects of
this relation, including the following ones:

• Implications built from aggregation and negation functions.

Different classes of implications exist. The probably better-established ones are
those built from logical formulae that, although being equivalent in the classical
setting, turn out to be no longer equivalent in the fuzzy context: ¬a∨b (that pro-
vides the so-called (S,N)-implications),

∨{t : a∧ t ≤ b} (R-implications), ¬a∨
(a∧b) (QL-implications) and (¬a∧¬b)∨b (D-implications). Initially, the logical
connectives ∧ and ∨ were replaced with just two specific classes of aggregation
functions, the well-known triangular norms and triangular conorms ([14, 2]), pro-
viding interesting families of implications that have been widely studied ([4]).
But triangular norms and conorms are not the only aggregation functions that
are able to model conjunctions and disjunctions, and hence many authors have
considered the use of alternative ones: see e.g. [7, 15, 21, 22, 23, 16] for works
dealing with fuzzy implications derived from uninorms, [9, 25] for implications
built from (dual) copulas, quasi-copulas and semi-copulas, [1, 6] for implications
generated from (dual) representable aggregation functions and [19] for implica-
tions generated from TS-functions. A general approach regarding the relations
between fuzzy implications and other fuzzy connectives was first proposed by
Fodor in [10, 11], while [8] concentrated on the case of R-implications gener-
ated from a large class of binary operators. Recently, the papers [18] and [20]
pick up the subject again with general views on the construction of implications
by means of aggregation functions, dealing with the cases of R-implications and
(S,N)-implications. Note for example that the latter become (A,N)-implications,
where A stands for an appropriate aggregation function:

Proposition 1. Let A be an aggregation function, let N be a negation and let
IA,N : [0,1]2 → [0,1] be defined as IA,N(x,y) = A(N(x),y) for any x,y ∈ [0,1].
Then IA,N is a fuzzy implication if and only if A(1,0) = A(0,1) = 1 (i.e., if and
only if A has absorbing element 1).

In this section we will summarize all these results, stressing the properties of
the aggregation functions and/or the negations that lead to specific properties of
the corresponding implications, and illustrating the issue with some new fam-
ilies of implications functions. In particular, the above Proposition shows that
many other aggregation functions, in addition to triangular conorms or disjunc-
tive uninorms, may be used in order to build (A,N)-implications. Some of them,
generated from TS-functions, weighted quasi-arithmetic means or generalized
OWAs, may be found in [19, 20].
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• Aggregation functions built from implication and negation functions.

The logical formulae mentioned in the previous item have been used to obtain
implications from aggregation and negation functions, but they can also be used
in the opposite direction, thus allowing to build aggregation functions by means
of implications and negations. For example, the expressions¬a∨b and

∨{t : a∧
t ≤ b}, that allow to build, respectively, (A,N)-implications and R-implications,
can be shifted as follows in order to generate families of aggregation functions:

Proposition 2. Let I be a fuzzy implication and let N be a negation function.
Then:

– The function AI,N : [0,1]2 → [0,1], defined as AI,N(x,y) = I(N(x),y) for any
x,y ∈ [0,1], is an aggregation function. Moreover, it satisfies AI,N(x,1) =
AI,N(1,x) = 1 for any x ∈ [0,1].

– If I is such that I(1,y) �= 1 for all y ∈ [0,1[, then the function AI : [0,1]2 →
[0,1], defined as AI(x,y) = inf{t ∈ [0,1] : I(x, t)≥ y}, is an aggregation func-
tion. Moreover, it satisfies AI(x,0) = AI(0,x) = 0 and AI(1,y) �= 0 for any
x,y ∈ [0,1].

In this section we will explore the use of results of this kind in order to obtain
new families of aggregation functions, comparing their properties with the ones
of the originating implications.

• Negation functions built from implication/aggregation functions.

It is well known that any fuzzy implication I provides a fuzzy negation NI , the
so-called natural negation of I, defined as NI(x) = I(x,0) for any x ∈ [0,1], and
that the former can be generalized as follows (see [4]):

Proposition 3. Let I be a fuzzy implication and let α ∈ [0,1[ verify I(1,α) = 0.
Then the function NαI : [0,1]→ [0,1], given by NαI (x) = I(x,α) for any x ∈ [0,1],
is a fuzzy negation called the natural negation of I with respect to α .

Therefore, any implication has at least one natural negation associated to it (NI ,
which is equal to N0

I ), but can have a family of them as long as there exists α > 0
such that I(1,α) = 0: indeed, in such cases, thanks to the non-decreasing mono-

tonicity of I in its second variable, any NβI with β ≤α is also a natural negation of

I, which, in addition, verifies NβI ≤ NαI . This result is not interesting in the case,
for example, of (S,N)-implications, i.e., (A,N)-implications built from triangular
conorms (they have only one natural negation, which in addition coincides with
the original one), but can provide new families of negation functions in other
situations ([4, 20]).
On the other hand, it is also possible to obtain negations from aggregation
functions. Indeed, similarly to what is usually done for triangular norms and
conorms (see e.g. [14]), it is not difficult to find the conditions that aggrega-
tion functions A need to fulfill in order to ensure that the univariate functions
Nsup

A and Ninf
A , defined, respectively, as Nsup

A (x) = sup{t ∈ [0,1] : A(x, t) = 0} and
Ninf

A (x) = inf{t ∈ [0,1] : A(x, t) = 1}, are fuzzy negations.
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• Characterizations of implications by means of aggregation and negation
functions.

Another important issue when dealing with fuzzy implications is to character-
ize them, in the sense of obtaining the minimal set of properties required to a
fuzzy implication in such a way that it belongs to a given family of implications.
Such characterizations usually involve properties of the underlying aggregation
and/or negation functions. For example (see [4]), the class of (A,N)-implications
generated from triangular conorms and continuous negations has been char-
acterized, as well as the family of R-implications built from left-continuous
triangular norms. Recently ([20]) it has been pointed out that the class of
(A,N)-implications coincides with the whole class of fuzzy implications, which
means that actually any fuzzy implication has a logical representation based on
the classical material implication ¬a∨b:

Proposition 4. For a function I : [0,1]2 → [0,1], the following statements are
equivalent:

1. I is a fuzzy implication.
2. I is an (A,NC)-implication, i.e., there exists an aggregation function A verifying

A(0,1) = A(1,0) = 1 such that I(x,y) = IA,NC(x,y) = A(1−x,y) for any x,y ∈
[0,1].

Note that the above result implies that all the implications belonging to families
such as R-implications, QL-implications, D-implications, etc, could also have
been obtained as (A,N)-implications. Consider, for example, the popular Gödel
implication ([4]), defined as

IGD(x,y) =

{
1 if x≤ y,
y otherwise.

As is well-known, IGD is the R-implication obtained from the minimum triangu-
lar norm, and it does not belong to the class of (S,N)-implication, i.e., it may not
be obtained from the scheme¬a∨b if the connective∨ is replaced with a triangu-
lar conorm (see e.g. [4]). Notwithstanding, it is a (A,NC)-implication, i.e., there
exists an aggregation function A such that IGD(x,y) = A(NC(x),y) = A(1− x,y).
Indeed, it suffices to take A as

A(x,y) =

{
1 if 1− x≤ y,
y otherwise.

Note that in the above result the standard negation NC can be replaced with any
strong negation (i.e., any involutive negation).
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Copulas



On Some Construction Methods for Bivariate
Copulas

Radko Mesiar, Jozef Komorník, and Magda Komorníková

Abstract. We propose a rather general construction method for bivariate copulas,
generalizing some construction methods known from the literature. In some special
cases, the constraints ensuring the output of the proposed method to be a copula are
given. Our approach opens several new problems in copula theory.

Keywords: Farlie–Gumbel–Morgenstern copulas, Mayor–Torrens copulas, con-
struction method for copula.

1 Introduction

We suppose readers to be familiar with the basics of copula theory. In the opposite
case, we recommend the lecture notes [12]. Recently, several construction methods
for bivariate copulas have been proposed. Recall, for example, conic copulas [10],
univariate conditioning method proposed in [15], UCS (univariate conditioning sta-
ble) copulas [8], a method proposed by Rodríguez–Lallena and Úbeda–Flores [17]
and its generalization in [11], another method introduced by Aguilló et al. in [1],
quadratic construction introduced in [13], several construction methods based on
diagonal or horizontal (vertical) sections discussed in [5, 3, 7], etc.
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We recall two of the above mentioned methods. Recall that a function N : [0,1]→
[0,1] which is a decreasing involution is called a strong negation. We denote its
unique fixed point as e, N(e) = e. Due to [1, Theorem 23], the next result holds.

Proposition 1. Let N : [0,1]→ [0,1] be a strong negation such that it is 1–Lipschitz
on the interval [e,1]. Then the function CN : [0,1]2 → [0,1] given by

CN(x,y) = max(0,x∧ y−N(x∨ y)) (1)

is a copula.

Inspired by the form of the Farlie–Gumbel–Morgenstern copulas (FGM–copulas)

CFGM
λ (x,y) = x · y+λx · y · (1− x) · (1− y), (2)

where λ ∈ [−1,1], Kim et al. have studied in [11] the constraints for λ so that the
function C : [0,1]2 → [0,1] given by

C(x,y) =C∗(x,y)+λ f (x) ·g(y) (3)

is a copula, where C∗ is an a priori given copula, f ,g : [0,1]→ [0,1] are Lipschitz
continuous functions satisfying f (0) = g(0) = f (1) = g(1) = 0.

Note that a special case of (3) when C∗ =Π under consideration was the product
copula, was studied in [17].

The aim of this paper is to find a formula generalizing all above introduced for-
mulae (5), (2), (3) and to study some of its new instances.

The paper is organized as follows. In the next section, we introduce our general
formula and discuss a special case of (5) yielding Mayor–Torrens copulas [14] and
open a related problem based on our generalized formula. Section 3 is focused on
the product copula based constructions exploiting our generalized formula. Finally,
in concluding remarks we sketch some problems for further investigations.

2 A General Formula for Constructing Bivariate Copulas

Observe that denoting by M the strongest bivariate copula, M = min, formula (5)
can be rewritten as

CN(x,y) = max(0,M(x,y)−M (N(x),N(y))) . (4)

Similarly, formulae (2) and (3) can be written as

C(x,y) = max(0,C∗(x,y)+λΠ( f (x),g(y))) . (5)

Denote by p the pentuple (C1,C2,λ , f ,g), where C1,C2 : [0,1]2 → [0,1] are bivariate
copulas, λ is a real constant and f ,g : [0,1]→ [0,1] are real functions. It is evident
that the formula
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Cp(x,y) = max(0,C1(x,y)+λC2( f (x),g(y))) (6)

is a well defined real function, Cp : [0,1]2 → ℜ. Clearly, formulae (5) and (4) cor-
respond to p = (M,M,−1,N,N), while formula (2) is linked to p = (Π ,Π ,λ , f , f )
with λ ∈ [−1,1] and f (x) = x(1− x). Similarly, formulae (3) and (5) are related to
p = (C∗,Π ,λ , f ,g). Recall a trivial result Cp =C1 whenever λ = 0.

Example 1. Consider p = (CH ,Π ,λ , f , f ), where CH is the Hamacher product, i.e.,
a copula given by

CH(x,y) =
x · y

x+ y− x · y
whenever x · y �= 0, and f (x) = x2 · (1− x). After some processing with software
MATHEMATICA it can be shown that Cp is a copula if and only if λ ∈ [−2,1].
Moreover, then Cp is an absolutely continuous copula given by

Cp(x,y) =
x · y

x+ y− x · y +λx2 · y2 · (1− x) · (1− y).

On the other hand, putting r = (CH ,Π ,λ ,g,g), where g(x) = x · (1− x), compare
(2), Cr is a copula only if λ = 0, i.e., when Cr =CH .

Consider an arbitrary copula C : [0,1]2 → [0,1] and its diagonal section δ : [0,1]→
[0,1] given by δ (x) =C(x,x). Recall that δ is non–decreasing, 2–Lipschitz, δ (0) =
0, δ (1) = 1 and δ (x)≤ x for all x ∈ [0,1]. Then the function f : [0,1]→ [0,1] given
by f (x) = x− δ (x) is 1–Lipschitz, f (0) = f (1) = 0. For p = (M,M,−1, f , f ), it
holds

Cp(x,y) = max(0,M(x,y)−M(x− δ (x),y− δ (y))) . (7)

Applying formula (5) considering N = f , one gets

Cf (x,y) = max(0,x∧ y− f (x∨ y)) = max(0,δ (x∨ y)−|x− y|) =CMT
δ (x,y),

where CMT
δ is a Mayor–Torrens copula [14] derived from the diagonal section δ .

On the other hand, Cp given by formula (7) for diagonal sections of 3 basic
copulas W,Π ,M yields copulas W,Cq,M, where q = (M,M,−1, fΠ , fΠ ), fΠ (x) =
x · (1− x). Observe that the copula Cq : [0,1]2 → [0,1] is described in Fig. 1.

On the other side, consider the ordinal sum copula C =
(〈

0, 1
2 ,W

〉
,
〈 1

2 ,1,W
〉)

,
i.e., f : [0,1]→ [0,1] given by

f (x) =

{
min

(
x, 1

2 − x
)

if x ∈ [
0, 1

2

]
min

(
x− 1

2 ,1− x
)

else .

Then for r = (M,M,−1, f , f ) the resulting function Cr : [0,1]2 → [0,1] satisfies

Cr(x,
3
4
) = 2x− 1 if x ∈

[
1
4
,

1
2

]
,

violating the 1–Lipschitz property of Cr. Thus Cr is not a copula.
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Fig. 1 Formulae for the copula Cq

We open a problem of characterizing all diagonal sections δ of bivariate semicop-
ulas such that the formula (7) yields a copula. Note also that if a function Cp given
by (7) is a copula, then Cq with q = (M,M,λ , f , f ) is a copula for any λ ∈ [−1,0].

3 Product–Based Construction of Copulas

Inspired by (5), consider a pentuple p = (C,C,−1,N,N) where N is a strong nega-
tion, i.e., consider a function Cp : [0,1]2 → [0,1] given by

Cp(x,y) = max(0,C(x,y)−C(N(x),N(y))) . (8)

Evidently, Cp is non–decreasing in both coordinates and satisfies the boundary con-
ditions for copulas, i.e., Cp is a semicopula [2, 4]. For arbitrary Frank copula [9] and
the standard negation Ns : [0,1]→ [0,1] given by Ns(x) = 1− x, we see that Cp =W
is a copula.

For the 3 basic copulas, the case C = M was discussed in [1], see Proposition 1.
For the case C = W , observe that Cp is a copula if and only if N ◦Ns ≤ Ns ◦N and
then Cp = W (this is, e.g., the case of a convex strong negation N). We focus now
on the third basic copula C = Π , i.e., we will consider p = (Π ,Π ,−1,N,N), i.e.,
Cp : [0,1]2 → [0,1] given by

Cp(x,y) = max(0,x · y−N(x) ·N(y)). (9)

Proposition 2. Let N : [0,1] → [0,1] be a differentiable convex strong negation.
Then the function Cp given by (9) is a negative quadrant dependent copula.

Proof. Observe first that under requirements of this proposition, Cp(x,y) = 0 if and
only if y ≤ N(x). Moreover, if x · y = N(x) ·N(y), then N′(x) ·N′(y) = 1. As for as
Cp is a semicopula, it is enough to show its 2–increasingness on its positive area.
Consider 0 < x1 < x2 ≤ 1, 0 < y1 < y2 ≤ 1 such that x1 · y1 ≥ N(x1) ·N(y1). Then
the volume VCp of the rectangle [x1,x2]× [y1,y2] is non–negative if and only if
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(x2− x1) · (y2− y1)≥ (N(x1)−N(x2)) · (N(y1)−N(y2)) =

= (x1− x2) ·N′(x0) · (y1− y2) ·N′(y0),

where x0 is some point from ]x1,x2[ and y0 is some point from ]y1,y2[.
Equivalently, it should hold N′(x0) ·N′(y0)≤ 1. Due to the fact that x0 ·y0 > x1 ·y1

and N(x0)< N(x1), N(y0)< N(y1), it holds x0 · y0 > N(x0) ·N(y0).
Consequently, x0 · y0 > x0 · y = N(x0) ·N(y), where y = N(x0) < y0. Due to the

convexity and monotonicity of N, it holds

N′(y)< N′(y0)< 0, N′(x0)< 0,

and hence
N′(x0) ·N′(y0)< N′(x0) ·N′(y) = 1.

Thus Cp is a copula. Obviously, Cp ≤Π , i.e., Cp is a NQD copula. �

Remark 1. As a by–product of the proof of Proposition 2, we see that for a con-
vex differentiable strong negation N, the copula Cp given by (9) has its zero–area
bounded by the graph of the function N. The same zero area is also obtained by
some other kinds of constructing copulas by means of N. For example, this is the
case of conic copulas based on N [3], or UCS copulas introduced by Durante and

Jaworski in [8], CN(x,y) = x ·N
(

min
(

1, N(y)
x

))
.

We expect that Proposition 2 is also valid for convex strong negations N which are
not differentiable.

Example 2. For c ∈]0,1[, define a function Nc : [0,1]→ [0,1] by

Nc(x) =

{
1− 1−c

c x if x ∈ [0,c]
c(1−x)

1−c else .

Then Nc is a strong negation which is convex if and only if c ∈]0, 1
2 ].

Applying formula (9), we see that Cp : [0,1]2 → [0,1] is given by

Cp(x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c2x+c2y−c2+(1−2c)x·y
(1−c)2 if (x,y) ∈ [c,1]2,

(1−c)x+(y−1)c
1−c if x ∈ [0,c] and y≥ c−(1−c)x

c ,
(1−c)y+(x−1)c

1−c if y ∈ [0,c] and x≥ c−(1−c)y
c ,

0 else .

Observe that for each c ∈]0,1[, Cp is a semicopula which is Lipschitz with constant

max
(

1,
(

c
1−c

)2
)

, i.e., for c > 1
2 , Cp is not a copula. On the other hand, for each

c ∈]0, 1
2 ], Cp is a copula.
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Open problems:

i) For each convex strong negation N, putting p = (Π ,Π ,λ ,N,N), the function Cp
is a copula for λ ∈ {−1,0}. Is this claim valid for each λ ∈ [−1,0]? Are there
some other constant λ so that Cp is a copula?

ii) For two convex strong negations N1,N2, and some λ ∈ℜ, does p = (Π ,Π ,λ ,
N1,N2) generate a copula Cp applying (9)?

Example 3. Consider the standard negation Ns. Applying formula (9) to p = (Π ,Π ,
λ ,Ns,Ns), it holds

Cp(x,y) = max(0,x · y+λ (1− x) · (1− y))= max(0,(1+λ )x · y−λ (x+ y−1)),

which is a copula (Sugeno–Weber t-norm, see [12]) for each λ ∈ [−1,0]. For λ >
0, Cp is not monotone and thus not a copula (even it is not an aggregation function).
For λ <−1, Cp is Lipschitz with constant −λ , and thus not a copula.

As another interesting fact consider the pentuple p = (Π ,M,λ , f , f ) with f (x) =
x(1−x). After a short processing it is not difficult to check that then Cp given by (6)
is a copula if and only if λ = 0 and then Cp =Π .

This observation opens another problem, namely whether it can be shown that
for any differentiable functions f ,g such that f (0) = f (1) = g(0) = g(1) = 0 and
f ′(0), f ′(1),g′(0),g′(1) are different from 0, compare [11], Cp for p=(Π ,M,λ , f ,g)
is a copula only if λ = 0 (and then Cp =Π ).

4 Concluding Remarks

We have proposed a rather general formula (6) transforming a given copula into a
real function, which in several special cases leads to new parametric families of cop-
ulas. We have discussed some of such families, but also some negative cases leading
to trivial solutions only. Our proposal opens several problems for a deeper study. For
example, problems of fitting copulas with special properties, such as symmetric cop-
ulas which are NQD but with Spearman’s rho close to 0 (then copulas discussed in
Example 1 can be of use). For several special types of p with fixed C1,C2, f ,g, the
problem of characterizing all constants λ such that Cp is a copula generalizes the
problem opened by Kim et al. in [11]. For example, consider p = (M,M,λ , f , f )
with f : [0,1]→ [0,1] non–increasing and f (0) = 0. Obviously, Cp is then a semi-
copula if and only if λ ≤ 0, independently of non–zero function f . As another par-
ticular problem, we can consider pentuples p1,p2 applied consecutively. Indeed, for
p1 = (C1,C2,λ , f ,g) such that Cp1 is a copula, and p2 = (Cp1 ,C3,τ,h,q) one can
define Cp1,p2 = (Cp1)p2 , which in the case λ ,τ ≤ 0 can be written as

Cp1,p2(x,y) = max(0,C1(x,y)+λC2( f (x),g(y))+ τC3(h(x),q(y))) .
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On the Construction of Semiquadratic Copulas

Tarad Jwaid, Bernard De Baets, and Hans De Meyer

Abstract. We introduce several classes of semiquadratic copulas (i.e. copulas that
are quadratic in at least one coordinate of any point of the unit square) of which the
diagonal section or the opposite diagonal section are given functions. These copu-
las are constructed by quadratic interpolation on segments connecting the diagonal
(resp. opposite diagonal) of the unit square to the boundaries of the unit square. We
provide for each class the necessary and sufficient conditions on a diagonal (resp.
opposite diagonal) function and two auxiliary real functions f and g to obtain a
copula which has this diagonal (resp. opposite diagonal) function as diagonal (resp.
opposite diagonal) section.

1 Introduction

Bivariate copulas (briefly copulas) [10] are binary operations on the unit interval
having 0 as absorbing element and 1 as neutral element and satisfying the condi-
tion of 2-increasingness, i.e. a copula is a function C : [0,1]2 → [0,1] satisfying the
following conditions:

1. for all x ∈ [0,1], it holds that

C(x,0) =C(0,x) = 0, C(x,1) =C(1,x) = x ;

2. for all x,x′,y,y′ ∈ [0,1] such that x≤ x′ and y≤ y′, it holds that
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VC([x,x
′]× [y,y′]) :=C(x,y)+C(x′,y′)−C(x,y′)−C(x′,y)≥ 0 .

VC([x,x′]× [y,y′]) is called the C-volume of the rectangle [x,x′]× [y,y′]. The copulas
M and W , defined by M(x,y) =min(x,y) and W (x,y) = max(x+y−1,0), are called
the Fréchet–Hoeffding upper and lower bounds: for any copula C it holds that W ≤
C ≤M. A third important copula is the non-singular product copula Π defined by
Π(x,y) = xy.

The diagonal section of a copula C is the function δC : [0,1]→ [0,1] defined by
δC(x) =C(x,x). A diagonal function δ is a [0,1]→ [0,1] function that satisfies the
following conditions:

(D1) δ (0) = 0, δ (1) = 1;
(D2) for all x ∈ [0,1], it holds that δ (x)≤ x;
(D3) δ is increasing;
(D4) δ is 2-Lipschitz continuous, i.e. for all x,x′ ∈ [0,1], it holds that

|δ (x′)− δ (x)| ≤ 2|x′ − x| .

Note that (D4) implies that δ is absolutely continuous, and hence differentiable
almost everywhere. The diagonal section δC of a copula C is a diagonal func-
tion. Conversely, for any diagonal function δ there exists at least one copula C
with diagonal section δC = δ . For example, the copula Kδ , defined by Kδ (x,y) =
min(x,y,(δ (x)+ δ (y))/2), is the greatest symmetric copula with a given diagonal
section δ [11] (see also [5, 7]). Moreover, the Bertino copula Bδ defined by

Bδ (x,y) = min(x,y)−min{t− δ (t) | t ∈ [min(x,y),max(x,y)]} ,

is the smallest copula with a given diagonal section δ . Note that Bδ is symmetric.
Similarly, the opposite diagonal section of a copula C is the functionωC : [0,1]→

[0,1] defined byωC(x) =C(x,1−x). An opposite diagonal function [2] is a function
ω : [0,1]→ [0,1] that satisfies the following conditions:

(OD1) for all x ∈ [0,1], it holds that ω(x)≤min(x,1− x);
(OD2) ω is 1-Lipschitz continuous, i.e. for all x,x′ ∈ [0,1], it holds that∣∣ω(x′)−ω(x)∣∣≤ ∣∣x′ − x

∣∣ .
Note that (OD2) implies that ω is absolutely continuous, and hence differentiable
almost everywhere. The opposite diagonal section ωC of a copula C is an opposite
diagonal function. Conversely, for any opposite diagonal function ω , there exists at
least one copula C with opposite diagonal section ωC = ω . For instance, the copula
Fω defined by

Fω(x,y) = max(x+ y− 1,0)+min{ω(t) | t ∈ [min(x,1− y),max(x,1− y)]} ,

is the greatest copula with opposite diagonal section ω [2, 9].
Diagonal functions and opposite diagonal functions have been used recently to

construct several classes of copulas [1, 2, 3, 4, 5, 6, 7, 12].
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Copulas with a given diagonal section are important tools for modelling upper
(λU ) and lower (λL) tail dependence [1, 3], which can be expressed as

λU = 2− δ ′C(1−) and λL = δ ′C(0
+) .

On the other hand, copulas with a given opposite diagonal section are important
tools for modelling upper-lower (λUL) and lower-upper (λLU ) tail dependence [2],
which can be expressed as

λUL = 1+ω ′C(1
−) and λLU = 1−ω ′C(0+) .

The above tail dependences are used in the literature to model the dependence be-
tween extreme events [13].

This paper is organized as follows. In the next section we introduce lower, up-
per, horizontal and vertical semiquadratic functions with a given diagonal section
and characterize the corresponding classes of copulas. In Section 3 we introduce
in a similar way lower-upper, upper-lower, horizontal and vertical semiquadratic
functions with a given opposite diagonal section and characterize the corresponding
classes of copulas. Finally, some conclusions are given.

2 Semiquadratic Copulas with a Given Diagonal Section

2.1 Lower and Upper Semiquadratic Copulas with a Given
Diagonal Section

Lower (resp. upper) semiquadratic copulas with a given diagonal section are con-
structed by quadratic interpolation on segments connecting the diagonal of the unit
square to the left (resp. right) and lower (resp. upper) boundary of the unit square.
The quadratic interpolation scheme for theses classes is depicted in Fig. 1.

For any two functions f ,g : ]0,1]→R that are absolutely continuous and satisfy

lim
x→0

0≤y≤x

y(x− y) f (x) = 0 and lim
y→0

0≤x≤y

x(y− x)g(y) = 0 , (1)

Lower semiquadratic copula Upper semiquadratic copula Horizontal semiquadratic copula Vertical semiquadratic copula

Fig. 1 Semiquadratic copulas with a given diagonal section
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and any diagonal function δ , the function C f ,g
l,δ : [0,1]2 → R defined by

C f ,g
l,δ (x,y) =

⎧⎪⎪⎨
⎪⎪⎩

x
y
δ (y)− x(y− x)g(y) , if 0 < x≤ y ,

y
x
δ (x)− y(x− y) f (x) , if 0 < y≤ x ,

(2)

with C f ,g
l,δ (t,0) = C f ,g

l,δ (0, t) = 0 for all t ∈ [0,1], is well defined. Note that the limit

conditions on f and g ensure that C f ,g
l,δ is continuous. The function C f ,g

l,δ is called a

lower semiquadratic function with diagonal section δ since it satisfies C f ,g
l,δ (t, t) =

δ (t) for all t ∈ [0,1], and since it is quadratic in x on 0≤ x≤ y≤ 1 and quadratic in
y on 0≤ y≤ x≤ 1. Obviously, symmetric functions are obtained when f = g. Note
that for f = g = 0, the definition of a lower semilinear function [5] is retrieved.

We now investigate the conditions to be fulfilled by the functions f , g and δ such
that the lower semiquadratic function C f ,g

l,δ is a copula. Note that f and g, being
absolutely continuous, are differentiable almost everywhere.

Proposition 1. Let δ be a diagonal function and let f and g be two absolutely con-
tinuous functions that satisfy conditions (1). Then the lower semiquadratic function
C f ,g

l,δ defined by (2) is a copula with diagonal section δ if and only if

(i) f (1) = g(1) = 0 ,

(ii) max( f (t)+ t | f ′(t)| ,g(t)+ t |g′(t)|)≤
(
δ (t)

t

)′
,

(iii) f (t)+ g(t)≥ t
(
δ (t)
t2

)′
,

for all t ∈ ]0,1] where the derivatives exist.

Example 1. Let δΠ be the diagonal section of the product copula Π , i.e. δΠ (t) = t2

for all t ∈ [0,1]. Let f and g be defined by f (t) = g(t) = 1− t for all t ∈ ]0,1]. One
easily verifies that the conditions of Proposition 1 are satisfied and hence, C f ,g

l,δΠ
is a

lower semiquadratic copula with diagonal section δΠ .

Upper semiquadratic copulas with a given diagonal section can be obtained easily
from lower semiquadratic copulas with an appropriate given diagonal section.

Proposition 2. Let δ be a diagonal function and δ̂ be the diagonal function defined
by δ̂ (x) = 2x−1+δ (1−x). Let f̂ and ĝ be two absolutely continuous functions that
satisfy conditions (1) and f and g be two functions defined by f (x) = f̂ (1− x) and
g(x) = ĝ(1− x). The function C f ,g

u,δ : [0,1]2 → [0,1] defined by

C f ,g
u,δ (x,y) = x+ y− 1+C f̂,ĝ

l,δ̂
(1− x,1− y) , (3)



Semiquadratic Copulas 51

is a copula with diagonal section δ if and only if

(i) f (0) = g(0) = 0 ,

(ii) max( f (t)+ (1− t) | f ′(t)| ,g(t)+ (1− t) |g′(t)|)≤
(

t−δ (t)
1−t

)′
,

(iii) f (t)+ g(t)≥ (1− t)
(

2t−1−δ (t)
(1−t)2

)′
,

for all t ∈ [0,1[ where the derivatives exist.

The function C f ,g
u,δ defined by (3) is called an upper semiquadratic function with

diagonal section δ .

2.2 Horizontal and Vertical Semiquadratic Copulas with a Given
Diagonal Section

Horizontal (resp. vertical) semiquadratic copulas with a given diagonal section are
constructed by quadratic interpolation on segments connecting the diagonal of the
unit square to the left (resp. lower) and right (resp. upper) boundary of the unit
square. The quadratic interpolation scheme for theses classes is depicted in Fig. 1.

For any two functions f : [0,1[→R and g : ]0,1] → R that are absolutely contin-
uous and satisfy

lim
y→0

0≤x≤y

x(y− x)g(y) = 0 and lim
y→1

0≤y≤x

(1− x)(y− x) f (y) = 0 , (4)

and any diagonal function δ , the function C f ,g
h,δ : [0,1]2 → R defined by

C f ,g
h,δ (x,y) =

⎧⎪⎪⎨
⎪⎪⎩

x
y
δ (y)− x(y− x)g(y) , if 0 < x≤ y ,

y− 1− x
1− y

(y− δ (y))− (1− x)(x− y) f (y) , if y≤ x < 1 ,

(5)

with C f ,g
h,δ (0, t) = 0 and C f ,g

h,δ (1, t) = t for all t ∈ [0,1], is well defined. Note that

the limit conditions on f and g ensure that C f ,g
h,δ is continuous. The function C f ,g

h,δ is
called a horizontal semiquadratic function with diagonal section δ since it satisfies
C f ,g

h,δ (t, t) = δ (t) for all t ∈ [0,1], and since it is quadratic in x on [0,1]2. Note that
for f = g = 0, the definition of a horizontal semilinear function [1] is retrieved.

We now investigate the conditions to be fulfilled by the functions f , g and δ such
that the horizontal semiquadratic function C f ,g

h,δ is a copula.

Proposition 3. Let δ be a diagonal function and let f and g be two absolutely
continuous functions that satisfy conditions (4). Then the horizontal semiquadratic
function C f ,g

h,δ defined by (5) is a copula with diagonal section δ if and only if
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(i) f (0) = g(1) = 0 ,

(ii) f (t)+ (1− t) | f ′(t)| ≤
(

t−δ (t)
1−t

)′
,

(iii) g(t)+ t |g′(t)| ≤
(
δ (t)

t

)′
,

(iv) t f (t)+ (1− t)g(t)≥ t2−δ (t)
t(1−t) ,

for all t ∈ ]0,1[ where the derivatives exist.

Example 2. Let δΠ be the diagonal section of the product copula. Let f be defined
by f (t) = t for all t ∈ [0,1[ and g be defined by g(t) = 1− t for all t ∈ ]0,1]. One
easily verifies that the conditions of Proposition 3 are satisfied and hence, C f ,g

h,δΠ
is a

horizontal semiquadratic copula with diagonal section δΠ .

Vertical semiquadratic copulas with a given diagonal section are trivially obtained
as the converses of horizontal semiquadratic copulas with a given diagonal section.

Proposition 4. Let δ be a diagonal function and let f and g be two absolutely con-
tinuous functions that satisfy conditions (4). The function C f ,g

v,δ : [0,1]2 → [0,1], de-
fined by

C f ,g
v,δ (x,y) =C f ,g

h,δ (y,x) , (6)

is a copula with diagonal section δ if and only if C f ,g
h,δ is a copula, i.e. under the

conditions of Proposition 3.

The function C f ,g
v,δ defined by (6) is called a vertical semiquadratic function with

diagonal section δ .

3 Semiquadratic Copulas with a Given Opposite Diagonal
Section

3.1 Lower-Upper and Upper-Lower Semiquadratic Copulas with
a Given Opposite Diagonal Section

Lower-upper (resp. upper-lower) semiquadratic copulas with a given opposite diag-
onal section are constructed by quadratic interpolation on segments connecting the
opposite diagonal of the unit square to the left (resp. right) and upper (resp. lower)
boundary of the unit square. The quadratic interpolation scheme for these classes is
depicted in Fig. 2.

For any two functions f : ]0,1]→ R and g : [0,1[→ R that are absolutely contin-
uous and satisfy

lim
y→0

0≤1−x≤y

(1− y)(x+ y− 1) f (x) = 0 and lim
y→1

y≤1−x≤1

x(1− x− y)g(y) = 0 , (7)
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Lower-upper semiquadratic copula Upper-lower semiquadratic copula Horizontal semiquadratic copula Vertical semiquadratic copula

Fig. 2 Semiquadratic copulas with a given opposite diagonal section

and any opposite diagonal function ω , the function C f ,g
lu,ω : [0,1]2 → R defined by

C f ,g
lu,ω(x,y) =⎧⎪⎪⎨

⎪⎪⎩
x

1− y
ω(1− y)− x(1− x− y)g(y) , if y≤ 1− x < 1 ,

x+ y− 1+
1− y

x
ω(x)− (1− y)(x+ y− 1) f (x) , if 0 < 1− y≤ x ,

(8)

with C f ,g
lu,ω (0, t) = 0 and C f ,g

lu,ω(1, t) = t for all t ∈ [0,1], is well defined. Note that

the limit conditions on f and g ensure that C f ,g
lu,ω is continuous. The function C f ,g

lu,ω
is called a lower-upper semiquadratic function with opposite diagonal section ω
since it satisfies C f ,g

lu,ω(t,1− t) = ω(t) for all t ∈ [0,1], and since it is quadratic in
x on 0 ≤ x+ y ≤ 1 and quadratic in y on 1 ≤ x+ y ≤ 2. Note that for f = g = 0,
the definition of a lower-upper semilinear function with a given opposite diagonal
section [8] is retrieved.

We now investigate the conditions to be fulfilled by the functions f , g and ω such
that the lower-upper semiquadratic function C f ,g

lu,ω is a copula.

Proposition 5. Let ω be an opposite diagonal function and let f and g be two abso-
lutely continuous functions that satisfy conditions (7). Then the lower-upper semi-
quadratic function C f ,g

lu,ω defined by (8) is a copula with opposite diagonal section ω
if and only if

(i) f (1) = g(0) = 0 ,

(ii) f (t)− t | f ′(t)| ≥
(
ω(t)

t

)′
,

(iii) g(t)− (1− t) |g′(t)| ≥ −
(
ω(1−t)

1−t

)′
,

(iv) f (t)+ g(1− t)≤ t
(
ω(t)−t

t2

)′
,

for all t ∈ ]0,1[ where the derivatives exist.

Example 3. Let ωΠ be the opposite diagonal section of the product copula Π , i.e.
ωΠ (t) = t(1− t) for all t ∈ [0,1]. Let f be defined by f (t) = 1− t for all t ∈ ]0,1] and
g be defined by g(t) =−t for all t ∈ [0,1[ . One easily verifies that the conditions of
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Proposition 5 are satisfied and hence, C f ,g
lu,ωΠ is a lower-upper semiquadratic copula

with opposite diagonal section ωΠ .

Upper-lower semiquadratic copulas with a given opposite diagonal section can be
obtained easily from lower-upper semiquadratic copulas with an appropriate given
opposite diagonal section.

Proposition 6. Let ω be an opposite diagonal function and ω̂ be the opposite diag-
onal function defined by ω̂(x) =ω(1−x). Let f and g be two absolutely continuous
functions that satisfy conditions (7). The function C f ,g

ul,ω : [0,1]2 → [0,1], defined by

C f ,g
ul,ω (x,y) =C f ,g

lu,ω̂(y,x) , (9)

is a copula with opposite diagonal section ω if and only if

(i) f (1) = g(0) = 0 ,

(ii) f (t)− t | f ′(t)| ≥
(
ω(1−t)

t

)′
,

(iii) g(t)− (1− t) |g′(t)| ≥ −
(
ω(t)
1−t

)′
,

(iv) f (1− t)+ g(t)≤ (1− t)
(

1−t−ω(t)
(1−t)2

)′
,

for all t ∈ ]0,1[ where the derivatives exist.

The function C f ,g
ul,ω defined by (9) is called an upper-lower semiquadratic function

with opposite diagonal section ω .

3.2 Horizontal and Vertical Semiquadratic Copulas with a Given
Opposite Diagonal Section

Horizontal (resp. vertical) semiquadratic copulas with a given opposite diagonal sec-
tion are constructed by quadratic interpolation on segments connecting the opposite
diagonal of the unit square to the left (resp. lower) and right (resp. upper) boundary
of the unit square. The quadratic interpolation scheme for these classes is depicted
in Fig. 2.

For any two functions f : ]0,1]→ R and g : [0,1[→ R that are absolutely contin-
uous and satisfy

lim
y→0

0≤1−x≤y

(1− x)(x+ y− 1) f (y) = 0 and lim
y→1

y≤1−x≤1

x(1− x− y)g(y) = 0 , (10)

and any opposite diagonal function ω , the function C f ,g
h,ω : [0,1]2 → R defined by

C f ,g
h,ω(x,y) =
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⎧⎪⎪⎨
⎪⎪⎩

x
1− y

ω(1− y)− x(1− x− y)g(y) , if y≤ 1− x < 1 ,

x+ y− 1+
1− x

y
ω(1− y)− (1− x)(x+ y−1) f (y) , if 0 < y≤ 1− x ,

(11)

with C f ,g
h,ω(0, t) = 0 and C f ,g

h,ω(1, t) = t for all t ∈ [0,1], is well defined. Note that

the limit conditions on f and g ensure that C f ,g
h,ω is continuous. The function C f ,g

h,ω is
called a horizontal semiquadratic function with opposite diagonal section ω since it
satisfies C f ,g

h,ω(t,1− t) =ω(t) for all t ∈ [0,1], and since it is quadratic in x on [0,1]2.
Note that for f = g = 0, the definition of a horizontal semilinear function with a
given opposite diagonal section [8] is retrieved.

We now investigate the conditions to be fulfilled by the functions f , g and ω such
that the horizontal semiquadratic function C f ,g

h,ω is a copula.

Proposition 7. Let ω be an opposite diagonal function and let f and g be two ab-
solutely continuous functions that satisfy conditions (10). Then the horizontal semi-
quadratic function C f ,g

h,ω defined by (11) is a copula with opposite diagonal section ω
if and only if

(i) f (1) = g(0) = 0 ,

(ii) f (t)− t | f ′(t)| ≥
(
ω(1−t)

t

)′
,

(iii) g(t)− (1− t) |g′(t)| ≥ −
(
ω(1−t)

1−t

)′
,

(iv) (1− t) f (1− t)+ tg(1− t)≤ 1− ω(t)
t(1−t) ,

for all t ∈ ]0,1[ where the derivatives exist.

Example 4. Let ωΠ be the opposite diagonal section of the product copulaΠ . Let f
be defined by f (t) = 1− t for all t ∈ ]0,1] and g be defined by g(t) = −t for all t ∈
[0,1[ . One easily verifies that the conditions of Proposition 7 are satisfied and hence,
C f ,g

h,ωΠ is a horizontal semiquadratic copula with opposite diagonal section ωΠ .

Vertical semiquadratic copulas with a given opposite diagonal section are trivially
obtained as the converses of horizontal semiquadratic copulas with an appropriate
given opposite diagonal section.

Proposition 8. Let ω be an opposite diagonal function and ω̂ be the opposite diag-
onal function defined by ω̂(x) =ω(1−x). Let f and g be two absolutely continuous
functions that satisfy conditions (10). The function C f ,g

v,ω : [0,1]2 → [0,1], defined by

C f ,g
v,ω (x,y) =C f ,g

h,ω̂(y,x) , (12)

is a copula with opposite diagonal section ω if and only if
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(i) f (1) = g(0) = 0 ,

(ii) f (t)+ t | f ′(t)| ≥
(
ω(t)

t

)′
,

(iii) g(t)+ (1− t) |g′(t)| ≥ −
(
ω(t)
1−t

)′
,

(iv) t f (1− t)+ (1− t)g(1− t)≤ 1− ω(t)
t(1−t) ,

for all t ∈ ]0,1[ where the derivatives exist.

The function C f ,g
v,ω defined by (12) is called a vertical semiquadratic function with

opposite diagonal section ω .

4 Conclusions

We have introduced the classes of lower, upper, horizontal and vertical semi-
quadratic functions with a given diagonal section as well as the classes of
lower-upper, upper-lower, horizontal and vertical semiquadratic functions with a
given opposite diagonal section. Moreover, we have identified the necessary and
sufficient conditions on a diagonal (resp. opposite diagonal) function and two aux-
iliary real functions f and g to obtain a copula that has this diagonal (resp. opposite
diagonal) function as diagonal (resp. opposite diagonal) section.
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Copulas and Self-affine Functions

Enrique de Amo, Manuel Díaz Carrillo, and Juan Fernández Sánchez

Abstract. We characterize self-affine functions whose graphs are the support of a
copula using the fact that the functions defined on the unit interval whose graphs
support a copula are those that are Lebesgue-measure-preserving. This result al-
lows the computation of the Hausdorff, packing, and box-counting dimensions. The
discussion is applied to a classic example such as the Peano curve.

1 Introduction and Preliminaries

The notion of copula was introduced by Sklar [20] when he proved his celebrated
theorem in 1959. His aim was to express the relationship between multivariate dis-
tribution functions and their univariate margins. For an introduction to copulas, see
[16].

Many authors in various fields have drawn attention to methods to generate frac-
tal sets and to describe the concept of “size” for sets in the plane, computing differ-
ent types of fractal dimensions (in particular, Hausdorff, packing, and box-counting
dimensions). Fractal features are often exhibited by measures. This allows the inves-
tigation of the connection between fractals and measure-preserving transformations,
and the use of methods from Probability Theory and Ergodic Theory.

In addition, some authors describe several ways in which fractal geometry inter-
acts with the notion of copula. Specifically, recent studies have been carried out on
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examples where the copula has a fractal support, and on the relationship between
copulas and measure-preserving transformations on the Borel sets of the unit in-
terval in [3, 6, 7, 12]. Moreover, sufficient conditions for the graph of a function
supports a copula are given in [12], and a necessary and sufficient condition is given
in [3].

Finally, fractals that are invariant under simple families of transformations in-
clude self-similar and self-affine sets. In particular, Kamae [11], using a definition
of self-affine function that generalizes that given by Kôno in [13], gives a char-
acterization of them as functions generated by finite automata. Urbański [23] has
given conditions to determine dimensions of the graphs of continuous self-affine
functions.

In this paper we establish closer relations between the notions of copulas and
measure-preserving transformations, self-affine functions whose graphs are sup-
ported by a copula, and their applications to computing several fractal dimensions.

We recall some notions and definitions used bellow.
Let I := [0,1] be the closed unit interval and let I2 be the unit square. We can

say that a two-dimensional copula (or a copula, for brevity) is a bidimensional dis-
tribution whose restriction to I

2 has its marginal distribution functions uniformly
distributed (see [16]). Therefore, each copula C induces a probability measure μC

on I
2 via the formula

μC ([a,b]× [c,d]) =C (b,d)−C (b,c)−C (a,d)+C (a,c)

in a similar fashion to joint distribution functions. Through standard
measure-theoretical techniques, μC can be extended from the semi-ring of rectan-
gles in I

2 to the σ -algebra B
(
I

2
)

of Borel sets in the unit square. We denote by λ
the standard Lebesgue measure on the σ -algebra B(I) of Borel sets in the unit in-
terval. The support of a copula C is the complement of the union of all open subsets
of I2 with μC-measure equal to zero.

We use Mandelbrot’s original definition of fractal set (i.e. a set whose topolo-
gial dimension is less than its Hausdorff dimension dimH ). Dimensions of differ-
ent types are particularly useful in describing the concept of “size” of sets in the
plane, in particular, sets of zero Lebesgue measure. For basic properties concerning
dimensions (Hausdorff, box-counting, and packing), and other useful notions for
expressing the fractal properties of sets, the reader is referred to [8, 9].

Fredricks et al. [10], using an iterated function system, construct the first example
of a family of copulas whose supports are fractals. In particular, they give sufficient
conditions for the support of a self-similar copula to be a fractal whose Hausdorff
dimension is between 1 and 2. The main result of these authors states that for every
s ∈ [1,2] there exists a copula whose support has dimension equals to s. New results
concerning to copulas of fractal support can be found in [3, 4, 5, 21, 22].

Given a measurable space (X ,Ω ,μ), a measurable function F : X → X is said to
be measure-preserving (or F preserves μ) iff μ

(
F−1 (A)

)
= μ (A), for all A ∈Ω .

If the σ -algebra Ω is generated by a family Ω0 that is closed for finite in-
tersections (i.e. a π-system), a sufficient condition for F to be measurable and
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measure-preserving (see [2, Sec.24]) is that F−1 (A) ∈Ω and μ
(
F−1 (A)

)
= μ (A),

for all A ∈Ω0. We are interested in the case (X ,Ω ,μ) = (I,B(I),λ ) .
Many authors have established a correspondence between copulas and

measure-preserving transformations f ,g on the unit interval via the formula

Cf ,g (u,v) = λ
(

f−1 [0,u]∩g−1 [0,v]
)

(as we can see in [6, 7, 12, 17, 24]). In [3], the authors investigate the hardest impli-
cation in this correspondence; that is, for a given copula C, the goal is to find a pair
of measure-preserving transformations ( f ,g) such that C =Cf ,g.

On the other hand, for the general problem of determining just what functions
satisfy that their graph concentrates the mass of a copula, in [7] it is proven that,
for every copula obtained as a shuffle of Min, there is a piece-wise linear function
whose graph supports the probability mass.

In 1986 Kôno [13] introduced the notion of a self-affine function f of order α >
0, whose paradigm is the component functions of the Peano curve.

“Self-affinity” properties have been studied by different authors, with definitions
that generalize the Kôno notion using different methods (e.g. Kamae [11] or Peitgen
et al. [18]). The main fact is that the graphs of self-affine functions are expected to
show strong fractal features. In [14], the author obtains Hausdorff, box, and packing
dimensions for graphs of self-affine functions under some conditions. We note that
[1, 6, 19] have related results. In particular, with [14, 23], for a given continuous and
self-affine function f : I→ I, a necessary and sufficient condition for the probability
distribution λ ◦ f−1 to be absolutely continuous with respect to Lebesgue measure
is that the Hausdorff and box dimensions of the graph of f be equal to 2−α.

2 Self-affine Functions Whose Graphs Support a Copula

We start with the general problem of determining just what functions in I have
graphs that can concentrate the associated mass with a copula. We recall that [7]
gives an answer to this problem using the notion of shuffle of an arbitrary copula. In
[3], we have the following general result:

Proposition 1. Let f : I→ I be a Borel measurable function. Then, there exists a
copula C whose associated measure μC has its mass concentrated in the graph of f
(denoted by Γ , μC (Γ ( f )) = 1) if and only if the function f preserves the Lebesgue
measure λ .

For the sake of brevity, we say that f supports C.
Now, we introduce a family of self-affine functions on I. It is adapted from those

of Kamae [11] that generalizes the previous concept given by Kôno [13]. See also
Peitgen et al. [18].

We use the following notations: For k ∈ Z
+, let us denote by [k] the set

{0,1,2, . . . ,k− 1} , and by [k]∗ =
{

a1 . . .ak : k ∈ Z
+,1≤ j ≤ k,a j ∈ [k]

}
.
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Definition 1. A family of functions x0,x1, . . . ,xN−1 : I −→ I is called self-affine of
order α ∈ ]0,1[ and with base m ∈ Z

+\{1} (or simply, (m,α)-self-affine) iff the
following conditions are satisfied:

a) x j(0),x j(1) ∈ {0,1} for all j ∈ [N] .
b) There is an application θ : [N]→ [N]∗ of constant length m (i.e. θ ( j) has the

same number m of terms for all j ∈ [N]) such that, for all ( j,h) ∈ [N]× [m] and for
t ∈ I, we have

x j

(
h+ t

m

)
− x j

(
h
m

)
=

xθh( j) (t)− xθh( j)(0)

mα
,

where θh( j) is the element in [k] in the h-th position in θ ( j).
We say that each one of the functions x j is self-affine.

Observe that any self-affine function is continuous, because for all z, ź ∈ I, |z− z′|<
2m−n implies that

∣∣x j (z)− x j (z′)
∣∣< m−nα .

A typical example of a self-affine function is each coordinate function in the
Peano curve (see for instance [13, 18]). Let us see the details below.

Example 1. (Coordinate functions for the Peano curve). Let us define the operator
k(β ) = 2−β , with β ∈ {0,1,2} . If t = ∑∞n=1

tn
3n , then

{
x(t) = t1

3 + kt2 (t1)
32 + kt2+t4 (t5)

33 + · · ·
y(t) = kt1 (t2)

3 + kt1+t3(t4)
32 + kt1+t3+t5 (t6)

33 + · · ·

The x coordinate for the Peano curve is self-affine with values:
a) N = 2; m = 9; α = 1/2
b) x0(t) = x(t), x1(t) = 1− x(t)
c) θ (0) = 010010010; θ (1) = 101101101.

Fig. 1 x coordinate function
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In order to characterize the self-affine functions whose graphs can support a copula,
we use the set I2× [N]. We can define the next metric on it:

d
(
(x,y, j) ,

(
x′,y′, j′

))
=

{
ρ , if j �= j′√
(x− x′)2 +(y− y′)2, if j = j′

with ρ >
√

2. Let κ(I2× [N]) be the space of compact sets in I
2× [N], endowed

with the Hausdorff metric given by d. Let us consider the attractor F given by the
Contraction Mapping Theorem (see for example [9, Chap.9]) for the contraction τ
given in the following form. Let us introduce the functions:

τ jh : I2×{θh( j)} −→[
h
m
,

h+ 1
m

]
×
[

x j

(
h
m

)
− xθh( j)(0)

mα
,x j

(
h
m

)
+
−xθh( j)(0)+ 1

mα

]
×{ j}

given by

(x,y)×{θh( j)} →
(

h+ x
m

,x j

(
h
m

)
+

y− xθh( j)(0)

mα

)
×{ j} ;

and let us define:
τ : κ(I2× [N])−→ κ(I2× [N])

D→∪
jh
τ jh(D∩ I2×{θh( j)}) (1)

Now, we can characterize the self-affine functions in Definition 1:

Proposition 2. The function x j is self-affine if and only if its graph is the intersection
of the square I2×{ j} and the attractor F, in the space κ(I2× [N]), given by (2.1.1).

Now, we establish the main result

Theorem 1. A family of self-affine functions can support a copula if and only if
m1−α ∈ Z

+ and, for each j ∈ [N] and r ∈ [mα ]:

Card

{
h : 0≤ h≤ m− 1,x j

(
h
m

)
− x j(0)

mα
=

r
mα

}
= m1−α .

Theorem 2. Let us consider a family of self-affine functions with order of self-affinity
α . If their graphs can support a copula, then their Hausdorff dimension is not less
than 2−α.
We summarize with this result

Corollary 1. Let us consider a self-affine function with affinity order α . If its graph
Γ supports a copula, then the packing, Hausdorff, and box-counting dimensions for
Γ are exactly 2−α.
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Diagonal Copulas

Radko Mesiar and Jana Kalická

Abstract. Copulas constructed from the respective diagonal sections were deeply
studied in 2-dimensional case. For general case of dimension n, only few results are
known so far. We recall known results in this area and focus on some constructions
for n > 2. Several examples considering n = 3 are included.

Keywords: copula, diagonal copula, diagonal section, Bertino copula.

1 Introduction

We suppose the readers are familiar with the basics of copula theory, see, e.g.,
lecture notes [12] or monograph [9]. Recall that for an n-dimensional copula
C : [0,1]n → [0,1] ,n ≥ 2, its diagonal section δC (x) = C (x, ...,x). From the sta-
tistical point of view if the considered copula C describes the stochastic dependence
structure of random vector (X1, ...,Xn), where all marginals X1, ...,Xn are uniformly
distributed over the unit interval [0,1], the diagonal section δC is (a restriction on

[0,1] of) the distribution function of the random variable Y =
n∨

i=1
Xi, i.e., δC de-

scribes the randomness of the extremes of X1, ...,Xn. The aim of this contribution
is to discuss the reverse problem, i.e., how to find for an a priori given diago-
nal section δ : [0,1]n → [0,1] (of some unknown copula) an n-dimensional cop-
ula C : [0,1]n → [0,1] so that δ = δC. The paper is organized as follows. In the
next section, we characterize axiomatically diagonal sections of n-dimensional cop-
ulas and we recall some construction methods for 2-dimensional copulas with an
a priori given diagonal section. In Section 3, we recall a method for constructing
n-dimensional copula from an a priori given diagonal section, and we introduce a
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new method of this type. Based on these methods, a parametric class of construction
methods is obtain. Moreover, some new problems are opened. In Section 4, some
examples are included. Finally, some concluding remarks are added.

2 Diagonal Sections of Copulas and 2-Dimensional Copulas

For a fixed n ∈ {2,3, ...}, we denote as Cn the class of all n-dimensional copulas,
and as Dn the class of all diagonal sections of copulas from Cn. It is easy to check
that if the function d : [0,1]→ [0,1] is an element of Dn then it satisfies the next
conditions:
(D1) d is non-decreasing,
(D2) d ≤ id[0,1],
(D3) d (1) = 1,
(D4) d is n-Lipschitz, i.e., |d (x)− d (y) | ≤ n|x− y| for all x,y ∈ [0,1].

The next proposition follows from the construction method proposed in [8], see also
Section 3.

Proposition 1. Let d : [0,1]→ [0,1] be a function and n ∈ {2,3, ...} be a fixed di-
mension. Then d is a diagonal section of some n-dimensional copula, i.e., d ∈Dn if
and only if d satisfies conditions (D1) - (D4).

Observe that classes Cn and Dn are convex. Dn is closed under suprema (infima),
and its smallest element is given by d−n (x) = max(0,nx− n+ 1), while its greatest
element is given by d+

n (x) = x. On the other hand, the classes Cn are not closed
under suprema (infima). The greatest element of Cn is the comonotonicity copula
M, M (x1, ...,xn) = min(x1, ...,xn), while the smallest element in Cn, n > 2 does not
exist. In the case of C2, the smallest element is the countermonotonicity copula W ,
W (x1,x2) = max(0,x1 + x2− 1) . We recall some construction methods for copulas
from C2, when an a priori given diagonal section d ∈D2 is known.
Bertino Copulas ([1], [6])

For any d ∈D2, the function Bd : [0,1]2 → [0,1] given by

Bd (x,y) =
∨

t∈[x∧y,x∨y]

(
d (t)− (t− x)+− (t− y)+

)+
, (1)

where u+ = max(u,0) for u ∈ R is a copula. Observe that Bd is the smallest copula
with diagonal section, and it is simultaneously the smallest quasi-copula ([7], [14])
possessing diagonal section d.

Diagonal Copulas ([5], [13])
For any d ∈D2, the function Kd : [0,1]2 → [0,1] given by

Kd (x,y) = min

(
x,y,

d (x)+ d (y)
2

)
(2)
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is a copula. Kd is the greatest symmetric copula with diagonal section d, but not
necessarily the greatest one, see [13]. There are several other constructions of a di-
agonal copula with an a priori given diagonal section d, however, these methods are
not universal, they can be applied to diagonal sections from some special subdo-
mains of D2. This is, for example, the case of semilinear copulas discussed in [2],
biconic copulas studied in [10], several methods introduced in [3], [14] etc. Observe
also an important fact based on patchwork techniques introduced in [3], Theorem 1,
see also [14].

Proposition 2. Let A and B be symmetric copulas from C2 with the same diagonal
section d ∈D2. Then the function CA,B : [0,1]2 → [0,1] given by

CA,B (x,y) =

{
A(x,y) i f x≤ y,
B(x,y) else,

(3)

is a copula form C2, and dCA,B = dA = dB = d.

The above proposition allow to introduce for any d ∈ D2 two copulas CBd ,Kd

and CKd ,Bd with diagonal section d. Note that for any d ∈ D2 different from d+,
card

{
Kd ,Bd ,CBd ,Kd ,CKd ,Bd

}
= 4.

Remark 1. Proposition 2 can be modified, replacing the symmetry of copulas A, B
by their comparability.

3 N-Dimensional Diagonal Copulas

Based on results of Rychlik [15], Jaworski [8] has introduced a method of construct-
ing n-dimensional copulas with an a priori given diagonal section d ∈Dn,n≥ 2.

Proposition 3. For a fixed n∈ {2,3, ...}, let d ∈Dn. Then the function Jd : [0,1]n →
[0,1] given by

Jd (x1, ...,xn) =
1
n

n

∑
i=1

min( f (xi+1) , ..., f (xi+n−1) ,d (xi+n)) (4)

where f : [0,1]→[0,1] is given by f (x)= nx−d(x)
n−1 and x j = x j−n for j ∈ {n+ 1, ...2n},

is a copula, Jd ∈ Cn.

Observe that for n = 2, f (x) = 2x− d (x), and

Jd (x1,x2) =
1
2
(min(2x2− d (x2) ,d (x1))+min(2x1− d (x1) ,d (x2))) =

= min

(
x1,x2,

d (x1)+ d (x2)

2

)
= Kd (x1,x2) ,

i.e., copula introduced by Jaworski coincide with diagonal copula Kd .

Considering the generalization of Bertino copula for n> 2, for d ∈Dn, the small-
est n-dimensional quasi-copula Bd : [0,1]n → [0,1] is given by
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Bd (x1, ...,xn) =
∨

[∧xi,∨xi]

(
d (t)− (t− x1)

+− ...− (t− xn)
+)+ . (5)

However then Bd− (x1, ...xn) =W (x1, ...xn) = max

(
0,

n
∑

i=1
xi− (n− 1)

)
is not a cop-

ula, i.e., (5) is not a universal construction method for n-dimensional copulas.
Open Problem 1. Characterize all diagonal section d ∈Dn such that Bd ∈ Cn.

Similarly, one can consider the generalization of diagonal copulas Kd for higher di-
mensions, i.e., for a fixed d ∈ Dn,n > 2, to consider a function Kd : [0,1]n → [0,1]
given by

Kd (x1, ...xn) = min

(
x1, ...,xn,

d (x1) , ...,d (xn)

n

)
. (6)

It is not difficult to check that Kd is a symmetric quasi-copula for any d ∈ Dn.
However, as shown in [4], Kd is an n-dimensional copula only if d = d+, and then
Kd+ = M is the greatest copula from Cn. To illustrate this fact, consider the diagonal

section d ∈ D3 given by d (x) = x3. Then Kd
(

1
2 ,

1
2 ,1

)
= min

(
1
2 ,

1
2 ,

1
8+

1
8+1
3

)
= 5

12

and the volume VKd

([
0, 1

2

]× [
1
2 ,1

]× [
1
2 ,1

])
= 1

2 − 2 5
12 +

1
8 = − 5

24 < 0, violating
the 3-increasingness of Kd . Observe that due to the ordinal sum representation of
copulas discussed in [11], we can introduce a corresponding notion of the ordinal
sums of diagonal sections, d = (〈ak,bk,dk〉 |k ∈K ), where K is an index system,
(]ak,bk[)k∈K is a disjoint system of open subintervals of [0,1], and dk ∈Dn for each
k ∈K . Then d : [0,1]→ [0,1] is given by

d (x) =

{
ak +(bk− ak)dk

(
x−ak
bk−ak

)
i f x ∈ ]ak,bk[ f or some k ∈K ,

x else.

Note that the corresponding function f : [0,1]→ [0,1] given by f (x) = nx−d(x)
n−1 can

be written in the form

f (x) =

{
ak +(bk− ak) fk

(
x−ak
bk−ak

)
i f x ∈ ]ak,bk[ f or some k ∈K ,

x else.

Proposition 4. For a fixed n ∈ {2,3, ...}, let d ∈ Dn be an ordinal sum, d =
(〈ak,bk,dk〉 |k ∈K ) . Then Jd is an ordinal sum copula Jd =

(〈
ak,bk,Jdk

〉 |k ∈K
)
.

As we see in Proposition 4, construction (4) and ordinal sum constructions
commute.

As we have already mentioned, Dn and Cn are convex classes. It is not difficult
to check, that construction (4) does not commute with convex sums construction.
Consider, for n = 2, d = d−+d+

2 ∈D2,

d (x) =

{
x
2 i f x≤ 1

2 ,
3x−1

2 else.
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Then Jd−
(

1
6 ,

1
2

)
= 0, Jd+

(
1
6 ,

1
2

)
= 1

6 = Jd
(

1
6 ,

1
2

) �= 1
2

(
Jd−

(
1
6 ,

1
2

)
+ Jd+

(
1
6 ,

1
2

))
= 1

12 ,
though both copulas Jd and 1

2 (Jd−+ Jd+) have the same diagonal section. It can be
shown, that the only elements of Dn which do not admit a non-trivial convex sum
decomposition are the ordinal sums of type (〈ak,bk,d−〉|k ∈K ). We denote their
class by En.

Proposition 5. For a fixed n ∈ {2,3, ...}, let d ∈ Dn \En, i.e., d = λd1 +(1−λ )d2

for some d1,d2 ∈ Dn, d1 �= d2, λ ∈ ]0,1[ . Then Jλ ,d1,d2
= λJd1 +(1−λ )Jd2 is a

copula from Cn with diagonal section d.

Note that for each d ∈Dn \En we can introduce a parametric class of copulas having
d as its diagonal section. Indeed, it is enough to consider the class

(
Jλ ,d1,d2

)
λ∈[0,1],

using the same notations as in the last proposition.

Remark 2. For n = 2, any construction of a binary copula from an a priori given
diagonal section d ∈ D2 can be “dualized”, using the notion of a survival diagonal
section.

Indeed, for any copula C ∈ C2 with a diagonal section d ∈ D2, the corresponding
survival copula Ĉ has a diagonal section d̂ ∈D2 given by d̂ (x) = 2x−1+d (1− x).
Then the “dualized” construction is given as follows:

1. consider d ∈D2

2. for d̂, construct a copula D with diagonal section d̂
3. the survival copula D̂ has d as its diagonal section.

This approach cannot be applied when n > 2, as the the diagonal section d ∈Dn of a
copula C ∈ Cn is not determining the diagonal section of the survival copula Ĉ ∈ Cn

(knowledge of values of C on some subdomains of [0,1]n is necessary). However
considering the construction (4), for d ∈ Dn we can define d̂ ∈ Dn as the diagonal

section of the survival copula Ĵd . Observe that, for n > 2, the equality
(̂
d̂
)
= d holds

only if d = d+.

4 Examples

Example 1. Consider the weakest diagonal section d− ∈ D3. Then Jd− and Kd− are
described in Table 1.

Evidently, Jd− ≤ Kd− . Jd− is singular copula from C3. Its support consists of 3 seg-
ments connecting the point

(
2
3 ,

2
3 ,

2
3

)
with vertices (1,0,0), (0,1,0) and (0,0,1)

and the mass 1 is uniformly distributed over the support of Jd− . On the other
hand, the proper quasi-copula Kd− has a negative mass − 1

3 on each of rectangle[
0, 1

3

]× [
2
3 ,1

]× [
2
3 ,1

]
,
[

2
3 ,1

]× [
0, 1

3

]× [
2
3 ,1

]
and

[
2
3 ,1

]× [
2
3 ,1

]× [
0, 1

3

]
.

Example 2. For the product copula Π ∈ Cn,n ≥ 2, the corresponding diagonal sec-
tion d ∈ Dn is given by dΠ (x) = xn. For 0 ≤ x1 ≤ x2 ≤ ... ≤ xn ≤ 1, it holds
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Table 1 Formulae for copula Jd− and quasi-copula Kd− , n = 3

domain Jd− Kd−[
0, 2

3

]3
0 0[ 2

3 ,1
]3

x1 +x2 +x3−2 x1 +x2 +x3−2[
0, 2

3

]× [
0, 2

3

]× [ 2
3 ,1

]
min

( x1
2 ,

x2
2 ,x3− 2

3

)
min

(
x1,x2,x3− 2

3

)[
0, 2

3

]× [ 2
3 ,1

]× [
0, 2

3

]
min

( x1
2 ,x2− 2

3 ,
x3
2

)
min

(
x1,x2− 2

3 ,x3
)[ 2

3 ,1
]× [

0, 2
3

]× [
0, 2

3

]
min

(
x1− 2

3 ,
x2
2 ,

x3
2

)
min

(
x1− 2

3 ,x2,x3
)[

0, 2
3

]× [ 2
3 ,1

]× [ 2
3 ,1

]
min

( x1
2 ,

x2
2 − 2

3

)
+min

( x1
2 ,x3− 2

3

)
min

(
x1,x2 +x3− 4

3

)[ 2
3 ,1

]× [
0, 2

3

]× [ 2
3 ,1

]
min

( x2
2 ,x1− 2

3

)
+min

( x2
2 ,x3− 2

3

)
min

(
x2,x1 +x3− 4

3

)[ 2
3 ,1

]× [ 2
3 ,1

]× [
0, 2

3

]
min

( x3
2 ,x1− 2

3

)
+min

( x3
2 ,x2− 2

3

)
min

(
x3,x1 +x2− 4

3

)

JdΠ (x1, ...,xn) =
1
n

(
xn

1 +
n
∑

i=2
min

(
nx1−xn

1
n−1 ,xn

i

))
. Consider diagonal sections d1,d2 ∈

D3 given by

d1 (x) =

⎧⎨
⎩

0 i f x≤ 1
4 ,

x
2 − 1

8 i f 1
4 ≤ x≤ 3

4 ,
3x− 2 else.

and

d2 (x) =

⎧⎨
⎩

2x3 i f x≤ 1
4 ,

2x3− x
2 +

1
8 i f 1

4 ≤ x≤ 3
4 ,

2x3− 3x+ 2 else.

Then d1+d2
2 = dΠ and thus the copula 1

2

(
Jd1 + Jd2

)
has dΠ as its diagonal section.

Example 3. Define a mapping s : D3→D3 by s(d)= d̂, where for a diagonal section
d ∈D3, d̂ is the diagonal section of the survival copula Ĵd . Then s(d) = Ĵd (x,x,x) =

VJd

(
[1− x,1]3

)
= 1− 3(1− x)+ 3Jd (1− x,1− x,1− x)− Jd (1− x,1− x,1− x)=

3x−2+3 1−x+d(1−x)
2 −d (1− x)= 3x−1+d(1−x)

2 . Then s(d) = d if and only if d = d+,
i.e., d (x) = x,x ∈ [0,1] . For the next iterations we have:

s2 (d)(x) =
3x+ d (x)

4
,

s3 (d)(x) =
9x− 1+ d (1− x)

8
,

s4 (d) (x) =
15x+ d (x)

16
,

In general, for k = 1,2, ...,

s2k−1 (d)(x) =

(
1+ 22k−1

)
x− 1+ d (1− x)

22k−1 ,
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s2k (d)(x) =

(
2k− 1

)
x+ d (x)

2k ,

and for each d ∈D3 it holds lim
n→∞sn (d) = d+. Then for the corresponding copulas it

holds lim
n→∞Jsn(d) = M.

5 Concluding Remarks

We have opened the problem of constructing n-dimensional copulas with a pre-
described diagonal section, with the stress on higher dimensions, i.e., n ∈ {3,4, ...}.
Though there are some similarities with well developed case n = 2, several tech-
niques cannot be used for higher dimensions. Especially, there is no universal con-
struction leading to a smallest copula having a given diagonal section. Obviously,
this problem is related to the fact that, for n > 2, there is no smallest copula in Cn.
For the future investigation in this domain, we aim to focus on extension of particu-
lar methods known for the case n = 2, starting from a diagonal section d ∈Dn with
some specific properties, such as semilinear copulas [2] or biconic copulas [10] in
the 2-dimensional case.

Acknowledgements. The research summarized in this paper was supported by the Grants
VEGA 1/0143/11 and APVV–0073–10.
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R Package to Handle Archimax or Any
User-Defined Continuous Copula Construction:
acopula

Tomáš Bacigál

Abstract. We introduce acopula package (run under R) that aims at researchers as
well as practitioners in the field of modelling stochastic dependence. Description of
tools with examples are given, namely several probability related functions, estima-
tion and testing procedures, and two utility functions.

1 Introduction

Copula is a function that can combine any univariate cumulative distribution func-
tions to form a joint distribution function of a random vector. Copula itself is a joint
distribution function with uniform marginals. Since the turn of century when copu-
las began to attract attention of masses, several software tools arose. The first pub-
lic yet commercial to mention was EVANESCE library [7] included in FinMetrics
extension to S programming environment (predecessor of R), that provided a rich
battery of copula classes, though only bivariate. With emergence of R (free software
environment for statistical computing and graphics, [11]) there came open-source
packages like copula [8] (recently incorporating nacopula) and CDVine [4] with
successor VineCopula, that are still under vivid development. For further reading
about recent copula software see, e.g., [1].

Here we introduce an R package that extends current offerings on the one hand
by class of Archimax copulas [5] and on the other by several handy tools to test,
modify, manipulate and inference from them and arbitrary user-defined continuous
copulas, thus making copulas ready for application. That explains the initial letter
of the package name. In the next section particular functions are detailed with the
help of examples.

Tomáš Bacigál
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2 Manual to the Package

To the date of this paper submission the package is available in single text file1 that
can be sourced to R workspace via command line (console) by typing

> source(’acopula.r’)

assumed the working directory has been set. Notice here the initial character > in-
dicating the console awaits new command and as long as it is not finished, every
new line starts with +. Any other lines will signify console output. However the
user need not operate from console directly, instead there exist many front-ends (ed-
itors, integrated development environments) such as RStudio that simplify overall
programming and code manipulation.

Coming back to the topic, the package is expected to be published in R Compre-
hesive Archive Network2 (CRAN) during this year, so it can be installed

> install.package("acopula")

and loaded

> library(acopula)

with documentation at hand.

2.1 Definition Lists

Structure of the program is relatively simple, does NOT use object-oriented S4
classes and is comprehensible from the source code accompanied by explanation
notes, so that even inexperienced user can, e.g., track erroneous behaviour if any
occurs. Also it does not depend on any additional packages.

Every parametric class/family of copulas is defined within a list, either by
its generator (in case of Archimedean copulas), Pickand’s dependence function
(Extreme-Value copulas) or directly by cumulative distribution function (CDF)
with/or its density. Example of one such definition list follows3 for generator of
Gumbel-Hougaard family of Archimedean copulas

> genGumbel()
$parameters
[1] 4

$pcopula
function (t, pars) exp(-sum((-log(t))^pars[1])^(1/pars[1]))

$gen
function (t, pars) (-log(t))^pars[1]

$gen.der

1 Available at www.math.sk/wiki/bacigal
2 cran.r-project.org/
3 Output printing is simplified whenever contains irrelevant parts.

www.math.sk/wiki/bacigal
http://www.cran.r-project.org/
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function (t, pars) -pars[1]*(-log(t))^(pars[1]-1)/t

$gen.der2
function (t, pars) pars[1]*(-log(t))^(pars[1]-2)*(pars[1]-1-log(t))/t^2

$gen.inv
function (t, pars) exp(-t^(1/pars[1]))

$gen.inv.der
function (t, pars) -exp(-t^(1/pars[1]))*t^(1/pars[1]-1)/pars[1]

$gen.inv.der2
function (t, pars)
exp(-t^(1/pars[1]))*t^(1/pars[1]-2)*(pars[1]+t^(1/pars[1])-1)/pars[1]^2

$lower
[1] 1

$upper
[1] Inf

$id
[1] "Gumbel"

where, though some items may be fully optional (here \$pcopula and \$id),
they can contribute to better performance or transparency. The user is encouraged
to define new parametric families of Archimedean copula generator (likewise de-
pendence function or copula in general) according to his/her needs, bounded only
by this convention and allowed to add pcopula (stands for probability distribu-
tion function or CDF), dcopula (density) and rcopula (random sample generator)
items, however compatibility with desired dimension has to be kept in mind. Cur-
rently implemented generators can be listed.

> ls("package:acopula",pattern="gen")
[1] "genAMH" "genClayton" "generator" "genFrank" "genGumbel" "genJoe" "genLog"

Notice the generic function generator which links to specified definition lists.
Similarly, Pickand’s dependence functions are defined, namely Gumbel-

Hougaard, Tawn, Galambos, Hüsler-Reiss (last three form only bivariate EV), ex-
tremal dep. functions and generalized convex combination of arbitrary valid dep.
functions (see [10]). So are definition lists available for generic (i.e., not neces-
sarily Archimax) copula, e.g. normal, Farlie-Gumbel-Morgenstern, Plackett and
Gumbel-Hougaard parametric family. Their corresponding function names starts
with dep and cop, respectively.

As the class of Archimax copulas contains Archimedean and EV class as its
special cases, the setting depfu = dep1() and genrator = genLog() can dis-
tinguish them, respectively.

Because there are not many dependence function parametric families capable of
producing more-than-2-dimensional EV or even Archimax copula, the (generalized)
convex combination may come useful, e.g., in partition-based approach introduced
by [2]. Thus we get special parametric classdepGCC(ldepPartition3D(),dim=3)
with 3× 5 parameters leeding to 3-dimensional copula.
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Any definition list item can be replaced already during the function call as shown
in the next subsections. Thus one can set starting value of parameter(s) and their
range in estimation routine, for instance.

2.2 Probability Functions

First thing one would expect from a copula package is to obtain a value of desired
copula in some specific point. To show variability in typing commands, consider
again Gumbel-Hougaard copula with parameter equal to 3.5 in point (0.2,0.3). Then
the following commands give the same result.

> pCopula(data=c(0.2,0.3),generator=genGumbel(),gpars=3.5)
> pCopula(data=c(0.2,0.3),generator=genGumbel(parameters=3.5))
> pCopula(data=c(0.2,0.3),generator=generator("Gumbel"),gpars=3.5)
> pCopula(data=c(0.2,0.3),generator=generator("Gumbel",parameters=3.5))
> pCopula(data=c(0.2,0.3),copula=copGumbel(),pars=3.5)
> pCopula(data=c(0.2,0.3),copula=copGumbel(parameters=3.5))
> pCopula(data=c(0.2,0.3),generator=genLog(),depfun=depGumbel(),dpars=3.5)
> pCopula(data=c(0.2,0.3),generator=genLog(),depfun=depGumbel(parameters=3.5))
[1] 0.1723903

If we need probabilities that a random vector would not exceed several points, those
can be supplied to data in rows of matrix or data frame.

Conversely, given an incomplete point and a probability, the corresponding quan-
tile emerge.

> pCopula(c(0.1723903,0.3),gen=genGumbel(),gpar=3.5,quantile=1)
> pCopula(c(NA,0.3),gen=genGumbel(),gpar=3.5,quan=1,prob=0.1723903)
> qCopula(c(0.3),quan=1,prob=0.1723903,gen=genGumbel(),gpar=3.5)
[1] 0.1999985

Conditional probability P(X < x|Y = y) of a random vector (X ,Y ) has similar
syntax.

> cCopula(c(0.2,0.3),conditional.on=2,gen=genGumbel(),gpar=3.5)
[1] 0.2230437
> qCopula(c(0.3),quan=1,prob=0.2230437,cond=c(2),gen=genGumbel(),gpar=3.5)
[1] 0.200005

Sometimes the density of a copula is of interest, perhaps for visualisation purposes,
such as in the following example

x <- seq(0,1,length.out=30)
y <- seq(0,1,length.out=30)
z <- dCopula(expand.grid(x,y),generator=genGumbel(),gpars=3.5)
dim(z) <- c(30,30)
persp(x,y,z)
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x

y

z

where instead of persp from package graphics a more impressive output is given
by package rgl with function persp3D.

If definition lists do not contain explicit formulas for (constructing) density, the
partial derivatives are approximated linearly. This is mostly the case with 3- and
more-dimensional copulas.

Sampling from the copula is, unsurprisingly, also provided.

sample <- rCopula(n=1000,dim=2, generator=genGumbel(), gpars=3.5)
plot(sample)
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Sometimes no assumption about parametric family of copula is made, instead an
empirical distribution is of more interest. Then for a given data, say, the previous
random sample, one may ask for value of empirical copula in specific point(s) and
more easily in the points of its discontinuity.

> pCopulaEmpirical(c(0.2,0.3),base=sample)
[1] 0.14
> empcop <- pCopulaEmpirical(sample)
> scatterplot3d::scatterplot3d(cbind(sample,empcop),type="h",angle=70)
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2.3 Estimation

Currently, there are two universal methods for parameters estimation implemented
in the package (named technique): "ML", maximum (pseudo)likelihood method
employing copula density, and "LS", least squares method minimizing distance
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to empirical copula. Each ’technique’ supplies function to perform optimization
procedure over, thus finding those parameters that correspond to an optimum.
The ’procedures’ are three: "optim", "nlminb" and "grid". First two are system
native, based on well-documented smart optimization methods, the third one uses
brute force to get approximate global maximum/minimum and can be useful with
multi-parameter copulas, at least to provide starting values for the other two ’proce-
dures’. The next few examples sketch various options one has got for copula fitting.
> eCopula(sample,gen=genClayton(),dep=depGumbel(),
+ technique="ML",procedure="optim",method="L-BFGS-B")
generator parameters: 0.09357958

depfun parameters: 3.52958
ML function value: 82.63223
convergence code: 0

> eCopula(sample,gen=genClayton(),dep=depGumbel(),tech="ML",proc="nlminb")
generator parameters: 0.09183014

depfun parameters: 3.533706
ML function value: 82.63228
convergence code: 0

> eCopula(sample,gen=genClayton(),dep=depGumbel(), tech="ML",proc="grid",
+ glimits=list(c(0),c(5)),dlimits=list(c(1),c(10)),pgrid=10)
generator parameters: 0.5555556

depfun parameters: 3
ML function value: 80.63322
convergence code:

In addition, "optim" procedure has several methods to choose from:
"L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN", "Brent".

So far, no precision for copula parameters is provided.

2.4 Testing

Having set of observations, it is often of great interest to test whether the estimated
copula suffices to describe dependence structure in the data. For this purpose many
goodness-of-fit tests were proposed, yet the principle remains to use different crite-
rion than was employed with estimation of the copula parameters. Here we imple-
ment one of the ’blanket’ tests described in [6] that is based on Kendall’s transform.
In the example below normal copula is tested on the Gumbel copula sample data.

> gCopula(sample,cop=copNormal(),
+ etechnique="ML",eprocedure="optim",ncores=1,N=100)
Loading required package: mvtnorm

|===============================================================| 100%

Blanket GOF test based on Kendall’s transform

statistic q95 p.value
0.1195500 0.1658125 0.1800000
-----------------------------
data: sample
copula: normal
estimates:

pars fvalue
0.9155766 80.3420886
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Although the p-value does not lead to rejection of the copula adequacy, its low value
and small data length arouse suspicion. As for the other arguments, N sets number of
bootstrap cycles whereas their parallel execution can be enabled by setting number
of processor cores in ncores. Package mvtnorm has been loaded to assist with sim-
ulation from normal copula, and when missing, internal but slower routine would
be performed instead.

The traditional parametric bootstrap-based procedure to approximate p-value,
when theoretical probability distribution of the test statistic is unknown, is reliable
yet computationally very exhaustive, therefore recently a method based on multi-
plier central limit theorem and proposed by [9] becomes popular with large-sample
testing. Its implementation to testing goodness of parametric copula fit is sched-
uled for next package update. Nevertheless, the multiplier method takes part here
in another test comparing two empirical copulas, i.e. dependence structure of
two data sets, see [12]. In the following example, random sample of the above
Gumbel-Hougaard copula is tested for sharing common dependence structure with
sample simulated from Clayton copula, parameter of which corresponds to the same
Kendall’s rank correlation (τ = 0.714)

> sampleCl <- rCopula(n=100,dim=2,generator=genClayton(),gpars=5)
> gCopula(list(sample,sampleCl),ncores=1,N=100)

|==========================================================| 100%

Test of equality between 2 empirical copulas

statistic q95 p.value
0.09791672 0.52893392 0.66000000
-----------------------------
data: sample sampleCl
copula:
estimates:
NULL

Obviously, the test fails to distinguish copulas with differing tail dependence, at least
having small and moderate number of observations, however it is sensitive enough
to a difference in rank correlation.

The last procedure to mention checks the properties of a d-dimensional copula
(d ≥ 2), that is, being d-increasing as well as having 1 as neutral element and 0 as
annihilator. The purpose is to assist approval of new copula constructs when the-
oretical proof is too complicated. The procedure examines every combination of
discrete sets of copula parameters, in the very same fashion as within "grid" proce-
dure of eCopula, by computing a) first differences recursively over all dimensions
of an even grid of data points,i.e., C-volumes of subcopulas, b) values on the margin
where one argument equals zero and c) where all arguments but one equals unity.
Then whenever the result is a) negative, b) non-zero or c) other than the one partic-
ular argument, respectively, a record is made and first 5 are printed as shown below.
In the example we examine validity of an assumed Archimedean copula generated
by Gumbel-Hougaard generator family, only with a parameter being out of bounds.
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> isCopula(generator=genGumbel(lower=0),dim=3,glimits=list(0.5,2),
+ dagrid=10,pgrid=4,tolerance=1e-15)

Does the object appears to be a copula(?): FALSE

Showing 2 of 2 issues:

dim property value gpar
1 2 monot -0.1534827 0.5
2 3 monot -0.1402209 0.5

Three parameter values (0.5,1,1.5,2) were used, each supposed copula were eval-
uated in 103 grid nodes, and every violation of copula properties (the most extremal
value per dimension and exceeding tolerance) were reported. Thus it is seen, that
parameter value 0.5 does not result in copula because 3-monotonicity is not fulfilled
(negative difference already in the second-dimension run). Note that without redef-
inition of lower bound the parameter value 0.5 would be excluded from the set of
Gumbel-Hougaard copula parameters.

2.5 Utilities

For the acopula package to work many utility functions were created during devel-
opment that were neither available in the basic R libraries nor they were found in
contributed package under CRAN. Most of them are hidden within the procedures
described above, however the two following are accessible on demand. The first to
mention is a linear approximation of partial derivative of any-dimensional function
and of any order with specification of increment (theoretically fading to zero) and
area (to allow semi-differentiability)

> fun <- function(x,y,z) x^2*y*exp(z)
> nderive(fun,point=c(0.2,1.3,0),order=c(2,0,1),difference=1e-04,area=0)
[1] 2.600004

whereas the second utility function numerically approximates integration (by trape-
zoidal rule) such as demonstrated on example of joint standard normal density with
zero correlation parameter

> nintegrate(function(x,y) mvtnorm::dmvnorm(c(x,y)),
+ lower=c(-5.,-5.),upper=c(0.5,1),subdivisions=30)
[1] 0.5807843
> pnorm(0.5)*pnorm(1)
[1] 0.5817583

fine-tuned by number of subdivisions.

3 Conclusion

All the introduced and exemplified procedures are (a) extendible to arbitrary di-
mension, which is one of the significant contributions of the package. If explicit
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formulas are unavailable (through definition lists) then numerical approximation
does the job. Another significant benefit is brought by (b) conditional probability
and quantile function of the copula, as well as estimation methods based on least
squares and grid complementing the usual maximum-likelihood method. Together
with implementing (c) generalization of Archimedean and Extreme-Value by Archi-
max class with a (d) construction method of Pickand’s dependence function, (e) test
of equality between two empirical copulas, (f) numerical check of copula properties
useful in new parametric families development, and (g) parallelized goodness-of-fit
test based on Kendall’s transform, these all (and under one roof) make the pack-
age competitive among both proprietary and open-source software tools for copula
based analysis, to the date.

Yet because the routines are written solely in R language and rely on no
non-standard packages (optionally), some tasks may take longer to perform. Never-
theless the source code is easy to access, understand and modify if necessary.

Future improvement is seen mainly in providing additional methods for param-
eters estimation (based on various dependence measures) and GoF tests, as well as
connecting with other copula packages to simplify practical analysis.

Author appreciates any comments, bug reports or suggestions.
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How to Prove Sklar’s Theorem

Fabrizio Durante, Juan Fernández-Sánchez, and Carlo Sempi

Abstract. In this contribution we stress the importance of Sklar’s theorem and
present a proof of this result that is based on the compactness of the class of copulas
(proved via elementary arguments) and the use of mollifiers. More details about the
procedure can be read in a recent paper by the authors.

1 Introduction

The concept of copula was introduced by A. Sklar [20] in order to describe in a con-
venient way the class of distribution functions with given marginals. After Sklar’s
paper, copulas have been used in the study of the aggregation of information at dif-
ferent levels and under diverse aspects. Specifically, just to refer to a few examples,
the following directions have been pursued in the literature.

• Firstly, copulas are useful in order to aggregate (e.g., join) univariate marginals
distribution functions into multivariate models of distribution functions that have
more flexibility (tail dependency, asymmetry) than standard (e.g., Gaussian)
models (see, for instance, [10, 11, 12]).

• The copula structure of a random vector is a key ingredient in order to estimate
and make inference about the risk connected with the aggregation of different
random variables, especially, when they represent losses and/or assets of finan-
cial markets (see, for instance, [3, 7, 18]). In particular, upper and lower bounds
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for risk measures of random vectors can be derived by using Hoeffding-Fréchet
bounds for copulas or similar inequalities (see, for instance, [21]).

• Aggregation of different inputs into a single numerical output in order to handle
decisions, possibly in presence of general uncertainty models (see, for instance,
[8, 9]) has benefited from the use of copulas, which has allowed robust (i.e.,
Lipschitzian) aggregation procedures. Moreover, recent trends in non–additive
integrals have used copulas in order to aggregate preferences in a convenient
way [13, 14].

These new directions in copula theory underline the need for underpinning the basic
ideas about copulas and developing theoretical research about the foundations of the
concept and its implications in different areas of mathematics.

Here we aim at discussing the first issue about copula theory, namely the repre-
sentation of random vectors in terms of a copula and the univariate margins. Such
result goes under the name of “Sklar’s Theorem” since it was discovered by Abe
Sklar [20] in its seminal paper of 1959. In particular, we present here a new proof
of Sklar’s Theorem that underlines some non–standard perspectives on the problem
(for more details, see [6]).

2 Sklar’s Theorem

Before proceeding we briefly recall the definition of a copula; a d–copula C is the
restriction to the unit hypercube [0,1]d of a distribution function (d.f., for short)

on R
d

that has uniform univariate margins on [0,1]d . Therefore (a) C(u) = 0
whenever at least one of the components of u = (u1, . . . ,ud) equals zero, (b)
C(1, . . . ,1, t,1, . . . ,1) = t, when all the components of u equal 1, with the possi-
ble exception of the j–th one and (c) the C volume VC of every d–box [a,b] :=
[a1,b1]×·· ·× [ad,bd ] contained in [0,1]d is non-negative, namely

VC([a,b]) :=∑
v

sign(v)C(v)≥ 0 ,

where the sum is taken over the 2d vertices v of the rectangle [a,b] and

sign(v) =

{
1 , if v j = a j for an even number of indices,

−1 , if v j = a j for an odd number of indices.

As a consequence of the definition of copula, one has that every d–copula C satisfies
the Lipschitz condition

|C(x)−C(y)| ≤ ‖x− y‖1 ,

where ‖ ·‖1 is the �1–norm on [0,1]d . For more details, see the monographs [11, 12,
16].

Nowadays, Sklar’s theorem represents the building block of the modern theory
of multivariate d.f.’s. It can be formulated as follows.
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Theorem 1 (Sklar’s Theorem). Let (X1, . . . ,Xd) be a random vector with joint d.f.
H and univariate marginals F1, . . . , Fd. Then there exists a copula C : [0,1]d → [0,1]
such that, for all x = (x1, . . . ,xd) ∈ R

d,

H(x1, . . . ,xd) =C (F1(x1), . . . ,Fd(xd)) .

C is uniquely determined on Range(F1)× ·· ·×Range(Fd) and, hence, it is unique
when F1, . . . ,Fd are continuous.

Because of its importance in applied probability and statistics, Sklar’s theorem has
received a great deal of attention and has been proved several times (and with differ-
ent techniques). It was announced, but not proved, by [20], who provided (together
with Schweizer) a complete proof in [19].

Other proofs of Sklar’s Theorem have been given in the literature. These are
based either on analytical arguments, trying to extend a so-called sub-copula to a
copula in some ways (see [2, 4]), or on probabilistic techniques, based on the mod-
ifications of the probability integral transform (see [5, 15, 17]).

Remark 1. It should be stressed that most of the proofs of Sklar’s Theorem have
slightly different settings. In the original proof by Schweizer and Sklar [19], the

authors considered d.f.’s defined on R
d
. In most of the probabilistic approaches to

Sklar’s Theorem [15, 17] (included the above described method), d.f.’s are defined
on R

d (with some suitable margins). Depending on which settings is involved, both
definitions have their pros and cons.

Actually, in the case of continuous d.f.’s, Sklar’s Theorem admits an easy proof,
since the following result holds.

Lemma 1. For every d–dimensional d.f. H with continuous marginals F1, . . . , Fd

there exists a unique d–copula C such that, for all x = (x1, . . . ,xd) ∈R
d,

H(x) =C (F1(x1), . . . ,Fd(xd)) . (1)

Such a C is determined, for all u ∈ ]0,1[d, via the formula

C(u) = H
(

F [−1]
1 (u1), . . . ,F

[−1]
d (ud)

)
,

where, for i∈{1, . . . ,d} F [−1]
i is the quasi–inverse of Fi defined by F [−1]

i (t) := inf{x :
Fi(x)≥ t}.
The hard part of Sklar’s Theorem consists in the extension to the case when at least
one of the marginals has a discrete component.

Here we aim at presenting a different proof of Sklar’s Theorem following [6].
This proof is based on the compactness of the class of copulas that is usually proved
by Ascoli–Arzelà Theorem, which we circumvent by the following result.

Theorem 2. The set of all copulas Cd is a compact subset in the class of all contin-
uous functions from [0,1]d to [0,1].
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Proof. Since [0,1]d is a metric space under the metric of the norm of uniform con-
vergence, it is enough to show that Cd is sequentially compact.

Let (Cn)n be a sequence of copulas in Cd and let (x j) = (x(1)j , . . . ,x(d)j ) be a dense

sequence of points in [0,1]2; for instance take the sequence(
i1
n
, . . . ,

id
n

)
(n ∈ N; i1, . . . , id = 0,1, . . . ,n) ,

and order it according to lexicographical order.
Consider the bounded sequence of real numbers (Cn(x1)); then there exists a con-

vergent subsequence C1,n(x1). For the same reason, the sequence (C1,n(x2)) con-
tains a convergent subsequence (C2,n(x2)). Notice that both sequences (C2,n(x1))
and (C2,n(x2)) converge. Proceeding in this way one constructs, for every k ≥ 1, a
subsequence (Ck,n) of (Ck−1,n) that converges at the points x j with j ≤ k. Consider
now the diagonal sequence (Ck,k)k∈N; this converges at every point of the sequence
(x j). Define the function C : (x j) j∈N→ [0,1] via

C(x j) := lim
k→+∞

Ck,k(x j) .

Since (Ck,k)k∈N satisfies the Lipschitz condition |Ck,k(xi)−Ck,k(x j)| ≤ ‖xi− x j‖1,
one has, on taking the limit as k goes to +∞,∣∣C(xi)−C(x j)

∣∣≤ ‖xi− x j‖1 ,

which proves that C is uniformly continuous on the sequence (xn); and since this
latter is dense in [0,1]d , the definition of C can be extended by continuity to the
whole of [0,1]d . It immediately follows from its very definition that C satisfies the
boundary conditions of a copula. Consider now the d–box [a,b], where the points a
and b belong to the sequence (xn). Then the C–Volume of [a,b] is given by

VC([a,b]) :=∑
v

sign(v)C(v)

= lim
k→+∞∑v

sign(v)Ck,k(v) = lim
k→+∞

VCk,k([a,b])≥ 0 .

Finally, consider a d–box [a,b] contained in [0,1]d and 2d subsequences (v(s)n ) of
(x j) (s = 1,2, . . . ,2d) that converge to the vertices v(s) of [a,b]. The continuity of C
yields

VC([a,b]) =
2d

∑
j=1

sign(v(s))C(v(s)) = lim
n→+∞

2d

∑
j=1

sign(v(s)n )C(v(s)n )≥ 0 ,

which proves that C is indeed a d–copula. �
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3 Proof of Sklar’s Theorem by Means of Mollifiers

Here we sketch the main arguments presented in [6].
Let Br(a) denote the open ball in R

d of centre a and radius r and consider the
function ϕ : Rd →R defined by

ϕ(x) := k exp

(
1

|x|2− 1

)
1B1(0)(x),

where the constant k is such that the L1 norm ‖ϕ‖1 of ϕ is equal to 1. Further, for
ε > 0, define ϕε : Rd → R by

ϕε(x) :=
1
εd ϕ

(x
ε

)
.

It is known (see, e.g., [1, Chapter 4]) that ϕε belongs to C∞(Rd), and that its support
is the closed ball Bε(0). Functions like ϕε are sometimes called mollifiers.

If a d–dimensional d.f. H is given, then the convolution

Hn(x) :=
∫
Rd

H(x− y)ϕ1/n(y)dy =
∫
Rd

ϕ1/n(x− y)H(y)dy (2)

is well defined for every x ∈ R
d and finite; in fact, Hn is bounded below by 0 and

above by 1.
The following facts hold.

Lemma 2. For every d–dimensional d.f. H and for every n ∈ N, the function Hn

defined by (2) is a d–dimensional continuous d.f..

Lemma 3. If H is continuous at x ∈R
d, then limn→+∞Hn(x) = H(x).

We are now ready for the final step.

Proof of Sklar’s Theorem. We only sketch the main idea, the details being presented
in [6]. For any given d.f. H, construct, for every n∈N, the continuous d.f. Hn defined
by eq. (2); its marginals Fn,1, . . . , Fn,d are also continuous; therefore, Lemma 1
ensures that there exists a d–copula Cn such that

Hn(x) =Cn
(
Fn,1(x1), . . . ,Fn,d(xd)

)
.

Because of the compactness of Cd , there exists a subsequence (Cn(k))k∈N ⊂ (Cn)n∈N
that converges to a copula C. Now, the thesis follows by showing that such a C is
actually a possible copula of H. �
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Part III

Ordered Aggregation



OM3: Ordered Maxitive, Minitive, and Modular
Aggregation Operators: Axiomatic Analysis
under Arity-Dependence (I)

Anna Cena and Marek Gagolewski

Abstract. Recently, a very interesting relation between symmetric minitive, maxi-
tive, and modular aggregation operators has been shown. It turns out that the inter-
section between any pair of the mentioned classes is the same. This result introduces
what we here propose to call the OM3 operators. In the first part of our contribution
on the analysis of the OM3 operators we study some properties that may be useful
when aggregating input vectors of varying lengths. In Part II we will perform a thor-
ough simulation study of the impact of input vectors’ calibration on the aggregation
results.

1 Introduction

The process called aggregation of quantitative (numeric) data is of great importance
in many practical domains. e.g. in mathematical statistics, engineering, operational
research, and quality control. For instance, in scientometrics we are often interested
in assessing scholars via aggregation of the citations number of each of their articles,
or by using some other measures of their quality, see e.g. [11]. On the other hand,
in marketing we sometimes need to synthesize the sales of a product with multiple
model-ranges, i.e. to aggregate the number of versions (assessment of the product
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diversification) and the number of units sold for each model-range (assessment of
market penetration) [6, 10].

The two above-presented examples are similar: they both concern summarization
of quantitative data sets of nonuniform sizes. In classical approach to aggregation,
however, the number of input values is fixed, see [3, 16, 15, 14]. To take into ac-
count such domains of applications, we shall rather consider arity-dependent [9]
aggregation operators, cf. also [4, 3, 13, 19, 21].

In a recent article [7] some desirable properties of aggregation operators were
considered: maxitivity, minitivity [14], and modularity [20, 18]. This result intro-
duces a very appealing class of functions which we call here the OM3 operators.
The OM3 operators include i.a. the well-known h-index [15], order statistics, and
OWMax/OWMin operators [5]. In this paper we explore these functions under
arity-dependence.

The paper is organized as follows. In Sec. 2 we introduce the OM3 operators and
recall their most fundamental properties. Then, in Sec. 3 we study some desirable
arity-dependent properties which are of interest in many practical situations, includ-
ing their insensitivity to addition of elements equal to 0 or F(x) to the input vector
x, and sensitivity to addition of elements strictly greater than F(x). Finally, Sec. 4
concludes the paper. Moreover, in the second part of our contribution we perform
a simulation study of the effect of inputs’ calibration on the ranking of vectors by
means of OM3 operators.

2 The OM3 Aggregation Operators

From now on let I= [0,b] denote a closed interval of the extended real line, possibly
with b =∞. The set of all vectors of arbitrary length with elements in I, i.e.

⋃∞
n=1 I

n,
is denoted by I

1,2,.... Moreover, let E (I) denote the set of all aggregation operators
(also called extended aggregation functions) in I

1,2,..., i.e. E (I) = {F : I1,2,...→ I}.
We see that the notion of an aggregation operator is very general: the only restric-

tion is that it is a function into I. Let us then focus our attention on operators that
are nondecreasing (in each variable) and, additionally, symmetric (i.e. which do not
depend on the order of elements’ presentation) [10, 9].

Definition 1. We say that F ∈ E (I) is symmetric, denoted F ∈P(sym), if

(∀n ∈ N) (∀x,y ∈ I
n) x∼= y =⇒ F(x) = F(y),

where x ∼= y if and only if there exists a permutation σ of [n] := {1,2, . . . ,n} such
that x = (yσ(1), . . . ,yσ(n))

Definition 2. We say that F ∈ E (I) is nondecreasing, denoted F ∈P(nd), if

(∀n ∈ N) (∀x,y ∈ I
n) x≤ y =⇒ F(x)≤ F(y),

where x≤ y if and only if (∀i ∈ [n]) xi ≤ yi.
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We see that for each F ∈P(nd) it holds 0≤ F(n∗0)≤ F(x)≤ F(n∗b)≤ b for all
x ∈ I

n, where (n ∗ y), y ∈ I, denotes a vector (y,y, . . . ,y) ∈ I
n.

Let us recall the notion of symmetrized maxitivity, minitivity, and modularity used

in [7], cf. also [14, 20, 18]. For x,y ∈ I
n let x

S∨ y = (x(1)∨ y(1), . . . ,x(n)∨ y(n)) and

x
S∧ y = (x(1)∧y(1), . . . ,x(n)∧y(n)), where x(i) denotes the ith order statistic of x∈ I

n,
i.e. the i-th smallest value in x.

Definition 3. Let F ∈ E (I). Then we call F a symmetric maxitive aggregation oper-

ator (denoted F ∈P(smax)), whenever (∀n) (∀x,y ∈ I
n) F(x

S∨ y) = F(x)∨F(y).
Definition 4. Let F ∈ E (I). Then F is symmetric minitive (denoted F ∈P(smin)), if

(∀n) (∀x,y ∈ I
n) F(x

S∧ y) = F(x)∧F(y).
Definition 5. Let F ∈ E (I). Then F is symmetric modular (denoted F ∈P(smod))

whenever (∀n) (∀x,y ∈ I
n) F(x

S∨ y)+F(x
S∧ y) = F(x)+F(y).

It may be easily shown that P(smax),P(smin),P(smod) ⊆P(sym)∩P(nd). Moreover,

each symmetric modular aggregation operator is also symmetric additive (i.e. F(x
S
+

y) = F(x)+F(y), where x
S
+ y = (x(1) + y(1), . . . ,x(n) + y(n))), cf. [10, 14].

Let us introduce the following class of aggregation operators.

Definition 6. Given w = (w1,w2, . . .), wi : I→ I, and a triangle of coefficients�=
(ci,n)i∈[n],n∈N, ci,n ∈ I, for any x ∈ I

n, let

M�,w(x) =
n∨

i=1

wn(x(n−i+1))∧ ci,n.

We see that the above contains i.a. all order statistics (whenever wn(x) = x, and
ci,n = 0, c j,n = b for i < k, j ≥ k, and some k), OWMax operators (for wn(x) = x),
and the famous Hirsch h-index (wn(x) = �x�, ci,n = i).

It turns out that in case of nondecreasingness, with no loss in generality, we may
assume that such aggregation operators are defined by w1,w2, . . . and� of a specific
form.

Lemma 1 (Reduction). M�,w ∈P(nd) if and only if there exist w′ = (w′1,w
′
2, . . . ),

w′i : I→ I, and a triangle of coefficients � = (c′i,n)i∈[n],n∈N satisfying the following
conditions:

(i) (∀n) w′n is nondecreasing,
(ii) (∀n) c′1,n ≤ c′2,n ≤ ·· · ≤ c′n,n,

(iii) (∀n) 0≤ w′n(0)≤ c′1,n,
(iv) (∀n) w′n(b) = c′n,n,
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such that M�,w =M�,w′ .

Proof. (=⇒) Let us fix n. Let x,y ∈ I be such that x ≤ y. By P(nd), M�,w(n ∗
x) =

∨n
i=1wn(x)∧ci,n = wn(x)∧∨n

i=1 ci,n ≤ wn(y)∧∨n
i=1 ci,n =M�,w(n∗ y), where∨n

i=1 ci,n is constant. Thus, we may set w′n(z) := wn(z)∧∨n
i=1 ci,n for all z ∈ I. Nec-

essarily, w′n is nondecreasing. Moreover, we may set c′i,n := ci,n∧wn(b) and hence
w′n(b) =

∨n
i=1 c′i,n. Please note that M�,w =M�,w′ , where �= (c′i,n)i∈[n].

Let dn :=M�,w′(n∗0) =
∨n

i=1w
′
n(0)∧c′i,n ≥ 0. Therefore, as M�,w′ ∈P(nd), for

all�x ∈ I
n it holds M�,w′(�x)≥ dn ≥ 0. As a consequence,

M�,w′(�x) =
n∨

i=1

w′n(x(n−i+1))∧ c′i,n =
( n∨

i=1

w′n(x(n−i+1))∧ c′i,n
)
∨dn =

=
n∨

i=1

(w′n(x(n−i+1)∨dn)∧ (c′i,n∨dn).

Therefore, we may set w′n(y) := w′n(y)∨ dn for all y ∈ I, c′i,n := c′i,n ∨ dn, still with
M�,w =M�,w′ , where � = (c′i,n)i∈[n]. Since c′i,n ≥ dn for all i, then M�,w′(n ∗ 0) =
w′n(0), hence, w′n(0)≤

∧n
i=1 c′i,n.

Fix any x ∈ I
n. We have:

M�′,w′(�x) = M�′,w′(x(n)∨ x(n−1)∨·· ·∨ x(2)∨ x(1),

x(n−1)∨·· ·∨ x(2)∨ x(1),

. . . ,

x(2)∨ x(1),

x(1)).

As w′n is nondecreasing, we get w′n(x(n)∨·· ·∨x(1)) =w′n(x(n))∨·· ·∨w′n(x(1)). This
implies

M�,w′(�x) =
n∨

i=1

[
(w′n(x(n−i+1)))∧ (

i∨
j=1

c′j,n)
]
.

Now we may set c′i,n :=
∨i

j=1 c′j,n, and still M�,w = M�,w′ . It is clear to see that
w′n(0)≤ c′1,n ≤ ·· · ≤ c′n,n = w′n(b).

(⇐=) Let us fix n. It suffices to show that if w′n and � = (c′i,n)i∈[n],n∈N fulfill
conditions (i)–(iv) then M�,w′ is nondecreasing. Let x,y ∈ I

n be such that x ≤ y.
It is clear to see that x(n−i+1) ≤ y(n−i+1) for all i. Since w′n is nondecreasing,
we have w′n(x(n−i+1))∧ c′i,n ≤ w′n(y(n−i+1))∧ c′i,n. Thus,

∨n
i=1w

′
n(x(n−i+1))∧ c′i,n ≤∨n

i=1w
′
n(y(n−i+1))∧ c′i,n, which completes the proof. �

Most importantly, we have the following result, see [7, Theorem 20].

Theorem 1. Let w and� be of the form given in Lemma 1. Then for all x ∈ I
1,2,...
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M�,w(x) =
n∨

i=1

wn(x(n−i+1))∧ ci,n

=
n∧

i=1

(wn(x(n−i+1))∨ ci−1,n)∧ cn,n

=
n

∑
i=1

((
wn(x(n−i+1))∨ ci−1,n

)∧ ci,n− ci−1,n
)
.

with convention c0,n = 0.

We see that M�,w are symmetric maxitive, minitive and modular. What is more, by
[7, Theorem 19], these are the only aggregation operators that belong to P(smax)∩
P(smin) = P(smax) ∩P(smod) = P(smin)∩P(smod) = P(smax) ∩P(smod)∩P(smin).
This is the reason why from now on we propose to call all M�,w the OM3 operators,
i.e. ordered maxitive, minitive, and modular aggregation operators.

3 Some Arity-Dependent Properties

Note that up to now our discussion concerned a fixed sample size n. Here we con-
sider some properties that take into account the behavior of the aggregation operator
when a new element is added to the input vector. This situation often occurs in prac-
tice: a “producer” whose quality has to be assessed “outputs” yet another “product”
and we have to reevaluate his/her rating.

3.1 Zero-Insensitivity

For each x ∈ I
n and y ∈ I

m, let (x,y) denote the concatenation of the two vectors,
i.e. (x1, . . . ,xn,y1, . . . ,ym) ∈ I

n+m. In some applications, it is desirable to guarantee
that if we add an element with rating 0, then the valuation of the vector does not
change. It is because 0 may denote a minimal quality measure needed for an item
to be taken into account in the aggregation process (note, however, a very differ-
ent approach e.g. in [3] where averaging is considered). Such a property is called
zero-insensitivity, see [9] and also [22]. More formally:

Definition 7. We call F ∈ E (I) a zero-insensitive aggregation operator, denoted F ∈
P(a0), if for each x ∈ I

1,2,... it holds F(x,0) = F(x).

In other words, if F is zero-insensitive, then 0 is its so-called extended neutral el-
ement, see [14, Def. 2.108]. What is more, 0 is an idempotent element of every
zero-insensitive function F such that F(0) = 0.

It is easily seen that P(a0) ∩P(nd) ⊆ P(am) ∩P(nd), where P(am) denotes
arity-monotonic aggregation operators, see [9], such that (∀x,y ∈ I

1,2,...) F(x) ≤
F(x,y).

Concerning OM3 aggregation operators, we have what follows.
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Theorem 2. Let w and � be of the form given in Lemma 1. Then M�,w ∈P(a0) if
and only if (∀n) (∀i ∈ [n]) ci,n = ci,n+1, and

(i) if x s.t. wn(x)< cn,n, then wn(x) = wn+1(x),
(ii) if x s.t. wn(x) = cn,n, then wn+1(x)≥ cn,n.

In other words, in such case M�,w ∈P(a0) if and only if there exists a nondecreasing
function w and a sequence (c1,c2, . . . ) such that (∀n) wn = w∧ cn and

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1,1

c1,2 c2,2

c1,3 c2,3 c3,3
...

...
...

. . .
� � � . . . . . .
c1 c2 c3 . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Proof. (=⇒) Take any M�,w ∈P(a0) from Lemma 1. Let n = 1. Then M�,w(x) =
w1(x)∧ c1,1 and M�,w(x,0) = (w2(x)∧ c1,2)∨ (w2(0)∧ c2,2) for any x ∈ I. Please
note that as M�,w is nondecreasing, we have w2(0) ≤ c1,2 ≤ c2,2 and w2 is nonde-
creasing. Thus, M�,w(x,0) = w2(x)∧ c1,2. As M�,w ∈P(a0), it holds M�,w(x) =
M�,w(x,0), hence w1(x)∧ c1,1 = w2(x)∧ c1,2. Let x1 = inf{x : w1(x)≥ c1,1}. We
shall consider two cases.

1. Let x≤ x−1 .

(a) If w1(x)< c1,2, we have w1(x) = w2(x).
(b) If w1(x) ≥ c1,2, then c1,1 > c1,2. Please note that w1(x1) ≥ c1,1. Thus,

M�,w(x1) = c1,1 = w2(x1)∧ c1,2 = M�,w(x1,0). Monotonicity of w2 and
case (a) implies w2(x1)≥ c1,2. Thus, c1,1 = c1,2, a contradiction.

Hence, for all x such that w1(x)< c1,1 we have w1(x) = w2(x).
2. Now let us consider x ≥ x+1 . Please note that, as w1 is nondecreasing and

w1(b) = c1,1, we have w1(x) = c1,1. Thus, c1,1 = w2(x) ∧ c1,2. From previ-
ous case and the fact that w2 is nondecreasing, we have w2(x) ≥ c1,2. Hence,
c1,2 = c1,1.

Let n = 2. By P(a0), we have M�,w(x,0) = M�,w(x,2 ∗ 0). Thus, w2(x)∧ c1,2 =
w3(x)∧ c1,3. By similar steps as the above-performed, we get c1,3 = c1,2 = c1,1 and
w3 = w2 = w1 for x < x1. For x = (x,x) we have M�,w(x,x) = M�,w(2 ∗ x,0)⇔
w2(x)∧ c2,2 = w3(x)∧ c2,3. Likewise, we get c2,2 = c2,3, w2(x) = w3(x) for x such
that w2(x)< c2,2, and w3(x)≥ c2,2 for x for which w2(x) = c2,2.

The above reasoning may easily be extended for all other n.

(⇐=) Please note that when conditions given in the right side of Theorem 2 hold,
we may set wn := w∧ cn,n and ci,n := ci for all n and some nondecreasing w and
ci. This notion generates w and � fulfill conditions given in Lemma 1 such that
M�,w ∈P(nd).
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We will now show that M�,w ∈P(a0). Assume contrary. There exists x ∈ I
1,2,...

such that M�,w(x) �= M�,w(x,0). As w is nondecreasing and w(0) ≤ c1, we have
M�,w(x,0) =

(∨n
i=1(w(x(n−i+1))∧ ci

)∨ (w(0)∧ cn+1) =
∨n

i=1w(x(n−i+1))∧ ci) =
M�,w(x), a contradiction, and the proof is complete. �

3.2 F-insensitivity

Zero-sensitivity may be strengthened as follows, cf. [9] and [23, Axiom A1].

Definition 8. F ∈ E (I) is F-insensitive, denoted F ∈P(F0), if

(∀x ∈ I
1,2,...) (∀y ∈ I) y≤ F(x) =⇒ F(x,y) = F(x).

Thus, we see that in this property we do not want to distinct a “producer” in any
special way if he/she outputs a “product” with valuation not greater than his/her
current overall rating.

Please note that P(F0)∩P(nd) ⊆P(a0)∩P(nd). Moreover, if F ∈P(a0)∩P(nd),
then F ∈ P(F0) iff (∀x ∈ I

1,2,...) F(x,F(x)) = F(x). Note also that the property
F(x,F(x)) = F(x), introduced in [24], is known as self-identity. A similar property,
called stability, was also considered in [1].

Theorem 3. Let w and � be of the form given in Lemma 1. Then M�,w ∈P(F0) if
and only if there exists:

(i) a nondecreasing function w, for which if there exists x such that w(x)> x, then
(∀y ∈ [x,w(x)]) w(y) = w(x),

(ii) a nondecreasing sequence (c1,c2, . . . ), such that (∀i) ci /∈ {x ∈ I : x < w(x)},
such that wn = w∧ cn and ci,n = ci.

Proof. (=⇒) Let cn be such that cn < wn(cn) and cn+1 > cn for some n. Take x =
(n∗cn), thenM�,w(x)=wn(cn)∧cn = cn. Since M�,w ∈P(F0), we haveM�,w(x)=
M�,w(x,cn) = wn(cn)∧ cn+1, a contradiction, because cn+1 > cn and wn(cn) > cn.
Thus, it is easily seen that for all i we have w(ci)≤ ci.

Let us now consider y ∈ I such that w(y) > y. There is no loss in gener-
ality in assuming that w(y) ∈ (cn−1,cn]. M�,w((n− 1) ∗ b,y) = (w(b)∧ cn−1)∨
(w(y)∧ cn) = cn−1∨w(y) = w(y). Moreover, M�,w((n− 1)∗ b,w(y),y) = (w(b)∧
cn−1)∨ (w(w(y))∧ cn)∨ (w(y) ∧ cn+1) = (w(w(y)) ∧ cn)∨w(y) = w(w(y))∧ cn.
Since M�,w ∈ P(F0), M�,w((n − 1) ∗ b,y) = M�,w((n − 1) ∗ b,w(y),y). Thus,
w(y) =w(w(y))∧cn . This implies that either w(y) = w(w(y)) or w(y) = cn. Hence,
w(y)≤ cn. We shall consider the w(y) = w(w(y)) case.

Let us take the largest interval L, y ∈ L, such that (∀x ∈ L) w(x)> x. Denote the
bounds of this interval by x1,x2, respectively.L may be either left-open or left-closed
depending on the kind of potential discontinuity ofw at x1, but this will not affect our
reasoning here. Surely, however, it is right-open (by definition of L and nondecreas-
ingness of w), we have w(x2) = x2. Take any y1 ∈ L. From the previous paragraph,
y1 < w(y1). Let y2 = w(y1). If y2 /∈ L, then w(y2)≤ y2 and from nondecreasingness
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of w we have that y2 = x2. On the other hand, let y2 ∈ L. By the definition of L, we
get y2 <w(y2) and, from the above- performed reasoning, as M�,w ∈P(F0)∩P(nd),
it follows w(y2) = w(w(y2)). Let y3 = w(y2). Then y2 < y3 = w(y3) and therefore
y3 = w(y2) /∈ L, a contradiction. Thus, y2 = x2 and (∀x ∈ L) w(x) = w(x2).

(⇐=) Assume otherwise. Thus, there exists x ∈ I
n−1 for some n such that y :=

M�,w(x) �=M�,w(x,y). Moreover, let x′ = (x,0) and x′′= (x,y). By P(a0), we have
M�,w(x) =M�,w(x′). From definition, there exists k such that y =w(x′(n−k+1))∧ck.
We shall now consider two cases.

1. If y> x′(n−k+1), then for some l < k we have M�,w(x′′) =M�,w(x′(n), . . . ,x
′
(n−l+2),

y,x′(n−l+1), . . . ,x
′
(n−k+1), . . . ,x

′
(2)) =

(∨l−1
i=1 wn(x′(n−i+1))∧ ci,n

)
∨ (w(y) ∧ cl,n) ∨(∨k

i=l+1wn(x′(n−i+2))∧ ci,n

)
∨
(∨n

i=k+1wn(x′(n−i+2))∧ ci,n

)
.

(a) Ifwn(x′(n−k+1))≤ ck,n, then y=wn(x′(n−k+1))> x′(n−k+1). Moreover,wn(y)=

wn(wn(x′(n−k+1)))=wn(x′(n−k+1)). This implies M�,w(x′′)=wn(x′(n−k+1))∨(∨k
i=l+1wn(x′(n−i+2))∧ ci,n

)
�= wn(x′(n−k+1)) = y. But wn(x′(n−i+2)) for i =

l + 1, . . . ,k is equal to wn(x′(n−k+1)), a contradiction.

(b) If wn(x′(n−k+1))> ck,n, then by (ii), y = ck,n �> x′(n−k+1).

2. Now assume that y≤ x′(n−k+1). Then for some l ≥ k we obviously have

M�,w(x′′) =M�,w(x′(n), . . . ,x
′
(n−k+1), . . . ,x

′
(n−l+2),y,x

′
(n−l+1), . . . ,x

′
(2))

= (wn(y)∧ cl,n)∨
(∨l−1

i=1 wn(x′(n−i+1))∧ ci,n

)
∨
(∨n

i=l+1wn(x′(n−i+2))∧ ci,n

)
=

(wn(x(n−k+1))∧ ck,n)∨ (wn(y)∧ cl,n)∨
(∨n

i=l+1wn(x′(n−i+2))∧ ci,n

)
.

(a) Ifwn(x′(n−k+1))≤ ck,n, then for all i> k we havewn(x′′(n−i+1))≤wn(x′(n−k+1))

= y≤ ck,n. Therefore, M�,w(x′′) = y, a contradiction.
(b) If wn(x′(n−k+1))> ck,n, then by (ii), we have wn(y)≤ ck,n. It implies that for

all i > l we have wn(x(n−i+2)) ≤ wn(y) ≤ ck,n. Thus, M�,w(x′′) = ck,n = y,
a contradiction.

Hence, M�,w(x) =M�,w(x,M�,w(x)) for any x, and the proof is complete. �

3.3 F+Sensitivity

Clearly, F-insensitivity does not guarantee that if a “producer” outputs an element
with valuation greater than F(x), then his/her overall valuation is raised. As such
situation may sometimes be desirable, let us then consider the property discussed in
[9] and [23, Axiom A2].

Definition 9. F ∈ E (I) is F+sensitive, denoted F ∈P(F+), if

(∀x ∈ I
1,2,...) (∀y ∈ I) y > F(x) =⇒ F(x,y)> F(x).
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Let us study when this property holds in case of OM3 operators. We will consider
it under P(a0), as otherwise the form of � and w gets very complicated and too
inconvenient to be used in practical applications.

Theorem 4. Let w and � be of the form given in Lemma 1. Then M�,w ∈P(a0)∩
P(F+) if and only if there exist:

(i) a function w such that w(x) ≥ x for all x, and strictly increasing for x : w(x)<
w(b),

(ii) a sequence (c1,c2, . . .) such that for ci < w(b) we have w(x) < ci for all x :
w(x)< w(b) and ci < ci+1

such that wn = w∧ cn and ci,n = ci.

Before proceeding to the proof, note that if w is continuous at xd = sup{x ∈ I :
w(x)< w(b)}, then c1 = w(b) and M�,w(x) = w(x(n)).

Proof. (=⇒) First we will show that w(x)≥ x for all x ∈ I. Assume otherwise. Take
any x, w(x) < w(b), such that w(x) < x, and the smallest ck > w(x). Therefore,
M�,w(k ∗ x) = w(x). Let us take ε > 0 such that w(x)≤ w(x)+ ε < x. This implies
M�,w(k∗x,w(x)+ε) = (w(x)∧ck)∨ (w(w(x)+ε)∧ck+1) = w(x), a contradiction,
since w is nondecreasing and M�,w(x) ∈P(F+).

Take any x ∈ I such that w(x)<w(b) and the smallest ck >w(x). Then M�,w(k∗
x) = w(x). Let ε > 0. Then w(x)+ ε > x and M�,w(w(x)+ ε,k ∗ x) = (w(w(x)+
ε)∧c1)∨(w(x)∧ck+1) = (w(w(x)+ε)∧c1)∨w(x)>w(x). This implies w(w(x)+
ε)> w(x). Thus, w must be strictly increasing. Moreover, w(x)< c1. We shall now
consider two cases.

If w is continuous at xd , then it is easily seen that c1 = w(b) and M�,w ∈P(F+)

for all x since w is nondecreasing and w(x)≥ x.
If w is discontinuous at xd , then for x ∈ I such that w(x) > c1 we have w(x) =

w(b). Therefore, M�,w(x) = w(x)∨ c1 = c1. Let us take ε > 0. If c1 + ε < x, then
M�,w(c1 + ε,x) = (w(c1 + ε)∨ c1)∧ (w(x)∧ c2) > c1. This implies c2 > c1. Oth-
erwise M�,w(x,c1 + ε) = (w(x)∨ c1)∧ (w(c1 + ε)∧ c2) and from P(F+) we get
c2 > c1. We continue in this fashion by considering vectors (i ∗ x) and we obtain
ci < ci+1 for all i.

(⇐=) As noted above, if w is continuous at xd , then M�,w(x) = w(x(n)). Thus,
M�,w ∈P(F+) for all x since w is strictly increasing and w(x)≥ x.

Let us now consider discontinuity at xd . Assume that P(F+) does not hold. Take
x ∈ I

n−1 such that M�,w(x) < w(b) and M�,w(x′) = M�,w(x′′), where x′ = (x,0)
and x′′ = (x,M�,w(x′)+ ε) for some ε > 0. Please note that as M�,w ∈P(a0), we
have M�,w(x) =M�,w(x′). If w(x′(n))< c1, then M�,w(x′) =w(x′(n))< c1. Thus for

ε > 0 we have w(x′(n))+ ε > x′(n) and either M�,w(x′′) = w(w(x′(n))+ ε) > w(x′(n))
if w(w(x′(n)) + ε) < c1 or M�,w(x′′) ≥ c1 > w(x′(n)) if w(w(x′(n)) + ε) ≥ c1. In
both cases we have a contradiction. Therefore, if (F+) does not hold, we surely
have w(x′(n)) ≥ c1. This implies w(x′(n)) = w(b) and since M�,w(x′) < w(b) and

M�,w(x′)> c1, it must holds M�,w(x′) = ck for some k. Therefore,w(x′(n−k+1))≥ c1



102 A. Cena and M. Gagolewski

and w(x′(n−k)) < c1. Take ε > 0. As w(ck + ε) ≥ ck + ε > ck > c1, we have

w(ck + ε) = w(b). Hence, M�,w(x′′) =
∨k+1

i=1 (w(x
′
(n−k+1))∧ ci) = ck+1 > ck, a con-

tradiction. Thus, M�,w ∈P(F+), QED. �

4 Conclusions

In this paper we have considered a very interesting class of symmetric maxitive,
minitive and modular aggregation operators, that is the OM3 operators. Our inves-
tigation was focused here on some properties useful when it comes to aggregation
of vectors of different lengths. We have developed conditions required for the OM3
operators to be zero-insensitive, F-insensitive, and F+sensitive.

It is worth mentioning that in many applications it is more natural to consider
OM3 operators that are continuous. A sufficient condition for that is the continuity
of w. In such case, the theorems presented in this paper have much simpler form.
An OM3 operator is F-insensitive if and only if w(x)≤ x for all x ∈ I. On the other
hand, we get F+sensitivity together with zero-insensitivity if and only if w(x) ≥ x
for all x ∈ I and c1 = w(b). From this we easily get, quite surprisingly, that the only
continuous OM3 operator that fulfills all the properties discussed here is the Max
operator.

Please note that the famous Hirsch index H(x) = max{i = 1, . . . , |x| : x(n−i+1) ≥
i} = ∨n

i=1�x(n−i+1)�∧ i, which is the most widely used tool in scientometrics, is an
OM3 operator (w(x) = �x�, ci = i) fulfilling P(F0) (and P(a0)).

Moreover, it is easily seen that an OM3 operator in P(a0) is asymptotically idem-
potent [14], iff w(x) = x and ci → b as i→ ∞. Additionally, each such operator is
effort-dominating [7].

In the second part of our contribution we are going to perform a simulation study
to asses behavior of OM3 operators for samples following different distributions. It
will turn out that in order to study the effects of input vectors’ ranking by means of
OM3 operators, it suffices to consider a fixed triangle of coefficients. This makes the
construction of OM3 operators quite easy in practical applications. However, what
is still left for further research, is the method of automated construction of these
operators.
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OM3: Ordered Maxitive, Minitive, and Modular
Aggregation Operators. A Simulation Study (II)

Anna Cena and Marek Gagolewski

Abstract. This article is a second part of the contribution on the analysis of the
recently-proposed class of symmetric maxitive, minitive and modular aggregation
operators. Recent results (Gagolewski, Mesiar, 2012) indicated some unstable be-
havior of the generalized h-index, which is a particular instance of OM3, in case of
input data transformation. The study was performed on a small, carefully selected
real-world data set. Here we conduct some experiments to examine this phenomena
more extensively.

1 Introduction

In the first part of our contribution on OM3 aggregation operators, see [4], we car-
ried out their axiomatic analysis under arity-dependence. Our motivation was that
in many applications the “classical” assumption about fixed length of input vectors
being aggregated, cf. [3, 14], is too restrictive. For example, in the Producer As-
sessment Problem (PAP), cf. [10], we wish to evaluate a set of producers according
to their productivity and – simultaneously – the quality of the items they create.
In Table 1 we list some typical instances of such situation, see also e.g. [6, 11]. It
is easily seen that the number of artifacts varies from producer to producer. Thus,
our main aim was to determine conditions required for the OM3 operators to poses
some desirable properties such as zero- and F-insensitivity, or F+sensitivity.

The mentioned class of aggregation operators was of our interest, because these
are the only functions which are symmetric modular, minitive, and – at the same
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Table 1 Typical instances of the Producer Assessment Problem (PAP)

Producer Products Rating method

Scientist Scientific articles Number of citations
Scientific institute Scientists The h-index
Web server Web pages Number of targeting web-links
R package author R packages Number of dependencies
Artist Paintings Auction price

time – maxitive, see [7]. To recall, given a closed interval of the extended real line
I= [0,b] (possibly with b =∞), the OM3 operators are defined as follows. Note that
we assume that the reader is familiar with notation convention introduced in [4].

Definition 1. A sequence of nondecreasing functions w = (w1,w2, . . . ), wi : I→
I, and a triangle of coefficients � = (ci,n)i∈[n],n∈N, ci,n ∈ I such that (∀n) c1,n ≤
c2,n ≤ ·· · ≤ cn,n, 0 ≤ wn(0) ≤ c1,n, and wn(b) = cn,n, generates a nondecreasing
OM3 operator M�,w ∈P(nd) such that for x ∈ I

n we have:

M�,w(x) =
n∨

i=1

wn(x(n−i+1))∧ ci,n =
n∧

i=1

(wn(x(n−i+1))∨ ci−1,n)∧ cn,n

=
n

∑
i=1

((
wn(x(n−i+1))∨ ci−1,n

)∧ ci,n− ci−1,n
)
.

Please note that this class includes i.a. the well-known h-index [15], all order statis-
tics, and OWMax/OWMin operators [5].

In the second part of our contribution we perform a simulation study of OM3 oper-
ators. Recently, it was noted in [11] that the generalized h-index (which is also an
OM3 operator) exhibits a very unstable behavior upon some simple input elements’
tranformations. The study was performed on a small-sized, but carefully selected
bibliometric data set. We therefore pose a question: does this undesirable behavior
is also observed in a large-scale study?

The paper is organized as follows. In Sec. 2 we present some theoretical results
connecting the issue of ranking of vectors using OM3 operators. The simulation
results, concerning both fixed- and variable-length scenarios, are discussed in Sec. 3.
Finally, Sec. 4 concludes the paper.

2 Theoretical Results

We are going to analyze the correlation/association between rankings naturally cre-
ated by aggregation with OM3 operators to assess their “global” change caused by
vector “calibration”. This is because precise values of OM3 operators applied to
variously transformed input vectors are rather meaningless. Such approach is often
encountered in many domains in which aggregation operators are applied. For ex-
ample, in scientometrics, we sometimes wish to order a set of authors according to
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the value of some citation-based quality measure, just to indicate a potential group
of prominent scientists.

Keeping this in mind, let us present some theoretical results that may be useful
when it comes to comparing OM3 operators’ values. From now on we assume that
I= [0,∞].

First of all, it turns out that – as far as the ranking problem is concerned – we
may assume with no loss in generality that� is of the following, very simple form.

Proposition 1. Let M�,w ∈P(nd) ∩P(a0) (see [4]) such that M�,w(x1, . . . ,xn) =∨n
i=1w(x(n−i+1))∧ ci, where w is strictly increasing and c1 < c2 < .. . . Then there

exist increasing functions f,w′ : I→ I for which for all x∈ I
1,2,... it holds M�,w(x) =

f
(
M�,w′(x)

)
= f

(∨n
i=1

(
w′(x(n−i+1))∧ i

))
.

Proof. Let f be a piecewise linear continuous function such that for i = 1,2, . . . we
have f(i) = ci. It is obvious that f is a strictly increasing function, since the se-
quence (ci)i∈N is strictly increasing, and onto I. Hence, there exists its (also strictly
increasing) inverse, f−1, for which we have f−1(ci) = i. Thus, f−1

(
M�,w(x)

)
=∨n

i=1

(
f−1(w(x(n−i+1)))∧ f−1(ci)

)
=
∨n

i=1

(
(f−1 ◦w)(x(n−i+1))∧ i

)
for any x∈ I

1,2,....
We may therefore set w′ = f−1 ◦w, which completes the proof. �
Moreover, please note that for Mcw(x) =

∨n
i=1 cw(x(n−i+1))∧ i, where w : I→ I is

increasing, w(∞)< ∞, we may easily show that the following results hold.

Remark 1. For any x ∈ I
n, x(n) < ∞, we have limc→0+ Mcw(x)∼MAX(w(x)).

Remark 2. For any x ∈ I
n, x(1) > 0, it holds limc→∞Mcw(x) = n.

Therefore, we see that, intuitively, the rankings generated by some zero-insensitive
OM3 operators “fall somewhere between” those generated by two very simple func-
tions, one concerning only the producer’s ability to output artifacts of high quality,
and the other reflecting solely his/her productivity.

3 Simulation Study

We conducted simulation studies to assess the impact of input vector calibration
on the output values of OM3 operators. We considered the following classes of
functions:

• Mc(x) =
∨n

i=1 cx(n−i+1)∧ i,
• Mc log(x) =

∨n
i=1 c log(1+ x(n−i+1))∧ i,

• Mlogc(x) =
∨n

i=1 log(1+ cx(n−i+1))∧ i,

where c ∈ R+ is a scaling parameter. Note that the scaling operation is often per-
formed on real-world data. For example, in scientometrics one may be interested in
“normalizing” citations so that they reflect various characteristics of different fields
(e.g. a citation in mathematics may be “worth” more than in biology), cf. [1]. The
use of the logarithm is motivated by the fact that in most instances of the Producers
Assessment Problem we encounter heavily-tailed and skewed data distributions.

Additionally, we considered four reference aggregation operators:
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• MAX(x) = x(n),
• generalized h-index given by HIRSCH(x) =

∨n
i=1 x(n−i+1)∧ i, cf. [9],

• MED(x) (sample median),
• Σ log(x) = ∑n

i=1(log(1+ x(n−i+1))).

Note that the first and the second function belongs to OM3. Moreover, as it was men-
tioned in [4], MAX is the only OM3 operator satisfying properties P(F+) and P(F0)
(and P(a0)). HIRSCH, on the other hand, fulfills P(F0) (which implies P(a0)). For
c ∈ R+ such that c ≤ 1, Mc fulfills P(F0), but when c > 1, then it belongs only to
P(a0). Operators Mc log and Mlogc satisfy P(a0).

Spearman’s Rank Correlation Coefficient. The effect of input vector calibration
was evaluated by measuring the correlation between rankings created by OM3 val-
ues calculated for different scaling parameters. To assess the strength of correlation,
we used Spearman’s correlation coefficient, which is a rank-based measure of as-
sociation between two vectors. Technically, it is defined as the Pearson correlation
coefficient between the ranks of elements. However, unlike Pearson’s r, which gives
good results only when there is linear dependency, Spearman’s ρ gives sensible
results when y is a monotonic transformation of x. What is more, since it is a non-
parametric measure, it releases us from assumptions about variables’ distribution.
In this paragraph we recall the definition of Spearman’s ρ and its basic properties.

Definition 2. Let ((x1,y1), . . . ,(xn,yn)) be a two-dimensional sample and let Ri =
r(xi) and Si = r(yi) denote the ranks of xi and yi, respectively, i.e. xi = x(Ri) and
yi = y(Si). Then Spearman’s rank correlation coefficient is given by

ρ(x,y) =
∑n

i=1(Ri− n+1
2 )(Si− n+1

2 )√
∑n

i=1(Ri− n+1
2 )2∑n

i=1(Si− n+1
2 )2

.

Spearman’s ρ takes its values in [−1,1] and represents the degree of correlation
between x and y. In particular, the closer Spearman’s ρ is either to 1 or −1, the
stronger the correlation between x and y is. The sign of the Spearman correlation
indicates the direction of association between x and y. Moreover, in the context of
probability, when variables are independent, the distribution of ρ not only does not
depend on the joint probability distribution of (x,y), but also it holds Eρ(x,y) = 0.

Experimental Data. Input vectors were generated from type II Pareto (Lomax)
distribution family, P2(k,s) (where s > 0 and k > 0), given by density function

f (x) = ksk

(s+x)k+1 , for x ∈ I= [0,∞]. This class of heavy-tailed, right-skewed distribu-

tions is often used in e.g. scientometrical modeling (where sometimes k ∈ [1,2] and
s = 1 is assumed), see e.g. [2, 12, 13]. In this setting, a Pareto distribution describes
a producer’s ability to produce artifacts of various quality measures. Therefore, our
knowledge of the producer’s skills are given solely by k and s here.

For the sake of simplicity, we assumed that s= 1. The shape parameter k was ran-
domly generated for every vector from the uniform distribution on interval (1,2),
i.e. k ∼ U(1,2), or the P2(1,1) distribution shifted by one, i.e. k ∼ P2(1,1)+ 1.
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These model a population of producers of different abilities. Additionally, we con-
sidered the cases of producers of equal skills, with k equal to 1, 1.5, or 2. The
calibration parameters c were taken from [0.001,10000].

We considered three simulation scenarios. In the first one, input vectors’ length
n was the same for all vectors. In the second one, we will examine the correlation
for vectors of equal lengths and their expanded versions (cf. the arity-monotonicity
property from [4]). In the last scenario, for each vector we generated their lengths
randomly. In each step, MC = 100000 Monte Carlo samples were generated. The
computations were performed with the agop package [8] for R.

3.1 Vectors of Fixed Lengths

First we analyzed fixed input vectors’ lengths which were set to n = 25,100,250,
and 1000 elements. Please note that this may be interpreted as an evaluation of
producers of the same productivity.

Let us examine the sensitivity of OM3-generated rankings to vectors calibration.
We calculated Spearman’s rank correlation for (Mc(x1),Mc+δ (x1)), . . . ,(Mc(xMC),
Mc+δ (xMC)), and the same for the other operators. Two plots in Fig. 1 depict some
exemplary, but representative results concerning, respectively, the functions Mlogc

and Mc log for n = 25, k ∼U(1,2).
We note that for small δ , the value of ρ(Mc,Mc+δ ) if relatively high (≥ 0.9 for

n= 25). However, in most of the analyzed cases we observe a decrease in correlation
strength for c� 0.4, which may indicate some sort of ranking instability. Therefore,
as far as applications are concerned, the scaling parameters should be chosen with
care.
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(b) Mc log : n = 25, k ∼U(1,2)

Fig. 1 The effect of adding small values to the calibration parameter
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(b) Mlogc : n = 25, k ∼U(1,2)

Fig. 2 Spearman’s rank correlation coefficient between OM3 and the reference rankings

Let us now consider the correlation between Mc, Mlogc, and Mc log, and the refer-
ence rankings, i.e. those generated by MAX, MED, HIRSCH, and Σ log. Two exem-
plary cases are depicted in Fig. 2. Please note the log scale for c on the x axis.

Obviously, in each case for small c we get the same ranking as for the MAX func-
tion (see Remark 1). On the other hand, as c approaches ∞, the OM3 rankings are
uncorrelated with the reference ones (see Remark 2, e.g MAX and n are independent
random variables). Also note that M1 = HIRSH.

In all the analyzed cases we observed quite similar behavior of the four func-
tions. Interestingly, with each of the three OM3 classes we can obtain, with a good
accuracy, the reference, MAX-, HIRSCH-, MED-, and Σ log-based rankings. This
may indicate, of course as far as the Paretian model and fixed n is concerned, that
the OM3 aggregation operators may be sufficiently comprehensive in some appli-
cations. What is more, we observed that for k ∼ U(1,2) or k ∼ P2(1,1)+ 1 the
correlations are higher then for fixed k. Likewise, when vectors’ lengths increase,
the correlations also increase. Let us now investigate the influence of shape param-
eter’s and vectors’ lengths n selection deeper.

How Does k Affect the Rankings? As we can see in Fig. 3, the correlation be-
tween OM3- and HIRSCH-based rankings is greater in a case of k ∼ U(1,2) and
k ∼ P2(1,1)+ 1, i.e. when k was generated randomly for each vector (producers
of diverse characteristics), than in case of fixed k (producers of uniform abilities).
What is more, the results obtained for k = 1, 1.5, and 2 are quite similar.

We see that in the HIRSCH case we observe that small change in the calibration
parameter in the neighborhood of 1 causes noticeable decrease of the degree of
correlation – cf. also [11].

How Does n Affect the Rankings? In Fig. 4 we depict the case of producers of
different productivity. For HIRSCH we observe that for randomly generated k, the
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(b) HIRSCH : n = 100

Fig. 3 Spearman’s rank correlation coefficient between OM3- and, respectively, MAX- and
HIRSCH-based rankings for different k generation methods.
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Fig. 4 Spearman’s ρ between OM3- and, respectively, MAX- and HIRSCH-based rankings
for different n.

bigger n is, the larger correlations we get. However, for fixed k the behavior is more
complicated. For small c we notice larger ρ for smaller n.

3.2 Vector Expansion

In the next scenario we represent the case in which we have a set of producers
with n0 = 25 artifacts. They are assessed with different OM3 operators. Then, to
each vector describing the producer, we add new elements. Of course, according
to the arity-monotonicity property, their valuation does not decrease (cf. [4]). The
number of added elements, Δn, was independently generated for each producer
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Fig. 5 Spearman’s rank correlation coefficient between OM3-ranked original vectors and
their expanded versions.

from the heavy-tailed �P2(1,1)+ 1� distribution and the shifted Poisson distribu-
tion Pois(5)+ 1 (VarΔn = 5). Moreover, Δn = 25 was also considered.

In Fig. 5 we presented a typical output. First of all, there is no substantial in-
fluence of the Δn distribution in the analyzed cases. Here, of course, as c → ∞,
ρ → 0 (n and Δn are independent). For small and moderate values of c the correla-
tion between original and extended vectors’ valuations are high, but yet not perfect.
Thus, the productivity of a producer indeed affects also his/her valuation with OM3
operators.

For Δn = 25 the correlation is lower, but much more insensitive to the value
of the calibration coefficient. Note that the default ranking method for tied (equal)
observations in R’s cor() function uses averaging, therefore for c → ∞ we get
ρ → 0.5 for fixed Δn.

3.3 Vectors of Random Lengths

In the last scenario let us examine a set of producers of random productivity. We
considered n∼ �P2(1,1)+ 1�, n∼ Pois(5)+ 1, and n∼ �U [1,500]�.

Fig. 6ab depicts the correlation between OM3 and reference-based rankings in
the first two cases. Note that the density functions of these distributions are decreas-
ing. Therefore, there is a relatively large probability of obtaining small values of n:
for n∼ �P2(1,1)+1�we have Medn = 1 and for n∼ Pois(5)+1 we get Medn = 6.

Fig. 6c depicts the n ∼ �U [1,500]� and the fixed k case. It may be shown that if
(X1, . . . ,Xn) i.i.d. P2(k,1) then Yn := ∑n

i=1 log(Xi + 1) ∼ Γ (n,1/k) and EYn = n/k.
This explains a high degree of correlation between Σ log and Mc for c→ ∞.

While describing the results instantiated in Fig. 2 (fixed n) we noted that OM3
class is quite flexible in terms of approximating the two reference aggregation
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Fig. 6 Spearman’s rank correlation coefficient between OM3 and references operators
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Fig. 7 Spearman’s ρ between OM3- operators and, respectively, MAX- and HIRSCH-based
rankings for different n generation methods.
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operators, not mentioned in Remark 1 and 2. From Fig. 6abc we may deduce that
for variable n such a nice property does not hold. Moreover, by comparing Fig. 6c
and Fig. 6d we may observe that the influence of varying n is significant.

Additionally, in Fig. 7 (cf. Fig. 4) we observe that the method for generating n if
of substantial influence.

4 Conclusions

The main aim of our simulation study was to assess the behavior of some OM3 oper-
ators under various transformations of the input data. We focused our investigation
on input vectors calibration, since we have shown that, as far as the ranking problem
is concerned, the form of the coefficients’ triangle may be fixed.

To evaluate the impact of data scaling we examined the correlations between
OM3-based rankings for different scaling parameters. Moreover, we paid special
attention to some popular operators such as the generalized h-index, sample max-
imum and sample median. In our study we considered input vectors of fixed and
random lengths. Moreover, we examined the correlation for vectors of equal lengths
and their expanded versions.

First of all, we noted that a choice of the scaling parameter has a significant im-
pact on OM3 operators. Hence, in practical applications we should be very careful
while selecting an appropriate aggregation method. The issue of automated gener-
ation of w definitely should be investigated much more deeply. Thus, we leave this
for our future research.

What is more, we observed high sensitivity of the operators to the formulation of
the model describing real-world phenomena being considered.

Acknowledgements. The contribution of Marek Gagolewski was partially supported by
FNP START Scholarship from the Foundation for Polish Science.
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Duplication in OWA-Generated Positional
Aggregation Rules

José Luis García-Lapresta and Miguel Martínez-Panero

Abstract. In this paper we deal with positional aggregation rules where the alterna-
tives are socially ordered according to their aggregated positions. These positional
values are generated by means of a predetermined aggregation function from the
positions in the corresponding individual orderings. Specifically, our interest is fo-
cused on OWA-generated positional aggregation rules and, as a first step in our
research, we characterize those ones satisfying duplication and propose an overall
social order induced by them.

1 Introduction

According to Gärdenfors [13], “positionalist voting functions are those social choice
functions where the positions of the alternatives in the agents’ preference orders cru-
cially influence the social ordering of the alternatives". This is a vague notion that
can be understood in different ways1. The most popular case of positional aggre-
gation rules are scoring rules2, where a score is associated with each position and
alternatives are socially ordered by the sum of scores obtained from the individual
orderings.

However, scoring rules are not exclusive to capture positionalist features of vot-
ing. In fact, our proposal based on aggregation functions (mainly through OWAs)
sheds light to some aspects not taken into account in the scoring approach. One of
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2 See Chebotarev and Shamis [7] for a referenced survey on scoring rules and their charac-

terizations.
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these interesting properties, not satisfied by the scoring rules, is the duplication prin-
ciple. This property, appearing naturally in several contexts, entails a sort of irrele-
vance of clone voters in the final result and might not seem suitable at all in voting
scenarios. But it will be shown that it is related to some concrete OWA operators
inducing positional voting rules and intended to be used under complete ignorance.

The paper is organized as follows. In Section 2 we introduce the basic notation
for the preferences of the agents over the alternatives and their related positions.
Section 3 is devoted to aggregation rules and aggregation functions; specifically, we
focus our attention on OWAs and show their connections with some well-known
voting systems appearing in the literature. The need of taking into account a vari-
able electorate leads us to use extended OWAs (EOWAs) and, with this background,
in Section 4 we define duplication and then we characterize those OWA-generated
positional aggregation rules satisfying this property. An illustrative example is also
presented and, finally, a proposal of an overall social order based on the character-
ized rules is obtained in a unifying way.

2 Preliminaries

Consider a set of agents V = {1, . . . ,m}, with m ∈�, who show their preferences
on a set of alternatives X = {x1, . . . ,xn}, with n≥ 2. With L(X) we denote the set of
linear orders on X , and with W (X) the set of weak orders (or complete preorders)
on X . Given R∈W (X), with  and ∼ we denote the asymmetric and the symmetric
parts of R, respectively. A profile is a vector R =(R1, . . . ,Rm) of weak orders, where
Rv contains the preferences of the agent v, with v = 1, . . . ,m. Vectors in �n are
denoted as a = (a1, . . . ,an). Given a,b ∈�n, with a≤ b we mean ai ≤ bi for every
i ∈ {1, . . . ,n}.
Definition 1. Given R ∈W (X), the position of alternative xi ∈ X is defined as

p(xi) = n− #
{

x j ∈ X | xi  x j
}− 1

2
#
{

x j ∈ X \ {xi} | x j ∼ xi
}
. (1)

It is equivalent to linearize the weak order and to assign each alternative the aver-
age of the positions of the alternatives within the same equivalence class (see, for
instance, Smith [23] for a similar procedure in the context of scoring rules).

Example 1. Consider R ∈W ({x1, . . . ,x7}) given by

R
x2 x3 x5

x1

x4 x7

x6
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Then,

p(x2) = p(x3) = p(x5) =
1+ 2+ 3

3
= 2 = 7− 4− 1

2
2,

p(x1) = 4 = 7− 3− 1
2

0,

p(x4) = p(x7) =
5+ 6

2
= 5.5 = 7− 1− 1

2
1,

p(x6) = 7 = 7− 0− 1
2

0.

Consequently, R is codified by the positions vector

(p(x1), p(x2), p(x3), p(x4), p(x5), p(x6), p(x7)) = (4, 2, 2, 5.5, 2, 7, 5.5).

Taking into account the positions of the alternatives, every profile R ∈W (X)m has
associated a position matrix containing the positions of the alternatives for all the
agents ⎛

⎜⎜⎝
p1(x1) p1(x2) · · · p1(xn)
p2(x1) p2(x2) · · · p2(xn)
· · · · · · · · · · · ·

pm(x1) pm(x2) · · · pm(xn)

⎞
⎟⎟⎠ ,

where pv(xi) is the position of xi for agent v. Thus, row v contains the positions
of the alternatives according to agent v, and column i contains the positions of the
alternative xi.

3 The Aggregation Process

Given a domain D ⊆W (X)m with m ∈ �, an aggregation rule on D is a mapping
F : D−→W (X) that satisfies the following conditions:

1. Anonymity: For every permutation π on {1, . . . ,m} and every profile R ∈ D, it
holds

F
(
Rπ(1), . . . ,Rπ(m)

)
= F (R1, . . . ,Rm) .

2. Neutrality: For every permutation σ on {1, . . . ,n} and every profile R ∈ D, it
holds

F (Rσ1 , . . . ,R
σ
m) = (F(R1, . . . ,Rm))

σ ,

where Rσv and (F(R1, . . . ,Rm))
σ are the orders obtained from Rv and

F(R1, . . . ,Rm), respectively, by relabeling the alternatives according to σ , i.e.,
xσ(i) Rσv xσ( j) ⇔ xi Rv x j and xσ(i) (F(R1, . . . ,Rm))

σ xσ( j) ⇔ xi F(R1, . . . ,Rm)x j.
3. Unanimity: For every profile R ∈ D and all xi,x j ∈ X , it holds

(∀v ∈V xi Rv x j) ⇒ xi F(R)x j.
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Anonymity means a symmetric consideration for the agents; neutrality means a
symmetric consideration for the alternatives; and unanimity means that if all the
individuals consider an alternative as good as another one, then the social prefer-
ence coincides with the individual preferences on this issue.

It is worth mentioning that the setting of aggregation rules, where the outcome
is a social order (as in Smith [23]), is not the unique framework in Social Choice
Theory. Other possibilities can be taken into account, such as social choice corre-
spondences, where the result is the (nonempty) subset of the best alternatives (as
in Young [29, 30]; see also Laslier [16] for further rank-based and pairwise-based
approaches), or even social choice functions, where a single alternative is assigned
to each profile3.

3.1 Aggregation Functions

In our proposal, we have extended the notion of aggregation function to the un-
bounded interval [1,∞). On aggregation functions in the standard unit interval, see
Calvo et al. [5], Beliakov et al. [4] and Grabisch et al. [14].

Definition 2. A : [1,∞)m −→ [1,∞) is an aggregation function if it satisfies the fol-
lowing conditions:

1. Boundary condition: A(1, . . . ,1) = 1.
2. Monotonicity: a≤ b ⇒ A(a)≤ A(b), for all a,b ∈ [1,∞)m.

If, additionally, A satisfies idempotency, i.e., A(a, . . . ,a) = a for every a ∈ [1,∞),
then A is called averaging aggregation function.

It is easy to see that averaging aggregation functions satisfy compensativeness:

min{a1, . . . ,am} ≤ A(a1, . . . ,am)≤max{a1, . . . ,am},

for every (a1, . . . ,am) ∈ [1,∞)m. Typical averaging aggregation functions are the
arithmetic mean, trimmed means, the median, the maximum, the minimum, etc.
In fact, we can gather all these aggregation functions as particular cases of OWA
operators4.

A weighting vector of dimension m is a vector w = (w1, . . . ,wm) ∈ [0,1]m such

that
m

∑
i=1

wi = 1.

Definition 3. Given a weighting vector w of dimension m, the OWA operator asso-
ciated with w is the mapping Aw : [1,∞)m −→ [1,∞) defined by

3 As pointed out by Courtin et al. [9], differences in the axiomatic treatment arise depending
on the type of social mechanism considered.

4 The initials in OWA stand for ordered weighted averaging, see Yager [25], Yager and
Kacprzyk [27] and Yager et al. [28]. A characterization of the OWA operators has been
given by Fodor et al. [10].
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Aw(a1, . . . ,am) =
m

∑
i=1

wi ·a[i],

where a[i] is the i-th greatest number of {a1, . . . ,am}.
As noted before, some well-known aggregation functions are specific cases of OWA
operators.

With appropriate weighting vectors w = (w1, . . . ,wm) we obtain

1. The maximum, for w = (1,0, . . . ,0).
2. The minimum, for w = (0, . . . ,0,1).
3. The arithmetic mean, for w =

(
1
m , . . . ,

1
m

)
.

4. The k-trimmed means:

• If k = 1, w =
(
0, 1

m−2 , . . . ,
1

m−2 ,0
)
.

• If k = 2, w =
(
0,0, 1

m−4 , . . . ,
1

m−4 ,0,0
)
.

• . . . .

5. The median:

a. If m is odd, wi =

{
1, if i = m+1

2 ,

0, otherwise.

b. If m is even, wi =

{
1
2 , if i ∈ {m

2 ,
m
2 + 1},

0, otherwise.

6. The mid-range, for w = (0.5,0, . . . ,0,0.5).

3.2 Positional Aggregation Rules

Definition 4. Given an aggregation function A : [1,∞)m −→ [1,∞) and a profile R∈
W (X)m, the aggregated position of the alternative xi ∈ X is defined as

pA(xi) = A(p1(xi), . . . , pm(xi)),

where pv(xi) is the position of xi for agent v ∈V .

Definition 5. Given an aggregation function A : [1,∞)m −→ [1,∞), the positional
aggregation rule associated with A is the mapping FA : W (X)m −→W (X) defined
by FA(R) = �A , where

xi �A x j ⇔ pA(xi)≤ pA(x j).

For example, taking into account some of the OWA operators introduced above,
we obtain positional aggregation rules which are connected to (or even replicate)
well-known procedures appearing in the literature:



122 J.L. García-Lapresta and M. Martínez-Panero

• The arithmetic mean as aggregation operator induces the Borda rule. And it is
worth mentioning that the arithmetic mean is also the basis for the Range Vot-
ing method (Smith [24]), in a decisional context where the alternatives receive
numerical assessments one by one.

• The median instead of the arithmetic mean, and linguistic terms instead of numer-
ical values, are used in the Majority Judgment voting system supported by Balin-
ski and Laraki [2]. An extension of this procedure using centered OWA operators
(Yager [26]) appears in García-Lapresta and Martínez-Panero [12]. Again, in a
different scenario, Basset and Persky [3] already proposed to select the alterna-
tive with best median evaluation (see also Laslier [18]).

• The maximum leads to a voting system in which each alternative is evaluated ac-
cording to the worst reached position. Those with the best assigned value are then
elected. Such a maximin voting system, which advocates the maximin principle
of normative economics5, is characterized by Congar and Merlin [8] and the same
idea is also the key for the leximin voting system appearing in Laslier [17], al-
though in a different decisional framework (see also Laslier [18]). This is also the
case for the Simpson-Kramer method (see Levin and Nalebuff [19]) in a pair-wise
comparison context. Furthermore, the procedure obtained through the maximum
as aggregation operator is also related to the Coombs method (where the alterna-
tive with the largest number of last positions is sequentially withdrawn), as well
as to the antiplurality rule (see Baharad and Nitzan [1]).

• The minimum entails a voting system called maximax6 by Congar and Merlin
[8], also characterized by them. Its conception is similar to that of the Hare sys-
tem, also known as Alternative Vote (where the alternative with the fewest first
positions is sequentially withdrawn). It is also related to the most used (and crit-
icized) system: plurality rule (see Laslier [17]).

• The mid-range OWA operator is related to the basic best-worst voting system
(see García-Lapresta et al. [11]).

It is easy to check the following result.

Proposition 1. FA is an aggregation rule for every aggregation function A.

In order to take into account a variable electorate (for example, to deal with the
clonation or appearance of new agents), we introduce some extended notions of
those already defined throughout the paper.

Definition 6. An extended aggregation rule is a mapping

F̃ :
⋃

m∈�
W (X)m −→W (X)

such that Fm = F̃|W (X)m is an aggregation rule for each m ∈� and F1(R) = R.

5 Rawls [22, p. 328]: “the basic structure is perfectly just when the prospects of the least
fortunate are as great as they can be".

6 The apparent discordance leading the maximum to the maximin voting system, as well
as the minimum to the maximax, relies on our positional approach where, contrary to the
scoring context, the smallest value is associated with the best position.
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Definition 7. An extended OWA operator (EOWA) is a family of OWA operators
with associated weighting vectors wm = (wm

1 , . . . ,w
m
m), one for each dimension m =

1,2,3, . . .

Following Calvo and Mayor [6] and Mayor and Calvo [20] (see also Beliakov et al.
[4, pp. 54-56]), we can show graphically an EOWA operator as a weighting triangle

w1
1

w2
1 w2

2

w3
1 w3

2 w3
3

w4
1 w4

2 w4
3 w4

4

w5
1 w5

2 w5
3 w5

4 w5
5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For simplicity, from now on superindexes will be avoided when confusion is not
possible.

4 Duplication

Here we introduce a property which, broadly speaking, states that new voters repli-
cating the same preferences of already existing voters will not affect the outcome.
This (at first sight) non-compelling property appears as duplication in Congar and
Merlin [8], where they characterize the maximin procedure.

Definition 8. An extended aggregation rule F̃ satisfies duplication if

Fm+1(R,Ri) = Fm(R)

for every profile R = (R1, . . . ,Ri, . . . ,Rm) ∈W (X)m and every i ∈ {1, . . . ,m}.

4.1 A Characterization Result

It is interesting to find those procedures satisfying duplication, and the following
result shows the answer for aggregation rules associated with EOWAs.

Proposition 2. Given an EOWA operator A, the extended aggregation rule F̃A sat-
isfies duplication if and only if A is a rational convex combination of the maximum
and the minimum EOWA operators, i.e., w=α(1, . . . ,0)+(1−α)(0, . . . ,1) for some
α ∈ [0,1]∩�.

Proof. ⇐) It is straightforward that aggregation rules associated with
w = (1,0, . . . ,0) (i.e., maximin), w = (0,0, . . . ,1) (i.e., maximax), and convex com-
binations of them, www = (α,0, . . . ,0,1−α) with 0≤ α ≤ 1, satisfy duplication.
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⇒) We first prove that if duplication holds, all intermediate weights w2, . . . ,wm−1

should be zero. Our reasoning will deal with a profile consisting in all circular per-
mutations of three ordered alternatives, but it is extensible to any order7. Thus, con-
sider the profile

R1

x1

x2

x3

R2

x2

x3

x1

R3

x3

x1

x2

where the associated position matrix is⎛
⎝1 2 3

3 1 2
2 3 1

⎞
⎠ .

As each alternative occupies each position exactly once, a global tie arises and
the aggregated position for each is pA(xi) = 3w3

1 + 2w3
2 +w3

3, i = 1,2,3, so that
x1 ∼ x2 ∼ x3, being A the aggregation rule corresponding to any EOWA with
w3 = (w3

1,w
3
2,w

3
3).

Now suppose that agent 1 is replicated, becoming the new situation

R1

x1

x2

x3

R2

x2

x3

x1

R3

x3

x1

x2

R4 = R1

x1

x2

x3

where the new associated position matrix is⎛
⎜⎜⎝

1 2 3
3 1 2
2 3 1
1 2 3

⎞
⎟⎟⎠ .

Then, the aggregated positions for each alternative are

pA(x1) = 3w4
1 + 2w4

2 +w4
3 +w4

4,

pA(x2) = 3w4
1 + 2w4

2 + 2w4
3 +w4

4,

pA(x3) = 3w4
1 + 3w4

2 + 2w4
3 +w4

4.

Taking into account duplication, the tie among all three alternatives holds; hence

x1 ∼A x2 ⇔ w4
3 = 0,

x1 ∼A x3 ⇔ w4
2 +w4

3 = 0,

x1 ∼A x3 ⇔ w4
2 = 0.

7 These circular permutations yield a Condorcet cycle.
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Then, w4
2 =w4

3 = 0. Once proven that central weights are null (this fact will be taken
into account in what follows), what remains is to show that lateral weights should
the same at any level, i.e., wm

1 = α and wm
m = 1−α, for all m ≥ 2. To do this,

consider α = p
q with p,q ∈� and p < q, expressed as an irreductible fraction, and

any profile with m agents and q+ 1 alternatives where the alternative x1 is at least
the best for one agent and the worst for another one, while x2 occupies the position
p+ 1 for all of them. A sketch of such ad hoc profile would be

position
1
. . .

p+ 1
. . .

q+ 1

R1

. . .

. . .
x2

. . .

. . .

. . .

. . .

. . .
x2

. . .

. . .

Ri

x1

. . .
x2

. . .

. . .

. . .

. . .

. . .
x2

. . .

. . .

R j

. . .

. . .
x2

. . .
x1

. . .

. . .

. . .
x2

. . .

. . .

Rm

. . .

. . .
x2

. . .

. . .

The aggregated positions for the selected alternatives would be

pA(x1) =
p
q
(q+ 1)+

(
1− p

q

)
= p+ 1,

pA(x2) =
p
q
(p+ 1)+

(
1− p

q

)
(p+ 1) = p+ 1,

so that x1 ∼A x2, being A the aggregation rule corresponding to any EOWA with
such weights.

But now, if we replicate any subset of agents becoming the new weights β �= α
and hence 1−β �= 1−α , then the new aggregated positions would be

pA(x1) = β (q+ 1)+ (1−β ) �= p+ 1,

pA(x2) = β (p+ 1)+ (1−β )(p+ 1)= p+ 1,

so that x1 ∼A x2 does not hold. Hence, if lateral weights change from one dimension
to another, duplication fails. �

In conclusion, under duplication we obtain the class of weighting triangles

1

α 1−α
α 0 1−α

α 0 0 1−α
. . . . . . . . . . . . . . . . . . . . . . . . . . .

As particular cases we have:
α = 1: maximum (maximin procedure),
α = 0: minimum (maximax procedure),
α = 0.5: mid-range.
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It is worth mentioning that duplication is related to the Hurwicz criterion [15]
used in decision making under complete uncertainty, where the value of a decision is
a convex combination of its lowest possible expected value (pessimistic assessment)
and of its highest one (optimistic assessment).

4.2 An Illustrative Example

Consider the profile

R1

x2

x3

x1

R2

x2 x3

x1

R3

x1 x3

x2

where the associated position matrix is⎛
⎝ 3 1 2

3 1.5 1.5
1.5 3 1.5

⎞
⎠ .

If we choose an OWA Aw(α) associated with weights w(α) = (α,0,1−α), the cor-
responding social positions for the alternatives would be:

pAw(α) (x1) = 3α+ 1.5(1−α) = 1.5α+ 1.5,

pAw(α) (x2) = 3α+ 1(1−α) = 2α+ 1,

pAw(α) (x3) = 2α+ 1.5(1−α) = 0.5α+ 1.5.

According to the possible values of α , the corresponding social orders are shown in
the following table:

α = 0 0 < α < 1
3 α = 1

3
1
3 < α < 1 α = 1

x2 x2 x2 x3 x3 x3

x1 x3 x3 x1 x2 x1 x2

x1 x1

As one could expect, different social orders appear depending on α . In the following
section we propose a integrating method to obtain a unified result for each alterna-
tive taking into account the different outcomes when α ranges from 0 to 1.

4.3 Overall Positions and Social Order

For the general case with n alternatives and using in a first stage the positional voting
rule associated with the OWA w(α) = (α,0, . . . ,0,1−α), it is possible to assign the
corresponding social position pAw(α) (xi) to the alternative xi. Thus, we can introduce
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the function μi : [0,1]−→ � given by μi(α) = pAw(α) (xi). Such function is always
piecewise constant, and hence Riemann integrable. This fact allows us to define the
overall position of xi as

p(xi) =

∫ 1

0
μi(α)dα.

Easy computations lead to the following results in the previous example:

p(x1) =

∫ 1

0
μ1(α)dα = 3,

p(x2) =
∫ 1

0
μ2(α)dα = 5/3,

p(x3) =

∫ 1

0
μ3(α)dα = 4/3.

Thus, the overall social order is x3  x2  x1.
In conclusion, for each α ∈ [0,1] the corresponding positional aggregation rule

associated with pAw(α) only takes into account the best and worst positions for each
alternative, yielding different social orders in each case. However, the possible crit-
icism on the influence of the choice of α in the result can be mitigated under this
overall approach, where a social order is obtained not corresponding with any spe-
cific α , but amalgamating all allowable values for this parameter.
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Application of OWA Operators in the L-Fuzzy
Concept Analysis

C. Alcalde, A. Burusco, and R. Fuentes-González

Abstract. In some cases, the relationship between an object set X and an attribute set
Y is set up by means of a fuzzy context sequence. A particular case of this situation
appears when we want to study the evolution of an L-fuzzy context in time.

In this work, we analyze these situations. First we introduce the fuzzy context
sequence definition. With the aid of the OWA operators, we propose an exhaustive
study of the different contexts values of the sequence using some new relations. In
the second part, we also study the fuzzy context sequences establishing tendencies.
Finally, we illustrate all the results by means of an example.

1 Introduction

The L-Fuzzy Concept Analysis studies the information from an L-fuzzy context by
means of the L-fuzzy concepts. These L-fuzzy contexts are tuples (L,X ,Y,R), with
L a complete lattice, X and Y sets of objects and attributes, and R∈ LX×Y an L-fuzzy
relation between the objects and the attributes.

In some situations, we have several relations between the object set X and the
attribute set Y, forming a fuzzy context sequence. When this sequence represents
an evolution in time we can be more ambitious and try to study future tendencies
besides past behaviors. The analysis of this fuzzy context sequences will be the main
target of this work.
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We take as starting point a sequence formed by the L-fuzzy contexts
(L,X ,Y,Ri)i∈I , with I ⊆ N a finite set, where X and Y are the sets of objects and
attributes respectively, and Ri represents the ith relation between the objects of X
and the attributes of Y .

The final goal is the study of the fuzzy context sequence and the derived infor-
mation by the L-fuzzy concepts. To do this, we analyze two different situations: in
the first one, we study the values that emphasize in the L-fuzzy contexts regardless
of the context in which they are, and in the second one, it is important to maintain
the order of the contexts since it represents an evolution in time.

In this second case, it will be of special interest the study of the evolution of the
attributes by means of the search of patterns. Works in this line to analyze the course
of time in a Formal context can be found in [8, 13, 14].

In [13, 14] K.E. Wolff defines the Temporal Concept Analysis where a Concep-
tual Time System is introduced such that the state and phase spaces are defined as
concept lattices which represent the meaning of the states with respect to the chosen
time description. On the other hand, the authors define the hidden evolution patterns
in [8, 11] using temporal matching in the case of Formal Concept Analysis.

In this paper, we show a new method for L-Fuzzy Contexts with quantitative data
that allows the detection of some kind of regularity.

In Section 2, we see some important results in the L-Fuzzy Concept Analysis. In
Section 3, with the aid of the OWA operators, we propose an exhaustive study of the
different contexts values of the Fuzzy context sequence using some new relations
and establishing tendencies. Finally, we illustrate all the results by means of an
example.

2 L-Fuzzy Contexts

The Formal Concept Analysis of R. Wille [12] extracts information from a binary
table that represents a formal context (X ,Y,R) with X and Y finite sets of objects
and attributes respectively and R⊆ X×Y . The hidden information consists of pairs
(A,B) with A ⊆ X and B ⊆ Y , called formal concepts, verifying A∗ = B and B∗ =
A, where (·)∗ is a derivation operator that associates the attributes related to the
elements of A with every object set A, and the objects related to the attributes of B
with every attribute set B. These formal Concepts can be interpreted as a group of
objects A that shares the attributes of B.

In previous works [2, 3] we have defined the L-fuzzy contexts (L,X ,Y,R), with L
a complete lattice, X and Y sets of objects and attributes respectively and R∈ LX×Y a
fuzzy relation between the objects and the attributes. This is an extension of Wille’s
formal contexts to the fuzzy case when we want to study the relations between
the objects and the attributes with values in a complete lattice L, instead of binary
values.

In our case, to work with these L-fuzzy contexts, we have defined the derivation
operators 1 and 2 given by means of these expressions:
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∀A ∈ LX ,∀B ∈ LY

A1(y) = inf
x∈X
{I (A(x),R(x,y))}

B2(x) = inf
y∈Y
{I (B(y),R(x,y))}

with I a fuzzy implication operator defined in the lattice (L,≤).
Although this implication operator can be any extension of the classical implica-

tion to [0,1], in this work we will use residuated implication operators.
The information stored in the context is visualized by means of the L-fuzzy con-

cepts that are pairs (M,M1) ∈ (LX ,LY ) with M ∈ f ix(ϕ), set of fixed points of the
operator ϕ , being defined from the derivation operators 1 and 2 as ϕ(M) = (M1)2 =
M12. These pairs, whose first and second components are said to be the fuzzy ex-
tension and intension respectively, represent a group of objects that share a group of
attributes in a fuzzy way.

Using the usual order relation between fuzzy sets, we define the set L =
{(M,M1)/M ∈ f ix(ϕ)} with the order relation ! defined as:
∀(M,M1),(N,N1) ∈L ,

(M,M1)! (N,N1) if M ≤ N( or N1 ≤M1)

(L ,!) is a complete lattice that is said to be [2, 3] the L-fuzzy concept lattice.
On the other hand, given A ∈ LX , (or B ∈ LY ) we can obtain the associated L-fuzzy
concept applying the derivation operators. In the case of using a residuated implica-
tion, as we do in this work, the associated L-fuzzy concept is (A12,A1) (or (B2,B21)).

3 Fuzzy Context Sequences

In this section we are interested in the study of the fuzzy context sequences. We are
going to see the formal definition:

Definition 1. A fuzzy context sequence is a tuple (L,X ,Y,Ri)i∈I with L = [0,1], X
and Y sets of objects and attributes respectively and Ri ∈ LX×Y ,∀i ∈ I, with I ⊆ N a
finite set.

In the case that we want to define a new L-fuzzy context that summarizes the in-
formation from the different contexts of the sequence, we can aggregate the obser-
vations of the relations Ri. Thus, either we can use the average (with or without
weight), or obtain the intervals whose lower bound is the minimum of the observa-
tions and the upper one the maximum of them, obtaining an interval-valued L-fuzzy
context, or working with multivalued contexts. We have developed these ideas in
previous works [4, 5].

The use of weighted averages [9, 10] to summarize the information stored in the
different relations allows us to associate different weights with the L-fuzzy contexts
highlighting some of them. Thus, the new relation R is defined as:

R(x,y) =∑
i∈I

wi.Ri(x,y),∀x ∈ X ,y ∈Y
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verifying, as is required by the definition, that ∑
i∈I

wi = 1, ∀(wi)i∈I ,

However, it is possible that some observations of an L-fuzzy context of the se-
quence are interesting whereas others not so much. For instance, as we studied in
[1], the used methods for obtaining the L-fuzzy concepts do not give good results
when we have very low values in some relations.

On the other hand, to study similar situations by means of multivalued contexts
in [4] we used multisets and expertons[7]. In that case, all the observations were
analyzed globally without the establishment of different studies based on different
requirement levels. This is one of the new contributions of this work.

Let us see the following example.

Example 1. Let (L,X ,Y,Ri)i∈I be a fuzzy context sequence that represents the sales
of sports articles (X) in some establishments (Y ) throughout a period of time (I),
and we want to study the places where the main sales hold taking into account that
there are seasonal sporting goods (for instance skies, bathing suits) and of a certain
zone (it is more possible to sale skies in Colorado than in Florida).

In this case, the weighted average model is not valid since it is very difficult to
associate a weight with an L-fuzzy context (in some months more bath suits are
sold whereas, in others, skies are).

To analyze this situation, it could be interesting the use of the OWA[15, 5] oper-
ators with the most of the weights near the largest values. In this way, we give more
relevance to the largest observations, independently of the moment when they have
taken place and, on the other hand, we would avoid some small values in the result-
ing relations (that could give problems in the calculation of the L-fuzzy concepts as
has been already studied in [1]).

These are the definitions of these operators given by Yager [15]:

Definition 2. A mapping F : Ln −→ L, where L = [0,1], is called an OWA operator
of dimension n if associated with F is a weighting n-tuple W = (w1,w2 . . .wn) such
that wi ∈[0,1] and ∑

1≤i≤n
wi = 1, where F(a1,a2, . . .an)=w1.b1+w2.b2+ · · ·+wn.bn,

with bi the ith largest element in the collection a1,a2, . . .an.

There are two particular cases of special interest:
W∗ defined by the weighting n-tuple with wn = 1 and wj = 0,∀ j �= n, and W ∗

defined by the weighting n-tuple such that w1 = 1 and wj = 0,∀ j �= 1.
It is proved that F∗(a1,a2, . . .an) = min j(a j) and F∗(a1,a2, . . .an) = max j(a j).

These operators are said to be and and or, respectively.
In order to do a more general study of the fuzzy context sequence, we are inter-

ested in the use of operators close to or. To measure this proximity we can use the
orness degree definition given by [15]:

Definition 3. Let F be an OWA aggregation operator with an n-tuple of weights
W = (w1,w2, . . .wn). The orness degree associated with this operator is defined as:

orness(W ) = (1/n− 1)
n

∑
i=1

((n− i).wi)
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Returning to the initial situation and using these OWA operators, we can give the
following definition that summarizes the information stored in the fuzzy context
sequence:

Definition 4. Let (L,X ,Y,Ri)i∈I be the fuzzy context sequence and F an OWA ag-
gregation operator. We can define an L-fuzzy relation RF that aggregates the infor-
mation from the different L-fuzzy contexts, in the case that we want to study the
largest values, by means of this expression:

RF(x,y) = F(R1(x,y),R2(x,y) . . .R|I|(x,y)) = w1.b1 +w2.b2 + · · ·+w|I|.b|I|

∀x ∈ X ,y ∈Y, where W = (w1,w2, . . .w|I|) is the weighting tuple associated with F .

There are two special interesting cases:

• W verifying that orness(W ) is larger than a fixed threshold.

• W such that wi = 1/k, if i ≤ k and wi = 0, if i > k. That is, the average of the k
largest values (with k ∈N,k ≤ |I|)

In the next section we apply these OWA operators to the L-fuzzy contexts to study
the values that stand out in the L-fuzzy contexts and to analyze tendencies when the
sequence represents the evolution in time.

3.1 The Fuzzy Context Sequence General Study

For a more exhaustive study of the fuzzy context sequence, we can define |I| rela-
tions associated with the different requirement levels using OWA operators where
the weighting tuple W has just one non-null value wk = 1, for a certain k ≤ |I|.
Definition 5. Given a fuzzy context sequence (L,X ,Y,Ri)i∈I with X and Y sets of
objects and attributes respectively and Ri ∈ LX×Y ,∀i ∈ I, and given a certain k ∈
N,k ≤ |I|, we define the relation RFk using an OWA operator Fk with the weighting
tuple W such that wk = 1 and wi = 0,∀i �= k.

RFk(x,y) = Fk(R1(x,y),R2(x,y) . . .R|I|(x,y)),∀x ∈ X ,y ∈ Y.

To simplify the following notations, we will denote by R(k) this relation RFk .
Another way to express this definition is:

R(k)(x,y) = minJk
xy

where Jk
xy is the set formed by the k largest values associated with the pair (x,y) in

the Ri relations.

In this way, we are saying that there are at least k observations larger than or equal
to the values of the relation R(k). So, this relation measures the degree in which x is
at least k times related to y.
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We have chosen the minimum OWA operator in this definition, but it could be
possible to use another one if we want to be less demanding.

Example 2. We come back to the fuzzy context sequence (L,X ,Y,Ri)i∈I of Exam-
ple 1 that represents the sales of some sports articles X = {x1,x2,x3} in some
establishment Y = {y1,y2,y3} during a period of time. In the following relations
Ri(x,y), i ∈ I,x ∈ X ,y ∈Y takes values in L = [0,1] and represents the percentage of
sales (based on the stock) of product x, in the establishment y, in the month i.

R1 =

⎛
⎝ 0.7 1 0.8

0 0.1 0.1
0 0.1 0

⎞
⎠R2 =

⎛
⎝ 1 0.8 1

0.2 0.4 0.1
0 0 0.2

⎞
⎠R3 =

⎛
⎝ 1 1 1

0.6 0.5 0.7
0 0.1 0.2

⎞
⎠

R4 =

⎛
⎝ 0.5 0.4 0.6

0.1 0.5 0.3
0.6 0.8 0.8

⎞
⎠R5 =

⎛
⎝ 0.1 0 0

0 0.1 0
0.8 1 0.9

⎞
⎠

First, by means of the L-Fuzzy Concept Analysis, we want to study in what estab-
lishments there are greater sales of each product without mattering when the sale
has been carried out.

As we have expressed before, there are seasonal sporting goods that are sold in
certain periods of time and not in others (skies, bathing suits . . . ). Therefore, try to
summarize the information from the family of L-fuzzy concepts by means of the
average, for instance, would not give good results (if a product is only sold during
a pair of months in the year, the average with the other months would give a value
close to 0 and we would not obtain good results applying the L-Fuzzy Concept
Analysis).

On the other hand, if we fix the demand level for instance to k = 2 and use
Definition 5, then we have the following relation:

R(2) =

⎛
⎝ 1 1 1

0.2 0.5 0.3
0.6 0.8 0.8

⎞
⎠

Now, we take the L-fuzzy context (L,X ,Y,R(2)) and obtain the L-fuzzy concepts as-
sociated with the crisp singletons {x1} and {x3} using the Lukasiewicz implication
operator (I (a,b) = min(1,1− a+ b)):

{x1} −→ ({x1/1,x2/0.2,x3/0.6},{y1/1,y2/1,y3/1})
{x3} −→ ({x1/1,x2/0.5,x3/1},{y1/0.6,y2/0.8,y3/0.8})

In this case, we can say that article x1 has been successfully sold in the three es-
tablishments, at least during two months, and that there are, at least in two months,
high sales of articles x1 and x3, more in the establishments y2 and y3.

As the chosen implication operator is residuated, the membership degree of the
fuzzy intension of the L-fuzzy concepts is coincident with the rows of the L-fuzzy
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relation. Moreover, in all the cases we obtain a more complete information by means
of the fuzzy extension.

Analogously, we can take other different k levels.

In particular, the computation of the L-fuzzy concepts associated with R(1) allows
to analyze in what stores the main sales of each article during a month (independent
of the month) have taken place. If we take relation R(k)with k > 1 we are relaxing
the requirements taking the k greater sales for our study.

These studies allow us to ignore the small values of the relations (the sales of a
non-seasonal sporting goods are close to 0) since, in this case, if we take the average
of the relations, the results will be biased.

The observation of these L-fuzzy concepts gives the idea for the following
propositions:

Proposition 1. Consider k ∈ N, with k ≤ |I|. If (A,B) is an L-fuzzy concept of the
L-fuzzy context (L,X ,Y,R(k)), then ∀h ∈ N,h ≤ k, there exists an L-fuzzy concept
(C,D) of the L-fuzzy context (L,X ,Y,R(h)) such that A≤C and B≤ D.

Proof. If k = h, then it is obvious.
Otherwise, when h < k, R(k)(x,y)≤ R(h)(x,y) ∀(x,y) ∈ X×Y.
That is, R(k) ≤ R(h).

Thus, the L-fuzzy set B derived from A in (L,X ,Y,R(k)) is a subset of the L-fuzzy
set D derived from A in (L,X ,Y,R(h)). Therefore, B≤ D.

Now, we derive again D in (L,X ,Y,R(h)), obtaining the set C (C=D2) and,
applying the properties of this closure operator formed by the composition of the
derivation operators: A≤ A12 = D2 =C. Therefore, the other inequality also holds.
Moreover, it is obvious that if we use a residuated implication operator the obtained
pair (C,D) is an L-fuzzy concept.

The following result sets relations up between the L-fuzzy concepts associated with
the same starting set (see section 2) in the different L-fuzzy contexts.

Proposition 2. Consider k,h ∈ N, with k,h ≤ |I| and consider A ∈ LX . (Ak,Bk)
and (Ah,Bh) are the L-fuzzy concepts associated with A in the L-fuzzy contexts
(L,X ,Y,R(k)) and (L,X ,Y,R(h)) respectively. If k≤ h then Bk ≥ Bh.

Moreover, if I is a residuated implication operator and the set A is the crisp
singleton {xi}

A(x) =

{
1 if x = xi

0 otherwise

then, Ak(xi) = Ah(xi) = 1.
A similar result is obtained taking as a starting point an L-fuzzy set of attributes

B ∈ LY .
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Proof. Consider A ∈ LX . Unfolding the fuzzy extensions of both L-fuzzy concepts,
and taking into account that a fuzzy implication operator is increasing on its second
argument:

Bk(y) = inf
x∈X
{I (A(x),R(k)(x,y))} ≥ inf

x∈X
{I (A(x),R(h)(x,y))} = Bh(y)

This result holds for every A and for every implication operator.
On the other hand, if we take a crisp singleton:

A(x) =

{
1 if x = xi

0 otherwise

and a residuated implication, then the membership degree of xi in the fuzzy exten-
sion of the L-fuzzy concepts is equal to 1:

Bk(y) = inf
x∈X
{I (A(x),R(k)(x,y))}= R(k)(xi,y)

Ak(x) = inf
y∈Y
{I (Bk(y),R(k)(x,y))} = inf

y∈Y
{I (R(k)(xi,y),R

(k)(x,y))}

Therefore, Ak(xi) = 1.

Similarly, the result for the L-fuzzy set B ∈ LY can be proved.

However, the inequality Ak ≤ Ah does not always hold, as can be seen if we
come back to the previous example and we compare the fuzzy extension A(x) =
{x1/1,x2/0,x3/0} of the derived L-fuzzy concept in the L-fuzzy contexts
(L,X ,Y,R(2)) and (L,X ,Y,R(4)) :

In (L,X ,Y,R(2)), the result is A2 = {x1/1,x2/0.2,x3/0.6} whereas in
(L,X ,Y,R(4)) we get A4 = {x1/1,x2/0.5,x3/0.5}.

In the following section, we introduce the variable time in our study.

3.2 Temporal Analysis of the Fuzzy Context Sequence

Fixed k ∈ I, and a pair (x,y), with x ∈ X and y ∈ Y, Definition 5 uses the minimum
of the k largest observations Ri(x,y), i ∈ I, of the fuzzy context sequence, but does
not allow to make an analysis of their evolution in time.

In this section, we approach this subject by means of studies that analyze
tendencies.

We begin with a definition that takes the minimum value of the relations between
each object and each attribute from an instant h.

Definition 6. Let (L,X ,Y,Ri)i∈I be a fuzzy context sequence with X and Y sets of
objects and attributes respectively and Ri ∈ LX×Y . We define an L-fuzzy relation
R̄(h) (with the notation adopted in Definition 5), using an OWA operator F with a
weighting tuple W of dimension k = |I|−h+1 with wk = 1 the only non-null value:
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R̄(h)(x,y) = F(Rh(x,y),Rh+1(x,y) . . .R|I|(x,y)), ∀x ∈ X ,y ∈ Y.

In other words:
R̄(h)(x,y) = min

i≥h
{Ri(x,y)},∀x ∈ X ,y ∈Y

As in the previous section, instead of the minimum (that is very demanding) we
can take the maximum, the average or other aggregation operators changing the
weighting tuple W of the OWA operator.

Example 3. If we come back to the previous example and we want to study tenden-
cies of the sequence, we can take a value h and analyze the L-fuzzy concepts.

For instance, if h = 4, we have the L-fuzzy relation:

R̄(4) =

⎛
⎝0.1 0 0

0 0.1 0
0.6 0.8 0.8

⎞
⎠

and, taking as L-fuzzy context (L,X ,Y, R̄(4)) and using the Lukasiewicz implication
to obtain the L-fuzzy concepts associated with the crisp singletons, we have the
following results:

{x1} −→ ({x1/1,x2/0.9,x3/1},{y1/0.1,y2/0,y3/0})
{x2} −→ ({x1/0.9,x2/1,x3/1},{y1/0,y2/0.1,y3/0})
{x3} −→ ({x1/0.2,x2/0.2,x3/1},{y1/0.6,y2/0.8,y3/0.8})

We can say that the future tendency is that article x3 will have good sales in all the
establishments whereas x1 and x2 will not be sold much and always associated with
x3, the first one in the establishment y1 essentially, and the second one in y2.

Obviously, the smaller is the value of h, the safer will be the "prediction" that we do
because we have more information of the behaviour of the sales.

Moreover, we can establish comparisons between the different L-fuzzy concepts
obtained from the different relations R̄(i),∀i ∈ I.

Proposition 3. Consider A ∈ LX . Let (Āk, B̄k) and (Āh, B̄h) be the L-fuzzy concepts
associated with A in the L-fuzzy contexts (L,X ,Y, R̄(k)) and (L,X ,Y, R̄(h)) respec-
tively, with k,h≤ |I|. If k ≤ h then B̄k ≤ B̄h.

Moreover, if we use a residuated implication operator I and a crisp singleton
A, then

Āk(xi) = Āh(xi) = 1

with xi the element of X where the crisp singleton A takes value 1.
A similar result is obtained taking as a starting point an L-fuzzy set of attributes

B ∈ LY .

Proof. Similar to Proposition 2 taking into account that, in this case, if k ≤ h then
R̄(k) ≤ R̄(h).



138 C. Alcalde, A. Burusco, and R. Fuentes-González

The meaning of this result is that if we look at the fuzzy intensions obtained for the
different L-fuzzy contexts of the sequence, then they form a non-decreasing chain
∀y ∈ Y.

Example 4. In our example, the L-fuzzy concepts obtained taking as a starting point
the crisp singleton {x3} in the L-fuzzy contexts (L,X ,Y, R̄(4)) and (L,X ,Y, R̄(5)),
using the Lukasiewicz implication operator, are:

R̄(4) : ({x1/0.2,x2/0.2,x3/1},{y1/0.6,y2/0.8,y3/0.9})
R̄(5) : ({x1/0,x2/0.1,x3/1},{y1/0.8,y2/1,y3/0.9})

verifying the previous proposition.

On the other hand, since if an object and an attribute are related from instant h,
they are related at least |I|−h+1 times, hence a similar result between the L-fuzzy
concepts obtained using Definition 5 and 6 can be seen.

Proposition 4. If we take as starting point A ∈ LX , then for any h ∈ I, the fuzzy
intension B̄h of the L-fuzzy concept (Āh, B̄h) obtained in (L,X ,Y, R̄(h)) is included in
the fuzzy intension Bk of the L-fuzzy concept (Ak,Bk) obtained in (L,X ,Y,R(k)) with
k = |I|− h+ 1. That is,

B̄h(y)≤ Bk(y), ∀y ∈ Y

We have also a similar result from B ∈ LY .

Proof. Immediate using the previous proposition proof and the inequality R̄(h) ≤
R(k) with k = |I|− h+ 1.

Example 5. If we take h = 4 and k = 2, and the L-fuzzy contexts (L,X ,Y, R̄(4)) and
(L,X ,Y,R(2)), then taking as a starting point the object x1 and using the Lukasiewicz
implication operator, the following L-fuzzy concepts are obtained:

R̄(4) : ({x1/1,x2/0.9,x3/1},{y1/0.1,y2/0,y3/0})
R(2) : ({x1/1,x2/0.2,x3/0.6},{y1/1,y2/1,y3/1})

And the previous proposition holds.

An important result is the one that allows the study of the attributes associated with
some elements of X from an instant h in two different ways:

Theorem 1. Given A a crisp subset of X, and I a residuated implication.
The fuzzy intension B̄h ∈LY of the L-fuzzy concept derived from A in (L,X ,Y, R̄(h))

is equal to the intersection of the fuzzy intensions Bi of the L-fuzzy concepts obtained
in the L-fuzzy contexts (L,X ,Y,Ri) with i≥ h. That is,

B̄h(y) = min
i≥h

Bi(y), ∀y ∈ Y
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Proof. If we use a residuated implication operator I , then we have that ∀y ∈Y :

B̄h(y) = inf
x∈X
{I (A(x), R̄(h)(x,y))}= min

x∈X/A(x)=1
R̄(h)(x,y)

By the definition of R̄h(x,y) we can say that:

B̄h(y) = min
x∈X/A(x)=1

{min
i≥h
{Ri(x,y)}}= min

i≥h
{ min

x∈X/A(x)=1
{Ri(x,y)}} = min

i≥h
Bi(y).

This result can be generalized replacing the minimum by any OWA operator in the
proposition and in the definition of the relations R̄(h).

Remark 1. This proposal justifies the utility of the defined relations R̄(h) since allows
the study of the attributes associated with some objects from an instant h looking
only at the L-fuzzy context (L,X ,Y, R̄(h)) instead of all the L-fuzzy contexts of the
sequence.

4 Conclusions and Future Work

In this work, we have used OWA operators to study the L-fuzzy context sequence
and the derived information by means of the L-fuzzy contexts.

After that, we have studied tendencies that we find when the sequence represents
the evolution in the course of time of an L-fuzzy context. In the future we want to
study temporal patterns to identify the evolution of the contexts.

On the other hand, these L-fuzzy contexts that evolve with time can be general-
ized if we study L-fuzzy contexts where the observations are other L-fuzzy contexts.
This is the task that we will study in the future.

Finally we will try to apply these results to the interval-valued L-fuzzy context
sequences.
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Norm Aggregations and OWA Operators

José M. Merigó and Ronald R. Yager

Abstract. The ordered weighted average (OWA) is an aggregation operator that pro-
vides a parameterized family of aggregation operators between the minimum and
the maximum. This paper studies the use of the OWA operator with norms. Sev-
eral extensions and generalizations are suggested including the use of the induced
OWA operator and the OWA weighted average. This approach represents a general
frameworkof the aggregation operators when dealing with distance and similarity
measures. Some key particular cases are studied including the addition OWA and
the subtraction OWA operator

1 Introduction

The ordered weighted average (OWA) [17] is an aggregation operator that provides a
parameterized family of aggregation operators between the minimum and the max-
imum. It has been used in a wide range of applications [1, 28] and has been ex-
tended and generalized in a wide range of directions. For example, Fodor et al. [2]
presented a generalization by using quasi-arithmetic means. Yager and Filev [27]
introduced the induced OWA (IOWA) operator providing a more general reordering
process. Merigó and Gil-Lafuente [9] extended this approach by using generalized
and quasi-arithmetic means. Other authors have studied the use of distance mea-
sures with the OWA operator [3, 10, 15, 29]. In this direction, it is worth noting a
recent development by Yager [28] regarding the use of OWA operators with norms
that generalizes distance and similarity measures under the same framework.
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A further interesting approach is those aggregation operators that integrate the
OWA operator with the weighted average. Several approaches have been proposed
in this direction by many authors including the weighted OWA (WOWA) [12], the
hybrid average [19], the importance OWA [21] and the immediate weights [11, 6].
Recently, Merigó [6] has suggested the OWA weighted average (OWAWA) as a
generalization that unifies both concepts in the same formulation and considering
the degree of importance they have in the specific aggregation taken into account.

The aim of this paper is to develop further extensions regarding the use of OWA
operators with norms. It is presented the use of the IOWA operator with norms form-
ing the IOWA norm (IOWAN) aggregation. Thus, it is possible to represent a wide
range of norm aggregations from the minimum to the maximum and under complex
reordering processes. Next, it is introduced the use of the OWAWA operator obtain-
ing the OWAWA norm (OWAWAN) that provides a unified framework between the
usual weighted average norm and the OWAN operator. Several families and particu-
lar cases are studied including the addition OWAWA (A-OWAWA), the subtraction
OWAWA (S-OWAWA) and many other cases. These operators seem to be of great
importance because they may provide a new methodology for dealing with arith-
metic operations. The use of the variance [20, 25] as a particular type of norm is
also considered.

This paper is organized as follows. Section 2 reviews some basic preliminaries
regarding the OWA and the OWAWA operator and norm aggregations. Section 3
introduces the use of the OWAWA operator with norms and Section 4 studies a wide
range of particular cases. Section 5 ends the paper summarizing the main conclu-
sions of the paper.

2 Preliminaries

This section briefly reviews the OWA operator, the OWAWA operator and norm
aggregations.

2.1 The OWA Operator

The OWA operator is an aggregation operator that considers a wide range of aver-
aging operators that move between the minimum and the maximum. It permits to
aggregate the information considering the degree of optimism or pessimism that a
decision maker wants to use in the aggregation. It has been used in a wide range of
applications including soft computing, decision making and statistics [1, 28]. It can
be defined as follows.

Definition 1. An OWA operator of dimension n is a mapping OWA : Rn → R that

has an associated weighting W and
n
∑
j=1

wj = 1, such that:
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OWA(a1, ...,an) =
n

∑
j=1

wjb j (1)

where b j is the jth largest of the ai .

Several properties could be studied including different families of OWA operators
and measures for characterizing the weighting vector [17, 18]. Note that in most of
the OWA literature, the arguments are reordered according to a weighting vector.
However, it is also possible to reorder the weighting vector according to the initial
positions of the arguments ai [22] and this is of great importance in order to integrate
the weighted average and the OWA in the same formulation.

The OWA operator can be extended by using induced aggregation operators [9,
24] forming the induced OWA (IOWA) operator [27]. Therefore, it is possible to
consider a more general reordering process that deals with complex situations.

2.2 The OWAWA Operator

The ordered weighted averaging - weighted average (OWAWA) [6] is a model that
unifies the OWA operator and the weighted average in the same formulation con-
sidering the degree of importance that each concept has in the analysis. Therefore,
both concepts can be seen as a particular case of a more general one. One of its key
advantages is that it can be reduced to the usual weighted average or to the OWA.
Therefore, any study that uses the OWA or the weighted average can be revised
and extended with the OWAWA operator provides a more complete analysis of the
information considered. It can be defined as follows.

Definition 2. An OWAWA operator of dimension n is a mapping OWAWA : Rn → R

that has an associated weighting W of dimension n such that wj ∈ [0,1] and
n
∑
j=1

wj =

1, according to the following formula:

OWAWA(a1, ...,an) =
n

∑
j=1

v̂ jb j (2)

where b j is the jth largest of the ai, each argument ai has an associated weight (WA)

vi with
n
∑

i=1
vi = 1 and vi ∈ [0,1], v̂ j = βwj +(1−β )wj with β ∈ [0,1] and v j is the

weight (WA) vi ordered according to b j, that is, according to the jth largest of the
ai.

It provides a parameterized family of aggregation operators from the minimum to
the maximum. The difference against the OWA is that it also considers subjective
information. Thus, it is possible to consider a partial boundary condition that con-
siders the minimum and maximum adjusted with the weighted average [6]. Note
that if β = 1, we get the OWA operator and if β = 0, the WA. The OWAWA op-
erator accomplishes similar properties than the usual OWA aggregation operators
including the symmetry, the use of mixture operators and so on [6].
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2.3 Norm Aggregations

Norm aggregations provide a more general representation of the aggregation when
dealing with distance measures because they allow us to include more complex
operations in the analysis. A norm associates with some vector or tuple X =
(x1,x2, ...,xn) a unique non-negative scalar. A norm is a function f : Rn → [0,∞)
that has the following properties [1, 28]:

1. f (x1,x2, ...,xn) = 0 if and only if all xi = 0.
2. f (aX) = |a| f (X).
3. f (X)+ f (Y )≥ f (X +Y ), that is, the triangle inequality.

When dealing with averaging functions, norms can be used following a similar
methodology as it is used with distance measures [7]. Thus, with the weighted av-
erage it can be formulated the following expression:

f (a1,a2, ...,an) = G(|a1| , |a2| , ..., |an|) =
n

∑
i=1

wi |ai|, (3)

Recently, Yager [25] has suggested the use of norms in the OWA operator by using:

f (a1,a2, ...,an) = G(|a1| , |a2| , ..., |an|) =
n

∑
j=1

wjNj, (4)

where Nj is the jth largest of the |ai|.
Note that norms can be used in order to get a distance or a metric function as-

suming that if f is a norm then d(X ,Y ) = f (a = |X−Y |).

3 Norms with OWAWA Operators

Norms are useful in a wide range of situations because they include many aggrega-
tion operators and distance measures as particular cases. Among others, it is worth
noting the usual average, the Hamming distance [4] and the variance.This paper
presents several extensions and generalizations by using a wide range of averag-
ing aggregation operators with norms. First, let us consider the use of the induced
OWA (IOWA) operator with norms forming the IOWA norm (IOWAN) operator. Its
main advantage is that it considers complex reordering processes in the aggrega-
tion of norms providing a parameterized family of norms from the minimum to the
maximum one. Note that this is of great interest because when dealing with norms,
not always the highest or the lowest one is the preferred one. It can be defined as
follows.

Definition 3. An IOWAN operator of dimension n is a mapping IOWAN : Rn×
Rn → R that has an associated weighting W with wj ∈ [0,1] and

n
∑
j=1

wj = 1, such

that:
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IOWAN (〈u1, |a1|〉 ,〈u2, |a2|〉 , ...,〈un, |an|〉) =
n

∑
j=1

wjNj , (5)

where Nj is the ai value of the IOWAN pair 〈ui,ai〉 having the jth largest ui, ui is
the order-inducing variable and |ai| is the argument variable represented in the form
of individual norms.

Note that the IOWAN operator is reduced to the usual IOWA operator when |ai|= ai.
It can also be seen as a distance measure when d(X ,Y ) = f (a = |X−Y |) becom-
ing the induced OWA distance (IOWAD) operator [7]. Furthermore, it is also pos-
sible to formulate it by using generalized means forming the induced generalized
OWA (IGOWA) operator (|a|= aλ ) [9] and the induced Minkowski OWA distance
(IMOWAD) (d(X ,Y ) = f (a = |X−Y |λ )) [8].

Next, let us look into a more general framework by using the OWAWA operator
with norms forming the OWAWA norm (OWAWAN) operator. Thus, it is possible
to integrate norms with weighted averages (Eq. 3) and OWA operators in the same
formulation and considering the degree of importance that each concept has in the
aggregation. Thus, all the particular types of norms used previously can also be
included in this framework including the use of distance and similarity measures. It
can be defined as follows.

Definition 4. An OWAWAN operator is a mapping OWAWAN : Rn → R of dimen-

sion n, if it has an associated weighting vector W , with
n
∑
j=1

wj = 1 and wj ∈ [0,1]

and a weighting vector V that affects the WA, with
n
∑

i=1
vi = 1 and vi ∈ [0,1], such

that:

OWAWAN (|a1| , |a2| , ..., |an|) = β
n

∑
j=1

wjNj +(1−β )
n

∑
i=1

vi |ai| (6)

where Nj is the jth smallest of the |ai|, each argument |ai| is the argument variable
represented in the form of individual norms and β ∈ [0,1].

Note that the OWAWAN operator can be formulated integrating both equations into
a single one as it is done with the OWAWA operator [6] as follows:

OWAWAN (|a1| , |a2| , ..., |an|) =
n

∑
j=1

v̂ jNj, (7)

where Nj is the jth smallest of the |ai|, each argument |ai| is the argument variable
represented in the form of individual norms and has an associated weight vi with

n
∑

i=1
vi = 1 and vi ∈ [0,1], v̂ j = βwj +(1−β )v j with β ∈ [0,1] and v j is the weight

(WA) vi ordered according to Nj, that is, according to the jth smallest of the |ai|.
Observe that this is possible only when dealing with arithmetic averaging func-

tions. If it is used a generalized or quasi-arithmetic mean with λ �= 1 or g(a) �= a, it
is not possible to integrate it in this way.
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As we can see, if β = 1, the OWAWAN operator becomes the OWAN opera-
tor and if β = 0, the weighted averaging norm (WAN). The OWAWAN operator
accomplishes similar properties than the norm aggregation operators [28].

Note that Eq. (6) has been presented adapting the ordering of the weighted av-
erage to the OWA operator. However, it is also possible to formulate the OWAWA
operator adapting the ordering of the OWA operator to the weighted average as:

OWAWAN (|a1| , |a2| , ..., |an|) = β
n

∑
i=1

wi |ai|+(1−β )
n

∑
i=1

vi |ai|, (8)

where each argument ai has an associated weight wi that represents the weight wj

ordered according to the ordering of the arguments ai and β ∈ [0,1].
A further interesting issue appears when the weighting vector is not normalized,

i.e., W = ∑n
j=1 wj �= 1 or V = ∑n

i=1 vi �= 1. In these situations and without consider-
ing the concept of heavy aggregations [23], the OWAWAN operator can be formu-
lated in the following way:

OWAWAN (|a1| , |a2| , ..., |an|) = β
W

n

∑
j=1

wjNj +
(1−β )

V

n

∑
i=1

vi|ai|, (9)

Similarly to the IOWAN, the OWAWAN operator can also be seen as a distance
metric by using d(X ,Y ) = f (a = |X−Y |). Thus, it becomes the OWAWA distance
(OWAWAD) operator [11] that can be formulated as follows:

OWAWAD(|x1,y1| , |x2,y2| , ..., |xn,yn|) = β
n

∑
j=1

wjD j +(1−β )
n

∑
i=1

vi|xi− yi|, (10)

where D j is the jth smallest of the |xi− yi|, each argument |xi− yi| is the argument
variable represented in the form of individual distances and β ∈ [0,1].

Note that the main advantage of the OWAWAD is that it integrates the weighted
Hamming distance (WHD) and the OWA distance (OWAD) [10, 15] in the same
formulation considering the degree of importance that each concept has in the for-
mulation. As we can see, if β = 1, the OWAWAD operator becomes the OWAD
operator and if β = 0, the WHD.

Furthermore, it is also possible to use generalized and quasi-arithmetic means
in the analysis. Thus, the OWAWAN operator becomes the GOWAWA and the
Quasi-OWAWA operator. With generalized means this is obtained when |a| = aλ

and with quasi-arithmetic means if |a|= g(a).
An interesting issue when analysing these aggregation operators is to character-

ize the weighting vector. This can be done following the OWA literature where it is
considered the degree of orness (attitudinal character) [6, 17], the entropy of disper-
sion [6, 17] and the divergence of the weights [6, 23]. When dealing with OWAWA
operators, the degree of orness can be formulated from two different perspectives.
A first perspective assumes that the weighted average can also be studied with this
measure being the objective to determine the tendency of the aggregation to the
minimum or to the maximum:
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α(V̂ ) = β
n

∑
j=1

wj

(
n− j
n− 1

)
+(1−β )

n

∑
j=1

v j

(
n− j
n− 1

)
. (11)

It is straightforward to calculate the andness measure by using the dual. That is,
Andness(V̂) = 1−α(V̂). The other perspective is focussed on the attitudinal char-
acter. In this case, the weighted average is seen as a neutral aggregation because
it only considers the subjective opinion. Thus, it is reasonable to assume that the
orness measure for this part of the equation should be 0.5 obtaining the following
expression:

α(V̂ ) = β
n

∑
j=1

wj

(
n− j
n− 1

)
+(1−β )× 0.5. (12)

In this case it is also trivial to form the andness measure or the degree of pessimism.
The entropy of dispersion measures the amount of information being used in the

aggregation. If we extend this approach to the OWAWAN operator, it is obtained the
following formulation:

H(V̂ ) =−
(
β

n

∑
j=1

wjln(wj)+ (1−β )
n

∑
i=1

viln(vi)

)
. (13)

As we can see, if β = 1, we obtain the Yager entropy of dispersion for the OWAN
operator and if β = 0, we get the classical Shannon entropy [13].

The divergence [6, 23] measures the divergence of the weights against the attitu-
dinal character. It is useful in various situations, especially when the attitudinal char-
acter and the entropy of dispersion are not enough to correctly analyse the weighting
vector of an aggregation. If we extend the divergence to the OWAWAN operator, we
get the following divergence:

Div(V̂ ) = β

(
n

∑
j=1

wj

(
n− j
n− 1

−α(W )

)2
)
+(1−β )

(
n

∑
j=1

v j

(
n− j
n− 1

−α(V)

)2
)
.

(14)
Note that if β = 1, we get the OWAN divergence and if β = 0, the WAN divergence.
Moreover, it is also possible to consider a variation of Eq. (14) by using Eq. (12). In
this case, the divergence of the weighted average is 0 and it is only considered the
divergence of the OWAN operator.

Finally, let us consider the use of norms under other frameworks that unifies the
OWA operator and the weighted average in the same formulation. Among others, let
us consider the use of hybrid averages [19], WOWA operators [15] and immediate
weights [11, 6]. By using the hybrid average it is formed the hybrid averaging norm
(HAN) that can be formulated as follows.

HAN (|a1| , |a2| , ..., |an|) =
n

∑
j=1

wjNj, (15)
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where Nj is the jth smallest of the |âi| (âi = nωi |ai| , i = 1,2, ...,n),

ω = (ω1,ω2, ...,ωn) is the weighting vector of the|ai|, with ωi ∈ [0,1] and
n
∑

i=1
ωi = 1.

With the WOWA operator it is obtained the WOWA norm (WOWAN) operator. It is
formulated in the following way.

Definition 5. Let P and W be two weighting vectors of dimension n, with P =

(p1, p2, ..., pn) and W = (w1,w2,...,wn), such that pi ∈ [0,1] and
n
∑

i=1
pi = 1, and

wj ∈ [0,1] and
n
∑
j=1

wj = 1. A mapping WOWAN : Rn×Rn → R is a WOWAN oper-

ator of dimension n if:

WOWAN (|a1| , |a2| , ..., |an|) =
n

∑
i=1

ωi|aσ(i)|, (16)

where {σ(1), ...,σ(n)} is a permutation of {1, ...,n} such that aσ(i−1) ≥ aσ(i) for all
i = 2, ...,n, and the weight ωi is defined as:

ωi = w∗
(
∑
j≤i

pσ( j)

)
−w∗

(
∑
j<i

pσ( j)

)
, (17)

with w∗ a monotone increasing function that interpolates the points (i
/

n, ∑ j≤i w j)
together with the point (0,0). w∗ is required to be a straight line when the points
can be interpolated in this way.

The use of immediate weights forms the immediate weighted averaging norm
(IWAN) and it is constructed by using the following expression:

IWAN (|a1| , |a2| , ..., |an|) =
n

∑
j=1

v̂ j
∣∣Nj

∣∣, (18)

where Nj is the jth smallest of the |ai|, each |ai| has associated a weight vi, v j is the
associated weight of Nj, and v̂ j = (wjv j/∑n

j=1 wjv j).
Note that this expression can only be used when dealing with arithmetic aver-

aging operators as in the OWAWAN operator because with generalized aggregation
operators, the formulation may have some incorrect deviations.

Furthermore, observe that similar extensions and generalizations could also be
studied with induced and generalized aggregation operators [9, 30] and by using
distance measures as it has been explained before.

4 Families of OWAWAN Operators

The OWAWAN operator includes a wide range of particular cases. First, it is pos-
sible to study several families by analyzing the weighting vector [6, 18]. Thus, it is
possible to form the following cases:
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• Simple averaging norm: wj = 1
/

n and vi = 1
/

n, for all i, j.
• Arithmetic WAN (AWAN): wj = 1

/
n, for all j.

• Arithmetic OWAN (AOWAN): vi = 1
/

n, for all i.
• Min-WAN: w1 = 1 and wj = 0, for all j �= 1.
• Max-WAN: wn = 1 and wj = 0, for all j �= n.
• Step OWAWAN: wk = 1 and wj = 0, for all j �= k.
• Hurwicz WAN: w1 = 1−α , wn = α and wj = 0 for all j �= 1,n.
• Window OWAWAN: wj = 1

/
m for k ≤ j ≤ k +m− 1 and wj = 0 for all j >

k+m, j < k.
• Median odd OWAWAN: If n is odd we assign w(n+1)/2 = 1 and wj = 0 for all

others.
• Median even OWAWAN: If n is even we assign wn/2 = w(n/2)+1 = 0.5 and wj = 0

for all others.
• Olympic OWAWAN: w1 = wn = 0, and for others wj = 1

/
(n− 2).

Some other interesting cases are found by analyzing a different expression in the
norm. Among others, it is worth noting the following ones:

• If OWAWAN(X ,Y ) = f (X +Y ), we obtain the addition OWAWA (A-OWAWA)
operator that can be formulated as:

A−OWAWA(|x1 + y1| , ..., |xn + yn|) = β
n

∑
j=1

wjA j +(1−β )
n

∑
i=1

vi|xi + yi|, (19)

where A j is the jth smallest of the |xi + yi| and β ∈ [0,1].
• If OWAWAN(X ,Y ) = f (X −Y ), the subtraction OWAWA (S-OWAWA) operator

and it is expressed as follows:

S−OWAWA(|x1− y1| , ..., |xn− yn|) = β
n

∑
j=1

wjS j +(1−β )
n

∑
i=1

vi(xi− yi), (20)

where S j is the jth smallest of the (xi− yi) and β ∈ [0,1].
• If OWAWAN(X ,Y )= f (X×Y ), we get the multiplication OWAWA (M-OWAWA)

operator that is defined in the following way:

M−OWAWA(|x1× y1| , ..., |xn× yn|) = β
n

∑
j=1

wjMj+(1−β )
n

∑
i=1

vi|xi× yi|, (21)

where Mj is the jth smallest of the |xi× yi| and β ∈ [0,1].
• If OWAWAN(X ,Y ) = f (X ÷Y ), we obtain the division OWAWA (D-OWAWA)

operator:

D−OWAWA(|x1÷ y1| , ..., |xn÷ yn|) = β
n

∑
j=1

wjD j +(1−β )
n

∑
i=1

vi|xi÷ yi|, (22)

where D j is the jth smallest of the |xi÷ yi| and β ∈ [0,1].
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• If OWAWAN(X ,Y ) = f ((X − Y )2), it is formed the variance OWAWA
(Var-OWAWA) operator:

Var−OWAWA
(
(x1− y1)

2, ...,(xn− yn)
2
)
= β

n

∑
j=1

wjA j+(1−β )
n

∑
i=1

vi(xi− yi)
2,

(23)
where A j is the jth smallest of the (xi− yi)

2 and β ∈ [0,1].

Note that all these cases can be reduced to the OWA and the weighted average
version forming the addition OWA, subtraction OWA, multiplication OWA, addition
WA, and so on. Moreover, observe that many other cases could be studied including
the OWAWAD operator explained in Section 3 and OWAWA operators with other
similarity measures or operations.

5 Conclusions

This paper has suggested the use of OWAWA operators with norms. The main advan-
tage of this approach is that it considers a unified framework between the OWA and
the weighted average when aggregating information with norms. Thus, it is possible
to consider subjective opinions and the attitudinal character of the decision maker in
the same formulation. Several fundamental properties have been studied. It has been
shown that the OWAWAD operator is also a particular case of this approach.

Some other extensions have also been considered including the use of induced ag-
gregation operators (IOWAN operator) and the use of other approaches for unifying
the OWA with the weighted average that have formed the HAN operator, the WOWA
operator and the IWAN operator. Several key families of OWAWAN operators have
also been studied including the addition OWAWA, the subtraction OWAWA, the
multiplication OWAWA, the division OWAWA and the variance OWAWA operator.
These aggregation operators have shown the potential for developing a new frame-
work for arithmetic operations.
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Part IV

T-norms



Migrativity of Uninorms over T-norms and
T-conorms

M. Mas, M. Monserrat, D. Ruiz-Aguilera, and J. Torrens

Abstract. In this paper the notions of α-migrative uninorms over a fixed t-norm T
and over a fixed t-conorm S are introduced and studied. All cases when the uninorm
U lies in any one of the most usual classes of uninorms are analyzed, characterizing
with some assumptions on continuity all solutions of the migrativity equation for all
possible combinations of U and T and for all possible combinations of U and S.

1 Introduction

In last decades the study of aggregation functions has been extensively developed
mainly because of their great quantity of applications. This is one of the main rea-
sons for the increasing interest in the field of aggregation functions and this interest
is endorsed by the publication of some monographs dedicated entirely to aggrega-
tion functions ([1], [2], [15]).

One of the main topics in the study of these connectives from the theoretical
point of view is directed towards the characterization of those that verify certain
properties that may be useful in each context. The study of these properties for
certain aggregation functions usually involves the resolution of functional equations.
One of these properties is α-migrativity, introduced in [9]. For any α ∈ [0,1] and a
mapping F : [0,1]2 → [0,1], this property is described as

F(αx,y) = F(x,αy) for all x,y ∈ [0,1]. (1)

The interest of this property comes from its applications, for example in decision
making processes ([5]), when a repeated, partial information needs to be fusioned
in a global result, or in image processing, since in this context migrativity expresses
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the invariance of a given property under a proportional rescaling of some part of the
image ([21]).

The migrativity property (and successive generalizations) has been studied for
t-norms in [11, 12, 13], for semicopulas, quasi-copulas and copulas in [2, 8, 21] and
for aggregation functions in general in [4, 5, 22]. Note that in the equation (1) the
product αx can be replaced by any t-norm T0 obtaining the property for t-norms
called (α,T0)-migrativity, that can be written as

T (T0(α,x),y) = T (x,T0(α,y)) for all x,y ∈ [0,1] (2)

being T0 a t-norm and α ∈ [0,1]. This generalization of the migrativity for t-norms
has been recently studied in [12]. By dualization, a similar definition can be given for
t-conorms as it was pointed out in [19]. Moreover, this study has been extended to
uninorms with the same neutral element in [20] (the case of representable uninorms
was also solved in [4]).

However, all the previous studies have a common point: they always deal with
aggregation functions (t-norms, t-conorms or uninorms) having the same neutral
element, with the only exception of representable uninorms that were investigated in
[4]. This condition is not necessary to find out solutions of the migrativity property
as we will see in the present work. As a first step in this direction, we will present
in this paper a complete study of those uninorms with neutral element e ∈]0,1[
that are α-migrative over t-norms and over t-conorms. We will do it by considering
uninorms in any one of the most usual classes of uninorms.

The article is organized into different sections. After this introduction, we in-
clude a preliminary section to establish the necessary notation and we recall some
basic definitions, specially on uninorms. In Section 3 we introduce the definition of
(α,T )-migrative uninorm for a given t-norm T , analyzing some of its initial prop-
erties. We continue with the characterization of those (α,T )-migrative uninorms,
that lay in each one of the most usual classes of uninorms, i.e., uninorms in Umin

and Umax, idempotent uninorms, representable uninorms and uninorms continuous
in the open square ]0,1[2. In Section 4 we dualize these results for t-conorms and
we end the paper with a section of conclusions and future work.

2 Preliminaries

We will assume the basic theory of t-norms and t-conorms. The definitions, nota-
tions and results on them can be found in [1, 14]. We will just give in this section
some basic facts about uninorms. More details can be found in [1, 9, 24].

Definition 1. A binary function U : [0,1]2 → [0,1] is called a uninorm if it is asso-
ciative, commutative, non-decreasing in each variable and there is a neutral element
e ∈ [0,1] such that U(e,x) = x for all x ∈ [0,1].

Evidently, a uninorm with neutral element e = 1 is a t-norm and a uninorm with
neutral element e= 0 is a t-conorm. For any other value e∈ ]0,1[ the operation works
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as a t-norm in [0,e]2, as a t-conorm in [e,1]2 and its values are between minimum
and maximum in the set of points A(e) given by

A(e) = [0,e[× ]e,1] ∪ ]e,1]× [0,e[.

We will usually denote a uninorm with neutral element e and underlying t-norm and
t-conorm, T and S, by U ≡ 〈T,e,S〉. For any uninorm it is satisfied that U(0,1) ∈
{0,1} and a uninorm U is called conjunctive if U(1,0) = 0 and disjunctive when
U(1,0) = 1. On the other hand, the most studied classes of uninorms are:

• Uninorms in Umin (respectively Umax), those given by minimum (respectively
maximum) in A(e).

• Idempotent uninorms, those that satisfy U(x,x) = x for all x ∈ [0,1].
• Representable uninorms, those that have an additive generator.
• Continuous in the open square ]0,1[2.

In what follows we recall the structure of each one of these classes of uninorms.

Theorem 1. ([9]) Let U : [0,1]2→ [0,1] be a uninorm with neutral element e∈ ]0,1[.
Then, the sections x "→U(x,1) and x "→U(x,0) are continuous in each point except
perhaps for e if and only if U is given by one of the following formulas.

(a)If U(0,1) = 0, then

U(x,y) =

⎧⎪⎨
⎪⎩

eT
(

x
e ,

y
e

)
if (x,y) ∈ [0,e]2

e+(1− e)S
(

x−e
1−e ,

y−e
1−e

)
if (x,y) ∈ [e,1]2

min(x,y) if (x,y) ∈ A(e),

(3)

where T is a t-norm, and S is a t-conorm.
(b)If U(0,1) = 1, then the same structure holds, changing minimum by maximum in

A(e).

The set of uninorms as in case (a) will be denoted by Umin and the set of uninorms
as in case (b) by Umax. We will denote a uninorm in Umin with underlying t-norm
T , underlying t-conorm S and neutral element e as U ≡ 〈T,e,S〉min and in a similar
way, a uninorm in Umax as U ≡ 〈T,e,S〉max.
Idempotent uninorms were characterized first in [1] for those with a lateral continu-
ity and in [18] for the general case. An improvement of this last result was done in
[24] as follows.

Theorem 2. ([24]) U is an idempotent uninorm with neutral element e ∈ [0,1] if
and only if there exists a non increasing function g : [0,1]→ [0,1], symmetric with
respect to the main diagonal, with g(e) = e, such that

U(x,y) =

⎧⎪⎨
⎪⎩

min(x,y) if y < g(x) or (y = g(x) and x < g(g(x)))

max(x,y) if y > g(x) or (y = g(x) and x > g(g(x)))

min(x,y) or max(x,y) if y = g(x) and x = g(g(x)),

being commutative in the points (x,y) such that y = g(x) with x = g(g(x)).
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Any idempotent uninorm U with neutral element e and associated function g, will
be denoted by U ≡ 〈g,e〉ide and the class of idempotent uninorms will be denoted by
Uide. Obviously, for any of these uninorms the underlying t-norm T is the minimum
and the underlying t-conorm S is the maximum.

Definition 2. ([9]) Consider e ∈ ]0,1[. A binary operation U : [0,1]2 → [0,1] is a
representable uninorm if and only if there exists a continuous strictly increasing
function h : [0,1]→ [−∞,+∞] with h(0) =−∞, h(e) = 0 and h(1) = +∞ such that

U(x,y) = h−1(h(x)+ h(y))

for all (x,y) ∈ [0,1]2 \ {(0,1),(1,0)} and U(0,1) = U(1,0) ∈ {0,1}. The function
h is usually called an additive generator of U .

Remark 1. Recall that there are no continuous uninorms with neutral element e ∈
]0,1[. In fact, representable uninorms were characterized as those uninorms that
are continuous in [0,1]2 \ {(1,0),(0,1)} (see [23]) as well as those that are strictly
increasing in the open unit square (see [10]). We will denote by Urep the class of
representable uninorms.

Any representable uninorm U with neutral element e and additive generator h, will
be denoted by U ≡ 〈h,e〉rep. For any of these uninorms the underlying t-norm T is
strict and the underlying t-conorm S is strict as well.

A more general class containing representable uninorms are those continuous in
the open unit square ]0,1[2, that were characterized in [17] as follows.

Theorem 3. ([17] and [23] for the current version) Suppose U is a uninorm contin-
uous in ]0,1[2 with neutral element e ∈]0,1[. Then either one of the following cases
is satisfied:

(a) There exist u ∈ [0,e[, λ ∈ [0,u], two continuous t-norms T1 and T2 and a repre-
sentable uninorm R such that U can be represented as

U(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λT1
(

x
λ ,

y
λ
)

if x,y ∈ [0,λ ]
λ +(u−λ )T2

(
x−λ
u−λ ,

y−λ
u−λ

)
if x,y ∈ [λ ,u]

u+(1− u)R
(

x−u
1−u ,

y−u
1−u

)
if x,y ∈ ]u,1[

1 if min(x,y) ∈ ]λ ,1] and max(x,y) = 1

λ or 1 if (x,y) ∈ {(λ ,1),(1,λ )}
min(x,y) elsewhere.

(4)
(b) There exist v ∈ ]e,1], ω ∈ [v,1], two continuous t-conorms S1 and S2 and a rep-
resentable uninorm R such that U can be represented as
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U(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vR
(

x
v ,

y
v

)
if x,y ∈ ]0,v[

v+(ω− v)S1
(

x−v
ω−v ,

y−v
ω−v

)
if x,y ∈ [v,ω ]

ω+(1−ω)S2
(

x−ω
1−ω ,

y−ω
1−ω

)
if x,y ∈ [ω ,1]

0 if max(x,y) ∈ [0,ω [ and min(x,y) = 0

ω or 0 if (x,y) ∈ {(0,ω),(ω ,0)}
max(x,y) elsewhere.

(5)

The class of all uninorms continuous in ]0,1[2 will be denoted by Ucos. A uninorm
as in (4) will be denoted by U ≡ 〈T1,λ ,T2,u,(R,e)〉cos,min and the class of all uni-
norms continuous in the open unit square of this form will be denoted by Ucos,min.
Analogously, a uninorm as in (5) will be denoted by U ≡ 〈(R,e),v,S1,ω ,S2〉cos,max

and the class of all uninorms continuous in the open unit square of this form will be
denoted by Ucos,max.

For any uninorm U ≡ 〈T1,λ ,T2,u,(R,e)〉cos,min, the underlying t-norm of U is
given by an ordinal sum1 of three t-norms, T1,T2 and a strict t-norm, whereas the
underlying t-conorm is strict. For a uninorm U ≡ 〈(R,e),v,S1,ω ,S2〉cos,max, the un-
derlying t-norm of U is strict, whereas the underlying t-conorm is given by an ordi-
nal sum of three t-conorms: a strict t-conorm, S1, and S2.

A detailed study of continuous t-norms that are α-migrative over the minimum,
the product and the Łuukasiewicz t-norms can be found in [12]. An extension of
this work has been made in [13] where continuous t-norms α-migrative over any
continuous t-norm T0, including ordinal sums, are studied. A similar study can be
done for t-conorms just by dualizing the results for t-norms (see for instance [19]).
Thus we refer to theses papers for the results concerning migrativity of t-norms and
t-conorms, that will be used in this work in order to give the results for uninorms.

3 Migrative Uninorms Over T-norms

Now we will introduce the definition of migrativity of a uninorm U over a t-norm
T .

Definition 3. Given a t-norm T and α ∈ [0,1], a uninorm U is said to be α-migrative
over T or (α,T )−migrative if

U(T (α,x),y) =U(x,T (α,y)) for all x,y ∈ [0,1]. (6)

Since the cases of t-norms and t-conorms are already known we will consider only
uninorms with neutral element e ∈]0,1[. First, note that for the extreme values of α ,
the migrativity of uninorms over t-norms become trivial, as follows.

1 For details about ordinal sums of t-norms and t-conorms, see [14], definition 3.44.
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Lemma 1. Let U be a uninorm with neutral element e ∈]0,1[ and T a t-norm. Then,

i) U is 1-migrative over T .
ii) U is 0-migrative over T if and only if U is conjunctive.

As a consequence of the previous lemma, from now on we will consider α ∈]0,1[.
In this case, we can easily derive the next general result on migrativity.

Proposition 1. Let U be a uninorm with neutral element e ∈]0,1[, T a t-norm and
α ∈]0,1[. Suppose that U is α-migrative over T , then the following items hold.

i) U must be a conjunctive uninorm.
ii) U(α,y) =U(1,T (α,y)) for all y ∈ [0,1].

From the previous result, we will only consider conjunctive uninorms. Moreover,
from point ii) in the previous proposition, it is clear that the values that can take a
conjunctive uninorm on the boundary, i.e. the values U(1,y) with y ∈ [0,1], will be
important. Thus, let us devote the following subsection to this end.

3.1 Uninorms on the Boundary

In this section we will study the values that take a uninorm U on the bound-
ary, B = [0,1]2\]0,1[2. It is clear that any conjunctive uninorm satisfies U(x,0) =
U(0,y) = 0 for all x,y ∈ [0,1] and U(x,1) =U(1,y) = 1 for all x,y ∈ [e,1], whereas
any disjunctive uninorm satisfies U(x,1) = U(1,y) = 1 for all x,y ∈ [0,1] and
U(x,0) = U(0,y) = 0 for all x,y ∈ [0,e]. Now we investigate the values of the uni-
norm on the remaining points.

Note that in all classes of uninorms recalled in the preliminaries, it also holds that

U(1,y) ∈ {1,y} for all y ∈ [0,1], (7)

for conjunctive uninorms and

U(0,y) ∈ {0,y} for all y ∈ [0,1]. (8)

for disjunctive uninorms. In fact, up to our knowledge, there is no conjunctive uni-
norms failing property (7) nor disjunctive uninorms failing property (8), and we
claim that this boundary property holds in general for all conjunctive and disjunc-
tive uninorms, respectively. To deal with this problem, let us begin by the following
definition.

Definition 4. Let U be a conjunctive uninorm. We will say that U is locally internal
on the boundary if it satisfies property (7). Similarly, if U is a disjunctive uninorm,
we will say that U is locally internal on the boundary if it satisfies property (8).

Remark 2. Note that uninorms in Umin and Umax, idempotent, representable or con-
tinuous in the open square uninorms, are all of them locally internal on the boundary.
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With this definition the previously mentioned claim can be written as follows:

Claim: Any uninorm is locally internal on the boundary.

We have no proof of this fact, but we can give the following partial results on con-
junctive uninorms, that can be easily dualized to disjunctive ones.

Lemma 2. Let U be a conjunctive uninorm. Then, for any x ∈]0,e[, U(1,x) < e or
U(1,x) = 1.

Proposition 2. Any conjunctive uninorm U ≡ 〈T,e,S〉 with underlying t-norm T
continuous is locally internal on the boundary.

It is clear that for disjunctive uninorms we obtain similar results just by dualyzing
the reasonings. Specifically, we have,

Proposition 3. Let U ≡ 〈T,e,S〉 be any disjunctive uninorm. Then, the following
items hold:

i) For any x ∈]e,1[, U(0,x)> e or U(0,x) = 0.
ii) If the underlying t-conorm S is continuous, then U is locally internal on the

boundary.

3.2 Migrativity of Uninorms That Are Locally Internal on the
Boundary

Let us now return to the migrative property, in this case for uninorms that are locally
internal on the boundary.

Proposition 4. Let U be a conjunctive uninorm with neutral element e∈]0,1[ that is
locally internal on the boundary. Let T be a t-norm andα ∈]0,1[. If U isα-migrative
over T then T (α,e) = α and α < e.

Thus, from now on we will consider only α ∈]0,e[. Now, we can prove that for
uninorms locally internal on the boundary, the migrativity of U over T is equivalent
to have both U and T the same α-section.

Proposition 5. Let U be a conjunctive uninorm with neutral element e ∈]0,1[ lo-
cally internal on the boundary, T a t-norm and α ∈]0,e[. The following items are
equivalent:

i) U is (α,T )-migrative.
ii) U(α,y) = T (α,y) for all y ∈ [0,1].

Since uninorms are compensatory in the region A(e) and t-norms are always under
the minimum, the result above proves in particular that there are no uninorms (lo-
cally internal on the boundary) α-migrative over any Archimedean t-norm. Thus, if
we restrict from now on to continuous t-norms, to find (α,T )-migrative uninorms,
T must be the minimum or a nontrivial ordinal sum.
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Again from the Proposition 5, to characterize uninorms U , that are α-migrative
over a t-norm T , we only need to look for uninorms with the same α-section than T .
We will distinguish cases depending on the class of uninorms considered. We start
with uninorms in Umin.

Theorem 4. Let U ≡ 〈TU ,e,SU〉 be a uninorm in Umin with neutral element e∈]0,1[
and TU continuous. Let T be a continuous t-norm and α ∈]0,e[.

a) If T (α,α) = α then U is α-migrative over T if and only if U(α,α) = α . In
this case, both TU and T must be ordinal sums TU =

(〈
0, αe ,T1U

〉
,
〈α

e ,1,T2U
〉)

and
T = (〈0,α,T1〉 ,〈α,1,T2〉) for some continuous t-norms T1U ,T2U ,T1 and T2.

b) If T (α,α) < α then U is α-migrative over T if and only if both T and TU are
ordinal sums of the form T = (. . . ,〈a,b,TA〉 , . . .) and TU =

(
. . . ,

〈
a
e ,

b
e ,TUA

〉
, . . .

)
,

where a < α < b ≤ e, TA and TUA are Archimedean with TUA being α−a
b−a -migrative

over TA.

For representable uninorms the result is negative and there are no representable
uninorms α-migrative over t-norms, as it is stated in the following theorem.

Theorem 5. Let U be a representable uninorm and α ∈]0,1[. Then U is never
(α,T )-migrative for any t-norm T .

The case of idempotent uninorms is solved in the next theorem.

Theorem 6. Let U ≡ 〈g,e〉ide be a conjunctive idempotent uninorm with e ∈]0,1[, T
a t-norm and α ∈]0,e[. Then the following items are equivalent

i) U is (α,T )-migrative.
ii) U(α,y) = T (α,y) = min(α,y) for all y ∈ [0,1].

Note that when T is continuous the α-section of T is given by the minimum if
and only if α is an idempotent element of T . In this case, taking into account the
structure of idempotent uninorms, the previous theorem can be written as follows.

Theorem 7. Let U ≡ 〈g,e〉ide be a conjunctive idempotent uninorm with e ∈]0,1[, T
a continuous t-norm and α ∈]0,e[. Then the following items are equivalent

i) U is (α,T )-migrative.
ii) α is an idempotent element of T , g(1)≥ α and U(α,1) = α .

Now we deal with uninorms continuous in ]0,1[2.

Proposition 6. Let U ≡ 〈T1,λ ,T2,u,(R,e)〉cos,min be a uninorm in Ucos,min, α ∈]0,1[
such that α > λ , and T a t-norm. Then U is not α-migrative over T .

Proposition 7. Let U ≡ 〈T1,λ ,T2,u,(R,e)〉cos,min be a uninorm in Ucos,min, α ∈]0,1[
such that α = λ and T a continuous t-norm. Then U is α-migrative over T if and
only if T (λ ,λ ) = λ and U(λ ,1) = λ .
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Theorem 8. Let U ≡ 〈T1,λ ,T2,u,(R,e)〉cos,min be a uninorm in Ucos,min, α ∈]0,1[
such that α < λ and T a continuous t-norm.

a) If T (α,α) = α then U is α-migrative over T if and only if U(α,α) = α .
Moreover, in this case T1 =

(〈
0, αλ ,T

′
1

〉
,
〈α
λ ,1,T

′′
1

〉)
for some continuous t-norms

T ′1 and T ′′1 .
b) If T (α,α)<α then U is α-migrative over T if and only if in the structure of T

as ordinal sum of archimedean summands T = (. . . ,〈a,b,TA〉 , . . .), where α ∈]a,b[,
b ≤ λ , and the structure of T1 as ordinal sum of archimedean summands has the
form T1 =

(
. . . ,

〈
a
λ ,

b
λ ,T1A

〉
, . . .

)
with T1A being α−a

b−a -migrative over TA.

4 Migrative Uninorms over T-conorms

Similarly for the case of t-norms, it can be introduced the definition of migrativity
of a uninorm U over a t-conorm S.

Definition 5. Given a t-conorm S andα ∈ [0,1], a uninormU is said to beα-migrative
over S or (α,S)−migrative if

U(S(α,x),y) =U(x,S(α,y)) for all x,y ∈ [0,1]. (9)

Since the cases of t-norms and t-conorms are already known we will consider only
uninorms with neutral element e ∈]0,1[. We can derive similar results than for the
case of t-norms just by duality. Then, for instance we obtain,

Lemma 3. Let U be a uninorm with neutral element e ∈]0,1[ and S a t-conorm.
Then,

i) U is 0-migrative over S.
ii) U is 1-migrative over S if and only if U is disjunctive.

Proposition 8. Let U be a uninorm with neutral element e ∈]0,1[, S a t-conorm and
α ∈]0,1[. Suppose that U is α-migrative over S, then the following items hold.

i) U must be a disjunctive uninorm.
ii) U(α,y) =U(0,S(α,y)) for all y ∈ [0,1].

iii) If U is locally internal on the boundary then S(α,e) = α and α > e.

Proposition 9. Let U be a disjunctive uninorm locally internal on the boundary
with neutral element e ∈]0,1[, S a t-conorm and α ∈]e,1[. The following items are
equivalent:

i) U is (α,S)-migrative.
ii) U(α,y) = S(α,y) for all y ∈ [0,1].

Clearly, the last result derives into the fact that there are no α-migrative uninorms
(locally internal on the boundary) over Archimedean t-conorms. Thus, if we restrict
to the case of continuous t-conorms, to find (α,S)-migrative uninorms it must be S
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the maximum or a nontrivial ordinal sum. To find out all these solutions we only
need to find uninorms with the same α-section than the t-conorm S.

We can do the same study than for t-norms, between the classes of uninorms
recalled in the preliminaries. First, we have the following result for uninorms in
Umax.

Theorem 9. Let U ≡ 〈TU ,e,SU〉 be a uninorm in Umax with neutral element e∈]0,1[
and SU continuous. Let S be a continuous t-conorm and α ∈]e,1[.

a) If S(α,α) = α then U is α-migrative over S if and only if U(α,α) = α . In this
case, both SU and S must be ordinal sums SU =

(〈
0, α−e

1−e ,S1U
〉
,
〈α−e

1−e ,1,S2U
〉)

and
S = (〈0,α,S1〉 ,〈α,1,S2〉) for some continuous t-conorms S1U ,S2U ,S1 and S2.

b) If S(α,α)>α then U is α-migrative over S if and only if both S and SU are or-
dinal sums of the form S = (. . . ,〈a,b,SA〉 , . . .) and SU =

(
. . . ,

〈
a−e
1−e ,

b−e
1−e ,SUA

〉
, . . .

)
,

where e≤ a < α < b, SA and SUA are Archimedean with SUA being α−a
b−a -migrative

over SA.

For the case of representable uninorms we have no solutions.

Theorem 10. Let U be a representable uninorm and α ∈]0,1[. Then U is never
(α,S)-migrative for any t-conorm S.

The results for idempotent uninorms are as follows.

Theorem 11. Let U ≡ 〈g,e〉ide be a disjunctive idempotent uninorm with e ∈]0,1[,
S a t-conorm and α ∈]e,1[. Then the following items are equivalent

i) U is (α,S)-migrative.
ii) U(α,y) = S(α,y) = max(α,y) for all y ∈ [0,1].

Theorem 12. Let U ≡ 〈g,e〉ide be a disjunctive idempotent uninorm with e ∈]0,1[,
S a continuous t-conorm and α ∈]e,1[. Then the following items are equivalent

i) U is (α,S)-migrative.
ii) α is an idempotent element of S, g(0)≤ α and U(0,α) = α .

Finally, the results for uninorms continuous in ]0,1[2 are as follows.

Proposition 10. Let U ≡ 〈(R,e),v,S1,ω ,S2〉cos,max be a uninorm in Ucos,max, α ∈
]0,1[ such that α < ω , and S a t-conorm. Then U is not α-migrative over S.

Proposition 11. Let U ≡ 〈(R,e),v,S1,ω ,S2〉cos,max be a uninorm in Ucos,max, α ∈
]0,1[ such that α = ω and S a continuous t-conorm. Then U is α-migrative over S
if and only if S(ω ,ω) = ω and U(ω ,0) = ω .

Theorem 13. Let U ≡ 〈(R,e),v,S1,ω ,S2〉cos,max be a uninorm in Ucos,max, α ∈]0,1[
such that α > ω and S a continuous t-conorm.

a) If S(α,α) = α then U is α-migrative over S if and only if U(α,α) = α .
Moreover, in this case S2 =

(〈
0, α−ω1−ω ,S

′
2

〉
,
〈α−ω

1−ω ,1,S
′′
2

〉)
for some continuous

t-conorms S′2 and S′′2 .
b) If S(α,α)> α then U is α-migrative over S if and only if in the structure of S

as ordinal sum of Archimedean summands S = (. . . ,〈a,b,SA〉 , . . .), where α ∈]a,b[,
a ≥ ω , and the structure of S2 as ordinal sum of Archimedean summands has the
form S2 =

(
. . . ,

〈
a−ω
1−ω ,

b−ω
1−ω ,S2A

〉
, . . .

)
with S2A being α−a

b−a -migrative over SA.
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5 Conclusions and Future Work

Uninorms that are migrative over uninorms with the same neutral element were
studied in [20]. However, the hypothesis of having the same neutral element is not
necessary to find out solutions of the migrative property. In this line, a first step in
the study of migrative uninorms with different neutral element has been presented in
this work. Specifically, migrativity of uninorms with neutral element e ∈]0,1[ over
t-norms and t-conorms has been investigated in this paper. As a result, it has been
proved that there are no uninorms migrative over the product (that is the original
migrative equation) nor over any Archimedean t-norm (and similarly for t-conorms).
On the contrary, many solutions appear when we deal with the minimum t-norm
(maximum t-conorm), or with any ordinal sum t-norms (t-conorms), and all these
solutions varying among the most known classes of uninorms have been reached
and characterized.

Our future work on this topic will be directed to the study of uninorms that are
migrative over uninorms with different neutral element and to the study of nullnorms
that are migrative over t-norms, t-conorms and other nullnorms with the same or
different absorbing element. We believe that the results obtained in this study will
be useful in our work, because the reasoning to do is probably similar to that used
here.
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(with FEDER support).
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Additive Generators of Overlap Functions

Graçaliz Pereira Dimuro and Benjamín Bedregal

Abstract. Overlap functions are a particular instance of aggregation functions, con-
sisting by non-decreasing continuous commutative bivariate functions defined over
the unit square, satisfying appropriate boundary conditions. Overlap functions play
an important role in classification problems, image processing and in some problems
of decision making based on fuzzy preference relations. The concepts of indiffer-
ence and incomparability defined in terms of overlap functions may allow the appli-
cation in several different contexts. The aim of this papers is to introduce the notion
of additive generators of overlap functions, allowing the definition of overlap func-
tions (as two-place functions) by means of one-place functions, which is important
since it can reduce the computational complexity in applications. Also, some prop-
erties of an overlap function presenting a generator can be related to properties of
its generator, pointing to a more systematic methodology for their selection for the
various applications.

1 Introduction
Overlap functions are non-decreasing continuous commutative bivariate functions
defined over the unit square [0,1]× [0,1], satisfying appropriate boundary condi-
tions (see Def. 4), constituting a particular instance of aggregation functions play-
ing an important role in classification problems and image processing, when the
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classifying concepts presents overlapping. In this case, overlapping must be eval-
uated whenever the evaluated classes are not crisp, so one can check if a certain
classification structure is in accordance with the reality, being also adequate for the
desired decision making process [9].

Bustince et al. [9] presented the basic properties that must be fulfilled by overlap
functions when applied to the problem of object recognition, where the best clas-
sification with respect to background is the one with less overlapping between the
class object and the class background. More recently, Jurio et al. [16] analyzed sev-
eral properties of overlap functions, in particular, the convex combination of overlap
functions in a new overlap function, presenting an application to image processing.

Overlap functions can also be applied in decision making based on fuzzy prefer-
ence relations, where the associativity property is not strongly required and the use
of t-norms or t-conorms as the combination/separation operators is not necessary.
In [10], Bustince et al. applied overlap functions in fuzzy preference modeling and
decision making, presenting an algorithm to elaborate on an alternative preference
ranking that penalizes the alternatives for which the expert is not sure about his/her
preference.

The concepts of indifference and incomparability defined in terms of over-
lap functions may allow the application in several different contexts. Then, con-
sidering their potencial for practical applications, the main properties of overlap
functions (for example, migrativity, homogeneity, idempotency, Lipschitzianity con-
dition) have been studied in different aspects (see, e.g., the works by Bustince et
al. [8, 9, 10, 16] and Bedregal et al. [3]). Nevertheless, there are also different defi-
nitions of overlap functions (see, e.g., [2, 14, 33]).

The most well-known aggregation functions are t-norms and t-conorms, intro-
duced by Schweizer and Sklar [36, 39], which are used to model conjunction and
disjunction in fuzzy logic. An important approach that allows the definition of
t-norms and t-conorms (as two-place functions) by means of one-place functions is
the use of additive generators, which appear explicitly for the first time in [37, 38],
with several posterior generalizations (e.g., [15, 17, 18, 21, 22, 26, 27, 29, 31, 32,
40, 41, 42, 43, 44]). Dimuro et al. [12, 13] introduced interval additive genera-
tors of interval t-norm and t-conorms, which is approach based on interval fuzzy
logic [4, 5, 34, 35]

In the development of applications, the definition of an aggregation function in
terms of an additive generator is very important, since it reduces the computational
complexity [27]. Moreover, some properties of an aggregation function that has a
generator can be related to properties of its generator. Then, the study of aggregation
functions in terms of their additive generators can lead to a fresh view of those
operators and a more systematic methodology for their selection for the various
applications [20].

The aim of this papers is to introduce the notion of additive generator of overlap
functions, presenting some preliminary results. The paper is organized as follows.
Section 2 summarizes the main concepts related to aggregation functions, t-norms
and additive generators of t-norms. In Sect. 3, we briefly present overlap functions,
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introducing some example. Section 4 introduces the additive generators of overlap
functions with some initial results. Section 5 is the Conclusion.

2 T-norms and Their Additive Generators
One important class of fuzzy operators are the aggregation operators [3, 23], which
were proposed to aggregate several values in just one. A function A : [0,1]n → [0,1]
is said to be an aggregation operator if it satisfies the following two conditions:

(A1) A is increasing in each argument: for each i ∈ {1, . . . ,n}, if xi ≤ y, then
A(x1, . . . ,xn)≤ A(x1, . . . ,xi−1,y,xi+1, . . . ,xn);

(A2) Boundary conditions: A(0, . . . ,0) = 0 and A(1, . . . ,1) = 1.

In this paper, we are interested in the overlap functionsal. [8, 9, 10, 16], one im-
portant class of aggregation functions that are related in some sense to triangular
norms (t-norms).

Triangular norms were introduced by Menger [24] to model distance in prob-
abilistic metric spaces. Schweizer and Sklar [37, 38] redefined the t-norm axioms
proposed by Menger into the form used today. Nowadays, t-norms are often applied
as a generalization of the classical conjunction.

Definition 1. A bivariate aggregation operator T : [0,1]2 → [0,1] is said to be a
t-norm if, for all x,y,z ∈ [0,1], it satisfies the following conditions:
(T1) Commutativity: T (x,y) = T (y,x);
(T2) Associativity: T (x,T (y,z)) = T (T (x,y),z);
(T3) Boundary condition: T (x,1) = x.

Some other properties may be required for t-norms, such as the following:
(T4) Continuity: T is continuous in both arguments at the same time;
(T5) Idempotency: T (x,x) = x, for all x ∈ [0,1];
(T6) Positiveness: if T (x,y) = 0 then either x = 0 or y = 0.

Example 1. Typical examples of t-norms are:
(i) Gödel or minimum: G(x,y) = min{x,y};
(ii) Product: P(x,y) = x · y;
(iii) Łuukasiewicz: L(x,y) = max{x+ y− 1,0}.
Notice that L≤ P≤ G, that is, for each x,y ∈ [0,1], it holds that L(x,y) ≤ P(x,y)≤
G(x,y). In fact G is the greatest t-norm. G and P are continuous and positive t-norms.
In particular, G is the unique idempotent t-norm.

An element x ∈]0,1] is said to be a non-trivial zero divisor of a t-norm T , if there
exists y∈]0,1] such that T (x,y) = 0. Clearly, a t-norm is positive if and only if it has
no non-trivial zero divisor.1

Definition 2. [41] Let f : [a,b]→ [c,d] be an increasing or decreasing function. The
function f (−1) : [c,d]→ [a,b] defined by

1 See [18], for more details about t-norms.
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f (−1)(y) =

⎧⎨
⎩

sup{x ∈ [a,b] | f (x)< y} if f (a)< f (b),
sup{x ∈ [a,b] | f (x)> y} if f (a)> f (b),
a if f (a) = f (b)

(1)

is called the pseudo-inverse of f .

Notice that when f is an increasing (but not constant) function then

f (−1)(y) = sup{x ∈ [a,b] | f (x)< y}. (2)

Analogously, when f is a decreasing (but not constant) function then

f (−1)(y) = sup{x ∈ [a,b] | f (x)> y}. (3)

In the following, we denote the range or image of a function f : A→ B by Ran( f ).

Remark 1. [42, page 2] If a function f : [a,b]→ [c,d] is increasing (decreasing)
then f (−1) is also increasing (decreasing). If f is strictly increasing (decreasing) then
f (−1) is continuous, f (−1)◦ f = Id[a,b] and f ◦ f (−1)(x) = x if and only if x∈ Ran( f ).
Example 2. [12] The functions p, l : [0,1]→ [0,∞], defined, respectively, by

p(x) =

{−lnx if x �= 0
∞ if x = 0

and l(x) = 1− x, are strictly decreasing and p(1) = l(1) = 0. In this case, for each
y ∈ [0,∞], it holds that

p(−1)(y) =

{
e−y if y �= ∞
0 if y = ∞

and
l(−1)(y) =

{
1− y if y ∈ [0,1]
0 otherwise

that is, l(−1)(y) = max{1− y,0}.
In the literature [6, 11, 17, 18, 19, 20, 22, 25, 27, 28, 30, 37, 38, 31, 32, 40, 42, 43,
44], there exist several definitions for additive generators. In this paper, we adopt
the one extracted from [41], which was also applied in [12, 13].

Definition 3. Consider the functions f : [0,1]→ [0,∞] and F : [0,1]2 → [0,1]. The
function f is said to be an additive generator of F if f is a strictly decreasing
(increasing) function such that, for all x,y ∈ [0,1],

F(x,y) = f (−1)( f (x)+ f (y)), (4)

where f (−1) is the pseudo-inverse of f .

A function F : [0,1]2 → [0,1] is said to be an additively generated function if there
exists an additive generator of F . A function F is said to be additively generated by
f : [0,1]→ [0,∞] if f is an additive generator of F .

Theorem 1. [19, Theorem 2.6.3] Let t : [0,1]→ [0,∞] be a strictly decreasing func-
tion with t(1) = 0, such that t is right-continuous in 0 and, for each (x,y) ∈ [0,1]2,
it holds that
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t(x)+ t(y) ∈ Ran(t)∪ [t(0),∞]. (5)

Then, the function Tt : [0,1]2 → [0,1], defined by

Tt(x,y) = t(−1)(t(x)+ t(y)), (6)

is a t-norm.

The t-norm Tt given in Eq. (6) is said to be additively generated by the function t. In
this case, t is an additive generator of the t-norm Tt .

Example 3. [12] Let p, l : [0,1]→ [0,∞] be the functions defined in Example 2 and
consider x,y ∈ [0,1]. Then, defining

Tl(x,y) = l(−1)(l(x)+ l(y)) = l(−1)((1− x)+ (1− y)),

one has that:

Tl(x,y) =

{
x+ y− 1 if 1≤ x+ y
0 otherwise

and, then, it holds that Tl(x,y) = max{x+ y− 1,0} and so Tl = L (the Łuukasiewicz
t-norm given in Example 1). Analogously, we have that if x �= 0 and y �= 0 then

Tp(x,y) = p(−1)(p(x)+ p(y)) = p(−1)((−lnx)+ (−lny)) = e(lnx·y) = x · y.

Otherwise (suppose that x = 0), one has that

Tp(x,y) = p(−1)(p(x)+ p(y)) = p(−1)(∞+ p(y)) = 0.

It follows that Tp = P (the Product t-norm given in Example 1).

3 Overlap Functions
In this section, we consider the concept of overlap functions introduced by Bustince
et al. [8, 9, 10]. Some properties of overlap functions (e.g., migrativity, homogeneity,
idempotency, convex combination) were also studied by Bedregal et al. [3] and Jurio
et al. [16].

Definition 4. A bivariate function O : [0,1]2→ [0,1] is said to be an overlap function
if it satisfies the following conditions:
(O1) O is commutative;
(O2) O(x,y) = 0 if and only if xy = 0;
(O3) O(x,y) = 1 if and only if xy = 1;
(O4) O is non-decreasing;
(O5) O is continuous.

Example 4. It is possible to find several examples of overlap functions, such as any
continuous t-norm with no zero divisors (property (O2)). On the other hand, the
function OmM : [0,1]2 → [0,1], given by

OmM(x,y) = min(x,y)max(x2,y2),
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is a non associative overlap functions having 1 as neutral element, and, thus, is not
a t-norm. This is the same case of the overlap functions ODB,O2 : [0,1]2 → [0,1],
defined by

ODB(x,y) =

{ 2xy
x+y if x+ y �= 0
0 if x+ y = 0;

and
O2(x,y) = x2y2or, more generally,Op(x,y) = xpyp, with p > 1,

which are neither associative nor have 1 as neutral element.

Notice that whenever an overlap function has a neutral element, then, by (O3), this
element is necessarily equal to 1. Moreover, the following proposition proves that
associative overlap functions always have 1 as neutral element and, thus, they are
continuous t-norms with no zero divisors.

Proposition 1. [1, Lemma 2.1.1],[18, Proposition 2.41] Let F : [0,1]2 → [0,1] be
a continuous bivariate function. If F is associative, F(1,1) = 1 and F(0,1) =
F(1,0) = 0, then 1 is a neutral element of F, that is, F(x,1) = F(1,x) = x, for
each x ∈ [0,1].

As a corollary, we have the Theorem 6 in [9]:

Corollary 1. [9] O : [0,1]2 → [0,1] is an associative overlap function if and only if
O is a continuous and positive t-norm.

Nevertheless, the reverse of Proposition 1 does not hold, since, as shown in Exam-
ple 4, the overlap function O(x,y) = min(x,y)max(x2,y2) has 1 as neutral element
but is not associative.

4 Additive Generators of Overlap Functions
In this section, we introduce the concept of additive generator of an overlap function,
allowing the definition of overlap functions (as two-place functions) by means of
one-place functions (their additive generators).2

Lemma 1. Let θ : [0,1]→ [0,∞] be a decreasing function such that
1. θ (x)+θ (y) ∈ Ran(θ ), for x,y ∈ [0,1] and
2. if θ (x) = θ (0) then x = 0.

Then θ (x)+θ (y)≥ θ (0) if and only if x = 0 or y = 0.

Proof. (⇒) Since θ is decreasing and θ (x)+ θ (y) ∈ Ran(θ ) for each x,y ∈ [0,1],
then onde has that θ (x)+θ (y)≤ θ (0). Therefore, if θ (x)+θ (y)≥ θ (0) then it holds
that θ (x)+ θ (y) = θ (0). Suppose that θ (0) = 0. Then, since θ is decreasing, one
has that θ (x) = 0, for each x ∈ [0,1], which is contradiction with condition 2, and,
therefore, it holds that θ (0)> 0. Now, suppose that θ (0) �=∞. Then, since θ (0) �= 0,
one has that θ (0)+ θ (0) > θ (0), which is also a contradiction. So, it follows that
θ (0) =∞ and, therefore, since θ (x)+θ (y) = θ (0), we have that θ (x) =∞ or θ (y) =
∞. Hence, by condition 2, one has that x = 0 or y = 0. (⇐) It is straightforward. #$

2 Observe that any migrative overlap function can be naturally defined as an one-place func-
tion (see, e.g., [3, 9]).
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Lemma 2. Let θ : [0,1]→ [0,∞] and ϑ : [0,∞]→ [0,1] be bivariate functions such
that ϑ(θ (x)) = 0 if and only if x = 0. (7)

Then θ (x) = θ (0) if and only if x = 0

Proof. (⇒) If θ (x) = θ (0), then one has that ϑ(θ (x)) = ϑ(θ (0)). By the left side
of (7), we have that ϑ(θ (0)) = 0. Therefore, ϑ(θ (x)) = 0 and so, by the right side
of (7), we have that x = 0. (⇐) It is straightforward. �

Lemma 3. Let θ : [0,1]→ [0,∞] and ϑ : [0,∞]→ [0,1] be bivariate functions such
that ϑ(θ (x)) = 1 if and only if x = 1. (8)

Then θ (x) = θ (1) if and only if x = 1

Proof. Analogous to Lemma 2. �

Theorem 2. Let θ : [0,1]→ [0,∞] and ϑ : [0,∞]→ [0,1] be continuous and decreas-
ing functions such that

1. θ (x)+θ (y) ∈ Ran(θ );
2. ϑ(θ (x)) = 0 if and only x = 0;
3. ϑ(θ (x)) = 1 if and only x = 1;
4. θ (x)+θ (y) = θ (1) if and only x = 1 and y = 1.

Then, the function Oθ ,ϑ : [0,1]2 → [0,1], defined by

Oθ ,ϑ (x,y) = ϑ(θ (x)+θ (y)), (9)

is an overlap function.

Proof. We show that the conditions of Definition 4 holds. The proofs of the com-
mutativity property (condition (O1)) and the continuity property (condition (O5))
are immediate. Moreover, it follows that

Oθ ,ϑ (x,y) = 0 ⇔ ϑ(θ (x)+θ (y)) = 0 by Eq. (10)

⇔ ϑ(θ (z)) = 0 for some z ∈ [0,1] by condition 1;

⇔ z = 0 by condition 2;

⇔ θ (x)+θ (y) = θ (0) by Lemma 2;

⇔ x = 0 or y = 0 by Lemma 1.

which proves the condition (O2). Also, one has that:

Oθ ,ϑ (x,y) = 1 ⇔ ϑ(θ (x)+θ (y)) = 1 by Eq. (10)

⇔ ϑ(θ (z)) = 1 for some z ∈ [0,1] by condition 1;

⇔ z = 1 by condition 3;

⇔ θ (x)+θ (y) = θ (1) by Lemma 3

⇔ x = 1 and y = 1 by condition 4,

which proves the condition (O3). Finally, to prove the condition (O4), considering
z ∈ [0,1] with y≤ z, then θ (y)≥ θ (z). It follows that
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Oθ ,ϑ (x,y) = ϑ(θ (x)+θ (y))≤ ϑ(θ (x)+θ (z)) = Oθ ,ϑ (x,z),

since ϑ and θ are decreasing. #$
Corollary 2. Let θ : [0,1]→ [0,∞] and ϑ : [0,∞]→ [0,1] be continuous and strictly
decreasing functions such that

1. θ (0) = ∞ and θ (1) = 0;
2. ϑ(0) = 1 and ϑ(∞) = 0.

Then, the function Oθ ,ϑ : [0,1]2 → [0,1], defined by

Oθ ,ϑ (x,y) = ϑ(θ (x)+θ (y)), (10)

is an overlap function.

Proof. It follows from Theorem 2. �

(θ ,ϑ) is called an additive generator pair of the overlap function Oθ ,ϑ , and Oθ ,ϑ
is said to be additively generated by the pair (θ ,ϑ).

Example 5. Consider the functions θ : [0,1]→ [0,∞] and ϑ : [0,∞]→ [0,1], defined,
respectively by:

θ (x) =
{−2lnx if x �= 0

∞ if x = 0

and
ϑ(x) =

{
e−y if y �= ∞
0 if y = ∞,

which are continuous and strictly decreasing functions, satisfying the conditions 1-3
of Theorem 2. Then, whenever x �= 0 and y �= 0, one has that:

Oθ ,ϑ (x,y) = ϑ(θ (x)+θ (y)) = e−(−2lnx−2lny) = elnx2y2
= x2y2.

Otherwise, if x = 0, it holds that

Oθ ,ϑ (0,y) = ϑ(θ (0)+θ (y)) = ϑ(∞+θ (y)) = 0,

and, similarly, if y = 0, then Oθ ,ϑ (x,0) = 0. It follows that

Oθ ,ϑ (x,y) = O2(x,y) = x2y2,

the non associative overlap function for which 1 is not a neutral element, given in
Example 4.

Corollary 3. Considering the same conditions of Theorem 2, whenever ϑ = θ (−1)

then Oθ ,ϑ is a positive t-norm.

Proof. By Theorem 1, Oθ ,ϑ is a t-norm (additively generated by θ ), and by Theo-
rem 2, Oθ ,ϑ is positive. #$
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Theorem 3. Let O = [0,1]→ [0,1] be an overlap function having 1 as neutral ele-
ment. Then, whenever O is additively generated by a pair (θ ,ϑ), with θ : [0,1]→
[0,∞] and ϑ : [0,∞]→ [0,1] satisfying the conditions of Theorem 2, then O is asso-
ciative.

Proof. If 1 is the neutral element of O, then, since θ (1) = 0, one has that:

y = O(1,y) = ϑ(θ (1)+θ (y)) = ϑ(0+θ (y) = ϑ(θ (y)),

which implies that ϑ is the pseudo-inverse of θ , that is,

ϑ = θ (−1). (11)

It follows that:

O(x,O(y,z)) = ϑ(θ (x)+θ (O(y,z))) by Equation (4)

= ϑ(θ (x)+θ (ϑ(θ (y)+θ (z)))) by Equation (4)

= ϑ(θ (x)+θ (θ (−1)(θ (y)+θ (z)))) by Equation (11)

= ϑ(θ (x)+ (θ (y)+θ (z)))
= ϑ((θ (x)+θ (y))+θ (z)) by the associativity of the addition

= ϑ(θ (θ (−1)((θ (x)+θ (y))+θ (z))))
= ϑ(θ (ϑ((θ (x)+θ (y))+θ (z)))) by Equation (11)

= ϑ(θ (O(x,y))+θ (z)))) by Equation (4)

= O(O(x,y),z) by Equation (4),

which proves that O is associative. #$
The following result is immediate:

Corollary 4. Let O = [0,1]→ [0,1] be an overlap function additively generated by
a pair (θ ,ϑ). O is a t-norm if and only if 1 is a neutral element of O.

Notice that whenever T is a positive continuous t-norm (that is, an overlap function)
that is additively generated by a function t : [0,1]→ [0,∞] in the sense of Theorem 1,
then it is also additively generated by a pair (θ ,ϑ) in the sense of Theorem 2, where
θ = t and ϑ = t(−1), and vice-versa.

5 Conclusion
In this paper, we introduced the notion of additive generators of overlap functions,
presenting some preliminary results. Due to the applicability of overlap functions
(e.g., in classification problems, image processing and in some problems of deci-
sion making based on fuzzy preference relations), the fresh view of (two-place)
overlap functions by means of their (one-place) additive generators can reduce the
computational complexity and make easier the analysis of properties, providing a
more systematic methodology for their selection for the various applications.
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Future work is concerned with the definition of additive generators of grouping
functions [3, 10, 16], and with an in-depth study about related properties aiming at
the applications on image processing.
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Continuous T-norms and T-conorms Satisfying
the Principle of Inclusion and Exclusion

Mária Kuková and Mirko Navara

Abstract. The classical principle of inclusion and exclusion is formulated for
set-theoretic union and intersection. It is natural to ask if it can be extended to fuzzy
sets. The answer depends on the choice of fuzzy logical operations (which belong
to the larger class of aggregation operators). Further, the principle can be gener-
alized to interval-valued fuzzy sets, resp. IF-sets (Atanassov’s intuitionistic fuzzy
sets). The principle of inclusion and exclusion uses cardinality of sets (which has
a natural extension to fuzzy sets, interval-valued fuzzy sets and IF sets) or, more
generally, a measure, which can be defined in different ways. We also point up the
question of the domain of the measure which has been neglected so far.

1 Classical Form of the Principle of Inclusion and Exclusion
and Its Analogues

Finite sets A1, . . . ,An satisfy the equality

m

( n⋃
i=1

Ai

)
=

n

∑
i=1

m(Ai)−
n−1

∑
i=1

n

∑
j=i+1

m(Ai∩A j)+ · · ·+(−1)n+1 m

( n⋂
i=1

Ai

)
, (1)

where m is the cardinality of sets. More generally, we can take for m any (finitely
additive) measure defined on an algebra of subsets containing all A1, . . . ,An.

For n,k ∈N we use the notation
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Nn = {1,2, . . . ,n}

and we denote by Nn,k the set of all k-element subsets of Nn. Then (1) can be written
as

m
( ⋃

i∈Nn

Ai

)
= ∑

k∈Nn

(−1)k+1 ∑
M∈Nn,k

m
(⋂

i∈M

Ai

)
(2)

and, dually,

m

( ⋂
i∈Nn

Ai

)
= ∑

k∈Nn

(−1)k+1 ∑
M∈Nn,k

m

(⋃
i∈M

Ai

)
. (3)

An analogous formula holds for numbers instead of sets and the operations of max-
imum and minimum:

max{A1, . . . ,An}=
=

n

∑
i=1

Ai−
n−1

∑
i=1

n

∑
j=i+1

min{Ai,A j}+ . . .+(−1)n+1 min{A1, . . . ,An} , (4)

equivalently,
max
i∈Nn

Ai = ∑
k∈Nn

(−1)k+1 ∑
M∈Nn,k

min
i∈M

Ai (5)

and, dually,
min
i∈Nn

Ai = ∑
k∈Nn

(−1)k+1 ∑
M∈Nn,k

max
i∈M

Ai . (6)

The probabilistic sum (product t-conorm)

x� y = x
P∨y = x+ y− x · y

and the (ordinary) product satisfy a similar formula:

�
i∈Nn

Ai = ∑
k∈Nn

(−1)k+1 ∑
M∈Nn,k

∏
i∈M

Ai (7)

and, dually,

∏
i∈Nn

Ai = ∑
k∈Nn

(−1)k+1 ∑
M∈Nn,k

�
i∈M

Ai . (8)

It is natural to ask which forms of the principle of inclusion and exclusion can
be generalized in fuzzy sets theory. After an introductory Section 2, we investigate
generalizations of the principle of inclusion and exclusion to fuzzy sets in Section 3.
In Section 4, we study further generalizations to IF-sets (also called Atanassov’s
intuitionistic fuzzy sets in [1] and essentially equivalent to interval-valued fuzzy
sets [21]).1

1 The term “Atanassov’s intuitionistic fuzzy sets” has no relation to intuitionistic logic, thus
this terminology is misleading and it was criticized in [7]; instead of it, we prefer the term
“IF-sets”.
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2 Fuzzy Set Operations and Measures on Systems of Fuzzy Sets

For more information on the operations used here, we refer to [10, 14, 19].
We consider fuzzy subsets of a fixed non-empty set (universe) X and denote by

μA : X → [0,1] the membership function of a fuzzy set A. By ∧. (resp.
.∨) we denote a

general t-norm (resp. t-conorm), i.e., a binary operation on [0,1] which is commuta-
tive, associative, non-decreasing, and has the neutral element 1 (resp. 0). Particular
types of t-norms and t-conorms will be distinguished by indices in place of dots. We
shall use mainly the following t-norms:

x∧
G

y = min(x,y) , (Gödel (standard, min, Zadeh) t-norm)

x∧
P

y = x · y , (product t-norm)

x∧
L

y = max(x+ y− 1,0) . (Łuukasiewicz t-norm)

Their dual t-conorms are obtained by duality with respect to the standard fuzzy
negation, ¬x = 1− x,

x
.∨y = ¬(¬x∧. ¬y) ,

the explicit formulas are:

x
G∨y = max(x,y) , (Gödel (standard, min, Zadeh) t-conorm)

x
P∨y = x+ y− x · y , (product t-conorm)

x
L∨y = min(x+ y,1) . (Łuukasiewicz t-conorm)

Fuzzy intersections and unions are defined by

μA∩. B(x) = μA(x)∧. μB(x) , (9)

μA
.∪B(x) = μA(x)

.∨μB(x) . (10)

The notation ∩. and
.∪ is assigned to a general intersection and union. Particular

types will be distinguished by the same indices as the corresponding t-norms and
t-conorms.

The sign ↗ will denote the limit of an increasing sequence of reals, fuzzy sets,
later also of IF-sets.

We fix a σ -algebra S of subsets of X . We denote by T the family of all
S-measurable fuzzy subsets of X . In particular 1X ,0X ∈ T are the constant func-
tions on X with values 1,0, respectively.

Definition 1. A mapping m : T → [0,1] is called a state if the following properties
are satisfied:

1. m(1X) = 1, m(0X) = 0,

2. m(A
L∪B) = m(A)+m(B)−m(A∩

L
B),
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3. An ↗ A⇒m(An)↗m(A).

States were characterized by D. Butnariu and E. P. Klement in [2]:

Theorem 1. Every state m on T is of the form

m(A) =
∫
μA dP , (11)

where the state (probability measure) P is the restriction of m to the Boolean
σ -algebra T ∩{0,1}X of sharp elements of T .

A state of the form (11) is also called an integral state. It has been used in many pre-
vious studies, even in the pioneering work by Zadeh [20]. However, it was usually
introduced without any deeper motivation. The axiomatic approach of Butnariu and
Klement proves that, in the most important cases, all states are integral states [13].

3 The Principle of Inclusion and Exclusion for Fuzzy Sets

We investigare the following formulation of the principle of inclusion and exclusion:

m
( .⋃

i∈Nn
Ai

)
= ∑

k∈Nn

(−1)k+1 ∑
M∈Nn,k

m
(⋂

.
i∈M Ai

)
, (12)

where fuzzy intersection ∩. and fuzzy union
.∪ are based on a t-norm ∧. and a

t-conorm
.∨, respectively, and m is a state on T . In previous papers [3, 4, 5, 9, 17],

only Gödel, product, or Łuukasiewicz operations were considered. The result was that
Gödel and product operations satisfy the principle of inclusion and exclusion [9],
Łuukasiewicz operations violate it [9, 11]. We asked about the validity of the princi-
ple of inclusion and exclusion for all continuous t-norms and t-conorms. Using the
results of [3], we have proved in [12] that such operations are quite rare:

Theorem 2. [12] Suppose that a fuzzy intersection ∩. and a fuzzy union
.∪ are based

on a continuous t-norm ∧. and a continuous t-conorm
.∨, respectively. Let m be a

state on T . Then ∩. ,
.∪ satisfy the principle of inclusion and exclusion (12) iff ∧. and

.∨ can be expressed as the following ordinal sums:

∧. = (〈aα ,bα ,∧P 〉)α∈I .

.∨ = (〈aα ,bα , P∨〉)α∈I

for some collection of disjoint intervals ((aα ,bα))α∈I in [0,1], i.e.,



Continuous T-norms and T-conorms Satisfying 183

x∧. y =

{
aα +(bα − aα) ·

(
x−aα

bα−aα
∧
P

y−aα
bα−aα

)
if (x,y) ∈ [aα ,bα ]2,

min(x,y) otherwise,

x
.∨ y =

{
aα +(bα − aα) ·

(
x−aα

bα−aα

P∨ y−aα
bα−aα

)
if (x,y) ∈ [aα ,bα ]2,

max(x,y) otherwise.

4 The Principle of Inclusion and Exclusion for IF-Sets

The principle of inclusion and exclusion can be generalized to t-representable oper-
ations on IF-sets. An interval-valued fuzzy set A on the universe X is described by
two functions μA, ρA : X → [0,1], where μA(x) ≤ ρA(x) for all x ∈ X . Another ap-
proach is the concept of IF-sets (derived from Atanassov’s intuitionistic fuzzy sets),
introduced by Atanassov (see e.g. [1]). An IF-set is given by

A = {(x,μA(x), νA(x)) : x ∈ X} ,

where μA, νA : X → [0,1] such that

μA(x)+νA(x)≤ 1 (13)

for all x ∈ X . We shall use the notation

A = (μA, νA) .

The set of all IF-sets will be denoted by IF .
The partial ordering on the set IF is defined by the formula

A≤ B ⇐⇒ (μA ≤ μB and νA ≥ νB) .

Evidently (0X ,1X) is the least element of (IF ,≤), (1X ,0X) is the greatest element
of (IF ,≤). Ordinary fuzzy sets can be embedded into IF-sets by the following
homomorphism:

μA "→ (μA,1− μA) .

The operations with IF-sets A, B are defined by the following formulas:

A∩. B = (μA∧. μB, νA
.∨νB) ,

A
.∪B = (μA

.∨μB, νA∧. νB) ,

where
.∨ is the t-conorm dual to the t-norm ∧. (the indices distinguish the used fuzzy

operations). These operations are so-called t-representable t-norms and t-conorms.
It is known that not all t-norms and t-conorms on IF-sets are of this type, see [6] for
details.

The following definition comes from Riečan [15].
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Definition 2. A mapping m : IF → [0,1] is called an L-state if the following prop-
erties are satisfied:

1. m((1X ,0X )) = 1, m((0X ,1X)) = 0,

2. A∩
L

B = (0X ,1X)⇒ m(A
L∪B) = m(A)+m(B),

3. An ↗ A⇒m(An)↗m(A),

∀A,B,An ∈IF (n = 1, . . .).

Grzegorzewski and Mrówka [9] defined an L-probability P of an IF-set A by the
interval

P(A) =

[∫
X
μA dP,1−

∫
X
νA dP

]
, (14)

where P is a probability measure over X . More generally, an axiomatic approach to
probability on IF-events was proposed by Riečan [16]. Let us have a set

J = {[a,b] : a,b ∈ [0,1],a≤ b}

with an ordering given by the formula

[a1,a2]≤ [b1,b2] ⇐⇒ (a1 ≤ bi and a2 ≤ b2).

Definition 3. A mapping P : IF →J is called an L-probability if the following
conditions hold:

1. P(1X ,0X) = [1,1], P((0X ,1X)) = [0,0],

2. A∩
L

B = (0X ,1X)⇒P(A
L∪B) = P(A)+P(B),

3. An ↗ A⇒P(An)↗P(A).

We use the notation
P(A) =

[
P�(A),P�(A)

]
.

It is easy to see that the following proposition holds:

Proposition 1. Let P : IF → J . Then P is an L-probability if and only if
P�,P� : F → [0,1] are L-states and P� ≤P�.

In [4], Ciungu and Riečan have proved the following theorem which implies that the
notion of an L-state is a generalization of that of L-probability by Grzegorzewski
and Mrówka (see also [18, 5]):
Theorem 3. [4] For any L-state m : IF → [0,1] there exist probability measures
P, Q : 2X → [0,1] and α ∈ [0,1] such that ∀A ∈IF

m(A) =
∫

X
μA dP+α

(
1−

∫
X
(μA +νA)dQ

)
. (15)

We obtained the following generalization of the principle of inclusion and exclusion
to IF-sets:
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Theorem 4. [11, 12] Let Ai be IF-sets, Ai = (μAi ,νAi), i = 1, . . . ,n. Let m be an
L-state. Then the the principle of inclusion and exclusion holds for the Gödel and
product operations, i.e.

m
( .⋃n

i=1
Ai

)
=

n

∑
i=1

m(Ai)−
n−1

∑
i=1

n

∑
j=i+1

m(Ai∩. A j)+ . . .+(−1)n+1m
(⋂

.

n
i=1 Ai

)
,

where the pair of operations (
.∪,∩. ) can be chosen from the possibilities (

G∪,∩
G
) or

(
P∪,∩

P
). The product operations are the only ones which are based on continuous

Archimedean t-norms and satisfy the principle of inclusion and exclusion.

As a consequence of Theorem 4 and Proposition 1, we obtain the following result
for an L-probability P : IF →J :

Theorem 5. [11, 12] Let Ai be IF-sets, Ai = (μAi ,νAi), i = 1, . . . ,n. Let P be an
L-probability, P(A) =

[
P�(A),P�(A)

]
. Then the the principle of inclusion and

exclusion holds for the Gödel and product operations, i.e.

P�
( .⋃

i∈Nn
Ai

)
= ∑

k∈Nn

(−1)k+1 ∑
M∈Nn,k

P�
(⋂

.
i∈M Ai

)
,

P�
( .⋃

i∈Nn
Ai

)
= ∑

k∈Nn

(−1)k+1 ∑
M∈Nn,k

P�
(⋂

.
i∈M Ai

)
,

where the pair of operations (
.∪,∩. ) can be chosen from the possibilities (

G∪,∩
G
) or

(
P∪,∩

P
). The product operations are the only ones which are based on continuous

Archimedean t-norms and satisfy the principle of inclusion and exclusion.

5 Conclusions

We studied generalizations of the principle of inclusion and exclusion for fuzzy
sets, interval-valued fuzzy sets, and IF-sets (Atanassov’s intuitionistic fuzzy sets).
The conclusion is that it is satisfied only for the Gödel and product operations and
some of their ordinal sums. Future work could concentrate on measures which are
not integral measures and which are defined on domains which do not contain all
fuzzy sets measurable with respect to a given σ -algebra.
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[5] Ciungu, L., Riečan, B.: Representation theorem for probabilities on IFS-events. Infor-
mation Sciences 180, 793–798 (2010)

[6] Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy
t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)

[7] Dubois, D., Gottwald, S., Hájek, P., Kacprzyk, J., Prade, H.: Terminological difficul-
ties in fuzzy set theory—The case of “Intuitionistic Fuzzy Sets”. Fuzzy Sets and Sys-
tems 156(3), 485–491 (2005)

[8] Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: Making sense of fuzzy
sets. Fuzzy Sets and Systems 192, 3–24 (2012)

[9] Grzegorzewski, P., Mrówka, E.: Probability of intuitionistic fuzzy events. In: Grze-
gorzewski, P., et al. (eds.) Soft Methods in Probability, Statistics and Data Analysis,
pp. 105–115. Springer, New York (2002)

[10] Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers,
Dordrecht (2000)

[11] Kuková, M.: The inclusion-exclusion principle for L-states and IF-events. Information
Sciences 224, 165–169 (2013),
http://dx.doi.org/10.1016/j.ins.2012.10.029

[12] Kuková, M., Navara, M.: Principles of inclusion and exclusion for fuzzy sets. Fuzzy
Sets Syst. (accepted)

[13] Navara, M.: Triangular norms and measures of fuzzy sets. In: Klement, E.P., Mesiar, R.
(eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp.
345–390. Elsevier (2005)

[14] Nguyen, H.T., Walker, E.: A First Course in Fuzzy Logic, 2nd edn. Chapman &
Hall/CRC, Boca Raton (2000)
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On Mulholland Inequality and Dominance of
Strict Triangular Norms

Milan Petrík

Abstract. Mulholland inequality and its consequences for the dominance relation of
strict triangular norms are studied and new results made in this area are presented.
As a main result, it is presented that the dominance relation on the set of strict
triangular norms is not transitive and thus not an order relation.

1 Mulholland Inequality and Mulholland’s Condition

We denote by R
+
0 the set of positive real numbers with zero and by R

+ the set of
positive real numbers without zero. An increasing bijection f : R+

0 → R
+
0 is said to

solve Mulholland inequality if

f−1( f (x+ u)+ f (y+ v))≤ f−1( f (x)+ f (y))+ f−1( f (u)+ f (v)) (1)

holds for all x,y,u,v ∈ R
+
0 . By MI we denote the set of all increasing bijections of

R
+
0 that solve Mulholland inequality.
Mulholland inequality has attracted the attention of the researches studying tri-

angular norms mainly because it is closely related, as it will be shown in the sequel,
to the dominance relation on the set of strict triangular norms. Nevertheless, it has
been originally introduced by H. P. Mulholland in his paper [12] from 1950 as a
generalization of Minkowski inequality which represents the triangular inequality
for the p-norms.

Every function of the type x "→ xp, p≥ 1, solves Mulholland inequality; this way
we actually obtain Minkowski inequality. The set of solutions is, however, larger
and Mulholland in his paper has provided a sufficient condition for the fulfillment
of his inequality:
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Theorem 1. Let f : R+
0 →R

+
0 be an increasing bijection. If both f and log◦ f ◦ exp

are convex then f ∈MI.

If log◦ f ◦ exp is convex then we say, following the terminology of Matkowski [10],
that f is geometrically convex or, shortly, geo-convex. An example of an increasing
bijection on R

+
0 that is convex and geo-convex while not of the type x "→ xp, p≥ 1,

is x "→ exp(x)− 1.
In 1984, Tardiff has shown that Mulholland inequality is closely related to the

relation of dominance between strict triangular norms and has provided a different
sufficient condition [18]. In 1999 Schweizer posed a question (see Sklar [17] for
more details) on comparing the Mulholland’s and Tardiff’s condition. This question
has been answered in 2002 by Jarczyk and Matkowski who demonstrated [7] that
the Tardiff’s condition implies the one of Mulholland. An alternative proof has been
also given by Baricz [3] in 2010.

2 Counter-Example for Mulholland’s Condition

By MC we denote the set of all increasing bijections of R+
0 that are convex and

geo-convex, i.e., that comply with Mulholland’s condition. Theorem 1 states that
MC ⊆MI. It has remained an open question whether also MI ⊆MC, i.e., whether
Mulholland’s condition is also necessary for the solutions to Mulholland inequality,
or not. The condition of f being convex is necessary [12], however, the condition
of f being geo-convex is not necessary as it has been shown in a recent paper [13].
This has been done by presenting a new sufficient condition, stronger than the Mul-
holland’s one (see Theorem 2), and by presenting a function that complies with this
new condition but not with the Mulholland’s one. In this section, we are going to
give a brief presentation of the result.

Definition 1. Let f : R+
0 →R

+
0 be an increasing bijection.

Then f is said to be k-subscalable for some given k ∈ R
+
0 if

∀a,b,x ∈ R
+
0 , b− a≥ k, x≤ 1:

f (bx)
f (b)

≤ f (ax)
f (a)

. (2)

We denote the set of all k-subscalable bijections by Sk.
Further, f is said to be k-linear for some given k ∈R

+
0 if it is positive-linear of the

interval [0,k], i.e., if there exists r ∈R
+ such that f (x) = r x for all x ∈ [0,k]. Notice

that also the extreme case k = 0 requiring no partial linearity of f is considered. We
denote the set of all k-linear bijections by Lk.

Finally, for a given k ∈ R
+
0 we introduce the set LSk = Lk ∩ Sk of all bijections

that are k-subscalable and k-linear and the set

LS =
⋃

k∈R+
0

LSk .
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a b

f (a)

f (b)

a b

f (a)

f (b)

f

f a,b
↓

Fig. 1 Graph of the bijection f (left) and graph of the a,b-scale f a,b
↓ compared to the graph

of f (right)

Let us introduce another presentation of the formula (2). The inequality (2) can
be rewritten as:

f (a)
f (b)

f (bx)≤ f (ax) .

Now, making the substitution y = ax, we obtain the formula:

∀a,b,y ∈R
+
0 , b− a≥ k, y≤ a :

f (a)
f (b)

f

(
b
a

y

)
≤ f (y) . (3)

Denote

f a,b
↓ (y) =

f (a)
f (b)

f

(
b
a

y

)
.

We can see the graph of f a,b
↓ on [0,a] as a scaling of the graph of f on [0,b] to

[0,a]× [0, f (a)]. The notion of “subscalability” then comes from the requirement
on this scaled graph to be “under” the original graph of f . See an illustration in
Figure 1. The inequality (2) is illustrated in Figure 2.

If k = 0 then (2), as well as (3), is equivalent to the condition of geo-convexity.
Therefore, LS0 = MC and, thus, MC ⊆ LS.
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a b

f (a)

f (b)

1

1

f (ax)
f (a)

f (bx)
f (b)

Fig. 2 Graph of the bijection f (left) and graphs of the functions f (ax)/ f (a) and f (bx)/ f (b)
compared (right). The latter graphs are identical to the graph of f on [0,a] and [0,b], respec-
tively, scaled to the unit square [0,1]× [0,1].

Moreover, it can be proven that

Theorem 2. [13] Let f : R+
0 → R

+
0 be a convex increasing bijection which, for

some k ∈ R
+
0 , is k-subscalable and k-linear. Then f solves Mulholland inequality.

Thus, MC ⊆ LS ⊆MI. To show that MC � LS the following counter-example has
been provided in the same paper [13]:

Example 1. The increasing bijection g : R+
0 → R

+
0 is defined, for all x ∈ R

+
0 , as

g(x) =

⎧⎨
⎩

5
3 x if x ∈ [0,1] ,
7
3 x− 2

3 if x ∈ ]1,2] ,
x2 if x ∈ ]2,∞[ .

It can be shown [13] that g ∈ LS (particularly, g ∈ LS1) but g /∈MC. See the graph
of g in Figure 3-left.

3 Mulholland Inequality and Dominance of Strict Triangular
Norms

A triangular norm (or a t-norm for short) [2, 8] is a commutative, associative, and
non-decreasing binary operation ∗ : [0,1]× [0,1]→ [0,1] with neutral element 1. A
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1 2

5
3

4

k l

m

q · l p

Fig. 3 Left: Graph of the bijection g given by Example 1 which is 1-subscalable and 1-linear
but not geo-convex. Right: Graph of a general convex increasing bijection that is linear on
[0,k], affine on ]k, l], and power on ]l,∞[.

t-norm is said to be strict if there exists a decreasing bijection ϕ : [0,1]→ [0,∞] such
that x∗ y = ϕ−1 (ϕ (x)+ϕ (y)) for all x,y ∈ [0,1]; the bijection ϕ is then called the
generator of ∗. T-norms are studied nowadays mainly in the framework of the basic
logic [5, 6] and the monoidal t-norm based logic [4] which are both prototypical
fuzzy logics; particularly, the real unit interval [0,1] endowed with a strict t-norm is
isomorphic to the standard semantics of the product logic which is a special case of
the basic logic. Nevertheless, originally the t-norms have been introduced within the
framework of probabilistic metric spaces [9, 11] where they establish the triangular
inequality of the probabilistic metrics.

Dominance is a binary relation on a set of n-ary operations; particularly, a t-norm
∗ dominates a t-norm � (∗' �) if, and only if,

∀x,y,u,v ∈ [0,1] : (x� y)∗ (u � v) ≥ (x∗ u)� (y∗ v) .

The motivation to study dominance of t-norms comes from Tardiff [18] who recog-
nized that dominance plays an important role when constructing Cartesian products
of probabilistic metric spaces. The dominance of strict t-norms is closely related to
Mulholland inequality:

Theorem 3. [18, Theorem 3] Let ∗1 : [0,1]× [0,1]→ [0,1] and ∗2 : [0,1]× [0,1]→
[0,1] be two strict t-norms given by the generators ϕ1 : [0,1] → [0,∞] and
ϕ2 : [0,1]→ [0,∞], respectively, i.e.,
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x∗1 y = ϕ−1
1 (ϕ1 (x)+ϕ1 (y)) ,

x∗2 y = ϕ−1
2 (ϕ2 (x)+ϕ2 (y)) .

Then ∗2 dominates ∗1, i.e., ∗1 '∗2, if, and only if, f = ϕ2 ◦ϕ−1
1 solves Mulholland

inequality.

Remark that recently, this correspondence has been enlarged to all continuous Ar-
chimedean triangular norms [14].

It can be checked easily that the dominance relation is reflexive and
anti-symmetric. Nevertheless, it remained an open question for a long time whether
it is also transitive, and thus an order relation [1, Problem 17]. This question has
been answered recently by Sarkoci [16] who has given an example of three continu-
ous t-norms that violate the transitivity of the dominance relation. However, for the
class of strict t-norms, which form a subset of the continuous t-norms, the question
is still open.

Due to the relation between dominance of strict t-norms and Mulholland inequal-
ity, we can do the following reasoning. Supose three strict t-norms ∗1, ∗2, and ∗3

given by the generators ϕ1, ϕ2, and ϕ3, respectively, i.e., for all x,y ∈ [0,1]:

x∗1 y = ϕ−1
1 (ϕ1(x)+ϕ1(y)) ,

x∗2 y = ϕ−1
2 (ϕ2(x)+ϕ2(y)) ,

x∗3 y = ϕ−1
3 (ϕ3(x)+ϕ3(y)) .

We define further the following three increasing bijections of R+
0 :

f12 = ϕ1 ◦ϕ−1
2 ,

f23 = ϕ2 ◦ϕ−1
3 ,

f13 = ϕ1 ◦ϕ−1
3 .

Now, the transitivity formula of the dominance relation

∗1 ( ∗2 and ∗2 (∗3 ⇒ ∗1 (∗3 (4)

can be rewritten according to Theorem 3 as

f12 ∈MI and f23 ∈MI ⇒ f13 ∈MI .

It can be checked easily that f13 = f12 ◦ f23; therefore (4) holds if, and only if,

f12 ∈MI and f23 ∈MI ⇒ f12 ◦ f23 ∈MI .

Thus we have:

Lemma 1. The dominance relation on the set of strict t-norms is transitive if, and
only if, the set MI is closed with respect to compositions meaning that if f1 ∈MI
and f2 ∈MI then also f1 ◦ f2 ∈MI.
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It can be proven that the set MI is not closed with respect to compositions. Take
the function from Example 1 and denote it by f12. As stated in Example 1, f12 ∈
MI. Further, denote f23 : x "→ x2. By Mulholland’s condition, also f23 ∈ MI. Now,
denoting the composition of these two functions by f13 = f12 ◦ f23, it can be shown
that f13 /∈MI.

This implies that also transitivity of dominance of the strict t-norms is violated.
Let ϕ2 : [0,1]→ [0,∞] be any decreasing bijection, ϕ1 = f12 ◦ϕ2, ϕ3 = f−1

23 ◦ϕ2 and
let ∗1, ∗2, and ∗3 be strict t-norms generated by ϕ1, ϕ2, and ϕ3, respectively. Then
it can be shown (confer with the proof of Lemma 1) that ∗1 ( ∗2, ∗2 ( ∗3, but
∗1 �( ∗3. We introduce this as the result of the paper:

Theorem 4. The dominance relation on the set of strict t-norms is not transitive and
thus not an order.

4 Open Problems

There has been given a nice characterization for the bijections that are elements of
MC; particularly the following one:

Proposition 1. [15, Proposition 13] Let f : R+
0 → R

+
0 be a convex increasing bi-

jection. Then it is geo-convex (i.e. f ∈ MC) if, and only if, there exists a sequence
(gi : R+

0 → R
+
0 )i∈N of power functions gi : x "→ qi xpi , pi,qi ∈ R

+
0 , pi ≥ 1, such that

f =
∨

i∈N gi.

According to this characterization, it can be easily seen that the function g from
Example 1 is not an element of MC and, also, that the set MC is closed with respect
to compositions.

The structure of LS, however, has remained unexplored as well as remains an
open question whether LS = MI. We present the following questions:

Problem 1. The function in Example 1 could be defined, more generally, as

f [k, l,m, p](x) =

⎧⎨
⎩

m
k x if x ∈ [0,k] ,
l p−m
l−k x− klp−lm

l−k if x ∈ ]k, l] ,
xp if x ∈ ]l,∞[

for real parameters k, l,m, p ∈ R
+
0 such that k ≤ l and p ≥ 1. (See Figure 3-right

for an illustration.) Give some sufficient conditions on the parameters k, l,m, p in
order to ensure that f is k-subscalable. Clearly, it is necessary that l ≤ 2k and that
m ∈ [

kp,klp−1
]
.

Problem 2. More generally, what is the structure of the set LS?

Problem 3. We conjecture that LS � MI but, so far, there is no proof.
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Problem 4. What is the maximal subset of MI that is closed with respect to compo-
sitions?
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Distributivity Equation in the Class of
Noncommutative T-Operators

Paweł Drygaś

Abstract. Recently the distributivity equation was discussed in families of certain
operations (e.g. triangular norms, conorms, uninorms and nullnorms). In this paper
we describe the solutions of distributivity equation in the class of noncommutative
t-operators. Previous results about distributivity between nullnorms can be obtained
as simple corollaries.

1 Introduction

The problem of distributivity has been posed many years ago (cf. Aczel [1], pp.
318-319). A new direction of investigations is mainly concerned of distributivity be-
tween triangular norms and triangular conorms ([9] p.17). Since a short time many
authors deal with solution of distributivity equation for aggregation functions ([4]),
fuzzy implications ([2]), uninorms and nullnorms ([14], [20]), which are general-
ization of triangular norms and conorms.

Our consideration was motivated by intention of getting algebraic structures
which have weaker assumptions than nullnorms. A characterization of such binary
operations is interesting not only from a theoretical point of view, but also for their
applications, since they have proved to be useful in several fields like fuzzy logic
framework ([11]), expert system ([13]), neural networks ([13]) or fuzzy quantifiers
([11]).

First, we introduce weak algebraic structures (section 2). Then, the distributivity
equations are recalled (section 3). Next, solutions of distributivity equations from
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described families are characterized (section 4). Finally, our results are applied to
nulnorms, which can be compared with results from [14] and [8] (section 5).

2 Associative, Monotonic Binary Operations

We start with basic definitions and facts.

Definition 1 ([10]). A semi triangular norm T is an increasing, associative operation
T : [0,1]2 → [0,1] with neutral element 1.
A semi triangular conorm S is an increasing, commutative, associative operation
S : [0,1]2 → [0,1] with neutral element 0.
A triangular norm T is a commutative semi triangular norm
A triangular conorm S is a commutative semi triangular conorm

Example 1 ([10]). Well-known t-norms and t-conorms are:
TM(x,y) = min(x,y), SM(x,y) = max(x,y),
TP(x,y) = x · y, SP(x,y) = x+ y− xy,
TL(x,y) = max(x+ y− 1,0), SL(x,y) = min(x+ y,1),

Definition 2 ([3]). Operation V : [0,1]2 → [0,1] is called nullnorm if it is commuta-
tive, associative, increasing, has a zero element z ∈ [0,1], and that satisfies

V (0,x) = x for all x≤ z, (1)

V (1,x) = x for all x≥ z. (2)

By definition, the case z = 0 leads back to t-norms, while the case z = 1 leads back
to t-conorms (cf. [10]). The next theorem show that it is built up from a t-norm, a
t-conorm and the zero element.

Theorem 1 ([3]). Let z ∈ (0,1). A binary operation V is a nullnorm with zero ele-
ment z if and only if

V (x,y) =

⎧⎨
⎩

S∗(x,y) if x,y ∈ [0,z]
T ∗(x,y) if x,y ∈ [z,1]
z otherwise

, (3)

where{
S∗(x,y) = ϕ−1 (S (ϕ(x),ϕ(y))) , ϕ(x) = x/z, x,y ∈ [0,z]
T ∗(x,y) = ψ−1 (T (ψ(x),ψ(y))) , ψ(x) = (x− z)/(1− z), x,y ∈ [z,1]

, (4)

S is triangular conorm and T is triangular norm.

If in definition of nullnorm we omit assumptions (1) and (2), it cannot be shown that
a commutative, associative, increasing binary operator V with zero element z = 0 or
z = 1 behaves as a t-norm and t-conorm.

In Definition 2 the existence of zero element z follows from (1) and (2):
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S

Tz

z

0 z

z

1

1

Fig. 1 Structure of nullnorm

Lemma 1. Let V be a monotonic, binary operation and exist z ∈ [0,1] such that

V (0,x) =V (x,0) = x for all x≤ z (5)

V (1,x) =V (x,1) = x for all x≥ z (6)

then V (x,y) = z for (x,y) ∈ [0,z]× [z,1]∪ [z,1]× [0,z], V |[0,z] is monotonic, binary
operation with neutral element 0 and zero element z. V |[z,1] is monotonic, binary
operation with neutral element 1 and zero element z.
Moreover V is associative (commutative, idempotent) if and only if V |[0,z] and V |[z,1]
are associative (commutative, idempotent).

Definition 3. Element s ∈ [0,1] is called idempotent element of operation G :
[0,1]2 → [0,1] if G(s,s) = s. Operation G is called idempotent if all elements from
[0,1] are idempotent.

Theorem 2 (cf. [6]). Operation V : [0,1]2 → [0,1] is idempotent nullnorm with zero
element z if and only if it is given by

V (x,y) =

⎧⎨
⎩

max(x,y) if x,y ∈ [0,z]
min(x,y) if x,y ∈ [z,1]
z otherwise

. (7)

More general families of operations with zero element are examined in [16].
As we known, the structure of nullnorms is the same as the structure of t-operators

Definition 4 ([12]). Operation F : [0,1]2 → [0,1] is called t-operator if it is commu-
tative, associative, increasing and such that

F(0,0) = 0, F(1,1) = 1, (8)
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the functions F0 and F1 are continuous, where F0(x) = F(0,x), F1(x) = F(1,x).
(9)

In this definition the existence of the partial neutral elements (conditions (1) and
(2)) follows from the continuity of the operation on the boundary of the unit square
((8), (9)).

If in the definition of nullnorm we omit the commutativity condition, then we
obtain the operation given by (3) where the operations T and S are not necessary
commutative (i.e. they are semi-triangular norm and semi-triangular conorm). It is
different in the case of t-operators. Description of the family of such operations we
may find in [21], [17] and [7]

Let Fa,b denote the family of all associative, increasing operations F : [0,1]2 →
[0,1], such that F(0,1) = a, F(1,0) = b and functions F0, F1, F0, F1 are continuous,
where F0(x) = F(0,x), F1 = F(1,x), F0(x) = F(x,0), F1(x) = F(x,1), x ∈ [0,1].

Theorem 3 ([7]). Let F : [0,1]2 → [0,1], F(0,1) = a, F(1,0) = b. Operation F ∈
Fa,b if and only if there exists semi-triangular norm and semi-triangular conorm
such that

F(x,y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aS
(

x
a ,

y
a

)
if x,y ∈ [0,a],

b+(1− b)T
(

x−b
1−b ,

y−b
1−b

)
if x,y ∈ [b,1],

a if x≤ a≤ y,
b if y≤ b≤ x,
x otherwise,

(10)

for a≤ b and

F(x,y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bS
(

x
b ,

y
b

)
if x,y ∈ [0,b],

a+(1− a)T
(

x−a
1−a ,

y−a
1−a

)
if x,y ∈ [a,1],

a if x≤ a≤ y,
b if y≤ b≤ x,
y otherwise,

(11)

for b≤ a.

Remark 1. The class Fz,z is a class of t-operators with zero element z and noncom-
mutative components T and S.

Lets denote Fz := Fz,z.

3 Distributivity Equations

Now, we consider the distributivity equation (cf. [1], p. 318).

Definition 5. Let F,G : [0,1]2 → [0,1]. Operation F is distributive over G, if they
fulfil the distributivity conditions:

∀x,y,z∈[0,1] F(x,G(y,z)) = G(F(x,y),F(x,z)), (12)
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∀x,y,z∈[0,1] F(G(y,z),x) = G(F(y,x),F(z,x)). (13)

Lemma 2 (cf. [18]). Let F : X2 → X have right (left) neutral element e in a subset
/0 �= Y ⊂ X (i.e. ∀x∈Y F(x,e) = x (F(e,x)=x)). If operation F is distributive over
operation G : X2 → X fulfilling G(e,e) = e, then G is idempotent in Y .

Proof. Let x ∈ Y ⊂ X , y,z = e ∈ Y ⊂ X . If F is left distributive over G, then x =
F(x,e) = F(x,G(e,e)) = G(F(x,e),F(x,e)) = G(x,x). In the case where operation
F has left neutral element the proof is similar.

Corollary 1 ([5]). If operation F : [0,1]2 → [0,1] with neutral element e ∈ [0,1]
is distributive over operation G : [0,1]2 → [0,1] fulfilling G(e,e) = e, then G is
idempotent.

Lemma 3 ([18]). Every increasing operation F : [0,1]2 → [0,1] is distributive over
max and min.

Now we present solutions of distributivity equations (12) and (13) in the family
F =

⋃
a,b∈[0,1]

Fa,b.

4 Distributivity of F ∈Fa,b Over G ∈Fz

Now our consideration will concern the distributivity of F ∈Fa,b over G which is
noncommutative nullnorm. We distinguish here three different cases depending on
the inequality between the elements a, b of operation F and the zero element of
operation G. If a = b then we obtain case considered in [18].

Theorem 4. Let a,b,z ∈ [0,1], z < a < b. F ∈Fa,b is distributive over G ∈Fz if
and only if G is the idempotent t-operator (7) and F has the following form:

F(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zS1
(

x
z ,

y
z

)
if x,y ∈ [0,z],

z+(a− z)S2
(

x−z
a−z ,

y−z
a−z

)
if x,y ∈ [z,a],

max(x,y) if min(x,y)≤ z≤max(x,y)≤ a,

b+(1− b)T
(

x−b
1−b ,

y−b
1−b

)
if x,y ∈ [b,1],

a if x≤ a≤ y,
b if y≤ b≤ x,
x otherwise,

(14)

where S1, S2 are semi-triangular conorm, T is semi-triangular norm. (see Fig. 2).

Proof. Let a,b,z ∈ [0,1], z < a < b, F ∈Fa,b be distributive over G ∈Fz. Directly
from Lemma 2 operation G is an idempotent t-operator and it is given by (7).

Using (12) and (10) for F we have for x ∈ [0,a]

F(x,z) = F(x,G(0,1)) = G(F(x,0),F(x,1)) = G(x,a) =

{
z f or x ∈ [0,z]

x f or x ∈ [z,a]
,



202 P. Drygaś

0 z

z

1

1

a

a

b

b

T

S2

S1 max

max

a

bx

0 z

z

1

1

s min

max z

z

Fig. 2 Structure of operations F and G from Theorem 4

F(z,x) = F(G(0,1),x) = G(F(0,x),F(1,x)) = G(x,b) =

{
z f or x ∈ [0,z]

x f or x ∈ [z,a]
.

So, S is an ordinal sum of semi-triangular conorm S1 and S2.
Conversely, let F be given by (14) and G by (7). Since F is increasing in suitable

rectangular domains with common boundaries, then it is increasing in [0,1]2. To
prove (12) we have to consider 64 cases. Moreover, directly from Lemma 3 we can
omit cases with distributivity over max or min

In a similar way we obtain

Theorem 5. Let a,b,z ∈ [0,1], a ≤ z ≤ b. F ∈Fa,b is distributive over G ∈Fz if
and only if G is the idempotent t-operator (7).

Theorem 6. Let a,b,z ∈ [0,1], a < b < z. F ∈Fa,b is distributive over G ∈Fz if
and only if G is the idempotent t-operator (7) and F has the following form:

F(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

aS
(

x
a ,

y
a

)
if x,y ∈ [0,a],

b+(z− b)T1
(

x−z
z−b ,

y−z
z−b

)
if x,y ∈ [b,z],

z+(1− z)T2
(

x−z
1−z ,

y−z
1−z

)
if x,y ∈ [z,1],

min(x,y) if b≤min(x,y)≤ z≤max(x,y),
a if x≤ a≤ y,
b if y≤ b≤ x,
x otherwise,

(15)

where T1, T2 are semi-triangular norm, S is semi-triangular conorm.

5 Application to Nullnorms

From the above results we get corollaries about distributivity between nullnorms.
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From the above results we get corollaries about distributivity between two null-
norms.

Corollary 2 (cf.[14], Preposition 3.2). Let z1,z2 ∈ [0,1] and operations F and G be
nullnorms with z1 ≤ z2. Then F is distributive over G, if and only if G is idempotent
and F has the following form:

F =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S in [0,z1]
2

T1 in [z1,z2]
2

T2 in [z2,1]2

min in [z1,z2]× [z2,1]∪ [z2,1]× [z1,z2]

z1 otherwise

,

where S is triangular conorm, T1 and T2 are triangular norms.

By duality

Corollary 3 (cf.[14], Preposition 3.3). Let z1,z2 ∈ [0,1] and operations F and G be
nullnorms with z2 ≤ z1. Then F is distributive over G, if and only if G is idempotent
and F has the following form:

F =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S1 in [0,z2]
2

S2 in [z2,z1]
2

max in [0,z2]× [z2,z1]∪ [z2,z1]× [0,z2]

T in [z1,1]2

z1 otherwise

,

where S1, S2 are triangular conorms and B is triangular norm.

6 Conclusion

In this paper we give the partial characterization of distributivity equations (12) and
(13) for noncommutative t-operators. In future work we will be present solutions
of distributivity equations (12) and (13) in the family F , i.e we will be consider
the distributivity of F ∈Fa,b over G ∈Fc,d in all cases, depending on ordering of
a,b,c,d.
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[2] Baczyński, M.: On a class of distributive fuzzy implications. Internat. J. Uncertainty,
Fuzzines Knowledge-Based Syst. 9, 229–238 (2001)

[3] Calvo, T., De Baets, B., Fodor, J.: The functional equations of Frank and Alsina for
uninorms and nullnorms. Fuzzy Sets and Systems 120, 385–394 (2001)



204 P. Drygaś
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On Some Classes of Discrete Additive
Generators

G. Mayor and J. Monreal

Abstract. This work is developed in the field of the additive generation of discrete
aggregation operators. Specifically, this article deals with the study and applicability
of disjunctions that are additively generated by several special types of generators.

Keywords: discrete binary operation, disjunction, t–conorm, additive generator,
symmetric additive generator, S–implication function.

1 Introduction

Fuzzy logic is one of the tools for management of uncertainty. In Fuzzy logic we
usually work with a continuous scale of certainty values, the real unit interval [0,1],
however implementation restrictions in applications force us to use a finite scale of
truth degrees instead of the mentioned continuous one. In this paper we deal with
the class of finitely valued disjunction-like operations that contains, in particular, the
family of finitely valued t–conorms. In full analogy to the representation theorem of
continuous t–conorms, there exists a characterization of smooth (divisible) discrete
t–conorms as ordinal sums of Łuukasiewicz discrete t–conorms [6, 7]. Other refer-
ences on smooth discrete associative operations are [1, 6, 3]. Here our goal is the
study of different aspects of the additive generation of a class of discrete binary op-
erations that we call disjunctions; in particular the additive generation of t–conorms
(associative disjunctions). Some results related to discrete t–conorms differ substan-
tially from those obtained for ordinary t–conorms defined on [0,1]. In this sense, for
instance, we know that a t–conorm with nontrivial idempotent elements has not an
additive generator; this is not true for discrete t–conorms as we recall in this paper.
It seems clear that to develop a theory focused on the additive generation of dis-
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crete (associative) disjunctions is useful. Thus, a t–conorm S defined on the scale
{0,1,2, . . . ,n} is determined by n(n−1)

2 entries. If S admits an additive generator
(0,a1, . . . ,an) then it can be managed by only n integer values [4, 5, 8]. In this pa-
per we also point out the usefulness of having discrete additive generators when we
have to describe and manage properties of discrete binary operations.

2 Preliminaries

Consider L = {0,1, . . . ,n}, n ≥ 1, equipped with the usual ordering. We begin re-
calling basic definitions, examples and properties of finitely-valued t–conorms. A
complete exposition of this topic can be found in [7].

2.1 Disjunctions and T–Conorms on a Finite Totally Ordered Set

Definition 1. A disjunction on L is a binary operation D : L×L → L such that for
all i, i′, j, j′ ∈ L the following axioms are satisfied:

1. D(i, j) = D( j, i) (commutativity)
2. D(i,0) = i (boundary condition)
3. D(i, j) ≤ D(i′, j′) whenever i≤ i′ , j ≤ j′ (monotonicity)

Definition 2. A t–conorm on L is an associative disjunction
(D(D(i, j),k) = D(i,D(k,k)), ∀i, j,k ∈ L)

Example 1. We can consider as basic t–conorms:

i) the drastic,

SD(i, j) =

⎧⎨
⎩

i if j = 0,
j if i = 0,
n otherwise;

ii) the maximum SM(i, j) = max{i, j},
iii) the bounded sum, or Łuukasiewicz t–conorm, SL(i, j) = min{i+ j,n}.
Remark 1. The mapping N(i) = n− i is the only strong negation on L (N : L → L
decreasing and involutive).

Given a t-conorm S, the binary operation T : L× L → L defined by T (i, j) =
NS(N(i),N( j)) is a t-norm on L (commutative, associative, increasing in each vari-
able with n as neutral element) called the N-dual of S.

Definition 3. A disjunction D on L is smooth if

0≤ D(i+ 1, j)−D(i, j)≤ 1, ∀i, j ∈ L, i < n.

Definition 4. A t–conorm S is Archimedean if for all i, j ∈ L\{0,n} there exists

m ∈ N satisfying i(m)
S > j where i(m)

S = S(S(...S(i, i)...)).
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It can be easily proved that a t-conorm on L is Archimedean if and only if the only
idempotent elements are 0 and n.

Proposition 1. SŁuis the only smooth Archimedean t–conorm on L.

Now, we recall a well-known method for constructing a new t–conorm from two
given t–conorms.

Proposition 2. Let S1 be a t–conorm on {0,1, . . . ,m} and S2 a t–conorm on L =
{0,1, . . . ,n}, with m,n≥ 1. Consider the binary operation S defined on {0,1, . . . ,m+
n} as follows:

S(i, j) =

⎧⎨
⎩

S1(i, j) if (i, j) ∈ {0,1, . . . ,m}2,
m+ S2(i−m, j−m) if (i, j) ∈ {m,m+ 1, . . . ,m+ n}2,
max(i, j) otherwise.

Then S is a t–conorm on {0,1, . . . ,m+ n}, called the ordinal sum of S1 and S2 and
denoted by S = 〈S1,S2〉.
Next, we are going to characterize the class of smooth t–conorms as ordinal sums
of Łuukasiewicz t–conorms.

Proposition 3. A t–conorm S on L= {0,1, . . . ,n} is smooth if and only if there exists
a set I = {0 = a0 < a1 < .. . < ar < ar+1 = n}, 0≤ r ≤ n−1, of elements of L, such
that:

S(i, j) =

{
min{al+1, i+ j− al} if (i, j) ∈ (al ,al+1)

2, 0≤ l ≤ r,
max{i, j} otherwise.

Remark 2.

i) SM ≤ S ≤ SŁufor any smooth t–conorm S.
ii) There are exactly 2n−1 smooth t–conorms on L.

Example 2. The table below shows the cardinality of different classes of t–conorms
on L for distinct values of n.

n t–conorms smooth Archimedean ordinal sums others
1 1 1 1 0 0
2 2 2 1 1 0
3 6 4 2 3 1
4 22 8 6 11 5
5 94 16 22 45 27
6 451 32 95 205 151
7 2386 64 471 1021 894
8 13775 128 2670 5512 5593
9 86417 256 17387 32095 36935
10 590489 512 131753 201367 257369

Next, we introduce the pseudo-inverse of appropriate monotone functions from
L to R+, and we consider a construction similar to that given in case of ordinary
t–conorms. Thus, we state a general method to construct disjuntive operations on L
involving only a one-place real function and the usual addition.
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2.2 Additive Generation of Disjunctions and T–Conorms

Let R+ be the set of non-negative real numbers, and consider the class F of strictly
increasing functions f : L→ R+ with f (0) = 0. We can represent such functions by
ordered strictly increasing lists of length n+ 1, (a0 = 0,a1, ...,an) where ai = f (i) ,
i ∈ L.

Given f ∈ F , we define the pseudo–inverse of f as the function f (−1) : R+→ L
defined by f (−1)(t) = max{i ∈ L; f (i) ≤ t}.
Proposition 4. Given f ∈ F, the binary operation on L, D : L×L→ L, defined by

D(i, j) = f (−1)( f (i)+ f ( j)) i, j ∈ L (1)

is a disjunction on L. We write D = 〈 f 〉 to indicate that the disjunction D is defined
from f via (1). In this case we say that D is additively generated by f and we also
say that f is an additive generator of D.

For brevity, the functions in F will be called additive generators.

Proposition 5. If D = 〈(0,a1, . . . ,an)〉 then we have the following equivalences:

1. D(i, j) = k < n if and only if ak ≤ ai + a j < ak+1, k < n.
2. D(i, j) = n if and only if an ≤ ai + a j.

Example 3. If D = 〈(0,1,2,3,14,21,28,35,42)〉 then we have S(4,5) = 7 because
a7 ≤ a4 + a5 < a8.

D 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 3 3 4 5 6 7 8
2 2 3 3 3 4 5 6 7 8
3 3 3 3 3 4 5 6 7 8
4 4 4 4 4 6 7 8 8 8
5 5 5 5 5 7 8 8 8 8
6 6 6 6 6 8 8 8 8 8
7 7 7 7 7 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8

We say that an additive generator f is associative if the disjunction D = 〈 f 〉 is asso-
ciative (a t–conorm). The function f = (0,2,3,4,6) is associative and it generates
an Archimedean non smooth t-conorm on {0,1,2,3,4}.
Proposition 6. Consider Ran f +Ran f = { f (i)+ f ( j) ; i, j ∈ L}. If f ∈ F is such
that Ran f +Ran f ⊂ Ran f ∪ [ f (n),+∞) then the disjunction generated by f is an
Archimedean t-conorm.

Remark 3. There are disjunctions which are not additively generables. There are
t–conorms which are not additively generables.



On Some Classes of Discrete Additive Generators 209

Here we show the three t–conorms on {0,1,2,3,4,5,6,7,8} without additive
generator.

S1 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 4 5 6 6 8 8 8 8
2 2 5 5 7 8 8 8 8 8
3 3 6 7 7 8 8 8 8 8
4 4 6 8 8 8 8 8 8 8
5 5 8 8 8 8 8 8 8 8
6 6 8 8 8 8 8 8 8 8
7 7 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8

S2 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 5 5 5 7 8 8 8 8
2 2 5 6 6 7 8 8 8 8
3 3 5 6 8 8 8 8 8 8
4 4 7 7 8 8 8 8 8 8
5 5 8 8 8 8 8 8 8 8
6 6 8 8 8 8 8 8 8 8
7 7 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8

S3 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 5 5 6 6 8 8 8 8
2 2 5 5 7 8 8 8 8 8
3 3 6 7 7 8 8 8 8 8
4 4 6 8 8 8 8 8 8 8
5 5 8 8 8 8 8 8 8 8
6 6 8 8 8 8 8 8 8 8
7 7 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8

Example 4. The three basic t–conorms quoted above have the following additive
generators:

i. SŁu= 〈(0,1, . . . ,n− 1,n)〉
ii. SM = 〈(0,1,3,7, . . . ,2n−1− 1,2n− 1)〉

iii. SD = 〈(0,n− 1,n, . . . ,2n− 3,2n− 2)〉
Proposition 7. Let f = (a0,a1, . . . ,an) and g = (b0,b1, . . . ,bn) in F. Then 〈 f 〉= 〈g〉
if and only if the following conditions hold:

1. ak ≤ ai + a j < ak+1 implies bk ≤ bi + b j < bk+1

2. ai + a j ≥ an implies bi + b j ≥ bn

for all i, j,k ∈ L with k < n.

As a consequence of the previous proposition, if D is a disjunction additively gener-
able then it has a generator f with Ran f ⊂ Z+, where Z+ is the set of non-negative
integers.

Proposition 8. Any smooth t–conorm is additively generable.

Smooth

T–conorms

Disjunctions

T–conorms

Disjunctions

Additively generable Non-additively generable
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3 Some Classes of Additive Generators

Given an additive generator f , we will study the relationship between its structure
and the types of t–conorms that they generate.

3.1 Concave Additive Generators

Definition 5. An additive generator f = (0,a1, . . . ,an) is called concave when

a1 ≥ a2− a1 ≥ . . .≥ an−1− an−2 ≥ an− an−1

In other words, f ∈ F is concave when there exists a decreasing list d = (d1, . . . ,dn)
of positive real numbers such that ai = d1 + . . .+ di ∀i ∈ L.

From this kind of additive generators, we can obtain disjunctions without
non-trivial idempotent elements.

Proposition 9. Let f a concave additive generator. Then, D = 〈 f 〉 is a disjuntion on
L having only 0 and n as idempotent elements.

Proof. If we suppose 0 < i < n and D(i, i) = i then 2ai < ai+1, that leads to to
2(d1 + . . .+ di) < d1 + . . .+ di+1, that is, d1 + . . .+ di < di+1, which is impossible
because di ≥ di+1. Thus, D(i, i)> i.

3.2 Convex Additive Generators

Definition 6. An additive generator f = (0,a1, . . . ,an) is called concave when

a1 ≤ a2− a1 ≤ . . .≤ an−1− an−2 ≤ an− an−1

In other words, f ∈ F is concave when there exists an increasing list d = (d1, . . . ,dn)
of positive real numbers such that ai = d1 + . . .+ di ∀i ∈ L.

Proposition 10. Let f = (0,a1,a2, . . . ,an) be a convex additive generator. The dis-
junction D additively generated by f is smooth.

Proof. It is ai = d1+ . . .+di ∀i≥ 1 with d1≤ d2≤ . . .≤ dn. Note that D(i, j) = k< n
if and only if d1 + . . .+ dk ≤ d1 + . . .+ di + d1 + . . .+ d j < d1 + . . .+ dk+1, and
D(i, j) = k = n if and only if d1+ . . .+dn≤ d1+ . . .+di+d1+ . . .+d j. In any case,
d j+1 + . . .+ dk ≤ d1 + . . .+ di.
If we suppose D(i, j) = k and D(i, j− 1) = k− l for some k, 2 < k ≤ n and l ≥ 2
then we obtain d j + . . .+ dk−l ≤ d1 + . . .+ di < d j + . . .+ dk−l+1 < d j + . . .+ dk−1.
But dk ≥ d j, thus d1 + . . .+ di < d j+1 + . . .+ dk which is a contradiction.

Next we give a characterization of the convex additive generators which are as-
sociative. We know from Proposition 10 that they generate smooth t-conorms.

Proposition 11. Let f = (0,a1,a2, . . . ,an) be a convex additive generator where
ai = d1 + . . .+ di, 1 ≤ i ≤ n, and d1 ≤ d2 ≤ . . . ≤ dn. Then, D = 〈 f 〉 is a t–conorm
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if and only if there exist 0 = i0 < i1 < .. . < ir = n, with r ≥ 1, i1, . . . , ir−1 ∈ L such
that ∀k : 0≤ k ≤ r− 1:

aik < dik+1 ≤ . . .≤ dik+1 < aik+1,
aik + dik+1 + . . .+ d� ik+ik+1

2 � ≥ d
ik+1−� ik+ik+1

2 �+ . . .+ dik+1

In this case, we can obtain an additive generator with the following structure

0 <
︷ ︸︸ ︷
d1 = . . .= di1 < ai1 <

︷ ︸︸ ︷
di1+1 ≤ . . .≤ di2 < ai1+1 < .. . < air−1 <

︷ ︸︸ ︷
dir−1+1 ≤ . . .≤ dir <

air−1+1

Example 5.

Associative generator
d = ( 1, 333, 3, 3, 111111, 12, 13, 14, 656565, 70, 75, 80, 85, 90, 95)

f = (0, 111, 4, 7, 101010, 21, 33, 46, 606060, 125, 195, 270, 350, 435, 525, 620)

The list of differences of this additive generator has four blocks (r = 4, i0 = 0, i1 =
1; i2 = 4, i3 = 8, i4 = 15) having one, three, four and seven elements respectively.

A simple method to obtain a convex (concave) additive generator from one that is
concave (convex) is described below.

Proposition 12. Let f = (0,a1, . . . ,an) be a concave (convex) additive generator.
Then the additive generator f ∗=(b0,b1, . . . ,bn) where bi = an−an−i, i= 0,1, . . . ,n,
is convex (concave).

Proof. If f = (0,a1, . . . ,an) is concave (convex) then ∀i = 1, . . . ,n,

d∗i = bi− bi−1 = an− an−i− (an− an−i+1) = an−i+1− an−i = dn−i

Thus, when di decrease (increase), the differences d∗i = bi−bi−1 increase (decrease).

3.3 Symmetric Additive Generators

Definition 7. We say that an additive generator f = (0,a1, . . . ,an) is symmetric if
ai + an−i = an ∀i ∈ L.

Next proposition shows the structure of such additive generators.

Proposition 13. An additive generator f = (0,a1, . . . ,an) is symmetric if and only
if there exists k, 0 < k < n such that:

an = 2ak and ak+r = an− ak−r, r = 1, . . . ,k , if n is even.
an = ak−1 + ak and ak+r = an− ak−1−r, r = 1, . . . ,k− 1 , if n is odd.

Next we treat the construction of associative symmetric additive generators. To do
that, we take a basic t–conorm and, using the first half part of its standard additive
generator, we complete it in order to obtain a symmetric additive generator.

We only develop here the construction from the maximum t–conorm. For more
details on this construction from the other basic t–conorms see [8].
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3.3.1 Construction of Associative Symmetric Additive Generators (n = 2k)

From the standard additive generator of SM on Lk = {0,1, ...,k}, that is
(0,1,3, . . . ,2k − 1), we consider the symmetric additive generator on L2k with its
first part (0,1,3, . . . ,2k− 1) and the second one defined by the condition in Defini-
tion 7.

Note that the first part is convex and the second cancave. We call these additive
generators convex-concave. In the table below are written these additive generators
for different values of k.

k symmetric additive generator
1 (0,1,2)
2 (0,1,3,5,6)
3 (0,1,3,7,11,13,14)
4 (0,1,3,7,15,23,27,29,30)
5 (0,1,3,7,15,31,47,55,59,61,62)
6 (0,1,3,7,15,31,63,95,111,119,123,125,126)
7 (0,1,3,7,15,31,63,127,191,223,239,247,251,253,254)
8 (0,1,3,7,15,31,63,127,255,383,447,479,495,503,507,509,510)

Here we draw the symmetric additive generator in case k = 6 (n = 12). It generates
the t–conorm given below.
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S 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 2 3 4 5 6 7 8 9 10 12 12
2 2 2 2 3 4 5 6 7 8 9 12 12 12
3 3 3 3 3 4 5 6 7 8 12 12 12 12
4 4 4 4 4 4 5 6 7 12 12 12 12 12
5 5 5 5 5 5 5 6 12 12 12 12 12 12
6 6 6 6 6 6 6 12 12 12 12 12 12 12
7 7 7 7 7 7 12 12 12 12 12 12 12 12
8 8 8 8 8 12 12 12 12 12 12 12 12 12
9 9 9 9 12 12 12 12 12 12 12 12 12 12

10 10 10 12 12 12 12 12 12 12 12 12 12 12
11 11 12 12 12 12 12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 12 12 12 12 12 12 12

f = (0,1,3,7,15,31,63,95,111,119,123,125,126)
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Next proposition shows that the above additive generators are associative.

Proposition 14. The symmetric additive generator f = (0,a1, . . . ,ak,ak+1, . . . ,a2k)
given by

ai = 2i− 1
ak+i = 2 · (2k− 1)− ak−i

i = 1, . . . ,k

is associative.

Proof. We have to proof S(S(i, i′), i′′) = S(i,S(i′, i′′)), ∀1 ≤ i, i′, i′′ ≤ 2k. Consider
only one of the possible cases: i ≤ i′ < k < i′′. Taking j = i′′ − k, we have
S(S(i, i′), i′′) = S(i′,k + j). Taking into account the Proposition 5, we distinguish
two subcases:

• If i′ < k− j then ak+ j ≤ ai′ + ak+ j = 2i′ − 1+ 2 · (2k − 1)− (2k− j − 1) = 2 ·
(2k − 1) + 2i′ − 2k− j ≤ 2 · (2k − 1) + 2k− j−1− 2k− j = 2 · (2k − 1)− 2k− j−1 <
2 · (2k− 1)− (2k− j−1− 1) = ak+ j+1 and thus S(i′,k + j) = k + j. On the other
hand, S(i,S(i′, i′′)) = S(i,k + j) and from a similar computation as above, we
obtain S(i,k+ j) = k+ j

• If i′ ≥ k− j then ai′+ak+ j = 2i′ −1+2 ·(2k−1)−(2k− j−1)= 2 ·(2k−1)+(2i′ −
2k− j)≥ 2 · (2k−1) = an and thus S(i′,k+ j) = n. On the other hand, S(i,S(i′,k+
j)) = S(i,n) = n.

Now to highlight the advantage of having additive generators for aggregation oper-
ators, we show below how to use them in the study of properties of S-implication
functions.

4 Additive Generation and the Study of Discrete Implication
Functions

Definition 8. A binary operation I : L×L→ L is an implication on L if the following
conditions hold ∀i, j,k ∈ L:

(I1) I(i,k)≥ I( j,k) whenever i≤ j (decreasing in the first place),
(I2) I(i, j) ≤ I(i,k) whenever j ≤ k (increasing in the second place),
(I3) I(0,0) = I(1,1) = 1, I(1,0) = 0 (boundary conditions).

Proposition 15. Let S be a t-conorm on L and N the only strong negation on L. The
binary operation IS on L defined by

IS(i, j) = S(N(i), j) i, j ∈ L. (2)

is an implication on L that we call S-implication.

We will study three properties related to implication functions:

P1 Identity principle: I(i, i) = n, ∀i ∈ L.
P2 Ordering principle: I(i, j) = n⇔ i≤ j, ∀i, j ∈ L.
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P3 Generalized Modus Ponens principle: T (i, I(i, j)) ≤ j, ∀i, j ∈ L, where T is a
t-norm and I an implication with n as left-neutral element.

From now on we suppose that I is an S–implication function, T the N-dual of S and
f = (0,a1, . . . ,an) an additive generator of S.

First, our aim is to describe the properties above in terms of the given additive
generator of S.

Proposition 16. Let I be an S–implication function as above. Then:

i) The implication I satisfies the Identity principle if and only if an−i + ai ≥ an

∀i ∈ L.
ii) The implication I satisfies the Ordering principle if and only if ai + a j ≥ an ⇔

i+ j≥ n.
iii) The implication I satisfies the Generalized Modus Ponens principle if and only

if

1) ai + a j ≥ an =⇒ i+ j ≥ n.

2) ai + a j < an =⇒ ∃k < n tal que

{
ak ≤ ai + a j < ak+1

an− j ≤ ai + an−k

Next proposition states that the symmetry of an additive generator is a sufficient
condition to assure that the all above mentioned properties are satisfied.

Proposition 17. If the t–conorm S admits a symmetric additive generator then the
corresponding S–implication function satisfies the properties P1, P2 and P3.

According to this result, the S–implication function obtained from the additive gen-
erator of subsection 3.3.1, f = (0,1,3,7,15,31,63,95,111,119,123,125,126), sat-
isfies the properties P1, P2 and P3.

5 Conclusions

This article deals with the study and applicability of disjunctions that are additively
generated by several special types of generators. From one hand, some classes of
additive generator are introduced, then the disjunctions generated by them are stud-
ied. In particular, we show the advantages of having symmetric additive generators
when S–implication functions are considered.
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The Consensus Functional Equation in
Agreement Theory

Juan Carlos Candeal, Esteban Induráin, and José Alberto Molina

Abstract. We introduce the concept of the consensus functional equation, for a bi-
variate map defined on an abstract choice set. This equation is motivated by mis-
cellaneous examples coming from different contexts. In particular, it appears in the
analysis of sufficiently robust agreements arising in Social Choice. We study the
solutions of this equation, relating them to the notion of a rationalizable agreement
rule. Specific functional forms of the solutions of the consensus functional equation
are also considered when the choice sets have particular common features. Some
extension of the consensus equation to a multivariate context are also explored.

Keywords: Functional equations in two variables, Agreement rules in Social
Choice.

Mathematics Subject Classification (2010): 91B16, 91B14.

1 Introduction

Assume that a research team, working individually, can reach a best output, say x.
In the same way, a second (different) team, working individually, can reach their
best performance, say y. However, if both teams collaborate and work together, they
could reach an even better achievement, say F(x,y). In this situation we may think
that if one of the research teams could be able to get, working individually, the best
possible output F(x,y), the collaboration with the other team would not lead beyond
that best attainment F(x,y). In other words, the following functional equation arises:
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F(x,y) = F(F(x,y),y) = F(x,F(x,y)).

Here x,y ∈ X , where X denotes he set of all possible goals of any research team.

This functional equation was already introduced in [11] and [13], where it was
named the consensus functional equation.

The same equation arises when we study some particular kinds of agreements be-
tween two individuals, encountered in Social Choice. In this direction, let us assume
that X is a nonempty set, that represents the collection of possible choices of each
individual. (i.e.: X can be interpreted as the choice set, which is the same for both
individuals). Suppose that F : X×X → X is the map or that expresses the agreement
between them. (i.e.: F can be interpreted as an agreement rule). In other words, if
the first individual chooses the alternative x∈X while the second individual chooses
the alternative y ∈ X , then F(x,y) ∈ X is another alternative, where the two agents
agree, and so-to-say represents a consensus option for both agents.

The consensus equation is based upon the following idea: Suppose that we con-
sider a situation in which the agreement is so robust that, if either of the individiuals
changes her/his initial position on the one agreed by both of them, then the for-
mer achieved agreement should not vary, and remains the same. In formula, when
analyzing this kind of agreements we should study the functional equation

F(F(x,y),y) = F(x,F(x,y)) = F(x,y), (x,y ∈ X).

In this second example, we may notice that the last equality of the formula is exactly
the unanimity principle over the alternatives that are in the codomain of the map F
(i.e., F(z,z) = z, for every z ∈ F(X ×X) ⊆ X). Thus, if F satisfies non-imposition
condition (i.e., F is surjective, so that X = F(X×X)), then the consensus equation
implies the unanimity principle for the whole X .

The consensus equation transpires a property that, in some sense, reminds us the
Nash equilibrium concept coming from Game Theory (see e.g. [26, 20]). As a matter
of fact, if, for a given x,y ∈ X , we interpret F(x,y) as the “best social agreement"
(provided that the first agent chooses x whereas the second one chooses y), then the
“best choice" for the first agent in order to reach that “best collective agreement",
provided that the second agent keeps at her/his choice y, is to single out F(x,y). The
same argument applies for the second individual.

Here we furnish two further examples, that may also constitute a motivation to
study the functional equation of consensus by its own merit:

1. Suppose that several different tasks must be done to achieve a goal. Let T be the
set of those tasks to be done. We may identify an individual with the subset of
tasks that she/he is able to do. In this case, we may interpret X as the power set
P(T ), and consider the union “∪" of subsets of T as a binary operation defined
on P(T ). Then it is clear that (x∪ y)∪ y = x∪ (x∪ y) = x∪ y for every x,y ∈
P(T ). Therefore, if we change the notation, setting F(x,y) = x∪y (x,y ∈ X) we
immediately get

F(F(x,y),y) = F(x,F(x,y)) = F(x,y) (x,y ∈ X).
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2. Suppose that a nonempty set X is given a total order “!". Given two elements
x,y ∈ X , let F(x,y) = y if x ! y, otherwise let F(x,y) = x (x,y ∈ X). It is obvi-
ous that this bivariate map F : X ×X → X satisfies, in particular, the functional
equation

F(F(x,y),y) = F(x,F(x,y)) = F(x,y) (x,y ∈ X).

The paper is organized as follows:

Section 2 contains the basic background.

In Section 3 we study the consensus equation from an abstract point of view. To
that end, we introduce a key concept; namely, that of a rationalizable bivariate
map. Rationalizability is a notion that resembles the one already introduced in the
literature of single-valued choice functions (see [4, 5, 28] or, more recently, [25]).
Here, it means that a particular binary relation, that we call the revealed relation,
describes F . (Thus, a map F : X ×X , on a choice set X , is said to be rationalizable
if it can be expressed in terms of a suitable binary relation defined on X , as stated
in Definition 5 in Section 2 below). We characterize bivariate maps that satisfy the
consensus equation plus the anonymity principle as those that are rationalizable.

Associativity (i.e., F(F(x,y),z) = F(x,F(y,z)), for every x,y,z ∈ X) is a slightly
more demanding property than the fulfilment of the consensus equation (see [11,
13]). When an agreement rule F : X×X →X is associative, we get a more appealing
result: namely, in this case there is a partial order, say !, defined on X such that
(X ,!) is a semi-lattice and F(x,y) turns out to be the supremum, with respect to
!, of {x,y}, for every x,y ∈ X (see [11]). Notice that associativity can be viewed as
an extension property (see e.g. [21, 16, 12, 22, 1, 29]). That is, if F is associative
then, for any finite number of agents, we can induce agreement rules based on it.
For instance, if the number of agents is three we may induce a trivariate rule G : X×
X ×X → X by declaring that G(x,y,z) = F(F(x,y),z) = F(x,F(y,z)) (x,y,z ∈ X).
In other words, associativity invites everyone “to join the party".

We also pay attention to the case where F is a selector (see [23, 18]), i.e.,
F(x,y) ∈ {x,y}, for every x,y ∈ X . In this case, and for obvious reasons, we will
say that F satisfies the independence of irrelevant alternatives condition. Quite sur-
prisingly, the independence of irrelevant alternatives condition is proved to be more
restrictive than consensus.

In Section 4 we study several aspects of the solutions of the consensus equation
in concrete scenarios.

In particular, we pay attention to the case in which X can be identified to a real
interval. In this case, we add some extra conditions on F , namely monotonicity
(Paretian properties) and continuity. Then we get some impossibility as well as
some possibility results about the existence of agreement rules. On the one hand,
we prove that there is no strongly Paretian bivariate map which satisfies consensus.
On the other hand, we show that the only continuous agreement rules that satisfy
the independence of irrelevant alternatives condition are the max and the min (i.e.,
those based upon the most and the least favoured individuals, respectively).
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In Section 5 we explore the extended consensus equation, considering n-variate
maps that correspond to general models of consensus where n-individuals are in-
volved, obviously with n≥ 2.

A final Section 6 of further comments closes the paper.

Remark 1. Throughout the paper we will focus on the consensus equation involving
only two variables. The generalization of this equation for more than two variables
could constitute the raw material to build future pieces of research.

2 Preliminaries

In what follows, X will denote a nonempty set, that we interpret as the choice set (or
the set of alternatives). Moreover, F : X×X → X will be a bivariate map defined on
X .

Definition 1. The map F is said to satisfy:

(1) the unanimity principle if F(x,x) = x for every x ∈ X ,
(2) the anonymity principle if F(x,y) = F(y,x) for every x,y ∈ X ,
(3) the consensus functional equation (short, consensus) if it holds that

F(F(x,y),y) = F(x,F(x,y)) = F(x,y) for every x,y ∈ X ,
(4) the associativity equation if F(x,F(y,z)) = F(F(x,y),z) for every x,y,z ∈ X ,
(5) the independence of irrelevant alternatives condition (shortly denoted by IIA))

if F(x,y) ∈ {x,y}, for every x,y ∈ X .

Remark 2. Needless to say that the word “consensus" is encountered in many
branches of mathematical Social Choice theory, under a wide sort of scopes and
approaches (see e.g. [15, 27, 30, 10, 14, 8, 19, 24, 6, 9, 20, 2]). All these contexts,
as the equation introduced throughout the present manuscript, transpire the idea of
buying models to interpret situations in which a “social agreement" between indi-
viduals is reached, following some “rules" or procedures.

Definition 2. A bivariate map F : X ×X → X is said to be an agreement rule if it
satisfies the conditions (1) to (3) of Definition 1 above.

Now we recall some basic concepts on binary relations. A binary relation! defined
on X is said to be a partial order if it is reflexive (i.e., x! x holds for every x ∈ X),
antisymmetric (i.e., (x ! y)∧ (y ! x)⇒ x = y, for every x,y ∈ X) and transitive
(i.e., (x ! y)∧ (y ! z)⇒ x ! z, for every x,y,z ∈ X). If, in addition, ! is total (i.e.,
(x! y)∨ (y! x) holds for every x,y ∈ X), then ! is said to be a total order.

A binary relation R defined on X is said to have the supremum property if, for
every x,y ∈ X , there is a unique z ∈ X such that the following two conditions are
met: (i) (xRz)∧(yRz) holds; (ii) if there is u∈ X such that xRu and yRu hold, then
zRu also holds. The unique element z that satisfies conditions (i) and (ii) is called the
supremum of x and y and it is denoted by supR{x,y}. Whenever supR{x,y}∈ {x,y},
then it is called maximum of x and y and it is denoted by maxR{x,y}.
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Definition 3. Let ! be a partial order defined on X . Then (X ,!) is said to be a
semi-lattice if ! has the supremum property.1

3 Consensus vs. Rationalizable Bivariate Maps

The main purpose of this section is to provide a description of the agreement rules
defined on a nonempty choice set X in terms of certain binary relations on X with
special features. To that end, the following concept will play an important role.

Definition 4. Let X be a nonempty set. Let F be a bivariate map defined on X .
Associated with F we consider on X a new binary relation, denoted by Rr and
defined as follows: xRry ⇐⇒ F(x,y) = y, for every x,y ∈ X . The binary relation
Rr is said to be the revealed relation of F .

Before introducing the notion of a rationalizable bivariate map, a notational conven-
tion is needed.

Notation. Let R be a binary relation defined on X . Then, for each x ∈ X , GR(x)
will denote the upper contour set of x, i.e., GR(x) = {z ∈ X : xRz}.
Definition 5. A bivariate map F on X is said to be rationalizable if F(x,y) ∈
GRr(x)∩GRr(y), for every x,y ∈ X .

Remark 3. That is, the concept of rationalizability intends to describe a bivariate
map by means of the upper contour sets of its corresponding revealed relation.

Next Theorem 1 characterizes the bivariate anonymous maps that satisfy the con-
sensus equation in terms of those which are rationalizable.

Theorem 1. Let F be a unanimous and anonymous bivariate map defined on X.
Then F is rationalizable if and only if it satisfies consensus.

Proof. Suppose that F is an anonymous bivariate map defined on X which satisfies
the consensus equation. Let x,y ∈ X be fixed. In order to show that F is rational-
izable, notice that F(x,F(x,y)) = F(x,y) since F satisfies the consensus equation.
Thus, by definition of Rr, F(x,y) ∈ GRr(x). Moreover, by anonymity together with
consensus, it holds that F(y,F(x,y)) = F(F(x,y),y) = F(x,y).
Therefore, F(x,y) ∈GRr(y). So, F(x,y) ∈ GRr(x)∩GRr (y). Since x,y are arbitrary
elements of X , it follows that F is rationalizable.

For the converse, suppose that F is an anonymous rationalizable bivariate map
defined on X . We want to see that F satisfies consensus. To that end, let x,y ∈ X
be fixed. Since F is rationalizable, it holds that xRrF(x,y) and yRrF(x,y). But, by
definition of the revealed consensus relation, this means that F(x,F(x,y)) = F(x,y)
and F(y,F(x,y)) = F(x,y). Now, by anonymity, F(y,F(x,y)) = F(F(x,y),y) and

1 For an excellent account of the material related to latticial or semi-latticial structures, see
e.g., [7, 17].
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therefore F(F(x,y),y) = F(x,y). The fact that F(F(x,y),F(x,y)) = F(x,y) follows
directly from unanimity. Since x,y are arbitrary elements of X , we have shown that
F satisfies consensus. �

Remark 4. A unanimous and anonymous bivariate map F defined on X may fail to
be rationalizable, even when Rr is transitive. Indeed, let X = {x,y,z} and define F :
X×X→X as follows: F(x,x) =F(y,z) =F(z,y) = x, F(y,y) =F(x,z) =F(z,x) = y
and F(z,z) = F(x,y) = F(y,x) = z. It is clear that this map F is unanimous and
anonymous. In addition, an easy calculation gives: Rr = {(x,x),(y,y),(z,z)}. In
other words, xRrx, yRry and zRrz are the only possible relationships, according to
Rr, among the three elements of X . Thus, in addition to being reflexive and anti-
symmetric, Rr is transitive too. However, F is not rationalizable since, for example,
z = F(x,y) /∈ GRr(x)∩GRr(y).

In general, as the next Proposition 1 shows, for a (unanimous) bivariate map F , con-
sensus is a less restrictive condition than associativity or independence of irrelevant
alternatives.

Proposition 1. Let F be a bivariate map defined on X.

(i) If F is unanimous and associative, then it safisfies consensus.
(ii) If F satisfies IIA, then it safisfies consensus.

Proof. (i) Let x,y ∈ X be fixed. Then, by associativity and unanimity, it holds that
F(F(x,y),y) = F(x,F(y,y)) = F(x,y). The other equality of consensus is proved
similarly. So, since x,y are arbitrary points of X , F satisfies consensus.

(ii) Let x,y∈ X be fixed. Since F satisfies IIA, either F(x,y) = x or F(x,y) = y. If
F(x,y) = x, then we have that F(F(x,y),y) = F(x,y) = x = F(x,x) = F(x,F(x,y)).
Now, if F(x,y) = y, then F(F(x,y),y) = F(y,y) = y = F(x,y) = F(x,F(x,y)). So,
in any of the two cases, we have that F(F(x,y),y) = F(x,F(y,y)) = F(x,y). Since
x,y are arbitrary points of X , F satisfies consensus. �

As a direct consequence of Theorem 1 and Proposition 1 we obtain the following
corollary.

Corollary 1. (i) Every unanimous, anonymous and associative bivariate map de-
fined on X is rationalizable.

(ii) Every bivariate map defined on X which satisfies IIA is rationalizable.

Remark 5. It is easy to see that, for a unanimous and anonymous bivariate map F ,
associativity and IIA are independent conditions. Moreover, there are agreement
rules (hence rationalizable bivariate maps) other than associative maps or those that
satisfy IIA. For a thorough description of the links that can be established among
the mentioned properties of bivariate maps, see [13].

We now focus on associative agreement rules. As we have just seen, associativity
is more restrictive than consensus. Indeed, associativity reinforces in a significant
manner the scope of Theorem 1, as next Theorem 2 states.
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Theorem 2. Let F be an associative agreement rule defined on X. Then, (X ,Rr) is
a semi-lattice and F(x,y) = supRr{x,y}, for every x,y ∈ X.

Proof. Let us first prove that Rr is a partial order on X . Indeed, reflexivity fol-
lows directly from unanimity of F . To see that Rr is antisymmetric, let x,y ∈ X be
such that xRry and yRrx hold. Then, by definition of Rr, we have that F(x,y) = y
and F(y,x) = x. So, by anonymity, x = y and therefore Rr is antisymmetric. To
prove transitivity of Rr, let x,y,z ∈ X be such that xRry and yRrz hold. Then,
by definition of Rr again, we have that F(x,y) = y and F(y,z) = z. Let us see
that F(x,z) = z, which would mean that xRrz. Indeed, F(x,z) = F(x,F(y,z)) =
F(F(x,y),z) = F(y,z) = z, the second equality being true since F is associative.
Thus, Rr is transitive too.

Let us show now that (X ,Rr) is a semi-lattice. To that end, we must prove
that, for given arbitrary elements x,y ∈ X , the supremum supRr{x,y} exists. No-
tice that, since F is asociative, by Proposition 1 (i), it satisfies consensus too. So,
F(x,F(x,y)) = F(x,y) and therefore, by definition of Rr, we have that xRrF(x,y).
In a similar way, now using anonymity and consensus, we get F(y,F(x,y)) =
F(F(x,y),y) = F(x,y). That is, yRrF(x,y). So F(x,y) is an upper bound, with re-
spect to Rr, of x and y. Let us see that it is the least upper bound. To see this,
let z ∈ X such that xRrz and yRrz. Then, by definition of Rr again, we have that
F(x,z) = F(y,z) = z. Hence F(F(x,y),z)) = F(x,F(y,z)),y) = F(x,z) = z, the first
equality being true by associativity. Therefore, it follows that F(F(x,y),z)) = z
which means that F(x,y)Rrz. So, we have shown that F(x,y) = supRr{x,y}, which
proves the second claim of the statement of Theorem 2. This finishes the proof. �
We now present some illuminating observations about the concepts introduced
above.

Remark 6. (i) It should be observed that, if R is a binary relation on X for which
(X ,R) is a semi-lattice, then the bivariate map FR defined on X as FR(x,y) =
supR{x,y} ∈ X (x,y ∈ X) is an associative agreement rule. Moreover, in this case,
it can be easily proved that R and Rr coincide. So, associative agreement rules are
characterized as those that can be rationalized by means of semi-latticial structures.

(ii) An agreement rule that satisfies IIA need not be associative. Moreover, and
unlike the associative case, the revealed relation Rr in this situation can exhibit
intransitivities. To see an example, consider the set X = {x,y,z} and the bivariate
map F : X ×X → X given by F(x,x) = F(x,z) = F(z,x) = x; F(x,y) = F(y,x) =
F(y,y) = y; F(y,z) = F(z,y) = F(z,z) = z. It is clear that F is anonymous and
satisfies IIA. However, it is not associative since F(x,F(y,z)) = F(x,z) = x, whereas
F(F(x,y),z) = F(y,z) = y. In terms of the revealed relation Rr we have that xRry,
yRrz and zRrx. So, there is a “cycle", with respect to Rr, for the three-element set
{x,y,z}.

(iii) If an agreement rule F satisfies IIA, then the revealed consensus relation Rr

becomes a total order on X . Moreover, if an agreement rule F which satisfies IIA
is also associative, then F(x,y) = maxRr{x,y}, for every x,y ∈ X . So, associative
agreement rules that satisfy IIA are characterized as those that can be rationalized
by means of totally ordered structures.
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(iv) Associative agreement rules have an interesting property that we call the ex-
tension property. The extension property means that an associative (bivariate) agree-
ment rule generates associative, unanimous and anonymous n-variate rules, for any
finite number of agents n ∈ N. In other words, if a (unanimous and anonymous)
map involving just two individuals is associative then it is possible that more and
more individuals can “join the party" and enjoy a “stable" agreement. So, from a
behavioural perspective, associativity is an appealing property. Indeed, let F2 be an
associative (bivariate) agreement rule. Then, by Theorem 2, F2(x,y) = supRr{x,y},
for every x,y∈X . Now, for any n≥ 3, define Fn : Xn = X× . . . (n-times) . . .×X →X
as follows: Fn(x1, . . . ,xn) = supRr{x1, . . . ,xn}, for every x1, . . . ,xn ∈ X . It is then
straightforward to see that, for every n≥ 3, the n-variate map Fn so-defined is asso-
ciative, unanimous and anonymous.

(v) It should be noted that Theorem 2 can be applied to scenarios in which the
choice set X is, on its own, a space of preferences. Indeed, let X denote the collec-
tion of all the total preorders (i.e.: transitive and total binary relations) that can be
defined on a finite set Z. Let F : X ×X → X be the Borda rule (see [25]). Then, it
is straightforward to see that F is an associative agreement rule. Thus, Theorem 2
states that the Borda rule is entirely described by the revealed relation on X . Actu-
ally, it is simple to prove that, in this case, Rr is given as follows: �1 Rr �2 if and
only if �2 ⊆ �1 and ≺1 ⊂ ≺2, (�1,�2∈ X). Here, ≺ stands for the asymmetric
part of � (i.e., x≺ y if and only if ¬(y � x), for every x,y ∈ X).

As seen in the proof of Theorem 2, an associative, unanimous and anonymous bi-
variate map defined on X has the property that its revealed relation turns out to be
transitive. The converse is not true even though the bivariate map is rationalizable
(or, equivalently by Theorem 1, it satisfies consensus). Nevertheless, for a unani-
mous bivariate map that satisfies IIA, transitivity of its revealed relation implies as-
sociativity. These two facts are proved through the next Proposition 2, which closes
this section.

Proposition 2. (i) An agreement rule such that its associated revealed relation is
transitive may fail to be associative.

(ii) Every agreement rule that satisfies IIA is associative.

Proof. (i) Let X = {x,y,z,u}. Let F : X × X → X be the bivariate map given by
F(x,x) = x; F(y,y) = y; F(x,y) = F(x,z) = F(y,z) = F(y,z) = F(z,x) = F(z,y) =
F(z,z) = F(z,u) = F(u,z) = z; F(x,u) = F(y,u) = F(u,x) = F(u,y) = F(u,u)= u.
It is clear that F satisfies unanimity and anonymity. Let us see that it is an agreement
rule (i.e., it satisfies consensus) by showing that it is rationalizable (see Theorem
1 above). To that end, let Rr be its revealed relation. A direct calculation proves
that Rr is given by: xRrx, xRrz, xRru, yRry; yRrz, yRru, zRrz, uRrz, uRru.
Let us observe that Rr is transitive. Now, by checking the upper contour sets of
Rr, we obtain: GRr(x) = {x,z,u}; GRr(y) = {y,z,u}; GRr(z) = {z}; GRr(u) =
{z,u}. Thus F(x,x) = x ∈ GRr(x); F(x,y) = z ∈ GRr(x)∩GRr(y); F(x,z) = z ∈
GRr(x)∩GRr (z); F(x,u) = u∈GRr(x)∩GRr (u); F(y,y) = y∈GRr(y); F(y,z) =
z ∈ GRr(y)∩GRr(z); F(y,u) = u ∈ GRr(y) ∩ GRr(u); F(z,z) = z ∈ GRr(z);
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F(z,u) = z ∈ GRr(z)∩GRr (u). Therefore F is rationalizable. Finally, observe that
F is not associative since F(F(x,y),u) = F(z,u) = z �= u = F(x,u) = F(x,F(y,u)).
(ii) Let x,y,z ∈ X be fixed. We must show that F(F(x,y),z) = F(x,F(y,z)). Since F
satisfies IIA, it follows that F(x,y) ∈ {x,y}, F(x,z) ∈ {x,z} and F(y,z) ∈ {y,z}. So
we distinguish among eight possibilities:

(1) F(x,y) = x, F(x,z) = x and F(y,z) = y. In this case, F(F(x,y),z) = F(x,z) =
x = F(x,y) = F(x,F(y,z)) and we are done.
(2) F(x,y) = x, F(x,z) = x and F(y,z) = z. In this case, F(F(x,y),z) = F(x,z) =
x = F(x,z) = F(x,F(y,z)) and we are done again.
(3) F(x,y) = x, F(x,z) = z and F(y,z) = y. Now, since F is anonymous, F(y,x) =
F(x,y) = x and F(z,y) = F(y,z) = y. So we get yRrx and xRrz. Thus, by transitivity
of Rr, it follows that yRrz. But F(z,y) = F(y,z) = y means that zRry too. In ad-
dition, Rr is antisymmetric since F is anonymous. Therefore, y = z. Now, if y = z,
F(F(x,y),z) = F(x,F(y,z)) becomes F(F(x,y),y) = F(x,F(y,y)) or, equivalently,
F(F(x,y),y) = x = F(x,y) = F(x,F(y,y)) and we are done.
(4) F(x,y) = x, F(x,z) = z and F(y,z) = z. In this case, F(F(x,y),z) = F(x,z) = z =
F(x,F(y,z)) and we are done.
(5) F(x,y) = y, F(x,z) = x and F(y,z) = y. In this case, F(F(x,y),z) = F(y,z) =
y = F(x,y) = F(x,F(y,z)) and we are done.
(6) F(x,y) = y, F(x,z) = x and F(y,z) = z. In this case, and arguing in the
same way as in case (3) above, we have that xRry and zRrx which, by tran-
sitivity, implies that zRry. This, together with yRrz, implies that y = z. Then,
F(F(x,y),z) = F(x,F(y,z)) becomes F(F(x,y),y) = F(x,F(y,y)) or, equivalently,
F(F(x,y),y) = y = F(x,y) = F(x,F(y,y)) and we are done again.
(7) F(x,y) = y, F(x,z) = z and F(y,z) = y. In this case, F(F(x,y),z) = F(y,z) =
y = F(x,y) = F(x,F(y,z)) and we are done. Finally,
(8) F(x,y) = y, F(x,z) = z and F(y,z) = z. In this case, F(F(x,y),z) = F(y,z) = z =
F(x,z) = F(x,F(y,z)) which concludes the proof. �

Remark 7. It can be shown that if X is a three-elements set (i.e, X = {x,y,z}), then
any agreement rule defined on X for which Rr is transitive is, in fact, associative.

4 Possibility vs. Impossibility Results on the Existence of
Agreement Rules in Continuum Spaces

In this section, we study the consensus equation in particular contexts. In general,
the solutions of this equation cannot be described in an easy way (see [13] for de-
tails). However, in some special cases, and imposing also some natural extra condi-
tions on the map F , it is indeed possible to entirely describe its solutions. (See e.g.
[23, 13] for further results in this direction).

Throughout this section, we assume that the choice set X is a real interval.
Both impossibility as well as possibility results arise. On the one hand, we prove

that there is no strongly Paretian bivariate map which satisfies consensus. On the
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other hand, we show that the only continuous agreement rules that satisfy IIA are
the max and the min.

In what follows, I will represent an interval of the real line R.

Remark 8. At this stage, we point out that real intervals naturally arise to represent
the set of alternatives in several contexts of Social Choice. Thus, X could be a set
of monetary payoffs or, in a probabilistic scenario, X could represent the space of
lotteries between two outcomes. In the first situation X can be identified as the real
interval [0,∞). And in the second case, X can be identified as [0,1].

Notation. Let F : I ×I →I be a bivariate map. For every x∈I , Fx (respectively,
Fx) stands for the vertical (respectively, horizontal) restriction of F , that is, Fx(y) =
F(x,y) ∈I (respectively, Fx(y) = F(y,x) ∈I ).

We recall the concept of an idempotent function defined on I . This concept will
play a significant role in the sequel, in particular in the next Proposition 3.

Definition 6. A function f : I →I is said to be idempotent if f ( f (x)) = f (x), for
every x ∈I .

Proposition 3. Let F : I ×I →I be a bivariate map.

(i) F is unanimous if and only if Fx(x) = Fx(x) = x for every x ∈I .
(ii) F is anonymous if and only if Fx(y) = Fx(y) for every x,y ∈I .
(iii) F satisfies consensus if and only if, for every x ∈ X, both restrictions Fx and

Fx are idempotent functions and, for each z ∈ F(I ×I ), it holds that Fz(z) =
Fz(z) = z.

Proof. Parts (i) and (ii) follow directly. So we prove only part (iii). Suppose that
F satisfies consensus and let x ∈ X be fixed. Then, we have that Fx(Fx(y)) =
F(x,Fx(y)) = F(x,F(x,y)) = F(x,y) = Fx(y) for every y ∈ I . Also, we have that
Fx(Fx(y)) = F(Fx(y),x) = F(F(y,x),x) = F(y,x) = Fx(y), for every y∈I . There-
fore, Fx and Fx are both idempotent functions. Since x is an arbitrary element of I ,
we have proved that Fx and Fx are both idempotent functions for every x ∈I . The
fact that, for each z∈F(I ×I ), Fz(z) = Fz(z) = z follows directly from consensus.

Conversely, suppose that, for every x ∈ I , Fx and Fx are both idempotent
functions. Let x,y ∈ I be fixed. Then, we have that F(x,F(x,y)) = Fx(Fx(y)) =
Fx(y) = F(x,y), and also we have that F(x,y) = Fy(x) = Fy(Fy(x)) = F(Fy(x),y) =
F(F(x,y),y). Moreover, F(F(x,y),F(x,y)) = F(x,y) since, by hypothesis, Fz(z) =
Fz(z) = z, for every z ∈ F(I ×I ). Therefore, F satisfies consensus.

Remark 9. It should be noted that the concepts introduced above can indeed be de-
fined in a more abstract setting. As a matter of fact, Proposition 3 remains true if I
is replaced by a nonempty choice set X .

Before presenting a basic definition of the most familiar notions involving mono-
tonicity properties of real-valued bivariate functions, we recall that given
(x,y),(u,v) ∈ I ×I , the notation (x,y) ≤ (u,v) means that both x ≤ u and y ≤ v
hold. Similarly, (x,y)< (u,v) means that both (x,y)≤ (u,v) and (x,y) �= (u,v) hold.
Finally, (x,y)( (u,v) means that both x < u and y < v hold.
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Definition 7. A bivariate map F : I ×I →I is said to be:

(i) Paretian (or non-decreasing) if (x,y)≤ (u,v) implies F(x,y)≤ F(u,v), for every
x,y,u,v ∈I .

(ii) weakly Paretian if (x,y)( (u,v) implies F(x,y) < F(u,v), for every x,y,u,v ∈
I .

(iii) strongly Paretian if (x,y)< (u,v) implies F(x,y)< F(u,v), for every x,y,u,v∈
I .

(iv) dictatorial if either F(x,y) = x for every x,y ∈I holds, or F(x,y) = y for every
x,y ∈I holds.

(v) dichotomic if for every x ∈ I the functions Fx and Fx are either constant or
strictly increasing.

(vi) continuous if the inverse image of every Euclidean open subset of I is an open
subset of I ×I , where I ×I is endowed with the usual product (Euclidean)
topology.

Remark 10. Notice that the monotonicity properties that appear in Definition 7
above are meaningful in the case that the choice set X is a set of monetary pay-
offs.

Now we present a general theorem that allows us to derive certain impossibility
results. Before a simple and useful lemma concerning strictly increasing real-valued
idempotent functions is shown.

Lemma 1. Let f : I → I be a strictly increasing idempotent function. Then,
f (x) = x, for every x ∈ I . (In other words, the identity function is the only one
strictly increasing real-valued function that is idempotent.)

Proof. Let x ∈ I arbitrarily be given. Let us see that f (x) = x. If, on the con-
trary, f (x) �= x then either f (x) < x or x < f (x). Assume that f (x) �= x. Then, since
f is strictly increasing, we have that f ( f (x)) < f (x). But, since f is idempotent,
f ( f (x)) = f (x). So, we get f (x)< f (x), which is a contradiction. The case x < f (x)
is handled in a similar way.

Theorem 3. Let F : I ×I →I be a bivariate map. Then the following assertions
are equivalent:

i) F is dichotomic, unanimous and satisfies consensus.
ii) F is dictatorial.

Proof. (ii) implies (i) is routine. So, we will concentrate on (i) implies (ii). Assume
then that F is dichotomic, unanimous and satisfies consensus. Let us prove first that
there cannot exist x ∈ I such that both Fx and Fx are constant functions. Indeed,
suppose, by way of contradiction, that there is x0 ∈I for which both Fx0 and Fx0 are
constant functions. Then, since F is unanimous and therefore Fx0(x0) = x0, it holds
that Fx0(y) = x0 = Fx0(y), for all y ∈ I . Now, let x1 ∈ I so that x0 < x1 (if any).
The case x1 < x0 (if any) is similar. Then, Fx1(x0) = Fx0(x1) = x0 < x1 = Fx1(x1).
So, since, by hypothesis, F is dichotomic, it follows that Fx1 is a strictly increasing
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function. Now, since F satisfies consensus, by Proposition 3(iii), Fx1 is idempotent.
Thus, by the previous lemma, Fx1 is the identity map (i.e., Fx1(y) = y, for all y ∈I ).
In a similar way, we can prove that Fx1 is the identity map. Therefore, we have
shown, in fact, that, for every z ∈ I such that x0 < z (if any), both functions Fz

as well as Fz are the identity map. Let now consider three points x0,x1,x2 ∈ I
such that x0 < x1 < x2 (if any). Then, since Fx1 is the identity map, it follows that
F(x2,x1) = Fx2(x1) = x1. Now, by definition, we have that F(x2,x1) = Fx1(x2). So,
Fx1(x2) = x1 �= x2, which contradicts the fact, shown above, that Fx1 is the identity
function. Therefore, there cannot exist x ∈I such that both Fx and Fx are constant
functions.

Using a similar argument to that employed above we can prove that there cannot
exist x ∈I such that both Fx and Fx are strictly increasing functions. (The proof of
this assertion is left to the reader).

So, we have proved that, for every x ∈ I , if Fx is a constant (respectively, the
identity) function, then Fx is the identity (respectively, a constant) function. Suppose
now that, for some x0 ∈I , Fx0 is constant and Fx0 is the identity. Let us show that
this situation leads to the conclusion F(x,y) = x, for all x,y∈I (in other words, F is
dictatorial, the first individual acting as a dictator). Indeed, let x1 ∈I so that x0 < x1

(if any). Then Fx1(x0) = F(x1,x0) = Fx0(x1) = x1, the last equality being true since
Fx0 is the identity. Now, by unanimity, Fx1(x1) = x1. So, Fx1(x0) = x1 = Fx1(x1),
hence, since F is dichotomic, it follows that Fx1(y) = x1, for all y ∈ I . The case
x1 < x0 (if any) is similar leading to the same conclusion (i.e., Fx1(y) = x1, for all
y ∈I ). Thus, F(x,y) = Fx(y) = x, for all x,y ∈I .

Suppose now that, for some x0 ∈I , Fx0 is the identity and Fx0 is constant. Ar-
guing in a similar manner as above, it can be seen now that F(x,y) = Fx(y) = y, for
all x,y ∈I . This ends the proof.

Theorem 3 immediately gives rise to the following corollaries.

Corollary 2. There is no dichotomic bivariate map F : I ×I → I that satisfies
unanimity, anonymity and consensus.

Proof. Just observe that dictatorial bivariate maps on I are not anonymous.

Corollary 3. There is no strongly Paretian bivariate map F : I ×I → I that
satisfies unanimity and consensus.

Proof. It is also a straightforward consequence of Theorem 3. Indeed, suppose that
there is a bivariate map, say F , that is strongly Paretian, unanimous and satisfies
consensus. Then, since, clearly, strongly Paretian implies dichotomic, it follows, by
Theorem 3, that F is dictatorial. But neither of the two dictatorial bivarite maps are
strongly Paretian. This contradiction provides the result.

Remark 11. (i) A careful glance at the proof of Theorem 3 above shows that the only
bivariate map on I which satisfies consensus and has the additional property that
all of its vertical restrictions are strictly increasing functions (respectively, all of
its horizontal restrictions are strictly increasing functions) is dictatorial over the
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second (respectively, first) coordinate. That is, F(x,y) = y for every x,y ∈ I
(respectively, F(x,y) = x for every x,y ∈I ).

(ii) If strongly Paretian is relaxed to Paretian (or weakly Paretian) then the impos-
sibility result does not hold true. For example, consider the dictatorial bivariate
maps or the max/min functions.

It is interesting to search for some possibilities results based on certain natural prop-
erties, in addition to consensus, of the bivarite map. In [13], it was offered a char-
acterization of the maximum rule (i.e., F(x,y) =max{x,y}), for the case I = R,
in terms of five properties; namely, continuity, unanimity, anonimity, consensus
and upper-Pareto. A bivarite map F : R×R→ R is said to be upper-Paretian if
it is non-decreasing and for every x,y ∈ R there exists u ∈ R such that y < u and
F(x,y) < F(x,u). It is not difficult to show that this latter characterization result
remains true if R is replaced by a real interval I . A much more easy result can
be obtained if a more demanding property than consensus is required; namely the
fulfilment of IIA. We now state this possibility result. Actually, we establish that
the only continuous bivariate maps F : I ×I → I that satisfy IIA are the max,
the min and the dictatorial functions. In particular, we have that the only continuous
agreement rules that satisfy IIA are the max and the min functions.

Theorem 4. Let F : I ×I →I be a bivariate map. Then the following conditions
are equivalent:

(i) F is continuous and satisfies IIA.
(ii) F is of one of the following forms:

(1) F(x,y) = x, for every x,y ∈I .
(2) F(x,y) = y, for every x,y ∈I .
(3) F(x,y) = max{x,y}, for every x,y ∈I .
(4) F(x,y) = min{x,y}, for every x,y ∈I .

Proof. It is straightforward to see that (ii) implies (i).
To prove the converse implication, (i) implies (ii), let F : I ×I → I be a

continuous bivariate map which satisfies IIA. Let x ∈ I be fixed and consider the
vertical restriction Fx. Since F satisfies IIA, Fx(y) ∈ {x,y} for all y ∈I . The conti-
nuity of Fx, together with IIA, clearly implies that Fx must be of one of the following
types:
(1) Fx(y) = x, for every y ∈I .
(2) Fx(y) = y, for every y ∈I .
(3) Fx(y) = y, if y≥ x and Fx(y) = x, if y < x.
(4) Fx(y) = x, if y≥ x and Fx(y) = y, if y < x.

Now, the continuity of F (in two variables) clearly implies that if for some x0 ∈
I , Fx0 is of the type (i), i= 1 to 4, then Fx is of the type (i), for all x ∈I . Finally,
it is straightforward to see that the situation for each of the four cases leads to the
corresponding functional form given in the statement of the theorem.

As a direct consequence of Theorem 4 we obtain the following corollary.
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Corollary 4. Let F : I ×I →I be a bivariate map. Then the following conditions
are equivalent:

(i) F is continuous, anonymous and satisfies IIA.
(ii) Either F(x,y) = max{x,y} (for all x,y ∈ I ), or F(x,y) = min{x,y} (for all

x,y ∈I ).

Remark 12. Theorem 4 strongly depends on the independence of irrelevant alter-
natives (IIA) condition imposed to F , since there are continuous bivariate maps
F : I ×I → I which satisfy consensus other than those belonging to the four
types that appear in the statement of the theorem (for details, see [13]).

5 Extending the Consensus Equation to a Multivariate Context

Until now we have studied the consensus equation that involves only two factors in
its definition. We now explore the extended consensus equation which means that
we are going to consider the n-factors (or n-individuals) case. To that end, the next
notation and definition are in order.

Notation. Let X be a set and let n ∈ N. Let us denote by Xn the n-fold Cartesian
product of X and consider a n-variate map F : Xn → X . Let x= (x j) j∈N ∈ Xn. In
order to make the notation as simple as possible, let us denote by xF ∈ Xn any of the
2n elements of Xn derived from x in the following way: For every j ∈ N, xF

j = x j,
or F(x).

Definition 8. A n-variate map F : Xn → X is said to satisfy the extended consensus
equation if F(xF) = F(x), for every x∈ Xn.

The following result states that if a n-variate unanimous map satisfies extended con-
sensus then it can be fully described by a family of (n−1)-variate maps that satisfy
extended consensus too, together with a kind of (weak) unanimity. So, the entire
description of the class of bivariate maps that satisfy consensus is important since it
allows us to also describe those that satisfy extended consensus for any number of
factors (agents). Before presenting the result let us introduce the following notation.

Notation. Let x∈ Xn, j ∈ N and z ∈ X be given. Then by x+ j(z) we mean the
following element of Xn+1: x+ j(z) = (x+ j(z))k = xk, if k < j, or z, if k = j, or xk−1,
if k > j. In words, the j− 1 first components of x+ j(z) are the same as those of x,
the j-th component is z and the remaining components are those of x shifted one
place on the right. Let now x∈ Xn and j ∈ N be given. Then x+ j will denote the
element of Xn−1 obtained by removing from x the j-th component while keeping
the remaining components equal to those of x.

In addition, 1n will denote the vector of Rn with all the coordinates equal to one.
Similarly, for any x ∈ X given, x1n will stand for the element of Xn with all the
components equal to x. Let F : Xn → X be a n-variate map. For every x ∈ X and
j ∈ N, denote by F j

x the (n−1)-variate map defined as follows: F j
x (z) = F(z+ j(x)),

for every z∈ Xn−1.
Once the above tedious notation has been introduced we are ready to offer the

main result of this section.
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Theorem 5. A n-variate unanimous map F : Xn → X satisfies the extended consen-
sus equation if and only if F j

x does (for every x ∈ X, j ∈ N).

Proof. Suppose first that F fulfils consensus. Let x ∈ X and j ∈ N be given and
consider the (n− 1)-variate map F j

x . Assume, without loss of generality that j = 1.

Then, for every z∈ Xn−1, it follows that F j
x (zF j

x ) = F(zF j
x

+ j(x)) = F(z+ j(x)) = F j
x (z),

since F satisfies consensus. So, F j
x fulfils consensus.

Conversely, assume now that, for each x ∈ X and each j ∈ N, F j
x satisfies con-

sensus and let us prove that so F does. To that end, let x∈ Xn be fixed and consider
any of the 2n elements xF ∈ Xn, as defined above. We distinguish between the two
following cases: (i) There is at least one component of xF , say xF

j ∈ N, which is
different from F(x), or (ii) All the components of xF are F(x). If (i) occurs, then
F(xF) = F j

x j(x
F− j). Now observe that, for each k ∈ N \ {1}, the k-th component of

xF− j is equal to xk or equal to F(x). So, since F(x) = F j
x j (x− j) and, by hypothesis,

F j
x j satisfies consensus, it turns out that F(xF) = F j

x j(x
F− j)

F j
x j = F(x). If (ii) happens,

then the fact that F(F(x1n)) = F(x) follows from the unanimity of F . So, the proof
is ended.

Remark 13. It is interesting to study the functional form the of the unanimous
n-variate maps that, in addition to fulfil the consensus equation, also satisfy nat-
ural conditions like anonymity or continuity. For the particular case X = R, the
class of unanimous n-variate maps that fulfil consensus plus continuity is closely re-
lated to the class of lattice polynomial functions (see [23] for a thorough discussion
of these functions). Indeed, it is not difficult to see that a lattice polynomial func-
tion in R

n satisfies consensus, unanimity and continuity. Nevertheless, the class of
real-valued functions defined on R

n that satisfy consensus, unanimity and continuity
is larger than the class of lattice polynomial functions as the next example shows. Let
F :R2→R be the function given by: F(x,y) = x, if y≤ 1 and x≥ y, or F(x,y) = x, if
y≤ 1 and x≤ y, or F(x,y) = x, if y≥ 1 and x≥ 1, or F(x,y) = 1, if y≥ 1 and x≤ 1.
Then it is straightforward to see that F so-defined satisfies consensus, unanimity
and continuity. Actually, it can be shown that F(x,y) =max{x,min{y,1}}.

If anonymity is added to the previous discussion then the class of lattice polyno-
mial functions reduces to the so-called order statistics functions (for a discussion of
this latter family, see also [23]). We conjecture that the class of real-valued functions
defined on R

n that satisfy consensus, unanimity, anonymity and continuity agrees
with the family of order statistics functions.

6 Further Comments

One of the achievements in [13] is showing that under unanimity plus anonymity, a
new functional equation for bivariate maps (namely, the so-called equation of con-
sensus, also analyzed in the present manuscript), is indeed equivalent to a weaker
version of the associativity equation.
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Throughout the present paper, we have not intended to solve the functional equa-
tion of consensus in the general case of bivariate maps F defined on a nonempty set
X . Indeed, we may observe that the even more restrictive condition of associativity
leads to a too wide set of possible solutions. In this direction, a glance at [3] may
give us an idea of how large could be the set of solutions, even in relevant particular
cases (e.g. : X = R or X = [0,1]).

In what concerns the consensus equation, it is important to point out that, under
unanimity plus anonymity, any finite sequence of applications of F in which only
the elements x,y ∈ X are involved2 always leads to F(x,y). Viewing F(x,y) as an
agreement rule defined by means of a binary operation ∗F on X (i.e. F(x,y) = x∗F y,
for every x,y ∈ X), the algebraic structure (X ,∗F) could be understood as being a
weakening of the notion of a semigroup, that is called a magma in the specialized
literature. This magma, namely the set X matched with the operation ∗F , has the
aforementioned property of simplification for finite sequences. (See [13] for further
details).

In particular cases the operation ∗F is semi-latticial. In other special cases, it is
a selector. And in some more restrictive cases, it corresponds to the idea of tak-
ing a maximum as proved in Corollary 4 above. Obviously, this fact of “taking a
maximum" strongly agrees with the underlying idea of “reaching the best possible
agreement" or “selecting the best possible option" commonly encountered in any
process of aggregation of individual alternatives into a social one, typical of a wide
variety of Social Choice contexts.
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A Discriminative Dynamic Index Based on
Bipolar Aggregation Operators for Supporting
Dynamic Multi-criteria Decision Making

Yeleny Zulueta, Juan Martínez-Moreno, Luis Martínez, and Macarena Espinilla

Abstract. While Multi-Criteria Decision Making (MCDM) models are focus on
selecting the best alternative from a finite number of feasible solutions according to
a set of criteria, in Dynamic Multi-Criteria Decision Making (DMCDM) the selec-
tion process also takes into account the temporal performance of such alternatives
during different time periods. In this contribution is proposed a new discriminative
dynamic index to handling differences in temporal behavior of alternatives, which
are not discriminated in preceding dynamic approaches. An example is provided to
illustrate the feasibility and effectiveness of the proposed index.

1 Introduction

A Multi-Criteria Decision Making (MCDM) problem consists of selecting the most
desirable alternative from a given feasible set according to a set of criteria [12, 16].
As a matter of fact, MCDM problems could involve the current and past perfor-
mance of alternatives, they are called Dynamic Multi-Criteria Decision Making
(DMCDM) problems because the time dimension is considered [4, 8, 14].

DMCDM approaches are commonly focused on problems in which the final
decision is performed based on all information collected at multiple time peri-
ods [8, 15, 18, 19, 24, 25]. However, they are not effective in handling situations
including large sets of alternatives or criteria and changes of such sets over the time.
Recently in [4] was introduced a framework for DMCDM that allows to overcome
this weakness by means of a dynamic feedback mechanism. The crucial phase in
the DMCDM framework is the selection of an appropriate associative aggregation
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operator for the computation of dynamic ratings due to its properties can highly
modify the computing cost (e.g.: associativity) and obtain very different results at-
tending to the type of reinforcement supported by the aggregation operator [13, 22].
However using any associative aggregation operator there are situations in which
equal dynamic ratings are generated independently from the temporal performance
of the alternatives. While the associativity property of the aggregation operator
avoids the storing of all past alternatives (dynamic and non-dynamic) rating values,
the lack of such information prevents a final decision based on temporal evolution
of alternatives.

Therefore, this contribution proposes a novel discriminative dynamic index to
extend the general approach in [4] such that the use of this index in the framework
provides a temporal behavior differentiation of alternatives throughout time. The re-
maining of this paper is organized as follows. Sect. 2 reviews DMCDM approaches
with special attention to the framework presented in [4]. In Sect. 3 it is introduced
the new discriminative dynamic index to extend the initial approach. Sect. 4 shows
an illustrative example and Sect. 5 concludes the paper.

2 Dynamic Multi-criteria Decision Making Approaches

In [3] are stated three common characteristics for a DMCDM problem: alternatives
are not fixed, criteria are not fixed and the temporal profile of an alternative matters
for comparison with other ones. To deal with decision making in dynamic envi-
ronments, some authors have proposed different approaches [8, 15, 18, 19, 24, 25]
that commonly model the problem as a three-dimensional decision matrix which is
firstly transformed into conventional two-dimensional decision matrix by aggregat-
ing the time dimension and next is solving the problem through traditional MCDM
models (or viceversa).

As in MCDM, an important issue in DMCDM is the selection of the aggregation
operator (see [2] for a formal definition) because it directly impacts output values
as well as the final ranking of alternatives. Some proposals have presented time
dependent aggregation operators to deal with the information provided at different
periods. Xu developed in [18] the concept of dynamic weighted averaging operator,
and introduced some methods to obtain the associated weights, while in [19] the
dynamic intuitionistic fuzzy weighted averaging operator and the uncertain dynamic
intuitionistic fuzzy weighted averaging operator is defined.

Previous studies are focused on decision making problems in which the origi-
nal decision information is usually collected at different time periods and a final
decision is needed. Therefore, they are dynamic because the temporal profile of al-
ternatives is considered for such final decision. However, there are other MCDM
problems in which different, separated and interlinked decisions are taken either
frequently, or just at the end of the process. In such context, it is remarkable the
framework for DMCDM recently introduced in [4].

While most of the revised approaches provide solutions based on specific MCDM
techniques oriented to problems dealing with specific types of information and
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where the final decision is performed using all that information collected at mul-
tiple periods; in [4] it is properly formalized the DMCDM, by extending the classic
MCDM model, in a general framework operating without the need of storing all
past information. Such framework is suitable for any dynamic problem, including
consensus problems or situations requiring several steps before reaching a final de-
cision. It is revised in further detail below.

2.1 The General Framework

Some basic notations from the original framework [4] are reviewed in the following.
Let T = {1,2, . . .} be the (possibly infinite) set of discrete decision moments, and

At the set of available alternatives at each decision moment t ∈ T .
At each time period t ∈ T , for each available alternative a ∈ At , a non-dynamic

rating Rt(a) ∈ [0,1] is computed. It is usually obtained by using an aggregation
operator Agg1 : [0,1]n → [0,1], that combines the assessments of all criteria, Mt =
{m1, ...,mn} according to their weights wt ∈ [0,1]n,∑w∈wt w = 1,∀t ∈ T .

The information about the set of alternatives over time is carried out from one
iteration to another in the historical set. Depending on the specific characteristics of
each dynamic problem we may fix a retention policy that is the rule for selecting
alternatives to be remembered in the Ht , which is defined as:

H0 = /0, Ht =
⋃
t′≤t

At′ , t, t ′ ∈ T. (1)

The dynamic nature of the decision process is supported by an evaluation function
Et(a) it is defined for each t ∈ T as:

Et : At ∪Ht−1 → [0,1]

Et(a) =

⎧⎪⎪⎨
⎪⎪⎩

Rt(a), a ∈ At \Ht−1

Agg2(Et−1(a),Rt(a)), a ∈ At ∩Ht−1

Et−1(a), a ∈Ht−1 \At

(2)

Being Agg2 : [0,1]n → [0,1] an associative aggregation operator that can apply dif-
ferent types of reinforcements to the alternatives according to the attitudinal charac-
ter of the decision making problem.

Aggregation operator for scoring alternatives in the non-dynamic part (Agg1) is
completely independent from one used in evaluation function of the dynamic part
(Agg2). It is worth noting that the dynamic rating computation requires the associa-
tivity property for the aggregation operator Agg2, to ensure that repeated application
of the aggregation function will generate, at every particular decision moment, the
same result as application over the whole set of past non-dynamic ratings. Further-
more it is suggested that Agg2 should fulfill the reinforcement property [13, 22] in
order to strength high or low ratings in the dynamic context.
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2.2 Drawbacks on Dynamic Evaluation Function Performance

The associativity property of Agg2 avoids the storing of all past alternatives (dy-
namic and non-dynamic) rating values and it is simple to calculate the effect of
adding new arguments to the aggregation. As stated in [21] this can be seen as a
kind of Markovian property in which the new aggregated value just depends on the
previous aggregated value and the new argument. However, this advantage brings
out that the original framework outputs equal dynamic ratings for different alter-
natives without a discrimination about their temporal profile because associativity
property does not allow to distinguish the order of such previous and new aggregated
values.

Remark: This drawback arises from the associativity property of the aggregation
operator therefore it appears using any associative aggregation operator.

Without loss of generality and for the sake of simplicity, this problem is illus-
trated in the following situation in which a decision maker wants to select the best
option from alternatives a1 and a2 considering the retention policy of accumulat-
ing all alternatives in historical set. The dynamic ratings are calculated using the
probabilistic sum operator (which exhibits an upward reinforcement) in order to
corroborate the tendency of previous high non-dynamic ratings. Table 1 shows the
results during five decision periods.

Table 1 Results obtained for alternatives with different temporal profile

Alternative R1 = E1 R2 E2 R3 E3 R4 E4 R5 E5

a1 0.100 0.800 0.820 0.900 0.982 0.200 0.996 0.910 0.999
a2 0.900 0.800 0.980 0.100 0.982 0.200 0.996 0.910 0.999

At t = 3, a1 increases its rating while a2 decreases it, however both obtain
the same dynamic rating (E3(a1) = E3(a2)). At t = 4, the rating of a1 decreases
and the rating of a2 increases, but still both obtain the same dynamic rating
(E4(a1) = E4(a2)). Eventually at t = 5 the rating of both alternatives performances
the same increment and the dynamic rating is also the same (E5(a1) = E5(a2)). At
independent decision periods t = 3,4,5, the decision maker cannot choose the best
alternative just based on the dynamic rating because:

1. Alternatives obtain equal dynamic rating although they perform different rating
evolution.

2. Alternatives obtain equal dynamic rating despite they perform opposed rating
evolution.

3. Alternatives obtain equal dynamic rating though all of them perform an increas-
ing evolution or decreasing rating evolution.

Different perspectives to solve the problem can be assumed. From a static perspec-
tive, the decision maker can select the alternative with highest rating at the current
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period but this contradictorily implies to loss the dynamic perspective of the DM-
CDM problem.

To overcome this drawback, our aim in this contribution is to extend the original
framework formalizing a new dynamic index that allows the decision maker to dis-
criminate the best alternative according to the rating changes behavior throughout
time.

3 A Discriminative Dynamic Index for DMCDM

To keep the dynamic perspective of the decision making problem when the situations
pointed out in Sect. 2.2 arises, seems logic and suitable to find a solution in which
the temporal profile of an alternative matters for comparison with other alternatives,
as stated in Sect. 2.

To that end, we improve the resolution procedure for DMCDM, as can be seen
in Figure 1, by performing a new aggregation process for computing a discrimina-
tive dynamic index that allows to distinguish alternatives and consequently obtain
rankings for supporting dynamic decisions.

In this general resolution procedure the first step is essentially carried out through
MCDM traditional methods. The second step lies on the DMCDM approach previ-
ously reviewed. The third step consists of computing the discriminative dynamic
index and is performed just if equal dynamic ratings values are generated in the sec-
ond step. These tree steps will finally enable to obtain a final ranking of alternatives.

Fig. 1 Improved DMCDM resolution procedure

3.1 Computation of the Discriminative Dynamic Index

In this subsection we present in detail how to compute the discriminative dynamic
index to perform steps 3) and 4) from the improved DMCDM resolution procedure.
Definition 1. The change in rating, Dt(a), is the difference between the ratings at
the current and previous period and is defined as:

Dt(a) =

⎧⎨
⎩

0, t = 1

Rt(a)−Rt−1(a), t > 1.
(3)
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Since Rt(a),Rt−1(a)∈ [0,1], the rating increment/decrement, Dt(a), at each decision
period is assessed in a bipolar scale Dt(a) ∈ [−1,1] [5]. In which 0 is so-called the
neutral element that represents no change in rating from period t− 1 to t.

The rating change Dt(a), just encloses the rating behavior from t− 1 to t, hence
it is necessary to formalize a dynamic mechanism that encloses all rating changes
during all considered periods.

The benefits of computing final results without storing all previous values
(through the associativity) and additionally modulating the importance of these val-
ues in such final results (through the reinforcements) are also used in the discrimi-
native dynamic index proposal, It(·), due to its features:

• Dynamic: it must represent the rating change over time without storing all of
them.

• Customizable: it should be able to model different behaviors regarding alternative
rating decrements or increments over different periods.

Definition 2. Let Dt(a) be the change in rating of an alternative a at a decision period
t and Agg3 : [−1,1]2 → [−1,1] be a bipolar aggregation operator, the discriminative
dynamic index, which represents the rating behavior of the alternative until t, is
defined as:

It : At ∪Ht−1 → [−1,1]

It(a) =

⎧⎨
⎩

Dt(a), a ∈ At \Ht−1

Agg3(It−1(a),Dt(a)), a ∈ At ∩Ht−1

It−1(a), a ∈ Ht−1 \At .
(4)

The index It(a) performance depends on the alternative, a as:

• if a ∈ At \Ht−1 then its discriminative dynamic index It(a) is the rating change
Dt(a),

• if a ∈ At ∩Ht−1, then its discriminative dynamic index is computed by Agg3 that
aggregates the discriminative dynamic index in the previous iteration with the
current rating change, Agg3(It−1(a),Dt(a)),

• if a ∈ Ht−1 \At , then its discriminative dynamic index is obtained from previous
iteration, It(a) = It−1(a).

Therefore, if different alternatives obtain equal dynamic rating, Et(.) at a period t,
the final ranking will be generated considering the discriminative dynamic index
values It(.) that will reflect a dynamic perspective.

The choice of the aggregation operator Agg3 will depend on the decision makers’
attitude regarding the dynamic rating change but independent of the others aggrega-
tion operators as Agg1 and Agg2.

Table 2 summarizes the key features of aggregation operators used in the three
aggregation processes illustrated in Figure 1 which are applied in the resolution
procedure of the DMCDM improved approach. It is noteworthy to point out that
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Table 2 Characterization of the aggregation operators to be used in DMCDM

Feature Agg1 Agg2 Agg3

Definition [0,1]n → [0,1] [0,1]2 → [0,1] [−1,1]2 → [−1,1]
Required Property Associativity Associativity, Bipolarity
Desired Property Reinforcement Reinforcement

there is a key difference between the characterization of Agg2 and Agg3: Agg3 must
deal with values in a bipolar scale [−1,1] meanwhile Agg2 operates in [0,1].

Consequently it is necessary to extend the latter to the bipolar scale [6] in [−1,1]
in which a remarkable point, e, of the interval plays an specific role as a neutral or an
absorbant element. This fact leads to a bipolar aggregation in which the key feature
is the different effects of arguments above and below e on the aggregated value [23].

Uninorms [17] satisfies this characterization but in [0,1]. A uninorm U is a com-
mutative, associative and increasing binary operator with a neutral element e∈ [0,1].

In [9, 10, 11] the authors development the topic of “pseudo-operations”.
Pseudo-addition and pseudo-multiplication are examples of them. In [6] was pro-
posed a rescaling to consider [−1,1], such that, given a continuous S : [0,1]2→ [0,1]
t-conorm , the symmetric pseudo-addition⊕ is a binary operation on [−1,1] defined
by:

R1 For x,y≥ 0: x⊕ y = S(x,y).
R2 For x,y≤ 0: x⊕ y =−S(−x,−y).
R3 For x ∈ [0,1[, y ∈ ]−1,0]: x⊕ y = x,S (−y). Moreover, 1⊕ (−1) = 1 or −1.
R4 For x≤ 0,y≥ 0: just reverse x and y.

The structure of the binary operation ⊕ is closely related to uninorms. From the
point of view of bipolar scales, the interval [−1,1] is viewed as the union of two
unipolar scales.

Proposition 1. T =⊕/[−1,0]2 is a t-norm on [−1,0] (i.e., in particular T (x,0) = x, for
every x ∈ [−1,0]), S = ⊕/[0,1]2 is a t-conorm on [0,1] and H is an average function
H =⊕/[−1,0]×[0,1]∪[0,1]×[−1,0]. They have the following properties:

• If x,y ∈ [0,1], then x⊕ y = S(x,y)≥max{x,y}.
• If x,y ∈ [−1,0], then x⊕ y = T (x,y)≤min{x,y}.
• If −1≤ y≤ 0≤ x≤ 1, then y≤ x⊕ y = H(x,y)≤ x.

The previous proposition provides a performance that can be interpreted as attitudes
to deal with the ratings changes:

• Optimistic: when both values are positive the aggregation acts as an upward re-
inforcement.

• Pessimistic: when both values are negative, it acts as a downward reinforcement.
• Averaging: when one value is negative and the another positive, it acts as an

averaging operator.
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The aggregation function⊕ exhibits conjunctive behavior on [−1,0] and disjunctive
behavior on [0,1]. On the rest of the domain the behavior is averaging.

Let S be a strict t-conorm S with additive generator s : [0,1]→ [0,∞] and g :
[−1,1]→ [0,∞] the symmetric extension of s, i.e.,

g(x) =

{
s(x), x≥ 0
−s(−x), x < 0

(5)

It is possible to rescal ⊕ to a binary operator U on [0,1] such that U is a generated
uninorm operator. Then, x⊕ y = g−1(g(x) + g(y)) for any x,y ∈ [−1,1]. We also
introduce another function u : [0,1]→ [−∞,∞] defined by u(x) = g(2x− 1) that is
strictly increasing and satisfies u( 1

2) = 0. Then U(z, t) = u−1(u(z)+ u(t)) for any
z, t ∈ [0,1]. U is an uninorm that is continuous (except in (0,1) and (1,0)), is strictly
increasing on ]0,1[2 and has neutral element 1

2 . Moreover, the induced t-norm TU is
the dual of S.

Such an operator should be used if the decision maker’s attitude is influenced by
the number of increment or decrement ratings received. Particularly, when all the
attributes’ ratings are positive, the more these there are, the more positive the agent
becomes in its aggregation. That is similar for negative values and when conflict
occurs, the ratings are aggregated in a risk-neutral way.

4 Illustrative Example

A high-technology manufacturing company desires to select at five different periods,
suitable material supplier to purchase the key components of products. There are six
candidates for initial evaluation but at successive periods, there will be additional
suppliers while others will be unavailable due to market conditions. The company
is interested about supplier’s evolution and considers the following elements:

• Criteria: quality (m1), delivery performance (m2), price (m3) and technological
capability (m4).

• Retention policy keeps all alternatives from At to Ht .
• Non-dynamic rating is computed with the weighted sum operator, using the

weighting vector wt = (0.15,0.20,0.25,0.40),∀t ∈ T .
• Dynamic rating is computed with the probabilistic sum operator .
• Discriminative dynamic index is computed with the Van Melle’s combining func-

tion C : [−1,1]2 → [−1,1] modified in [17] as:

C(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

S(x,y) = x+ y− xy, ifmin{x,y} ≥ 0

T (x,y) = x+ y+ xy, ifmax{x,y} ≤ 0

H(x,y) = x+y
1−min{|x|,|y|} otherwise

(6)



A Discriminative Dynamic Index for DMCDM 245

0,000
0,100
0,200
0,300
0,400
0,500
0,600
0,700
0,800
0,900
1,000

1 2 3 4 5

Rt 

Period 

a1
a2
a3
a4
a5
a6
a7

Fig. 2 Rating behavior of suppliers

4.1 The Resolution Procedure and Index Performance

In order to clarify the suppliers behavior Figure 2 depicts their ratings over the five
periods. The difference between time events is not a variable neither for the index
nor for the original approach.

As illustrated in Figure 1, at each period the non-dynamic and dynamic ratings
are computed. These results are shown in Table 3, columns “Rt” and “Et” respec-
tively. To better understand the resolution procedure, following we focus on the dis-
criminative dynamic index computations and performance. Index values are shown
in Table 3, column “It”.

Period t=1: Here it is not necessary to compute the dynamic ratings.
Period t=2: Dynamic ratings for a3 and a4 are equal therefore we have to com-

pute their discriminative dynamic index, for instance:
I2(a3) =C(D2(a3), I1(a3))
D2(a3) = R2(a3)−R1(a3) = 0.3500 and I1(a3) = D1(a3) = 0 then
I2(a3) = 0.35000.
Note that for both alternatives the index evidences an optimistic attitude.

Period t=3: The discriminative dynamic index is computed for: a2 and a5 that
present opposed rating evolution; and for a3, a4 and a6 that present increasing
rating evolution. The index attitude for a2 is optimistic while for a5 is pessimistic.

Period t=4: All suppliers obtain same dynamic ratings. The discriminative dy-
namic index shows an averaging attitude because a1 and a2 present increas-
ing ratings in temporal profile but decreasing one at the current period while a5

presents the inverse situation. This averaging attitude compensates both values
but does not allow ignore rating decrements at current or previous periods.

Period t=5: All the suppliers not only obtain equal dynamic rating but also a2

and a5 present equal improvement from t = 4 to t = 5: D5(a2) = D5(a5). Despite
D5(a1)> D5(a2), their indexes are I5(a1)< I5(a2) because I4(a1) was negative.
Furthermore, as D5(a2) = D5(a5) and I4(a5) < 0, I4(a2) > 0 then I5(a2) is bet-
ter than I5(a5). Therefore the dynamic index provides for a1 and a5 an average
attitude while for a2 presents an optimistic attitude.
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Table 3 Results at each period

Period At m1 m2 m3 m4 Rt Et It

t = 1

a1 0.700 0.900 0.100 0.300 0.4000 0.40000 -
a2 0.100 0.200 0.100 0.050 0.1000 0.10000 -
a3 0.200 0.300 0.500 0.050 0.2500 0.25000 -
a4 0.100 0.200 0.500 0.500 0.4000 0.40000 -
a5 0.900 0.950 0.900 0.900 0.8200 0.82000 -
a6 0.450 0.150 0.850 0.150 0.5000 0.50000 -

t = 2

a1 0.300 0.600 0.750 0.600 0.6450 0.78700 -
a2 0.150 0.200 0.900 0.800 0.6450 0.68050 0.350000
a3 0.900 0.550 0.400 0.700 0.6000 0.68050 0.100000
a4 0.450 0.150 0.850 0.150 0.5000 0.70000 -
a5 0.900 0.800 0.410 0.400 0.6450 0.93610 -
a6 0.800 0.700 0.200 0.800 0.6000 0.80000 -
a7 0.800 0.700 0.900 0.900 0.8500 0.85000 -

t = 3

a1 0.700 0.650 0.800 0.950 0.8200 0.96166 -
a2 0.800 0.700 0.800 0.900 0.8200 0.94249 0.624625
a3 0.500 0.800 0.900 0.800 0.8000 0.94000 0.480000
a4 0.900 0.900 0.900 0.650 0.8000 0.94000 0.370000
a5 0.100 0.200 0.100 0.050 0.1000 0.94249 -0.624625
a6 1.000 0.500 1.000 0.500 0.7000 0.94000 0.190000
a7 0.800 0.700 0.900 0.900 0.8500 0.97750 -

t = 4
a1 0.200 0.100 0.050 0.100 0.1000 0.96500 -0.550472
a2 0.100 0.200 0.500 0.500 0.4000 0.96500 0.352802
a5 0.800 0.550 0.300 0.300 0.4000 0.96500 -0.463750

t = 5
a1 0.950 0.950 1.000 0.900 0.9450 0.99800 0.655194
a2 0.950 0.850 1.000 0.950 0.9450 0.99800 0.705525
a5 0.850 0.950 0.900 1.000 0.9450 0.99800 0.151515

4.2 Ranking Alternatives and Results Analysis

In Table 4 is depicted the summary of rankings obtained with the original DMCDM
framework as well as with the improved one using the new index.

Table 4 Suppliers rankings

Period Original framework Discriminative dynamic index

t = 1 a5  a6  a1 = a4  a3  a2 -
t = 2 a5  a7  a6  a1  a3 = a4  a2 a5  a7  a6  a1  a3  a4  a2
t = 3 a7  a1  a2 = a5  a3 = a4 = a6 a7  a1  a2  a5  a3  a4  a6
t = 4 a1 = a2 = a5 a2  a5  a1
t = 5 a1 = a2 = a5 a2  a1  a5
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In Sect. 2.2 were summarized situations in which the original framework can not
discriminate alternatives consequently the main objective of the DMCDM was not
accomplished since the most desirable alternatives can not be selected considering
their current and past performance.

However it is remarkable that in all circumstances the discriminative dynamic
index ranks the alternatives taking into account the desired pessimistic, averaging or
optimistic attitude. Consequently our proposal support the DMCDM by improving
the original framework in such way that the crucial purpose of DMCDM is achieved.

5 Conclusion

In this contribution, we focused on the DMCDM problems. To support consistent
decisions in cases in which the framework in [4] is not effective, we introduced a
novel discriminative dynamic index in a general resolution procedure for DMCDM.
It uses an aggregation process based on associative bipolar operators. This features
allows to exploit their associativity property to represent the rating behavior of al-
ternatives over different periods as well as to model effects of rating changes above
and below neutral element on the final aggregated value.

Acknowledgements. This work is partially supported by the Research Project TIN-2012-
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Social Choice Voting with Linguistic Preferences
and Difference in Support

Patrizia Pérez-Asurmendi and Francisco Chiclana

Abstract. A new aggregation rule in social choice voting with linguistic intensities
of preferences between pairs of alternatives is introduced. This new aggregation rule
leads to the definition of linguistic majorities with difference in support under which
an alternative defeats another if the first one reaches a concrete collective preference
support fixed before the election process. This new rule extends existing rules from
the context of crisp and reciprocal [0,1]-valued preferences to the framework of lin-
guistic preferences. Both possible representation formats of linguistic information
are addressed: fuzzy sets and 2–tuples. The linguistic majorities constitute a class
of majority rules because they generalize all the possible majority rules by adjusting
the required threshold of support.

1 Introduction

Decision making problems deal with the social choice of the best alternative from a
set of feasible alternatives taking into account the individual preferences of the vot-
ers of a social group. Once the individual preferences are collected, these problems
could be tackled following a direct or an indirect approach. The indirect approach is
based on the application of a rule to aggregate individual preferences into a collec-
tive preference, followed by a selection process to choose the final social decision.
The aggregation rule is superfluous in the direct approach. The type of aggrega-
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tion rule to apply is therefore crucial in the final choice of indirect decision making
processes, an issue that is central to the present paper.

Pairwise individual preferences could be expressed using either numerical or
linguistic values. Classical voting systems assume crisp preferences, i.e. prefer-
ences are represented using numerical information values of either {−1,0,−1} or
{0,0.5,1}. Thus, a voter reports indifference between the alternatives in comparison
or the preferred alternative, without quantifying the intensity of preference. A natu-
ral extension consists in allowing voters to provide intensities of preference [20, 18]
by means of numerical values in the unit interval, i.e. providing values that belong
to [0, 1]. Alternatively, voters are allowed to express their preferences using a set of
finite linguistic values or labels. Voters could feel more comfortable using linguistic
assessments because they are not pressed to quantify their opinions precisely with
numerical values. Such facility could also increase the satisfaction of the voters dur-
ing the voting process and also their concern with the final outcome. Additionally,
it is argued that the vagueness of the linguistic labels represents better the human
capacity of making decisions without using complex calculus process than numeri-
cal values [1, 5, 10, 16]. In this paper, it is assumed that preferences between pair of
alternatives will be represented by means of linguistic labels.

This paper focuses on majority voting systems that aggregate individual prefer-
ences. In the case of crisp preferences, simple majority rule [17] stands out amongst
the different majority rules. Under this rule, an alternative defeats another one when
the votes cast for the first one exceed the votes cast for the second one. Simple
majority rule can be seen as the most decisive aggregation rule because the require-
ment for the indifference state is quite strong given that both alternatives have to
reach exactly the same number of votes. However, it is also very unstable because
the requirement to be the winner is quite weak because the social choice could be
reverted with the change of few votes; in some cases even the change of a single vote
would be sufficient to revert the social choice. To overcome this drawback, different
rules are defined via the strengthening of the requirement to declare an alternative as
the winner. Among these rules are: unanimous majority, absolute majority, qualified
majorities, and majorities based on difference of votes [4, 3, 19, 12, 15, 9].

Majorities based on difference of votes allow to control the support required for
an alternative to be the winner by fixing, in advance of the election process, the
difference of votes. This allows for the indifference between two alternatives to be
declared in a higher number of cases than under simple majority rule. In fact, the
indifference state could be enlarged as much as desired, and therefore provides a
greater level of flexibility in decision making processes. These majorities constitute
a class of voting rules because they generalize any other majority by changing the
difference of votes required to an alternative with respect to another one to be the
winner [12].

The extension of these rules to the context of [0,1]-valued preferences is known
as majorities based on difference in support [13]. Under these rules, a specific differ-
ence in support is fixed in advanced for an alternative to be declared as the winner.

The aim of this paper is to fill the gap between majorities based on difference of
votes and majorities based on difference in support by providing a new rule when
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preferences are of a linguistic nature. Linguistic majorities with difference in sup-
port will be developed for the two different methodologies possible for representing
linguistic preferences: fuzzy sets [23] and 2–tuples [7]. Consequently, two different
linguistic rules are presented: linguistic fuzzy majorities and 2–tuples linguistic ma-
jorities. In Figure 1, the new linguistic majorities are set forth in relation with the
corresponding numerical ones. As in the case of the latest ones, voters’ role under
these linguistic majorities remains the same, i.e. they are required to compare pairs
of alternatives with independence of the nature of the voting issue. That contributes
to simplify and clarify elections to the voters. But, in fact the nature of the voting
issue is taken into account to establish the concrete required difference in support.
That permits the modification of the requirement of support from one voting situa-
tion to other ones, which seems to be reasonable in practical applications.

Linguistic Prefer-
ences

Crisp Preferences [0,1]-valued Preferences

Mk–majorities LMK–majorities

2T Mk–majorities

M̃k–majorities

Fig. 1 Individual preferences and majorities based on differences

The rest of the paper is organized as follows: Section 2 provides some basic
concepts needed for the development of the paper. In Section 3, linguistic majorities
with difference in support are introduced. Conclusions and future research questions
are provided in Section 4.

2 Preliminaries

Consider m voters provide their preferences over pairs of alternatives of a set X =
{x1, . . . , xn}. The preferences of each voter can be represented in matrix form: Rp =(

rp
i j

)
where rp

i j stands for the degree of preference of alternative xi over x j for voter

p. The coefficients of that matrix could be of numerical or linguistic nature.

2.1 Numerical Preferences

If the values of rp
i j are restricted to {0, 1

2 ,1}, we face the crisp case where vot-
ers declare only their preference for an alternative or the indifference between two
alternatives. When rp

i j = 1 the voter p prefers alternative xi to alternative x j; al-

ternative x j is preferred to alternative xi when rp
i j = 0; whilst the value rp

i j =
1
2

represents the voter indifference between both alternatives. The implied reciprocity
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property of crisp preferences assures that the asymmetric property usually required
to a weak order relation is verified. Let us recall that a binary preference relation rep-
resented by  p is asymmetric if given two alternatives xi and x j, xi  p x j implies
that x j �p xi.

If the values rp
i j belong to [0,1] then voters are allowed to express their intensity

of preference between pairs of alternatives. If rp
i j > 0.5, the individual p prefers

the alternative xi to the alternative x j; the nearer the value of ri j to 1 the greater
is the preference for xi with respect to x j. As in the crisp case, rp

i j = 0.5 means
that the voter p is indifferent between xi and x j. The [0,1]-valued preferences are
assumed to fulfil the following reciprocity property, rp

i j + rp
ji = 1, that extends the

crisp preferences asymmetry property.

2.2 Linguistic Preferences

Let L = {l0, . . . , ls} be a set of linguistic labels where s ≥ 2, with semantic mean-
ing implying the following linear order: l0 < l1 < .. . < ls. The number of labels
is assumed odd, which allows for the central label ls/2 to stand for the indifference
state when comparing two alternatives. The remaining labels are located symmetri-
cally around the central one to derive a kind of reciprocity property as in the case
of numerical preferences. When the linguistic assessment associated to the pair of
alternatives (xi,x j) is li j = lh ∈L , the linguistic assessment associated to the pair
(x j,xi) would be l ji = ls−h. The following negation operator is defined N(lh) = lg
with |g− h|= s. An possible set of seven linguistic labels with their corresponding
semantic meanings is given in Table 1.

Table 1 Seven linguistic labels

Label Meaning
l0 x j is absolutely preferred to xi
l1 x j is highly preferred to xi
l2 x j is slightly preferred to xi

l3 xi and x j are indifferent
l4 xi is slightly preferred to x j
l5 xi is highly preferred to x j

l6 xi is absolutely preferred to x j

In the following, the linguistic preference of individual p is represented by the

matrix Rp =
(

l p
i j

)
with l p

i j ∈ L . A profile of linguistic preferences for the pair

of alternatives (xi,x j) is a vector (l1, . . . , lm) ∈ L m of the associated linguistic
preferences provided by the m voters for that pair of alternatives.

The main two representations formats of linguistic information [8] are the cardi-
nal and the ordinal one. The first one is based on the use of fuzzy set with associ-
ated membership function that are mathematically processed via Zadeh’s Extension
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Principle [24]. The second one is based on the use of 2-Tuples symbolic methodol-
ogy [7].

2.2.1 Fuzzy Set Representation of Linguistic Values

Convex normal fuzzy subsets of the real line, also known as fuzzy numbers, are
commonly used to represent linguistic terms. By doing this, each linguistic assess-
ment is represented using a fuzzy number that is characterized by a membership
function, with base variable the unit interval [0,1], describing its semantic mean-
ing. The membership function maps each value in [0,1] to a degree of performance
which represents its compatibility with the linguistic assessment [24].

It is worth mentioning that some authors consider trapezoidal fuzzy numbers as
the most appropriate to represent linguistic preferences [2, 14] because they are
more general than triangular and interval fuzzy numbers. A representation of the
set of seven balanced linguistic terms of Table 1 using trapezoidal fuzzy numbers is
given in Figure 2.

0 1
0

1
l0 l1 l2 l3 l4 l5 l6

μτ

0

1

μτ

Fig. 2 Representation of seven linguistic terms with fuzzy trapezoidal membership functions

2.2.2 2–Tuple Representation of Linguistic Values and Their Computational
Procedure

In Herrera and Martinez [7] linguistic values are modelled by means of linguistic
2–tuples: (lb,λb) where lb ∈L and λb is a numeric value representing the symbolic
translation. This representation structure allows, on the one hand, to obtain the same
information than with the symbolic representation model based on indexes without
losing information in the aggregation phase. On the other hand, the result of the
aggregation is expressed on the same domain as the one of the initial linguistic
labels and therefore, the well-known re-translation problem of the above methods is
avoided.

Definition 1. Let a ∈ [0,s] be the result of a symbolic aggregation of the in-
dexes of a set of labels assessed in a linguistic term set L = {l0, . . . , ls}. Let
b = round(a) ∈ {0, . . . ,s}. The value λb = a− b ∈ [−0.5,0.5) is called a symbolic
translation, and the pair of values (lb,λb) is called the 2–tuple linguistic representa-
tion of the symbolic aggregation a.
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The 2–tuple linguistic representation of symbolic aggregation can be mathemati-
cally formalized with the following mapping:

φ : [0,s] → L × [−0.5,0.5)
φ(a) = (lb,λb).

(1)

Based on the linear order of the linguistic term set and the complete ordering of the
set [−0.5, 0.5), it is easy to prove that φ is strictly increasing and continuous and,
therefore its inverse function exists:

φ−1 : L × [−0.5,0.5) → [0,s]
φ−1(lb,λb) = b+λb = a.

The following negation operator is defined: N(φ(a)) = φ(s− a).
Figure 3 illustrates the application of the 2-tuple function φ and its inverse for

a linguistic term set of cardinality seven. The value of the symbolic translation is
assumed to be 3.7, which means that round(3.7) = 4 and therefore it can be repre-
sented with the 2-tuple (l4,−0,3).

a = 3.7 (lb,λb) = (l4,−0.3)

φ

φ−1

0 1 2 3 4 5 6

Fig. 3 Subindexes, symbolic translation and 2-tuples

2.3 Majorities Based on Differences

In 2001, García-Lapresta and Llamazares [12] introduce the majorities based on
difference of votes or Mk–majorities with the aim of reducing the support problems
commonly attached to simple Majority rule (see for the axiomatic characterization
of such rules [15, 9]). Under these rules, given a difference of votes k, an alternative,
xi, defeats another alternative, x j, by k votes when the difference between the votes
cast for the alternative xi and the votes cast for the alternative x j is greater than k.
Mk –majorities generalize other majority rules.

García-Lapresta and Llamazares extend Mk–majorities to the framework of
[0,1]-valued preferences [13] with the majorities based on difference in support or
M̃k–majorities. Under these majorities, an alternative, xi, defeats another one,x j, by
a threshold of support k, when the sum of the intensities of preference of xi over x j,
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ri j, of the m voters exceeds the sum of the intensities of preference of x j over xi,
r ji, in a quantity greater than k. The reciprocity property of [0,1]-valued preferences
allow to define M̃k–majorities via the average of individual intensities of preference
[13]:

Definition 2. Given a threshold k ∈ [0,m) and a profile of reciprocal preference re-
lations R(X) = (R1, . . . ,Rm), the M̃k–majority is a mapping from [0,1]m to {1, 1

2 ,0}
defined by:

M̃k(xi,x j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 1
m

m
∑

p=1
rp

i j >
m+k
2m

0 if 1
m

m
∑

p=1
rp

i j <
m−k
2m

1
2 otherwise,

(2)

where M̃k(xi,x j) = 1 means that xi defeats x j by a threshold of support greater than
k, M̃k(xi,x j) = 0 symbolizes that x j defeats xi by a threshold of support greater than
k and M̃k(xi,x j) =

1
2 stands for a tie of both alternatives meaning that the difference

in between the support for both alternatives in absolute value is lower than or equal
to k.

Under these rules, two alternatives are socially indifferent if the collective prefer-
ence belongs to a numerical interval, specifically

[
0.5− k

2m ,0.5+
k

2m

]
, and not just

when the collective preference equals the value 0.5. When the collective preference
is greater than the upper bound of such interval, the first alternative is preferred to
the second one. On the contrary, when the collective preference is lower than the
lower bound of that interval, the second alternative is preferred to the first one.

3 Linguistic Majorities with Difference in Support

To define majority rules with difference in support in the context of linguistic pref-
erences, we need first to introduce the concept of linguistic decision rule:

Definition 3. A linguistic decision rule is a mapping

F : L m → {0,0.5,1},

that associates to a profile of linguistic preferences, (l1, . . . , lm) ∈ L m, the follow-
ing values:

• F(l1, . . . , lm) = 1 when xi defeats x j;
• F(l1, . . . , lm) = 0 when x j defeats xi; and
• F(l1, . . . , lm) = 0.5 when xi and x j tie.

The extension of the M̃k–majority (2) from the context of the numerical preferences
to the linguistic ones, involves the computation of the voters’ average linguistic eval-
uation for a pair of alternatives and the comparison between two linguistic assess-
ments. In the following, we formalize that for the fuzzy set and the 2-tuple linguistic
representation methodologies.
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3.1 Linguistic Majority with Difference in Support Represented
by Fuzzy Sets

Let Ãp
i j a type–1 normal and convex fuzzy set that represents the linguistic prefer-

ence of the voter p when comparing alternatives xi against alternative x j.
The application of the extension principle [24] and the representation theorem of

fuzzy sets [23], via the α–level sets, lead to the following [25]:

(Ã1⊕ Ã2)
α = Ãα1 ⊕ Ãα2 (3)

The α–level sets of fuzzy numbers are closed intervals, and therefore interval arith-
metic yields:

(Ã1⊕ Ã2)
α = Ãα1 ⊕ Ãα2 = [u−1 ,u

+
1 ]+ [u−2 ,u

+
2 ] = [u−1 + u−2 ,u

+
1 + u+2 ].

A problem that needs to be addressed here is the comparison of fuzzy numbers.
Yager [22], pointed out that this problem has been extensively studied and that there
is no unique best approach. Indeed, the set of fuzzy numbers is not totally ordered
and therefore it is not possible to achieve a clear social decision in this case. Thus,
we require a method to classify them with respect to the intervals of social prefer-
ence or social indifference established by M̃k–majorities.

A widely used approach to rank fuzzy numbers is to convert them into a repre-
sentative crisp value and perform the comparison on them [22]. Two methods to de-
velop that reduction are common in the literature, namely, the centre of area method
(COA) and the mean of maximum method (MOM). The first one computes the cen-
tre of mass of the membership function of the fuzzy set (the centroid), whereas
the second one computes the mid-point of the 1-level set of the fuzzy set. For a
symmetric trapezoidal number Ã, we have that uCOA(Ã) = uMOM(Ã) because of
internal symmetry of linguistic labels. Therefore, we refer these real numbers sim-
ply as u(Ã). Moreover, given two normal and convex trapezoidal fuzzy numbers,
namely Ã1 and Ã2 it holds that, u(Ã1+Ã2)= u(Ã1)+u(Ã2). Hence, u is an additive
function.

The range of the function u is [u(l0), u(ls)], whilst the range of m+k
2m is [0, 1]. To

compare the values of these functions, we transform function u into a function u’
with range [0, 1], as follows:

u’(lh) =
u(lh) − u(l0)
u(ls) − u(l0)

.

Below, we formally define the linguistic majority with difference in support repre-
sented by fuzzy sets. Under this rule, an alternative, say xi, defeats another, say x j

by a threshold of support K, if the defuzzified value attached to the average fuzzy
set of the voters’ linguistic valuations between xi and x j exceeds the value 0.5 in a
quantity that depends on the threshold K, fixed before the election process.
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Definition 4. Given a set of alternatives X and a profile of individual reciprocal
fuzzy linguistic preference relations R(X) = (R1, . . . ,Rm), the LMK–majority with
difference in support is the following linguistic decision rule:

LMK(xi,x j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if u’

(
1
m

m
∑

p=1
Ãp

i j

)
> m+K

2m

0 if u’

(
1
m

m
∑

p=1
Ãp

ji

)
> m−K

2m

0.5 otherwise,

(4)

where u’

(
1
m

m
∑

p=1
Ãp

i j

)
and u’

(
1
m

m
∑

p=1
Ãp

i j

)
are the defuzzified values of the fuzzy

average linguistic preference of the profile of fuzzy linguistic preferences of the
pairs of alternatives (xi,x j) and (x j,xi) respectively; and K ∈ [0,m) represents the
threshold of support required to an alternative to be the social winner.

Because u is additive, then we have that

u’

(
1
m

m

∑
p=1

Ap
i j

)
=

1
m

m

∑
p=1

u’(Ap
i j).

i.e. u’ is additive. Therefore expression (4) can be rewritten as:

LMK(xi,x j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 1
m

m
∑

p=1
u’(Ãp

i j)>
m+K
2m

0 if 1
m

m
∑

p=1
u’(Ãp

i j)<
m−K
2m

0.5 otherwise,

(5)

where the threshold K ∈ [0, m) and 1
m

m
∑

p=1
u’(Ãp

i j) is the average of the defuzzi-

fied values associated with the profile of fuzzy linguistic preferences of the pair of
alternatives (xi,x j) as per the assessment of each individual voter.

When K = 0, the rule is equivalent to the simple majority based on linguistic
labels introduced in [11]. In such a case, no difference of support between the alter-
natives is required.

3.2 Linguistic Majority with Difference in Support Represented
by 2–Tuples

To extend the M̃k–majority to the 2–tuple representation, the addition and the rule
to compare pairs of 2–tuples are needed.
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Let two different 2–tuples, φ(a1) = (lb1 ,λb1) and φ(a2) = (lb2 ,λb2), with
a1, a2 ∈ [0,s] the results of symbolic aggregations, b1 = round(a1), b2 =
round(a2), λb1 = a1− b1 and λb2 = a2− b2 .

Definition 5. (2-tuple addition [7]).

φ(a1)+φ(a2) = (lb12 , λb12),

with b12 = round(a1+ a2), and λb12 = (a1 + a2)− b12.

Definition 6. (2-tuple lexicographic ordering [7]). Given φ(a1) = (lb1 ,λb1) and
φ(a2) = (lb2 ,λb2),

1. If b1 is greater than b2, then φ(a1)> φ(a2).
2. If b1 is equal to b2 and λb1 is greater than λb1 , then φ(a1)> φ(a2).
3. If b1 is equal to b2 and λb1 is equal to λb1 , then φ(a1) = φ(a2).

Below, we formally define the linguistic majority with difference in support rep-
resented by 2–tuples. Under this rule, an alternative, xi, defeats another, x j, by a
threshold of support k if the 2–tuple linguistic representation of the average sym-
bolic aggregation of the linguistic preferences of xi over x j exceeds the 2–tuple
linguistic representation associated of the indifference state in a value that depends
on the threshold k, fixed before the election process.

Definition 7. Given a set of alternatives X and a profile of individual reciprocal
2–tuple linguistic preferences relations R(X) = (R1, . . . ,R2), the 2TMk–majority
with difference in support is the following linguistic decision rule:

2TMk(xi,x j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if 1
m

m
∑

p=1
φ(ap

i j)> φ
(

s×m+k
2m

)
0 if 1

m

m
∑

p=1
φ(ap

i j)< φ
(

s×m−k
2m

)
0.5 otherwise,

(6)

where 1
m

m
∑

p=1
φ(ap

i j) is the average of the 2–tuple representation of the linguistic pref-

erences provided by the voters for the pair of alternatives (xi,x j), φ is the 2–tuple
symbolic aggregation mapping in (1); and k is a real number in [0, m× s) that rep-
resents the threshold of support, fixed before the election process.

Given that in the ordinal representation for linguistic information the addition of
linguistic labels is defined as la1 + la2 = la1+a2 [21], function φ is additive. Therefore
expression (6) can be rewritten as:
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2TMk(xi,x j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if φ

(
1
m

m
∑

p=1
ap

i j

)
> φ

(
s×m+k

2m

)

0 if φ

(
1
m

m
∑

p=1
ap

i j

)
< φ

(
s×m−k

2m

)
0.5 otherwise,

(7)

where 1
m

m
∑

p=1
ap

i j is the symbolic aggregation, specifically the arithmetic mean, of the

linguistic preferences provided by the voters for the pair of alternatives (xi,x j).
We note that in the context of the 2–tuples, the threshold k varies between 0 and

s × m. That happens because each voter could select a linguistic label from l0 to ls
and consequently the symbolic translation of each of these labels goes from 0 to s.
Therefore, the addition of these individual symbolic values varies in [0, s×m].

When k = 0, the rule could be seen as the simple majority rule in the framework
of the 2–tuples. In fact, when we take k = 0 in expression (7), we are dealing with
the arithmetic mean operator described in [7].

4 Concluding Remarks

We have introduced a new class of aggregation rules in the context of linguistic
preferences, namely Linguistic majorities with difference in support that general-
ize other linguistic majorities. These rules extend Majorities based on difference in
support from the interval-value preferences to the context of the linguistic prefer-
ences through two different representations, i.e. the fuzzy set representation and the
2–tuple representation. They also reach different majorities by adjusting the support
required to the winner alternative, getting the possibility of varying such support
depending on the nature of the voting issue.

This research leaves open some interesting extensions. For instance, the extension
of this new rule to the context of fuzzy majorities by formalizing linguistic labels as
type–2 fuzzy sets and the rule as a type–1 fuzzy set. Also, the relationship between
the LMk–majority with difference in support and the 2T Mk–majority with difference
in support is to be established.
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Calibration of Utility Function

Jana Špirková

Abstract. Utility theory belongs to a very interesting part of a modern decision
making theory. We develop the basic concept of utility theory on a determination
of a personal utility function wich was founded empirically by short personal in-
terview. We suggest a calibration of theoretical utility function by expected utility
maximization criterion. Moreover, on the basis of calibration of utility functions we
determine a model of specific values of a maximal and minimal annual premium
acceptable for an insured and for an insurer, too.

1 Introduction

A more modern approach of the utility theory was advanced by John von Neumann
and Oskar Morgenstern in 1947 in their book Theory of Games and Economic Be-
havior [4]. There, they proposed that a utility function may be tailored for any indi-
vidual, provided certain assumptions about the individual’s preferences hold. These
assumptions provide several valid, basic shapes for the utility function. In 2007 was
published 60th-anniversary edition of this book [5]. We can find a very interesting
approach about utility functions in [3].

Our work was inspired by the books Modern Actuarial Risk Theory [2] and Ac-
tuarial Models - The Mathematics of Insurance [4] and by my students, which want
to know a more information about a generation of a personal utility function. Es-
pecially, this paper was inspired by the paper Some useful optimization problems in
portfolio theory [6], where author described calibration of a utility function accord-
ing to maximization of the expected utility.
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On the basis of the calibration of theoretical utility function and expected util-
ity maximization we offer the model on the determination maximal and minimal
premiums acceptable for an insured and for an insurer in a general insurance.

Our paper is organized as follows. In Section 2 we recall a few of utility func-
tions which have a constant relative risk aversion. In Section 3 we introduce basic
propeties of the expected utility with respect to concavity and convexity of the utility
function. Moreover, we recall expected utility maximization criterion. Section 4 rep-
resents the basic part of our paper. It contains a calibration of the utility function (5)
according to short questionnaire and the expected utility maximization criterion.
Section 5 explains a model on a determination of maximal and minimal premium
in general insurance with respect to calibrated personal utility functions. Finally, in
Section 6 some conclusions and indications of our next investigation about men-
tioned topic are included.

2 Preliminaries

D. Bernoulli proceeded from the simple observation that the "degree of satisfaction"
of having capital, or in other words, the "utility of capital", depends on the particular
amount of capital in a nonlinear way. For example, if we give 1, 000 euros to a
person with a wealth of 1, 000, 000 euros, and the same 1, 000 euros to a person
with zero capital, the former will feel much less satisfied than the latter. To model
this phenomenon, D. Bernuolli assumed that the satisfaction of possessing a capital
x, or the "utility" of x, may be measured by a function u(x), as a rule, is not linear.
Such a function is called a utility function, or a utility of money function. According
to [4] the word "satisfaction" would possibly reflect the significance of the definition
better, but the term "utility" has been already accepted.

Utility function may be used as a basis for describing individual approaches to
risk. Three basic approaches have been characterized. Opposite cases refer to risk
loving and risk averse who accepts favorable gambles only. There is risk-neutral
between these two extremes. Risk-neutral behavior is typical of persons who are
enormously wealthy. Many people may be both risk averse and loving, depending
on the range of monetary values being considered.

In real life people do not behave according to theoretical utility functions. There
is a psychological problem rather than a mathematical one. Seriousness and uncer-
tainty of respondent’s answers depend on situation, on form of questions asked, on
time which respondents have, and on many psychological and social factors. We can
find a very interesting approach about utility functions in [3].

In [4] Rotar introduced many types of classical utility functions, for example:

u(x) =−A× x1−α+B i f α > 1; (1)

u(x) = A× lnx+B i f α = 1; (2)
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u(x) = A× x1−α+B i f α < 1; (3)

u(x) =
1
α
× (

1− exp−α×x) i f α > 0; (4)

u(x) =
x1−α

1−α i f α �= 1. (5)

All above mentioned functions represent a standard class of the constant coefficient
of relative risk aversion functions (CRRA functions) with the constant relative risk
aversion which is given by

R(x) =−x
u′′(x)
u′(x)

= α = const. (6)

In our paper we focus on an investigation of the utility function (5). Our aim is to
calibrate mentioned utility function by the short questionnaire.

3 Expected Utility

Within the expected utility investigation, the explanation for risk aversion is that
the utility function for wealth is concave and non-decreasing, and for risk loving is
convex and non-decreasing.

The theorem below describes properties of the utility function and its expected
value.

Theorem 1. (Jensen’s inequality) [2], [4] Let X be a random variable (with a finite
expectation). Then,

if u(x) is concave,
E [u(X)]≤ u(E [X ]) . (7)

If u(x) is convex,
E [u(X)]≥ u(E [X ]) . (8)

Equality holds if and only if u(x) is linear according to X or var (X) = 0.

Jensen’s inequality follows directly from the properties of concave and convex func-
tions. See Fig. 3.

Remark 1. Expected utility is calculated by the well-known formula

E [u(X)] =
n

∑
i=1

u(xi) · pi, (9)

where X = (x1,x2, . . . ,xn) is a vector of the possible alternatives and pi is the prob-
ability of alternative xi.

Expected utilities can be calculated by linear function too, which is determined
uniquely by points on the utility function which represent the worst and the best
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Fig. 1 Jensen’s inequalities

case. In both cases we get the same values of the expected utilities. On the Fig. 3 the
best and the worst options are represented by the points A, B.

3.1 Expected Utility Maximization

Expected utility maximization criterion corresponds to the preference order ! for
which

X ! Y ≡ E [u(X)]! E [u(Y )] (10)

for a utility function u. The relation (10) means that among two random variables
X , Y we prefer the random variable with the larger expected utility. If u(x) is
non-decreasing, the rule (10) is monotone. The investor who follows (10) is called
an expected utility maximizer.

Remark 2. The preference order (10) does not change if u(x) is replaced by any
function

u∗ = a× u(x)+ b, (11)

where a is a positive and b is an arbitrary number. The values of a and b do not
matter, because an expression (11) represents an affine transformation.
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4 Calibration of Utility Function

As we mentioned in Section (2), we focus on the calibration of the utility func-
tion (5) by the next short questionnaire, [6]:

Suppose that you are going to invest 17 000 euros and you have a choice between
four different investment strategies for a three-year investment. Which one would
you prefer?

• alternative A1: in the best case profit 1 700 euros (10%), in the worst case profit
550 euros (3.24%);

• alternative A2: in the best case profit 2 600 euros (15.29%), in the worst case zero
profit (but no loss);

• alternative A3: in the best case profit 4 000 euros (23.53 %), in the worst case loss
1 700 euros (10%);

• alternative A4: in the best case profit 6 500 euros (38.53 %), in the worst case loss
4 000 euros (23.53 %).

Respondents have chosen one of the previous alternatives. It is apparent that indi-
vidual alternatives are put in order, so that the first alternative is of the lowest risk
and the fourth alternative is of the highest risk. We evaluated expected utilities for
all alternatives and for some selected relative risk aversion coefficients α in the util-
ity function (5). On the basis of the equation (9) we evaluated expected utilities and
determined maximal expected utilities by

E[u(x)] = p ·u(x1)+ (1− p) ·u(x2)→ max (12)

for all alternatives on the level of all used α . Our results are written in the Tab. 1.
Please, observe, that all values - the best and the worst cases we divided by 10,000
for easier evaluation with respect to suitable decimal places.

You can see from the Tab. 1 a respondent who has chosen alternative A1 will
have the utility function with risk aversion coefficient α = 11, hence his/her utility
function is given by u(x) = −1

10×x10 ; a respondent who has chosen alternative A2 will
have α from 6 to 10 and corresponding utility function (we have chosen for this
case α = 7) u(x) = −1

6×x6 ; a respondent who has chosen alternative A3 will have

α = 5 or α = 6 and corresponding utility function for α = 5 u(x) = −1
4×x4 ; and at

the end, a respondent who has chosen alternative A4 will have α = 2 or α = 3 and
corresponding utility function with α = 3 is given by u(x) = −1

2×x2 .

5 Expected Utility in Insurance

In this section we introduce a model of the determination of minimal and maximal
premium in a general insurance. We use the utility functions in the shape (5) which
were calibrated according to the questionnaire from Section 4.
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Table 1 Expected utility according to α and individual alternatives

Alternative A1 A2 A3 A4

the best case x1 1.87 1.96 2.10 2.35
the worst case x2 1.75 1.70 1.53 1.30
probability p 0.99 0.80 0.80 0.80
probability (1− p) 0.01 0.20 0.20 0.20
α = 2 -0.5351260504 -0.5258103241 -0.5116713352 -0.4942716858
α = 3 -0.1431866008 -0.1387253581 -0.1334215603 -0.1316025619
α = 4 -0.0510868286 -0.0489855239 -0.0474083611 -0.0508922003
α = 5 -0.0205064749 -0.0195385907 -0.0194081802 -0.0240641956
α = 6 -0.0087806430 -0.0083486432 -0.0086885586 -0.0130056075
α = 7 -0.0039166661 -0.0037327835 -0.0041531599 -0.0076975207
α = 8 -0.0017970871 -0.0017247775 -0.0020903041 -0.0048420699
α = 9 -0.0008417949 -0.0008175307 -0.0010969370 -0.0031722489
α = 10 -0.0004006034 -0.0003956201 -0.0005955985 -0.0021362131
α = 11 -0.0001930420 -0.0001948224 -0.0003324839 -0.0014663374

Source: own construction

5.1 Utility of Insured

Suppose that our respondent has two alternatives - to buy insurance or not. Suppose
that he owns a capital w and that he values wealth by the utility function u. Let’s
assume he is insured against a loss X for a gross annual premium GP. If he is insured
that means a certain alternative. This decision gives us the utility value u(w−GP).
If he is not insured that means an uncertain alternative. In this case the expected
utility is E [u(w−X)]. Based on Jensen’s inequality (7) we get

E [u(w−X)]≤ u(E [w−X ]) = u(w−E [X ])≤ u(w−GP) . (13)

Since utility function u is a non-decreasing continuous function, this is equivalent to
GP ≤ Pmax, where Pmax denotes the maximum premium to be paid. This so-called
zero utility premium is the solution to the following utility equilibrium equation

E [u(w−X)] = u(w−Pmax) . (14)

On the basis of individual personal utility functions we can determine maximal pre-
mium what our respondent - client of an insurance company will be willing to pay
for insurance his/her wealth on the basis of the following model: our client has
17 000 euros and he wants to insure his wealth in the size 12 000 euros. Maximal
premium Pmax is calculated by inverse function u−1 to the utility equilibrium equa-
tion (14) which is given by

Pmax = w− u−1 (E [u(w−X)]) . (15)
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Fig. 2 Expected utility for risk averse approach

Resulting values of maximal premiums with respect to risk aversion coefficients are
written in Tab. 2. Moreover, minimal premiums with respect to insurer, are calcu-
lated on the basis of (16) and (17).

Table 2 Premiums According to Constant Relative Risk Aversion

probability E [X ] Pmin Pmax Pmax Pmax Pmax

p α = 11 α = 7 α = 5 α = 3

0.001 12 12.03 7,028.50 2,449.82 521.16 89.06
0.002 24 24.60 7,694.02 3,555.73 971.11 176.73
0.003 36 36.09 8,063.08 4,254.82 1,365.65 263.05
0.004 48 48.11 8,316.16 4,759.20 1,715.96 348.05
0.005 60 60.14 8,507.59 5,150.38 2,030,24 431.78
...

...
...

...
...

...
...

0.9 10,800 10,802.43 11,947.04 11,911.49 11,867.62 11,754.69
1.0 12,000 12,000.00 12,000.00 12,000.00 12,000.00 12,000.00

Source: own construction

Remark 3. Observe, that the insured is willing to pay the premium, which is of equal
value as the loss. For more information see, for example [1].
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5.2 Utility of Insurer

The insurer with utility function U(x) and capital W , with insurance of loss X for a
premium GP must satisfy the inequality

E [U (W +GP−X)]≥U (W ) , (16)

and hence for the minimal accepted premium Pmin

U (W ) = E
[
U
(
W +Pmin−X

)]
. (17)

D. Bernoulli himself suggested as a good candidate for the “natural” utility function
U(x) = lnx, assuming that the increment of the utility is proportional not to be the
absolute but to the relative growth of the capital. More specifically, if capital x is
increased by a small dx, then the increment of the utility, dU(x), is proportional to
dx
x , that is

dU(x) = k× dx
x

(18)

for a constant k. The solution to this equation is

U(x) = k× lnx+C, (19)

where C is another constant. We determine minimal premium by the means of (17)
with respect to utility function for insurer U(x) = lnx with his basic capital (Slovak
Republic) W = 2,655,513.51 euros and loss X = 12, 000 euros.

Equation (17) can be rewritten as follows:

U (W ) = p ·U(W +Pmin−X)+ (1− p) ·U(W +Pmin), (20)

and hence

W = (W +Pmin−X)p · (W +Pmin)(1−p). (21)

6 Conclusion

In our paper we offered a process of a calibration of a utility function on the basis of
expeced utility maximization. Moreover, we used created individual personal utility
function on a determination of maximal premium in the case of an insurance of
wealth in the size 12,000 euros.

Because, as you can see from Tab. 1, we have more posibilities to choose relative
risk aversion coefficients, we want in our next investigation to aggregate risk aver-
sion coefficients for individual alternatives. Our next aim is to aggregate individual
personal utility functions for determination of the best (minimal) maximal premium
which is the insured willing to pay.

We evaluated expected utilities and correspondig maximal and minimal premi-
ums by MS Office Excel 2010 and Mathematica 8 systems.
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Uncertain Choices: A Comparison of Fuzzy and
Probabilistic Approaches

Davide Martinetti, Susana Montes, Susana Díaz, and Bernard De Baets

Abstract. Choices among alternatives in a set can be expressed in three different
ways: by means of choice functions, by means of preference relations or using
choice probabilities. The connection between the two first formalizations has been
widely studied in the literature, both in the crisp or classical context and in the
setting of fuzzy relations. However, the connection between probabilistic choice
functions and fuzzy choice functions seems to have been forgotten and as far as we
know, no literature can be found about it.

In this contribution we focus on the comparison of both types of choice func-
tions. We provide a way to obtain the fuzzy choice function from the probabilistic
choice function and the other way around. Moreover, we can prove that under Luce’s
Choice Axiom the fuzzy choice function derived from the probabilistic choice func-
tion is G-normal.

1 Introduction

There is no unique way of representing the act of choice in mathematical language.
As pointed out by Fishburn in [7], there exist at least three ways of representing
them:

(i) binary relations;
(ii) choice functions;

(iii) choice probabilities.
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The relations between the first two formalisms have been widely studied (see [1, 19,
20, 21, 22, 23, 24]), giving birth to an extensive literature that goes under the name
of choice theory with revealed preferences. Fishburn already addressed in [7] the
lack of results on the connections between choice functions and choice probabilities
and hence he proved a set of propositions on the conditions that should be satisfied
by the choice probability function in order for the associated choice function to be
rational.

The same situation appears in the framework of fuzzy choice and fuzzy prefer-
ences. In the last years the results of classical (crisp) revealed choice theory have
been recovered in the fuzzy framework, laying bare the connections between fuzzy
preference relations and fuzzy choice functions (see, amongst others, [2, 3, 4, 8, 9,
10, 13, 14, 16, 18, 25, 26, 27]). Surprisingly, while the connection between fuzzy
preference relations and fuzzy choice functions has been studied in depth, there
appears to be no literature on the comparison of fuzzy choice functions and proba-
bilistic choice functions. Furthermore, we consider interesting to compare the two
formalisms, since in the first case the uncertainty on the choices is handled using
fuzzy set theory, while in the second case, using probability theory.

To find a proper way to translate one formalism into another, we make use of
implication operators, trying to maintain the semantic of uncertainty associated to
the formalism of probabilistic choice functions, while the semantic of fuzziness
associated to the fuzzy choice functions.

2 Preliminary Concepts

2.1 Choice Probability Functions and Reciprocal Relations

Let X be a finite set of alternatives and B the family of all non-empty subsets of
X (B = 2X \ { /0}). Imagine that a decision maker is observed to make his choices
over the set X , when different bundles of alternatives are presented to him. The
set X can be a set of products on the shelf at a supermarket. The decision maker
is a consumer, whose purchases are recorded. Not all the possible products in X
are always available (seasonal products, out-of-stock, etc.). Hence the choices of
the decision maker are recorded also considering these restrictions on the available
products. A probability measure P on B can be defined: for every pair A,B ∈B,
such that A ⊆ B, P(A,B) is the probability that the choice from the set B lies in
the subset A. The probability measure nP is completely determined by its values
P(x,A) = P({x},A) (probability of choosing alternative x from the set A), in the
sense that P(A,B) = ∑x∈A P(x,B). This probability measure is also called choice
probability function and associates to every (x,A) in X ×B a value P(x,A) that
represent the probability that element x is chosen, when A is available. The function
P can be approximated using frequency of observations in a dataset. For a matter
of convenience, we will denote the choice over the pairs by p(x,y) = P({x},{x,y}).
This relation p is usually called probabilistic relation or reciprocal relation in the
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literature and obviously satisfies condition p(x,y) + p(y,x) = 1, for any x,y in X .
Different definitions of transitivity have been proposed for probabilistic relations:

(i) g-stochastic transitivity, see [5, 6];
(ii) h-isostochastic transitivity, see [5, 6];

(iii) cycle-transitivity, see [5, 6];

In this work we will pay particular interest to a specific kind of h-isostochastic
transitivity, also known as multiplicative transitivity: for any x,y,z in X it holds that

p(x,y)
p(y,x)

p(y,z)
p(z,y)

=
p(x,z)
p(z,x)

. (1)

2.2 Luce’s Choice Axiom

In probability theory, Luce’s Choice Axiom, formulated by R. Duncan Luce in [11,
12], states that the probability of selecting one alternative over another from a set
of available alternatives is not affected by the presence or absence of other items in
the set. Selection of this kind is said to be independent from irrelevant alternatives
(IIA). Formally, it is composed of two parts:

Part 1 If p(x,y) �= 0, for all x,y in X , x �= y, then for all A ∈B and all x in A

P(x,X) = P(x,A)P(A,X). (2)

Part 2 If p(x,y) = 0 for some x,y in X , then for all A ∈B, we have

P(A,X) = P(A\ {x},X \ {x}). (3)

Notice that Luce’s Choice Axiom is not always fulfilled. It is easy to find examples
of choice probabilities that do not satisfy this axiom. As a consequence of Luce’s
Choice Axiom, we can guarantee that the probabilistic relation p satisfies the mul-
tiplicative transitive property and also the so called, constant ratio rule: for any x,y
in X , it holds that

P(x,A)
P(y,A)

=
P(x,X)

P(y,X)
. (4)

This condition trivially implies that p(x,y)
p(y,x) =

P(x,A)
P(y,A) , for any A ∈B.

2.3 Fuzzy Choice Functions and Fuzzy Preference Relations

A fuzzy choice function C in the sense of Banerjee (see [2]) is defined over X ×B
and associates to every (x,A) a value C(x,A) in the unit interval that represents the
degree of choice of alternative x when the set of alternatives A is available. The only
condition imposed on C is that, for every A ∈B, there exists at least one alternative
x ∈ A such that C(x,A) > 0. The fuzzy choice function C satisfies condition H1 if,
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for every A ∈B, there exists one element x ∈ A, such that C(x,A) = 1, i.e. the fuzzy
set C(·,A) is a normal fuzzy set. It satisfies condition H2 if the family B of subsets
of X is equal to 2X \ { /0}.

A fuzzy preference relation on X is a mapping Q : X2 → [0,1], that to every pair
of elements x and y of X associates a real value Q(x,y) ∈ [0,1] that represents the
degree of preference of the first element over the second. In this work we consider
the following properties of Q:

(i) reflexivity: if Q(x,x) = 1, for every x ∈ X ;
(ii) moderate completeness: if Q(x,y)+Q(y,x)≥ 1, for every x,y ∈ X ;

(iii) strong completeness: if max(Q(x,y),Q(y,x)) = 1, for every x,y ∈ X ;
(iv) T -transitivity: if T (Q(x,y),Q(y,z)) ≤ Q(x,z), for every x,y,z ∈ X and where

T represents a triangular norm;
(v) acyclicity: for all n≥ 2 and (x1,x2, . . . ,xn) ∈ X , if

if

⎧⎪⎪⎨
⎪⎪⎩

Q(x1,x2) > Q(x2,x1)
Q(x2,x3) > Q(x3,x2)

. . .
Q(xn−1,xn) > Q(xn,xn−1)

, then Q(x1,xn)≥ Q(xn,x1);

Definition 1 ([2]). A fuzzy preference relation R can be revealed from the fuzzy
choice function C using the following:

R(x,y) =
∨

{A∈B|x,y∈A}
C(x,A). (5)

Definition 2 ([2]). A fuzzy choice function C is G-rational if there exists a fuzzy
preference relation Q such that:

C(x,A) = G(A,Q)(x) =
∧
y∈A

Q(x,y). (6)

Definition 3. A fuzzy choice function is G-normal if it is the G-rationalization of a
fuzzy preference Q and its fuzzy revealed preference R is equal to Q.

We recall here, without proof, some previous results on fuzzy choice functions and
revealed preference:

(i) If H1 and H2 are verified, then R is strongly complete and reflexive. See [8].
(ii) Every G-normal fuzzy choice function is G-rational. See [8].

(iii) If H1 and H2 are verified, then any G-rational choice function is also G-normal.
See [16].

(iv) If Q is acyclic, moderately complete and reflexive, then it generates a G-rational
fuzzy choice function through Eq. (6). See [17].
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3 From Choice Probabilities to Fuzzy Choice Functions

Choice probabilities are relatively easy to observe and gather. Imagine for example
the tracking of the purchases made by a supermarket over its customers. Choice
probabilities can be easily calculated using the frequency of choice of a customer
over a bundle of products, that can vary over time, according to seasonal availabil-
ity, sales, etc. The drawback of probability choice functions is that their handling is
made difficult by the strong conditions imposed by the probabilistic setting, which
impose, for example, that Σx∈AP(x,A) = 1. For this reason, it would be interesting
to obtain another choice function from the probabilistic one, without the drawback
of such strong conditions but that preserves the uncertainty contained in the prob-
abilistic formulation. Fishburn already attempted this approach in [7], considering
crisp choice functions Cmin, Cmax, but we think that this translation loses important
information on the uncertainty described by the probabilistic choice function. For
this reason, we propose a formula for computing a fuzzy choice function from a
given choice probability.

Definition 4. [7] Given the choice probability P, a fuzzy choice function ρ can be
defined in the following way:

ρ(x,A) =
P(x,A)

maxa∈A(P(a,A))
. (7)

Notice that this definition was already introduced in [7], but the author considered
there the alpha-cuts of ρ , hence he was using a crisp choice function again.

Remark 1. Interested readers can easily prove that Eq. (7) can also be rewritten us-
ing the minimum operator and the residual implication operator derived from the
product triangular norm (a→P b = b/a∧1), i.e.

ρ(x,A) =
P(x,A)

maxa∈A(P(a,A))
=

∧
a∈A

P(x,A)→P P(a,A) . (8)

Some properties of the function ρ :

(i) ρ is a fuzzy choice function, since, for every A ∈B, there exists at least one x
in X , such that ρ(x,A)> 0;

(ii) it verifies hypothesis H1: in fact, for any A∈B, there exists an element x such
that ρ(x,A) = 1; in particular, the element x is the one in A for which P(x,A)
is maximal.

(iii) if the choice probability is defined on B = 2X \ { /0}, then ρ is automatically
defined on the same set, and hence condition H2 holds.

It would be interesting to find some conditions on the probability choice function P
such that the derived fuzzy choice function ρ will show good rationality features.
For this reason, we further assume that Luce’s Choice Axiom is verified by the
probability choice function. Accordingly, we are able to prove the following results.
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Proposition 1. The fuzzy choice function ρ can be computed using only p (the prob-
abilities over the pairs) instead of P:

ρ(x,A) =
∧
k∈A

p(x,k)
p(k,x)

. (9)

Sketch of the proof: use the constant ratio rule and Eq. (7).

Proposition 2. The fuzzy revealed preference relation R from ρ can be computed
using p:

R(x,y) = 1∧ p(x,y)
p(y,x)

. (10)

Sketch of the proof: use Eq. (5) and the new formulation of ρ presented in Proposi-
tion 1.

Given the fuzzy revealed preference relation R over X , the probabilistic relation
p can be computed as:

p(x,y) =
R(x,y)

R(x,y)+R(y,x)
. (11)

In fact, using Proposition 2 it is easy to prove that Eq. (11) is equivalent to

R(x,y)
R(x,y)+R(y,x)

=
1∧ p(x,y)

p(y,x)(
1∧ p(x,y)

p(y,x)

)
+
(

1∧ p(y,x)
p(x,y)

) = p(x,y). (12)

Then, thanks to Eq. (10) and Eq. (11), we can unveil a way for passing from the
probabilistic relation to a fuzzy preference relation and vice versa. On this subject,
we already presented different results in [15], where special attention was paid to
the transferability of the transitivity property from one relation to another. Talking
of transitivity, we have been able to prove the following result:

Proposition 3. If p is multiplicative transitive, then the fuzzy revealed preference
relation R obtained from ρ is TP-transitive, i.e. R(x,y)R(y,z)≤R(x,z), for all x,y,z∈
X.

Remark 2. Multiplicative transitivity of p does not imply TM-transitivity of the fuzzy
revealed preference relation R, i.e. transitive w.r.t. the minimum t-norm. Consider
the following example, where card(X) = 3.

p =

⎛
⎝ 1

1
1
3

2
23

2
3

1
2

3
13

20
23

10
13

1
2

⎞
⎠ R =

⎛
⎝ 1 1

2
3

20
1 1 3

10
1 1 1

⎞
⎠ .

The probabilistic relation p is multiplicative transitive, while R is not TM-transitive.
In fact,
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R(a,b)∧R(b,c) = 0.3 > 0.15 = R(a,c).

Remark 3. The results of Proposition 3 and Remark 2, namely that multiplicative
transitivity of the probabilistic relation p implies TP-transitivity, but not
TM-transitivity, of the fuzzy revealed preference relation R, were anticipated in the
light of the results contained in [5], where it was proved that multiplicative transi-
tivity of p is sufficient condition for TP-transitivity of p, but it is independent from
TM-transitivity of p.

We conclude with the key result of this contribution:

Theorem 1. If P satisfies Luce’s Choice Axiom, then the fuzzy choice function ρ is
G-normal.

Proof. We know that if a fuzzy preference relation Q is acyclic, moderately com-
plete and reflexive, then it G-rationalizes a fuzzy choice function (see [17]). Con-
sider the fuzzy preference relation R. We have proved that it is strongly complete,
reflexive and TP-transitive. Hence, it is also acyclic, moderately complete and reflex-
ive (all of them are weaker conditions). It thus generates a G-rational fuzzy choice
function. It can be the case that the fuzzy choice function generated by R does not
coincide with ρ , but we also know that as long as hypotheses H1 and H2 are sat-
isfied, G-rationality implies G-normality (see [16]). Hence R is the fuzzy revealed
preference relation of some G-normal fuzzy choice function and we revealed R from
ρ , then ρ is G-normal. �

4 Conclusions and Future Works

The results proposed are thought to connect two formalisms that are used for repre-
senting human choices in a situation in which uncertainty is involved: probabilistic
choices and fuzzy choice functions. Being aware of the semantic differences be-
tween the probabilistic and fuzzy approaches, we have been able to define a clear
way for passing from one to another. Furthermore, under the additional hypothesis
of Luce’s Choice Axiom is verified, we also proved that the rationality of the de-
rived fuzzy choice function is ensured. As pointed out in Remark 1, the formula for
deriving the fuzzy choice function from a probabilistic choice function involves the
use of residual implication operator of the product t-norm TP. It may just look as a
coincidence that multiplicative transitivity gives such a good result in combination
with this implication operator, but it should be the key for a more general result,
involving other kinds of implication operators.

Acknowledgements. The research reported on in this contribution has been partially sup-
ported by Project MTM2010-17844 and the Foundation for the promotion in Asturias of the
scientific and technologic research grant BP10-090.
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Bayes Theorem, Uninorms and Aggregating
Expert Opinions

József Dombi

Abstract. In the introduction we examine Dombi aggregative operators, uninorms,
strict t-norms and t-conorms. We give a certain class of weighted aggregative oper-
ators (weighted representable uninorms). After, we focus on a specific form of the
aggregative operator. Using Dombi’s generator function, we show that this form is
the same as that for the aggregation of expert probability values, and we can get
this operator via Bayes’ theorem. These two theorems shed new light on the class
of aggregative operators.

1 Introduction

The term uninorm was first introduced by Yager and Rybalov [17] in 1996. Uni-
norms are a generalization of t-norms and t-conorms achieved by relaxing the con-
straint on the identity element in the unit interval {0,1}. Since then many articles
have focused on uninorms, both from a theoretical [11, 12, 6, 14, 3, 15] and a practi-
cal point of view [16]. The paper of Fodor, Yager and Rybalov [5] is notable since it
defined a new subclass of uninorms called representable uninorms. This characteri-
zation is similar to the representation theorem of strict t-norms and t-conorms, in the
sense that both originate from the solution of the associativity functional equation
given by Aczél [1].

In this article we will show that the weighted form of the aggregative operator
then we use the Dombi’s generator function

(
1−x

x

)
clearly related to certain aspects

of probability theory and decision making. In the first section, we summarize the
basic results of uninorm and aggregation operators.

In section 3, we will show that the aggregative operator is closely related to the
aggregation of expert probability values and also show how it can be used to com-
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pute the aggregative value. In section 4, we show that the aggregation operator can
be derived by using Bayes’ theorem.

2 Uninorm and Aggregative Operator

The aggregative operators were first introduced in [4] by selecting a set of minimal
concepts that must be fulfilled by an evaluation-like operator.

In 1982, Dombi [4] defined the aggregative operator in the following way:

Definition 1. An aggregative operator is a function a : [0,1]2 → [0,1] with the
properties:

1. Continuous on [0,1]2\{(0,1),(1,0)}
2. a(x,y)< a(x,y′) if y < y′,x �= 0,x �= 1

a(x,y)< a(x′,y) if x < x′,y �= 0,y �= 1
3. a(0,0) = 0 and a(1,1) = 1 (boundary conditions)
4. a(x,a(y,z)) = a(a(x,y),z) (associativity)
5. There exists a strong negation η such that a(x,y) = η(a(η(x),η(y)))

(self-DeMorgan identity) if {x,y} �= {0,1}
6. a(1,0) = a(0,1) = 0 or a(1,0) = a(0,1) = 1

The definition of uninorms, originally given by Yager and Rybalov [17] in 1996, is
the following:

Definition 2. A uninorm U is a mapping U : [0,1]2 → [0,1] having the following
properties:

• U(x,y) =U(y,x) (commutativity)
• U(x1,y1)≥U(x2,y2) if x1 ≥ x2 and y1 ≥ y2 (monotonicity)
• U(x,U(y,z)) =U(U(x,y),z) (associativity)
• ∃ν∗ ∈ [0,1] ∀x ∈ [0,1] U(x,ν∗) = x (neutral element)

A uninorm is a generalization of t-norms and t-conorms. By adjusting its neutral el-
ement, a uninorm is a t-norm if ν∗= 1 and a t-conorm if ν∗ = 0. The main difference
in the definition of the uninorms and aggregative operators is that the self-DeMorgan
identity requirement does not appear in uninorms, and the neutral element property
is not in the definition for the aggregative operators. The following representation
theorem of strict, continuous on [0,1]× [0,1] \ {(0,1),(1,0)} uninorms (or repre-
sentable uninorms) was given by Fodor et al. [5] (see also Klement et al. [20]).

Theorem 1. Let U : [0,1]2 → [0,1] be a function and ν∗ ∈]0,1[. The following are
equivalent:

1. U is a uninorm with neutral element ν∗ which is strictly monotone on ]0,1[2 and
continuous on [0,1]2\{(0,1),(1,0)}.
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2. There exists a strictly increasing bijection gu : [0,1]→ [−∞,∞] with gu(ν∗) = 0
such that for all (x,y) ∈ [0,1]2, we have

U(x,y) = g−1
u (gu(x)+ gu(y)) , (1)

where, in the case of a conjunctive uninorm U, we use the convention ∞+
(−∞) = −∞, while, in the disjunctive case, we use ∞+ (−∞) = ∞ or there
exists a strictly increasing continuous function fu : [0,1]→ [0,∞] with fu(0) = 0
, f (ν∗) = 1 and fu(1) = ∞. The binary operator is defined by

U(x,y) = f−1
u ( fu(x) fu(y)) (2)

for all (x,y) ∈ [0,1]× [0,1]/(0,1),(1,0) and either U(0,1) =U(1,0) = 0
or U(0,1) =U(1,0) = 1.

If Eq.(1) holds, the function gu is uniquely determined by U up to a positive multi-
plicative constant, and it is called an additive generator of the uninorm U. Here, fu

is called the multiplicative generator function of the operator.

Such uninorms are called representable uninorms and they were previously intro-
duced as aggregative operators [4].

Definition 3. A representable uninorm is called an aggregative operator. We will
denote it by a(x,y).

In the article by János Fodor and Bernard De Baets the authors give a fine charac-
terization of representable uninorms, i. e. if the underlying uninorms are strict and
the remaining part of the unit square at a single point of the uninorm lies between
the minimum and maximum, then the uninorm is representable [24].

A recent paper of Sándor Jenei also deals with uninorms; namely, it is used
to characterize all types of uninorms that have only a few basic properties. He
shows that only three general types of uninorms exist. More details can be found
in [25], [26], [27].

Since an aggregative operator (i. e. a representable uninorm) is associative it can
be extended via associativity to n arguments.

Theorem 2 (Dombi [4])
Let g be an additive generator of an aggregative operator (i. e. representable

uninorm) and consider ν∗ ∈ (0,1), then aν∗ : [0,1]2 → [0,1] defined by

aν∗(x,y) = g−1(g(x)+ g(y)− g(ν∗))

is an aggregation operator (i. e. representable uninorm) with neutral element ν∗.
The extension to n arguments is given by the formula

aν∗(x) = g−1(g(ν∗))+
n

∑
i=1

(g(xi)− g(ν∗)).
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The general form of the weighted operator in the additive representation case is

aν∗(w,x) = g−1
a

(
n

∑
i=1

wiga(xi)+ ga(ν∗)

(
1−

n

∑
i=1

wi

))
(3)

In general, a weighted aggregative operator loses associativity and commutativity
and is not a representable uninorm.

With this, one can construct an aggregative operator from any given generator
function that has the desired neutral value.

There are infinitely many possible neutral values, and with each different neutral
value, there is a different aggregative operator.

We will use the transformation defined in g(x) = ln( f (x)) to get the multiplicative
operator

aν∗(x) = f−1
a

(
fa(ν∗)

n

∏
i=1

fa(xi)

fa(ν∗)

)
= f−1

a

(
f 1−n
a (ν∗)

n

∏
i=1

fa(xi)

)
, (4)

where fa : [0,1]→ [0,∞] .
The multiplicative form of the weighted aggregative operator is

aν∗(w,x) = f−1
a

(
fa(ν∗)

n

∏
i=1

(
fa(x)

fa(ν∗)

)wi
)

= f−1
a

⎛
⎝ f

1−
n
∑

i=1
wi

a (ν∗)
n

∏
i=1

f wi
a (xi)

⎞
⎠ (5)

In the following we will use the multiplication form of the aggregative operator.
The corresponding negation of the aggregative operator is

η(x) = f−1
a

(
f 2
a (ν∗)
fa(x)

)

In the Dombi operator case,

aν∗(w,x) =
1

1+ 1−ν∗
ν∗

n
∏
i=1

(
1−xi

xi

ν∗
1−ν∗

)wi
(6)

aν∗(w,x) =
ν∗(1−ν∗)

n
∑

i=1
wi n
∏
i=1

xwi
i

ν∗(1−ν∗)
n
∑

i=1
wi n
∏
i=1

xwi
i +(1−ν∗)ν

n
∑

i=1
wi

∗
n
∏
i=1

(1− xi)wi

(7)

If wi = 1, then

a(w,x) =

n
∏
i=1

xwi
i

n
∏
i=1

xwi
i +

n
∏
i=1

(1− xi)wi

. (8)
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aν∗(x) =
(1−ν∗)n−1

n
∏
i=1

xi

(1−ν∗)n−1
n
∏
i=1

xi +νn−1∗
n
∏
i=1

(1− xi)
(9)

If ν∗ = 1
2 , then we get

a 1
2
(x) =

n
∏
i=1

xi

n
∏
i=1

xi +
n
∏
i=1

(1− xi)
. (10)

Eq. (10) is called the 3 Π operator because it consists of three product operators.
This operator was first introduced by Dombi [4].

3 Aggregative Operator and the Aggregation of Expert
Probability Values

Here, we will show that the aggregative operator is closely related to the aggrega-
tion of expert probability values and also show how it can be used to compute the
aggregative value.

A decision maker consults a group of experts labelled 1,2,...,n who individually
assess probability values of p1, p2, . . . , pn for the occurrence of the event E . Based
on his feelings of how reliable the experts are and how independent their opinions
are, the decision maker would like to form his own probability assessment p for
the occurrence of the event E . With these probability estimates, Bordley’s paper [2]
develops a mathematical formula that relates p to p1, p2, . . . , pn.

A generalization of these problems leads to the Logarithmic Opinion Pool (LOP)
model. This class of problem is very important in different fields of economics the-
ory. In the article by C. Genest and J. V. Zidek [7] the procedures for combining
probability distribution values are described. This article is virtually the best survey
on this topic. In 2002, G. L Gilardoni [8] gave a fine axiomatic characterization of
the LOP procedure.

Bordley uses an axiomatic approach. The first part begins by reformulating the
problem in terms of statistical odds:(

o =
p

1− p
,ok =

pk

1− pk
,k = 1,2, . . . ,n

)
. (11)

Then he states axioms which imply that

o = FE

(
n

∑
k=1

uE
k (ok)

)
(12)
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for continuous functions F(u1, . . . ,un). In essence, he applied axioms taken from
the theory of additive conjoint measurements.

Consider some other event, A, relevant to the occurrence of event, E . Let o(E/A)
be the assessment the decision maker makes for the conditional event, (E/A). Then

o(E/A) = FE/A

(
n

∑
k=1

uE/A
k (ok(E/A))

)
, (13)

where ok(E/A) is expert k’s assessment of the odds favouring the conditional event,
(E/A).

Let us consider the assessment of (not E = E). The formula for it is

o(E) = FE

[
n

∑
k=1

uE
k (ok(E))

]
. (14)

Now we suppose that the following equations are valid, based on conjoint measure-
ment axioms.

o(E) = FE

(
n

∑
i=1

uE
i (oi(E))

)

o(E/A) = FE/A

(
n

∑
i=1

uE/A
i (oi(E/A))

)

o(E) = FE

(
n

∑
i=1

uE
i (oi(E))

)
(15)

Let us introduce the following notation:
x∗ = o(E) FE(x) = F(x) uE(x) = f (x) xi = oi(E)

y∗ = o(E/A) FE/A(y) = G(y) uE/A(y) = g(y) yi = oi(E/A)

z∗ = o(E) FE(z) = H(z) uE(z) = h(z) zi = oi(E)

So the formulas in (15) have the form:

x∗ = F(
n

∑
i=1

f (xi)), y∗ = G(
n

∑
i=1

g(yi)), z∗ = H(
n

∑
i=1

h(zi)) (16)

Let α be the likelihood ratio, i.e.,

α =
p(A|E)
p(A|E) . (17)

Bordley in his article supposed this is public knowledge; i.e. all experts and the
decision maker agree on α .
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The Weak Likelihood Ratio Axiom is

o(E|A) = αo(E) o j(E|A) = αo j(E), j = 1, . . . ,n,

i.e.
y∗ = αx∗ y j = αx j

The basis of Bordley’s proof is that the general solution of the functional equation

G

(
n

∑
i=1

g(αxi)

)
= αF

(
n

∑
i=1

f (xi)

)
(18)

is either

I.

F(x) = (x+ a1)
1
c G(x) = (αx+ a2)

1
c

f (x) = wxc g(x) = w(αx)c

a1 = (1−∑n
i=1 wi)(x0)

c a2 = (1−∑n
i=1 wi)(αx0)

c

II.

F(x) = a1ex G(x) = a2eαx

f (x) = wln(x) g(x) = wln(αx)

a1 = (1−∑n
i=1 wi)ln(x0) a2 = (1−∑n

i=1 wi)ln(αx0)

Now another reasonable condition is:

o(E)o(E) = 1

ok(E)ok(E) = 1,
(19)

i.e. the product of the odds of E and E is 1.
The Normalization Axiom

FE

(
n

∑
k=1

uE
k (ok)

)
FE

(
n

∑
k=1

uE
k (

1
ok

)

)
= 1. (20)

It is not hard to verify that only the second solution fulfils (19), hence

x∗ = x
(1−∑n

i=1 wi)
0

n

∏
i=1

xwi
i

Let us make the following substitution:

x∗ =
p

1− p
xi =

pi

1− pi
x0 =

p0

1− p0
(21)

Then the solution for p is
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p =
1

1+ 1−p0
p0
∏n

i=1

(
p0

1−p0

1−pi
pi

)wi
, (22)

where p0 is the prior probability.
This formula is the same as the weighted aggregative operator of pliant logic.

In Bordley’s paper, there is a different formula for (22). However, by rearranging it
we can get the Bordley formula. That is,

p =
∏n

k=1(pk/p0)
wk p0

∏n
k=1(pk/p0)wk p0 +∏n

k=1((1− pk)/(1− p0))wk(1− p0)
(23)

Now, we can find the corresponding negation formula for the aggregation of the
expert opinion.
Let

η(pi) =
1

1+
(

1−p0
p0

)2 pi
1−pi

, i = 1, . . . ,n

So if pi is given, it has a probability value of Ei, and p0 is an apriori probabil-
ity. Then η(pi) is the possibility of the complementer of the Ei event. Because
the self-DeMorgan identity is valid, substituting pi by its negated value we get the
negated value of p.

Example 1. Let [0.2,0.8,0.3,0.2,0.3] be the experts’ opinions of the probability of
a certain event and let (1,7,2,3,2) be the (weighted) importance vector of opinions.
The aggregated value (if our probability assessment is 0.5 ) is

1

1+( 1−0.2
0.2 )( 1−0.8

0.8 )7( 1−0.3
0.3 )2( 1−0.2

0.2 )3( 1−0.3
0.3 )2

= 0.6834 (24)

4 Bayes’ Theorem and the Aggregative Operator

Here, we show that the aggregation operator can be derived by using Bayes’ the-
orem. This theorem assumes that there is a conditional independence among the
events Bi, i = 1, . . . ,n given A. This corresponds to the same assumption made for
the Naive-Bayes model in statistical classifications and it is usually depicted as a
Bayesian network [23, 18, 19, 20, 21], see Figure 1.

The conditional independence assumption means that there is no connection be-
tween any of the attributes. We can write

P(Bn|A,B1 . . .Bn−1) = P(Bn|A)
P(Bn−1|A,B1 . . .Bn−2) = P(Bn−1|A)

...

P(B2|A,B1) = P(B2|A)
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Fig. 1 Bayesian network representing the Naive Bayes classifier

Because the recursive application of Bayes’ law is

P(A|B1 . . .Bn) =
P(Bn|A,B1 . . .Bn−1)P(Bn−1|A,B1 . . .Bn−2) . . .P(B1|A)P(A)

P(B1 . . .Bn)
,

we get

P(A|B1 . . .Bn) =
P(Bn|A)P(Bn−1|A) . . .P(B1|A)P(A)

P(B1 . . .Bn)
(25)

With a similar assumption for A (the complement of A),

P(A|B1 . . .Bn) =
P(Bn|A)P(Bn−1|A) . . .P(B1|A)P(A)

P(B1 . . .Bn)
(26)

Taking the ratio of (25) and (26)

P(A|B1 . . .Bn)

P(A|B1 . . .Bn)
=

P(Bn|A)P(Bn−1|A) . . .P(B1|A)P(A)
P(Bn|A)P(Bn−1|A) . . .P(B1|A)P(A)

Moreover, since this can be rewritten as

P(A|B1 . . .Bn)

P(A|B1 . . .Bn)
=

P(A|Bn)P(Bn)
P(A)

P(A|Bn−1)P(Bn−1)
P(A) . . . P(A|B1)P(B)

P(A) P(A)

P(A|Bn)P(Bn)
P(A)

P(A|Bn−1)P(Bn−1)
P(A) . . . P(A|B1)P(B)

P(A) P(A)

P(Bi|A) = P(ABi)

P(A)
=

P(A|Bi)P(Bi)

P(A)
.

Since the probability of the complement of an event is 1-the probability of that event,
we can write

P(A|B1 . . .Bn) =
1

1+
(

P(A)
P(A)

)n−1 n
∏
i=1

P(A|Bi)
P(A|Bi)

Let P(A) = ν0, then P(A) = 1−ν0 and P(A|Bi) = 1− xi, then P(A|Bi) = xi, so
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P(A|B1, . . . ,Bn) =
1

1+
(

ν0
1−ν0

)n−1 n
∏
i=1

1−xi
xi

. (27)

and this is the weighted aggregative operator. The reformulation of Bayes’ theorem
gives the new interpretation of the aggregative operator where ν0 = ν∗.

5 Conclusions

In this paper it is recalled the equivalence between the concepts of representable
uninorm and aggregative operator in the sense of 4 (See for example the paragraph
above Theorem 1 in 21). We studied a certain class of weighted aggregative oper-
ators (representable uninorms). We showed that there is correspondence between
Bayes’ theorem and aggregative operators, and also showed that there is a corre-
spondence between the aggregation of expert opinion and aggregative operators.
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On the Induction of New Fuzzy Relations, New
Fuzzy Operators and Their Aggregation

Neus Carmona, Jorge Elorza, Jordi Recasens, and Jean Bragard

Abstract. In this paper we generate fuzzy relations and fuzzy operators using dif-
ferent kind of generators and we study the relationship between them. Firstly, we
introduce a new fuzzy preorder induced by a fuzzy operator. We generalize this
preorder to a fuzzy relation generated by two fuzzy operators and we analyze its
properties. Secondly, we introduce and explore two ways of inducing a fuzzy opera-
tor, one from a fuzzy operator and a fuzzy relation and the other one from two fuzzy
operators. The first one is an extension of the well-known fuzzy operator induced
by a fuzzy relation through Zadeh’s compositional rule. Finally, we aggregate these
operators using the quasi-arithmetic mean associated to a continuous Archimedean
t-norm. The aim is to compare the operator induced by the quasi-arithmetic mean of
the generators with the quasi-arithmetic mean of the generated operators.

1 Introduction

Fuzzy relations and fuzzy consequence operators are main concepts in fuzzy logic.
The fuzzy relation induced by a fuzzy operator and the fuzzy operator induced by a
fuzzy relation through Zadeh’s compositional rule are notions that have been exten-
sively explored (see for instance [2, 3, 5, 6, 7, 9]).

In Section 2 we recall the main definitions and results that will be used throughout
the paper.
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In Section 3 we introduce a fuzzy preorder Rc
c induced by a fuzzy operator c

such that collects the information of c over all the fuzzy subsets of the universal
set. Recall that the classical relation induced by a fuzzy operator only considers the
information over the singletons. We generalize this preorder to a fuzzy relation Rg

f
induced by two fuzzy operators f and g and study its properties. From a logical
point of view, Rg

f stablishes a crossed relation between the consequences of g and
the consequences of f .

In Section 4 we define two new operators Cg
R and Cg

f . The first one is induced by
a fuzzy relation and a fuzzy operator and the second one is induced by two fuzzy
operators. We explore the properties that are transmitted from the generators. In
particular, we show for wich cases the properties of a fuzzy consequence operator
(inclusion, monotony and idempotence) and the coherence property hold.

In Section 5 we use the quasi-arithmetic mean associated to a continuous Archi-
medean t-norm to aggregate these induced fuzzy operators. We study the differ-
ence between two cases. In the first one, we consider the operator generated by the
quasi-arithmetic mean of some fuzzy operators. In the second one, we aggregate the
operators induced by each of fuzzy operators individually.

Finally, in Section 6 we present the conclusions.

2 Preliminaries

Let 〈L,∧,∨,∗,→,0,1〉 be a complete commutative residuated lattice in the sense of
Bělohlávek [1]. That is, a complete lattice 〈L,∧,∨,0,1〉, where 0 denotes the least
element and 1 denotes the greatest one, such that (L,∗) is a commutative monoid
i.e. ∗ is associative, commutative and with neutral element 1, and the operations ∗
and→ satisfy the adjointness property:

x∗ y≤ z ⇔ y≤ x→ z

where ≤ denotes the lattice ordering.
Let us recall in Propositions 1 and 2 the following properties of commutative

residuated lattices (residuated lattices for short) [1] that will be used in the paper.

Proposition 1. Each residuated lattice 〈L,∧,∨,∗,→,0,1〉 satisfies the following con-
ditions for all x,y,z ∈ X:

1. x→ x = 1
2. 1→ x = x
3. x≤ y⇔ x→ y = 1

4. x∗ 0 = 0
5. x∗ (x→ y)≤ y
6. (x→ y)∗ (y→ z)≤ (x→ z)

Proposition 2. Let 〈L,∧,∨,∗,→,0,1〉 be a residuated lattice. The following condi-
tions hold for each index set I whenever both sides of the (in)equality exist. In the
first case, if the left hand side makes sense, so does the right one. For all x,yi ∈ L
with i ∈ I,
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1. x∗∨i∈I yi =
∨

i∈I(x∗ yi)
2. x∗∧i∈I yi ≤∧

i∈I(x∗ yi)

The frame for our work will be the complete commutative residuated lattice
〈[0,1],∧,∨,∗,→,0,1〉 where ∧ and ∨ are the usual infimum and supremum, ∗
is a left continuous t-norm and → is the residuum of ∗ defined for ∀a,b ∈ X as
a→ b = sup{γ ∈ [0,1] | a ∗ γ ≤ b}. Recall that a t-norm is monotone in both argu-
ments and the residuum is antitone in the first argument and monotone in the second
one.

In this paper, X will be a non-empty classical universal set, [0,1]X will be the set
of all fuzzy subsets of X , Γ ′ will denote the set of all fuzzy relations defined on X
and Ω ′ the set of fuzzy operators defined from [0,1]X to [0,1]X .

Definition 1. (Fuzzy Consequence Operator) A fuzzy operator C ∈ Ω ′ is called a
fuzzy consequence operator when it satisfies for all μ ,ν ∈ [0,1]X :

(C1) Inclusion μ ⊆C(μ)
(C2) Monotony μ ⊆ ν ⇒C(μ)⊆C(ν)
(C3) Idempotence C(C(μ)) =C(μ)

The inclusion of fuzzy subsets is given by the puntual order, i.e. μ ⊆ ν if and only
if μ(x)≤ ν(x) for all x ∈ X .

Definition 2. (Coherent Fuzzy Operator) Let C ∈Ω ′ be a fuzzy operator inΩ ′. We
say that C is coherent if it satisfies for all x,a ∈ X and μ ∈ [0,1]X

μ(a)∗C({a})(x))≤C(μ)(x)

Let us look back on some properties of fuzzy relations. A fuzzy relation on X is said
to be:

(R) Reflexive if R(x,x) = 1 ∀x ∈ X
(S) Symmetric if R(x,y) = R(y,x) ∀x,y ∈ X
(T) ∗-Transitive if R(x,y)∗R(y,z)≤ R(x,z) ∀x,y,z ∈ X

A fuzzy relation satisfying (R) and (T) is called a fuzzy preoder. If it also satisfies
(S), then it is called a fuzzy similarity or indistinguishability operator. Given R and
S fuzzy relations, we say that R≤ S if and only if R(x,y)≤ S(x,y) for all x,y ∈ X .

For a given fuzzy relation R, a fuzzy subset μ of X is called ∗-compatible with R
if μ(x)∗R(x,y)≤ μ(y) for all x,y ∈ X . From its logical implications, these sets are
also called true-sets or closed under modus ponens. This notion gets special interest
when R is a preorder [3]. When R is not only a preorder but also an indistinguisha-
bility operator, these sets are called extensional sets and the set of all these subsets
has very interesting properties [9].

Every fuzzy operator induces a fuzzy relation in a very natural way and every
fuzzy relation also induces a fuzzy operator using Zadeh’s compositional product:
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Definition 3. Let C be a fuzzy operator in Ω ′. The fuzzy relation induced by C is
given by

RC(x,y) =C({x})(y) (1)

where {x} denotes the singleton x.

Definition 4. Let R ∈ Γ ′ be a fuzzy relation on X. The fuzzy operator induced by R
through Zadeh’s compositional rule is defined by

C∗R(μ)(x) = sup
w∈X
{μ(w)∗R(w,x)} (2)

These concepts are strongly connected and they have been extensively explored in
several contexts (see for instance [2, 3, 5, 6, 7, 9]).

3 Relation Induced by Fuzzy Operators

Notice that the relation induced by (1) only takes into account the behaviour of C
over the singletons and not over more general fuzzy subsets. In order to include
this information, we define a new fuzzy relation induced by a fuzzy operator in a
different way.

Definition 5. Let c be a fuzzy operator in Ω ′. The fuzzy relation Rc
c induced by c is

given by
Rc

c(x,y) = inf
μ∈[0,1]X

{c(μ)(x)→ c(μ)(y)} (3)

It is easy to see that this relation is a fuzzy preorder on X since it is the infimum of
a family of preorders. From a logical point of view, the crisp interpretation of this
relation would be

x≤ y (or related to y)⇔ ∀A⊆ X , if x is a consequence of A then y is also a
consequence of A

Notice that if c is an inclusive operator, then Rc
c ≤ Rc. In fact, for all x,y∈ X we have

Rc
c(x,y) = infμ∈[0,1]X {c(μ)(x)→ c(μ)(y)} ≤ c({x})(x)→ c({x})(y) = Rc(x,y).

In Definition 6 we generalize the previous definition to the fuzzy relation Rg
f

induced by two fuzzy operators f and g. Rg
f is a crossed relation whose logical

interpretation in the crisp case would be the following

x is related to y⇔ whenever x is a consequence by g of some subset A, then y is a
consequence of the same subset by f .

Definition 6. Let f and g be fuzzy operators in Ω ′. The fuzzy relation Rg
f induced

by f and g is defined by

Rg
f (x,y) = inf

μ∈[0,1]X
{g(μ)(x)→ f (μ)(y)}

g and f will be called the upper and lower generators of Rg
f respectively.
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In Propositions 3 and 4 we study the reflexive and ∗-trasitive properties of Rg
f .

Proposition 3. Let f and g be fuzzy operators in Ω ′. Then, Rg
f is reflexive if and

only if g≤ f , i.e. g(μ)(x)≤ f (μ)(x) for all μ ∈ [0,1]X and x ∈ X.

Proof.

Rg
f is reflexive ⇔ Rg

f (x,x) = 1 ∀x ∈ X

⇔ inf
μ∈[0,1]X

{g(μ)(x)→ f (μ)(x)} = 1 ∀x ∈ X

⇔ g(μ)(x)→ f (μ)(x) = 1 ∀μ ∈ [0,1]X , ∀x ∈ X

⇔ g(μ)(x)≤ f (μ)(x) ∀μ ∈ [0,1]X , ∀x ∈ X ⇔ g≤ f �

Proposition 4. Let f ,g ∈Ω ′ be fuzzy operators with f ≤ g. Then, the induced fuzzy
relation Rg

f is ∗-transitive.

Proof.

Rg
f (x,y)∗Rg

f (y,z) = inf
μ∈[0,1]X

{g(μ)(x)→ f (μ)(y)} ∗ inf
μ∈[0,1]X

{g(μ)(y)→ f (μ)(z)}

≤ inf
μ∈[0,1]X

{(g(μ)(x)→ f (μ)(y))∗ (g(μ)(y)→ f (μ)(z))}

≤ inf
μ∈[0,1]X

{(g(μ)(x)→ g(μ)(y))∗ (g(μ)(y)→ f (μ)(z))}

≤ inf
μ∈[0,1]X

{g(μ)(x)→ f (μ)(z)} = Rg
f (x,z) �

4 Inducing Fuzzy Operators from Different Generators

In this section we introduce two new operators Cg
R and Cg

f . Their construction is
based on Zadeh’s compositional rule in a very similar way to the construction given
by (2). In this case, it involves either a fuzzy relation R and a fuzzy operator g or
two fuzzy operators f ,g (generators).

Definition 7. Let g ∈ Ω ′ be a fuzzy operator and let R ∈ Γ ′ be a fuzzy relation on
X. We define the operator Cg

R induced by g and R as

Cg
R(μ)(x) = sup

w∈X
{g(μ)(w)∗R(w,x)} (4)

R and g are called the generators of Cg
R.

Notice that C∗R is a particular case of Cg
R. Taking g= id, where id denotes the identity

operator on [0,1]X , we obtain Cid
R =C∗R.
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Definition 8. Let g, f ∈Ω ′ be fuzzy operators. The operator Cg
f induced by g and f

is defined by
Cg

f (μ)(x) = sup
w∈X
{g(μ)(w)∗ f ({w})(x)} (5)

g and f will be called the upper and lower generators of Cg
f respectively.

The following result shows some basic properties of Cg
R and Cg

f .

Proposition 5. Given g1,g2, f1, f2 fuzzy operators and R1,R2 fuzzy relations, the
following holds

1. If g1 ≤ g2, then Cg1
R ≤Cg2

R ∀R ∈ Γ ′
2. If R1 ≤ R2 then Cg

R1
≤Cg

R2
∀g ∈Ω ′

3. If f1 ≤ f2 then Cg
f1
≤Cg

f2
∀g ∈Ω ′

4. If g1 ≤ g2 then Cg1
f ≤Cg1

f ∀ f ∈Ω ′

Proof. All implications directly follow from the monotony of ∗. To illustrate it, we
will prove 4. For any μ ∈ [0,1]X and x ∈ X we have

Cg1
f (μ)(x) = sup

y∈X
{g1(μ)(y)∗ f ({y})(x)} ≤ sup

y∈X
{g2(μ)(y)∗ f ({y})(x)}=Cg2

f (μ)(x)

There exists a close relationship between the operators Cg
f and Cg

R.

Theorem 1. For every pair (g, f ) of fuzzy operators, there exists a fuzzy relation R
such that Cg

R =Cg
f . R is uniquely determined. Conversely, for every pair (g,R) of a

fuzzy operator and a fuzzy relation, there exists at least a fuzzy operator f such that
Cg

f =Cg
R.

Proof. To prove the first statement of the theorem, notice that given (g, f ) and using
the usual definition R f (x,y) = f ({x})(y), Cg

f coincides with Cg
R f

. The unicity follows
from the construction.

To prove the second statement, notice that for every fuzzy relation R ∈Γ ′ we can
define a fuzzy operator fR as follows:

fR(μ)(y) =

⎧⎨
⎩

R(x,y) if μ is the singleton {x}

μ(y) if μ is not a singleton

Then, for all μ ∈ [0,1]X and x ∈ X ,

Cg
fR
(μ)(x) = sup

w∈X
{g(μ)(w)∗ fR({w})(x)}= sup

w∈X
{g(μ)(w)∗R(w,x)}=Cg

R(μ)(x) �

Remark 1. Observe that there are infinite choices for the operator fR since we are
only concerned about its effect over the singletons.
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Remark 2. From Theorem 1 we can conclude that every property satisfied for Cg
f for

arbitrary f will also be satisfied for Cg
R for arbitrary R. Conversely, every property

satisfied for Cg
R for arbitrary R will also be satisfied for Cg

f for arbitrary R.
Given f ,g two operators and Cg

f the operator that they generate, there is a fuzzy
relation R such that Cg

f =Cg
R and it is exactly R f . Suppose that a property is satisfied

for Cg
R for every R ∈Γ ′. It will particulary be satisfied for Cg

R f
. Hence, it will also be

satisfied for Cg
f .

On the other hand, for any relation R ∈ Γ ′ and g ∈ Ω ′ there exist an infinite
number of operators fR for which Cg

fR
coincides with Cg

R. Every property satisfied
for Cg

f for an arbitrary f will be satisfied for Cg
fR

independently of the fR chosen.
Hence, it will also be satisfied for Cg

R.

Let us study which properties of Cg
f and Cg

R are transmitted from the generators. Our
main interest is to characterize for which generators we obtain fuzzy consequence
operators (FCO).

Lemma 1. Let g ∈Ω ′ and R ∈ Γ ′. If R is reflexive, then Cg
R ≥ g.

Proof. Cg
R(μ)(x) = supw∈X{g(μ)(w)∗R(w,x)} ≥ g(μ)(x)∗R(x,x) = g(μ)(x)

Proposition 6. Let g ∈ Ω ′ be an inclusive fuzzy operator and R ∈ Γ ′ a reflexive
fuzzy relation. Then, Cg

R is also an inclusive fuzzy operator.

Proof. From lemma 1 and the inclusion of g, Cg
R(μ)(x)≥ g(μ)(x)≥ μ(x).

We have an equivalent result for the inclusion of Cg
f .

Proposition 7. Let g ∈ Ω ′ be an inclusive fuzzy operator and f ∈ Ω ′ a fuzzy op-
erator which is inclusive over the singletons. Then, Cg

f is also an inclusive fuzzy
operator.

Proof. Since f is inclusive over the singletons, the relation R f (x,y) = f ({x})(y) is
reflexive. From the proof of Theorem 1, we know that Cg

f = Cg
R f

. Then, it follows

from the previous proposition that Cg
f is also inclusive.

Proposition 8. Let g ∈Ω ′ be a monotone fuzzy operator. Then, Cg
R is also a mono-

tone fuzzy operator for any R ∈ Γ ′.
Proof. Suppose μ1 ⊆ μ2. Then, g(μ1)(x)≤ g(μ2)(x) for all x ∈ X and it follows that

Cg
R(μ1)(x) = sup

w∈X
{g(μ1)(w)∗R(w,x)} ≤ sup

w∈X
{g(μ2)(w)∗R(w,x)}=Cg

R(μ2)(x) �

Remark 3. Notice that Proposition 8 and Remark 2 ensure that if g is a monotone
fuzzy operator , then Cg

f is also monotone for any f ∈Ω ′.
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Thus, Cg
f and Cg

R inherit the monotony of its upper generator g. This is due to the
fact that g has an effect over general fuzzy subsets. Notice that neither the lower
generator f nor R do. Hence, the monotony of the lower generator f does not imply
the monotony of Cg

f as it is shown in the following simple example.

Example 1. Let f be the identity operator which is trivially monotone. Let g be any
operator which is not monotone. Then, Cg

f (μ)(x) = supy∈X{g(μ)(y)∗ f ({y})(x)}=
{g(μ)(x)∗ {x}(x)}= g(μ)(x). Since g is not monotone, neither is Cg

f .

The idempotence does not follow from the idempotence of the generators as directly
as the inclusion or the monotony do. In order to generate a FCO from another FCO,
we require an additional property. We need the subsets from the image of the upper
generator g to be ∗-compatible with the given relation.

Definition 9. Let g be a fuzzy operator and R a fuzzy relation. We will say that g is
∗-concordant with R if all the subsets from the image of g are ∗-compatible with R.

Theorem 2. Let R ∈ Γ ′ be a reflexive fuzzy relation and let g ∈Ω ′ be a FCO. Sup-
pose that g is ∗-concordant with R. Then, the operator Cg

R induced by g and R is also
a FCO.

Proof. Propositions 6 and 8 give us the properties of inclusion and monotony of
Cg

R. It only remains to prove the idempotence. To prove the first inclusion notice
that, since g(μ) belongs to Im(g), it is ∗-compatible with R, so g(μ)(y)∗R(y,x) ≤
g(μ)(x) for all y,x ∈ X . Hence, supy∈X{g(μ)(y) ∗R(y,x)} ≤ g(μ)(x) for all x ∈ X .
Using this fact, the monotony and idempotence of g and the monotony of ∗ we get

Cg
R(C

g
R(μ))(x) = sup

w∈X
{g(Cg

R(μ))(w)∗R(w,x)}

= sup
w∈X
{g(sup

y∈X
{g(μ)(y)∗R(y,w)})∗R(w,x)}

≤ sup
w∈X
{g(g(μ)(w))∗R(w,x)}

= sup
w∈X
{g(μ)(w)∗R(w,x)}=Cg

R(μ)(x)

The other inclusion follows immediately from the inclusion property.

Remark 4. We can state an equivalent result for the operator Cg
f . Let g and f be two

fuzzy operators such that g is FCO and f is inclusive over the singletons. If g is
∗-concordant with R f (x,y) = f ({x})(y), then Cg

f is a FCO.

Let us prove that the coherence property is inherited from the upper generator.

Proposition 9. Let g ∈Ω ′ be a coherent fuzzy operator and R a fuzzy relation in X.
Then, Cg

R is also a coherent fuzzy operator.

Proof. Using property 1 from Proposition 2 we have that ∀a ∈ X and ∀μ ∈ [0,1]X ,

μ(a)∗Cg
R({a})(x) =μ(a)∗ sup

y∈X
{g({a})(y)∗R(y,x)}
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=sup
y∈X
{μ(a)∗ g({a})(y)∗R(y,x)}

=sup
y∈X
{(μ(a)∗ g({a})(y))∗R(y,x)}

≤sup
y∈X
{g(μ)(y)∗R(y,x)}=Cg

R(μ)(x)

where the inequality holds because of the coherence of g.

Remark 5. From remark 2 we can state the same about the coherence of Cg
f . That is,

if g is a coherent fuzzy operator, then Cg
f is also a coherent fuzzy operator.

5 Aggregation of Fuzzy Operators through the
Quasi-arithmetic Mean

In this section, we will assume that ∗ is not only a left-continuous t-norm, but also
Archimedean and with an additive generator t. Let us recall that a t-norm is Archi-
medean if for each x,y ∈ (0,1) there is an n∈N with xn = x∗ n· · · ∗x < y. An additive
generator of a t-norm is a strictly decreasing function t : [0,1]→ [0,∞], right contin-
uous in 0, with t(1) = 0 and satisfying t(x)+ t(y) ∈ Ran(t)∪ [t(0),∞] such that

x∗ y = t(−1) (t(x)+ t(y))

where t(−1) denotes the pseudo-inverse of t defined as:

t(−1)(y) = sup{x ∈ [0,1]|t(x)> y}

The left-continuity of a t-norm ∗ with additive generator t, implies its continuity and
therefore, the continuity of its generator. In this case, the pseudo-inverse becomes
the usual inverse of t [8].

Given a continuous Archimedean t-norm ∗ with additive generator t, there is a nat-
ural way to define the extended quasi-arithmetic mean associated to ∗,
mt :

⋃
n∈N[0,1]n −→ [0,1] (see [4]):

mt(x1, ...,xn) = t−1(
1
n

n

∑
i=1

t(xi)) (6)

Given a finite family of fuzzy operators, we can aggregate them using the
quasi-arithmetic mean associated to ∗ in order to obtain another fuzzy operator.

Definition 10. (Quasi-arithmetic mean of fuzzy operators) Let t : [0,1]→ [0,∞] be
an additive generator of a continuous Archimedean t-norm ∗. Let {g1, ..,gn} be a
finite family of fuzzy operators. The n-ary quasi-arithmetic mean generated by t is
the fuzzy operator given by
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mt(g1, ...,gn) = t−1

(
1
n

n

∑
i=1

t(gi)

)
(7)

such that for every fuzzy subset μ ∈ [0,1]X and every x ∈ X is

mt(g1, ...,gn)(μ)(x) = t−1

(
1
n

n

∑
i=1

t(gi(μ)(x))

)
(8)

The extended quasi-arithmetic mean generated by t is the function mt :
⋃

n∈N(Ω ′)n→
Ω ′ that maps any finite family of n fuzzy operators to their n-ary quasi arithmetic
mean.

The quasi-arithmetic mean can be defined more generally [4]. Indeed, it can be
defined for any continuous and strictly increasing or strictlty decreasing function f :
[0,1]−→ [−∞,∞]. In this case, the expression ∞−∞ needs to be defined (it is often
considered−∞). However, we will focus on the natural case where the generator of
mt is the additive generator of the given continuous Archimedean t-norm ∗.
Remark 6. Observe that, if g1, ..,gn ∈Ω ′ are fuzzy operators. Then, their arithmetic
mean satisfies that

min(g1, ...,gn)≤ mt(g1, ...,gn)≤max(g1, ...,gn)

It is known that the quasi-arithmetic mean mt generated by t is strictly increasing
and idempotent (in the sense that mt(g, ...,g) = g) if the generator is continuous and
stricly increasing or strictly decreasing [4]. From this fact, the next two propositions
follow:

Proposition 10. Let g1, ..,gn ∈Ω ′ be inclusive fuzzy operators. Then, its quasi arith-
metic mean is also an inclusive fuzzy operator.

Proposition 11. Let g1, ..,gn ∈ Ω ′ be monotone fuzzy operators. Then, its quasi
arithmetic mean is also a monotone fuzzy operator.

Remark 7. Observe that the idempotence of the gi is in general not translated into
the idempotence of their quasi-arithmetic mean. Consider for example the quasi
arithmetic mean of g1 = id and g2 =

1
2 id with the product t-norm.

Consider the operators Cg
f and Cg

R from the previous section. Given a finite family of
fuzzy operators, let us compare two different processes of aggregation through the
quasi-arithmetic mean. The first one by aggregating the generators, the second one
by aggregating the generated operators.

Theorem 3. Let g1, ..,gn ∈ Ω ′ be fuzzy operators and t : [0,1]−→ [0,∞] be an ad-
ditive generator of the continuous Archimedean t-norm ∗. Let mt be the extended
quasi-arithmetic mean generated by t. Then, for every f ∈Ω ′ and every R ∈ Γ ′

Cmt (g1,...,gn)
f ≤ mt(C

g1
f , ...,Cgn

f ) and Cmt (g1,...,gn)
R ≤ mt(C

g1
R , ...,Cgn

R )
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Proof. We prove the first inequality:

Cmt(g1,...,gn)
f (μ)(x) = sup

w∈X
{mt(g1, ...,gn)(μ)(w)∗ f ({w})(x)}

= sup
w∈X

{
t−1

(
∑n

i=1 t(gi(μ)(w))
n

)
∗ f ({w})(x)

}

= sup
w∈X

{
t−1

(
t

[
t−1

(
∑n

i=1 t(gi(μ)(w))
n

)]
+ t ( f ({w})(x))

)}

= sup
w∈X

{
t−1

(
t(g1(μ)(w))+ · · ·+ t(gn(μ)(w))

n
+ t( f ({w})(x))

)}

= sup
w∈X

{
t−1

(
t(g1(μ)(w))+ · · ·+ t(gn(μ)(w))+n · t( f ({w})(x))

n

)}

= sup
w∈X

{
t−1

(
t(g1(μ)(w))+ t( f ({w})(x))

n
+ · · ·+ t(gn(μ)(w))+ t( f ({w})(x))

n

)}

= sup
w∈X

{
t−1

(
t(g1(μ)(w)∗ f ({w})(x))

n
+ · · ·+ t(gn(μ)(w)∗ f ({w})(x))

n

)}

≤t−1
(

t (supw∈X{g1(μ)(w)∗ f ({w})(x)})
n

+ · · ·+ t (supw∈X{gn(μ)(w)∗ f ({w})(x)})
n

)

=t−1

(
1
n

n

∑
i=1

t

(
sup
w∈X

{gi(μ)(w)∗ f ({w})(x)}
))

= mt(C
g1
f , ...,Cgn

f )(μ)(x) �

Finally, we can prove the following Theorem similarly to the previous one:

Theorem 4. Let f1, ..., fn ∈ Ω ′ be fuzzy operators and t : [0,1]−→ [0,∞] be an ad-
ditive generator of the continuous Archimedean t-norm ∗. Let mt be the extended
quasi-arithmetic mean generated by t. Then, for every g ∈Ω ′,

Cg
mt ( f1,..., fn)

≤ mt(C
g
f1
, ...,Cg

fn
)

6 Conclusions

In this paper we have generated fuzzy relations and fuzzy operators using different
kind of generators and we have studied their properties. We have defined a fuzzy
relation induced by two operators f ,g that uses more information than the behaviour
of f and g over the singletons. We have proved that this relation is reflexive if and
only if g≤ f , ∗-transitive when f ≤ g and a preorder when f = g.

We have defined two fuzzy operators Cg
R and Cg

f , the first one induced by a fuzzy
relation and a fuzzy operator and the second one induced by two fuzzy operators.
We have shown that they are equivalent in the following sense: For every Cg

f , there
exists R such that Cg

f =Cg
R. Conversely, for every Cg

R there exists f such that Cg
R =Cg

f .
We have defined the ∗-concordance of a fuzzy operator with a fuzzy relation

and we have shown that for a FCO g which is ∗-concordant with a reflexive fuzzy
relation R, the generated Cg

R is also a FCO. The same holds for Cg
f if g and the

relation R f induced by f in the classical way satisfy the mentioned conditions. We
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have also shown that the coherence property is directly transmitted from the upper
generator.

We have studied the aggregation of these induced operators using the
quasi-arithmetic mean associated to a continuous Archimedean t-norm. On one
hand, we have considered the operators generated by the quasi-arithmetic mean of
a family of fuzzy operators. On the other hand, we have considered the aggregation
of the individually induced fuzzy operators. For a finite family of fuzzy operators, it
holds that Cmt(gi)

f ≤mt(C
gi
f ), Cg

mt ( fi)
≤mt(C

g
fi
) and Cmt(gi)

R ≤ mt(C
gi
R ) .
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Comparison of Different Algorithms of
Approximation by Extensional Fuzzy Subsets

Gabriel Mattioli and Jordi Recasens

Abstract. How to approximate an arbitrary fuzzy subset by an adequate extensional
one is a key question within the theory of Extensional Fuzzy Subsets. In a recent
paper by the authors [19] different methods were provided to find good approxi-
mations. In this work these methods are compared in order to understand better the
performance and improvement they give.

1 Introduction

Indistinguishability operators were introduced to fuzzify the concept of crisp equiv-
alence relations. These operators allow to model the idea of "similarity" between
elements, which is key to understand how we "identify" objects. The operation of
identification is the mainstone to simplify the representation we have of the en-
vironment and understand the information given by our perception. Being able to
identify objects enables us to store less quantity of information if favour of being
able to extract a qualitative analysis of it.

An eye without a mechanism to identify objects is nothing but a sensor of outern
reality. An eye with this mechanism becomes a perceptive system that can "under-
stand" the environment.

Under an indistinguishability operator the observable fuzzy sets are the exten-
sional ones. These sets correspond to the fuzzification of classical equivalence
classes. Within the theory of Fuzzy Logic the first researcher to point the relevance
of these sets was Zadeh when he discussed the concept of granularity [24].

If we assume that indistinguishability operators are a good model to understand
similarities between objects (and there is evidence to think so), then a very
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interesting problem is how an arbitrary fuzzy subset can be approximated by an
extensional one with the minimum loss of accuracy.

In a previous work by the authors [19] this problem was faced and 3 methods
were derived for Archimedean t-norms (T = Łuukasievicz and T = Π product) and
one for the Minimum t-norm.

Restricting to Archimedean t-norms, the first method was based on finding an
adequate mean between two operators that provide the best upper and lower ap-
proximation by extensional fuzzy subsets of a given fuzzy subset μ . The second
one computed an adequate power of the lower approximation of μ , and the last one
found the solution solving a Quadratic Programming problem.

Big differences can be found between the first two and the last method. The
QP-based one guarantees that the solution found is optimal while the first two do
not. On the other hand, the last method suffers drastically the curse of dimensionality
and becomes computationally unaffordable for large cardinalities of the universe
of discourse X . The first two do not have this problem and work even when X is
non-finite.

The aim of this work is to compare in depth the mean-based and the power-based
methods. In order to reduce the scope of this comparison we will restrict to the
Łuukasievicz t-norm and to finite sets. This has been done because in [19] explicit
formulas were provided to find the best approximations when T = Łu, while the best
approximation for T =Π had to be found by numerical methods.

The work is structured as follows:
In Section 2 the Preliminaries to this work are given. In this section the definition

and main properties of indistinguishability operators and extensional sets will be
recalled.

Section 3 will show how the mean-based method can be built. Natural weighted
means will be introduced first and explicit formulas will be provided to find the
extensional fuzzy subset that better approximates μ following this method.

In Section 4 the power-based method will be given. First of all it will be shown
how powers can be defined with respect to a t-norm T and further how this can be
used to find good approximations by extensional fuzzy subsets.

In Section 5 a comparison between these two methods will be provided. Fixed an
indistinguishability operator E we will study the output and error committed by each
of the methods when approximating different fuzzy subsets and some conclusions
will be extracted.

Finally, the Concluding Remarks of this work will be given in Section 6.

2 Preliminaries

In this section the main concepts and results used in this work will be given. The
definition of indistinguishability operator will be recalled as well as the main prop-
erties of the extensional fuzzy subsets related to an indistinguishability operator.
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First of all let us recall the well known Ling’s Theorem which introduces the
concept of additive generator t of a continuous Archimedean t-norm. Additive gen-
erators will prove to be very useful further in this work.

Theorem 1. [15] A continuous t-norm T is Archimedean if and only if there exists a
continuous and strictly decreasing function t : [0,1]→ [0,∞] with t(1) = 0 such that

T (x,y) = t [−1](t(x)+ t(y))

where t [−1] is the pseudo inverse of t defined by

t [−1](x) =

⎧⎨
⎩

1 if x≤ 0
t−1(x) if 0≤ x≤ t(0)
0 if t(0)≤ x.

The function t will be called an additive generator of the t-norm and two generators
of the t-norm T differ only by a positive multiplicative constant.

If T = Łuis the Łuukasievicz t-norm, then an additive generator is t(x) = 1− x.
If T =Π is the Product t-norm, then t(x) =−log(x).

Definition 1. Let T be a t-norm.

• The residuation
−→
T of T is defined for all x,y ∈ [0,1] by

−→
T (x|y) = sup{α ∈ [0,1]|T (α,x) ≤ y}.

• The birresiduation
←→
T of T is defined for all x,y ∈ [0,1] by

←→
T (x,y) = min{−→T (x|y),−→T (y|x)}= T (

−→
T (x|y),−→T (y|x)).

When the t-norm T is continuous Archimedean, these operations can be rewritten
in terms of the additive generator t.

Proposition 1. Let T be a continuous Archimedean t-norm generated by an additive
generator t. Then:

• T (x,y) = t [−1](t(x)+ t(y))
• −→

T (x|y) = t [−1](t(y)− t(x))
• ←→

T (x,y) = t [−1](|t(x)− t(y)|).
Indistinguishability operators are the fuzzification of classical equivalence relations
and model the intuitive idea of "similarity" between objects. For a more detailed
explanation on this operators readers are referred to [4], [21].
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Definition 2. Let T be a t-norm. A fuzzy relation E on a set X is a T -indistinguish-
ability operator if and only if for all x,y,z ∈ X

a) E(x,x) = 1 (Reflexivity)
b) E(x,y) = E(y,x) (Symmetry)
c) T (E(x,y),E(y,z)) ≤ E(x,z) (T -transitivity).

Whereas indistinguishability operators represent the fuzzification of equivalence
relations, extensional fuzzy subsets play the role of fuzzy equivalence classes al-
together with their intersections and unions. Extensional fuzzy subsets are a key
concept in the comprehension of the universe of discourse X under the effect of
an indistinguishability operator E as they correspond with the observable sets or
granules of X .

Definition 3. Let X be a set and E a T -indistinguishability operator on X . A fuzzy
subset μ of X is called extensional with respect to E if and only if:

∀x,y ∈ X T (E(x,y),μ(y)) ≤ μ(x).

We will denote HE the set of all extensional fuzzy subsets of X with respect to E .

Extensional fuzzy subsets have been widely studied in the literature [7], [11], [12].
If the t-norm T is continuous Archimedean then the condition of extensionality

can be rewritten in terms of additive generators. This result will be recalled several
times along this paper.

Lemma 1. Let E be a T -indistinguishability operator on a set X. μ ∈HE if and only
if ∀x,y ∈ X:

t(E(x,y))+ t(μ(y))≥ t(μ(x)).

Proof.
μ ∈HE ⇔ T (E(x,y),μ(y)) ≤ μ(x)

⇔ t−1(t(E(x,y))+ t(μ(y)))≤ μ(x).
And as t is a monotone decreasing function this is equivalent to

t(E(x,y))+ t(μ(y))≥ t(μ(x)).

3 Approximation Using Means

In this section we will propose a method to approximate an arbitrary fuzzy subset
by an extensional one. First we will introduce two approximation operators, φE(μ)
and ψE(μ), that provide the best upper and lower approximation respectively by
extensional fuzzy subsets of μ given an indistinguishability operator E . The method
will consist in computing an adequate weight in order to minimize an error function
between μ and the natural weighted mean of φE(μ) and ψE(μ).
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Definition 4. Let X be a set and E a T -indistinguishability operator on X . The maps
φE : [0,1]X → [0,1]X and ψE : [0,1]X → [0,1]X are defined ∀x ∈ X by:

φE(μ)(x) = sup
y∈X

T (E(x,y),μ(y)),

ψE(μ)(x) = inf
y∈X

−→
T (E(x,y)|μ(y)).

φE(μ) is the smallest extensional fuzzy subset greater than or equal to μ ; hence it
is its best upper approximation by extensional fuzzy subsets. Analogously, ψE(μ)
provides the best approximation by extensional fuzzy subsets smaller than or equal
to μ . From a topological viewpoint these operators can be seen as closure and inte-
rior operators on the set [0,1]X [11]. It is remarkable that these operators also appear
in a natural way in fields such as fuzzy rough sets [20], fuzzy modal logic [6], [5],
fuzzy mathematical morphology [8] and fuzzy contexts [3] among many others.

Though φE(μ) and ψE(μ) provide extensional fuzzy subsets that approximate
μ there is no guarantee in general that there are no better approximations of μ by
extensional fuzzy subsets. In [19] the authors faced this problem and provided three
methods to find approximations for Archimedean t-norms and one for the Minimum
t-norm. The two methods compared in this paper were introduced there.

Definition 5. [1] Let t : [0,1]→ [−∞,∞] be a non-increasing monotonic map, x,y ∈
[0,1] and r ∈ [0,1]. The weighted quasi-arithmetic mean mt of x and y is defined as:

mr
t (x,y) = t−1(r · t(x)+ (1− r) · t(y))

mt is continuous if and only if {−∞,∞}� Ran(t).

There is a bijection between the set of continuous Archimedean t-norms and the set
of quasi-arithmetic means by taking as map the additive generator t of the t-norm
[14]. Under this interpretation in the literature quasi-arithmetic means are some-
times called natural means [17], as we will recall them from now on.

We want to approximate μ by mr
t (φE(μ),ψE(μ)). Below we prove that this mean

is extensional for any value of r.

Proposition 2. [19] Let X be a set and μ ,ν extensional fuzzy subsets of X with
respect to an indistinguishability operator E on X. Then:

mr(μ ,ν) ∈ HE .

Corollary 1. Let μ be a fuzzy subset on a set X and E an indistinguishability oper-
ator. Then:

mr(φE(μ),ψE(μ)) ∈ HE .

It is straightforward that for the limit values r = 0,1 this mean is equal to φE(μ) and
ψE(μ) respectively . The question that arises here is for what value of r the error
made in this approximation is the lowest one. In mathematical terms, this problem
reduces to finding the minimum value of the following function:



312 G. Mattioli and J. Recasens

F(r) = ||μ−mr(φE(μ),ψE(μ))||

Considering the Euclidean distance, without loss of generalization, minimizing the
previous expression is equivalent to minimize the square of the norm.

F(r) = ||μ−mr(φE ,ψE)||2

For the Łuukasievicz t-norm the result below provides an explicit formula to find this
optimal weight r.

In order to simplify the notation we will denote μi = μ(xi), φi = φE(μ)(xi) and
ψi = ψE(μ)(xi).

Theorem 2. [19] Let μ be a fuzzy subset of a finite set X = {x1, ...,xn} and T = Łu
the Łuukasiewicz t-norm. Then the expression F(r) = ||μ −mr(φE(μ),ψE(μ))||2 is
minimized when:

r =
∑μi ·φi−∑μi ·ψi−∑φi ·ψi +∑ψ2

i

∑φ2
i +∑ψ2

i − 2∑φi ·ψi
.

4 Approximation Using Powers

In this section we will provide another method to find an approximation of an ar-
bitrary fuzzy subset μ by an extensional one. This method will be based on ap-
proximating μ by an adequate power ψE(μ)r of its lower approximation operator
with respect to the t-norm. It will be shown how, for values r < 1, the fuzzy subset
ψE(μ)r is extensional and that a global minimum of the error made can be obtained.

Let us recall the definition of power with respect to a t-norm T .

Definition 6. Let T be a t-norm and n a natural number. We will call the nth power
of X with respect to T to:

T n(x) = T (
n︷ ︸︸ ︷

x,x, ...,x).

To simplify notation we will denote T n(x) = xn.

It is possible to extend this definition to all positive rational numbers as follows.

Definition 7. Let T be a t-norm and n a natural number. We will define x to the
power of 1/n with respect to T as:

x1/n = sup
z∈[0,1]

{T n(z)≤ x}

and for p,q natural numbers,

xp/q(x) = (x1/q)p.

Passing to the limit it is possible to define xr for all r ∈R
+ for continuous t-norms.
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The following result allows us to calculate powers by using an additive generator
t of T .

Proposition 3. Let T be an Archimedean t-norm with additive generator t and r ∈
R
+. Then:

xr = t [−1](r · t(x))
It is straightforward to observe from the previous proposition that r ≤ s⇒ xr ≥ xs.
Besides, the continuity of t assures continuity of powers when we let the exponent
vary.

The key idea of this method follows from the next Corollary 2.

Proposition 4. [19] Let E be an indistinguishability operator of a set X, μ an ex-
tensional fuzzy subset of E and r ≤ 1. Then

μ r ∈ HE .

Corollary 2. ψ(μ)r is extensional for r ≤ 1.

The problem of approximating a fuzzy subset μ by an adequate power ψ(μ)r re-
duces then to compute the value of r for which the following function is minimized.

F(r) = ||μ−ψE(μ)r||2

For the Łuukasievicz t-norm we have the following result.
As it was done in the previous section we will denote μi = μ(xi), φi = φE(μ)(xi)

and ψi = ψE(μ)(xi).

Theorem 3. [19] Let μ be a fuzzy subset of a finite set X = {x1, ...,xn} and T = Łu
the Łuukasiewicz t-norm. Then F(r) = ||μ−ψE(μ)r||2 is minimized when

r =
∑μi +∑ψi−∑μi ·ψi− n

2∑ψi−∑ψ2
i − n

It would be expectable to find an analogous method to find good approximations
of μ by extensional fuzzy subsets using powers of φE . In [19] it is discussed and
illustrated with a counterexample that this is not possible in general.

5 Comparative Analysis of the Two Methods Proposed

In this section we will compare the two methods proposed in this paper to approx-
imate arbitrary fuzzy subsets by extensional ones with respect to a given indistin-
guishability operator. We will compare the output and error committed by each of
the methods applied to four fuzzy subsets of a finite set X .

Let us consider the following Łu-indistinguishability operator
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E =

⎛
⎜⎜⎜⎜⎝

1 0.9 0.7 0.4 0.2
0.9 1 0.7 0.4 0.2
0.7 0.7 1 0.4 0.2
0.4 0.4 0.4 1 0.2
0.2 0.2 0.2 0.2 1

⎞
⎟⎟⎟⎟⎠

and the fuzzy subsets

μ1 =

⎛
⎜⎜⎜⎜⎝

0.9
0.5
0.6
0.8
0.3

⎞
⎟⎟⎟⎟⎠ μ2 =

⎛
⎜⎜⎜⎜⎝

0.2
0
0.2
0.6
0.9

⎞
⎟⎟⎟⎟⎠ μ3 =

⎛
⎜⎜⎜⎜⎝

0.7
0.5
0.1
0.8
0.6

⎞
⎟⎟⎟⎟⎠ μ4 =

⎛
⎜⎜⎜⎜⎝

0.1
0.9
0.2
0.8
0.5

⎞
⎟⎟⎟⎟⎠ .

It is straightforward to observe that none of these sets is extensional with respect to
E .

The corresponding upper and lower approximations by extensional fuzzy subsets
of these sets are

φ(μ1) =

⎛
⎜⎜⎜⎜⎝

0.9
0.8
0.6
0.8
0.3

⎞
⎟⎟⎟⎟⎠ φ(μ2) =

⎛
⎜⎜⎜⎜⎝

0.2
0.1
0.2
0.6
0.9

⎞
⎟⎟⎟⎟⎠ φ(μ3) =

⎛
⎜⎜⎜⎜⎝

0.7
0.6
0.4
0.8
0.6

⎞
⎟⎟⎟⎟⎠ φ(μ4) =

⎛
⎜⎜⎜⎜⎝

0.8
0.9
0.6
0.8
0.5

⎞
⎟⎟⎟⎟⎠ .

ψ(μ1) =

⎛
⎜⎜⎜⎜⎝

0.6
0.5
0.6
0.8
0.3

⎞
⎟⎟⎟⎟⎠ ψ(μ2) =

⎛
⎜⎜⎜⎜⎝

0.1
0
0.2
0.6
0.8

⎞
⎟⎟⎟⎟⎠ ψ(μ3) =

⎛
⎜⎜⎜⎜⎝

0.4
0.4
0.1
0.7
0.6

⎞
⎟⎟⎟⎟⎠ ψ(μ4) =

⎛
⎜⎜⎜⎜⎝

0.1
0.2
0.2
0.7
0.5

⎞
⎟⎟⎟⎟⎠ .

Let us denote mi and pi the fuzzy extensional subsets obtained following the
mean-based and power-based methods respectively for each of the sets μi (i =
1, ...,4). The output fuzzy extensional subsets are given are given below.

m1 =

⎛
⎜⎜⎜⎜⎝

0.75
0.65
0.6
0.8
0.3

⎞
⎟⎟⎟⎟⎠ m2 =

⎛
⎜⎜⎜⎜⎝

0.1667
0.0667
0.2
0.6
0.8667

⎞
⎟⎟⎟⎟⎠ m3 =

⎛
⎜⎜⎜⎜⎝

0.5565
0.5043
0.2565
0.7522
0.6

⎞
⎟⎟⎟⎟⎠ m4 =

⎛
⎜⎜⎜⎜⎝

0.4043
0.5043
0.3739
0.7434
0.5

⎞
⎟⎟⎟⎟⎠ .
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p1 =

⎛
⎜⎜⎜⎜⎝

0.6436
0.5545
0.6436
0.8218
0.3763

⎞
⎟⎟⎟⎟⎠ p2 =

⎛
⎜⎜⎜⎜⎝

0.1374
0.0415
0.2332
0.6166
0.8083

⎞
⎟⎟⎟⎟⎠ p3 =

⎛
⎜⎜⎜⎜⎝

0.4910
0.4910
0.2365
0.7455
0.6606

⎞
⎟⎟⎟⎟⎠ p4 =

⎛
⎜⎜⎜⎜⎝

0.3185
0.3942
0.3942
0.7728
0.6214

⎞
⎟⎟⎟⎟⎠ .

Table 1 shows the error committed by each of these approximations. The error has
been computed taking the euclidean distance between the original fuzzy subset and
the extensional approximation of it.

Table 1 Table comparing the error committed by the different methods proposed for μ1, μ2,
μ3 and μ4

μ1 μ2 μ3 μ4

φi e=0.3 e=0.1 e=0.3162 0.8062
ψi e=0.3 e=0.1414 e=0.3317 0.7071
mi e=0.2121 e=0.0816 e=0.2177 e=0.5316
pi e=0.2773 e=0.1243 e=0.2627 e=0.5973

Let us analyze now the results obtained for both methods.
A first consideration about the sets μ1, μ2, μ3 and μ4 is that they show different

levels of variance and "‘distance"’ from extensionality. It can be observed for in-
stance that the upper and lower approximation of μ2 is very similar to the initial set
while the approximations of μ4 commit a much bigger error.

Another interesting previous consideration is that for μ2 and μ3, φE(μi) commits
a slightly lower error than ψ(μi) whereas the error committed in the approximation
of μ4 is lower in the case of ψE(μ4). From here we can infer that there is no guar-
antee that the approximation provided by φE is better than the one given by ψE and
viceversa

Comparing the results obtained with the two new methods proposed in the ap-
proximation of the given sets we observe that in all cases the approximation using
the mean-based or the power-based method improves the approximation made either
by the φE and ψE operators.

Finally it can be observed that in all cases the approximation made using the
mean-based method is better than the one given by the power-based one.

According to the results obtained, the conclusion of this analysis is that there is
evidence to consider that the two methods proposed improve the ones existing in
the literature. However, it is a must to recall that the analysis made is not exhaustive
and similar analysis should be done with other indistinguishabilities operators and
extensional fuzzy subsets in order to assert this improvement formally.

6 Concluding Remarks

In this work we have recalled two of the methods proposed by the authors in [19] to
approximate arbitrary fuzzy subsets by extensional ones for Łu-indistinguishability
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operators. Both methods are built upon two operators that provide the smallest ex-
tensional subset that contains μ (φE(μ)) and the biggest extensional one contained
in μ (ψE(μ)).

The first method consists in computing an adequate mean of the upper and the
lower approximation of μ .

The second one is based on finding an adequate power (homotecy) for which
ψ(μ)r is a better extensional approximation of μ .

In both cases explicit formulas have been given to compute the best approxima-
tions following the methods.

Finally, both methods have been tested for a given indisitinguishability E and
4 extensional sets. Despite a deeper comparison should be done to extract conclu-
sive assertions, the results obtained show relevant evidence that the two methods
proposed improve the approximation given by φE(μ) and ψE(μ). Among them,
the results obtained suggest that the mean-based method is slightly better than the
power-based one.
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On the Symmetrization of Quasi-metrics:
An Aggregation Perspective

J. Martín, G. Mayor, and O. Valero

Abstract. In 1981, Borsík and Doboš studied the problem of how to combine, by
means of a function, two metrics in order to obtain a single one as output. To this
end, they introduced the notion of metric aggregation function and gave a character-
ization of such functions ([1]). Recently, in [14], Mayor and Valero have extended
the original work of Borsík and Doboš to the context of quasi-metrics in such a way
that a general description of how to merge through a function, called quasi-metric
aggregation function, two quasi-metrics into a single one has been given. Since ev-
ery quasi-metric induces, in a natural way, a metric the main purpose of this paper
is to mastermind formally the problem of how to symmetrize a quasi-metric and
to provide a solution to such a problem based on the main ideas that arise in the
quasi-metric aggregation framework. To this end, the notion of metric generating
function, those functions that allow to generate a metric from a quasi-metric, is
introduced and a full description of such functions is given from an aggregation per-
spective. Moreover, a relationship between the quasi-metric aggregation problem
and the symmetrization one is provided.

1 The Problem Statement

In 1981, Borsík and Doboš studied the problem of merging metrics in order to obtain
a single new one ([1]). In order to concrete such a study let us recall a few pertinent
concepts.

From now on, we shall use the letters R and R
+ to denote the set of real numbers

and the set of nonnegative real numbers, respectively.
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Following [1], we will consider the set R+
2 = {(a,b) : a,b ∈ R

+} ordered by the
pointwise order relation!, i.e. (a,b)! (c,d)⇔ a≤ c and b≤ d. Moreover, a func-
tion Φ : R+

2 → R
+ will be said to be monotone provided that Φ(a,b) ≤ Φ(c,d)

for all (a,b),(c,d) ∈ R
+
2 with (a,b) ! (c,d). Furthermore, a function Φ : R+

2 →
R
+ will be said to be subadditive if Φ((a,b)+ (c,d)) ≤ Φ(a,b) +Φ(c,d) for all

(a,b),(c,d) ∈R
+
2 .

According to [1], we will denote by O the set of all functions Φ : R+
2 → R

+

satisfying: Φ(a,b) = 0⇔ (a,b) = (0,0).
With the aim of analyze in depth how to combine by means of a function two

metrics in order to obtain a single one as a result, Borsík and Doboš introduced the
notion of metric preserving function (metric aggregation function in [15] and [14]).
Hence, a function Φ : R+

2 → R
+ is a metric aggregation function provided that

the function dΦ : X ×X → R
+ is a metric for every pair of metric spaces (X1,d1)

and (X2,d2), where X = X1×X2 and dΦ((x,y),(z,w)) =Φ(d1(x,z),d2(y,w)) for all
(x,y),(z,w) ∈ X .

In [1], Borsík and Doboš gave a characterization, and thus a solution of the prob-
lem of merging two metrics into a single one, of metric aggregation functions in
terms of the so-called triangle triplets. In order to present such a characterization let
us recall that, given a,b,c ∈ R

+, the triplet (a,b,c) forms a triangle triplet when-
ever a≤ b+c, b≤ a+c and c≤ b+a. The aforementioned characterization can be
enunciated as follows:

Theorem 1. Let Φ : R+
2 →R

+. Then the below assertions are equivalent:

(1) Φ is a metric aggregation function.
(2) Φ holds the following properties:

(2.1) Φ ∈ O.
(2.2) Let a,b,c,d, f ,g ∈R

+. If (a,b,c) and (d, f ,g) are triangle triplets, then so
is (Φ(a,d),Φ(b, f ),Φ(c,g)).

Since Borsik and Doboš solved, by means of Theorem 1, the problem of merging
two metrics, several authors have provided new advances in the study of the ag-
gregation problem of a few kinds of generalized metrics. Specifically E. Castiñeira,
A. Pradera and E. Trillas have provided a solution to the aggregation problem for
C-generalized metrics, S-generalized distances and pseudometrics in [21], [20] and
[19].

Inspired by the original work of Borsik and Doboš and motivated by the utility of
quasi-metrics in several fields of Artificial Intelligence and Computer Science (see,
for instance, [27], [26], [25], [4], [5], [6], [28], [16], [17],[2], [18], [7]), [29], [23],
[24], Mayor and Valero studied the aggregation problem in the quasi-metric context.
Thus they introduced the notion of quasi-metric aggregation function in [14] (asym-
metric distance function in the quoted reference) and gave a characterization of such
functions in the spirit of Theorem 1. With the aim to present such a characterization
let us recall a few concepts about quasi-metrics.

Following [8], a quasi-metric on a (nonempty) set X is a function d : X×X →R
+

such that for all x,y,z ∈ X :
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(i) d(x,y) = d(y,x) = 0⇔ x = y.
(ii) d(x,z)≤ d(x,y)+ d(y,z).

Note that a metric on a set X is a quasi-metric d on X satisfying, in addition, the
following condition for all x,y ∈ X :

(iii) d(x,y) = d(y,x).

A quasi-metric space is a pair (X ,d) such that X is a (nonempty) set and d is a
quasi-metric on X .

A well-known example of quasi-metric space is given by the pair (R+,u) where
u is defined by u(x,y) = max{y− x,0} for all x,y ∈ R

+.
According to [15] and [14], a function Φ : R+

2 → R
+ is a quasi-metric aggre-

gation function if the function dΦ : X ×X → R
+ is a quasi-metric for every pair of

quasi-metric spaces (X1,d1) and (X2,d2), where X =X1×X2 and dΦ((x,y),(z,w)) =
Φ(d1(x,z),d2(y,w)) for all (x,y),(z,w) ∈ X .

The announced quasi-metric formulation of Theorem 1 given in [14] was stated
in the following way:

Theorem 2. Let Φ : R+
2 →R

+. Then the below assertions are equivalent:

(1) Φ is a quasi-metric aggregation function.
(2) Φ holds the following properties:

(2.1) Φ ∈ O.
(2.2) Let a,b,c,d, f ,g ∈R

+. If (a,d)! (b, f )+(c,g), then Φ(a,d)≤Φ(b, f )+
Φ(c,g).

(3) Φ ∈ O , and Φ is subadditive and monotone.

Several recent works on quasi-metric aggregation functions and the aggregation
problem of generalized metric structures can be found in [11], [12], [13], [9] and
[10].

According to [3], each quasi-metric d can be symmetrized. Indeed, on the one
hand, it is clear that the function dmax : X × X → R

+ defined by
dmax(x,y) = max{d(x,y),d(y,x)} is a metric. On the other hand, it is a simple
matter to see that the function d+ : X × X → R

+ given by d+(x,y) = d(x,y) +
d(y,x) is also a metric. Of course it is obvious that the metrics dmax and d+ are
obtained by means of an appropriate aggregation function acting on the numerical
values d(x,y) and d(y,x). In fact, dmax(x,y) = Φmax(d(x,y),d(y,x)) and d+(x,y) =
Φ+(d(x,y),d(y,x)), where Φmax(a,b) = max{a,b} and Φ+(a,b) = a + b for all
a,b∈R

+. Observer, in addition, thatΦmax andΦ+ are, by Theorem 2, quasi-metric
aggregation functions.

Inspired, on the one hand, by the fact that the preceding processes of symmetriza-
tion of a quasi-metric can be formulated in the context of aggregation theory and,
on the other hand, by the fact that we have not found a comprehensive study on how
a quasi-metric can be symmetrized in the literature, in this paper we focus our study
on the description of a general method of symmetrization of quasi-metrics from
an aggregation perspective and, likewise, on the connection between this method
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and those given by the quasi-metric aggregation functions. Concretely our aim is
to characterize, in the spirit of Theorem 2, those functions that provide the afore-
said symmetrization methods. To this end, we will introduce the notion of “metric
generation function”.

A function Φ : R+
2 →R

+ will be called a metric generating function if the func-
tion dΦ : X ×X → R

+ is a metric on X for every quasi-metric space (X ,d), where
the function dΦ is defined by

dΦ(x,y) =Φ(d(x,y),d(y,x))

for all x,y ∈ X .
Now, in the light of the definition of metric generating function, it is evident

that such functions represent mathematical methods to symmetrize quasi-metrics
providing, thus, metrics as a result. Of course, our main purpose is to provide a
characterization, in the spirit of Theorem 2, of the metric generating functions and,
thus, to solve formally the symmetrization problem.

2 The Solution

In this section we provide a solution to the problem of how to symmetrize a
quasi-metric such as we have posed in Section 1. With this aim, we prove the fol-
lowing result which will be useful in our subsequent work.

Lemma 1. The following assertions hold:

(1) The pair (R2, p) is a quasi-metric space, where

p(x,y) = max{y1− x1,0}+max{y2− x2,0}

for all x = (x1,x2),y = (y1,y2) ∈ R
2.

(2) The pair (R3,q) is a quasi-metric space, where

q(x,y) = max{max{y1− x1,0},max{y2− x2,0},max{y3− x3,0}}

for all x = (x1,x2,x3),y = (y1,y2,y3) ∈R
3.

Proof. It is a routine to check that the functions p : R2
+→R+ and q : R3

+→ R+ are
quasi-metrics. #$

With the aim of discussing, as mentioned before, which properties a metric gener-
ating function must satisfy we need to introduce a new sort of triplets that we have
called mixed triplets.

Let a,b,c,d, f ,g ∈ R
+. We will say that the triplets (a,b,c) and (d, f ,g) are

mixed provided that the following inequalities hold:

a≤ b+ c, b≤ a+ f , c≤ g+ a,

d ≤ f + g, f ≤ d + b, g≤ c+ d.
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Observe that the notion of mixed triplets is somewhat related to the triangle triplet
one. Concretely we have that a triplet (a,b,c) forms a triangle triplet if and only if
the triplets (a,b,c) and (a,c,b) are mixed.

The next result gives a general description of those properties that a metric gen-
erating functionΦ : R+

2 →R
+ must hold in order to induce a metric dΦ from every

quasi-metric d in the terms exposed in Section 1.

Theorem 3. Let Φ : R+
2 →R

+. Then the below assertions are equivalent:

(1) Φ is a metric generating function.
(2) Φ holds the following properties:

(2.1) Φ ∈ O.
(2.2) Φ is symmetric, i.e., Φ(a,b) =Φ(b,a) for all (a,b) ∈ R

+
2 .

(2.3) Φ(a,d) ≤ Φ(b,g) +Φ(c, f ) for all a,b,c,d, f ,g ∈ R
+ such that (a,b,c)

and (d, f ,g) are mixed triplets.

Proof. (1) =⇒ (2). First of all we prove that Φ ∈ O . Indeed, let a,b ∈ R
+ such

thatΦ(a,b) = 0. Take x,y ∈R
2 given by x = (−a

2 ,b) and y = ( a
2 ,0). Then a simpler

computation shows that p(x,y) = a and p(y,x) = b, where p is the quasi-metric on
R

2 introduced in assertion (1) in statement of Lemma 1. It follows that pΦ(x,y) =
Φ(p(x,y), p(y,x)) =Φ(a,b) = 0. It follows thatΦ(a,b) = 0⇔ a = b = 0, since the
function pΦ is a metric on R

2 and x = y⇔ a = b = 0. Thus Φ ∈ O .
The symmetry of Φ follows from the fact that

Φ(a,b) = pΦ(x,y) = pΦ(y,x) =Φ(b,a)

for all a,b ∈ R
+, where x = (−a

2 ,b) and y = ( a
2 ,0) as before.

Next we prove that Φ(a,d) ≤ Φ(b,g)+Φ(c, f ) for all a,b,c,d, f ,g ∈ R
+ such

that (a,b,c) and (d, f ,g) are mixed triplets. To this end, take x,y,z ∈ R
3 given by

x = (−c+ g,d,−b), y = (0,0,a− b) and z = (−c, f ,0). It is a simpler matter to
check that q(x,y) = a, q(y,x) = d, q(x,z) = b, q(z,x) = g, q(z,y) = c and q(y,z) = f ,
where q is the quasi-metric introduced in assertion (2) in the statement of Lemma
1. It follows that

Φ(a,d) = Φ(q(x,y),q(y,x)) = qΦ(x,y)
≤ qΦ(x,z)+ qΦ(z,y)
= Φ(q(x,z),q(z,x))+Φ(q(z,y),q(y,z))
= Φ(b,g)+Φ(c, f ),

since Φ is a metric generating function.
(2) =⇒ (1). Let x,y ∈ X . Assume that dΦ(x,y) = 0. ThenΦ(d(x,y),d(y,x)) = 0.

The fact that Φ ∈O guarantees that Φ(d(x,y),d(y,x)) = 0⇔ d(x,y) = d(y,x) = 0.
Whence we immediately obtain that dΦ(x,y) = 0⇔ x = y, since d is a quasi-metric
on X .

Since Φ is symmetric we have that

dΦ(x,y) =Φ(d(x,y),d(y,x)) =Φ(d(y,x),d(x,y)) = dΦ(y,x)

for all x,y ∈ X .
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Next consider x,y,z ∈ X . Then, by the fact that the quasi-metric d satisfies the
triangle inequality, we obtain the following inequalities:

d(x,y)≤ d(x,z)+ d(z,y), d(x,z) ≤ d(x,y)+ d(y,z), d(z,y)≤ d(z,x)+ d(x,y),

d(y,x)≤ d(y,z)+ d(z,x), d(y,z) ≤ d(y,x)+ d(x,z), d(z,x) ≤ d(z,y)+ d(y,x).

It follows that the triplets (a,b,c) and (d, f ,g) are mixed, where a = d(x,y), d =
d(y,x), b = d(x,z), c = d(z,y), f = d(y,z) and g = d(z,x).

Thus assertion (2.3) gives that

dΦ(x,y) = Φ(d(x,y),d(y,x))
≤ Φ(d(x,z),d(z,x))+Φ(d(z,y),d(y,z))
= dΦ(x,z)+ dΦ(z,y).

So we have shown that the function dΦ is a metric on X . #$

Examples 3, 4 and 6, below, yield different instances of metric generating func-
tions. Moreover, Examples 1 and 2 provide functions that are not metric generating
functions.

Example 1. Consider the function Φ : R2
+ → R

+ given by Φ(a,b) = a+ 1
2 b. It is

clear that 1 = Φ(1,0) �= Φ(0,1) = 1
2 . So Φ is not symmetric and, thus, Theorem 3

gives that Φ is not a metric generating function.

An easy computation shows that a functionΦ : R+
2 →R

+ satisfying condition (2.3)
in statement of Theorem 3 is subadditive. Consequently we have the next result.

Corollary 1. Let Φ : R+
2 → R

+. If Φ is a metric generating function, then Φ is
subadditive.

As a consequence of Corollary 1, one can wonder whether condition (2.3) in state-
ment (2) in Theorem 3 can be replaced by subadditivity. However, the next example
shows that Theorem 3 is not true if we replace the aforesaid condition by subaddi-
tivity.

Example 2. Let Φ : R+
2 → R

+ be the function given by Φ(a,b) =
√

a2 + b2− ab.
It is clear that Φ ∈ O and that Φ is symmetric. Moreover, it is not hard to check
that Φ is subadditive. Nevertheless, it is easily seen that the triplets (2,1,1) and

(0, 1
2 ,0) are mixed triplets and that Φ(2,0) = 2, Φ(1,0) = 1 and Φ(1, 1

2 ) =
√

3
2 . So,

by Theorem 3, we conclude that Φ is not a metric generating function because of
Φ(2,0)>Φ(1,0)+Φ(1, 1

2 ).

The next example provides instances of metric generating functions.

Example 3. The functions Φmax : R+
2 → R

+, Φ+ : R+
2 → R

+ introduced in Section
1 and the function Φmed : R+

2 → R
+, given for all a,b by Φmed(a,b) =

a+b
2 , are, by

statement (2) in Theorem 3, metric generating functions.
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The next results, which are inspired by those given in [19], provide a little more
information on the description of metric generating functions.

Let us recall that a function Φ : R+
2 → R

+ has e ∈ R
+ as an absorbent (neutral)

element ifΦ(e,a) =Φ(a,e) = e (Φ(e,a) =Φ(a,e) = a) for all a∈R
+. Moreovoer,

a functionΦ : R+
2 →R

+ has e ∈R
+ as an idempotent element if Φ(e,e) = e.

Corollary 2. Let Φ : R+
2 →R

+ be a metric generating functions. Then Φ has not 0
as an absorbent element.

Proof. Assume that 0 is an absorbent element of Φ . It follows that Φ /∈ O . So,
by Theorem 3, we obtain that Φ is not a metric generating function which is a
contradiction. #$
Corollary 3. LetΦ : R+

2 →R
+ be a metric generating function. Then does not exist

e ∈ R
+ \ {0} such that Φ has e as a neutral element.

Proof. Assume for the purpose of contradiction that e is a neutral element ofΦ with
e �= 0. Then we have thatΦ(e,0) = 0. It follows thatΦ /∈O and, by Theorem 3, that
Φ is not a metric generating function, which contradicts our hypothesis. #$
Corollary 4. Let Φ : R+

2 → R
+ be a metric generating function. Then do no exist

e,c ∈ R
+ with 0 < e < c

2 such that Φ has c ∈ R
+ as an idempotent element and e

as an absorbent element.

Proof. Suppose that Φ has e ∈ R
+ as an absorbent element and c, with 0 < e < c

2 ,
as an idempotent element. Then we have that

Φ(e+(c− e),e+(c− e))= c > 2e =Φ(e,c− e)+Φ(c− e,e).

It follows that Φ is not subadditive and thus, by Corollary 1, we conclude that Φ is
not a metric generating function. #$
Corollary 5. LetΦ : R+

2 →R
+. IfΦ is a metric generating function which has 0 as

a neutral element, then Φ(a,b)≤ a+ b for all a,b ∈ R
+.

Proof. Take a,b∈R
+. Then, Corollary 1 guarantees thatΦ is subadditive and, thus,

that
Φ(a,b) =Φ((a,0)+ (0,b))≤Φ(a,0)+Φ(0,b).

Since Φ has 0 as a neutral element we obtain that Φ(0,a) = a and thatΦ(0,b) = b.
Hence we conclude that

Φ(a,b)≤ a+ b.

#$
The functions Φmax and Φ+, given in Example 3, have obviously 0 as neutral ele-
ment.

Since every metric is a quasi-metric it seems natural to wonder whether a met-
ric generating function Φ preserves metrics in the sense that dΦ(x,y) = d(x,y) for
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every metric space (X ,d) and for all x,y ∈ X . However Example 3 gives a negative
answer to that question. Indeed, Φ+ is a metric generating function and, however,
dΦ+(x,y) = 2d(x,y) for all x,y ∈ X and every metric space (X ,d).

The next result provides a characterization of those metric generating functions
which preserve metrics.

Theorem 4. Let Φ : R+
2 →R

+ be a metric generating function. Then the following
assertions are equivalent:

1) dΦ = d for every metric space (X ,d).
2) Φ is idempotent, i.e., Φ(a,a) = a for all a ∈ R

+.

Proof. (1) =⇒ (2). Let a∈R
+. Consider the Euclidean metric space (R+

2 ,dE). Take
x,y ∈ R

+
2 given by x = (a,0),y = (0,0). Then it is clear that dE(x,y) = a. Since Φ

is a metric generating function we have that dEΦ is a metric on R
+
2 . Moreover, from

(1) we obtain that Φ(a,a) =Φ(dE(x,y),dE(x,y)) = dEΦ (x,y) = dE(x,y) = a.
(2) =⇒ (1). Since Φ is idempotent we have that Φ(a,a) = a for all a ∈ R

+. So
dΦ(x,y) =Φ(d(x,y),d(x,y)) = d(x,y) for all x,y ∈ X . #$
The functionsΦmax,Φmed introduced in Example 3 are instances of idempotent met-
ric generating functions.

3 A Connection between the Quasi-metric Aggregation
Problem and the Symmetrization of Quasi-metrics

Since quasi-metric aggregation functions allow to merge two quasi-metrics into a
single one and taking into account that a metric is a particular case of a quasi-metric,
it seems natural to discuss when such functions are exactly metric generating func-
tions. Next we provide information on the relationship between quasi-metric aggre-
gation functions and metric generating functions.

Proposition 1. Let Φ : R+
2 → R

+. If Φ is a symmetric quasi-metric aggregation
function, then Φ is a metric generating function.

Proof. Theorem 2 guarantees that Φ is monotone and subadditive and that Φ ∈ O .
Next we show that

Φ(a,d)≤Φ(b,g)+Φ(c, f )

for all a,b,c,d, f ,g ∈ R
+ such that (a,b,c) and (d, f ,g) are mixed triplets. Indeed,

if (a,b,c) and (d, f ,g) are mixed triplets, then we have that a≤ b+ c and d ≤ f +g
and, thus, the monotonicity of Φ provides that

Φ(a,d)≤Φ(b+ c, f + g) =Φ((b,g)+ (c, f )).

Whence we have, by the subadditivity of Φ , that

Φ(a,d)≤Φ(b,g)+Φ(c, f ).

It follows, by Theorem 3, that Φ is a metric generating function. #$



On the Symmetrization of Quasi-metrics: An Aggregation Perspective 327

The following example provides quasi-metric aggregation function which are metric
generating functions.

Example 4. It is clear that the below functionsΦ : R2
+ −→R+ satisfy statement (3)

in Theorem 2 and, in addition, they are symmetric functions. Thus, by Proposition
1, all of them are metric generating functions:

(1) Φ(a,b) =

{
0 if a = b = 0
1 otherwise

.

(2) Φ(a,b) = (w(ap + bp))
1
p for all w ∈ R+ \ {0}, where p ∈ [1,∞[.

(3) Φ(a,b) = wmax{a,b} for all w ∈ R+ \ {0}.

(4) Φ(a,b) = w(a+ b) for all w ∈ R+ \ {0}.

In the light of Proposition 1, it seems natural to wonder if every metric generating
functions is a quasi-metric aggregation function. However, the next example yields
a negative answer to the preceding question, i.e., it shows that there are metric gen-
erating functions that are not quasi-metric aggregation functions.

Example 5. Let Φ : R+
2 →R

+ be the function defined by

Φ(a,b) =

⎧⎨
⎩

0 if max{a,b}= 0
2 if max{a,b} ∈]0,1[
1 if max{a,b} ≥ 1

.

It is a simple matter to check thatΦ holds all conditions in assertion (2) in statement
of Theorem 3 and, thus, that Φ is a metric generating function. However, Φ is not
monotone. Indeed, ( 1

2 ,
1
2 ) ≤ (1,1) but 2 = Φ( 1

2 ,
1
2 ) � Φ(1,1) = 1. Therefore, by

Theorem 2, Φ is not a quasi-metric aggregation function.

The preceding example motivates that one can wonder which is the condition that
a metric generating function must satisfy in order to be a quasi-metric aggrega-
tion function. The next result provides the answer to the preceding question and,
concretely, it describes exactly the relationship between quasi-metric aggregation
functions and metric generating functions.

Theorem 5. Let Φ : R+
2 →R

+ be a metric generating function. Then the following
assertions are equivalent:
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(1) Φ is a quasi-metric aggregation function.
(2) Φ is monotone.

Proof. (1) =⇒ (2). Assume that Φ is a quasi-metric aggregation function. It fol-
lows, from Theorem 2, that Φ is monotone.

(2)=⇒ (1). Next suppose thatΦ is a monotone metric generating function. Then,
by Theorem 3, we obtain that Φ ∈ O . Moreover, by Proposition 1, we have that
Φ is subadditive. Thus, by statement (3) in Theorem 2, we conclude that Φ is a
quasi-metric aggregation function. #$
We end the paper giving a necessary condition, in the spirit of statement (2.2) in
Theorem 2, that every monotone metric generating function must satisfy.

Corollary 6. LetΦ : R+
2 →R

+ be a monotone metric generating function. Then the
following condition holds for all a,b ∈ R

+:

Φ(a,b)≤Φ(a,a)+Φ(b,b).

Proof. Take a,b ∈ R
+. Since Φ is monotone we have that

Φ(a,b)≤Φ(a+ b,a+ b)

for all a,b ∈ R
+. By Corollary 1 we obtain that Φ is subadditive and, thus, that

Φ(a+ b,a+ b)≤Φ(a,a)+Φ(b,b)

for all a,b ∈ R
+. Therefore we conclude that

Φ(a,b)≤Φ(a,a)+Φ(b,b)

for all a,b ∈ R
+. #$

Next, Corollary 7 provides a kind of averaging behavior for those monotone met-
ric generating functions that are also idempotent. Observe that Example 4 provides
metric generating functions that are monotonic but they are not idempotent. More-
over, the functionsΦmax,Φmed given in Example 3 are idempotent metric generating
function which are, in addition, monotone.

Corollary 7. Let Φ : R+
2 →R

+ be a monotone metric generating function which is,
in addition, idempotent. Then the following condition holds for all a,b ∈ R

+:

min{a,b} ≤Φ(a,b)≤ a+ b≤ 2max{a,b}.
Proof. Take a,b ∈ R

+. By Corollary 6 we have that

Φ(a,b)≤Φ(a,a)+Φ(b,b).
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SinceΦ is idempotent we deduce thatΦ(a,a) = a andΦ(b,b) = b. So we have that

Φ(a,b)≤ a+ b.

Moreover, the fact that Φ is monotone provides that Φ(min{a,b},min{a,b}) ≤
Φ(a,b). The idempotency of Φ gives that Φ(min{a,b},min{a,b}) = min{a,b}.
Hence we conclude that

min{a,b} ≤Φ(a,b)≤ a+ b≤ 2max{a,b}.

#$
4 Conclusion

Motivated, one the one hand, by the Borsík and Doboš work on the context of metric
aggregation ([1]) and, on the other hand, by the fact that a wide number of distances
that are useful in formal methods used in Artificial Intelligence and Computer Sci-
ence are quasi-metrics that can be retrieved by means of appropriate aggregation
functions, Mayor and Valero proposed and solved the problem of how to merge two
quasi metrics in order to obtain a new single one ([14]). Inspired by the quasi-metric
aggregation problem, in this paper we have masterminded formally the problem of
how to symmetrize a quasi-metric. A solution to such a problem has been yielded
in such a way that a general method to this end has been introduced from an aggre-
gation perspective.

Acknowledgements. The authors acknowledge the support of the Spanish Ministry of Sci-
ence and Innovation, grant MTM2009-10962.
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Aggregation Operators and Quadric
Hypersurfaces

J. Recasens

Abstract. Aggregation operators that are quadric hypersurfaces are studied. The in-
terest lays in the fact that the most popular aggregation operators are indeed quadric
hypersurfaces.

Keywords: Aggregation Operator, Idempotent, Symmetric, Quadric Hypersurface.

1 Introduction

If some laymen were asked to aggregate two or more numerical values, they would
probably suggest the use of the arithmetic mean. More sophisticated people would
suggest the geometric, quadratic or harmonic mean while experts would also pro-
pose the use of the maximum t-conorm, the minimum t-norm, Łuukasiewicz and
product t-norms and t-conorms or OWA operators. These are indeed the most popu-
lar aggregation operators and they are (part of) ruled quadratic hyper surfaces. Apart
form the Łuukasiewicz and product t-norms and t-conorms, they are idempotent as
well.

This paper studies other ruled quadric surfaces that correspond to aggregation
operators in two variables. In this way new families of aggregation operators, some
of them combinations of the previous ones, are obtained. The results are then gen-
eralized to aggregation operators in several variables that are (part of) quadric hy-
persurfaces.

Let us recall the definition of aggregation operator.

Definition 1. [2] An aggregation operator is a map h :
⋃

n∈N [0,1]
n → [0,1]

satisfying
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1. h(0, ...,0) = 0 and h(1, ...,1) = 1
2. h(x) = x ∀x ∈ [0,1]
3. h(x1, ...,xn)≤ h(y1, ...,yn) if x1 ≤ y1, ...,xn ≤ yn (monotonicity).

h is idempotent if and only if h(
n times︷ ︸︸ ︷
x, ...,x) = x for all x ∈ [0,1] and for all n ∈ N.

h is symmetric if and only if h(x1, ...,xn) = h(xπ(1), ...,xπ(n)) for any permutation
π of {1,2, ...,n}.

Given n ∈ N, the restriction of an aggregation operator h to [0,1]n will be called
an aggregation operator in n variables.

2 Ruled Quadric Surfaces

In this section the idempotent ans symmetric aggregation operators in two variables
that are quadric surfaces will be studied.

Definition 2. A quadric surface is a surface defined in implicit form by a second
degree polynomial

ax2 + by2 + cz2 + dxy+ exz+ f yz+ gx+ hy+ iz+ j= 0. (1)

In order to find the ruled quadric surfaces which are aggregation operators, we will
consider separately the cases c �= 0 and c = 0.

2.1 Case c = 0

If c = 0, then isolating z from (1) we obtain

z =−ax2 + by2 + dxy+ gx+ hy+ j
ex+ f y+ i

. (2)

Replacing e by −e, f by − f and i by −i, (2) is

z =
ax2 + by2 + dxy+ gx+ hy+ j

ex+ f y+ i
.

If we want the last map to be symmetric, we must have b = a, g = h and e = f ,
obtaining

z =
ax2 + ay2 + dxy+ gx+ gy+ j

ex+ ey+ i
.

z(0,0) must be 0. From this we have j = 0.
If z is idempotent, writing explicitly z(x,x) = x we obtain

z(x,x) =
2ax2 + dx2 + 2gx

2ex+ i
= x
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or
(2a− 2e+ d)x2 = (i− 2g)x.

This equation is satisfied for all x ∈ [0,1] if and only if

d = 2e− 2a.

and
i = 2g.

The formula of the quadric surface becomes then

z =
ax2 + ay2+(2e− 2a)xy+ gx+ gy

ex+ ey+ 2g
. (3)

Now we can consider two cases: e �= 0 and e = 0.

2.1.1 Case c = 0 and e �= 0

In this case we can divide the numerator and the denominator of (3) by e. Renaming
a
e by a, and g

e by g, we get

z =
a(x− y)2 + 2xy+ gx+ gy

x+ y+ 2g
.

The denominator must be different from 0 for all x,y ∈ (0,1). This means

g≥ 0 or g≤−1.

For x = 0 and y = 1, we obtain

z(0,1) =
a+ g
1+ 2g

This value must be between 0 and 1. Imposing that it must be greater or equal than
0, we obtain the following conditions for a and g.

g≥−1
2

and a≥−g

or

g≤−1
2

and a≤−g

Imposing that it must be smaller or equal than 1, we obtain the following conditions
for a and g.

g≥−1
2

and a≤ g+ 1

or

g≤−1
2

and a≥ g+ 1
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The partial derivatives ∂ z
∂x (1,0) and ∂ z

∂x (0,1) must be greater or equal than 0.

∂ z
∂x

(1,0) =
(2a+ g)(1+ 2g)−a−g

(1+ 2g)2 ≥ 0

is satisfied if and only if

g≥−1
4

and a≥ −2g2

1+ 4g
or

g≤−1
4

and a≤ −2g2

1+ 4g
.

∂ z
∂x

(0,1) =
(−2a+ g+ 2)(1+2g)−a−g

(1+ 2g)2 ≥ 0

is satisfied if and only if

g≥−3
4

and a≤ 2+ 2g2+ 4g
3+ 4g

or

g≤−3
4

and a≥ 2+ 2g2+ 4g
3+ 4g

.

Summarizing, the conditions on g and a are

g≥ 0 and
−2g2

1+ 4g
≤ a≤ 2+ 2g2+ 4g

3+ 4g

or

g≤−1 and
2+ 2g2+ 4g

3+ 4g
≤ a≤ −2g2

1+ 4g
.

2.1.2 Case c = 0 and e = 0

In this case, putting a
2g = b,

z = b(x− y)2+
x+ y

2
.

z(1,0) is then

b+
1
2
.

Imposing again that this value must be between 0 and 1, we get that

−1
2
≤ b≤ 1

2
.

Imposing that the partial derivative ∂ z
∂x (1,0) must be greater or equal than 0, we get
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b≥−1
4
.

Imposing that the partial derivative ∂ z
∂x (0,1) must be greater or equal than 0, we get

b≤ 1
4
.

Summarizing,

−1
4
≤ b≤ 1

4
.

2.2 Case c �= 0

If c �= 0, we can divide (1) by c. Renaming a
c by −a, b

c by −b, etc, we obtain

z =
1
2
((ex+ f y+ i±

√
(ex+ f y+ i)2−4ax2−4by2−4gx−4dxy−4hy−4 j).

If we impose symmetry we get

z =
1
2
(ex+ ey+ i± (4)

√
(e(x+ y)+ i)2− 4ax2− 4ay2− 4gx− 4dxy− 4gy−4 j).

We can distinguish the cases where the square root is added or subtracted.

2.2.1 Adding the Square Root

In this case, (4) becomes

z =
1
2
(ex+ ey+ i+√

(e(x+ y)+ i)2− 4ax2− 4ay2− 4gx− 4dxy− 4gy−4 j).

Imposing z(0,0) = 0, we get

i+
√

i2− 4 j = 0

and therefore i≤ 0 and j = 0.
From z(1,1) = 1, we get

2 = 2e+ i+
√
(2e+ i)2− 8a− 8g− 4d

and form this, 1− 2e− i+ 2a+ 2g+d = 0.
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From z( 1
2 ,

1
2 ) =

1
2 , we get

1 = e+ i+
√
(e+ i)2− 2a− 4g− 2d

and form this, 1− 2e− 2i+ 2a+4g+d = 0.
So i = 2g (and g≤ 0) and d =−1+ 2e− 2a.
Now imposing z(k,k) = k we get

k =
1
2

(
2ek+ i+

√
(2ke+ i)2− 8ak2− 8gk− 4dk2

)
.

which is equivalent to

k =
1
2

(
2ek+ i+

√
(2ke+ i)2− 8ek2− 4ik+ 4k2

)
=

1
2

(
2ek+ i+

√
(2ke+ i− 2k)2

)
.

Then
2ke+ i≤ 2k for all k ∈ [0,1].

This is satisfied for all k ∈ [0,1] if and only if

2e+ i≤ 2. (5)

Putting b = e
2 , the equation of the quadric surface is then

z = b(x+ y)+ g+√
(b(x+ y)+ g)2− a(x− y)2− g(x+ y)+ (1− 4b)xy.

and (5) becomes
2b+ g≤ 1.

z(1,0) = b+ g+
√

b+ g)2− a− g

which implies
g+ a≤ (b+ g)2.

0≤ z(1,0)≤ 1 gives
b+ g≤ 1,g+ 2b− a≤ 1

and if b+ g≤ 0, then
a+ g≤ 0.

Now imposing that ∂ z
∂x (1,0)≥ 0 we obtain
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b+
1
2

2b2 + 2bg− 2a− g√
(b+ g)2− a− g

≥ 0

and ∂ z
∂x (0,1)≥ 0 gives

b+
1
2

2b2 + 2bg+ 2a− g+1−4b√
(b+ g)2− a− g

≥ 0.

2.2.2 Subtracting the Square Root

Similar calculations as in the previous subsection leads to

z = b(x+ y)+ g−√
(b(x+ y)+ g)2− a(x− y)2− g(x+ y)+ (1− 4b)xy

with
g≥max(0,1− 2b,−b)
a≤min

(
(b+ g)2− g,1+ g+ 2b

)
b− 1

2
2b2+2bg−2a−g√

(b+g)2−a−g
≥ 0

b− 1
2

2b2+2bg+2a−g+1−4b√
(b+g)2−a−g

≥ 0

If b+ g≥ 1, then g+ 2b− a≥ 1.

3 Summarizing the Results for Two Variables

Table 1 summarizes the results obtained in the previous section.

• If in the first equation a = g = 0, we recover the harmonic mean.
• If in the second equation b = 0, we recover the arithmetic mean.
• If in the third equation b = g = a = 0 we recover the geometric mean.
• If in the third equation a =− 1

2 and b = g = 0, we recover the quadratic mean.
• If in the third equation a = g = 0 and b = 1

2 , we recover the Maximum aggrega-
tion operator.

• If in the fourth equation a = g = 0 and b = 1
2 , we recover the Minimum aggrega-

tion operator.
• If 1

2 ≤ p≤ 1 and in the third equation a = g = 0 and b = p
2 , we recover the OWA

operator with weights p and 1− p.
• If 0 ≤ p ≤ 1

2 and in the fourth equation a = g = 0 and b = p
2 , we recover the

OWA operator with weights p and 1− p.

Table 2 shows the ruled quadric surfaces corresponding to Table 1.
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Table 1 Ruled quadric surfaces that are idempotent and symmetric aggregation operators

1 z = a(x−y)2+2xy+gx+gy
x+y+2g

g≥ 0 and −2g2

1+4g ≤ a≤ 2+2g2+4g
3+4g

or

g≤−1 and 2+2g2+4g
3+4g ≤ a≤ −2g2

1+4g

2 z = b(x−y)2 + x+y
2

− 1
4 ≤ b≤ 1

4

3 z = b(x+y)+g+√
(b(x+y)+g)2−a(x−y)2−g(x+y)+(1−4b)xy

g≤min(0,1−2b,1−b)
−1+g+2b ≤ a≤ (b+g)2−g

b+ 1
2

2b2+2bg−2a−g√
(b+g)2−a−g

≥ 0

b+ 1
2

2b2+2bg+2a−g+1−4b√
(b+g)2−a−g

≥ 0

If b+g ≤ 0, then a+g ≤ 0.

4 z = b(x+y)+g−√
(b(x+y)+g)2−a(x−y)2−g(x+y)+(1−4b)xy

g≥max(0,1−2b,−b)
a≤min

(
(b+g)2−g,1+g+2b

)
b− 1

2
2b2+2bg−2a−g√

(b+g)2−a−g
≥ 0

b− 1
2

2b2+2bg+2a−g+1−4b√
(b+g)2−a−g

≥ 0

If b+g ≥ 1, then g+2b−a ≥ 1.

4 Aggregation Operators in More Than Two Variables

Aggregation operators in n variables corresponding to quadric hypersurfaces can
be studied in a similar way. In this case, the equation of the corresponding quadric
hypersurface is

n

∑
i=0

aix
2
i +

n

∑
i, j=0,i> j

bi jxix j +
n

∑
i=0

cixi + d = 0

and we want to isolate a variable (say x0, x0 = f (x1,x2, ...,xn)).
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Table 2 Ruled quadric surfaces corresponding to Table 1

1 z = a(x−y)2+2xy+gx+gy
x+y+2g

If a �= 1
2 , then it is a cone

If a = 1
2 , then it is a couple of non-parallel planes

2 z = b(x−y)2 + x+y
2

If b �= 1
4 , then it is a hyperbolic paraboloid

If b = 1
4 , then it is a parabolic cylinder

3 and 4 z = b(x+y)+g±√
(b(x+y)+g)2−a(x−y)2−g(x+y)+(1−4b)xy

If b = 1
2 , a = 1

4 , g �= 0, then it is a couple of non-
parallel planes
If b = 1

2 , a = 1
4 , g = 0, then it is a double plane

If b = 1
2 , a > 1

4 , g �= 0, then it is an elliptical
cylinder
If b = 1

2 , a < 1
4 , g = 0, then it is a couple of non-

parallel planes
If b = 1

2 , a < 1
4 , g �= 0, then it is a hyperbolic

cylinder
If b �= 1

2 , a = b− 1
4 , then it is a couple of non-

parallel planes
If b < 1

4 , a �= b− 1
4 , then it is a cone

If b > 3
4 , a �= b− 1

4 , then it is a cone

1. If a0 = 0, then

x0 =−
∑n

i=1 aix2
i +∑

n
i, j=1,i> j bi jxix j +∑n

i=1 cixi + d

∑n
i=1 b0ixi + c0

Imposing symmetry and f (0,0, ...,0) = 0 we get

x0 =
a∑n

i=1 x2
i + b∑n

i, j=1,i> j xix j + c∑n
i=1 xi

d∑n
i=1 xi + e

Idempotency leads to

b =
2(d− a)

n− 1
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and
e = nc.

The quadric hypersurface is then

x0 =
a∑n

i=1 x2
i +

2(d−a)
n−1 ∑n

i, j=1,i> j xix j + c∑n
i=1 xi

d∑n
i=1 xi + nc

If d �= 0, then the equation has the form

x0 =
a∑n

i=1 x2
i +

2(1−a)
n−1 ∑n

i, j=1,i> j xix j + c∑n
i=1 xi

∑n
i=1 xi + nc

If d = 0, then

x0 = a
n

∑
i=1

x2
i +

2a
1− n

n

∑
i, j=1,i> j

xix j +
∑n

i=1 xi

n
.

2. If a0 �= 0, imposing symmetry and 0 = f (0,0, ...,0), we get

x0 =
1
2
(−b

n

∑
i=1

xi− c±

√
(b

n

∑
i=1

xi + c)2− 4(
n

∑
i=1

x2
i + d

n

∑
i, j=1,i> j

xix j + c
n

∑
i=1

xi)).

From idempotency we obtain
c =−en

and

1+ bn+ b2n2 =−n−
(

n
2

)
d.

Constraints for the parameters can be obtained in a similar way as for the two vari-
ables case.

5 Concluding Remarks

The quadric hypersurfaces that can be considered as idempotent and symmetric ag-
gregation operators have been studied.

In forthcoming works, other aggregation operators such as t-norms, t-conorms or
uninorms that are quadric hypersurfaces will be studied (see [2]),
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An Analysis of Bilevel Linear Programming
Solving Parameters Based on Factoraggregation
Approach

Pavels Orlovs, Olga Montvida, and Svetlana Asmuss

Abstract. We introduce the notion of factoraggregation, which is a special construc-
tion of general aggregation operators, and apply it for an analysis of optimal solu-
tion parameters for bilevel linear programming problems. The aggregation observes
lower level objective functions considering the classes of equivalence generated by
an objective function on the upper level. The proposed method is illustrated with
numerical and graphical examples.

1 Introduction

Aggregation of several input values into a single output value is an important tool of
mathematics, physics, as well as of engineering, economical, social and other sci-
ences. As the widely used examples of aggregation operators we can mention arith-
metic and geometric means, minimum and maximum operators, t-norms and others
(see e.g. [1], [2], [4]). In 2003 A. Takaci [9] introduced the notion of a general aggre-
gation operator acting on fuzzy structures. In this paper we define a general aggre-
gation operator, named a factoraggregation operator, the idea of which is based on
factorization by some equivalence relation. We illustrate how this approach could be
applied to analyse bilevel linear programming problems (BLPP). BLPP is a special
class of multi-objective linear programming problems (MOLP), where some hierar-
chy between objective functions is involved. We consider a case, when there is only
one objective on the upper level and multiple objectives on the lower level. In 1978
H.J. Zimmermann [10] described a fuzzy algorithm, based on membership functions
of objectives, for solving multi-objective linear programming problems without any
hierarchy between objectives. For bilevel linear programming problems M. Sakawa
and I. Nishizaki [7], [8] proposed an interactive method of solution, involving some
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parameters for upper and lower level objectives. We describe how a factoraggrega-
tion operator specially designed for BLPP allows to analyse the optimal solution
depending on parameters of the method, and as a result to make a decision on the
choice of these parameters. According to this approach the set of variables is factor-
ized by the equivalence relation generated by the membership function of the upper
level objective, and the lower level objectives are aggregated taking into account this
factorization. This method is illustrated with one particular problem similar to the
mixed production planning problem described by J.C. Figueroa-Garcia et al. in [1].

2 BLPP Fuzzy Solution Approach

In this paper we observe bilevel linear programming problem with one objective on
the upper level PU with higher priority in optimization than multiple objectives on
the lower level PL = (PL

1 ,P
L
2 , ...,P

L
n ):

PU : y0(x) = c01x1 + c02x2 + ...+ c0kxk −→min

PL
1 : y1(x) = c11x1 + c12x2 + ...+ c1kxk −→min

. . . (1)

PL
n : yn(x) = cn1x1 + cn2x2 + ...+ cnkxk −→min

D :

{
a j1x1 + a j2x2 + ...+ a jkxk ≤ b j, j = 1,m,

xl ≥ 0, l = 1,k,
(2)

where k,m,n ∈ N and D is a non-empty bounded set.
As all objectives rarely reach their optimal values in one point, a compromise so-

lution should be found. H.J. Zimmermann [10] proposed a fuzzy solution approach
by introducing membership functions of objectives. The membership function char-
acterises the degree of satisfaction for each objective, i.e. it shows how close is the
objective function to its optimal value. The construction of the membership function
of objective yi could be based on the following function:

zi(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, t < ymin
i ,

t− ymax
i

ymin
i − ymax

i

, ymin
i ≤ t ≤ ymax

i ,

0, t > ymax
i ,

(3)

where ymin
i and ymax

i are the individual minimum and the individual maximum of
objective yi respectively:

ymin
i = min

x∈D
yi(x), ymax

i = max
x∈D

yi(x), i = 0,n. (4)

We obtain membership functions of the objectives by denoting
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μi(x) = zi(yi(x)), i = 0,n. (5)

Here μ0,μ1, ...,μn : D→ [0,1] are fuzzy subsets of D:

μi ∈ [0,1]D, i = 0,n. (6)

A solution x∗ for MOLP (1) – (2) without any hierarchy could be found by solving
the following linear programming problem:

min(μ0(x),μ1(x), . . . ,μn(x))−→max
x∈D

(7)

or, in general,

A(μ0(x),μ1(x), . . . ,μn(x))−→max
x∈D

, (8)

where A is some aggregation operator. However, in case of objectives divided be-
tween levels of hierarchy, the present method does not reflect any priority of the
upper level objective over the lower level.

3 Factoraggregation

Considering the case when there is one objective function on the upper level and
multiple objectives on the lower level, a special aggregation has been constructed.
The aggregation observes objective functions on the lower level considering the
classes of equivalence generated by a function on the upper level:

Aμ0(μ1,μ2, ...,μn)(x) = max
μ0(x)=μ0(u)

A(μ1(u),μ2(u), ...,μn(u)), (9)

where
x,u ∈D, μ0,μ1, ...,μn ∈ [0,1]D.

Aggregation (9) is a specially designed construction of a general aggregation oper-
ator, based on an ordinary aggregation operator A. We start with the classical notion
of an aggregation operator (see e.g. [1], [2], [4]).

Definition 1. A mapping A :
⋃

n[0,1]
n → [0,1] is called an aggregation operator if

the following conditions hold:

(A1) A(0,0, . . . ,0) = 0;
(A2) A(1,1, . . . ,1) = 1;
(A3) ∀n ∈N ∀x1,x2, . . . ,xn,y1,y2, . . . ,yn ∈ [0,1]:

if x1 ≤ y1,x2 ≤ y2, . . . ,xn ≤ yn, then A(x1,x2, . . . ,xn)≤ A(y1,y2, . . . ,yn).

Conditions (A1) and (A2) are called boundary conditions of A, but (A3) means the
monotonicity of A.

The general aggregation operator Ã acting on [0,1]D, where [0,1]D is the set of
all fuzzy subsets of D, was introduced in [9]. We denote the order on [0,1]D by !,
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the least and the greatest elements of this order are denoted by 0̃ and 1̃, which are
indicators of ∅ and D respectively.

Definition 2. A mapping Ã :
⋃

n([0,1]
D)n → [0,1]D is called a general aggregation

operator if the following conditions hold:

(Ã1) Ã(0̃, 0̃, . . . , 0̃) = 0̃;
(Ã2) Ã(1̃, 1̃, . . . , 1̃) = 1̃;
(Ã3) ∀n ∈N ∀μ1,μ2, ...,μn,η1,η2, ...,ηn ∈ [0,1]D :

if μ1 ! η1,μ2 ! η2, . . . ,μn ! ηn, then Ã(μ1,μ2, . . . ,μn)! Ã(η1,η2, . . . ,ηn).

There exist several approaches to construct the general aggregation operator Ã,
based on an ordinary aggregation operator A. The most simplest one is the point-
wise extension of an aggregation operator A:

Ã(μ1,μ2, ...,μn)(x) = A(μ1(x)μ2(x), ...,μn(x)), (10)

which, for example, was already used in expression (8).
Another method of constructing the general aggregation operator Ã is the T - ex-

tension [9], the idea of which comes from the classical extension principle (see e.g.
[6]):

Ã(μ1,μ2...,μn)(x) = sup
x=A(x1,x2,...,xn)

T (μ1(x1),μ2(x2)...,μn(xn)), (11)

where A is a continuous aggregation operator and T is a t-norm.
We introduce a factoraggregation of fuzzy sets from [0,1]D by means of a given

fuzzy set μ0 ∈ [0,1]D using the following construction:

Ãμ0(μ1,μ2, . . . ,μn)(x) = sup
μ0(u)=μ0(x)

A(μ1(u),μ2(u), . . . ,μn(u)), (12)

where
μ1,μ2, ...,μn ∈ [0,1]D, x,u ∈ D.

In construction (11) for evaluation of general aggregation Ã(μ1,μ2...,μn) at a point
x we take the supremum of t-norm T of values μ1(x1),μ2(x2)...,μn(xn) on preim-
age A−1(x). In our construction (12) for evaluation Ãμ0(μ1,μ2, . . . ,μn)(x) we take
the supremum of aggregation A of values μ1(u),μ2(u), . . . ,μn(u) on the set of all
points u, which are equivalent to x with respect to μ0, i.e. we consider all elements
u ∈ D such that μ0(u) = μ0(x). In the scope of this paper we are interested in the
case, when A = min. It is clear that in (11) one can also take the minimum t-norm.
Even in the case, when A = min and T = min, approaches (11) and (12) are quiet
different. Let us note that, applying construction (12), instead of min operator one
could consider different mean operators or max operator as well.

The motivation of choosing the name factoraggregation for (12) is that μ0 gener-
ates the equivalence relation ∼μ0:

u∼μ0 v⇐⇒ μ0(u) = μ0(v), (13)
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which factorizes D into the classes Dα of equivalence:

Dα = {x ∈ D|μ0(x) = α}. (14)

Operator Ãμ0 aggregates fuzzy sets in accordance with these classes of equivalence.
It is easy to show that properties (Ã1)− (Ã3) hold for operator Ãμ0 , therefore we
can be sure that Ãμ0 is a general aggregation operator.

4 Factoraggregation Applied for Analysis of BLPP Solving
Parameters

By using membership functions μ0,μ1, ...,μn multi-objective linear programming
problem (8) can be reduced to the classical linear programming (LPP):

σ −→max
x,σ

(15)

{
μi(x)≥ σ , i = 0,n,

x ∈ D.
(16)

Let us denote by (x∗,σ∗) the solution of (15) – (16). In [3] is described how to verify
if x∗ is a Pareto optimal solution.

Definition 3. A vector x∗ ∈ D is said to be a Pareto optimal solution if and only if
there does not exist another vector x ∈ D such that yi(x)≤ yi(x∗) for all i = 0,n and
y j(x) �= y j(x∗) for at least one j.

The algorithm proposed by M. Sakawa and I. Nishizaki (see e.g. [7]) specifies op-
timal solution x∗∗ for BLPP (1) – (2) according to chosen values of parameters
δ ,ΔL,ΔU , where

μ0(x
∗∗)≥ δ , (17)

ΔL ≤ Δ =
min{μ1(x∗∗),μ2(x∗∗), ...,μn(x∗∗)}

μ0(x∗∗)
≤ ΔU . (18)

By this method we solve LPP

σ −→max
x,σ

(19)

⎧⎪⎨
⎪⎩
μ0 ≥ δ ,
μi(x)≥ σ , i = 1,n,

x ∈ D,

(20)

afterwards we check if Δ ∈ [ΔL,ΔU ] and specify parameters again if it is necessary.
Parameter δ describes the minimal satisfactory level for membership function μ0,

but Δ characterizes the overall balance between the upper and lower levels. Taking
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into account that all three parameters are dependent one from another, the problem
of the choice of parameters becomes important.

We specify the general construction of factoraggregation (12) by taking A =
min to apply it for analysis of parameters of BLPP solving algorithm. Fuzzy sets
μ1,μ2, . . . ,μn in this case are the membership functions of the lower level objec-
tives, but fuzzy set μ0 is the membership function of the upper level objective:

Ãμ0(μ1,μ2, ...,μn)(x) = max
μ0(x)=μ0(u)

min(μ1(u),μ2(u), ...,μn(u)). (21)

Denoting Ãμ0(μ1,μ2, ...,μn)(x) = μ(x) we rewrite μ as μ(x) = z(y0(x)). Now in-
troducing the notation t = y0(x) we consider two functions α = z0(t) and α = z(t).
The graphical analysis of these functions helps us to choose parameters ΔL,ΔU and
δ correctly.

Fig. 1 Factoraggregation based analysis of BLPP solving parameters

Fig. 1 shows, that if we put [ΔL,ΔU ] = [0.6,0.7], then the maximal possible satis-
factory level for membership function μ0 should be δ = 0.46. The similar graphical
analysis could be performed, when we choose the value of parameter δ first.

Let us consider the following example:

PU : y0(x) = x1− x2 −→min

PL
1 : y1(x) =−0.2x1− x2 −→min (22)

PL
2 : y2(x) = x2 −→min



An Analysis of BLPP Solving Parameters Based on Factoraggregation Approach 351

D :

⎧⎪⎨
⎪⎩

x2 ≤ 6,

5x1 + x2 ≤ 15,

xl ≥ 0, x2 ≥ 0.

(23)

The graphical analysis of the solving parameters could be performed by Fig. 2.

Fig. 2 Graphical analysis of solving parameters for BLPP (22) – (23)

The intersection of linesα = z0(t) andα = z(t) on Fig. 2 points out an optimal so-
lution x∗ of MOLP problem without any hierarchy between objectives: t∗ = y0(x∗).
In our case we are dealing with BLPP, when objective function y0 is minimized with
the higher priority than objectives y1 and y2. The compromised solution x∗ gives us
the degree of satisfaction of the upper level objective δ = 0.51. But the analysis of
Fig. 2 allows us to see, that a minor decrease for 0.0224 in the degree of minimiza-
tion on the lower level, which is characterized by the the result of factoraggregation
z(t), will give us the significant increase for 0.1686 in the degree of minimization δ
on the upper level. It means, that we would rather choose point t∗∗=−3.05 to obtain
the optimal solution x∗∗ for the BLPP (22) – (23), than point t∗ =−1.6, which gives
us a solution without priority for the upper level objective. The similar graphical
analysis could be performed, when we first choose the values of parameters ΔL and
ΔU , which characterize the degree of minimization on the lower level, and then we
can find out the possible values of the degree of minimization δ for the upper level
objective.
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5 Mixed Production Planning Problem

We consider the following modification of the mixed production planning problem
described in [1]. The goal of the mixed production planning problem is to determine
the most profitable manufacturing plan while minimizing ecologically dangerous
products and dependence on outsource companies:

PU : ∑
j∈NJ

∑
i∈NI

sp ji(x
r
ji + xo

ji + xs
ji)− (cpr

jix
r
ji + cpo

jix
o
ji + cps

jix
s
ji)−→max (24)

PL
1 : ∑

j∈NJ

∑
i∈NI

ec ji(x
r
ji + xo

ji+ xs
ji)−→min

PL
2 : ∑

j∈NJ

∑
i∈NI

w jix
s
ji −→min

∑
j∈NJ

rm jir(x
r
ji + xo

ji)≤ amir, i ∈ NI , r ∈ NR,

xr
ji,x

o
ji,x

s
ji ≥ 0, xs

ji ≤ as ji, j ∈ NJ, i ∈ NI ,

d(−)
ji ≤ xr

ji + xo
ji + xs

ji ≤ d(+)
ji , j ∈ NJ, i ∈ NI .

Index sets:
set NR = {1,2, ...,R} of all resources r ∈ NR,
set NJ = {1,2, ...,J} of all products j ∈ NJ ,
set NI = {1,2, ..., I} of all periods i ∈ NI .
Decision variables:
xr

ji – quantity of product j to be manufactured in regular time in the period i,
xo

ji – quantity of product j to be manufactured in overtime in the period i,
xs

ji – quantity of product j to be manufactured by outsourcing in the period i.
Parameters:
SP = (sp ji | j ∈NJ , i ∈ NI), where sp ji is a sell price of product j in the period i,
CPr = (cpr

ji | j ∈NJ, i ∈NI), where cpr
ji is a product j production cost in the period

i for regular time,
CPo = (cpo

ji | j ∈NJ , i ∈NI), where cpo
ji is a product j production cost in the period

i for overtime,
CPs = (cps

ji | j ∈NJ, i ∈NI), where cps
ji is a product j production cost in the period

i for outsourcing,
EC = (ec ji | j ∈ NJ , i ∈ NI), where ec ji is an evaluation of harm to ecology caused
by product j in the period i,
W = (wji | j ∈ NJ, i ∈ NI), where wji is a weight of outsource product j in the pe-
riod i,
RM = (rm jir | j ∈NJ, i∈NI ,r ∈NR), where rm jir is an amount of the r raw material
units used to manufacture product j in the period i,
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AM = (amir | r ∈ NR, i ∈ NI), where amir is an availability of the raw material type
r in the period i,
AS = (as ji | j ∈ NJ, i ∈ NI), where as ji is a number of available outsourced units of
product j in the period i,

D− = (d(−)
ji | j ∈ NJ, i ∈ NI), where d(−)

ji is a minimum demand of product j in the
period i,

D+ = (d(+)
ji | j ∈NJ , i ∈NI), where d(+)

ji is a maximum (potential) demand of prod-
uct j in the period i.

Maximization problem (24) is reduced to the minimization problem by taking
the negative profit function. We consider the case with no overtime production. The
numerical example uses the following values of parameters:
I = 1, J = 10, R = 5,
CPr = (225,165,160,105,205,175,160,225,53,74),
CPs = (260,200,185,130,240,190,210,245,105,120),
SP = (350,300,280,210,300,305,270,315,190,220,
AM = (9000000,4000000,4500000,3000000,5500000),
AS = (1237,1107,1519,2636,1979,1617,1442,1527,2266,2500),
D+ = (8775,7650,6075,7875,6300,7650,5000,6300,4725,8775),
D− = (3900,3400,2700,1500,3400,4000,1500,4000,1000,2600),
W = (0.07,0.15,0.07,0.05,0.05,0.08,0.05,0.05,0.18,0.25),
EC = (8,9,5,4,3,7,2,1,6,10).
The values of RM are given by Table 1.

Table 1 Values rm jr

�
��j

r
1 2 3 4 5

1 50.47 83.37 90.29 133.27 71.75
2 53.46 79.93 84.88 133.87 55.69
3 106.49 75.30 101.81 113.06 96.03
4 125.26 103.13 94.35 59.82 134.97
5 93.96 120.50 100.36 134.71 78.87
6 137.24 87.68 40.55 110.17 93.26
7 136.14 112.83 67.93 96.40 77.01
8 72.47 53.75 124.05 110.74 99.43
9 56.53 42.53 44.42 66.05 97.82
10 98.72 109.48 56.77 103.07 95.72

The graphical analysis of lines α = z0(t) and α = z(t) is given by Fig. 3. The
intersection of lines α = z0(t) and α = z(t) points out an optimal solution x∗ of
MOLP problem without any hierarchy between objectives: t∗ = y0(x∗). By setting
ΔL = 0.7 and ΔU = 0.8 we can observe that δ should lie in the interval [0.765,0.799],
otherwise there doesn’t exist a solution x∗∗ such that (17) – (18) fulfil. The graphical
analysis shows that as optimal solution of the mixed production planning problem
it is rational to take x∗∗ such that t∗∗ = y0(x∗∗).
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Fig. 3 Analysis of solving parameters for the mixed production planning problem
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Upper Bounding Overlaps by Groupings�

Nicolás Madrid, Edurne Barrenechea, Humberto Bustince, Javier Fernadez,
and Irina Perfilieva

Abstract. This paper focuses on determining conditions to ensure that certain over-
laps are less than or equal to certain groupings. We also show that the meaning of
such conditions is connected with the use of overlaps and groupings in image pro-
cessing. Hence we present some results that are connected with the mentioned goal
and formulated by using the notions of f -bound overlap and f -bound grouping.

1 Introduction

The notion of overlap operator was introduced originally in [3] with the aim of
determining the overlapping of two different classes of fuzzy sets. Actually, the
definition of such family of operators was motivated by the differentiation between
an object and the background in an image. Hence, overlaps seem to be a family of
aggregations potentially applicable to edge detection in image processing [8, 2, 5,
6, 9].

This paper presents a part of a more general study related to the substitution of
t-norms a t-conorms by overlaps and groupings in [1], where an image preprocess-
ing based on defining an interval-valued image from a grey-scale one was proposed.
Unfortunately no every pair composed by an overlap operator and by a grouping
operator can be considered for such intention. But in the definition of the interval
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valued image in [1], it is crucial that the t-norm considered is less than or equal to
the t-conorm considered. However, although this property always holds for all pairs
of t-norms and t-conorms, not each overlap is less than or equal to all grouping. In
this paper we present conditions to ensure that an overlap is upper bounded by a
certain grouping.

The structure of the paper is described as follows. In Section 2 we recall the
notions of overlap and grouping operator; moreover we recall the dual relationship
between overlaps and groupings. Subsequently, in Section 3 we define the notions of
f -bound overlap and f -bound grouping, which generalize somehow the existence of
a neutral element in t-norms and t-conorms respectively. Moreover, we present also
in such section some results guaranteeing that certain overlap is less than certain
grouping and the relationship between the f -bound condition and dual operators.
Finally, in Section 4 we describe conclusions and future work.

2 Preliminaries

Let us begin this section by recalling the definitions of overlap and grouping opera-
tors. For motivational aspects concerning with these definitions the reader is referred
to [3, 4].

Definition 1. [4] An overlap operator is a mapping GO : [0,1]2 → [0,1] such that:

(GO1) GO(x,y) = GO(y,x) for all x,y ∈ [0,1];
(GO2) GO(x,y) = 0 if and only if x = 0 or y = 0;
(GO3) GO(x,y) = 1 if and only if x = y = 1;
(GO4) GO is non-decreasing;
(GO5) GO is continuous.

Definition 2. [4] A grouping operator is a mapping GG : [0,1]2 → [0,1] such that:

(GG1) GG(x,y) = GG(y,x) for all x,y ∈ [0,1];
(GG2) GG(x,y) = 0 if and only if x = y = 0;
(GG3) GG(x,y) = 1 if and only if x = 1 or y = 1;
(GG4) GG is non-decreasing;
(GG5) GG is continuous.

Both notions are evidently related because conditions (GO1)-(GO4)-(GO5) and
(GG1)-(GG4)-(GG5) are identical and conditions (GO2)-(GO3) and (GG2)-(GG3)
are dual with respect to each other. Actually, there is a dual relationship between
overlaps and groupings which reminds the duality between t-norms and t-conorms.
We recall that a negation operator n is any decreasing operator from [0,1] to [0,1]
satisfying that n(0) = 1 and n(1) = 0. Moreover, a negation operator n is called
non-vanish if n(x) = 0 if and only if x = 1, and non-filling if n(x) = 1 if and only if
x = 0.

Definition 3. Let G be an overlap (resp. a grouping) and let n1 and n2 two non-filling
and non-vanish negation operators. Then, the operator
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G
n1,n2(x,y) = n1(G(n2(x),n2(y)))

is called the dual grouping (resp. overlap) of G with respect to n1 and n2.

The reader should note that the definition above needs a proof; i.e it is necessary
to prove that effectively the operator G

n1,n2 is a grouping (resp. an overlap). Such
result can be found in [7].

To the end of this section we remind the fact that we have a structure of com-
plete lattice on the set of operators of arity two defined on the unit interval [0,1]
(denoted by (W ,≤)) by considering the point-wise ordering; i.e. given two oper-
ators A,B : [0,1]2 → [0,1] we say that A ≤ B if and only if A(x,y) ≤ B(x,y) for
all x,y ∈ [0,1]. Moreover, it is not difficult to check that the set of overlaps (resp.
grouping) determines a sublattice of (W ,≤). However, such lattice structure on the
set of overlaps (resp. groupings) is not complete (see [3]). Therefore, in this paper
the operator supremum and infimum applied on an arbitrary set of overlaps (resp.
groupings) is always considered on (W ,≤).

3 f -bound Groupings and Overlaps

As we have described in Introduction, t-norms and t-conorms are used to establish
an interval of values in [1]. The crux of the matter in that approach is that a t-norm
is less than a t-conorm. Hence t-norms and t-conorms are used to determine lower
bounds and upper bounds of intervals, respectively. However, by considering an
arbitrary overlap GO and an arbitrary grouping GG, we can not ensure that GO≤GG,
as the following example shows.

Example 1. Consider the overlap given by GO(x,y) = min(
√

x,
√

y) and the group-
ing given by GG(x,y) = max(x2,y2). Then:

GO(0.5,0.25) = min(
√

0.5,
√

0.25)� max((0.5)2,(0.25)2) = GG(0.5,0.25)

So in this case GO � GG.

Therefore, as the aim of the research in course is to develop an approach similar to
the one presented in [1] but by using overlaps and groupings instead of t-norms and
t-conorms, a study on requirements to ensure that certain groupings are greater than
or equal to certain overlaps is necessary.

We begin by defining the notions of f -bound overlaps and f -bound groupings,
which generalize somehow a well known property of t-norms and t-conorms: namely,
the role of 1 and 0 as neutral elements respectively; i.e any t-norm T and t-conorm
S satisfy T (x,1) = S(x,0) = x.

Definition 4. Let f be a mapping from [0,1] to [0,1]. An overlap GO (resp. a group-
ing GG) is called f -bound if the equality GO(x,1) = f (x) (resp. GG(x,0) = f (x))
holds for all x ∈ [0,1]
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Some remarks about this definition are needed. Firstly, note that every overlap GO

is GO(x,1)-bound and all grouping GG is GG(x,0)-bound. Hence, the terminology
of f -bound overlaps and f -bound groupings is included just for the sake of clarity.
Secondly, it is easy to check that every t-norm (resp. t-conorm) is an x-bounded
overlap (resp. grouping). Actually, an overlap (resp. a grouping) G is x-bounded if
and only if 1 (resp. 0) is a neutral element of G. Finally, we will use sometimes the
following abuse of notation: we consider in the rest of the paper f -bound overlaps
without specifying explicitly that f is actually a mapping. Note that this consider-
ation should not entail misunderstandings. Actually, we do not specify neither that
such mappings f have to verify the following properties:

Proposition 1. Let G be either an f -bound overlap or an f -bound grouping. Then:

• f is continuous,
• f is non-decreasing,
• f is surjective,
• f (x) = 0 if and only if x = 0,
• f (x) = 1 if and only if x = 1.

Proof. Let us assume that G is an overlap (the proof by assuming that G is a group-
ing is similar). The continuity and non-decreasingness of f is a direct consequence
of the continuity and non-decreasingness of G. Moreover, as G(x,y) = 0 if and only
if x = 0 or y = 0, we have that f (x) = G(x,1) = 0 if and only if x = 0. Likewise, as
G(x,y) = 1 if and only if x = y = 1, we have that f (x) = G(1,x) = 1 if and only if
x = 1. Finally, as f is a continuous mapping from [0,1] to [0,1] and verifies f (0) = 0
and f (1) = 1, necessarily f has to be surjective. �
It is convenient to take into account that the set of mappings verifying the proper-
ties exposed in Proposition 1 has a structure of non-complete lattice. Actually, if we
denote by Ω the set of mappings verifying the properties exposed in Proposition 1,
one can prove that for all mapping f ∈ Ω , there exist two mappings f1, f2 ∈ Ω
such that f1 < f < f2. Thus, there is no maximal (minimal) element of Ω . On
the other hand, it is also interesting to note that for all f ∈ Ω the families of
f -bound overlaps (denoted hereafter by O f and f -bound groupings (denoted here-
after by G f ) are non-empty; just consider the overlap min( f (x), f (y)) and the group-
ing max( f (x), f (y)).

The name of “ f -bound" has been chosen because the mapping f determines an
upper bound in the case of overlaps and a lower bound in the case of groupings.

Proposition 2. Let GO and GG be an overlap and a grouping, respectively. Then:

• if GO ∈ O f , then GO(x,y) ≤min{ f (x), f (y)} for all x,y ∈ [0,1].
• if GG ∈ G f , then GG(x,y)≥max{ f (x), f (y)}) for all x,y ∈ [0,1].

Proof. Let G be an f -bound overlap. Then by monotonicity of G:

G(x,y)≤ G(x,1) = f (x)
G(x,y)≤ G(1,y) = f (y)

}
⇒ G(x,y)≤min{ f (x), f (y)}

for all x,y ∈ [0,1]. The case G is an f -bound grouping has a similar proof. �
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The use of the notion of f -bound overlaps is motivated by the following result,
which determines a sufficient condition to assert that an overlap is less than or equal
to a grouping.

Proposition 3. Let GO and GG be an overlap and a grouping respectively. If GO ∈
O f1 and GG ∈ G f2 with f1 ≤ f2, then GO(x,y)≤ GG(x,y) for all x,y ∈ [0,1].

Proof. By monotonicity of GO and GG we have the following chain of inequalities

GO(x,y)≤ GO(x,1) = f1(x)≤ f2(x) = GG(x,0)≤ GG(x,y)

for all x,y ∈ [0,1]. �

Note that as a direct consequence of the above proposition we have the following
result:

Corollary 1. Let GO be an overlap and let GG be a grouping. If GO and GG are
both f-bound then GO ≤ GG.

Note that Proposition 3 imposes a sufficient condition to guarantee that certain
grouping is greater than or equal to certain overlap, but not a necessary condition.
Actually, the following result states that for all f -bound overlap GO there exists a
family of infinite groupings {Gi}i∈I such that each Gi is fi-bound verifying that
f ≥ fi and GO ≤ Gi for all i ∈ I.

Proposition 4. Let GO be an overlap in O f (resp. let GG a grouping in G f ), then for
each mapping f ∈Ω there exists GG ∈ G f (resp. GO ∈O f ) such that GO ≤ GG.

Proof. Let GO be an f -bound overlap and let f ∈Ω . Let us show that the operator

GG(x,y) = max( f (x), f (y),GO(x,y))

is an f -bound grouping such that GO ≤GG. Effectively, the operator GG is a group-
ing since:

• GG is symmetric (straightforward)
• GG(x,y) = 0 if and only if f (x) = f (y) = GO(x,y) = 0, if and only if x = y = 0.
• GG(x,y) = 1 if and only if f (x) = 1 or f (y) = 1 or GO(x,y) = 1, which is equiv-

alent to x = 1 or y = 1.
• GG is not decreasing and continuous, since f ,GO and max are non-decreasing

and continuous operators.

Moreover, GG is an f -bound grouping since

GG(0,x) = max( f (0), f (x),GO(0,x)) = max(0, f (x),0) = f (x).

Finally, the inequality GO ≤ GG holds by definition of GG. �
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It is well known that among all t-norms, there is one which is the greatest one,
namely the minimum operator. Dually, it is also well known that the operator max-
imum is the least t-conorm. As we say previously in Introduction, that feature does
not hold when we consider the set of overlaps and the set of groupings (see [7]).
However, a similar result is obtained if we consider just the set of f -bound overlaps
and the set of f -bound groupings.

Proposition 5. Let f be a mapping belonging to Ω . Then

• the operator GO(x,y) = f (min(x,y)) is the greatest f -bound overlap and
• the operator GG(x,y) = f (max(x,y)) is the least f -bound grouping.

Proof. The proof of these two items are similar, so we give only the proof of the
first one. Note previously that effectively f (min(x,y)) defines an overlap thanks to
the condition imposed on f . Actually, f (min(x,y)) is an f -bound overlap, since
f (min(x,1)) = f (x) for all x ∈ [0,1]. So, to end the proof we only have to show that
GO(x,y)≤ f (min(x,y)) for all f -bound overlap GO.

Let GO be an f -bound overlap. Consider x,y ∈ [0,1] and let us assume without
lost of generality that x≤ y, then:

GO(x,y)≤ GO(x,1) = f (x) = f (min(x,y))

Therefore, GO(x,y)≤ f (min(x,y)) for all x,y ∈ [0,1]. �

The following result shows that neither the infimum of O f is an overlap nor the
supremum of G f is a grouping for all f ∈Ω .

Proposition 6. Let f be a mapping belonging to Ω . Then the infimum of O f is:

O∧
f (x,y) =

⎧⎨
⎩

f (x) if y = 1
f (y) if x = 1
0 Otherwise

and the supremum of G f is:

G ∨f (x,y) =

⎧⎨
⎩

f (x) if y = 0
f (y) if x = 0
1 Otherwise

Proof. Let us begin by proving that O∧
f is the infimum of the subset {Gk

O} of O f

defined as follows:

Gk
O(x,y) = max( f (xk) · f (y), f (x) · f (yk))

for each k ∈ N	 {0}. Let us show that each Gk
O(x,y) is really an f -bound overlap

for all k ∈N	{0}; it is not difficult to prove the symmetry, non-decreasingness and
continuity. Now, Gk

O(x,y) = 0 if and only if f (xk) · f (y) = 0 and f (x) · f (yk) = 0, if
and only if (by properties of f ) x = 0 or y = 0. Moreover, Gk

O(x,y) = 1 if and only if
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f (xk) · f (y) = 1 or f (x) · f (yk) = 1, and both cases, by using the properties of f , are
equivalent to x = 1 and y = 1. Finally, by using that f is non-decreasing, f (1) = 1
and that xk ≤ x for all x ∈ [0,1] and all k ∈N	 {0}, we obtain

Gk
O(x,1) = max( f (xk) · f (1), f (x) · f (1k)) = max( f (xk), f (x)) = f (x)

So, effectively, each Gk
O(x,y) is really an f -bound overlap for all k ∈N	 {0}.

Now let us show that infk∈N(Gk
O) coincides with O∧

f . Let us distinguish two cases.
Firstly, if y = 1 (or x = 1) we have that:

Gk
O(x,1) = f (x) for all k ∈ N	 {0}

So, infk∈N(Gk
O)(x,1) = infk∈N(Gk

O(x,1)) = infk∈N( f (x)) = f (x) = O∧
f (x,1).

Secondly let us assume that x,y �= 1. So note that by properties of f , we have
that f (x) �= 1 �= f (y) and then infk∈N( f (xk) · f (y)) = infk∈N( f (yk) · f (x)) = 0 for all
x,y ∈ [0,1). So we obtain that:

inf
k∈N

(Gk
O)(x,y) = inf

k∈N
(max( f (xk) · f (y), f (x) · f (yk))) = 0 = O∧

f (x,y)

for all x,y ∈ [0,1).
Finally, to end the proof, note that obviously O∧

f is a lower bound of O f . Hence,
since O∧

f is in fact an infimum of a subset of O f , then O∧
f has to be necessarily the

infimum of O f .
To prove that G ∨f is the supremum of G f we proceed similarly than above but

considering the subset of groupings defined by Gk
G(x,y) = 1−Gk

O(1− x,1− y) for
all k ∈ N	 {0}. �

Corollary 2. Let f be a mapping belonging to Ω . Then the set O f (resp. G f ) does
not have the least element (resp. greatest element).

Proof. Simply note that the infimum of the set of f -bound overlaps (resp. group-
ings) given by Proposition 6 is not an overlap (resp. a grouping) since is not contin-
uous. �

The following result shows that we can consider infinite strictly descending (resp.
ascending) chains of f -bounds overlaps (resp. f -bound groupings).

Proposition 7. If G ∈ O f (resp. G ∈ G f ), then there exists G ∈ O f (resp. G ∈ G f )
such that G < G (resp. G < G)

Proof. Just note that in the opposite case G would be minimal. Then, since O f

is a sublattice of (W ,≤), G has to be necessarily the least element O f . But that
contradicts Proposition 6. �

The result below shows that, independently of the f1, f2 ∈ Ω considered, we can
find always pairs of overlaps GO ∈O f1 and groupings GG ∈ G f2 such that GO ≤GG.
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Corollary 3

• Let GO be an overlap in O f , then for all f ≤ f there exists an infinite set G ⊂ G f

such that GO ≤ GG for all GG ∈ G .
• Respectively, let GG be an grouping in G f , then for all f ≥ f there exists an

infinite set O ⊂ O f such that GO ≤ GG for all GO ∈ O .

Proof. It is a consequence of Proposition 4 and Proposition 7. �

The following result deals with arbitrary overlaps and groupings instead of only
with f -bound ones.

Proposition 8. Let G be an overlap (resp. grouping), then there exist two overlaps
(resp. groupings) G1 and G2 such that G1 < G < G2

Proof. Let us assume that G is an overlap (the proof by assuming that G is a group-
ing is similar). We begin by recalling that G is in fact a G(x,1)-boundary over-
lap. So the existence of G1 is guaranteed by Proposition 7. The existence of G2

is proven as follows. It is straightforward to check that Ω with the ordering in-
duced by the natural ordering of [0,1] has not a maximum element. So there ex-
ists a mapping f in Ω and such that G(x,1) < f (x). Then, the overlap defined by
G2(x,y) =min( f (x), f (y)) is the searched one, since by using Proposition 5 we have
that:

G(x,y)≤min(G(x,1),G(y,1)) < min( f (x), f (y)) = G2(x,y)

for all x,y ∈ [0,1]. �

As a consequence of Proposition 8 we obtain an already known result about overlaps
and groupings (see [3]).

Corollary 4. The set of overlaps (resp. groupings) does not have neither maximal
nor minimal elements.

Another interesting property of the set of f -bound overlaps and the set of f -bound
groupings is that they are dense2.

Proposition 9. Let G1 and G2 be two overlaps in O f (resp. two groupings in G f )
such that G1 <G2. Then there exists a G∈O f (resp. G∈G f ) such that G1 <G<G2.

Proof. Just consider the f -bound overlap (resp. f -bound grouping) defined by
G(x,y) = G1(x,y)+G2(x,y)

2 . �

At the end of this section we consider the notions of duality and f -boundary. First
of all, it is convenient to mention that the dual construction is not enough to ensure
that an overlap is less than or equal to one of its respective dual groupings; as the
example below shows.

2 Dense as poset
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Example 2. Let us define a dual grouping GG from an overlap GO such that the
inequality GO ≤ GG does not hold. Consider the overlap GO(x,y) = (x · y)1/3 and
its dual grouping G1−x

GO
(x,y) = 1− ((1− x) · (1− y))1/3. Then, GO(0.5,0.5) = (0.5 ·

0.5)1/3 ≈ 0.63 � 0.37≈ 1− (0.5 ·0.5)1/3 = GG(0.5,0.5).

The following definition and the subsequent result establish a restriction on the nega-
tions chosen in the dual construction in order to ensure that the dual operator main-
tains the f -bound condition.

Definition 5. Let G be an overlap (resp. grouping), let f be a bijective mapping
belonging to Ω , and let n be a bijective, non-filling and non-vanish negation. Then,
the operator defined by

G
n, f

(x,y) = f ◦ n(G((n ◦ f )−1(x),(n ◦ f )−1(y)))

is called the f -dual grouping (resp. f -dual overlap) of G with respect to n.

Note that the f -dual grouping of an overlap G with respect to n is actually a dual
grouping of G (according to Definition 3), since both f ◦ n and (n ◦ f )−1 are
non-filling and non-vanish negation operators. So the f -dual construction simply
determines dual overlaps and dual groupings by establishing a restriction on the
negations chosen.

The definition above is motivated by the following result.

Proposition 10. Let G be an f -bound overlap (resp. grouping), then all f -dual
grouping (resp. overlap) of G is also f -bound.

Proof. The proof only shows the case of overlaps; the proof for groupings is similar.
If f is not bijective, the result holds trivially, since the set of f -dual groupings is
empty.

So let us assume that f is bijective and let us show that G
n, f

(x,0) = f (x) for all
bijective, non-filling and non-vanish negation n. Let n be a negation operator, then
by properties of f , (n ◦ f )−1(0) = 1. So:

G
n, f

(x,0) = f ◦ n(G((n ◦ f )−1(x),(n ◦ f )−1(0))) = f ◦ n(G((n ◦ f )−1(x),1))

for all x ∈ [0,1]. By using now that G(x,1) = f (x) we obtain finally:

G
n, f

(x,0) = f ◦ n ◦ f ((n ◦ f )−1(x)) = f ◦ n ◦ f ◦ f−1 ◦ n−1(x) = f (x)

for all x ∈ [0,1]. �

Just two remarks about underlying aspects concerning the result above and its proof.
The result is applicable to arbitrary f -bound overlaps and to arbitrary f -bound
groupings. However when the mapping f is not bijective the f -dual operator is
not defined. So the result provides useful information only for the case of f -bound
overlaps and f -bound groupings with f bijective. Moreover, the reader can check
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that the conditions imposed on the negation (i.e. the negation has to be non-filling
and non-vanish) are not used in the proof. These conditions are imposed to ensure
that f ◦n and (n◦ f )−1 are non-filling and non-vanish negation operators. Otherwise

we cannot ensure that G
n, f

is an overlap or a grouping. That feature has not been
included in the proof since, as we said above, the definition of f -dual construction
is a specific case of duality presented in Definition 3.

Finally, as a consequence of Proposition 10, we can ensure that an f -dual overlap
is less than all its f -dual groupings.

Corollary 5. Let GO be an f -bound overlap and let GO
n, f

be an f -dual grouping of

GO. Then the inequality GO ≤ GO
n, f

holds.

And reciprocally:

Corollary 6. Let GG be an f -bound grouping and let GG
n, f

be an f -dual overlap of

GG. Then the inequality GG
n, f ≤ GG holds.

Example 3. Let us reconsider the overlap given in Example 2; i.e GO(x,y) = (x ·
y)1/3. As GO(x,1) = x1/3, then GO is an x1/3-boundary overlap. So, the x1/3-dual
grouping of GO with respect to the standard negation n(x) = 1− x is:

GO
1−x,x1/3

(x,y) =
(
1− ((1− x)3 · (1− y)3)1/3)

)1/3
= (1− (1− x) · (1− y))1/3

Moreover, thanks to Corollary 5 we have that

GO(x,y) = (x · y)1/3 ≤ (1− (1− x) · (1− y))1/3 = GO
1−x,x1/3

(x,y)

for all x,y ∈ [0,1].

4 Conclusion and Future Work

In this paper we have presented results that guarantee that certain overlap operator is
less than or equal to certain grouping. Specifically, the notions of f -bound grouping
and f -bound overlap have been introduced to achieve the goal. We have shown
that given an f -bound overlap GO, all f -bound grouping with f ≤ f is greater than
or equal to GO. Additionally, we have proven that for the case f > f , although
there exists some f -bound grouping GG such that GO � GG, we can find always an
f -bound grouping greater than or equal to GO.

Moreover, some results concerning the structure of the set of f -bound groupings
( f -bound overlaps) have been presented. Finally we have related the construction of
dual overlaps and groupings to the notion of f -bound. Specifically, we have shown
that the dual construction is not enough to guarantee that an overlap is less than or
equal to one of its dual groupings; subsequently we have defined a new construction
of dual operators, included by the original definition of duality but which preserves,
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somehow, the property of being f -bound; and finally we shown that, as a conse-
quence of this feature, we can construct dual groupings GG from certain overlaps
GO verifying that GO ≤ GG and vice-versa.

The future work will be mainly related to the use of overlaps and groupings oper-
ations to image processing. In particular, one of our goals is to substitute efficiently
t-norms and t-conorms by overlaps and groupings in the approach described in [1].
In order to obtain a consistent extension of the approach, the overlap GO and the
grouping GG chosen have to verify the inequality GO ≤ GG. However, the presence
of idempotence seems to be necessary in order to achieve a valuable approach; or
at least that both operators coincide on the diagonal. Therefore, before to imple-
ment the algorithm allowing the use of groupings and overlaps, it is still necessary
to develop theoretical results concerning with the idempotence of overlaps GO and
groupings GG and conserving the ordering GO ≤ GG.
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A Preliminary Study of the Usage of Similarity
Measures to Detect Singular Points in
Fingerprint Images

Juan Cerrón, Mikel Galar, Carlos Lopez-Molina, Edurne Barrenechea,
and Humberto Bustince

Abstract. One of the most prominent features of a fingerprint is the presence of
singular points, which are locations of the fingertip at which unusual ridge patterns
take place. They allow the classification of fingerprint images into different sub-
classes, accelerating the posterior matching process, but they can also be used to
improve matching accuracy. In this work, we put forward a new method for singular
point detection based on similarity measures. These measures are used to compare
the orientations in a fingerprint orientation map to those in pre-established templates
representing the canonical form of different singular points. This method provides a
simple, yet effective, way to detect singular points in fingerprint images. Moreover,
it is more flexible than the commonly used Poincarè method and also significantly
simpler than other approaches, such as those based on complex filters. Preliminary
experiments on two datasets show promising results.

1 Introduction

Among biometric systems, fingerprint-based identification systems are the most ex-
tended ones. These systems analyze the pattern of ridges and valleys located in the
fingertips surface, and match it to the stored information of the corresponding indi-
vidual. The individuality of a fingerprint is determined by the local ridge features
and relationships [9]. One of the most used ridge features are the so-called minutiae,
which are geometric disturbances of the ridges. Their distribution in the fingertip is
frequently used to decide whether two fingerprints belongs to the same individual
or not [10, 7, 5]. However, the process of minutiae extraction and matching is not
trivial, and demands a certain computational effort. Considering the increasing num-
ber of the size of the biometric databases, it is necessary to reduce the individuals
a new fingerprint has to be compared with. Hence, indexing schemes appear as a
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good solution to avoid the comparison with a large portion of such databases. The
most usual indexing schemes are based on the classification of the fingerprints intro
five major classes [12], namely: left loop, right loop, whorl, arch and tented arch.
Each of these classes corresponds to a characteristic general pattern of the ridge
flow in the fingerprint. The classification of a candidate fingerprint into one of these
categories can be carried out by analyzing the presence of Singular Points (SPs),
which are the locations in the fingerprint at which very large orientation variance
occurs. Apart from being of major importance for classifying the fingerprint into
classes, SPs can also be employed in matching algorithms to both register a finger-
print, and to improve the accuracy of the matching by of hybrid methods [4]. As
further detailed in this work, the main SPs are cores and deltas.

Singular points are identified as uncommon local patters in the ridge flow. Con-
sequently, SP detection methods must rely on some kind of representation of such
flow, which we refer to as orientation map. A major concern in the detection of
singular resides in how the orientation map is obtained from the original fingerprint
image. The most commonly employed method to compute the orientation map of
a fingerprint is the gradient method [1], which uses the pixel gradients to compute
the local orientation in adjacent blocks of the image. It is well known that imper-
fections in the fingerprint such as noise, spots, cuts, scars, etc. can induce errors in
the local gradients, consequently producing wrong values in the orientation map,
which might hinder the correct detection of the SPs. Given an orientation map, the
most common method to detect singular points is the Poincarè method [12], which
evaluates the curve formed by the neighbors of each orientation block to label it as a
core, a delta or nothing. That is, it analyzes the variability of the orientations in adja-
cent blocks to discover unusual orientation patterns. Other methods in the literature
make use of complex filters [11] or zero-pole models [8] to detect SPs.

In this work, we aim to overcome the problems of Poincarè, which highly relies
on the orientation map, and to present a simpler and more intuitive way of comput-
ing SPs. We establish an orientation template for each kind of singular point, and
then seek for the areas in the orientation map having the highest similarity to the
templates. Then, we decide whether the similarity is enough as though label it as a
SP. This method offers more flexibility than the existing ones due to the wide vari-
ety of similarity measures available in the literature. In order to properly assess the
usefulness of the similarity-based singular points detection, we have carried out a
preliminary experimental study. In our study we evaluate the accuracy of the singu-
lar points extracted with our method in the well-known NIST DB4 database, as well
as in a dataset created with SFinGe software tool1 [6, 12], which allows us to create
synthetic fingerprints.

The rest of the paper is organized as follows: In Section 2 we recall several pre-
liminary concepts needed to develop the work. Our proposal for SP detection is
presented in Section 3. Section 4 shows the results obtained with this new method,
while Section 5 recalls the contents of the work and outlines some future work.

1 Synthetic Fingerprint Generator: http://biolab.csr.unibo.it/
research.asp?organize=Activities&select=&selObj=12

http://biolab.csr.unibo.it/research.asp?organize=Activities&select=&selObj=12
http://biolab.csr.unibo.it/research.asp?organize=Activities&select=&selObj=12
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2 Preliminaries

This section recalls the concepts needed to develop the rest of the work starting
with the basic concepts of Restricted Equivalence Function (REF) and Similarity
Measure (SM), as well as some fingerprint recognition concepts required for the
proposed method.

2.1 Restricted Equivalence Functions and Similarity Measures

Before explaining the similarity measures considered in our algorithm, we have to
define some concepts and operations such as negation, which models the concept of
opposite:

Definition 1. A mapping n : [0,1]→ [0,1] with n(0) = 1, n(1) = 0, strictly decreas-
ing, and continuous is called strict negation. Moreover, if n is involutive, i.e., if
n(n(x)) = x for all x ∈ [0,1], then n is called a strong negation.

In this paper, we use the concept of Restricted Equivalence Function (REF), which
relies on the concept of negation, to build the similarity measures. Such similarity
measures are used to compare the angles in the orientation map and those in the
singular point templates. Initially, REFs were introduced in [2, 3] to measure the
degree of equivalence (closeness) between two points.

Definition 2. [2, 3] A function r : [0,1]2 → [0,1] is called restricted equivalence
function associated to the strong negation n, if it satisfies the following conditions

(1) r(x,y) = r(y,x) for all x,y ∈ [0,1];
(2) r(x,y) = 1 if and only if x = y;
(3) r(x,y) = 0 if and only if x = 1 and y = 0 or x = 0 and y = 1;
(4) r(x,y) = r(n(x),n(y)) for all x,y ∈ [0,1];
(5) For all x,y,z ∈ [0,1], if x≤ y≤ z, then r(x,y)≥ r(x,z) and r(y,z)≥ r(x,z).

A REF can be constructed using a pair of automorphisms of the unit interval, as
proposed in [2]. We start recalling the concept of automorphism.

Definition 3. A continuous, strictly increasing function ϕ : [a,b]→ [a,b] such that
ϕ(a) = a and ϕ(b) = b is called automorphism of the interval [a,b]⊂ R.

Proposition 1. [2] Let ϕ1,ϕ2 be two automorphisms of the interval [0,1]. Then

r(x,y) = ϕ−1
1 (1−|ϕ2(x)−ϕ2(y)|)

is a restricted equivalence function associated with the strong negation n(x) =
ϕ−1

2 (1−ϕ2(x)).

Example 1. Let ϕ1(x) = x and ϕ2(x) =
√

x, then

r(x,y) = 1−|√x−√y| (1)

is a REF associated with n(x) = (1−√x)2.
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We now introduce an extension of the concept of closeness to compare tuples
(a = (a1, ...,aN) ∈ [0,1]N) instead of scalar values. This extension gives rise to the
Similarity Measures (SMs). In our work, the elements of a tuple will be the compo-
nents of an angle, i.e., its sine or cosine, respectively.

Definition 4. [2] A function s : [0,1]N× [0,1]N → [0,1] is called a similarity measure
with respect to the strong negation n if it satisfies the following properties:

(1) s(a,b) = s(b,a);
(2) s(a,n(a)) = 0 if and only if ai = 0 or ai = 1 for all i ∈ {1, . . . ,N}, where n(a) =

(n(a1), ...,n(aN));
(3) s(a,b) = 1 if and only if ai = bi for all i ∈ {1, . . . ,N};
(4) If ai ≤ bi ≤ ci, for all i ∈ {1, . . . ,N}, then s(a,b)≥ s(a,c) and s(c,b)≥ s(c,a);
(5) s(n(a),n(b)) = s(a,b).

Aggregation functions are useful in subsequent developments, since they provide
provide a rule to combine different input values into a single output value.

Definition 5. An aggregation function is a mapping M : [0,1]N → [0,1] such that:

(1)M(0,0, . . . ,0) = 0,
(2)M(1,1, . . . ,1) = 1, and
(3)M is nondecreasing.

Proposition 2. [2] Let M : [0,1]N → [0,1] be an aggregation function such that :
M(x1, . . . ,xN) = 0 if and only if x1 = . . . = xN = 0; and M(x1, . . . ,xN) = 1 if and
only if x1 = . . .= xN = 1. Let r : [0,1]2 → [0,1] be a restricted equivalence function
associated with the strong negation n. Under these condition s, given by

s : [0,1]N× [0,1]N → [0,1]

s(a,b) =
N
M
i=1

r(ai,bi)
(2)

is a similarity measure associated with the strong negation n.

Example 2. Let M be the arithmetic mean and let r(x,y) =
√

1−|x− y| be the RDF
associated to the strong negation n(x) = 1− x, then

s(a,b) =
1
N

N

∑
i=1

√
1−|ai− bi| (3)

is a similarity measure associated with n(x) = 1− x.

2.2 Extraction of the Orientation Map

An orientation map is the representation of the ridge flow of the fingerprint image
in terms of angles, usually in the range

(− π
2 ,
π
2

]
. The most commonly used method



Similarity Measures to Detect Singular Points 371

to obtain an orientation map is the gradient method [1], which we also consider in
this work. Each pixel gradient is estimated with Sobel masks [13] to calculate the
vertical (Gx) and horizontal (Gy) components. Note that gradients are computed for
each pixel and the result of a single pixel may not be reliable enough to compute the
orientation. That is why the gradients are averaged in W1×W1 blocks to obtain the
estimation of the orientations according to:

Gxx =
W1

∑
i=1

W1

∑
j=1

G2
x(i, j), Gyy =

W1

∑
i=1

W1

∑
j=1

G2
y(i, j) (4)

and

Gxy =
W1

∑
i=1

W1

∑
j=1

Gx(i, j)Gy(i, j) . (5)

Now, the averaged gradient direction Φ , with - 1
2π <Φ ≤ 1

2π , is given by:

Φ =
1
2
∠(Gxx−Gyy,2Gxy), (6)

where ∠(x,y) is defined as:

∠(x,y) =

⎧⎨
⎩

tan−1(x/y) if x≥ 0,
tan−1(y/x)+π if x < 0∧ y≥ 0,
tan−1(y/x)−π otherwise

(7)

and the final ridge and valley orientation θ , with - 1
2π < θ ≤ 1

2π is perpendicular to
Φ:

θ =

{
Φ+ 1

2π if Φ ≤ 0
Φ− 1

2π otherwise
(8)

After obtaining the first estimation of the orientation map, a smoothing phase is
commonly carried out to obtain a more robust orientation map. Such smoothing is
performed using a uniform window of size W2×W2. An example of the estimation
of an orientation map using this method can be seen in Fig. 1.

3 Singular Point Detection Algorithm

In this section, we present our new algorithm for SP detection. First, we show how
SPs manifest in an orientation image in order to clarify the construction of the tem-
plates and then, we explain our proposal based on SMs.

The algorithm is broken down into the following phases:

1. Establish the templates of the cores and deltas (2 for cores, 1 for deltas).
2. Obtain the orientation map of the fingerprint image.
3. Compute the similarity map, which represents how similar are the orientation

map and each template.
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Fig. 1 Schematic representation of the of the proposed method

4. Identify the local maxima in each similarity map.
5. Confirm or reject the existence of SPs in such maxima.

An schematic representation of the algorithm can be seen in Fig. 1. Hereafter, we
provide details of each one of the phases of the algorithm.

3.1 Definition of the Templates

This method uses two different templates of size W3×W3 to represent cores and
deltas. Initially, the templates are defined with orientations, like the orientation map.
However, both the templates and the orientation map are squared (every value θ
is transformed to 2 · θ ) to ease the process of detecting SPs because of its new
symmetry characteristic (see Figs. 2 and 3). The previous orientations, which were
in the range

(− π
2 ,
π
2

]
, are now directions in the range (−π ,π ]. This fact lead us to

consider two different templates to represent core singular points since convex core
and concave core have opposite directions (Fig. 3). Notice also that working with
directions (2θ ) instead of orientations (θ ) makes the information rotation invariant,
which is a desired characteristic. The three templates centered in the coordinate axis
are modeled as follows:

F1(x,y) = tan−1(x,−y) (9)

F2(x,y) = tan−1(−x,y) (10)

F3(x,y) = tan−1(−y,−x) (11)

where F1 and F2 represent the two possible core templates, and F3 represents the
delta one (Fig. 3).
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Fig. 2 Squared orientation map

3.2 Similarity Proposal

Intuitively, the similarity between the singular points areas of the squared orientation
map and the templates proposed can be appreciated. In these conditions the SM
becomes a valid tool to detect detect singular points. As indicated in Definition 4, a
SM compares two tuples by means of REFs and aggregation functions. The tuples
to be compared are: (a) each W3×W3 squared orientation map block, transformed
into a row ordered tuple b and (b) the templates Fk, k = 1,2,3, also transformed into
a row ordered tuple fk. However, as b and fk are formed by angles, we decompose
each one into two components, vertical (v) and horizontal (h), and compare these
components independently. The horizontal and vertical components of a tuple t of
N elements are computed as:

v(t) = (v(t1), ...,v(tN)) and h(t) = (h(t1), ...,h(tN)) (12)

where

v(ti) =
sin(ti)+ 1

2
and h(ti) =

cos(ti)+ 1
2

. (13)

Note that the original values of cos(ti) and sin(ti), for all i ∈ {1, . . . ,N}, are in the
range [−1,1] but v(ti) and h(ti) re-scale these values to [0,1], as it is the range used
for similarity measures.

The detailed explanation of the whole SP detection method follows. Note that the
tuples fk, with k ∈ {1, . . . ,k}, are the vectorial representations of the orientations in
the templates Fk, as in Eqs. (9)–(11).
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Fig. 3 Templates used to represent the prototypical singular points. From left to right: convex
core (F1), concave core (F2) and delta (F3).

1. Scroll the squared orientation map in W3×W3 blocks.
2. For each block at position (i, j), do the following:

a. Construct a tuple b with all the orientations in a W3×W3 neighbourhood.
b. Compute the similarity between the vertical components of b and those of

each of the templates. These similarities are given as matrices Ω v
k of as

many blocks as the orientation map, so that

Ω v
k (i, j) = s(v(fk),v(b)), (14)

where s is a similarity function.
c. Compute the similarity between the horizontal components of b and those

of each of the templates:

Ω h
k (i, j) = s(h(fk),h(b)). (15)

d. Aggregate, for each template, the vertical and horizontal similarities with
the geometric mean. We recall that any aggregation function could be used
instead of such mean:

Ωk(i, j) =
√
Ω v

k (i, j) ·Ω h
k (i, j). (16)

3. For each position (i, j) compute the total core similarity (ΩC) as the maxima of
Ω1 and Ω2:

ΩC(i, j) = max(Ω1(i, j),Ω2(i, j)). (17)

4. Find the local maxima in each similarity map (ΩC and Ω3). The two maxima
of each similarity map are taken as SPs if they exceed a given threshold, which
we refer to as T . In any case, a fingerprint must contain, at most, four SPs: two
cores and two deltas.

4 Experiments

We have done a preliminary study testing our method in two different datasets. The
first one is the commonly used NIST DB4, produced by the National Institute of
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Table 1 Settings used in the generation of the SFinGe dataset for the experimental test

Scanner parameters Acquisition area: 0.58” x 0.77” (14.6mm x 19.6mm);
Resolution: 500 dpi, Image size: 288 x 384;
Background type: Optical, Background noise: Default;
Crop borders: 0 x 0.

Generation parame-
ters

Seed: 1;

Impression per finger: 1. Class distribution: Natural;
Set all distributions as: Varying quality and perturba-
tions;
Generate pores: enabled, Save ISO templates: enabled.

Output settings Output file type: WSQ.

Table 2 Parameter setting for the SP detection

Setting NIST experiment SFinGe experiment
Gradient block size
(W1)

8 4

Smoothing size (W2) 8 4
Template size (W3) 5 5
SP threshold (T ) 0.8 0.8

(a) Arch fingerprint (b) Whorl fingerprint

(c) Left loop fingerprint (d) Right loop fingerprint

Fig. 4 Singular points detected by our method in NIST DB4 images
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(a) Arch fingerprints

(b) Whorl fingerprints

(c) Left loop fingerprints

(d) Right loop fingerprints

Fig. 5 Singular points detected by our method in SFinGe images
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Standards and Technology. The second dataset has been created with SFinGe, a
software tool [12, 6], which allows us to create realistic fingerprints from a certain
number of settings. We provide the detailed settings for the generation of the SFinGe
fingerprints in Tables1.

The parameters used in the experiments for the computation of the orientation
map have been selected as the standard values for fingerprint images in the spe-
cialized literature. The values of the parameters of our method (template size and
threshold for the SP acceptance) have been set from the expertise obtained in pre-
liminary experiments, as listed in Table 2. Apart from these parameters, a similarity
measure must be chosen to the orientation map and the templates. For this experi-
ment we have selected the one constructed from the REF based on ϕ1(x) = x and
ϕ2(x) = x, as in Proposition 2.

The results obtained for a series of fingerprint images from both datasets used
can be observed in Figs. 4 and 5. In these images, detected cores are point out
with crosses, whereas delta points are represented by square boxes. Note that the
expected behaviour depends on the type of fingerprint. For example, in the case of
arch, the desired behaviour is to detect no singular point (which is achieved in these
fingerprints). It is interesting to observe that our method is able to detect singular
points even in relatively noisy or healed areas, such as those in Fig. 4(d). Hence,
the proposed methodology seems to be promising to detect SPs in varying quality
fingerprints, what constitutes one of the major challenges in the area. Nevertheless,
these a preliminary results, which should be further backed up by more intensive
experimental studies.

5 Conclusions and Future Lines

In this contribution, we have proposed a method for singular point detection based
on the comparison of orientation maps using similarity measures. The key advan-
tages of our method with respect to the existing ones are the simplicity and flexibil-
ity. A preliminary experiment has shown promising accuracy in different conditions.
Despite not having carried out experiments in significantly large datasets, we are
confident in the potential of our method, which needs to be validated in exhaustive
experimental studies. As future work, we aim to test different similarity measures,
apart from comparing our algorithm with other proposals in the literature such as
the Poincarè method, or those methods based complex filters and zero-pole models.
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F-transform in View of Aggregation Functions

Irina Perfilieva and Vladik Kreinovich

Abstract. A relationship between the discrete F-transform and aggregation func-
tions is analyzed. We show that the discrete F-transform (direct or inverse) can be
associated with a set of linear aggregation functions that respect a fuzzy partition of
a universe. On the other side, we discover conditions that should be added to a set of
linear aggregation functions in order to obtain the discrete F-transform. Last but not
least, the relationship between two analyzed notions is based on a new (generalized)
definition of a fuzzy partition without the Ruspini condition.

1 Introduction

In the last ten years, the theory of F-transforms has been intensively developed in
many directions and especially in connection with image processing. The following
topics have been newly elaborated on the F-transform platform: image compression
and reconstruction [1, 2, 3], image reduction and sharpening [4], edge detection
[5, 16], etc. On the other side, similar applications can be produced with the help of
aggregation functions, see e.g., [7, 8]. The goal of this contribution is to discover a
relationship between both notions.
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To comment the goal, we notice that it is not difficult to show that the discrete
F-transform (direct or inverse) can be associated with a set of linear aggregation
functions. However, the opposite characterization is not so obvious. In this contri-
bution, we found conditions that should be added to a set of linear aggregation func-
tions of the same number of variables in order to obtain the discrete F-transform.
Last but not least, the proposed relationship between two notions is based on a new
(generalized) definition of a fuzzy partition without the Ruspini condition.

We believe that this investigation contributes to a mutual success of both theories.

2 F-transform on a Generalized Fuzzy Partition

The F-transform technique was introduced in [9]. Below we remind its main prin-
ciples for the so called discrete functions. The latter means that an original function
f is known (may be computed) on a finite set P = {p1, . . . , pl} ⊆ [a,b]. The interval
[a,b] will be considered as a universe of discourse that is partitioned into n≥ 3 fuzzy
sets A1, . . . ,An. We identify fuzzy sets A1, . . . ,An with their membership functions
that map [a,b] onto [0,1] and call them basic functions.

2.1 Generalized Fuzzy Partition

The following is a new definition of a generalized fuzzy partition which differs from
that in [9] by using a smaller number of axioms.

Definition 1. Let [a,b] be an interval on the real line R, n > 2, and let x1, . . . ,xn

be nodes such that a ≤ x1 < .. . < xn ≤ b. Let [a,b] be covered by the intervals
[xk−h′k,xk+h′′k ]⊆ [a,b], k = 1, . . . ,n, such that their left and right margins h′k,h

′′
k ≥ 0

fulfill h′k + h′′k > 0.
We say that fuzzy sets A1, . . . ,An : [a,b]→ [0,1] constitute a generalized fuzzy

partition of [a,b] (with nodes x1, . . . ,xn and margins h′k,h
′′
k , k = 1, . . . ,n), if for every

k = 1, . . . ,n, the following three conditions are fulfilled:

1. (locality) — Ak(x)> 0 if x ∈ (xk− h′k,xk + h′′k ), and Ak(x) = 0 if x ∈ [a,b]\
(xk− h′k,xk + h′′k );

2. (continuity) — Ak is continuous on [xk− h′k,xk + h′′k ];
3. (covering) — for x ∈ [a,b], ∑n

k=1 Ak(x)> 0.

We say that fuzzy sets I1, . . . , In : [a,b]→ {0,1} constitute a (0-1)-generalized par-
tition of [a,b] with nodes and margins as above, if for every k = 1, . . . ,n, Ik fulfills
(locality) as above, (continuity) on (xk− h′k,xk + h′′k ) and (covering) as above.

If nodes and margins are the same for generalized fuzzy and (0-1)-partitions A1, . . . ,
An and I1, . . . , In, respectively, then we say that the latter is a “mask” of the former.

It is worth to remark that given nodes x1, . . . ,xn and margins h′k,h
′′
k , k = 1, . . . ,n,

within [a,b], a (0-1)-generalized partition I1, . . . , In of [a,b] is uniquely determined.
We say that a generalized fuzzy partition A1, . . . ,An of [a,b] with nodes x1, . . . ,xn

and margins h′k,h
′′
k , k= 1, . . . ,n, is centered at nodes if basic functions are bell-shaped,
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i.e. for each k = 1, . . . ,n, Ak is monotonically increasing on [xk− h′k,xk] and mono-
tonically decreasing on [xk,xk + h′′k ].

Further on, the word “generalized” in characterization of fuzzy partitions will be
omitted and left only when this fact is essential.

2.2 Discrete F-transform

We assume that a discrete function f : P→ [0,1]1 on a finite domain P= {p1, . . . , pl},
P ⊆ [a,b], is given and that P is sufficiently dense with respect to a fixed partition
A1, . . . ,An, of [a,b], i.e.,

(∀k)(∃ j)Ak(p j)> 0.

Then, the (discrete) F-transform of f and its inverse are defined as follows.

Definition 2. Let A1, . . . ,An, for n > 2, be basic functions that form a generalized
fuzzy partition of [a,b], and let function f be defined on the set P = {p1, . . . , pl} ⊆
[a,b], which is sufficiently dense with respect to the partition. We assume that n≤ l.
The n-tuple of real numbers Fn[ f ] = (F1, . . . ,Fn) is the discrete F-transform of f
with respect to A1, . . . ,An if

Fk =
∑l

j=1 f (p j)Ak(p j)

∑l
j=1 Ak(p j)

, k = 1, . . . ,n. (1)

The inverse F-transform f̂ of f is a function that is defined on the same set P as
above and represented by the following inversion formula:

f̂ (p j) =
∑n

k=1 FkAk(p j)

∑n
k=1 Ak(p j)

, j = 1, . . . , l. (2)

Assume that the elements of P are numbered in accordance with their order, i.e.,
p1 < · · ·< pl . Denote Pk = {p j|Ak(p j)> 0}, k = 1, . . . ,n. Because P is sufficiently
dense with respect to A1, . . . ,An, each set Pk, k = 1, . . . ,n is not empty. Moreover,
from the property locality it follows that for all k = 1, . . . ,n, there exist integers k1,k2

such that 1≤ k1 ≤ k2 ≤ l and Pk = {p j | k1 ≤ j ≤ k2}. We say that Pk is covered by
Ak or Ak covers Pk.

Let us identify the function f on P with the l-dimensional vector ( f1, . . . , fl) ∈
[0,1]l of its values such that f j = f (p j), j = 1, . . . , l. Because A1, . . . ,An is a fixed
partition of [a,b] and f is an arbitrary function on P, the F-transform Fn[ f ] of f can
be considered as a result of a linear map Fn[ f ] : [0,1]l → [0,1]n between linear vector
spaces [0,1]l and [0,1]n. We split this map into n separate maps Fk : [0,1]l → [0,1]
where Fk( f1, . . . , fl) = Fk, k = 1, . . . ,n, and consider each map Fk as a real function
of l arguments. In the sequel, we will be keeping at this viewpoint.

Let us list basic properties of the map Fk : [0,1]l → [0,1], k = 1, . . .n:

1 The restriction of the range of f to [0,1] is not principal and was assigned due to further
correspondence with aggregation functions.
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P1. (linearity) - for all x,y ∈ [0,1]l and α,β ∈ [0,1] such that αx+ βy ∈ [0,1]l ,
Fk(αx+βy) = αFk(x)+βFk(y);

P2. (idempotency) - for all c ∈ [0,1], Fk(c, . . . ,c) = c;
P3. (non-decreasing) - if x,y ∈ [0,1]l and x≤ y, then Fk(x)≤ Fk(y);
P4. (redundancy) - if basic function Ak covers the set Pk = {p j|k1 ≤ j ≤ k2}, then

only those arguments x j among x1, . . . ,xl , whose indices are within the in-
terval k1 ≤ j ≤ k2, are essential, i.e. for all x1, . . . ,xl ∈ [0,1], Fk(x1, . . . ,xl) =
Fk(0, . . . ,xk1 , . . . ,xk2 , . . . ,0).

It easily follows from properties P1 and P3 that the map Fk, k = 1, . . .n, is
monotonously non-decreasing. This fact together with the property P2 proves that
the map Fk is an additive and idempotent aggregation function2 (see [10]). More-
over, from property P4 we deduce that the following derived function F ′k : [0,1]lk →
[0,1] where lk = (k2− k1) and F ′k(xk1 , . . . ,xk2) = Fk(0, . . . ,xk1 , . . . ,xk2 , . . . ,0) is an
aggregation function as well.

In the following section, we will analyze the inverse problem, i.e., under which
conditions n aggregation functions determine the F-transform.

3 Discrete F-transform and Aggregation Functions

The goal of this section is to find conditions that characterize aggregation functions
as the F-transform components.

3.1 Aggregation Functions and Generic Fuzzy Partition

In this section, we will see that two kinds of properties: functional (additivity, etc.)
and spacial (correspondence with a certain partition), should be demanded from a set
of aggregation functions if we want them to represent the F-transform components.

Theorem 1. Let I1, . . . , In, n> 2, be a (0-1)-generalized partition of [a,b] with nodes
x1, . . . ,xn and margins h′k,h

′′
k , k = 1, . . . ,n, and let finite set P = {p1, . . . , pl ⊆ [a,b]}

where l ≥ n be sufficiently dense with respect to it. Then for any additive,
non-decreasing, idempotent aggregation functions F1, . . . ,Fn : [0,1]l → [0,1], that
fulfill the property P4 (with respect to I1, . . . , In) there exists a fuzzy partition
A1, . . . ,An of [a,b] with the mask I1, . . . , In, such that for each k = 1, . . . ,n, the
k-th F-transform component Fk of a discrete function f : P→ [0,1], identified with
( f1, . . . , fl), is equal to the value of the corresponding aggregation function Fk at
point ( f1, . . . , fl).

Proof. Let us fix k, 1 ≤ k ≤ n, and prove the assertion for the aggregation function
Fk : [0,1]l → [0,1]. By the assumption, Fk fulfills the properties in the formulation.
From the first three, namely additivity, non-decreasing and idempotency, it follows

2 An aggregation function of l variables in [0,1] is a function which is non-decreasing in
each argument and idempotent at boundaries (0, . . . ,0) and (1, . . . ,1).
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(see, e.g , Proposition 4.21 from [10]) that there exist “weights” wk1, . . . ,wkl ∈ [0,1]
such that ∑l

j=1 wk j = 1 and

Fk( f1, . . . , fl) =
l

∑
j=1

wk j f j, where ( f1, . . . , fl) ∈ [0,1]l . (3)

Let Pk = {p j | k1≤ j≤ k2} be covered by Ik. By the assumption, Pk �= /0. By the prop-
erty P4, for all f1, . . . , fl ∈ R, Fk( f1, . . . , fl) = Fk(0, . . . , fk1 , . . . , fk2 , . . . ,0). There-
fore,

Fk( f1, . . . , fl) =
l

∑
j=1

wk j f j =
k2

∑
j=k1

wk j f j .

In the above given equality, ( f1, . . . , fl) is an arbitrary vector in [0,1]l, and this fact
implies that coefficients wk j = 0, if j ∈ {1, . . . , l} \ {k1, . . . ,k2}. Let us define the
basic function Ak on P as

Ak(p j) =

{
wk j , if k1 ≤ j ≤ k2,

0, otherwise,
(4)

and prove that the k-th F-transform component Fk of f : P→ [0,1] with respect to
Ak in (4) is equal to the aggregation Fk( f1, . . . , fl) where f j = f (p j), j = 1, . . . , l.
Indeed by (1),

Fk =
∑l

j=1 f (p j)Ak(p j)

∑l
j=1 Ak(p j)

=
∑l

j=1 f jwk j

∑l
j=1 wk j

= Fk( f1, . . . , fl).

To complete the proof it is sufficient to show that Ak can be continuously extended
to the whole interval [a,b] with the mask Ik.

By the locality of a generalized fuzzy partition, Ik(x)> 0 if and only if x ∈ (xk−
h′k,xk + h′′k ). By (4), Ak(p j) > 0 if and only if p j ∈ Pk. Because Pk is covered by
Ik, Pk ⊂ (xk − h′k,xk + h′′k ). Therefore, on the first step we construct a continuous
extension of Ak to [xk− h′k,xk + h′′k ]. It can be obtained if we continuously connect
the following points on the real plane: (xk−h′k,0), (pk1 ,wk,k1 ), . . . , (pk2 ,wk,k2), (xk+
h′′k ,0). On the second step we put Ak(x) = 0 for all x∈ [a,b]\ [xk−h′k,xk+h′′k ], which
is a continuous extension of Ak to [a,b]\ [xk− h′k,xk + h′′k ]. It is easy to see that thus
extended Ak fulfills all requirements from Definition 1.

In the following corollary, we compose a matrix W so that the vector of F-transform
components of f is the product of W by the vector of f .

Corollary 1. Let the assumptions of Theorem 1 be fulfilled. Then for any additive,
non-decreasing, idempotent aggregation functions F1, . . . ,Fn : [0,1]l → [0,1], that
fulfill the property P4, there exists a n× l matrix W such that the F-transform Fn[ f ] =
(F1, . . . ,Fn) of any discrete function f : P→ [0,1] such that f (p j) = f j, j = 1, . . . , l,
can be computed by the product W f where f = ( f1, . . . , fl), i.e.
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Fn[ f ] =W f. (5)

Proof. Under the denotation of Theorem 1 and its proof, elements wk j of the matrix
W are weights that determine aggregation functions in accordance with (3).

We say that W is an aggregation matrix that corresponds to the F-transform.

3.2 Aggregation Functions and Centered Fuzzy Partition

This section is focused on fuzzy partitions that are centered at nodes. Our goal is
to analyze under which conditions aggregating functions represent the F-transform
with respect to this type of partition.

Let us consider aggregation functions of l variables, each one runs over [0,1].
We say that the point y ∈ [0,1]l is a result of a point-spread noise applied to a point
x ∈ [0,1]l if both points differ exactly in one coordinate.

Definition 3. Let F : [0,1]l → [0,1] be an aggregation function, 1 ≤ s ≤ l and 0q ∈
[0,1]l be a point whose coordinates are 0s, except for the q-th one which is equal to
1. We say that aggregation F works as a “noise damper” centered at s, if it fulfills
the following condition:

if (s≤ q2 < q1 ≤ l) or (1≤ q1 < q2 ≤ s) then F(0q1)≤ F(0q2). (6)

Let us explain the above given notions. The value “1” at the q-coordinate in 0q

represents a noise. The “noise damper” centered at s property of F means that the
farther is the position of noise “1” from the s-th coordinate, the less is the value of
aggregation performed by F .

The following theorem shows that aggregating functions that fulfill conditions
of Theorem 1 and work as noise dampers centered at certain nodes represent the
F-transform components with respect to a fuzzy partition that is centered at these
nodes.

Theorem 2. Let I1, . . . , In, n > 2, be a (0− 1)-generalized partition of [a,b] with
nodes x1, . . . ,xn and margins h′k,h

′′
k , k = 1, . . . ,n, and let finite set P = {p1, . . . , pl ⊆

[a,b]} where l ≥ n be sufficiently dense with respect to it. Assume that x1, . . . ,xn ∈ P,
i.e. for all 1 ≤ k ≤ n, there exists 1 ≤ jk ≤ l such that xk = p jk . Let F1, . . . ,Fn :
[0,1]l → [0,1] be additive, non-decreasing, idempotent aggregation functions that
fulfill the property P4 (with respect to I1, . . . , In) and work as noise dampers centered
at respective positions j1, . . . , jn. Then there exists a fuzzy partition A1, . . . ,An of
[a,b] with the mask I1, . . . , In, such that it is centered at nodes x1, . . . ,xn, and for
each k = 1, . . . ,n, the k-th F-transform component Fk of any discrete function f :
P→ [0,1] is equal to Fk( f1, . . . , fl) where f j = f (p j), j = 1, . . . , l.

Proof. Assume that assumptions above are fulfilled. Let us fix k, 1 ≤ k ≤ n, and
prove the claim for the aggregation function Fk : [0,1]l → [0,1]. By Theorem 1,
there exist coefficients w1, . . . ,wl ∈ [0,1] such that ∑l

j=1 wj = 1 and



F-transform in View of Aggregation Functions 387

Fk( f1, . . . , fl) =
l

∑
j=1

wj f j , where ( f1, . . . , fl) ∈ [0,1]l . (7)

Let Pk = {p j | k1 ≤ j≤ k2} be covered by Ik. By the assumption, xk ∈ Pk so that xk =
p jk for some k1 ≤ jk ≤ k2. Let us prove that the sequence of coefficients w1, . . . ,wl

non-strictly increases for i≤ jk and non-strictly decreases for i≥ jk, i.e.,

w1 ≤ . . .≤ wjk ≥ wjk+1 ≥ . . .≥ wl . (8)

By (6), the aggregation function Fk works as a “noise damper” centered at jk. Let
1≤ q≤ l, and 0q be the l-tuple whose elements are 0s, except for the q-th one which
is equal to 1. By (7), Fk(0̄q) = wq. Therefore, by (6),

if (k ≤ q2 < q1 ≤ l) or (1≤ q1 < q2 ≤ l) then wq1 ≤ wq2 .

This proves (8). The rest of the proof coincides with the proof of Theorem 1.

4 Inverse F-transform and Aggregation Functions

If we compare expressions (1) and (2) for the direct and inverse F-transform, then we
see that they have similar structures. Therefore, the inverse F-transform is expected
to be represented by aggregation functions too. The aim of this section is to find
a relationship between a set of aggregation functions which determine the direct
F-transform and another set of aggregation functions which determine the inverse
F-transform.

Assume that the direct F-transform of a discrete function f : P → [0,1], where
the set P = {p1, . . . , pl} ⊆ [a,b] is sufficiently dense with respect to a certain fuzzy
partition A1, . . . ,An of [a,b], is determined by a corresponding set of aggregation
functions F1, . . . ,Fn : [0,1]l → [0,1] such that for every ( f1, . . . , fl) ∈ [0,1]l,

Fk( f1, . . . , fl) =
∑l

j=1 f jAk(p j)

∑l
j=1 Ak(p j)

, k = 1, . . . ,n. (9)

By this we mean that the k-th F-transform component Fk of the function f is equal
to Fk( f1, . . . , fl), provided that f j = f (p j), j = 1, . . . , l.

The inverse F-transform f̂ of f with respect to the same partition A1, . . . ,An is
a function on P that is determined by another set of functions f̂ j : [0,1]n → [0,1]
such that f̂ (p j) = f̂ j(F1, . . . ,Fn), j = 1, . . . , l, where F1, . . . ,Fn are the F-transform
components of f and

f̂ j(F1, . . . ,Fn) =
∑n

k=1 FkAk(p j)

∑n
k=1 Ak(p j)

, j = 1, . . . , l. (10)

The following reasoning (similar to that in Subsection 2.2) aims at proving that the
functions f̂ j, j = 1, . . . , l, are aggregations. Indeed, the inverse F-transform (10) can
be considered as a result of a linear map f̂ : [0,1]n → [0,1]l between linear vector
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spaces [0,1]n and [0,1]l. We split this map into l separate maps f̂ j : [0,1]n → [0,1]
so that each one is a real function of n arguments.

The basic properties of f̂ j : [0,1]n → [0,1], j = 1, . . . l are the same as they are for
the maps Fk : [0,1]l → [0,1], k = 1, . . .n: linearity, idempotency, non-decreasing and
redundancy. The latter differs from the above formulated P4 in interchanging j and
k. Let us give the precise formulation.

P5. (redundancy) - if a point p j, j = 1, . . . , l, is covered by several basic functions
Ak, i.e. Ak(p j) > 0, where j1 ≤ k ≤ j2, then only those arguments xk among
x1, . . . ,xn, whose indices are within the interval j1 ≤ k ≤ j2, are essential, i.e.
for all x1, . . . ,xn ∈ [0,1], f̂ j(x1, . . . ,xn) = f̂ j(0, . . . ,x j1 , . . . ,x j2 , . . . ,0).

Therefore, the maps f̂ j : [0,1]n → [0,1], j = 1, . . . , l are linear aggregation functions
on [0,1]n that fulfill the property P5. Conversely, similarly to Theorem 1, any l
additive, non-decreasing, idempotent aggregation functions f̂ j on [0,1]n that fulfill
the property P5 can be combined into one function f̂ : P→ [0,1] such that f̂ (p j) =
f̂ j(F1, . . . ,Fn), j = 1, . . . , l.

Our goal is to find conditions on aggregation functions F1, . . . ,Fn : [0,1]l → [0,1]
and aggregation functions f̂ j : [0,1]n → [0,1], j = 1, . . . , l, such that they determine
the direct and inverse F-transforms with respect to the same partition A1, . . . ,An. The
following theorem gives the solution.

Theorem 3. Let I1, . . . , In, n> 2, be a (0-1)-generalized partition of [a,b] with nodes
x1, . . . ,xn and margins h′k,h

′′
k , k = 1, . . . ,n, and let finite set P = {p1, . . . , pl ⊆ [a,b]}

where l ≥ n be sufficiently dense with respect to it. Then for any additive,
non-decreasing, idempotent aggregation functions F1, . . . ,Fn : [0,1]l → [0,1], that
fulfill the property P4 there exist additive, non-decreasing, idempotent aggregation
functions f̂1, . . . , f̂l : [0,1]n → [0,1], that fulfill the property P5, both with respect to
I1, . . . , In, and a fuzzy partition A1, . . . ,An of [a,b] with the mask I1, . . . , In such that
for any discrete function f : P→ [0,1] such that f (p j) = f j, j = 1, . . . , l,

(i) the F-transform component Fk, k = 1, . . . ,n, of f is the value of the correspond-
ing aggregation function Fk at point ( f1, . . . , fl),

(ii) the inverse F-transform f̂ (p j), j = 1, . . . , l, is equal to the corresponding ag-
gregation function f̂ j at point (F1, . . . ,Fn).

In Corollary 1, the aggregation matrix W that corresponds to the F-transform was
introduced. A similar result will be established for the inverse F-transform.

Corollary 2. Let the assumptions of Theorem 1 be fulfilled and W = (wk j) be a n× l
matrix that corresponds to the F-transform so that for a function f , (5) holds. Then
the related inverse F-transform f̂ of f is characterized by the l×n matrix W̃ = (w̃ jk)
so that

f̂ = W̃ Fn[ f ]

where
w̃ jk =

wk j

∑n
k=1 wk j

, j = 1, . . . , l, k = 1, . . . ,n.
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Conclusion

In this contribution, we focused on a relationship between the F-transform and ag-
gregation functions. We showed that the F-transform components can be obtained
by linear aggregation functions that respect a fuzzy partition of a universe. On the
other side, we discovered conditions that should be added to a set of linear aggrega-
tion functions in order to obtain the F-transform components. Similarly, the inverse
F-transform can be associated with another set of linear aggregation functions that
respect a fuzzy partition of a co-universe. Two sets of linear aggregation functions
that are associated with the direct and inverse F-transforms are connected via the so
called aggregation matrix. The relationship between two analyzed notions is based
on a new (generalized) definition of a fuzzy partition without the Ruspini condition.

Acknowledgements. This work relates to Department of the Navy Grant N62909-12-1-7039
issued by Office of Naval Research Global. The United States Government has a royalty-free
license throughout the world in all copyrightable material contained herein. Additional sup-
port was given also by the European Regional Development Fund in the IT4Innovations Cen-
tre of Excellence project. (CZ.1.05/1.1.00/02.0070).

References

[1] Perfilieva, I.: Fuzzy transforms and their applications to image compression. In: Bloch,
I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp.
19–31. Springer, Heidelberg (2006)

[2] Di Martino, F., Loia, V., Perfilieva, I., Sessa, S.: Int. Journ. of Appr. Reasoning 48, 110
(2008)

[3] Hurtik, P., Perfilieva, I.: Image compression methodology based on fuzzy transform.
In: Herrero, Á., et al. (eds.) Int. Joint Conf. CISIS’12-ICEUTE’12-SOCO’12. AISC,
vol. 189, pp. 525–532. Springer, Heidelberg (2013)

[4] Hurtik, P., Perfilieva, I.: Proc. of the Intern. MIBISOC 2013 Conference, Brussels (to
appear, 2013)
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Fuzzy Hit-or-Miss Transform Using the Fuzzy
Mathematical Morphology Based on T-norms

M. González-Hidalgo, S. Massanet, A. Mir, and D. Ruiz-Aguilera

Abstract. The extension of the Hit-or-Miss transform (HMT) to grey-level images is
difficult due to the problem of defining the complement of an image in this context.
Thus, several extensions have been proposed in the literature avoiding the use of the
complement. However, in the fuzzy framework, the complement is well-established
by means of a fuzzy negation and the binary HMT can be extended preserving its
geometrical interpretation. In this paper, we extend the binary HMT to a fuzzy HMT
(FHMT) using the mathematical morphology based on t-norms. Some properties of
this operator are studied and some initial experimental results are presented proving
the potential of the FHMT in shape recognition and pattern matching.

Keywords: Fuzzy hit-or-miss transform, fuzzy mathematical morphology, t-norm,
fuzzy implication.

1 Introduction

Mathematical Morphology (MM) was introduced in the early sixties by Matheron
[23] and Serra [35]. Originally, it was developed for binary images where this theory
provided an extremely interesting set of tools for the analysis and shape recognition
in this class of images. Soon thereafter, it was extended to grey-level images (GL)
following different approaches (see [15, 35, 37]). Among the tools provided by the
MM, there is the hit-or-miss transform (HMT) [15, 35], which is capable of iden-
tifying in a binary image groups of connected pixels satisfying certain geometric
restrictions or forming a certain configuration. For the processing of binary images
the HMT is widely used and well defined [35, 37] and involves the search and loca-
tion in an image of a predefined shape (called structuring element (SE)). The SE are

M. González-Hidalgo · S. Massanet · A. Mir · D. Ruiz-Aguilera
Department of Mathematics and Computer Science,
University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
e-mail: {manuel.gonzalez,s.massanet,arnau.mir,daniel.ruiz}@uib.es

H. Bustince et al. (eds.), Aggregation Functions in Theory and in Practise, 391
Advances in Intelligent Systems and Computing 228,
DOI: 10.1007/978-3-642-39165-1_38, c© Springer-Verlag Berlin Heidelberg 2013



392 M. González-Hidalgo et al.

designed to match the geometry of objects of interest in the foreground and back-
ground of the image. Despite this, there are few authors who have considered its
possible extension to grey-level images. The main difficulty, as we shall see, resides
in that this operator uses in its definition the image and its complement, and this
last concept in the Grey-Level Mathematical Morphology (GLMM) is not clearly
established. In an effort to avoid its use, several researchers have proposed defini-
tions and methods to extend the HMT to grey-level images, and recently an unified
framework for calculating a grey-level HMT (GLHMT) has been presented in [26].

The fuzzy mathematical morphology (FMM) is a generalization of the binary
MM using concepts and techniques from the fuzzy sets theory ([6, 25]). This theory
allows a better treatment and a representation with greater flexibility of the uncer-
tainty and ambiguity present in any level of an image. In this framework, the anal-
ysis of the fuzzy Hit-or-Miss transform (FHMT) is much narrower. Sinha et al. in
[36] discussed a FHMT based on his FMM to achieve word recognition. In such a
paper, no properties are analysed but they indicated how to choose the structuring
elements. Later, in an unpublished work, Deng [10] introduced a FHMT based on
fuzzy logic and with a similar approach to the one we will introduce, but the theory
remains to be developed. Popov [30] introduced a FHMT using intuitionistic fuzzy
sets and after that in [11] they applied it to find face features without analysing the
properties or explaining how to choose the SE. Finally, in [16] a FHMT is used to
perform an automate boundary extraction by a fuzzy gradient.

The hit-or-miss transform is often used to detect specific configurations of pixels
and it has interesting applications. We can highlight applications to document anal-
ysis [7]; template and pattern matching [4, 19, 33]; boundary and edge extraction
[16, 22]; face detection and localization [11, 32]; medical image analysis [27, 8];
building and vehicle detection [18, 21, 38]; satellite and astronomical image anal-
ysis [1, 29, 17] and analysis of geographic and topographic data [37, 40]. But in
many of these applications the hit-or-miss transform is used after preprocessing the
image and performing a threshold to it. In addition, no analysis of the proposed
transformation is realized and there is no explanation how the structuring elements
are selected. This is an indication of how difficult is to apply the GLHMT to image
processing and therefore, a detailed analysis is necessary.

In this paper we define a general fuzzy hit-or-miss transform for grey-level image
following the FMM introduced by De Baets [9] and further developed in [12, 14,
13]. We analyse their properties, the selection of the structuring element and how the
properties have applications in the experimental results. This paper is organised as
follows. In the next section, we recall the definitions of fuzzy logic operators which
are needed in subsequent sections. Next, we review briefly in this work, for the
sake of clarity, the binary HMT and the most prevalent extensions of the HMT for
grey-level images. We show how our definition is related with the classical binary
definition and we generalise it to the fuzzy environment. The fuzzy HMT general-
ization and its properties, when we use t-norms is the aim of Section 3. In Section
4 we show how this operator can be used to achieve object detection and illustrate
its abilities by various experiments in different situations. Finally, we conclude with
some conclusions and future work.
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2 Preliminaries

Fuzzy morphological operators are defined using fuzzy operators such as fuzzy con-
junctions and fuzzy implications. More details on these logical connectives can be
found in [5] and [3], respectively.

Definition 1. A non-decreasing binary operator C : [0,1]2 → [0,1] is called a fuzzy
conjunction if it satisfies

C(0,1) =C(1,0) = 0 and C(1,1) = 1.

The most well-known kind of conjunctions is the class of t-norms [20].

Definition 2. A conjunction T on [0,1] is called a t-norm when it is commutative,
associative and it satisfies T (1,x) = x for all x ∈ [0,1].

Next we recall the definitions of strong fuzzy negations and fuzzy implications.

Definition 3. A non-increasing function N : [0,1]→ [0,1] is called a strong fuzzy
negation if it is an involution, i.e., if N(N(x)) = x for all x ∈ [0,1].

Definition 4. A binary operator I : [0,1]2 → [0,1] is a fuzzy implication if it is
non-increasing in the first variable, non-decreasing in the second one and it satis-
fies I(0,0) = I(1,1) = 1 and I(1,0) = 0.

A well-known way to obtain fuzzy implications is the residuation method. Given a
conjunction C such that C(1,x)> 0 for all x > 0 the binary operator

IC(x,y) = sup{z ∈ [0,1] |C(x,z) ≤ y}

is a fuzzy implication called the residual implication or R-implication of C (see
[28]). In Table 1, the most important t-norms and their corresponding R-implications
are collected.

Using the previous operators, we can define the basic fuzzy morphological oper-
ators such as dilation and erosion. We will use the following notation: C denotes a

Table 1 Some t-norms and their corresponding R-implications

t-norm Expression R-implication

Łuukasiewicz TLK(x,y) = max{x+y−1,0} ILK(x,y) = min{1,1−x+y}
Minimum TM(x,y) = min{x,y} IGD(x,y) =

{
1 if x≤ y
y if x > y

Product TP(x,y) = xy IGG(x,y) =

{
1 if x≤ y
y
x if x > y

Nilp. Minimum TnM(x,y) =

{
0 if x+y≤ 1,
min{x,y} otherwise.

IFD(x,y) =

{
1 if x≤ y
max{1−x,y} if x > y
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fuzzy conjunction, I a fuzzy implication, A a grey-level image, and B a grey-level
structuring element (see [35] and [37] for formal definitions). In addition, dA de-
notes the set of points where A is defined and Tv(A) is the translation of a fuzzy set
A by v ∈R

n defined by Tv(A)(x) = A(x− v).

Definition 5. ([25]) The fuzzy dilation DC(A,B) and the fuzzy erosion EI(A,B) of A
by B are the grey-level images defined by

DC(A,B)(y) = sup
x∈dA∩Ty(dB)

C(B(x− y),A(x))

EI(A,B)(y) = inf
x∈dA∩Ty(dB)

I(B(x− y),A(x)).

Now we recall the binary and grey-level approaches for Hit-or-Miss transform. First
of all, the hit-or-miss transform (HMT) of a binary image is a classic morphology
operator [35, 37], that uses two structuring elements BFG and BBG. The basic idea
consists on extracting all pixels in a binary image that are surrounded by areas on the
image where both foreground (represented by BFG) and background (represented
by BBG) match predefined patterns. The pattern that should match the foreground is
defined by BFG, while BBG defines the pattern that should match the background.
By definition BFG and BBG share the same origin and BFG ∩BBG = /0. We use B =
(BFG,BBG) to denote the composite structuring element (SE).

The HMT of a binary image A by the composite SE B is the set of points x
such that when the origin of B coincides with x, BFG fits A while BBG fits Ac (the
complement set of A):

A�B = {x : (BFG)x ⊆ A, (BBG)x ⊆ Ac}= (A,BFG)∩ (Ac,BBG),

where (·)x denotes the translation by x and , is the binary erosion operator

A,B = {x : Bx ⊆ A}.

The binary HMT operator is not easily extended to grey-level images. The several
definitions of grey-level HMT (GLHMT) were unified by Naegel et al. in [26]. The
common denominator in these extensions is to avoid the use of Ac in the definition;
this is due to the difficulty in formalising this concept for grey-level images. First,
Khosravi and Schafer [19] developed the so-called “template matching” based on a
generalization of the HMT in grey-level images with noise. Furthermore, Schaefer
and Casasent [34] presented a version of HMT for object detection, while Raducanu
and Grana [31] proposed a greyscale HMT based on level sets (LSHMT). On the
other hand, Soille [37] introduced two extensions for Hit-or-Miss: the so-called un-
constrained HMT and the constrained HMT and he applied them to the analysis of
topographic maps. A detailed account of these extensions can be found in [26, 29].
Finally, some extensions of HMT to multivariate images have been recently pro-
posed in [2, 39, 41] and see also [24] for a new conceptual view of the HMT.
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3 Fuzzy Hit-or-Miss Transform and Its Properties

In the fuzzy set theory, the complement operation is modelled using a fuzzy negation
and the intersection of fuzzy sets is modelled using a fuzzy conjunction, so we can
transform directly the HMT definition to the fuzzy set theory using concepts and
techniques of the FMM based on fuzzy conjunctions and fuzzy implications (see
[25] and in particular, [12, 14, 13] when the fuzzy conjunction is a conjunctive
uninorm or a discrete t-norm). Since, BFG and BBG are fuzzy sets, the rigid condition
BFG∩BBG = /0 in the binary case is not mandatory in our extension since in the fuzzy
case, when this condition holds, the fuzzy hit-or-miss transform may be a non-empty
set.

Definition 6. Let N be a strong fuzzy negation, I a fuzzy implication and C a fuzzy
conjunction. The fuzzy Hit-or-Miss transform (FHMT) of the grey-level fuzzy im-
age A with respect to the grey-scale structuring element B = (B1,B2) is defined by

FHMTB(A) =C (EI(A,B1),EI(coNA,B2)) , (1)

where coNA(x) = N(A(x)) for all x ∈ R
n.

Recall that under the necessary conditions (see [25]), the fuzzy erosion and the
fuzzy dilation based on a fuzzy conjunction, are N-duals, that is EI(coNA,B2) =
coNDC(A,B2). In this case we have that

FHMTB(A) =C (EI(A,B1),coNDC(A,B2))) .

In the rest of this section, some interesting properties of FHMT are presented. We
will use the following notation: C denotes a fuzzy conjunction, I a fuzzy implication
and N a strong fuzzy negation.

The first result shows that we retrieve the binary hit-or-miss transform when we
apply the FHMT to a binary image A and a binary structuring element B. This is
a direct consequence of the coincidence of the fuzzy conjunction and the fuzzy
implication with their binary counterparts when we restrict the values to {0,1}2.

Theorem 1. Let A be a binary image and B = (B1,B2) a binary structuring element.
Then the FHMT coincides with the binary Hit-or-Miss transform, that is,

FHMTB(A) = A�B.

From now on, we will say that B is an empty structuring element if B(x) = 0 for all
x. In this case we put B = /0.

Theorem 2. Let B1 be a grey-scale structuring element. Then, taking B = (B1, /0),
we obtain that the fuzzy erosion is a particular case of the FHMT transform

EI(A,B1) = FHMTB(A).

Moreover, if the fuzzy erosion and the fuzzy dilation are N-duals with respect to the
fuzzy negation used in the FHMT, we have that
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DC(A,B1) = coN (FHMTB(coNA)) .

The FHMT transform is invariant under translations.

Proposition 1. Let A be a grey-scale image, let B = (B1,B2) be a grey-scale struc-
turing element and let v ∈ R

n. Then it holds:

FHMTB(Tv(A)) = Tv(FHMTB(A)) and FHMTTv(B)(A) = T−v(FHMTB(A)),

where Tv(B) = (Tv(B1),Tv(B2)).

Let B = (B1,B2) and B = (B2,B1) be two grey-scale structuring elements. The next
result establishes the consequence of the choice of B instead of B.

Proposition 2. Let A be a grey-scale image, let B = (B1,B2) be a grey-scale struc-
turing element. Then, we have that

FHMTB(A) = FHMTB(coNA) .

As we have already commented, FHMT can be used to find patterns with a given
shape and size in an image. In contrast to the binary hit-or-miss operator (which
either finds fully coincidence or not), the fuzzy hit-or-miss operator always finds
the searched pattern, if it exists, giving a degree of truth as a result. The advantage
of using FHMT over the other methods for template matching is that FHMT finds
the searched pattern (no matter if the coincidence is full or partial) and the degree
of matching is measured by a degree of truth, that corresponds with the similarity
of the searched pattern with a part of the image, through a membership function.
Specifically, given a point x∈ IRn we can understand the fuzzy hit-or-miss transform

FHMTB(A)(x) = T (u,v),

as a “degree of similarity” related with the value of the aggregation operator C at
the point (u,v), where u and v are the degrees of truth indicating how B1 is included
in the grey-level image A, and B2 included in coN(A) (that is, the degree of truth
indicating how B2 is excluded from A), respectively. Therefore, the “similarity de-
gree” given by the FHMT is the grey-level value which the closer to 1 the measure
is, more certainly we have that the shape of B1 is contained in the image A. The next
results deal with the study of the similarity degree given by the FHMT when we
consider a fuzzy mathematical morphology based on t-norms as conjunctions and
their R-implications as fuzzy implications.

Definition 7. Let B1 be a grey-level image (a structuring element) and let A be a
grey-level image. We say that B1 is a part of A if there exists a point y such that if
we translate B1 to y, we have B1(x−y) = A(x) for all x ∈ Ty(B1). In this case we say
that B1 is a part of A at the point y.

Theorem 3. Let A be a grey-level image, B = (B1,B2) a grey-scale structuring ele-
ment satisfying that B2 = coN(B1), T a t-norm and IT its R-implication and y ∈R

n.
Then B1 is a part of A at the point y if, and only if, FHMTB(A)(y) = 1.
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Now we study the case when B1 and B2 are constant grey-level images, A is constant
in a square of the same dimensions of B and the grey level of A is greater than the
one of B1. In the next result we obtain the expression of the FHMT considering the
t-norms and their corresponding R-implications given in Table 1.

Theorem 4. Let A be a grey-level image, B = (B1,B2) a grey-scale structuring ele-
ment such that B1(x) = m for all x, B2 = coN(B1), T a t-norm, IT its corresponding
R-implication and y∈R

n. Suppose that A(x) = k for all x∈ Ty(B1) with m < k. Then
we have that

FHMTB(A)(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N(k) if T = TM,
N(k)
N(m)

if T = TP,

1−N(m)+N(k) if T = TLK ,

max{m,N(k)} if T = TnM.

The previous result suggests that the most interesting t-norms to use in the FHMT
are TLK and TP. This is because in this case, we obtain values of the FHMT that
depend on k and m and get closer to 1 in a continuous way as m approaches to k. On
the other hand, the value of FHMT when TM is used only depends on k and when
TnM is applied, the resulting function is not continuous.

4 Experimental Results

In the first example we check the functionality of the fuzzy Hit-or-Miss transforma-
tion that we have proposed. It consists of a synthetic image with geometric figures
(see Figure 1-(a)). The aim is to detect a specific combination of grey level and
square size. In the figure we can see the structuring element that we have used to
calculate the FHMT. In Figure 1-(f), all the squares with a size equal to or greater
than the size of the structuring element have been detected. The grey level of the pix-
els belonging to the square that exactly matches the structuring element (in shape
and grey level) is 1, the maximum value, which is predicted by Theorem 3. Further-
more, we have observed in experiments with similar images that the FHMT value
decreases when the difference between the grey level of the desired shape into the
image with respect to the grey level of the structuring element increases. For ex-
ample, the square of the Figure 1-(a) with grey level 195 has been detected in the
FHMT image with grey level 187 (0.7333), and the square with grey level 197 has
been detected with grey level 185 (0.7255). This is reasonable since the square with
gray level 195 is more similar to the chosen structuring element than the square
with gray level 197. In addition, as we can see, the squares with a size greater than
or equal to the structuring element have been detected with a grey level higher than
the background in the FHMT image. In Figure 1-(g) we show the thresholded ver-
sion of FHMT to see better how all squares with a size greater than or equal to the
structuring element have been found. Obviously one could argue that if an ellipse
or another figure has a size larger than the square with the same grey level, it would
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(a) Original image (b) Grey-level values original image

(c) B1 = BFG (d) B2 = BBG (e) Grey-level values of B1 and B2, respectively

(f) Fuzzy Hit-or-Miss transform (g) Thresholded fuzzy Hit-or-Miss trans-
form highlighting non-zero pixels

Fig. 1 Fuzzy Hit-or-miss transform using TLK , ILK and NC(x) = 1− x of the original image
displayed in (a) using B = (B1,B2)

be detected as a square in the FHMT. This is true, but this fact can be easily avoided
by surrounding the structuring element with a white border.

In addition, we can observe that there appear brighter regions larger than one
pixel in the FHMT image (see Figure 1-(f)). This is because the structuring ele-
ment is included in a geometric figure of the image when the structuring element is
centred in all the pixels of this region.

Next, in Figure 2, we can see that all the smaller blobs than the structuring ele-
ment have been detected with a grey level higher than the background. Note that in
this case there is a lighter border in the structuring element and we do not detect the
larger blobs.

Finally we show a different experiment from the previous ones, where we try to
find the typefaces E in a dollar image. As shown in Figure 3, the brightest areas
correspond to the E’s which we want to identify, and if we threshold the image, we
can see how they have been fully identified.
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(a) Original image

(b) B1 = BFG

(c) B2 = BBG

(d) Fuzzy Hit-or-Miss trans-
form

(e) Thresholded Fuzzy
Hit-or-Miss transform

Fig. 2 Fuzzy Hit-or-miss transform using TP, IGG and NC of the original image displayed in
(a) using B = (B1,B2)

(a) Original image

(b) B1 = BFG (c) B2 = BBG

(d) Fuzzy Hit-or-Miss transform (e) Thresholded Fuzzy Hit-or-Miss trans-
form highlighting non-zero pixels

Fig. 3 Hit or miss transform using TLK , ILK and NC of the original image displayed in (a)
using B = (B1,B2)
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5 Conclusions and Future Work

In this work, a new extension of the Hit-or-Miss transform for grey-level images,
called the Fuzzy Hit-or-Miss transform (FHMT), is introduced using the fuzzy sets
theory. The definition of the FHMT uses the generalizations of the binary conjunc-
tion and implication to the fuzzy framework in order to preserve the geometrical
interpretation of the binary Hit-or-Miss transform. In addition, the concept of com-
plement in the binary approach is well-defined in our definition due to the use of a
strong negation.

First of all, after proving that FHMT coincides with the binary HMT when it is
applied to a binary image and a binary structuring element, we have seen that this
transform is a generalization of the well-known erosion and dilation operators. Next,
the invariance of this transform under translations is established. The next step was
to study the behaviour of this operator when the structuring element is a part of the
fuzzy image. In this case it was found that the transform detects all parts of the image
which includes the structuring element with value 1. However, the FHMT does not
only detect the parts of the image which are equal to the structuring element. Its
value is the aggregation of a similarity degree between the structuring element B1

and the image A, and the structuring element B2 and the complement image coNA.
The result to apply this transform using known t-norms to an image satisfying

certain conditions with a particular structuring element (see Theorem 4) has also
been studied. Only the expression of the result obtained by the FHMT operator
applying the product t-norm or the Łuukasiewicz t-norm is a continuous function
depending on the structuring element.

In the section of experimental results, some images were analysed. First, we have
seen that the FHMT was able to detect some geometric figures such as squares,
rhombus, circles, ellipses, etc. and second, the typeface E was also detected in a
dollar image.

The future work will consist on the study of more theoretical properties, the ap-
plication of the FHMT to more complicated images, the use of more t-norms and
how to improve the performance of this operator. Finally, we want to study the use of
other classes of fuzzy conjunctions into FHMT, in particular conjunctive uninorms.
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Image Reduction Operators as Aggregation
Functions: Fuzzy Transform and
Undersampling

D. Paternain, A. Jurio, R. Mesiar, G. Beliakov, and H. Bustince

Abstract. After studying several reduction algorithms that can be found in the lit-
erature, we notice that there is not an axiomatic definition of this concept. In this
work we propose the definition of weak reduction operators and we propose the
properties of the original image that reduced images must keep. From this defini-
tion, we study whether two methods of image reduction, undersampling and fuzzy
transform, satisfy the conditions of weak reduction operators.

1 Introduction

In image processing and computer vision there exist several fields in which very
large images are used (high spatial resolution). In remote sensing, for instance, im-
ages taken from planes or even satellites are handled, and they may contain hundreds
of millions of pixels [5]. The time cost of enhancing, filtering or even more complex
algorithms such as those for segmentation is so high that it can be unacceptable.

Image reduction consists of diminishing the spatial resolution of an image, that is,
obtaining an image with less pixels, in such a way that the largest possible amount
of information is kept [2, 9]. In this way, we get images of great quality but with less
pixels. This can be very useful because, instead of processing the original image, we
can apply algorithms to the reduced images diminishing the required running time.

D. Paternain · A. Jurio · H. Bustince
Departamento de Automatica y Computacion,
Universidad Publica de Navarra, Pamplona, Spain
e-mail: {daniel.paternain,aranzazu.jurio,bustince}@unavarra.es

R. Mesiar
Faculty of Civil Engineering, Slovak University of Technology, Bratislava, Slovakia
e-mail: mesiar@math.sk

G. Beliakov
School of Information Technology, Deakin University, Burwood, Australia
e-mail: gleb@deakin.edu.au

H. Bustince et al. (eds.), Aggregation Functions in Theory and in Practise, 405
Advances in Intelligent Systems and Computing 228,
DOI: 10.1007/978-3-642-39165-1_39, c© Springer-Verlag Berlin Heidelberg 2013



406 D. Paternain et al.

In previous works [10, 11], the concept of local reduction operator has been stud-
ied. These functions take small parts of an image and reduce them into a single
pixel. However, in this work we focus on the concept of reduction operator that, in
comparison with local reduction operator, acts globally over the image.

The goal of this work is to define axiomatically the concept of reduction operator
as a mapping that takes an image and gives back a smaller (reduced) image keeping
some properties of the original image. In the definition we specify the set of minimal
properties that the images must kept. We note that these properties are similar to
those of idempotent aggregation operators, so we study the relation with them.

From the definition, we analyze two well-known image reduction algorithms,
fuzzy transform and undersampling. We study if they are reduction operators in our
sense.

Finally we have compared both methods using a set of images, analyzing in a vi-
sual way the differences and, so, the advantages and disadvantages of their possible
use in real problems.

2 Preliminaries

In this work we relate reduction operators with the concept of aggregation function
[3, 6, 8, 3].

Definition 1. An aggregation function of dimension n is an increasing mapping M :
[0,1]n → [0,1] such that M(0, . . . ,0) = 0 and M(1, . . . ,1) = 1.

Definition 2. An aggregation function M is said to be idempotent if M(x, . . . ,x) = x
for all x ∈ [0,1].

For aggregation functions, idempotency is equivalent to

min(x1, . . . ,xn)≤M(x1, . . . ,xn)≤max(x1, . . . ,xn)

for all x1, . . . ,xn ∈ [0,1].

Definition 3. Let M : [0,1]n → [0,1] be an aggregation function.

• M is said to be homogeneous if M(λx1, . . . ,λxn) = λM(x1, . . . ,xn) for any λ ∈
[0,1] and for any x1, . . . ,xn ∈ [0,1].

• M is said to be shift-invariant if M(x1 + r, . . . ,xn + r) = M(x1, . . . ,xn)+ r for all
r > 0 such that 0≤ xi + r ≤ 1 for any i = 1, . . . ,n.

3 Image Reduction Operators

In this work we understand an image of n×m pixels as a set of n×m elements
arranged in rows and columns. That is, we consider an image as a n×m matrix.
Each element of the matrix is a value in [0,1]. We get this values by normalizing the
intensity of each pixel in the image (dividing by L−1 being L the number of possible
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gray levels). We denote by Mn×m the set of all possible matrices of dimension n×m
over [0,1].

As it has been stated in the introduction of this work, for us a reduction operator is
a function that takes an image and obtains a smaller image (lower spatial resolution)
containing as much information as possible from the original. But we believe that the
new image cannot be built in any way, since it must keep some properties. Clearly,
these properties may change depending of the application. In this work we fix a
minimal set of properties that every reduced image should keep from the original
image, regardless which the application is.

In this work we consider that reduction operators must satisfy, at least, the fol-
lowing conditions:

• (Monotonicity) Given two images such that one is darker than the other, the re-
duced image of the former must be darker than the reduced of the latter.

• (Idempotence) Given a flat image such that every pixel has the same value, the
reduced image must be also flat with every pixel having that value.

Depending on the application, we can increase the set of properties, as for example:

• (Homogeneity) If we multiply each pixel of an image by a constant factor, the
reduced image corresponds to the reduced image of the original image multiplied
by the same factor.

• (Shift invariance) If we add to each pixel the same value, the reduced image
corresponds to the reduced image of the original image added by the same value.

All these considerations have led us to propose the following definition:

Definition 4. A mapping OW R : Mn×m→Mn′×m′ with n′ ≤ n and m′ ≤m′ is a weak
reduction operator if the following properties hold:

• (OWR1) For all A,B ∈Mn×m, if A≤ B, then OW R(A)≤ OW R(B).
• (OWR2) For each A ∈Mn×m if A = c, then OWR(A) = c .

Definition 5. We say that a weak reduction operator OWR is

• (OWR3) homogeneous if OW R(λA) = λOWR(A) for all A ∈Mn×m and for all
λ ∈ [0,1].

• (OWR4) stable under translation if OW R(A+ r) = OW R(A)+ r holds for all A ∈
Mn×m and for all r > 0 such that ai j+r≤ 1 for any i∈ {1, . . . ,n}, j ∈ {1, . . . ,m}.

In Theorem 1 we establish the relationship between reduction operators and idem-
potent aggregation functions.

Theorem 1. Let OW R : Mn×m →Mn′×m′ be a weak reduction operator. Then, the
function M : [0,1]n×m → [0,1] given by

M(A11, . . . ,A1m, . . . ,An1, . . . ,Anm) = Pi, j(OW R(A))

where Pi, j denotes the projection of the i-th row j-th column (the element of i-th row
and j-th column) is an idempotent aggregation function for all A ∈Mn×m.
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Proof. Monotonicity of M is given by (OWR1) of weak reduction operators. Bound-
ary conditions and idempotency are given by (OW R2).

Theorem 1 shows that each pixel in a reduced image obtained by a weak reduction
operator can be obtained from applying an idempotent aggregation function to every
pixel of the original image.

4 Image Reduction Algorithms as Reduction Operators

In this section we study two examples of image reduction algorithms in the litera-
ture. Our objective is to study whether these algorithms are reduction operators in
the sense of Definition 4.

4.1 Image Undersampling

One of the simplest and fastest methods to reduce images consists in removing a
given number of pixels in order to reduce the spatial dimension of the image. For
example, removing one of every two rows and columns. This procedure gets a re-
duced image with only 25% of pixels of the original image.

Proposition 1. Let A∈Mn×m, and let A′ ∈Mn′×m′ be obtained by suppressing from
A n−n′ rows and m−m′ columns. If we fix the rows and columns to be suppressed,
the operator defined as

OW R(A) = A′

is a reduction operator with respect to any strong negation N that satisfies (OW3)
and (OW4) for all A ∈Mn×m.

Proof. Fixing the pixels to be eliminated is essential to satisfy monotonicity of re-
duction operators (OWR1). (OWR2),(OWR3) and (OWR4) are direct.

Corollary 1. Under conditions of Proposition 1, the function M : [0,1]n×m → [0,1]
given by

M(A11, . . . ,Anm) = Ai j

is an idempotent aggregation function for all i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}.
Proof. Direct

In Figure 1 we show an example of reduction operator based on undersampling.
From the original image Cameraman (n = m = 256) we reduce it to obtain two new
images with n′ = m′ = 128 by eliminating one of each two rows/columns and with
n′ = m′ = 85 by eliminating two of each three rows/columns.
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(a) (b) (c)

Fig. 1 Original image cameraman and two reduced images obtained by reduction op-
erator given by undersampling algorithm with n′ = m′ = 128 (image (b)) eliminating
rows/columns=2,4, . . . and n′ = m′ = 85 (image (c)) eliminating rows/columns=2,3,5,6, . . .

4.2 Fuzzy Transform

The fuzzy transform [12] is a widely studied technique during last years, due to
its applicability to image processing [6, 7, 13]. In this work we study the fuzzy
transform as an image reduction operator..

In previous section we have established a relation between images and matrices.
Now, in order to follow the original notation of [12], we consider an image A as a
bivariante function fA : {1, . . . ,n}×{1, . . . ,m}→ [0,1]. Evidently, fA ∈Mn×m. The
2-dimensional discrete fuzzy transform is a mapping that associates each fA with a
fA′ such that fA′ ∈Mn′×m′ with n′ ≤ n and m′ ≤ m.

Definition 6. Let n′ ≥ 2 and x1 < .. . < xn′ be fixed points in the interval [a,b] such
that x1 = a and xn′ = b. The fuzzy sets P1, . . . ,Pn′ : [a,b]→ [0,1] form a fuzzy parti-
tion of [a,b] if the following conditions hold for each k = 1, . . . ,n′

1. Pk(xk) = 1;
2. Pk(x) = 0 if x /∈ (xk−1,xk+1) (being x0 = a and xn′+1 = b);
3. Pk(x) is continuous;
4. Pk(x),k = 2, . . . ,n′ is strictly increasing in [xk−1,xk] and Pk(x),k = 1, . . . ,n′ − 1

is strictly decreasing in [xk,xk+1].
5. For all x ∈ [a,b], ∑n′

k=1 Pk(x) = 1

Definition 7. Let fA ∈Mn×m. Let P1, . . . ,Pn′ and Q1, . . . ,Qm′ be two fuzzy partitions
of [1,n] and [1,m], respectively. We say that the n′ ×m′ dimensional matrix fA′ is
the discrete fuzzy transform of fA with respect to P1, . . . ,Pn′ and Q1, . . . ,Qm′ if

fA′(k, l) =
∑m

j=1∑
n
i=1 fA(i, j)Pk(i)Ql( j)

∑m
j=1∑

n
i=1 Pk(i)Ql( j)

(1)

Theorem 2. For any fixed partitions P1, . . . ,Pn′ and Q1, . . . ,Qm′ , the discrete fuzzy
transform is a weak reduction operator in the sense of Definition 4.
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Proof. (OWR1) Let fA, fB ∈ Mn×m such that fA ≤ fB. It is clear that fA′(k, l) ≤
fB′(k, l) for all k ∈ {1, . . . ,n′}, l ∈ {1, . . . ,m′}.
(OWR2) If fA = c, then

fA′(k, l) =
∑m

j=1∑
n
i=1 fA(i, j)Pk(i)Ql( j)

∑m
j=1∑

n
i=1 Pk(i)Ql( j)

=
∑m

j=1∑
n
i=1 cPk(i)Ql( j)

∑m
j=1∑

n
i=1 Pk(i)Ql( j)

=

=
c∑m

j=1∑
n
i=1 Pk(i)Ql( j)

∑m
j=1∑

n
i=1 Pk(i)Ql( j)

= c

Corollary 2. Under conditions of Theorem 2, the function M : [0,1]n×m → [0,1]
given by

M( fA(1,1), . . . , fA(n,m)) =
∑m

j=1∑
n
i=1 fA(i, j)Pk(i)Ql( j)

∑m
j=1∑

n
i=1 Pk(i)Ql( j)

is an indempotent aggregation function for all k ∈ {1, . . . ,n′}, l ∈ {1, . . . ,m′}.
Proof. Direct

Theorem 3. Under conditions of Theorem 2, the discrete fuzzy transform is a weak
reduction operator that satisfies (OWR3) and (OW R4).

Proof. Let fB′ = λ fA + r with λ ,r ∈ [0,1] such that fB ≤ 1 for all i = 1, . . . ,n and
j = 1, . . . ,m. Then

fB′(k, l) =
∑m

j=1∑
n
i=1(λ fA(i, j)+ r)Pk(i)Ql( j)

∑m
j=1∑

n
i=1 Pk(i)Ql( j)

=

∑m
j=1∑

n
i=1λ fA(i, j)Pk(i)Ql( j)+ rPk(i)Q j(l)

∑m
j=1∑

n
i=1 Pk(i)Ql( j)

=

∑m
j=1∑

n
i=1λ fA(i, j)Pk(i)Ql( j)

∑m
j=1∑

n
i=1 Pk(i)Ql( j)

+
∑m

j=1∑
n
i=1 rPk(i)Q j(l)

∑m
j=1∑

n
i=1 Pk(i)Ql( j)

=

λ fA′(k, l)+ r

From the original image Lena (256×256 pixels), we apply fuzzy transform to obtain
reduced versions of this image: we first apply fuzzy transform with n′ = m′ = 128
(image (b) of Figure 2) and with n′= m′ = 85 (image (c) of Figure 2). In both exper-
iments, fuzzy partitions are constructed by means of triangular fuzzy sets forming a
uniform fuzzy partition.

In Figure 3 we visually test homogeneity of fuzzy transform by multiplying each
original image by a factor λ = 0.5. Observe that the original image becomes darker
as well as the reduced images obtained by the fuzzy transform with n′ = m′ = 128
and n′ = m′ = 85.
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(a) (b) (c)

Fig. 2 Original image (a) and reduced images obtained by reduction operator given by fuzzy
transform with n′ = m′ = 128 (image (b)) and with n′ = m′ = 85 (image (b))

(a) (b) (c)

Fig. 3 Image (a) obtained by multiplying each pixel of Lena by λ = 0.5. Reduced images
obtained by fuzzy transform with n′ = m′ = 128 (image(b)) and with n′ = m′ = 85 (image
(c))

4.3 Visual Comparison of Reduction Algorithms

In this subsection we visually compare each one of the reduction methods studied
in this work. It is important to recall that in the fuzzy transform, we always take a
uniform partition of intervals [1,n], [1,m]. For this reason, each pixel of the reduced
image is obtained taking into account all the pixels of the original image (all the
pixels of the original image are used to calculate each pixel of the reduced). How-
ever, in undersampling algorithm, we take only into account one pixel of the original
image. Therefore, with this method we can obtain reduced images where we keep
the details of certain area of the image while we loose other areas. This can be seen
in Figure 4. Image (a) is original Lena image with n = m = 256. Both images (b)
and (c) are reduced images taking n′ = m′ = 128. The first image has been obtained
by eliminating certain rows/columns (therefore it is a reduction operator). The sec-
ond image has been obtained by the fuzzy transform. While both images have been
obtained by a reduction operator, the images are completely different.

From the images obtained in Figure 4 we notice that, if in a certain application
we are interested in keeping the details of an specific area, then we should apply
a reduction operator based on undersampling. However, there exist many other ap-
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(a) (b) (c)

Fig. 4 Original image Lena (a) and two reduced images obtained by subsampling keeping
information of an specific are of the image (image (b)) and by fuzzy transform with uniform
partition taking n′ = m′ = 128.

plications where the reduced image must represent the whole original image. The
most common example of these applications is image compression, that consists in
reducing the storage cost of the images. For this kind of application we have two
options: 1) use reduction operator based on undersampling where the pixels elim-
inated are situated along the whole image or 2) to apply the fuzzy transform with
uniform partitions.

(a) (b) (c) (d) (e)

Fig. 5 Original image Circles (a) and reduced images obtained by subsampling and fuzzy
transform with n′ = m′ = 128

In Figure 5 we compare both techinques 1) and 2) of previous paragraph in the
original image Circles. In images (b) and (c) we show the two images obtained by
both reduction operators. In order to see the differences, in images (d) and (e) we
make a zoom of the same area of both images. Notice that the differences between
the two images are located in the edges of objects, that is, in areas where the varia-
tion of intensities of pixels are very large. Observe that while the image obtained by
fuzzy transform presents more blur, the shape of the object is better preserved. In
contrast, when we use undersampling (we eliminate one of each row/column) edges
are more sharpened.

Another interesting difference (related to the images of Figure 5) is the fact that
the value of a certain pixel in the reduced image obtained by the fuzzy transform
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may not appear in the original image. That is, a pixel of a reduced image can be
different to every pixel of the original image when we use fuzzy transform. However,
this behavior do not apper when we use undersampling as reduction operator.

5 Conclusions

In this work we have presented and studied the properties that image reduction al-
gorithms must satisfy. We have formalized these properties in the definition of weak
reduction operator. We have also studied the close relation between weak reduction
operators and idempotent aggregation functions.

Finally, given two image reduction algorithms of the literature, undersampling
and fuzzy transform, we have studied whether these algorithms are weak reduction
operators in our sense and we have analyzed simmilarities and differences of these
techniques.
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Implications Satisfying the Law of Importation
with a Given T-norm

S. Massanet and J. Torrens

Abstract. The main goal of this paper is to characterize all fuzzy implications with
continuous natural negation that satisfy the law of importation with a given con-
tinuous t-norm T . Particular cases when the fixed t-norm T is the minimum, the
product and the Łuukasiewicz t-norm are deduced from the general result and the
corresponding characterizations are presented separately.

Keywords: Implication function, Law of importation, t-norm, t-conorm.

1 Introduction

One of the most important connectives used in fuzzy control and approximate rea-
soning are fuzzy implications. This is because they are the generalization of binary
implications in classical logic to the framework of fuzzy logic and consequently
they are used to perform fuzzy conditionals [15, 18, 24]. In addition of modelling
fuzzy conditionals, they are also used to perform backward and forward inferences
in any fuzzy rules based system through the inference rules of modus ponens and
modus tollens [17, 24, 33].

Moreover, fuzzy implications have proved to be useful in many other fields like
fuzzy relational equations [24], fuzzy DI-subsethood measures and image process-
ing [11, 1], fuzzy morphological operators [19], computing with words [24], data
mining [41] and rough sets [32], among others. Thus, it is not surprising that fuzzy
implications have attracted the efforts of many researchers not only from the point
of view of their applications, but also from the purely theoretical perspective. See
for instance the surveys [6] and [24] and the book [5], entirely devoted to fuzzy
implications.

S. Massanet · J. Torrens
University of the Balearic Islands, Palma de Mallorca 07122, Spain
e-mail: {s.massanet,jts224}@uib.es

H. Bustince et al. (eds.), Aggregation Functions in Theory and in Practise, 417
Advances in Intelligent Systems and Computing 228,
DOI: 10.1007/978-3-642-39165-1_40, c© Springer-Verlag Berlin Heidelberg 2013



418 S. Massanet and J. Torrens

From this theoretical point of view, there are several lines of research that have
been specially developed. Among them we can highlight the following ones:

1. The study of the different classes of fuzzy implications and their axiomatic
characterization (see [5] and the references therein, but also the recent works
[1, 8]).

2. The relationship among these classes and the intersections between them (see
again [5] and the references therein, as well as the recent works [9] and [26]).

3. The study of new construction methods of fuzzy implications (see [5, 27, 28,
31, 30, 36]).

4. The analysis of additional properties of fuzzy implications.

In the last line, there are a lot of properties that have been studied in detail by many
authors. In almost all the cases the interest of each property comes from its specific
applications and its theoretical study usually reduces to the solution of a functional
equation. Some of the most studied properties are:

a) The modus ponens, because it becomes crucial in the inference process through
the compositional rule of inference (CRI). Some works on this property are
[21, 38, 39, 40].

b) The distributivity properties over conjunctions and disjunctions. In this case,
these distributivities allow to avoid the combinatorial rule explosion in fuzzy
systems ([13]). They have been extensively studied again by many authors, see
[2, 3, 7, 10, 34, 35, 37].

c) The law of importation. This property is extremely related to the exchange prin-
ciple (see [25]) and it has proved to be useful in simplifying the process of
applying the CRI in many cases, see [16] and [5]. It can be written as

I(T (x,y),z) = I(x, I(y,z)) for all x,y,z ∈ [0,1],

where T is a t-norm (or a more general conjunction) and I is a fuzzy implication.
The law of importation has been studied in [5, 16, 22, 23, 25]. Moreover, in this
last article the law of importation has also been used in new characterizations
of some classes of implications like (S,N)-implications and R-implications. Fi-
nally, it is a crucial property to characterize Yager’s implications (see [29]).

Although all these works devoted to the law of importation, there are still some open
problems involving this property. In particular, given any t-norm T , it is an open
problem to find all fuzzy implications I such that they satisfy the law of importation
with respect to this fixed t-norm T . That is, find all fuzzy implications such that

I(T (x,y),z) = I(x, I(y,z)) for all x,y,z ∈ [0,1], (LI)

being T any fixed (continuous) t-norm.
In this paper we want to deal with this problem and we will give some partial

solutions (in the sense that we will find all solutions involving fuzzy implications
with an additional property). Specifically, we will characterize all fuzzy implications
with continuous natural negation that satisfy the law of importation with any given
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continuous t-norm T . Particular cases when the fixed t-norm T is the minimum, the
product and the Łuukasiewicz t-norm are deduced from the general result and the
corresponding characterizations are presented separately.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms. For more de-
tails in this particular topic, we refer the reader to [20]. To make this work
self-contained, we recall here some of the concepts and results used in the rest of
the paper. First of all, the definition of fuzzy negation is given.

Definition 1. (Definition 1.1 in [14]) A decreasing function N : [0,1] → [0,1] is
called a fuzzy negation, if N(0) = 1, N(1) = 0. A fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous,
(ii) strong, if it is an involution, i.e., N(N(x)) = x for all x ∈ [0,1].

Next lemma plays an important role in the results presented in this paper. Essentially,
given a fuzzy negation, it defines a new fuzzy negation which in some sense can
perform the role of the inverse of the original negation.

Lemma 1. (Lemma 1.4.10 in [5]) If N is a continuous fuzzy negation, then the func-
tion RN : [0,1]→ [0,1] defined by

RN(x) =

{
N(−1)(x) if x ∈ (0,1],
1 if x = 0,

where N(−1) stands for the pseudo-inverse of N given by

N(−1)(x) = sup{z ∈ [0,1] | N(z) > x}

for all x ∈ [0,1], is a strictly decreasing fuzzy negation. Moreover,

R
(−1)
N = N,

N ◦RN = id[0,1],

RN ◦N|Ran(RN)
= id|Ran(RN)

,

where Ran(RN) stands for the range of function RN.

Next, we introduce the concept of automorphism and conjugate function.

Definition 2. A function ϕ : [0,1]→ [0,1] is an automorphism if it is continuous
and strictly increasing and satisfies the boundary conditions ϕ(0) = 0 and ϕ(1) = 1,
i.e., if it is an increasing bijection from [0,1] to [0,1].
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Definition 3. Let ϕ : [0,1]→ [0,1] be an automorphism. Two functions f ,g : [0,1]n

→ [0,1] are ϕ-conjugate if g = fϕ , where

fϕ (x1, . . . ,xn) = ϕ−1( f (ϕ(x1), . . . ,ϕ(xn))), x1, . . . ,xn ∈ [0,1].

Note that given an automorphism ϕ : [0,1]→ [0,1], the ϕ-conjugate of a t-norm T ,
that is Tϕ , and the ϕ-conjugate of an implication I (see Definition 4), that is Iϕ , are
again a t-norm and an implication, respectively.

Now, we recall the definition of fuzzy implications.

Definition 4. (Definition 1.15 in [14]) A binary operator I : [0,1]2 → [0,1] is said to
be a fuzzy implication if it satisfies:

(I1) I(x,z)≥ I(y,z) when x≤ y, for all z ∈ [0,1].
(I2) I(x,y)≤ I(x,z) when y≤ z, for all x ∈ [0,1].
(I3) I(0,0) = I(1,1) = 1 and I(1,0) = 0.

Note that, from the definition, it follows that I(0,x) = 1 and I(x,1) = 1 for all
x ∈ [0,1] whereas the symmetrical values I(x,0) and I(1,x) are not derived from the
definition. Fuzzy implications can satisfy additional properties coming from tautolo-
gies in crisp logic. In this paper, we are going to deal with the law of importation,
already presented in the introduction.

The natural negation of a fuzzy implication will be also useful in our study.

Definition 5. (Definition 1.4.15 in [5]) Let I be a fuzzy implication. The function
NI defined by NI(x) = I(x,0) for all x ∈ [0,1], is called the natural negation of I.

Remark 1
(i) If I is a fuzzy implication, NI is always a fuzzy negation.
(ii) Given a binary function F : [0,1]2 → [0,1], we will denote by NF(x) = F(x,0)
for all x ∈ [0,1] its 0-horizontal section. In general, NF is not a fuzzy negation. In
fact, it is trivial to check that NF is a fuzzy negation if, and only if, F(x,0) is a
decreasing function satisfying F(0,0) = 1 and F(1,0) = 0.

3 On the Satisfaction of (LI) with a Given T-norm T

In this section, we want to characterize all fuzzy implications with a continuous nat-
ural negation which satisfy the Law of Importation (LI) with a fixed t-norm T . Until
now, all the previous studies on the law of importation have focused on the satisfac-
tion of (LI) by concrete classes of fuzzy implications. Thus, some results involving
this property and (S,N)-implications are presented in [16] and [25]; R-implications
in [16]; QL-implications in [5] and [22] and Yager’s implications in [4]. On the
other hand, fixed a concrete t-norm T , it is still an open problem to know which
fuzzy implications satisfy (LI) with this T .

First of all, it is worth to study if fixed a concrete t-norm T , any fuzzy negation
can be the natural negation of a fuzzy implication satisfying (LI) with T . In fact,
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there exists some dependence between the t-norm T and the natural negation of
the fuzzy implication I. Thus, not all fuzzy negations can be natural negations of
a fuzzy implication satisfying (LI) with a concrete t-norm. To characterize which
fuzzy negations are compatible with a t-norm T in this sense, the following property
will be considered:

if N(y) = N(y′) for some y,y′ ∈ [0,1], then N(T (x,y)) = N(T (x,y′)) ∀x ∈ [0,1].
(1)

Proposition 1. Let I : [0,1]2 → [0,1] be a binary function such that NI is a fuzzy
negation. If I satisfies (LI) with a t-norm T , then NI and T satisfy Property (1).

The following example illustrates the previous result.

Example 1. Let N be the continuous (non-strict) fuzzy negation given by

N1(x) =

⎧⎨
⎩
−2x+ 1 if 0≤ x < 0.25,
0.5 if 0.25≤ x≤ 0.75,
2− 2x otherwise,

and T = TP, the product t-norm. Consider now a fuzzy implication I with NI = N1.
Then it can not satisfy (LI) with TP since in this case Property (1) does not hold:
N1(0.25) = 0.5 = N1(0.75) but

N1(TP(0.1,0.25)) = N1(0.025) = 0.95 �= 0.85 = N1(0.075) = N1(TP(0.1,0.75)).

This implies that on the one hand,

I(0.1, I(0.25,0)) = I(0.1,N1(0.25)) = I(0.1,N1(0.75)) = I(0.1, I(0.75,0)),

but on the other hand,

I(TP(0.1,0.25),0) = N1(TP(0.1,0.25)) �= N1(TP(0.1,0.75)) = I(TP(0.1,0.75),0),

and (LI) does not hold.

Next result gives the expression of any binary function with NI a continuous fuzzy
negation satisfying (LI) with a t-norm T . The binary function only depends on the
t-norm T and its natural negation.

Proposition 2. Let I : [0,1]2→ [0,1] be a binary function with NI a continuous fuzzy
negation satisfying (LI) with a t-norm T. Then

I(x,y) = NI(T (x,RNI (y))).

From now on, we will denote these implications generated from a t-norm T and a
fuzzy negation N by IN,T (x,y) = N(T (x,RN(y))).
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Remark 2. Instead ofRNI , we can consider any function N1 such that N(−1)
1 =NI and

NI ◦N1 = id[0,1]. This is a straightforward consequence of the satisfaction of Prop-
erty (1) in this case. Since NI(RNI (y)) = NI(N1(y)), then using the aforementioned
property, NI(T (x,RNI (y))) = NI(T (x,N1(y))) and therefore, INI ,T can be computed
using either RNI or N1.

This class of implications is contained into the class of (S,N)-implications generated
from a continuous negation N. This fact is coherent with the characterization of
(S,N)-implications, where (LI) is involved, given in Theorem 22 in [25].

Theorem 1. Let N be a continuous negation and T a t-norm satisfying Property (1).
Then IN,T is an (S,N)-implication generated from S(x,y) = N(T (RN(x),RN(y)))
and N.

Moreover, this class of implications satisfies (LI) with the same t-norm T from
which they are generated.

Proposition 3. Let N be a continuous fuzzy negation and T a t-norm satisfying
Property (1). Then IN,T satisfies (LI) with T .

Now, we are in condition to fully characterize the binary functions I with NI a con-
tinuous fuzzy negation satisfying (LI) with a t-norm T .

Theorem 2. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation and T a t-norm. Then

I satisfies (LI) with T ⇔ NI and T satisfy Property (1) and I = INI ,T .

Note that it remains to know when NI and T satisfy Property (1). From now on, we
will try given a concrete continuous t-norm T , to determine which fuzzy negations
satisfy the property with T .

4 Characterization of Fuzzy Implications Satisfying (LI) with a
Continuous T-norm

In the previous section, Example 1 shows that Property (1) does not hold for any
t-norm and fuzzy negation. Consequently, given a fixed t-norm T , in order to char-
acterize all fuzzy implications with a continuous natural negation satisfying (LI)
with T , we need to know which fuzzy negations are compatible with the t-norm T .
In this section, we will answer this question for some continuous t-norms presenting
for each one, which fuzzy negations can be considered and which fuzzy implications
satisfying (LI) with T are generated in that case.

First of all, some negations satisfy Property (1) with any t-norm T (not necessar-
ily continuous).

Proposition 4. Let N be a continuous fuzzy negation. If there exists x0 ∈ [0,1) such
that N(x0) = 1 and N is strictly decreasing in (x0,1) then Property (1) holds for any
t-norm T.
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Remark 3. Note that the previous result includes strict fuzzy negations which are
compatible with any t-norm T .

4.1 Minimum T-norm

The first t-norm we are going to study is the minimum t-norm TM(x,y) = min{x,y}.
This t-norm performs well with any continuous negation not restricting the choice
of the fuzzy negation.

Proposition 5. If T = TM, then Property (1) holds for any continuous negation N.

At this point, we can characterize all fuzzy implications with continuous natural
negation satisfying (LI) with TM .

Theorem 3. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation. Then the following statements are equivalent:

(i) I satisfies (LI) with TM.
(ii) I is given by I(x,y) = max{NI(x),y}.
Remark 4. The fuzzy implications satisfying (LI) with TM are, in fact, the so-called
generalized Kleene-Dienes implications. In particular, if NI(x) = NC(x) = 1− x,
we retrieve the Kleene-Dienes implication IKD(x,y) = max{1− x,y}. On the other
hand, note that there are other implications satisfying (LI) with TM than those given
in Theorem 3. Of course, they must have non-continuous natural negation like the
Gödel implication given by

IGD(x,y) =

{
1 if x≤ y,
y if x > y,

which satisfies (LI) with TM using Theorem 7.3.5 in [5].

4.2 Continuous Archimedean T-norms

In contrast with the minimum t-norm, not all continuous fuzzy negations are com-
patible with Archimedean t-norms.

Proposition 6. If T is an Archimedean t-norm, Property (1) holds if, and only if, N
is a continuous fuzzy negation being strictly decreasing for all x ∈ (0,1) such that
N(x)< 1.

Remark 5. Note that if we consider Archimedean t-norms, compatible fuzzy nega-
tions are strict ones and those given by the expression:

N(x) =

{
1 if x ∈ [0,x0],

N′
(

x−x0
1−x0

)
otherwise,

(2)
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where x0 ∈ (0,1) and N′ is a strict negation. Thus, if the fuzzy negation is a con-
tinuous (non-strict) negation, it can only have a unique constant region and it must
value 1 there.

Recall that continuous Archimedean t-norms are divided in two subsets: nilpotent
t-norms and strict t-norms. So, from now on, we will study these two cases sepa-
rately.

4.2.1 Nilpotent T-norms

Nilpotent t-norms are ϕ-conjugated with the Łuukasiewicz t-norm TLK(x,y) =
max{x+ y− 1,0}, i.e., T = (TLK)ϕ for some automorphism ϕ . The following re-
sult characterizes completely fuzzy implications satisfying (LI) with these t-norms.

Theorem 4. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation and ϕ : [0,1]→ [0,1] an automorphism. Then the following statements are
equivalent:

(i) I satisfies (LI) with (TLK)ϕ .
(ii) One of the following two cases hold:

(a) If NI is strict, then I is given by

I(x,y) =

{
1 if y > (NI ◦ (NC)ϕ)(x),
f−1( f (NI(x))+ f (y)− 1) if y≤ (NI ◦ (NC)ϕ)(x).

where f = ϕ ◦N−1
I , and NC(x) = 1− x denotes the classical negation.

(b) If NI is given by Equation (2) with x0 ∈ (0,1) and N′ a strict negation, then
I is given by I(x,y) =

=

⎧⎪⎪⎨
⎪⎪⎩

1 if y > N
′
(
ϕ−1 (1−ϕ(x)+ϕ(x0 ))−x0

1−x0

)
,

N ′
(
ϕ−1(ϕ(x)+ϕ(x0 +(1− x0)N ′−1(y))−1)− x0

1− x0

)
if y≤ N

′
(
ϕ−1 (1−ϕ(x)+ϕ(x0 ))−x0

1−x0

)
.

Taking ϕ(x) = x, a particular result for the Łuukasiewicz t-norm can be deduced.

Corollary 1. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation. Then the following statements are equivalent:

(i) I satisfies (LI) with TLK.
(ii) One of the two following cases hold:

(a) If NI is strict, then I is given by

I(x,y) =

{
1 if y > (NI ◦NC)(x),
NI(x+N−1

I (y)− 1) if y≤ (NI ◦NC)(x).

(b) If NI is given by Equation (2) with x0 ∈ (0,1) and N′ a strict negation, then
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I(x,y) =

⎧⎪⎨
⎪⎩

1 if y > N
′ ( 1−x

1−x0

)
,

N′
(

N′−1(y)− 1− x
1− x0

)
if y≤ N′

(
1−x
1−x0

)
.

Remark 6. Taking NI = NC, the Łuukasiewicz implication ILK(x,y) = min{1,1− x+
y} is obtained from case (a) in the previous corollary. Again note that there are other
implications satisfying (LI) with TLK than those given in Corollary 1. Of course,
they must have non-continuous natural negation like the Weber implication, which
satisfies (LI) with TLK by Example 7.3.3-(ii) in [5] and is given by

IWB(x,y) =

{
1 if x < 1,
y if x = 1.

4.2.2 Strict T-norms

Strict t-norms are those t-norms T which are ϕ-conjugated with the product t-norm
TP(x,y) = xy, i.e., T = (TP)ϕ for some automorphism ϕ . Example 1 shows that
strict t-norms do not satisfy Property (1) with every fuzzy negation, as it is stated in
Proposition 6.

The following result allows us to characterize fuzzy implications satisfying (LI)
with a fixed strict t-norm.

Theorem 5. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation and ϕ : [0,1]→ [0,1] an automorphism. Then the following statements are
equivalent:

(i) I satisfies (LI) with (TP)ϕ .
(ii) One of the two following cases hold:

(a) If NI is strict, then I is given by

I(x,y) = g−1(g(NI(x)) ·g(y))

where g = ϕ ◦N−1
I .

(b) If NI is given by Equation (2) with x0 ∈ (0,1) and N′ a strict negation, then

I(x,y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if y≥ N
′
⎛
⎝ ϕ−1

(
ϕ(x0 )
ϕ(x)

)
−x0

1−x0

⎞
⎠ ,

N ′
(
ϕ−1(ϕ(x) ·ϕ(x0 +(1− x0) ·N ′−1(y)))− x0

1− x0

)
if y < N

′
⎛
⎝ ϕ−1

(
ϕ(x0 )
ϕ(x)

)
−x0

1−x0

⎞
⎠ .

Remark 7. The fuzzy implications obtained in case (a) of the previous result are
in fact ϕ-conjugates of Yager’s f -generated implications with f (0) < ∞ such that
f = g ◦ϕ−1, since

(I f )ϕ (x,y) = ϕ−1( f−1(ϕ(x) · f (ϕ(y)))) = g−1(g(NI(x)) ·g(y)).
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Recall that ϕ-conjugates of Yager’s f -generated implications with f (0) < ∞ are
characterized as the only binary operations satisfying (LI) with (TP)ϕ and with NI a
strict fuzzy negation (see Theorem 8 in [29]).

Taking ϕ(x) = x, a particular result for the product t-norm can be deduced.

Corollary 2. Let I : [0,1]2 → [0,1] be a binary function with NI a continuous fuzzy
negation. Then the following statements are equivalent:

(i) I satisfies (LI) with TP.
(ii) One of the two following cases hold:

(a) If NI is strict, then I is given by

I(x,y) = NI(x ·N−1
I (y)).

(b) If NI is given by Equation (2) with x0 ∈ (0,1) and N′ a strict negation, then

I(x,y) =

⎧⎪⎨
⎪⎩

1 if y≥ N
′ ( x0(1−x)

x(1−x0)

)
,

N′
(

x · (x0 +(1− x0) ·N′−1(y))− x0

1− x0

)
if y < N

′ ( x0(1−x)
x(1−x0)

)
.

Remark 8. The fuzzy implications obtained in case (a) of the previous result are in
fact Yager’s f -generated implications with f (0)<∞ such that f = N−1

I . Recall that
Yager’s f -generated implications with f (0)<∞ are characterized as the only binary
operations satisfying (LI) with TP and with NI a strict fuzzy negation (see Theorem
6 in [29]).

Remark 9. Note that there are other implications satisfying (LI) with TP than those
given in Corollary 2. Of course, they must have non-continuous natural negation
like the Yager implication given by

IY G(x,y) =

{
1 if x = 0 and y = 0,
yx if x > 0 or y > 0,

which satisfies (LI) with TP using Theorem 7.3.4 in [5].

5 Conclusions and Future Work

In this paper, we have characterized all fuzzy implications satisfying (LI) with a
t-norm T when the natural negation of the implication is continuous. Moreover, we
have determined in particular the expression of these implications when some con-
tinuous t-norms are considered: the minimum t-norm and the Archimedean continu-
ous ones. The fuzzy implications obtained in these cases are always
(S,N)-implications but often, they belong also to other well-known classes as
Yager’s f -generated implications with f (0)< ∞ and their conjugate implications.
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As a future work, we want to study the case when an ordinal sum t-norm is con-
sidered in order to cover all continuous t-norms. In addition, some non-continuous
t-norms as the drastic t-norm and the nilpotent minimum worth to be studied.
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[5] Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer, Heidelberg (2008)
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[9] Baczyński, M., Jayaram, B.: Intersections between some families of (U,N)- and

RU-implications. Fuzzy Sets and Systems 167(1), 30–44 (2011); Special Issue: Ag-
gregation techniques and applications Selected papers from AGOP 2009 dedicated to
Jaume Casasnovas

[10] Balasubramaniam, J., Rao, C.: On the distributivity of implication operators over T and
S norms. IEEE Transactions on Fuzzy Systems 12, 194–198 (2004)

[11] Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M.: Definition and construction
of fuzzy DI-subsethood measures. Information Sciences 176, 3190–3231 (2006)

[12] Bustince, H., Pagola, M., Barrenechea, E.: Construction of fuzzy indices from fuzzy
DI-subsethood measures: application to the global comparison of images. Information
Sciences 177, 906–929 (2007)

[13] Combs, W., Andrews, J.: Combinatorial rule explosion eliminated by a fuzzy rule con-
figuration. IEEE Transactions on Fuzzy Systems 6(1), 1–11 (1998)

[14] Fodor, J.C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Sup-
port. Kluwer Academic Publishers, Dordrecht (1994)

[15] Gottwald, S.: Treatise on Many-Valued Logic. Research Studies Press, Baldock (2001)
[16] Jayaram, B.: On the law of importation (x∧ y)→ z ≡ (x → (y → z)) in fuzzy logic.

IEEE Transactions on Fuzzy Systems 16, 130–144 (2008)
[17] Jayaram, B.: Rule reduction for efficient inferencing in similarity based reasoning. In-

ternational Journal of Approximate Reasoning 48(1), 156–173 (2008)
[18] Kerre, E., Huang, C., Ruan, D.: Fuzzy Set Theory and Approximate Reasoning. Wu

Han University Press, Wu Chang (2004)
[19] Kerre, E., Nachtegael, M.: Fuzzy techniques in image processing. STUDFUZZ, vol. 52.

Springer, New York (2000)



428 S. Massanet and J. Torrens

[20] Klement, E., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, Dor-
drecht (2000)

[21] Mas, M., Monserrat, M., Torrens, J.: Modus ponens and modus tollens in discrete im-
plications. Int. J. Approx. Reasoning 49(2), 422–435 (2008)

[22] Mas, M., Monserrat, M., Torrens, J.: The law of importation for discrete implications.
Information Sciences 179, 4208–4218 (2009)

[23] Mas, M., Monserrat, M., Torrens, J.: A characterization of (U,N), RU, QL and
D-implications derived from uninorms satisfying the law of importation. Fuzzy Sets
and Systems 161, 1369–1387 (2010)

[24] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication func-
tions. IEEE Transactions on Fuzzy Systems 15(6), 1107–1121 (2007)

[25] Massanet, S., Torrens, J.: The law of importation versus the exchange principle on fuzzy
implications. Fuzzy Sets and Systems 168(1), 47–69 (2011)

[26] Massanet, S., Torrens, J.: Intersection of Yager’s implications with QL and
D-implications. International Journal of Approximate Reasoning 53, 467–479 (2012)

[27] Massanet, S., Torrens, J.: On a generalization of yager’s implications. In: Greco, S.,
Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU
2012, Part II. CCIS, vol. 298, pp. 315–324. Springer, Heidelberg (2012)

[28] Massanet, S., Torrens, J.: On some properties of threshold generated implications.
Fuzzy Sets and Systems 205, 30–49 (2012)

[29] Massanet, S., Torrens, J.: On the characterization of Yager’s implications. Information
Sciences 201, 1–18 (2012)

[30] Massanet, S., Torrens, J.: Threshold generation method of construction of a new impli-
cation from two given ones. Fuzzy Sets and Systems 205, 50–75 (2012)

[31] Massanet, S., Torrens, J.: On the vertical threshold generation method of fuzzy implica-
tion and its properties. Fuzzy Sets and Systems (2013), doi:10.1016/j.fss.2013.03.003

[32] Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets
and Systems 126(2), 137–155 (2002)

[33] Ruan, D., Kerre, E.E. (eds.): Fuzzy IF-THEN Rules in Computational Intelligence: The-
ory and Applications. Kluwer Academic Publishers, Norwell (2000)

[34] Ruiz-Aguilera, D., Torrens, J.: Distributivity and conditional distributivity of a uni-
norm and a continuous t-conorm. IEEE Transactions on Fuzzy Systems 14(2), 180–190
(2006)

[35] Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive
and disjunctive uninorms. Fuzzy Sets and Systems 158, 23–37 (2007)

[36] Shi, Y., Van Gasse, B., Ruan, D., Kerre, E.: On a new class of implications in fuzzy
logic. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80,
pp. 525–534. Springer, Heidelberg (2010)

[37] Trillas, E., Alsina, C.: On the law [(p∧ q)→ r] = [(p→ r)∨ (q→ r)] in fuzzy logic.
IEEE Transactions on Fuzzy Systems 10(1), 84–88 (2002)

[38] Trillas, E., Alsina, C., Pradera, A.: On MPT-implication functions for fuzzy logic. Rev.
R. Acad. Cien. Serie A. Mat. 98, 259–271 (2004)

[39] Trillas, E., Alsina, C., Renedo, E., Pradera, A.: On contra-symmetry and MPT condi-
cionality in fuzzy logic. International Journal of Intelligent Systems 20, 313–326 (2005)

[40] Trillas, E., del Campo, C., Cubillo, S.: When QM-operators are implication func-
tions and conditional fuzzy relations. International Journal of Intelligent Systems 15,
647–655 (2000)

[41] Yan, P., Chen, G.: Discovering a cover set of ARsi with hierarchy from quantitative
databases. Information Sciences 173, 319–336 (2005)



Fuzzy Implication Classes Satisfying a
Boolean-Like Law

Anderson Cruz, Benjamín Bedregal, and Regivan Santiago

Abstract. Properties that are always true in the classical theory (Boolean laws) have
been extended to fuzzy theory and so-called Boolean-like laws. The fact that they do
not remain valid in any standard fuzzy set theory has induced a broad investigation.
In this paper we show the sufficient and necessary conditions that a fundamental
Boolean-like law — y≤ I(x,y) — holds in fuzzy logics. We focus the investigation
on the following classes of fuzzy implications: (S,N)-, R-, QL-, D-, (N,T)-, f -, g-
and h-implications.

1 Introduction

The well-known material implication was the first one to be studied and dissemi-
nated. This fact induces us to believe that material implication is the correct notion
(common sense) of what actually is a logical implication. However, other Boolean
implications, such as intuitionistic and quantum implications, do give acceptable im-
plication models and they must be regarded to understand the meaning of a logical
implication.

In fuzzy logics, the lack of a consensus on Boolean implication meaning entails
non-equivalent acceptable definitions of fuzzy implications (see [15, 16, 27, 28, 34]
as examples) and classes of fuzzy implications, such as [4, 5, 10, 12, 20, 22].

Therefore, for a better understanding of what is a logical implication (in Boolean
and fuzzy contexts) and also to characterize the approximate reasoning in accor-
dance to the implication definition of a given logic, several Boolean laws have
been generalized and studied as (in)equations in fuzzy logics in which t-norms,
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t-conorms, fuzzy negations and implications are used — see [1], [2], [7], [8], [28],
[32] and [33]. Although in classic-like fuzzy semantics [11] Boolean-like laws are
valid, if, and only if,1 their original Boolean laws are tautologies. A lot of Boolean
laws do not remain valid when are generalized to the fuzzy setting.

In this scenario, this paper deals with the functional inequation (1), where I is
a fuzzy implication. (1) generalizes the relation υ(q) ≤ (υ(p)⇒ υ(q)), in which
⇒ is the implication operator and υ(p),υ(q) ∈ {0,1} are the truth values of p
and q, respectively. Such relation is a well-known Boolean law that entails other
fundamental Boolean rules, e.g. (υ(p)⇒ 1) = 1 which can be translated as If the
consequent of an implication is true, then the implication is also true2.

y≤ I(x,y), for all x,y ∈ [0,1] (1)

This paper extends [14]. This one provided sufficient and necessary conditions under
which (1), holds for (S,N)-, R- and QL-implications. In this current paper, the main
concern is extending such investigation for D-, (N,T)-, and h-implications.

The paper is organized as follows. Section 2 recalls some basic definitions and
results about fuzzy operators. Section 3 recall a fuzzy implication definition I, some
of their classes and some useful equivalences between those classes. In such section
we also show some results about interrelationship between (1) and other fuzzy im-
plication properties. Section 4 shows up, for those classes, under which conditions
(1) holds. Finally, the final remarks of the paper is exposed in section 5.

2 Basic Definitions

In this section we mention the preliminaries definitions and previous results about
t-norms, t-conorms and fuzzy negations.

Definition 1. A function T : [0,1]2 → [0,1] is a t-norm if T satisfies commutativity
(T1), associativity (T2), monoticity (T3) and 1-identity (T4).

Remark 1. Considering the partial order on the family of all t-norms induced from
the order on [0,1], TM(x,y) = min(x,y) is the greatest t-norm. Therefore for any
t-norm T , T (x,y)≤ TM(x,y)≤ y, for all x,y ∈ [0,1].

Definition 2. A function S : [0,1]2→ [0,1] is a t-conorm if S satisfies commutativity
(S1), associativity (S2), monoticity (S3) and 0-identity (S4).

Remark 2. Considering the partial order on the family of all t-conorms induced
from the order on [0,1] on the family of all t-conorms, SM(x,y) = max(x,y) is the
least t-conorm. So for any t-conorm S, S(x,y)≥ SM(x,y)≥ y. Moreover, SM(x,1) =
SM(1,x) = 1, so S(x,1) = S(1,x) = 1 for any t-conorm S.

1 iff, for short.
2 (υ(p)⇒ 1) = 1 can be generalized to fuzzy logic as I(x,1) = 1 (denoted in this paper by

(I8)).
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Definition 3. A function N : [0,1]→ [0,1] is a fuzzy negation, if N(0) = 1, N(1) = 0
(N1), and N is decreasing (N2). Beyond this, a fuzzy negation is called strong, if it
is involutive, i.e., N(N(x)) = x, for all x ∈ [0,1].

As examples of fuzzy negations, we cite the greatest fuzzy negation N.:

N.(x) =
{

0 , if x = 1
1 , if x ∈ [0,1[.

2.1 Properties Involving Fuzzy Operators

In this subsection we address three properties: Distributivity of t-conorms over
t-norms; Law of excluded middle; and N-duality.

• In classical logic, the distributivity of disjunction over conjunction is a well-known
property, its extension to fuzzy logic takes into account t-norms and t-conorms:
A t-conorm S is distributive over a t-norm T if

S(x,T (y,z)) = T (S(x,y),S(x,z)). (2)

An important result about such property is the following:

Proposition 1. [17, Proposition 2.22] Let T be a t-norm and S a t-conorm, then
S is distributive over T iff T = TM.

• One of the fundamental Boolean laws of classical theory is the Law of Excluded
Middle (LEM). As LEM in classical logic states that ¬p∨ p is always true, we
have the following extension to fuzzy logic.

Definition 4. Let S be a t-conorm and N a fuzzy negation, the pair (S,N) satisfies
the LEM if

S(N(x),x) = 1, for all x ∈ [0,1]. (LEM)

Remark 3. 3[3, Remark 2.3.10] S(N.(x),x) = 1, for any t-conorm S, that is,
(S,N.) satisfies (LEM), for any S. Moreover, if S is positive4, (S,N) satisfies
(LEM) only if N = N..

• For any t-conorm S there exists a t-norm T such that, S(x,y) = 1−T (1−x,1−y).
Moreover, let T be a t-norm, S a t-conorm and N a fuzzy negation then S is said
the N-dual of T , if

S(x,y) = N(T (N(x),N(y))). (3)

3 Some proofs will refer this remark.
4 S is positive iff, if S(x,y) = 1 then x = 1 or y = 1
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3 Fuzzy Implications

We adopt a well acceptable definition of fuzzy implication [13, 25, 26].

Definition 5. A function I : [0,1]2 → [0,1] is called a fuzzy implication if it satisfies
the following boundary conditions.

I1.: I(0,0) = 1. I2.: I(0,1) = 1. I3.: I(1,0) = 0. I4.: I(1,1) = 1.

Some other potential properties for fuzzy implications are given next:

I5. Left antitonicity: if x1 ≤ x2 then I(x1,y)≥ I(x2,y), for all x1,x2,y ∈ [0,1];
I6. Right isotonicity: if y1 ≤ y2 then I(x,y1)≤ I(x,y2), for all x,y1,y2 ∈ [0,1];
I7. Left boundary condition: I(0,y) = 1, for all y ∈ [0,1];
I8. Right boundary condition: I(x,1) = 1, for all x ∈ [0,1];
I9. Left neutrality: I(1,y) = y, for all y ∈ [0,1];
I10. Identity property: I(x,x) = 1, for all x ∈ [0,1];
I11. Exchange principle: I(x, I(y,z)) = I(y, I(x,z)), for all x,y,z ∈ [0,1];
I12. Ordering property5: x≤ y iff I(x,y) = 1, for all x,y,∈ [0,1];

I12a. Left ordering property: if x≤ y then I(x,y) = 1, for all x,y,∈ [0,1];
I12b. Right ordering property: if I(x,y) = 1 then x≤ y, for all x,y,∈ [0,1];

I13. Gen. of the first classical axiom: I(y, I(x,y)) = 1, for all x,y,∈ [0,1];
I14. Contraposition: Let N be a fuzzy negation, I(x,y) = I(N(y),N(x)), for all
x,y,∈ [0,1];
I15. Continuity.

There are some relations between above properties as exposed in [13], [3], [29] and
[30]. We highlight the previous study about (1) by [13] and [29] where Bustince, Shi
et al. investigated the interrelationship between some fuzzy implications properties.
In this scenario we also expose some relations between (1) and above properties.
See the following propositions and lemmas.

Proposition 2. [13] If a fuzzy implication I satisfies (1) then I satisfies (I8).

Lemma 1. [13, Lemma 1 viii] If a fuzzy implication I satisfies (I5) and (I9), then I
satisfies (1).

Adapting the results of [29, Remark 7.5] we have the next proposition.

Proposition 3. Let I be a fuzzy implication:
If I satisfies (I11) and (I12) then I satisfies (1);
If I satisfies (I5), (I11) and I(x,0) = NI(x) then I satisfies (1);
If I satisfies (I5), (I11) and (I15) then I satisfies (1).

Proposition 4. If a fuzzy implication I satisfies (1) and (I12a) then I satisfies (I13).

Proof. Straightforward.

5 Also called confinement property.
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Proposition 5. If a fuzzy implication I satisfies (I13) and (I12b) then I satisfies (1).

Proof. Straightforward.

Corollary 1. If a fuzzy implication I satisfies (I12), then I satisfies (1) iff I satisfies
(I13).

Proof. Straightforward from Propositions 4 and 5.

3.1 Classes of Fuzzy Implications

There are three main classes of fuzzy implications, namely: (S,N)-, R- and
QL-implications. Other classes can be generated from those ones, namely: D- and
(N,T)-implications are generated from QL- and (S,N)-implications, respectively.
The h-implications were defined by Massanet et al. in [22] in a similar way done
by Yager in [11] — defined by a generator function. Each one of these fuzzy impli-
cation classes has a specific motivation. In the following definition we are going to
recall them.

Definition 6. Let T be a t-norm, S a t-conorm and N a fuzzy negation, then:

• A function I : [0,1]2 → [0,1] is called an (S,N)-implication (denoted by IS,N) if

I(x,y) = S(N(x),y). (4)

• A function I : [0,1]2 → [0,1] is called an R-implication (denoted by IT ) if

I(x,y) = sup{t ∈ [0,1] |T (x, t)≤ y}. (5)

• A function I : [0,1]2 → [0,1] is called a QL-implication6 (denoted by IS,N,T ) if

I(x,y) = S(N(x),T (x,y)). (6)

• A function I : [0,1]2 → [0,1] is called a D-implication7 (denoted by IS,T,N) if

I(x,y) = S(T (N(x),N(y)),y). (7)

• A function I : [0,1]2 → [0,1] is called a (N,T)-implication (denoted by IN,T ) if

I(x,y) = N(T (x,N(y))) (8)

• A function I : [0,1]2 → [0,1] is called an f -generated implication (denoted by
I f ) if there exists a strictly decreasing and continuous function f : [0,1]→ [0,∞]
with f (1) = 0 and with the understanding 0 ·∞= 0, such that

6 In this paper we assume the QL-implication definition given in [3].
7 D-implications are generally defined from a strong negation [20, 24, 25]. However, we

maintain the standard of QL-implication definition and then we relax the D-implication
definition and define it from any (strong or non-strong) fuzzy negation.
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I f (x,y) = f−1(x · f (y)). (9)

• A function I : [0,1]2 → [0,1] is called an f -generated implication (denoted by I f )
if there exists a strictly increasing and continuous function g : [0,1]→ [0,∞] with
g(0) = 0 and with the understanding 0 ·∞= ∞ and 1

0 = ∞, such that

Ig(x,y) = g(−1)
(

1
x
·g(y)

)
, (10)

where g(−1) is the pseudo-inverse of g given by

g(−1)(x) =

{
g−1(x) , if x ∈ [0,g(1)]
1 , if x ∈ [g(1),∞].

• A function I : [0,1]2 → [0,1] is called an h-implication (denoted by Ih) if there
exist an e ∈]0,1[ and, a strictly increasing and continuous function h : [0,1]→
[−∞,+∞] in which h(0) =−∞, h(e) = 0 and h(1) = +∞, such that

I(x,y) =

⎧⎨
⎩

1 , if x = 0
h−1(x ·h(y)) , if x > 0 and y≤ e
h−1( 1

x ·h(y)) , if x > 0 and y > e.

The function h is called an h-generator (with respect to e) of Ih.8

Lemma 2. [3, Theorem 2.5.4] and [11, pp.359] Every R-implication satisfies
(I1)-(I10) and (I12a).

Lemma 3. [3, Theorem 2.6.2] Every QL-implication satisfies (I1)-(I4), (I6), (I7)
and (I9).

Lemma 4. 9 If (S,N) satisfies (LEM) and T = TM, then a QL-implication IS,N,T

satisfies (I10).

Proof. Straightforward from Lemma 11.

Proposition 6. Given a QL-implication IS,N,T and an (S,N)-implication IS,N, IS,N,T ≤
IS,N.

Proof. By Eq. 6, IS,N,T (x,y) = S(N(x),T (x,y)) and T (x,y) ≤ y (by Remark 1), so
S(N(x),T (x,y))≤ S(N(x),y) = IS,N(x,y).

Lemma 5. Every D-implication satisfies (I1)-(I4), (I5) and (I9).

Proof. Let IS,T,N be a D-implication and IS,N,T a QL-implication, so IS,T,N satis-
fies (I1)-(I4) by [3, Theorem 1.6.2], since IS,T,N is N-reciprocal of IS,N,T (that is,
IS,N,T (N(y),N(x)) = IS,T,N(x,y)).

8 The functions f and g are also known as f- and g-generators of I f and Ig, respectively.
9 A similar result is found in [3, Proposition 2.6.21].
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Now, assume that x1,x2,y ∈ [0,1] and x1≤x2. Then, by (N2), N(x1)≥N(x2). By
(T3), T (N(x1),N(y)) ≥ T (N(x2),N(y)), and by (S3) we have S(T (N(x1),
N(y)),y) ≥ S(T (N(x2),N(y)),y). Hence IS,T,N(x1,y) ≥ IS,T,N(x2,y). Hence IS,T,N

satisfies (I5).
For any y ∈ [0,1], IS,T,N(1,y) = S(T (N(1),N(y)),y) = S(T (0,N(y)),y) and
T (0,N(y))
= 0 (by Remark 1). Since S(0,y) = y, so IS,T,N(1,y) = y. Hence IS,T,N satisfies (I9).

Lemma 6. [10, Prop. 2.6] Every (N,T)-implication satisfies (I1)-(I6).

Lemma 7. An (N,T)-implication IN,T satisfies (I9), if N is a strong negation.

Proof. Since N is a strong negation, then IN,T (1,y)=N(T (1,N(y)))=N(N(y))
= y.

Lemma 8. [3, Prop. 3.1.2 and Theo. 3.1.7] Every f -implication satisfies (I1)-(I6),
(I9) and (I11).

Lemma 9. [3, Prop. 3.2.2 and Theo. 3.2.8] Every g-implication satisfies (I1)-(I6)
and (I9)-(I11).

Lemma 10. [22, Prop. 1 and Theo. 5(i)] Let h be an h-generator w.r.t. a fixed e ∈
]0,1[, then Ih satisfies (I1)-(I6) and (I9).10 So Ih is a fuzzy implication.

3.2 Equivalences Among the Fuzzy Implications Classes

Proposition 7. [20], [16] Let N be a strong negation and, given a D-implication
IS,T,N and a QL-implication IS,N,T . If IS,T,N or IS,N,T satisfies the contraposition
(I14), then IS,T,N = IS,N,T .

Lemma 11. [3, Proposition 4.2.2] Given an (S,N)-implication IS,N and a
QL-implication IS,N,T . If T = TM and (S,N) satisfies (LEM), then IS,N,T = IS,N.

Lemma 12. Given a D-implication IS,T,N and an (S,N)-implication IS,N. If T = TM

and (S,N) satisfies (LEM), then IS,T,N = IS,N.

Proof. By Proposition 1, T = TM iff (S,T ) satisfies (2). So, for all x,y ∈ [0,1]:
IS,T,N(x,y) = S(T (N(x),N(y)),y) by(7)

= S(y,T (N(x),N(y))) by(S1)
= T (S(y,N(x)),S(y,N(y))) by(2)
= T (S(N(x),y),S(N(y),y))) by(S1)
= T (S(N(x),y),1) by(LEM)
= S(N(x),y) by(T 4)
= IS,N(x,y) by(4).

10 Truly, in [22, Prop. 1 and Theo. 5(i)] is demonstrated that Ih satisfies (I2) is trivially de-
duced from (I4) and (I5). Beyond that, we also can deduce straightforward (I7) from (I1)
and (I6), and (I8) from (I4) and (I5).
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Theorem 1. Given a QL-implication IS,N,T , a D-implication IS,T,N and an
(S,N)-implication IS,N. If T = TM and (S,N) satisfies (LEM), then IS,T,N = IS,N =
IS,N,T .

Proof. Straightforward from Lemmas 11 and 12.

If we regard that N is a strong negation, then we got another result relating
(S,N)-, QL- and D-implications.

Proposition 8. [20, Proposition 6] Let N be a strong negation and given a
QL-implication IS,N,T , a D-implication IS,T,N and an (S,N)-implication IS,N. If IS,T,N

and IS,N satisfy (I1)-(I6), then the corresponding QL- and D-implication coincide
and are given by:

IS,N,T (x,y) = IS,T,N(x,y) =

{
1 , if x≤ y
IS,N(x,y) , otherwise.

Lemma 13. Let N be a strong negation. IS,N = IN,T iff S is N-dual of T .

Proof. Straightforward.

Theorem 2. Given a D-implication IS,T,N, an (S,N)-implication IS,N and a
QL-implication IS,N,T . If T = TM, S is N-dual of T and (S,N) satisfies (LEM). Then
IS,T,N = IS,N = IS,N,T = IN,T .

Proof. Straightforward from Lemma 13 and Theorem 1.

4 On the y≤ I(x,y) of Fuzzy Logic

In the sequel we show some results about (1) and, (S,N)-, R-, QL-, D-, (N,T), f -, g-
and h-implications.

Theorem 3. Every (S,N)-implication satisfies (1).

Proof. Straightforward, since SM is the least t-conorm.

Theorem 4. Every R-implication satisfies (1).

Proof. Straightforward from Lemmas 1 and 2.

Theorem 5. Every D-implication satisfies (1).

Proof. Straightforward from Lemmas 1 and 5.

Theorem 6. Every (N,T)-implication satisfies (1).

Proof. Trivial, since N(N(x)) ≥ x implies IN,T (x,y)≥ y.

Theorem 7. Every f -implication satisfies (1).



Fuzzy Implication Classes Satisfying a Boolean-Like Law 437

Proof. Straightforward from Lemmas 1 and 8.

Theorem 8. Every g-implication satisfies (1).

Proof. Straightforward from Lemmas 1 and 9.

Theorem 9. Let h be an h-generator w.r.t. a fixed e ∈]0,1[, then Ih satisfies (1).

Proof. Straightforward from Lemmas 1 and 10.

We demonstrated that (S,N)-implications satisfy (1). Since there is an intersection
between the (S,N)- and QL-implications classes, we verify the sufficient and neces-
sary conditions in which the elements of such intersection satisfy (1).11

Theorem 10. If (S,N) satisfies (LEM) and T = TM then a QL-implication IS,N,T

satisfies (1).

Proof. Straightforward from Theorem 3 and Lemma 11, we deduce the following
theorem.

The reader will note that Lemma 11 and Theorem 10 give the sufficient conditions
for IS,N,T to satisfy (1). In the sequel we present results that give the necessary
conditions.

Lemma 14. If a QL-implication IS,N,T satisfies (1) then (S,N) satisfies (LEM).

Proof. By (1), 1 ≤ IS,N,T (y,1), then IS,N,T (y,1) = 1 (i.e. IS,N,T satisfies (I8)). So
S(N(y),T (y,1)) = 1, and by (T4) S(N(y),y) = 1. Hence (S,N) satisfies (LEM).

The reciprocal of Theorem 10 is not true (see [14, Example 5.1]).

Theorem 11. Let S be a strictly increasing in [0,1[ t-conorm. If a QL-implication
IS,N,T satisfies (1) and (I10), then (S,N) satisfies (LEM) and T = TM.

Proof. By Lemma 14, if IS,N,T satisfies (1), then (S,N) satisfies (LEM). Now, by
(I10), S(N(x),T (x,x)) = 1, and since (S,N) satisfies (LEM), then for any x ∈ [0,1],
S(N(x),T (x,x)) = 1 = S(N(x),x). Case x = 1 so, trivially, T (x,x) = x. Case x <
1, since S is strictly increasing in [0,1[, then S(N(x),T (x,x)) = S(N(x),x) implies
T (x,x) = x. Therefore T = TM , since TM is the only idempotent t-norm [19, Theorem
3.9].

Corollary 2. Let S be a strictly increasing in [0,1[ t-conorm. Then the following
statements are equivalent:

1. A QL-implication IS,N,T satisfies (1) and (I10);
2. (S,N) satisfies (LEM) and T = TM.

Proof. Straightforward from Lemma 4 and Theorems 10 and 11.

11 Following results, about QL-implications, were rewritten from [14] for a better reading.
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Note that, if x≤ y iff I(x,y) = 1, then I(x,x) = x. In other words, if I satisfies (I12),
then I satisfies (I10). Therefore, by Theorem 11, we deduce the following Corollary.

Corollary 3. Let S be a strictly increasing in [0,1[ t-conorm. If a QL-implication
IS,N,T satisfies (1) and (I12), then (S,N) satisfies (LEM) and T = TM.

The reciprocal of Corollary 3 is not true. Its counter-example is IS′,TM ,N.
12 (given

below), since (S′,N.) satisfies (LEM) and IS′,TM ,N. satisfies (1), but IS′,TM ,N. does
not satisfy (I12).

IS′,TM ,N.(x,y) =

{
1 , if x < 1
y , if x = 1.

5 Final Remarks

This paper provided sufficient and necessary conditions under which the
Boolean-like law x ≤ I(y,x), refereed by (1), holds for (S,N)-, R-, QL-, D-, (N,T)-,
f -, g- and h-implications; beyond of analyzing the relations among fuzzy implica-
tion properties and (1). The property (1) was firstly studied in [13] where Bustince
et. al. demonstrated, among other results, that, let I′ be a fuzzy implication which
satisfies (I1)-(I6), if I′ satisfies (I9) then I′ satisfies (1). The main results of this
paper are stated by Theorems 3 to 9, and Corollary 2. From those results, we can
conclude that, like in the Boolean context, (1) is also a fundamental property in the
fuzzy context (in a wide quantity of fuzzy implication classes): Any (S,N)-, R-, D-,
(N,T)-, f -, g- and h-implication satisfies (1).

We also note a close relation between (I10) and (1): Every R-implication satisfies
both; every (S,N)-implication where (S,N) satisfies (LEM), also satisfies both; and
only QL-implications which satisfy (I10) guarantee the reciprocal of Theorem 10.

A particular result was obtained to QL-implications (IT,S,N): we prove that, re-
garding that S is strictly increasing in [0,1[, (S,N) satisfies (LEM) and T = TM iff
IT,S,N satisfies (1) and (I10). We also proved that: if IT,S,N satisfies (1) and (I12), then
(S,N) satisfies (LEM) and T = TM (Corollary 3); but the reciprocal of Corollary 3
is not true.
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Implications Generated by Triples of Monotone
Functions

Dana Hliněná, Martin Kalina, and Pavol Král’

Abstract. In this paper we deal with fuzzy implications generated via triples of
monotone functions f ,g,h. This idea has been presented for the first time at the
IPMU 2012 conference, where we have introduced the generating formula and stud-
ied some special cases of these fuzzy implications. In our contribution we further
develop this concept and study properties of generated fuzzy implications. More
precisely, we study how some specific properties of generators f ,g,h influence prop-
erties of the corresponding fuzzy implications.

We give also some examples of such generated fuzzy implications and examples
illustrating the intersection of the system of fuzzy implications generated by this
method with known types of generated fuzzy implications.

1 Introduction and Basic Notions

A fuzzy implication is a mapping I : [0,1]2 → [0,1] that generalizes the classical
implication to fuzzy logic case in a similar way as t-norms (t-conorms) generalize
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the classical conjunction (disjunction). It is well known that there exist many ways
how to construct them (see e.g., [2, 3, 4, 5, 13, 16, 20, 22, 23]). Fuzzy implications,
in some cases, can be represented in the form h( f (x)∗ g(y)), where ∗ is one of the
usual arithmetic operations and f ,g,h are monotone functions. A similar approach
is used also for generating of aggregation functions, see e.g. [15]. We have started
our research in this direction in 2012 at IPMU conference [11], where we have
introduced the generating formula for the first time. Now we continue our research
investigating properties of such generated implications. We will consider only the
case when f is a decreasing function and g,h are increasing functions. We define an
operator

I( f ,g,h)(x,y) = h( f (x)+ g(y)). (1)

For appropriately chosen triple ( f ,g,h) we get a fuzzy implication. The precise
definition will be given in the next section. Formula (1) enables us to get a general
view at fuzzy implications generated by means of a triple of monotone functions,
regardless whether additively or multiplicatively, since we get one case from the
other by exponential or logarithmic transformations of f and g, respectively.

In order to avoid confusion let us note that in the rest of the paper we use the
following notions. If x1≤ x2 implies f (x1)≤ (≥,<,>) f (x2), then f is an increasing
(decreasing, strictly increasing, strictly decreasing) function, respectively.

Definition 1. (see, e.g., [8]) A decreasing function N : [0,1]→ [0,1] is called a fuzzy
negation if N(0) = 1,N(1) = 0. A fuzzy negation N is called

1. strict if it is strictly decreasing and continuous in [0,1],
2. strong if it is an involution, i.e., if N(N(x)) = x for all x ∈ [0,1].

Fuzzy conjunction is typically modelled by triangular norms.

Definition 2. (see, e.g., [21]) A triangular norm T (t-norm for short) is a commuta-
tive, associative, monotone binary operator on the unit interval [0,1], fulfilling the
boundary condition T (x,1) = x, for all x ∈ [0,1].

Remark 1. Note that, for a strict negation N, the N-dual operation to a t-norm T
defined by S(x,y) = N−1 (T (N(x),N(y))) is called t-conorm. For more information,
see, e.g., [14].

Uninorms were introduced by Yager and Rybalov in 1996 [24] as a generalization
of triangular norms and conorms.

Definition 3. An associative, commutative and increasing operation U : [0,1]2 →
[0,1] is called a uninorm, if there exists e ∈ [0,1], called the neutral element of U,
such that

U(e,x) =U(x,e) = x for all x ∈ [0,1].

Fodor et al. [9] characterized the so-called representable uninorms.

Proposition 1. ([9]) A uninorm U with neutral element e ∈ ]0,1[ is representable
if and only if there exists a strictly increasing and continuous function h : [0,1]→
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[−∞,∞] such that h(0) = −∞, h(e) = 0, h(1) = ∞. The uninorm U is in that case
given by

U(x,y) = h−1(h(x)+ h(y)) for x,y ∈ [0,1],

where the value ∞−∞ can be defined as ∞ or −∞.

For each function h we have two possibilities how to define the corresponding rep-
resentable uninorm. These two possibilities are the disjunctive (in case ∞−∞= ∞)
and conjunctive (in case ∞−∞ = −∞) ones. The generator h of a uninorm can be
also strictly decreasing. In this case ∞−∞= ∞ gives a conjunctive uninorm.

In literature, we can find several definitions of fuzzy implications. In this paper
we will use the following one equivalent to the definition introduced by Fodor and
Roubens in [8]. For more details one can consult [1] or [16].

Definition 4. A function I : [0,1]2 → [0,1] is called a fuzzy implication if it satisfies
the following conditions:

(I1) I is decreasing in its first variable,
(I2) I is increasing in its second variable,
(I3) I(1,0) = 0, I(0,0) = I(1,1) = 1.

Next we list some important properties of fuzzy implications. For more information
one can consult [10], [17] and [19].

Definition 5. A fuzzy implication I : [0,1]2 → [0,1] satisfies:

(NP) the left neutrality property (or is called left neutral) if
I(1,y) = y for all y ∈ [0,1],

(EP) the exchange principle if
I(x, I(y,z)) = I(y, I(x,z)) for all x,y,z ∈ [0,1],

(IP) the identity principle if
I(x,x) = 1 for all x ∈ [0,1],

(OP) the ordering property if
x≤ y ⇔ I(x,y) = 1; x,y ∈ [0,1],

(CP) the contrapositive symmetry with respect to a given fuzzy negation N if
I(x,y) = I(N(y),N(x)); x,y ∈ [0,1],

(LI) the law of importation with respect to a t-norm T if
I(T (x,y),z) = I(x, I(y,z)); x,y,z ∈ [0,1],

(WLI) the weak law of importation with respect to a commutative and increasing
function F : [0,1]2 → [0,1] if

I(F(x,y),z) = I(x, I(y,z)); x,y,z ∈ [0,1].

In papers [6, 7] some applications of fuzzy implications were studied and in this
connection also some other properties of fuzzy implications were considered.

An important technical notion is that of pseudo-inverse.

Definition 6. (see e.g., [14]) Let f : [0,1]→ [−∞,∞] be a decreasing function. Then
f (−1) : [−∞,∞]→ [0,1] defined by

f (−1)(x) = sup{z ∈ [0,1]; f (z) > x},
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is called the pseudo-inverse of f , with the convention sup /0 = 0.

Definition 7. (see e.g., [8]) Let g : [0,1]→ [−∞,∞] be an increasing function. The
function g(−1) which is defined by

g(−1)(x) = sup{z ∈ [0,1];g(z)< x},

is called the pseudo-inverse of g, with the convention sup /0 = 0.

2 Generated Implications

Now we give conditions under which formula I( f ,g,h)(x,y) = h( f (x)+g(y)) leads to
a fuzzy implication.

Theorem 1. Let f : [0,1]→ [−∞,∞], g : [0,1]→ [−∞,∞] and h : [−∞,∞]→ [0,1]
be monotone functions such that f and g are real-valued in ]0,1[. Let the following
properties be satisfied

(G1) f (0)> f (1), g(0)< g(1),
(G2) h( f (1)+ g(0)) = 0,
(G3) h(min{ f (0)+ g(0), f (1)+ g(1)}) = 1 with the convention ∞−∞= ∞.

Then I( f ,g,h) : [0,1]2 → [0,1] defined by

I( f ,g,h)(x,y) = h( f (x)+ g(y)), (2)

is a fuzzy implication.

If a triple of monotone functions ( f ,g,h) fulfils all assumptions of Theorem 1, then
we say that ( f ,g,h) is an admissible triple of functions.

Definition 8. Let ( f ,g,h) be an admissible triple of functions. Then we say that
I( f ,g,h) is an ( f ,g,h)-implication.

2.1 Illustrative Examples and Relation to Known Types of
Generated Fuzzy Implications

First we show illustrative examples of ( f ,g,h)-implication.

Example 1. We will consider admissible triples of functions ( fi,gi,hi).

1. Assume continuous functions f1(x) = 1− x, g1(x) = 2x for x ∈ [0,1] and

h1(z) =

⎧⎪⎨
⎪⎩

1, if z≥ 1,

0, if z≤ 1
2 ,

2z− 1, otherwise.

for z ∈ [−∞,∞]. Then we get that (see Fig. 1)
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I( f1,g1,h1)(x,y) =

⎧⎪⎨
⎪⎩

1, if y≥ 1
2 x,

0, if y≤ 1
2 x− 1

4 ,

4y− 2x+ 1, otherwise.

2. Consider the following triple ( f2,g2,h2):

f2(x) =

⎧⎪⎨
⎪⎩

1, if x ∈ [0, 1
4 ],

3
4 − x, if x ∈ ] 1

4 ,
3
4 [,

0, if x ∈ [ 3
4 ,1],

g2(x) =

⎧⎪⎨
⎪⎩

2x− 1
2 , if x ∈ [0, 1

4 ],

0, if x ∈ ] 1
4 ,

1
2 [,

2x− 1, if x ∈ [ 1
2 ,1],

h2(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if z <− 1
2 ,

1
2 z+ 1

4 , if z ∈ [− 1
2 ,0],

1
2 z+ 3

4 , if z ∈ ]0, 1
2 ],

1, if z > 1
2 .

Then we get the following ( f2,g2,h2)-implication (see Fig. 2)

I( f2,g2,h2)(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y, if x ∈ [ 3
4 ,1] and y ∈ [0, 1

4 ],
1
4 , if x ∈ [ 3

4 ,1] and y ∈ ] 1
4 ,

1
2 [,

y+ 1
4 , if x ∈ [ 3

4 ,1] and y ∈ [ 1
2 ,

3
4 [,

y− 1
2 x+ 3

8 , if x ∈ ] 1
4 ,

3
4 [ and y≤ 1

2 x− 1
8 ,

y− 1
2 x+ 7

8 , if x ∈ ] 1
4 ,

3
4 [ and y ∈ ]

1
2 x− 1

8 ,
1
4

]
,

9
8 − 1

2 x, if x ∈ ] 1
4 ,

3
4 [ and y ∈ ]

1
4 ,

1
2

[
,

y− 1
2 x+ 5

8 , if x ∈ ] 1
4 ,

3
4 [ and y ∈ [ 1

2 ,
1
2 x+ 3

8 ],

1, otherwise.

In the next example we illustrate relationships between ( f ,g,h)-implications and
other known types of generated fuzzy implications. For an overview of generated
fuzzy implications one can consult [12].

1

4y−2x+1 0

0.5

0.5

0.25

0 1

1

Fig. 1 ( f1,g1,h1)-implication

1

y− x
2 +

5
8

y+ 1
4

9
8 − x

2
1
4

7
8 − x

2+y
y− x

2 +
3
8

y

0.75

0.5

0.25

0.25 0.750 1

1

Fig. 2 ( f2,g2,h2)-implication
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Example 2. In this example we will assume that functions fi,gi have domain equal
to [0,1] and hi has range equal to [0,1].

1. Let f : [0,1]→ [0,−∞] be a continuous strictly decreasing function with f (1) =
0. Set g1(y)=− f (y) and h1(z)= f (−1)(−z). Then I( f ,g1,h1) is the RT -implication
([8]) where T is the generated t-norm with additive generator f ([14]).

2. Let g : [0,1]→ [0,−∞] be a continuous strictly increasing function with g(0) =
0. Further, let N : [0,1]→ [0,1] be a fuzzy negation. Set f2(x) = g(N(x)) and
h2(x) = g(−1)(x). Then I( f2,g,h2) is the (S,N)-implication ([1, 2]) where S is the
generated t-conorm with additive generator g ([14]).

3. Let f : [0,1] → [0,∞] be a continuous and strictly decreasing function with
f (1) = 0. Set f3(x) =−lnx, g3(y) =−ln( f (y)), h3(z) = f (−1) (e−z). Then

I( f3,g3,h3)(x,y) = f (−1) (x · f (y)) ,

what is Yager’s f -implication ([23]).
4. Let g : [0,1]→ [0,∞] with g(0)= 0. Set f4(x) =−lnx, g4(y) = ln(g(y)), h4(z) =

g(−1) (ez). Then

I( f4,g4,h4)(x,y) = g(−1)
(

1
x
·g(y)

)
,

what is Yager’s g-implication ([23]).
5. Let h : [0,1] → [0,1] be a strictly decreasing and continuous function with

h(0) = 1. Set f5(x) =−lnx, g5(y) =−ln(h(y)), h5(z) = h(−1) (e−z). Then

I( f5,g5,h5)(x,y) = h(−1) (x ·h(y)) ,

what is the h-generated implication introduced by Jayaram [13].
6. Let h : [0,1]→ [−∞,∞] be a continuous and strictly increasing function with

h(0) =−∞ and h(1) =∞. Let N : [0,1]→ [0,1] be a fuzzy negation. Assume the
convention −∞ + ∞ = ∞. Set f6(x) = h(N(x)). Then I( f6,h,h−1) is the
(U,N)-implication, where U is the representable uninorm whose generator is
h ([4]).

7. Let h : [0,1]→ [−∞,∞] be a continuous and strictly increasing function with
h(0) =−∞ and h(1) =∞. Assume the convention−∞+∞=∞. Then I(−h,h,h−1)

is the RU -implication, where U is the representable uninorm whose generator is
h ([4]).

In Example 2 we have listed some well-known types of generated fuzzy implications
which are special cases of ( f ,g,h)-implications. However, not all generated fuzzy
implications can be treated as special cases of ( f ,g,h)-implications.

Example 3. ([18]) Let h : [0,1]→ [−∞,∞] be a continuous and strictly increasing
function with h(0) =−∞ and h(1) =∞ and h(ẽ) = 0 for a fixed ẽ. Then the function
Ih : [0,1]2 → [0,1] defined by
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Ih(x,y) =

⎧⎪⎨
⎪⎩

1, if x = 0,

h−1(x ·h(y)), if x > 0 and y≤ ẽ,

h−1
(

1
x ·h(y)

)
, if x > 0 and y > ẽ,

is a fuzzy implication and h is called h-generator.
This fuzzy implication cannot be constructed via a triple of monotone functions

( f ,g,h).

2.2 Properties of ( f ,g,h)-Implications

In this part we show some sufficient conditions in case of the Exchange Principle,
the Contrapositive Symmetry and the (Weak) Law of Importation, and necessary
and sufficient conditions for other properties presented in Definition 5 in order to
hold for ( f ,g,h)-implications.

If a fuzzy implication is somehow derived from a uninorm with its neutral ele-
ment ẽ ∈ ]0,1[, instead of properties (NP), (IP) and (OP) their modifications (NPẽ),
(IPẽ) and (OPẽ) are studied. These modifications are defined as follows:

Definition 9. Let I : [0,1]2→ [0,1] be a fuzzy implication and ẽ∈ ]0,1[ be fixed.Then
we say that I satisfies property

(NPẽ) if for all y ∈ [0,1] we have I(ẽ,y) = y,
(IPẽ) if for all x ∈ [0,1] we have I(x,x)≥ ẽ,
(OPẽ) if for all x,y ∈ [0,1] we have x≤ y if and only if I(x,y)≥ ẽ.

In admissible triple of functions we consider real-valued functions in ]0,1[ (see The-
orem 1). Since we assume ẽ ∈ ]0,1[, f (ẽ)>−∞. This property will be important in
Theorem 3.

In some cases, e.g., in fuzzy control theory the value ẽ ∈ ]0,1[ may represent
a level which makes working (fires) a criterion. This means that properties from
Definition 9 can be interesting also without the fact whether an implication is de-
rived from a uninorm or not. This is why we will study under which conditions
( f ,g,h)-implications fulfil also these properties.

Theorem 2. Let ( f ,g,h) be an admissible triple of functions. Then the
( f ,g,h)-implication is left-neutral if and only if the following is fulfilled

1. f (1)>−∞,
2. g is strictly increasing,
3. h(z) = g(−1)(z− f (1)).

Particularly, if f (1) = 0 then condition 3 in Theorem 2 says that h = g(−1).

Theorem 3. Let ( f ,g,h) be an admissible triple of functions. Let ẽ ∈ ]0,1[ be fixed.
Then the ( f ,g,h)-implication fulfils (NPẽ) if and only if the following holds

1. g is strictly increasing,
2. h(z) = g(−1)(z− f (ẽ)).



448 D. Hliněná, M. Kalina, and P. Král’

For the Exchange Principle we have the following sufficient conditions.

Theorem 4. Let ( f ,g,h) be an admissible triple of functions. Then the
( f ,g,h)-implication fulfils (EP) if one of the following conditions is fulfilled

1. g is continuous in [0,1], g(0)≥ 0, f (1)≥ 0 and h = g(−1).
2. g is continuous in [0,1], g(0) =−∞, g(1) = ∞, h = g(−1) and f (0) = ∞.
3. g is bounded from below, continuous in ]0,1], discontinuous at 0, h = g(−1) and

lim
x→0+

f (x)≤ lim
y→0+

g(y)− g(0).

4. h

(
lim

x→1−
g(x)

)
= 1, g is bounded from below and

lim
x→1−

f (x)≥ lim
y→1−

g(y)− g(0).

5. lim
x→0+

g(x)>−∞, lim
x→1−

g(x)< ∞ and further

h

(
lim

x→1−
g(x)

)
= 1, h

(
lim

x→0+
g(x)

)
= 0,

lim
x→0+

f (x)≤ lim
y→0+

g(y)− g(0), lim
x→0+

(g(1− x)− g(x))≤ lim
x→1−

f (x).

Remark 2. Condition 1 in Theorem 4 covers all generated (S,N)-implications from
continuous t-conorms S and condition 2 covers all (U,N)- as well as RU -implications
from representable uninorms U . But both cases cover also other types of generated
implications since g may have intervals of constantness.

Example 4. (a) Let us assume the following function g1 : [0,1]→ R:

g1(x) =

{
−2+ x, if x �= 1,

0, if x = 1.

Then the (−g1,g1,g
(−1)
1 )-implication fulfils condition 4 of Theorem 4, i.e., it satis-

fies (EP). This fuzzy implication, the well known Weber implication IWB, is of the
following form:

I(−g1,g1,g
(−1)
1

)(x,y) =
{

y, if x = 1,

1, otherwise.

(b) Assume function g2 : [0,1]→R:

g2(x) =

⎧⎪⎨
⎪⎩
−4, if x = 0,

−2+ x, if x ∈ ]0,1[1,

0, if x = 1.
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Then the (−g2,g2,g
(−1)
2 )-implication fulfils condition 5 of Theorem 4, i.e., it satis-

fies (EP). This fuzzy implication is of the following form:

I(−g2,g2,g
(−1)
2

)(x,y) =
⎧⎪⎨
⎪⎩

y, if x = 1,

0, if x �= 0 and y = 0,

1, otherwise.

Theorem 5. Let ( f ,g,h) be an admissible triple of functions. Then the
( f ,g,h)-implication fulfils (IP) if and only if the following conditions are satisfied

1. sup{z ∈R;h(z)< 1} ∈ R,
2. for all x ∈ ]0,1[ we have f (x)+ g(x)≥ sup{z ∈R;h(z)< 1}.

Remark 3. If we consider in Theorem 5 instead of a general function h the
pseudo-inverse g(−1) then condition 1 turns into

lim
y→1−

g(y)< ∞,

and condition 2 gives the following formula for all x ∈ ]0,1[:

f (x)≥ lim
y→1−

g(y)− g(x). (3)

This further implies that if g(0) = 0 and g is continuous in [0,1[, then formula (3)
is equivalent with the existence of a fuzzy negation N such that for all x ∈ ]0,1[ we
have that f (x)≥ g(N(x)).

Theorem 6. Let ( f ,g,h) be an admissible triple of functions. Let ẽ ∈ ]0,1[ be fixed.
Then the ( f ,g,h)-implication fulfils (IPẽ) if and only if for all x ∈ ]0,1[ there exists
z ∈R such that h(z)≥ ẽ and the following holds

f (x)≥ z− g(x). (4)

Remark 4. If ( f ,g,h) is an admissible triple of functions and h(0) = ẽ ∈ R then
formula (4) turns into

f (x) ≥−g(x).

Particularly, for h(0) = ẽ the (−g,g,h)-implication fulfils (IPẽ).

Theorem 7. Let ( f ,g,h) be an admissible triple of functions. Then the
( f ,g,h)-implication fulfils (OP) if and only if the following holds

1. functions f and g are strictly monotone and bounded in ]0,1[,
2. functions f and g have the same continuity points in ]0,1[,
3. sup{z ∈R;h(z)< 1} ∈ R,
4. for all x ∈ ]0,1[ we have f (x)+ g(x)≥ sup{z ∈R;h(z)< 1},
5. for all continuity points of f and g in ]0,1[ we have

f (x)+ g(x) = sup{z ∈ R;h(z)< 1}.
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The last condition in Theorem 7 says that f is given uniquely at all continuity points
by g and the value sup{z ∈ R;h(z)< 1}.
Theorem 8. Let ( f ,g,h) be an admissible triple of functions. Let ẽ ∈ ]0,1[ be fixed.
Then the ( f ,g,h)-implication fulfils (OPẽ) if and only if the following holds

1. functions f and g are strictly monotone,
2. functions f and g have the same continuity points in ]0,1[,
3. for all x ∈ ]0,1[ we have f (x)+ g(x)≥ sup{z ∈R;h(z)< ẽ},
4. for all continuity points of f and g in ]0,1[ we have

f (x)+ g(x) = sup{z ∈ R;h(z)< ẽ}. (5)

Remark 5. If ( f ,g,h) is an admissible triple of functions and h(0) = ẽ ∈ R then
formula (5) turns into

f (x) =−g(x).

for all continuity points of g. Particularly, for h(0) = ẽ the (−g,g,h)-implication
fulfils (OPẽ).

Now, we proceed to the Contrapositive Symmetry of ( f ,g,h)-implications. Con-
cerning (CP) we have just the following sufficient conditions.

Theorem 9. Let ( f ,g,h) be an admissible triple of functions and N : [0,1]→ [0,1]
be a fuzzy negation. Then the ( f ,g,h)-implication fulfils (CP) with respect to N if
one of the following conditions is satisfied:

• N is strong and for all x ∈ [0,1] we have f (x) = g(N(x)).
• There exists a set of disjoint sub-intervals of [0,1] denoted by

J = {J1,J2,J3, . . . ,Jn, . . .}

such that each Ji ∈J is an interval of constantness of g. Further, for all x∈ [0,1]
we have f (x) = g(N(x)), and for N the following holds

1. N(N(x)) = x for all x /∈ ⋃
n Jn,

2. arbitrary Jn ∈J and x ∈ Jn yield N(N(x)) ∈ Jn.

Finally, we finish our overview of properties of ( f ,g,h)-implications by the Law of
Importation and its weak version. Also in this case we have just a sufficient condi-
tion.

Theorem 10. Let f : [0,1]→ [0,∞] be an additive generator of a continuous t-norm
T , g : [0,1]→ [0,∞] be a continuous increasing function and h : [−∞,∞]→ [0,1]
be equal to h = g(−1). Moreover, assume that ( f ,g,h) is an admissible triple of
functions. Then the ( f ,g,h)-implication fulfils (LI) with respect to T .

Theorem 11. Let U : [0,1]2 → [0,1 be a representable conjunctive uninorm and
f : [0,1]→ [−∞,∞] be its decreasing generator. Further, let one of the following
conditions is fulfilled for functions g : [0,1]→ [−∞,∞] and h : [−∞,∞]→ [0,1] :
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1. g is a continuous and strictly increasing function with g(0)=−∞ and g(1)=∞,
and h = g−1,

2. g is an increasing function with g(0) = −∞ and g(1) = ∞, and h(−∞) = 0,
h(∞) = 1 and h(x) = c for x ∈ R, where c ∈ [0,1] is a constant.

Then ( f ,g,h) is an admissible triple of functions and the ( f ,g,h)-implication fulfils
(LI) with respect to U.

In fact, the ( f ,g,h)-implication in Theorem 11, where g,h fulfil condition 1, is a
(Ũ ,N)-implication. Ũ is a representable uninorm whose generator is g and N is
a strict fuzzy negation such that f (N(x)) = g(x). Since the generator of U from
Theorem 11 is f , we may have U �= Ũ .

As a generalisation of Theorems 10 and 11 we get the following.

Theorem 12. Let f : [0,1]→ [−∞,∞] be a decreasing function, g : [0,1]→ [−∞,∞]
be an increasing function. Let they fulfil the following conditions:

• f is continuous in ]0,1[ and g is continuous in [0,1[,
• lim

x→0+
f (x)+ g(0)≥ lim

y→1−
g(y),

• either f (1)≥ 0 and g(0)≥ 0, or

lim
x→1−

( f (x)+ g(x))≤ lim
y→0+

g(y) and f (1)+ g(1)≥ lim
y→1−

g(y).

Further, let F : [0,1]2 → [0,1] be a commutative operation given by
F(x,y) = f (−1)( f (x) + f (y)) and h : [−∞,∞]→ [0,1] be equal to h = g(−1). As-
sume that ( f ,g,h) is an admissible triple of functions. Then the ( f ,g,h)-implication
fulfils (WLI) with respect to F.

3 Conclusion

In this paper we have studied properties of fuzzy implications generated via a triple
of monotone functions ( f ,g,h). By means of Examples 2 and 3 we have shown re-
lationships between ( f ,g,h)-implications and other known types of generated fuzzy
implications.
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A Generalization of a Characterization Theorem
of Restricted Equivalence Functions

Eduardo Palmeira, Benjamín Bedregal, and Humberto Bustince

Abstract. Fodor and Roubens’ equivalence functions (for short EF) are mapping
normally used for making a comparison between images by means it can be used
for measuring the similarity of images. So, having a suitable way to construct these
functions is very important. In these sense, we present in this work a character-
ization theorem for restricted equivalence functions (a particular case of EF) us-
ing aggregation functions which is able to describe them from implications and
vice-versa. We also present similar results for restricted dissimilarity functions and
normal Ee,N-functions.

1 Introdution

On image processing, a very studied problem is providing a suitable measure for
making a global comparison of images [13, 14, 20, 23]. In this framework, Bustince
et al. introduced in [7] the notion of restricted equivalence functions on [0,1] (for
short REF) as a particular case of equivalence functions defined by J. Fodor and
M. Roubens in [15]. In [7] it is also presented a theorem that characterizes REF via
implications, i.e. a way to construct these kind of functions using fuzzy implications.
Also, Bustince et al. in [8] provided the notions of restricted dissimilarity functions
and normal EN-functions other ways to make comparison between images.
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The main objectives of this work are: (1) provide a generalization of Theorem 7
of [7] for restricted equivalence functions using aggregation functions, (2) restricted
dissimilarity functions and normal Ee,N-functions.

This paper is organized as follows: In Section 2, we discuss about some concepts
related to fuzzy sets. In Subsection 2.1 we present the notion of fuzzy negations,
fuzzy implications in Subsection 2.2 and aggregation functions in Subsection 2.3.
Also in this framework, we present the notion of restricted equivalence functions on
[0,1] in Subsection 2.4, restricted dissimilarity functions in Subsection 2.5 and nor-
mal EN-functions in Subsection 2.6. Section 3 is divided in three subsections (3.1,
3.2 and 33) where we present the characterization theorem for restricted equiva-
lence functions, restricted dissimilarity functions and normal Ee,N-functions using
aggregation functions and some other related results.

2 Preliminaries

In this section we recall some known definitions and results related to fuzzy logic
which are important for us as a theoretical base. In the following two subsections we
discuss about fuzzy negations and implications valued on [0,1]. Also in the frame-
work of fuzzy sets, we present the concept of aggregation functions in Subsection
2.3. In the following subsections we recall the notion of restricted equivalence func-
tions, restricted dissimilarity functions and normal Ee,N-functions as proposed in
[7, 8]. Some elementary concepts are used here without being defined but for a
suitable formalization of them we recommend [11, 17, 18]

2.1 Fuzzy Negations

There are several ways to fuzzy negations as a generalization of classical concept
[17]. Here, we present that we believe be the most general possible definition of it.

Definition 1. A mapping N : [0,1]→ [0,1] is a fuzzy negation on [0,1], if the fol-
lowing properties are satisfied for each x,y ∈ [0,1]:
(N1) N(0) = 1 and N(1) = 0 and
(N2) If x 	 y then N(y) 	 N(x).
Moreover, negation N is called strong if it also satisfies the involution property, i.e.
(N3) N(N(x)) = x for each x ∈ [0,1].
N is strict if it is continuous and satisfies the property:
(N4) N(x) < N(y) whenever y < x,
and N is called frontier if satisfies the property:
(N5) N(x) ∈ {0,1} if and only if x = 0 or x = 1.

Some important and very known facts from the literature that we would like to point
out here are the following:

• Every strong negation is strict but the converse is not true in general. A
contra-example for this is negation N(x) = 1− x2;
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• N = N−1 whereas N is a strong fuzzy negation;
• Every point e ∈ [0,1] such that N(e) = e is called an equilibrium point of nega-

tion N.

Remark 1. Klir and Yuan have proved in [19] that all fuzzy negation has at most an
equilibrium point and hence if a fuzzy negation N has an equilibrium point then it
is unique. Also, it is important to point out that every continuous negation has an
equilibrium point. In [4] one can see an example showing that there is a negation
with no equilibrium point, namely

N⊥(x) =
{

0 i f x > 0
1 i f x = 0

Proposition 1. [4] Let N1 and N2 be fuzzy negations such that N1 	 N2. If e1 and e2

are equilibrium points of N1 and N2 respectively then e1 	 e2.

2.2 Fuzzy Implications

There are several ways to define fuzzy implication as one can see in the literature
[1, 2, 5, 9, 15, 21, 24]. We consider here the notion of implication proposed in [15]
by Fodor and Roubens.

Definition 2. A function I : [0,1]× [0,1]−→ [0,1] is a fuzzy implication if for each
x,y,z ∈ [0,1] the following properties hold:

1. First place antitonicity (FPA): if x 	 y then I(y,z) 	 I(x,z);
2. Second place isotonicity (SPI): if y 	 z then I(x,y)	 I(x,z);
3. Left boundary condition (LB): I(0,y) = 1;
4. Right boundary condition (RB) I(x,1) = 1;
5. Corner condition 3 (CC3): I(1,0) = 0.

Example 1. Functions I⊥, I. : [0,1]× [0,1]→ [0,1] given by

I⊥(x,y) =
{

1, i f x = 0 or y = 1;
0, otherwise.

and

I.(x,y) =
{

0, i f x = 1 and y = 0;
1, otherwise.

for all x,y ∈ [0,1] are fuzzy implications.

Consider also the following properties of an implication I:
(CC1): I(0,0) = 1 (corner condition 1);
(CC2): I(1,1) = 1 (corner condition 2);
(CC4) I(0,1) = 1 (corner condition 4);
(NP) I(1,y) = y for each y ∈ [0,1] (left neutrality principle);
(EP) I(x, I(y,z)) = I(y, I(x,z)) for all x,y,z ∈ [0,1] (exchange principle);
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(IP) I(x,x) = 1 for each x ∈ [0,1] (identity principle);
(OP) I(x,y) = 1 if and only if x 	 y (ordering property);
(IBL) I(x, I(x,y)) = I(x,y) for all x,y,z ∈ [0,1] (iterative Boolean law);
(CP) I(x,y) = I(N(y),N(x)) for each x,y ∈ [0,1] with N a fuzzy negation (contrapo-
sition law);
(P) I(x,y) = 0 if and only if x = 1 and y = 0 (Positivety);
(SN) I(x,0) = N(x) is a strong negation;
(SI) I(x,y)
 y for all x,y ∈ [0,1];
(C) I is a continuous function (continuity).

Lemma 1. [9] Let I : [0,1]× [0,1]→ [0,1] be a function. Then

(i) if I satisfies (SPI) and (CC1) then I satisfies (LB);
(ii) if I satisfies (FPA) and (CC2) then I satisfies (RB);
(iii) if I satisfies (FPA) and (CP) then I satisfies (SPI);
(iv) if I satisfies (SPI) and (CP) then I satisfies (FPA);
(v) if I satisfies (LB) and (CP) then I satisfies (RB);
(vi) if I satisfies (RB) and (CP) then I satisfies (LB);
(vii) if I satisfies (NP) and (CP) then I satisfies (SN);
(viii) if I satisfies (SN) and (CP) then I satisfies (NP);
(ix) if I satisfies (SPI) and (SN) then I satisfies (LB);
(x) if I satisfies (FPA) and (NP) then I satisfies (SI);
(xi) if I satisfies (EP) and (SN) then I satisfies (CP);
(xii) if I satisfies (FPA), (NP) and (CP) then I satisfies (SPI), (LB), (RB), (CC3),
(SN) and (SI);
(xiii) if I satisfies (SPI), (EP) and (OP) then I satisfies (FPA), (LB), (RB), (CC3),
(NP), (SI) and (IP).

Lemma 2. [9] Let I : [0,1]× [0,1]→ [0,1] be any function satisfying at least one of
following items:

(i) If I satisfies (SPI), (NP) and (SN), or
(ii) If I satisfies (FPA), (NP) and (SN), or
(iii) If I satisfies (RB), (EP), (SN) and (IP), or
(iv) If I satisfies (NP), (EP), (SN) and I(x,x) = I(0,x) for all x ∈ [0,1],

then I satisfies (P).

2.3 Aggregation Functions

As fuzzy implications, aggregation functions have more than one different way to
be defined due to there is no consensus about the axioms that must be demanded
from such operators [6, 12, 16]. We consider here the definition that does not go
against the arithmetic mean.

Definition 3. A function M :
⋃

n∈N[0,1]n → [0,1] for some n 
 2 is called an aggre-
gation function if it satisfies the following properties:
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(A1) M(x1, . . . ,xn) = 0 if and only if xi = 0 for all i ∈ {1,2, . . . ,n};
(A2) M(x1, . . . ,xn) = 1 if and only if xi = 1 for all i ∈ {1,2, . . . ,n};
(A3) For any pairs (x1, . . . ,xn) and (y1, . . . ,yn) of elements of [0,1]n, if xi 	 yi for
all i ∈ {1,2, . . . ,n} then M(x1, . . . ,xn)	 M(y1, . . . ,yn);
(A4) M(x1, . . . ,xn)	 M(xp(1), . . . ,xp(n)) for any permutation p on {1,2, . . . ,n}.

Moreover, if M satisfies
(A5) M(x1, . . . ,xn)< M(y1, . . . ,yn) whenever xi < yi for all i ∈ {1,2, . . . ,n}.

For n = 2, if M satisfies
(A6) M(x,y) = M(y,x) it is called commutative.

An element e ∈ [0,1] is a neutral element of M if it satisfies
(A7) For all x ∈ [0,1]

M(x,e) = M(e,x) = x.

Example 2. If P = [0,1]2 then functions R,L : Pn → P defined by

R((x1,y1), . . . ,(xn,yn)) = (min(x1, . . . ,xn),min(y1, . . . ,yn))

and
L((x1,y1), . . . ,(xn,yn)) = (max(x1, . . . ,xn),max(y1, . . . ,yn))

are n-ary aggregation functions on P.

2.4 Restricted Equivalence Functions

In image processing equivalences are usually considered to make a comparison be-
tween two images. One of the most known equivalences was proposed by Fodor and
Roubens in [15].

Definition 4. A function EF : [0,1]2 → [0,1] is called an equivalence if it satisfies
the following conditions:

1. EF(x,y) = EF(y,x) for all x,y ∈ [0,1];
2. EF(0,1) = EF(1,0) = 0;
3. EF(x,x) = 1 for all x ∈ [0,1];
4. If x 	 y 	 z 	 t then EF(x, t)	 EF(y,z).

But, equivalence functions as in Definition 4 do not allow us to ensure that only
(0,1) and (1,0) are assigned to 0, i.e. could exist a pair x,y∈ [0,1]−{0,1} such that
EF(x,y) = 0. This is a disadvantage for comparing images since it can not ensured
that just an image (in black and white) and its negative must be measured as zero. In
order to eliminate this problem and others, Bustince et al. in [7] redefined (on [0,1])
Fodor and Roubens’ equivalence function adding some constraints as follows.

Definition 5. Let N be a strong negation on [0,1]. A function REF : [0,1]2 → [0,1]
is called a restricted equivalence function with respect to N if it satisfies, for all
x,y,z ∈ [0,1], the following conditions:
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(L1) REF(x,y) = REF(y,x);
(L2) REF(x,y) = 1 if and only if x = y;
(L3) REF(x,y) = 0 if and only if either x = 1 and y = 0 or x = 0 and y = 1;
(L4) REF(x,y) = REF(N(x),N(y));
(L5) if x 	 y 	 z then REF(x,z) 	 REF(x,y).

Example 3. [7] Considering negation N : [0,1]→ [0,1] given by N(x) = 1− x, then
function REF(x,y) = 1−|x− y| is a restricted equivalence function.

Theorem 1. [7] Every restricted equivalence function is an equivalence function in
the sense of Definition 4.

The following theorem describe a characterization of restricted equivalence func-
tions by implications proved by H. Bustince et al. in [7].

Theorem 2. A function REF : [0,1]2 → [0,1] is a restricted equivalence function
(with respect to a strong negation N) if and only if there exists a function I : [0,1]2→
[0,1] satisfying (FPA), (OP), (CP) and (P) such that

REF(x,y) = I(x,y)∧ I(y,x) (1)

2.5 Restricted Dissimilarity Functions

In literature, there are some ways to define functions to measure similarity or dissim-
ilarity between two images. Bustince et al. in [10] provided the notion of restricted
dissimilarity functions based on error metric for images proposed by [3].

Definition 6. A function d : [0,1]2 → [0,1] is called a restricted dissimilarity func-
tion (for short RDF) if it satisfies, for all x,y,z ∈ [0,1], the following conditions:
(D1) d(x,y) = d(y,x);
(D2) d(x,y) = 1 if and only if either x = 1 and y = 0 or x = 0 and y = 1;
(D3) d(x,y) = 0 if and only if x = y;
(D4) if x 	 y 	 z then d(x,y)	 d(x,z) and d(y,z)	 d(x,z).

Theorem 3. [8] Let REF : [0,1]2 → [0,1] be a restricted equivalence function with
respect to negation N. If N′ a strong negation (not necessarily equal to N) then, the
function defined by

d(x,y) = N′(REF(x,y)) f or all x,y ∈ [0,1] (2)

is a restricted dissimilarity function.

Corollary 1. Under the same conditions of Theorem 3, it holds that

d(x,y) = d(N(x),N(y)) f or all x,y ∈ [0,1]. (3)

Proof. Straightforward from Theorem 3 and (L4). �
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2.6 Normal Ee,N-functions

Definition 7. [8] Let e be an equilibrium point of a strong negation N. A function
Ee,N : [0,1]→ [0,1] is called a normal Ee,N-function associated to N if it satisfies the
following conditions:

1. Ee,N(x) = 1 if and only if x = e;
2. Ee,N(x) = 0 if and only if x = 0 or x = 1;
3. For all x,y∈ [0,1] such that either e	 x 	 y or y	 x 	 e it follows Ee,N(y)	

Ee,N(x);
4. Ee,N(x) = Ee,N(N(x)) for all x ∈ [0,1].

Theorem 4. [7] Let N be a strong negation and e be an equilibrium point of N. If
REF : [0,1]2 → [0,1] is a restricted equivalence function then the function given by

Ee,N(x) = REF(x,N(x)) (4)

for all x ∈ [0,1] is a normal Ee,N-function.

Corollary 2. If d is a restricted dissimilarity function then the function given by
Ee,N(x) = N(d(x,N(x))), for all x,y ∈ [0,1], is a normal Ee,N-function.

3 Characterization Theorem

In the framework of images defining a precise way to compare two images is a very
studied issue. As we have seen in Section 2.4 restricted equivalence functions play
an important role in this issue making a suitable measure on similarity of images.
But it is not so easy to define these functions and hence having a general way to
construct them from other more known function constitute a very important tool for
providing them.

In this sense, Bustince et al. in [7] proposed a characterization theorem where
they describe a way to construct restricted equivalence functions from implications
and vice-versa using operator ∧ of [0,1] (see Theorem 2). Here, we present a gener-
alization of this theorem using aggregation functions instead of ∧. Also, we present
generalizations of characterization theorems for restricted dissimilarity functions
and normal Ee,N-functions.

3.1 For Restricted Equivalence Functions

Proposition 2. Let M : [0,1]2 → [0,1] be a function satisfying (A1), (A2), (A6) and
(A7). Then, a function REF : [0,1]2→ [0,1] is a restricted equivalence function (with
respect to a strong negation N) if and only if there exists a function I : [0,1]2→ [0,1]
satisfying (FPA), (OP), (CP) and (P) such that

REF(x,y) = M(I(x,y), I(y,x)). (5)
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Proof. (Necessity)
Suppose that REF is a restricted equivalence function and define the function I :
[0,1]2 → [0,1] by

I(x,y) =

{
1 , x≤ y

REF(x,y) , x > y

First, we will prove that REF(x,y) = M(I(x,y), I(y,x)) for all x,y ∈ [0,1]. In this
case, we have three possibilities:

1. If x = y then I(x,y) = I(y,x) = 1 by (OP). Thus REF(x,y) = 1 = M(1,1)
= M(I(x,y), I(y,x)).

2. Now, suppose that x < y. Then by (OP) I(x,y) = 1 and by (A7) M(I(x,y),
I(y,x))= I(y,x). Hence REF(x,y)=REF(y,x)= I(y,x)=M(I(x,y), I(y,x)).

3. Finally, if x > y then I(y,x) = 1. Again by (A7) we have M(I(x,y), I(y,x)) =
I(x,y) that implies REF(x,y) = M(I(x,y), I(y,x)).

It remains to prove that properties (FPA), (OP), (CP) and (P) hold.

• (FPA)
Let x,y,z ∈ [0,1] such that x≤ z. Again, we have three possibilities:
(i) y < x≤ z
In this case, REF(y,x)≥REF(y,z) by (L5) and hence REF(x,y)≥REF(z,y)
by (1). Since I(x,y) = REF(x,y) and I(z,y) = REF(z,y) it follows that
I(x,y)≥ I(z,y).
(ii) x≤ y < z
According to definition of I we have that I(x,y) = 1 and I(z,y) = REF(z,y).
Hence I(x,y)≥ I(z,y).
(iii) x≤ z≤ y
Again by definition of I it follows that I(x,y) = 1 and I(z,y) = 1. Thus
I(x,y) = I(z,y).
Therefore, by (i), (ii) and (iii) it can be concluded that I(x,y) ≥ I(z,y) with
x≤ z.

• (OP)
If x≤ y then I(x,y) = 1 by definition of I.
Reciprocally, suppose that I(x,y)= 1. Thus either x≤ y or x> y and REF(x,y)
= 1. But, in the second case we have a contradiction since REF(x,y) = 1 if
and only if x = y. Hence x≤ y.

• (CP)
By definition of I we have

I(N(y),N(x)) =

{
1, N(y)≤ N(x)

REF(N(y),N(x)), N(y)> N(x)
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=

{
1, x≤ y

REF(x,y), x > y

= I(x,y)
• (P)

Suppose that x = 1 and y = 0. Thus x > y and hence I(x,y) = REF(x,y) = 0.
Reciprocally if I(x,y) = 0 then x > y and REF(x,y) = 0 that implies x = 1
and y = 0.

(Sufficiency) Straightforward from Theorem 7 in [7] �

3.2 For Restricted Dissimilarity Functions

Lemma 3. Let G : [0,1]2 → [0,1] be a function satisfying for all x,y ∈ [0,1]
(G1) G(x,y) = G(y,x);
(G2) G(x,0) = x;
(G3) G(x,1) = 1.
Thus, if N is a strong negation then the function M : [0,1]2→ [0,1] given by M(x,y)=
N(G(N(x),N(y))) satisfies (A2), (A6) and (A7). Moreover, the following equation
holds:

N(M(x,y)) = M(N(x),N(y)). (6)

Proof. It is easy to see that property (A2) and equation (6) hold (since N is involu-
tive). It remains to prove (A6) and (A7). In other words, we shall prove that 1 is a
neutral element and 0 is a annihilator of M. Thus, for all x ∈ [0,1], we have

M(x,1) = N(G(N(x),N(1))) = N(G(N(x),0)) = N(N(x)) = x

and
M(x,0) = N(G(N(x),N(0))) = N(G(N(x),1)) = N(1) = 0.

�

The following theorem is a generalization of characterization of restricted dissimi-
larity proposed in [8] (see Theorem 6).

Theorem 5. Let G : [0,1]2 → [0,1] be a function satisfying (G1), (G2) and (G3).
Given a function d : [0,1]2 → [0,1], if there exists a function I : [0,1]2 → [0,1]
for which the properties (FPA), (OP), (CP) and (P) hold and such that d(x,y) =
G(N(I(x,y)),N(I(y,x))) for all x,y ∈ [0,1], then d is a restricted dissimilarity func-
tion satisfying equation (3).

Proof. Given G satisfying properties (G1), (G2) and (G3) by Lemma 3 the function
M : [0,1]2 → [0,1] defined by M(x,y) = N(G(N(x),N(y))) for all x,y ∈ [0,1] is
such that (A2), (A6) and (A7) hold. Thus, since I is a function satisfying (FPA),
(OP), (CP) and (P) then by Theorem 2 a function REF : [0,1]2 → [0,1] given by
REF(x,y) =M(I(x,y), I(y,x)) for all x,y∈ [0,1] is a restricted equivalence function.

Moreover,
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REF(x,y) = M(I(x,y), I(y,x))
= N(G(N(I(x,y)),N(I(y,x))))
= N(d(x,y)).

Since N is involutive then d(x,y) = N(REF(x,y)) and hence by Theorem 3 we can
affirm that d is a restricted dissimilarity function. Also, it is clear that d satisfies
equation (3). �

3.3 For Normal Ee,N-Functions

Theorem 6. Let M : [0,1]2 → [0,1] a function satisfying (A2), (A6) and (A7). If
I : [0,1]2 → [0,1] satisfies (FPA), (OP), (CP) and (P) then

Ee,N(x) = M(I(x,N(x)), I(N(x),x))

for all x ∈ [0,1] is a normal Ee,N-function.

Proof. By Theorem 2 we know that REF(x,y) =M(I(x,y), I(y,x)) for all x,y∈ [0,1]
is a restricted equivalence function. Thus

Ee,N(x) = REF(x,N(x)) = M(I(x,N(x)), I(N(x),x))

is a normal Ee,N-function by Theorem 4. �

Corollary 3. Let e be an equilibrium point of the strong negation N. Under the
same conditions of Theorem 6, we have Ee,N(x) = I(x,N(x)) for all x ∈ [0,1] such
that e 	 x.

Proof. If e 	 x then N(x) 	 N(e) and hence N(x) 	 e 	 x since N(e) = e. Thus by
(OP) we have that I(N(x),x) = 1. Therefore Ee,N(x) = M(I(x,N(x)), I(N(x),x)) =
M(I(x,N(x)),1) = I(x,N(x)) by Theorem 6 and (A6). �

4 Final Remarks

In this paper we have presented a generalization of characterization theorem (The-
orem 7 of [7]) for restricted equivalence functions using aggregation functions and
some related results for restricted dissimilarity functions and normal Ee,N-functions.
The main advantage of this is that we can built REF’s in a much more general way
since different aggregation functions can be considered.

As a consequence of results presented here we have worked on a version of The-
orem 2 for restricted equivalence functions on bounded lattices (also for Theorems
5 and 6) and the resulting paper will be submitted to an important journal in this
area soon (see [22]).

For further works we have the interest of studying generalized versions of results
presented in [10] about restricted dissimilarity functions and penalty functions.
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Integrals



Some New Definitions of Indicators for the
Choquet Integral

Jaume Belles-Sampera, José M. Merigó, and Miguel Santolino

Abstract. Aggregation operators are broadly used in decision making problems.
These operators are often characterized by indicators. Numerous of these aggrega-
tion operators may be represented by means of the Choquet integral. In this arti-
cle four different indicators usually associated to the ordered weighted averaging
(OWA) operator are extended to the Choquet integral. In particular, we propose the
extensions of the degree of balance, the divergence, the variance indicator and Rényi
entropies. Indicators for the weighted ordered weighted averaging (WOWA) opera-
tor are derived to illustrate the application of results. Finally, an example is provided
to show main contributions.

1 Introduction

Aggregation operators are broadly used to summarize information in decision mak-
ing [1, 6, 18]. The ordered weighted averaging (OWA) operator [19] is one of the
most extensively analyzed aggregation operator [23]. The OWA operator is com-
monly assessed by means of indicators that characterize the weighting vector of the
operator. Initially, Yager [19] introduced the orness/andness indicators and the en-
tropy of dispersion for this purpose. After that, he suggested additional indicators
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in order to cover exceptional situations that cannot be correctly characterized with
the degree of orness and the entropy of dispersion. In particular, he suggested the
balance indicator [20] and the divergence [22]. Other authors have also considered
this issue such as Fullér and Majlender [4] that suggested the use of a variance in-
dicator and Majlender [9] that presented the Rényi entropy [13] for OWA operators
as a generalization of their Shannon entropy [14].

The OWA operator may be represented as a Choquet integral [5, 7]. The Cho-
quet integral [3] is linked to non-additive measures. A wide range of aggregation
operators may be represented by means of this type of integral. Some of the indica-
tors traditionally associated to OWA operators have been extended to the Choquet
integral. For example, Marichal [11] and Grabisch et al [6] presented several types
of degree of orness indicators: specifically for the Choquet integral the former, for
general aggregation functions the latter. As well, Yager [21], Marichal [10] and Ko-
jadinovic et al [8] studied the entropy of dispersion in the framework of the Choquet
integral. However, up to the best of our knowledge, some of those indicators are not
yet defined at the Choquet aggregation level.

The aim of this article is to extend four indicators for the characterization of the
Choquet Integral. In particular, we develop extensions of the degree of balance, the
divergence, the variance indicator and Rényi entropies to characterize the Choquet
integral. The weighted ordered weighted averaging (WOWA) operator introduced
by Torra [15] may be understood as a particular case of the Choquet integral (see
Theorem 4, page 3 in Torra [16]). Indicators for characterizing the WOWA opera-
tor are derived to illustrate the application of results. Finally, a fictitious example
is developed to show how these extended indicators may be computed and inter-
preted. The additional information provided by these indicators to decision makers
is highlighted.

This paper is organized as follows. In section 2 the Choquet integral is briefly
reviewed and the four extended indicators for characterizing the Choquet integral
are shown. The indicators inherited by the WOWA operator understood as a Choquet
integral are provided in section 3. In section 4 an illustrative example is provided.
Finally, main conclusions are summarized in section 5.

2 Indicators for the Choquet Integral

A brief explanation of the Choquet integral is provided in this section and different
indicators associated to OWA operators are extended to the Choquet integral. In
particular, we suggest generalizations of the degree of balance, the divergence, the
variance indicator and Rényi entropies to characterize the Choquet integral.

2.1 The Choquet Integral

A definition of capacity is needed as a first step. Let N = {1, ...,n} be a finite set
and 2N =℘(N) be the set of all subsets of N. A capacity on N is a mapping from
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2N to [0,1] which satisfies that μ ( /0) = 0 and that if A ⊆ B then μ (A) ≤ μ (B), for
any A,B ∈ 2N (monotonicity).

If μ is a capacity such that μ (N) = 1, then we say that μ satisfies normalization.
A capacity μ is additive1 if μ (A∪B)+μ (A∩B) = μ (A)+μ (B) for any A,B⊆ N.
A capacity μ is symmetric if μ (A) = μ (B) for all A,B with the same cardinality
(i.e., |A|= |B|).

Let μ be a capacity on N, and f : N → [0,+∞) be a function. Let σ be a per-
mutation of (1, ...,n), such that f (σ (1)) ≤ f (σ (2)) ≤ ... ≤ f (σ (n)) and Aσ ,i =
{σ (i) , ...,σ (n)}, with Aσ ,n+1 = /0. The Choquet integral of f with respect to μ is
defined as

Cμ ( f ) :=
n

∑
i=1

f (σ (i)) (μ (Aσ ,i)− μ (Aσ ,i+1)) . (1)

Extensions to real functions may be found in the literature [12]. We follow the
asymmetric extension which is formulated as in expression (1) but taking into ac-
count that the domain of f is (−∞,+∞).

2.2 Extended Indicators

Extensions of the degree of balance, the divergence, the variance indicator and Rényi
entropies to the Choquet integral are suggested in this section. These extensions
satisfy that when the capacity μ linked to the Choquet integral Cμ is symmetric and
normalized, then the indicators for Cμ coincide with the respective indicators for
OWA (see, for more details, Belles-Sampera et al [2]).

The following notation will be used. If μ is a capacity on N, then

S
μ
i :=

(
n
i

)−1

∑
A⊆N
|A|=i

μ (A) .

Degree of Balance

The concept of degree of balance for an OWA operator was introduced by Yager
[20]. As the degree of orness introduced by Yager [19], the degree of balance mea-
sures the grade of favoring the lower-valued elements or the higher-valued ones
when the weighting vector is applied. We suggest the expression (2) for the degree
of balance indicator associated to the Choquet integral2. Note that the degree of bal-
ance introduced by Yager [20] was ranged in [−1,1]. Here, the degree of balance is

1 It is usual to present the additivity property as follows: μ (A∪B) = μ (A)+ μ (B) for any
pair of disjoint subsets A and B of N. It has to be noted that the way in which we present
the additivity property contains the preceding one as a particular case.

2 This definition requires of the extension of the degree of orness to the Choquet integral

due to Marichal [11], which has the following expression: ωωω
(
Cμ

)
=

1
n−1

n−1

∑
i=1

[
S
μ
i

]
.
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defined for any interval [a,b]⊆ R where b > a.

Bal[a,b]
(
Cμ

)
:= (b− a)ωωω

(
Cμ

)
+ μ (N)a, (2)

Note that the definition (2) is a linear transformation of the degree of ornessωωω
(
Cμ

)
.

In particular, Bal[0,1]
(
Cμ

)
= ωωω

(
Cμ

)
.

Divergence Indicator

The divergence indicator of an OWA operator was introduced by Yager [22]. This
indicator complements the characterization of the OWA�w operator, especially in
situations where the degree of orness and the dispersion indicator would not be
enough for characterizing a weighting vector �w, as stated by Yager [22]. To define
the divergence indicator for a Choquet integral Div

(
Cμ

)
, previously the ascend-

ing quadratic weighted additive (AQWA) capacity has to be introduced as it was in
Belles-Sampera et al [2].

Definition 1 (AQWA capacity). Let μ be a capacity on N = {1, ...,n}. The ascend-
ing quadratic weighted additive (AQWA) capacity linked to μ is an additive capacity
η on N defined by

(i) η ({ j}) :=
6( j− 1)2

(n− 1)n(2n− 1)

[
S
μ
n− j+1−S

μ
n− j

]
, for all j = 1, ..,n;

(ii) η (A) := ∑
k∈A

η ({k}); and η ( /0) := 0.

Proof that η is a capacity on N is provided by Belles-Sampera et al [2].
The definition of the divergence indicator for a discrete Choquet integral is as

follows:

Div
(
Cμ

)
:=

n(2n− 1)
3(n− 1)

ωωω(Cη )− [2− μ (N)]ωωω2(Cμ). (3)

The divergence indicator provides information related to the mean variability around
the degree of orness of any input value to be aggregated. In other words, the value
of the divergence indicator is associated to how the aggregation function returns
scattered values around the one linked to the degree of orness. That means that, the
larger the global divergence is, the weaker the effect of the degree of orness in the
aggregation process is.

Proposition 1. Definition (3) is equivalent to

Div
(
Cμ

)
=

n

∑
i=1

(
i− 1
n− 1

−ωωω(Cμ)
)2 [

S
μ
n−i+1−S

μ
n−i

]
. (4)

Proof. First of all, note that expression (4) can be written as
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Div
(
Cμ

)
=

n

∑
i=1

(
i− 1
n− 1

)2 [
S
μ
n−i+1−S

μ
n−i

]
−2ωωω(Cμ)

n

∑
i=1

(
i− 1
n− 1

)[
S
μ
n−i+1−S

μ
n−i

]
+ωωω(Cμ)2μ (N) .

Therefore, to prove the proposition it is enough to check the following:

(i) ωωω(Cη ) =
3(n− 1)
n(2n− 1)

n

∑
i=1

(
i− 1
n− 1

)2 [
S
μ
n−i+1−S

μ
n−i

]
; and

(ii) ωωω(Cμ) =
n

∑
i=1

(
i− 1
n− 1

)[
S
μ
n−i+1−S

μ
n−i

]
.

Let us see that item (i) is satisfied:

ωωω(Cη ) =
1

n− 1

n−1

∑
i=1

[
S
η
i

]
=

1
n− 1

n−1

∑
i=1

(
n
i

)−1

∑
A⊆N
|A|=i

∑
j∈A

η ({ j})

=
1

n− 1

n−1

∑
i=1

(
n
i

)−1

∑
A⊆N
|A|=i

∑
j∈A

6( j− 1)2

(n− 1)n(2n− 1)

⎡
⎢⎢⎢⎢⎣
∑

B⊆N
|B|=n− j+1

μ (B)

(
n

n− j+ 1

) −

∑
B⊆N

|B|=n− j

μ (B)

(
n

n− j

)
⎤
⎥⎥⎥⎥⎦

=
6

n(2n− 1)

n−1

∑
i=1

n

∑
j=1

(
j− 1
n− 1

)2
[(

n− 1
i− 1

)(
n
i

)−1

S
μ
n− j+1−

(
n− 1
i− 1

)(
n
i

)−1

S
μ
n− j

]

=
6

n(2n− 1)

n−1

∑
i=1

i
n

n

∑
j=1

(
j− 1
n− 1

)2 [
S
μ
n− j+1−S

μ
n− j

]

=
3(n− 1)

n(2n− 1)

n

∑
j=1

(
j− 1
n− 1

)2 [
S
μ
n− j+1−S

μ
n− j

]
.

Secondly, let us check item (ii):

ωωω(Cμ) =
1

n− 1

n−1

∑
i=1

[
S
μ
i

]
=

1
n− 1

n

∑
j=2

[
S
μ
n− j+1

]

=
n

∑
j=2

(
j− 1
n− 1

− j− 2
n− 1

)[
S
μ
n− j+1

]
=

n

∑
j=1

(
j− 1
n− 1

)[
S
μ
n− j+1−S

μ
n− j

]
.

Variance Indicator

Another indicator used to characterize the OWA�w operator is the variance indicator
introduced by Fullér and Majlender [4]. This indicator computes the variance of the
weighting vector �w considering each component equally probable. It has been used,
for instance, to determine the analytical expression of a minimum variability OWA
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operator. The variance indicator of a capacity linked to a Choquet integral may be
defined as

D2
(
Cμ

)
=

1
n

n

∑
i=1

[
S
μ
n−i+1−S

μ
n−i

]2− μ(N)2

n2 . (5)

Going a step forward, note that not only the uniform probability could be considered
as a distribution of the components wi of vector �w when computing the variance
indicator of an OWA�w. Therefore, if instead of the uniform distribution another one
is considered (denoted by pi, for all i = 1, ...,n) then an alternative extension for the
variance indicator to the Choquet integral level could be

D̂2
(
Cμ

)
=

(
n

∑
i=1

[
S
μ
n−i+1−S

μ
n−i

]2
pi

)

−
(

n

∑
i=1

[
S
μ
n−i+1−S

μ
n−i

]
pi

)2

,

(6)

a definition that includes as a particular case the D2
(
Cμ

)
defined before.

Rényi Entropies

Finally, alternative entropy measures than the dispersion may be used to characterize
the weighting vector. Generalizations of the Shannon entropy that could be used are
Rényi entropies [9, 13]. The Rényi entropy of degree α ∈ R\{1} for a Choquet
integral with respect to the capacity μ may be defined as

Hα
(
Cμ

)
=

1
1−α log2

(
n

∑
i=1

[
S
μ
n−i+1−S

μ
n−i

]α)
. (7)

3 WOWA Operator and Inherited Indicators

The WOWA operator is the aggregation function introduced by Torra [15]. This
operator unifies in the same formulation the weighted mean function and the OWA
operator in the following way3.

Definition 2 (WOWA operator). Let �v = (v1,v2, ...,vn) ∈ [0,1]n and
�q = (q1,q2, ...,qn) ∈ [0,1]n such that ∑n

i=1 vi = 1 and ∑n
i=1 qi = 1. The weighted

ordered weighted averaging (WOWA) operator with respect to�v and�q is a mapping
from R

n to R defined by

3 In the original definition �x components are in descending order, while we use ascending
order. More details on function h can be found in Torra and Lv [17].



Some New Definitions of Indicators for the Choquet Integral 473

WOWA�v,�q (x1,x2, ...,xn) :=
n

∑
i=1

xσ(i)

[
h

(
∑

j∈Aσ ,i

q j

)
− h

(
∑

j∈Aσ ,i+1

q j

)]
,

where σ is a permutation of (1,2, ...,n) such that xσ(1) ≤ xσ(2) ≤ ...≤ xσ(n), Aσ ,i =
{σ (i) , ...,σ (n)} and h : [0,1]→ [0,1] is a non-decreasing function such that h(0) :=

0 and h

(
i
n

)
:=

n

∑
j=n−i+1

v j; and if the points

(
i
n
,

n

∑
j=n−i+1

v j

)
lie on a straight line

then h is linear.

Note that this definition implies that weights vi can be expressed as

vi = h

(
n− i+ 1

n

)
− h

(
n− i

n

)
and that h(1) = 1.

Remark 1. The WOWA operator generalizes the OWA operator. Given a WOWA�v,�q
operator on R

n, if we define

wi := h

(
∑

j∈Aσ ,i

q j

)
− h

(
∑

j∈Aσ ,i+1

q j

)
,

and OWA�w where �w = (w1, ...,wn), then the following equality holds WOWA�v,�q =
OWA�w.

Using Theorem 4 from page 3 in Torra [16], any WOWA operator may be under-
stood as a Choquet integral. If particular weighting vectors �q and �v and
non-decreasing function h are those of the WOWA�v,�q operator under review, then
the Choquet integral that replicates that WOWA operator is the one linked to the

capacity μ such that μ (A) = h

(
∑
j∈A

q j

)
, for all A⊆ N.

Therefore indicators for the WOWA�v,�q operator may be defined as follows:
Bal[a,b](WOWA�v,�q) := Bal[a,b](Cμ), Div(WOWA�v,�q) :=Div(Cμ), D2(WOWA�v,�q) :=
D2(Cμ) and Hα(WOWA�v,�q) := Hα(Cμ).

4 Illustrative Example

In the following example two capacities are considered, κ and μ . The aim of this
example is to compute some of the proposed indicators for the Choquet integral with
respect to each one of these capacities. Both capacities are defined on N = {1,2,3}
as follows:

• κ ( /0) = 0, κ({1}) = κ({2}) = κ({3}) = 0.3, κ({1,2}) = κ({1,3}) =
κ({2,3}) = 0.85 and κ(N) = 1;

• μ ( /0) = 0, μ({1}) = 0.3, μ({2}) = 0.883333, μ({3}) = 0.6, μ({1,2}) = 1,
μ({1,3}) = 0.783333, μ({2,3}) = 1, and μ(N) = 1.
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Let us compute the degree of orness of Cκ and Cμ . As it can be shown,
ωωω (Cκ) = 0×0.15+0.5×0.55+1×1= 0.575 and ωωω

(
Cμ

)
= 0×0.072222+0.5×

0.333333+1×0.594444= 0.761111, so ωωω (Cκ ) �=ωωω
(
Cμ

)
and the Cμ aggregation

operator is going to generate aggregated values nearer the maximum of each input
data set than the Cκ operator.

Let us calculate the divergence indicator for Cκ and Cμ , too. AQWA capaci-
ties linked to κ and μ are determined by the following values: AQWAκ ({1}) =
0, AQWAκ ({2}) = 0.11 and AQWAκ ({3}) = 0.24; and AQWAμ ({1}) = 0,
AQWAμ ({2}) = 0.066667 and AQWAμ ({3}) = 0.475556. The degrees of orness
of these AQWA capacities are 0.175 and 0.271, respectively, and thus Div(Cκ ) =
0.106875 and Div

(
Cμ

)
= 0.098488. As long as a greater divergence produces a

more scattered aggregation, the first operator Cκ is going to generate more disperse
aggregated values around the value linked to the degree of orness.

Table 1 Values of several indicators regarding the example

Indicator Cκ Cμ AQWA - κ AQWA - μ
Degree of orness 0.575 0.76111 0.175 0.27111

Degree of balance [-1,1] 0.15 0.15 0 0
Divergence 0.106875 0.098488 0.095302 0.118777

Variance indicator 0.027222 0.045453 0 0
Rényi entropy (α = 1.5) 1.331768 1.154771 6.128682 4.234094

Some additional remarks can be made. For instance, Cκ is equivalent to an OWA
operator because κ is a symmetric and normalized capacity. In fact, Cκ is equiv-
alent to OWA�w with �w = (w1,w2,w3) = (0.15,0.55,0.3). It is easy to check that
ωωω (�w) = ωωω (Cκ ). Regarding Cμ , it is equivalent to a WOWA�v,�q operator. The par-
ticular vectors �v,�q and function h to obtain the equivalence are �v = (0,1/3,2/3),
�q = �w = (0.15,0.55,0.3) and

h(t) =

⎧⎨
⎩

2t i f 0≤ t < 1/3
t + 1/3 i f 1/3≤ t < 2/3
1 i f 2/3≤ t ≤ 1

Therefore, Table 1 shows the values of the indicators extended to the Choquet in-
tegral in two particular cases: when the Choquet integral corresponds to an OWA
operator and when it corresponds to a WOWA one.

5 Discussion and Conclusions

New indicators for the discrete Choquet integral have been presented. The aim of
these indicators is to complement the available ones in order to provide a more
complete formulation that covers a wide range of situations. The need for this arises
because sometimes the well-known degree of orness and the entropy of dispersion
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may not be enough. This paper has introduced the degree of balance, the divergence,
the variance indicator and Rényi entropies in the Choquet integral framework. It has
been shown that these indicators, commonly used for the OWA operator, can also be
considered under the Choquet aggregation. We claim that these indicators may be
easily computed for any aggregation operator that can be interpreted as a Choquet
integral. As an application, the indicators for the WOWA operator have been implic-
itly deduced. We discuss the potential of these indicators to provide supplementary
information to decision makers with the help of a numerical example.

We thought that the Choquet integral was an adequate starting point to investigate
extensions of these indicators from their original OWA context to more general ones,
but there is room for further research.
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Exponential Family of Level Dependent Choquet
Integral Based Class-Conditional Probability
Functions

Vicenç Torra and Yasuo Narukawa

Abstract. In a recent paper we introduced two new families of probability-density
functions. We introduced first the exponential family of Choquet integral based
class-conditional probability-density functions, and second the exponential family
of Choquet-Mahalanobis integral based class-conditional probability-density func-
tions. The latter being a generalization of the former, and also a generalization of
the normal distribution. In this paper we study some properties of these distributions
and define another generalization based on level-dependent Choquet integrals.

1 Introduction

Classification problems are often solved by means of the computation of the
maximum-a-posteriori (MAP) classification decision rule. This rule classifies a data
vector of a n-dimensional space (for example, x ∈ R

n) in one of Ω = {ω1, . . . ,ωk}
classes. When data in classes ωi ∈Ω are generated from Gaussian distributions fol-
lowing mean x̄i and covariance Σi, in such a way that P(ωi) = P(ω j) and Σi = Σ j,
the decision rule is equivalent to the Mahalanobis distance between x and the means
x̄i.

The Mahalanabis distance can be seen as a way to compute the distance between
the point x and the mean of this class. It can be considered as a multivariate analog
of the z-score [8]. Recall that the z-score of x is defined by the expression (x− x̄)/σ
where x̄ is the mean of the population and σ its standard deviation. Therefore, the
z-score is a dimensionless value that evaluates how far is x from the mean using
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as units the standard deviation. In other words, how many deviations is x from the
mean.

In a recent paper [7] we have introduced two new families of probability distri-
butions.

One was based on the Choquet integral [2]. In a way analogous to the normal
distribution that is related to the Mahalanobis distance, we introduced a distribution
that is related to a distance based on the Choquet integral. Both, the Mahalanobis
distance and the Choquet integral distance, permit us to take into account some in-
teractions between the variables. In the Mahalanobis distance the interactions are
represented in terms of a matrix (the covariance matrix) while in the Choquet inte-
gral distance the interactions are represented by means of a fuzzy measure.

The other distribution is to take into account both types of interactions. That is,
the one expressed in terms of the (covariance) matrix and the one expressed in terms
of the fuzzy measure.

We named the former measure the exponential family of Choquet integral based
class-conditional probability-density functions, and the second one the family of
Choquet-Mahalanobis integral based class-conditional probability-density functions.

In this paper we study some properties of these probability density functions
and we introduce another family of probability-density functions that generalize the
previous ones. These families are based on level-dependent Choquet integrals [3].

The structure of the paper is as follows. In Section 2, we review some preliminar-
ies needed in the rest of the paper. In Section 3, we introduce the new distributions,
and in Section 4 we present some of their properties. The paper finishes with some
conclusions.

2 Preliminaries

In this section we review the fuzzy integrals we need later on in this work. The sec-
tion begins with the notation. From a formal point of view, fuzzy integrals integrate
a function with respect to a fuzzy measure.

Let X = {x1, . . . ,xn} be a set, and let f : X → [0,1] be a function. Then, f (xi) is a
set of values. For simplicity, we also use ai := f (xi). Fuzzy integrals aggregate the
values f (xi) with respect to a fuzzy measure μ .

Definition 1. Let X = {x1, . . . ,xn} be a set; then, a set function μ : 2X → [0,∞) is a
fuzzy measure if it satisfies the following axioms:

(i) μ( /0) = 0 (boundary conditions)
(ii) A⊆ B implies μ(A)≤ μ(B) (monotonicity)

Definition 2. Let μ be a fuzzy measure on X ; then, the Choquet integral of a func-
tion f : X →R

+ with respect to the fuzzy measure μ is defined by

(C)
∫

f dμ =
n

∑
i=1

[ f (xs(i))− f (xs(i−1))]μ(As(i)), (1)



Exponential Family of Level Dependent Choquet Integral 479

where f (xs(i)) indicates that the indices have been permuted so that 0 ≤ f (xs(1)) ≤
·· · ≤ f (xs(n))≤ 1, and where f (xs(0)) = 0 and As(i) = {xs(i), . . . ,xs(n)}.

We also use the notation CIμ(a1, . . . ,an) to express the Choquet integral of ai :=
f (xi).

The Choquet integral can be formulated alternatively as:

CIμ( f ) =
∫ +∞

min({a1,...,an})
μ({xi ∈ X | f (xi)≥ t})dt +min({a1, . . . ,an}). (2)

2.1 Level Dependent Choquet Integral

Level dependent Choquet integrals integrate a function with respect to a set of fuzzy
measures. In short, we might have a different fuzzy measure for each level t in the
Choquet integral of Equation 2. We begin reviewing the definition of generalized
fuzzy measure as given by Greco, Matarazzo and Giove in [3].
Definition 3. [3] Let X = {x1, . . . ,xn} be a set. A generalized fuzzy measure is a
function μG : 2X × (α,β )→ [0,1], (α,β )⊆ R, such that

1. for all t ∈ (α,β ) and A⊆ B⊆ X , μG(A, t)≤ μG(B, t),
2. for all t ∈ (α,β ), μG( /0, t) = 0 and μG(N, t) = 1,
3. for all A⊆ X , μG(A, t) considered as a function with respect to t is Lebesgue

mesurable.

Definition 4. The generalized Choquet integral of a = (a1 = f (x1), . . . ,an = f (xn))
with a ∈ (α,β )n, (α,β )⊆R, with respect to the generalized capacity μG is defined
as follows:

CIG
μG(a) =

∫ max(a1,...,an)

min(a1,...,an)
μG(A(a, t), t)dt +min(a1, . . . ,an), (3)

where
A(a, t) = {xi ∈ X : ai ≥ t}.

For simplicity in applications, [3] introduce interval level dependent fuzzy measures
(capacities), and give a result that shows that the Choquet integral can be decom-
posed for this type of fuzzy measures into an addition of standard Choquet integrals.
See Theorem 3 in [3].

2.2 Choquet Integral Based Distributions

We defined in a recent paper [7] two distributions based on the Choquet integral.
We review below the first one. The other generalizes this one as well as the normal
distribution.

Definition 5. Let {Y1, . . . ,Yn} be a set of random variables describing data on a R
n

dimensional space. Let (α,β )⊆ R, and μ : 2Y → [0,1] a fuzzy measure.
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Let x̄ ∈ R
n be the mean of the random variables; then, the exponential family

of Choquet integral based class-conditional probability-density functions is defined
by:

P(x) =
1
K

e−
1
2 CIμ ((x−x̄)⊗(x−x̄))

where K is a constant that is defined so that the function is a probability, and
where v⊗w denotes the elementwise product of vectors v and w (i.e., (v⊗w) =
(v1w1 . . .vnwn)).

Although the definition of the density function needs the constant K, the exact value
of K is not rellevant in classification problems, or for studying the shape of the
distribution function. In any case, the K is the value such that:∫

x∈X
P(x) = 1

So, K should be defined by

K =

∫
x∈X

e−
1
2 CIμ ((x−x̄)⊗(x−x̄)).

3 A Probability Distribution with a Level-Dependent Choquet
Integral

In this section we introduce a new family of probability distributions using the
level-dependent Choquet integral. This new family is an extension of the one in
Definition 5 based on the Choquet integral.

Definition 6. Let {Y1, . . . ,Yn} be a set of random variables describing data on a R
n

dimensional space. Let (α,β )⊆R, and μG : 2Y×(α,β )→ [0,1] a generalized fuzzy
measure.

Let x̄ ∈ R
n be the mean of the random variables; then, the exponential family of

level dependent Choquet integral based class-conditional probability-density func-
tions is defined by:

P(x) =
1
K

e
− 1

2 CIG
μG ((x−x̄)⊗(x−x̄))

where K is a constant that should be defined so that the function is a probability,
and where v⊗w denotes the elementwise product of vectors v and w (i.e., (v⊗w) =
(v1w1 . . .vnwn)).

Although the definition of the density function needs the constant K, the exact value
of K is not rellevant in classification problems, or for studying the shape of the
distribution function. In any case, the K is the value such that:
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∫
x∈X

P(x) = 1

So, K should be defined by

K =

∫
x∈X

e
− 1

2 CIG
μG ((x−x̄)⊗(x−x̄))

Figure 1 displays two distributions based on the Choquet integral and another based
on the level dependent Choquet integral. Each one of the ones based on the Choquet
integral intensifies in one axis (on in the x Axis and the other in the y Axis). In
contrast, the one based on the level dependent Choquet integral has both intensifica-
tions but on different levels of the z Axis. This is due to the definition of the fuzzy
measure.

Lemma 1. The probability distribution defined in Definition 6 generalizes the prob-
ability distribution introduced in [7].

The same approach used in Definition 6 can be used to generalize the distribution
based on the Choquet-Mahalanobis integral. This latter distribution was based on an
operator that takes into account interactions expressed in terms of fuzzy measures
as well as in terms of covariance matrices.

4 Some Basic Properties of the Choquet Integral Based
Probability Distributions

In this section we study some properties of the probability distributions based on the
Choquet integral.

Proposition 1. Let P(x) with x ⊂ R
n be an exponential Choquet integral

probability-density function with mean x̄ = 0. Then, for any fuzzy measure μ , the
mean vector X̄ = [E[X1],E[X2], . . . ,E[Xn]] is zero (i.e., X̄ = [0,0, . . . ,0]) and Σ =
[Cov[Xi,Xj]] for i = 1, . . . ,n and j = 1, . . . ,n is zero for all i �= j and, thus, diagonal.

Proposition 2. Let P(x) with x⊂ R
n be an exponential Choquet-Mahalanobis inte-

gral probability-density function with mean x̄ = 0. Then, for any fuzzy measure μ
and any diagonal matrix Σ , the mean vector μ = [E[X1],E[X2], . . . ,E[Xn]] is zero
(i.e., μ = [0,0, . . . ,0]) and Σ = [Cov[Xi,Xj]] for i = 1, . . . ,n and j = 1, . . . ,n is zero
for all i �= j and thus, diagonal.

In the case that Σ is not diagonal and, thus, Σ(Xi,Xj) �= 0 for i �= j, we might have
Cov[Xi,Xj] �= 0. It is important to note that it is not at all required that Cov[Xi,Xj] =
Σ(Xi,Xj). The following example illustrates this fact.

Example 1. Let us consider the Choquet-Mahalanobis integral based distribution
with a fuzzy measure μ( /0) = 0, μ({x}) = 0.5, μ({y}) = 0.2, μ({x,y}) = 1 and
the matrix
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Fig. 1 On the top, two CI-based distributions. One with the measure μ1({x}) = 0.05 and
μ1({y}) = 0.95, and the other with μ2({x}) = 0.95 and μ2({y}) = 0.05. On the bottom, two
perspectives of the same level dependent Choquet integral-based distribution. This distribu-
tion is based on the same fuzzy measures μ1 and μ2 with intervals (0,3), (3,100). In the first
interval μ1 is used and in the second μ2.

Σ =

(
1 0.9

0.9 1

)
.

The covariance matrix of this distribution is:

Σ =

(
0.9548251 0.9262923
0.9262923 1.0293333

)
.

The correlation coefficient between the two variables is 0.9343469.

4.1 Normality Tests

There are several approaches [6] to check whether a distribution follows a multi-
variate normal distribution. One of them is Mardia’s test [5]. This test is based on
multivariate extensions of skewness and kurtosis. In particular, for the multivari-
ate skewness of a sample in a k dimensional space Mardia obtained the following
expression:
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b1,k =
1
n2

n

∑
i=1

n

∑
j=1

[(xi− x̄)′Σ̂ (xi− x̄)]3. (4)

In the case of the multivariate kurtosis, the expression obtained is the following one:

b2,k =
1
n

n

∑
i=1

[(xi− x̄)′Σ̂(xi− x̄)]2. (5)

Here, x̄ is the sample mean vector and Σ̂ is the covariance matrix. They correspond
to:

x̄ = (1/n)
n

∑
i=1

xi Σ̂ =
1
n

n

∑
i=1

(xi− x̄)(xi− x̄)T (6)

Then, when the distribution is a multivariate normal distribution (i.e., when the null
hypothesis holds), the expression

A = n ·b1,k/6

follows a chi-squared distribution with k(k+ 1)(k+ 2)/6 degrees of freedom, and
the expression

B =

√
n

8k(k+ 2)

(
b2,k− k(k+ 2)

)
follows a standard normal random variable N(0,1).

A preliminary analysis of the Mardia’s test on the Choquet integral based distri-
butions shows that at least some of these distributions pass the test for the skewness
statistic (i.e., A). We need to further study this normality test, taking also into ac-
count that there are some results in the literature that seem to indicate that this test
fails for some other distributions (see e.g. [1]). In addition, other normality tests
might be applied in this setting.

5 Conclusions

In this paper we have introduced a new probability distribution based on the level
dependent Choquet integral, and we have studied some properties for the distribu-
tion based on the Choquet integral.

As future work, we plan to further study the properties of this set of probabil-
ity distribution functions, and consider probabilities distributions constructed from
other transformations of the Choquet integral.
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Axiomatic Foundations of the Universal Integral
in Terms of Aggregation Functions and
Preference Relations

Salvatore Greco, Radko Mesiar, and Fabio Rindone�

Abstract. The concept of universal integral has been recently proposed in order to
generalize the Choquet, Shilkret and Sugeno integrals. We present two axiomatic
foundations of the universal integral. The first axiomatization is expressed in terms
of aggregation functions, while the second is expressed in terms of preference rela-
tions.

1 Basic Concepts

For the sake of simplicity in this note we present the result in a Multiple Criteria
Decision Making (MCDM) setting (for a state of art on MCDM see [2]). Let N =
{1, . . . ,n} be the set of criteria and let us identify the set of possible alternatives with
[0,1]n. For all E ⊆N, 1E is the vector of [0,1]n whose ith component equals 1 if i∈E
and equals 0 otherwise. For all x = (x1 . . . ,xn) ∈ [0,1]n, the set {i ∈ N | xi ≥ t} , t ∈
[0,1], is briefly indicated with {x≥ t}. For all x, y ∈ [0,1]n we say that x dominates
y and we write xxx1 yyy if xi ≥ yi, i = 1, . . . ,n. An aggregation function f : [0,1]n → R

is a function such that f (x) ≥ f (y) whenever x 1 y and infx∈[0,1]n f = f (1 /0) = 0,
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supx∈[0,1]n f = f (1N) = 1, [3]. Let A[0,1]n be the set of aggregation functions on
[0,1]n.
Let M denotes the set of all capacities m on N, i.e. for all m ∈M we have m : 2N →
[0,1] satisfying the following conditions:

• boundary conditions: m( /0) = 0,m(N) = 1;
• monotonicity: m(A)≤m(B) for all /0⊆ A⊆ B⊆ N.

A universal integral on N [4] is a function I : M× [0,1]n → [0,1] satisfying the
following properties:

(UI1) I is non-decreasing in each coordinate,
(UI2) there exists a pseudo-multiplication⊗ (i.e.⊗ : [0,1]2→ [0,1] is nondecreas-

ing in its two coordinates and⊗(c,1) =⊗(1,c) = c) such that for all m∈M,
c ∈ [0,1] and A⊆ N,

I(m,c1A) =⊗(c,m(A)),

(UI3) for all m1,m2 ∈ M and x,y ∈ [0,1]n, if m1({x ≥ t}) = m2({y ≥ t}) for all
t ∈]0,1], then I(m1,x) = I(m2,y).

Given a universal integral I with respect to the pseudomultiplication ⊗, we shall
write

I(m,x) =
∫

univ,⊗
x dm

for all m ∈M,x ∈ [0,1]n.
Suppose I(m,x) is a universal integral and consider m∗ ∈M then the Im∗ : [0,1]n →
[0,1] defined by Im∗(x) = I(m∗,x) for all x∈ [0,1]n, is an aggregation function. Thus
the universal integral I(m,x) can be viewed as a family of aggregations functions,
Im(x), one for each capacity m ∈M.

2 Axiomatic Foundation in Terms of Aggregation Functions

Consider a family F ⊆ A[0,1]n with F �= /0 and consider the following axioms on
F :

(A1) For all f1, f2 ∈F and x,y ∈ [0,1]n such that for all t ∈ [0,1]

f1
(
1{x≥t}

)≥ f2
(
1{y≥t}

)
,

then f1 (x)≥ f2 (y) ;
(A2) Every f ∈F is idempotent, i.e. for all c ∈ [0,1] and f ∈F ,

f (c ·1N) = c;

(A3) For all m ∈M there exists f ∈F such that f (1A) = m(A) for all A⊆ N.
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Observe that axioms (A1)− (A3) are independent as showed by the following ex-
amples, in which two of above axioms hold, but the remaining is not valid:

1) F is the set of all weighted averages on [0,1]n, i.e. for any f ∈ F there are
w1, . . . ,wn ∈ [0,1],∑n

i=1 wi = 1, such that f (x) = ∑n
i=1 wixi for all x ∈ [0,1]n: in

this case (A1) and (A2) are satisfied, but (A3) does not hold;
2) F is the set of all aggregation functions fm defined for all m ∈M and x ∈ [0,1]n,

as

fm(x) =
∫ 1

0
m({x≥√t})dt

for all x∈ [0,1]n,m∈M : in this case (A1) and (A3) hold, but (A2) is not satisfied;
3) F is the set of all of all aggregation functions fm1,m2 , m1,m2 ∈ M defined as

follows:

fm1,m2 =

∫ 0.5

0
m1({x≥ t})dt +

∫ 1

0.5
m2({x≥ t})dt

for all x∈ [0,1]n,m1,m2 ∈M : in this case (A2) and (A3) hold, but (A1) is not sat-
isfied. Indeed in this case consider N = {1,2}, x = (0.2,0.4) and the capacities
m1,m2,m′1,m

′
2 defined by m1({1}) = m1({2}) = 0.5, m2({1}) = m2({2}) = 0,

m′1({1}) = 1,m′1({2}) = 0, m′2({1}) = 0,m′2({2}) = 0.5. It results that
fm1,m2(1{x≥t})= fm′1,m

′
2
(1{x≥t}) for all t ∈ [0,1] but fm1,m2(x)= 0.3> fm′1,m

′
2
(x)=

2, which contraddicts axiom (A1).

Proposition 1. Axioms (A1), (A2) and (A3) hold if and only if there exists a univer-
sal integral I : M× [0,1]n → [0,1] with a pseudo-multiplication ⊗F such that, for
all f ∈F there exists an m f ∈M for which

f (x) =
∫

univ,⊗F

x dm f for all x ∈ [0,1]n .

More precisely, for all f ∈F and for all A⊆ N, m f (A) = f (1A) and for all a,b ∈
[0,1],⊗F (a,b) = f (a1B) if f (1B) = b, with B⊆ N.

Remark 1. One can weaken axiom (A3) as follow.

(Ã3) For all c ∈ [0,1] there exist A⊆ N and f ∈F such that f (1A) = c.

In this case the above Proposition 1 holds provided that the universal integral is no
more defined as a function I : M× [0,1]n→ [0,1], but as a function I : MF × [0,1]n→
[0,1] with MF ⊆M. More precisely, we have MF =

{
m f | f ∈F

}
.

Remark 2. In order to prove the sufficient part of Proposition 1 it would be sufficient
the following two axioms on the function I : M× [0,1]n → [0,1]

(UI2) there exists a pseudo-multiplication⊗ (i.e.⊗ : [0,1]2→ [0,1] is nondecreasing
in its two coordinates and ⊗(c,1) = ⊗(1,c) = c) such that for all m ∈ M,
c ∈ [0,1] and A⊆ N,

I(m,c1A) =⊗(c,m(A)),
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(UI3)’ for all m1,m2 ∈ M and x,y ∈ [0,1]n, if m1({x ≥ t}) ≥ m2({y ≥ t}) for all
t ∈]0,1], then I(m1,x)≥ I(m2,y).

On the converse, these two axioms are implied by condition (A1)− (A3) and, then
the definition of universal integral can be equivalently given substituting axioms
(UI1)− (UI3) with axioms (UI2),(UI3)′.

3 Axiomatic Foundation of Level Dependent Capacity-Based
Universal Integral in Terms of Aggregation Functions

Definition 1. A level dependent capacity is a function mLD : 2N× [0,1]→ [0,1] such
that its restriction mLD(·, t) : 2N → [0,1] is a capacity for any t ∈ [0,1].

Definition 2. (Mesiar) A level dependent capacity is a family mLD = (mt)t∈]0,1] of

set functions mt : 2N → [0,1] where each mt is a capacity.

We denote by MLD the set of all level dependent capacities mLD. Given two level
dependent capacities mLD, m∗LD ∈MLD we say that mLD is smaller than m∗LD and we
write mLD ≤ m∗LD if mLD (E, t)≤ m∗LD (E, t) for all E ⊆ N and t ∈]0,1].
For each pair (mLD,xxx) ∈MLD× [0,1]n we can define the function

h(mLD,xxx) :]0,1]→ [0,1]

by
h(mLD,xxx)(t) = mLD ({xxx≥ t} , t)

which, in general, is neither monotone nor Borel measurable. For a fixed mLD ∈MLD

the vector xxx ∈ [0,1]n (or the function xxx : N → [0,1]) is called mLD−measurable if the
function h(mLD,xxx) is Borel measurable. The set of all mLD−measurable vectors in
[0,1]n will be denoted by [0,1]nmLD

. Moreover, we define

L[0,1] =
⋃

mLD∈MLD

mLD× [0,1]nmLD
.

Definition 3. A function L : L[0,1]→ [0,1] is called a level dependent capacity-based
universal integral [5] if the following axioms hold

(UIL1) L is non-decreasing in each component, i.e., for all mLD, m∗LD ∈MLD satis-
fying mLD ≤ m∗LD, and for all xxx1 ∈ [0,1]nmLD

, xxx2 ∈ [0,1]nm∗LD
with xxx1 ! xxx2 we

have
L(mLD,xxx1)≤ L(m∗LD,xxx2),

(UIL2) there is a universal integral I : M× [0,1]n → [0,1]n such that for each ca-
pacity m ∈ M, for each level dependent capacity mLD ∈ MLD satisfying
mLD(·, t) = m for all t ∈ [0,1], and for each xxx ∈ [0,1]nmLD

we have

L(mLD,xxx) = I (m,xxx) ,
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(UIL3) for all pairs (mLD,xxx), (m∗LD,yyy) ∈L[0,1] with h(mLD,xxx) = h(m∗LD,yyy) we have

L(mLD,xxx) = L(m∗LD,yyy) .

Observe that, because of axiom [(UIL2)], each level dependent capacity-based uni-
versal integral L is an extension of some universal integral I.
Now, consider a family F ⊆A[0,1] with F �= /0 and consider the following axioms
on F :

(AULD1) There exists Fc ⊆F that satisfies above axioms (A1)− (A3).
(AULD2) for each f ∈F and for each t ∈ [0,1] there exists f t ∈Fc, such that for

any xxx,yyy ∈ [0,1]n

f t
1(1{xxx≥t})≥ f t

2(1{yyy≥t})⇒ f1(xxx)≥ f2(yyy).

(AULD3) For any mLD ∈ MLD there exists fmLD ∈ F such that
f t
mLD

(1A) = mLD(1A, t) for any A⊆ N and for any t ∈ [0,1].

Proposition 2. Axioms (AULD1), (AULD2) and (AULD3) hold if and only if there
exists a level dependent capacity-based universal integral L : L[0,1]→ [0,1] which
is an extension of some universal integral I with a pseudo-multiplication ⊗F such
that, for all f ∈F there exists an mLD, f ∈MLD for which

f (xxx) = L
(
mLD, f ,xxx

)
for all xxx ∈ [0,1]nmLD, f

.

More precisely, for all f ∈ F , for all A ⊆ N and for all t ∈ [0,1], mLD, f (A, t) =
f t (1A) and for all a,b ∈ [0,1],⊗F (a,b) = f (a1B) if f (1B) = b, with f ∈Fc and
B⊆ N.

Proof. see proofs of proposition 1 and of [5, Theorem 4.4].

4 Axiomatic Foundation in Terms of Preference Relations

We consider the following primitives:

• a set of outcomes X ,
• a set of binary preference relations R = {�t , t ∈ T} on Xn,n ∈ N.

In the following

• we shall denote by α the constant vector [α,α, . . . ,α] ∈ Xn, with α ∈ X ;
• we shall denote by  t and ∼t the asymmetric and the symmetric part of �t∈R,

respectively;
• we shall denote by (αA,βN−A), α,β ∈ X ,A⊂ N, x ∈ Xn such that xi = α if i ∈ A

and xi = β if i /∈ A.

We consider the following axioms:
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A1) �t is a complete preorder on Xn for all �t∈R.
A2) For all α,β ∈ X and for all �t ,�r∈R, α �t β ⇒ α �r β .
A3) X is infinite and there exists a countable subset A⊆ X such that for all �t∈R,

for all α,β ∈ X for which α  t β there is γ ∈ A such that α �t γ �t β .
A4) There are 1,0 ∈ X such that for all �t∈R 1 t 0 and for all x ∈ Xn,

1 �t x �t 0.

A5) For each x ∈ Xn and for each �t∈R, there exists α ∈ X such that x∼t α .
A6) For each x ∈ Xn, for each α,β ∈ X , for each i ∈ N, and for each �r,�t∈R,

α �r β ⇒ (αi,x−i)�t (βi,x−i).

A7) For all x,y ∈ Xn, �t ,�r,�s∈R,

[(1{i∈N:xi�tα},0N−{i∈N:xi�tα})�r β ⇒ (1{i∈N:yi�tα},0N−{i∈N:yi�tα})�s β ,∀α,β ∈ X ]

⇒
[x �r γ ⇒ y �s γ ,∀γ ∈ X ].

A8) For all A = {α1, . . . ,αp} ⊆ X , 1 ≤ p ≤ 2n− 2, there exists �t∈R such that
for all α ∈A there is A, /0⊂ A⊂ N, for which α ∼t 1A.

Theorem. Conditions A1)−A7) hold if and only if there exist

• a function u : X → [0,1],
• a bijection between R and M for which each �t∈R corresponds to one capacity
μt ∈M,

• a pseudo-multiplication⊗,

such that, for all x,y ∈ Xn and for all �t∈R

x �t y⇔
∫

univ,⊗
u(x)dμt ≥

∫
univ,⊗

u(y)dμt ,

where u(x) = [u(x1), . . . ,u(xn)] and u(y) = [u(y1), . . . ,u(yn)].
Proof. We leave the proof of the necessity to the reader and we give the proof of
the sufficiency. By A1), each �t∈R induces a complete preorder �c

t on the family
of constant vectors C = {[α, . . . ,α] ∈ Xn|α ∈ X}, i.e. for all �t∈ R and for all
α,β ∈ C,α �c

t β iff α �t β . By A2), we have �c
t1=�c

t2 for all �t1 ,�t2∈R. Thus
in the following we shall write α � β if for some �t∈ R α �t β , α,β ∈ C. Of
course, � is a complete preorder on C. By A3), due to the Debreu open gap lemma
[1] there is a function u : C→ Y with Y an interval of real numbersℜ, such that, for
all α,β ∈C

α � β ⇔ u(α)≥ u(β ).

By A4), there is a minimum and a maximum in Y , such that, without loss of the
generality we can set Y = [0,1], such that u : C→ [0,1], u(1) = 1 and u(0) = 0. By
A5), for each �t∈ R one can define a function ht : Xn → [0,1] as follows: for all
x ∈ Xn
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ht(x) = u(α) with α ∈ X such that x∼t α.

By A6) we get that for all x,y ∈ Xn

[xi � yi for all i ∈ N]⇒ [x �r y for all �r∈R].

For each �t∈R we can define a function ft : [0,1]n → [0,1] non decreasing in each
argument such that f (1) = 1 and f (0) = 0, i.e. an aggregation function on [0,1]n, as
follows: for all x ∈ Xn,

ft(u(x1), . . . ,u(xn)) = ht(x).

Thus for all x,y ∈ Xn and for all �t∈R,

x �t y⇒ ft (u(x1), . . . ,u(xn))≥ ft(u(y1), . . . ,u(yn).

Observe that axiom (A2) is satisfied because for all t ∈ T function ft is idempotent
because for all α ∈ X ,

ft (u(α), . . . ,u(α)) = ht(α) = u(α).

Also axiom (A1) is satisfied because, using function ft , t ∈ T, axiom A7) can be
rewritten as follows: for all x,y ∈ Xn, �r,�s∈R,

[ fr(1{i∈N:u(xi)≥u(α)})≥ u(β )⇒ fs(1{i∈N:u(yi)≥u(α)})≥ u(β ),∀α,β ∈ X ]

⇒
[ fr(x)≥ u(γ)⇒ fs(y)≥ u(γ),∀γ ∈ X ].

This is equivalent to

[ fr(1{i∈N:u(xi)≥t} ≥ fs(1{i∈N:u(yi)≥t})∀t ∈ [0,1]]

⇒
[ fr(x)≥ fs(y)].

Finally, observe that also axiom (A3) is satisfied, because by A8) there is a function
ft for all capacity m∈M. Indeed, for all capacity m∈M one can pick α1, . . . ,α2n−2,
not necessarily all different each other and ordered from the smaller to the larger
with possible ex aequo, such that m(1A1)= ft(α1), . . . ,m(1A2n−2

)= ft(α2n−2), where
Ak � Ah if h < k. Since axioms (A1)−(A3) are satisfied, by above Proposition 1, the
set of aggregation functions F = { ft :�t∈R} defines a universal integral and we
conclude our proof.

Acknowledgements. The work on this contribution was partially supported by the grants
VEGA 1/0184/12 and GACRP 402/11/0378.



492 S. Greco, R. Mesiar, and F. Rindone

References

[1] Debreu, G.: Representation of a preference ordering by a numerical function. In: Deci-
sion Processes, pp. 159–165 (1954)

[2] Figueira, J., Greco, S., Ehrgott, M.: Multiple criteria decision analysis: state of the art
surveys, vol. 78. Springer (2005)

[3] Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation functions: means. Informa-
tion Sciences 181(1), 1–22 (2011)

[4] Klement, E., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and
Sugeno integral. IEEE Transactions on Fuzzy Systems 18(1), 178–187 (2010)

[5] Klement, E.P., Kolesárová, A., Mesiar, R., Stupnanová, A.: A generalization of universal
integrals by means of level dependent capacities. Knowledge-Based Systems 38, 14–18
(2013),
http://www.sciencedirect.com/science/article/pii/S0950705112002419,
doi:10.1016/j.knosys.2012.08.021

http://www.sciencedirect.com/science/article/pii/S0950705112002419


Part X

Incomplete Data



Aggregation of Incomplete Qualitative
Information

Juan Vicente Riera and Joan Torrens

Abstract. In this article we propose a method to construct aggregation functions on
the set of discrete fuzzy numbers whose support is any subset of natural numbers,
from discrete aggregation functions defined on Ln = {0,1, · · · ,n}. The interest on
these discrete fuzzy numbers lies on the fact that, when their support is a closed
interval, they can be interpreted as linguistic expert valuations that increase the flex-
ibility of the elicitation of qualitative information based on linguistic terms. When
the support is not an interval of Ln, the corresponding discrete fuzzy number can
be interpreted as an incomplete linguistic expert valuation. From the results on this
work we can manage this incomplete information in some different ways.

Keywords: aggregation function, linguistic variable, discrete fuzzy number, sub-
jective evaluation, decision making.

1 Introduction

The process of merging some data into a representative output is usually carried out
by the so-called aggregation functions that have been extensively investigated in the
last decades [1, 2, 11]. Decision making, subjective evaluations, optimization and
control are, among others, examples of concrete application fields where aggrega-
tion functions become an essential tool. In all these fields, it is well known that the
data to be aggregated vary among many different kinds of information, from quanti-
tative to qualitative information. Moreover, many times some uncertainty is inherent
to such information.

Qualitative information is often interpreted to take values in a totally ordered
finite scale like this:

L = {Extremely Bad, Very Bad, Bad, Fair, Good, Very Good, Extremely Good}.
(1)

In these cases, the representative finite chain Ln = {0,1, . . . ,n} is usually considered
to model these linguistic hedges and several researchers have developed an extensive
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study of aggregation functions on Ln, usually called discrete aggregation functions
(see [7, 8, 9]). Another approximation is based on assigning a fuzzy set to each
linguistic term trying to capture its meaning. However, the modelling of linguistic
information is limited because the information provided by experts for each variable
must be expressed by a simple linguistic term. In most cases, this is a problem for
experts because their opinion does not agree with a concrete term. On the contrary,
experts’ values are usually expressions like "better than Good", "between Fair and
Very Good" or even more complex expressions.

To avoid the limitation above (see [4, 5, 10]) the authors deal with the possibility
of extending monotonic operations on Ln to operations on the set of discrete fuzzy
numbers whose support is a set of consecutive natural numbers contained in Ln

(i.e, an interval contained in Ln), usually denoted by A Ln
1 . The idea lies on the fact

that any discrete fuzzy number A ∈A Ln
1 can be considered (identifying the scale L

given in (1) with Ln with n= 6) as an assignment of a [0,1]-value to each term in our
linguistic scale. As an example, the above mentioned expression "between Fair and
Very Good" can be performed, for instance, by a discrete fuzzy number A ∈ A

L6
1 ,

with support given by the subinterval [F,VG] (that corresponds to the interval [3,5]
in L6). The values of A in its support should be described by experts, allowing in
this way a complete flexibility of the qualitative valuation. A possible discrete fuzzy
number A representing the expression mentioned above is given in Figure 1 (note
that there are pictured only the values of A in its support).

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

EB VB B F G VG EG

Fig. 1 Graphical representation of a discrete fuzzy number whose support is the interval
[3,5]. In addition, note that this fuzzy set can be interpreted as expression "between Fair and
Very Good", after identifying the linguistic scale L with the chain L6.
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Thus, aggregation functions on A Ln
1 will allow us to manage qualitative infor-

mation in a more flexible way. In [4] t-norms and t-conorms on A Ln
1 are described

and studied, as well as it is done for uninorms, nullnorms and general aggregation
functions in [10]. In both cases, an example of application in decision making or
subjective evaluation is included.

Thus, discrete fuzzy numbers in A Ln
1 can be interpreted as flexible qualitative

information and they have been successfully used in decision making problems and
subjective evaluation. On the other hand, note that when we take a discrete fuzzy
number A whose support is not an interval of Ln (that is with A not in A Ln

1 ), say
for instance supp(A) = {i1, i2, . . . , ik}, there are some items in the interval [i1, ik]
that have no assigned value. These gaps in the support can be interpreted as lacks
of information and any discrete fuzzy number of this type as an incomplete quali-
tative information. This lack of information can be produced by many reasons. For
instance, because some parts of the information have been lost during the process,
because the expert was unable to perform a more detailed valuation, or many others.

In this paper we want to study how to aggregate this type of incomplete informa-
tion and we will do it in two different ways. First in Section 3, we present a method
to directly merging this incomplete information through aggregation functions on
the set of all discrete fuzzy numbers, with the particularity that the obtained result is
going to be again incomplete. Second, in Section 4, we will complete the compiled
information in many different ways through discrete associations, and then we will
aggregate the results, obtaining in this case a complete decision.

2 Preliminaries

In this section, we recall some definitions and the main results about discrete fuzzy
numbers which will be used later. By a fuzzy subset of R, we mean a function
A :R→ [0,1]. For each fuzzy subset A, let Aα = {x∈R : A(x)≥α} for anyα ∈ (0,1]
be its α-level set (or α-cut). By supp(A), we mean the support of A, i.e. the set
{x ∈ R : A(x)> 0}. By A0, we mean the closure of supp(A).

Definition 1. [13] A fuzzy subset A of R with membership mapping A : R→ [0,1]
is called a discrete fuzzy number if its support is finite, i.e., there exist x1, ...,xn ∈
R with x1 < x2 < ... < xn such that supp(A) = {x1, ...,xn}, and there are natural
numbers s, t with 1≤ s≤ t ≤ n such that:

1. A(xi)=1 for any natural number i with s≤ i≤ t (core)
2. A(xi)≤ A(x j) for each natural number i, j with 1≤ i≤ j ≤ s
3. A(xi)≥ A(x j) for each natural number i, j with t ≤ i≤ j ≤ n

Remark 1. If the fuzzy subset A is a discrete fuzzy number then the support of A
coincides with its closure, i.e. supp(A) = A0.

From now on, we will denote the set of discrete fuzzy numbers by DFN and the
abbreviation dfn will denote a discrete fuzzy number.
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From now on, we will denote by A Ln
1 the set of discrete fuzzy numbers whose

support is a subset of consecutive natural numbers contained in the finite chain Ln

and by DLn the set of discrete fuzzy numbers whose support is a subset of natural
numbers contained in Ln.

Remark 2. Note that A Ln
1 is a subset of DLn .

Let A,B ∈A Ln
1 be two discrete fuzzy numbers, and let Aα = [xα1 ,x

α
p ], Bα = [yα1 ,y

α
k ]

be their α-level cuts for A and B respectively.
The following result holds for A Ln

1 , but is not true for the set of discrete fuzzy
numbers in general(see [3]).

Theorem 1. [3] The triplet (A Ln
1 ,MIN,MAX) is a bounded distributive lattice where

1n ∈A Ln
1 (the unique discrete fuzzy number whose support is the singleton {n}) and

10 ∈A Ln
1 (the unique discrete fuzzy number whose support is the singleton {0}) are

the maximum and the minimum, respectively, and where MIN(A,B) and MAX(A,B)
are the discrete fuzzy numbers belonging to the set A Ln

1 such that they have the sets

MIN(A,B)α ={z ∈ Ln |min(xα1 ,y
α
1 )≤ z≤min(xαp ,y

α
k )} and

MAX(A,B)α ={z ∈ Ln |max(xα1 ,y
α
1 )≤ z≤max(xαp ,y

α
k )}

(2)

as α-cuts respectively for each α ∈ [0,1] and A,B ∈A Ln
1 .

Remark 3. [3] Using these operations, we can define a partial order on A Ln
1 in the

usual way:
A ! B if and only if MIN(A,B) = A, or equivalently, A ! B if and only if
MAX(A,B) = B for any A,B ∈ A Ln

1 . Equivalently, we can also define the partial
ordering in terms of α-cuts:

A! B if and only if min(Aα ,Bα) = Aα

A! B if and only if max(Aα ,Bα) = Bα

Similarly, using the same operations due by expression (2) and the corresponding
relation ! in the set DLn , the following result holds.

Theorem 2. The structure DLn = (DLn ,!,10,1n) is a bounded partially ordered set
where 1n ∈DLn and 10 ∈DLn represent the maximum and the minimum, respectively.

Aggregation functions on Ln were extended to A Ln
1 (see [4, 10]) through the follow-

ing theorem.

Theorem 3. [4, 10] Let us consider a binary aggregation function F on the finite
chain Ln. The binary operation on A Ln

1 defined as follows

F : A Ln
1 ×A Ln

1 −→A Ln
1

(A,B) "−→F (A,B)

being F (A,B) the discrete fuzzy number whose α-cuts are the sets
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{z ∈ Ln | minF(Aα ,Bα)≤ z≤maxF(Aα ,Bα)}

for each α ∈ [0,1] is an aggregation function on A Ln
1 . This function will be called

the extension of the discrete aggregation function F to A Ln
1 . In particular, if F is a

t-norm, a t-conorm, an uninorm or a nullnorm its extension F too.

3 Aggregation Functions on DLn

In [5, 10] the discrete fuzzy numbers on A Ln
1 were interpreted like subjective eval-

uations made by experts. In this work, the discrete fuzzy numbers defined on the set
DLn which does not belong to A Ln

1 will be interpreted as an incomplete subjective
valuation made by experts. In this section we will provide a procedure to aggregate
this incomplete subjective evaluation.

Aggregation functions on bounded partially ordered sets have been deeply stud-
ied (see for instance [6, 12, 14]). Now, we will see that from an aggregation function
F defined on the finite chain Ln it is possible to establish an aggregation function F
on the bounded partially ordered set DLn .

Proposition 1. Let F be an aggregation function on Ln and A,B ∈ DLn . For each
α ∈ [0,1] let us consider the sets

CαF,A,B = {z ∈ F(supp(A),supp(B)) |minF(Aα ,Bα)≤ z≤maxF(Aα ,Bα)}.

There exists an unique discrete fuzzy number, denoted by F(A,B), such that its α-cut
sets are the sets CαF,A,B for any α ∈ [0,1].

Proposition 1 enables us to define a binary operation F on DLn from the aggregation
function F defined on Ln as follows,

Definition 2. Let F be an aggregation function on Ln. The binary operation on DLn

F : DLn ×DLn −→DLn

(A,B) "−→ F(A,B)

will be called the extension of the discrete aggregation function F to DLn , being
F(A,B) the discrete fuzzy number whose α-level sets are the sets

{z ∈ F(supp(A),supp(B)) | minF(Aα ,Bα)≤ z≤maxF(Aα ,Bα)}

for each α ∈ [0,1].

Now we wish to prove that F, as defined above, is an aggregation function on the
bounded partially ordered set DLn .

Proposition 2. Let F : DLn×DLn →DLn be the extension of F to DLn . Let 10 and 1n

the minimum and the maximum of DLn respectively. Then the following properties
hold:
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1. F is increasing in each component,
2. F(10,10) = 10,
3. F(1n,1n) = 1n.

Example 1. Consider the discrete fuzzy numbers A= {0.5/0,0.8/3,1/5,0.7/6}, B=
{0.5/0,0.8/4,1/6,0.7/8}∈DL8 . Let us consider the following t-norm

T (x,y) =

⎧⎪⎨
⎪⎩

max(0,x+ y− 3) if x ∈ [0,3]

max(3,x+ y− 8) if x ∈ [3,8]

min(x,y) otherwise

(3)

on L8.
A simple calculation shows that T(A,B) = {0.5/0,1/3,0.7/4,0.7/5,0.7/6}.

Remark 4. Consider the linguistic hedge L = {EB,VB,B,MB,F,MG,G,V G,EG}
where the letters refer to the linguistic terms Extremely Bad, Very Bad, Bad, More
or Less Bad, Fair, More or Less Good, Good, Very Good and Extremely Good and
they are listed in an increasing order:

EB≺VB≺ B≺MB≺ F ≺MG≺ G≺VG≺ EG

It is obvious that we can consider a bijective application between this ordinal scale
L and the finite chain L8 = {0,1,2,3,4,5,6,7,8} of natural numbers which keep the
order. Furthermore, each normal convex fuzzy subset defined on the ordinal scale
L can be considered like a discrete fuzzy number belonging to A L8

1 , and viceversa.
Similarly, each element of DL8 can be interpret as a convex fuzzy subset of the same
ordinal scale L too. Thus, if we interpret each one of the two discrete fuzzy numbers
A,B ∈DL8 of the previous examples as incomplete subjective evaluations (formally
understood as normal convex fuzzy subsets defined on the linguistic scale L such
that their support is not an interval of L), they can be expressed as

A ={0.5/EB,0.8/MB,1/MG,0.7/EG} (4)

B ={0.5/EB,0.8/F,1/G,0.7/EG} (5)

Observe that in the evaluation due by expression (4) above, there is a loss of infor-
mation between the linguistic labels EB and MB, between MB and MG and between
MG and EG too. Similarly, in the evaluation represented by the expression (5), there
is a loss of information between the linguistic labels EB and F , F and G and finally
G and EG.

Now the aggregations obtained in the previous example can be understood as an
incomplete subjective evaluation too, and it can be written as

T(A,B) ={0.5/EB,1/MB,0.7/F,0.7/MG,0.7/G} (6)

According to expression (6), it is worth noting that the process of aggregation of
incomplete subjection evaluations provides incomplete information in general (see
figure 2).
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EB VB B F G VG EGMGMB

Fig. 2 Aggregation on the incomplete subjective evaluations A and B using the extension of
the t-norm represented by formula (3) on L8. The values of the labels V B and B are unknown
or advisedly omitted.

In next section, we introduce a method that will allow us to construct complete
subjective evaluations from incomplete subjective evaluations.

4 Aggregation of Incomplete Subjective Evaluations Based on
Discrete Associations

In [4, 5, 10] the authors deal with the construction of aggregation functions de-
fined on the set of all discrete fuzzy numbers whose support is a subset of consec-
utive natural numbers and the particular cases of t-norms, t-conorms, uninorms and
nullnorms are studied in detail. These aggregation functions are constructed from
discrete aggregation functions (defined on a finite chain) and they are applied to
the aggregation of complete subjective evaluations. So, using theses results we will
propose a procedure that will allow to aggregate incomplete subjective evaluations.

4.1 Discrete Association Functions

Definition 3. Let B ∈ DLn a discrete fuzzy number whose support is the set
supp(B) = {x1, ...,xs, ...,xt , ...,xm} with x1 < · · · < xs < · · · < xt < · · · < xm and
B(xp) = 1 for all p such that s≤ p≤ t. A discrete association is a mapping

A : DLn → A Ln
1

B "→ A(B)

such that maps each discrete fuzzy number B ∈DLn into A(B) ∈A Ln
1 fulfilling the

following properties:
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1. If xi ∈ supp(B) then A(B)(xi) = B(xi) for each i = 1, . . . ,m.
2. B(xi)≤ A(B)(x)≤ B(xi+1), ∀x ∈ [xi,xi+1] with 1≤ i≤ i+ 1≤ s.
3. A(B)(xi) = 1, ∀x ∈ [xi,xi+1] with s≤ i≤ i+ 1≤ t.
4. B(xi+1)≤ A(B)(xi)≤ B(xi), ∀x ∈ [xi,xi+1] with t ≤ i≤ i+ 1≤ m.

Now we are going to give several examples of discrete associations.

Example 2. An α-association, Aα , is a discrete association such that maps each B∈
DLn into Aα(B) ∈A Ln

1 fulfilling:

Aα(B)(x) =

⎧⎪⎨
⎪⎩

B(xi) if x ∈ [xi,xi+1) with xi+1 < xs

1 if x ∈ [xs,xt ]

B(xi+1) if x ∈ (xi,xi+1] with xi > xt

For instance:
Let B = {0.4/2,1/5,1/6,0.8/8}∈DL8 , then

Aα(B)(x) =

⎧⎪⎨
⎪⎩

0.4 if x ∈ {2,3,4}
1 if x ∈ {5,6}
0.8 if x ∈ {7,8}

Figure 3 shows the transformation process of the discrete fuzzy number B into
Aα(B) using the α-association defined above.

1 2 3 4 5 6 7 8
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0.5

0.6

0.7

0.8

0.9

1

0

Fig. 3 The blue points represent the discrete fuzzy number B from Example 2 and the red
cross corresponding to the points that are added to construct Aα(B) ∈A L8

1
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Example 3. An ω-association, Aω , is a discrete association such that maps each
C ∈DLn into Aω (C) ∈A Ln

1 defined as

Aω(C)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C(x) if x ∈ supp(C)

C(xi+1) if x ∈ (xi,xi+1) with xi+1 ≤ xs

1 if x ∈ (xs,xt)

C(xi) if x ∈ (xi,xi+1) with xi ≥ xt

For instance:
Let C = {0.4/1,0.6/4,1/5,0.8/6,0.6/8}∈DL8 , then

Aω(C)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.4 if x ∈ {1}
0.6 if x ∈ {2,3,4}
1 if x ∈ {5}
0.8 if x ∈ {6,7}
0.6 if x ∈ {8}

Figure 4 depicts the transformation process of C ∈ DL8 into Aω(C) from the
ω-association.

1 2 3 4 5 6 7 8
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0.5

0.6

0.7

0.8

0.9

1

0

Fig. 4 Red points represent the discrete fuzzy number C from Example 3 and the blue points
correspondint to the points that are added to construct Aω (C) ∈A L8

1 .

Remark 5. According to Remark 4 the discrete fuzzy numbers B and C (considered
in Example 2 and Example 3 above) can be interpreted as the incomplete subjective
evaluations (see figure 5)
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B ={0.4/B,1/MG,1/G,0.8/EG} (7)

C ={0.4/VB,0.6/F,1/MG,0.8/G,0.6/EG} (8)

1 2 3 4 5 6 7 8

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0

EB VB B F G VG EGMGMB

Fig. 5 The green triangles represent the incomplete subjective evaluation B and the red dia-
mons show the incomplete subjective evaluation C

Finally, the complete subjective evaluation obtained from B,C ∈ DL8 applying
the α-association and the ω-association respectively are (see figure 6)

AAAα(B) ={0.4/B,0.4/MB,0.4/F,1/MG,1/G,0.8/VG,0.8/EG} (9)

AAAω(C) ={0.4/VB,0.6/B,0.6/MB,0.6/F,1/MG,0.8/G,0.8/VG,0.6/EG} (10)

1 2 3 4 5 6 7 8
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0.7
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0.9
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EB VB B F G VG EGMGMB

Fig. 6 The green triangles represent the complete subjective evaluation AAAα(B) and the red
diamons show the complete subjective evaluation AAAω (C).
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4.2 The Aggregation Method

The idea is to complete any discrete fuzzy number A j ∈ DLn (incomplete informa-
tion) into a complete information A(A j) ∈ A Ln

1 using a fixed discrete association
A. Then we can aggregate these discrete fuzzy numbers in A Ln

1 through the exten-
sion of a discrete aggregation function F , obtaining the final complete aggregation
F (A(A1), · · · ,A(Ar)) ∈A Ln

1 .
Specifically, the proposed method is as follows:

First step: We chose the linguistic scale L the experts will use in order to make
the subjective evaluations. From this scale, let Ln = {0,1, · · · ,n} be the finite
chain that is bijective with L .

Second step: Suppose that O1, · · · ,O j represent the incomplete subjective evalu-
ations that we wish aggregate. We let Õ1, · · · , Õ j denote the discrete fuzzy num-
bers belonging to DLn which have built from the corresponding evaluations Ok,
with 1≤ k ≤ j.

Third step: Let us choose a discrete association A that will be used in order to
transform each discrete fuzzy number Õk ∈DLn with 1≤ k ≤ j into the discrete
fuzzy number A(Õk) ∈A Ln

1 with 1≤ k ≤ j.
Fourth step: We get an aggregation function F on Ln and according to Theorem 3

we consider its extension F to A Ln
1 that will use to compute the aggregation of

all A(Õk) ∈A Ln
1 with 1≤ k ≤ j, obtaining F (A(Õ1), · · · ,A(Õ j)).

Fifth step: Finally, we can choose as final aggregation F (A(Õ1), · · · ,A(Õ j)) ∈
A Ln

1 and then to interpret this discrete fuzzy number as a subjective evaluation
explained in terms of the linguistic scale L .

Remark 6. Note that the discrete fuzzy number F (A(Õ1), · · · ,A(Õ j)) defined ac-
cording to the fourth step above does not coincide in general with the discrete fuzzy
number F(Õ1, · · · , Õ j), where F denotes the extension of G to DLn following Def-
inition 2. Of course we could complete the information F(Õ1, · · · , Õ j) using the
same association A obtaining A(F(Õ1, · · · , Õ j)). In general this procedure does not
coincide with our proposed method as we can see in the following example.

Example 4. Let us consider the discrete fuzzy numbers A = {0.5/0,0.8/3,1/5,0.7/
6} and B = {0.5/0,0.8/4,1/6,0.7/8} of Example 1, and the t-norm T due by the
expression (3). If we apply the ω-association Aω to T(A,B) it results

Aω(T(A,B)) = {0.5/0,1/1,1/2,1/3,0.7/4,0.7/5,0.7/6} (11)

On the other hand, if we compute T (Aω(A),Aω (B)) it results

T (Aω (A),Aω(B)) = {0.8/0,0.8/1,0.8/2,1/3,1/4,0.7/5,0.7/6} (12)

Thus, we can see that in general Aω(T(A,B)) �= T (Aω(A),Aω(B)).

Note however that, when we use the α-association Aα in the previous example, we
obtain Aα(T(A,B)) = T (Aα (A),Aα(B)). We claim that this fact concerning Aα
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is true for all A,B ∈ DLn . Moreover, we claim that Aα is the only association with
this property and this is part of our future work on this topic.
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Consistency and Stability in Aggregation
Operators: An Application to Missing Data
Problems

Daniel Gomez, Karina Rojas, Javier Montero, and J. Tinguaro Rodríguez

1 Introduction

An aggregation operator [1, 5, 7, 8, 9, 12] is usually defined as a real function
An such that, from n data items x1, . . . ,xn in [0,1], produces an aggregated value
An(x1, . . . ,xn) in [0,1] [4]. This definition can be extended to consider the whole
family of operators for any n instead of a single operator for an specific n. This
has led to the current standard definition [4, 15] of a family of aggregation opera-
tors (FAO) as a set {An : [0,1]n → [0,1],n ∈ N}, providing instructions on how to
aggregate collections of items of any dimension n. This sequence of aggregation
functions {An}n∈N is also called extended aggregation functions (EAF) by other
authors [15, 5].

In this work, we will deal with two different but related problems for extended
aggregation functions or family of aggregation operators

On one hand, let us remark that in practice, it is frequent that some information
can get lost, be deleted or added, and each time a cardinality change occurs a new
aggregation operator Am has to be used to aggregate the new collection of m ele-
ments. However, it is important to remark that a relation between {An} and {Am}
does not necessarily exist in a family of aggregation operators as defined in [4]. In
this context, it seems natural to incorporate some properties to maintain the logi-
cal consistency between operators in a FAO when changes on the cardinality of the
data occur, for which we need to be able to build up a definition of family of ag-
gregation operators in terms of its logical consistency, and solve each problem of
aggregation without knowing apriori the cardinality of the data. This is, the oper-
ators that compose a FAO have to be somehow related, so the aggregation process
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remains the same throughout the possible changes in the dimension n of the data.
Therefore, it seems logical to study properties giving sense to the sequences A(2),
A(3), A(4), . . . , because otherwise we may have only a bunch of disconnected oper-
ators. With this aim, in [26, 27, 16] a notion of consistency based on the robustness
of the aggregation process, i.e. stability, was studied. In this sense, the notion of
stability for a family of aggregation operators is inspired in continuity, though our
approach focuses in the cardinality of the data rather than in the data itself, so we
can assure some robustness in the result of the aggregation process. Particularly, let
An(x1, . . . ,xn) be the aggregated value of the n-dimensional data x1, . . . ,xn. Now, let
us suppose that a new element xn+1 has to be aggregated. If xn+1 is close to the
aggregation result An(x1, . . . ,xn) of the n-dimensional data x1, . . . ,xn, then the result
of aggregating these n+1 elements should not differ too much with the result of ag-
gregating such n items. Following the idea of stability for any mathematical tool, if
|xn+1−An(x1, . . . ,xn)| is small, then |An+1(x1, . . . ,xn,xn+1)−An(x1, . . . ,xn)| should
be also small. It is important to note that if the family {An} is not symmetric (i.e.
there exist a n for which the aggregation operator An is not symmetric), then the
position of the new data is relevant to the final output of the aggregation process.
From this observation, in [26, 27, 16] it some definitions of stability that extend the
notion of self-identity defined in [29] were presented.

On the other hand, a problem that has not been received too much attention is how
to obtain an aggregation when some of the variables to be aggregated are missing. If
the aggregation operator function An present a clear definition for the case in which
the dimension is lower, this problem is easily solved, but not always is a trivial
task. Following the ideas of stability, in this paper we will deal with the problem of
missing data for some well-known families of aggregation operators.

2 Consistency in Families of Aggregation Operators

As has been pointed out in the introduction, a family of aggregation operators (FAO)
is a set of aggregation operators {An : [0,1]n → [0,1],n∈ N}, providing instructions
on how to aggregate collections of items of any dimension n. Few properties has
been studied or defined to a FAO in general (see [27] for more details). In [15] it is
shown that the aggregation functions of a family can be related by means of certain
grouping properties. For example, continuity, symmetry or other well-known prop-
erties defined usually for aggregation functions can be defined in a general way for
a family of aggregation operators imposing that these properties have to be satisfied
for all n. Nevertheless, these kind of properties don’t guarantee any consistency in
the aggregation process since they don’t establish any constraint among the different
aggregation functions.

In the aggregation operators’ literature it is possible to find some properties for
aggregation operators that can be understood as properties for the whole family es-
tablishing some relations among the different aggregation operators. Here we recall
some of them.
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An important notion that establish some relations among members of different
dimensions in a FAO is the notion of recursivity. Recursivity was introduced in [8]
in the context of OWA operators aggregation functions. Further, and following [8],
in [1, 9, 12, 18] recursivity of a FAO was also studied in a more general way to
establish some consistency in the aggregation process. In order to understand this
notion of recursivity, first it necessary to defined the concept of ordering rule.

Definition 1 (see [1, 9, 12] for more details). Let us denote πn(x1, . . . ,xn) =
(xπn(1), . . . ,xπn(n)). An ordering rule π is a consistent family of permutations
{πn}n≥2 such that for any possible finite collections of numbers, each extra item
xn+1 is allocated keeping previous relative positions of items, i.e.
πn+1(x1, . . . ,xn,xn+1) equal to (xπn(1), . . . ,xπn( j−1),xn+1,xπn( j), . . .xπn(n)) for some

j ∈ {1,2, . . . ,n+ 1}.
Definition 2 (see [1, 9, 12] for more details). A family of aggregation operators
{An : [0,1]n −→ [0,1]}n>1 is left-recursive if there exist a family of binary operators
{Ln : [0,1]2 −→ [0,1]}n>1 verifying A2(x1,x2) = L2(xπ(1);xπ(2)) and

An(x1,x2, . . . ,xn) equal to Ln(An−1(xπ(1), . . . ,xπ(n−1);xπ(n)) for all n≥ 2,
where π is an ordering rule.

In a similar way, it is possible to define the right recursive rules.

Definition 3 (see [1, 9, 12] for more details). A family of aggregation operators
{An : [0,1]n −→ [0,1]}n>1 is left-recursive if there exist a family of binary operators
{Rn : [0,1]2 −→ [0,1]}n>1 verifying A2(x1,x2) = R2(xπ(1);xπ(2)) and

An(x1,x2, . . . ,xn) equal to Rn(x1,An−1(xπ(2), . . . ,xπ(n−1)) for all n≥ 2,
where π is an ordering rule.

From previous two definitions, it is possible to introduce the concept of LR recur-
sivity in the following way.

Definition 4 (see [1, 9, 12] for more details). A family of aggregation operators
{An : [0,1]n −→ [0,1]}n>1 is left-right recursive if there exist two families of binary
operators {Rn : [0,1]2−→ [0,1]}n>1 and {Ln : [0,1]2−→ [0,1]}n>1 verifying the left
and the right recursive conditions simultaneously.

A particular case of previous definitions (when the binary aggregation is the same
and the recursivity is from the left) can be founded in [4, 5], in which it is said that
a FAO {An}n∈N will be recursive if it verifies

An(x1,x2, ..,xn) = A2(An−1(x1,x2, ..,xn−1),xn).

Let us observe that previous definitions guarantee certain consistency in the family
{An} since the An function is build taking into account the previous function An−1.
Taking this definition into account, the previously described situation, in which the
different operators An have no relation among them, cannot hold.

Other properties that establish some conditions among the different members of
the whole family are the following:
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Definition 5. Decomposability. [see [4, 5] for more details]
A family of aggregation operators {An}n∈N satisfies the decomposability prop-

erty if ∀n,m = 1,2, ..., ∀x ∈ [0,1]m and ∀y ∈ [0,1]n the following holds:

Am+n(x1,x2, ..,xm,y1,y2, ..,yn) =
Am+n(Am(x1,x2, ..,xm), ...,Am(x1,x2, ..,xm)︸ ︷︷ ︸,y1,y2, ..,yn)

m times

Definition 6. Bisymmetry [see [4, 5] for more details]
A family of aggregation operators {An}n∈N satisfies the bisymmetry property if

∀n,m = 1,2, ... and ∀x ∈ [0,1]mn the following holds:

Amn(x1,x2, ..,xmn) = Am(An(x11,x12, ..,x1n), ...,An(xm1,xm2, ..,xmn))
= An(Am(x11,x21, ..,xm1), ...,Am(x1n,x2m, ..,xmn))

Although previous definitions impose some stability or consistency to a family of
aggregation operators, these ones are more focused on the way in which it is possible
to build the operator aggregation function of dimension n from aggregation opera-
tors of lower dimensions than on a general idea of stability or consistency. More-
over/However, pursuing the idea of consistency of a family of aggregation operators
and based on the self-identity definition given by Yager in [29], in [26, 27, 16] the
notion of strict stability of a FAO was defined in three different levels. The idea is
simple: in a family of aggregation operators, An and An+1 should be closely related,
in the sense that if a new item has to be aggregated and such a new item is the result
of the aggregation of the previous n items, then the result of the aggregation of these
n+ 1 items should be close to the aggregation of the n previous ones. Otherwise,
the aggregation operator function An+1 would differ too much from the aggregation
operator function An, producing and unstable family {An}n∈N . Taking into account
that in general FAOs are not necessarily symmetric, two possibilities (left and right
stability) were analyzed in the definition of strict stability.

Definition 7. Let {An : [0,1]n → [0,1],n ∈ N} be a family of aggregation operators.
Then, it is said that:

1. {An}n is a R-strictly stable family if

An(x1,x2, ...xn−1,An−1(x1,x2...,xn−1)) = An−1(x1,x2, ...,xn−1)

holds ∀n≥ 3 and ∀{xn}n∈N in [0,1]

2. {An}n is a L-strictly stable family if

An(An−1(x1,x2, ...,xn−1),x1,x2, ...xn−1) = An−1(x1,x2, ...,xn−1)

holds ∀n≥ 3 and ∀{xn}n∈N in [0,1]

Although previous definitions can be relaxed from an asymptotic and probabilistic
point of view (see [27]), in this work we are going to focus on the strict stability
conditions just exposed.
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3 On j-L and i-R Stability

Previous definitions impose that the information that has to be aggregated appears in
the last or in the first position. Obviously, this assumption could be relaxed. Taking
into account that the stability concept presented in [27] could be relaxed, in [2], it is
introduced the notion j−L stability, imposing now that the new datum enters in the
i-th position from the right. And similarly, we can define the i−R strictly stability
imposing that the new datum enters in the j-th position. Obviously, the relaxed
versions of strict stability from an asymptotic and probabilistic point of view could
be defined in a similar way.

Definition 8. Let {An : [0,1]n → [0,1],n ∈ N} be a family of aggregation operators.
Then, it is said that:

1. {An}n is a i-R-strictly stable family if

An(x1,x2, ...xn−i,An−1(x1,x2...,xn−1), . . . ,xn−1) = An−1(x1,x2, ...,xn−1)

holds ∀n≥ 3 and ∀{xn}n∈N in [0,1].

2. {An}n is a j-L-strictly stable family if

An(x1, . . . ,x j−1,An−1(x1,x2, ...,xn−1),x j , . . . ,xn−1) = An−1(x1,x2, ...,xn−1)

holds ∀n≥ 3 and ∀{xn}n∈N in [0,1].

Let us observe that the i−L and j−R strict stability conditions previously defined
are equivalent (for any i and/or j) when the FAO is symmetric. But, in general, it
is very difficult that a non-symmetric FAO satisfies simultaneously more than one
condition (see [27] for more details). In our opinion, the conditions that a general
FAO should satisfy to be strictly stable shouldtake into account the structure of the
data that has to be aggregated (and of course also the way in which this family is
defined).

In a similar way as symmetric FAOs impose indirectly that the structure of the
data hasn’t effect in the aggregation result (since the order in which the informa-
tion is aggregated is not relevant), non-symmetric families of aggregation operators
makes the assumption that the data has an inherent structure and thus the position of
the data items in the aggregation process is relevant. Strict stability or consistency
of an aggregation process (among other properties) should also take into account
that the data may present some structure. In the following section, we will present
some possible definitions of stability for non-symmetric FAO that will be dependent
of the structure of the data that is aggregated.
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4 Dealing with Weights and Missing Data: An Application of
Stability

To illustrate an interesting application of the concept of stability let us introduce a
very simple example. Suppose a multi-criteria decision problem having four criteria
C1, C2, C3, C4. A jury, after some deliberations, evaluates the different alternatives
on the four criteria and then uses a weighted mean operator as aggregation rule.
Then, what happens if for one alternative some information related with the criteria
C4 has been lost or deleted? What should be the aggregation of the remaining infor-
mation? As has been pointed out in the introduction, this dimensional problem has
not received too much attention in the aggregation literature. This problem is related
with the following question: what should be the relations between aggregation op-
erators of different dimensions to be consistent? In this section, we will analyze the
stability of some well-known families trying to deal with this problem.

Let us recall again that our aim is not to decide how the vector of weights
w4 = (w4

1,w
4
2,w

4
3,w

4
4) should be, but to guarantee some stability or consistence in

the aggregation process. For example, it would seem rather inconsistent to choose
w4 = (1/8,4/8,1/8,2/8) if data is available regarding the four mentioned criteria,
but also choosing w3 = (0.8,0.2,0) in case the criteria C4 presents a missing value
for one of the alternatives. From the point of view of consistency, this jury would
not be stable.

We first focus our attention in the weighted mean aggregation family. This family,
{Wn,n∈N}, is defined through a vector of weights wn =(wn

1, ...,w
n
n)∈ [0,1]n in such

a way that Wn(x1, ...,xn) =
n
∑

i=1
wn

i xi, where
n
∑

i=1
wn

i = 1 and (x1, ...,xn) ∈ [0,1]n ∀n.

The stability of this family was studied from a LR point of view in [27]. Neverthe-
less, as we will see below, this study can not be directly applicable to the missing
value problem in aggregation problems. In the {Wn}n FAO, the weights associated
to the elements being aggregated represent the importance of each one of these el-
ements in the aggregation process. For this reason, the weighted mean surely is one
of the most relevant and used aggregation operators in many different areas (e.g.
statistics, knowledge representation problems, fuzzy logic, multiple criteria deci-
sion making, group decision making, etc.), and one of the most studied problems in
all these areas is how to determine these importance weights.

A missing data problem appears when for a specific object x = (x1, . . . ,xn) one of
its values is missing. In the previous example, n = 4, the information regarding an
alternative is aggregated through W4(x1, . . . ,x4) = ∑i=1,4 w4

i xi, and the importance
of the four criteria has been established by means of the four dimensional vector
w4 =

(
w4

1,w
4
2,w

4
3,w

4
4

)
= (1/8,2/4,1/8,1/4). Now, consider an alternative x that

presents the values x = (0.3,1,1,not evaluable). What should be the aggregation?
What should be the aggregation operator A3?

If we decide to use the weighted mean aggregation function for n = 3 (i.e. A3 =
W3), the problem here is to determine the weights vector w3. A possibility is to
impose that W3 and W4 satisfy the strict stability conditions. Nevertheless, asstudied
in [27], for non-symmetric FAOs, it is very difficult that more than one stability



Consistency and Stability in Aggregation Operators 513

condition is satisfied simultaneously. Let us observe that the different strict stability
conditions (L, R, i−L or j−R for different i and j positions) will give us different
possibilities and solutions for the vector w3. So, what stability condition should
we choose? Taking into account that the 4-th value x4 is the one missing, it seems
reasonable to impose the R (or equivalently the 4-L or 1-R) strict stability condition,
i.e.

W4(x1,x2,x3,W3(x1,x2,x3)) =W3(x1,x2,x3)

for any x1, x2 and x3 in [0,1] Concerning our example, this condition holds if and
only if

1
8

x1 +
4
8

x2 +
1
8

x3 +2/8(w3
1x1 +w3

2x2 +w3
3x3) = w3

1x1 +w3
2x2 +w3

3x3 ∀x1,x2,x3 ∈ [0,1],

which is equivalent to say that w3 = ( 1
6 ,

4
6 ,

1
6 ). Let us observe that this vector main-

tains the relative proportions between the original weights for the non- missing val-
ues in the positions 1, 2 and 3.

In the previous example, the fourth value of the alternative
x = (0.3,1,1,not evaluable) is missing. But what should be the aggregation if the
missing value is the second one? In general, and for non-symmetric FAOs where the
position in which data appear is relevant, if there is some information x=(x1, . . . ,xn)
that has to be aggregated and we have a missing value x j, we should impose strict
j−L stability or equivalently (n− ( j + 1))−R strict stability to find the relations
that should exist between the aggregation functions An and An−1 in the whole fam-
ily. In the following proposition it is established a condition that guarantees the strict
j-L stability of the family {Wn}n.

Proposition 1. (see also [2]) Let wn = (wn
1, ...,w

n
n) ∈ [0,1]n,n ∈ N, be a sequence

of weights of a weighted mean family {Wn}n∈N such that
n
∑

i=1
wn

i = 1 holds ∀n ≥ 2.

Then, the family {Wn}n∈N is a j-L-strict stable family if and only if the sequence of
weights satisfies{

wn
k = (1−wn

j) · (wn−1
k ) f or k = 1, . . . , j− 1

wn
k+1 = (1−wn

j) · (wn−1
k ) f or k = j, . . . ,n− 1

∀n ∈ N.

Proof
Note that for a generic weighted mean FAO {Wn}n∈N with weights wn, n ∈ N, the
j-L-strict stability property can be restated as

0 = |An(x1, . . . ,x j−1,An−1(x1,x2, ...,xn−1),x j, . . . ,xn−1)−An−1(x1,x2, ...,xn−1)|
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which is equivalent to
j−1

∑
i=1

(wn
i − (1−wn

j)w
n−1
i )xi +

n−1

∑
i= j

(wn
i+− (1−wn

j)w
n−1
i )xi = 0∀x1, . . .xn−1 ∈ [0,1].

From previous equation it is straightforward to conclude that the proposition holds.
In order to extend the previous properties to a more general class of FAO, we will

analyze the j-L strict stability for transformations of the original FAO. But, let us
first introduce the following notations and definitions.

Definition 9. Let f : [0,1]→ A be a continuous and injective function, and let {φn :
A→ A, n ∈ N} be a family of aggregation operators defined in the domain A. Then,
the transformed aggregation operator family {Mφn

f }n∈N is defined as:

Mφn
f (x1, . . . ,xn) = f−1 (φn ( f (x1), . . . , f (xn)))

Let us observe that if f is the identity function, then the transformation family
coincides with the original family. If {φn}n∈N is the mean or the weighted mean
then Mφn

f is called quasi-arithmetic mean or weighted quasi-arithmetic mean. The
quasi-arithmetic mean functions are very important in many aggregation analysis.
Some well-known quasi-arithmetic aggregation families are: the geometric mean
(when f (x) = log(x)), the harmonic mean (when f (x) = 1/x) and the power mean
(when f (x) = xp), among others. It is important to remark that some of the most
usual aggregation operators families (as for example the productory {Pn}n∈N), can
not be transformed or extended directly. For example if f (x) = 5x, then A = [0,5],
but we can not guarantee that for all n ∈ N, Pn ( f (x1), . . . , f (xn)) = ∏n

i=1 f (xi) be-
longs to the interval [0,5].

In the following proposition, we show that j-L-strict stability remains after trans-
formation.

Proposition 2. Let {φn}n∈N and {Mφn
f }n∈N be a family of aggregation operators

and its extension or transformed aggregation. Then:
{Mφn

f }n∈N is a j-L-strictly stable family if and only if {φn}n∈N is a j-L -strictly
stable family in the domain A.

Proof:
Taking into account that Mφn

f

(
x1, . . . ,x j−1,M

φn
f (x1, . . . ,xn−1), . . . ,xn

)
can be

rewritten as

f−1 (φn
(

f (x1), . . . , f (x j−1),φn−1( f (x1), . . . , f (xn−1)), . . . , f (xn)
))

,

the j-L strict stability condition for {Mφn
f }n∈N can be formulated as
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f−1 (φn
(

f (x1), . . . , f (x j−1),φn−1( f (x1), . . . , f (xn−1)), . . . , f (xn)
))

=

f−1 (φn−1( f (x1), . . . , f (xn−1))) .

Hence, since f is a continuous and injective function, such a condition holds if and
only if {φn}n is an strictly stable family in A. And thus, the proposition holds.

Corolary. The weighted quasi-arithmetic aggregation operators family is a
j-L-strict stable family if and only if the sequence of weights satisfies{

wn
k = (1−wn

j) · (wn−1
k ) f or k = 1, . . . , j− 1

wn
k+1 = (1−wn

j) · (wn−1
k ) f or k = j, . . . ,n− 1

∀n ∈ N.

To conclude the study of the missing values in aggregation operators from a stability
point of view, we will try to extend the previous analysis to a situation in which more
than one value could be missing. Let us suppose that we have two missing values in
the positions r < s. So we have x = (x1, . . . ,xr−1,missing,
. . . ,mising,xs+1, . . . ,xn). Let us observe that the j-L strict stability condition can
be stated in a more general way by imposing conditions between the aggregation
functions An and An−2 for this purpose.

Definition 10. Let {An : [0,1]n→ [0,1],n∈N} be a family of aggregation operators.
Then, it is said that {An}n is a r− s-L-strictly stable family if
An(x1, . . . ,xr−1,An−2(x1,x2, ...,xn−2),xr, . . . ,An−2(x1,x2, ...,xn−2),xs−1, . . . ,xn−2)

coincides with An−2(x1,x2, ...,xn−2) ∀n≥ 3 and ∀{xn}n∈N in [0,1]

Following this equation of the r−s-L strict stability, it is possible to build the aggre-
gation operator An−2 from An for a given n. Let us continue with the example of the
four criteria. If now for one alternative the values associated with the criteria 2 and 3
are missing, and we decide to use the weighted mean aggregation function for n = 2
(i.e. A2 =W2), the problem is to determine the weights vector w2 from w4 (which is
the available information). Then, it seems reasonable to impose the 2−3-L stability
condition to find the weights associated with the aggregation operator W2 i.e:

W4(x1,W2(x1,x2),W2(x1,x2),x2) =W2(x1,x2)

for any x1, x2 in [0,1].
For notational convenience, we have denoted by x1 the value for the first variable

and by x2 the value for the fourth variable. So it is x = (x1,missing,missing,x2).
Then, the condition above holds if and only if

1
8

x1+
4
8
(w2

1x1+w2
2x2)+

1
8
(w2

1x1+w2
2x2)+2/8(x2)=w2

1x1+w2
2x2 ∀x1,x2,x3 ∈ [0,1],
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which is equivalent to say that w2 = ( 1
3 ,

2
3 ). Let us observe that this vector main-

tains the relative proportions between the original weights for the non-missing val-
ues in the positions 1 and 4.

We would like to conclude this section pointing out that it is possible to define
strict stability for a sequence of positions r1, . . . rk in a similar way as done above
for two positions, allowing us to establish consistency conditions between the ag-
gregation functions An and An−k.

5 Final Comments

In this work, we have continued with the key issue of the relationship that should
hold between the operators in a family {A}n in order to understand they properly
define a consistent. The basic concepts of consistency addressed as stability of a
family of aggregation operators was presented in [27, 16, 26] in which it is defined
the L and R strict stability in different levels. In this work we have extended some
of these previous definitions into a more general framework defining the i−L and
j−R strict stability for a family of aggregation operators and some of its analysis to
the weighted quasi-arithmetic means families. In addition, we present an interesting
application of the strict stability conditions to deal with missing data problems in an
aggregation operator framework.
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Part XI

Aggregation on Lattices



Quasi-OWA Operators on Complete Lattices

I. Lizasoain�

Abstract. In this paper the concept of an ordered weighted quasi-average
(Quasi-OWA or QOWA) operator is extended from [0,1] to any complete lattice
endowed with a t-norm and a t-conorm. In the case of a complete distributive lattice
it is shown to agree with some OWA operator and consequently with a particular
case of the discrete Sugeno integral. As an application, we show several ways of ag-
gregating either restricted equivalence functions or closed intervals by using QOWA
operators.

1 Introduction

The problem of selecting among a set of alternatives based on their satisfaction to
several criteria is reaching a growing interest due to its many applications in fuzzy
set theory, data fusion, multicriteria decision making, etc. ([5], [12], [13]).

The satisfaction degree of alternative A to criterion Ci is commonly represented
by a value ai belonging to a complete lattice (L,≤L). If we consider n criteria
{C1, . . . ,Cn}, each alternative is represented by a vector (a1, . . . ,an) ∈ Ln.

Aggregation functions allow us to combine the data (a1, . . . ,an) in order to obtain
a single value that represents the global satisfaction degree of alternative A to the
collection of criteria {C1, . . . ,Cn}. One of the most common aggregation functions
is the weighted average F : Ln → L given by

F(a1, . . . ,an) = S[T (α1,a1), · · · ,T (αn,an)], (a1, . . . ,an) ∈ Ln,
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where T and S are respectively a t-norm and a t-conorm defined on L and the
weights (α1, . . . ,αn)∈ Ln satisfying S(α1, · · · ,αn) = 1L are chosen so that the great-
est weights correspond to the prioritized criteria (see [8]).

In [10] Yager introduces an ordered weighted average operator (OWA) defined
on L = [0,1] in which the weight associated to each value ai does not depend on the
priority given to criterion Ci, but on the place the value ai occupies in the ordered
sequence of the values (a1, . . . ,an):

If b1 ≥ ·· · ≥ bn is the rearrangement of (a1, . . . ,an), Yager’s OWA operator as-
sociated to a weighting vector (α1, . . . ,αn) ∈ [0,1]n with α1 + · · ·+αn = 1, is given
by

Fα(a1, . . . ,an) =
n

∑
i=1

αibi, (a1, . . . ,an) ∈ [0,1]n (1)

Unlike the usual weighted average, Yager’s OWA operator is symmetric, which
means that the decision function obtained does not depend on the order in which the
different criteria are considered. OWA operators have been seen as a particular case
of a more general kind of operators, the so-called ordered weighted quasi-average
operators (or QOWA operators) defined on [0,1] in [6] as

Fα(a1, . . . ,an) = g−1

(
n

∑
i=1

αig(bi)

)
, (a1, . . . ,an) ∈ [0,1]n

for any strictly monotonic bijection g : [0,1]→ [0,1].
As a particular case, generalizad OWA operators (GOWA) are defined by Yager

in [11] as

Fα(a1, . . . ,an) =

(
n

∑
i=1
αib

λ
i

) 1
λ

, (a1, . . . ,an) ∈ [0,1]n (λ > 0).

In [9] Yager’s OWA operators are extended to the case in which the satisfaction
degrees belong to any complete lattice L endowed with a t-norm T and a t-conorm
S and applied to aggregate closed intervals contained in [0,1].

This paper is devoted to that generalization for QOWA operators. In the case of a
distributive lattice, any QOWA operator is shown to agree with some OWA operator
and consequently with a discrete Sugeno integral (see [9]).

We also study how to use QOWA operators to aggregate either closed intervals
contained in [0,1] or restricted equivalence functions defined on any complete lat-
tice.

The paper is organized as follows. Section 2 is devoted to revisit well-known
results concerning to aggregation functions defined on complete lattices. Section 3
introduces the concept of a QOWA operator on any complete lattice and analyzes
the case of a distributive lattice. In Section 4, QOWA operators are used to aggre-
gate restricted equivalence functions. Finally, Section 5 shows how to use QOWA
operators to aggregate intervals contained in [0,1].
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2 Preliminaries

Throughout this paper (L,≤L) will denote a complete lattice, i.e., a partially ordered
set in which all subsets have both a supremum and an infimum. 0L and 1L will
respectively stand for the least and the greatest elements of L.

Definition 1 (see [3])

1. A map T : L× L → L is said to be a t-norm on (L,≤L) if it is commutative,
associative, increasing in each component and has a neutral element 1L.

2. A map S : L× L→ L is said to be a t-conorm on (L,≤L) if it is commutative,
associative, increasing in each component and has a neutral element 0L.

Notation: Throughout this paper (L,≤L,T,S) will denote a complete lattice en-
dowed with a t-norm T and a t-conorm S. If the t-norm and the t-conorm considered
on a complete lattice (L,≤L) are respectively the meet (greatest lower bound) and
the join (least upper bound), we will write (L,≤L,∧,∨).
Remark 1. The t-norm given by the meet is not necessarily distributive with respect
to the t-conorm given by the join (see [7]). Indeed, the following distributive prop-
erties are equivalent for any complete lattice (L,≤L):

1. a∧ (b∨ c) = (a∧b)∨ (a∧ c) for all a,b,c ∈ L.
2. a∨ (b∧ c) = (a∨b)∧ (a∨ c) for all a,b,c ∈ L.

A complete lattice (L,≤L,∧,∨) in which one (and then both) of the previous dis-
tributive properties holds is called a complete distributive lattice.

Definition 2. Let (L,≤L) be a bounded lattice. Call (Ln,≤Ln) the bounded lattice
given by

(a1, . . . ,an)≤Ln (c1, . . . ,cn) if and only if ai ≤L ci for every 1≤ i≤ n.

Notice that 1Ln = (1L, . . . ,1L) and 0Ln = (0L, . . . ,0L). An n-ary aggregation function
is a function M : Ln → L such that:

1. M(a1, . . . ,an)≤L M(c1, . . . ,cn) whenever (a1, . . . ,an)≤Ln (c1, . . . ,cn).
2. M(0Ln) = 0L and M(1Ln) = 1L.

An n-ary aggregation function M is said to be idempotent if M(a, . . . ,a) = a for ev-
ery a ∈ L. It is said to be symmetric if, for every permutation σ of the set {1, . . . ,n},
M(a1, . . . ,an) = M(aσ(1), . . . ,aσ(n)).

Definition 3 ([9]). Let (L,≤L,T,S) be a complete lattice. A vector (α1, . . . ,αn)∈ Ln

is said to be a

1. weighting vector in (L,≤L,T,S) if S(α1, . . . ,αn) = 1L and it is said to be a
2. distributive weighting vector in (L,≤L,T,S) if it also satisfies that

a = T (a,S(α1, . . . ,αn)) = S (T (a,α1), . . . ,T (a,αn)) for any a ∈ L.
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Remark 2. 1. If (α1, . . . ,αn) ∈ Ln satisfies that αk = 1L for some 1 ≤ k ≤ n and
αi = 0L for any i �= k, then (α1, . . . ,αn) is a distributive weighting vector in any
complete lattice (L,≤L,T,S).

2. If (L,≤L,∧,∨) is a complete lattice and (α1, . . . ,αn) ∈ Ln satisfies that αi = 1L

for some 1≤ i≤ n, then (α1, . . . ,αn) is a distributive weighting vector in L.
3. If (L,≤L,∧,∨) is a complete distributive lattice, then any weighting vector

(α1, . . . ,αn) ∈ Ln, with α1∨·· ·∨αn = 1L, is distributive.
4. If L is the real interval [0,1] with the usual order ≤, T (a,b) = ab for every

a,b∈ [0,1] and S(a,b)=min{a+b,1} for every a,b∈ [0,1], then (α1, . . . ,αn)∈
[0,1]n with S(α1, . . . ,αn) = 1 is not necessarily a distributive weighting vector
in [0,1]n. Indeed, (α1, . . . ,αn) ∈ [0,1]n is a distributive weighting vector if and
only if α1 + · · ·+αn = 1. (See [9] ).

3 QOWA Operators on Any Complete Lattice

In this section QOWA (ordered weighted quasi-average) operators are extended
from [0,1] to the more general case of any complete lattice (L,≤L,T,S). The essen-
tial properties of QOWA operators on [0,1] are shown to hold on this new setting.

Definition 4. Let (L,≤L,T,S) be a complete lattice. For any vector (a1, . . . , an) ∈
Ln,

1. a totally ordered vector τL(a1 . . .an) = (b1, . . . ,bn) ∈ Ln is built by means of

• b1 = a1∨·· ·∨an ∈ L.
• b2 = [(a1∧a2)∨·· ·∨ (a1∧an)]∨ [(a2∧a3)∨·· ·∨ (a2∧an)]∨
·· ·∨ [an−1∧an] ∈ L.
...

• bk =
∨{a j1 ∧·· ·∧a jk | { j1, . . . , jk} ⊆ {1, . . . ,n}} ∈ L.

...
• bn = a1∧·· ·∧an ∈ L.

2. Let (α1, . . . ,αn) ∈ Ln be a distributive weighting vector in (L,≤L,T,S) and g :
L→ L an strictly monotonic bijection. The function F(α ,g) : Ln → L given by

F(α ,g)(a1, . . . ,an) = g−1[S (T (α1,g(b1)), · · · ,T (αn,g(bn)))], (a1, . . . ,an) ∈ Ln

is called an n-ary QOWA operator.

Lemma 1. In the conditions of Def. 4, let (a1, . . . ,an) ∈ Ln and
(b1, . . . , bn) = τL(a1, . . . ,an). Then

1. For any i �= j, g(ai∧a j) = g(ai)∧g(a j) and g(ai∨a j) = g(ai)∨g(a j).
2. (g(b1), . . . , g(bn)) = τL(g(a1), . . . , g(an)) ∈ Ln.



Quasi-OWA Operators on Complete Lattices 525

Proof. 1. Let i �= j. If ai = a j, the identities are trivial. If ai < a j, the strict mono-
tonicity of g gives g(ai)< g(a j). Hence,

g(ai∧a j) = g(ai) = g(ai)∧g(a j).

The case of a j < ai is analogous. Otherwise, if ai∧a j < ai and ai∧a j < a j, then
g(ai∧a j)< g(ai) and g(ai∧a j)< g(a j). In addition, there cannot be any c ∈ L
with g(ai∧a j) < c < g(ai) and g(ai∧a j) < c < g(a j) because g is a bijection
on L. Therefore g(ai∧a j) = g(ai)∧g(a j).
The ∨-identity can be proven in a similar way.

2. For any 1≤ k≤ n, consider bk =
∨{a j1 ∧·· ·∧a jk | { j1, . . . , jk} ⊆ {1, . . . ,n}} ∈

L. Then

g(bk) = g(
∨
{a j1 ∧·· ·∧a jk) | { j1, . . . , jk})⊆ {1, . . . ,n}}

=
∨
{g(a j1 ∧·· ·∧a jk) | { j1, . . . , jk} ⊆ {1, . . . ,n}}

=
∨
{g(a j1)∧·· ·∧g(a jk) | { j1, . . . , jk} ⊆ {1, . . . ,n}}

and the result follows.

The following results show that any n-ary QOWA operator defined on (L,≤L,T,S)
satisfies the main properties of Yager’s.

Proposition 1. Let (α1, . . . ,αn) ∈ Ln be a distributive weighting vector in (L,≤L

,T,S), g : L→ L an strictly monotonic bijection and F(α ,g) the corresponding QOWA
operator. Then

1. F(α ,g) is a symmetric n-ary aggregation function.
2. F(α ,g) is idempotent.
3. a1∧·· ·∧an ≤L F(α ,g)(a1, . . . ,an)≤L a1∨·· ·∨an for every (a1, . . . ,an) ∈ Ln.

Proof. 1. If ai ≤L a′i for every 1≤ i≤ n, it is easy to prove that bk ≤L b′k for every
1 ≤ k ≤ n and then g(bk) ≤L g(b′k). Hence, T (αk,g(bk)) ≤L T (αk,g(b′k)) for
any 1≤ k ≤ n and consequently

S (T (α1,g(b1)), · · · ,T (αn,g(bn)))≤L S
(
T (α1,g(b

′
1)), · · · ,T (αn,g(b

′
n))

)
.

Finally,

g−1[S (T (α1,g(b1)), · · · ,T (αn,g(bn)))]≤L

g−1[S
(
T (α1,g(b

′
1)), · · · ,T (αn,g(b

′
n))

)
].

In addition, since g(0L) = 0L and g(1L) = 1L,

F(α ,g)(0L, . . . ,0L) = g−1(Fα(0L, . . . ,0L)) = g−1(0L) = 0L

and F(α ,g)(1L, . . . ,1L) = g−1(Fα(1L, . . . ,1L) = g−1(1L) = 1L.
It is immediate to check that F(α ,g) is symmetric.
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2. If a1 = · · ·= an = a ∈ L, then bk = a for every 1≤ k ≤ n and hence

F(α ,g)(a, . . . ,a) = g−1[S (T (α1,g(a)), · · · ,T (αn,g(a)))]

= g−1[T (S(α1, . . . ,αn),g(a))] = g−1[T (1L,g(a))] = g−1(g(a)) = a.

3. Let (a1, . . . ,an) ∈ Ln. For any 1 ≤ k ≤ n, bn ≤L bk ≤L b1 and then g(bn) ≤L

g(bk)≤L g(b1). Therefore,

g(a1∧·· ·∧an) = g(bn) = T (g(bn),1L) = T (g(bn),S(α1, · · · ,αn)) =

S (T (α1,g(bn)), · · · ,T (αn,g(bn)))≤L S (T (α1,g(b1)), · · · ,T (αn,g(bn)))

≤L S (T (α1,g(b1)), · · · ,T (αn,g(b1)))

= T (S(α1, · · · ,αn),g(b1)) = T (1L,g(b1)) = g(b1) = g(a1∨·· ·∨an).

Hence,

a1∧·· ·∧an ≤L g−1[S (T (α1,g(b1)), · · · ,T (αn,g(bn)))]≤L a1∨·· ·∨an.

Remark 3. If g = idL and (α1, · · · ,αn) is any weighting distributive vector, then the
QOWA operator F(α ,g) agrees with the OWA operator Fα defined in [9] by

Fα(a1, . . . ,an) = S (T (α1,b1), · · · ,T (αn,bn))] (a1, . . . ,an) ∈ Ln (2)

Yager’s OWA operator given by (1.1) is a particular case of (1.2) when (L,≤L,T,S)
is the lattice described in item 4 of Remark 2.

The next result shows that the minimum, maximum and, if (L,≤L) is a chain, the
k-th order statistic with 1 ≤ k ≤ n , are particular cases of QOWA operators F(α ,g)
even when g is a monotonic bijection different from the identity map.

Proposition 2. Let (L,≤L,T,S) be any complete lattice endowed with a t-norm T
and a t-conorm S and g : L→ L an strictly monotonic bijection.

1. If (α1, . . . ,αn) ∈ Ln satisfies that αk = 1L for some 1 ≤ k ≤ n and αi = 0L for
any i �= k, then F(α ,g)(a1, . . . ,an) = bk, the k-th component of τL(a1, . . . ,an) for
any (a1, . . . ,an) ∈ Ln.

2. In particular, if (α1, . . . ,αn) = (1L,0L, . . . ,0L) ∈ Ln, then

F(α ,g)(a1, . . . ,an) = a1∨·· ·∨an for any (a1, . . . ,an) ∈ Ln.

3. If (α1, . . . ,αn) = (0L, . . . ,0L,1L) ∈ Ln, then

F(α ,g)(a1, . . . ,an) = a1∧·· ·∧an for any (a1, . . . ,an) ∈ Ln.

Proof. For any (a1, . . . ,an) ∈ Ln, call (b1, . . . ,bn) = τL(a1, . . . ,an), the totally or-
dered vector defined in Def. 4

1. Let αk = 1L and αi = 0L for any i �= k.
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F(α ,g)(a1, . . . ,an) = g−1[S (T (0L,g(b1)), · · · ,T (1L,g(bk)), · · · ,T (0L,g(bn)))]

= g−1[S (g(bk))] = g−1(g(bk)) = bk.

2. If k = 1, bk = b1 = a1∨·· ·∨an.
3. If k = n, bk = bn = a1∧·· ·∧an.

Remark 4. If (L,≤L) is a chain, then the k-th component of parameter τL agrees with
the k-th order statistic.

The next result shows that, if (L,≤L,∧,∨) is a complete distributive lattice, any
QOWA operator is indeed an OWA operator.

Proposition 3. Let (L,≤L,∧,∨) be a complete distributive lattice. Consider a
weighting vector (α1, . . . ,αn) ∈ Ln, which is always distributive, and an strictly in-
creasing bijection g : L→ L.

1. (g−1(α1), . . . ,g−1(αn)) is a weighting vector in Ln denoted by g−1(α).
2. F(α ,g)(a1, . . . ,an) = Fg−1(α)(a1, . . . ,an) for any (a1, . . . ,an) ∈ Ln.
3. The QOWA operator F(α ,g) is indeed an OWA operator on L.

Proof. 1. g−1(α1)∨·· ·∨g−1(αn) = g−1(α1∨·· ·∨αn) = g−1(1L) = 1L.
2. Let (a1, . . . ,an) ∈ Ln and (b1, . . . ,bn) = τL(a1, . . . ,an). Then

F(α ,g)(a1, . . . ,an) = g−1 ((α1∧g(b1))∨·· ·∨ (αn∧g(bn))) =

= g−1 ((g(g−1(α1))∧g(b1))∨·· ·∨ ((g(g−1(αn))∧g(bn))
)

=
(
(g−1(α1)∧b1)∨·· ·∨ (g−1(αn)∧bn)

)
= Fg−1(α)(a1, . . . ,an)

as defined in (1.2).
3. It is a direct consequence of (ii).

Corollary 1. Let (L,≤L,∧,∨) be a complete distributive lattice. Any QOWA opera-
tor is a particular case of the discrete Sugeno integral.

Proof. It is shown in [9] that any OWA operator defined on a complete distributive
lattice is a particular case of the discrete Sugeno integral. Therefore, the assertion is
a direct consequence of the previous proposition.

4 QOWA Operators to Aggregate Restricted Equivalence
Relations

Bustince et al. define in [1] a restricted equivalence function as a map REF : [0,1]×
[0,1]→ [0,1] satisfying certain conditions. If we extend ([0,1],≤) to any complete
lattice (L,≤L), we get the following

Definition 5. A restricted equivalence function defined on a complete lattice (L,≤L)
is a map ρ : L×L→ L satisfying
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1. ρ(a,b) = ρ(b,a) for all a, b ∈ L.
2. ρ(a,b) = 1L if and only if a = b.
3. ρ(a,b) = 0L if and only if a = 1L and b = 0L or a = 0L and b = 1L.
4. If n : L→ L is a strong negation (an strictly decreasing bijection with n(n(a)) =

a for any a ∈ L,

ρ(a,b) = ρ(n(a),n(b)) for all a, b ∈ L.

5. Whenever a≤L b≤L c, then ρ(a,c)≤L ρ(a,b)∧ρ(b,c).
Theorem 1. Consider any complete lattice (L,≤L,T,S). Let (α1, . . . ,αn) ∈ Ln be
a distributive weighting vector, g : L → L an strictly monotonic bijection and ρ :
L×L→ L a restricted equivalence function on L.

Then the function ρ̃ : Ln× Ln → L given for each (a1, . . . ,an), (c1, . . . ,cn) ∈ Ln

by

ρ̃ ((a1, . . . ,an),(c1, . . . ,cn)) = g−1[S (T (α1,g(b1)), · · · ,T (αn,g(bn)))],

where (b1, . . . ,bn) = τL(ρ(a1,c1), . . . ,ρ(an,cn)), satisfies

1. ρ̃((a1, . . . ,an),(c1, . . . ,cn)) = ρ̃((c1, . . . ,cn),(a1, . . . ,an)).
2. ρ̃((a1, . . . ,an),(a1, . . . ,an)) = 1L.
3. ρ̃((1L, . . . ,1L),(0L, . . . ,0L) = 0L.
4. If n : L → L is a strong negation, then the map ñ : Ln → Ln given for any

(a1, . . . ,an) ∈ Ln by ñ(a1, . . . ,an) = (n(a1), . . . ,n(an)), is a strong negation on
Ln and

ρ̃((a1, . . . ,an),(c1, . . . ,cn)) = ρ̃(ñ(a1, . . . ,an), ñ(c1, . . . ,cn)).

5. Whenever (a1, . . . ,an)≤Ln (c1, . . . ,cn)≤Ln (d1, . . . ,dn), then

ρ̃((a1, . . . ,an),(d1, . . . ,dn))≤L

ρ̃((a1, . . . ,an),(c1, . . . ,cn))∧ ρ̃((c1, . . . ,cn),(d1, . . . ,dn))

Proof. Let (a1, . . . ,an), (c1, . . . ,cn) ∈ Ln.

1. Since ρ(ai,ci) = ρ(ci,ai) for any 1≤ i≤ n, it is clear that

ρ̃((a1, . . . ,an),(c1, . . . ,cn)) = ρ̃((c1, . . . ,cn),(a1, . . . ,an)).

2. As ρ(ai,ai) = 1L for any 1≤ i≤ n,

ρ̃((a1, . . . ,an),(a1, . . . ,an)) = g−1[S (T (α1,g(1L)), · · · ,T (αn,g(1L)))]

= g−1[S (T (α1,1L), · · · ,T (αn,1L))] = g−1 (S(α1, · · · ,αn))

= g−1(1L) = 1L.

3. Since ρ(1L,0L) = 0L, then
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ρ̃((1L, . . . ,1L),(0L, . . . ,0L)) = g−1[S (T (α1,g(0L)), · · · ,T (αn,g(0L)))]

= g−1[S (T (α1,0L), · · · ,T (αn,0L))] = g−1 (S(0L, · · · ,0L)) = g−1(0L) = 0L.

4. It is clear that the map ñ : Ln → Ln is bijective, strictly decreasing and satisfying
ñ(ñ(a1, . . . ,an)) = (a1, . . . ,an) for any (a1, . . . ,an) ∈ Ln. In addition,

ρ̃((a1, . . . ,an),(c1, . . . ,cn)) = ρ̃(ñ(a1, . . . ,an), ñ(c1, . . . ,cn))

because ρ(ai,ci) = ρ(n(ai),n(ci)) for any 1≤ i≤ n.
5. Let (a1, . . . ,an)≤Ln (c1, . . . ,cn)≤Ln (d1, . . . ,dn). Then, for any 1≤ i≤ n, ai ≤L

ci ≤L di and so, ρ(ai,di)≤L ρ(ai,ci) and ρ(ai,di)≤L ρ(ci,di). Hence,

τL(g(ρ(a1,d1)), . . . ,g(ρ(an,dn)))≤Ln τL(g(ρ(a1,c1)), . . . ,g(ρ(an,cn)))

and then, by Lemma 1,

ρ̃((a1, . . . ,an),(d1, . . . ,dn))≤L ρ̃((a1, . . . ,an),(c1, . . . ,cn)).

Analogously,

τL(g(ρ(a1,d1)), . . . ,g(ρ(an,dn)))≤Ln τL(g(ρ(c1,d1)), . . . ,g(ρ(cn,dn)))

and then

ρ̃((a1, . . . ,an),(d1, . . . ,dn))≤L ρ̃((c1, . . . ,cn),(d1, . . . ,dn)).

5 QOWA Operators to Aggregate Intervals

Throughout this section I will denote the set of all the closed intervals contained in
the real interval [0,1]. The order relation considered will be given by

[a1, c1]≤ [a2, c2]⇐⇒ a1 ≤ a2 and c1 ≤ c2,

where the ≤ on the right of the arrow denotes the usual order in [0,1]. Notice that
(I,≤) is a complete lattice which is not totally ordered.

Proposition 4 ([9]). Let ([a1, c1], . . . , [an, cn]) ∈ I
n. The totally ordered vector of

I
n given by Def. 4, τI([a1, c1], . . . , [an, cn]) is equal to ([b1, d1], . . . , [bn, dn]), where
(b1, . . . ,bn) = τ[0,1](a1, . . . ,an) and (d1, . . . ,dn) = τ[0,1](c1, . . . ,cn).

Example 1. Consider the complete lattice (I,≤,Tt ,S) of all the closed intervals con-
tained in [0,1]with the t-conorm S given by the join and the t-norm Tt (with t ∈ [0,1])
given for any [a1,c1], [a2,c2] ∈ I by

Tt ([a1,c1], [a2,c2]) = [a1∧a2,(t ∧ c1∧ c2)∨ (a1∧ c2)∨ (c1∧a2)].

It is shown in [4] that Tt is distributive with respect to the join on (I,≤). In addition,
call g : I→ I the monotonic bijection given by



530 I. Lizasoain

g([a,b]) = [
a+ b

2
,b] for any [a,b] ∈ I.

Consider the following set of four alternatives considered under three criteria, ap-
pearing in [2]

C1 C2 C3

A1 [0′45,0′65] [0′50,0′70] [0′20,0′45]

A2 [0′65,0′75] [0′65,0′75] [0′45,0′85]

A3 [0′45,0′65] [0′45,0′65] [0′45,0′80]

A4 [0′75,0′85] [0′35,0′80] [0′65,0′85]

Fix the weighting vector ([α1,β1], [α2,β2], [α3,β3]) given by

α1 = β1 =
1
3

; α2 = β2 =
2
3

; α3 = β3 = 1.

For alternative A1, [a1,c1] = [0′45,0′65], [a2,c2] = [0′50,0′70] and [a3,c3] =
[0′20,0′45]. So, [b1,d1] = [0′50,0′70], [b2,d2] = [0′45,0′65] and [b3,d3] =
[0′20,0′45]. Hence, g([b1,d1]) = [0′60,0′70], g([b2,d2]) = [0′55,0′65], g([b3,d3]) =
[0′325,0′45] and

F(α ,g)([a1,c1], [a2,c2], [a3,c3]) =

g−1 (Tt([α1,β1],g([b1,d1]))∨Tt([α2,β2],g([b2,d2]))∨Tt([α3,β3],g([b3,d3])))

= g−1
(
[
1
3
,

1
3
]∨ [0′55,0′65]∨ [0′325,0′45]

)
= g−1([0′55,0′65]) = [0′45,0′65].

For alternative A2, [a1,c1] = [0′65,0′75], [a2,c2] = [0′65,0′75] and [a3,c3] =
[0′45,0′85]. So, [b1,d1] = [0′65,0′85], [b2,d2] = [0′65,0′75] and [b3,d3] =
[0′45,0′75]. Hence, g([b1,d1]) = [0′75,0′85], g([b2,d2]) = [0′70,0′75], g([b3,d3]) =
[0′60,0′75] and

F(α ,g)([a1,c1], [a2,c2], [a3,c3]) =

g−1 (Tt([α1,β1],g([b1,d1]))∨Tt([α2,β2],g([b2,d2]))∨Tt([α3,β3],g([b3,d3])))

= g−1
(
[
1
3
,

1
3
]∨ [2

3
,

2
3
]∨ [0′60,0′75]

)
= g−1([

2
3
,0′75]) = [

7
12

,0′75].

For alternative A3, [a1,c1] = [0′45,0′65], [a2,c2] = [0′45,0′65] and
[a3,c3] = [0′45,0′80]. So, [b1,d1] = [0′45,0′80], [b2,d2] = [0′45,0′65] and
[b3,d3] = [0′45,0′65]. Hence, g([b1,d1]) = [0′625,0′80], g([b2,d2]) = [0′55,0′65],
g([b3,d3]) = [0′55,0′65] and
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F(α ,g)([a1,c1], [a2,c2], [a3,c3]) =

g−1 (Tt([α1,β1],g([b1,d1]))∨Tt([α2,β2],g([b2,d2]))∨Tt([α3,β3],g([b3,d3])))

= g−1
(
[
1
3
,

1
3
]∨ [0′55,0′65]∨ [0′55,0′65]

)
= g−1([0′55,0′65]) = [0′45,0′65].

Finally, for alternative A4, [a1,c1] = [0′75,0′85], [a2,c2] = [0′35,0′80] and
[a3,c3] = [0′65,0′85]. So, [b1,d1] = [0′75,0′85], [b2,d2] = [0′65,0′85] and [b3,d3] =
[0′35,0′80]. Hence, g([b1,d1]) = [0′80,0′85], g([b2,d2]) = [0′75,0′85], g([b3,d3]) =
[0′575,0′80] and

F(α ,g)([a1,c1], [a2,c2], [a3,c3]) =

g−1 (Tt([α1,β1],g([b1,d1]))∨Tt([α2,β2],g([b2,d2]))∨Tt([α3,β3],g([b3,d3])))

= g−1
(
[
1
3
,

1
3
]∨ [2

3
,

2
3
]∨ [0′575,0′80]

)
= g−1([

2
3
,0′80]) = [

8
15

,0′80].

This approach allows us to assign a unique interval to each alternative. In this ex-
ample, the assigned intervals are not totally ordered. Indeed,

F(α ,g)(A1) = F(α ,g)(A3)≤ F(α ,g)(A2) and

F(α ,g)(A1) = F(α ,g)(A3)≤ F(α ,g)(A4)

but it is not true either F(α ,g)(A2) ≤ F(α ,g)(A4) or F(α ,g)(A4) ≤ F(α ,g)(A2). This ar-
rangement differs from that obtained in [9] for the OWA Fα :

Fα(A3)≤ Fα(A1)≤ Fα(A2)≤ Fα(A4).
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Obtaining Multi-argument Fuzzy Measures on
Lattices

S. Cubillo, T. Calvo, and E.E. Castiñeira

Abstract. Measures have been used to establish the degree in which a property
holds. When this property is applied on a undetermined number of elements,
multi-argument measures should be considered. More, if the values are in [0,1],
we finally have to handle multi-argument fuzzy measures. This paper is devoted to
obtain new multi-argument fuzzy measures on bounded lattices, using aggregation
functions in two different ways. Developing the proposed methods, several func-
tions measuring some properties with specified conditions are obtained.

1 Introduction

Measures have been studied throughout the literature in many backgrounds. They
have been used to establish the degree in which a property holds. This property
could refer to a single or more elements in a set. In previous papers, the authors
have studied some functions measuring the contradiction, the incompatibility and
other properties between two fuzzy sets ([7, 9, 10]), and later, they have extended
their study to multi-argument fuzzy measures ( [8]). It is necessary to quote that the
previous research could be applied not only to the bounded lattice of the fuzzy sets
on a universe X , but also to any bounded lattice. This is the main purpose of the
present work.

The first section is devoted to give some definitions necessary to properly under-
stand the rest of the paper. Section two focuses on some results that allow to obtain
new multi-argument measures. Next, these results are used to construct some func-
tions measuring properties with different conditions, and the relation with previous
papers is showed. Finally some conclusions are set out.

S. Cubillo · E.E. Castiñeira
Polytechnical University of Madrid
e-mail: {scubillo,ecastineira}@fi.upm.es

T. Calvo
University of Alcalá de Henares
e-mail: tomasa.calvo@uah.es

H. Bustince et al. (eds.), Aggregation Functions in Theory and in Practise, 533
Advances in Intelligent Systems and Computing 228,
DOI: 10.1007/978-3-642-39165-1_50, c© Springer-Verlag Berlin Heidelberg 2013



534 S. Cubillo, T. Calvo, and E.E. Castiñeira

2 Basic Notions

Let L = (L,≤L,0L,1L) be a bounded lattice [4, 5] whose minimum and maximum
elements are denoted by 0L and 1L, respectively. For each n ∈N, let us consider the
set

Ln = {(a1, . . . ,an) | ai ∈ L, ∀i ∈ {1, . . . ,n}}
and the order relation ≤Ln induced by ≤L, that is, given ā = (a1, . . . ,an), b̄ =
(b1, . . .bn) ∈ Ln,

ā≤Ln b̄ ⇐⇒ ai ≤L bi, ∀i ∈ {1, . . . ,n}.
We have that Ln with the order relation ≤Ln is also a bounded lattice, whose mini-
mum and maximum elements are 0Ln = (0L,

n). . .,0L) and 1Ln = (1L,
n). . .,1L), respec-

tively. We say that L n = (Ln,≤Ln ,0Ln ,1Ln) is induced by L .

Moreover, if L is complete, then L n is also complete.

Throughout the paper the bounded and complete lattice of real numbers I =
([0,1],≤,0,1) will be considered.

Definition 1. Let L = (L,≤L,0L,1L) be a bounded lattice and, for each n ∈ N,
L n = (Ln,≤Ln ,0Ln ,1Ln) the lattice induced by L . A multi-argument function F :⋃

n∈N Ln → L is said to be n-increasing if

F (a1, . . . ,an)≤L F (a1, . . . ,an,an+1)

holds for all n ∈ N and for all a1, . . . ,an,an+1 ∈ L. Similarly, it is n-decreasing if

F (a1, . . . ,an,an+1)≤L F (a1, . . . ,an)

holds for all n ∈ N and for all a1, . . . ,an,an+1 ∈ L

The following definition captures the axioms of fuzzy measures given in [12], con-
sidering lattices instead of measurable spaces.

Definition 2. Let us consider a bounded lattice L = (L,≤L,0L,1L), the lattice L n

induced by L , for a fixed n∈N, and the lattice of real numbers I . A map M : Ln →
[0,1] is said to be a fuzzy measure on L n or a fuzzy n-measure on L (or on L), if it
satisfies:

i) M(0Ln) = 0 and M(1Ln) = 1 (boundary conditions).
ii) M is increasing with respect to the orders of the lattices L n and I , that is, for

all ā, b̄ ∈ Ln such that ā ≤Ln b̄, the inequality M(ā) ≤ M(b̄) holds (monotony
condition).

In particular, if n = 1 then M is said to be a fuzzy measure on L (or on L).

Nevertheless, in most of the applications the properties are applied to an unsettled
number of elements. So it is necessary to extend the definition of fuzzy measure by
considering any number of arguments as follows.
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Definition 3. ([7]) Let L = (L,≤L,0L,1L) be a bounded lattice and, for each n∈N,
let L n be the lattice induced by L . A map M :

⋃
n∈NLn → [0,1] is said to be a

multi-argument fuzzy measure on L (or on L) if, for each n ∈ N, the function M
restricted to Ln, M|Ln , is a fuzzy n-measure.

Moreover,

iii) M is increasing with respect to the argument n or n-increasing if M(a1, . . . ,an)≤
M(a1, . . . ,an,an+1) holds for all n ∈N and for all a1, . . . ,an,an+1 ∈ L.

iv) M is decreasing with respect to the argument n or n-decreasing if M(a1, . . . ,an)≥
M(a1, . . . ,an,an+1) holds for all n ∈N and for all a1, . . . ,an,an+1 ∈ L.

Example 1. Any aggregation function is a fuzzy multi-measure on I . Indeed, recall
that an aggregation function [3, 6, 13, 14] is a map A :

⋃
n∈N

[0,1]n → [0,1] such that

1. A (0, . . . ,0) = 0 and A (1, . . . ,1) = 1.
2. A (a) = a for all a ∈ [0,1].
3. For each n ∈ N, A (a1, . . . ,an) ≤ A (b1, . . . ,bn) holds provided ai ≤ bi for all

i ∈ {1, . . . ,n}.
We denote Sn = {π : {1, . . . ,n}→ {1, . . . ,n}|π is a bijection} , that is, Sn is the set
of permutations of {1, . . . ,n}. Then

Similarly to the case of symmetric operators, the following definition is given.

Definition 4. A multi-argument fuzzy measure M on a bounded lattice L = (L,≤L

,0L,1L) is symmetric if, for each n ∈ N, the function M|Ln is symmetric, that is,
M(a1, . . . ,an) = M(aπ(1), . . . ,aπ(n)) holds for any π ∈ Sn and for any (a1, . . . ,an) ∈
Ln.

Example 2. Recall that a t-conorm ([1, 15]) is a function S : [0,1]2 → [0,1], con-
mutative, associative, increasing and with neutral element 0. Because of the as-
sociativity, it can be extended to S :

⋃
n∈N[0,1]n → [0,1], where S(a1, . . . ,an) =

S(a1,S(a2, . . . ,an)),∀n > 1. If, moreover, we fix S(a)= a for all a∈ [0,1], we obtain
that any t-conorm is an aggregation function that is also a symmetric n-increasing
multi-argument fuzzy measure.

Similarly, the extension of any t-norm T ( T : [0,1]2 → [0,1], conmutative, as-
sociative, increasing and with neutral element 1) to

⋃
n∈N[0,1]n is an aggregation

function that is also a symmetric n-decreasing multi-argument fuzzy measure.

Example 3. The function M :
⋃

n∈N
[0,1]n → [0,1], given by

M (a) = a

M (a1, . . . ,an) = a2
1

n

∏
i=2

ai, ∀n > 1

is an aggregation function, that is a non symmetric n-decreasing multi-argument
fuzzy measure on ([0,1],≤).
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3 Some Ways to Obtain Multi-argument Fuzzy Measures

The two following results whose proof is straightforward, provide two ways to con-
struct fuzzy multi-measures from a given fuzzy measure, using aggregation func-
tions.

One way is to aggregate measures of lattice elements, whereas the other is to
measure the aggregation of lattice elements.

Proposition 1. ([7]) Let L = (L,≤L,0L,1L) be a bounded lattice and m : L →
[0,1] be a fuzzy measure on L . If A is a fuzzy multi-measure on I , then MA :⋃

n∈N Ln → [0,1], defined for each (a1, . . . ,an) ∈ Ln by

MA (a1, . . . ,an) = A (m(a1), . . . ,m(an)),

is a fuzzy multi-measure on L .
Moreover, if A is n-increasing (n-decreasing), then MA is n-increasing

(n-decreasing).

Example 4. Let X be a non-empty and finite set, and let P(X) denotes the set
of all subsets of X , that is, the power set of X . Let us consider the bounded lat-
tice (P(X),⊆, /0,X), which is, in fact, a Boolean algebra. Let m : P(X)→ [0,1]

be the fuzzy measure defined for each A ∈ P(X) as m(A) = card(A)
card(X) , and A the

n-increasing fuzzy multi-measure on I , defined as A (a1, ...an) = Max(a1, ...an).
Then MA :

⋃
n∈NP(X)n → [0,1], defined for each (A1, . . . ,An) ∈P(X)n by

MA (A1, . . . ,An) = Max(m(A1), . . . ,m(An)) = Maxi=1...n

{
card(Ai)

card(X)

}
,

is an n-increasing fuzzy multi-measure on P(X).
In a similar way, considering the n-decreasing fuzzy multi-measure Min, we ob-

tain the n-decreasing fuzzy multi-measure on P(X)

MA (A1, . . . ,An) = Min(m(A1), . . . ,m(An)) = Mini=1...n

{
card(Ai)

card(X)

}
,

Let us observe that in the first case we could have changed the Max by any t-conorm
to obtain n-increasing fuzzy multi-measures, and in the second one, the Min by any
t-norm to obtain n-decreasing fuzzy multi-measures.

Proposition 2. ([7]) Let L = (L,≤L,0L,1L) be a bounded lattice and m : L→ [0,1]
be a fuzzy measure on L .
If F :

⋃
n∈NLn → L is a multi-argument function such that F (0L, . . . ,0L) = 0L,

F (1L, . . . ,1L)= 1L and F (a1, . . . ,an)≤L F (b1, . . . ,bn), whenever ai≤L bi for each
i ∈ {1, . . . ,n} and for all n ∈ N, then the multi-argument function MF :

⋃
n∈NLn →

[0,1], defined for each (a1, . . . ,an) ∈ Ln by

MF (a1, . . . ,an) = m(F (a1, . . . ,an)),
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is a fuzzy multi-measure on L .
Moreover, if F is n-increasing (n-decreasing), then MF is n-increasing

(n-decreasing).

Example 5. 1. Consider the n-decreasing multi-argument function on the bounded
lattice (P(X),⊆, /0,X), F :

⋃
n∈N P(X)n→P(X), defined for each (A1, . . . ,An)∈

P(X)n by F (A1, . . . ,An) = A1∩ . . .∩An, and the fuzzy measure m of the example
4. Then,

MF (A1, . . . ,An) = m(F (A1, . . . ,An)) =
card(A1∩ . . .∩An)

card(X)

is an n-decreasing multi-argument fuzzy measure on P(X).

2. Consider the n-increasing multi-argument function G :
⋃

n∈N P(X)n→P(X)
defined for each (A1, . . . ,An) ∈P(X)n by G (A1, . . . ,An) = A1∪ . . .∪An. Then,

MG (A1, . . . ,An) = m(G (A1, . . . ,An)) =
card(A1∪ . . .∪An)

card(X)

is an n-increasing multi-argument fuzzy measure on P(X).

Next results provide multi-argument fuzzy measures on L with the order reverse
throughout strong negations. To show them, we first need some definitions.

Given a non-empty set L and an order relation≤L defined on L, the reverse order
induced by ≤L is defined as follows: for all a,b ∈ L,

a≥L b if and only if b≤L a

Note that with this order, the minimum element is 1L, and the maximum is 0L. Then,
we have the bounded lattice L ∗ = (L,≥L,1L,0L).

Definition 5. ([2]) Let L = (L,≤L,0L,1L) be a bounded lattice. The function N :
L→ L is a negation if

1. N(0L) = 1L

2. N(1L) = 0L

3. If a≤L b , then N(b)≤L N(a), for any a,b ∈ L

More, if N(N(a)) = a holds for any a ∈ L, it is said that N is a strong negation.

Proposition 3. Let M :
⋃

n∈NLn→ [0,1] be a multi-argument fuzzy measure on L =
(L,≤L,0L,1L), and N : L → L a strong negation on L. Then the function MN :⋃

n∈N Ln → [0,1] defined as MN(a1, . . . ,an) = M(N(a1), . . . ,N(an)) for any
(a1, . . . ,an) ∈ Ln is a multi-argument fuzzy measure on L ∗ = (L,≥L,1L,0L).
Furthermore, if M is n-increasing (n-decreasing), MN is n-increasing (n-decreasing).

Proof. 1. MN(1L, . . . ,1L) = M(N(1L), . . . ,N(1L)) = M(0L, . . . ,0L) = 0.
2. Similarly, MN(0L, . . . ,0L) = M(1L, . . . ,1L) = 1.
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3. (a1, . . . ,an)≥L (b1, . . . ,bn)⇔ (b1, . . . ,bn)≤L (a1, . . . ,an)
⇔ bi ≤L ai ∀i = 1, . . . ,n⇔ N(ai)≤L N(bi) ∀i = 1, . . . ,n
⇔ MN(a1, . . . ,an) = M(N(a1), . . . ,N(an)) ≤ M(N(b1), . . . ,N(bn)) =
MN(b1, . . . ,bn).

4. MN(a1, . . . ,an+1) = M(N(a1), . . . ,N(an+1))≥M(N(a1), . . . ,N(an)) =
= MN(a1, . . . ,an). Analogously the case of M being n-decreasing.

Example 6. Let (P(X),⊆, /0,X) be the lattice of the power set of X , with X finite.
Let N : P(X)→P(X) the function complement, that is, for any A⊆ X it is N(A) =
Ac = X −A. In fact, this function is a strong negation on P(X). And let MF the
n-decreasing multi-argument fuzzy measure on P(X) obtained in the example 5,

MF (A1, . . . ,An) =
card(A1∩...∩An)

card(X) .

Then the function MF N : P(X)→ [0,1], defined as

MF N(A1, . . . ,An) =
card(N(A1)∩ . . .∩N(An))

card(X)
=

card(Ac
1∩ . . .∩Ac

n)

card(X)

is an n-decreasing multi-argument fuzzy measure on (P(X),⊇,X , /0).
In a similar way, considering in the same example the n-increasing measure

MG (A1, . . . ,An) =
card(A1∪...∪An)

card(X) we obtain the n-increasing multi-argument fuzzy

measure on (P(X),⊇,X , /0)

MG N(A1, . . . ,An) =
card(N(A1)∪ . . .∪N(An))

card(X)
=

card(Ac
1∪ . . .∪Ac

n)

card(X)
.

Proposition 4. Let M :
⋃

n∈NLn→ [0,1] be a multi-argument fuzzy measure on L =
(L,≤L,0L,1L), and N : [0,1]→ [0,1] a strong negation. Then the function MN :⋃

n∈N Ln→ [0,1] defined as MN(a1, . . . ,an)=N(M(a1, . . . ,an)) for any (a1, . . . ,an)∈
Ln is a multi-argument fuzzy measure on L ∗ = (L,≥L,1L,0L).
Furthermore, if M is n-increasing (n-decreasing), MN is n-decreasing (n-increasing).

Example 7. Let (P(X),⊆, /0,X) be the lattice of the power set of X . Let N : [0,1]→
[0,1] be the strong negation given by N(x) = 1− x for all x ∈ [0,1]. If MF is the
n-decreasing multi-argument fuzzy measure on P(X) obtained in the example 5,

MF (A1, . . . ,An) =
card(A1∩...∩An)

card(X)
, then the function MF

N : P(X)→ [0,1], defined
as

MF
N(A1, . . . ,An) = 1− card(A1∩ . . .∩An)

card(X)

is an n-increasing multi-argument fuzzy measure on (P(X),⊇,X , /0).
In a similar way, considering in the same example the n-increasing measure

MG (A1, . . . ,An) =
card(A1∪...∪An)

card(X) we obtain the n-decreasing multi-argument fuzzy

measure on (P(X),⊇,X , /0)
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MG N(A1, . . . ,An) = 1− card(A1∪ . . .∪An)

card(X)
.

4 Searching Functions to Measure Any Property

Let P be a property that a set of elements of any bounded lattice L = (L,≤L,0L,1L)
could gradually satisfy. Let us suppose that we have to establish a function on L
measuring this graduation. Then we should define a function MP :

⋃
n∈N Ln → [0,1],

satisfying some conditions depending on the characteristics of this property.
Firstly, if we have that a set of elements {a1, . . . ,an} do not satisfy at all the

property, we should establish that MP(a1, . . . ,an) = 0. For the rest of the sets of
elements, we should fix the requirements MP has to satisfy.

If the degree of property increases as the elements are greater (in the order ≤L)
we can define MP(a1, . . . ,an) = A (a1, . . . ,an), provided A is any multi-argument
fuzzy function; but if property P decreases as the elements are greater, we could
define MP(a1, . . . ,an) = A (N(a1), . . . ,N(an)) (Proposition 3), provided A is any
multi-argument fuzzy function, and N any strong negation on L.

More, if the degree of the property increases (or decreases) depending on a char-
acteristic of the elements, and it is possible to establish a function m measuring this
characteristic, we can establish MP(a1, . . . ,an) = A (m(a1), . . . ,m(an)), provided
A is an aggregation function. But if the degree increases depending of a charac-
teristic (measurable by m) of a relation between the elements (represented by a
multi-argument function A ), then we could establish MP(a1, . . . ,an) =
m(F (a1, . . . ,an)).

Finally, if the degree of the property P increases as the number n of elements
increases, we can choose A as any n-increasing multi-argument function, and if the
degree decreases as the number n of elements increases, A could be any n-decreasing
multi-argument function.

In previous papers , the authors have considered the lattice of the fuzzy sets
L = ([0,1]X ,≤,μ /0,μX ), introducing some functions in order to measure different
properties. Furthermore, if T :

⋃
n∈N[0,1]n → [0,1] is a t-norm, we can establish

T :
⋃

n∈N([0,1]X)n → [0,1]X as (T (μ1, · · · ,μn))(x) = T (μ(x), · · · ,μn(x)). Also if
S :

⋃
n∈N[0,1]n → [0,1] is a t-conorm, we can establish S :

⋃
n∈N([0,1]X)n → [0,1]X

as (S(μ1, · · · ,μn))(x) = S(μ(x), · · · ,μn(x)).

Example 8. In [8] for any t-norm T , the T -compatibility is studied. This property
is increasing on L and n-decreasing. Then, according to Proposition 1, a way to
measure the T -compatibility of a number of fuzzy sets could be

C(μ1, . . . ,μn) =

{
0, if T (μ1, . . . ,μn) = μ /0

T 0(m(μ1), . . . ,m(μn)), otherwise.

provided T 0 is a t-norm, and m a measure on [0,1]X . For example, the supremum
(m(μ) = Supx∈Xμ(x)), or the minimum (m(μ) = Minx∈Xμ(x)).
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Note that T (μ1, . . . ,μn) = /0 means that μ1, . . . ,μn are not T -compatible.
Moreover, according to Proposition 2, a new measure of T -compatibility will be:

C(μ1, . . . ,μn) =

{
0, if T (μ1, . . . ,μn) = μ /0

m(T 0(μ1, . . . ,μn)), otherwise.

provided T 0 is a t-norm, and m a measure on [0,1]X

Example 9. Measures of supplementarity were introduced in [11]. Supplementarity
is an increasing property on L and n-increasing. Then according to Proposition 1,
given a t-conorm S, a measure of S-supplementarity could be

M(μ1, . . . ,μn) =

{
0, if S(μ1, . . . ,μn) �= μX

S0(m(μ1), . . . ,m(μn)), otherwise.

provided S0 is a t-conorm, and m a measure on [0,1]X .

And according to Proposition 2, a new measure of S-supplementarity will be:

M(μ1, . . . ,μn) =

{
0, if S(μ1, . . . ,μn) �= μX

m(S0(μ1, . . . ,μn)), otherwise.

provided S0 is a t-conorm, and m a measure on [0,1]X .

Before giving the following examples, note that in Definition 5, when considering
the particular lattice ([0,1],≤,0,1), the usual definition of strong negation on [0,1]
([16]) is captured. Besides, a strong negation n on [0,1] determines a strong negation
on the lattice [0,1]X , N : [0,1]X → [0,1]X , with (N(μ))(x) = N(μ(x)) for all x ∈ X .

Example 10. Measures of incompatibility were introduced in [9]. This is a decreas-
ing property on and n-increasing. Then, according to Proposition 3 it is possible to
establish for any t- norm T , the T -incompatibility measure:

I(μ1, . . . ,μn) =

{
0, if T (μ1, . . . ,μn) �= μ /0

S(N(μ1), . . . ,N(μn)), otherwise.

provided S is a t-conorm, and N a strong negation on [0,1]X .

Note that T (μ1, . . . ,μn) �= μ /0 means that μ1, . . . ,μn are not T -incompatible.
More, taking into account Proposition 4 we also could establish as a

T -incompatibility measure:

I(μ1, . . . ,μn) =

{
0, if T (μ1, . . . ,μn) �= μ /0

N(T 0(μ1, . . . ,μn)), otherwise.

provided T 0 is a t-norm, and N a strong negation on [0,1]X .
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Example 11. Measures of unsupplementarity were introduced in [8]. This is a de-
creasing property on L and n-decreasing. Then, according to Proposition 3 it is
possible to establish as S-unsupplementarity measure:

U(μ1, . . . ,μn) =

{
0, if S(μ1, . . . ,μn) = μX

T (N(μ1), . . . ,N(μn)), otherwise.

provided T is a t-norm, and N a strong negation on [0,1]X .
More, taking into account Proposition 4 we also could establish as a

S-unsupplementarity measure:

U(μ1, . . . ,μn) =

{
0, if S(μ1, . . . ,μn) = μX

N(S(μ1, . . . ,μn)), otherwise.

provided S is a t-conorm, and N a strong negation on [0,1]X .

Conclusions. In this paper, multi-argument fuzzy functions on a bounded lattice
have been faced. In particular, aggregation functions constitute a special class of
them. Four propositions have provided some ways to obtain multi-measures satis-
fying different porperties. Examples on the lattice of power set of any finite set,
have been showed. When focusing on measures on fuzzy sets the methods proposed
allow to construct functions measuring properties applying on a subset of them.
Depending on the characteristics of each property, the suitable method will be cho-
sen. In this a way, some measures introduced by the authors in previous papers, are
captured.
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Aggregation of Convex Intuitionistic Fuzzy Sets

Vladimír Janiš and Susana Montes

Abstract. Aggregation of intuitionistic fuzzy sets is studied from the point of view
of preserving convexity. We focus on those aggregation functions for IF-sets, that are
results of separate aggregation of the membership and of nonmembership functions,
that is, the representable aggregation functions. A sufficient and necessary condition
for an aggregation function is given in order to fulfil that the aggregation of two
IF-sets preserves the convexity of cuts.

1 Preliminaries

The object of our study are the intuitionistic fuzzy sets (IF-sets) introduced by
Atanassov in [1] and [2] and in more details studied in [3]. Although they were
seen at the beginning justa as an extension of the ordinary fuzzy set, quickly they
were revealed with essentially different properties. An adequate example to show
that was proposed in [3]:

Example 1. Let X be the set of all countries with elective governments. Assume that
we know for every country x∈ X the percentage of the electorate that have voted for
the corresponding government. Denote it by M(x) and let μ(x) = M(x)/100 (degree
of membership, validity, etc.). Let ν(x) = 1−μ(x). This number corresponds to the
part of electorate who have not voted for the government. By fuzzy set theory alone
we cannot consider this value in more detail. However, if we define ν(x) (degree
of non-membership, non-validity, etc.) as the number of votes given to parties or
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persons outside the government, then we can show the part of electorate who have
not voted at all or who have given bad voting-paper and the corresponding number
will be π(x) = 1−μ(x)−ν(x) (degree of indeterminacy, uncertainty, etc.). Thus we
can construct the set

{(x,μ(x),ν(x))|x ∈ X}
and it is trivial that

0 < μ(x)+ν(x)< 1.

Obviously, for every ordinary fuzzy set πA(x) = 0 for each x∈ X and these sets have
the form {(x,μ(x),1− μ(x))|x ∈ X}. Nowever, it is clear that IFS can be different
from ordinary fuzzy sets.

We will use the following definition of an IF-set:

Definition 1. Let X be a universe. A pair A = (μA,νA) where μA and νA are two
functions from X to [0,1] fulfilling that μA(x) + νA(x) ≤ 1 for all x ∈ X is called
an intuitionistic fuzzy set (IF-set). The functions μA,νA are its membership and
nonmembership functions, respectively.

Suppose that T is an arbitrary triangular norm (see, for instance, [8]). The definitions
of T -based union, T -based intersection, complementation and inclusion given by
Atanassov in [2] are the following:

• Intersection: A∩T B = 〈μA∩T B,νA∩T B〉 where μA∩T B(x) = T (μA(x),μB(x)) and
νA∩T B(x) = S(νA(x),νB(x)), for all x ∈ X ;

• Union: A ∪S B =
〈
μA∪SB,νA∪SB

〉
where μA∪SB(x) = S(μA(x),μB(x)) and

νA∪SB(x) = T (νA(x),νB(x)), for all x ∈ X ;
• Complement: if A = 〈μA,νA〉, then A = 〈νA,μA〉;
• Inclusion: A⊆ B iff μA(x)≤ μB(x) and νA(x)≥ νB(x), for all x ∈ X .

But we are not working in general with IF-sets, but a particular case of them: the
convex IF-sets. In order to study the properties connected to convexity, throughout
the paper we assume that X is a linear space. From the above it follows that the IF-set
(0,1) is the zero element and the IF-set (1,0) is the unit element in the partially
ordered set of all IF-sets on X .

We devoted our study to this class of sets, since convexity is one of the most
important aspects in the study of geometric properties of not only crisp (usual) sets,
but also fuzzy and IF-sets, mainly in applications connected to optimization and
control (see [4, 13]). In [15], Zadeh introduced the concept of convex fuzzy set,
which is an important kind of extension of classical convex sets from the point of
view of cut sets.

Thus, following directly the concept of convexity for crisp sets we obtain that a
fuzzy set μ from X to [0,1] is convex, if for all x,y ∈ suppμ and λ ∈ [0,1] there is

μ(λx+(1−λ )y)≥ λμ(x)+ (1−λ )μ(y).

Although this definition of convexity is sometimes used, it has at least two weak
points. The first one is that it is not suitable for the case of a lattice valued fuzzy
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set, as the addition in the lattice is not defined. And the second one is that under
this definition a fuzzy set for which all its level sets are convex, need not be convex.
Recall that by a level set or α-cut of a fuzzy set μ , with α ∈ (0,1], we understand
the crisp set μα = {x ∈ X ;μ(x)≥ α}.

Therefore we will consider the following definition of convexity for fuzzy sets:

Definition 2. A fuzzy set μ : Rn → R is convex if for all x,y ∈ Rn,λ ∈ [0,1] there is
μ(λx+(1−λ )y)≥min{μ(x),μ(y)}.
This property has been (under the name of quasiconvexity) introduced in [4]. It can
be easily shown that it overcomes both mentioned problems, it can be used also
for mappings into partially ordered spaces and the class of all convex fuzzy sets is
exactly the class of those fuzzy sets, for which all their cuts are convex.

The notion of quasiconvexity has been widely studied and applied. However, it
could be too restrictive in several situations, especially in a framework of a fuzzy
logic model in which a t-norm other than minimum is used. By this reason, the no-
tion of T -convexity was proposed in [5]. There, T assumed the role of the minimum
in the previous definition, but it was any t-norm. It is clear that quasiconvexity im-
plies T -convexity for any t-norm T . Moreover, it can be proven that T -convexity of
a normal fuzzy set (there exists an x in X such that the membership function of the
fuzzy set assumes the value one in x) implies its quasiconvexity. Thus, both concepts
are very related and even they are just the same in the case of normal fuzzy sets.

Although the theory and application of convex fuzzy sets have been studied in-
tensively, the corresponding research for convex intuitionistic fuzzy sets is rather
scarce, which restricts its application greatly. Thus, in [16], Zhang et al. define 16
kinds of intuitionistic convex fuzzy sets from the point view of cut sets and neigh-
bourhood relations between a fuzzy point and an IF-set. In [14], Xu et al. intro-
duced the concept of quasi-convex IF-set based on convex fuzzy sets and concave
fuzzy sets and discussed the relations among them. In a similar way interval-valued
convex fuzzy sets were introduced in [17] and even some generalization to graded
convex intuitionistic fuzzy sets were considered in [11]. We will try to consider
these approaches in order to define and study some properties for convex IF-sets. In
particular we will interested in the study of the intersection of two convex IF-sets.

The paper is organized as follows. In Section 2, we introduce the convex IF-sets
and we establish some equivalent definitions. In Section 3, we analyse the behaviour
of a generalization of the intersection of two convex IF-sets. Finally, in the last sec-
tion, we present some concluding remarks and we comment some open problems.

2 Convex Intuitionistic Fuzzy Sets

Since we would like the concept of convex intuitionistic fuzzy sets fulfils the cut-
worthy property (for the notion of cutworthiness see, for instance, the book by Klir
and Yuan [9]), we will start by considering the notion of alpha-cut of an IF-set.

In [3] the α-cut of an IF-set A = (μA,νA) was defined as the set of those x ∈ X
for which μA(x) ≥ α and νA(x) ≤ 1−α . We will denote it by Aα = (μA,νA)α .
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As an starting point, we will consider this definition along this paper, but some
generalization where proposed in [6] and [10]. In the second case the conjunction
was replaced by a triangular norm and the negation for the non-membership degree
by a fuzzy negation. In the fist case only the standard negation was used.

Using cuts we can define convexity for IF-sets, just from the cutworthy property.

Definition 3. An IF-set A is convex if its cuts Aα are convex subsets of X for all
α ∈ (0,1].

In fact, this concept can be characterized only by means of the convexity of the first
component of the IF-set, if we consider it as the membership function of a fuzzy set.
Thus,

Proposition 1. Let A be an intuitionistic fuzzy set on X. The following statements
are equivalent:

1. A is a convex IF-set.
2. μA is the membership function of quasi-convex fuzzy set.

Proof. Hence the α-cut of A = (μA,νA) is the intersection of the α-cuts of μA and
1−νA.

However, from the condition for IF-sets we see that μA(x)≤ 1−νA(x) for all x ∈
X , hence (μA)α ⊆ (1−νA)α and so the intersection of these cuts is (μA(x))α . Since
the quasi-convexity of a fuzzy set is equivalent to require that all its alpha-cuts are
convex (see [7]), this implies that the convexity of A is equivalent to the convexity
of μA. �

On the other hand, in [14] the concept of quasi-convexity of IF-sets was introduced
as follows:

Definition 4. An IF-set A is called quasi-convex if

μA(λ (x− y)+ y)≥min(μA(x),μA(y))

νA(λ (x− y)+ y)≤max(νA(x),νA(y))

for all x,y ∈ X , λ ∈ [0,1].

It is immediate to prove that

Proposition 2. Let A be an intuitionistic fuzzy set on X. The following statements
are equivalent:

1. A is a quasi-convex IF-set.
2. The α-cuts of the fuzzy sets μA and 1− νA are convex crisp sets, for any α ∈

(0,1].

Although we could think that both concepts, convexity and quasi-convexity, are
equivalent, this is not right and we only have one implication.
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Proposition 3. Let A be an intuitionistic fuzzy set on X. If A is quasi-convex, then it
is also convex, but the convex is not true in general.

Proof. If A is a quasi-convex IF-set, then the α-cuts of the fuzzy sets μA and 1−νA

are convex crisp sets, for any α ∈ (0,1]. This implies the quasi-convexity of the
fuzzy set defined by means of μA and therefore, by Proposition 1, the convexity of
A.

To prove that the converse is not true in general, let us consider X is the real line
and A is the IF-set defined by

μA(x) = νA(x) =

{
0.5 if x ∈ [1,2],
0 otherwise.

As

Aα = {x|μA(x)≥ α and νA(x)≤ 1−α}=
{
[1,2] if α ∈ (0,0.5]

/0 if α ∈ (0.5,1]

and it is trivial that is is convex for any α ∈ (0,1], that is, A is a convex IF-set.
However, the 0.7-cut of 1− νA is not a convex crisp set, since (1− νA)0.7 =

(−∞,1)∪(2,∞), and therefore, by Proposition 2, A is not a quasi-convex IF-set. �

Since we would like to consider the most general case, we will work along this
paper with the notion of convex IF-set. One of the properties that make convexity so
important is its preserving under intersections. We will study this question for the
case of IF-sets. However, instead of the intersection we will consider a wider class
of aggregation functions. As the intersection of IF-sets is defined by a triangular
norm, which is a particular case of an aggregation operator, our result will be valid
also for intersections.

3 Aggregation Functions and Convexity

We restrict our considerations to binary aggregation functions on a unit interval, that
is, the maps W : [0,1]× [0,1]→ [0,1] such that W (0,0)= 0,W (1,1) = 1 and W is in-
creasing in each component. In particular we will restrict our study to representable
aggregation functions.

Definition 5. An aggregation function W on [0,1] is representable if there exists a
pair of aggregation functions (W1,W2) on a unit interval such that for eachα,β ,γ,δ ∈
[0,1],α+β ≤ 1,γ+ δ ≤ 1 there is

W ((α,β ),(γ,δ )) = (W1(α,γ),W2(β ,δ )).

In the following proposition we clarify the connection between a representable ag-
gregation function and its representing functions. By a dual W d of an aggregation
function W we denote the mapping W d : [0,1]→ [0,1] such that

W d(α,β ) = 1−W(1−α,1−β ).
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Proposition 4. The aggregation function W on IF-sets is representable by a pair
(W1,W2) if and only if W2 ≤W d

1 .

Proof. Let W be represented by (W1,W2). Suppose that the inequality W2≤W d
1 does

not hold. Then there is a pair (α,β ) ∈ [0,1]2 such that

W2(α,β )>W d
1 (α,β ) = 1−W1(1−α,1−β ).

Then
W ((1−α,α),(1−β ,β )) = (W1(1−α,1−β ),W2(α,β )),

but using the above inequality we have

W1(1−α,1−β )+W2(α,β )> 1,

what is a contradiction.
Conversely let W2 ≤W d

1 , let W ((α,β ),(γ,δ )) = (W1(α,γ),W2(β ,δ )). Our aim
is to show that the sum of both these components does not exceed 1.

W1(α,γ)+W2(β ,δ )≤W1(α,γ)+ 1−W1(1−β ,1− δ ).

It is sufficient to show that the right-hand side of this inequality does not exceed 1.
To get this we use the inequalities α ≤ 1−β ,γ ≤ 1− δ and the monotony of W1.
Then

W1(α,γ)≤W1(1−β ,1− δ )
and we have

W1(α,γ)+ 1−W1(1−β ,1− δ )≤ 1.

�

Now we are able to use these functions to defined the composition of two IF-sets as
follows:

Definition 6. Let A = (μA,νA) and B = (μB,νB) be two IF-sets on X and let W be a
representable aggregation function. The aggregation of A and B by W is the IF-set
W (A,B) whose membership degree is W1(μA,μB) and whose non-membership de-
gree is W2(νA,νB)).

A crucial role for the preserving convexity in aggregation of IF-sets is played by the
proposition proved in [7] in more general context for fuzzy sets, here we reformulate
it for our purposes:

Proposition 5. Let W : [0,1]2→ [0,1] be an aggregation function and let μ ,ν : X →
[0,1] be convex fuzzy sets. Then the following are equivalent:

1. The fuzzy set W (μ ,ν) is convex,
2. W (min{α,γ},min{β ,δ})=min{W (α,β ),W (γ,δ )} for eachα,β ,γ,δ ∈ [0,1].
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Note that the condition 2 from this proposition means that W commutes (see [12])
with the minimum. In particular, since any t-norm commutes with itself, the above
condition is fulfilled when W = min.

Now we formulate the result for preserving convexity for (representable) aggre-
gation of IF-sets.

Proposition 6. Let W be a representable aggregation function represented by a pair
(W1,W2). Let A,B are convex IF-sets. Then the following are equivalent:

1. The IF-set W (A,B) is convex,
2. W1(min{α,γ},min{β ,δ})=min{W1(α,β ),W1(γ,δ )} for eachα,β ,γ,δ ∈ [0,1].

Proof. If A = (μA,νA),B = (μB,νB) are IF-sets, then their aggregation under W is
the IF-set

W (A,B) = (W1(μA,μB),W2(νA,νB)).

By Proposition 1, its convexity is equivalent to the convexity of W1(μA,μB).
But as W1 is an aggregation function on fuzzy sets, using Proposition 5 we see

that the necessary and sufficient condition for W (A,B) to be convex is commuting
of W1 with the minimum. �

As we already commented, the minimum commutes with itself. Thus, the previous
result is true if W1 = min. As it dual is the maximum t-conorm, by Proposition 4,
any aggregation function W2 can be considered to define W and, in this case, when
the minimum is the first component, the aggregation of two convex IF-sets is always
convex.

4 Further Topics

Clearly the obvious question following from this research is to characterize the class
of all (not necessarily representable) aggregation functions on IF-sets preserving
convexity. However, also the notion of an α-cut of an IF-set can be understood from
the point of view of fuzzy logic as it was done in [6] and [10]. It might also be
interesting to find conditions for an aggregation function preserving convexity of
the above defined cuts.
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