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Abstract. Protein-protein interaction networks have been broadly studied in the
last few years, in order to understand the behavior of proteins inside the cell. Pro-
teins interacting with each other often share common biological functions or they
participate in the same biological process. Thus, discovering protein complexes
made of groups of proteins strictly related, can be useful to predict protein func-
tions. Clustering techniques have been widely employed to detect significative
biological complexes. In this paper, we integrate one of the most popular net-
work clustering techniques, namely the Restricted Neighborhood Search Cluster-
ing (RNSC), with evolutionary computation. The two cost functions introduced
by RNSC, besides a new one that combines them, are used by a Genetic Algo-
rithm as fitness functions to be optimized. Experimental evaluations performed
on two different groups of interactions of the budding yeast Saccaromices cere-
visiae show that the clusters obtained by the genetic approach are more accurate
than those found by RN .SC, though this method predicts more true complexes.

1 Introduction

Proteins are the basic constituents of living beings. It has been shown that studying how
proteins interact inside the cell is necessary to understand the biological processes in
which they are involved [37]. Thanks to the development of advanced high-throughput
technologies, many protein-protein interactions have been discovered in the last few
years (see, e.g., [15121]]). The set of all the protein-protein interactions of a given or-
ganism is its interactome, usually modeled by an indirect graph, called protein-protein
interaction network (PPI network), where nodes represent involved proteins and edges
encode their interactions. PPI networks received much attention in the last few years
[2410433U36] since they can be usefully exploited to study protein functions and to infer
information about conservations among species.

Proteins are organized into different putative protein complexes, each performing
specific tasks in the cell [12l26]. Proteins interacting with each other often participate
in the same biological processes, or can be associated with specific biological functions
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being strongly related [35]]. Indeed, cellular functions are likely to be accomplished in
a modular way, meaning that a group of physically or functionally related proteins join
together to accomplish a distinct function [4]. A protein complex can then be consid-
ered as a group (cluster) of proteins contributing to the same biological functions. Their
detection allows the comprehension of biologically meaningful interactions and pro-
vides important knowledge about the organization of biological systems and cellular
processes, giving a valuable help in understanding the behavior of organisms.

In the last few years there has been an increasing interest in studying clustering meth-
ods able to detect groups of proteins densely interconnected. Clustering approaches to
PPI networks can be broadly categorized as distance-based and graph-based ones [17].
Distance-based clustering approaches apply traditional clustering techniques, such as
hierarchical clustering, by employing the concept of distance between two proteins
[5125]]. Graph-based clustering techniques consider the topology of the network. These
techniques find the clusters by applying different strategies. One strategy searches for
sub-graphs having maximum density (e.g., [23128], by using different notions of sub-
graph density. Another approach partitions the graph by optimizing a cost function
[14434]]. The concept of flow simulation, though applied in different ways, is exploited
in [[7U13]. A statistical approach to protein clustering is taken instead in [32/9]]. Very
few population-based stochastic search approaches have been used for developing al-
gorithms for community detection in PPI networks (see, e.g., [18I30/31]). Surveys de-
scribing and comparing a number of methods presented in the literature can be found
in [6/22127129138].

In this paper we propose to embed the cost functions introduced by King et al. [[14]]
in a genetic algorithm, in order to evaluate the capability of evolutionary computation
in predicting complexes in PPI networks. Besides the naive cost function and scaled
cost function, defined in [14], a new scaled function, that takes into account the con-
nections of nodes constituting a cluster and the size of the clusters obtained, is intro-
duced. Experimental results on two data sets of yeast protein interactions show that the
genetic approaches, when compared with RN SC, though predict a lower number of
complexes, the predicted clusters are composed of a high percentage of true positive
proteins, thus a lower number of false positive occur inside them.

The paper is organized as follows. Section [2] briefly recalls the Restricted Neigh-
borhood Search Clustering (RNSC) Algorithm. In Section[3its evolutionary version is
proposed and described in details. In Section@]the evaluation measures exploited to val-
idate the performances of the introduced methods are summarized. Section 5| describes
experimental evaluations performed on the budding yeast Saccaromices cerevisiae PP1
network and points out some peculiar characteristics of the evolutionary techniques
proposed in this work. Finally, in Section [6] we draw our conclusive remarks.

2 Restricted Neighborhood Search Clustering Algorithm

Restricted Neighborhood Search Clustering (RNSC) is a popular method, proposed by
King et al. [14]], to detect complexes in protein-protein interaction networks. RN SC
explores the solution space of all the possible clusterings by minimizing cost functions
that reflect the number of inter-cluster and intra-cluster edges. The method partitions a
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network in clusters by using two cost functions. In order to formally define these two
cost functions, some formalism must be introduced.

Let G = (V, E) be a graph of n nodes and m edges modeling a PPI network, and
S = {51,...,Sk} a partitioning of G in k clusters. A cross-edge in a clustering is
an edge whose vertices belong to different clusters. Given a node v € S, let ¢5(v) =
{(v,u) | w ¢ S} denote the number of cross-edges incident with v, and I5(v) = {u €
S| (v,u) ¢ E} be the number of nodes in S not connected with v.

The first function, called the naive cost function, is defined as:

CalG8) = 5 3 (e0(0) +1,(0) n

veV

Thus, the naive cost function, for each node v, computes the number of bad connections
incident with v, i.e. one that exists between v and a node not belonging to the same
cluster of v (¢s(v)), or one that does not exist between v and another node in the same
cluster as v (I5(v)).

As the authors point out, Cy, (G, S) is considered naive since it does not take into ac-
count the importance of a vertex in a graph, i.e. if it belongs to either a very large cluster
or a small cluster. To reflect this concept, a second function, called the scaled cost func-
tion, that measures the size of the area that v effects in the clustering is introduced:

_n—1 (es(v) +1s(v))
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where S, is the cluster v belongs to, and N (v) is the set of neighbour nodes of v.

The algorithm begins with a random clustering, and attempts to find a best naive
clustering by moving a vertex from a cluster to another one in order to minimize the
naive cost function. The choice of using the naive cost function at first, is due to the
necessity of having a fairly good clustering in a fast way. Then the algorithm tries
to improve the obtained solution by searching for a clustering with low scaled cost
function. Since the approach is greedy, the problem of getting stack at poor local minima
is dealt by making diversification moves that mix up the clustering by scattering the
clusters at random. Furthermore, RNSC maintains a list of tabu moves that forbid to
cycle back to previously examined solutions.

3 Evolutionary RNSC

In this section we consider the cost functions described above, and reformulate them
in terms of set of nodes constituting a cluster, instead of single nodes, to obtain fitness
functions that will be optimized by the evolutionary approach. Furthermore, a simpli-
fication of the scaled cost function which scales the cost function with respect to the
cluster size and the crossing edges of the cluster is introduced. These three objective
functions will be adopted in the genetic approach and compared with RN SC.

Let S = {S1,..., Sk} be a partition of the graph G = (V, E), modeling a PPI net-
work, in k clusters. Let n; and m, denote the number of nodes and edges, respectively,
of a cluster S € S. Then:
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cs = Z cs(v)
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is the total number of cross-edges of the nodes of S, and

ls=> 1(v)
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is the number of pairs of nodes in .S not connected. The naive cost function C,, (G, S)
can be rewritten as:

Cn(Gv S) = ; Z cs + s 3

sES

As regards the scaled cost function, we must first compute the scaled cost function for
each cluster S € S as follows:

Cy(5) =3 @)+ () @
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and then sum the contribution of each of them:
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A simplification of the function (3)), which scales the naive cost function of each cluster
in & with respect to its size and the crossing edges relative to it, can be obtained as
follows:
n—1 Cs + U
Cos(G,S) =", ) 6)

C n
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Formula (@), instead of considering the influence of a single node, it normalizes the
contribution of each cluster found with respect to its size and number of connections
with nodes of other clusters.

The three cost functions described above can be used inside a genetic algorithm as
fitness functions to minimize, in order to partition the graph G modeling a network in
dense groups of proteins.

The pseudo-code of the genetic approach is reported in Figure [[l The genetic algo-
rithm uses the locus-based adjacency representation proposed in [24]], and adopted also
in [30]. In this graph-based representation an individual of the population consists of
n genes g1, .. ., gn and each gene can assume allele values j in the range {1,...,n}.
Genes and alleles represent nodes of the graph G = (V, E') modeling a PPI network,
and a value j, assigned to the ith gene, means that proteins ¢ and j are connected and
clustered together. The initialization process assigns to each each node ¢ one of its
neighbors j. The kind of crossover operator adopted is uniform crossover. Given two
parents, a random binary vector is created. Uniform crossover then selects the genes
where the vector is a O from the first parent, and the genes where the vector is a 1 from
the second parent, and combines the genes to form the child. The mutation operator,
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Given a network A and the graph G = (V, E') modeling it, perform the following steps:

1. create an initial population of random individuals whose length equals the number n of
nodes of G
2. while termination condition is not satisfied do
decode each individual I = {gi,...,gn} of the population to obtain a partitiong
S ={S1,..., Sk} of the graph G in k connected components
evaluate the fitness of the translated individuals
create a new population of individuals by applying the variation operators
end while
return the individual having the best cost function

W

Nk

Fig. 1. The pseudo-code of the GA-RNSC approach

analogously to the initialization process, randomly assigns to each node ¢ one of its
neighbors.

The algorithm, for a fixed number of generations, evolves the population of individ-
uals, decodes each chromosome to determine the division of the graph in & connected
components, computes the fitness function of each member of the population, and ap-
plies the specialized variation operators described above to produce the new population.
At the end of the evolution process, the individual having the best cost function is re-
turned as solution. It is worth to note that decoding can be efficiently performed by
using a disjoint set algorithm, as described in [S8]].

4 Evaluation Measures

In the following we describe some validation measures widely exploited in the literature
[Li3U16] that will be used for the comparative analysis presented in this work. For the
generic predicted cluster P; and the generic known complex K, let | P; | and | K | be
their sizes, respectively. Furthermore, let | P, N K j | be the size of the intersection set
of the predicted cluster and the known complex. To evaluate how a predicted cluster P;
matches a known complex K;, the overlapping score between P; and K is defined as

_ I PnE; P

| Bl | K
A known complex and a predicted cluster are considered a match [16] if OS(P;, K;) >
00s, 1.e. their overlapping score is equal to or larger than a specific threshold opg.
To estimate the performance of algorithms for detecting protein complexes w.r.t. the
overlapping score, the notions of sensitivity and specificity, commonly used in informa-
tion retrieval and machine learning (also known as recall and precision), as well as a
cumulative measure called f-measure are introduced.

OS(P;, Kj) Q)

Sensitivity: Sp, = PIE, 18 the fraction of the true-positive predictions out of all
the true predictions, where T'P (true positive) is the number of the predicted clusters
matched by the known complexes with OS(P;, K;) > oos, and F'N (false negative)
is the number of the known complexes that are not matched by the predicted clusters.
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Specificity: Sy, = PTJFP p 1s the fraction of the true-positive predictions out of all the
positive predictions, where F'P (false positive) equals the total number of the predicted
clusters minus 7'P.

F-measure: F,, = 255—4—5: is a measure that summarizes sensitivity and specificity.

High values of f-measure means that both sensitivity and specificity are sufficiently
high.

5 Experimental Results

In this section we present the results of the genetic approaches on two PPI networks
and compare them with those obtained by running RN .SC. In the following, depending
on the fitness function used, i.e. formulas (@) for naive cost function, (3] for scaled cost
function, and (€) for simplified scaled cost function, we refer to the genetic algorithm as
GA,-RNSC, GAs-RNSC, and GAgs-RNSC, respectively. The parameters of the genetic
algorithm have been fixed as follows. Population size 100, number of generations 100,
elite reproduction 10% of the population size, roulette selection function, crossover 0.8,
mutation 0.2. This values have been chosen by taking into account the experimental
evaluation reported in [30]. The implementation has been written in MATLAB 7.14
R2012a, using Genetic Algorithms and Direct Search Toolbox 2. As regards RN SC
we used the optimal parameter values reported in [6].

We ran the methods on two different data sets containing yeast protein interactions
downloadable from http://faculty.uaeu.ac.ae/nzaki/ProRank.htm. The first dataset, de-
noted Yeast-D1, is that used by Gavin et al. in [[L1], and the second one, denoted Yeast-
D2, contains yeast protein interactions generated by different experiments. Zaki et al.
[39], however, filtered these two networks to delete unreliable interactions and obtained
990 proteins with 4, 687 interactions for Yeast-D1, and 1, 443 proteins with 6, 993 inter-
actions for Yeast-D2. The reference sets of gold standard complexes include 81 (Cmplx-
D1) and 162 (Cmplx-D2) hand-curated complexes from MIPS [19.20].

First of all in Table [I] the average number of complexes found by the genetic algo-
rithms on the two yeast networks, along with the standard deviation std, are reported.
The methods behave in a rather different way. RIN.SC obtains the highest number of
clusters. When the naive cost function (formula (3)) is adopted, a considerable num-
ber of clusters with smaller size with respect to the true complexes are obtained also
by GA,,-RNSC. The opposite behavior can be observed with the scaled cost function

Table 1. Complexes found by the methods on Yeast-D1 and Yeast-D2 with 81 and 162 gold
standard complexes, respectively

METHOD  YEAST-DI ~ YEAST-D2
NUMBER STD NUMBER STD

RNSC 293 0 427 0
GA,-RNSC 1384 12.1 207.6 10.9
GA,-RNSC 582 3.5 1126 3.7
GAs-RNSC 1078 3.2 171 3.6
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(formula (3)) that induces a much lower number of clusters having larger size. With
the simplified scaled cost function (formula (@), GA,,-RNSC produces a number of
clusters higher than GA4-RNSC, and lower than GA,,-RNSC. These numbers differ
from the true number of complexes and suggest that RN SC divides the complexes in
small groups of proteins, GA,,-RNSC has a similar but less emphasized behavior, G A,-
RNSC, on the contrary, joins complexes, while G Ass-RNSC also splits complexes, but
for a lower percentage of groups than G A,,-RNSC. Thus the optimization of the cost
functions of RN .SC through evolutionary computation produces predicted clusters that
are sensibly dissimilar from those generated by RN SC.
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Fig. 2. Sensitivity, specificity, and f-measure values for (a) Yeast-D1 and (b) Yeast-D2 networks
with overlapping score OS(P;, K;) > 0.2

Figure 2] shows sensitivity, specificity, and f-measure values obtained by the genetic
approaches and RN SC' when the overlapping score O.S(P;, K;) > 0.2. The first ob-
servation is that RN .SC has a higher sensitivity value compared with the genetic algo-
rithms on both the two networks. This means that RIN.SC'is able to predict a higher
number of complexes, out of all the true complexes. This result can be explained by
the high number of clusters that RN SC finds. It is worth to note that, the definition of
overlapping score (formula (7)) penalizes those methods that obtain clusters with size
| P; | much greater than the true complex size | K; |. In fact the denumerator of () has
a higher value if the cluster size | P; | is high, and, consequently, OS(FP;, K;) is lower.
This bias can be observed also for the three evolutionary methods. GA,,-RNSC, G As-
RNSC, and GAs-RNSC present a decreasing number of predicted clusters, and thus the
predicted clusters are of increasing size. The figure shows that sensitivity values re-
flect the size of the predicted clusters. The lower the size, the higher the corresponding
sensitivity values.

On the other hand, from the figure we can observe that specificity and f-measure
are both higher for the genetic approaches. Higher specificity means that the predicted
clusters have a high percentage of proteins effectively belonging to the true complex,
thus the fraction of false positive is low. In particular, G As-RNSC is the best performing
on Yeast-D2, while G As-RNSC reaches better values of specificity on Yeast-D1.
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Fig. 3. Sensitivity, specificity, and f-measure values for (a) Yeast-D1 and (b) Yeast D2 networks
when overlapping score OS;(P;, K;) > 0.2

In order to more deeply investigate the effects of the overlapping score OS(P;, K),
we considered a different definition of overlapping score based on the Jaccard coeffi-
cient, that is:

_ I PNEK;|

OSs(Pi, K;) = | UK, |
i J

®)
Sensitivity, specificity and f-measure have been recomputed and the values obtained
when the overlapping score OS;(P;, K;) > 0.2 are reported in Figure 3l Also in
this experiment it is possible to observe that sensitivity values obtained by RN.SC are
higher. However, specificity and f-measure are better for all the three fitness functions
used, confirming the above observations.

From the described experimental campaign, we can conclude that evolutionary com-
putation allows to improve specificity w.r.t. the RN SC method, still retaining good
values of sensitivity. In particular, RN SC returns in output many clusters, and each of
them only partially overlaps with some true complexes. On the contrary, GA-RN SC
approaches predict a lower number of clusters, but their overlapping with true com-
plexes is larger. As an example, GA,,-RNSC correctly found a complex of Yeast-D1
(20 of 22 proteins) recognized to be a RNA polymerase II holoenzyme/mediator sub-
unit, while GA;-RNSC was able to find a full complex in Yeast-D2 made of cAMP-
dependent protein kinases.

6 Conclusions

In this work we showed the capability of evolutionary computation to predict com-
plexes in PPI networks by embedding the cost functions introduced by King et al. [14]
in a genetic algorithm. A new scaled function able to take into account, besides the
connections of nodes constituting a cluster, also the size of the clusters obtained, is also
introduced. Experimental results on two data sets of yeast protein interactions proved
that the genetic approaches, when compared with RN SC, return complexes with a
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higher percentage of true positive proteins. Future work aims to improve the evolution-
ary approach by considering different combinations of the fitness functions, possibly
enriched with local search strategies.

Acknowledgements. This work has been partially supported by the project MERIT :
MEdical Research in Italy, funded by MIUR.

References

1.

11.

12.

17.

18.

Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and
implementation of an algorithm for detection of protein complexes in large interaction net-
works. BMC Bioinformatics 7(207) (2006)

. Adtas, N., Sharan, R.: Comparative analysis of protein networks: hard problems, practical

solutions. Commun. ACM 55(5), 88-97 (2012)

. Bader, G., Hogue, H.: An automated method for finding molecular complexes in large

protein-protein interaction networks. BMC Bioinformatics 4(2) (2003)

. Barabdsi, A., Oltvai, Z.N.: Network biology: Understanding the cell’s functional organiza-

tion. Nature Review Genetics 5, 101-113 (2004)

. Blatt, M., Wiseman, S., Domany, E.: Superparamagnetic clustering of data. Phisical Review

Letters 76(18), 3251-3254 (1996)

. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction

networks. BMC Bioinformatics 7, 488 (2006)

. Cho, Y.-R., Hwang, W., Ramanathan, M., Zhang, A.: Semantic integration to identify overlap-

ping functional modules in protein interaction networks. BMC Bioinformatics 8, 265 (2007)

. Thomas, H., Cormen, C.E., Leiserson, R.L.: Rivest, and Clifford Stein. In: Introduction to

Algorithms, 2nd edn. MIT Press (2007)

. Farutin, V., Robinson, K., Lightcap, E., Dancik, V., Ruttenberg, A., Letovsky, S., Pradines,

J.: Edge-count probabilities for the identification of local protein communities and their or-
ganization. Proteins: Structure, Function, and Bioinformatics 62, 800-818 (2006)

. Ferraro, N., Palopoli, L., Panni, S., Rombo, S.E.: Asymmetric comparison and querying of

biological networks. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 8, 876-889 (2011)

Gavin, A.C,, et al.: Proteome survey reveals modularity of the yeast cell machinery. Na-
ture 440, 631-636 (2006)

Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: Clustering algorithm based graph
connectivity. Nature 402, 47-52 (1999)

. Hwang, W., Cho, Y.-R., Zhang, A., Ramanathan, M.: A novel functional module detection

algorithm for protein-protein interaction networks. Algorithms for Molecular Biology 1(24)
(2006)

. King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering.

Bioinformatics 20(17), 3013-3020 (2004)

. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast Saccharomyces cere-

visiae. Nature 440(7084), 637-643 (2006)

. Li, M., Chen, J., Wang, J., Hu, B., Chen, G.: Modifying the DPClus algorithm for identifying

protein complexes based on new topological structures. BMC Bioinformatics 9 (2008)

Lin, C., Cho, Y., Hwang, W., Pei, P., Zhang, A.: Clustering methods in protein-protein inter-
action network. Knowledge Discovery in Bioinformatics: Techniques, Methods and Appli-
cation. John Wiley & Sons, Inc. (2006)

Liu, H., Liu, J.: Clustering protein interaction data through chaotic genetic algorithm. In:
Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen, G.-L., Yao, X.
(eds.) SEAL 2006. LNCS, vol. 4247, pp. 858-864. Springer, Heidelberg (2006)



68

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

C. Pizzuti and S.E. Rombo

. Mewes, H.W., et al.: MIPS: a database for genomes and protein sequences. Nucleic Acids

Res. 30(1), 31-34 (2002)

Mewes, H.W., et al: MIPS: analysis and annotation of proteins from whole genomes in 2005.
Nucleic Acids Res. 34(database issue 1), 169-172 (2006)

Miller, J.P., et al.: Large-scale identification of yeast integral membrane protein interactions.
Proc. Natl. Acad. Sci. USA 102(34), 12123-12128 (2005)

Moschopoulos, C.N., Pavlopoulos, P.A., Iacucci, E., Aerts, J., Likothanassis, S., Schneider,
R., Kossida, S.: Which clustering algorithm is better for predicting protein complexes? BMC
Research Notes 4(549) (2011)

Palla, G., Derenyi, 1., Farkas, 1., Vicsek, T.: Uncovering the overlapping community structure
of complex networks in nature and society. Nature 435, §14-818 (2005)

Park, Y.J., Song, M.S.: A genetic algorithm for clustering problems. In: Proc. of 3rd Annual
Conference on Genetic Algorithms, pp. 2-9 (1989)

Pei, P.,, Zhang, A.: A two-step approach for clustering proteins based on protein interaction
profiles. In: IEEE Int. Symposium on Bioinformatics and Bioengeneering (BIBE 2005), pp.
201-209 (2005)

Pereira, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein
interaction networks. Proteins: Structure, Fuctions, and Bioinformatics (20), 49-57 (2004)
Pizzuti, C., Rombo, S.E.: Discovering Protein Complexes in Protein Interaction Networks in
Biological Data Mining in Protein Interaction Networks. In: Li, X.-L., Ng, S.-K. (eds.). IGI
Global- Medical Inf. Science Ref. (2009)

Pizzuti, C., Rombo, S.E.: A coclustering approach for mining large protein-protein interac-
tion networks. IEEE/ACM Trans. Comput. Biology Bioinform. 9(3), 717-730 (2012)
Pizzuti, C., Rombo, S.E., Marchiori, E.: Complex detection in protein-protein interaction net-
works: A compact overview for researchers and practitioners. In: Giacobini, M., Vanneschi,
L., Bush, W.S. (eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 211-223. Springer, Heidelberg
(2012)

Pizzuti, C., Rombo, S.E.: Experimental evaluation of topological-based fitness functions to
detect complexes in PPI networks. In: Proc. of the Genetic and Evolutionary Computation
Conference (Gecco 2012), pp. 193-200 (2012)

Ravaee, H., Masoudi-Nejad, A., Omidi, S., Moeini, A.: Improved immune genetic algorithm
for clustering protein-protein interaction network. In: Proceedings of the 2010 IEEE Inter-
national Conference on Bioinformatics and Bioengineering, BIBE 2010, pp. 174-179. IEEE
Computer Society (2010)

Samantha, M.P., Liang, S.: Predicting protein functions from redundancies in large-scale
protein interaction networks. Proc. of the National Academy of Science 100(22), 12579—
12583 (2003)

Sharan, R., Ulitsky, 1., Shamir, R.: Network-based prediction of protein function. Molecular
Systems Biology 3(88) (2007)

Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks.
PNAS 100, 12123-12128 (2003)

Tornw, S., Mewes, H.W.: Functional modules by relating protein interaction networks and
gene expression. Nucleic Acids Research 31(21), 6283-6289 (2003)

De Virgilio, R., Rombo, S.E.: Approximate matching over biological RDF graphs. In: Pro-
ceedings of the ACM Symposium on Applied Computing, SAC 2012, pp. 1413-1414 (2012)
von Mering, D., Krause, C., et al.: Comparative assessment of a large-scale data sets of
protein-protein interactions. Nature 31, 399-403 (2002)

Wang, J., Li, M., Deng, Y., Pan, Y.: Recent advances in clustering methods for protein inter-
action networks. BMC Genomics 11(suppl. 3), S10 (2010)

Zaki, N., Berengueres, J., Efimov, D.: Prorank: a method for detecting protein complexes. In:
Proc. of the Genetic and Evolutionary Computation Conference (Gecco 2012), pp. 209-216
(2012)



	Restricted Neighborhood Search Clustering Revisited:
An Evolutionary Computation Perspective

	1 Introduction
	2 Restricted Neighborhood Search Clustering Algorithm
	3 Evolutionary RNSC
	4 Evaluation Measures
	5 Experimental Results
	6 Conclusions
	References




