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Abstract. We propose mutational genomics as an approach for identifying pu-
tative cancer pathways. This approach relies on expression profiling tumors that
are induced by retroviral insertional mutagenesis. Akin to genetical genomics,
this provides the opportunity to search for associations between tumor-initiating
events (the viral insertion sites) and the consequent transcription changes, thus
revealing putative regulatory interactions. An important advantage is that in mu-
tational genomics the selective pressure exerted by the tumor growth is exploited
to yield a relatively small number of loci that are likely to be causal for tumor
formation. This is unlike genetical genomics which relies on the natural occur-
ring genetic variation between samples to reveal the effects of a locus on gene
expression.

We performed mutational genomics using a set of 97 lymphoma from mice
presenting with splenomegaly. This identified several known as well as novel in-
teractions, including many known targets of Notchl and Gfil. In addition to direct
one-to-one associations, many multilocus networks of association were found.
This is indicative of the fact that a cell has many parallel possibilities in which
it can reach a state of uncontrolled proliferation. One of the identified networks
suggests that Zmizl functions upstream of Notchl. Taken together, our results il-
lustrate the potential of mutational genomics as a powerful approach to dissect
the regulatory pathways of cancer.

1 Introduction

Cancers arise as a result of a multistep process in which genetic alterations deregulate
the regulatory pathways that govern healthy cell proliferation [[1]. To study this process,
the use of DNA microarrays for transcriptome profiling of tumor tissue has proven
useful. Success stories include, among others, finding good diagnostic and prognos-
tic markers [2, 3], and providing insight in different tumor subtypes [4]. However, to
identify the causal genetic alterations, transcriptome profiling is less suitable. This is
because, in many cases, aberrant gene expression is a downstream effect of one or more
genetic alterations elsewhere, rather than the causal event in tumor development.
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To identify genes that are likely to have a driving role in cancer, high-throughput
retroviral insertional mutagenesis (RIM) screens can be performed [5-8]. In these
screens, retroviruses are used to induce insertion mutations in the genome of infected
somatic cells in mice. These mutations may cause alteration in expression of genes
in the vicinity of the insertion or, when inserted within a gene, alteration of the gene
product. A certain proportion of these mutations are oncogenic and will result in tumor
development. Consequently, the genomic location of the inserted viruses in the result-
ing tumors provide ’tags’ for cancer genes, since regions in the genome that harbor
insertions in multiple independent tumors are likely to be in the vicinity of genes that
play a causal role in tumor development.

1.1 Mutational Genomics

Here, we perform genome-wide expression profiling in tumors induced by RIM. Com-
bining expression with insertion site data provides the unique opportunity to study the
relationship between the initiating events and their downstream transcriptional effect.
We call this approach mutational genomics.

Mutational genomics bears similarity to genetical genomics, linking genotype to
transcriptional state [9-{11]]. In the latter approach, often performed in fully genotyped
recombinant inbred (RI) mouse strains, expression quantitative trait loci (eQTLs) are
determined. These are defined as chromosomal regions for which the local genotype
segregates the gene expression of one or more genes, and may point to putative regu-
lators of these genes [12-14]. Similarly, mutational genomics allows the definition of,
what we coin, expression quantitative mutation loci (eQMLs), i.e. chromosomal regions
that are mutated in multiple independent tumors and are associated with a segregation
of the expression of one or more genes. This concept is schematically illustrated in
Figure[Il

A major advantage of mutational genomics is that the list of candidate target genes
of the identified eQMLs is usually limited to only a few. This is because insertions act
primarily on proximal genes [[15] using one of a specific set of fairly well defined mech-
anisms [3, 7, [16]. Typical eQTLs, on the other hand, usually span large regions in the
genome containing many genes as a result of linkage disequilibrium. Consequently, in
mutational genomics the difficult task of finding the genes underlying the transcriptional
changes is circumvented.

A second important advantage stems from the fact that mutational genomics exploits
the selective pressure exerted during tumor development to yield a relatively small num-
ber of loci that are likely to be causal for tumor formation. This is unlike genetical
genomics in which one has to rely on the natural occurring genetic variation between
samples to reveal the effects of a locus on gene expression. As a result, eQMLs are
specific for the type of tumor under study, and therefore represent important building
blocks that help delineating the regulatory pathways that play a role in these tumors.

1.2 Multilocus Interactions

Cancer is a complex disease, involving the mutation and/or deregulation of multiple
genes. Many of the changes that are required for tumorigenesis are a result of the collab-
oration between mutations of cancer genes. Moreover, for many of the mutational steps
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Fig.1. Schematic overview of the data for @
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four tumors. A) After infection with a slow
transforming retrovirus, tumors are harvested.
B) The insertion loci are retrieved by sequenc-
ing the flanking regions. The figure shows five
unique insertion loci (1; — 15), for four tumors
(r = 1,...,4). C) For each tumor, gene ex-
pression profiles are determined by microar-
rays. The figure shows 10 genes (g1 — gi0)-
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required to transform healthy cells to cancer cells numerous alternatives exist. This is
especially pertinent while analyzing mutational genomics data, since this means that
many of the regulatory interactions may not be detectable as direct (marginal) associa-
tions, but rather require multivariate analysis of the data (see Figure[TIG for a schematic
example).

Therefore we propose to explore multilocus mapping by explicitly incorporating the
possibility of alternative and collaborative pathways in the search for eQMLs. Because
the presence or absence of an insertion is naturally captured by a Boolean variable, a
Boolean model is used to combine insertion loci. To this end, we employ the combina-
torial association logic (CAL) network inference procedure, that we recently proposed
for finding multilocus interaction in a genetical genomics dataset [17]. Using CAL
network inference we are able to efficiently determine the set of insertion loci that,
when combined using a Boolean logic function, shows strong association with the gene
expression levels.

2 Results

We have performed Mutational Genomics of a set of 97 retrovirally induced splenic
lymphomas in p19ARF*/ ~ (n=31), p53*/ ~ (n=19) and wt (n=53) mice. The retroviral
insertion sites found in these tumors have been published previouslyﬂ [18]. Gene ex-
pression data were obtained using the Illumina MouseWG6-V2 beadchips. A detailed
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Fig.2. Insertion alignment plots showing o ; 5
effect of insertions on transcription. The :
solid lines represent the smoothed z-scores of
transcripts with insertions upstream (left) or
downstream (right). Distance is relative to tran-
scription start sites. Insertions were also split
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description of the preprocessing of the data can be found in the Methods section and
the Supplementary material.

2.1 Insertions Affect Local Transcription

We first investigated the local effect of the insertional mutations on transcription. Fig-
ure [2] shows a genome-wide alignment of all insertions in the dataset. A point in this
figure at (d, z) represents the average z-score (z) of the expression of all genes in a
bin d basepairs removed from the insertion. Panel A and B show the result for genes
with upstream and downstream insertions, respectively, with different colors indicating
insertion orientation relative to the transcript.

Figure 2 reveals that, on a global level, a clear effect of the insertions on the local
transcription is present but that this effect is dependent on distance. Furthermore, it
can be seen that antisense insertions result in a higher average expression, indicating
a strong effect on local transcription, when their relative position to the transcript is
upstream. Conversely, sense insertions seem to have a stronger effect in case they are
positioned downstream of the transcript. These observations are consistent with previ-
ously described mechanisms through which retroviruses act on their targets [, [7, [16].
For this reason we decided to implement a set of literature derived rules that map inser-
tions to their putative target transcripts based on their relative position and orientation
(see Supplements for details). This provides a mapping of all insertions in a given ge-
nomic locus to a unique identifier.

2.2 Mutational Genomics Reveals eQMLs

Association Inference. After normalization and selection of the most highly variable
probes, probes were hierarchically clustered using a stringent correlation distance cut-
off. This yielded 6228 clusters, henceforth referred to as gene clusters. For gene clusters
containing multiple genes (1177 cases) cluster centroids were determined by taking the
mean across the expression profiles.

To determine the Boolean insertion matrix (representing the insertion loci, see Figure
[ID), all insertions were mapped to their target transcripts according to the literature
derived rules. Each transcript represents one column of the Boolean insertion matrix
and is determined by recording TRUE in case a tumor contains a mapped insertion or
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FALSE in case it does not. Only columns with at least three mapped insertions were
retained. This resulted in a Boolean matrix with 200 unique columns representing the
insertion loci. To incorporate possible interactions with the genotype status of these
tumors (p1 QARF—/— p53*/ ~ or wt), we included three additional columns representing
the three genotypes.

To measure association between the insertion loci (or combination of insertion loci)
and the gene clusters we used a standard ¢-score. For each of the gene clusters we de-
termined the single best locus with the strongest positive and negative association, as
well as the best possible combination of loci for each of the 24 Boolean network topolo-
gies (Figure S1). Solutions with a permutation based p-value smaller than 0.001 were
retained. In case multiple solutions for a single gene cluster remained, a rank aggrega-
tion approach (described in detail in the supplement), combining several measures of
significance and biological relevance, was used to choose the most relevant model.

Interaction Network. Using this approach, we find significant (p <0.001) single lo-
cus and mutilocus associations for 137 gene clusters (174 genes). A Cytoscape plot
of these interactions is given in Figure S5. For 88 of the gene clusters, a single locus
model, i.e. inserts at a single locus, was sufficient to obtain a significant segregation of
the expression measurements. On the other hand, for 49 cases a more complex associa-
tion was required to obtain a significant association (20 2-input networks and 29 3-input
networks). Interestingly, the type of logic that was used in this set of significant inter-
actions was depleted of AND logic. In fact, it was observed that AND logic generally
showed poor association (irrespective of the p-value), suggesting that co-occurrence of
insertions (i.e. insertions co-occurring in the same tumor, captured by AND logic) is not
a common mechanism in regulating transcriptional activity.

cis-eQTMLs. Strong cis-associations, for which an insertion locus is associated with
a proximal target transcript, are observed for insertions mapped to Rras2, Ccndl, Gfil
and Notchl. In many other cases, direct association on the transcriptional level between
insertions and their predicted targets is more subtle, i.e. the expression changes are very
small, and fail to exceed the array noise. In other cases insertions may affect translation
instead of transcription, and hence may not be detected in this analysis.

It is possible that the use of alternative routes of deregulating nearby genes dilutes
the observed cis-association. This means that the absence of a mutation is no longer
necessarily associated with low expression. A clear example of such a case is the ex-
pression of the Myc oncogene, which was found to be expressed (log2 expression level
> 7) in 88 of the 97 tumors, while it harbored an insertion only in 51 tumors (Figure [3).
This suggests that, in cases where an insertion near Myc is lacking, Myc is upregulated
by other mechanisms. For most of the tumors in which Myc remains unexpressed, in-
sertions near Mycn are observed. Indeed, our results reveal a strong negative association
between insertions near Mycn and Myc expression (Figure 3). A plausible explanation
for this observation is that Mycn insertions are functionally equivalent to insertions in
the Myc locus, a mechanism which has been identified in human leukemias and lym-
phomas as well [[19].

Genotype Interactions. By including three Boolean profiles representing the geno-
type we are able to retrieve genotype specific expression changes, as well as expression
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Fig. 3. Association between Mycn insertions
and Myc expression. A) The red diamond-
shaped node represents the gene cluster contain-
ing, in this case, a single probe for Myc. The
green circular node represents the insertion lo-
cus for Mycn. B) Locus plot of insertions in the
Mycn locus and the Myc locus. Green (yellow)
triangles denote positively (negatively) oriented
oriented insertions that according to the liter-
ature rules were mapped to Mycn/Myc. Red Y
(cyan) triangles denote positively (negatively)
oriented insertions that were not mapped to a
target gene. The color bar on the right repre-
sents expression levels of the Myc probe. Tu-
mors were sorted based on the expression level
of Myc.
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changes that are due to putative interaction between genotype and one or two insertion
loci (Figured)). In addition to the probe for p53 itself, many other well characterized tar-
gets of p53 and p19 were found among the direct associations identified by our analysis.
More specifically, increase of Cdkn2a (p19*RF isoform) expression is associated with
the p53~/~ tumors, suggesting a feedback loop mechanism compensating for the loss
of p53. Interestingly, low expression of the p/6INK4a isoform is found to be associated
with wild-type tumors only, suggesting loss of the p19/p53 pathway permits lymphoma
development in the presence of increased p16 expression. Other known direct interac-
tions include: Bax [20], Cdknla (p21) [21] and Ccngl (CyclinG1) [22] ) all of which
are induced by p53. These examples demonstrate the robustness of our methodology.

A more complex association between genotype and transcript level was found in the
case of Uspl8, a gene which has been implicated in human non-small-cell lung cancer
[23]. A 3-input network with the wild-type status, p1 9ARF~/~ status and the Nfkb2/Sufu
locus was found to be negatively associated with low Usp8 transcript levels. This net-
work can be simplified to a 2-input OR network with p53~/~ status and the Nfkb2/Sufu
locus as inputs and a positive association with Uspl8 expression (Figure S4). Indeed,
the p53~/~ status was found to be strongly associated with elevated Usp18 levels. How-
ever, in a substantial number of wild-type and p79*RF~/~ tumors elevated expression
was also observed. Interestingly, the CAL network offers a partial explanation for this,
since it reveals that three of the non-p53~/~ tumors with high UspI8 expression har-
bored insertions in the Nfkb2/Sufu locus. From this observation the interesting hypoth-
esis can be derived that insertions near Nfkb2/Sufu offer an alternative to the loss of p53
in upregulating Usp18.
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Fig. 4. Cytoscape interaction diagrams of the interactions with the genotype (A) and Notchl
B) status. Green V-shaped nodes, green circular nodes, red diamond-shaped nodes represent the
genotype status, insertion loci and gene clusters, respectively. The white triangles denote CAL
networks, with the logic functions used specified in text. The number in the network nodes refer
to the supplementary table. Green and red links represent positive and negative associations,
respectively. The yellow links indicate proximal insertion loci, that share some of the mapped
insertions. The numbers on these links indicate the fraction of insertions that are shared. In case
the nodes are labeled with a (¥), some genes were omitted from the complete list of putative
targets for readability. Putative targets were only omitted in case literature revealed poor evidence
for involvement in cancer or cell-functions like apoptosis or cell-cycle. A full list of putative
targets is available in the online material (see Supplements for details). C) Locus plot of the
Notchl and Zmizl loci. For an explanation of the symbols see Figure Bl Only the probes at the
output of a 2-input OR network with Notchl and Zmizl are shown. Expression values were z-
normalized to allow for comparison between probes.

Regulatory Hubs. The discovered interactions reveal that Gfil and Notchl are clear
hubs, and insertions in their vicinity are associated with expression of many transcripts.
Interestingly, both genes have well established roles in cancer and moreover are known
transcriptional regulators.

Gfil encodes a nuclear zinc finger protein and is recognized to have different com-
plex and cell context specific roles. In lymphoid cells, however, GFI1 is a known
transcriptional repressor. This is consistent with the predominantly inhibitory interac-
tions revealed by our analysis. The literature provides evidence for some of the pu-
tative regulatory interactions. An interesting example is negative association between
inserts near Gfil and transcript levels of Btg/. Human BTG1 is a known tumor sup-
pressor and member of an anti-proliferative gene family that regulates cell growth and
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differentiation [24]. It has been implicated in acute lymphoblastic leukemia (ALL) [25]
and non-hodgins lymphoma [26]. Association between Gfil and Brgl activity may be
explained as it was found that BTGl is regulated by CEBPA [27], which, in turn, is a
known target of GFI1 in T lymphocyte (Jurkat) cells [28].

Figure MA shows the interaction diagram of associations of the Notchl locus and
gene expression of multiple genes. In addition, the associations of a 2-input OR of
Notchl and Zmizl are shown. Notchl is a member of the family of NOTCH recep-
tors, that operate both as recipients of extracellular signals at the cell surface and as
transcription factors regulating gene expression in the nucleus. In its role as transcrip-
tion factor, NOTCHI forms a transcriptional activator complex and activates genes of
the enhancer of split locus. Notably, Hes!, hairy and enhancer of split 1, and Heyl, a
member of the hairy and enhancer of split-related (HESR) family, are both among the
associated transcripts identified by our analysis. Both proteins have been implicated in
cancer, and specifically implicated as targets of NOTCH signalling [29].

Using Chip-chip data previously published [30] of NOTCH1 and HES1 DNA bind-
ing in human T cell ALL cells [30], we checked if the orthologs of the Norchl target
transcripts identified in our study were among the list of NOTCHI1 bound genes. We
found that 5 of the 23 Notchl targets with human orthologs were among the NOTCH
bound target list (COPS7A, EXOSCS, HES1, ITPR2 and TFB1M). Since Hesl was
among our Notchl targets, and it is possible that Notchl acts upon its targets through
Hesl, binding of HES1 may explain the associations observed with Notchl mutations
[31]]. Therefore, we also checked for overlap of human orthologs of Notchl targets and
the Chip-chip results of HES1 binding. In this way suggestive evidence for three addi-
tional interactions was found (CDK5RAP2, PRMT7 and TCEALL1).

Multi-locus eQMLs Reveal Alternative Pathways. Although Notchl insertions are
found almost exclusively in tumors with elevated transcripts levels of Notchl, three
tumors remain without Notchl insertions (Figure ). One CAL network combines the
Notchl locus with insertions in the Zmiz/ locus. Insertions in the Zmiz/ locus occur in
tumors with elevated Notchl levels and two of these occur in tumors without insertions
in the Notchl locus. Moreover, Zmizl insertions are exclusively observed for tumors
with elevated Notchl. A hypothesis worth exploring further is therefore that Zmizl op-
erates upstream of Notchl and, in case of the absence of a Notchl mutation, is able to
upregulate Notchl.

3 Discussion

We propose mutational genomics, an approach to delineate transcriptional regulatory
interaction networks in cancer by searching for associations in mutation data and gene
expression measurements obtained from the same sample. When performed for a set
of 97 lymphoid splenic tumors, an interaction network comprising 60 insertionally tar-
geted loci and 174 putative target transcripts results. Because selective pressure exerted
by the tumor growth enriches for loci with causal implications for tumorigenesis, many
interactions in cancer related pathways were discovered.

A number of well characterized interactions were found, such as the association be-
tween loss of p53 and reduced Bax, Cdknla and Ccngl levels. Known transcriptional
regulators Gfil and Notchl, both of which have established roles in tumorigenesis, were
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found to be associated to differential expression of many transcripts, suggesting a mas-
ter regulator role for these genes in lymphomagenesis. The targets of insertions near
Notchl included many genes whose promotors were found to be bound by NOTCH1
and or HES1 in human T cell ALL.

In addition to single locus associations, more complex associations were identified
by inferring CAL networks, i.e. Boolean combinations of insertion loci. This revealed
a possible role for insertions in the Nfkb2/Sufu locus in upregulating Usp 18 expression.
Similarly, it was found that two of the tumors that did not appear to bear an activating
Notchl mutation, harbored insertions in the Zmizl locus, possibly explaining the ele-
vated Notchl expression in these tumors. From this the hypothesis can be formulated
that Zmizl functions upstream of Notchl. This illustrates the potential of mutational
genomics as a powerful way of generating hypotheses that can be validated in the lab.

While in this study we focused on retroviral insertional mutagenesis, transposon
based insertional mutagenesis may be similarly suitable for mutational genomics [32].
This would greatly increase the number of tissues and tumor types in which mutational
genomics can be employed, and thus increase the scope of this approach.

4 Materials and Methods

Animal Experiments. All animal experiments were done conform to national regula-
tory standards and are approved by the Animal Experiments Committee (DEC) of the
Netherlands Cancer Institute (approval ID: OZP 02029).

Gene Expression Preprocessing. Gene expression measurements were obtained us-
ing the Illumina MouseWG6-V2 beadchips, and were normalized using VST and RSN.
Probes without a map position were discarded. Only highly variant probes (within the
top 25 percentile) were retained. Hierarchical clustering (complete linkage, correla-
tion distance, distance threshold of 0.2) was employed to combined strongly correlated
genes, resulting in 6261 clusters. A clipping filter was applied as described [17], to limit
the effect of strong outliers, affecting 625 gene clusters. Finally, gene clusters for which
the best possible split in two groups based on the t-score resulted in highly unbalanced
class distribution (smallest class size of 3 or smaller), were removed. Altogether, this
resulted in 6228 gene clusters that were used in the association analysis.

Determining Insertion Loci. The effect of insertions on the nearby targets is depen-
dent on the relative position and orientation of the target transcript as well as the orien-
tation of the viral integration [5, 7, [16]. To exploit this information, we have employed
a rule-based mapping (RBM) procedure [33]. RBM associates each insertion to one
or more putative target transcripts based on a set of rules that were distilled from lit-
erature (a more comprehensive description of RBM is given in the Supplements). The
unique list of transcripts that follows from this procedure is used to generate binary pro-
files that, for each tumor, indicate if a transcript is a putative target. We observed that
for proximal transcripts frequently the same binary profile results. These were there-
fore combined into a single profile. Insertion target profiles that contained transcript-
insertion associations in more than three tumors were considered in the analysis and
served as inputs for the association inference.
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CAL Network Inference. CAL network inference has been described in detail [17].
Briefly, given some Boolean network topology B, the objective is to find the combi-
nation of loci such that the association between the network output and some gene
expression vector is optimal. Equivalently, we solve the following:

arginaxf(B(L)a g), (D

where L is a T' x IN Boolean matrix containing N input loci of length T', B is a Boolean
function that maps the N input loci to a single Boolean vector, g is a vector containing
the expression values for some gene and f is an association measure. Here, we use the
t-statistic as the association measure. In the tail of the ¢-distribution an approximation
of the ¢-score exists that can be optimized, using a branch-and-bound algorithm, in a
fraction of the time required to optimize the real ¢-score.

To apply the CAL network inference approach to a dataset with ~100 samples, some
modifications to the original implementation of this method [[17] were made in order
to improve scalability further. All modifications are described in the Supplementary
material.

CAL Network Significance. We solve Equation [Tl for each gene cluster and for a
range of 24 network topologies. The topologies are given in Figure S1. For each gene
cluster-network topology combination a p-value can be obtained. The following proce-
dure is performed to obtain the necessary null-distributions for each network topology
separately. All 6228 gene clusters are permuted 90 times by shuffling the order of the
clusters’ gene expression values. This results in a total of 560k random permutations.
For each permutation the CAL network search is performed, using the same parameter
settings as were used on the real data. This results in 560k ¢-scores. The CAL network
algorithm only produces reliable solutions above a certain tolerance level, which for
these data was set to t = 7.5. We therefore calculate a piecewise cumulative distri-
bution function (CDF). Below the tolerance level the CDF is set to zero, since in this
region t-scores are not accurate. Above the tolerance, we use the empirical estimate of
the CDF. A pseudocount is included to prevent p-values of zero.

In many cases it is possible to find strong (and significant) associations between
the mutation data and gene expression using several network topologies. In order to
select the most biologically relevant model, we rank all solutions based on several other
measures of significance and biological relevance. These measures include: 1) the p-
value improvement compared to the lowest p-value obtained for networks with fewer
inputs, 2) the number of inputs of the network topology, 3) the coverage of the truth
table of the network topology, 4) the number of samples in the smallest class. Average
Borda ranking is used to aggregate ranks from these four measures [34]. Only solutions
that receive the highest rank are reported.
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