
A Structure Based Algorithm for
Improving Motifs Prediction

Sudipta Pathak1, Vamsi Krishna Kundeti2, Martin R. Schiller3,
and Sanguthevar Rajasekaran1,�

1 Department of Computer Science, University of Connecticut
{sup11002,rajasek}@engr.uconn.edu

2 Intel Corporation
vamsi.k.kundeti@intel.com

3 School of Life Sciences, University of Nevada Las Vegas
martin.schiller@unlv.edu

Abstract. Minimotifs are short contiguous peptide sequences in proteins that
are known to have functions. There are many repositories for experimentally val-
idated minimotifs. MnM is one of them. Predicting minimotifs (in unknown se-
quences) is a challenging and interesting problem in biology. Minimotifs stored
in the MnM database range in length from 5 to 15. Any algorithm for predicting
minimotifs in an unknown query sequence is likely to have many false positives
owing to the short lengths of the motifs looked for. Our team has developed a
series of algorithms (called filters) in the past to reduce the false positives and
improve the prediction accuracy. All of these algorithms are based on sequence
information. In a recent paper we have demonstrated the power of structural in-
formation in characterizing motifs. In this paper we present an algorithm that
exploits structural information for reducing false positives in motifs prediction.
We test the validity of our algorithm using the minimotifs stored in the MnM
database. MnM is a web system for minimotif search that our team has built. It
houses more than 300,000 minimotifs. Our new algorithm is a learning algorithm
that will be trained in the first phase and in the second phase its accuracy will be
measured. For any input query protein sequence, MnM identifies a list of puta-
tive minimotifs in the query sequence. We currently employ a series of sequence
based algorithms to reduce the false positives in the predictions of MnM. For ev-
ery minimotif stored in MnM, we also store a number of attributes pertinent to
the motif. One such attribute is the source of the minimotif. The source is nothing
but the protein in which the minimotif is present. For the analysis of our new al-
gorithm we only employ those minimtofis that have multiple sources for positive
control. Random data is used as negative data. The basic idea of our algorithm
is the hypothesis that a putative minimotif is likely to be valid if its structure in
the query sequence is very similar to its structure in its source protein. Another
important feature of our algorithm is that it is specific to individual minimotifs.
In other words, a unique set of parameters is learnt for every minimotif. We feel
that this is a better approach than learning a common set of parameters for all the
minimotifs together. Our findings reveal that in most of the cases the occurrences
of the minimotifs in their source proteins are structurally similar. Also, typically,
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the occurrences of a minimotif in its source protein and a random protein are dis-
similar. Our experimental results show that the parameters learnt by our algorithm
can significantly reduce false positives.

1 Introduction

Genetic linkage analysis and other approaches have identified many mutations that are
associated with inherited human disease. Many of these mutations are in protein coding
regions. An effective strategy for treating many diseases is to identify a drug that inter-
feres with the protein that contains the mutation. Thus, it is important to understand the
function of the protein such that drugs can be designed to interfere with its function.
Analysis of protein and DNA sequence is an important approach for predicting protein
function, thus an important part of the pipeline in drug discovery.

Analysis of DNA and protein sequences often involves the identification of patterns.
As a new tool for predicting new causes of disease, our group has built and operates the
Minimotif Miner (MnM) website/database (Balla, et al. 2006, Rajasekaran, et al. 2009).
MnM can be used to predict potential minimotifs and thus new functions in proteins.
These are not domain motifs, but the short functional motif determinants for binding
other molecules, the signatures for regulatory posttranslational modifications on pro-
teins, and the short sequence elements that code for protein trafficking. These motifs are
readily cross-mapped with disease-associated single nucleotide polymorphisms (SNPs)
on the MnM website, thus any scientist can determine a motif that is introduced or
eliminated by a disease-associated mutation. One of the principle problems with this
approach is that the short motifs are not very complex and false-positives overwhelm
the true motifs. In fact all the motif search systems currently available (such as ELM
[12], Scansite [7], Prosite [13], Dilimot [14], etc.) suffer from this problem. If this ap-
proach were refined, then the approach may be very useful for identifying new drug
targets.

In our previous work we have proposed a series of algorithms (called filters) (see e.g.,
[8,9]) to reduce false positives. Examples include protein-protein interaction filter [8],
molecular function filter [9], cell function filter [9], etc. These algorithms are all based
on sequence information. As is well known, in addition to sequences, structures also
contain a rich amount of useful information. In this paper we propose an algorithm for
reducing false positives in the prediction of minimotifs. We have tested the accuracy of
this algorithm using the minimotifs in MnM. Our empirical tests indicate that the new
algorithm is very effective. An interesting feature of our algorithm is that its predictions
are specific to individual motifs.

The rest of this paper is organized as follows. In the next section we provide some
preliminaries on protein structures. Followed by this we describe our algorithm. Subse-
quently we provide the results and discussions.
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1.1 Some Preliminaries

Every Protein has its primary and secondary structures. Primary structure of a protein
is its sequence. The secondary structure consists of helices, sheets, etc. Some of the
proteins might have quaternary structures. Protein architecture is one of the most fun-
damental research topics because the 3D protein structure is responsible for the cell
functional properties in all living systems. Amino acid residues are the building blocks
of protein primary structure.

The secondary structure of a protein mainly contains the following informa-
tion: Helix, Sheet, Connectivity Details (disulfide bonds, prolines and other peptides
found in cis conformations, etc.), Crystallographic and Coordinate Transformation
information (transformation from orthogonal coordinates, transformations expressing
non-crystallographic symmetry, etc.), Coordinate Information (collection of atomic co-
ordinates), etc. There exist databases that contain the above information for a subset of
the known proteins. An example is the World Wide Protein Data Bank [2]. PIR [15],
developed by National Biomedical Research Foundation (NBRF), is one of the earli-
est primary protein databases. Later in 1988 Martinsried Institute for Protein sequences
collected the protein sequences from PIR and developed a web server. Swiss-prot [3] is
one of the well known primary protein databases maintained collaboratively by Swiss
Institute of Bioinformatics(SIB) and European Bioinformatics Institute(EBI)/European
Molecular Biology Laboratory(EMBL). Swiss-prot provides a lot of information
including functions of proteins, structures of their domains, post-translational modi-
fications information, etc. This database is a valuable resource produced by PIR from
sequences extracted from the Brookhaven Protein Data Bank (PDB). The significance
of this database is that it makes available the protein sequence information in the
PDB for keyword interrogation and for similarity searches. It includes bibliographic
references, MEDLINE cross-references active site, secondary structure and binding
site annotations. Also there are composite databases like Non-Redundant DataBase
(NRDB)by NCBI (National Center for Biotechnology Information)[5], BLAST (Basic
Local Alignment Search Tool) service[16], OWL from the UK EMBnet National Node
and the UCL Specialist Node[6] etc. Secondary databases are a consequence of anal-
ysis of the sequences of the primary databases, mainly based from Swiss-prot. Prosite
[13] is the first among all the secondary databases. This consists of entries about pro-
tein families, domains, functional sites, amino acid patterns, etc. This was introduced
by Swiss Institute of Bioinformatics and this is mainly based on Swiss-prot.

Along with the above databases a number of web based tools have been developed to
allow investigators to search for motifs in a protein query sequence. Scansite [7] is one
such tool which includes ten different programs. The Motif Scan ensemble of programs
computationally identifies all motifs within a given user-specified protein, while the
Database Search ensemble of programs finds all proteins in a protein database, such
as Swiss-prot, that match a given motif. One of the most successful tools in this area
of research is Minimotif Miner (MnM) that our team has built [8,9,10,11]. All of the
known motif search tools suffer from a high false positive rate especially when the
motif length is small. We offer a novel solution to this problem in this paper that utilizes
structural information.
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1.2 Implementation of the Algorithm

To implement the algorithm we make use of Worldwide Protein Data Bank (wwPDB).
PDB contains more than eighty thousand proteins and their structural information.
We downloaded the entire PDB from the following link: ftp://ftp.wwpdb.org/
pub/pdb/data/structures/divided/. A typical PDB file contains thousands
of lines like the ones shown in Figure 1.

Fig. 1. PDB Format

Figure 1 displays the information for the structure of 1C2N. The HEADER, TI-
TLE and AUTHORS records provide information about the investigators involved in
defining the structure and other information on the file. The SEQRES records provide
the sequences of the peptide chains. We are interested in the ATOM records. The first
amino acid GLY (Glycine, symbol G) spans 7 atoms (lines 1-7) and the rest of the atoms
correspond to amino acid ASP (Aspartic Acid, symbol D). The 3rd column in each line
indicates the type of the atom and the C-alpha atom is indicated by CA (highlighted).
The columns 7, 8, and 9 indicate the (X,Y,Z) coordinates of the atom. In the example

ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/
ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/
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of Figure 1, the CA atoms have the coordinates (-7.971, -11.573, -8.138) and (-11.025,
-11.993, -5.889), respectively.

The Minimotif Miner (MnM) database contains more than three hundred thousand
motifs. We only employ those motifs with multiple sources. Let Mi be such a minimotif
that occurs in the following set of source proteins: Si = {s1,s2,s3, . . . ,sn}. Note that,
if some motif Mi occurs as a substring in some protein s j it does not mean that s j is a
source of Mi. Whether this is the case or not can only be experimentally validated. On
the contrary, Mi may occur multiple times in its source protein s j. It is not mandatory
that all of these occurrences of Mi in s j are motifs. At least one of these occurrences of
Mi is a motif. So it is not enough for us to know only the source protein ID for a motif.
We have to know the location lk of motif Mi in source s j. The MnM database provides
all such information.

PDB is a much smaller and a slowly growing database than Swissprot/Uniprot. This
means that there are many motifs in MnM for which we do not have a valid PDB ID.
MnM uses a variety of IDs for proteins including Uniprot/Swissprot and Refseq. The
mapping between MnM and PDB is done using the mapping files obtained from the fol-
lowing link : http://www.bioinf.org.uk/pdbsprotec/mapping.txt.

We have implemented our algorithm using the Center of Gravity algorithm for com-
puting the distance between two structures [1]. The Center of Gravity algorithm is de-
scribed in the next subsection.

1.3 Center of Gravity Algorithm

This algorithm can be applied to compute the distance between two point sets in any n-
dimensional Euclidian space. We explain the algorithm for 3-dimensional case because
of simplicity and the scope of our work.
Input : This algorithm takes as input two sets of (x,y,z) coordinates. These are given by
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Output: Distance between S(x,y,z)i and S(x,y,z) j . We call it CoG distance.

Algorithm:

BEGIN
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http://www.bioinf.org.uk/pdbsprotec/mapping.txt
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2 Methods

Our algorithm is based on the following hypothesis: Positive occurrences of the same
motif in different sources are structurally similar. Also, the structure of a positive occur-
rence of a motif and any of its negative occurrences will be dissimilar. To compute the
distance between two structures we employ the center of gravity algorithm proposed in
[1].

Our algorithm is a learning algorithm that has to be trained with a set of positive
and negative examples in the first phase. We evaluate its accuracy in the second phase.
A special feature of our algorithm is that it learns the relevant parameters for each
individual motif separately. It turns out there is only one parameter that is learnt. This
parameter is nothing but a distance threshold between two structures. Let M be any
motif. If O1 and O2 are the structures corresponding to two positive occurrences of M,
then we expect the distance between O1 and O2 to be ’small’. On the other hand, if
O1 corresponds to a positive occurrence and O2 corresponds to a negative occurrence,
then we expect the distance between them to be ’large’. Since any learning algorithm
requires multiple positive and negative examples to learn from, and our algorithm is
motif-specific, we only employ those validated minimotifs in MnM that have multiple
sources. Each such source serves as a positive example. Finding negative examples for
any biological experiment is in general a challenge since we may not be able to be sure
that any data is negative. Like in our previous works on filters, in this paper also we
employ random data as negative data. As has been argued before, a random data has a
very high probability of being negative.

If M is a motif under concern and if its known sources are S1,S2, . . . ,Sn, we first get
all the occurrences of M in each of the sources. Let these occurrences be O1,O2, . . . ,Om.
Our hypothesis states that the Ois are structurally similar. Since a motif can occur more
than once in the same source, it is the case that m ≥ n. By structure information we
mean a point set in 3D. Specifically, by structure we mean the set of coordinates of
the alpha carbon atoms in the motif sequence. This information is available in the PDB
files. In this paper we consider only the alpha carbon atoms. Note that including other
atoms would only improve the prediction accuracy further. In the final version of the
paper we will include other atoms as well.

2.1 Steps in the Algorithm

1. Get a list of all the validated motifs in the MnM database that have multiple sources.
2. Let M be any motif whose sources are S1,S2, . . . ,Sq. For these source proteins Ref-

seq IDs are available in MnM.
3. We keep only those sources for which structure information is available in PDB.

This is done using a Refseq ID→ PDB ID mapping table.
4. For a given motif M, let its sources for which we are able to get PDB IDs be

S1,S2, . . . ,Sn. We pick one of these sources as the reference for our experiment and
call it Sre f . The others are used as positive controls. In other words, they serve as
positive examples in learning.

5. For each of the positive controls and the reference we apply the Center of Gravity
algorithm to perform the following tasks:
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a. Compute the Center of Gravity of the alpha carbon atoms in the motif sequence.
b. Compute the Euclidean distances between each of the alpha carbon atoms and

the center of gravity. Let these distances in sorted order be d1,d2, . . . ,dl , where
l is the length of the motif. Note that for every amino acid in the motif there
is a single alpha carbon atom. Also note that we will get one such sorted set
{d1,d2, . . . ,dl} for each of the positive controls.

c. Let the set of distances for the reference Sre f be given by {dre f
1 ,dre f

2 , . . . ,dre f
l }.

d. Calculate the Euclidean distance between {dre f
1 ,dre f

2 , . . . ,dre f
l } and

{d1,d2, . . . ,dl} for each positive control. Let the Euclidean distance for the
jth positive control be d j.

e. Take an average over all the d js. This is called the positive mean.
6. For a given motif M scan through the PDB to look for proteins which are not known

to be source proteins for M and in which M occurs as a substring. In other words,
exclude the set of positive controls and the reference from the set of all proteins
in PDB where M occurs as a substring. This new set is used as the set of negative
controls for the motif M. Let this set be {N1,N2, . . . ,Nt}.

7. For each of these negative controls and the reference protein we again apply the
Center of Gravity algorithm and compute a distance as in step 5. This will give us
the Euclidean distance between {dre f

1 ,dre f
2 , . . . ,dre f

l } and {d1,d2, . . . ,dl} for each
negative control. Let the Euclidean distance for the kth negative control be dk. We
get an average over all of these dks and obtain the negative mean.

8. We have to come up with a threshold using which we can separate the true positives
and false positives. One possibility is to use the negative mean as the threshold. In
this case we compute how many of the positive distances d js are above the negative
mean and how many of the negative distances dks are above the negative mean.

We expect that a large fraction of positive control distances will be below the negative
mean based on our hypothesis.

3 Results

We have tested our algorithm on a collection of almost 650 motifs (that have multiple
sources). We have performed two types of analyses. The first analysis is to test the
statistical significance of the results obtained using ROC plots. The second analysis
measures the accuracy of predictions.

3.1 ROC Plots

For each motif Mi we compute its negative mean D−
Mi

and use it as a threshold for
predictions. We calculate the number Count+Mi

of distance values below the threshold
value, from among the true positive occurrences. This count gives us the true positive
rate (TPR). We also calculate the number Count−Mi

of distance values below the same
threshold value from among the false positives (i.e., negative control). This number
will give us the false positive rate (FPR). According to our hypothesis there should be
a good structural similarity between occurrences of a motif in its source proteins. This
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means that the CoG distance between any two occurrences of the motif in its sources is
supposed to be smaller compared to the CoG distance of a true positive occurrence of
the motif and a false occurrence of the same motif. We plot FPR (as horizontal axis) vs
TPR (as vertical axis) curve and calculate the area under the curve (AUC) for various
threshold values. We do this for all the 650 motifs. Table 1 summarizes the outcomes
of our experiment.

Table 1. Areas Under the Curves

AreaUnderCurve(AUC) Number of Motifs (as a %)

> 90%and ≤ 100% 29.629

> 80%and ≤ 90% 7.407

> 70%and ≤ 80% 9.259

> 60%and ≤ 70% 7.407

> 50%and ≤ 60% 18.518

< 50% 27.777

Out of the 650 motifs (each having 67.85 positive controls on an average) used for
analysis, 216 have got an area under the curve (AUC) between 0.9 and 1. For almost
58 motifs the AUC is exactly 1. This demonstrates the power of our algorithm. The
idea is to use our new algorithm only for those motifs for which the AUC is at a level
comfortable to a biologist.

3.2 Accuracy Calculation

Accuracy is defined in the following equation:

Accuracy =

Number o f +ve distances below threshold + Number o f −ve distances above threshold
Total number o f distances

Table 2 shows number of motifs in different intervals of accuracy.
We have almost 147 motifs with a prediction accuracy between 90% and 100%. Here

again the filter corresponding to the new algorithm is to be used for only those motifs
for which the accuracy is at an acceptable level. Figure 2 displays the ROC plots for
a randomly chosen subset of the motifs. We show two ROC plots for each category of
Table 2.
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Table 2. Accuracy

Accuracy Number of Motifs (as a %)

> 90%and ≤ 100% 22.727

> 80%and ≤ 90% 9.09

> 70%and ≤ 80% 19.696

> 60%and ≤ 70% 15.151

> 50%and ≤ 60% 33.333

< 50% 0

Fig. 2. ROC plots

We plan to integrate the entire data and code as a part of the MnM web system.
We will associate a threshold and accuracy/AUC with each of the motifs in the MnM
database. Once a user enters a protein query Q, MnM reports the putative motifs in Q.
For any motif M if the query is one of the known sources then M is reported as a true
prediction with an accuracy of 100%. One the contrary, if Q is not one of the known
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sources of M, the filter checks to see if Q is present in PDB. If Q is found in PDB we
apply the center of gravity algorithm to compute the CoG distance DQ

M for M in Q. If
the difference between DQ

M and the CoG distance of M in the reference protein is below
the threshold set for M in the MnM database, then M is reported to be a true motif.
Accuracy of prediction and AUC value is also reported by MnM. If DQ

M is above the
threshold we will not report M as a putative motif.

4 Conclusion and Future Work

In this paper we have presented a novel structure based algorithm for reducing false
positives in the prediction of minimotifs. Our algorithm is a motif-specific learner. We
live in an era of personalized medicine and hence this approach is very relevant. The
statistical significance of the results obtained as well as the accuracy of the new algo-
rithm demonstrate that the new algorithm is indeed very effective. The outcomes of this
work points to the following directions for future work. We want to consider the coor-
dinate information of all the atoms in the amino acids. We want to see the best possible
set of features to come up with a better classification accuracy. As mentioned earlier
this could only improve the result. Also, we choose the positive reference arbitrarily.
We want to extend our the work by choosing each of the positive instances as a possible
reference. We will calculate the area under curve and accuracy for each one of them.
Finally we choose the best of these scores and the reference associated with it.
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