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Abstract. Secondary structure prediction (with or without pseudoknots)
of an RNA molecule is a well-known problem in computational biology.
Most of the existing algorithms have an assumption that each nucleotide
can interact with at most one other nucleotide. This assumption is not
valid for triple helix structure (a pseudoknotted structure with tertiary
interactions). As these structures are found to be important in many bio-
logical processes, it is desirable to develop a prediction tool for these struc-
tures. We provide the first structural prediction algorithm to handle triple
helix structures. Our algorithm runs in O(n?®) time where n is the length
of input RNA sequence. The accuracy of the prediction is reasonably high,
with average sensitivity and specificity over 80% for base pairs, and over
70% for tertiary interactions.

1 Introduction

Prediction of a pseudoknotted secondary structure (base pairs crossing each
other) of an RNA molecule is NP-hard in general [1]. In practice, the project
focus on restricted classes of pseudoknots that are found in nature. Examples
of these prediction algorithms include |IH7]. All these existing methods have an
assumption that each nucleotide can interact with at most one nucleotide in the
RNA. However, if tertiary interaction (where some single stranded nucleotides
also form hydrogen bonds with nucleotides in base pairs) is considered, this
assumption may not hold. Triple helix structure in ncRNA is a pseudoknotted
structure with tertiary interaction. Figure [Il shows an example of a triple helix
structure. Triple helix structures exist in yeast and human telomerase, and are
found to be essential in quite a few biological processes (e.g. chromosome stability
in stem cells, germline cells and cancer cells [8-10]; ribosomal frameshifting [11,
12]).

There are only two recent results |13, [14] that consider tertiary interactions.
Siederdissen et al. provided a folding algorithm for RNA secondary structures
which consider tertiary interactions inside only a regular structure (one without
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pseudoknots) while Wong et al. considered a structural alignment problem for
RNA secondary structures with standard triple heliz structure (tertiary inter-
actions inside a simple pseudoknot). In this paper, we provide the first RNA
secondary structure prediction algorithm for tertiary interactions over pseudo-
knots and focus on the standard triple helix structure defined in [14].
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Fig. 1. (a) Triple helix in beet western yellows virus pseudoknot |11]. Blue lines rep-
resent the secondary structure. Red lines represent the tertiary interactions between
single stranded nucleotides (according to the secondary structure) and base pairs. (b)
and (c) Detailed view of some tertiary interactions in the structure [11]. (d) A stan-
dard triple helix structure. (e) Adjoining interaction between one active tree and one
adjunct tree in simple tree adjoining grammar (STAG). The * indicates an active node.
The active node X is replaced by the whole tree .

We employ a machine learning approach (similar to the approach used by
[15]) as follows to solve the problem. We define a grammar, which for any given
RNA sequence, generate different possible secondary structures of the sequence.
Based on some training datasets (the RNA sequences with known secondary
structures), we assign probability to each grammar rule. Then, for each RNA se-
quence with unknown secondary structure, we can derive the optimal secondary
structure (the one with the highest probability). Our contributions include the
following. Existing grammars cannot handle standard triple helix structures.
Based on the simple tree adjoining grammar (STAG) defined by [7] that can
handle pseudoknots, we provide an extended version to cover the standard triple
helix structures. Since STAG is an ambiguous grammar (i.e. there can be more
than one derviation forming the same structure), we remove the ambiguity by
introducing some restrictions on the grammar. Finally, we develop a dynamic
programming algorithm that runs in O(n?®) time, where n is the length of the
input RNA sequence, to report the most probable structurd]] based on the prob-
ability measures. According to our experiments, the performance of our tool is

! The tool can be modified to report the top x possible structures, but for simplicity,
we only consider the most probable structure in all our experiments.



104 B.-Y. Hsu et al.

reasonably good (with average sensitivity and specificity higher than 80% for
base pairs and over 70% for tertiary interactions) when it is used for prediction
of triple helix structures.

2 Standard Triple Helix

Based on |14], the formal definition of a standard triple helix is listed as follows.
Let A = ajas...a, be a length-n RNA sequence. Let M be the set of base
pairs denoted as M = {(4,5) | 1 < i < j < n,(ai,a;) is a base pair}. The
tertiary interactions P of A are defined as follows. The interaction of the base
pair (i,7) and the single stranded nucleotide & is denoted as (i, j) * k. That is,
P={(i,j)x k| (i,j) € M,ay is a single stranded nucleotide and interacts with
(ai,a;)}. Then, H = (M, P) is referred as the triple helix structure of A.

The secondary structure still obeys the rule that no two base pairs share
the same position. That is, for any (i1, j1), (i2,j2) € M, i1 # jo, i2a # Jji1,
and 47 = i if and only if j; = jo. However, the tertiary interactions do not
follow this rule, so that for any (i1, j1) * k1, (i2,j2) * k2 € P, if i1 = iz and
j1 = Jja2, it does not imply k1 = ks; also, if k1 = ko, it does not imply i; = is
and j1 = jo. H = (M, P) is a standard triple heliz structure, as illustrated in
Figure [i(d), if 3z1,22(1 < 21 < 22 < n), so that base pairs in M can be
partitioned into two groups Ry = {(i,j) € M | 1 < i < 21 < j < 22} and
Ry ={(i,j) € M | z1 <i<xp <j<n}, and H satisfies the following.

(1) For any two base pairs (i1, j1), (i2,j2) € Rk, k = 1 or 2, either i1 < iz < jo <
J1 or iy < i1 < j1 < jo. That is, the base pairs in the same group do not cross.
We say M forms a simple pseudoknot structure.

(2) For any (i,7) x k € P, if (i,§) € Ry, then zo < k <n and #(i’,j') € Ry such
that j <4¢' <k <j ori <j<j <k. Thisis to ensure that k is from a region
outside that of R;, and there does not exist base pairs in Ry crossing with the
tertiary interaction. Similarly, if (i,5) € Ro, then 1 < k < 2, and P(i’,j') € Ry
such that k <4 <i<j or¢ <k <j <i.

(3) For any (ilajl) * k‘1, (iz,jg) x ko € P, if (il,jl), (iz,jz) € R1, then i1 < iy &
k1 < ks, is < i1 & ko < ky. This is to ensure that if the same single stranded
nucleotide interacts with two base pairs, the interactions do not cross. Similarly,
if (i1, 71), (i2,72) € Ra, then j1 < jo & k1 < ko, jo < j1 < ko < k.

3 Method

3.1 Simple Tree Adjoining Grammar

Simple Tree Adjoining Grammar (STAG) is a tree-based grammar for the gen-
eration of strings. The basic idea is to start with an initial tree, and then by
repeatedly replacing some internal node of the current tree with another tree,
bases or base pairs can simultaneously be added to the string that the tree
represents. STAG can be used to predict pseudoknotted structures [7].
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Let V be a finite set of alphabets and X be the terminal alphabet where
X C V. Let v be a tree over V such that (1) each internal node must be labeled
with a nonterminal; (2) each leaf node can be labeled with a terminal or a
nonterminal symbol; (3) each internal node can have any number of children;
and (4) each node has a state, either active or inactive. A tree is simple and
active if there is only one internal node active.

Let Y () (i-e. yield of a tree rooted at ) be the string of labels of the leaf
nodes of v from top to bottom and from left to right. Precisely, it is defined as
follows (let ',72,...,y" be the children of 7):

() = label of v // if 7 is a leaf node
Y)Y (2)..Y (") // otherwise

In STAG, a tree § is an adjunct tree if: (1) there are only leaves labeled with
nonterminal symbols; (2) there is only one internal node active; (3) the active
internal node is along the backbone. The backbone is the path from the root to
the leaf with nonterminal symbol.

A simple active tree « can be adjoined by an adjunct tree 8 and form a
new tree denoted by a + 8. The adjoining interaction consists of the following
operations (as shown in Figure [[k): (1) the active node in « is replaced by the
tree 3; and (2) the children of the active node in a become the children of the
leaf with nonterminal symbol in .

Definition 1. G(C, A) is defined as Simple Tree Adjoining Grammar, where
C is a set of trees, all trees inside are simple and active, their yields are empty
strings,and A is a set of adjunct trees.

A tree v is a derived tree of G (where the set of the derived trees of G is
denoted as D(G)) if either of the following constraints is satisfied (which is a
recursive definition): (1) v = a+ f for a € C, 8 € A. (2) v = d+ B for
de D(G), B € B.

The language of G (denoted as L(G)) is defined as follows: L(G) = {w|w =
Y (d) where d € D(G)}.

3.2 Structural Prediction for Triple Helix

To model the generation of an RNA with triple helix structure, we set the center
tree and the adjunct trees as shown in Figure Zh. There is one center tree and
nine adjunct trees. Every adjunct tree will contribute at least one base to the
RNA sequence. More precisely, the trees T'S1, TS2 and TS3 will produce a single
base, while TP1 and TP2 will produce a base pair. Similarly, the trees TSH1
and TSH2 are for producing a single base which has tertiary interaction with
an existing base pair, while the trees TPH1 and TPH2 are for producing a base
pair which has tertiary interaction with a single base. In the following, we will
describe these adjunct trees and how a triple helix structure is generated.

As shown in Figure [Tk, the yield of an active tree can be viewed as the con-
catenation of three sequences: sequence S7 (i.e. ajas...a;) which is from the
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Fig. 2. a) The center tree and the adjunct trees of STAG for modeling RNA triple
helix structure. The adjunct trees TS1, TS2 and TS3 generate single base. TP1 and
TP2 generate base pairs. TSH1 and TSH2 generate single bases which interact with
existing base pairs. TPH1 and TPH2 generate base pairs which interact with existing
single bases. b) An example of generation of an RNA with triple helix structure by
using STAG.

left part of the tree excluding the subtree of the active node; sequence Sa (i.e.
b1bs...b;) which is from the subtree rooted at the active node; and sequence Ss
(i.e. 0102...Ck) which is from the right part of the tree excluding the subtree of
the active node. And by using the set of adjunct trees in Figure Bh, sequence S3
is always an empty string, because none of the adjunct trees contribute any base
to the sequence S3. An RNA sequence can be viewed as the concatenation of Sy
and Sy (as in Figure [I[(d)), where S represents the region [1, 27 — 1] while S,
represents the regions [z1,n]. The following lists out how the sequence S; and
So be modified when the tree is adjoined by a different adjunct tree. There are
nine different operations (i.e one for each adjunct tree):

1. Adjoined by TS1: add a single base to the end of Si.

2. Adjoined by T'S2: add a single base to the end of Sa.

3. Adjoined by TS3: add a single base to the beginning of Sa.

4. Adjoined by TP1: add a base pair with bases at the end of S1 and the beginning of
SQ.

5. Adjoined by TP2: add a base pair with bases at the beginning and the end of Ss.
6. Adjoined by TSHI1: add a single base at the end of Si, which interacts with an
existing base pair whose bases are at the beginning and the end of S2, provided that
the beginning and the end of Sy are base pair.

7. Adjoined by TSH2: add a single base at the end of Sa, which interacts with an
existing base pair whose bases are at the end of S; and the beginning of S, provided
that the end of S; and the beginning of S» are base pair.

8. Adjoined by TPHI1: add a base pair whose bases are at the end of S; and at the
beginning of S2, which interacts with the single base existing at the end of S2, provided
that the end of S5 is a single base.
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9. Adjoined by TPH2: add a base pair whose bases are at the beginning and the end
of Sz, which interacts with the single base existing at the end of Si, provided that the
end of S is a single base.

By using the above nine operations, it can build up any RNA with standard
triple helix structure and any structure it comes up is a standard triple helix. An
example of the generation of a standard triple helix is shown in Figure 2b. Under
this model, different derivations may generate the same RNA sequence, but the
corresponding secondary structures may be different. We associate probabilities
for each tree operation (trained using real data); consequently, on given any input
RNA sequence A[l...n], we can report the derivation (and thus the corresponding
secondary structure) that is the most probable.

To simplify the model, we assume that the probability of applying a particular
tree p is independent of the current sequence, but depends on the previously
applied tree p’ and the bases involved in p. The probability of obtaining an
input RNA sequence A[l...n] with a particular secondary structure ¢ is defined
to be the product of the probabilities of the applied trees for operation in the
corresponding derivation. To find out the most probable secondary structure (* is
equivalent to finding a * with the maximum summation of the log values of the
corresponding derivation probabilities. Now, we define the following notations
and present the recurrences.

- M(i,7,k,p): the maximum score of the substructure A[1...i] U A[j...k] of the se-
quence A if the last operation applied is p.

- Mp(i,j,k,p): the maximum score of the substructure A[l...7] U A[j...k] of the se-
quence A if the last operation applied is p and (i, j) is a base pair.

- Mr(i,j, k,p): the maximum score of the substructure A[l...7] U A[j...k] of the
sequence A if the last operation applied is p and (j, k) is a base pair.

- Mr(i,j,k,p): the maximum score of the substructure A[l...i] U A[j...k] of the
sequence A if the last operation applied is p and i is a single base.

- Mca(i,j,k,p): the maximum score of the substructure A[l...5] U A[j...k] of the
sequence A if the last operation applied is p and k is a single base.

- score(p,p’,X): the score from previous operation p’ to the current operation p
with character set X. The scores are fixed in the parameter-tuning step of the method.

- charset(4, j, k, p): the base(s) involved when the current operation p is applied.

ML(Z’J7 k’p)7MR(i7J7 k7p)’MF(i7j’ k7p)’MG(i7J7 k7p)
M(i,j,k,p) =max< //if p is operation 3, also check the following score
max, {M(i,j + 1,k,p') + score(p,p’, charset (i, j, k, p)) }

// if p is operation 1, 3, 5, 6 or 9

—00

// else if p is operation 2 or 7

My gk, p) = maxp/{ML(i.,j, k— 1,.p') + score(p,p’, charset(i, j, k,p))}
// else if p is operation 4

max, {M(i— 1,5+ 1,k,p’) + score(p,p’, charset(i, j, k,p))}
// else if p is operation 8

max, {Mc(i — 1,5+ 1,k,p") + score(p, p’, charset (i, j, k,p))}
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The recurrence of Mg(i, 4, k,p) is analogous to that of My (i,j, k,p). And the
recurrence of Mp(i,j,k,p) and Mg(i, j, k, p) are similar too. The desired deriva-
tion corresponds to the entry among M (i,i+1,n, p), for all possible ¢ and p, that
contains the maximum value. Once this entry is known, it is straightforward to
obtain the corresponding secondary structure ¢* by backtracking. By performing
dynamic programming, each entry of M (i, j, k,p), ML(i,j,k,p), Mgr(i,7,k,p),
Mp(i, j,k,p), and Mq(i, , k,p) can be computed in O(1) time based on the pre-
viously computed entries. As there are altogether O(n?) entries to be filled, the
time complexity of our prediction algorithm is O(n?).

A structural prediction grammar is ambiguous if there exists more than one
derivation forming the same secondary structure, and [16] showed that an am-
biguous grammar may not always report the optimal secondary structure cor-
rectly. The details of how the ambiguity of the grammar is removed is described
in Appendix I. The accuracy of the prediction algorithm largely depends on how
accurate the parameters score(p,p’, X) are. We only consider AU, UA, CG,
GC, GU and UG as the possible base pairs and also regard the score for the
operation with base pair AU (or CG or GU) is the same as that with base pair
UA (or GC or UG). After considering all these together with the restrictions
for preventing ambiguity, there are around 360 parameters score(p,p’, X) re-
quired to compute. We follow the maximum-likelihood approach mentioned by
[17] to tune the grammar by a set of RNA sequences with known triple helix
structures. score(p,p’, X) can be divided into two part: transition a, ., is score
from previous operation p’ to the current operation p, and emission e,(X) is
score for X is involved in operation p. Since ambiguity is removed, operations
series for each training sequence are known. We count the number of times each

transition and emission, let these be A, _,, and E,(X). Then the maximum

likelihood estimators for a,/—, and e,(X) are given by ap—, = ZA”’H” and
ll

( ) Ap/*}l/
Ep(X
ep(X) = ZXIPEP(X’)

With a set of training data, it takes O(n) time to calculate operation series for
each sequence, and O(1) time to calculate all maximum likelihood estimators.
For details, one may refer to [17)].

4 Experimental Results

We implemented both the tuning and the prediction algorithms using C. There
are three RNA families from Rfam 9.1 database with triple helix structures:
RF00024, RF01050 and RF01074 (as listed in Table[I]). The corresponding triple
helix structure of each family can be deduced from |8, 9, [11, [18]. In the first
experiment, we extracted the sequences of the triple helix regions of all the
seed members (in Rfam 9.1 database, for each family, there is a set of reliable
members that are regarded as seed members). It is found that the same model
can hardly work well for the RNAs with large length difference. Since the lengths
of the triple helix regions of the families RF00024 and RF01050 are similar, we
put all the sequences from these two families together as set D7, and the other
sequences as set Ds.
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Table 1. The families with triple helix structures

Family ID # of seed members Ave. length of triple helix region

RF00024 37 118
RF01050 13 99
RF01074 4 28

Table 2. Performance of triple helix prediction on the RNA sequences in set D; when
using 10-fold cross-validation approach

Group Base pairs Tertiary interactions Group Base pairs Tertiary interactions
Sen (%) Spec (%) Sen (%) Spec (%) Sen (%) Spec (%) Sen (%) Spec (%)
G1 90.5 89.6 76.2 88.9 G 95.1 90.1 78.3 78.3
Ga 81.3 77.1 72.2 76.5 Gy 56.6 65.8 44.4 38.1
G3 97.1 90.3 88.9 88.9 Gs 90.8 90.1 95.7 88.0
Gy 79.5 76.5 38.5 71.4 Gy 92.5 87.5 71.4 74.1
Gs 86.8 87.5 73.9 77.3 G1o 74.5 82.0 64.5 66.7

On average: for base pairs, sensitivity 84.5 and specificity 83.7
for tertiary interactions, sensitivity 70.4 and specificity 74.8

We use the 10-fold cross-validation approach to evaluate the accuracy of our
prediction tool. We evenly distributed all the sequences in the set D; into ten
groups G1, G, . .., Gy such that the ratios of the sequences from each family are
similar in each group. Next, we repeat the following procedure for each ¢ from 1
to 10: We keep the group G; aside, so that all the sequences as well as their cor-
responding triple helix structures from the other groups (i.e., D1\G;) were used
for tuning our model; after that, the tuned model was used to predict the triple
helix structure of each of the sequences in group G;, and the predicted structure
of each sequence was then compared with the corresponding real structure.

Our tool will report a set of base pairs as well as the tertiary interactions in the
given region. Table [2] shows the summary of the performance of our prediction
algorithm. Our method can predict the base pairs well with average sensitivity
84.5% and specificity 83.7%, and has a reasonable performance on the tertiary
interaction prediction with over 70% in both sensitivity and specificity. Figure Bh
shows an example of the predicted structure of the triple helix region of a se-
quence in family RF00024. The predicted structure is very similar to the real
structure. Only one base pair (15,49) and one tertiary interaction (22,42)*74 are
not predicted. Only one base pair (7,51) which should not exist is added.

For Ds, all RNA sequences are from the same family RF01074. The triple
helix structures of the sequences are quite complex. There exist two or more
single bases having tertiary interactions with the same base pair, and also two
or more base pairs having tertiary interactions with the same single base. The
tuned model may be over-fitted due to the small number of sequences in this set,
but we still present the results here in order to show that our model is flexible
enough to handle such a complex triple helix structure. We used 4-fold cross-
validation technique in this set. For base pair prediction, the average sensitivity
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b)

Real structure Predicted structure

Fig. 3. a) Predicted triple helix region of sequence AF221906 of the family RF00024.
b) Predicted triple helix region of sequence AF473561 of the family RF01074.

and specificity is 97.5% and 87.8%, respectively. For tertiary interaction pre-
diction, the average sensitivity and specificity is 72.5% and 92.7%, respectively.
Figure Bb shows an example of the predicted structure of the triple helix region
for a sequence in the family RF01074. The predicted structure is very similar to
the real structure, despite that the triple helix structure is quite complex.

Table 3. Experiment on the whole pipeline for the family RF00024

Seq ID  Annotated Reported Tertiary interaction Seq ID Annotated Reported Tertiary interaction

pseudoknot pseudoknot predicted pseudoknot pseudoknot predicted
region region by region region by
vsfold5  Sensitivity Specificity vsfold5  Sensitivity Specificity
AF221911 55-143 7-173 80% 80%  AF221924  28-157 42-148 60% 60%
AF221913  63-148 52-148 100% 100%  AF221932  63-183 50-184 80% 80%
AF221916  19-139 2-165 50% 50%  AF221923  64-184 45-181 80% 80%
AF221926  55-138 51-172 80% 80%  AF221929  50-169 70-181 80% 80%
AF221940 56-135 45-169 100% 20%  AF221937  65-184 38-189 80% 80%
AF221934  60-155 48-184 100% 83%  AF221909 33-151 53-161 60% 60%
AF221927  60-156 31-152 80% 80%  AY058901  22-144 16-156 5% 5%
AF221910 62-151 74-197 100% 100% AC121792  22-144 20-160 5% 50%

On average: Sensitivity 80% Specificity 72%

In the second experiment, we try the whole pipeline for triple helix prediction
on RNA sequences. Given an RNA sequence, the pseudoknotted structure will
first be predicted by vsfold5 [@] Then for those pseudoknotted regions reported
by the tools, our tool predicts the triple helix structure. The maximum length of
sequence vsfold5 supports is 450. The sequences in RF01050 are too long. Thus
we selected those not-too-long sequences in RF00024 for the experiment. The
pipeline is found to be feasible and quite effective (as shown in Table B]). On
average, the sensitivity is 80%, while the specificity is 72%.

5 Discussion and Conclusions

To further evaluate our algorithm on the distinguishing power between regions
containing a triple helix structure and those not containing one, we have selected
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the families with simple pseudoknot structures (and no reported triple helix
structures) as negative cases and it is found that our method can distinguish
between regions with or without triple helix structure reasonably well. Since
there are not much real data with known tertiary structures, further studies
include collecting more real data, conducting a more comprehensive evaluation
on the algorithm, and refining the grammar and the prediction algorithm to
cater for more types of triple helix structures.
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search Fund (GRF) of the Hong Kong Government (HKU 719611E).
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Appendix I : Removing the Grammar Ambiguity

A structural prediction grammar is ambiguous if there exists more than one
derivation forming the same secondary structure, and [16] showed that an am-
biguous grammar often could not report the optimal secondary structure cor-
rectly. Therefore, we have to remove the ambiguity of the grammar such that
each derivation can report a unique secondary structure.

First, there exist different operation series that come up with the same struc-
ture. For example, an operation 1 followed by an operation 2 would come up
the same structure as an operation 2 followed by an operation 1. As shown in
Figure @h, we do not allow the operation series in right which produce the same
structure as the operation series in left. Also, some operation sequences are not
possible. For example, to perform operation 6, the beginning and the ending
bases of B have to be a base pair. Therefore, it is not possible for an operation 3
followed by an operation 6 (because after operation 3, a single base will be added
to the beginning of B). Figure @b lists all of the cases.

Second, as one may notice, the positions of X; and X may not be unique
according to the definition in Section[2l In order to avoid the ambiguity, as shown
in Figure [k, we set the values of X; and X5 as follows:

X1 =min{minj | (¢,§) € R1,min¢ | (i,5) € Ra}

X2 =max{maxj | (4,7) € Ri,maxi| (¢,j) € Ro} +1

where R1 and Ry are sets of base pairs defined in Section
Since S1 = [0...X1 — 1] and Sz = [X;...n]. Therefore, we have the following
restrictions:
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a) )

The operation series which come up the same structure. ne
(To avoid ambiguity, the operations in the right side of
each equation are not allowed.)

1—=+2=2—=1 2+3=3->2 X
1+3=3-1 452=2-4 i
51=1-5 457=2-28 ___Z==

5—=>6=1—9

b)

The followings are the impossible operation series.
2—-68—=6 6—=79—=38
346 1—=79—=74—=9
4 -6 3=+75—=8T7—=9
7T—-65—-76—+88—=9

Fig. 4. a) The redundant operation series (in the right side of each equation). b) The
impossible operation series. ¢) To remove the ambiguity, we define the exact values of
X 1 and Xz.

1. S5 cannot start with any single base. Since 3 — 1 and 3 — 2 are not
allowed (see Figure @h), we only need to restrict the operation 3 not being the
last operation.

2. X5 — 1 can be regarded as a center position of Sy (which means all bases
with positions < X5 —1 have to be added from the beginning of S5, and all bases
with positions > X — 1 are added from the end of S3) and the position Xo — 1
cannot be a single base. There are two cases: the base X5 — 1 belongs to a base
pair € Ry; or it belongs to a base pair € Rs. In case 1, the operation 4 should
be the first operation to add a base into Sy and that position would be X — 1.
In case 2, there should be no operation 3 until the operation 5 or 9 exists. The
left position of the base pair added would be X2 — 1. According to the Figure
[k, since 2 — 4 and 2 — 8 are not allowed, therefore: we only need to restrict
the operation 3 until the operation 4, 5 or 9 exists.

3. When R; and Ry are empty, only operation 1 is allowed. i.e. When opera-
tions 4, 5, 8, 9 do not exist, only operation 1 can be the last operation.

4. If Ry is not empty, R; has to be not empty too. i.e. If operation 5 or 9
exist, operation 4 or 8 has to exist before ends.

The above restrictions together with the restrictions listed in Figure @ can
make the grammar become unambiguous. Different derivation reports a unique
secondary structure.
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