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Preface

In the post-genomic era, a holistic understanding of biological systems and pro-
cesses, in all their complexity, is critical in comprehending nature’s choreogra-
phy of life. As a result, bioinformatics involving its two main disciplines, namely,
the life sciences and the computational sciences, is fast becoming a very promis-
ing multidisciplinary research field. With the ever-increasing application of large-
scale high-throughput technologies, such as gene or protein microarrays and mass
spectrometry methods, the enormous body of information is growing rapidly.
Bioinformaticians are posed with a large number of difficult problems to solve,
arising not only due to the complexities in acquiring the molecular information
but also due to the size and nature of the generated data sets and/or the limi-
tations of the algorithms required for analyzing these data. The recent advance-
ments in computational and information-theoretic techniques are enabling us to
conduct various in silico testing and screening of many lab-based experiments be-
fore these are actually performed in vitro or in vivo. These in silico investigations
are providing new insights for interpreting and establishing new direction for a
deeper understanding. Among the various advanced computational methods cur-
rently being applied to such studies, the pattern recognition techniques are mostly
found to be at the core of the whole discovery process for apprehending the under-
lying biological knowledge. Thus, we can safely surmise that the ongoing bioin-
formatics revolution may, in future, inevitably play a major role in many aspects
of medical practice and/or the discipline of life sciences.

The aim of this conference on Pattern Recognition in Bioinformatics (PRIB)
is to provide an opportunity to academics, researchers, scientists, and industry
professionals to present their latest research in pattern recognition and compu-
tational intelligence-based techniques applied to problems in bioinformatics and
computational biology. It also provides them with an excellent forum to interact
with each other and share experiences. The conference is organized jointly by the
Nice Sophia Antipolis University, France, and IAPR (International Association
for Pattern Recognition) Bioinformatics Technical Committee (TC-20).

This volume presents the proceedings of the 8th IAPR International Confer-
ence on Pattern Recognition in Bioinformatics (PRIB 2013), held in Nice, June
17–19, 2013. It includes 25 technical contributions that were selected by the In-
ternational Program Committee from 43 submissions. Each of these rigorously
reviewed papers was presented orally at PRIB 2013. The proceedings consists of
five parts:

Part I Bio-Molecular Networks and Pathway Analysis
Part II Learning, Classification, and Clustering
Part III Data Mining and Knowledge Discovery
Part IV Protein: Structure, Function, and Interaction
Part V Motifs, Sites, and Sequences Analysis
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Part I of the proceedings contains six chapters on “Bio-Molecular Networks
and Pathway Analysis.” Rahman et al. propose a fast agglomerative cluster-
ing method for protein complex discovery. A new criterion is introduced that
combines an edge clustering coefficient and an edge clustering value, allowing us
to decide when a node can be added to the current cluster. Maduranga et al.
use the well-known random forest method to predict GRNs. The problem of in-
ferring GRNs from (limited) time-series data is recast as a number of regression
problems, and the random forest approach is used here to fit a model to this.
Winterbach et al. evaluate how well topological signatures in protein interaction
networks predict protein function. They compare several complex signatures
and their own simple signature. They find that network topology is only a weak
predictor of function and the simple signature performs on par with the more
sophisticated ones. De Ridder et al. propose an approach for identifying putative
cancer pathways. This approach relies on expression profiling tumors that are
induced by retroviral insertional mutagenesis. This provides the opportunity to
search for associations between tumor-initiating events (the viral insertion sites)
and the consequent transcription changes, thus revealing putative regulatory in-
teractions. An important advantage is that the selective pressure exerted by the
tumor growth is exploited to yield a relatively small number of loci that are likely
to be causal for tumor formation. Ochs et al. apply outlier statistics, gene set
analysis, and top scoring pair methods to identify deregulated pathways in can-
cer. Analysis of the results on pediatric acute myeloid leukemia data indicate the
effectiveness of the proposed methodology. Pizzuti et al. present some variants of
RNSC (restricted neighborhood search clustering) for prediction of protein com-
plexes that are based on new score functions and evolutionary computation. It
is shown via computational experiments that the proposed methods have better
prediction accuracies (in F-measure) than the basic RNSC algorithm.

Part II of the proceedings contains three chapters on “Learning, Classifica-
tion, and Clustering.” Marchiori addresses a limitation of the RELIEF feature
weighting algorithm that maximizes the sample margin over the entire training
set, or the sum of the possibly competing feature weights. Her work proposes,
instead, a conditional weighting algorithm (CCFW) and classifier (CCWNN) to
improve feature weighting and classification. Mundra et al. propose a sample se-
lection criterion using a modified logistic regression loss function and a backward
elimination based gene ranking algorithm. On the basis of the classifier margin
for sample points, points on or within the margin are more important than
those outside, the sample selection criterion based on T-score is proposed. Li et
al. describe a generalization of sparse matrix factorization (SMF) algorithms and
showcase a few very concisely described applications in bioinformatics. The main
merit of the work is the fact that a unified representation for SMF algorithms is
proposed, as well as an optimization algorithm to solve this problem.

Part III of the proceedings contains six chapters on“Data Mining and Knowl-
edge Discovery.” Hsu et al. consider prediction of RNA secondary structure
in the “triple helix” setting for which they argue existing methods are inade-
quate. Their approach uses a Simple Tree Adjoining Grammar (STAG) coupled
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with maximum likelihood estimation (MLE), implemented via an efficient dy-
namic programming formulation. Higgs et al. present an algorithm for generating
near-native protein models. It combines a fragment feature-based resampling
algorithm with a local optimization method that performed best, for protein
structure prediction (PSP), among a set of five optimization techniques. Com-
putational experiments show that the use of local optimization is beneficial in
terms of both RMSD and TM score. Spirov et al. discuss a method for trans-
formation of variables, in order to normalize Drosophila oocyte images acquired
via confocal microscopy. The paper describes an interesting problem, namely,
the experimental determination of intrinsic Drosophila embryo coordinates, and
proposes an approach using evolutionary computation by genetic algorithms.
Rezaeian et al. propose a novel and flexible hierarchical framework to select dis-
criminative genes and predict breast tumor subtypes simultaneously. Dai et al.
tackle an important problem in drug-target interaction research and present an
interesting application of machine learning methods to the analysis of drugs.
Gritsenko et al. make an adaptation of their previously developed protocol for
building and evaluating predictors, in order to introduce a framework that en-
ables forward engineering in biology. An experimental test is performed in the
biological field of codon optimization and the results obtained are comparable
with those produced by the reference tool JCat.

Part IV of the proceedings contains six chapters on“Protein: Structure, Func-
tion, and Interaction.” Xiong et al. propose an active learning-based approach
for protein function prediction. The novelty of the proposal is the use of a pre-
processing phase that uses spectral clustering before selecting candidates for
labeling with graph centrality metrics. Experimental results show that cluster-
ing reveals a valid pre-processing step for the active learning method. Gehrmann
et al. address the problem of integrating multiple sources of evidence to predict
protein functions. The paper proposes to use a conditional random field (CRF)
to represent protein functions as random variables to be predicted and different
sources of evidence as conditioning variables. Inference and learning algorithms
based on MCMC are described and the proposed method is applied to a yeast
dataset. Dehzangi et al. describe a new approach to protein fold recognition, a
problem that has been widely studied over the past decade. The main contribu-
tion is the proposal of a new set of global protein features based on evolutionary
consensus sequences and predicted secondary structure, and local features based
on distributions and auto covariances of these features over segments. An RBF
SVM using these features is applied to two benchmark datasets in an extensive
comparison with a number of existing methods and is demonstrated to work
well. Dehzangi et al. present a novel approach to using features extracted from
the position specific scoring matrix (PSSM) to predict the structural class of a
protein. The authors propose two new sets of features: a global one based on the
consensus sequence of a PSSM and a local one that takes the auto-covariance in
sequence segments into account. The features extracted are used to train an RBF
SVM and are shown to lead to good results (better than other state-of-the-art
algorithms) on two benchmarks. Chiu et al. discuss a new method for detecting
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associated sites in aligned sequence ensembles. The main idea is derived from the
concept of granular computing, where information is extracted at different levels
of granularity or resolution. The experimentation was focused on p53 and it has
been demonstrated that the extracted association patterns are useful in discov-
ering sites with some structural and functional properties of a protein molecule.
Tung presents a new method for predicting the potential hepatocarcinogenicity
of non-genotoxic chemicals. The proposed method based on chemical–protein
interactions and interpretable decision tree is compared with other data-mining
approaches and shows very good performances in both accuracy and simplicity
of the found model.

Part V of the proceedings contains four chapters on “Motifs, Sites, and Se-
quences Analysis.” Pathak et al. present an algorithm that exploits structural
information for reducing false positives in motifs prediction. They tested the
validity of the algorithm using the minimotifs stored in the MnM database.
Lacroix et al. present a workflow for the prediction of the effects of residue sub-
stitution on protein stability. The workflow integrates eight algorithms that use
delta-delta-G as a measure of stability. The workflow is designed to populate
the online resource SPROUTS. A use case of the workflow is presented using the
PDB entry 1enh. Malhotra et al. present an algorithm for inferring haplotypes of
virus populations from k-mer counts obtained from next-generation sequencing
(NGS) data. The algorithm takes as input read counts for a set of k-mers and
produces as output a predicted number of haplotypes, their relative frequen-
cies and, for reads covering SNPs, can assign reads to a haplotype. The novel
feature of the algortihm is that it does not rely on having a reference genome.
The authors report that it performs well on synthetic data compared with the
existing algorithm ShoRAH, which relies on a reference genome. Comin et al.
discuss and improve the Entropic Profile method introduced in the literature for
detecting conservation in genome sequences. The authors propose a linear-time
linear-space algorithm that captures the importance of given regions with re-
spect to the whole genome, suitable for large genomes and for the discovery of
motifs with unbounded length.

Many have contributed directly or indirectly toward the organization and
success of the PRIB 2013 conference. We would like to thank all the individ-
uals and institutions, especially the authors for submitting the papers and the
sponsors for generously providing financial support for the conference. We are
very grateful to IAPR for the sponsorship. Our gratitude goes to the Nice Sophia
Antipolis University, Nice, France, and IAPR (International Association for Pat-
tern Recognition) Bioinformatics Technical Committee (TC-20) for supporting
the conference in many ways.

We would like to express our gratitude to all PRIB 2013 International Pro-
gram Committee members for their objective and thorough reviews of the sub-
mitted papers. We fully appreciate the PRIB 2013 Organizing Committee for
their time, efforts, and excellent work. We would also like to thank the Nice
Sophia Antipolis University for hosting the symposium and providing technical
support. We sincerely thank the EDSTIC doctoral school for providing grants to
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a number of students attending the conference. We also thank “Region PACA”
and the University of Salerno (Italy) for partially funding the invited speakers.

Last, but not least, we wish to convey our sincere thanks to Springer for
providing excellent professional support in preparing this volume.

June 2013 Alioune Ngom
Enrico Formenti

Jin-Kao Hao
Xing-Ming Zhao

Twan van Laarhoven
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Sebastian Böcker Friedrich Schiller University of Jena, Germany
Conrad Burden Australian National University, Australia
David Cairns University of Stirling, UK
Rachel Cavill Imperial College London, UK
Frederic Cazals INRIA Sophia, France
Keith C.C. Chan The Hong Kong Polytechnic University, China
Kuo-Sheng Cheng National Cheng Kung University, Taiwan
Francis Chin The University of Hong Kong, China
Sung-Bae Cho Yonsei University, Korea
Young-Rae Cho Baylor University, USA
Dominique Chu University of Kent, UK
Pau-Choo Chung National Cheng Kung University, Taiwan
Steven Corns Missouri University of Science and Technology,

USA
Sanjoy Das Kansas State University, USA
Dick De Ridder Delft University of Technology,

The Netherlands
Jeroen De Ridder Delft University of Technology,

The Netherlands
Tjeerd Dijkstra Radboud University, The Netherlands
Federico Divina Pablo de Olavide University, Spain
Beatrice Duval University of Angers, France
Mansour Ebrahimi University of Qom, Iran
Esmaeil Ebrahimie Shiraz University, Iran
Richard Edwards University of Southampton, UK
Antonino Fiannaca ICAR-CNR, Italy
Maurizio Filippone University of Glasgow, UK



PRIB 2013 Organization XIII

Christoph M. Friedrich University of Applied Science and Arts,
Germany

Rosalba Giugno University of Catania, Italy
Robin Gras University of Windsor, Canada
Michael Gromiha IIT Madras, India
Michael Hahsler Southern Methodist University, USA
Jennifer Hallinan Newcastle University, UK
Xiaoxu Han University of Iowa, USA
Timothy Havens University of Missouri, USA
Morihiro Hayashida Kyoto University, Japan
David Hecht Southwestern College, USA
Md Tamjidul Hoque Griffith University, Australia
Sheridan Houghten Brock University, Canada
Liang-Tsung Huang Mingdao University, Taiwan
Seiya Imoto University of Tokyo, Japan
Zhenyu Jia University of California Irvine, USA
Colin Johnson University of Kent, UK
Laetitia Jourdan INRIA, France
David Juedes Ohio University, USA
Giuseppe Jurman Fondazione Bruno Kessler, Italy
R. Krishna Murthy

Karuturi Genome Institute of Singapore, Singapore
Marta Kasprzak Poznan University of Technology, Poland
Yuki Kato Nara Institute of Science and Technology,

Japan
Tsuyoshi Kato University of Tokyo, Japan
Nawaz Khan Middesex University, UK
Seyoung Kim Carnegie Mellon University, USA
Kyung Dae Ko Howard University, USA
Ziad Kobti University of Windsor, Canada
Tetsuji Kuboyama Gakushuin University, Japan
Lukasz Kurgan University of Alberta, Canada
Zoe Lacroix Arizona State University, USA
Yifeng Li University of Windsor, Canada
Xiaoli Li Institute for Infocomm Research, Singapore
Wingning Li University of Arkansas, USA
Feng Lin Nanyang Technological University, Singapore
Frédérique Lisacek Swiss Institute of Bioinformatics, Switzerland
Chunmei Liu Howard University, USA
Xuejun Liu Nanjing University of Aeronautics and

Astronautics, China
Weiguo Liu Nanyang Technological University, Singapore
Huaien Luo Genome Institute of Singapore, Singapore
Hiroshi Matsuno Yamaguchi University, Japan
Ken Mcgarry University of Sunderland, UK



XIV PRIB 2013 Organization

Vasilis Megalooikonomou Temple University, USA
Mariofanna Milanova University of Arkansas at Little Rock, USA
Aleksandar Milosavljevic Baylor College of Medicine, USA
Perry Moerland Academic Medical Center, The Netherlands
Jason Moore Dartmouth College, USA
Vadim Mottl Computing Center of the Russian Academy of

Sciences, Russia
Piyushkumar Mundra Nanyang Technological University, Singapore
Julio Cesar Nievola Pontif́ıcia Universidade Católica do Paraná,
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Abstract. Proteins are known to interact with each other by forming protein
complexes and in order to perform specific biological functions. Many commu-
nity detection methods have been devised for the discovery of protein complexes
in protein interaction networks. One common problem in current agglomerative
community detection approaches is that vertices with just one neighbor are often
classified as separate clusters, which does not make sense for complex identifi-
cation. Also, a major limitation of agglomerative techniques is that their compu-
tational efficiency do not scale well to large protein interaction networks (PINs).
In this paper, we propose a new agglomerative algorithm, FAC-PIN, based on a
local premetric of relative vertex-to-vertex clustering value and which addresses
the above two issues. Our proposed FAC-PIN method is applied to eight PINs
from different species, and the identified complexes are validated using exper-
imentally verified complexes. The preliminary computational results show that
FAC-PIN can discover protein complexes from PINs more accurately and faster
than the HC-PIN and CNM algorithms, the current state-of-the-art agglomerative
approaches to complex prediction.

1 Introduction

Proteins are known to interact with each other by forming complexes. Each such com-
plex performs an independent and discrete biological function through the interactions
of its member proteins [9]. Single proteins may also participate in more than one com-
plex. Protein complexes correspond to modules, which are dense subgraphs within
PINs, and hence, they can be discovered by appropriate graph clustering approaches.
Generally speaking, modules in PINs refer to highly connected subgraphs which have
more internal edges than external edges. Many definitions of modules have been pro-
posed in literature [16], and consequently different community detection algorithms
have been proposed based on these different definitions.

Module detection in PINs is a computationally hard task and conventional clus-
tering algorithms are not well suited for this task [15, 20]. Efficient, accurate, robust,
and scalable methods are therefore required for mining large PINs. There are generally
three classes of modules detection approaches: 1) those based on finding cliques, which
are fully connected subnetworks [11, 17]; 2) those based on detecting dense subnet-
works [1, 2], not necessarily cliques; and 3) those based on uncovering the hierarchical

A. Ngom et al. (Eds.): PRIB 2013, LNBI 7986, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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organization of modules within PINs [8,12]. Clique techniques are not quite scalable to
large PINs and the identified modules are too strict in the biological sense of modules
since proteins participating in a complex may not all interact with each other. Current
density-based algorithms commonly misclassify proteins with low degree into small
clusters which could be merged to core protein clusters [13]. Moreover, many biolog-
ically meaningful modules are ignored due to their low topological connectivity [13].
Hierarchical clustering methods based on global metric over nodes or edges, such as
betweenness centralities, are very time-consuming, and thus do not scale well to large
PINs. The few hierarchical approaches based on local metric also have the common
problem of classifying vertices with degree one in separate clusters, which does not
make sense biologically.

In this paper, we propose a fast agglomerative clustering technique, FAC-PIN, which
addresses the limitations discussed above for hierarchical algorithms. FAC-PIN is based
on a local premetric of relative vertex clustering value for clustering PINs in a hierar-
chical manner.

The rest of the paper is organized as follow. In Section 2, we discuss a few hierarchi-
cal algorithms to which FAC-PIN is based. Section 3 introduces our proposed method.
Computational experiments and discussions of results are given in Section 5 before we
conclude with possible directions of research.

2 Related Works

Many hierarchical clustering approaches (both agglomerative and divisive techniques)
have been introduced in literature, since the original publication of Girvan and Newman
in [7] for clustering networks. See the excellent survey on graph clustering algorithms in
[5]. Thus, we will present only the few methods that are directly related to our proposed
agglomerative approach.

An effective agglomerative technique for clustering large networks was first pro-
posed by Girvan and Newman in [7]. The Girvan and Newman (GN) algorithm first
computes the edge-betweenness centrality value of each edge; this is a global metric
over the edges and is defined as the number of shortest paths containing a given edge.
Then, GN subsequently sort and then remove edges with large betweenness values in
an iterative manner and in order to detect the communities; since such edges corre-
spond to bridges connecting two modules whereas low-betweenness edges are internal
to modules. To increase the computational speed of GN, Clauset et al. [4] made a simple
but non-trivial modification in the computation of the value of the modularity function
used in GN. Luo et al. [13] defined the concept of the degree of a subnetwork S as
the number the of edges containing one endpoint inside S and the other endpoint out-
side S. The degree of subnetworks was used along with the edge-betweenness values
to devise an agglomerative method for module discovery. Li et al. [12] developed a fast
agglomerative approach for community detection based on a global centrality measure,
the vertex clustering coefficient; which is defined as the ratio of the number of edges
between the neighbors of a given vertex v and the total number of possible edges in that
neighborhood, it measures the degree of completeness of the subnetwork defined by v
and its neighbors [6]. Radicchi et al. [16] designed an agglomerative technique based
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on the clustering coefficient of an edge; the edge clustering coefficient extends the ver-
tex clustering coefficient and is a global measure defined as the number of triangles to
which a given edge e = (u, v) belongs to, divided by the number of triangles that might
potentially include (u, v). That is:

C(3)
u,v =

Z
(3)
u,v

min{(ku − 1), (kv − 1)} , (1)

where, ka is the degree of a vertex a, Z(3)
u,v is the number of triangles containing edge

(u, v), and min{(ku − 1), (kv − 1)} is the maximal possible number of triangles con-

taining (u, v). This coefficient has been further generalized to higher-order cycles, C(k)
u,v ,

such as squares for k = 4, C(4)
u,v . Edges contained in few or no triangles have low clus-

tering coefficients, and hence, correspond to bridges connecting two clusters. The edge
clustering coefficient assumes the existence of cycles of length k in a network; which
is problematic since a network can have many cycles of different lengths and the length
distribution is unknown (e.g., there may be very few or very many short-length cycles).
For this reason, Wang et al. [19] defined a local metric over the edges, the edge clus-
tering value, which is not based on cycles but on the common neighbors of the two
endpoints of edge (u, v). The edge clustering value is defined as:

ECV (u, v) =
|Nu ∩Nv|2
|Nu| × |Nv| , (2)

where, Na is the set of neighbors of a vertex a and its cardinality is defined as |Na|.
Here, endpoints vertices of an edge (u, v) with a larger clustering value are more likely
to be in the same cluster. Using the edge clustering value, Wang et al. [19] devised
an agglomerative technique, the HC-PIN algorithm, for discovering modules of a PIN
and which is faster and more accurate than current hierarchical algorithms for network
clustering.

In the following section, we introduce a new measure, the relative vertex-to-vertex
clustering value, which is a premetric combining the ideas behind the vertex clustering
coefficient, the edge clustering coefficient, and the edge clustering value. Our analysis
of this measure will be based on the weak sense definition of a community (i.e., a
module); that is: a subgraph S is a community in a weak sense if the sum of all degrees
within S (i.e., sum of its internal edges) is larger than the sum of all degrees toward the
rest of the network (i.e., sum of its external edges) [16].

3 Relative Vertex-to-Vertex Clustering Value

The edge clustering value, ECV (u, v), used in HC-PIN [19], is a similarity metric
between the two vertices u and v of an edge (u, v) and which, roughly speaking, tells
how likely u and v lie in the same module (i.e., cluster). This is also true with the
edge clustering coefficient, C(3)

u,v , of [16]. However, in complex networks following the
power law (i.e., scale-free networks), it is reasonable to assume that the likelihood of
a vertex u to lie in the same module as v (or, to lie in the module containing v), is not
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equal to the likelihood of v to lie in the module containing u. This assumption stems
from the principle of preferential attachment in scale-free networks which states that a
new node u is likely to attach to a high-degree node v than to a low degree node. This
is not reciprocal, and hence, clearly suggesting that the likelihood is not symmetric
and that it is larger for u to be in a cluster with v than for v to be in cluster with u
(if we assume that v is a high-degree node). The similarity metrics ECV (u, v) and
C

(3)
u,v treat equally both endpoints of edges (u, v) irrespective of their degrees. Also,

another issue is that both ECV (u, v) and C
(3)
u,v require vertices u and v be connected

by an edge. This requirement is quite restrictive and we aim to extend to the case in
which pair (u, v) is not an edge while still being able to decide if both vertices are
in the same cluster. Finally, as stated earlier in previous section, current hierarchical
approaches have the common problem of classifying low-degree vertices (peripheral to
dense subnetwork modules) into separate clusters rather than merging them with their
neighboring modules. In the following paragraph, we present a new measure which
aims to address these issues.

Let Na be the set of neighbors of vertex a in an undirected graph G = (V,E). We
define N+

a = Na ∪ {a} as the neighbor set of a augmented with a itself. Given two
vertices u and v, we define the clustering value of u relative to v as:

R(u ��� v) =
|N+

u ∩N+
v |

|N+
u | (3)

R(u ��� v) is a premetric that ranges from 0 to 1; that is, it is a measure which does
not satisfy the axiom of symmetry and the triangle inequality but satisfies the axioms of
self-similarity and minimality. A vertex u with a larger clustering value given another
vertex v is more likely to lie in the cluster containing v. In the following C(a) denotes
the cluster containing a given vertex a, and we assume that C(a) satisfies the weak sense
definition of a community [16] (we use the term ws-cluster, hereafter). The following
describe the properties of R(u ��� v).

Given an edge (u, v), R(u ��� v) is maximal (i.e. equals 1) if and only if |N+
u | =

|N+
u ∩N+

v |. There are two cases achieving the maximum given edge (u, v): (i) when u
has degree one; and (ii) when both u and v have the same degree and |N+

u | = |N+
v | that

is, they have the same neighbors. In either case, If sub-network C(v) (respectively, the
induced sub-network of G for subset N+

v ) is a ws-cluster then {u}∪C(v) (respectively,
{u} ∪N+

v ) is a also a ws-cluster.
Given an edge (u, v), R(u ��� v) is minimal when u is the highest degree vertex in

G and v has degree 1; that is, R(u ��� v) = 2
1+deg(u,G) and deg(u,G) is maximal. In

such case, R(v ��� u) is maximal (i.e. equals 1), and hence, C(u) ∪ {v} (respectively,
N+

u ∪ {v}) is a ws-cluster if C(u) (respectively, N+
u ) is a ws-cluster.

Given an edge (u, v), assume the degrees of vertices u and v in G are such that
deg(u,G) = deg(v,G) = d is maximal and that u and v do not share any other
neighbors. Then, we have R(u ��� v) = R(v ��� u) = 2

1+d ≤ 0.5 assuming
d ≥ 3. In this case, {u} ∪ C(v) (or N+

v ) is not a ws-cluster, and, {v} ∪ C(u) (or
N+

u ) is not a ws-cluster. Consider the induced subgraph of G on N+
u ∪ N+

v , we de-
fine the local betweenness value of edge (u, v) as the percentage of paths from vertices
in Nu � Nv to vertices in Nv � Nu going through edge (u, v). Given the number of
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common neighbors between u and v, |Nu∩Nv|, the local betweenness of edge (u, v) is
thus l(u, v) = 100 · 1

|Nu∩Nv|+1 . Given two connected high-degree vertices u and v, the
local edge betweenness value l(u, v) increases when |Nu ∩ Nv| decreases, and hence,
it corresponds to when both R(u ��� v) and R(v ��� u) values are small at the same
time. Edges with high local betweenness values are edges connecting two clusters, and
therefore, vertices u and v should not lie in the same cluster.

Finally, our relative vertex clustering values implements the ideas behind the edge
clustering coefficient, C(k)

u,v , of [16], since for a given vertex v and a neighbor u the
number of triangles given edge (u, v) is exactly |Nu ∩ Nv|; and u will be included
into C(v) whenever most of the neighbors of u (excluding v) are in Nu ∩ Nv. This
is also true even when (u, v) is not an edge; in such case, |Nu ∩ Nv| relates to the
number of squares containing vertices u and v. On the other hand, we break through the
limitations of [16] as in the edge clustering value, ECV (u, v) of [19], by not assuming
the existence of closed loops in a networks, such as triangles or high-order loops. The
relative vertex clustering value R(u ��� v) also improves ECV (u, v) since neighbors
u of v which have most of their neighbors forming a triangle with v are selected for
inclusion in C(v). Searching for vertices u which form a cluster with v is also more
efficient than searching for edges (u, v) that makes a cluster since the number of edges
is larger than the number of vertices in dense subgraphs.

In summary, the values R(u ��� v) and R(v ��� u) for edge (u, v) can be used as
a quick test for deciding whether u (respectively, v) should be merged with the cluster
C(v) (respectively, C(u)) such that {u} ∪ C(v) (respectively, {v} ∪ C(u)) remains a
ws-cluster.

4 The FAC-PIN Algorithm

Our proposed fast agglomerative clustering algorithm for protein interaction networks,
FAC-PIN in Algorithm 1, goes as follows. Given a PIN G = (V,E), we initially con-
sider each vertex as a singleton cluster, and sort the vertices v ∈ V in decreasing or-
der of their degrees deg(v,G) in G. Then, in an iterative manner, we select the next
highest-degree vertex v from the sorted list, and compute the values R(u ��� v) and
R(v ��� u) for each neighbor u of v, and then decide depending on these two values
and a threshold α, 0 ≤ α ≤ 1, whether u should be included in C(v) or not.

In the FAC-PIN algorithm, a neighbor u of vertex v is added to the current C(v)
when the majority of the neighbors of u are in Nu ∩ Nv, that is when: 1) R(u ���
v) = 1, in which case either u has degree 1, or u and v have the same degree and
the same set of neighbors; 2) R(u ��� v) > R(v ��� u) > α, in which case u have
smaller degree than v and most of the neighbors of u are in the intersection; and 3)
R(u ��� v) = R(v ��� u) and the size of the intersection is larger than the total set of
neighbors of u and v which are not in the intersection.

Computational Complexity of FAC-PIN: Let n = |V | be the number vertices, m = |E|
be the number of edges, and d̄ be the average degree of all vertices, that is d̄ =
1
n

∑
v∈V deg(v,G). The complexity of sorting the vertices by their degree is O(n)

by using the counting sort method, and the complexity of computing the partition after
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Algorithm 1. The FAC-PIN Algorithm
Input: G = (V,E): undirected PIN graph

α: threshold parameter
Output: Pk = {C1, . . . , Ck}: identified collection of modules
{Initialization phase}
for every vi ∈ V do

C(vi)← { {vi}, ∅ }; {each vertex is a singleton cluster}
end for
Sort all vertices to a priority-queue H in non-increasing order of their degrees;
{Community detection phase}
repeat

v ← H ; {select next highest-degree vertex in H}
for all u ∈ Nv not yet merged into a cluster do

if [R(u ��� v) = 1] Or [R(u ��� v) > R(v ��� u) > α] then
C(v)← C(v) ∪ { {u}, {(u, v)} };
C(u)← C(v);

else
if [R(u ��� v) = R(v ��� u)] And [deg(u,G)+deg(v,G)−1 ≤ |Nu ∩Nv |] then

C(v)← C(v) ∪ { {u}, {(u, v)} };
C(u)← C(v);

end if
end if

end for
until H = ∅
U ← V ;
i← 1;
{Compute the partition Pk}
while U �= ∅ do

v ← randomly select a vertex from U ;
Ci ← C(v);
U ← U � {u | C(u) = C(v)};
i← i+ 1;

end while
return Pk ← {C1, . . . , Ck};
Evaluate modularity Q(Pk) of partition Pk = {C1, . . . , Ck};

the community detection phase is also O(n). Let the maximum node degree in G be
dmax = maxv∈V deg(v,G). The complexity of computing R(u ��� v) given vertices
u and v in the ”for-loop” of FAC-PIN is O(dmax). The complexity of the ”for-loop” is
then O(d2max), and hence, the total complexity of the ”repeat-loop” (and thus of FAC-
PIN) is O(nd2max) � O(n3). Since PINs are power-law networks then the majority
of the proteins interact with only very few proteins, and thus the average degree d̄ is
generally small and can be considered a constant [19]; that is, we can use d̄ as the prin-
cipal variable for measuring the complexity of community detection methods. As such,
then the complexity of FAC-PIN is O(nd̄2) � O(nd2max) � O(n3). The complexity
of the HC-PIN algorithm of [19] is O(md̄2) and is larger than that of FAC-PIN since
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n ≪ m in PINs. We note that HC-PIN is currently the fastest hierarchical method
described in literature for clustering PINs, as far as we know.

5 Computational Experiments and Discussions

We have carried out several computational experiments on the PIN data of eight differ-
ent species using our proposed FAC-PIN algorithm. For each PIN, we performed the
following steps sequentially: (1) we arbitrarily set the threshold parameter, α in FAC-
PIN, to values 0.5, 0.25, 0.125, 0.0625 and 0.03125, (2) applied FAC-PIN to the given
PIN, with each of these values, (3) evaluated the modularity (i.e., the goodness) of the
resulting partition Pk for a value α, and finally (4) we reported the partition result for
the value α (among all given values) which gives the best modularity value. The PINs
and the modularity evaluation functions are discussed below.

PIN Data: The PINs data of eight different species were obtained from the PINALOG
site1 and the BioGRID database2. The eight species given along with their number
of proteins and interactions in parenthesis are: E. coli (2817, 13841), D. melanogaster
(Fruit fly, 8366, 25611), A. thaliana (Flowering plant, 2651, 5236), M. musculus (House
mouse, 2888, 4372), H. sapiens (Human, 8994, 34935), R. norvegicus (Street rat, 1148,
1307), C. elegans (Round worm, 4303, 7747), and S. cerevisiae (Bakers yeast, 5672,
49830). In all these PINs, the number of edges is much larger than the number of
vertices.

Modularity Functions: Given a clustering result (i.e. a partition) Pk = {C1, . . . , Ck}
with k clusters, we used the popular modularity function introduced by Newman and
Girvan [4], defined as

Q(Pk) =

k∑
i=1

(eii − a2i ), (4)

where, eii is the fraction of edges with both end vertices in the same community i, and
ai is the fraction of edges with at least one end vertex in community i. Larger values of
Q correspond to more distinct community structures in PINs. Though Q is widely used,
it is known to have serious limitations which has been discussed at length in [5]. The
second partition scoring function we used has been introduced in [10] and is defined as

w- log -v(Pk) =

k∑
i=1

(eii − log ai). (5)

Function w- log -v allows for more diverse cluster sizes than function Q, and smaller
values corresponds to better modularity structures.

1 http://www.sbg.bio.ic.ac.uk/˜pinalog/downloads.html
2 thebiogrid.org

http://www.sbg.bio.ic.ac.uk/~pinalog/downloads.html
thebiogrid.org
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Computational Results: As said above, we applied FAC-PIN many times on a given
PIN data but with a different threshold value α in each run, then evaluated the resulting
partition for that value α, and then retained the best partition Pk obtained for the PIN
among all values α. The best partition is that which has the best modularity value. In or-
der to study and compare the performance of FAC-PIN, we downloaded the CNM code
from http://cs.unm.edu/˜aaron/research/fastmodularity.htm [4]
and implemented the HC-PIN algorithm [19]. The HC-PIN and CNM methods were
applied on the same PIN data as the FAC-PIN approach. For HC-PIN, we set the two
parameters λ and s as in [19] (CNM has no parameters). The modularity results of the
three methods are given in Tables 1 and 2, and their running times are shown in Table 3.
The PINs are sorted in increasing order of their number of proteins (that is, Street rat’s
PIN being the smallest is on first column and Human’s PIN being the largest is on the
last column).

Table 1. Q results of FAC-PIN, CNM and HC-PIN
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FAC-PIN 0.7897 0.9422 0.1492 0.7644 0.7484 0.5110 0.6486 0.7827

CNM 0.5457 0.7861 0.0587 0.4781 0.4057 0.1412 0.3116 0.2858

HC-PIN 0.4502 0.7819 0.0023 0.5015 0.2928 0.0387 0.0086 0.0126

Table 2. w- log -v results of FAC-PIN, CNM and HC-PIN
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FAC-PIN -2.252 -3.603 -0.262 -2.634 -2.094 -0.521 -1.517 -1.941

CNM -1.699 -2.866 -0.192 -1.530 -1.819 -0.481 -1.233 -1.269

HC-PIN -1.558 -3.071 -0.019 -1.805 -1.809 -0.028 -0.072 -0.113

As we see in both Tables 1 and 2, FAC-PIN outperformed both the HC-PIN and
CNM methods in all given PINs. We note that as the size of the PINs increases, in terms
of either the number of proteins or the number of interactions, the difference between
the performances of FAC-PIN and HC-PIN (or CNM) also increase greatly. This is
also true in Table 3 showing the execution times, in seconds, of the three algorithms.
Clearly FAC-PIN is much faster than the other two methods, and again, the difference
in performance increases as either the number of proteins or the number of interactions
increases. All experiments were performed on an Intel machine (Core TM i7-2600,
3.400 GHz, CPU with 8 GB RAM).

http://cs.unm.edu/~aaron/research/fastmodularity.htm
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Table 3. Time results FAC-PIN, CNM and HC-PIN
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FAC-PIN 1.00 4.77 3.66 7.44 22.25 25.12 54.85 72.59
CNM 8.46 119.40 144.94 155.33 484.25 645.03 1428.98 1753.28
HC-PIN 2.78 14.68 55.02 13.99 34.52 663.50 234.69 372.31

6 Protein Complex Discovery

We validated our results by comparing the communities detected by FAC-PIN with a
list of protein complexes obtained from the MIPS database, which we consider as a gold
standard data. Our validations were done only for four species which we could down-
load corresponding complexes from MIPS. For Baker’s yeast’s PIN, we obtained com-
plexes from the MIPS Comprehensive Yeast Genome Database-CYGD3. For the PINs of
Street rat, House mouse, and Human, the corresponding complexes were downloaded
from the MIPS Comprehensive Resource of Mammalian Protein Complexes- CORUM
4. We could not find complexes for the remaining species in due time.

We proceeded similarly to Laarhoven et al. [10] and considered only the known
complexes (i.e., not those obtained by computational means) containing at least three
proteins. Since FAC-PIN generates non-overlapping communities, we considered only
complexes which are at the bottom of the MIPS hierarchy of complexes and subcom-
plexes. The unconfirmed complexes, that is those in category 550, were excluded.

The validation proceeds by determining the degree of overlap between the commu-
nities identified by FAC-PIN and the protein complexes; that is, we want to determine
how effectively a community matches a known complex. We used the overlapping score
function given in [2,3,10,19]. The overlapping score, O(C,K), between a community
C and a known complex K is defined as:

O(C,K) =
|C ∩K|2
|C| × |K| , (6)

A community C is considered to match a known complex K whenever O(C,K) ≥ τ ;
where, 0 < τ ≤ 1 is the matching threshold. We have a perfect match only when
O(C,K) = 1. Threshold value τ = 0.2 was used in [2, 3, 19] whereas [10] used
τ = 0.25. We used both values of τ in our complex validation. After computing the
overlapping scores between all pairs (C,K) of communities and known complexes
for a given PIN, we then determined the ability of FAC-PIN to correctly classify the
known complexes. The reason for doing this is that a given complex K1 may match
many communities but with different degrees of overlap, while another complex K2

may match with a single community only. Hence, we calculated the Specificity, the
Sensitivity, and the F -score, as our measures of accuracy; they are defined as follow:

3 ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/
4 http://mips.helmholtz-muenchen.de/genre/proj/corum/

ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/
http://mips.helmholtz-muenchen.de/genre/proj/corum/
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Sensitivity =
TP

TP + FN
(7)

Specificity =
TP

TP + FP
(8)

F -score =
2× specificity × sensitivity

specificity + sensitivity
(9)

where, TP (true positive) is the number of the identified communities C matched by
the known complexes K , FN (false negative) is the number of known complexes that
are not matched by the communities, and FP (false positive) is the total number of
the identified communities C minus TP. Table 4 shows the comparison results on the
protein complexes of the Specificity, the Sensitivity, and the F -score of FAC-PIN, HC-
PIN and CNM. The results are shown for the two values of threshold τ (discussed
above) and for the modularity scoring function Q. For HC-PIN, results are shown for
two values of its parameter λ ( [19] showed validation results with these two values of
λ).

In Table 4, we see that FAC-PIN identifies communities whose average sizes (column
8) are closer to the average sizes of the known protein complexes (column 4), whereas
HC-PIN and CNM yield larger averages of cluster sizes. The consequence of this is that
smaller FAC-PIN communities produce higher accuracy (Specificity, Sensitivity or F -
score) in the great majority of cases. This is because, most of the known complexes are
small, and thus the accuracy increases as the size of a complex decreases. In particular,
we obtain a larger number of perfectly matched complexes to communities with FAC-
PIN than with HC-PIN or CNM.

7 Conclusion

In this paper, we devised a new agglomerative clustering approach, FAC-PIN algorithm,
for detecting the communities of a given PIN networks, and then compared our method
with two fast hierarchical techniques discussed in literature. Our approach is based on a
the use of new measure, the relative vertex clustering value which helps decide whether
a given vertex u should be included within the cluster of another vertex v depending
on how many of the neighbors of u form a triangle with u and v. Our approach is very
fast since we are examining only the vertices and in an efficient manner, unlike the two
compared algorithms which examine edges. Thus our method is appropriate for PINs,
which in general contain more interactions than proteins. More study needs to be done
and we plan to perform validations based (1) on random networks, in order to ana-
lyze the robustness of FAC-PIN, and (2) on gene ontology annotations. Comparisons
with other methods which are not necessarily hierarchical will also be important. Non-
agglomerative clustering methods based on the relative vertex clustering value will be
investigated. Finally, we plan to validate FAC-PIN through functional enrichment in or-
der to evaluate how well the identified communities match with know protein functions.
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Table 4. Comparison of the Specificity, Sensitivity and F -score FAC-PIN, CNM and HC-PIN
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Baker’s
yeast

1237 267 4.63 0.2 FAC-PIN 285 4.34 12 0.092 0.78 0.164

CNM 300 4.12 5 0.010 0.33 0.013
HC-PIN(λ = 0.5) 153 8.08 5 0.090 0.69 0.159
HC-PIN(λ = 1.0) 111 11.14 3 0.010 0.51 0.019

0.25 FAC-PIN 285 4.34 12 0.090 0.82 0.162
CNM 300 4.12 5 0.010 0.33 0.013

HC-PIN(λ = 0.5) 153 8.08 5 0.090 0.55 0.154
HC-PIN(λ = 1.0) 111 11.14 3 0.008 0.50 0.015

Human 2555 575 4.44 0.2 FAC-PIN 607 4.21 8 0.005 0.74 0.010
CNM 639 3.99 5 0.004 0.40 0.007

HC-PIN(λ = 0.5) 129 19.80 3 0.005 0.39 0.009
HC-PIN(λ = 1.0) 119 21.47 3 0.004 0.44 0.007

0.25 FAC-PIN 607 4.21 8 0.005 0.74 0.010
CNM 639 3.99 5 0.004 0.31 0.008

HC-PIN(λ = 0.5) 129 19.80 3 0.005 0.39 0.009
HC-PIN(λ = 1.0) 119 21.47 3 0.004 0.44 0.007

Street rat 557 328 1.69 0.2 FAC-PIN 389 1.42 7 0.250 0.43 0.316
CNM 475 1.17 3 0.109 0.36 0.248

HC-PIN(λ = 0.5) 117 4.76 1 0.160 0.33 0.214
HC-PIN(λ = 1.0) 117 4.76 1 0.160 0.33 0.214

0.25 FAC-PIN 389 1.42 7 0.170 0.29 0.214
CNM 475 1.17 2 0.150 0.27 0.192

HC-PIN(λ = 0.5) 117 4.76 1 0.110 0.22 0.143
HC-PIN(λ = 1.0) 117 4.76 1 0.110 0.22 0.143

House
mouse

935 460 2.03 0.2 FAC-PIN 568 1.64 13 0.230 0.59 0.327

CNM 605 1.54 6 0.120 0.56 0.198
HC-PIN(λ = 0.5) 241 3.87 3 0.180 0.48 0.265
HC-PIN(λ = 1.0) 151 6.19 3 0.110 0.50 0.182

0.25 FAC-PIN 568 1.64 13 0.212 0.55 0.306
CNM 605 1.54 6 0.120 0.56 0.198

HC-PIN(λ = 0.5) 241 3.87 3 0.153 0.41 0.222
HC-PIN(λ = 1.0) 151 6.19 3 0.110 0.50 0.182
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Abstract. Reconstructing gene regulatory network (GRN) from time-
series expression data has become increasingly popular since time course
data contain temporal information about gene regulation. A typical mi-
croarray gene expression data contain expressions of thousands of genes
but the number of time samples is usually very small. Therefore, infer-
ring a GRN from such a high-dimensional expression data poses a major
challenge. This paper proposes a tree based ensemble of random forests
in a multivariate auto-regression framework to tackle this problem. The
efficacy of the proposed approach is demonstrated on synthetic time-
series datasets and Saccharomyces cerevisiae (Yeast) microarray gene
expression data with 9-genes. The performance is comparable or bet-
ter than GRN generated using dynamic Bayesian networks and ordinary
differential equations (ODE) model.

Keywords: Gene regulatory networks, time-series gene expression data,
gene regulation, Random forests, multivariate auto-regression, regression
trees.

1 Introduction

A set of genes, transcription factors (regulators), mRNAs, and gene products
(protein) interact among themselves to control almost all biological activities
and form a gene regulatory network (GRN). Therefore, reverse engineering of
GRN from gene expression data becomes an important problem. Reconstruc-
tion of regulatory networks plays a vital role in understanding of complexity,
functionality and pathways of the biological systems and plays a crucial role
in developing novel drugs for disease. With recent advancements of microarray
technology and next generation sequencing, a vast amount of expression data
has been produced. Thereafter, developments of novel computational models to
infer the GRN from gene expression measurements have been more feasible.
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Microarray technology enables us to gather both steady-state and time series
gene expression data. Gene regulatory interactions among genes are not instan-
taneous, but they are dynamic events which occur throughout a period of time
[1]. Therefore, time-series expression data are vital in studying the dynamics
of the underlying biological systems. A typical time series data contains only
a few time samples compared to the number of genes, and hence, inference of
regulatory interaction of large number of genes from a few time points is one of
the biggest challenges faced by computational biologists.

Several computational techniques have been proposed to infer GRN by using
time course gene expression data. Boolean networks are the simplest and earliest
models of gene networks [2,3]. Some of biological characteristics of actual GRN
are illustrated by the Boolean network models [4]. On the other hand, ordinary
differential equations (ODE) [5] are able to describe dynamic changes of the
regulatory network and capture complex regulatory dependencies among the ex-
pression data. However, their major disadvantage is having a high-dimensional
parameter space. Therefore, they require a large amount of experimental data to
infer the accurate regulatory network. Dynamic Bayesian networks (DBN) based
models are also popular in reconstructing GRN as they are capable of learning
causal interactions among the temporal gene expressions [1],[6],[7]. Another ap-
proach is the usage of information theoretical measures such as mutual infor-
mation (MI) to model the time course expression data. TimeDelay-ARACNE
[8] is one of the recently proposed algorithms using MI among gene expressions.
Also, several linear multivariate vector auto-regression (MVAR) techniques such
as lasso regression, elastic net and ridge regression have been introduced in lit-
erature to infer GRN [9,10].

However, the performance of GRN inference techniques is still poor because
the current approaches are unable to capture the complex regulatory interac-
tions among the genes and many of these approaches are incapable of handling
high-dimensional microarray expression data. Within this context, we propose
an effective approach to infer GRN from time-course expression data with en-
semble of random forest. Random forest method has become popular in handling
high-dimensional problems [11], [12], [13], [14]. Huynh-Thu et al initially applied
random forests technique to build GRN [15]. Their proposed method, namely
GENIE3, showed the significant improvement in accuracy of GRN inference and
it was the best performer in the DREAM4 In Silico Multifactorial challenge
[15]. However, experiments were only performed with steady-state gene expres-
sion data(static data). Also the structure of the GRN was not built, but only
provided the ranking of gene regulatory links. On the other hand, sparse lin-
ear regression based MVAR approaches has inherent limitations in modeling
non-linear regulations. In this paper, to tackle the limitation of these previous
approaches, we develop a random forests based MVAR approach to infer a GRN
from time-series gene expression data. Using variable importance criterion de-
rived from training random forest model and subsequently using adjusted R2, a
structure of GRN is obtained using time-series gene expression data.



Inferring Gene Regulatory Networks from Time-Series Expressions 15

The rest of the paper is organized in three sections. First, Section 2 describes
the inference of GRN from time-course expression data using the tree based
ensemble method of Random forests. Section 3 provides details on both synthetic
and real datasets, performance metrics used in the evaluation, present the results
and time complexity of the proposed approach. Finally, Section 4 concludes the
paper with a discussion on obtained results along with future research directions.

2 Method

Let (xj
t )

q
j=1 be a vector containing the gene expressions of q genes at the tth

time point. Let x−j
t is a vector containing gene expressions at time t of all the

genes except gene j. By assuming that the expression level of given gene (j) at
next time point (t+ 1) is a function (gj) of the expression values of other genes
at current time (t), we can write

xj
t+1 = gj(x

−j
t ) + εt, ∀t (1)

where εt denotes the random noise. The static version of GRN inference with
random forest assumes that the expression value of each gene depends on ex-
pression values of other genes for a given experiment(k) [15]:

xj
k = fj(x

−j
k ) + εk, ∀k (2)

where x−j
k is a vector containing all static gene expression data except expres-

sion data of gene j in the kth experiment. The network inference procedure first
decomposes the problem of recovering network structure of q genes into q dif-
ferent sub-problems. The jth sub-problem is equivalent to finding regulators for
jth gene. Each sub problem has its own learning sample (LSj

T ) which is consists

of input-output pairs for gene, LSj
T = (x−j

t , xj
t+1)

T−1

t=1
. Here, T denotes the total

number of time points in the time series. Each sub-problem can be solved by
finding an optimal function for gj that minimizes the square error loss between
the actual expression level and the predicted expression level by the function as
follows:

T−1∑
t=1

(xj
t+1 − gj(x

−j
t ))2 (3)

Each of these sub-problems can be categorized as supervised regression problem
[15]. Regression problem which is defined by Eq. (3) can be solved by constructing
tree models such as regression trees [16]. Accuracy of the single tree is further
improved by ensemble methods where prediction outcomes of several individual
trees are merged. Ensemble methods provide a combine prediction by considering
all individual predictions in the ensemble. Therefore, the tree based ensemble
method of random forest [11] is suitable for solving above problem because it
can handle high dimensional expression data [13], and is capable of learning
non-linear relationships as well as dealing with interacting features [15]. So, each
sub-problem is solved by building an ensemble consists of regression trees using
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random forest method. On the other hand, proposed method can be identified as
another way of solving sparse autoregressive model where function gj is assumed
to be a linear function of the regression coefficients (β) [9,10].

First step of the random forest is generation of bootstrap samples from the
initial input data. Then, each tree is constructed by using these samples. But
tree building process is little bit different than the normal process because at
each node, N numbers of predictors are randomly selected from the bootstrap
sample to determine the optimal split for the node. The value of N is the tuning
parameter because it determines the level of randomization of the trees. All the
trees of an ensemble are built by applying above process.

Function gj is learned from the learning sample LSj
T using random forest

ensemble. Following [15], weight for having a regulatory link from any gene i to
j (wi,j) are obtained by computing variable importance measure using following
equation:

I = #S.V ar(S)−#St.V ar(St)−#Sf .V ar(Sf ) (4)

where S indicates the input data sample that reach the node, # shows the car-
dinality of data sample, Sf and St shows the subset of samples out of input
data sample (S) that the test is false and true, respectively. For each subset of
samples (Sf and St), the variance of the target variable is indicate by V ar(.).
Variable importance measure provides an indication about the relevance of an
input variable for the prediction of the output. After that, regulatory links are
ranked based on their weights for each learning sample. Regulatory links that
have higher weights are more likely to be actual regulatory interactions. There-
fore, we apply adjusted coefficient of determination (Adjusted R2) which is given
by Eq. (5) to each sub problem to determine the actual regulators.

Adjusted coefficient of determination = 1− (1−R2)
n− 1

n− p− 1
(5)

where n denotes the size of the learning sample, p is the number of regressors
in the model and R2 is the coefficient of determination. In our case, n equals
to q. An important property of adjusted R2 is that when a regression variable
is added into the model , adjusted R2 increases if added variable improves the
prediction ability of the model, otherwise the value of adjusted R2 decreases
[17]. So, for each sub-problem, we add regulators into the model from highest
weight to lower one and each time the value of adjusted R2 is computed. If
added regulator increases adjusted R2, we consider it as an actual regulator. We
continue adding more regressor until adjusted R2 starts to decrease. This way,
we determine the actual regulators for each sub problem.

3 Experiments and Results

Several synthetic gene expression datasets were generated and used to evaluate
the performance of the proposed method. Many gene regulatory network infer-
ence studies with synthetic datasets were done using scale-free synthetic net-
works that were obtained using Barabasi-Albert model [18]. But in this study,
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we used GeneNetWeaver (GNW) [19] software package to extract sub-networks
from global Escherichia coli (E. Coli) network. Sub-networks of having 10, 30, 50
and 100 genes were extracted from E. Coli network. Topology or the structure of
the gene regulatory network which has q number of genes is depicted by the con-
nectivity matrix M = {Mij}q×q where Mij = 1 for the presence of connection
between gene i and j, and Mij = 0 for the absence. These network topologies
were used in the section 3.1 to generate synthetic gene expression data. Other
than synthetic data, real time-course gene expression dataset were also used to
evaluate the performance of the proposed method.

3.1 Synthetic Expression Data Generation

First-order multivariate vector autoregressive model (MVAR) [10],[9] is used
to generate synthetic time-series gene expression data. Sub-networks extracted
from GNW were used as network topologies in MVAR model to simulate the
expression data. Gene expression at time t were obtained by using the first
order MVAR model as follows:

xt = xt−1 ×Mweight + εt (6)

where xt = (xj
t )

q
j=1 indicates the expressions of q number of genes at time t and

εt denotes the added Gaussian random noise to the gene expression at time t.
Matrix Mweight is obtained by assigning weights randomly to all the connection
(where Mij = 1) in the connectivity matrix M . These weights were assigned by
getting the values from uniform distribution on the interval [-1,-0.6] and [0.6,
1]. Two intervals are chosen to maintain the amount of negative and positive
weights nearly equal [10]. Gene expression vector at t = 0 (xt=0) is initialized by
obtaining the samples from the uniform distribution on the interval [0, 1] and
subsequent time points are simulated using Eq. (6). For each network topology,
three synthetic datasets which have 10, 30 and 50 time points were generated. For
each combination of genes and time points, 50 different datasets were generated.

3.2 Real Dataset

Performance evaluation of GRN inference techniques on real gene expression
data is more difficult because of lack of experimentally verified ground truth gene
networks. In this study, we choose an experimentally identified gene regulatory
network which is related to yeast Saccharomyces cerevisiae cell cycle [20]. This
real gene regulatory network is depicted in figure 1(a) and consists of 9 genes
(Fkh2, Swi4, Swi5, Swi6, Ndd1, Ace2, Cln3, Mbp1, Mcm1). Real time-series gene
expression data were obtained from Spellman [21] dataset. Spellman dataset
contains expression data of yeast cell cycle regulation. We selected time-course
gene expression data from cdc28 cell cycle arrest which consists of 17 time points.

3.3 Performance

We generated synthetic datasets using MVAR model with the network topolo-
gies which were extracted from GNW software. Therefore, true structure of
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extracted gene regulatory networks is known. Also in the real data, true struc-
ture is available since we used an experimentally verified regulatory network.
Hence, we compared GRN which was inferred by the proposed random forest
based approach with the ground truth network to evaluate the performance. In
synthetic data, there were 50 time series datasets for each combination of genes
and time points, resulting in 50 inferred GRNs. Number of true positives (TP),
false positives (FP), true negatives (TN) and false negatives (FN) were computed
for each predicted network by comparing predicted network with ground truth
network. Then performance measures such as precision1, recall2, accuracy3 and
F-measure4 were calculated.

For both synthetic and real dataset, an ensemble of 1000 trees was constructed.
The most important parameter of this method is the number of predictors which
were selected randomly to find the best split in each node. This parameter was
set to

√
q, where q denotes the number of genes in the network. Table 1 shows

the performance of the proposed method with synthetic data. In table 1, the
mean and the standard deviation of each performance metric over 50 times
simulation are shown. The effectiveness of the proposed method is also shown
over real gene-expression data. In order to compare with existing techniques,
three techniques, namely the random forest static version, dynamic Bayesian
networks with Markov chain Monte Carlo (Dbmcmc software package) [1],[22]
and the ordinary differential equation based model (TSNI software package)[23]
were applied to the same real dataset. All the packages were used with the
default settings according to their user manuals. Table 2 shows the performance
measures on real data. In figure 1(b), 1(c), 1(d) and 1(e), we illustrate the gene
network structures inferred from real data by the proposed method, random
forests static version, ODE and DBN methods respectively. In figure 1, we used
solid line to represent the true positive (TP) and dash line to represent the
false negatives (FN). False positives are not shown in figure 1, though they were
considered in calculating performance metrics in table 2.

3.4 Time Complexity

Random forest algorithm has time complexity of O(TreeTotal ∗N ∗T logT ) [15],
where TreeTotal represents the number of trees in the ensemble, T denotes the
number of time point in the learning sample and N denotes the number of genes
that are randomly chosen at each node during construction of each tree. The
proposed approach divides the infer of GRN with q number of gene into q number
of sub problems. For each sub problem, we computed a value of adjusted R2 for
all regulators from highest weight to lower one. Therefore, time complexity of
each sub problem became O(q∗TreeTotal∗N ∗T logT ). Since there are altogether
1 Precision = TP

FP+TP
.

2 Recall = TP
FN+TP

.
3 Accuracy = TP+TN

TP+TN+FN+TP
.

4 F −measure = 2× Precision×Recall
Precision+Recall

.
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Table 1. The performance of the proposed method on synthetic data

Number of
genes

Number of
time points

Precision Recall Accuracy F-measure

10
10 0.40 ± 0.08 0.50± 0.10 0.80 ± 0.03 0.45± 0.09
30 0.58 ± 0.07 0.76± 0.09 0.88 ± 0.03 0.66± 0.08
50 0.65 ± 0.07 0.86± 0.08 0.90 ± 0.04 0.74± 0.07

30
10 0.17 ± 0.03 0.43± 0.07 0.86 ± 0.01 0.25± 0.04
30 0.32 ± 0.02 0.80± 0.05 0.90 ± 0.01 0.46± 0.03
50 0.36 ± 0.05 0.90± 0.04 0.91 ± 0.00 0.52± 0.02

50
10 0.14 ± 0.02 0.39± 0.04 0.87 ± 0.00 0.21± 0.02
30 0.24 ± 0.02 0.66± 0.07 0.89 ± 0.01 0.35± 0.04
50 0.28 ± 0.02 0.78± 0.05 0.90 ± 0.00 0.42± 0.03

100
10 0.11 ± 0.01 0.30± 0.04 0.90 ± 0.00 0.13± 0.02
30 0.14 ± 0.03 0.53± 0.03 0.91 ± 0.01 0.22± 0.04
50 0.19 ± 0.02 0.71± 0.01 0.93 ± 0.01 0.30± 0.02

Table 2. The Performance measures on real data

Method Precision Recall Accuracy F-measure

Random forests static ver-
sion

0.25 0.29 0.66 0.27

Random forests dynamic
version(proposed method)

0.33 0.40 0.70 0.36

TNSI 0.28 0.29 0.69 0.29

DBN-MCMC 0.26 0.38 0.70 0.30

q number of sub problems, proposed approach has time complexity of O(q2 ∗
TreeTotal ∗N ∗ T logT ).

4 Discussion

Building GRN from time-series gene expression data is very important since
they contain temporal information about the underline regulatory interactions
among genes. In this paper, we have proposed an approach to build GRN using
ensemble of random forest. The proposed approach first divides the recovering of
regulatory network which is having q genes in to q different supervised regression
problems. Then each of these sub problems is solved by applying random forest
ensemble method. There are two main contributions of this paper. They are,
1) extend the work of [15] to infer GRN from time-series gene expression data
by developing random forest based MVAR approach and 2) introduce adjusted
coefficient of determination to construct the structure of GRN.
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(a)

(b) (c)

(d) (e)

Fig. 1. The GRN identified in Yeast cell cycle and predicted network by various meth-
ods. a) is the real GRN related to yeast cell cycle [20]; b) is the predicted network by
proposed approach; c) is the predicted network by Random forests static version; d) is
the predicted network by TSNI; e) is the predicted network by Dbmcmc

The results on synthetic data show that all performance metrics are improved
with increase in number of time points and are deteriorated with increase in
number of genes. The decrease in the performance of inferred network is due
to the inference of large number of false positives than false negatives. Further,
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the effect of false negatives is corrected quickly than false positive effect with
the increased in number of time points in the proposed method. It can also
be seen that all the predicted gene networks have more than 80% of accuracy.
Figure 1(b) shows the predicted GRN on the real data by the proposed random
forest based approach and it is apparent that many true regulatory connections
have been identified. As shown in table 2, the proposed method shows better
performance on the real data compared to the Random forests static version,
DBN with MCMC and ODE method.

Experiments results on both synthetic data and real expression data on a 9-
gene network in yeast show the effectiveness of proposed approach. On the other
hand, the proposed approach could be improved further. For example, in this
study, we assumed that only gene expressions affect the gene regulation. But
gene regulation also depends on other mechanisms such as histone modification
and transcription factor bindings. Chen et al [24] recently showed that accuracy
of DBN can be improved by integrating epigenetic data in to GRN inference.
As a future work, similar approaches of data integration with random forest
could improve the performance. The proposed approach divides the inference
of GRN with q gene into q number of sub-problems. Since each sub-problem
is independent of each other, another future work would be to parallelize all
these sub-problems to reduce the computation time. Last but not least, similar
to [25], the proposed method could be extended to model the time-delayed gene
regulations.
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Abstract. In biology, similarity in structure or sequence between mo-
lecules is often used as evidence of functional similarity. In protein in-
teraction networks, structural similarity of nodes (i.e., proteins) is often
captured by comparing node signatures (vectors of topological properties
of neighborhoods surrounding the nodes).

In this paper, we ask how well such topological signatures predict pro-
tein function, using protein interaction networks of the organism Saccha-
romyces cerevisiae. To this end, we compare two node signatures from
the literature – the graphlet degree vector and a signature based on the
graph spectrum – and our own simple node signature based on basic
topological properties.

We find the connection between topology and protein function to be
weak but statistically significant. Surprisingly, our node signature, de-
spite its simplicity, performs on par with the other more sophisticated
node signatures. In fact, we show that just two metrics, the link count
and transitivity, are enough to classify protein function at a level on par
with the other signatures suggesting that detailed topological character-
istics are unlikely to aid in protein function prediction based on protein
interaction networks.

1 Introduction

To what extent does structure determine function in biology? Evolutionary prin-
ciples have shown function and structure to be well correlated in genes with
common evolutionary ancestors, allowing biologists to infer functions of proteins
or genes based on their sequence homology (i.e., similarity) with other proteins
or genes. With the arrival of network biology [1], homology was extended to
take not only sequence similarity into account but also similarity of molecular
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interactions. These interactions can be either direct (physical) or indirect (func-
tional). In other words, the manner in which a protein (or gene) is connected to
other proteins in interaction networks matters. These other connecting proteins
can be chosen in many ways, although the most common approach is to con-
sider a network neighborhood centered around a protein in question, including
all proteins and links within a fixed number of hops. Structural similarity of
network neighborhoods is determined by comparing their topological properties.
Typically, these properties are represented as a vector, known as a topological
signature.

Topological signature similarity has been used as a measure of functional simi-
larity between proteins in several algorithms aimed at the discovery of homology
relations between proteins [2–4]. Although topological similarity and amino acid
sequence similarity are typically both used to determine homology [2, 4], some of
these algorithms perform well using only topological similarity [3, 4]. Researchers
have also used topological similarity to predict relations other than homology,
in effect assuming that structural similarity implies similarity of biological traits
in proteins not necessarily related by evolution. Involvement in cancer (a phe-
notype) was found to be encoded in topological similarity [5] and even general
protein function appears to be encoded in topology [6]. Given this predictive
quality, the key question is thus: how exactly does local topology reflect func-
tion, and what signatures best capture local topology?

In this paper, we set out to answer these questions in a specific context, i.e.
the prediction of protein function by means of node signatures in various pro-
tein interaction networks of the organism Saccharomyces cerevisiae. Topological
signatures in the literature capture a lot of topological detail; in this paper we
investigate the extent to which this detail improves protein function prediction
(if at all). To this end, we study two such signatures – the graphlet signature
of Milenković and Pržulj [6] and a signature based on the normalized Laplacian
spectrum of a network [4] – as well as a simple node signature of our design.
Predictive power of the signatures is determined by how well they discriminate
between proteins with a given biological function and those without the function.
To this end we use support vector machines, treating topological signatures as
feature vectors and biological labels as classifier labels. Note that our aim is not
the construction of an optimal protein function classifier, as for that purpose
one would include many other types of data; rather, we use prediction accuracy
as a measure to explore the relation between local topology and function.

2 Methods

2.1 Topological Signatures

In the remainder of the text, G refers to a network (usually an interaction net-
work), n to an arbitrary node of G and N the number of nodes in G. A k-
neighborhood Gk

n of a node n is an induced subnetwork of G on the set of nodes
encompassing n and all nodes within k hops of n (a subnetwork is induced when
two nodes in the subnetwork are connected by a link if, and only if they are
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an

(a) G1
n.

an

(b) G2
n.

Fig. 1. Two neighborhoods of n: (a) G1
n and (b) G2

n

connected in G). The subnetwork G1
n spanned by the gray nodes and bold links

in Figure 1(a) is a 1-neighborhood of n, whilst the subnetwork G2
n spanned by

the gray nodes and bold lines in Figure 1(b) is a 2-neighborhood of n.

Graphlet Signature: Graphlets are small, connected, induced subnetworks, as
illustrated in Figure 2. The graphlet degree of a node n can be regarded as a gen-
eralization of its degree: the number of graphlets of a specific type (X1, X2, . . .)
that contains n (the degree is the number of X1 subgraphs containing n). A
graphlet signature (also graphlet degree sequence [6]) generalizes the graphlet
degree by including counts for all of the subnetworks in Figure 2.

To simplify exposition, we first construct a graphlet signature containing only
the numbers of subnetworks X1, X2 and X3 (Figure 2) that contain n. Such a
signature can be represented as a vector of three integers. However, X2 is not
symmetrical, as the white node is structurally different from the two black nodes
(which are interchangeable). We distinguish cases in which n takes the role of
the white node from cases in which n takes the role of the black nodes. Thus, two
counts for X2 are maintained (one for each kind of node), leading to a signature
vector of four integer components: one for X1, two for X2 and one for X3 (vector
indices are shown next to one node of each color).

The full graphlet signature is constructed by extending the construction above
to the rest of the subnetworks in Figure 2. In total, the signature vector has 73
components (vector indices appear next to nodes). The largest subnetworks in
Figure 2 have five nodes and therefore the graphlet signature is computed on
4-neighborhoods. The larger subnetworks in Figure 2 contain induced copies of
smaller subnetworks (e.g., X30 contains X9, X3 and X1), so that the components
of the graphlet signature are not independent. Milenković and Pržulj [6] devised
a weighting scheme to reduce this effect. We reweigh graphlets according to
their method. Graphlet signatures were computed using code adapted from the
original version of GraphCrunch [7].

Spectral Signature: We assume that the nodes in G are labeled with numbers
1 through N . The adjacency matrix A of G is an N×N matrix in which ai,j = 1
if the nodes i and j are connected by a link and ai,j = 0 otherwise. The degree
matrix Δ of G is a matrix in which ai,i equals the degree of node i and ai,j = 0
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Fig. 2. All non-isomorphic undirected networks (graphlets) with up to five nodes. For
a given node n in a network G, Milenković & Pržulj [6] count how many times each
of these networks includes n and appears as an induced subnetwork in G in order to
construct a graphlet signature for n.

if i �= j. The normalized Laplacian is defined as Qnorm = I − Δ−1/2AΔ−1/2.
The spectrum of Qnorm is its set of N eigenvalues. All eigenvalues of Qnorm
fall within the range of [0, 2].

In general, two different neighborhoods have different numbers of nodes and
therefore spectra of different sizes, making spectra unsuitable as feature vectors.
We derive feature vectors by computing histograms of the spectra [4]. Histograms
with 20 bins are computed on the range [0, 2], showing why the normalized
Laplacian spectrum is preferred over the non-normalized version.

Simple Metric Signature: Our own simple metric signature serves as a base-
line. It contains four very simple topological properties of neighborhoods: 1)
number of nodes, 2) number of links, 3) link density and 4) transitivity (the
ratio of triangles to connected node triplets).

Multi-resolution Signatures: One way to compute the spectral and simple
metric signatures is to choose a fixed k and to compute the signatures on all k-
neighborhoods. By focusing on fixed k, one may miss topologically distinguishing
features at other “resolutions”, i.e., other values of k. We construct “multi-
resolution” versions of the spectral and simple metric signatures respectively
by concatenating signatures of G1

n, G
2
n and G3

n for a given node n; henceforth
we shall only consider these “multi-resolution” versions of the signatures. The
graphlet signature is already “multi-resolution” in the sense that its component
graphlets span G1

n, G
2
n, G

3
n and G4

n.
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A Combined Signature: Finally, we consider a signature that combines the
previous signatures by simply concatenating the 1) graphlet signature, 2) the
multi-resolution spectral signature and 3) the multi-resolution simple metric
signature.

2.2 Datasets

Molecular Networks: All of the networks considered in this paper are protein
interaction networks for the organism Saccharomyces cerevisiae. We have col-
lected seven such networks, derived from four primary sources. Kim & Marcotte
[8] provide two protein interaction networks, the first a high-quality literature-
curated network and the second a high-throughput network. Yeastnet [9] pro-
vides several datasets with yeast protein interactions of which we downloaded the
literature-curated dataset (denoted “LC” on the website) and the yeast 2-hybrid
high-throughput dataset (“HC”). These two pairs of networks were selected be-
cause each pair contains a literature curated network and a high-throughput
network, thereby providing insight into the impact of network quality on classi-
fication performance.

Our remaining two datasets are due to Krogan [10] and von Mering [11]. Both
of these were used by Milenković & Pržulj [6] to test how well their graphlet
signature approach fared in predicting protein function. We used the same two
subsets of the von Mering dataset: “von Mering” contains the first 11000 protein
interactions (of high-, medium- and low-confidence), whilst “von Mering core”
contains all high-confidence interactions of the original dataset.

Biological Labels: Like Milenković and Pržulj [6], we used the MIPS protein
annotations [12] as biological labels. MIPS annotations are hierarchical and have
the form “xx.yy.zz. . . ” where the letters denote two-digit biological categories.
A protein may be annotated with multiple such annotations. The left-most cate-
gory (“xx”) gives the general protein function; each following two-digit category
is a refinement (“yy” and “zz”). In this paper, we consider only general protein
functions, of which there are 27 in the MIPS database.

2.3 Classification

Classification is performed using support vector machines (SVMs). There are
numerous biological categories in the MIPS database and a protein may be
annotated with any number of these categories. Since SVMs are binary classifiers,
we use a one-versus-all strategy whereby we train a classifier for each biological
category. Classifier performance is measured using the area under the curve
(AUC) of the receiver operator curve (ROC) of a classifier. All classifier-related
work was performed using Scikit-learn [13].

The radial basis function (RBF) kernel was used to train all SVMs. To reduce
the impact of experimental omissions and noise, we only compute signatures on
nodes whose degrees are at least 3 and that have at least one MIPS annotation.
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Furthermore, to ensure the presence of enough positive instances in both testing
and training sets, biological labels that appear in less than 20 nodes are not
considered for classification training.

Training Regime: For each topological signature type, for each network, for
each biological function, a double cross validation training loop is performed
[14]. The “outer” loop is a four-fold loop in which the training set contains 75%
of the dataset whilst the testing set contains 25% of the dataset. For a given
network and biological function, the folds are fixed, meaning that classifiers are
trained on the same training samples for all topological signatures. Classifier
performance is expressed as a combination of the mean and standard deviation
of the four AUC values associated with the four outer folds.

The “inner” loop is responsible for finding the classifier with the best classi-
fication performance on the training set received from the “outer” loop. SVM
classifiers using the RBF kernel require two parameters: a cost C (for penalizing
incorrectly classified instances) and the RBF radius γ. These are optimized by
walking along a grid of parameter pairs and training a classifier for each pair.
Each grid point (i.e., parameter pair) is evaluated using the average AUC of a
five-fold cross-validation loop. The parameters with the best AUC score are thus
considered optimal. At the start of the “inner” loop, both the training and test-
ing sets are centered and scaled using the center and variance of the training set.
The graphlet signature is reweighed after this point using the weighting scheme
of Milenković and Pržulj [6] as mentioned earlier in the paper (if reweighing is
applied beforehand, it would be removed by the scaling step).

As grid searches are expensive, we first perform a parameter search on a
coarse grid, followed by a second search on a fine grid around the optimal pa-
rameters found in the first search. The coarse grid is given by the Cartesian
product C × Γ of costs C = {2−5, 2−3, 2−1, . . . , 215} and RBF radii Γ = {2−15,
2−13, 2−11, . . . , 23}. The optimal parameter pair (C, γ) discovered on C × Γ is
then used to specify a fine grid C′×Γ ′ where C′ =

{
2log2 C−2+i/2 | i ∈ {0, 1, . . .8}}

and Γ ′ =
{
2log2 γ−2+i/2 | i ∈ {0, 1, . . .8}}.

3 Results and Discussion

Using the training regime described in the Methods section, we have computed,
for each topological signature, for each network, for each biological function, the
average classifier performance as well as its standard deviation. As this is a large
amount of data, we have condensed the results into Figure 3(a) which shows, for
a given topological signature and biological function, classification performance
averaged over all networks, except for the high-throughput Yeastnet network.
This dataset proved to be too small and gave poor, noisy classification results
for all topological signatures. Figure 3(a) contains only those biological functions
that appear in all the datasets. We also plotted the classification results for one
high-quality dataset, the literature-curated Yeastnet dataset, in Figure 3(b).
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The trends in Figure 3(a) are broadly similar in all of the networks although
classification performance is generally lower than in Figure 3(b).

What stands out most from both Figure 3(a) and Figure 3(b), is that topology
is, in general, a weak predictor of biological function. However, the mean AUC
values are all above 0.5, showing that topology does encode a certain amount
of information about biological function (the statistical significance of the mean
AUC values being larger than 0.5 was tested using the t-test; in the majority of
cases – and in all cases involving the biological categories “metabolism”, “tran-
scription”, “protein synthesis” and “protein fate” – the associated p-values are
below 0.05). The overall differences between Figure 3(a) and Figure 3(b) can
be explained by differences in network quality and network size: quality affects
classifier performance whilst network size affects its variance (network sizes are
given in Table 1). The high-throughput networks contain the most noise and are
therefore associated with worse classification performance.

At the level of biological categories both Figure 3(a) and Figure 3(b) show
big differences in classification performance. The number of positive instances
associated with a biological category (see Table 1) is weakly correlated with
classifier performance, partly explaining the differences. Biology offers a possible
explanation for the high AUC values associated with the labels “Transcription”
and “Protein Synthesis”: transcription and synthesis are both processes driven
by permanent protein complexes rather than temporary groups of proteins (as
found in many other processes). Thus, nodes with these functions tend to find
themselves in densely connected clusters more often than other nodes.

Both overall classification performance, as well as performance associated with
individual biological categories are dependent on the way in which biological cat-
egories are defined. Some categories are more general than others (for example,

Table 1. The number of positive instances for various combinations of network and
biological function (i.e., proteins having given biological functions)
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“Development” includes proteins engaged in diverse functions, whereas “Tran-
scription” is a more specific function), contributing to differences in classification
performance between categories. When the categories are too general, overall
classification performance suffers as classifier inputs become difficult to distin-
guish. We have performed experiments (data not shown) in which we used two
levels of the MIPS labels (labels of the form “xx.yy” rather than just “xx”, i.e.,
more specific categories). Two-level categories led to better classification per-
formance in some cases (notably those associated with transcription) and worse
performance in other cases. The culprit is likely a paucity of positive instances
associated with many of the two-level labels.

Another salient aspect of Figure 3(a) and Figure 3(b) is that the three topo-
logical signatures perform very similarly. We tested whether the AUC values of
the individual signatures (i.e., not the combined signature) for each biological
category were different, using a one-way ANOVA (Table 2). We consider p-values
of 0.05 and below to be statistically significant and find only 10 dataset/function
combinations that pass this threshold.

Although the three topological signatures lead to similar classification results,
it may be possible that they nevertheless measure different (discriminative) topo-
logical characteristics. If this is true, combining the signatures should lead to
improved classification performance. However, Figure 3(a) and Figure 3(b) do
not support such a conclusion. Thus, in the context of our datasets and classifier,
the topological signatures are not complementary.

Given that the simple metric signature is competitive with the graphlet and
spectral signatures, it is natural to ask whether it cannot be further

Table 2. p-values of one-way ANOVA tests applied to the AUC values of the three
topological signatures (graphlet, spectral and simple) for each network and biological
function combination. We consider p-values of 0.05 and below to be significant (shown
in bold text).
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Yeastnet, HT .44 .22 .12 .36 .68 .19 .07 .18 .04 .12 .00 .45 .69 .70
Yeastnet, LC .80 .42 .84 .55 .60 .11 .91 .85 .04 .23 .93 .62 .63 .05 .01 .12
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Fig. 3. Classification performance of the three topological signatures, as well as a
signature that combines the three signatures. (a) Performance of our SVM classifiers
averaged MIPS categories present in all datasets (excluding the high-throughput Yeast-
net dataset; see text for explanation). Error bars show the standard deviation. (b)
Classification performance of the three topological signatures on the literature-curated
Yeastnet network [9].
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simplified. We investigated all possible combinations of the four metrics (num-
ber of nodes, number of links, density and transitivity) that make up the simple
metric signature, constructing 14 simpler signatures: 4 signatures using only one
metric each, 6 signatures using pairs of metrics and 4 signatures using triplets
of metrics. The mean classification performance of these metrics, taken over all
datasets and all biological categories, is shown in Figure 4. The link count L and
transitivity T are sufficient for obtaining good classification performance. The
implication is that what matters in function prediction in protein interaction
networks, is the number of nodes and the “clusteredness” (transitivity). Since
proteins of similar function tend to form clusters, their neighborhoods overlap
and therefore they share topological characteristics. Apparently, “clusteredness”
signatures are unique enough to distinguish similar proteins from other proteins.

N L D T N,L N,D N,T L,D L,T D,T
N,L,

D
N,L,

T
N,D,T

L,D
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D,T

0.50

0.55

0.60

0.65

0.70

A
re

a 
U

nd
er

 C
ur

ve

Fig. 4. Classification performance of various combinations of the features used in the
simple metric signature averaged over all datasets and all functions. Here, N is the
number of nodes (in a neighborhood), L is the number of links, D is the density and
T is the transitivity.

4 Conclusion

At the start of this paper, we asked to what extent structure – i.e., topology –
determines function in biology. We focused on the use of signatures to express
topological properties of neighborhoods surrounding nodes in molecular inter-
action networks. Our study is motivated by the use of topological signatures
as a tool for discovering similar genes or proteins (under the assumption that
topological similarity implies functional similarity). We specifically studied the
use of such signatures to discriminate between proteins with a given biological
function and those without it, using protein interaction networks derived from
Saccharomyces cerevisiae and support vector machines.

Current node signatures, such as the graphlet signature [6] and signatures
based on spectra [4] capture very detailed topological profiles. We compared
these with our own topological signature, based on very simple network metrics.
For all signatures, classifier performance tended to be weak, implying that topol-
ogy is, at least for Saccharomyces cerevisiae protein interaction networks, a weak
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predictor of function. However, with the exception of one noisy protein interac-
tion network classifiers performed better than random, showing that topology
and function are linked. How much better depends on the functional category
considered, with performance particularly strong for transcription and protein
synthesis.

Our simple metric signature performed on par with the graphlet and spec-
tral signatures. We also established that the signatures are not complementary
for protein function prediction, as a combined signature incorporating all three
signatures does not yield better accuracy. Since our simple metric signature cap-
tures less topological information than the other signatures, we conclude that
fine topological detail is not very useful in the prediction of protein function.
Strikingly, performance when using only the link count and transitivity, mea-
sures of “clusteredness”, is as good as when using the more complex signatures.
This is not simply a side-effect of dataset noise, as our simple metric signature
performs equally well in the high quality networks.

Our work opens a number of paths for future research. For our conclusions
to hold generally, the techniques used in this paper should be applied to other
types of interaction networks (for example, co-expression networks and synthetic
sick-or-lethal networks) and to networks derived from other organisms. It would
be particularly interesting if link count and transitivity are found to be equally
determinative in other interaction network types. Finally, it is not yet known
how different “resolutions” contribute to signature performance and whether a
particular resolution (i.e., k-neighborhoods of a particular k) dominates classifi-
cation performance.
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Abstract. We propose mutational genomics as an approach for identifying pu-
tative cancer pathways. This approach relies on expression profiling tumors that
are induced by retroviral insertional mutagenesis. Akin to genetical genomics,
this provides the opportunity to search for associations between tumor-initiating
events (the viral insertion sites) and the consequent transcription changes, thus
revealing putative regulatory interactions. An important advantage is that in mu-
tational genomics the selective pressure exerted by the tumor growth is exploited
to yield a relatively small number of loci that are likely to be causal for tumor
formation. This is unlike genetical genomics which relies on the natural occur-
ring genetic variation between samples to reveal the effects of a locus on gene
expression.

We performed mutational genomics using a set of 97 lymphoma from mice
presenting with splenomegaly. This identified several known as well as novel in-
teractions, including many known targets of Notch1 and Gfi1. In addition to direct
one-to-one associations, many multilocus networks of association were found.
This is indicative of the fact that a cell has many parallel possibilities in which
it can reach a state of uncontrolled proliferation. One of the identified networks
suggests that Zmiz1 functions upstream of Notch1. Taken together, our results il-
lustrate the potential of mutational genomics as a powerful approach to dissect
the regulatory pathways of cancer.

1 Introduction

Cancers arise as a result of a multistep process in which genetic alterations deregulate
the regulatory pathways that govern healthy cell proliferation [1]. To study this process,
the use of DNA microarrays for transcriptome profiling of tumor tissue has proven
useful. Success stories include, among others, finding good diagnostic and prognos-
tic markers [2, 3], and providing insight in different tumor subtypes [4]. However, to
identify the causal genetic alterations, transcriptome profiling is less suitable. This is
because, in many cases, aberrant gene expression is a downstream effect of one or more
genetic alterations elsewhere, rather than the causal event in tumor development.

A. Ngom et al. (Eds.): PRIB 2013, LNBI 7986, pp. 35–46, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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To identify genes that are likely to have a driving role in cancer, high-throughput
retroviral insertional mutagenesis (RIM) screens can be performed [5–8]. In these
screens, retroviruses are used to induce insertion mutations in the genome of infected
somatic cells in mice. These mutations may cause alteration in expression of genes
in the vicinity of the insertion or, when inserted within a gene, alteration of the gene
product. A certain proportion of these mutations are oncogenic and will result in tumor
development. Consequently, the genomic location of the inserted viruses in the result-
ing tumors provide ’tags’ for cancer genes, since regions in the genome that harbor
insertions in multiple independent tumors are likely to be in the vicinity of genes that
play a causal role in tumor development.

1.1 Mutational Genomics

Here, we perform genome-wide expression profiling in tumors induced by RIM. Com-
bining expression with insertion site data provides the unique opportunity to study the
relationship between the initiating events and their downstream transcriptional effect.
We call this approach mutational genomics.

Mutational genomics bears similarity to genetical genomics, linking genotype to
transcriptional state [9–11]. In the latter approach, often performed in fully genotyped
recombinant inbred (RI) mouse strains, expression quantitative trait loci (eQTLs) are
determined. These are defined as chromosomal regions for which the local genotype
segregates the gene expression of one or more genes, and may point to putative regu-
lators of these genes [12–14]. Similarly, mutational genomics allows the definition of,
what we coin, expression quantitative mutation loci (eQMLs), i.e. chromosomal regions
that are mutated in multiple independent tumors and are associated with a segregation
of the expression of one or more genes. This concept is schematically illustrated in
Figure 1.

A major advantage of mutational genomics is that the list of candidate target genes
of the identified eQMLs is usually limited to only a few. This is because insertions act
primarily on proximal genes [15] using one of a specific set of fairly well defined mech-
anisms [5, 7, 16]. Typical eQTLs, on the other hand, usually span large regions in the
genome containing many genes as a result of linkage disequilibrium. Consequently, in
mutational genomics the difficult task of finding the genes underlying the transcriptional
changes is circumvented.

A second important advantage stems from the fact that mutational genomics exploits
the selective pressure exerted during tumor development to yield a relatively small num-
ber of loci that are likely to be causal for tumor formation. This is unlike genetical
genomics in which one has to rely on the natural occurring genetic variation between
samples to reveal the effects of a locus on gene expression. As a result, eQMLs are
specific for the type of tumor under study, and therefore represent important building
blocks that help delineating the regulatory pathways that play a role in these tumors.

1.2 Multilocus Interactions

Cancer is a complex disease, involving the mutation and/or deregulation of multiple
genes. Many of the changes that are required for tumorigenesis are a result of the collab-
oration between mutations of cancer genes. Moreover, for many of the mutational steps
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Fig. 1. Schematic overview of the data for
four tumors. A) After infection with a slow
transforming retrovirus, tumors are harvested.
B) The insertion loci are retrieved by sequenc-
ing the flanking regions. The figure shows five
unique insertion loci (l1 − l5), for four tumors
(τ = 1, . . . , 4). C) For each tumor, gene ex-
pression profiles are determined by microar-
rays. The figure shows 10 genes (g1 − g10).
D) The insertion data can be considered as a
Boolean matrix. E) An insertion locus is said
to be associated with the expression of a gene
when the presence or absence of an insert segre-
gates the gene expression in a highly expressed
and lowly expressed group, as is the case for
inserts in l5 and expression of g7. F) In some
cases a single insertion locus does not suffice
to explain the expression values, exemplified
by the poor association between l2 and g1. G)
Multilocus models, combining multiple loci us-
ing Boolean logic (l1 XOR l2), may be em-
ployed to explain more of the transcriptional
variance.

Poor
association

Good 
association

Good 
association

FALSE

TRUE

1 10

7

down

up

1 3 4 5

5

2

1

1

2

1 3 4 52
C

D
E

F

G

B

A

required to transform healthy cells to cancer cells numerous alternatives exist. This is
especially pertinent while analyzing mutational genomics data, since this means that
many of the regulatory interactions may not be detectable as direct (marginal) associa-
tions, but rather require multivariate analysis of the data (see Figure 1G for a schematic
example).

Therefore we propose to explore multilocus mapping by explicitly incorporating the
possibility of alternative and collaborative pathways in the search for eQMLs. Because
the presence or absence of an insertion is naturally captured by a Boolean variable, a
Boolean model is used to combine insertion loci. To this end, we employ the combina-
torial association logic (CAL) network inference procedure, that we recently proposed
for finding multilocus interaction in a genetical genomics dataset [17]. Using CAL
network inference we are able to efficiently determine the set of insertion loci that,
when combined using a Boolean logic function, shows strong association with the gene
expression levels.

2 Results

We have performed Mutational Genomics of a set of 97 retrovirally induced splenic
lymphomas in p19ARF−/− (n=31), p53−/− (n=19) and wt (n=53) mice. The retroviral
insertion sites found in these tumors have been published previously1 [18]. Gene ex-
pression data were obtained using the Illumina MouseWG6-V2 beadchips. A detailed

1 Available at http://mutapedia.nki.nl

http://mutapedia.nki.nl
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Fig. 2. Insertion alignment plots showing
effect of insertions on transcription. The
solid lines represent the smoothed z-scores of
transcripts with insertions upstream (left) or
downstream (right). Distance is relative to tran-
scription start sites. Insertions were also split
according to their orientation relative to the
transcripts with red lines indicating ’anti-sense’
insertion effects (insertion orientation opposite
to transcript orientation). The inverse holds for
the lines. The dashed lines reflect the 5% signif-
icance threshold, obtained by permutation.
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description of the preprocessing of the data can be found in the Methods section and
the Supplementary material.

2.1 Insertions Affect Local Transcription

We first investigated the local effect of the insertional mutations on transcription. Fig-
ure 2 shows a genome-wide alignment of all insertions in the dataset. A point in this
figure at (d, z) represents the average z-score (z) of the expression of all genes in a
bin d basepairs removed from the insertion. Panel A and B show the result for genes
with upstream and downstream insertions, respectively, with different colors indicating
insertion orientation relative to the transcript.

Figure 2 reveals that, on a global level, a clear effect of the insertions on the local
transcription is present but that this effect is dependent on distance. Furthermore, it
can be seen that antisense insertions result in a higher average expression, indicating
a strong effect on local transcription, when their relative position to the transcript is
upstream. Conversely, sense insertions seem to have a stronger effect in case they are
positioned downstream of the transcript. These observations are consistent with previ-
ously described mechanisms through which retroviruses act on their targets [5, 7, 16].
For this reason we decided to implement a set of literature derived rules that map inser-
tions to their putative target transcripts based on their relative position and orientation
(see Supplements for details). This provides a mapping of all insertions in a given ge-
nomic locus to a unique identifier.

2.2 Mutational Genomics Reveals eQMLs

Association Inference. After normalization and selection of the most highly variable
probes, probes were hierarchically clustered using a stringent correlation distance cut-
off. This yielded 6228 clusters, henceforth referred to as gene clusters. For gene clusters
containing multiple genes (1177 cases) cluster centroids were determined by taking the
mean across the expression profiles.

To determine the Boolean insertion matrix (representing the insertion loci, see Figure
1D), all insertions were mapped to their target transcripts according to the literature
derived rules. Each transcript represents one column of the Boolean insertion matrix
and is determined by recording TRUE in case a tumor contains a mapped insertion or
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FALSE in case it does not. Only columns with at least three mapped insertions were
retained. This resulted in a Boolean matrix with 200 unique columns representing the
insertion loci. To incorporate possible interactions with the genotype status of these
tumors (p19ARF−/−, p53−/− or wt), we included three additional columns representing
the three genotypes.

To measure association between the insertion loci (or combination of insertion loci)
and the gene clusters we used a standard t-score. For each of the gene clusters we de-
termined the single best locus with the strongest positive and negative association, as
well as the best possible combination of loci for each of the 24 Boolean network topolo-
gies (Figure S1). Solutions with a permutation based p-value smaller than 0.001 were
retained. In case multiple solutions for a single gene cluster remained, a rank aggrega-
tion approach (described in detail in the supplement), combining several measures of
significance and biological relevance, was used to choose the most relevant model.

Interaction Network. Using this approach, we find significant (p <0.001) single lo-
cus and mutilocus associations for 137 gene clusters (174 genes). A Cytoscape plot
of these interactions is given in Figure S5. For 88 of the gene clusters, a single locus
model, i.e. inserts at a single locus, was sufficient to obtain a significant segregation of
the expression measurements. On the other hand, for 49 cases a more complex associa-
tion was required to obtain a significant association (20 2-input networks and 29 3-input
networks). Interestingly, the type of logic that was used in this set of significant inter-
actions was depleted of AND logic. In fact, it was observed that AND logic generally
showed poor association (irrespective of the p-value), suggesting that co-occurrence of
insertions (i.e. insertions co-occurring in the same tumor, captured by AND logic) is not
a common mechanism in regulating transcriptional activity.

cis-eQTMLs. Strong cis-associations, for which an insertion locus is associated with
a proximal target transcript, are observed for insertions mapped to Rras2, Ccnd1, Gfi1
and Notch1. In many other cases, direct association on the transcriptional level between
insertions and their predicted targets is more subtle, i.e. the expression changes are very
small, and fail to exceed the array noise. In other cases insertions may affect translation
instead of transcription, and hence may not be detected in this analysis.

It is possible that the use of alternative routes of deregulating nearby genes dilutes
the observed cis-association. This means that the absence of a mutation is no longer
necessarily associated with low expression. A clear example of such a case is the ex-
pression of the Myc oncogene, which was found to be expressed (log2 expression level
> 7) in 88 of the 97 tumors, while it harbored an insertion only in 51 tumors (Figure 3).
This suggests that, in cases where an insertion near Myc is lacking, Myc is upregulated
by other mechanisms. For most of the tumors in which Myc remains unexpressed, in-
sertions near Mycn are observed. Indeed, our results reveal a strong negative association
between insertions near Mycn and Myc expression (Figure 3). A plausible explanation
for this observation is that Mycn insertions are functionally equivalent to insertions in
the Myc locus, a mechanism which has been identified in human leukemias and lym-
phomas as well [19].

Genotype Interactions. By including three Boolean profiles representing the geno-
type we are able to retrieve genotype specific expression changes, as well as expression
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Fig. 3. Association between Mycn insertions
and Myc expression. A) The red diamond-
shaped node represents the gene cluster contain-
ing, in this case, a single probe for Myc. The
green circular node represents the insertion lo-
cus for Mycn. B) Locus plot of insertions in the
Mycn locus and the Myc locus. Green (yellow)
triangles denote positively (negatively) oriented
oriented insertions that according to the liter-
ature rules were mapped to Mycn/Myc. Red
(cyan) triangles denote positively (negatively)
oriented insertions that were not mapped to a
target gene. The color bar on the right repre-
sents expression levels of the Myc probe. Tu-
mors were sorted based on the expression level
of Myc.
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changes that are due to putative interaction between genotype and one or two insertion
loci (Figure 4). In addition to the probe for p53 itself, many other well characterized tar-
gets of p53 and p19 were found among the direct associations identified by our analysis.
More specifically, increase of Cdkn2a (p19ARF isoform) expression is associated with
the p53−/− tumors, suggesting a feedback loop mechanism compensating for the loss
of p53. Interestingly, low expression of the p16INK4a isoform is found to be associated
with wild-type tumors only, suggesting loss of the p19/p53 pathway permits lymphoma
development in the presence of increased p16 expression. Other known direct interac-
tions include: Bax [20], Cdkn1a (p21) [21] and Ccng1 (CyclinG1) [22] ) all of which
are induced by p53. These examples demonstrate the robustness of our methodology.

A more complex association between genotype and transcript level was found in the
case of Usp18, a gene which has been implicated in human non-small-cell lung cancer
[23]. A 3-input network with the wild-type status, p19ARF−/− status and the Nfkb2/Sufu
locus was found to be negatively associated with low Usp18 transcript levels. This net-
work can be simplified to a 2-input OR network with p53−/− status and the Nfkb2/Sufu
locus as inputs and a positive association with Usp18 expression (Figure S4). Indeed,
the p53−/− status was found to be strongly associated with elevated Usp18 levels. How-
ever, in a substantial number of wild-type and p19ARF−/− tumors elevated expression
was also observed. Interestingly, the CAL network offers a partial explanation for this,
since it reveals that three of the non-p53−/− tumors with high Usp18 expression har-
bored insertions in the Nfkb2/Sufu locus. From this observation the interesting hypoth-
esis can be derived that insertions near Nfkb2/Sufu offer an alternative to the loss of p53
in upregulating Usp18.
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Fig. 4. Cytoscape interaction diagrams of the interactions with the genotype (A) and Notch1
B) status. Green V-shaped nodes, green circular nodes, red diamond-shaped nodes represent the
genotype status, insertion loci and gene clusters, respectively. The white triangles denote CAL
networks, with the logic functions used specified in text. The number in the network nodes refer
to the supplementary table. Green and red links represent positive and negative associations,
respectively. The yellow links indicate proximal insertion loci, that share some of the mapped
insertions. The numbers on these links indicate the fraction of insertions that are shared. In case
the nodes are labeled with a (*), some genes were omitted from the complete list of putative
targets for readability. Putative targets were only omitted in case literature revealed poor evidence
for involvement in cancer or cell-functions like apoptosis or cell-cycle. A full list of putative
targets is available in the online material (see Supplements for details). C) Locus plot of the
Notch1 and Zmiz1 loci. For an explanation of the symbols see Figure 3. Only the probes at the
output of a 2-input OR network with Notch1 and Zmiz1 are shown. Expression values were z-
normalized to allow for comparison between probes.

Regulatory Hubs. The discovered interactions reveal that Gfi1 and Notch1 are clear
hubs, and insertions in their vicinity are associated with expression of many transcripts.
Interestingly, both genes have well established roles in cancer and moreover are known
transcriptional regulators.

Gfi1 encodes a nuclear zinc finger protein and is recognized to have different com-
plex and cell context specific roles. In lymphoid cells, however, GFI1 is a known
transcriptional repressor. This is consistent with the predominantly inhibitory interac-
tions revealed by our analysis. The literature provides evidence for some of the pu-
tative regulatory interactions. An interesting example is negative association between
inserts near Gfi1 and transcript levels of Btg1. Human BTG1 is a known tumor sup-
pressor and member of an anti-proliferative gene family that regulates cell growth and
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differentiation [24]. It has been implicated in acute lymphoblastic leukemia (ALL) [25]
and non-hodgins lymphoma [26]. Association between Gfi1 and Btg1 activity may be
explained as it was found that BTG1 is regulated by CEBPA [27], which, in turn, is a
known target of GFI1 in T lymphocyte (Jurkat) cells [28].

Figure 4A shows the interaction diagram of associations of the Notch1 locus and
gene expression of multiple genes. In addition, the associations of a 2-input OR of
Notch1 and Zmiz1 are shown. Notch1 is a member of the family of NOTCH recep-
tors, that operate both as recipients of extracellular signals at the cell surface and as
transcription factors regulating gene expression in the nucleus. In its role as transcrip-
tion factor, NOTCH1 forms a transcriptional activator complex and activates genes of
the enhancer of split locus. Notably, Hes1, hairy and enhancer of split 1, and Heyl, a
member of the hairy and enhancer of split-related (HESR) family, are both among the
associated transcripts identified by our analysis. Both proteins have been implicated in
cancer, and specifically implicated as targets of NOTCH signalling [29].

Using Chip-chip data previously published [30] of NOTCH1 and HES1 DNA bind-
ing in human T cell ALL cells [30], we checked if the orthologs of the Notch1 target
transcripts identified in our study were among the list of NOTCH1 bound genes. We
found that 5 of the 23 Notch1 targets with human orthologs were among the NOTCH
bound target list (COPS7A, EXOSC5, HES1, ITPR2 and TFB1M). Since Hes1 was
among our Notch1 targets, and it is possible that Notch1 acts upon its targets through
Hes1, binding of HES1 may explain the associations observed with Notch1 mutations
[31]. Therefore, we also checked for overlap of human orthologs of Notch1 targets and
the Chip-chip results of HES1 binding. In this way suggestive evidence for three addi-
tional interactions was found (CDK5RAP2, PRMT7 and TCEAL1).

Multi-locus eQMLs Reveal Alternative Pathways. Although Notch1 insertions are
found almost exclusively in tumors with elevated transcripts levels of Notch1, three
tumors remain without Notch1 insertions (Figure 4). One CAL network combines the
Notch1 locus with insertions in the Zmiz1 locus. Insertions in the Zmiz1 locus occur in
tumors with elevated Notch1 levels and two of these occur in tumors without insertions
in the Notch1 locus. Moreover, Zmiz1 insertions are exclusively observed for tumors
with elevated Notch1. A hypothesis worth exploring further is therefore that Zmiz1 op-
erates upstream of Notch1 and, in case of the absence of a Notch1 mutation, is able to
upregulate Notch1.

3 Discussion

We propose mutational genomics, an approach to delineate transcriptional regulatory
interaction networks in cancer by searching for associations in mutation data and gene
expression measurements obtained from the same sample. When performed for a set
of 97 lymphoid splenic tumors, an interaction network comprising 60 insertionally tar-
geted loci and 174 putative target transcripts results. Because selective pressure exerted
by the tumor growth enriches for loci with causal implications for tumorigenesis, many
interactions in cancer related pathways were discovered.

A number of well characterized interactions were found, such as the association be-
tween loss of p53 and reduced Bax, Cdkn1a and Ccng1 levels. Known transcriptional
regulators Gfi1 and Notch1, both of which have established roles in tumorigenesis, were
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found to be associated to differential expression of many transcripts, suggesting a mas-
ter regulator role for these genes in lymphomagenesis. The targets of insertions near
Notch1 included many genes whose promotors were found to be bound by NOTCH1
and or HES1 in human T cell ALL.

In addition to single locus associations, more complex associations were identified
by inferring CAL networks, i.e. Boolean combinations of insertion loci. This revealed
a possible role for insertions in the Nfkb2/Sufu locus in upregulating Usp18 expression.
Similarly, it was found that two of the tumors that did not appear to bear an activating
Notch1 mutation, harbored insertions in the Zmiz1 locus, possibly explaining the ele-
vated Notch1 expression in these tumors. From this the hypothesis can be formulated
that Zmiz1 functions upstream of Notch1. This illustrates the potential of mutational
genomics as a powerful way of generating hypotheses that can be validated in the lab.

While in this study we focused on retroviral insertional mutagenesis, transposon
based insertional mutagenesis may be similarly suitable for mutational genomics [32].
This would greatly increase the number of tissues and tumor types in which mutational
genomics can be employed, and thus increase the scope of this approach.

4 Materials and Methods

Animal Experiments. All animal experiments were done conform to national regula-
tory standards and are approved by the Animal Experiments Committee (DEC) of the
Netherlands Cancer Institute (approval ID: OZP 02029).

Gene Expression Preprocessing. Gene expression measurements were obtained us-
ing the Illumina MouseWG6-V2 beadchips, and were normalized using VST and RSN.
Probes without a map position were discarded. Only highly variant probes (within the
top 25 percentile) were retained. Hierarchical clustering (complete linkage, correla-
tion distance, distance threshold of 0.2) was employed to combined strongly correlated
genes, resulting in 6261 clusters. A clipping filter was applied as described [17], to limit
the effect of strong outliers, affecting 625 gene clusters. Finally, gene clusters for which
the best possible split in two groups based on the t-score resulted in highly unbalanced
class distribution (smallest class size of 3 or smaller), were removed. Altogether, this
resulted in 6228 gene clusters that were used in the association analysis.

Determining Insertion Loci. The effect of insertions on the nearby targets is depen-
dent on the relative position and orientation of the target transcript as well as the orien-
tation of the viral integration [5, 7, 16]. To exploit this information, we have employed
a rule-based mapping (RBM) procedure [33]. RBM associates each insertion to one
or more putative target transcripts based on a set of rules that were distilled from lit-
erature (a more comprehensive description of RBM is given in the Supplements). The
unique list of transcripts that follows from this procedure is used to generate binary pro-
files that, for each tumor, indicate if a transcript is a putative target. We observed that
for proximal transcripts frequently the same binary profile results. These were there-
fore combined into a single profile. Insertion target profiles that contained transcript-
insertion associations in more than three tumors were considered in the analysis and
served as inputs for the association inference.
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CAL Network Inference. CAL network inference has been described in detail [17].
Briefly, given some Boolean network topology B, the objective is to find the combi-
nation of loci such that the association between the network output and some gene
expression vector is optimal. Equivalently, we solve the following:

argmax
L

f(B(L),g), (1)

where L is a T ×N Boolean matrix containing N input loci of length T , B is a Boolean
function that maps the N input loci to a single Boolean vector, g is a vector containing
the expression values for some gene and f is an association measure. Here, we use the
t-statistic as the association measure. In the tail of the t-distribution an approximation
of the t-score exists that can be optimized, using a branch-and-bound algorithm, in a
fraction of the time required to optimize the real t-score.

To apply the CAL network inference approach to a dataset with ∼100 samples, some
modifications to the original implementation of this method [17] were made in order
to improve scalability further. All modifications are described in the Supplementary
material.

CAL Network Significance. We solve Equation 1 for each gene cluster and for a
range of 24 network topologies. The topologies are given in Figure S1. For each gene
cluster-network topology combination a p-value can be obtained. The following proce-
dure is performed to obtain the necessary null-distributions for each network topology
separately. All 6228 gene clusters are permuted 90 times by shuffling the order of the
clusters’ gene expression values. This results in a total of 560k random permutations.
For each permutation the CAL network search is performed, using the same parameter
settings as were used on the real data. This results in 560k t-scores. The CAL network
algorithm only produces reliable solutions above a certain tolerance level, which for
these data was set to t = 7.5. We therefore calculate a piecewise cumulative distri-
bution function (CDF). Below the tolerance level the CDF is set to zero, since in this
region t-scores are not accurate. Above the tolerance, we use the empirical estimate of
the CDF. A pseudocount is included to prevent p-values of zero.

In many cases it is possible to find strong (and significant) associations between
the mutation data and gene expression using several network topologies. In order to
select the most biologically relevant model, we rank all solutions based on several other
measures of significance and biological relevance. These measures include: 1) the p-
value improvement compared to the lowest p-value obtained for networks with fewer
inputs, 2) the number of inputs of the network topology, 3) the coverage of the truth
table of the network topology, 4) the number of samples in the smallest class. Average
Borda ranking is used to aggregate ranks from these four measures [34]. Only solutions
that receive the highest rank are reported.
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Abstract. Cancer is a disease driven by pathway activity, while useful
biomarkers to predict outcome (prognostic markers) or determine treat-
ment (treatment markers) rely on individual genes, proteins, or metabo-
lites. We provide a novel approach that isolates pathways of interest by
integrating outlier analysis and gene set analysis and couple it to the top-
scoring pair algorithm to identify robust biomarkers. We demonstrate
this methodology on pediatric acute myeloid leukemia (AML) data. We
develop a biomarker in primary AML tumors, demonstrate robustness
with an independent primary tumor data set, and show that the identi-
fied biomarkers also function well in relapsed AML tumors.

1 Introduction

The development of cancer is known to be driven by deregulation of several
biological processes, referred to as the Hallmarks of Cancer [4], and loss of control
of each process is required for the development of lethal cancers in almost all
cases. Regulation of most of these Hallmarks relies on proper functioning of
cell signaling pathways [5], which comprise sets of signaling proteins, primarily
kinases and phosphatases, that work to transduce a signal through a cell by
means of post-translational modifications of proteins. The deregulation of any
single pathway can be driven by a mutation or other change in a single protein
within the pathway [11].
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1.1 Outlier Gene Set Analysis

The dominance of pathways over genes in the etiology of cancer creates a problem
for statistical analysis that focuses on determining global behaviors in cancers in
general or types of cancer in particular. Since loss of regulation of a pathway is
the critical event, but global measurements focus on genes and the proteins they
encode, there is a mismatch in the statistic (based on data from genes) and the
effect (based on pathway deregulation). This suggests a need for a pathway-based
statistic for use in cancer studies.

The first issue to resolve is that any given gene in a subtype of cancer is
likely to be affected in only a small fraction of individuals, since there are many
potential genes that may drive pathway deregulation. For example, the well-
studied RAS-RAF pathway may become deregulated through overexpression of
the EGFR receptor, mutation of the RAS, RAF, or MAPK genes, or mutation
or overexpression of the MYC transcriptional regulator. Any individual is likely
to have only one such change, and no single change is likely to rise above ∼ 50%
of cases, with most lying between 5% and 15%. This limits the value of standard
statistical tests, such as t-tests or ANOVA analyses.

However, outlier analysis, such as Cancer Outlier Profile Analysis [9], pro-
vides a method to identify those genes that are deregulated in only a subset of
individuals. While useful, this alone will not provide the required identification
of deregulated pathways, although it should provide an indication of significance
of the individual pathway members. With Gene Set Analysis (GSA) we can in-
tegrate these estimates of significance to provide an overall estimate of pathway
significance on a global scale, which we refer to as Outlier Gene Set Analy-
sis (OGSA). This provides a global estimate of pathway deregulation in cancer
subtypes.

1.2 Pathway-Based Top Scoring Pairs

The fundamental measurements we make clinically remain linked to genes, not
pathways. This complicates the development of diagnostic tests for the drivers
in cancer, the pathways. In general, we visualize the deregulation of the pathway
through heatmaps and other data-driven visualization tools. However, these pro-
vide poor clinical utility as the results change with addition of data, making them
inappropriate for clinical tests that must deduce a probability from an isolated
measurement, and they have been shown to be strongly platform dependent,
increasing the potential cost and reducing the opportunity for innovation.

In order to create a method that could identify robust potential biomarkers,
the multigene signature generated from discriminant analysis can be replaced
by pairs of genes that change their relative level of expression [14], known as
a Top Scoring Pair (TSP) [1]. In TSP, the statistic of interest is how well the
measurements on a pair of genes distinguish two classes, relying on the inversion
of the values of measurements between classes. This provides a normalization-
independent approach that makes switching measurement technologies far more
likely to succeed [12]. However, a limitation of TSP is that it searches through all
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possible TSPs, introducing the potential of chance identification of pairs that are
not robust and fail to validate. Instead, we build a pathway TSP set by limiting
the domain for generating TSPs to pathways of interest in the set of statistically
significant pathways generated by OGSA. In this way, we focus the methodology
on biologically-motivated gene sets, more suitable for clinical development than
unbiased discovery.

1.3 Pediatric AML and the TARGET Initiative

Acute Myeloid Leukemia (AML) is a cancer of the blood affecting roughly 15, 000
individuals per year in the USA, and childhood patients show ∼ 60% five year
survival. However, the outcomes are highly dependent on karyotype-defined sub-
type, and initiatives to improve care for pediatric patients have led to broad
molecular studies through the NCI Therapeutically Applicable Research to Gen-
erate Effective Treatments (TARGET) initiative.

1.4 Outline of Paper

In this paper, we describe the methodology in sections 2.1 and 2.2 together with
the analysis of the AML data in section 2.3. In section 3, we show that OGSA of
TARGET promoter methylation data identified the Hedgehog signaling pathway
and the Cytochrome P450 metabolic pathway as highly epigenetically deregu-
lated in pediatric AML. Using only genes associated with these pathways for the
development of a set of TSPs, we demonstrate that we obtained a robust sig-
nature of pathway deregulation that was significant in an independent data set
and also significant in samples from individuals whose cancer relapsed. Impor-
tantly, this suggests a novel therapeutic strategy in these patients and provides
a potential treatment biomarker for this therapy.

2 Methods

Overall we adopted a number of key methodologies developed for identifying
outlier genes and generating robust TSPs. We integrated these methods into a
pathway-centric statistical approach that leverages outlier statistics to generate
pathway statistics through OGSA and generates TSPs related to key pathways.

2.1 Outlier Gene Set Analysis

The standard method employed in cancer research for outlier analysis is Cancer
Outlier Profile Analysis [9], which generates statistics by comparing the outlier
distributions to an empirical null generated by permutation of class labels. How-
ever, this is computationally expensive and, importantly, we required only the
rank of the genes and not their significance, since we utilized a rank-based gene
set test (see below). Thus, we generated statistics using a modification that per-
mits rapid p-value estimation, although this estimation is in general less reliable
than that generated by a permutation test.
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Each observation in a case sample was compared to the empirical distribution
of expression values of the same gene for control samples following a ranksum
methodology [3]. For gene g, we calculated the right-tail empricial p-value as

p̂gt =
1

Np0

Np0∑
i=1

I(Xgt ≤ Xgi) (1)

where we indexed the control samples with i and the case samples by t with
Np0 control samples and Np1 case samples. The corresponding left-tail empirical
p-value was calculated as

p̂gt =
1

Np0

Np0∑
i=1

I(Xgt ≥ Xgi). (2)

For both cases, we generated a G × Np1 matrix of empirical p̂-values for each
gene as an outlier in each case sample.

We modified these equations slightly in this study to incorporate biological
knowledge of the impact of changes in methylation. Because cancers often show
global methylation changes involving loss of intergenic methylation and increased
methylation near genes, including areas measured by array technologies, it is not
unusual for almost all tumor samples to show a slight increase in methylation
in gene promoters relative to normal samples. However, these small methylation
changes are not meaningful biologically, as they are not enough to drive changes
in expression of the genes. As such, we modified Equations 1 and 2 by replacing
Xgi by Xgi+0.1 and Xgi− 0.1 respectively. Effectively, we counted outliers only
when there was at least a 10% change in the level of methylation.

To generate rank statistics, we converted the p̂-values to an indicator of sig-
nificance by testing them against a Bonferroni corrected α = 0.05 by

m̂gt = I(p̂gt ≤ α

Np1
) (3)

where 1 indicates significant at level α and 0 indicates insignificant. The rank
statistic was the sum of the indicator across all case samples, effectively ranking
genes from Np1 to 0.

We analyzed these rank statistics using a mean rank gene set enrichment
test [10], as provided in the limma R package [13], comparing the statistics of
the genes in a gene set to genes outside the set. The mean-ranks of the test
statistics for the genes were used for comparison, which matched our use of only
the ranks of genes from outlier analysis. Gene sets were defined by the KEGG
and BioCarta pathways [6] and final p-value estimates on the pathways were
corrected for multiple testing using the Bonferroni method.

2.2 Pathway-Based Top Scoring Pairs

The OGSA method provides pathways that are significantly different between
cases and controls, but it does not provide a suitable methodology for the
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development of a test for a new sample. In order to generate such a test, we
applied OGSA to highlight pathways of interest. We refined significant pathways
by inspection, focusing on suitability for drug targeting or removal of pathways
either universally modified or already addressed in treatment. We then used only
the genes associated with the refined pathway list in TSP (i.e., those genes that
define the gene set for this pathway in KEGG).

Table 1. Example TSP

Gi < Gj Gi > Gj

Case NTP NFN Ncase

Control NFP NTN Ncontrol

NcallCase NcallControl N

The choice of a TSP reduces to maximization of prediction in a Fisher two-
way table, such that Table 1 provides the best possible predictive value for the
measured levels G, here promoter methylation, of two genes i and j, where the
relative levels of these genes determines the result of the test, with Gi < Gj

predicting a case and the inverse a control. The TSP is determined by finding
the pair of genes that maximizes

Δij = |NTP

Ncase
− NFP

Ncontrol
|, (4)

where NTP is the number of true positives, NFN is the number of false negatives,
NFP is the number of false positives, and NTN is the number of true negatives.
The total number of measurements is N , divided into Ncase cases and Ncontrol

controls. As TSP does not always provide ideal separation due to the inherent
complexity of the underlying biology, the extension to kTSP, where multiple
TSPs vote on case or control status, is natural [14].

Here we used kTSP, as implemented in the R ktspair package [2]. We generated
five TSPs in our training set for voting on status of the samples.

2.3 Analysis of TARGET Methylation Data

We applied the OGSA and TSP methods to a set of samples from the NCI TAR-
GET initiative. The data comprised 192 diagnostic samples of pediatric AML,
192 remission samples from the same patients after frontline treatment, and 46
relapse samples from those patients with a recurrence of AML. All measurements
were made with Illumina HumanMethylation27 BeadChip arrays, and beta val-
ues (percent methylation) were generated from U and M probes. Methylation
estimates showing low variance across all samples were removed, leaving 19999
promoter methylation estimates associated with 11871 genes. A training set of
diagnostic and remission samples was generated from 96 patients by choosing
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roughly 50% of the samples of each karyotype in the data set. This balanced set
was chosen to avoid biasing the training set to any particular diagnostic sub-
type, as different karyotypes have different outcomes in AML. Samples from the
remaining 96 patients formed the test set, and an additional set of remission and
relapse samples was generated based on the 46 relapse samples.

The OGSA method was applied to the training set and significant pathways
were determined. For genes with multiple associated methylation probes, the
probe with the highest mean methylation was retained. From the significant
pathways, one driven by hypermethylation and one by hypomethylation were
chosen based on the usefulness for drug targeting and metabolism as well as on
their lack of being associated globally with all cancers. The use of one hyperme-
thylation and one hypomethylation driven pathway was to increase the potential
range of top-scoring pairs.

Five TSPs were generated from the probes associated with the genes assigned
to the two pathways using the ktspair package applied to the training data set.
These pairs were then used to vote on each sample, and the cutoff that maximized
the predictive power of the pairs was used. These same pairs and cutoff were
then applied to the training data set and to the relapse-remission data.

The key targetable pathway was also visualized using a heatmap of the genes
in the pathway. This permitted visual comparison of the separation of diagnos-
tic samples from remission samples, as well as the separation of relapse and
remission samples. To test whether the pathway associated with karyotype, sep-
aration of karyotype on the heatmap was also investigated; however, there was
no correlation (heatmap not shown).

3 Results

We applied our methods to the TARGET AML data comprising 430 samples
as discussed in the Methods section. We analyzed the three separate data sets,
Training, Test, Relapse, as follows. We first performed outlier analysis on the
Training data, ranking all genes based on their outliers according to the sum
across all diagnosis samples (Equation 3). These gene ranks were used to gener-
ate a set of significant pathways from the KEGG and Biocarta pathways using
OGSA. We focused on two pathways from this set, the KEGG Hedgehog Sig-
naling and Cytochrome P450 Metabolism pathways, for reasons detailed below.
Using genes from the Hedgehog pathway, we created heatmaps of the Train-
ing, Test, and Relapse data to visualize the separation of samples. Using only
the Training data, we then created five TSPs from these pathways. We tested
these TSPs on the Test and Relapse data, using an assumption that a vote for
a diagnostic sample was equivalent to a vote for a relapse sample in the test.

3.1 Outlier Analysis and Gene Ranks

Outlier analysis according to Equation 3 provided outlier ranks for all genes.
As shown in Figure 1, highly ranked genes showed substantial increases in
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Fig. 1. The highest ranking right-tail and left-tail outlier genes from the Training data

methylation in diagnostic samples relative to remission samples. The top-ranked
right-tail outlier gene, RAB5C, had 53 of 92 diagnostic samples called outliers,
while the left-tail outlier gene, ERVFRD, had 48 of 92 diagnostic samples called
outliers. The gene-based statistic is then provided by the rank from the gene
with most outliers to the one with the fewest. The right-tail and left-tail rank
lists were used in OGSA separately.

3.2 Significant Pathways from OGSA

The results of OGSA analysis of the KEGG and Biocarta pathway genes sets
from the MSigDB database [8] are presented in Table 2. The p-values are Bon-
ferroni corrected values from the mean rank gene set test. All pathways with
significant p-values at the traditional α = 0.05 are included in the table.

Many pathways in the right-tail analysis are seen in most GSA analyses of can-
cer data, including those involving focal adhesion and extracellular matrix recep-
tor signaling (KEGG ECM Receptor Interaction, Cell Adhesion Molecules, Focal
Adhesion pathways), pathways related to cancer (KEGG Neuroactive Ligand Re-
ceptor Interaction, Basal Cell Carcinoma, Pathways in Cancer pathways), and
sets that appear significant in cancer studies due to the presence of genes related
to integrin signaling and MAPK pathway activity (KEGG Dilated Cardiomy-
opathy and Arrhythmic Right Ventricular Cardiomyopathy pathways). These
processes are deregulated in most cancers and do not provide novel insights to
AML.

The pathways in the left-tail analysis are primarily involved in metabolism or
immune responses. These pathways, in general, do not provide useful information
for treatment and are generally hard to interpret in terms of cancer biology.
Note that KEGG Neuroactive Ligand Receptor Interaction is significant in the
left-tail analysis and the right-tail analysis, which indicates that methylation
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Table 2. Significant KEGG and Biocarta Pathways

Right-Tail Outlier Results p-Value

KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION < 0.00001
KEGG ECM RECEPTOR INTERACTION < 0.00001
KEGG HEDGEHOG SIGNALING PATHWAY 0.00001
KEGG BASAL CELL CARCINOMA 0.00032
KEGG PATHWAYS IN CANCER 0.00061
KEGG CELL ADHESION MOLECULES CAMS 0.00226
KEGG DILATED CARDIOMYOPATHY 0.00277
KEGG CALCIUM SIGNALING PATHWAY 0.01343
KEGG FOCAL ADHESION 0.01562
KEGG ARRHYTH RT VENTR CARDIOMYOPATHY ARVC 0.03704

Left-Tail Outlier Results p-Value

KEGG COMPLEMENT AND COAGULATION CASCADES < 0.00001
BIOCARTA COMP PATHWAY < 0.00001
KEGG OLFACTORY TRANSDUCTION < 0.00001
KEGG DRUG METABOLISM CYTOCHROME P450 0.00001
KEGG LINOLEIC ACID METABOLISM 0.00001
BIOCARTA CLASSIC PATHWAY 0.00004
KEGG METABOLISM OF XENOBIOTICS BY CYTOCHROME P450 0.00010
KEGG TYROSINE METABOLISM 0.00014
KEGG ARACHIDONIC ACID METABOLISM 0.00033
KEGG ETHER LIPID METABOLISM 0.00038
BIOCARTA LECTIN PATHWAY 0.00074
KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION 0.00301
KEGG STEROID HORMONE BIOSYNTHESIS 0.00348
KEGG RETINOL METABOLISM 0.01062
BIOCARTA INTRINSIC PATHWAY 0.03099

changes in the promoters of genes in this pathway include both hyper- and
hypo-methylation.

The KEGG Hedgehog Signaling Pathway in the right-tail analysis attracted
our attention, because Hedgehog signaling is known to be a driver of proliferation
and antiapoptotic behavior, is involved in multiple cancers, is not typically asso-
ciated with AML, and provides a potential target for treatment. To visualize the
Hedgehog pathway methylation, we generated heatmaps of the samples, looking
for separation of diagnostic, remission, and relapse samples (see Figure 2).

The Drug Metabolism Cytochrome P450 pathway and related Metabolism of
Xenobiotics by Cytochrome P450 pathway in the left-tail analysis was suggestive
given the importance of Cytochrome P450 in processing of therapeutic agents.
The genes in this pathway coupled to the Hedgehog pathway genes provided a set
of hypermethylated and hypomethylated genes suitable for creating a biomarker
using TSP.
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(a) (b) (c)

Fig. 2. Heatmaps of the methylation levels for promoters of genes in the KEGG Hedge-
hog pathway across patients in (a) the Training data, (b) the Test data, and (c) the
Relapse data. In the top bar, blue indicates a remission sample, red a diagnostic sam-
ple, and orange a relapse sample. Genes are in rows and patients in columns. Yellow
indicates high methylation (β → 1) and red low methylation (β → 0).

3.3 kTSP Classifiers for Hedgehog and Cytochrome P450 Pathways

In order to create a robust methylation signature for the Hedgehog and Cy-
tochrome P450 pathways, we applied the kTSP algorithm to a subset of the
Training data limited to promoter methylation levels of genes in the Hedgehog
Signaling and Cytochrome P450 Metabolism pathways. We identified a set of 5
pairs that discriminate the diagnostic samples from the remission bone marrow
samples (see Figure 3 where colors match the upper bar in Figure 2, so that
blue is a remission sample and red a diagnostic sample). As seen in Table 3, this
provided excellent prediction on the training set, with p < 2.2 × 10−16 and an
odds ratio of 81 with a 95% confidence interval of [28, 294].

Applying this signature to the Test data resulted in excellent prediction of
diagnostic vs. remission samples, with p < 2.2× 10−16, and an odds ratio of 128
with a 95% confidence interval of [40, 563]. Interestingly, the application of the
same signature to the Relapse data set was also predictive, now of relapse vs.
remission, with p = 1.8 × 10−6, and an odds ratio of 15 with a 95% confidence
interval of [4, 87]. This suggests that relapse in pediatric AML may be partially
driven by recurrence of methylation changes in the promoters of Hedgehog Sig-
naling and Cytochrome P450 metabolism pathway genes, although the drop in
sensitivity suggests that the relapse samples may be more diverse in this methy-
lation than the diagnosis samples. Importantly, all tests show excellent Positive
Predictive Values (94%, 95%, and 89% respectively), as is desirable for a test
that could define treatment, since the vast majority of positive tests are related
to positive pathway status.



56 M.F. Ochs et al.

0.55 0.60 0.65 0.70 0.75 0.80 0.85

0.
2

0.
4

0.
6

0.
8

CYP2B6

C
Y

P
3A

5 

Score: 0.625

0.5 0.6 0.7 0.8 0.9

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

CYP2D6

W
N

T
16

 

Score: 0.615

(d) (e)

0.60 0.65 0.70 0.75 0.80 0.85

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

CYP2A6 

 C
Y

P
2C

19
 

Score: 0.708

0.2 0.4 0.6 0.8
0.

1
0.

2
0.

3
0.

4
0.

5
WNT5A

W
N

T
7B

Score: 0.667

0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

WNT1 

P
T

C
H

1

Score: 0.656

(a) (b) (c)

Fig. 3. The Five Top Scoring Pairs used to generate Table 3

Table 3. kTSP Classifier Performance

Training Dx Rm Test Dx Rm Relapse Rl Rm

Call Dx 79 5 82 4 Call Rl 24 3
Call Rm 17 91 14 92 Call Rm 22 43

4 Discussion

The coupling of outlier statistics, gene set analysis, and top scoring pair methods
provides a solid methodology to identify deregulated pathways in cancer and to
define a robust signature of their activity. We have shown that the method deter-
mines a robust marker, here comprising five TSPs, that validates in a completely
novel data set, albeit one measured on the same platform at the same institution.
Intriguingly, the marker does predict activity in the pathway in a subset of the
relapse samples, suggesting both robustness of the marker and, potentially, that
relapsed pediatric AML shows more heterogeneity than primary pediatric AML
in Hedgehog activity. However, this suggestion is tempered by the low numbers
and the known mismatch in karyotypes between primary and recurrent AML,
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even though there was no correlation of Hedgehog pathway methylation with
karyotype in primary tumors.

AML, specifically, and cancer in general, is difficult to treat effectively in
most cases. Natural heterogeneity in response to treatment likely arises from
both differences in molecular tumor characteristics and differences in systemic
responses of individual patients [7]. Given this complexity, methods to define
robust markers of potentially targetable pathways are extremely valuable to
guiding treatment decisions, since the absence of cancer driver pathway activity
should contraindicate targeted treatments for that pathway. The Positive Pre-
dictive Values (PPVs) from this test are therefore particularly promising, since
a positive test is strongly indicative of pathway activity.

There remains a great need for more powerful, guided computational methods
in cancer research and treatment. The complexity of the biological systems and
a massive curse-of-dimensionality issue driven by small sample size coupled to
genome-wide measurements of multiple molecular species present a formidable
challenge requiring nonlinear modeling and novel computational learning tech-
niques. It is likely the only viable approach will be to accept higher bias to
reduce variance, and we have presented one such approach, where we limit
our biomarker search based on statistically significant but knowledge-refined
pathways.
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Abstract. Protein-protein interaction networks have been broadly studied in the
last few years, in order to understand the behavior of proteins inside the cell. Pro-
teins interacting with each other often share common biological functions or they
participate in the same biological process. Thus, discovering protein complexes
made of groups of proteins strictly related, can be useful to predict protein func-
tions. Clustering techniques have been widely employed to detect significative
biological complexes. In this paper, we integrate one of the most popular net-
work clustering techniques, namely the Restricted Neighborhood Search Cluster-
ing (RNSC), with evolutionary computation. The two cost functions introduced
by RNSC, besides a new one that combines them, are used by a Genetic Algo-
rithm as fitness functions to be optimized. Experimental evaluations performed
on two different groups of interactions of the budding yeast Saccaromices cere-
visiae show that the clusters obtained by the genetic approach are more accurate
than those found by RNSC, though this method predicts more true complexes.

1 Introduction

Proteins are the basic constituents of living beings. It has been shown that studying how
proteins interact inside the cell is necessary to understand the biological processes in
which they are involved [37]. Thanks to the development of advanced high-throughput
technologies, many protein-protein interactions have been discovered in the last few
years (see, e.g., [15,21]). The set of all the protein-protein interactions of a given or-
ganism is its interactome, usually modeled by an indirect graph, called protein-protein
interaction network (PPI network), where nodes represent involved proteins and edges
encode their interactions. PPI networks received much attention in the last few years
[2,10,33,36] since they can be usefully exploited to study protein functions and to infer
information about conservations among species.

Proteins are organized into different putative protein complexes, each performing
specific tasks in the cell [12,26]. Proteins interacting with each other often participate
in the same biological processes, or can be associated with specific biological functions
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being strongly related [35]. Indeed, cellular functions are likely to be accomplished in
a modular way, meaning that a group of physically or functionally related proteins join
together to accomplish a distinct function [4]. A protein complex can then be consid-
ered as a group (cluster) of proteins contributing to the same biological functions. Their
detection allows the comprehension of biologically meaningful interactions and pro-
vides important knowledge about the organization of biological systems and cellular
processes, giving a valuable help in understanding the behavior of organisms.

In the last few years there has been an increasing interest in studying clustering meth-
ods able to detect groups of proteins densely interconnected. Clustering approaches to
PPI networks can be broadly categorized as distance-based and graph-based ones [17].
Distance-based clustering approaches apply traditional clustering techniques, such as
hierarchical clustering, by employing the concept of distance between two proteins
[5,25]. Graph-based clustering techniques consider the topology of the network. These
techniques find the clusters by applying different strategies. One strategy searches for
sub-graphs having maximum density (e.g., [23,28], by using different notions of sub-
graph density. Another approach partitions the graph by optimizing a cost function
[14,34]. The concept of flow simulation, though applied in different ways, is exploited
in [7,13]. A statistical approach to protein clustering is taken instead in [32,9]. Very
few population-based stochastic search approaches have been used for developing al-
gorithms for community detection in PPI networks (see, e.g., [18,30,31]). Surveys de-
scribing and comparing a number of methods presented in the literature can be found
in [6,22,27,29,38].

In this paper we propose to embed the cost functions introduced by King et al. [14]
in a genetic algorithm, in order to evaluate the capability of evolutionary computation
in predicting complexes in PPI networks. Besides the naive cost function and scaled
cost function, defined in [14], a new scaled function, that takes into account the con-
nections of nodes constituting a cluster and the size of the clusters obtained, is intro-
duced. Experimental results on two data sets of yeast protein interactions show that the
genetic approaches, when compared with RNSC, though predict a lower number of
complexes, the predicted clusters are composed of a high percentage of true positive
proteins, thus a lower number of false positive occur inside them.

The paper is organized as follows. Section 2 briefly recalls the Restricted Neigh-
borhood Search Clustering (RNSC) Algorithm. In Section 3 its evolutionary version is
proposed and described in details. In Section 4 the evaluation measures exploited to val-
idate the performances of the introduced methods are summarized. Section 5 describes
experimental evaluations performed on the budding yeast Saccaromices cerevisiae PPI
network and points out some peculiar characteristics of the evolutionary techniques
proposed in this work. Finally, in Section 6 we draw our conclusive remarks.

2 Restricted Neighborhood Search Clustering Algorithm

Restricted Neighborhood Search Clustering (RNSC) is a popular method, proposed by
King et al. [14], to detect complexes in protein-protein interaction networks. RNSC
explores the solution space of all the possible clusterings by minimizing cost functions
that reflect the number of inter-cluster and intra-cluster edges. The method partitions a
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network in clusters by using two cost functions. In order to formally define these two
cost functions, some formalism must be introduced.

Let G = (V,E) be a graph of n nodes and m edges modeling a PPI network, and
S = {S1, . . . , Sk} a partitioning of G in k clusters. A cross-edge in a clustering is
an edge whose vertices belong to different clusters. Given a node v ∈ S, let cs(v) =
{(v, u) | u /∈ S} denote the number of cross-edges incident with v, and ls(v) = {u ∈
S | (v, u) /∈ E} be the number of nodes in S not connected with v.

The first function, called the naive cost function, is defined as:

Cn(G,S) = 1

2

∑
v∈V

(cs(v) + ls(v)) (1)

Thus, the naive cost function, for each node v, computes the number of bad connections
incident with v, i.e. one that exists between v and a node not belonging to the same
cluster of v (cs(v)), or one that does not exist between v and another node in the same
cluster as v (ls(v)).

As the authors point out, Cn(G,S) is considered naive since it does not take into ac-
count the importance of a vertex in a graph, i.e. if it belongs to either a very large cluster
or a small cluster. To reflect this concept, a second function, called the scaled cost func-
tion, that measures the size of the area that v effects in the clustering is introduced:

Cs(G,S) = n− 1

3

∑
v∈V

(cs(v) + ls(v))

| N(v) ∪ Sv | (2)

where Sv is the cluster v belongs to, and N(v) is the set of neighbour nodes of v.
The algorithm begins with a random clustering, and attempts to find a best naive

clustering by moving a vertex from a cluster to another one in order to minimize the
naive cost function. The choice of using the naive cost function at first, is due to the
necessity of having a fairly good clustering in a fast way. Then the algorithm tries
to improve the obtained solution by searching for a clustering with low scaled cost
function. Since the approach is greedy, the problem of getting stack at poor local minima
is dealt by making diversification moves that mix up the clustering by scattering the
clusters at random. Furthermore, RNSC maintains a list of tabu moves that forbid to
cycle back to previously examined solutions.

3 Evolutionary RNSC

In this section we consider the cost functions described above, and reformulate them
in terms of set of nodes constituting a cluster, instead of single nodes, to obtain fitness
functions that will be optimized by the evolutionary approach. Furthermore, a simpli-
fication of the scaled cost function which scales the cost function with respect to the
cluster size and the crossing edges of the cluster is introduced. These three objective
functions will be adopted in the genetic approach and compared with RNSC.

Let S = {S1, . . . , Sk} be a partition of the graph G = (V,E), modeling a PPI net-
work, in k clusters. Let ns and ms denote the number of nodes and edges, respectively,
of a cluster S ∈ S. Then:
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cs =
∑
v∈S

cs(v)

is the total number of cross-edges of the nodes of S, and

ls =
∑
v∈S

ls(v)

is the number of pairs of nodes in S not connected. The naive cost function Cn(G,S)
can be rewritten as:

Cn(G,S) = 1

2

∑
s∈S

cs + ls (3)

As regards the scaled cost function, we must first compute the scaled cost function for
each cluster S ∈ S as follows:

Cs(S) =
∑
v∈S

cs(v) + ls(v)

cs(v) + ns
(4)

and then sum the contribution of each of them:

Cs(G,S) = n− 1

3

∑
s∈S

Cs(S) (5)

A simplification of the function (5), which scales the naive cost function of each cluster
in S with respect to its size and the crossing edges relative to it, can be obtained as
follows:

Css(G,S) = n− 1

3

∑
s∈S

cs + ls
cs + ns

(6)

Formula (6), instead of considering the influence of a single node, it normalizes the
contribution of each cluster found with respect to its size and number of connections
with nodes of other clusters.

The three cost functions described above can be used inside a genetic algorithm as
fitness functions to minimize, in order to partition the graph G modeling a network in
dense groups of proteins.

The pseudo-code of the genetic approach is reported in Figure 1. The genetic algo-
rithm uses the locus-based adjacency representation proposed in [24], and adopted also
in [30]. In this graph-based representation an individual of the population consists of
n genes g1, . . . , gn and each gene can assume allele values j in the range {1, . . . , n}.
Genes and alleles represent nodes of the graph G = (V,E) modeling a PPI network,
and a value j, assigned to the ith gene, means that proteins i and j are connected and
clustered together. The initialization process assigns to each each node i one of its
neighbors j. The kind of crossover operator adopted is uniform crossover. Given two
parents, a random binary vector is created. Uniform crossover then selects the genes
where the vector is a 0 from the first parent, and the genes where the vector is a 1 from
the second parent, and combines the genes to form the child. The mutation operator,



Restricted Neighborhood Search Clustering Revisited 63

Given a network N and the graph G = (V,E) modeling it, perform the following steps:

1. create an initial population of random individuals whose length equals the number n of
nodes of G

2. while termination condition is not satisfied do
3. decode each individual I = {g1, . . . , gn} of the population to obtain a partitiong

S = {S1, . . . , Sk} of the graph G in k connected components
4. evaluate the fitness of the translated individuals
5. create a new population of individuals by applying the variation operators
6. end while
7. return the individual having the best cost function

Fig. 1. The pseudo-code of the GA-RNSC approach

analogously to the initialization process, randomly assigns to each node i one of its
neighbors.

The algorithm, for a fixed number of generations, evolves the population of individ-
uals, decodes each chromosome to determine the division of the graph in k connected
components, computes the fitness function of each member of the population, and ap-
plies the specialized variation operators described above to produce the new population.
At the end of the evolution process, the individual having the best cost function is re-
turned as solution. It is worth to note that decoding can be efficiently performed by
using a disjoint set algorithm, as described in [8].

4 Evaluation Measures

In the following we describe some validation measures widely exploited in the literature
[1,3,16] that will be used for the comparative analysis presented in this work. For the
generic predicted cluster Pi and the generic known complex Kj , let | Pi | and | Kj | be
their sizes, respectively. Furthermore, let | Pi ∩Kj | be the size of the intersection set
of the predicted cluster and the known complex. To evaluate how a predicted cluster Pi

matches a known complex Kj , the overlapping score between Pi and Kj is defined as

OS(Pi,Kj) =
| Pi ∩Kj |2
| Pi | · | Kj | (7)

A known complex and a predicted cluster are considered a match [16] if OS(Pi,Kj) ≥
σOS , i.e. their overlapping score is equal to or larger than a specific threshold σOS .
To estimate the performance of algorithms for detecting protein complexes w.r.t. the
overlapping score, the notions of sensitivity and specificity, commonly used in informa-
tion retrieval and machine learning (also known as recall and precision), as well as a
cumulative measure called f-measure are introduced.

Sensitivity: Sn = TP
TP+FN is the fraction of the true-positive predictions out of all

the true predictions, where TP (true positive) is the number of the predicted clusters
matched by the known complexes with OS(Pi,Kj) ≥ σOS , and FN (false negative)
is the number of the known complexes that are not matched by the predicted clusters.
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Specificity: Sp = TP
TP+FP is the fraction of the true-positive predictions out of all the

positive predictions, where FP (false positive) equals the total number of the predicted
clusters minus TP .

F-measure: Fm =
2·Sn·Sp

Sn+Sp
is a measure that summarizes sensitivity and specificity.

High values of f-measure means that both sensitivity and specificity are sufficiently
high.

5 Experimental Results

In this section we present the results of the genetic approaches on two PPI networks
and compare them with those obtained by running RNSC. In the following, depending
on the fitness function used, i.e. formulas (3) for naive cost function, (5) for scaled cost
function, and (6) for simplified scaled cost function, we refer to the genetic algorithm as
GAn-RNSC, GAs-RNSC, and GAss-RNSC, respectively. The parameters of the genetic
algorithm have been fixed as follows. Population size 100, number of generations 100,
elite reproduction 10% of the population size, roulette selection function, crossover 0.8,
mutation 0.2. This values have been chosen by taking into account the experimental
evaluation reported in [30]. The implementation has been written in MATLAB 7.14
R2012a, using Genetic Algorithms and Direct Search Toolbox 2. As regards RNSC
we used the optimal parameter values reported in [6].

We ran the methods on two different data sets containing yeast protein interactions
downloadable from http://faculty.uaeu.ac.ae/nzaki/ProRank.htm. The first dataset, de-
noted Yeast-D1, is that used by Gavin et al. in [11], and the second one, denoted Yeast-
D2, contains yeast protein interactions generated by different experiments. Zaki et al.
[39], however, filtered these two networks to delete unreliable interactions and obtained
990 proteins with 4, 687 interactions for Yeast-D1, and 1, 443 proteins with 6, 993 inter-
actions for Yeast-D2. The reference sets of gold standard complexes include 81 (Cmplx-
D1) and 162 (Cmplx-D2) hand-curated complexes from MIPS [19,20].

First of all in Table 1 the average number of complexes found by the genetic algo-
rithms on the two yeast networks, along with the standard deviation std, are reported.
The methods behave in a rather different way. RNSC obtains the highest number of
clusters. When the naive cost function (formula (3)) is adopted, a considerable num-
ber of clusters with smaller size with respect to the true complexes are obtained also
by GAn-RNSC. The opposite behavior can be observed with the scaled cost function

Table 1. Complexes found by the methods on Yeast-D1 and Yeast-D2 with 81 and 162 gold
standard complexes, respectively

METHOD YEAST-D1 YEAST-D2
NUMBER STD NUMBER STD

RNSC 293 0 427 0
GAn-RNSC 138.4 12.1 207.6 10.9
GAs-RNSC 58.2 3.5 112.6 3.7
GAss-RNSC 107.8 3.2 171 3.6
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(formula (5)) that induces a much lower number of clusters having larger size. With
the simplified scaled cost function (formula (6)), GAss-RNSC produces a number of
clusters higher than GAs-RNSC, and lower than GAn-RNSC. These numbers differ
from the true number of complexes and suggest that RNSC divides the complexes in
small groups of proteins, GAn-RNSC has a similar but less emphasized behavior,GAs-
RNSC, on the contrary, joins complexes, while GAss-RNSC also splits complexes, but
for a lower percentage of groups than GAn-RNSC. Thus the optimization of the cost
functions of RNSC through evolutionary computation produces predicted clusters that
are sensibly dissimilar from those generated by RNSC.
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Fig. 2. Sensitivity, specificity, and f-measure values for (a) Yeast-D1 and (b) Yeast-D2 networks
with overlapping score OS(Pi,Kj) ≥ 0.2

Figure 2 shows sensitivity, specificity, and f-measure values obtained by the genetic
approaches and RNSC when the overlapping score OS(Pi,Kj) ≥ 0.2. The first ob-
servation is that RNSC has a higher sensitivity value compared with the genetic algo-
rithms on both the two networks. This means that RNSC is able to predict a higher
number of complexes, out of all the true complexes. This result can be explained by
the high number of clusters that RNSC finds. It is worth to note that, the definition of
overlapping score (formula (7)) penalizes those methods that obtain clusters with size
| Pi | much greater than the true complex size | Ki |. In fact the denumerator of (7) has
a higher value if the cluster size | Pi | is high, and, consequently, OS(Pi,Kj) is lower.
This bias can be observed also for the three evolutionary methods. GAn-RNSC, GAss-
RNSC, and GAs-RNSC present a decreasing number of predicted clusters, and thus the
predicted clusters are of increasing size. The figure shows that sensitivity values re-
flect the size of the predicted clusters. The lower the size, the higher the corresponding
sensitivity values.

On the other hand, from the figure we can observe that specificity and f-measure
are both higher for the genetic approaches. Higher specificity means that the predicted
clusters have a high percentage of proteins effectively belonging to the true complex,
thus the fraction of false positive is low. In particular,GAs-RNSC is the best performing
on Yeast-D2, while GAss-RNSC reaches better values of specificity on Yeast-D1.



66 C. Pizzuti and S.E. Rombo

Sensitivity Specificity F−measure
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

RNSC
GAn−RNSC
GAs−RNSC
GAss−RNSC

(a) Yeast-D1

Sensitivity Specificity F−measure
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

RNSC
GAn−RNSC
GAs−RNSC
GAss−RNSC

(b) Yeast-D2

Fig. 3. Sensitivity, specificity, and f-measure values for (a) Yeast-D1 and (b) Yeast D2 networks
when overlapping score OSJ (Pi,Kj) ≥ 0.2

In order to more deeply investigate the effects of the overlapping score OS(Pi,Kj),
we considered a different definition of overlapping score based on the Jaccard coeffi-
cient, that is:

OSJ (Pi,Kj) =
| Pi ∩Kj |
| Pi ∪Kj | (8)

Sensitivity, specificity and f-measure have been recomputed and the values obtained
when the overlapping score OSJ (Pi,Kj) ≥ 0.2 are reported in Figure 3. Also in
this experiment it is possible to observe that sensitivity values obtained by RNSC are
higher. However, specificity and f-measure are better for all the three fitness functions
used, confirming the above observations.

From the described experimental campaign, we can conclude that evolutionary com-
putation allows to improve specificity w.r.t. the RNSC method, still retaining good
values of sensitivity. In particular, RNSC returns in output many clusters, and each of
them only partially overlaps with some true complexes. On the contrary, GA-RNSC
approaches predict a lower number of clusters, but their overlapping with true com-
plexes is larger. As an example, GAn-RNSC correctly found a complex of Yeast-D1
(20 of 22 proteins) recognized to be a RNA polymerase II holoenzyme/mediator sub-
unit, while GAs-RNSC was able to find a full complex in Yeast-D2 made of cAMP-
dependent protein kinases.

6 Conclusions

In this work we showed the capability of evolutionary computation to predict com-
plexes in PPI networks by embedding the cost functions introduced by King et al. [14]
in a genetic algorithm. A new scaled function able to take into account, besides the
connections of nodes constituting a cluster, also the size of the clusters obtained, is also
introduced. Experimental results on two data sets of yeast protein interactions proved
that the genetic approaches, when compared with RNSC, return complexes with a
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higher percentage of true positive proteins. Future work aims to improve the evolution-
ary approach by considering different combinations of the fitness functions, possibly
enriched with local search strategies.
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Abstract. Feature weighting in supervised learning concerns the development
of methods for quantifying the capability of features to discriminate instances
from different classes. A popular method for this task, called RELIEF, generates
a feature weight vector from a given training set, one weight for each feature.
This is achieved by maximizing in a greedy way the sample margin defined on
the nearest neighbor classifier. The contribution from each class to the sample
margin maximization defines a set of class dependent feature weight vectors, one
for each class. This provides a tool to unravel interesting properties of features
relevant to a single class of interest.

In this paper we analyze such class dependent feature weight vectors. For
instance, we show that in a machine learning dataset describing instances of re-
currence and non-recurrence events in breast cancer, the features have different
relevance in the two types of events, with size of the tumor estimated to be highly
relevant in the recurrence class but not in the non-recurrence one. Furthermore,
results of experiments show that a high correlation between feature weights of
one class and those generated by RELIEF corresponds to an easier classification
task.

In general, results of this investigation indicate that class dependent feature
weights are useful to unravel interesting properties of features with respect to a
class of interest, and they provide information on the relative difficulty of classi-
fication tasks.

1 Introduction

Feature selection is a central problem in machine learning, because of its use in a wide
range of real-life applications, such as in pattern recognition, text categorization and
biological and biomedical data analysis [6]. Feature selection in supervised learning
is motivated by the fact that using all available features may negatively affect gener-
alization performance, especially in the presence of irrelevant or redundant features.
Therefore, feature selection aims at making good predictions with few features.

Many feature selection algorithms have been proposed (see for instance the overviews
in [6,10]). In particular, feature weighting assigns real values (instead of zero or one) to
features, describing their relevance to a learning problem. Among the existing feature
weighting algorithms, RELIEF [7,9,8] is considered one of the most successful meth-
ods, due to its simplicity and effectiveness [1]. Interesting formalizations of RELIEF
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have been proposed and used for developing new feature weighting algorithms [5,11].
In particular it was shown that RELIEF can be interpreted as an online solution to a con-
vex optimization problem, which maximizes a margin-based objective function, where
the margin is defined on the 1-nearest neighbor (1-NN) classifier. This explains its good
performance both when compared with filter methods, due to the performance feedback
of a nonlinear classifier when searching for useful features, and when compared with
wrapper methods, since it optimizes a convex problem, hence avoids any exhaustive or
heuristic combinatorial search and can be implemented very efficiently [11].

Fig. 1. Toy example

This paper investigates a decomposition of RELIEF into class dependent feature
weight terms, one for each class of the learning problem. Each class dependent term
induces a weighted distance enlarging the sample margin of the corresponding class.
This approach can be viewed as the supervised counterpart of clustering in subspaces
spanned by different combinations of dimensions via local weightings of features (see,
e.g., [4,2]).

We show that complementary characteristics of a feature in different classes may
yield different weight contributions which, when added, neutralize each other. This may
prevent to detect the relevance of some features for a single class.

This situation is illustrated by the following toy example. RELIEF applied to the
training data shown in Figure 1 assigns zero weight to all the features. However, if the
class dependent feature weight terms are considered, the two features become relevant
for class 1 and 2, respectively. This is shown in detail in Section 2.1.

The goal of this paper is to analyze class dependent feature weight vectors. First, we
investigate whether class dependent feature weights provide useful information about
the relative difficulty of classification tasks. Second, we investigate whether class de-
pendent feature weights provide better information about the relevance of features than
RELIEF for the underlying phenomenon under study.
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Results of experiments show that a high correlation between feature weights of one
class and those generated by RELIEF are associated to an easier classification task.

Furthermore, we show that in a machine learning dataset describing instances of
recurrence and non-recurrence events in breast cancer, the features have different rele-
vance in the two types of events. In particular, the size of the tumor is estimated to be
highly relevant in the recurrence class but not in the non-recurrence one.

In general, results of this investigation indicate that class dependent feature weights
are useful to unravel interesting properties of features with respect to a class of interest,
and can be used to analyze comparatively the difficulty of classification tasks.

2 Methods

We use the variant of RELIEF acting on all the training set instances [8] (see Algorithm
1 for binary classification problems).

Algorithm 1. RELIEF
Require: X, l: training data, each instance vector x has m features and class l(x)
Ensure: w: feature weight vector

w = vector with m zeros
for x in X do
w = w +

∑
z∈KNN(x,c),c �=l(x) |x− z| −∑

z∈KNN(x,l(x)) |x− z|;
end for

X denotes a dataset of n instances, and x, z generic instances. Each instance x =
(x1, . . . , xm) is a real-valued vector of dimension m, whose entries are here called
features.

C denotes the set of class labels; l : X → C is the function mapping each instance
x to its class label l(x). Let c be a generic element of C, and Xc be the subset of X
consisting of those instances having class label equal to c. Then KNN(x, c) is the set of
K nearest neighbors (with respect to the Euclidean distance) of x computed using only
the instances in Xc, excluded x.

For two instance vectors x and y, |x−y| denotes the vector consisting of the absolute
value of the difference of each pair of corresponding entries in x and y. For instance, if
x = (1, 2) and y = (3, 4) the |x− y| = (2, 2).

Given a training set of labeled instances, RELIEF generates the feature weight vector
w of size equal to the number (m) of features. Each feature’s weight in w is initialized
to zero and updated iteratively by processing each instance vector x of X as follows.
The K nearest neighbors of x from the opposite class are computed, and for each one
of them, say z, the vector |x− z| is added to w. The K nearest neighbors from the same
class are computed, and for each one of them, say z, the vector |x − z| is subtracted
from w.
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2.1 Class Dependent Feature Weighting

The feature weight vector computed by RELIEF can be re-written as w =
∑

c∈C wc

where

wc =
∑
x∈Xc

⎧⎪⎪⎨
⎪⎪⎩

∑
z∈KNN(x,c)

−|x− z|+
∑

z∈KNN(x,c′)
c′ �=c

|x− z|

⎫⎪⎪⎬
⎪⎪⎭ .

The term wc can be viewed as a feature weight vector conditioned to class c: we call it
class dependent feature weight vector.

For the toy example described in the Introduction (see Figure 1) the class dependent
feature weight vectors for class 1 and 2 are (−6, 6) and (6,−6), respectively. Their sum
is the vector (0, 0). Therefore RELIEF assigns weight zero to all features. However, the
two class dependent weight vectors estimate the second and first feature as ’relevant’
for class 1 and 2, respectively.

This observation shows that, by averaging the weigths of features across different
classes, information about the relevance of features with respect to a single class can be
lost, while this information is visible if the weigths of features for each class are kept
separated.

A class dependent feature weight wc has a direct interpretation in terms of sample
margin [5,11]. In fact wc can be viewed as the result of a greedy procedure for maxi-
mizing the sample margin conditioned to class c as described by the following objective
function:

θc =
∑

x s.t.

l(x)=c
(
∑

c′ �=c

∑
z∈KNNw(x,c′) ‖x− z‖w−

∑
z∈KNNw(x,c) ‖x− z‖w).

Here ‖x− z‖w denotes the weighted Euclidean distance between x and z with respect

to feature weights w = w1, . . . , wm, wi ≥ 0, defined as
(∑m

i=1 wi(xi − zi)
2
)−1/2

.
KNNw(x) represents the list of K nearest neighbors of x in the training set computed
using the weighted Euclidean distance ‖ · ‖w.

Instead, the greedy procedure of RELIEF maximizes the sample margin over the
entire training set, and in this way it considers the sum of the possibly competing ob-
jectives θc’s.

3 Applications

The goals of our investigation are twofold. First, we investigate whether class depen-
dent feature weights provide useful information about the difficulty of the underlying
classification task. Second, we investigate whether class dependent feature weights pro-
vide better information than RELIEF does about the relevance of features in relation to
the underlying phenomenon under study.

To this aim we consider a number of life sciences datasets available at the UCI Ma-
chine Learning repository (see http://archive.ics.uci.edu/ml/datasets.html). Their char-
acteristics are given in Table 1.
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Table 1. Datasets used in the experiments. CL = number of classes, TR = training set, TE = test
set, FS = number of features, Cl.Inst. = number of instances in each class.

DATASET FS TR CL.INST. TE CL.INST.
B.CANCER 9 200 140-60 77 56-21
DIABETES 8 468 300-168 300 200-100
HEART 13 170 93-77 100 57-43
SPLICE 60 1000 525-475 2175 1123-1052
THYROID 5 140 97-43 75 53-22
BREAST-W 9 546 353-193 137 91-46
BUPA 6 276 119-157 69 26-43
PIMA 8 615 398-217 153 102-51

Examples of class dependent and RELIEF weights of the considered problems are
shown in Figure 4. The plots in this figure show that in some cases the two classes are
in strong disagreement with respect to the way they estimate the relevance of different
features.

For instance, on the B.Cancer data the feature rankings induced by the two class de-
pendent weight vectors are rather different. A similar situation can be observed for the
Bupa data, where the resulting rankings are the reverse of each other. These observa-
tions show that also on real-life problems the contributions of the classes to the feature
weight vector computed by RELIEF may be rather different.

3.1 Class Dependent Weights and Relative Difficulty of the Classification Task

We want to assess whether the diversity between the class dependent feature weights
and the weights computed by RELIEF and the hardness of classification tasks are linked
with each other.

To this end we perform 10 runs on each dataset. In each run a partition of the dataset
into training and test set is used, where the size of training and test set reported in the
UCI ML repository are employed (see Table 1). On each partition we compute the class
dependent weight vectors and the RELIEF weights using the training data, and apply
the K-NN classifier (with K=5) to the test data.

We measure hardness using the mean test accuracy, and diversity using the mean
of the maximum linear correlations between class dependent feature weights and the
RELIEF ones (see Table 2, columns ‘Corr1’, ‘Corr2’ , and ‘Max Corr’).

Then we use the Spearman’s correlation to assess how well the relationship between
these two variables can be described using a monotonic function. A positive Spearman
correlation coefficient corresponds to an increasing monotonic trend between the two
variables.

We compute the Spearman’s correlation coeffient ρ with right tail (that is, with alter-
native hypothesis ‘correlation is greater than zero’ against which to compute p-values
for testing the hypothesis of no correlation) between the variables ‘hardness’ and ‘diver-
sity’ as described by the vectors generated by computing their values on each dataset.
The resulting hardness and diversity vectors are the columns ‘Acc’ and ‘Max Corr’ of
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Table 2. Results for datasets used in the experiments. Acc = average test accuracy of K-NN clas-
sifier (with K=5) over 10 runs, Ave Corr1 = average of the correlations between RELIEF weights
and class 1 dependent weights, Ave Corr2 = average of the correlations between RELIEF weights
and class 2 dependent weights. Max Corr = average over 10 runs of the maximum between Corr
1 and Corr 2. Standard deviation (std) over 10 runs is reported between brackets.

DATASET ACC (STD) CORR1 (STD) CORR2 (STD) MAX CORR (STD)
B.CANCER 70.12 (5.44) -0.35 (15.75) 64.43 (10.79) 64.43 (10.79)
DIABETES 70.65 (4.57) -5.73 (24.38) 86.24 (4.85) 86.24 (4.85)
HEART 80.00 (3.39) 36.33 (16.64) 63.88 (16.37) 67.41 (10.38)
SPLICE 72.89 (1.72) 43.50 (13.65) 91.64 (3.37) 91.64 (3.37)
THYROID 91.86 (3.84) 42.90 (24.65) 89.03 (3.67) 89.03 (3.67)
BREAST-W 97.95 (1.32) 21.93 (19.29) 97.91 (1.01) 97.91 (1.01)
BUPA 65.07 (6.12) 61.29 (34.41) -13.47 (38.37) 67.53 (23.31)
PIMA 72.73 (1.08) 24.45 (35.18) 89.53 (6.61) 89.53 (6.61)

Table 2. Computation of the coefficient yields a positive correlation ρ = 0.5952 with
p-value 0.06.

If we consider the list of test accuracies and the list of maximum correlations (be-
tween class dependent feature weights and the RELIEF ones) generated in the 10 runs
instead of their mean, then a smaller yet more significant correlation is obtained, ρ =
0.4155 with p-value 0.0001.

Furthermore, if we consider the test classification achieved using only the top 5 fea-
tures selected using the feature ranking induced by the weights generated by RELIEF,
then the correlation signal between hardness and diversity becomes highly significant.
Indeed, the Spearman’s correlation coefficients become ρ = 0.8333 (p-value 0.0154)
and ρ = 0.6476 (p-value 0) when the mean (over the 10 runs) results and the results in
all the runs are considered, respectively.

The above results indicate that class dependent feature weights provide information
about the relative difficulty of the learning tasks (as measured by the test error).

3.2 Class Dependent Weights and Feature Relevance

In this section we analyze the class dependent feature weights and the RELIEF ones
in the context of breast cancer data analysis, using two breast cancer datasets B.Cancer
and the Breast-W.

The B.Cancer Data. This dataset was obtained from the University Medical Centre,
Institute of Oncology, Ljubljana, Yugoslavia. It consists of instances from recurrence
(class 2) and non-recurrence (class 1) breast cancer patients. The instances consist of
the following features:
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1. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99,
2. menopause: lt40, ge40, premeno,
3. tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-

54, 55-59,
4. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32,

33-35, 36-39,
5. node-caps: yes, no,
6. deg-malig: 1, 2, 3,
7. breast: left, right,
8. breast-quad: left-up, left-low, right-up, right-low, central,
9. irradiat: yes, no.

Fig. 2. Average accuracy of the K-NN classifier (K=5) for different number of selected features
(left) and example of feature weight vectors (right) on dataset B.Cancer

Figure 2 (right side) shows the weights of the features according to RELIEF, and the
class dependent ones. The two classes assign rather different values to some features.
In particular, class 2 ’recurrence events’ assigns high values to feature ’tumor-size’
(feature 3), ’deg-malig’ (6), and breast-quad (8), while class 1 ’non-recurrence-events’
considers them not relevant (assigns negative weights).

Thus when the class dependent relevance values are added by RELIEF, feature
’tumor-size’ (3) becomes not very relevant for this learning task, less relevant than
feature 1 (’age’) and 2 (’menopause’). However, ’tumor-size’ is recognized as relevant
for the ’recurrence events’ class. Indeed, research in breast cancer has shown tumor size
to be strongly associated to the its recurrence hence to survival (see e.g. [3]).

Figure 2 (left side) shows the average test accuracy (over 10 runs) obtained by the
K-NN classifier (with K=5) when varying the number of selected features. The features
are selected using the ranking induced either by the weights computed by RELIEF or
by the class dependent weights with highest variance (‘cdRelief’ classifier in Figure 2).
Results show that test accuracy decreases when using only one class to estimate the
relevance of features. This is expected since the feature ranking is biased towards one
class and the two classes have different feature rankings.
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Wisconsin Breast Cancer Dataset. The Wisconsin Breast Cancer dataset (Original),
donated from Dr. WIlliam H. Wolberg (University of Wisconsin Hospitals Madison,
Wisconsin, USA), is publicly available at the UCI Machine Learning Repository. The
dataset contains malignant (cancerous, class 2) and benign (non-cancerous, class 1)
instances. The instances consist of the following features:

1. Clump Thickness: 1 - 10,
2. Uniformity of Cell Size: 1 - 10,
3. Uniformity of Cell Shape: 1 - 10,
4. Marginal Adhesion: 1 - 10,
5. Single Epithelial Cell Size: 1 - 10,
6. Bare Nuclei: 1 - 10,
7. Bland Chromatin: 1 - 10,
8. Normal Nucleoli: 1 - 10,
9. Mitoses: 1 - 10.

Fig. 3. Average accuracy of the K-NN classifier (K=5) for different number of selected features
(left) and example of feature weight vectors (right) on dataset Breast-W

On this dataset the class dependent feature weights for class 2 (malignant cancer) are
in strong accordance with those of RELIEF (see the right plot in Figure 3 for an example
of weights generated by a run). Therefore the relevance as estimated by RELIEF reflects
the importance of the features for malignant cancer.

Moreover the average test classification performance is not significantly affected
when using the feature ranking generated by class 2 (see the performance of ‘cdRelief’
in the left plot in Figure 3). Indeed, on this problem both the average accuracy (97.95)
and the maximum Pearson correlation, that is, that between RELIEF and class 2 weights
(97.91) are high.
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B.Cancer Diabetes

Heart Splice

Thyroid Breast-W

Bupa Pima

Fig. 4. Examples of class dependent and RELIEF weights of the considered datasets
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4 Conclusions

We investigated a decomposition of RELIEF into class dependent feature weight vec-
tors, where each vector describes the relevance of features conditioned to one class. The
results of experiments indicated the usefulness of this decomposition for unraveling rel-
evant features for a single class and for providing information about the difficulty of the
considered learning task.

In general, results indicated that using only one class to estimate the relevance of
features is not beneficial for the classification performance. This is expected, and shows
that feature relevance for classification is different than feature relevance for a single
class. The latter type of relevance is important when the goal is to unravel useful infor-
mation about the phenomenon under study, like in the example about the recurrence of
breast cancer events we discussed in this paper.

The contributions of this work provide initial insights and results about the advan-
tages of using feature relevance in a way that depends on the single classes. Future
work includes the development of a theoretical and methodological framework in order
to better understand, use and combine class dependent feature weights. For instance,
on the methodological side, an interesting problem for future research is to investigate
whether the use of multi-objective optimization for feature weighting could be em-
ployed to improve also the classification performance, where the objectives are the θc’s
(that is, the sample margin conditioned to the classes c in C).
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Abstract. T-score, based on t-statistics between samples and disease
classes, is a widely used filter criterion for gene selection from microar-
ray data. However, classical T-score uses all the training samples but for
both biological and computational reasons, selection of relevant samples
for training is an important step in classification. Using a modified logis-
tic regression approach, we propose a sample selection criterion based on
T-score and develop a backward elimination approach for gene selection.
The method is more stable and computationally less costly compared
to support vector machine recursive feature elimination (SVM-RFE)
methods.

Keywords: data point selection, gene selection, instance selection,
logistic regression.

1 Introduction

Gene selection is a vital step in the analysis of microarray gene-expression data
and several approaches have been proposed earlier [1–8]. The methods of gene
selection can be broadly categorized into filter, wrapper, or embedded meth-
ods. Filter methods are simple and computationally efficient, but have lower
performance than the other methods. T-score based on t-statistics measuring
correlation between input features and output class labels is commonly used as
filter criterion for sample classification [1]. Other popular filter methods include
Relief [9], correlation based feature selection [10], minimum redundancy maxi-
mum relevancy [11]. For more details on filter methods, readers are referred to
[2]. However, in classical filter approaches, all the training samples are used for
gene ranking while ignoring the relevance and quality of data samples.

On the other hand, popular wrapper and embedded methods include Support
Vector Machine Recursive Feature Elimination [5] and its variants [3, 12–16],
random forest-RFE [17], elastic net [18] etc. All these methods predominantly
use classifier performance in ranking genes. Many classifiers, such as support vec-
tor machines (SVM), boosting algorithms, and logistic regression etc. indicate
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that all samples in a training data may not be equally relevant for the classifica-
tion task [19, 20]. Removal of samples (or data points) that do not provide useful
information for classification improves the performance. In microarray analysis,
due to heterogeneity of tissues and cell assays, the datasets are inherently mul-
timodal [21] and therefore qualities of samples vary. Using the classical theory
of margin of classifier [19], sample points could be classified into three types:
within the margin, on the margin, and away from the margin. For a classifi-
cation task, various theories, including SVM and boosting techniques, suggest
that the points on the margin and within the margin are more important than
the samples away from the margin. Giving more importance to samples on or
within the margin boundary may reduce the error variance in feature selection
[22]. Earlier, the importance of selection of sample in active feature selection and
dimensionality reduction was demonstrated using kd -tree algorithm [23, 24]. A
genetic algorithm/k -nearest neighbour based approach was proposed for simul-
taneous selection of samples and metabolomic features [6]. Similarly, a modified
particle swarm algorithm was combined with SVM for simultaneous sample selec-
tion and gene ranking [25]. Very recently, sample weighting based gene selection
algorithm was proposed where sample weights are determined according to its
influence to the estimation of feature relevance [26].

Along with better classification, a method of identification of true markers
should be reproducible (stable) with respect to variations of the samples [16,
27]. Instability of a gene ranking casts doubts over computational results and
hence does not give confidence for further biological validation. Stability of a
gene selection method depends on many factors which includes sample size,
treatment to correlative structure and underlying data distribution. However,
an improvement in stability should not decrease the accuracy of sample.

Recently, predictive performance, stability and functional interpretability of
32 gene selection methods were analysed on 4 breast cancer datasets and results
indicate that a simple Student’s t-test (similar to T-score) performs the best
[28]. However, the issue of relevant samples still persists. In our previous work,
we decomposed T-score into two parts corresponding to relevant samples and
non-relevant samples to show the importance of sample selection in T-score. And
thereby a support vector based t -score recursive feature elimination (SVt -RFE)
algorithm was proposed for feature selection [29, 30]. However, this algorithm
uses SVM to select the samples and hence is computationally expensive. It also
suffers from low stability. In this paper, we propose a gene selection method
to improve stability and computational complexity of SVt -RFE and SVM-RFE
methods without compromising on the performance of classification. To do so,
we propose an efficient sample selection criterion to identify relevant samples by
incorporating a modified logistic regression model, similar to SVM, using T-score
as the selection criterion. A backward elimination approach is then proposed to
iteratively select the relevant genes and achieve better classification accuracy
than the existing methods. Our analysis indicates that the proposed algorithm
improves the stability compared to SVM based approaches.
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2 Method

Suppose D = {xij}n,mi=1,j=1 denotes a microarray dataset of m gene expression
samples obtained on n genes where xij is the expression of gene i gathered in
sample j. The vector xj = (xij)

n
i=1 denotes gene expressions on sample j and

xi = (xij)
m
j=1 denotes the expressions of gene i across all the samples. Let two-

class classification of sample j be yj ∈  = {+1,−1} taking values +1 or -1 for
cancerous (+ class) or benign (- class), respectively.

2.1 T-score

T-score is a ranking measure based on t -statistic between gene expressions and
class labels. For gene i, T-score (ri) is given by

ri =

∣∣μ+
i − μ−

i

∣∣√
m+(σ+

i )2+m−(σ−
i )2

m++m−

(1)

where superscript + and − denotes positive and negative classes, respectively.
The m+, μ+

i and σ+
i represents the number of samples, the mean and stan-

dard deviation of expression values of gene i in samples of the positive class
respectively. Similarly, m−, μ−

i and σ−
i are defined for negative class. Higher the

ranking value, more important the gene for separation of the classes is [1].
T-score is an easy and fast measure to compute as it assumes independence

among genes and normality of data. However, many a times this method gives
a stable gene subset which performs poor in classification compared to wrapper
and embedded methods because it does not take into account the characteristics
of the classifier in the ranking of genes. One way to improve the performance of
this criterion is to select relevant samples when computing the T-score [29].

2.2 Efficient Sample Selection Technique

The margin of separation of SVM is defined by the support vectors or the samples
on the margin. The support vectors are the samples that in fact define the
discriminant function. Use of only the support vectors for gene selection was
earlier demonstrated in support vector machine recursive feature elimination
(SVM-RFE) method [29]. In this section, an efficient method to select samples
(approximate support vectors) is proposed for gene selection. Relevant samples
refers to those on and within the margin of separation. Using SVM, determining
the margin of separation in two-class sample classification has a computational
complexity of O(max(n,m)m2). This becomes even more costly for SVM-RFE as
each iteration needs retraining the SVM. Therefore, there is a need for a simpler
model selecting samples on and within the margins, which is computationally
inexpensive and gives a good biological interpretability.

An approximate loss function for SVM using concepts of logistic regression
was proposed by Zhang et al. [31]. This function uses a sequence of smooth
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functions for iterations to uniformly converge to SVM objective function. The
approximate loss function L is given by

L(x, y : w) =
1

λ
ln
(
1 + exp

(−λ
(
ywTx− 1

)))
(2)

where λ is a tuning parameter and w denotes the weights determining the dis-
criminant. Instead of using a standard 0-1 loss function in SVM, the use of (2)
leads to the following penalized objective function:

LP (x, y : w) =

m∑
j=1

1

λ
ln
(
1 + exp

(
λ
(
1− yjw

Txj

)))
+ η ‖w‖2 (3)

where η denotes the sensitivity parameter.
Setting the partial derivation of (3) with respect to each gene i to zero,

w =
m∑
j=1

1

2η

exp
(
λ
(
1− yjw

Txj

))
1 + exp (λ (1− yjwTxj))

yjxj

=

m∑
j=1

αjxiyi (4)

Like in SVM, the multiplication factor αj to yjxj incorporates the margin in-
formation while computing weights. For example, if margin yjw

Txj is greater
than one, the multiplication factor becomes zero for large value of λ. In a sense,
it rejects the contribution of that particular sample point. Hence, based on this
property and considering that 1

2η is a multiplicative factor, we propose following
approximation of support vectors:

αj =
exp
(
λ
(
1− yjw

Txj

))
1 + exp (λ (1− yjwTxj))

(5)

With respect to SVM-RFE, the standard 0-1 Loss function gives following SVM
weight vector [5, 19]

w =
m∑
j=1

α∗
jyjxj (6)

Comparing (4),(5) and (6), we can represent the SVM induced weight to a par-
ticular sample point α∗

j with αj .

2.3 T-score with Sample Selection (T-SS)

The margin of a data point is defined as the distance from the data point to
the discriminant boundary. The margin of jth data sample is given by the term
yjw

Txj . Zhang et al. proposed a gradient descent algorithm to determine the
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Algorithm 1. Gene ranking using T-score and sample selection

Begin
Gene set S = {i}ni=1, data D, and ranked list R = [ ];
set λ; ε = 0.001
repeat

Find the set of samples M ⊂ D using (5) with αj > ε
if |M | < 2 then

M = D
end if
Compute the ranking ri using samples in M
Select the gene i∗ = argmin{ri}
Update R = [R; i∗] ;S = S \ {i∗}

until all genes are ranked
end : output R

margin of separation [31]. In order to simplify the computations, we propose to
use T-score of each gene as the selection criteria and thereby remove the opti-
mization step in (3). With this idea, we propose an algorithm for simultaneous
sample and gene selection, which is described in Algorithm 1.

Sample points are selected using (5) with a small threshold ε. Let M� denote
the set of selected sample points in class . With a given λ value, the samples
are selected using the margin information based on T-score. Using only the
selected samples, genes are ranked with T-score. A gene with the least absolute
score is then removed from the gene set and the whole process is iterated again
until all genes are ranked. In other words, the proposed method selects genes in
backward elimination manner while selecting the relevant samples. The T-score
with sample selection method fails whenever there is less than two relevant data
points. In such cases, we revert to all the sample points and compute the ranking
scores in that iteration using all training samples.

The margin is determined by using the T-score of individual gene. It has a
direct relation with log-odds ratio if the data is normally distributed, which is
given by

log
P (+|x)
P (−|x) = xTΣ−1

(
μ+ − μ−)+ w0 (7)

Here, w0 is a bias term and was computed using

w0 = log
π+

π− − 1

2
μ+TΣ−1μ+ +

1

2
μ−TΣ−1μ− (8)

where π+ and π− represent the prior probabilities of respective classes; the Σ
represents the covariance matrix. As we assume independence among genes, in
(7) and (8), the covariance matrix becomes Σ = σ2I, where I is the identity
matrix. In computing a sample margin ywTx, the bias term is included in w.
The weights w are normalized before computing the margin of a sample:

w =
w

‖w‖ (9)
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Table 1. Details on Benchmark Gene Expression Datasets

Dataset No. of No. of No. of
Genes + Samples - Samples

Colon 2000 22 40
Leukemia 7129 38 34
Breast 7129 25 47

3 Experiments and Results

3.1 Datasets and Preprocessing

To evaluate the performance of the proposed method, we performed extensive
experiments on three benchmark microarray gene expression datasets, namely,
colon [32], leukemia [33], and breast cancer [34]. The details of these widely used
datasets for evaluating gene ranking methods are given in Table 1.

All the training datasets were normalized to zero mean and unit variance
based on gene expressions of a particular gene to implement T-score, SVM-
RFE, SVt -RFE, and T-SS. The datasets were normalized using the parameters
from the corresponding training dataset only.

3.2 Parameter Estimation

The parameter λ was determined from a set of {1, 3, 5, 7, 10} and selected for
the best classification accuracy with the selected genes from Algorithm 1. For
algorithms like SVt -RFE and SVM-RFE, the selection of training data points
depends on the sensitivity η of the linear SVM, which was determined from
the finite set

{
2−20, 2−19, . . . , 215

}
, giving the maximum Matthew’s correlation

coefficient (MCC1) on 10-fold cross-validation.
In recursive elimination, we gradually removed genes in each of the iteration.

To increase the speed of the numerical simulations with SVt -RFE, SVM-RFE,
and T-SS, the following step-wise strategy was employed:

No. of genes removed =

⎧⎨
⎩

100 if n′ ≥ 10000
10 if 1000 ≤ n′ < 10000
1 n′ < 1000

(10)

where n′ is the number of genes in the gene set.

3.3 Performance Evaluation

With five-fold external cross-validation for 20 times, we obtained B = 100 sets
of gene ranking lists for each dataset. The gene ranking was obtained using T-
score, SVM-RFE, SVt -RFE, and T-SS. The test validation was performed using

1 MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

.
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corresponding test set of a gene ranking list. We tested gene subsets starting
from the top ranked genes and then successively adding one gene at a time in
test subset till the total number of genes in subset equals 100. The performance
measures such as accuracy, sensitivity, and specificity were averaged over those
100 trials. The cardinality of the gene subset giving the minimum average test
error was reported as the number of genes corresponding to the best classification
performance. We also performed pair-wise one-sided t -test to determine if the
performance of the T-SS is significantly better over the other methods.

3.4 Stability Analysis

In this section, a similarity based approach is taken to compute the stability
of gene selection, which is measured by the average over all pair-wise similar-
ity comparisons among all the ranked gene lists obtained by the method over
different subsets of training samples [35].

Let
{
Db
}B
b=1

be a set of B sub-samplings of the dataset of the same size and

Rb be the b-th rank list of genes. The stability SD of the method over the dataset
D is given by

SD =
2

B(B − 1)

B∑
b=1

B∑
b′=b+1

S(Rb, Rb′) (11)

where S(Rb, Rb′) is a similarity measure between the gene rank lists Rb and Rb′

for top n∗ genes in both lists. One of the popular measure to find similarities
between two gene lists is a Kuncheva index [35] given by

S(Rb, Rb′) =
|Rb
⋂
Rb′ | − n∗2/n

n∗ − n∗2/n
(12)

where n denotes total number of genes in a dataset and n∗ is the set of the top
genes. Kuncheva index has a range between [−1, 1] with large value indicating
large number of common genes between the subsets. A negative Kuncheva index
denotes an overlap between two subsets by chance. The term (n∗)2/n corrects
for a bias due to chance of selecting common features between two randomly
chosen subsets.

3.5 Redundancy Analysis

Apart from stability and performance in classification, we further evaluate gene
selection methods for their ability to select non-redundant genes. We use the
absolute value of Pearson’s correlation coefficient to estimate the redundancy
among top-ranked genes in a given dataset. In a gene rank list Rb, we first
measure a pair-wise correlation coefficient of top n∗ genes, resulting in a n∗×n∗

correlation matrix with each element representing pair-wise similarity. Using the
upper triangular matrix, we obtained average of absolute pair-wise correlations,
which represents redundancy among those n∗ top-ranked genes in rank list Rb.
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Table 2. Performance of T-score, SVM-RFE, SVt-RFE, and T-SS on Benchmark
Cancer Datasets

Dataset Method T-score SVM-RFE SVt-RFE T-SS

Colon # Genes 83 97 32 91
Accuracy 86.53 ± 9.00 83.47 ± 9.37 86.08 ± 9.44 87.12± 9.59

Significance . . . p < 0.001 . . .
Sensitivity 80.10 ± 19.08 74.35 ± 18.97 78.25 ± 17.84 80.90± 18.44
Significance . . . p < 0.001 p < 0.05
Specificity 90.00 ± 10.05 88.50 ± 11.47 90.37 ± 10.02 90.50± 10.22
Significance . . . p < 0.001 . . .

Leukemia # Genes 65 43 63 49
Accuracy 96.36 ± 4.72 96.65 ± 4.14 97.01 ± 4.09 97.00 ± 4.10

Significance p < 0.05 . . . . . .
Sensitivity 94.40 ± 11.04 95.00 ± 9.16 95.20 ± 9.04 95.40± 8.46
Significance . . . . . . . . .
Specificity 97.43 ± 4.83 97.54 ± 4.52 97.99 ± 4.18 97.88 ± 4.50
Significance . . . . . . . . .

Breast # Genes 57 97 87 99
Accuracy 86.17 ± 11.78 87.67 ± 11.02 87.97 ± 11.35 89.30± 10.77

Significance p < 0.001 p < 0.01 p < 0.05
Sensitivity 88.80 ± 13.13 91.20± 13.43 89.80 ± 13.48 89.20 ± 12.85
Significance . . . . . . . . .
Specificity 83.45 ± 19.07 84.15 ± 17.99 86.05 ± 18.82 89.45± 15.42
Significance p < 0.001 p < 0.001 p < 0.01

This value is averaged over the total number of gene rankings, i.e., number of
bootstrapped trials (B).

Mathematically, the average redundancy among top n∗ genes over B trials
can be given by,

Q =
1

B

B∑
b=1

2

n∗ (n∗ − 1)

n∗−1∑
i=1

n∗∑
i′=i+1

|ρ (xi, xi′ )| (13)

where |ρ (xi, xi′)| is absolute value of Pearson’s correlation coefficient between
expression values of gene i and i′. In a given dataset, the redundancy analysis is
performed over top 100 genes, obtained from various ranking methods.

3.6 Results

A comparison of classification performances of T-score, SVM-RFE, SVt -RFE,
and T-SS is shown in Table 2. The p-values shown gives the statistical signif-
icance of superior performance of T-SS over the other methods. The stability
and redundancy plots are depicted in Figure 1.

As seen, the performance of the proposed method is significantly better than
the gene ranking by T-score and SVM-RFE methods in at least two datasets. For
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Fig. 1. Plots of Stability and Redundacy against the number of selected genes on
benchmark expression datasets

breast cancer dataset, the proposed algorithm outperforms all the other meth-
ods. Importantly, the stability plots shows that the proposed method is more
stable than SVM-RFE and SVt -RFE methods for top-ranked genes. Comparing
redundancy, T-score gave highly redundant top-ranked genes while SVM-RFE
returned the least redundant genes. Genes from T-SS and SVt -RFE methods
have intermediate redundancy. The numbers of genes selected by T-SS were
higher in most cases.
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4 Discussion and Conclusion

This paper proposed a sample selection criterion using a modified logistic regres-
sion loss function and a backward elimination based gene ranking algorithm. The
method selects sample points iteratively before ranking genes using the T-score
in each iteration. The performance was evaluated on a number of benchmark
datasets and results showed not only promise in the classification results but
also the superior stability of the method.

For selection of samples, the approaches involving standard SVM, such as SVt -
RFE, are computationally expensive and involves computational complexity of
the order ofO(max(n,m)m2) [36]. If a single gene is removed in each iteration, we
need to train SVM for n number of times. On the other hand, selecting samples
on the margin with T-score by using an approximation to SVM lost function, the
speed is improved. A standard T-score have computational complexity of order
of O(nm) [36], so our proposed algorithm is approximate to this complexity
compared to SVM-RFE and SVt -RFE.

In two-class classification, as the standard T-score ranks genes independently,
it has the highest stability and no penalization for redundancy in gene selection
among the other methods tested in the experiments. As SVM-RFE does not
treat genes independently and penalizes for redundant genes [37], it is less stable
and robust to the variations of training samples. The proposed method not only
performs better in classification but retains independence among genes while
ranking. This leads to better stability compared to SVM based approaches. Fol-
lowing [37], the proposed sample selection criterion may induce some penaliza-
tion for the redundant genes. This is evident with reduced redundancy compared
to T-score method.

In conclusion, the proposed method is a simple yet efficient criterion for sam-
ple selection. Simultaneous sample and gene selection algorithms significantly
outperform both T-score and SVM-RFE methods on at least two benchmark
datasets. Along with better classification, the proposed method was computa-
tionally efficient and highly stable. This suggests that sample selection indeed
plays an important role in gene selection. As future of this work, one may want
to penalize for redundancy among genes in the cost function as it would improve
the stability and performance of tissue classification.

Acknowledgments. This work is supported by a AcRF Tier 2 grant MOE2010-
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Abstract. Non-negative matrix factorization and sparse representation models
have been successfully applied in high-throughput biological data analysis. In
this paper, we propose our versatile sparse matrix factorization (VSMF) model
for biological data mining. We show that many well-known sparse models are
specific cases of VSMF. Through tuning parameters, sparsity, smoothness, and
non-negativity can be easily controlled in VSMF. Our computational experiments
corroborate the advantages of VSMF.

Keywords: versatile sparse matrix factorization, non-negative matrix factoriza-
tion, sparse representation,feature extraction, feature selection, biological pro-
cesses identification.

1 Introduction

Non-negative matrix factorization (NMF) [10] and the wider concept – sparse repre-
sentation (SR) [6] are sparse matrix factorization models that decompose a matrix into
a basis matrix and coefficient matrix. They have been applied in many fields of bioinfor-
matics including clustering [3] and biclustering [4], sample prediction [15], biological
process identification [9], and transcriptional regulatory network inference [16]. Many
variants of NMF and SR have been invented for various situations. Semi-NMF is pro-
posed in [5] for data of mixed signs. Sparse NMF is introduced to guarantee sparse
results [8]. We propose kernel NMF in [13] to deal with nonlinearity in microarray
data. Kernel NMF also works for relational data. Negative values are allowed in the co-
efficient matrix of l1-regularized sparse representation (l1-SR) models [15]. However,
the following challenges have not been well addressed. First, an unified model is very
necessary for these variants from both theoretical and practical perspectives. Second,
sparsity is usually constrained on the coefficient matrix and the sparsity of basis matrix
is not guaranteed in most sparse models. Third, l1-norm is the most popular way to
induce sparsity. However, it does not guarantee that a group of correlated variables can
be selected or discarded simultaneously.

In this paper, in order to address these challenges, we propose our versatile sparse
matrix factorization (VSMF) model. The contributions of this study includes
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1. With its six parameters, VSMF can easily control sparsity, smoothness, and non-
negativity on both basis matrix and coefficient matrix. VSMF is thus a generic
model. The standard NMF, semi-NMF, sparse NMF, kernel NMF and l1-SR models
are specific cases of VSMF.

2. We devise multiplicative update rules and active-set algorithms for the optimiza-
tion of VSMF. Analytical solutions, which are useful for kernelization, are also
discussed.

3. We demonstrate the usefulness of VSMF in bioinformatics.

The rest of this paper is organized as follows: We first summarize the variants of NMF
or SR models in Section 2. Next, we present our VSMF model and its optimization
in Section 3. After that, several biological applications of VSMF are demonstrated in
Section 4. Finally, we draw our conclusions and mention future works.

2 Related Work

Hereafter, we use the following notations. The training set is denoted by [d1, · · · ,dn] =
D ∈ Rm×n, where m and n are the numbers of features and samples respectively. The
basis matrix is represented as [a1, · · · ,ak] = A ∈ Rm×k, where k < min{m,n} is the
number of basis vectors (or factors). The coefficient matrix is denoted by [y1, · · · ,yn] =
Y ∈ Rk×n. Given D, the task of sparse matrix factorization is to find A and Y such
that D ≈ AY , where at least one factors among A and Y should be sparse.

For the convenience of discussion, we summarize the existing sparse matrix fac-
torization models in Table 1. It is impossible to enumerate all existing works in this
direction, therefore all models mentioned in this table are the most representative ones.
The training data D must be non-negative for the standard NMF and sparse NMF. For
sparse NMF, α and λ are two non-negative parameters. For kernel NMF and l1-SR,
φ(·) is a function that maps the training samples into a high-dimensional feature space.
φ(D) is the training samples in this feature space. Aφ is the basis matrix in this feature
space.

Table 1. The Existing NMF and SR Models

NMF/SR Equations
Standard NMF [10] minA,Y

1
2
‖D −AY ‖2F s.t. A,Y ≥ 0

Semi-NMF [5] minA,Y
1
2
‖D −AY ‖2F s.t. Y ≥ 0

Sparse NMF [8] minA,Y
1
2
‖D −AY ‖2F + α

2

∑k
i=1‖ai‖22 + λ

2

∑n
i=1‖yi‖21 s.t. A,Y ≥ 0

Kernel NMF [13, 15] minAφ,Y
1
2
‖φ(D)−AφY ‖2F + α

2

∑k
i=1‖φ(ai)‖22 + λ

2

∑n
i=1‖yi‖1 s.t. Y ≥ 0

l1-SR [15] minAφ,Y
1
2
‖φ(D)−AφY ‖2F + α

2

∑k
i=1‖φ(ai)‖22 + λ

2

∑n
i=1‖yi‖1

3 Method

In this section, we first present our versatile sparse matrix factorization model. Then,
we give optimization algorithms for this model.



Versatile Sparse Matrix Factorization 93

3.1 The Versatile Sparse Matrix Factorization Model

Our versatile sparse matrix factorization (VSMF) model can be expressed in the fol-
lowing equation:

min
A,Y

f(A,Y ) =
1

2
‖D −AY ‖2F +

k∑
i=1

(
α2

2
‖ai‖22 + α1‖ai‖1)

+

n∑
i=1

(
λ2

2
‖yi‖22 + λ1‖yi‖1) (1)

s.t.

{
if t1 = 1 A ≥ 0

if t2 = 1 Y ≥ 0
,

where parameter α1 ≥ 0 controls the sparsity of the basis vectors, parameter α2 ≥ 0
controls the smoothness and scale of the basis vectors, parameter λ1 ≥ 0 controls the
sparsity of the coefficient vectors, parameter λ2 ≥ 0 controls the smoothness of the
coefficient vectors, parameters t1 and t2 are boolean variables (0: false, 1: true) that
indicate if non-negativity should be enforced on A and Y , respectively.

One advantage of VSMF is that both l1 and l2-norms can be used on both basis ma-
trix and coefficient matrix. In VSMF, l1-norms are used to induce sparse basis vectors
and coefficient vectors. However, the drawback of l1-norm is that correlated variables
may not be simultaneously non-zero in the induced sparse result. This is because l1-
norm is able to produce sparse but non-smooth result. It is known that l2-norm is able
to obtain smooth but not sparse result. Combining both norms has been proven that
correlated variables can be selected or removed simultaneously [18]. In addition to the
smoothness of l2-norm, another benefit of l2-norm is that the scale of each vector can
be restricted. This can avoid the scale interchange between the basis matrix and coeffi-
cient matrix. Another advantage of VSMF is that the non-negativity constraint can be
switched off/on for either basis matrix or coefficient matrix. If the training data are non-
negative, it is usually necessary that the basis matrix should be non-negative as well.
In some situations, non-negativity is also needed on the coefficient matrix for better
performance and better interpretation.

It can be easily seen that the standard NMF, semi-NMF, and sparse-NMFs are special
cases of VSMF. If α1 = α2 = λ1 = λ2 = 0 and t1 = t2 = 1, VSMF is reduced to the
standard NMF proposed in [10]. If α1 = α2 = λ1 = λ2 = 0 and t1 = 0 and t2 = 1,
then VSMF becomes semi-NMF proposed in [5]. If α1 = λ2 = 0, α2, λ1 �= 0, and
t1 = t2 = 1, then VSMF is equivalent to the sparse-NMF proposed in [8]. When α1 is
set to zero, VSMF can be kernelized [15].

Sparse matrix factorization is a low-rank approximation problem. The number of
ranks, that is k, is crucial for good performance of an analysis. Selecting k is still an
open problem in both statistical inference and machine learning. We propose an adap-
tive rank selection method for VSMF. We base our idea on the sparsity of columns of A
and Y . We first set k to a relatively large integer. During the optimization of VSMF, if
a column of A or a row of Y is null due to the sparsity controlled by the corresponding
parameters, then both of the column of A and the row of Y corresponding to this null
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factor are removed. Therefore k is reduced. When the optimization terminates, we can
obtain the correct k corresponding to the current sparsity controlling parameters.

3.2 Optimization

Like most of NMF and SR models, the optimization of VSMF is non-convex. The most
popular scheme to optimize these models are the block-coordinate descent method [2].
The basic idea of this scheme is in the following. A and Y are updated iteratively and
alternatingly. In each iteration, A is updated while keeping Y fixed; then A is fixed
and Y is updated. Based on this scheme, we devise the multiplicative update rules and
active-set algorithms for VSMF. These two algorithms are given below.

Multiplicative Update Rules. If both A and Y are non-negative, we can equivalently
rewrite f(A,Y ) in Equation (1) to

1

2
‖D −AY ‖2F +

α2

2
tr(ATA) + α1tr(ET

1A) +
λ2

2
tr(Y TY ) + λ1tr(ET

2Y ), (2)

where E1 ∈ {1}m×k, and E2 ∈ {1}k×n. Fixing A, updating Y can hence be ex-
pressed as

min
Y

f(Y ) =
1

2
‖D −AY ‖2F +

λ2

2
tr(Y TY ) + λ1tr(ET

2Y ) (3)

s.t. Y ≥ 0.

Similarly, Fixing Y , updating A can be expressed as

min
A

f(A) =
1

2
‖D −AY ‖2F +

α2

2
tr(ATA) + α1tr(ET

1A) (4)

s.t. A ≥ 0.

We design the following multiplicative update rules for VSMF model in the case of
t1 = t2 = 1: {

A = A ∗ DY T

AY Y T+α2A+α1

Y = Y ∗ ATD
ATAY +λ2Y +λ1

, (5)

where A ∗ B and A
B are element-wise multiplication and division between matrix A

and B, respectively. This algorithm is a gradient-descent based method. Both rules are
derived in the following.

For Equation (3), the first-order update rule of Y should be generally

Y = Y − η2 ∗
∂f(Y )

∂Y
. (6)

where matrix η2 is step. We take the derivative of f(Y ), in Equation (3), with respect
to Y :

∂f(Y )

∂Y
= ATAY −ATD + λ2Y + λ1E2. (7)
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And we let the step η2 to be

η2 =
Y

ATAY + λ2Y + λ1E2

. (8)

Substituting Equations (7) and (8) into Equation (6), we have

Y = Y ∗ ATD

ATAY + λ2Y + λ1E2

. (9)

Similarly, for Equation (4), the first-order update rule of A should be generally

A = A− η1 ∗
∂f(A)

∂A
. (10)

We take the derivative of f(A), in Equation (4), with respect to A:

∂f(A)

∂A
= AY Y T −DTY + α2A+ α1E1. (11)

And we let the step to be

η1 =
A

AY Y T + α2A+ α1E1

. (12)

Substituting Equations (11) and (12) into Equation (10), we have

A = A ∗ DY T

AY Y T + α2A+ α1

. (13)

If we let α1 = α2 = λ1 = λ2 = 0, then the update rules in Equations (5) becomes
the update rules of the standard NMF [11]. We can find that enforcing sparsity and
smoothness on both basis matrix and coefficient matrix does not increase the time-
complexity.

Active-Set Quadratic Programming. The multiplicative update rules above only
works under the condition that both A and Y are non-negative. We devise active-set
algorithms which allow us to relax the non-negativity constraints. We now show that
when t1( or t2) = 1, A (or Y ) can be updated by our active-set non-negative quadratic
programming (NNQP) algorithm; when t1( or t2) = 0, A (or Y ) can be updated by our
active-set l1-regularized QP (11QP) algorithm.

If t2 = 1, the objective in Equation (3) can be rewritten as:

f(Y ) = tr(
1

2
Y TATAY +

1

2
DTD −DTAY +

λ2

2
Y TY + λ1E

T
2Y )

= tr(
1

2
Y T(ATA+ λ2I)Y + (λ1E

T
2 −DTA)Y +

1

2
DTD)

=

n∑
i=1

1

2
yT
iH2yi + gT

(2)iyi +
1

2
dT
i di, (14)
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where H2 = ATA+λ2I , and g(2)i = λ1 −ATdi and G(2) = λ1 −ATD. Therefore,
we can see that updating non-negative Y is multiple NNPQ problem. We proposed a
parallel active-set algorithm for NNQP in [15]. This algorithm can be used to solve the
problem in Equation (14).

If t2 = 0, the objective of updating Y can be reformulated as:

f(Y ) = tr(
1

2
Y TATAY +

1

2
DTD −DTAY +

λ2

2
Y TY ) + λ1‖Y ‖1

= tr(
1

2
Y T(ATA+ λ2I)Y + (−DTA)Y +

1

2
DTD) + λ1‖Y ‖1

=

n∑
i=1

1

2
yT
iH2yi + gT

(2)iyi + λ1‖yi‖1+
1

2
dT
i di, (15)

where H2 = ATA + λ2I , and g(2)i = −ATdi and G(2) = −ATD. This is a l1QP
problem which can be solved by our active-set l1QP algorithm proposed in [15].

Similarly, if t1 = 1, f(A) in Equation (3) can be expressed as

f(A) = tr(
1

2
AY Y TAT +

1

2
DTD −DY TAT +

α2

2
AAT + α1E

T
1A)

= tr(
1

2
A(Y Y T + α2I)A

T + (α1E
T
1 −DY T)AT +

1

2
DDT)

=
m∑
i=1

1

2
wT

iH1wi + gT
(1)iwi +

1

2
Di,:(D

T):,i, (16)

where W = AT, H1 = Y Y T +α2I , g(1)i = α1−Y (DT):,i and G(1) = α1−Y DT.
Again, it can be seen that this problem is also a NNQP problem.

If t1 = 0, the objective of updating A can be written as

f(A) = tr(
1

2
AY Y TAT +

1

2
DTD −DY TAT +

α2

2
AAT) + α1‖A‖1

= tr(
1

2
A(Y Y T + α2I)A

T + (−DY T)AT +
1

2
DDT) + α1‖AT‖1

=
m∑
i=1

1

2
wT

iH1wi + gT
(1)iwi + α1‖wi‖1+1

2
Di,:(D

T):,i, (17)

where W = AT, H1 = Y Y T + α2I , g(1)i = −Y (DT):,i and G(1) = −Y DT. This
is also a l1QP problem that can be solved by our active-set l1QP algorithm [15].

Analytical Solutions and Kernelization. If t2 = 0 and λ1 = 0, from ∂f(Y )
∂Y = 0, Y

can be updated analytically:

Y = (ATA+ λ2I)
−1ATD = A‡D. (18)

From the previous section, we can see that only Y Y T and Y DT are required to update
A. According to Equation (18), Y Y T and Y DT can be expressed as
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Y Y T = A‡DDT(A‡)T. (19)

Y DT = A‡DDT. (20)

We can see that in this situation, updating A only requires the previous value of A and
the inner products of rows of D.

Similarly, if t1 = 0 and α1 = 0, A can be updated analytically:

A = DY ‡, (21)

whereY ‡ = Y T(Y Y T+α2I)
−1. From the previous section, we know that updatingY

only requires the inner products ATA and ATD. They can be updated by the following
equations:

ATA = (Y ‡)TDTDY ‡. (22)

ATD = (Y ‡)TDTD. (23)

Due to the analytical solution of A, updating Y only requires the previous value of Y
and the inner products of columns of D.

These analytical solutions have two advantages. First, the corresponding matrix can
be easily updated without resorting to any numerical solver. Second, we can see that
only inner products are needed to update Y (or A), when A (or Y ) can be analytically
obtained. Using this property, we can obtain the kernel version of VSMF, which are
described in the following. In sparse representation, at least one matrix among A and
Y must be sparse. That is the analytical solutions in Equations (18) and (21) can not
be used simultaneously. In practice, if each column of the training data D is the object
to be mapped in high-dimensional feature space, we can analytically update ATA (or
the corresponding kernel version k(A,A) = (φ(A))Tφ(A) where k(·, ·) is a kernel
function corresponding to φ(·)) and ATD (or k(A,D) = (φ(A))Tφ(D)), and then
update Y via a numerical solver described in the previous section. This leads to the
kernel sparse representation proposed in [15]. Alternatively, if each row of D is the
object to be mapped in high-dimensional feature space, Y Y T and Y DT should be
updated analytically, then A is updated by a solver given in the previous section. This
leads to an alternative kernel sparse representation model.

4 Computational Experiment

Sparse matrix factorization has a wide ranges of applications in biological data analysis.
Technically speaking, these applications are based on clustering, biclustering, feature
extraction, classification, and feature selection. In this paper, we give three examples
to show that promising performance can be obtained by VSMF for feature extraction,
feature selection, and biology process identification. For other applications of NMF,
please refer to [14].
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4.1 Feature Extraction and Classification

NMF is a successful feature extraction method in bioinformatics [12]. Dimension re-
duction including feature extraction and feature selection is an important step for classi-
fication. We compared the performance of our VSMF (for feature extraction) with NMF
on a popular microarray gene expression data – Colon [1]. This data set has 2000 genes
(features) and 62 samples. There are two classes in this data set. Each sample is normal-
ized to have unit l2-norm. We employed 4-fold cross-validation to split the whole data
into training and test sets. For each split, features were extracted by NMF or VSMF
from the training set. The nearest neighbor (NN) classifier was used to predict the class
labels of the test set. 4-fold cross-validation was repeated for 20 times. We initialized
k = 8, thus the actual value of k, after calling VSMF, should be less than or equal to 8.
Radial basis function (RBF) is used in the kernel VSMF. We set the kernel parameter
σ = 20. The mean accuracy, standard deviation (STD), computing time, and parameter
setting are given in Table 2. The standard NMF obtained a mean accuracy of 0.7645,
while the linear VSMF yielded 0.7919. The highest accuracy, 0.7944, is obtained by
the kernel VSMF. The kernel VSMF only took 1.3346 seconds, which is faster than the
linear VSMF and NMF, because the analytical solution of A can be computed for ker-
nel VSMF. We treat this comparison as a demonstration that tuning the parameters of
VSMF may obtain better accuracy than NMF. VSMF can be used for many other types
of high-throughput data such as copy number profiles and mass spectrometry data.

Table 2. The Classification Performance of VSMF Compared to The Standard NMF. The time is
measure by stopwatch timer (the tic and toc functions in MATLAB) in seconds.

Method Accuracy (STD) Time Parameters
NN 0.7742(0.0260) 0.0137
NMF+NN 0.7645(0.0344) 4.3310
Linear VSMF+NN 0.7919(0.0353) 3.1868 α2 = 2−3, λ1 = 2−6, t1 = t2 = 1

Kernel VSMF+NN 0.7944(0.0438) 1.3346 α2 = 2−3, λ1 = 2−6, t1 = t2 = 1, σ = 20

4.2 Feature Selection

VSMF can be applied to feature selection. The basic idea is to make the basis vectors
sparse, and then select features that vary dramatically among the basis vectors. In our
current study of gene selection, we use the following strategy on the sparse basis matrix
A. For the i-th row (that is the i-th gene), We denote gi = Ai,:. If the maximum
value in gi is greater than θ = 104 times of the rest values in gi, then we select this
gene, otherwise discard it. We tested this VSMF-based feature selection method on a
microarray breast tumor data set which have 13582 genes and 158 samples from five
classes [7]. The data were normalized so that each gene has mean zero and STD 1. We
used the following parameters of VSMF: α1 = 24, α2 = 20, λ1 = 0, λ2 = 20, t1 = 0,
and t2 = 1. The value of k was initialized by 5. The genes selected were validated
by classification performance. We employed 20 runs of 4-fold cross-validation. For
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each split of training and test sets, genes were selected using the training set. On the
dimension-reduced training set, a linear support vector machine (SVM) was learned
in order to predict the class labels of the corresponding test set. When using all genes
to training SVM, we obtained a mean accuracy of 0.8250 with STD 0.0201. When
applying the VSMF-based gene selection, we achieved a mean accuracy of 0.8271 with
STD 0.0174. We can see that SVM using our gene selection strategy can obtain similar
performance with that of using all genes.

4.3 Biological Process Identification

NMF has been applied on either static gene-sample or time-series microarray data to
identify potential biological processes [8, 9, 16, 17]. In our experiment, we run our
VSMF on the Gastrointestinal stromal tumor (GIST) time-series data to show that
VSMF can smooth biological processes compared with the result obtained by the stan-
dard NMF. This data set was obtained after the treatment of imatinib mesylate. It has
1336 genes and 9 time points. Each gene time-series is normalized to have unit l2-
norm. The smoothness is controlled by parameter α2. We set the parameters of VSMF
to α2 = 2−2, λ1 = 2−8, α1 = λ2 = 0, and t1 = t2 = 1. The number of factors k was
set to 3. The basis vectors of NMF and VSMF are shown at the left and right sides of
Fig. 1, respectively. We can see that both of them can reconstruct the falling, rising, and
transient patterns identified in [16]. The patterns obtained by VSMF are smoother than
those of the standard NMF.
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Fig. 1. The Biological processes identified b the standard NMF (left) and VSMF (right). The
result of VSMF is smoother than that of the standard NMF.

5 Conclusions

In this paper, we propose a versatile sparse matrix factorization (VSMF) model for
biological data analysis. VSMF is a unified model of many variants of NMF and SR.
We give efficient optimization algorithms for VSMF. As shown in our computational
demonstrations, many analysis can be conveniently conducted by VSMF for biological
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data. The implementation of VSMF can be found in our open-source MATLAB NMF
toolbox [14]. The multiplicative-update-rules based VSMF is implemented in function
sparsenmf2rule and the function vsmf includes the implementation of NNQP,
l1QP, and analytical solutions.

We present our on-going work on VSMF in this paper. There remains many interest-
ing challenges in its theoretical and practical aspects. First, there are four key param-
eters, in the objective of VSMF, which provide flexibility, while rise concerns on the
model selection. The two parameters in the constraints can be determined by the signs
of a data set. We are working on a guide of parameter selection for VSMF which can be
easily tailored for various applications. The value of k is also related with the sparsity,
thus we need further investigation on it. Second, increasing the value of α1 leads to
a more sparse basis matrix. This is very helpful for feature selection. We will investi-
gate more effective feature selection method using VSMF. The performance of VSMF
for feature selection will be compared statistically with existing approaches. The genes
selected will be validated by permutation test and gene set enrichment analysis.
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Abstract. Secondary structure prediction (with or without pseudoknots)
of an RNA molecule is a well-known problem in computational biology.
Most of the existing algorithms have an assumption that each nucleotide
can interact with at most one other nucleotide. This assumption is not
valid for triple helix structure (a pseudoknotted structure with tertiary
interactions). As these structures are found to be important in many bio-
logical processes, it is desirable to develop a prediction tool for these struc-
tures. We provide the first structural prediction algorithm to handle triple
helix structures. Our algorithm runs in O(n3) time where n is the length
of input RNA sequence. The accuracy of the prediction is reasonably high,
with average sensitivity and specificity over 80% for base pairs, and over
70% for tertiary interactions.

1 Introduction

Prediction of a pseudoknotted secondary structure (base pairs crossing each
other) of an RNA molecule is NP-hard in general [1]. In practice, the project
focus on restricted classes of pseudoknots that are found in nature. Examples
of these prediction algorithms include [1–7]. All these existing methods have an
assumption that each nucleotide can interact with at most one nucleotide in the
RNA. However, if tertiary interaction (where some single stranded nucleotides
also form hydrogen bonds with nucleotides in base pairs) is considered, this
assumption may not hold. Triple helix structure in ncRNA is a pseudoknotted
structure with tertiary interaction. Figure 1 shows an example of a triple helix
structure. Triple helix structures exist in yeast and human telomerase, and are
found to be essential in quite a few biological processes (e.g. chromosome stability
in stem cells, germline cells and cancer cells [8–10]; ribosomal frameshifting [11,
12]).

There are only two recent results [13, 14] that consider tertiary interactions.
Siederdissen et al. provided a folding algorithm for RNA secondary structures
which consider tertiary interactions inside only a regular structure (one without
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pseudoknots) while Wong et al. considered a structural alignment problem for
RNA secondary structures with standard triple helix structure (tertiary inter-
actions inside a simple pseudoknot). In this paper, we provide the first RNA
secondary structure prediction algorithm for tertiary interactions over pseudo-
knots and focus on the standard triple helix structure defined in [14].

Fig. 1. (a) Triple helix in beet western yellows virus pseudoknot [11]. Blue lines rep-
resent the secondary structure. Red lines represent the tertiary interactions between
single stranded nucleotides (according to the secondary structure) and base pairs. (b)
and (c) Detailed view of some tertiary interactions in the structure [11]. (d) A stan-
dard triple helix structure. (e) Adjoining interaction between one active tree and one
adjunct tree in simple tree adjoining grammar (STAG). The * indicates an active node.
The active node X is replaced by the whole tree β.

We employ a machine learning approach (similar to the approach used by
[15]) as follows to solve the problem. We define a grammar, which for any given
RNA sequence, generate different possible secondary structures of the sequence.
Based on some training datasets (the RNA sequences with known secondary
structures), we assign probability to each grammar rule. Then, for each RNA se-
quence with unknown secondary structure, we can derive the optimal secondary
structure (the one with the highest probability). Our contributions include the
following. Existing grammars cannot handle standard triple helix structures.
Based on the simple tree adjoining grammar (STAG) defined by [7] that can
handle pseudoknots, we provide an extended version to cover the standard triple
helix structures. Since STAG is an ambiguous grammar (i.e. there can be more
than one derviation forming the same structure), we remove the ambiguity by
introducing some restrictions on the grammar. Finally, we develop a dynamic
programming algorithm that runs in O(n3) time, where n is the length of the
input RNA sequence, to report the most probable structure1 based on the prob-
ability measures. According to our experiments, the performance of our tool is

1 The tool can be modified to report the top x possible structures, but for simplicity,
we only consider the most probable structure in all our experiments.
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reasonably good (with average sensitivity and specificity higher than 80% for
base pairs and over 70% for tertiary interactions) when it is used for prediction
of triple helix structures.

2 Standard Triple Helix

Based on [14], the formal definition of a standard triple helix is listed as follows.
Let A = a1a2 . . . an be a length-n RNA sequence. Let M be the set of base
pairs denoted as M = {(i, j) | 1 ≤ i < j ≤ n, (ai, aj) is a base pair}. The
tertiary interactions P of A are defined as follows. The interaction of the base
pair (i, j) and the single stranded nucleotide k is denoted as (i, j) ∗ k. That is,
P = {(i, j) ∗ k | (i, j) ∈ M,ak is a single stranded nucleotide and interacts with
(ai, aj)}. Then, H = (M,P ) is referred as the triple helix structure of A.

The secondary structure still obeys the rule that no two base pairs share
the same position. That is, for any (i1, j1), (i2, j2) ∈ M , i1 �= j2, i2 �= j1,
and i1 = i2 if and only if j1 = j2. However, the tertiary interactions do not
follow this rule, so that for any (i1, j1) ∗ k1, (i2, j2) ∗ k2 ∈ P , if i1 = i2 and
j1 = j2, it does not imply k1 = k2; also, if k1 = k2, it does not imply i1 = i2
and j1 = j2. H = (M,P ) is a standard triple helix structure, as illustrated in
Figure 1(d), if ∃x1, x2(1 ≤ x1 < x2 ≤ n), so that base pairs in M can be
partitioned into two groups R1 = {(i, j) ∈ M | 1 ≤ i < x1 ≤ j < x2} and
R2 = {(i, j) ∈ M | x1 ≤ i < x2 ≤ j ≤ n}, and H satisfies the following.

(1) For any two base pairs (i1, j1), (i2, j2) ∈ Rk, k = 1 or 2, either i1 < i2 < j2 <
j1 or i2 < i1 < j1 < j2. That is, the base pairs in the same group do not cross.
We say M forms a simple pseudoknot structure.
(2) For any (i, j) ∗ k ∈ P , if (i, j) ∈ R1, then x2 ≤ k ≤ n and �(i′, j′) ∈ R2 such
that j ≤ i′ ≤ k ≤ j′ or i′ ≤ j ≤ j′ ≤ k. This is to ensure that k is from a region
outside that of R1, and there does not exist base pairs in R2 crossing with the
tertiary interaction. Similarly, if (i, j) ∈ R2, then 1 ≤ k < x1 and �(i′, j′) ∈ R1

such that k ≤ i′ ≤ i ≤ j′ or i′ ≤ k ≤ j′ ≤ i.
(3) For any (i1, j1) ∗ k1, (i2, j2) ∗ k2 ∈ P , if (i1, j1), (i2, j2) ∈ R1, then i1 ≤ i2 ⇔
k1 ≤ k2, i2 ≤ i1 ⇔ k2 ≤ k1. This is to ensure that if the same single stranded
nucleotide interacts with two base pairs, the interactions do not cross. Similarly,
if (i1, j1), (i2, j2) ∈ R2, then j1 ≤ j2 ⇔ k1 ≤ k2, j2 ≤ j1 ⇔ k2 ≤ k1.

3 Method

3.1 Simple Tree Adjoining Grammar

Simple Tree Adjoining Grammar (STAG) is a tree-based grammar for the gen-
eration of strings. The basic idea is to start with an initial tree, and then by
repeatedly replacing some internal node of the current tree with another tree,
bases or base pairs can simultaneously be added to the string that the tree
represents. STAG can be used to predict pseudoknotted structures [7].
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Let V be a finite set of alphabets and Σ be the terminal alphabet where
Σ ⊂ V . Let γ be a tree over V such that (1) each internal node must be labeled
with a nonterminal; (2) each leaf node can be labeled with a terminal or a
nonterminal symbol; (3) each internal node can have any number of children;
and (4) each node has a state, either active or inactive. A tree is simple and
active if there is only one internal node active.

Let Y (γ) (i.e. yield of a tree rooted at γ) be the string of labels of the leaf
nodes of γ from top to bottom and from left to right. Precisely, it is defined as
follows (let γ1,γ2,...,γn be the children of γ):

Y (γ) =

{
label of γ // if γ is a leaf node

Y (γ1)Y (γ2)...Y (γn) // otherwise

In STAG, a tree β is an adjunct tree if: (1) there are only leaves labeled with
nonterminal symbols; (2) there is only one internal node active; (3) the active
internal node is along the backbone. The backbone is the path from the root to
the leaf with nonterminal symbol.

A simple active tree α can be adjoined by an adjunct tree β and form a
new tree denoted by α + β. The adjoining interaction consists of the following
operations (as shown in Figure 1e): (1) the active node in α is replaced by the
tree β; and (2) the children of the active node in α become the children of the
leaf with nonterminal symbol in β.

Definition 1. G(C,A) is defined as Simple Tree Adjoining Grammar, where
C is a set of trees, all trees inside are simple and active, their yields are empty
strings,and A is a set of adjunct trees.

A tree γ is a derived tree of G (where the set of the derived trees of G is
denoted as D(G)) if either of the following constraints is satisfied (which is a
recursive definition): (1) γ = α + β for α ∈ C, β ∈ A. (2) γ = d + β for
d ∈ D(G), β ∈ B.

The language of G (denoted as L(G)) is defined as follows: L(G) = {w|w =
Y (d) where d ∈ D(G)}.

3.2 Structural Prediction for Triple Helix

To model the generation of an RNA with triple helix structure, we set the center
tree and the adjunct trees as shown in Figure 2a. There is one center tree and
nine adjunct trees. Every adjunct tree will contribute at least one base to the
RNA sequence. More precisely, the trees TS1, TS2 and TS3 will produce a single
base, while TP1 and TP2 will produce a base pair. Similarly, the trees TSH1
and TSH2 are for producing a single base which has tertiary interaction with
an existing base pair, while the trees TPH1 and TPH2 are for producing a base
pair which has tertiary interaction with a single base. In the following, we will
describe these adjunct trees and how a triple helix structure is generated.

As shown in Figure 1e, the yield of an active tree can be viewed as the con-
catenation of three sequences: sequence S1 (i.e. a1a2...ai) which is from the
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Fig. 2. a) The center tree and the adjunct trees of STAG for modeling RNA triple
helix structure. The adjunct trees TS1, TS2 and TS3 generate single base. TP1 and
TP2 generate base pairs. TSH1 and TSH2 generate single bases which interact with
existing base pairs. TPH1 and TPH2 generate base pairs which interact with existing
single bases. b) An example of generation of an RNA with triple helix structure by
using STAG.

left part of the tree excluding the subtree of the active node; sequence S2 (i.e.
b1b2...bj) which is from the subtree rooted at the active node; and sequence S3

(i.e. c1c2...ck) which is from the right part of the tree excluding the subtree of
the active node. And by using the set of adjunct trees in Figure 2a, sequence S3

is always an empty string, because none of the adjunct trees contribute any base
to the sequence S3. An RNA sequence can be viewed as the concatenation of S1

and S2 (as in Figure 1(d)), where S1 represents the region [1, x1 − 1] while S2

represents the regions [x1, n]. The following lists out how the sequence S1 and
S2 be modified when the tree is adjoined by a different adjunct tree. There are
nine different operations (i.e one for each adjunct tree):

1. Adjoined by TS1: add a single base to the end of S1.

2. Adjoined by TS2: add a single base to the end of S2.

3. Adjoined by TS3: add a single base to the beginning of S2.

4. Adjoined by TP1: add a base pair with bases at the end of S1 and the beginning of

S2.

5. Adjoined by TP2: add a base pair with bases at the beginning and the end of S2.

6. Adjoined by TSH1: add a single base at the end of S1, which interacts with an

existing base pair whose bases are at the beginning and the end of S2, provided that

the beginning and the end of S2 are base pair.

7. Adjoined by TSH2: add a single base at the end of S2, which interacts with an

existing base pair whose bases are at the end of S1 and the beginning of S2, provided

that the end of S1 and the beginning of S2 are base pair.

8. Adjoined by TPH1: add a base pair whose bases are at the end of S1 and at the

beginning of S2, which interacts with the single base existing at the end of S2, provided

that the end of S2 is a single base.
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9. Adjoined by TPH2: add a base pair whose bases are at the beginning and the end

of S2, which interacts with the single base existing at the end of S1, provided that the

end of S1 is a single base.

By using the above nine operations, it can build up any RNA with standard
triple helix structure and any structure it comes up is a standard triple helix. An
example of the generation of a standard triple helix is shown in Figure 2b. Under
this model, different derivations may generate the same RNA sequence, but the
corresponding secondary structures may be different. We associate probabilities
for each tree operation (trained using real data); consequently, on given any input
RNA sequence A[1...n], we can report the derivation (and thus the corresponding
secondary structure) that is the most probable.

To simplify the model, we assume that the probability of applying a particular
tree p is independent of the current sequence, but depends on the previously
applied tree p′ and the bases involved in p. The probability of obtaining an
input RNA sequence A[1...n] with a particular secondary structure ζ is defined
to be the product of the probabilities of the applied trees for operation in the
corresponding derivation. To find out the most probable secondary structure ζ∗ is
equivalent to finding a ζ∗ with the maximum summation of the log values of the
corresponding derivation probabilities. Now, we define the following notations
and present the recurrences.

- M(i, j, k, p): the maximum score of the substructure A[1...i] ∪ A[j...k] of the se-
quence A if the last operation applied is p.

- ML(i, j, k, p): the maximum score of the substructure A[1...i] ∪ A[j...k] of the se-
quence A if the last operation applied is p and (i, j) is a base pair.

- MR(i, j, k, p): the maximum score of the substructure A[1...i] ∪ A[j...k] of the
sequence A if the last operation applied is p and (j, k) is a base pair.

- MF (i, j, k, p): the maximum score of the substructure A[1...i] ∪ A[j...k] of the
sequence A if the last operation applied is p and i is a single base.

- MG(i, j, k, p): the maximum score of the substructure A[1...i] ∪ A[j...k] of the
sequence A if the last operation applied is p and k is a single base.

- score(p, p′, X): the score from previous operation p′ to the current operation p
with character set X. The scores are fixed in the parameter-tuning step of the method.

- charset(i, j, k, p): the base(s) involved when the current operation p is applied.

M(i, j, k, p) = max

⎧⎪⎨
⎪⎩
ML(i, j, k, p),MR(i, j, k, p),MF (i, j, k, p),MG(i, j, k, p)

// if p is operation 3, also check the following score

maxp′{M(i, j + 1, k, p′) + score(p, p′, charset(i, j, k, p))}

ML(i, j, k, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

// if p is operation 1, 3, 5, 6 or 9

−∞
// else if p is operation 2 or 7

maxp′{ML(i, j, k − 1, p′) + score(p, p′, charset(i, j, k, p))}
// else if p is operation 4

maxp′{M(i− 1, j + 1, k, p′) + score(p, p′, charset(i, j, k, p))}
// else if p is operation 8

maxp′{MG(i− 1, j + 1, k, p′) + score(p, p′, charset(i, j, k, p))}



108 B.-Y. Hsu et al.

The recurrence of MR(i, j, k, p) is analogous to that of ML(i, j, k, p). And the
recurrence of MF (i, j, k, p) and MG(i, j, k, p) are similar too. The desired deriva-
tion corresponds to the entry among M(i, i+1, n, p), for all possible i and p, that
contains the maximum value. Once this entry is known, it is straightforward to
obtain the corresponding secondary structure ζ∗ by backtracking. By performing
dynamic programming, each entry of M(i, j, k, p), ML(i, j, k, p), MR(i, j, k, p),
MF (i, j, k, p), and MG(i, j, k, p) can be computed in O(1) time based on the pre-
viously computed entries. As there are altogether O(n3) entries to be filled, the
time complexity of our prediction algorithm is O(n3).

A structural prediction grammar is ambiguous if there exists more than one
derivation forming the same secondary structure, and [16] showed that an am-
biguous grammar may not always report the optimal secondary structure cor-
rectly. The details of how the ambiguity of the grammar is removed is described
in Appendix I. The accuracy of the prediction algorithm largely depends on how
accurate the parameters score(p, p′, X) are. We only consider AU, UA, CG,
GC, GU and UG as the possible base pairs and also regard the score for the
operation with base pair AU (or CG or GU) is the same as that with base pair
UA (or GC or UG). After considering all these together with the restrictions
for preventing ambiguity, there are around 360 parameters score(p, p′, X) re-
quired to compute. We follow the maximum-likelihood approach mentioned by
[17] to tune the grammar by a set of RNA sequences with known triple helix
structures. score(p, p′, X) can be divided into two part: transition ap′→p is score
from previous operation p’ to the current operation p, and emission ep(X) is
score for X is involved in operation p. Since ambiguity is removed, operations
series for each training sequence are known. We count the number of times each
transition and emission, let these be Ap′→p and Ep(X). Then the maximum

likelihood estimators for ap′→p and ep(X) are given by ap′→p =
Ap′→p∑
l′ Ap′→l′

and

ep(X) =
Ep(X)∑
X′ Ep(X′)

With a set of training data, it takes O(n) time to calculate operation series for
each sequence, and O(1) time to calculate all maximum likelihood estimators.
For details, one may refer to [17].

4 Experimental Results

We implemented both the tuning and the prediction algorithms using C. There
are three RNA families from Rfam 9.1 database with triple helix structures:
RF00024, RF01050 and RF01074 (as listed in Table 1). The corresponding triple
helix structure of each family can be deduced from [8, 9, 11, 18]. In the first
experiment, we extracted the sequences of the triple helix regions of all the
seed members (in Rfam 9.1 database, for each family, there is a set of reliable
members that are regarded as seed members). It is found that the same model
can hardly work well for the RNAs with large length difference. Since the lengths
of the triple helix regions of the families RF00024 and RF01050 are similar, we
put all the sequences from these two families together as set D1, and the other
sequences as set D2.
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Table 1. The families with triple helix structures

Family ID # of seed members Ave. length of triple helix region

RF00024 37 118
RF01050 13 99
RF01074 4 28

Table 2. Performance of triple helix prediction on the RNA sequences in set D1 when
using 10-fold cross-validation approach

Group Base pairs Tertiary interactions Group Base pairs Tertiary interactions
Sen (%) Spec (%) Sen (%) Spec (%) Sen (%) Spec (%) Sen (%) Spec (%)

G1 90.5 89.6 76.2 88.9 G6 95.1 90.1 78.3 78.3
G2 81.3 77.1 72.2 76.5 G7 56.6 65.8 44.4 38.1
G3 97.1 90.3 88.9 88.9 G8 90.8 90.1 95.7 88.0
G4 79.5 76.5 38.5 71.4 G9 92.5 87.5 71.4 74.1
G5 86.8 87.5 73.9 77.3 G10 74.5 82.0 64.5 66.7

On average: for base pairs, sensitivity 84.5 and specificity 83.7
for tertiary interactions, sensitivity 70.4 and specificity 74.8

We use the 10-fold cross-validation approach to evaluate the accuracy of our
prediction tool. We evenly distributed all the sequences in the set D1 into ten
groupsG1, G2, . . . , G10 such that the ratios of the sequences from each family are
similar in each group. Next, we repeat the following procedure for each i from 1
to 10: We keep the group Gi aside, so that all the sequences as well as their cor-
responding triple helix structures from the other groups (i.e., D1\Gi) were used
for tuning our model; after that, the tuned model was used to predict the triple
helix structure of each of the sequences in group Gi, and the predicted structure
of each sequence was then compared with the corresponding real structure.

Our tool will report a set of base pairs as well as the tertiary interactions in the
given region. Table 2 shows the summary of the performance of our prediction
algorithm. Our method can predict the base pairs well with average sensitivity
84.5% and specificity 83.7%, and has a reasonable performance on the tertiary
interaction prediction with over 70% in both sensitivity and specificity. Figure 3a
shows an example of the predicted structure of the triple helix region of a se-
quence in family RF00024. The predicted structure is very similar to the real
structure. Only one base pair (15,49) and one tertiary interaction (22,42)*74 are
not predicted. Only one base pair (7,51) which should not exist is added.

For D2, all RNA sequences are from the same family RF01074. The triple
helix structures of the sequences are quite complex. There exist two or more
single bases having tertiary interactions with the same base pair, and also two
or more base pairs having tertiary interactions with the same single base. The
tuned model may be over-fitted due to the small number of sequences in this set,
but we still present the results here in order to show that our model is flexible
enough to handle such a complex triple helix structure. We used 4-fold cross-
validation technique in this set. For base pair prediction, the average sensitivity
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Fig. 3. a) Predicted triple helix region of sequence AF221906 of the family RF00024.
b) Predicted triple helix region of sequence AF473561 of the family RF01074.

and specificity is 97.5% and 87.8%, respectively. For tertiary interaction pre-
diction, the average sensitivity and specificity is 72.5% and 92.7%, respectively.
Figure 3b shows an example of the predicted structure of the triple helix region
for a sequence in the family RF01074. The predicted structure is very similar to
the real structure, despite that the triple helix structure is quite complex.

Table 3. Experiment on the whole pipeline for the family RF00024

Seq ID Annotated Reported Tertiary interaction Seq ID Annotated Reported Tertiary interaction
pseudoknot pseudoknot predicted pseudoknot pseudoknot predicted

region region by region region by
vsfold5 Sensitivity Specificity vsfold5 Sensitivity Specificity

AF221911 55-143 7-173 80% 80% AF221924 28-157 42-148 60% 60%
AF221913 63-148 52-148 100% 100% AF221932 63-183 50-184 80% 80%
AF221916 19-139 2-165 50% 50% AF221923 64-184 45-181 80% 80%
AF221926 55-138 51-172 80% 80% AF221929 50-169 70-181 80% 80%
AF221940 56-135 45-169 100% 20% AF221937 65-184 38-189 80% 80%
AF221934 60-155 48-184 100% 83% AF221909 33-151 53-161 60% 60%
AF221927 60-156 31-152 80% 80% AY058901 22-144 16-156 75% 75%
AF221910 62-151 74-197 100% 100% AC121792 22-144 20-160 75% 50%

On average: Sensitivity 80% Specificity 72%

In the second experiment, we try the whole pipeline for triple helix prediction
on RNA sequences. Given an RNA sequence, the pseudoknotted structure will
first be predicted by vsfold5 [19]. Then for those pseudoknotted regions reported
by the tools, our tool predicts the triple helix structure. The maximum length of
sequence vsfold5 supports is 450. The sequences in RF01050 are too long. Thus
we selected those not-too-long sequences in RF00024 for the experiment. The
pipeline is found to be feasible and quite effective (as shown in Table 3). On
average, the sensitivity is 80%, while the specificity is 72%.

5 Discussion and Conclusions

To further evaluate our algorithm on the distinguishing power between regions
containing a triple helix structure and those not containing one, we have selected
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the families with simple pseudoknot structures (and no reported triple helix
structures) as negative cases and it is found that our method can distinguish
between regions with or without triple helix structure reasonably well. Since
there are not much real data with known tertiary structures, further studies
include collecting more real data, conducting a more comprehensive evaluation
on the algorithm, and refining the grammar and the prediction algorithm to
cater for more types of triple helix structures.
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Appendix I : Removing the Grammar Ambiguity

A structural prediction grammar is ambiguous if there exists more than one
derivation forming the same secondary structure, and [16] showed that an am-
biguous grammar often could not report the optimal secondary structure cor-
rectly. Therefore, we have to remove the ambiguity of the grammar such that
each derivation can report a unique secondary structure.

First, there exist different operation series that come up with the same struc-
ture. For example, an operation 1 followed by an operation 2 would come up
the same structure as an operation 2 followed by an operation 1. As shown in
Figure 4a, we do not allow the operation series in right which produce the same
structure as the operation series in left. Also, some operation sequences are not
possible. For example, to perform operation 6, the beginning and the ending
bases of B have to be a base pair. Therefore, it is not possible for an operation 3
followed by an operation 6 (because after operation 3, a single base will be added
to the beginning of B). Figure 4b lists all of the cases.

Second, as one may notice, the positions of X1 and X2 may not be unique
according to the definition in Section 2. In order to avoid the ambiguity, as shown
in Figure 4c, we set the values of X1 and X2 as follows:

X1 = min{min j | (i, j) ∈ R1,min i | (i, j) ∈ R2}

X2 = max{max j | (i, j) ∈ R1,max i | (i, j) ∈ R2}+ 1

where R1 and R2 are sets of base pairs defined in Section 2.

Since S1 = [0...X1 − 1] and S2 = [X1...n]. Therefore, we have the following
restrictions:
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Fig. 4. a) The redundant operation series (in the right side of each equation). b) The
impossible operation series. c) To remove the ambiguity, we define the exact values of
X1 and X2.

1. S2 cannot start with any single base. Since 3 → 1 and 3 → 2 are not
allowed (see Figure 4a), we only need to restrict the operation 3 not being the
last operation.

2. X2 − 1 can be regarded as a center position of S2 (which means all bases
with positions ≤ X2−1 have to be added from the beginning of S2, and all bases
with positions > X2 − 1 are added from the end of S2) and the position X2 − 1
cannot be a single base. There are two cases: the base X2 − 1 belongs to a base
pair ∈ R1; or it belongs to a base pair ∈ R2. In case 1, the operation 4 should
be the first operation to add a base into S2 and that position would be X2 − 1.
In case 2, there should be no operation 3 until the operation 5 or 9 exists. The
left position of the base pair added would be X2 − 1. According to the Figure
4a, since 2 → 4 and 2 → 8 are not allowed, therefore: we only need to restrict
the operation 3 until the operation 4, 5 or 9 exists.

3. When R1 and R2 are empty, only operation 1 is allowed. i.e. When opera-
tions 4, 5, 8, 9 do not exist, only operation 1 can be the last operation.

4. If R2 is not empty, R1 has to be not empty too. i.e. If operation 5 or 9
exist, operation 4 or 8 has to exist before ends.

The above restrictions together with the restrictions listed in Figure 4 can
make the grammar become unambiguous. Different derivation reports a unique
secondary structure.
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Abstract. Protein structure prediction (PSP) suites can predict ‘near-
native’ protein models. However, not always these predicted models are
close to the native structure with enough precision to be useful for biolo-
gists. The literature to date demonstrates that one of the best techniques
to predict ‘near-native’ protein models is to use a fragment-based search
strategy. Another technique that can help refine protein models is local
optimisation. Local optimisation algorithms use the gradient of the func-
tion being optimised to suggest which move will bring the function value
closer to its local minimum. In this work we combine the concepts of
structural refinement through feature-based resampling, fragment-based
PSP, and local optimisation to create an algorithm that can create pro-
tein models that are closer to their native states. In experiments we
demonstrated that our new method generates models that are close to
their native conformations. For structures in the test set, it obtained an
average RMSD of 5.09 Å and an average best TM-Score of 0.47 when no
local optimisation was applied. However, by applying local optimisation
to our algorithm, additional improvements were achieved.

1 Background

A fundamental aspect to modern molecular research is being able to elicit the
three-dimensional structure of protein molecules. To date, there are roughly 20
million protein sequences stored in the UniProtKB/TrEMBL databases [1], but
approximately only 79,000 of these sequences have available solved structures.
Furthermore, it has been demonstrated that even a single amino acid substitution
in a protein sequence may result in significant changes in protein stability and
structure [2]. This makes it difficult for molecular and cell biologists who need
the three-dimensional structure of proteins for their research. Due to so many
proteins lacking solved structures, a lot of focus has been placed on improving
and developing new computational protein structure prediction (PSP) methods.

Computational PSP methods have been historically broken up into three cate-
gories. In comparative modelling [3], evolutionary related homologous templates
that have a high sequence similarity to the target sequence are identified. Then,
the target and templates are aligned to form a three-dimensional structure of the
target protein. Finally, this is completed by combining models for loop regions
and other segments that do not align properly between the template and target.
On the other hand, proteins that belong to different evolutionary classes can

A. Ngom et al. (Eds.): PRIB 2013, LNBI 7986, pp. 114–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Combining Protein Fragment Feature-Based Resampling 115

have similar structures too. Therefore, threading methods [4] have been devel-
oped to allow a query sequence to be mapped directly onto three-dimensional
structures of solved proteins. The main motivation here is to recognise folds that
are similar to the query even if no evolutionary relationship between the query
and the template protein is present. Finally, the last category, ab initio [5], is
used when the query sequence has no evolutionary related proteins in the tem-
plate library. This is the most challenging approach, and success is at present
limited to small proteins.

PSP has been tackled from numerous angles using one or more of the above
methods. Some of the most successful approaches for ab initio are techniques
that employ a fragment-based search strategy (e.g., Rosetta [6] or I-Tasser [7]).
Fragments are derived from protein structures stored in the Protein Data Bank
(PDB) based on the likelihood that a segment of the target protein chain will
fold into a similar motif that already exists within a structure deposited in the
PDB. This fragment-based approach has many benefits, for instance, by using
fragments, we can approximate the populated areas of the local potential energy
surface for the backbone of the protein structure. This stems from philosophy
that when a protein is folding, the local structure will switch between numerous
possible local conformations [8]. Therefore, each fragment can be considered a
possible candidate for a conformation of the local sequence, which allows an en-
ergy function to be used that does not explicitly calculate the local interaction
energy (the fragment selection method has already considered local interactions).
This simplification is helpful in the PSP process because calculating the inter-
action energy assumes that a correct potential energy surface is known, which
may not be the case. Finally, one of the main benefits of using a fragment-based
approach is that we can easily move a protein from one topological isomer to
another through a single fragment replacement. This ability can be looked at as
moving a protein from one local minimum on the local physical energy surface
to another, which is difficult to do in a more continuous based search method
like molecular dynamics due to the computational complexity of such a move.

Another technique that has been applied to the PSP problem to help improve
prediction accuracy is local optimisation. Local optimisation algorithms use the
gradient of the function being optimised to determine which move will bring the
function value closer to its local minimum. There are many different methods
that have been proposed for this purpose [9]. For example, linear minimisation
performs a single step based on the gradient, and after a number of recursive
invocations, it reaches the local minimum. Compared to other available methods,
it is considered rather slow. A variety of quasi-Newton methods were proposed
in order to tackle local optimisation more efficiently. Davidon-Fletcher-Powell
and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods are such examples. In
both cases, the descent’s direction and step is computed according to the gradient
and second derivatives of the function. The second derivatives are held in the
form of Hessian matrix which can be efficiently updated. The extra information
accumulated by these methods improves their efficiency, so that they converge
faster. Furthermore, inexact search modifications of these methods have also



116 T. Higgs, L. Folkman, and B. Stantic

been proposed. They converge even faster, however, they do not necessarily
reach the local minimum. Examples of these are Armijo rule and non-monotone
modifications. In the latter case, the function value can be temporarily increased
which may help escape shallow local minima. In another example, the limited
memory variation of the BFGS method (L-BFGS) [10], instead of storing the
whole Hessian matrix, only the vectors which represent the matrix implicitly are
held in the memory.

Due to the success that fragment-based techniques have had, and the impor-
tance of local optimisation to keep every predicted model at the bottom of its
energy basin, we combined both of these concepts to develop a PSP resampling
approach that should be able to produce more accurate models. To achieve this,
we carried out tests to identify which local optimiser performs the best and
incorporated this optimiser into a fragment feature-based resampling approach
which is discussed in more detail in the next section.

2 Methods

Local optimisation methods can be applied to the prediction process to guar-
antee that a PSP solution reaches the bottom of its energy basin. To deter-
mine the best local optimisation method for the PSP problem, we carried out
tests utilising five state-of-the-art algorithms: Linear Minimisation (Lin-Min),
Broyden-Fletcher-Goldfarb-Shanno (BFGS), BFGS Armijo (BFGS-A), BFGS
Armijo Non-monotone (BFGS-A-NM), and Limited Memory BFGS (L-BFGS).
To supplement these results and gauge the usefulness of local optimisation in
the protein structure resampling process, the most promising algorithm was ap-
plied to our newly created fragment feature-based resampling approach. This new
resampling algorithm builds on the concepts of our previous works [11–13].

In the next sections, our approach to analyse local optimisation techniques and
our newly developed fragment feature-based resampling algorithm, which was
designed to generate good starting points for local optimisation, are explained.

2.1 Local Optimisation

To identify which local optimisation methods perform well on the PSP problem,
128 native protein structures were selected and small random perturbations were
applied to them in order to observe how successfully the local optimisers could
guide these structures back to their native conformations. These native proteins
structures were obtained from the CASP 8 website [14]. The centroid energy
function [8] was chosen to be the objective function to be minimised using each
of the five local optimisation methods (Lin-Min, BFGS, BFGS-A, BFGS-A-NM,
L-BFGS). The same energy function was used for the implementation of our
fragment feature-based resampling approach.

The general procedure used to test how well a local optimiser performed was
by perturbing each structure by a certain amount of residues (between 1 and 3)
and degree of movement (between 1 to 15 degrees), applying local optimisation,
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(a) Original structure (b) Altered structure

Fig. 1. An example of a protein that had three of its residues perturbed by 15 degrees.
Notice that the structure in (b) has several features displaced compared to its original
structure in (a). All images were generated using Rasmol [16].

and then, evaluating how much the energy and structural similarity changed.
The evaluation was carried out by recording the initial energy of the native
structure, then recording the energy and root mean square deviation (RMSD)
[15] of the altered structure, and finally, recording the energy and RMSD of the
structure after local optimisation. The averages (across the set of all structures)
of these values were then used as our final results. An example of one of our
perturbations can be found in Figure 1.

2.2 Fragment Feature – Based Resampling

In our previous works on feature-based resampling using a genetic algorithm
(GA) [11, 12], we demonstrated that by combining ‘native-like’ features gener-
ated from decoys from other PSP approaches, we could produce structures that
were closer to the native conformations. To further this work, we created a frag-
ment feature-based resampling algorithm to create ‘near-native’ starting points
for local optimisation.

In ourGA feature-based resampling algorithm [11, 12], our features were stored
as the initial population in the form of decoys outputted from an initial prediction
run. Then, crossover and mutation techniques were applied to them throughout
the prediction process using energy function for fitness calculations. This was ac-
complished by using a crossover operator that splices together protein fragments
that have ‘native-like’ features according to the fitness function f . Our GA’s
crossover operator randomly selected a crossover point (n) where n ∈ Cα(S)
(Cα(S) refers to the set of Cα atoms contained within the structure S). Let p1
be parent 1, and p2 be parent 2. Everything from n onwards in p1 is replaced
with everything from n onwards in p2, and vice versa. This process produced
two offsprings.

In this work, we created a fragment feature-based resampling algorithm to
overcome some of the limitations that were apparent from our results, the most
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obvious being the inconsistencies of the energy function. The centroid energy
function is not optimised to minimise its energy score in correlation with the
RMSD of the structure being predicted, which has been discussed in our previous
works [11, 12] and also shown in [17, 18]. This lack of accuracy can heavily affect
the GA optimisation process as it relies on the energy function to guide it to more
accurate solutions. To combat this, we developed an algorithm that incorporates
random feature-sampling from a set of ‘near-native’ fragments.

Our algorithm works by taking a set of protein decoy structures and creating
a fragment library from them. Each structure in the library can be broken into
numerous fragments of different sizes. Sampling this space is then carried out
by randomly selecting a position in the fragment library, randomly picking a
fragment size (based on how much of the structure is left to put together), and
finally, extracting that fragment based on the position of the structure being
processed and the length of the fragment. There are two main constraints that
our algorithm imposes on this fragment assembly procedure: (1) no structure
can contain more than half of the residues of any given structure within the
fragment library (to avoid duplicating any structure that was produced by the
PSP suite), and (2) structures must have no collisions between residues.

The assembly process described above is run until 2,000 structures are gen-
erated. Based on our initial testing, we concluded that 2,000 structures is a
sufficient amount of runs to generate most of the feasible combinations from the
set of structures contained in our fragment library. As mentioned above, because
we use an exhaustive search process, the energy function is only used to evaluate
how well energy function can identify ‘near-native’ structures generated from
our fragment feature-based resampling approach. Evaluation of the final output
is carried out by two structural measures: RMSD [15] and template modelling
score (TM-Score) [19].

3 Results and Discussion

We carried out two main tests: (1) assessment of which local optimiser performed
the best in guiding structures back to their native conformations after random
perturbation, and (2) evaluation of our fragment feature-based resampling al-
gorithm with and without local optimisation. In the local optimiser test, 128
native proteins were randomly perturbed using the following criteria: 1 residue
by 1 degree, 1 residue between 1–3 degrees, 2 residues between 1–5 degrees, 3
residues between 1–5 degrees, and 3 residues between 10–15 degrees.

For fragment feature-based experiment, the test set contained 14 protein
structures. Our fragment library contained 1,000 structures for each prediction,
and all fragments were generated from decoys. The local optimiser used for these
tests was the one that performed the best in our first experiment. Each protein
prediction was run five times, and the best output from each test was averaged
for our final results to remove any bias caused by the random fragment assembly
process. The best structure was chosen based on its RMSD value to its native
conformation.
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3.1 Empirical Results

Figure 2 depicts the results that were gained from our perturbation experiments.
The x axis is the amount of perturbation, and the y axis is the energy and RMSD
values (Figure 2a and 2b, respectively). To complement these results, the local
optimiser’s ability to guide an altered structure back to its native conformation
is visually demonstrated in Figure 3. Table 1 shows the results gained from
our fragment feature-based approach. For each protein, the average best energy,
RMSD, and TM-Score over the five tests with and without local optimisation are
displayed. Finally, Figure 4 depicts the prediction ability of our fragment feature-
based resampling by providing some visual comparisons between our models and
their native conformations.

3.2 Analysis of Results

Local Optimiser Comparison. In our perturbation experiments, we used 128
protein structures, applied different amounts of perturbation to them, and then,
locally optimised these structures. The average results for these experiments can
be found in Figure 2. In Figure 2a, for the first four perturbation classes, it can
be seen that all the local optimisers minimised the energy values starting from
the altered structure. Also, in each of these cases every local optimiser achieved
roughly the same energy levels after minimisation. For example, in Figure 2a,
for the first perturbation class (1 residue with a perturbation of 1 degree), each
optimiser generated models with an average energy between −165 and −171.
However, in the last case (3 residues with a perturbation of 10–15 degrees),
only BFGS-A, BFGS-A-NM, and L-BFGS minimised the energy significantly
when compared to the average altered energy, with L-BFGS being the best.
This suggests that the more a structure is altered from its native conformation,
BFGS-A, BFGS-A-NM, and L-BFGS are more likely to guide it back to a stable
state.

Other than just looking at the minimisation of the energy function to tell us
which local optimiser performed the best, their ability to minimise the RMSD
value of a structure was also evaluated. This would allow us to know which
optimiser could lower the energy of a structure while also guiding it back to its
native conformation. The results can be found in Figure 2b. From these results, it
is clear that out of all the optimisers, only L-BFGS significantly guided altered
structures back towards their native conformations. All the others had some
success, but on average, they actually moved structures further away from their
native state than the perturbation itself (this can be seen in Figure 2b where all
the optimisers in every perturbation class, except L-BFGS, actually have worse
RMSD averages when compared to the average altered RMSD).

Analysing the various perturbation classes in Figure 2b, it can be seen that
even Lin-Min did well in minimising small perturbations (first two perturba-
tion classes), however, as the structural change increased, its ability to move a
structure back to its native state deteriorated, eventually becoming one of the
worst out of the five we tested. It was also one of the worst optimisers at low-
ering the energy after a perturbation was made. L-BFGS, on the other hand,
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(a) Energy (b) RMSD

Fig. 2. Results for our local optimiser comparison. In (a), the results of how well each
local optimiser minimised the energy function are shown, and in (b), the results how
well each optimiser performed in moving the altered structures back towards their na-
tive conformation are depicted. Note that these results are averaged from our complete
128 protein set, and the averages for the perturbed structures before local optimisation
was applied are also included.

(a) Native (b) Altered (c) Optimised with L-BFGS

Fig. 3. Visual comparison of the native, altered and optimised structures. (a) is the
native structure before perturbation, (b) is the altered structure, and (c) is the structure
after L-BFGS optimisation was applied. As it can be seen in (c), once local optimisation
was applied on the structure in (b), it moved back to its native structure. All images
were generated using Rasmol [16].

appears to always move the structure back towards its native state. From these
findings, we can conclude that out of the five tested local optimisers, L-BFGS
was most successful in regards to minimising the energy of structures after be-
ing perturbed while at the same time being able to guide the altered structures
back towards their native states. To demonstrate the success of the L-BFGS
optimiser, Figure 3 allows for a visual comparison of the native conformation,
the perturbed structure, and the optimised structure using L-BFGS. It can be
seen that the L-BFGS optimiser moved the altered structure back towards its
native conformation by shifting the α-helices back into their correct places.
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Fragment Feature-Based Resampling. After the perturbation experiment,
we performed tests on our new fragment feature-based resampling approach,
both with and without the L-BFGS optimiser. The results from these experi-
ments can be found in Table 1. These results indicate that our new algorithm
can resample features in such a way that on average ‘near-native’ models are
generated. This is supported by an average best RMSD of 5.09 Å and an average
best TM-Score of 0.48 when no local optimisation was applied. Another inter-
esting aspect of these experiments is that the energy for the best scoring models
(in terms of RMSD and TM-Score) have quite high energy scores. On average,
they are not even in the negatives, meaning that the centroid energy function
is rather limited in regards to finding structures that are low in RMSD. This is
not to say that the centroid energy function is wrong as it has been proven that
it works well in finding compact structures that are roughly close to their native
states, but it lacks the accuracy to find models at a finer atomic resolution. A
graphical representation of the predictive power of our fragment feature-based
algorithm can be seen in Figure 4.

The next set of tests combined our algorithm with the L-BFGS local optimiser,
which performed the best in our perturbation tests. In this experiment, we gained
an average best RMSD of 5.05 Å and an average best TM-Score of 0.50. This

Table 1. Fragment feature-based resampling without and with local optimisation

Protein
Without local optimisation With local optimisation

f RMSD TM-Score f RMSD TM-Score

79.1a91A 119.35 5.69 Å 0.37 142.73 5.70 Å 0.37

78.1aoyA 59.83 5.00 Å 0.55 43.26 4.99 Å 0.53

43.1bdsA 115.76 5.85 Å 0.23 89.52 5.61 Å 0.28

99.1bm8A 14.91 7.65 Å 0.29 62.96 7.62 Å 0.29

110.1brsABC 11.29 7.64 Å 0.50 42.45 7.74 Å 0.56

67.1cspA 12.20 2.95 Å 0.65 −18.66 2.75 Å 0.68

54.1enhA 65.25 5.13 Å 0.26 84.43 5.03 Å 0.28

76.1d3zA −16.75 2.36 Å 0.76 −27.78 2.30 Å 0.76

47.1gptA 20.62 4.94 Å 0.38 75.19 5.03 Å 0.38

74.1kjsA 50.32 3.87 Å 0.55 32.37 3.91 Å 0.53

83.1pgxA 31.98 3.77 Å 0.66 −11.35 3.78 Å 0.66

77.1vccA 26.45 3.11 Å 0.67 12.81 3.19 Å 0.66

107.2pppA 164.93 8.57 Å 0.40 123.08 8.12 Å 0.49

78.2ptlA 39.38 4.70 Å 0.51 −14.94 4.89 Å 0.47
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(a) 1vcc native (b) 1vcc predicted

(c) 1gpt native (d) 1gpt predicted

(e) 1bm8 native (f) 1bm8 predicted

Fig. 4. In (a), (c), and (e), the native conformations for proteins 1vccA, 1gptA, and
1bm8A, respectively, are depicted, and in (b), (d), and (f), the predicted models for
these proteins using our fragment feature-based resampling algorithm are shown (note
that local optimisation was not used on these structures). All images were generated
using Rasmol [16].

means that irrespectively of the measure employed for the comparison, there
were additional relative improvements (0.8% and 4.2% in the case of RMSD and
TM-Score, respectively). The main reason why local optimisation in this case did
not result in higher improvements was that the fragments were obtained from
decoys which had already been locally optimised. However, if the algorithm was
designed to fold protein structures from just the amino acid sequence, local
optimisation would definitely be more useful.

There are aspects to our fragment feature-based approach that could be ad-
dressed to obtain further improvements. The first one is the problem of missing
features in the fragment library. As features generated by other PSP suites are
used in our approach, if the initial decoys do not contain all features necessary
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to create the native conformation for a given protein, then, our algorithm will
produce poor results. In most cases, given our results, nearly all features were
present, however, an example of this problem occurring can be seen in Figures 4c
and 4d. In Figure 4d, one of the major β-sheets was predicted incorrectly and also
has the wrong orientation, which brings us to the other problem: the orientation
of features.

Our approach stitches fragments together until the end of the protein chain is
reached, however, it never takes into consideration the orientation these features
should have. Figure 4 illustrates that some of the major reasons why we did not
obtain better results was due to the orientation of the features. To combat this
problem, we could add a move set that rotates the fragments around until their
optimal placements are found. This brings up two challenges: firstly, a scoring
function that can inform us what the best orientation is for a fragment or a set
of fragments, and secondly, how much rotation should be applied. According to
the literature, once a compact structure has been obtained it is best to only
move fragments slightly (e.g., 1–5 degrees) [8]. If both of these problems were
addressed, our algorithm could generate even better models than it already had.

4 Conclusions

Fragment-based protein structure prediction methods have shown a lot of success
in predicting the three-dimensional conformations of proteins. In this paper, we
combined fragment-based approach and local optimisation techniques. By doing
this, we showed that our new fragment feature-based resampling algorithm can
generate protein models close to native structures. Furthermore, we described the
benefits and disadvantages of using local optimisation techniques in conjunction
with feature-based resamplig.

To identify which local optimisation methods performed well on the PSP
problem, we selected 128 native protein structures to which we applied small
random perturbations in order to observe how successfully local optimisation
could guide structures back to their native conformations. The five optimisers we
tested were: linear minimisation (Lin-Min), Broyden-Fletcher-Goldfarb-Shanno
(BFGS), BFGS Armijo (BFGS-A), BFGS Armijo non-monotone (BFGS-A-
NM), and limited memory BFGS (L-BFGS). To supplement these results and
gauge the usefulness of local optimisation in the protein structure resampling
process, we took the most promising method from our perturbation experiment
and combined it with a fragment feature-based resampling approach, which we
proposed in this work.

Our new fragment feature-based resampling algorithm works by creating a
fragment library from a set of protein decoys. Each structure in the library can
be broken up into numerous sized fragments to build up ‘near-native’ protein
models. Sampling this space is carried out by randomly combining fragments
together until 2,000 collision-free structures are produced.

From our experimentation, we observed that the L-BFGS optimiser performed
the best. It was able to both minimise the energy of a structure and bring a
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structure back towards its native state. In regards to our fragment feature-based
resampling algorithm, we demonstrated that it could generate ‘near-native’ mod-
els. Out of the 14 structures we tried to predict, it obtained an average best
RMSD of 5.09 Å and an average best TM-Score of 0.47 when no local optimisa-
tion was applied. When we applied local optimisation, additional improvements
in both RMSD and TM-Score were recorded.

As mentioned in our results discussion and analysis, there is two avenues
to further improve our algorithm. First, being able to ensure that all features
which are needed to generate the native conformation are present in the fragment
library. However, this may be in some cases rather difficult as we are unsure what
features the native model contains, but the probability could be increased if there
is a sufficiently large library. And second, finding the correct orientation of the
fragments is crucial to allow more accurate models to be produced.
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Abstract. Early fruit fly embryo development begins with the formation of a 
chemical blueprint that guides cellular movements and the development of or-
gans and tissues. This blueprint sets the intrinsic spatial coordinates of the emb-
ryo. The coordinates are curvilinear from the start, becoming more curvilinear 
as cells start coherent movements several hours into development. This dynam-
ic aspect of the curvature is an important characteristic of early embryogenesis: 
characterizing it is crucial for quantitative analysis and dynamic modeling of 
development. This presents a number of methodological problems for the elas-
tic deformation of 3D and 4D data from confocal microscopy, to standardize 
images and follow temporal changes. The parameter searches for these  
deformations present hard optimization problems. Here we describe our evolu-
tionary computation approaches to these problems. We outline some of the im-
mediate applications of these techniques to crucial problems in Drosophila  
developmental biology. 

1 Introduction 

The completion of many genomic projects in the last decade has given rise to a new 
scientific objective, that of functional genomics - the next step towards the ultimate 
goal of a detailed understanding of how genome works [1].One of the critical ques-
tions in development is how the correct set of genes is expressed in each cell in order 
to form differentiated tissues. Research in Drosophila is reaching a stage where the 
expression of multiple genes can be followed dynamically in early embryogenesis at 
single cell resolution, in order to begin to understand the regulation underlying spatial 
patterning [2,3]. For instance, the BDTNP project [2] has currently mapped the ex-
pression of about 100 genes in each of about six thousand nuclei in early stage em-
bryos; but these are initial steps of a very challenging project to trace as many related 
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genes in individual development as possible, for as long and in as much detail as 
possible. 

In Drosophila, the impressive experimental progress comes with unique data chal-
lenges. For instance, major challenges arise in mapping gene expression in early Dro-
sophila development. The information comes from confocal microscopy scans [4], 
which present unique challenges for preprocessing, processing and analyzing sets and 
stacks of images. In this publication we will concentrate on computationally hard 
optimization problems in multidimensional confocal imaging of Drosophila embryos. 

Data from large numbers of embryos must be combined to create data atlases from 
multiple genes and at multiple stages of development. Single embryos (fixed & 
stained) can be imaged for a few (usually three) segmentation genes. Therefore, data 
sets integrated from multiple embryos, stained for the variety of segmentation genes 
and over the entire patterning period, are necessary for gaining a complete picture of 
developmental dynamics. Images from individual embryos must be standardized to 
create such integrated data sets. Numerous sources of variability between images 
present challenges for data processing. These sources are both experimental and in-
trinsic to the biochemistry and biophysics of the developing embryos. Processing 
techniques which can separate experimental sources of variability allow for quantita-
tion of the biological variability between embryos.  

The standardization of multiple images is in essence a transformation of diverse 
sets of data into a single coordinate system; it is a general problem in medical and 
biological imaging. In Drosophila, major challenges arise from the different shapes 
and sizes of embryos, and the intrinsic curvilinearity of the chemical gradients speci-
fying cell type. Intrinsic biological variability affects these factors, as do experimental 
treatments for data acquisition.  

Standardization problems for Drosophila embryo images have been approached for 
1D (gene expression profiles [5, 6, 7]), 2D (expression surfaces [8, 9]), and even 3D 
data [2, 10]. These approaches have involved elastic (or non-rigid) deformation of 
images to a single coordinate system [5, 6], which involve heavy use of computational 
resources. 3D views of the data are impressive and informative, but many statistical 
analyses and modeling projects are done in 1D or 2D; methods for reducing dimen-
sionality are needed for data validation of such theoretical projects, and elastic defor-
mation can also be used for this. 

We have developed a type of elastic deformation for Drosophila analysis, follow-
ing biometric coordinate transformations [5,6,11,12] first pioneered by D'Arcy 
Thompson [13], and used this for systematic studies of within- and between-embryo 
noise in 1D and 2D gene expression data [6, 14]. The approach has been adopted 
more recently by other teams [15, 16, 17].  

In recent years, more and more laboratories are studying large sets of confocal im-
ages of early Drosophila embryos. Web bases include: FlyEx [18], which we have 
been involved with; the large-scale 3D BDTNP project (BID) [2]; and FlyFISH [19]. 
Similar datasets are under study in other labs [20,21,22,23,24]. All workers in this 
area face image processing challenges in extracting reliable information from confoc-
al data. In this communication, we discuss the challenges presented in these types of 
datasets, present our approach to some of these fundamental problems, and report on 
new techniques we are developing, especially for application to new methods of data 
acquisition and to optimize processing.  
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2 Data and Nature of the Problems 

In the first 4 hours of development, the major axes of the Drosophila embryo are 
established by gradients of gene expression products specifying particular cell fates in 
precise locations. The major, anterior-posterior (AP), axis is established by the seg-
mentation network, a set of some 15-20 genes that establishes the striped patterns of 
gene expression which precede the anatomical appearance of the segmented body 
plan. This system has been intensively studied as a model for the functional genomics 
of spatial patterning [25, 26]. Figure 1 shows these striped (‘pair-rule’ gene) patterns. 
There are also chemical patterning gradients in the dorsal-ventral (DV) axis, ortho-
gonal to the AP system. The intersection of these two systems establishes a coordinate 
system for the early embryo. Numerous cell types and structures have been shown to 
differentiate at particular intersection values of the AP and DV axes, for instance: the 
salivary glands, localized AP by a narrow band of scr gene expression and DV by the 
dpp gene [27]; neural cells differentiating at the intersection of achaete-scute gene 
patterns [28]; or structures developed at the intersection of wg and sog expression. 
These positions can be manipulated experimentally, such as by mutation. This intrin-
sic coordinate system is curvilinear, as seen by the bending of stripes in Fig. 1. The 
patterns become more curved with time. While patterning can be described in these 
intrinsic coordinates, standardization of images and subsequent analysis is aided by 
use of standardized coordinate systems, such as confocal elliptical or Cartesian. This 
communication presents techniques for transforming the embryo’s intrinsic coordi-
nates into a standard one. 

2.1 Flattened vs. Intact Embryos 

The quantitative data on segmentation genes are generally of two types, each present-
ing challenges to data analysis. These are 1) from confocal scans of flattened em-
bryos, squeezed under a cover glass (Fig. 1A), and 2) from complete 3D scanning of 
physically intact embryos [29] (See Fig. 2). Gene expression datasets on flattened 
embryos are available on the FlyEx (protein) and FlyFISH (mRNA) web bases [30, 
31]. (Data is more frequently taken in this way, and newer published data is also 
available from authors upon request.) 3D reconstructions of intact embryos are avail-
able on the BDTNP web base [32, 33].  

These two approaches each have their advantages and disadvantages. Scanning of 
flattened embryos allows for a single focal plane, and is the most common, used in 
such databases as FlyEx. There are a number of methodological pitfalls with this ap-
proach, however, which must be addressed in the processing of such data. The chief 
problem is from the nearly arbitrary orientation of embryos under the cover glass. As 
an analogy, the problem is similar to placing a bunch of soft toy Rugby balls on a 
table and pressing them down with a sheet of glass. The lacing on the balls is analog-
ous to the pair-rule stripes on the embryo. Not only will the laces curve as pressure is 
applied, different balls will have their laces oriented in different directions. This 
squeezing problem does not apply to intact embryo 3D reconstructions, so compari-
son of flattened 2D to intact 3D datasets first requires correction of the effects of the 
cover glass.  
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Datasets taken by each method offer different information - e.g. FlyEx has protein 
data and BDTNP has mRNA data – so it is desirable to be able to map between the 
flattened and intact data. In addition to correcting for the effects of flattening, this 
requires finding common landmarks (or ground control points), with the following 
challenges: 1) for flattened embryos we can observe slightly less than half of the nuc-
lei (half of the cylindrical unwrapping; cf Fig. 1A & B); 2) if we superpose a flattened 
scan on the cylindrical projection of an intact embryo, the exact position of one image 
against another will be to some degree arbitrary.  

An evident landmark in the 3D images is the dorsal axis of symmetry (see Fig. 1), 
where the stripes are closest to one another and locally perpendicular to the line of 
symmetry. The position of this line can be estimated in some 2D images (such as Fig. 
1A), aiding alignment, but this is not a general property for all images. Adding to the 
alignment challenge is the curvature of the stripes. Part of this curvature is due to the 
intrinsic biological coordinates. But flattened images have an additional (and poorly 
controlled) curvature imposed from the experimental method.  

2.2 Coordinate Transformation  

Accounting for experimental effects on pattern and the steps to standardize the intrin-
sic curvilinear coordinates of embryos can be seen as problems in coordinate trans-
formation. Correcting for experimentally-induced curvature (from embryo flattening) 
is a first step in data processing. Since intrinsic curvature varies between embryos, 
this too must be corrected to standardize multiple images. One approach to this stan-
dardization is to transform the curvilinear coordinates into a rectilinear Cartesian sys-
tem. In one of the first works to investigate elastic coordinate transformations with 
respect to body plans, D’Arcy Thompson [13] made a classic deformation from a 
sunfish in curvilinear coordinates to a puffer fish in Cartesian coordinates. A similar 
transformation applies to the problem of standardization via stripe straightening in 
Drosophila. It took some 60 years after Thompson’s graphical demonstrations for 
techniques to be formalized so that such transformations could be automated: in the 
‘bioorthogonal analysis' of Bookstein [34]; and in Siegel’s [35, 36] technique for 
aligning and comparing homologous sets of landmark-coordinates. Morphometric 
coordinate transformations have expanded greatly in 30 years [37], for instance being 
applied in 2D structures such as insect wings [38]. We have developed a number of 
techniques in this area for application to Drosophila image processing [5, 6, 11, 12]. 
Stripe straightening is a major tool for standardizing images, which can be followed 
by registration of stripes for integrated data sets. Stripe-straightened data also pro-
vides dimensional reduction, producing data for verification of models and statistical 
analyses focused on 1D AP patterning. In addition, we have used the approach to 
standardize image intensity within and between images [7].  

While stripe straightening focuses on the AP coordinate, there is also curvilinearity 
in the DV direction, especially for ventral positions. (For the intrinsic coordinates, it 
is known that DV morphogenetic gradients affect AP organization [see 39].) This 
two-dimensional curvilinearity is illustrated in the right hand images of Fig. 2. This 
secondary curvature can become a serious obstacle for automated data processing. 
Again, this may reduce to a coordinate transformation problem, if the intrinsic AP and 
DV curvature can be properly captured and transformed into a rectilinear system.  
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Fig. 1. The challenge of finding landmarks to juxtapose patterns from flattened and intact em-
bryos. The two orthogonal axes of the striped pattern (red: y-axis along straightest stripe; ver-
tical displacement of x-axis chosen to be most orthogonal to other stripes) tend to be invariant 
between the two approaches. (A) Image of flattened embryo with crescent-like stripes of ex-
pression of the pair-rule gene eve. (B) Unrolled (cylindrical projection) eve pattern for an intact 
embryo (3D reconstruction), with the same two orthogonal axes.  

Intrinsic curvature also increases during development, especially as cells begin to 
move at the onset of the gastrulation stage. This change in geometry is important to 
study in its own right, as well as needing quantification for standardization of confoc-
al data. The increasing curvature can be considered as an extension of the elastic de-
formation between Cartesian and curvilinear coordinates.  

Computing such coordinate transformations is challenging: in addition to the wide 
range of intrinsic biological, experimental, and instrumental/observational sources of 
variability, there are no defined or standard reference solutions for such computations. 
Evaluating pattern coincidence between pairs of embryos at single cell resolution (at a 
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stage when embryos have ~6000 cells) can involve heavy, non-standard computation. 
Such problems can be well suited to evolutionary optimization; we have tested and 
developed a number of Genetic Algorithms (GA) approaches for this (see [5,6,11,12] 
& next section). 

3 Techniques 

Our coordinate transformations are based on optimization of polynomial maps be-
tween coordinate systems. 

3.1 Stripe Straightening 

The stripe straightening procedure is a transformation of the AP (x) coordinate by a 
polynomial of the form:  

x´ = Axy2 + Bx2y + Cxy3 + Dx2y2+…  (1)

where x = w - w0 and y = -h - h0, and w and h are the initial spatial coordinates (AP 
and DV, respectively). The y-coordinate remains the same, while the x-coordinate is 
transformed as a function of both coordinates w and h (for details see [5, 6, 11, 12]). 
The exact form of (1) must be determined (more below), and the parameters w0, h0, A, 
B, C, D, etc. for each image must be found by an optimization technique. We tested a 
number of methods: GA; simplex; and a hybrid of these [5, 6, 11, 12]. We found GA 
to be the best for solving problems like (1) (especially for the multi-quadrant fitting 
discussed below). For GA optimization, we subdivide the image into a series of longi-
tudinal strips. Each strip is subdivided into bins and the mean brightness (local fluo-
rescence level) is calculated for each bin. Each row of means gives a profile of local 
brightness along each strip. A cost function is computed by pair-wise comparison of 
all profiles, summing the squared differences between bins. The task of the GA pro-
cedure is to minimize the cost function. The smaller the summed differences between 
strips, the closer the process is to the straightened endpoint. There is a possibility of 
over-straightening: this can be compensated by applying a penalty to any solution 
(parameter set) that moves more than one nucleus position past a predefined threshold 
(having a defined endpoint of straightened stripes helps here), though the penalty can 
influence search efficiency.  

Intuitively, one can think of the straightening process as shrinking the image in 
such a way that the farther a given nucleus is from the dorsal edge and horizontal 
midpoint, the farther it must be moved towards the horizontal midpoint. More formal-
ly, we assume that the center of a pair-rule stripe follows a curve of constant AP  
position. The origin of the image coordinate system is at the top left, with image 
coordinates for width w increasing to the right and height h increasing down. To be-
gin determining the final (straightened) AP and DV coordinates, x’ and y’ respective-
ly, we note that there is an AP position (near mid-embryo) at which one stripe is  
vertical for its whole length. The center of this stripe defines x’=0 (the y’-axis). Each 
pair-rule stripe other than the one at x’=0 is curved; we vertically shift the x’ axis so 
that it intersects each of the stripes at the point where it is vertical. Because of the 
vertical stripe: 1) the y- and y’-axes coincide; and 2) lines of y' = const are orthogonal 
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to the y- and y’-axes. The new coordinate system (x’,y’) has the same orientation and 
w0, h0 origin as the (x,y) system.  

Analysis of the series has allowed us to eliminate all but three terms from the series 
[5, 6], so now we write an initial model of image transformation as 

322' CxyBxAxyxx +++=            (2)

All of these terms have a clear interpretation. The xy² term is the main one: it 
represents the quadratic DV curvature that increases with distance from the x-axis. 
The x²y term gives the residual DV asymmetry and the x³ term gives the residual AP 
asymmetry. Finally, expressing (2) in terms of w and h, gives 

300202000 )()()())(( wwChhwwBhhwwAwwx −+−−−+−−−+−=′    (3)

In tests with this initial model, however, we found that in more than half of the cases 
it was insufficient for straightening stripes. Therefore, we expanded the model empir-
ically, adding 4th order terms.  

For performance on confocal images, we found the best polynomial to be 

A+Bxy+Cxy2+Dx2y+Ex2y2+Fx3y+Gxy3        (4)

We can understand some these additional fourth order terms as follows: Cx²y² is a 
correction term for parabolic bending, while Dxy³ serves to correct DV asymmetry. In 
general, the situation is typical of a polynomial approximation problem, where one 
polynomial is best but many others are very good.  

We have found some independence in the stripe curvature between head and tail 
ends of the embryo, perhaps reflecting differences in underlying patterning mechan-
isms. This affects the straightening process, and we have found improved fitting by 
independent elastic deformations on the head and tail halves of the image [5, 6]. Test 
computations indicate independent deformation on the four quadrants of the image 
may be best, to also account for DV dependencies in stripe curvature. A full optimiza-
tion can operate, therefore, on 3 quadrants times 7 parameters in eq. (4) for a total of 
28 parameters (plus an evaluation of values w0, h0). 

With sufficient data on DV patterning (currently only available on the BDTNP 
Web base, [29]), we can also apply an elastic deformation to straighten in DV. We 
have applied DV straightening after AP straightening, and found a third order poly-
nomial (Cf with (4)) gives good results: 

300202000 )()()())(( hhCwwhhBwwhhAhhx −+−−+−−+−=′       (5)

(in terms of w and h). The DV procedure is generally less precise than for the seven-
striped AP patterns. 

To summarize, stripe-straightening has a number of steps and challenges, includ-
ing: finding the exact form of the deformation polynomial; finding efficient optimiza-
tion algorithms for this task; limiting over-deformation; using multi-strip and  
multi-sector (i.e. quadrant) optimization; and the complicated and variable 3D  
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geometry, including the squeezing effects of flattened images, which can affect the 
efficiency of the evolutionary computations. 

3.2 Implementation 

We have developed a set of computational tools to process 2D data for about ~3,000 
(flattened) or ~6,000 nuclei (intact embryo). The tool uses ASCII files for individual 
embryos in the format of the FlyEx Web base. We also developed a script to convert 
PointCloud data files from the BDTNP Web base. The main function is the GA search 
for parameters of the elastic deformation (stripe straightening). The software includes 
a C++ version for Windows, a Delphi version (Windows), and a Free Pascal version 
for Linux/Unix. For each input file the software produces two output files: one with 
the straightened data (in the input data format); and one with the polynomial coeffi-
cients for the deformation. The software is available from the authors upon request. 

4 Biologically Significant Results and Discussion 

The spatial patterns we have presented here are created by genetic regulation, the 
extremely complex and at best partially understood system of interactions between 
gene products (and other factors). A number of theoretical models have been devel-
oped for the AP patterning system to characterize these interactions. Many of these 
models are developed in 1D, so the dimensional reduction discussed above, with 
stripe-straightening, serves as an important tool for data processing to validate mod-
els. The quantification of variability arising from the coordinate transformation also 
sheds light on other biological questions. We present a few examples of the biological 
application of our work here.  

A fundamental question in development is how spatial expression patterns can de-
velop precisely and reliably, despite operating at low concentrations which are asso-
ciated with high noise. Many investigators are working on quantifying this intrinsic 
biochemical noise, and studying how it is reduced in order to produce embryonic 
patterns of the required precision.  

The natural variability in stripe curvature between embryos also reflects variability 
in developmental conditions. Two embryos of the same age class can show large qua-
litative differences in this respect. Fig. 2 shows the middle (fourth) eve stripe curving 
to the right in one embryo and to the left in another. Quantification of curvature via 
the stripe-straightening transformation can allow for a deeper investigation of these 
effects; for instance studying the correlation between stripe bending and embryonic 
geometry. 

In addition to noise and variability in gene expression, there is significant variabili-
ty in cellular order. This variability increases as the embryo becomes cellularized and 
begins the process of gastrulation. This variability is temporal (loss of synchrony) as 
well as spatial [40]. Progress on the 2D transformation techniques will be especially 
relevant for analyzing these phenomena.  
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Fig. 2. Variability of intrinsic biological coordinates, as seen in eve patterns from two embryos. 
The fourth stripe (red arrows) can be curved to the left (head end of embryo) or to the right (tail 
end), red lines are drawn to show the stripe’s curvature (BID BDTNP [29] embryos). I.e., the 
straight stripe forming the y-axis of the coordinate transformations can vary – here we see it at 
the 3rd stripe in one embryo and the 5th stripe in another.  

Finally, the approach described with respect to Fig. 1, to transform between FlyEx 
and BID BDTNP types of data, allows for a much richer combined dataset: FlyEx 
contains chiefly protein data, while BID contains mRNA data. And while BDTNP has 
intact embryos, best for studying geometric effects, the flattened embryos have more 
accurate and sensitive detection of signal. The two approaches are complementary for 
many problems, and coordinate transformation between them can be an important tool 
for such investigations.  

5 Challenges and New Developments 

Our rotation & elastic deformation approach to 2D data: We are extending the ap-
proaches described above to use elastic deformation and rotation to fit 2D data of one 
embryo to another (flattened embryo data or cylindrical projections of intact em-
bryos). A superposition of one embryo surface to another has several challenges.  
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Embryos differ in: spatial dimension (either in physical, micrometer, units, or in bio-
logical ones of nuclei numbers); nuclear density or total amount of nuclei; and in 
pattern features (a small but biologically significant factor). The procedure should be 
able to match embryos by patterns alone, or by patterns and nuclear positions togeth-
er. There should also be freedom in choosing the spatial coordinates along which to 
optimize matching. Three operations should be able to match an embryo pair: hori-
zontal and vertical shifting; rotation; and elastic deformation. These appear simple 
enough, but the high variability of embryo geometry and expression patterns makes 
the optimization tasks very hard. Some proportion of pairs will be very similar and 
matching gene patterns will give nearly perfect matches of nuclear positions. The 
larger proportion of pairs, however, even for coincident patterns, will not have coinci-
dent nuclei. This indicates deeper biological questions regarding the correlation be-
tween cell order and expression patterns, in addition to being a challenge to data 
processing. 

6 Conclusions 

Drosophila confocal image banks are not the only resources to which the approaches 
described here could be applied. Similar datasets exist for confocal scans of gene 
expression in other model organisms [1, 10]. We hope that the transformation tech-
niques discussed here can also be applied to such cases.  

Quantitative models of gene regulation are an integral part of understanding the 
mechanisms underlying functional genomics. Drosophila currently offers the highest 
resolution quantitative data available for validating models. This allows models to be 
tested on: the reduction of molecular noise during gene expression; the effects of cell 
movements and cell order on the developmental program; and the natural limits of 
reproducibility for gene expression patterns between embryos (as well as the effects 
of mutation on these limits). All of these efforts require the highest degree of quality 
from complex data sets. The techniques presented here have been developed to solve 
specific problems in the standardization and analysis of the biological data, so that 
such theoretical approaches can be tested, deepening the understanding of how ge-
nomes function in the development of tissues, organs, and individuals. 
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Abstract. It is known that breast cancer is not just one disease, but rather a col-
lection of many different diseases occurring in one site that can be distinguished
based in part on characteristic gene expression signatures. Appropriate diagnosis
of the specific subtypes of this disease is critical for ensuring the best possible
patient response to therapy. Currently, therapeutic direction is determined based
on the expression of characteristic receptors; while cost effective, this method is
not robust and is limited to predicting a small number of subtypes reliably. Us-
ing the original 5 subtypes of breast cancer we hypothesized that machine learn-
ing techniques would offer many benefits for feature selection. Unlike existing
gene selection approaches, we propose a tree-based approach that conducts gene
selection and builds the classifier simultaneously. We conducted computational
experiments to select the minimal number of genes that would reliably predict a
given subtype. Our results support that this modified approach to gene selection
yields a small subset of genes that can predict subtypes with greater than 95%
overall accuracy. In addition to providing a valuable list of targets for diagnostic
purposes, the gene ontologies of selected genes suggest that these methods have
isolated a number of potential genes involved in breast cancer biology, etiology
and potentially novel therapeutics.

Keywords: breast tumor subtype, gene selection, classification.

1 Introduction

Despite advances in treatment, breast cancer remains the second leading cause of can-
cer related deaths among females in Canada and the United States. Previous studies
have revealed that breast cancer can be categorized into at least five subtypes, including
basal-like (Basal), luminal A, (LumA), luminal B (LumB), HER2-enriched (HER2),
and normal-like (Normal) types [1, 2]. These subtypes have their own genetic signa-
tures, and response to therapy varies dramatically from one subtype to another. The
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variability among subtypes holds the answer to how to better design and implement
new therapeutic approaches that work effectively for all patients. It is clinically essen-
tial to move toward effectively stratifying patients into their relevant disease subtype
prior to treatment.

Techniques such as breast MRI, mammography, and CT scan, can examine the phe-
notypical mammary change, but provide little effective information to direct therapy.
Genomic techniques provide high-throughput tools in breast cancer diagnosis and treat-
ment, allowing clinicians to investigate breast tumors at a molecular level. The advance
of microarray approaches have enabled genome-wide sampling of gene expression val-
ues and/or copy number variations. The huge amount of data that has been generated
has allowed researchers to use unsupervised machine learning approaches to discover
characteristic “signatures” that have since established distinct tumor subtypes [1]. Tu-
mor subtyping has explained a great deal about some of the mysteries of tumor pathol-
ogy [3], and has begun to enable more accurate predictions with regard to response
to treatment [4]. While offering enormous opportunity for directing therapy, there are
some challenges arising in the analysis of microarray data. First, the number of available
samples (e.g. patients) is relatively small compared to the number of genes measured.
The sample size typically ranges from tens to hundreds because of costs of clinical tests
or ethical constraints. Second, microarray data is noisy. Although the level of technical
noise is debatable [5], it must be carefully considered during any analysis. Third, due
to technical reasons, the data set may contain missing values or have a large amount
of redundant information. These challenges affect the design and results of microarray
data analysis.

This current study focuses on identifying a minimal number of genes that will re-
liably predict each of the breast cancer subtypes. Being a field of machine learning,
pattern recognition can be formulated as a feature selection and classification problem
for multi-class, high-dimensional data using two traditional schemes. The first applies
a multi-class “feature selection” method directly followed by a classifier to measure
the dependency between a particular feature and the multi-class information. A well-
known example of the feature selection method is the minimum redundancy maximum
relevance (mRMR) method proposed in [6] and [7]. The second traditional scheme is
the most common of the two and treats the multi-class feature selection as multiple
binary-class selections. Methods using multiple binary class selections differ in how
to bisect the multiple classes. The two most popular ways to solve this problem are
one-versus-one and one-versus-all [8]. In this paper, we propose a novel and flexible
hierarchial framework to select discriminative genes and predict breast tumor subtypes
simultaneously. The main contributions of this paper can be summarized as follows:

1. We implement our framework using Chi2 feature selection [9] and a support vec-
tor machine (SVM) classifier [10] to obtain biologically meaningful genes, and to
increase the accuracy for predicting breast tumor subtypes.

2. We Use a novel feature selection scheme with a hierarchial structure, which learns
in a cross-validation framework from the training data.

3. We establish a flexible model where any feature selection and classifier can be
embedded for use.
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4. We discover a new, compact set of biomarkers or genes useful for distinguishing
among breast cancer types.

2 Related Work

Using microarray techniques, scientists are able to measure the expression levels for
thousands of genes simultaneously. Finding relevant genes corresponding to each type
of cancer is not a trivial task. Using hierarchical clustering, Perou and colleagues de-
veloped the original 5 subtypes of breast cancer based on the relative expression of
500 differentially expressed genes [1]. It has since been demonstrated that combining
platforms to include DNA copy number arrays, DNA methylation, exome sequencing,
microRNA sequencing and reverse-phase protein arrays may define these subtypes even
further [2]. It is postulated that there are, indeed, upward of over 10 different forms of
breast cancer with differing prognosis [25]. Other groups have tailored analysis toward
refining the patient groups based on relative prognosis, reducing the profile for one
subtype to a 14-gene signature [26]. Given any patient subtype, obtained through one
or several platforms, we hypothesize that machine learning approaches can be used to
more accurately determine the number of genes required to reliably predict a subtype
for a given patients.

On the other hand, modeling today’s complex biological systems requires efficient
computational techniques designed in articulated model, and used to extract valuable in-
formation from existing data. In this regard, pattern recognition techniques in machine
learning provide a wealth of algorithms for feature extraction and selection, classifica-
tion and clustering. A few relevant approaches are briefly discussed then.

An entropy-based method for classifying cancer types was proposed in [16]. In
entropy-classed signatures, the genes related to the different cancer subtypes are se-
lected, while the redundancy between genes is reduced simultaneously. Recursive fea-
ture addition (RFA) has been proposed in [17], which combines supervised learning and
statistical similarity measures to select relevant genes to the cancer type. A mixture clas-
sification model containing a two-layer structure named as mixture of rough set (MRS)
and support vector machine (SVM) was proposed in [18]. This model is constructed
by combining rough sets and SVM methods, in such a way that the rough set classifier
acts as the first layer to determine some singular samples in the data, while the SVM
classifier acts as the second layer to classify the remaining samples. In [19], a binary
particle swarm optimization (BPSO) was proposed. BPSO involves a simulation of the
social behavior in organisms such as bird flocking and fish schooling. In BPSO, a small
subset of informative genes is selected where the genes in the subset are relevant for
cancer classification. In [20], a method for selecting relevant genes in comparative gene
expression studies was proposed, referred to as recursive cluster elimination (RCE).
RCE combines k-Means and SVM to identify and score (or rank) those gene clusters
for the purpose of classification. k-Means is used initially to group the genes into clus-
ters. RCE is then applied to iteratively remove those clusters of genes that contribute the
least to classification accuracy. In the work described in this paper we used the original
five breast cancer subtypes to determine whether our proposed hierarchial tree-based
scheme could reduce the gene signature to a reliable subset of relevant genes.
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3 Methods

First, we describe the training phase for gene selection and breast cancer subtyping, and
then we describe how the model can be used in predicting subytpes in a clinical setting.
The complete gene profile of each breast cancer subtype is compared against the oth-
ers. Each subtype varies in the genes that are associated with it, and in the accuracy
with which those genes predict that specific subtype. The subtypes are then organized
by two main criteria. The first criterion is the level of accuracy with which the selected
genes identify the given subtype. The second criterion is the number of genes identified.
Clearly applying two or more gene selection criteria is a multi-objective problem in op-
timization [21]. In this study, we use the rule that select the smallest subset of genes that
yields the highest accuracy. Therefore, a subtype that is predicted with 95% accuracy
by five genes is ranked higher than a subtype for which 20 genes are required to acquire
the same accuracy. The subtype that is ranked highest is removed and the procedure
is repeated for the remaining subtypes comparing each gene profile against the others.
The highest ranked subtype is again removed and becomes a leaf on the hierarchical
tree (see Fig. 1). Therefore, each leaf on the tree becomes a distinct subtype outcome.

3.1 Training Phase

We give an example of such a tree to illustrate our method in Fig. 1. Suppose there
are five subtypes, namely {C1, · · · , C5}. The training data is a m × n matrix D =
{D1, · · · ,D5} corresponding to the five subtypes. Di, of size m × ni, is the training
data for class Ci. m is the number genes and ni is the number of samples in subtype Ci.
n =

∑5
i=1 ni is the total number of training samples from all five classes. First of all,

feature selection and classification are conducted, in a cross-validation fashion, for each
class against the other classes. For example, suppose subtype C3 obtains the highest
rank based on accuracy and the number of genes contributing to that accuracy. We thus
record the list of the particular genes selected and create a leaf for that subtype. We
then remove the samples of the subtype, which results in D = {D1,D2,D4,D5} and
continue the process in the same fashion. Thus, at the second level, subtype C5 yields
the highest rank, and hence its gene list is retained and a leaf is created. Afterward
the training data set becomes D = {D1,D2,D4} for the third level. We repeat the
training procedure in the same fashion until there is no subtype to classify. At the last
level, two leaves are created, for C4 and C2, respectively.

3.2 Prediction Phase

Once the training is complete, we can apply the scheme to predict breast cancer sub-
types. Given the gene expression profile of a new patient, a sequence of classification
steps are performed by tracing a path from the root of the tree toward a leaf. At each
node in the path, only the genes selected in the training phase are tested. The process
starts at the first level (root of the tree), in which case only the genes selected for C3,
namely G3 are tested. If the patient’s gene profile is classified as a positive sample,
then the prediction outcome is subtype C3, and the prediction phase terminates. Other-
wise, the sequence of classification tests is performed in the same fashion, until a leaf
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Fig. 1. Determining breast cancer type using selected genes

is reached, in which case the prediction outcome is the subtype associated with the leaf
that has been reached.

3.3 Characteristics of the Method

Our structured model has the following characteristics. First, it involves a greedy scheme
that tries the subtype which obtains the most reliable prediction and the smallest num-
ber of genes first. Second, it conducts feature selection and classification simultane-
ously. Essentially, it is a specific type of decision tree for classification. The differences
between the proposed model and the traditional decision tree includes: i) each leaf is
unique, while one class usually has multiple leaves in the later; ii) classifiers are learned
at each node, while the traditional scheme learns decision rules; and iii) multiple fea-
tures can be selected, while in the traditional scheme each node corresponds to only one
feature. Third, the proposed model is flexible as any feature selection method and clas-
sifier can be embedded. Obviously, a classifier that can select features simultaneously
also applies, (e.g. the l1-norm SVM [11]).

3.4 Implementation

In this study, we implement our model by using Chi2 feature selection [9] and the state-
of-the-art SVM classifier [10]. These two techniques are briefly described briefly next.
Chi2 is an efficient feature selection method for numeric data. Unlike some traditional
methods which discretize numeric data before conducting feature selection, Chi2 au-
tomatically and adaptively discretizes numeric features and selects features as well. It
keeps merging adjacent discrete statuses with the lowest χ2 value until all χ2 values
exceed their confidence intervals determined by a decreasing significant level, while
keeping consistency with the original data. If, finally, a feature has only one discrete
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status, it is removed. The χ2 value of a pair of adjacent discrete statuses or intervals is
computed by the χ2 statistic, with 1 degree of freedom, as follows:

χ2 =

2∑
i=1

k∑
j=1

(nij − eij)
2

eij
, (1)

where nij is the number of samples in the i-th interval and j-th class, and eij is the
expected value of nij . eij is defined as ri

cj
n where ri =

∑k
j=1 nij , cj =

∑2
i=1 nij , and

n is the total number training samples.
Based on these selected genes, the samples are classified using SVM [10]. Soft-

margin SVM is applied in our current study. SVM is a linear maximum-margin model
with decision function d(x) = sign[f(x)] = sign[wTx+b] where w is the normal vec-
tor of the separating hyperplane and b is the bias. Soft-margin SVM solves the following
problem in order to obtain the optimal w and b:

min
w,b,ξ

1

2
‖w‖22 +CTξ (2)

s.t. ZTw + by ≥ 1− ξ

ξ ≥ 0,

where ξ is a vector of slack variables, C is a vector of constant that controls the trade-
off between the maximum margin and the empirical error, y is a vector that contains
the class information (either -1 or +1), and Z contains the normalized training samples
with its i-th column defined as zi = yixi [13]. Since optimization of the SVM involves
inner products of training samples, by replacing the inner products by a kernel function,
we can obtain a kernelized SVM.

For the implementation, the Weka machine learning suite was used [14]. A gene
selection method based on the χ2 feature evaluation algorithm was first used to find
a subset of genes with the best ratio of accuracy/gene number [9]. For classification,
LIBSVM [15] in Weka is employed. The Radial basis function (RBF) kernel is used
with the LIBSVM classifier without normalizing samples and with default parameter
settings.

4 Computational Experiments and Discussions

4.1 Experiments

In our computational experiment, we analyzed Hu’s data [12]. Hu’s data (CEO
accession number GSE1992) were generated by three different platforms including
Agilent-011521 Human 1A Microarray G4110A (feature number version) (GPL885),
Agilent-012097 Human 1A Microarray (V2) G4110B (feature number version)
(GPL887), and Agilent Human 1A Oligo UNC custom Microarrays (GPL1390). Each
platform contains 22,575 probesets, and there are 14,460 common probesets among
these three platforms. We used SOURCE [22] to obtain 13,582 genes with unique uni-
gene IDs in order to merge data from different platforms. The dataset contains 158
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samples from five subtypes of breast cancer(13 Normal, 39 Basal, 22 Her2, 53 LumA
and 31 LumB). The sixth subtype Claudin is excluded from our current analysis as the
number of samples of this class is too few (only five). However, we will investigate this
subtype in our future work.

To evaluate the accuracy of the model, 10-fold cross-validation is used. As shown
in Table 2, using all genes decreases the overall accuracy of the model, since many of
the genes are irrelevant or redundant. For example, using all 13,582 genes, the overall
accuracy is just 77.84%; while using a ranking algorithm and taking the top 20 genes
for prediction brings the accuracy up to 86.70%. Table 1 shows the top 20 genes ranked
by the Chi-Squared attribute evaluation algorithm to classify samples as one of the
five subtypes. Using the proposed hierarchical decision-tree-based model, makes the
prediction procedure more accurate. While the accuracy of prediction between LumA
and LumB is relatively low compared to the other classes. This is because of the very
high similarity and overlap between samples of these two classes. The overall accuracy
of the model, as shown in Table 2, is 95.11%. This is very interesting since only 18
genes are used to predict the subtypes that the patient belongs to. As a matter of fact,
our method is able to increase its accuracy from around 86% to 95% by using a new
subset of genes based on the proposed method containing only 18 genes.

Table 1. Top 20 genes ranked by the Chi-Squared attribute evaluation algorithm to classify sam-
ples as one of the five subtypes

Rank Gene Name Rank Gene Name Rank Gene Name Rank Gene Name
1 FOXA1 6 THSD4 11 DACH1 16 ACOT4
2 AGR3 7 NDC80 12 GATA3 17 B3GNT5
3 CENPF 8 TFF3 13 INPP4B 18 IL6ST
4 CIRBP 9 ASPM 14 TTLL4 19 FAM171A1
5 TBC1D9 10 FAM174A 15 VAV3 20 CYB5D2

Fig. 2 shows the tree learned in the training phase and the set of genes selected at each
step. The selected genes are contained in each node, a patient’s gene expression profile
is used to feed the tree for prediction, each leaf represents a subtype, and the accuracy
at each classification step is under the corresponding node. From this figure, we can
see that the Basal subtype is chosen first as it obtains the highest accuracy, 99.36% to
classify patients from the other subtypes including Normal, Her2, LumA and LumB.
Then the samples of Basal are removed for the second level. The Normal subtype is
chosen then, since it achieves the highest accuracy (95.79%) to separate samples from
the other subtypes, including Her2, LumA and LumB. From previous studies, it is well-
known that the subtypes LumA and LumB are very difficult to be identified among all
subtypes. This is the reason for why LumA and LumB appear at the bottom of the tree.
After removing other subtypes, LumA and LumB can avoid misclassification on the
other subtypes. In spite of this drawback, the accuracy for separating LumA and LumB
is as high as 88.1%.

As shown in Figure 2, there is no overlap between the genes selected among the dif-
ferent clusters. This result provides interesting new biomarkers for each breast cancer
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Fig. 2. Determining breast cancer type using selected genes

subtype. Some of the selected genes have been previously indicated in cancer (high-
lighted in black in Figure 2), while others have emerged as interesting genes to be
investigated. For example, TFF3 and FoxA1 genes are predictably indicated in Basal
subtype. Another feature of the proposed hierarchical model is that the number of genes
in each node has been optimized to give the best ratio of accuracy and number of se-
lected genes. For this, at first, 10 genes with highest rank have been selected for each
node. Then, out of those selected genes, those with lower rank are removed step by step
as long as the accuracy of classification using the remaining genes don’t get decreased.

4.2 Biological Insight

We used FABLE to determine if the genes selected by our approach are biologically
meaningful. Fast Automated Biomedical Literature Extraction (FABLE) is a web-based
tool to search through MEDLINE and PubMed databases. The genes that are related
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Table 2. Accuracy of classification using LibSVM Classifier

Classification Method Gene Selection Method # of Genes Accuracy Precision Recall F-measure
LibSVM — all genes 77.84% 0.802 0.778 0.749
LibSVM Chi-Squared 20 86.70% 0.866 0.867 0.864

Proposed Method Proposed Method 18 95.11% 0.951 0.951 0.951

to tumors reported in the literature are highlighted in black in Figure 2. Those not yet
reported are underlined and colored in red. We can see that 15 out of 18 genes have been
found in the literature. This implies that our approach is quite effective in discovering
new biomarkers.

We also explored the reasons for the high performance of our method. First, the sub-
types that are easily classified are on the top of the tree, while the harder subtypes are
considered only after removing the easier ones. Such a hierarchical structure can remove
the disturbance of other subtypes, thereby allowing us to focus on the most difficult sub-
types, LumA/B. Second, combining gene selection when building the classifier allows
us to select genes that contribute to prediction accuracy. Third, our tree-based method-
ology is quite flexible; any existing gene selection measure and classification technique
can be embedded in our model. This will allow us to apply this model to subtypes as
they become more rigorously defined using other platforms such as copy number vari-
ation. Furthermore, our method could be applied to groups of patients stratified based
on responses to specific treatments. Collectively, having a small, yet reliable number of
genes to screen is more cost effective and would allow for subtype information to be
more readily applied in a clinical setting.

5 Conclusion and Future Work

In this study, we proposed a novel gene selection method for breast cancer subtype pre-
diction based on a hierarchical, tree-based model. The results demonstrate an impres-
sive accuracy to predict breast cancer types using only 18 genes. Herein, we propose a
novel gene selection method for breast cancer subtype prediction based on a hierarchi-
cal, tree-based model. The results demonstrate an impressive accuracy to predict breast
cancer subtypes using only 18 genes in total. Moreover, Most of the selected genes are
shown to be related to breast cancer based on previous studies, while a few are yet to
be investigated. As future work, we will validate these results using cell lines that fall
within a known subtype. We will determine whether our predicted 18 gene array can
accurately denote which subtype each of these cell lines falls under. This hierarchical,
tree-based model can narrow down analysis to a relatively small subset of genes. Impor-
tantly, the method can be applied to more refined stratification of patients in the future,
such as subtypes derived using a combination of platforms, or for groups of patients
that have been subdivided based on response to therapy. Using this computational tool
we can determine the smallest possible number of genes that need to be screened for
accurately placing large populations of patients into specific subtypes of cancer or spec-
ified treatment groups. This could contribute to the development of improved screening
tools, providing increased accuracy for a larger patient population than that achieved by
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Oncotype DX, but allowing for a cost effective approach that could be widely applied
to the patient population.
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Abstract. Drug target is of great importance for designing new drugs
and understanding the molecular mechanism of drug actions. In general,
a drug may bind to multiple proteins, some of which are not related to
disease-treatment or even lead to side effects. Therefore, it is necessary to
discriminate the effect-mediating drug targets, i.e. therapeutic targets,
from other proteins. Although a lot of computational approaches have
been developed to predict drug targets and achieve partial success, few
attention has been paid to predict therapeutic targets. In this work, we
present a new framework to predict drug therapeutic targets based on
the integration of heterogeneous data sources. In particular, we develop
an ensemble classifier, PTEC (Predicting Therapeutic targets with En-
semble Classifier), that can effeciently integrate both drug and protein
properties described from distinct perspectives, thereby improving pre-
diction accuracy. The results on benchmark datasets demonstrate that
our approach outperforms other popular approaches significantly, imply-
ing the effectiveness of our proposed approach. Furthermore, the results
indicate that the integration of different data sources can not only im-
prove the coverage of predicted targets but also the prediction precision.
In other words, distinct data sources indeed complement with each other,
and the integration of these heterogeneous data sources can improve the
prediction accuracy.

1 Introduction

Drug target identification is one of the most important steps in drug develop-
ment, and is the key to understand how the desirable therapeutic effects are
accomplished when the proteins are targeted by drugs [1,2]. Unfortunately, the
targets of a lot of drugs are incomplete or even unknown, which hampers the
discovery of new drugs. Recently, a number of computational approaches have
been proposed to predict drug targets. For example, assuming similar drugs bind
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to similar pockets on the protein surfaces, molecular docking approaches have
been widely used to identify those compounds that can bind to known target
proteins by investigating the chemical similarity between candidate ligands with
known drugs [3]. With the knowledge that drugs with similar therapeutic ef-
fects generally target same proteins, drug therapy information has been used to
predict drug targets [4]. Observing that drugs with similar side effects tend to
target common proteins, Campillos et al proposed a novel approach to predict
drug targets based on side effect similarity [5]. Considering that protein function
is determined by its component domains while ligands generally bind to proteins
to exert their function [6], Wang et al proposed a novel statistical approach to
predict drug targets based on the derived interactions between drugs and pro-
tein domains [7]. To further improve prediction accuracy, different kinds of data
sources have been integrated to predict compound-protein interactions. For ex-
ample, Yamanishi et al have combined chemical structure and genomic sequence
information to predict drug-protein interactions [8], and they later further took
into account the pharmacological information to improve prediction accuracy
[9].

With the knowledge about drug-protein interactions becoming more com-
prehensive, the amount of compound-protein interactions deposited in public
databases, e.g. DrugBank [10] and STITCH [11], increases accordingly. Most re-
cently, it is found that actually 96% of approved drugs have known targets [12].
However, a large number of these drug-protein interactions are found to be either
irrelevant to disease-treatment or related to side effects [13]. In general, a com-
pound may bind to multiple proteins, among which some proteins are off-targets
that may lead to severe undesirable adverse effects. That is, druggable pro-
teins are not necessarily main effect-mediating targets, i.e. therapeutic targets,
that play critical and preferably unsubstitutable roles when treating disease [14].
Therefore, it is necessary to identify those therapeutic targets, and discriminate
them from therapeutically irrelevant or side effect related ones. The therapeu-
tic targets can help design drugs with expected efficacy. Although experimental
techniques, such as high-throughout screening with bioassays, can be used to
detect drug-protein interactions, it is highly expensive and time-consuming to
identify the effect-mediating targets from the large pool of proteins within the
human genome. Despite the partial success achieved by above mentioned compu-
tational approaches, few attention has been paid to predict therapeutic targets
in the bioinformatics community possibly due to the scarceness of therapeutic
target information.

In this paper, we present a novel framework to predict the therapeutic targets
for known drugs based on integration of heterogeneous data sources. To this end,
we investigate various properties of both drugs and proteins, including chemi-
cal structure and therapy information for drugs while primary structure and
functional annotations for proteins. In particular, we develop a novel approach
to integrate these heterogeneous data for both drugs and proteins with an en-
semble classifier, PTEC (Predicting Therapeutic targets with Ensemble Classi-
fier). The integration of different data sources can not only improve prediction
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coverage but also accuracy [15]. That is, distinct data sources can complement
with each other so that better results are expected based on the integration of
these heterogeneous data sources. The results on gold standard datasets demon-
strate that our proposed method outperforms other popular approaches signifi-
cantly, implying the effectiveness of our proposed approach.

The rest of this paper is organized as following. Section 2 presents the ma-
terials used in this work and our proposed methods; Section 3 presents the
experimental results; Finally, conclusions are drawn in Section 4.

2 Materials and Methods

2.1 Data Sources

In this work, 406 therapeutic targets for known drugs were retrieved from [12],
which were curated from the drug-protein interactions from the DrugBank
database [10]. We also downloaded other human drug target proteins and drug
therapy information from DrugBank database (version 3.0). The drug therapy
information described as therapeutic categories in Anatomic Therapeutic Chem-
ical (ATC) classification system was considered here. The chemical structure in-
formation for drugs was obtained from PubChem [16]. As a result, 708 drugs with
both chemical structure and therapy information available were kept for further
analysis, which leads to 1726 interactions between drugs and their corresponding
therapeutic targets.

The amino acid sequences of human proteins were obtained from the Uniprot
database [17]. The functional annotations for these proteins were extracted from
the Gene Ontology (GO) database [18], where all three functional categories were
considered, including cellular component, molecular function and biological pro-
cess. The protein associated pathway information was retrieved from KEGG
database [19]. Furthermore, the expression profiles of protein coding genes gen-
erated for 36 normal human tissues were obtained from [20].

2.2 Drug Similarity

With chemical structure and therapy information available for drugs, we can
define the similarity between two drugs. The chemical similarity between a pair
of drugs was calculated as the two-dimensional Tanimoto score based on their
fingerprints with the help of Chemistry Development Kit (CDK) [21], which is
defined as following.

Cs(d, d
′
) =

∑
i(di ∧ d

′
i)∑

j(dj ∨ d
′
j)

(1)

where Cs(d, d
′
) represents the similarity score of two drugs d and d

′
, di is the ith

bit in the fingerprint of drug d, and ∧ and ∨ respectively denotes bitwise ′and′

and ′or′ operators.
In the Anatomic Therapeutic Chemical (ATC) classification system, each drug

can be described in 5 hierarchical levels and is classified into different therapeutic
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groups according to the organ it acts on and its chemical characteristics. In this
work, the therapeutic similarity between two drugs was defined as their longest
matched prefix between their corresponding ATC codes as described previously
[4].

T (d, d
′
) = max(di,d

′
j)

2 ∗ log(Pr(pre(di, d
′
j)))

log(Pr(di)) + log(Pr(d
′
j))

(2)

where T (d, d
′
) denotes the therapeutic similarity between drugs d and d

′
, di

denotes the ith ATC category for drug d considering each drug may be grouped
into different categories, pre(i, j) denotes the longest matched prefix between
the ATC codes di and d

′
j , Pr(di) denotes the probability of the ATC category

di occurs in drugs, and Pr(pre(di, d
′
j)) denotes the probability of the common

prefix between the two ATC categories di and d
′
j occurs in drugs.

2.3 Protein Similarity

The most straightforward way to measure the similarity between two proteins
is to compare their primary structure identity. In this work, the sequence simi-
larity Ss(p, p

′
) between two proteins (p, p

′
) is defined as the normalized Smith-

Waterman alignment score as described as following.

Ss(p, p
′
) =

SS(p, p
′
)√

SS(p, p)SS(p′, p′)
(3)

where SS(., .) denotes the original Smith-Waterman alignment score [22].
The pathways associated with drug target proteins can tell the molecular con-

text in which the proteins exert their function, and therefore help to understand
the mechanism of actions of drugs. With pathway annotation for proteins avail-
able, the pathway similarity Sp(p, p

′
) between two proteins can be defined as

below.

Sp(p, p
′
) =

∣∣∣S(p) ∩ S(p
′
)
∣∣∣

|S(p) ∪ S(p′)| (4)

where S(p) and S(p
′
) respectively denotes the set of pathways in which protein

p and p
′
are located.

Furthermore, with the functional annotations extracted from GO database,
the functional similarity Sg(p, p

′
) between two proteins p and p

′
is defined as the

Jaccard index.

Sg(p, p
′
) =

∑3
k=1

∣∣∣tk(p) ∩ tk(p
′
)
∣∣∣∑3

k=1 |tk(p) ∪ tk(p
′)| (5)

where tk(p) is the set of GO terms associated with protein p with respect to
functional category k, k = 1, 2, 3 denotes each of the three functional categories
in GO database, i.e. Molecular Function, Biological Process, and Cellular Com-
ponent.
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In addition, the expression similarity between two genes coding a pair of
proteins was defined as coexpression correlation based on the gene expression
profiles of 36 normal human tissues from [20] as below.

St(p, p
′
)) =

∑n
k=1 (p(k)− p)(p

′
(k)− p′)∑n

k=1

√
(p(k)− p)

2
(p′(k)− p′)

2
(6)

where St(p, p
′
) is the correlation coefficient between the genes coding proteins p

and p
′
, n is the number of samples, and p is the mean of expression profile of

protein p.

Fig. 1. The flowchart of predicting therapeutic targets based on the integration of
heterogeneous data sources

2.4 Therapeutic Target Prediction

With the drug similarity described above, we assume that drugs with similar
characteristics will target same proteins. Similarly, the proteins with similar
properties will be bound by same drugs. With this in mind, we can construct a
learner based on known drug-protein interactions. In this work, a drug-protein
pair (di, pj) can be represented as a feature vector (Fdi, Fpj), where each ele-
ment in Fdi represents the similarity between drug di and all the drugs while
each element in Fpj represents the similarity between protein pi and all the
proteins. For example, for the combination of chemical structure and protein



154 Y.-F. Dai, Y.-Y. Wang, and X.-M. Zhao

sequence, the elements in Fdi denotes the chemical similarity between drug di
and the rest drugs while the elements in Fpj denotes the sequence similarity
between protein pj and the other proteins. After the feature extraction step, a
classifier will be subsequently trained for each combination of drug and protein
properties, e.g. drug therapy and protein sequence. In this way, we can have
8 different combinations between distinct drug and protein properties, thereby
leading to 8 classifiers. Instead of selecting the best-performing classifier from
the eight ones, we proposed to construct an ensemble classifier, PTEC (Predict-
ing Therapeutic targets with Ensemble Classifier), to integrate these distinct
learners in a weighted way (see Fig 1). The ensemble classifier was adopted here
since it has been found to outperform individual ones and is more robust [23]. In
particular, we first evaluated each classifier on a benchmark dataset, and used
their accuracy as their corresponding weights to construct the ensemble classifier
as following.

Encres =
8∑

i=1

Wi · Li (7)

where Encres is the predicted results by the ensemble classifier, Wi is the weight
for learner ith, and Li is the output of learner ith. Here the weight for each
learner is set to the area under the curve (AUC) score of a reciever operating
characteristic (ROC) curve it obtained on the training set. Therefore, for a given
unknown protein, we can use the Ensemble classifier to predict whether it is a
therapeutic target. The simple but effective k-nearest neighbor algorithm (k-NN)
was used as the learner in this work.

3 Results and Discussion

With the known interactions between drugs and their corresponding therapeutic
targets as positive set, we build a negative set consists of drug-protein interac-
tions from DrugBank except those from the positive set for the drugs involved
in the positive set. As a result, 1094 drug-protein interactions were obtained as
negative set. Note that all the drug-protein interactions in the negative set are
real interactions as reported in DrugBank.

To evaluate the predictive power of different classifiers, one fifth of the samples
were used as the test set while the rest were used as the training set. Firstly, we
evaluated the eight single classifiers based on the training set with 10-fold cross-
validation. Table 1 summarizes the results obtained by distinct classifiers. From
the results, we can see that these eight classifiers perform comparably well with
no one single classifier performs always best. For example, the classifier trained
with therapy information and gene expression achieves the highest true positive
rate, while the one trained on protein sequence performs best with respect to false
negative rate. With the AUC scores obtained by the eight classifiers on the train-
ing set as their corresponding weights, we integrated the eight classifiers into an
ensemble classifier PTEC, which achieves the highest true positive rate and the
best overall result with an AUC score of 0.71 (see Table 1). The ensemble classifier
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Table 1. Performance of distinct classifiers, where the results were obtained with 10-
fold cross-validation on the training set

Ccs Ccp Cct Ccg CAs CAp CAt CAg PTEC

TPR 0.77 0.76 0.80 0.76 0.77 0.79 0.80 0.79 0.81
TPR std 0.02 0.01 0.02 0.02 0.03 0.02 0.01 0.01 0.01
FPR 0.37 0.41 0.46 0.36 0.37 0.43 0.46 0.43 0.39
FPR std 0.02 0.01 0.03 0.02 0.02 0.01 0.02 0.02 0.01
AUC 0.70 0.66 0.68 0.70 0.68 0.67 0.70 0.70 0.71
AUC std 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.01

Ccs - classifier trained on chemical structure and protein sequence; Ccp - classifier trained on
chemical structure and protein pathway; Cct - classifier trained on chemical structure and
transcriptional expression; Ccg - classifier trained on chemical structure and protein GO annotation;
CAs - classifier trained on drug therapy information and protein sequence; CAp - classifier trained
on therapy information and protein pathway; CAt - classifier trained on therapy information
and transcriptional expression; CAg - classifier trained on therapy information and protein GO
annotation;
TPR - true positive rate;
TPR std - standard deviation of true positive rate;
FPR - false positive rate;
FPR std - standard deviation of false positive rate;
AUC - Area under ROC curve;
AUC std - standard deviation of AUC.

Fig. 2. The Venn diagram about the number of drug-protein interactions successfully
predicted by the combination between drug therapy and three protein properties

was adopted here since it can improve prediction coverage considering that the an-
notations for proteins are incomplete. For example, looking into the drug-protein
interactions predicted by different classifiers, Fig. 2 shows the Venn diagramabout
the number of drug-target pairs successfully predicted by the combination of drug
therapy with protein sequence, pathway annotation and functional annotation re-
spectively. It can be seen that among the 138 drug-protein interactions, the three
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Table 2. Performance of distinct classifiers on the test set

Ccs Ccp Cct Ccg CAs CAp CAt CAg PTEC

TPR 0.70 0.78 0.79 0.80 0.76 0.80 0.82 0.82 0.83
FPR 0.26 0.26 0.36 0.29 0.32 0.33 0.38 0.34 0.17
AUC 0.76 0.75 0.71 0.75 0.73 0.74 0.72 0.74 0.83

classifiers get consistent results on most of their predictions 68.12% (94/138),
while the integration of these different data sources can enlarge the number of
predicted therapeutic targets significantly. In other words, distinct data sources
complement with each other and the integration of them can improve both pre-
diction accuracy and coverage.

To further evaluate the predictive power of our proposed PTEC, we applied it
to predict therapeutic targets on the hold-out test set. Moreover, we compared
our results with those eight single classifiers. Table 3 shows the performance of
distinct classifiers on the test set. The results demonstrate that our proposed
ensemble classifier significantly outperforms others with an AUC score of 0.83
and the highest true positive rate, indicating the effectiveness and robustness of
our proposed ensemble classifier.

In addition, we compared our proposed method with a popular approach,
namely nearest profile (NP), which predicts drug targets based on a bipartite
graph. Figure 3 gives the results obtained by both PTEC and NP, where the

Fig. 3. The performance of PTEC and the nearest profile(NP) method
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results by PTEC are based on the test set while those by NP are based on the
whole dataset. From the results, we can clearly see that PTEC is really effective
to predict therapeutic targets, and is able to separate therapeutic targets from
other irrelevant ones. The good performance of PTEC confirm again that the
integration of different data sources indeed can improve prediction accuracy and
also the predictive power of our proposed approach.

In our predictions, some of them are not found in the positive dataset, which
does not necessarily mean they are false positives. For example, we predict pro-
tein AchE that is involved in lipid transportation and metabolism as the ther-
apeutic target of drug Physostol, a cholinesterase inhibitor that can be applied
topically to the conjunctiva. In the positive set, AchE is not the therapeutic
target of Physostol, whereas we found that AchE is reported as the therapeutic
target of Physostol in the Therapeutic Target Database (TTD)[24]. The drug
Metubine iodide is a benzylisoquinolinium competitive nondepolarizing neuro-
muscular blocking agent, which was predicted to bind to CHRNA2 by our pro-
posed PTEC, and this interaction is also verified in TTD. The verification of our
prediction results by other public databases demonstrates the predictive power
of our proposed method.

4 Concluding Remarks

Therapeutic target is the key to design the drugs with expected efficiency and
understand how the drugs work. In this paper, we present a new framework to
predict drug therapeutic targets by integrating heterogeneous data sources for
both drugs and proteins. Specifically, we proposed a novel ensemble classifier to
integrate the learners trained on distinct data sources. The results on benchmark
dataset demonstrate the effectiveness and robustness of our proposed approach.
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Abstract. Given recent advances in synthetic biology and DNA synthe-
sis, there is an increasing need for carefully engineered biological parts
(e.g. genes, promoter sequences or enzymes) and circuits. However, for-
ward engineering approaches are thus far rarely used in biology due to
lack of detailed knowledge of the biological mechanisms. We describe a
framework that enables forward engineering in biology by constructing
models predictive of properties of interest, then inverting and using these
models to design biological parts.

We demonstrate the applicability of the proposed framework on the
problem of codon optimization, concerned with optimizing gene coding
sequences for efficient translation. Results suggest that our data-driven
codon optimization (DECODON) method simultaneously considers the
effects multiple translation mechanisms to produce optimal sequences,
in contrast to existing codon optimization techniques.

Keywords: synthetic biology, codon optimization, support vector re-
gression, genetic algorithms.

1 Introduction

In biotechnology, microorganisms such as yeast are genetically engineered for
improved production of foods, beverages, fuels and pharmaceuticals. Recent
advances in synthetic biology and dropping cost of DNA synthesis have led
to a growing need for methods to engineer biological parts (promoter regions,
gene coding sequences (CDSs) and even entire enzymes) with specific properties.
Whereas in many engineering disciplines optimization techniques are routinely
used to design such parts (e.g. aircraft wings [16]), in synthetic biology this is
not yet the case. This stems from a lack of fundamental biological knowledge on
the processes in which these parts are involved.

For some problems, this limitation can be overcome by constructing predictive
models for properties of biological parts (e.g. promoter strength, mRNA trans-
lation rate or enzyme activity) and inverting the constructed models to design
biological parts with desired properties. A successful use of such a “black-box”
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modeling approach would enable forward engineering in areas of biology where
detailed knowledge of the underlying processes is unavailable. We showcase the
use of our proposed framework on the problem of codon optimization, in which
a gene coding sequence is changed to obtain a desired translation rate of the
mRNA into protein while keeping the amino acid sequence intact.

The degeneracy of the genetic code manifests itself in the differential use
of synonymous codons in different organisms and different genes in the same
organism. It has been long noticed that organisms preferentially use just one
or two codons out of a family of codons translated into the same amino acid.
This preference, termed codon usage bias (CUB), is more pronounced in highly
expressed genes, which sometimes exclusively use only the preferred codons. For
this reason it is believed that in unicellular organisms, such as baker’s yeast
Saccharomyces cerevisiae and the bacterium Escherichia coli, the codon bias of
a gene is related to its translation rate [1]. Over the years numerous methods
(called indices) summarizing the degree of CUB of a gene in a single number
have been proposed and have been demonstrated to correlate with intracellular
mRNA and protein levels [3].

These correlations have been used in a process called codon optimization to
modify gene CDSs such that their translation rate is maximized, by introducing
synonymous codon substitutions which increase one of the codon indices [9].
Codon optimization is routinely applied in biotechnology to overexpress genes
for heterologous protein production and heterologous pathway expression [13].
However, CUB only partially explains the difference in translation rates among
genes. Although the precise mechanisms influencing gene translation rates are
not known, there is evidence suggesting that codon pair usage, tRNA recycling
[2], mRNA secondary structure [19], adaptation to an organisms tRNA pool,
mRNA untranslated regions (UTRs) and protein amino acid charge [19] may
influence translation initiation and elongation rates. The relative influence of
these factors on translation is not understood, making it difficult to combine
them in a single codon optimization strategy. To our knowledge only Maertens
et al. [15] have successfully combined multiple codon optimization objectives, by
equally weighting them.

We present DECODON (data-driven codon optimization), an approach to
codon optimization that combines multiple optimization objectives in a data-
driven way by constructing a regression model. We use Support Vector Regression
(SVR) [7] to predict ribosome density, a measure related to translation rate,
based on coding sequence features of S.cerevisiae genes. We then invert this
predictor by using it inside a genetic algorithm to optimize gene CDSs for desired
ribosome density.

2 Materials and Methods

2.1 Dataset

To our knowledge no datasets with direct measurements of translation rates are
available. However, Ingolia et al. [11] performed genome-scale measurements of
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average ribosome density, defined as the number sequencing reads originating
from parts of mRNA molecules covered by ribosomes in all mRNA copies of a
particular gene, divided by the length of the gene transcript. Ribosome density
is indicative of translation rate, as genes with higher densities are expected to
produce more protein per copy of mRNA.

The number of gene mRNA copies per cell depends on its transcription rate
and the stability of its mRNA. Although the relationship is poorly understood,
the latter may be influenced by the secondary structure of the mRNA, which can
differ between synonymous (i.e. encoding the same peptide) versions of a gene. In
order to take the potential influence of coding sequence on the transcript levels
into account, we propose to directly (i.e. without normalizing by the mRNA read
density) use ribosome density as a measure of gene translation rate.

Yeast gene CDSs were obtained from the Saccharomyces Genome Database
and the matching 5′- and 3′-UTR sequences were obtained from Nagalakshmi
et al. [17] and Yassour et al. [21] (preference given to the former in cases when
the two studies were not in agreement). The resulting dataset contains 5,048
yeast genes, each associated with coding and UTR sequences and a measured
ribosome density.

2.2 Sequence Features

In order to construct a predictor of ribosome density from gene sequences a
number of candidate sequence-based features identified from the literature have
been computed for each gene in the dataset. These features were then used in
a multivariate regression training step. Selected candidate features (Table 1) in-
clude a subset of existing codon bias indices (13 features); protein indices and
protein properties (12 features); and nucleotide, codon and amino acid compo-
sition features (122 features). Prior to training, features as well as the ribosome
density to be predicted were standardized to zero mean and unit variance.

2.3 Regression Model Training

ε-SVR [4] has been chosen as a regression method as it supports nonlinear regres-
sion through the use of kernels, allowing for complex models, and because efficient
training algorithms are available. SVR relies on the choice of several parameters,
including the cost parameter C, the error in sensitivity ε, the regression kernel
and its parameters. Often, due to the lack of a theoretical framework for choosing
these parameters, a grid search approach is used to find a combination of param-
eters that minimizes the regression error. This training procedure, if performed
inside cross-validation (CV), becomes computationally very expensive.

As a performance measure we calculate the coefficient of determination R2.
Normally this measure approaches 1 with increasing model complexity regard-
less of its validity and is therefore not suitable for assessing quality of complex
(nonlinear, many features) models. However, if the coefficient of determination
is computed using CV (denoted R2

CV), it becomes a measure of the amount of
variance in unseen data explained by the model. Similar to the coefficient of
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Table 1. Sequence-based features used as initial input for regression model training.
CF and SF respectively stand for the number of candidate features in the feature group
and the number of features selected for the final ribosome density predictor. Description
of codon indices can be found in Cannarozzi and Schneider [3].

Name Description SF CF

CAI Codon Adaptation Index measures the extent to which a gene is com-
posed of codons from the highly expressed genes.

0 1

tAI tRNA Adaptation Index measures the extent to which a gene consists
of codons recognized by abundant tRNAs. It is computed for the full
CDS and its first 14, 17 and 19 codons (tAI, tAI14, tAI17 and tAI19
respectively) [19].

3 4

Nc Effective number of codons estimates the number of uniformly used
codons that would produce the CUB observed in a gene.

0 1

Dncu Distance to native codon usage [18] measures the difference between
codon usage of a gene and the overall codon usage of the organism.

1 1

Ew Weighted sum of relative entropy measures the degree of deviation from
equal usage of synonymous codons using the Shannon entropy.

1 1

CPB Codon Pair Bias score [5] is computed as the sum of log-ratios of ob-
served and expected codon pair counts.

0 1

TPI2 tRNA Pairing Index measures the extent of potential tRNA re-use
during gene translation.

1 1

Fop For computing the Frequency of optimal codons, optimal codons were
chosen as corresponding to the most abundant tRNA species.

1 1

RCBS Relative codon usage bias measures codon usage difference of a gene
with respect to the its nucleotide composition.

0 1

P1 Mean number of non-specific tRNA interactions per elongation cycle. 1 1

prot Protein hydrophobicity, aromaticity, aliphatic and instability indices. 3 4
Qport Protein net charge, isoelectric point and weight. 3 3
Qside Mean amino acid side chain charge computed for the full protein and

its first 4, 11, 15 and 40 amino acids [19].
0 5

len Lengths of the CDS, the 5′- and the 3′-UTR regions. 3 3
nuc Nucleotide and dinucleotide frequencies of the CDS regions. 7 20
GC15 GC-content computed for the first 15 codons of the CDS 1 1
RSCU Relative Synonymous Codon Usage is computed for each codon (except

ATG) as the ratio between the observed number of its occurrences and
the mean number of occurrences for codons encoding the same amino
acid.

41 63

codon2 tAI and CAI weights of the second codon in the CDS (denoted tAI2

and CAI2).
2 2

amino Amino acid frequencies. 6 21
ΔG Gibson free energy for mRNA secondary structures predicted by the

Vienna RNA package [10]. It is computed for the 5′-/3′-UTR se-
quences; and the first 17, 34, and 53 codons of the CDS [19] with
(ΔG5′-UTR,CDS17

, ΔG5′-UTR,CDS34
and ΔG5′-UTR,CDS53

) and without
(ΔGCDS17 , ΔGCDS34 and ΔGCDS53) 5

′-UTR sequence

4 12
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determination computed without CV, the cross-validation R2
CV approaches 1 as

generalization becomes better, but can be negative if the trained model explains
less variance in unseen data than a constant model. We believe that R2

CV is a
suitable measure for assessing quality of nonlinear models and use it to optimize
and assess performance of our regression models.

Parameter Preselection: To keep the amount of computation tractable, we
first screened the parameter space by training predictors with different parameter
settings and assessing their coefficient of determination computed by 10-fold CV
(R2

10CV) on the complete dataset (Figure 1, block A). Screening results (data
not shown) indicated that the performance of RBF and polynomial kernels on
the considered dataset is comparable, which led us to consider only polynomial
kernelsK(u, v) = (γ ·〈u, v〉+1)d with degrees d = 2, 3, 4 for the actual parameter
selection stage. Based on the screening R2

10CV results, ranges for parameters C,
γ and ε were set to {1} ∪ {0.001 · 3i} for i = 0, . . . , 6.

Parameter Estimation: The preselected parameter ranges were used to es-
timate optimal SVR parameter settings (Figure 1, block B) in a grid search
procedure. For each combination of parameters an SVR is trained and its R2

4CV

is computed to select a single combination of SVR parameter settings with the

Fig. 1. Predictor training and evaluation scheme (adapted from [20]). The full dataset
is used to preselect SVR parameter ranges (block A) and evaluate the training protocol
using CV (block D). Predictor training consists of parameter estimation (block B) used
to find an optimal set of SVR parameters, for which feature selection is performed
(block C). The optimal parameters and the selected features are used to train the final
predictor which is evaluated on the testing set of the CV loop. The same training
procedure (block E) is used to train the final predictors used for sequence optimization
on the complete dataset.
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best performance. This combination is then used in the subsequent feature se-
lection step.

Feature Selection: Feature selection was used to eliminate features that do
not contribute to the model’s generalization capability. This also allowed for
selecting a concise set of features which can be interpreted biologically. While
generally yielding good results, wrapper approaches to feature selection are com-
putationally very demanding. To lower the computational load, backward feature
elimination [12] was performed only on the SVR parameter settings obtained as
discussed above (Figure 1, block C). At every step of the feature elimination pro-
cedure, given n features, we computed R2

4CV for n predictors trained on subsets
of n− 1 features (i.e. obtained by removing one of the features). A subset with
the highest R2

CV was then selected for the next step of the feature elimination
procedure. After the procedure was complete, the number of features (and the
corresponding subset) with the best performance was chosen. If multiple subsets
gave optimal performance, the smallest one was selected. The selected features
were used to train the final predictor on the available data (Figure 1, block E).

Training Strategy Evaluation: In order to obtain an unbiased estimate of
the predictor performance we used a second 4-fold CV loop (Figure 1, block
D) around the described parameter estimation and feature selection strategies.
The R2

4CV values computed in the outer CV loop are reported in Section 3 as
estimates of predictor generalization.

2.4 Sequence Optimization

In order for the constructed predictor y = f(x) to be useful for sequence op-
timization, it first needs to be “inverted” such that it can be used to find se-
quences x that have the desired ribosome density y̌. Constructing the inverse
function x = f−1(y) for SVR is impossible. Moreover, solving this function for
a given y̌ would yield multiple nonsynonymous sequences x, thereby presenting
an additional problem of selecting the suitable sequences from a large pool of
solutions. Instead we implicitly invert the predictor by searching through the
space of sequences xi synonymous to the original sequence x to find x̌ such that
its predicted ribosome density f(x̌) is close to the desired y̌.

Genetic Algorithm: The space of all nucleotide sequences synonymous to a
given sequence x grows exponentially with the length of the sequence. Typically,
it is too large to evaluate all possible xi and requires an efficient search strategy
to find (an approximation of) x̌ in a timely manner. Genetic Algorithms (GAs),
specifically tailored for large discrete optimization problems, use computational
equivalents of genetic crossover, mutation and selection concepts from biological
systems to evolve a pool of potential solutions to a given optimization problem.
The problem of finding an x̌ whose predicted ribosome density f(x̌) is as close
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as possible to a desired level y̌ can be cast into an optimization problem and
tackled using GAs if g(x) = |f(x)− y̌| is used as an objective to be minimized.
In practical applications, optimized gene sequences are synthesized and cloned
into living cells in the wet lab. It is then required that the sequences do not
contain certain motifs, such as restriction sites of enzymes used in cloning. This
presents an optimization constraint that has to be taken care of by the GA.
Treating this constraint as an additional objective of minimizing the number of
undesired motifs present in the sequence allows to refrain from banning parts
of the search space at the cost of casting the problem of finding x̌ into a multi-
objective discrete optimization problem with two objectives. If it exists, the
solution to the original problem will then be among the non-dominated solutions
(i.e. solutions that cannot be improved in both objectives simultaneously) of the
multi-objective optimization problem.

NSGA-II [6], a multi-objective GA, was chosen to solve the optimization prob-
lem as previously it has been successfully applied to DNA sequence optimization.
It was implemented using multi-point crossover with a rate of 0.9; a mutation op-
erator synonymously changing every sequence codon with probability 1

n , where
n is the number of degenerate codons in the sequence; and a binary tournament
selection operator. For the genes optimized in this paper, the number of crossover
points was set to 100.

3 Results

3.1 Regression Model

The cross-validation loop used to evaluate the regressor training strategy de-
scribed in Section 2.3 gave an R2

4CV = 0.66± 0.03, suggesting that the proposed

(a) Ribosome density predictor.
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Fig. 2. Predicted vs. true (a) ribosome density and (b) protein level plotted for
S.cerevisiae genes.
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strategy produces regressors that generalize well on unseen data. This strategy
was employed to train the final ribosome density predictor (shown in Figure
2(a)) for use in codon optimization on the complete dataset.

Selected Features: The final predictor contained 78 features (Table 1, Figure
3), including codon indices, protein features, sequence composition and mRNA
structure features selected to best explain the data. While black-box predictors
are generally hard to interpret in biological terms, the fact that a certain feature
was selected in the final predictor suggests that the mechanism it describes
could indeed be used by the translation machinery. In this way, selection of
the tRNA Pairing Index (TPI2) suggests presence in yeast of a tRNA recycling
mechanism, in which outgoing tRNA molecules stay bound to the ribosome to
be recharged and reused in the course of translation [3]. Selection of the CAI2

and tAI2 features, describing respectively the extent to which the second codon
of a gene is used in highly expressed genes of S.cerevisiae and its adaptation to
the organisms tRNA pool, suggests that choice of the second codon influences
ribosome density. Fredrick and Ibba [8] observe that the second codon is usually
a highly frequently used codon that is translated more quickly, and speculate
that this mechanism may be required for efficient recycling of the initiator tRNA.

Similarly, the selected tAI17, tAI19, and the ΔG5′-UTR,CDS17
, ΔG5′-UTR,CDS53

andΔGCDS53 features suggest that the mechanism of slowly translated “ramp” in
the beginning of the CDS [19] influences gene translation rate. It is believed that
the role of this “ramp” is to generate space between translating ribosomes and
thereby prevent ribosome collision [8, 19]. The same mRNA structure features
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4CV for the backward feature elimination procedure during

final predictor training. Features eliminated at a particular step are marked with black
circles. The maximum R2

4CV is achieved at 78 features (see Table 1).
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also describe the accessibility of the 5′-UTR for translation initiation by the
ribosome machinery, suggesting it as another S.cerevisiae mechanism influencing
gene translation.

3.2 Codon Optimization

The final ribosome density predictor (Section 3.1) was used to optimize sequences
of the genes 4CL (4-coumaric acid-CoA ligase, 562 codons) and PAL1 (pheny-
lalanine ammonia lyase, 726 codons) involved in flavonoid biosynthesis [13]. The
genes’ cDNA, obtained from the plant Arabidopsis thaliana, was optimized us-
ing the described GA for maximum ribosome density. Based on preliminary
experiments, optimization was performed for 200 generations with a population
size equal to the gene length in codons. An initial population was generated by
backtranslating genes from their amino acid sequences by choosing codons with
probabilities proportional to their CAI weights. The 5′- and 3′-UTR sequences
were set based on the respective sequences of the GPD promoter and CYC1 ter-
minator sequences used in the pAG416GPD yeast expression vector. The SpeI
and XhoI restriction site sequences used for cutting the expression vector were
treated as undesired motifs.

Table 2 shows that the predicted ribosome density of the optimized sequences
is significantly higher than that of the plant cDNA. As a sanity check, we com-
pared sequences optimized using our method DECODON to sequences optimized
by JCat [9], a well-known codon optimization tool that optimizes sequences for
high CAI. The constructed predictor also predicts a significant increase in ri-
bosome density for the JCat-optimized sequences (Table 2), showing that the
trained predictor agrees with the currently used codon optimization methods.
Note that the predicted ribosome density for the DECODON-optimized se-
quences is nearly two-fold higher than that of the JCat-optimized sequences.

Sequence Analysis: Compared to the cDNA sequences, the DECODON- and
JCat-optimized versions have roughly the same number of codon substitutions.
To highlight the specific differences between the sequences, we compared them

Table 2. Sequence optimization results for the 4CL and PAL1 genes. Predicted ribo-
some densities are shown for the plant cDNA, sequences codon-optimized using JCat
[9] and sequences optimized using DECODON. The number of different codons and the
fold increase in the predicted density are computed relative to the cDNA sequences.

4CL PAL1

Type Different
codons

Predicted
density

Fold
inc.

Different
codons

Predicted
density

Fold
inc.

cDNA N/A 0.0000000090 1 N/A 0.0000000524 1
JCat 338 (60.14%) 0.0000101491 1128 414 (57.02%) 0.0000079718 152
DECODON 361 (64.23%) 0.0000201560 2240 444 (61.16%) 0.0000172657 329
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…CCG GAC ATT GAC ATC CCT AAC CAC CTC CCT CTC CAC ACT TAC TGC TTC GAA AAA CTC TCA TCT GTT…

…CCA GAC ATT GAC ATT CCA AAC CAC TTA CCA TTA CAC ACC TAC TGT TTC GAA AAG TTG TCT TCT GTC…

…CCA GAC ATC GAC ATC CCA AAC CAC TTG CCA TTG CAC ACT TAC TGT TTC GAA AAG TTG TCT TCT GTT…

(a) 4CL gene, codons 40 to 61.

…GGC GGA GAC ATC AAG ACA AAG AAC ATG GTG ATC AAC GCG GAG GAT CCT CTC AAC TGG GGA GCT GCA…

…GGT GGT GAC ATT AAG ACC AAG AAC ATG GTA ATT AAC GCT GAA GAC CCA TTG AAC TGG GGT GCT GCT…

…GGT GGT GAC ATC AAG ACT AAG AAC ATG GTT ATC AAC GCT GAA GAC CCA TTG AAC TGG GGT GCT GCT…

(b) PAL1 gene, codons 20 to 41.

Fig. 4. Comparison of part of the codon-optimized sequences (JCat and ribosome
density optimized using DECODON). Matching codons are marked with black circles.
Underscored codons are not explained by the “one amino acid - one codon” rule.

to each other. It can be seen from Figure 4 that codon usage in the DECODON
sequences is more similar to that of the JCat-optimized genes than to that of
the original sequences.

When optimized for maximum ribosome density, codon usage of the optimized
sequences follows the “one amino acid - one codon” rule meaning that for each
amino acid only a single (preferred) codon is used to encode it. The preferred
codons in the genes optimized by DECODON mostly correspond to the codons
with high CAI weights (the JCat- and density-optimized 4CL and PAL1 genes
differ only in 126 and 150 codons respectively) with a few notable exceptions: (a)
ACC is preferred for the amino acid threonine; (b) GTC is preferred for valine;
(c) TGC is preferred for cysteine; and (d) ATT is preferred for isoleucine.

The preference rules account for all but a few codon differences (underscored
in Figure 4) between the optimized sequences. These substitutions, when intro-
duced in the sequences optimized using the “one amino acid - one codon rule”,
influence codon indices and mRNA features (ΔGCDS53

and ΔG5′-UTR,CDS53
),

according to which the mRNA secondary structures at the 5′-UTR become less
stable. This further suggests that the constructed predictor takes into account
multiple translation mechanisms, even when used to optimize genes for maxi-
mum ribosome density.

3.3 Applicability to Other Datasets

To demonstrate the applicability of the framework proposed in this paper to dif-
ferent datasets, we used it to optimize codon use based on the predicted absolute
protein level measurements of 756 proteins [14]. All the training steps (parame-
ter preselection, training strategy evaluation and final predictor training) were
repeated, yielding an cross-validation R2

4CV = 0.65 ± 0.09 and a final predictor
with 138 features (Figure 2(b)). This large number of features, explained by the
relatively high variance in the R2

4CV used for feature selection due to the limited
size of the dataset, hampers further biological interpretation.

The 4CL and PAL1 gene sequences optimized for maximum protein levels
using the constructed predictor show a “one amino acid - one codon”’ rule
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…GCT CTA CAC GAA CCT CAG ATT CAC AAA CCA ACC GAT ACA TCC GTC GTC TCC GAT GAT GTG CTT CCT…

…GCT TTG CAC GAA CCA CAA ATC CAC AAG CCA ACC GAC ACG TCT GTC GTC TCT GAC GAC GTG TTG CCA…

…GCT TTG CAC GAA CCA CAA ATC CAC AAG CCA ACT GAC ACT TCT GTT GTT TCT GAC GAC GTT TTG CCA…

(a) 4CL gene, codons 5 to 26.

…GGG GCA CAC AAG AGC AAC GGA GGA GGA GTG GAC GCT ATG TTA TGC GGC GGA GAC ATC AAG ACA AAG…

…GGT GCT CAC AAG AGC AAC GGT GGT GGT GTT GAT GCC ATG TTG TGT GGT GGT GAC ATC AAG ACC AAG…

…GGT GCT CAC AAG TCT AAC GGT GGT GGT GTT GAC GCT ATG TTG TGT GGT GGT GAC ATC AAG ACT AAG…

(b) PAL1 gene, codons 5 to 26.

Fig. 5. Comparison of part of the codon-optimized sequences (JCat and absolute pro-
tein levels optimized using DECODON)

behavior similar to the density-optimized genes with several differences: (a) TGT
is preferred for cysteine (as in JCat); (b) ATC is preferred for isoleucine (as in
JCat); and (c) GCT and GCC are preferred for alanine. Similarly, these rules
explain all but a few codon substitutions near to the 5′ end of the CDS (Figure
5). The codon usage similarities between the protein- and density-optimized gene
sequences show that the proposed framework can be applied to various types of
biological data to enable forward engineering approaches. However, wet-lab ex-
periments are required in order to determine which of the constructed predictors
is better suited for codon optimization.

4 Discussion

We have described a generic framework for forward engineering of biological
systems and demonstrated its use by optimizing genes for maximum ribosome
density and maximum protein levels using predictors constructed from the cor-
responding yeast datasets. The general agreement between the optimized gene
sequences obtained by us and gene sequences optimized using an existing codon
optimization method suggests that the proposed approach can be successfully
utilized for forward engineering of biological parts, whereas the differences be-
tween the sequences suggest that our codon optimization method DECODON
simultaneously considers the effects of multiple translation mechanisms to pro-
duce optimal sequences. Time complexity of DECODON is much higher than
that of JCat, however, it is negligible compared to the time involved in ordering
and experimenting with the synthesized DNA.

Features selected for the final ribosome density predictor and the exceptions
to the “one amino acid - one codon” rule in the optimized sequences show that
data-driven models can combine multiple features describing (competing) bio-
logical mechanisms in a way that best explains the available data. While the
effect of combining multiple mechanisms in a single predictor is hard to observe
in sequences optimized for maximum ribosome density (or protein level), we be-
lieve that it would be more pronounced in sequences optimized for intermediate
ribosome density, in which no one single mechanism would have a dominating
influence.
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Using black-box models for combining multiple (potential) mechanisms in a
single predictor is particularly useful in areas where precise workings of a system
are not known, but hypotheses on its important aspects can be generated and
described by features. Note that a danger associated with the interpretation
of the results is that the constructed model will select features that correlate
with the property it is trained to predict, rather than the features describing
the actual underlying mechanisms. For example, Qian et al. [18] suggest that
strong CUB in highly expressed genes is not related to translation rate of those
genes, but is rather a consequence of random mutations and the evolutionary
pressure to keep codon usage and tRNA availability of an organism balanced.
Nevertheless our models exhibit the “one amino acid - one codon” behavior when
genes are optimized for maximum density/protein levels. It is, therefore, crucial
to validate predictive models by testing their predictions in the wet-lab prior to
their application.

For the constructed predictors (especially in the case of the protein level pre-
dictor) we observed that a single codon substitution often leads to changes in
many features. These changes are often difficult to interpret and to link to the
effect a substitution has on the prediction. Nevertheless, we believe that by trad-
ing interpretability for general applicability, our framework will enable forward
engineering of various parts essential for synthetic biology such as promoters,
coding sequences and UTRs.
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Abstract. The high-throughput technologies have led to vast amounts
of protein-protein interaction (PPI) data, and a number of approaches
based on PPI networks have been proposed for protein function predic-
tion. However, these approaches do not work well if annotated proteins
are scarce in the networks. To address this issue, we propose an active
learning based approach that uses graph-based centrality metrics to se-
lect proper candidates for labeling. We first cluster a PPI network by us-
ing the spectral clustering algorithm and select some proper candidates
for labeling within each cluster, and then apply a collective classification
algorithm to predict protein function based on these annotated proteins.
Experiments over two real datasets demonstrate that the active learn-
ing based approach achieves better prediction performance by choosing
more informative proteins for labeling. Experimental results also validate
that betweenness centrality is more effective than degree centrality and
closeness centrality in most cases.

Keywords: Protein function prediction, Active learning, Collective
classification, Protein-protein interaction network.

1 Introduction

In recent years, the rapid development of high-throughput experimental biology
has led to huge amounts of unannotated protein sequences. Meanwhile, experi-
mentally determining protein function is expensive and time-consuming. So there
is a wider and wider gap between the pace of discovery of protein sequences and
that of functional annotation of known proteins. Therefore, protein function
prediction has been a fundamental challenge of biology in the post-genomic era.
Although many efforts have been made to solve this problem, the proportion
of annotated proteins is still very low. Among the 13 million protein sequences,
there are only 1% sequences having experimentally-validated annotations [1].
Even for the most well-studied model organisms, taking yeast as an example,
approximately one-fourth of the proteins have no annotated functions [2].

Due to high cost and long duration of experimentally annotating protein func-
tion, there is increasing research on using computational approaches to predict

A. Ngom et al. (Eds.): PRIB 2013, LNBI 7986, pp. 172–183, 2013.
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protein function. The recent advent of high-throughput experimental biology
has generated vast amounts of protein-protein interaction (PPI) data, which are
represented as networks, where a node corresponds to a protein and an edge
corresponds to an interaction between a pair of proteins. Thus, a number of
prediction approaches based on PPI networks have been proposed. These ap-
proaches make use of the observation that proteins with short distance to each
other in a PPI network are more likely to have similar functions.

However, current network-based approaches will fail to work when annotated
proteins are scarce. To address this issue, in this paper we propose an active
learning [3] based approach that uses graph-based centrality metrics to select
good candidates for labeling. Our approach consists of two steps: we first cluster
a PPI network by using spectral clustering algorithm and select proper candi-
dates for labeling within each cluster, and then apply a collective classification
algorithm to predict protein function based on these annotated proteins. To the
best of our knowledge, this is the first study where active learning is employed
to predict protein functions in PPI networks. The key idea behind active learn-
ing is that a machine learning algorithm can achieve higher accuracy with fewer
training labels if it is allowed to choose the proper data for labeling from which
it learns. Therefore, we let the learning algorithm pick a set of unannotated
proteins to be labeled by an oracle (i.e., a lab experiment), which will then be
used as the labeled data set. In other words, we let the learning algorithm tell
us which proteins to label, rather than select them randomly.

We conduct experiments on the S.cerevisiae and M.musculus functional an-
notation datasets, The experimental results show that the active learning based
approach achieves better prediction performance by choosing more informative
proteins for labeling. Experimental results also validate that betweenness cen-
trality is more effective than degree centrality and closeness centrality in most
cases. The rest of this paper is organized as follows: Section 2 presents our ap-
proach, Section 3 gives the experimental evaluation results, Section 4 describes
related work, and finally Section 5 concludes the paper.

2 Method

2.1 Notation and Problem Definition

In this paper, a PPI network is represented as an indirected graph G = (V , E),
where V = (V1, ..., Vn) is a set of n vertices and E is a set of weighted edges.
Each vertex Vi ∈ V represents a protein and each edge Ei,j ∈ E represents
an interaction between proteins Vi and Vj . Edge Ei,j is labeled with a weight
wi,j that indicates the interaction confidence. F = (F1, ..., Fm) is the set of m
functions assigned to the proteins, and each vertex Vi ∈ V is assigned with at
least one function. The functions of vertex Vi ∈ V are denoted by

Φ(Vi) = [fi,1, fi,2, ..., fi,j , ..., fi,m]T (1)
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where {
fi,j = 1, if Vi has the function Fj ;

fi,j = 0, otherwise.
(2)

V can further be divided into two sets: X — the labeled vertices and Y — the
vertices whose functions need to be determined.

In this paper, our goal is to label as few vertices {Yi} ⊂ Y as possible with
at least one of the functions in F based on the available information of the
corresponding PPI network, so that the labeled vertices {Yi} and X together
constitute the training set, which can be used to train an as good as possi-
ble classifier. Here, active learning is used for data selection to be labeled, the
collective classification method is employed for classifier training.

2.2 Active Learning Strategies for Protein Function Prediction

As we point out above, experimentally annotating protein function is expensive
in terms of cost and effort, and current network-based approaches do not work
well if annotated proteins are scarce. Therefore, strategies that minimize the
amount of labeled data required in the supervised learning task would be useful.
Active learning attempts to overcome the labeling bottleneck by asking queries in
the form of unlabeled instances to be labeled by an oracle (i.e., a lab experiment).
In this way, the active learner aims to achieve high accuracy using as few labeled
instances as possible, thereby minimizing the cost of obtaining labeled data. The
key idea behind active learning is that a machine learning algorithm can achieve
higher accuracy with fewer training labels if it is allowed to choose the most
proper data for labeling from which it learns.

In this study, the PPI network is represented as a graph, so it seems reasonable
that we leverage graph structure to identify the nodes (proteins) in the graph
that are important (central) for labeling. That is, we expect that such central
nodes are proper candidates to label. Furthermore, we also note that nodes of
the same class tend to cluster together in the PPI network. This suggests that
clustering the graph and then finding central nodes in the clusters my be a good
way to find proper candidates. Therefore, we explore the spectral clustering
algorithm to cluster the PPI network and then leverage graph-based centrality
metrics to select central nodes in the clusters to label.

Under the active learning framework, there is a small set of labeled data and a
large pool of unlabeled data available. A fixed numberM of labels (usually called
the labeling budget) is requested. Suppose that the selected nodes are distributed
across the clusters of the PPI network, in proportion to the size of the cluster.
Let ni be the number of nodes in cluster Ci and N be total number of nodes in
the PPI network. Then, mi, the number of nodes to be selected from cluster Ci

is given by

mi = M ∗ ni/N and M =

K∑
i=1

mi. (3)



Active Learning for Protein Function Prediction in PPI Networks 175

In each cluster Ci, mi central nodes are selected to label. In what follows, we
describe and discuss the spectral clustering algorithm and graph-based centrality
metrics in detail.

Spectral Clustering Algorithm. Spectral clustering [4] is one of the most
popular modern clustering algorithms. It is simple to implement, can be solved
efficiently by standard linear algebra software, and very often outperforms tra-
ditional clustering algorithms such as the k-means algorithm. Detail description
of the spectral clustering algorithm is presented as follows.

Given a PPI network, let W ∈ Rn×n be its weighted adjacency matrix, Wii =
0 and Wij = 0 if the vertices Vi and Vj are not connected by an edge. The degree
of a vertex Vi ∈ V is defined as

di =

n∑
j=1

Wij . (4)

Note that this sum only performs over all vertices adjacent to Vi, as for all
other vertices Vj the weight Wij is 0. The degree matrix D is defined as the
diagonal matrix with the degrees d1, ..., dn on the diagonal. The unnormalized
graph Laplacian matrix is defined as

L = D −W. (5)

Next, we compute the first k eigenvectors u1, ..., uk of L, and let U ∈ Rn×k

be the matrix containing the vectors u1, ..., uk as columns. For i = 1, ..., n, let
yi ∈ Rk be the vector corresponding to the i-th row of U . Finally, we cluster the
points yi in Rk with the K-means algorithm into clusters C1, ..., Ck.

Graph-Based Centrality Metrics. In this study, we consider three kinds of
graph-based centrality metrics for active learning, including degree centrality,
closeness centrality and betweenness centrality.

Degree centrality. Graph degree centrality is perhaps the simplest measure of
centrality, it is defined as the number of links incident upon a vertex (i.e., the
degree of a vertex). So graph degree centrality of a vertex v is defined as follows:

CD(v) = deg(v). (6)

Closeness centrality [5]. In connected graph there is a natural distance metric
between all pairs of vertices, defined by the length of their shortest paths. The
farness of a vertex is defined as the sum of its distances to all other vertices,
and its closeness is defined as the inverse of the farness. Thus, the more central
a vertex is the smaller its total distance to all other vertices. Graph closeness
centrality measures how close a vertex is to all other vertices in the graph, it is
defined as the inverse of the total distance to all other vertices:

CC(v) =
1∑

t∈V

d(v, t)
. (7)
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where d(v, t) is the distance from vertex v to vertex t in the graph. In unweighted
graph, the distance is defined in terms of the number of edges that connect two
vertices. And in weighted graph, we define the distance as the sum of weights of
the edges that connect two vertices.

Betweenness centrality [6]. Graph betweenness centrality is perhaps one of
the most prominent measures of centrality, it quantifies the number of times a
vertex acts as a bridge along the shortest path between two other vertices. That
is, vertices that have a high probability to occur on a randomly chosen shortest
path between two randomly chosen vertices have a high betweenness. Graph
betweenness centrality of a vertex v is evaluated as follows:

B(v) =
∑

s�=v �=t

σst(v)

σst
. (8)

Above, σst is the total number of shortest paths from vertex s to vertex t and
σst(v) is the number of those paths that pass through v. As with closeness, we
compute all shortest paths to get the centrality measure for all vertices.

2.3 Collective Classification: The Gibbs Sampling Approach

In this study, Gibbs sampling (GS) [7] is applied to predicting protein function.
GS is one of the most commonly used collective classification algorithm that
aims at finding the best label estimate for each un-annotated vertex Yi ∈ Y
by sampling each vertex label iteratively. Our approach consists of two steps:
bootstrapping and iterative classification, the pseudo-code is illustrated in Algo-
rithm 1. The details of the algorithm are presented in the following subsections.

Bootstrapping. According the observation that proteins with shorter distance
to each other in the network are more likely to have similar functions, we use
weighted voting to predict an initial functional probability distribution for a
query protein (i.e. an un-annotated protein).

Given a query protein Vx, which has Nx neighbors, these corresponding edge
weights can be represented as the vector as follows:

Nw
x = [wx1, wx2, ..., wxi, ..., wxNx ]. (9)

Then the probability of Vx having the j-th function Fj is computed as follows:

P j
x =

1

Zw
x

Nx∑
i=1

wx,ifi,j (10)

where Zw
x is the normalizer:

Zw
x =

m∑
j=1

Nx∑
i=1

wx,ifi,j . (11)
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The larger the value of P j
x is, the more likely protein Vx has the j-th function Fj .

The initial functional probability distribution for query protein Vx is represented
as an m-dimensional vector:

ax = [P 1
x , P

2
x , ..., P

m
x ]. (12)

Note that when predicting the functions of the query protein Vx, we consider only
its labeled neighbor proteins. That is why we use X∩Nw

x in Algorithm 1 (Line 3),
because unlabeled neighbor proteins can not be exploited in the bootstrapping
step. This process is implemented in Alg. 1 from Line 2 to 4.

Iterative Classification. Iterative classification is performed in two steps:

– First, there is a fixed number B of iterations known as “burn-in” period.
In this period, we only update ax using weighted voting in each iteration.
Corresponding codes of this period in Algorithm 1 are from Line 6 to 10.

– Second, there is a sampling period. In this period, not only do we update
ax in each iteration but we also maintain the count statistics as to how
many times we have sampled the j-th function Fj for protein Vx. Codes
corresponding to this period in Algorithm 1 are from Line 12 to 20.

Note that each protein can belong to one or more functions, therefore, we formu-
late protein functional annotation as a multiclass classification problem. More
formally, the most likely function of protein Vx is computed like this:

b1x = argmaxj∈[1,m]P
j
x (13)

where b1x is the value of j that maximizes the value of P j
x , called the 1st-rank

result. The second most likely function is denoted by b2x, called the 2nd-rank
result. The third most likely function is denoted by b3x, called the 3rd-rank result,
and so forth. In case that more than one element P j

x has the same value, their
ranks will be assigned randomly. For each protein Vx in the i-th iteration, an
m-dimensional vector bxi is created to record the ranking result:

bxi = [b1xi, b
2
xi, ..., b

m
xi]. (14)

When the pre-specified number (threshold) S of iterations have elapsed, we get
a matrix Mx with S rows and m columns for query protein Vx:

Mx = [bx1, bx2, ..., bxS ]
T . (15)

In the first column of the matrix Mx, the most frequently sampled function
c1x is regard as the first rank predicted function for the query protein Vx. In
the second column of the matrix Mx, the most frequently sampled function c2x
excluding c1x is regard as the second rank predicted function. In the third column
of the matrix Mx, the most frequently sampled function c3x excluding c1x and c2x
is regard as the third rank predicted function, and so forth. Finally, we get an
m-dimensional vector cx for query protein Vx:

cx = [c1x, c
2
x, ..., c

m
x ]. (16)
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Algorithm 1. Gibbs sampling based collective classification for protein function
prediction in PPI networks.
1: // bootstrapping
2: for each query protein Vx do
3: compute the initial ax using X ∩ Nw

x
4: end for
5: // burn-in period
6: for i=1 to B do
7: for each query protein Vx do
8: update ax using current assignments to Nw

x
9: end for
10: end for
11: // sampling period
12: for i=1 to S do
13: for each query protein Vx do
14: update ax using current assignments to Nw

x
15: create bxi to record the m-rank result
16: end for
17: end for
18: for each query protein Vx do
19: calculate the final result cx based on matrix Mx

20: end for

3 Experimental Evaluation

3.1 Interaction and Annotation Data

We evaluate the performance of our approach with two functional annotation
datasets. These two datasets are both based on Functional Catalogue (Fun-
Cat) annotation scheme [8] taken from Munich Information Center for Pro-
tein Sequences (MIPS)1. FunCat is organized as a hierarchically structured
annotation system and consists of 28 main functional categories. FunCat an-
notations for S.cerevisiae are downloaded from Comprehensive Yeast Genome
Database (CYGD) [9]. CYGD is a frequently used public resource for yeast re-
lated information. There are a total of 6168 proteins in the dataset, of which
4774 are annotated. These proteins belong to 17 functional categories. The
second functional annotation dataset is Mouse functional Genome Database
(MfunGD) [10]. MfunGD provides a resource for annotated mouse proteins and
comprises 17643 annotated proteins. These annotated proteins belong to 24 func-
tional categories.

In this study, protein interaction data is download from the STRING database
[11], which is an integrated protein interaction database containing known and
predicted protein interactions. These interactions were mainly derived from four
data sources: genomic context, high-throughput experiments, conserved co-
expression and previous knowledge. The most recent version of STRING covers
about 5.2 million proteins from 1133 organisms.

We construct two protein interaction networks (one for S.cerevisiae and an-
other for M.musculus) where a node corresponds to a protein and a weighted
edge corresponds to an interaction between two proteins. Each node is assigned
with at least one functional category and each edge is labeled with a weight

1 http://www.helmholtz-muenchen.de/en/ibis

http://www.helmholtz-muenchen.de/en/ibis
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based on the interaction confidence. Proteins without interaction and annota-
tion data are deleted. As a result, in the S.cerevisiae interaction network, there
are 4687 proteins and 388846 interactions, and in the M.musculus interaction
network there are 14277 proteins and 832128 interactions.

3.2 Experimental Methodology

In the experiments, we compare the performance of three kinds of data selection
strategies. The first is random data selection strategy (baseline), which randomly
selects nodes in the PPI network to label. The second is graph structure based
data selection strategy, which leverages graph-based centrality metrics to select
central nodes in the PPI network to label. The last is our proposed strategy,
which first uses the spectral clustering algorithm to cluster the PPI network
and then leverages graph-based centrality metrics to select central nodes in each
cluster to label. Note that there are three kinds of graph-based centrality met-
rics (degree centrality, closeness centrality and betweenness centrality). Thus, in
fact, we compare the performance of seven kinds of data selection strategies.

We set the proportion of annotated proteins to 5%, and for each data selection
strategy, we run 20 experiments and report the average performance. In spectral
clustering, we set the number of clusters K to 30 and 50 for S.cerevisiae and
M.musculus respectively, this value is chosen by trial and error. As for collective
classification, we set the burn-in period to 10 iterations (i.e. B=10) and collect 50
samples (i.e. S=50) in the sampling period. Since protein functional annotation
is a multiclass classification problem, all competing methods calculate an m-
rank predicted function vector cx for each query protein Vx. In this setup, we
define the i-th rank overall true positive (TP) as the number of proteins whose
i-th rank predicted function cix is one of the true functions of the protein Vx

and the i-th rank overall false positive (FP) as the number of proteins whose
i-th rank predicted function cix is not one of the true functions of the protein Vx.
Accordingly, as in [12] we use the ratio of TP/FP as the measure of performance,
which depicts the relative magnitude between TP and FP.

3.3 Experimental Results

In the experiments, there are two PPI networks (corresponding to S.cerevisiae
and M.musculus). For S.cerevisiae, the average number of functions that each
protein has is 2.13, so we consider only the top 3 (3=�2.13� + 1) predictions.
Fig. 1(a) shows the performance comparison of seven kinds of data selection
strategies for the top-3 predictions. And for M.musculus, because the average
number of functions that a protein possesses is 2.58, we consider also only the
first 3 (3=�2.58�+ 1) predictions. The results are shown in Fig. 1(b). In Fig. 1,
for simplification, Random indicates the random data selection strategy; De-
gree/Closeness/Betweeness means the graph structure based strategy with the
metric of degree centrality/closeness centrality/betweenness centrality; And cDe-
gree/cCloseness/cBetweeness is our strategy with clustering plus the metric of
degree centrality/closeness centrality/betweenness centrality.
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Fig. 1. Performance comparison of seven kinds of data selection strategies

It can be seen from Fig. 1 that all the six graph structure based data selec-
tion strategies obtain more accurate predictions than the random data selection
strategy, due to using graph-based centrality metrics to select central nodes in
the PPI network to label. The results clearly show that the active learning based
approach achieve a better prediction performance than the baseline approach.
This means that given a similar number of labeled proteins, our active learning
approach can achieve outstanding performance by choosing the most informa-
tive proteins to be labeled. We also notice that our proposed data selection
strategies outperform other three graph structure based data selection strate-
gies. As we explore the spectral clustering algorithm to cluster the PPI network
before selecting protein candidates for labeling, this result shows that clustering
is an important pre-processing step in active learning algorithm. The reason is
that selecting candidates across clusters will make the distribution of selected
candidates over different classes more balanced.

The experimental results also validate that using betweenness centrality as
the graph-based centrality metric generally can achieve the best performance in
most cases, which means betweenness centrality is more effective than degree
centrality and closeness centrality. In addition, it is worth noting that higher
rank functions are predicted better than lower ones, implying that the protein
functions are well ranked by our approach.

4 Related Work

In a recent review [2], the existing network-based methods for protein function
prediction are categorized into two main groups: direct methods and module-
assisted methods. Direct methods propagate functional information through a
PPI network and use the propagated information for functional annotation, ex-
amples include neighborhood counting methods and graph theoretic methods.

The majority method [13] and the indirect neighbors method [14] are two typ-
ical direct network-based approaches. Majority method [13] is the simplest direct
method, it utilizes the biological hypothesis that interacting proteins probably
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have similar functions, it ranks each candidate function based on the function’s
occurrences in the immediate neighbors. Indirect neighbors method [14] assumes
that proteins interacting with the same proteins may also have some similar func-
tions, It exploits both indirect and immediate neighbors to rank each candidate
function. Functional flow method [15] is a graph theoretic method, it simulates a
discrete-time flow of functions from all proteins. At every time step, the function
weight transferred along an edge is proportional to the edge’s weight and the
direction of transfer is determined by the functional gradient.

Module-assisted methods first identify functional modules in the network and
then assign functions to all the proteins in each module, representatives are hier-
archical clustering-based method and graph clustering method. A key problem
of this kind of methods is how to define the similarity between two proteins.
Arnau et al. [16] used the shortest path between proteins as a distance measure
and apply hierarchical clustering to detecting functional modules. Up to now,
numerous graph-clustering algorithms have been applied to detecting functional
modules, such as clique percolation [17] and edge-betweenness [18] clustering.

Additionally, Chua et al [19] presented a simple framework for integrating
large amount of diverse information for protein function prediction by using
simple weighting strategies and a local prediction method. Hu et al [20] hy-
bridized the PPI information and the biochemical/physicochemical features of
protein sequences to predict protein function. The prediction is carried out as
follows: if the query protein has PPI information, the network-based method is
applied; Otherwise, the hybrid-property based method is employed.

Active learning [3] is a form of supervised machine learning in which a learn-
ing algorithm is able to interactively query the user (or some other information
source) to obtain the desired outputs at some unlabeled data points. The key
issue is to design the query strategy such that as few data points as possible are
queried to achieve as large learning performance improvement as possible. The
simplest and most commonly used query strategy is uncertainty sampling [21]. In
this framework, an active learner queries the instance that the classifier is most
uncertain. This strategy is often straightforward for probabilistic learning mod-
els. The query-by-committee (QBC) [22] strategy maintains a committee, each
committee member is allowed to vote on the labelings of query candidates, the
most informative query is considered to be the instance about which they most
disagree. The fundamental premise behind the QBC strategy is minimizing the
version space. The expected model change [23] strategy uses a decision-theoretic
approach, it selects the instance that would impart the greatest change to the
current model. The expected error reduction [24] strategy aims to measure not
how much the model is likely to change, but how much its generalization error
is likely to be reduced. It selects the instance that offer maximal expected error
reduction to the classifier. The density-weighted [25] strategy suggests that the
informative instances should not only be those which are uncertain, but also
those which are representative of the underlying distribution.

Active learning has been applied to some bioinformatic problems, such as
cancer classification [26], DNA microarray data analysis [27] and protein-protein
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interaction prediction [28] etc. However, to the best of our knowledge, there is
no work on active learning for protein function prediction in the literature.

5 Conclusion

In this study, we proposed an active learning based approach to conducting
protein function prediction based on PPI networks. It first clusters a PPI network
by using the spectral clustering algorithm and select some appropriate candidates
for labeling within each cluster by using graph-based centrality metrics, and then
applies a collective classification algorithm to predict protein function based
on these annotated proteins. We conducted experiments on two real, publicly
available PPI datasets. The experimental results show that the proposed active
learning based approach, by choosing more informative proteins for labeling,
achieves obviously better prediction performance than the baseline approach.
Furthermore, betweenness centrality is more effective than degree centrality and
closeness centrality in most cases.
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Abstract. Markov Random Fields (MRF) have been shown to be good
predictors of functional annotation, using protein-protein interaction
data. Many other sources of data can also be used in this prediction
task, but they are typically not integrated. In this study, we extend a
method using MRFs in order to allow the use of additional data.

A conditional random field (CRF) model is proposed as an alterna-
tive to an MRF model in order to remove the requirement of modeling
relationships between the sources of data. We observe that a substantial
performance improvement is possible using additional data, such as ge-
netic interaction networks. The improvement gained from each source of
evidence is not the same for each protein function, indicating that each
source supplies different information. We demonstrate that CRFs can be
used to efficiently integrate various sources of data to predict functional
annotations.

1 Introduction

The annotation of genomes is of the utmost importance and the value a deeper
understanding of biological processes has to the future of humanity can not be
overstated. Proteins found on these genomes are assigned functional annotations
based on biological experimentation. This is no easy task, since proteins may be
involved in several kinds of functions, and testing every protein’s involvement
in every function is infeasible due to the number of proteins and the complexity
of their interactions. Therefore, the functional annotation of proteins remains
largely incomplete, even for the most well studied organisms. By predicting which
proteins are most likely to have a specific function, we can reduce the expenses
and work required to get a more complete genomic annotation. This is the reason
why in-silico prediction of protein function is important.

Algorithms that predict functional annotations differ not only in their un-
derlying method, but also in the data they operate upon. For a recent review,
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see [1]. Some take a machine learning approach by extracting features from se-
quences to predict a functional assignment. Profile methods take advantage of
patterns such as conserved regions or structural qualities found in the proteins
themselves and compare them to annotated proteins.

Network models use biological network data to predict protein function. Prim-
itive network models determine the function of an individual protein based upon
the known function of proteins in its immediate neighborhood. Graph theoretic
models model the entire network simultaneously, and diffuse information be-
tween the proteins according to the edges defined in the graph. Probabilistic
network models also model the entire network, but assign labels with an associ-
ated probability.

Markov Random Fields (MRFs), one kind of probabilistic network model, have
often been used in predicting protein functions from network data [2,3,4]. Deng
et. al. [2] defined an MRF model for predicting protein functional annotations,
and laid the basic framework. They define an MRF over a protein-protein inter-
action (PPI) network, where pairwise interactions between proteins are modeled
by factors in the MRF. Kourmpetis et. al. [3] extended this method by improv-
ing parameter estimation through multiple parameter estimation steps. These
MRF models mostly use protein-protein interaction data, but there are many
other biological network sources that can suggest functional similarity such as
genetic interaction networks. Here, we show that the use of additional network
data, integrated with a conditional random field (CRF) model, can give increased
performance over the previous methods.

Perhaps the most similar approach to ours used MRFs and included GI net-
works [5,6]. These methods have some limitations; their models do not make use
of continuous data, assume independence between network sources, and use a
single parameter estimation step. A follow-up paper uses a more sophisticated
parameter estimation scheme [7]. In this paper, we take into account many more
sources of evidence in a CRF model which corrects these flaws.

2 Method

Previous models using MRFs need to either model the relationships between the
input data, which can become complicated, and is essentially unnecessary, or
assume independence [5,6,7], which is often wrong. Conditional random fields are
the discriminative version of MRFs which model the dependence of the output
on the input rather than the full joint distribution of the input and output. Our
contribution to the field - to extend the previous framework in [2] and [3] to a
CRF model with multiple sources of data - is described here.

2.1 Conditional Random Fields

A conditional random field (CRF) is a discriminative graphical model which
splits the variables into two sets; input variables X , and output variables Y .
We are not interested in modeling the relationships between variables within
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X; these may not be related to the problem we wish to solve, and can even be
very difficult to model. By conditioning over X , we assume a dependence upon
X , but make no assumptions upon the distributions of variables within X . This
allows us to model more complex relationships between the variables in Y and
X . A CRF is represented as a factor graph, in which the random variables are
represented as nodes, and factors describe the dependencies between them. The
CRF distribution is defined in terms of its factors f ∈ F , conditioned over X :

p(Y |θ,X) =
1

Z(X)

∏
f∈F

ψf (Yf , X) (1)

Z(θ,X) =
∑
y′
1

...
∑
y′
n

∏
f∈F

ψf (Y
′
f , X) , (2)

where Z is a normalization function dependent upon X , and Yf are all the
variables in Y involved in factor f .

2.2 The Model

We therefore, for the problem of protein function prediction, represent the pro-
tein labels and sources of evidence between them (e.g. physical interactions, co-
expression) as nodes in a factor graph, where factors describe the relationships
between them. The CRF model has to integrate multiple sources of evidence
which each describe in some form the functional relationships between proteins.
We consider one function at a time. For each protein pi, we introduce a vari-
able yi, which describes its label (1 if the protein has the function, 0 otherwise).
Networks which describe interactions between proteins define their context with
respect to their functional labels. An edge from network σ which describes an
interaction between proteins pi and pj , is represented by the random variable
evσ(i.j). We group all ev variables in the set X . Figure 1 shows the basic outline
of the method.

The probability of a particular labeling for the graph is defined in terms of the
factorization of the model. Figure 2 illustrates how a simple 5-protein network
can be factorized with two kinds of factor nodes, pairwise factors, ψp and singular
factors ψs. These are defined in terms of their respective energy functions, Up

and Us:

ψp(yi, yj ; θ,X) = exp {Up(yi, yj; θ,X)}
ψs(yi; θ,X) = exp {Us(yi; θ,X)} .

Us is defined as α if the node has the label, and 0 otherwise:

Us(yi; θ,X) = αyi , (3)

where α is a parameter. Up is a function which depends on whether (a) both
nodes have the label, (b) one node has the label, or (c) neither node has the
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Fig. 1. Conditional random field analysis for protein function prediction.
a-d: Different sources of evidence between proteins define the functional relationships
between proteins. e: Variables that describe the functional annotations of proteins
are introduced. f: Dependencies between the variables are described by the graphical
model. g: Missing labels are inferred in an iterative scheme.

label. It connects two protein label variables, and the evidence of interactions
between them. For a single source of evidence σ this can be expressed as::

Uσ(yi, yj ; θ,X) =βσ,11yiyjevσ(i, j) + (a)

βσ,10[(1− yi)yj + yi(1 − yj)]evσ(i, j) + (b)

βσ,00(1− yi)(1 − yj)evσ(i, j) , (c) (4)

where (βσ,11, βσ,01, βσ,00) are parameters. All sources of evidence are combined
to form the general pairwise energy function Up:

Up(yi, yj ; θ,X) =
∑
σ

Uσ(yi, yj; θ,X) . (5)

When there is only one source of evidence, the model is equivalent to that of
[3]. The structure of the label network is no longer explicitly defined by any
single biological network, so in order to ensure that nodes are able to use all
relationships available to them in X , the graph is by default fully connected
between all the variables y1 · · · yn; Each pair (yi, yj) ∈ Y × Y are connected by
a pairwise factor. In the event where there is no evidence between two proteins,
the relevant potential becomes equal to 1, and therefore does not influence the
statistical distribution (1) (exp {0} = 1).
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Fig. 2. CRF factorization of the model: Each factor ψs and ψp in the graph is
dependent upon the additional data X

2.3 Conditional Probability

We can express the conditional probability of an individual node being positive
in terms of the logistic function, as in [2]:

p(yi = 1|Y−i, θ,X) =

ψs(yi)
∏

(yi,yj)∈Y×Y

ψp(yi, yj , X)

∑
y′
i

ψs(y
′
i)

∏
(y′

i,y
′
j)∈Y×Y

ψp(y
′
i, y

′
j , X)

, (6)

=
exp {}

1 + exp {} , (7)

where  in this case is defined as the log-odds of the probability of the labels at
the node, and Y−i refers to all nodes in Y with the exception of i.

 = log
p(yi = 1|Y−i, θ,X)

1− p(yi = 1|Y−i, θ,X)
(8)

= α+
∑
σ

∑
(yi,yj)∈Y×Y

[δσyjevσ(i, j) + εσ(1 − yj)evσ(i, j)] .

For each data source σ, two parameters, δσ and εσ are introduced, which replace
the β parameters. The derivation is given in [8].

2.4 Inference

We wish to maximize (1), which is normally done with belief propagation. How-
ever, because of the size of the network and the number of factors, this can be
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intractable. Instead, a Gibbs sampling algorithm is used to predict the labels.
The Gibbs sampler operates by sampling a new label for each node from the
conditional distribution at that node (7), and using the updated labels to sam-
ple new labels for the remaining proteins. The new labels will be used in the
following iteration.

2.5 Parameter Estimation

For general graphs as these, exact parameter estimation is intractable [9]. In-
stead, parameters θ = (α, δσ , εσ) are found by maximizing the pseudo-likelihood
function (PLF), which has been described as a good approximation to the
likelihood function. Kourmpetis [3] improved the parameter estimation by re-
estimating them iteratively. This measure assumes that the density factorizes
into the conditional distributions at each node:

PLF (Y |θ,X) =
∏
yi∈Y

p(yi|Y−i, θ,X) . (9)

Each conditional (7) reminds us of the logistic function; logistic regression is
thus used to update the parameters θ.

At each iteration, we re-estimate the parameters using the entire set of pro-
teins, including the unknown ones for which new labels were just predicted. The
new parameters θ∗ are accepted over the previous parameters θ with a Metropolis
step, (i.e., with probability):

A(θ∗, θ) = min

(
1,

PLF (Y |θ∗, X)

PLF (Y |θ,X)

)
, (10)

i.e. the new parameters will be accepted with probability A(θ∗, θ) from a stan-
dard uniform distribution.

3 Experimental Setup

The yeast (Saccharomyces cerevisiae) genome is well studied and comes with a
plethora of data, making it an excellent organism to test on. In earlier work [3], a
PPI dataset from [10] was used. In order to gain additional information sources,
different datasets were used. Functional annotations for yeast were taken from
the Gene Ontology website. This gave functional annotations to 6383 proteins
for 4631 GO terms [11]. An outline of the initialization of the algorithm is given
in [8].

3.1 Dataset

We collected a dataset of the following sources:
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Fig. 3. Performance depends on the class distribution in the training set:
a: The learning curve when using co-citation and genetic interaction data. b: As the
number of true positives increases, we observe a lower standard deviation in AUC
scores. Here co-citation data is used as additional data. The line indicates a best fit for
an exponential decay function, with y = 0.1 exp (−0.005x).

(PPI) Protein-Protein Interaction: Collected from BioGRID [12].

(KI) Kinase Interaction: Collected from PhosphoGRID [13].

(GI) Genetic Interaction: Collected from BioGRID.

(CX) Co-expression: Collected from MegaYeast [14].

(CC) Co-citation: Collected from STRINGdb [15].

The PPI and KI networks were combined into the same network. The co-citation
scores from STRINGdb was mapped onto a logistic curve between 0 and 1. (It
is not clear how STRINGdb calculated the original co-citation scores).

3.2 Performance Evaluation

100 functions were randomly selected from the Biological Processes and Molec-
ular Function ontologies in the Gene Ontology (GO). For each GO term, we
select a test set of 300 proteins to mark as unknown; this constitutes the testing
set in a cross validation procedure. To ensure that there is positive data in the
test set, it is constructed such that it contains approximately 20% of all positive
labels for that particular GO term. For each function, the model was trained
10 times using different test sets, and the Area Under the Receiver Operator
Characteristic Curve (AUC) score is calculated. For more information, see [8].
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4 Results and Discussion

Before discussing any results on the data, we report how the model behaves in
training and predicting. i.e. whether parameter estimates converge, and predic-
tions are reliable.

4.1 Model Behavior

Iterative parameter estimation improves on the initial prediction per-
formance. Parameter estimates converge very quickly, usually within one or
two steps (data not shown); In the remaining iterations the values only oscillate
a little, as in [3]. Despite having good parameter estimates, we cannot stop iter-
ating after just a few steps due to the changing labels after each Gibbs step; The
Gibbs sampler needs time to build up a good average of the label probabilities.
Like in [3], we observe that the intercept parameter, α is estimated well in the
first step (Deng et. al.’s estimate), while the δσ and εσ parameters usually are
not. Since the intercept parameter is less sensitive to the individual labelings of
the nodes we can imagine that it is easier to estimate.

Performance depends on class balance in the training set. The number
of proteins annotated with a function (the number of true positives) influences
the performance of the method. By removing functional annotations from a
function which has many true positives1, we can see how the performance im-
proves as the number of true positives increases. Figure 3a shows a learning
curve which illustrates that as we add more true positives, we are able to predict
more accurately.

Illustrated in figure 3b is how the standard deviation of predictions for each
function varies depending upon the number of true positives. With more true
positives (i.e. more training data), we have a lower standard deviation. An ex-
ponential decay function is fit to the data to demonstrate the trend of the data;
The standard deviation actually decreases. Unfortunately, a function rarely has
that many true positives [8].

The precision of predictions with our method is comparable to that of [3].
This is important to us; if using more data were to give us (on average) a better
prediction but with a large variance, it would be useless in practice. Functions
for which the performance is bad, generally have a high standard deviation [8].

The model is robust to noise. Rather surprisingly, the model is quite insen-
sitive to random noise. We test the model by independently deleting and adding
edges to the relevant ’unknown’ proteins. These tests were run under optimal
conditions; A specific function1 was selected for which there were many true
positives (many proteins have been annotated with it), and for which the model
already performs well. Figure 4a indicates that the model is more sensitive to
edge deletions, however, this is due to the fact that there are a limited number
of edges that can be deleted before none are left.

1 GO:0004672 ’Protamine kinase activity’, from the molecular function ontology.
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Fig. 4. Model robustness: a: The resilience of the method when deleting edges from,
or adding edges into the network. b: When adding random edges to the network, we
do not get a significant performance increase.

A little noise acts as a regularization. Adding random edges can provide
a kind of regularization, possibly by adding edges smoothing the network (i.e.
making neighborhoods more similar to each other), making the classification
task easier. Evident from figure 4a and studied in figure 4b, is that adding a
few random edges gives a slightly better performance. For a given function1, we
create two distinct subnetworks from all the sources of evidence, (a) containing
only edges also present in the PPI network and (b) all other edges. We compare
adding edges to (a) either randomly, or from (b). Adding useful edges from (b)
improves performance drastically, in contrast, adding random edges helps only
a little, until the graph becomes saturated with edges and no relationships are
distinguishable anymore.

4.2 Some Additional Sources Improve Prediction

Adding data sources gives better performance in some cases, and this is reflected
in Figures 5a-c. These figures plot the performance of the baseline ([3], using PPI
data), against the performance of our method. Any point above the diagonal line
means that that particular function has a better performance.

On average, CC data gives us a large improvement over the previous methods,
GI data a slightly larger improvement, and the combination of the two an even
larger improvement. Figure 5c shows the results from combination of CC and
GI networks, which gives the largest improvement on average. The increase in
performance is due to the additional data, which provides new information on
relationships between proteins. Note the fact that CC data may be good is
because of possible bias (two proteins may be co-cited because they already
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Fig. 5. The effect of using additional data: We compare the performance per
function against that of [3]. On the x-axis are the AUC scores of the algorithm per
function, using only protein-protein interaction data (equivalent to [3]), and on the
y-axis the AUC scores of the algorithm using additional data. a: Using CC data. b:
Using GI data. c: Using CC and GI data.

have the same functional annotation). CX data invariably has a detrimental
effect upon performance [8].

When there are very few true positives for a function, the additional param-
eters make it difficult to train the model properly, and performance may suffer.
In such cases it may be advisable to revert to a single source of evidence.

When we consider each performance pair (only PPI, additional sources) the
center of a normal distribution and take into account their standard deviations,
we can sum the distributions to get an idea of the performance over all functions.
This plot is seen in figure 6a. Most of the density is above the diagonal (over
85%), indicating that the predictions with our method are expected to be better
than those in [3].

Data sources complement each other. Figure 6b plots the improvement rel-
ative to the Kourmpetis et. al. model when using different data sources. It shows
that even though there is often a common improvement, correlation is not very
high. A function for which one data source helps does not necessarily benefit
from another data source. This means that different sources of evidence sup-
ply information valuable to predict different functions; The sources of evidence
complement each other and are not interchangeable.

5 Discussion

Here we present, for the first time, a CRF model that can be used to easily
and effectively predict protein function. The ability to accurately predict which
proteins are involved in a function is of great importance to biologists. Whereas
MRF models have been used before, our CRF model demonstrates that addi-
tional information helps improve prediction. GI and CC networks provide the
most useful information. Data sources which have a continuous value would be
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Fig. 6. a: A density plot reveals the general trend of model performance. b: Differ-
ent sources of evidence supply different information to the model. We calculate the
improvement in prediction but taking the difference in AUC scores when running the
model with additional data, and when running it without. They are not highly corre-
lated (ρGI,CC ≈ 0.57).

able to describe more subtle relationships between proteins, rather than just
strong ones, but such sources are hard to find.

We describe thoroughly the construction of the model and analyze its perfor-
mance. A more complex factorization could be constructed to describe more com-
plicated relationships between proteins. Furthermore, a nonlinear combination
of sources of evidence could give rise to a richer description of the requirements
for functional similarity (e.g. proteins should interact and be co-expressed).

Despite any improvements, this method is still stochastic, as evident in the
variance experienced over multiple runs. Consequently, in practice the model
would have to be run multiple times to ascertain exactly which proteins are
consistently the most highly ranked.

Acknowledgments. We thank Marc Hulsman for providing some valuable in-
sights and the data sources.
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Abstract. Protein fold recognition (PFR) is considered as an important
step towards the protein structure prediction problem. It also provides
crucial information about the functionality of the proteins. Despite all
the efforts that have been made during the past two decades, finding
an accurate and fast computational approach to solve PFR still remains
a challenging problem for bioinformatics and computational biology. It
has been shown that extracting features which contain significant lo-
cal and global discriminatory information plays a key role in addressing
this problem. In this study, we propose the concept of segmented-based
feature extraction technique to provide local evolutionary information
embedded in Position Specific Scoring Matrix (PSSM) and structural
information embedded in the predicted secondary structure of proteins
using SPINE-X. We also employ the concept of occurrence feature to
extract global discriminatory information from PSSM and SPINE-X. By
applying a Support Vector Machine (SVM) to our extracted features,
we enhance the protein fold prediction accuracy to 7.4% over the best
results reported in the literature.

Keywords: Protein Fold Recognition, Feature Extraction, Segmented
distribution, Segmented Auto Covariance, Occurrence, Support Vector
Machine (SVM).

1 Introduction

Protein Fold Recognition (PFR) is defined as assigning a given protein to a
fold (among a finite number of folds) that represents its functionality as well
as its major tertiary structure. Therefore, PFR is considered as an important
step towards the protein structure prediction problem. Despite all the efforts
that have been made so far to find an effective computational approach to solve
this problem, it still remains an unsolved problem for computational biology.
From the pattern recognition perspective, PFR is defined as solving a multi-
class classification task. Therefore, extracting features that capture significant
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global and local discriminatory information as well as the classification technique
being used play the main roles in solving this problem. During the past two
decades, a wide range of classification techniques have been used for PFR [1–9].
Among the classifiers employed to tackle this problem, Support Vector Machine
(SVM) based classifiers have attained the best results [10, 11]. However, the most
significant enhancement of PFR accuracy has been achieved by relying on the
feature extraction approaches rather than the classification techniques being used
[1, 9, 10, 12–14]. In most of the studies that addressed PFR by feature extraction
techniques, global discriminatory information has been represented using the
composition of the amino acids feature group (the occurrence of the amino acids
along the protein sequence divided by the length of protein sequence [1, 8]).
However, it has been shown that this feature group is not able to adequately
reveal global information [15]. Furthermore, composition feature group is not
able to capture information regarding the length of the protein sequence that
was shown as an effective feature for PFR [13].

Compared to the methods adopted to extract global discriminatory informa-
tion, a wider range of methods were used to extract local discriminatory informa-
tion for PFR such as, pseudo amino acid composition [3, 8, 9], cross covariance
[10], auto covariance [10], bi-gram [11, 14], and tri-gram [16]. Despite the signif-
icant local discriminatory information provided using these approaches, most of
these methods produce large number of features which makes them computation-
ally expensive for large protein data banks (e.g. cross covariance and tri-gram
[10, 16]). At the same time, in all these methods the whole protein sequence as
a single entity have been used to extract local information. In another words,
they aimed to extract local information by exploring whole protein sequence
as a global entity. Therefore, they could not appropriately explore local infor-
mation embedded in protein sequence. Furthermore, despite all the efforts have
been made to enhance the protein fold prediction accuracy so far, its prediction
accuracy remains limited especially when the sequential similarity rate is low.

In this study, we aim at enhancing protein fold prediction accuracy by address-
ing these limitations. We propose segmented-base feature extraction to extract
local evolutionary information embedded in Position Specific Scoring Matrix
(PSSM) as well as structural information embedded in the predicted secondary
structure using SPINE-X. We also employ the concept of an occurrence feature
of the transformed protein sequence using evolutionary and structural informa-
tion embedded in PSSM and SPINE-X to extract adequate global discriminatory
information for PFR. By applying SVM to our extracted features we enhance
the protein fold prediction accuracy to 7.4% better than the highest reported
results found in the literature.

2 Data Sets

In this study, two data sets namely TG and EDD are used to investigate the
performance of our proposed methods. The TG data set introduced by [15]
consists of 1612 proteins belonging to 30 folds with less than 25% sequential
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similarities. TG is extracted from Structural Classification of Proteins (SCOP)
1.73 which has been previously used to investigate the performance of proposed
methods for PFR when the sequential similarity is very low [13, 15, 17]. We also
extract EDD (extended version of DD data set [1] which is extracted from SCOP
1.75). This data set consists of 3418 proteins belonging to 27 folds that was used
originally in DD data set with less than 40% sequential similarities. The EDD
data set extracted from an older version of SCOP has been widely used for PFR
[5, 10, 11]. Using this data set enables us to directly compare our results with
previously reported results found in the literature.

3 Feature Extraction Method

In this study, we rely on PSSM and the predicted secondary structure using
SPINE-X to extract evolutionary and structural information respectively. PSSM
is calculated by applying PSIBLAST [18] to EDD and TG data sets (using
NCBI’s non redundant (NR) database with its cut off value (E) set to 0.001).
PSSM consists of an L×20 matrix (L is the length of a protein and the columns of
the matrices represent 20 amino acids). It provides the substitution probability
of a given amino acid based on its position along a protein sequence.

We also use predicted secondary structure using SPINE-X which was recently
proposed by [19] and attained better results (especially for the coded area) than
PSIPRED on predicting protein secondary structure [20]. Given a protein se-
quence, it returns an L×3 matrix (which will be referred to as SPINE-M for the
rest of this study) consisting of the normalized probability of contribution of a
given amino acid based on its position along the protein sequence to build one of
the three secondary structure elements namely, α-helix, β-strands, and coils. It
also returns a transformed version of the protein sequence (also extracted from
SPINE-M) in which each amino acid along the protein sequence is replaced with
H (represents helix), E (represents strand), or C (represents coil) based on its
tendency to incorporate in building one of these secondary structure elements.
In this study, we will refer to this sequence as the structural consensus sequence.
It is expected that predicted secondary structure using SPINE-X provides sig-
nificant structural information for PFR similar to or even better than PSIPRED
due to its better performance [19]. In continuation, the global and local features
extracted in this study will be explained in detail.

3.1 Global Features

To extract global discriminatory information embedded in PSSM and SPINE-M
we mainly relied on the concept of the occurrence feature. We extract evolution-
ary and structural consensus sequence-based occurrence from the transformed
protein sequence using PSSM and SPINE-M respectively. We also extract semi-
occurrence feature group directly from PSSM and SPINE-M which represents
the summation of the substitution probability of the amino acids and normalized
probability of secondary structure elements respectively.
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Consensus Sequence-Based Occurrence: In this method, we extract occur-
rence of the amino acids as well as occurrence of the secondary structure ele-
ments derived from the evolutionary-based and the structural-based consensus
sequences respectively. To extract the occurrence feature group from the evolu-
tionary consensus sequence, we first need to extract this sequence from PSSM.
In the evolutionary consensus sequence, amino acids along the original protein
sequence (O1, O2, ..., OL) are replaced with the corresponding amino acids with
the maximum substitution probability (C1, C2, ..., CL). This is done in the fol-
lowing two steps. In the first step, for a given amino acid, the index of the amino
acid with the highest substitution probability is calculated as follows:

Ii = argmax{Pij : 1 ≤ j ≤ 20}, 1 ≤ i ≤ L, (1)

where Pij is the substitution probability of the amino acid at location i with the
jth amino acid in PSSM. In the second step, we replace the amino acid at ith

location of original protein sequence by the Iith amino acid to form the consensus
sequence. After calculating the evolutionary consensus sequence, we count the
occurrence of each amino acid (for all the 20 amino acids) along this sequence and
produce the occurrence feature from the evolutionary based consensus sequence
which we call (AAO). Similarly, we calculate the occurrence of each secondary
structure elements (SSEO) (for all three elements) in the structural consensus
sequence and extract the corresponding feature group. The occurrence feature
group is used in this study as the global descriptor of the proteins since it
maintains the information regarding the length of protein sequence which is
disregarded using composition feature group [2, 5].

Semi-Occurrence: In this method, we calculate semi-occurrence feature group
from both PSSM and SPINE-M. It is called semi-occurrence because instead of
using the protein sequence directly to calculate the occurrence of each amino
acid, we calculate the summation of the substitution probability for each amino
acid from the PSSM or normalized frequency of each secondary structure element
from SPINE-M. The semi-occurrence derived from the PSSM (PSSM AAO) is
calculated as follows:

PSSM-AAOj =

L∑
i=1

Pij , (j = 1, ..., 20). (2)

In a similar manner, we calculate the semi-occurrence of the normalized fre-
quency of the secondary structure elements from SPINE-M (SPINE SSEO) as
follows:

SPINE-SSEOj =

L∑
i=1

Sij , (j = 1, 2, 3), (3)

where Sij is the normalized probability of the occurrence of the jth secondary
structure element for the ith amino acid in the SPINE-M. These feature groups
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are able to provide important global discriminatory information about the sub-
stitution probability of the amino acids as well as normalized frequency of sec-
ondary structure elements based on PSSM and SPINE-M. For the rest of this
study, the combination of all these four global feature groups (AAO + SSEO +
PSSM-AAO + SPINE-SSEO) will be referred as Fglobal (consisting of 46 features
in total).

3.2 Local Features

To extract these features, we extract distribution and auto covariance features
using segmentation method. In this manner, we are able to provide more local
information compared to use of whole protein sequence as a global entity to
extract these features.

Segmented Distribution: This method is specifically proposed to extract
more local discriminatory information for PFR based on the amino acids’ sub-
stitution probability with each other (extracted from PSSM) as well as their
tendency to incorporate in one of the secondary structure elements (extracted
from SPINE-M). For PSSM, for the jth column, we first calculate the total sum

of substitution probability Tj =
∑L

i=1 Pij . Then, starting from the first row of
PSSM (which corresponds to the first amino acid in the protein sequence) we
sum the substitution probabilities corresponding to the jth column until reach-

ing to less than or equal to FP (segmentation factor) of Tj (S1 =
∑I1

j

i=1 Pij).
I1j is the number of amino acids such that the summation of their substitution
probability is equal to S1 and is the corresponding feature for this segment.
We calculate I2j by summing the substitution probability of amino acids (again,

starting from the first row of PSSM) until reaching 2×FP of Tj. Similarly, I2j is
the number of amino acids such that the summation of their substitution prob-
ability is equal to S2 (2 × FP of Tj) and is the corresponding feature for this
segment. In this study FP is set to 25% since it attained similar performance as
adopting 10% and 5% for this parameter. In other words, dividing the protein
sequence into four segments provide similar local discriminatory information in
comparison with dividing it to 10 or 20.

We also calculate I3j , I
4
j features for the jth column of PSSM. Dissimilar to

I1j and I2j , we start from the last row of PSSM (corresponding to the last amino

acids of the protein sequence). To calculate I3j , starting from the last row of
PSSM, we sum the substitution probabilities of amino acids until reaching less
than or equal to FP of Tj. In the similar manner, we calculate I4j , summing
substitution probability of amino acids (starting from the last row of PSSM)
until reaching to 2× FP of total sum (Tj). In this manner, we also cover whole
protein sequence as well (50% of Tj is covered by starting from the first row
and 50% of Tj is covered by starting from the last row). Therefore, for a given
column in PSSM we calculate 4 segmented distribution features (which in total
4 × 20 = 80 features are extracted corresponding to 20 columns in PSSM) to
build segmented distribution feature group (called PSSM SD).
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In a similar manner, we calculate the segmented distribution feature group
of the normalized frequency of the secondary structure elements from SPINE-
M (called SPINE SD) using FS = 25% (where Fs is used as the distribution
factor for SPINE-M equivalent to FP used for PSSM) and respectively extract
3× 4 = 12 features in total for all three elements.

Segmented Auto Covariance: The concept of auto covariance have been
widely used in the literature to capture local discriminatory information and
has attained better results compared to similar methods used for this task such
as bi-gram [11, 14] or tri-gram features [16]. Pseudo amino acid composition
based features are good examples of these types of features [3, 21]. These fea-
tures have been computed using the whole protein sequence as a single entity
for feature extraction. Therefore, they could not adequately explore the local
discriminatory information embedded in protein sequence [10]. In the present
study, we extend the concept of segmented distribution features as described in
the previous subsection to compute the auto covariance features. This provides
more local evolutionary and structural information from PSSM and SPINE-M.
First for PSSM, we segment the protein sequence using FP = 25%. Using a pro-
cedure similar to the one described in the previous subsection, for the jth column
in PSSM we divide the protein sequence into 4 segments (from first amino acid
corresponding to first row of PSSM until reaching I1j ; from first amino acid

corresponding to first row of PSSM until reaching I2j ; from last amino acid cor-

responding to the last row of PSSM until reaching I3j ; and from last amino acid

corresponding to the last row of PSSM until reaching I4j ). we calculate auto
covariance feature using KP (distance factor used for PSSM for each segment)
as follows:

PSSM-segn,m,j =
1

(Inj −m)

In
j −m∑
i=1

(Pi,j − Pave,j)× (P(i+m),j − Pave,j),

(n = 1, 2, 3, 4 &m = 1, ...,KP & j = 1, ..., 20), (4)

where, Pave,j is the average substitution probability for the jth column in PSSM.
We also compute the global auto covariance coefficient (KP features) as follows:

PSSM-ACm,j =
1

(L−m)

L−m∑
i=1

(Pi,j − Pave,j)× (P(i+m),j − Pave,j),

(m = 1, ...,KP & j = 1, ..., 20). (5)

Thus, we extract a total of ( 2KP + 2KP + KP = 5KP ) auto covariance fea-
tures (2KP features for segments corresponding to I1j and I2j , 2KP features for

segments corresponding to I3j and I4j and KP features corresponding to global
auto covariance) in this manner. Then by combining PSSM-AC and PSSM-seg
(extracted for all 20 columns of PSSM) we build the corresponding feature group
which is called PSSM-SAC (20× (5×KP )) features in total).
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This procedure is also repeated for SPINE-M in the same way (KS is used as
the distance factor for SPINE-M equivalent to KP used for PSSM) for all three
columns of SPINE-M and segmented auto covariance of normalized frequency of
secondary structure elements are extracted as follows:

SPINE-segn,m,j =
1

(Inmax −m)

In
max−m∑
i=1

(Si,j − Save,j)× (S(i+m),j − Save,j),

(n = 1, 2, 3, 4 &m = 1, ...,KS & j = 1, 2, 3), (6)

where, Save,j is the average substitution probability for the jth column in SPINE-
M. Similarly, the global auto covariance is computed as follows:

SPINE-ACm,j =
1

(L−m)

L−m∑
i=1

(Si,j − Save,j)× (S(i+m),j − Save,j),

(m = 1, ...,KS & j = 1, 2, 3). (7)

The combination of SPINE-seg and SPINE-AC builds SPINE-SAC consisting of
3× (5KS) features in total (extracted for all three columns of SPINE-M).

4 Support Vector Machine

In pattern recognition, SVM is considered as the-state-of-the-art classification
technique. It was introduced by [22] aiming at finding the Maximum Margin
Hyper-plane (MMH) based on the concept of support vector theory to minimize
classification error. It transforms the input data to higher dimensionality using
the kernel function to find support vectors. The classification of some known
points in input space xi is yi which is defined to be either -1 or +1. If x′ is a
point in input space with unknown classification then:

y′ = sign

( n∑
i=1

aiyiK(xi,x
′) + b

)
, (8)

where y′ is the predicted class of point x′. The function K() is the kernel function;
n is the number of support vectors and ai are adjustable weights and b is the
bias. The best results reported in the literature for PFR was attained using
this classifier [4, 10, 11, 16]. In this study, the SVM classifier implemented in
LIBSVM (C-SVC type) toolbox with Radial Basis Function (RBF) as its kernel
function is used [23]. RBF kernel is adopted here due to its better performance
than other kernels functions (e.g. polynomial kernel, linear kernel, and sigmoid
[10]). In this study, the width parameter γ in addition to the cost parameter
C of the SVM are optimized using grid search algorithm implemented in the
LIBSVM package.
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Fig. 1. The general architecture of our proposed feature extraction model. The number
of features extracted in each feature group is shown in the brackets below the feature
groups’ names.

5 Results and Discussion

We construct the input feature vector to use with SVM consisting of our
extracted feature (Fglobal + PSSM-SD + SPINE-SD + PSSM-SAC + SPINE-
SAC). The architecture of our proposed system is shown in Figure 1. To evaluate
the performance of our proposed methods, 10-fold cross validation evaluation cri-
terion is adopted in this study as it was often used for this task in the literature
[1, 5, 11, 15]. We first investigate the impact of our proposed method for PFR
with respect to the Kp and Ks parameters in PSSM-SAC and SPINE-SAC re-
spectively. Then we investigate the impact of each of the proposed feature groups
in this study separately on the achieved prediction accuracy. Finally, we compare
our achieved results with previously reported results for the PFR.

5.1 Investigating the Impact of Kp and Ks

As it was mentioned earlier, Kp and Ks values between 1 and 10 are investigated
here (since it was shown in [10] that using a distance factor larger than 10 to
extract auto covariance feature group attains similar results with using 10 for
PFR). To do this, in 10 different experiments, we apply SVM to our proposed
feature vector whileKp andKs are monotonically increased from 1 to 10 (Kp = 1
and Ks = 1, Kp = 2 and Ks = 2, ... , Kp = 10 and Ks = 10). The results for
this experiment is shown in Figure 2. We also calculate the SVM parameters on
EDD data set (where Kp = 10 and Ks = 10) for our proposed feature vector
using the grid search algorithm. Calculated parameters are used for the rest of
this study (to avoid over tuning parameters) for both TG and EDD data sets
(where C = 0.07 and γ = 100). Note that the TG data sets have not been used
at all for parameter tuning.
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Fig. 2. The results achieved for TG and EDD data sets with respect to Kp and Ks

which are monotonically increase from 1 to 10

(a) The impact of increasing Ks from 1 to 10

while Kp = 1 for EDD and TG data sets

(b) The impact of increasing Kp from 1 to 10

while Ks = 10 for EDD and TG data sets

Fig. 3. Investigating the effective values for Ks and Kp in our proposed feature extrac-
tion method

As we can see, increasing the Kp and Ks, prediction accuracy almost mono-
tonically increases as well. Using Kp = 10 and Ks = 10, we reach 88.1% and
73.1% prediction accuracies for EDD and TG data sets respectively. However,
it is not clear which one of Kp and Ks has the main impact on the achieved
results. To investigate the effectiveness of Kp and Ks, two different experiments
are conducted on the EDD data set. First, we set the value of Kp = 1 and in
10 different experiments, increase the value of Ks from 1 to 10 (Figure 3.a).
As we can see, increasing Ks monotonically increases the prediction accuracy
and setting Ks = 10 attain the best result for this task. In a different experi-
ment, we set the value of Ks = 10 and in 10 different experiments, increase the
value of Kp from 1 to 10. As we can see in Figure 3.b, the performance does
not change by increasing the Kp. As it is shown in Figure 3.a and 3.b, similar
results are achieved for the TG data set. In other words, using segmented auto
covariance approach, we are able to reveal more local discriminatory information
from PSSM and SPINE-M based on the concept of auto covariance compared
to previous studies (KP = 1 and KS = 10). It is dramatically lower than the
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number of features used in [10] and [11] to reveal this information. Therefore,
for the rest of this study Kp and Ks are set to 1 and 10 respectively.

5.2 Determining the Effect of the Proposed Feature Groups on the
Protein Fold Prediction Accuracy

In continuation, we investigate the effectiveness of each of the feature groups
used in this study separately to our reported protein fold prediction accuracy.
The results are shown in Table 1. As we can see, all the feature groups used to
reveal global and local discriminatory information are effectively contribute to
the achieved protein fold prediction enhancement.

Table 1. The impact of proposed feature groups proposed in this study (using SVM
classifier) to enhance protein structural class prediction accuracy (in %). For PSSM-
SAC and SPINE-SAC, the values of Kp and Ks are respectively set to 1 and 10.

Combination of features EDD TG
Fglobal 74.7 58.7
Fglobal + PSSM-SD 79.4 62.6
Fglobal + SPINE-SD 79.1 63.6
Fglobal + PSSM-SD + SPINE-SD 82.3 66.7
Fglobal + PSSM-SAC 80.1 64.0
Fglobal + SPINE-SAC 84.1 68.2
Fglobal + PSSM-SAC + SPINE-SAC 86.1 71.8
Fglobal + PSSM-SD + SPINE-SD + PSSM-SAC 87.5 72.6
Fglobal + PSSM-SD + SPINE-SD + SPINE-SAC 87.1 72.8
PSSM-SD + SPINE-SD + PSSM-SAC + SPINE-SAC 85.9 71.1
Fglobal + PSSM-SD + SPINE-SD + PSSM-SAC + SPINE-SAC 88.2 73.8

5.3 Comparison with the Existing Methods

We compared the results achieved by applying SVM to the combination of
features proposed in this study (Fglobal, PSSM-SAC, PSSM-SD, SPINE-SAC,
SPINE-SD where Kp and Ks are set to 1 and 10 respectively) which will be
referred as PSSM-SPINE-S (388 features in total) with the best results reported
in the literature. The results are shown in Table 2. As we can see, we report up
to 73.8% and 88.2% prediction accuracies for TG and EDD data sets respec-
tively. These results are up to 7.4% and 2.3% better than the highest reported
results for these two data sets that are achieved by reproducing the results re-
ported in [10] for TG and EDD data sets respectively. The enhancement achieved
compared to other similar approaches to reveal more local information such as
bi-gram [11] and tri-gram [16] is much more significant (over 11% for EDD and
TG data sets). The higher enhancement achieved for TG data set compared to
[10] shows that our method is more effective when the sequential similarity rate
is very low (up to 25%). It is also important to highlight that we outperformed
[10] using 388 features compared to 4000 features used in that study. Therefore,
our proposed methodology is able to significantly enhance protein fold predic-
tion accuracy compared to the state-of-the-art methods found in the literature
and at the same time reduce the number of features used for this task dramati-
cally. In other words, we are able to provide more local and global information
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Table 2. Comparison of the results reported EDD and TG data sets (in %). Note that
column named No. is referring to the number of features.

Ref. Features No. Method EDD TG
[15] AAO (from original protein sequence) 20 LDA 46.9 36.3
[15] AAC (from original protein sequence) 20 LDA 40.9 32.0
[1] Physicochemical Features + AAC 125 SVM 50.1 39.5
[13] Physicochemical Features + AAC 220 ANN(RBF) 52.8 41.9
[17] Threading - Naive Bayes 70.3 55.3
[16] PF (bi-gram) 400 SVM 75.2 52.7
[16] TF (Tri-gram) 8000 SVM 71.0 49.4
[11] Combination of bi-gram features 2400 SVM 69.9 55.0
[5] PSIPRED and PSSM features 242 SVM 77.5 60.1
[10] ACCfold-AC 200 SVM 80.1 58.8
[10] ACCfold-ACC 4000 SVM 85.9 66.4
This study PSSM-SPINE-S 388 SVM 88.2 73.8

from PSSM and SPINE-X for PFR compared to previously proposed approaches
found in the literature.

6 Conclusion

In this study, we have proposed two novel segmentation based feature extraction
techniques to reveal more local discriminatory information embedded in PSSM
and SPINE-X. We also employed the concept of occurrence feature group and
extend it to provide more global discriminatory information from PSSM and
SPINE-X for PFR compared to previously used methods for this task. Then
by applying SVM to the combination of our features extracted we significantly
enhanced protein fold prediction accuracy compared to previously reported re-
sults in the literature. We achieved up to 73.8% and 88.2% prediction accuracies,
up to 7.4% and 2.3% better than the highest results reported for TG and EDD
data sets respectively [10]. These enhancements were achieved by using less than
1/10 of features used previously in [10]. In other words, we were able to extract
more potential local and global discriminatory information for PFR compared
to previously proposed methods found in the literature using fewer features.
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Abstract. Determining the structural class of a given protein can
provide important information about its functionality and its general
tertiary structure. In the last two decades, the protein structural class
prediction problem has attracted tremendous attention and its predic-
tion accuracy has been significantly improved. Features extracted from
the Position Specific Scoring Matrix (PSSM) have played an important
role to achieve this enhancement. However, this information has not been
adequately explored since the protein structural class prediction accu-
racy relying on PSSM for feature extraction still remains limited. In this
study, to explore this potential, we propose segmentation-based feature
extraction technique based on the concepts of amino acids’ distribution
and auto covariance. By applying a Support Vector Machine (SVM) to
our extracted features, we enhance protein structural class prediction ac-
curacy up to 16% over similar studies found in the literature. We achieve
over 90% and 80% prediction accuracies for 25PDB and 1189 benchmarks
respectively by solely relying on the PSSM for feature extraction.

Keywords: Protein Structural Class Prediction Problem, Feature Ex-
traction, Segmented distribution, Segmented Auto Covariance, Support
Vector Machine (SVM).

1 Introduction

Protein structural class prediction problem is defined as assigning a given pro-
tein to one of four structural classes namely all-α, all-β, α + β, and α/β [1].
Protein structural class prediction can provide important information about the
functionality of proteins as well as their general tertiary structure. Despite all
the efforts that have been made to find a fast computational approach to solve
this problem, especially for low homologous protein sequences, it still remains
unsolved for computational biology and bioinformatics [2–4].
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During the last two decades, a wide range of classification techniques have
been proposed to tackle the protein structural class prediction problem such
as, Support Vector Machine (SVM) [5–8], Artificial Neural Network (ANN) [9,
10], Meta Classifiers [11, 12], and ensembles of classifiers [13–15]. Among the
proposed classification techniques used to tackle this problem, SVM has attained
the best results [7, 16–18]. Similarly, a wide range of features have been proposed
and used to reveal more discriminatory information for this task [5, 16, 19]. More
significant improvement for protein structural class prediction accuracy has come
from the new features being introduced rather than the classification technique
being used for this task [16, 17, 20].

The first group of features that significantly enhanced the protein structural
class prediction accuracy were extracted from the evolutionary information em-
bedded in the Position Specific Scoring Matrix (PSSM) [21]. Latter on, several
feature extraction techniques were proposed to explore the potential local and
global discriminatory information embedded in PSSM to tackle this problem
such as composition of the amino acids [8], pseudo amino acid composition [2],
dipeptide composition [8], and auto covariance [17]. However, the discriminatory
information embedded in PSSM has not been adequately explored since the pre-
diction accuracy relying on these features remains limited. Further enhancement
for the protein structural class prediction accuracy has been achieved by rely-
ing on the structural information extracted [7, 16] from the predicted secondary
structure of proteins using PSIPRED [22]. despite a wide range of feature extrac-
tion techniques being explored [5, 7, 8, 20], the protein structural class prediction
accuracy relying on structural information has not been improved adequately
since the study of Mizianty and Kurgan in 2009 [16]. This highlights the need
for novel feature extraction techniques relying on the alternative sources for
feature extraction.

In this study, we propose two segmented feature extraction techniques based
on the concepts of distribution and auto covariance methods to explore local
discriminatory information embedded in the PSSM. We also use the concept
of occurrence of the amino acids to explore global discriminatory information
embedded in PSSM rather than composition of the amino acids that has been
widely used for this task to capture the information regarding the length of the
protein sequence [16, 17]. By applying SVM to our extracted features we achieve
over 90% and 80% protein structural class prediction accuracies for 25PDB and
1189 benchmarks respectively. We enhance the protein structural class prediction
accuracy for up to 16% compared to smilar studies which have used PSSM for
feature extraction.

2 Benchmarks

In this study, two popular benchmarks that have been widely used for the protein
structural class prediction problem namely, 25PDB and 1189 benchmarks are
used. The 25PDB benchmark was introduced in [19] consists of 1673 proteins
with less than 25% sequential similarities (the homology range between 22%
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and 45%). This benchmark was extracted from 25% PDBSELECTED which
includes high resolution protein sequences in the Protein Data Bank (PDB) [23].
Therefore, this benchmark is considered as a reliable representative of proteins
in the twilight zone (proteins with the sequence similarities between 20% to
45%). Hence, this benchmark is employed in this study as the main source to
investigate the performance of our proposed techniques.

The 1189 benchmark is a popular benchmark that has been widely used in
the literature. This benchmark was introduced by [3] consisted of 1189 proteins.
However, 97 proteins were dropped from this benchmark in later studies [19] to
address further correction of Structural Classification of Proteins (SCOP) [24].
As the result, current version of this benchmark consists of 1092 proteins with
less than 40% sequential similarities. Dissimilar to 25PDB, this benchmark in-
cludes proteins with low resolutions as well. Therefore, despite higher sequential
similarity among proteins in this benchmark, lower prediction accuracies have
been reported in the literature for this benchmark compared to 25PDB using
similar approaches [5, 7, 8]. This benchmark is mainly used in this study to
compare our results directly with previously reported results as well as tuning
the classification and feature extraction parameters while 25PDB benchmark is
not used at all in the tuning step.

3 Feature Extraction Method

Since our proposed features are all extracted directly from PSSM, we need to first
produce this matrix. To calculate PSSM, PSI-BLAST [21] is applied for both
25PDB and 1189 benchmarks (using NCBI’s non redundant (NR) database while
its cut off value (E) is set to 0.001). PSSM provides the substitution probability
of a given amino acid based on its position in a protein sequence with all 20
amino acids. It consists of two L × 20 matrices (where L is the length of protein
sequence and 20 columns are representatives of 20 amino acids). The first matrix
provides the log-odds of the amino acids substitution probabilities and it is called
PSSM cons while the second matrix provides normalized substitution probability
and it is called PSSM probs. Since PSSM cons has been widely used in the
literature for feature extraction [16, 17], it is also adopted in this study.

To explore potential local and global discriminatory information embedded in
PSSM, four feature groups are proposed and used in this study. These feature
groups are, consensus sequence-based occurrence of the amino acids (AAO), semi
occurrence of the amino acids (PSSM-AAO), segmented distribution (PSSM-
SD), and segmented auto covariance (PSSM-SAC). The first two feature groups
are proposed to reveal global discriminatory information while the remaining
two methods are proposed to reveal local discriminatory information embedded
in PSSM. These four feature extraction methods are explained in detail in the
following subsections.
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3.1 Consensus Sequence-Based Occurrence (AAO)

To extract global discriminatory information embedded in PSSM, we first ex-
tract the occurrence of the amino acids feature group from the consensus se-
quence derived from PSSM. In the protein consensus sequence, amino acids
along the original protein sequence (O1, O2, ..., OL) are replaced with the cor-
responding amino acids with the maximum substitution probabilities in PSSM
(C1, C2, ..., CL). This is done in the following two steps. In the first step, the
index of the amino acid with the highest substitution probability (based on its
position in the protein sequence) is calculated as follows:

Ii = argmax{Pij : 1 ≤ j ≤ 20}, 1 ≤ i ≤ L, (1)

where Pij is the substitution probability of the amino acid at location i with
the jth amino acid in PSSM cons. In the second step, we replace the amino
acid at ith location of original protein sequence by the Iith amino acid to form
the consensus sequence. After calculating the consensus sequence, we count the
number of occurrence of each amino acid (for all 20 amino acids) along the
consensus sequence and return the corresponding values. Therefore, a feature
group consisting of 20 features is calculated. The occurrence feature group as
the global descriptor of the proteins is used in this study since it maintains the
information regarding the length of protein sequence which is discarded using
the composition feature group (occurrence of amino acids divided by the length
of the protein sequence (AAC) [16]).

3.2 Semi Occurrence (PSSM-AAO)

This feature group is directly extracted from the PSSM. It is called semi oc-
currence because it is not calculated in the similar manner to the occurrence
feature group as it was explained in previous subsection. Instead, it is produced
by summation of the substitution score of a given amino acid with all the amino
acids along the protein sequence which is calculated as follows:

PSSM-AAOj =

L∑
i=1

Pij , (j = 1, ..., 20). (2)

This feature group is able to provide important global discriminatory information
about the substitution probability of the amino acids [17]. Different to compo-
sition of the amino acid extracted from PSSM (which is called PSSM-AAC in
[17]), PSSM-AAO maintains the information regarding to the length of protein
sequence. In PSSM-AAC the the summation of substitution probabilities of the
amino acids are divided by the length of protein sequence.

3.3 Segmented Distribution (PSSM-SD)

This method is specifically proposed to add more local discriminatory informa-
tion about how the amino acids, based on their substitution probability with each
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Fig. 1. The segmentation method used to extract PSSM-SD feature group

other (extracted from PSSM), are distributed along the protein sequence. We
propose this segmentation method in the manner where segments of a protein se-
quence are of unequal lengths and each segment is represented by a distribution
feature which is computed as follows. First, for the jth column in the PSSM,
we calculate the total substitution probability Tj =

∑L
i=1 Pij . Then, starting

from the first row of PSSM, we calculate the partial sum S1 of the substitution
probabilities of the first i amino acids until reaching to 25% of the total sum

S1 =
∑I1

j

i=1 Pij . Using the distribution factor F = 25%, we calculate the I1j . The

I1j corresponds to the number of the amino acids such that the summation of
their substitution probabilities is less than or equal to the F = 25% of (Tj). Sim-
ilarly, we calculate the partial sum of the first i amino acids (starting from the

first row of PSSM) until reaching 2 × F = 50% of the total sum S2 =
∑I2

j

i=1 Pij

and calculate the I2j corresponding to the number of amino acids such that the
summation of their substitution probabilities is less than or equal to F = 50%
of the total Tj.

We repeat the same process beginning from the last row of the PSSM for
the jth column. We calculate the partial sum of the substitution probability of
the first i amino acids until reaching F = 25% and 2 ×F = 50% of the total

sum which are S3 =
∑I3

j

i=1 Pij and S4 =
∑I4

j

i=1 Pij respectively and calculate the
I3j and I4j . I

3
j and I4j correspond to the number of amino acids such that the

summation of their substitution probability is less than or equal to F and 2 × F
of Tj respectively (starting from the last row of PSSM). In this manner we extract
four segmented distribution features for each column in PSSM. The method used
to calculate PSSM-SD is shown in Figure 1. We repeat the same process for all
20 columns corresponding to 20 amino acids in PSSM and extract 80 features in
total in this feature group (4× 20 = 80). Note that F = 25% is adopted in this
study due it s better performance compared to use of F = 10% and F = 5%
explored experimentally by the authors. In the other word, using four segments
is sufficient for providing adequate local discriminatory information compared
to the use of 10 or 20 segments.
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3.4 Segmented Auto Covariance (PSSM-SAC)

The concept of auto covariance has been widely used in the literature to capture
local discriminatory information and has attained better results compared to
similar methods used for this task such as dipeptide composition [8, 17]. Pseudo
amino acid composition based features are good examples of these types of fea-
tures [2, 4]. These features have been computed using the whole protein sequence
as a single entity for feature extraction. Therefore, they could not adequately
explore the local sequence order information embedded in protein sequence [17].
In the present study, we extend the concept of segmented distribution features
as described in the previous subsection to compute the auto covariance features
from the segmented protein sequence. This is done to enforce local discriminatory
information extracted from PSSM.

To extract this feature group, we calculate the auto covariance of the substi-
tution probability of the amino acids using K as the distance factor for each seg-
ment of proteins generated using segmented distribution in the following manner.
Starting from the first row of PSSM, for the jth column of PSSM, we calculate K
auto covariance features for the first I1j . Similarly, we calculate auto covariance

for the first I2j amino acids. Then starting from the last row of PSSM for the jth

column of PSSM, We repeat the same process for I3j , and I4j (I1j , I
2
j , I

3
j , and I4j

are calculated from the previous subsection). This process is repeated for all 20
columns of PSSM and corresponding features are calculated as follows:

PSSM-segn,m,j =
1

(Inj −m)

In
j −m∑
i=1

(Pi,j − Pave,j)× (P(i+m),j − Pave,j),

(n = 1, ..., 4 &m = 1, ...,K & j = 1, ..., 20), (3)

where, Pave,j is the average substitution probability for the jth column in PSSM.
Note that 2 × K auto covariance coefficients are computed in this manner by
analyzing PSSM in the downward direction and 2×K auto covariance coefficients
are computed in this manner by analyzing PSSM in the upward direction (4×K
features in total). We also compute the global auto covariance coefficient (K
features) of PSSM as follows:

PSSM-ACm,j =
1

(L−m)

L−m∑
i=1

(Pi,j − Pave,j)× (P(i+m),j − Pave,j),

(m = 1, ...,K & j = 1, ..., 20). (4)

Thus, we have extracted a total of ( 2K + 2K + K = 5K) auto covariance
features in this manner (for the jth column of the PSSM). Therefore, for all 20
columns of the PSSM, segmented auto covariance of substitution probability of
the amino acids are extracted and combined to build the corresponding feature
group which will be referred to as PSSM-SAC (PSSM-seg + PSSM-AC which
consists of 20× (5K)) features in total).
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4 Support Vector Machine

SVM was introduced by [25] to find the Maximum Margin Hyper-plane (MMH)
based on the concept of the support vector theory to minimize classification
error. It transforms the input data to higher dimension using the kernel function
to be able to find support vectors (for nonlinear cases). The classification of some
known points in input space xi is yi which is defined to be either -1 or +1. If x′

is a point in input space with unknown classification then:

y′ = sign

( n∑
i=1

aiyiK(xi,x
′) + b

)
, (5)

where y′ is the predicted class of point x′. The function K() is the kernel function;
n is the number of support vectors and ai are adjustable weights and b is the
bias. This classier is considered as the state-of-the-art classification techniques
in the pattern recognition and attained the best results for the protein structural
class prediction problem [7, 16, 17]. In this study, SVM classifier implemented in
the LIBSVM (C-SVC type) toolbox using Radial Basis Function (RBF) as its
kernel is used [26]. The γ in addition to the regularization parameter C (which
also called the soft margin parameter) of the RBF kernel are optimized using
grid search algorithm implemented in the LIBSVM package.

5 Results and Discussion

We first explore the effectiveness of the segmented auto covariance (PSSM-SAC)
method compared to global auto covariance (PSSM-AC) used in [17]. PSSM-AC
was used to explore local discriminatory information embedded in PSSM and
attained the best results for this task. Then, one by one, we add the rest of the
feature groups extracted in this study and explore their impact on the protein
structural class prediction accuracy, separately. Finally, we compare the results
reported in this study with the similar studies found in the literature for the
protein structural class prediction problem. To evaluate the performance of our
proposed methods and to be able to directly compare our results with previously
studies, we adopt Jackknife cross validation as it was widely used for this task
in the literature [16, 17, 19]

5.1 The Effectiveness of PSSM-SAC versus PSSM-AC

To investigate the effectiveness of PSSM-SAC compared to PSSM-AC we first
reproduce the experiments conducted in [17]. In this experiment, PSSM-AC in
combination of PSSM-AAC was used as the input feature group (called AAC-
PSSM-AC) for different values of K (between 1 and 10) using an SVM classifier.
We similarly combine the PSSM-SAC with PSSM-AAC (called AAC-PSSM-
SAC) to be able to directly compare these two feature groups with respect to
different values of distance factor K between 1 and 10 (using an SVM as it
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was used in [17]). The results achieved for 25PDB and 1189 are respectively
shown in Figure 2.a and Figure 2.b. As it is shown in these figures, increasing
the K value, AAC-PSSM-SAC significantly outperform AAC-PSSM-AC. Using
K = 10 we achieve up to 81.1% and 76.9% prediction accuracies respectively
for 25PDB and 1189 benchmarks. This highlights the effectiveness of PSSM-
SAC to extract local discriminatory information based on the concept of auto
covariance from the PSSM. Note that our results using solely AAC-PSSM-SAC
enhances the protein structural class prediction accuracy for up to 6% and 2.3%
for 25PDB and 1189 benchmarks respectively compared to the best results found
in the literature relying on PSSM for feature extraction. In continuation, we
replaced PSSM-AAC with PSSM-AAO which enhances the protein structural
class prediction accuracy for all 10 values of K between 0.5% and 2% (when
increasing K from 1 to 10, the impact of AAO is reduced from almost 2% to
0.5%) which shows the effectiveness of using AAO compared to AAC. Therefore,
for the rest of this study, AAO is used instead of AAC. We then use grid search
algorithm on 1189 to optimize SVM parameters (C and γ) for AAO-PSSM-AC
(where K = 10) to avoid over tuning. 25PDB also was not used at all for this
task. The optimal values achieved for C and γ are respectively 500 and 0.05
which are used for the rest of this study.

(a) Comparison of the AAC PSSM AC and

AAC PSSM SAC on 1189 benchmark

(b) Comparison of the AAC PSSM AC and

AAC PSSM SAC on 25PDB benchmark

Fig. 2. Results achieved for AAC PSSM SAC and AAC PSSM AC with respect the
value of K (Between 1 to 10) for 1189 and 25PDB benchmarks

5.2 The Effectiveness of PSSM-SD Feature Group

In continuation, we add the PSSM-SD feature group to the combination of
PSSM-SAC and PSSM-AAO (AAO-PSSM-SAC) and study its impact for dif-
ferent values of K (between 1 and 10). The results achieved for 25PDB and 1189
benchmarks are shown in Figure 3. As we can see, by adding PSSM-SD, dis-
similar to AAC-PSSM-SAC by increasing the value of K to 10, the prediction
accuracy does not improve (it even slightly reduces). Therefore, adding PSSM-
SD reduce the dependency to the value of K in PSSM-SAC to provide local
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Fig. 3. The results achieved for combination of PSSM-AAO, PSSM-SAC, and PSSM-
SD using SVM for different values of K (between 1 to 10) for 1189 and 25PDB bench-
marks

information. In another word, we are able to increase the provided local infor-
mation using PSSM-SD feature group and at the same time reduce the number
of features. Using the combination of PSSM-AAO, PSSM-SAC, and PSSM-SD
where K = 1 (20 + 100 + 80 = 200 features in total), we achieve up to 89.4%
and 79.5% prediction accuracies for 25PDB and 1189 benchmarks respectively
which are 15.3% and 4.9% better than the highest results reported for these
benchmarks in the literature using features extracted from PSSM.

5.3 The Effectiveness of AAO Feature Group

In this Step, we add the AAO feature group to the combination of PSSM-AAO,
PSSM-SAC (where K = 1), and PSSM-SD (20 + 20 + 100 + 80 = 220 features
in total). By adding this feature group and applying SVM to these combination,
we achieve up to 90.1% and 80.2% prediction accuracies respectively for 25PDB
and 1189. These results are up to 16% and 5.6% respectively better than the best
results reported for these two benchmarks using PSSM for feature extraction. It
is important to highlight that these results are achieved using the same number
of features used in [17] to achieve their best results for these two benchmark
using PSSM for feature extraction. The results adding each feature group in
each step is shown in Table.1. Note that in this table the impact of PSSM-SAC
where K = 1 is shown while as it was explained in previous section, depend on
the combination of feature groups being used, this impact has changed.

5.4 Performance Comparison with Existing Methods

In this section, the overall protein structural class prediction accuracy as well
as prediction accuracy achieved for each structural class achieved by using the
combination of our feature groups (PSSM-AAO + PSSM-SAC + PSSM-SD +
AAO which will be referred as PSSM-S for simplicity) compared to previously
reported results for this task are shown in Table 2 and Table 3. As we can see, we
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Table 1. The impact of proposed feature extraction groups proposed in this study to
enhance protein structural class prediction accuracy (in %)

Combination of features Classifier 25PDB 1189
PSSM-AAO SVM 65.5 62.4
PSSM-AAO + PSSM-SAC (K = 1) SVM 69.9 69.1
PSSM-AAO + PSSM-SD SVM 87.1 76.4
PSSM-AAO + PSSM-SAC (K = 1) + PSSM-SD SVM 89.4 79.5
PSSM-AAO + PSSM-SAC (K = 1) + PSSM-SD + AAO SVM 90.1 80.2
PSSM-AAO + PSSM-AC (K = 6) + PSSM-SD + AAO SVM 89.1 78.1

Table 2. Comparison of the results reported for the 25PDB benchmark (in percentage
%)

References Method All-α All-β α / β α + β Overall
[19] Logistic Regression 69.1 61.6 60.1 38.3 57.1
[27] Specific Tri-peptides 60.6 60.7 67.9 44.3 58.6
[13] LLSC-PRED 75.2 67.5 62.1 44.0 62.2
[13] SVM 77.4 66.4 61.3 45.4 62.7
[14] SSA 92.6 83.7 80.5 65.9 81.5
[28] SCPRED 92.6 80.1 74.0 71.0 62.7
[29] CWT-PCA-SVM 76.5 67.3 66.8 45.8 64.0
[18] AATP 81.9 74.7 75.1 55.8 71.7
[8] AADP-PSSM 83.3 78.1 76.3 54.4 72.9
[17] AAC-PSSM-AC 85.3 81.7 73.7 55.3 74.1
This Study PSSM-S 93.8 92.8 92.6 81.7 90.1

Table 3. Comparison of the results reported for the 1189 benchmark (in percentage
%)

References Method All-α All-β α / β α + β Overall
[3] Bayes Classifier 54.8 57.1 75.2 22.2 53.8
[19] Logistic Regression 57.0 62.9 64.7 25.3 53.9
[30] FKNN 48.9 59.5 81.7 26.6 56.9
[27] Specific Tri-peptides - - - - 59.9
[15] IB1 65.3 67.7 79.9 40.7 64.7
[31] SVM 75.8 75.2 82.6 31.8 67.6
[18] AATP 72.7 85.4 82.9 42.7 72.6
[8] AADP-PSSM 69.1 83.7 85.6 35.7 70.7
[17] AAC-PSSM-AC 80.7 86.4 81.4 45.2 74.6
This Study PSSM-S 93.3 85.1 77.6 65.6 80.2

not only significantly enhance the overall protein structural class prediction ac-
curacy but also in most of the cases achieve better results for different structural
classes. Relying solely on PSSM for feature extraction, we achieve over 90% and
80% prediction accuracies for 25PDB and 1189 benchmarks. It is important to
highlight that we also achieved significantly higher results for 25PDB compared
to studies which have used PSIPRED for feature extraction as well while it was
relatively comparable for 1189 [7, 16].

6 Conclusion and Future Works

In this study, we proposed novel feature extraction methods to explore poten-
tial local and global discriminatory information embedded in PSSM for protein
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structural class prediction problem. We proposed the concepts of segmented auto
covariance and segmented distribution to extract this local information. We also
employed the concept of occurrence to extract potential global discriminatory
information directly from PSSM as well as the transformed protein sequence
using PSSM. By applying SVM we showed the effectiveness of our proposed fea-
ture groups by enhancing protein structural class prediction accuracy for up to
16% and 5.6% for 25PDB and 1189 benchmarks respectively. We, for the first
time, achieved over 90% and 80% (90.1% and 80.2%) protein structural class
prediction accuracies for 25PDB and 1189 benchmarks respectively using PSSM
for feature extraction. For our future work, we aim to study the effectiveness
of structural information based on predicted secondary structure of proteins to
enhance the protein structural class prediction accuracy, further.
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Abstract. The relationship connecting the biomolecular sequence, the molecu-
lar structure, and the biological function is of extreme importance in nanostruc-
ture analysis such as drug discovery. Previous studies involving multiple  
sequence alignment of biomolecules have demonstrated that associated sites are 
indicative of the structural and functional characteristics of biomolecules, com-
parable to methods such as consensus sequences analysis. In this paper, a new 
method to detect associated sites in aligned sequence ensembles is proposed. It 
involves the use of multiple sub-tables (or levels) of two-dimensional contin-
gency table analysis. The idea is to incorporate analysis by using a concept 
known as granular computing, which represents information at different levels 
of granularity. The analysis involves two phases. The first phase includes labe-
ling of the molecular sites in the p53 protein multiple sequence alignment ac-
cording to the detected associated patterns. The sites are consequently labeled 
into three different types based on their site characteristics: 1) conserved sites, 
2) associated sites and 3) hypervariate sites. In the second phase, the signific-
ance of the extracted site patterns is evaluated with respect to targeted structural 
and functional characteristics of the p53 protein. The results indicate that the 
extracted site patterns are significantly associated with some of the known func-
tionalities of p53, a cancer suppressor. Furthermore, when these sites are 
aligned with p63 and p73, the homologs of p53 without the same cancer sup-
pressing property, based on the common domains, the sites significantly discri-
minate between the human sequences of the p53 family. Therefore, the study 
confirms the importance of these detected sites that could indicate their  
differences in cancer suppressing property. 

Keywords: Data-mining, association network, protein sequence alignment, 
granular computing, bioinformatics. 

1 Introduction 

Biological sequences when aligned can provide the common or discriminatory infor-
mation about the individual residue of the biomolecule family. It can also provide the 
information from which knowledge can be extracted that directs us towards the func-
tional sites of the molecule. Identifying the relationships between the sequences and 
their relationship to structure and biological functionality is an active area of research 
(for examples, see Chiu & Kolodziejczak, 1991, Chiu & Lui, 2005, Chiu & Liu, 
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2012). Identifying the sequence patterns that represent the functional characteristics of 
the biomolecule is vital in nanostructure analysis such as drug discovery (González, 
Liao, & Wu, 2010).  

Previous studies, involving the multiple sequence alignment of related species have 
indicated that various kinds of interdependent or associated patterns can be indicative 
of the structural and functional characteristics of the biomolecule (Chiu, Chen, & 
Wong, 2001; Chiu & Lui, 2005; Chiu & Wong, 2004; Chiu & Lui, 2009; Chiu & 
Wang, 2006; Chiu & Xu, 2011). In this paper, a new method in inferring the associa-
tion network in aligned sequence ensembles is proposed. It is derived from the  
concept of granular computing, where information is extracted at different levels of 
granularity or resolution (Lin et al. 1997, 2003). It involves the use of different sizes 
of two-dimensional contingency table analysis by focusing on the statistical associa-
tions between different outcome subsets (Chiu & Cheung 1989, Chiu et al. 1990, 
1991).  Furthermore, molecular sites with association patterns having multiple rela-
tionships with other sites demonstrate convergent information (Durston et al. 2012).  

In the proposed analysis, there are two consecutive phases. First, the molecular 
sites in the multiple sequence alignment are labeled into three different types based on 
their site association characteristics: conserved sites (C-sites), interdependent sites (D-
sites), and hypervariate or other sites (H-sites). Next, the importance of these sites is 
evaluated by testing their association to the functionality of the biomolecule such as 
known structural or functional characteristics. 

In an aligned sequence ensemble, associated sites refer to sites that have statistical 
significance relationship with another site. In proteins, they represent sites with amino 
acid pairs observed together. Two types of associations can be considered, the associ-
ation between two sites (such as X and Y sites) and the association among multiple 
sites (such as W, X, Y, and Z sites). Previous studies using multiple sequence  
alignment have observed that associated sites can predict the functional sites in bio-
molecules. For example, the patterns derived from associated sites were capable of 
inferring secondary and tertiary bonding structures (Chiu & Kolodziejczak, 1991), 
and have been used for the recognition of the ribosome binding sites in E. coli 
(Frishman, 1999). Similar sites can also have conformational, biochemical, and tax-
onomical significance (Wong, Liu, & Wang, 1996; Chiu et al., 2001). In other studies, 
regions obtained from statistical patterns are shown to correspond to exon sub-regions 
(Chiu & Lui, 2005) and the identification of the three-dimensional molecular core 
sites (Chiu & Lui, 2012). 

2 Associations at Different Levels 

One of the fundamental tasks of data mining is the discovery, description and quanti-
fication of the associations within the data (Pedrycz, 2001). Typically, the information 
from the associations in an event is detected considering the complete outcome space. 
However, the associations in the given dataset can be a global or a local phenomenon 
(Fig. 1). The two phenomena can be quite different and their information hence may 
convey different characteristics.  
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In 1997 and 1998, p73 and p63, respectively, were identified as structural and 
functional homologs of p53 (Melino et al., 2003). The overall domain structure of the 
p53 family members is conserved and consists of a transactivation domain (TAD), 
DNA binding domain (DBD), and oligomerization domain (OGD). Unlike p53, the 
genes encoding p63 and p73 are rarely mutated in human cancer, and knock-out mice 
studies demonstrate developmental defects rather than a propensity for tumor  
formation.  

4 Methodology 

4.1 The First Phase of Analysis  

In the first phase of our proposed analysis, the aligned sites in the p53 protein mul-
tiple sequence alignment were labeled into different types based on aligned site cha-
racteristics. The three different types of sites were also discussed in (Wong et al. 
1976; Chiu & Wang, 2006): 

• Associated sites (D-sites): The D-sites indicated the sites with observed amino acid 
values multiply associated with the values of other sites, reflecting a complex in-
terdependent relationship. 

• Invariant or conserved sites (C-sites): The C-sites indicated the sites mostly with 
the same amino acid value, reflecting constant value observation. 

• Hypervariate sites (H-sites): The H-sites indicated the sites that could not be classi-
fied into either the D-site or the C-site types.  

In multiple sequence alignment of a biomolecule, convergent association pattern 
(such as D-sites) represented the sites that have association relationship with other 
sites converging on them. The association relationship between sites was detected by 
using a suitable statistical hypothesis test. In an aligned ensemble, each aligned site 
was statistically tested for association with all other sites. In our case, when a site was 
found to be significantly associated with more than one site, it was considered to have 
a convergent association pattern that reflected a multiple interdependence relation-
ship. For example, in Figure 2, site S3 was tested for association with all the other 
sites and the sites associated with S3 were indicated by the P1 (site-site) pattern. 

 

Fig. 2. Site-site pattern (P1) (modified from Chiu & Xu, 2011) 
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A statistical hypothesis test was used to evaluate the association relationship be-
tween two distinct sites in the aligned sequences. The goal was to evaluate whether or 
not a site was significantly associated with other sites in the aligned ensemble. It was 
hypothesized that in identifying the network of association patterns, the underlying 
functional structure of the biomolecules may be revealed. 

4.2 Selection of Statistical Test  

In general with large sample size, chi-square test can be applied to evaluate the signi-
ficance of the association  relationship between the site variables. Here, the sample 
size was small resulting in sparse contingency tables. Thus Fisher`s exact test could 
be applied.  

4.3 Correction for Multiple Testing  

In this phase, each aligned site in the alignment was tested for association relationship 
with all other sites. With multiple hypotheses tested, Bonferroni correction was ap-
plied to control the familywise error rate:  `   /  
where α is the significance level and n is the number of multiple tests. 

4.4 Detection of D-sites Using Different Sizes of Contingency Tables  

The use of the proposed method based on granular association facilitated the identifi-
cation of D-sites in the aligned sequence ensembles for different outcome subsets 
between two variables. Multiple levels of data abstraction were constructed by using 
different sizes of the two-dimensional contingency tables. Based on three different 
sizes of the contingency table, three levels of analysis could be employed: 

• Full contingency table analysis (RF)  
• 2x2 contingency sub-table analysis (R2x2)  
• Single cell contingency table analysis (R1) 

4.5 Full Contingency Table Analysis (RF Method) 

The standard full contingency table analysis evaluates the association relationship 
between two distinct sites from an aligned sequence ensemble. After the contingency 
table relating two sites in aligned sequences is generated, Fisher's exact test can be 
applied to each relationship. The test detects the significance of the association be-
tween the two selected distinct sites. The null hypothesis is that the site variables, say 
X and Y, are independent and the alternate hypothesis otherwise. If the test statistic is 
larger than the tabulated value at a pre-defined significance level, then the association 
is accepted as significant. 
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4.6 2x2 Contingency Sub-table Analysis (R2x2 Method) 

The 2x2 contingency sub-table analysis of a two-dimensional table evaluates the as-
sociation between the outcome subsets, denoted as sub-X, and sub-Y that was  
selected by using relevant criteria from the full contingency table. There were two 
criteria for selecting a sub-table, analogous to the use of two different but similar 
estimators. 

The first selection criterion for selecting the 2x2 sub-table can be described as  
follows:  

• Select the first two outcomes from a full contingency table with the highest mar-
ginal frequency. 

• Create a sub-table involving the human amino acid in the two sites. 

The second similar selection criterion can be used: 

• Select the human amino acid in the two X and Y sites. 
• Select the non-human amino acid in the X and Y sites with the highest marginal 

frequency. 
 

After the 2x2 sub-table is constructed, the test of independence was applied to the two 
sites. 

4.7 Single Cell Contingency Table Analysis (R1 Method)  

With a full contingency table constructed relating between, say sites X and Y, the cell 
with the observed amino acid in the human sequence of site X and site Y was se-
lected. The hypothesis test is then applied to identify significant associations. The test 
statistic is computed based on the normal distribution on the difference between the 
observed and expected frequencies (Haberman, 1973, Wong & Wang, 1997). If the 
test statistic is larger than the tabulated value at a pre-defined significance level, then 
the association is accepted as significant. In another words, the single cell contingen-
cy table analysis is applied to evaluate the association between two different sites of 
the human sequence based on the distribution obtained from the aligned sequence 
ensemble.  

4.8 The Second Phase of Analysis  

In the second phase, the association between the defined patterns and a targeted func-
tional characteristic of the p53 protein is evaluated. 

As described before, the different types of statistical patterns can be classified into 
seven different categories: 

• Conserved sites pattern (CS): It indicates sites with mostly a constant value obser-
vation.  

• R2x2 pattern: It indicated sites identified as significantly associated using the 2x2 
contingency sub-table method.  

• R1 pattern: It indicated sites identified as significantly associated sites by the single 
cell contingency table method.  
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• CS + R2x2 pattern: It indicated sites that are either conserved or identified as asso-
ciated sites by the 2x2 contingency sub-table method. 

• CS + R1 pattern: It indicated sites that are either conserved or identified as signifi-
cantly associated sites by the single cell contingency table method. 

• R2x2 + R1 pattern: It indicated sites identified as significantly associated sites by 
either the 2x2 contingency sub-table or the single cell contingency table method. 

• CS + R2x2 + R1 pattern: It indicated sites that are either conserved or identified as 
significantly associated sites by the 2x2 contingency sub-table or the single cell 
contingency table method. 

The goal here is to analyze the association between the identified patterns and tar-
geted functionalities to determine if they are significantly associated. This analysis 
would be useful in identifying significant functional association, possibly leading to 
the discovery of specific functional sites with the desirable properties. In the experi-
ments, we had considered six different p53 functionalities, including structural cha-
racteristics and amino acid differences between p53 and its homologs of p63 and p73. 
There are five different types of discrimination between p53, p63 and p73, as: 

• Type I: The amino acid in the human sequence of p53, p63, and p73 are observed 
the same. 

• Type II: The amino acid in the human sequence of p53, p63, and p73 are observed 
different. 

• Type III: The amino acid in the human sequence of p53 observed differently from 
that of p63 and p73. 

• Type IV: The amino acid in the human sequence of p63 observed differently from 
that of p53 and p73. 

• Type V: The amino acid in the human sequence of p73 observed differently from 
that of p53 and p63.                

4.9 Test of Independence in the Second Phase of Analysis    

The statistical significance between the generated site patterns and the functional 
characteristics is evaluated using a test of independence from the construction of a 
new 2x2 contingency table, indicating whether the pattern and the functionality are 
significantly associated or not. The variable on the rows in the table indicated a tar-
geted functionality (e.g. polarity) and the variable on the columns indicated the gener-
ated site pattern (e.g. CS pattern). The chi-square statistical test is then applied.  

 The null hypothesis assumes that the pattern (P) and the functionality (F) are in-
dependent and the alternate hypothesis otherwise. From the observed frequency table, 
the observed and expected frequencies are then calculated. The chi-square statistic is 
computed with one degree of freedom based on the deviations between the observed 
frequencies from the expected frequencies. The association relationship between the 
variables P and F is considered to be statistically significant if χ2 > Nα, where Nα was 
the tabulated threshold value with one degree of freedom and α is the confidence  
level.  
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5 Experimental Studies Using the p53 Protein Alignment 

The amino acid sequences used in the experiments were obtained from the Uni-
ProtKB database (http://www.uniprot.org). The database stored 34 different species of 
p53 sequences, three species of p63 sequences and 3 sequences of p73 sequences.  

In the first phase of analysis, the multiple sequence alignment of 34 p53 sequences 
was obtained, using the alignment from the ClustalW (Version 2.1) program. The 
following ClustalW default settings were used. (The pairwise alignment parameters 
were: protein weight matrix = Gonnet, gap open penalty = 10, and gap extension pe-
nalty = 0.1; the multiple alignment parameters were: protein weight matrix = Gonnet, 
gap open penalty = 10, gap extension penalty = 0.2, gap separation distances = 5, end 
gaps = off, and clustering method = neighbor joining.) The alignment indicated 115 
sites as conserved sites and these sites were labeled as C-sites. The remaining 278 
(393-115) aligned sites were employed in the experiments, to identify the D-sites and 
the H-sites. 

The three levels of data abstraction methods, RF, R2x2, and R1, were applied gene-
rating the labeled sites (as D-sites). Due to the small sample size of the data and RF 
generates largely sparse contingency tables, hence the method were excluded from 
further analysis.  

In the R2x2 method, two selection criteria (as two estimators) were used to select a 
sub-table from a full contingency table. In the p53-aligned data, it was found that both 
criteria selected similar D-sites as expected.  

The proposed R2x2 method identified 107 D-sites with a 5% significance level after 
using the Bonferroni correction. In the transactivation domain (TAD), DNA binding 
domain (DBD), and oligomerization domain (OD), there were 20, 52, and 34 sites 
identified respectively.  

The R1 method identified 28 D-sites with a 5% significance level after using the 
Bonferroni correction. In the transactivation domain (TAD), DNA binding domain 
(DBD), and oligomerization domain (OD), there were 20, 4, and 4 sites identified 
respectively.  

In the second phase of analysis, the human sequences of p53, p63, and p73 were 
aligned according to their common domains. This alignment was used to identify the 
discriminating types between the p53 family members.  

The five different types used to discriminate among the human sequences of p53, 
p63, and p73 molecules were described. The association relationship between the 
defined patterns and the discriminating types were analyzed. The number of D-sites 
selected in type III was high in both the R2x2 and R1 methods. Since type III differen-
tiated p53 from the other two family members of p63 and p73. This relationship  
between the defined patterns was the most important. 

The observed chi-square values and p-values for association testing between each 
pattern and discriminate type III were noted. Figure 3 shows that D-sites are mostly 
associated with type III (which discriminate between p53 and its homologs). The 
frequencies clearly demonstrated that the patterns CS, R2x2, CS + R1, and R2x2 + R1 
were stronger and statistically significant with type III discrimination with 0.01% 
significance level. The R2x2 + R1 pattern was more significant than the individual 
effect of either R2x2 or R1. However, when the CS pattern was considered with the 
other patterns (CS + R2x2, and CS + R2x2 + R1), the chi-square value decreased drasti-
cally and was also weaker. The results can be interpreted as follows: 
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Abstract. The assessment of non-genotoxic hepatocarcinogenicity of
chemicals is currently based on 2-year rodent bioassays. It is desirable
to develop a fast and effective method to accelerate the identification
of potential hepatocarcinogenicity of non-genotoxic chemicals. In this
study, a novel method CPI is proposed to predict potential hepatocar-
cinogenicity of non-genotoxic chemicals. The CPI method is based on
chemical-protein interactions and interpretable decision tree classifiers.
The interpretable rules generated by the CPI method are analyzed to
provide insights into the mechanism and biomarkers of non-genotoxic
hepatocarcinogenicity. The CPI method with an independent test accu-
racy of 86% using only 1 protein biomarker outperforms the state-of-
the-art methods of gene expression profile-based toxicogenomics using
90 gene biomarkers. A protein ABCC3 was identified as a potential pro-
tein biomarker for further exploration. This study presents the potential
application of CPI method for assessing non-genotoxic hepatocarcino-
genicity of chemicals.

Keywords: Non-Genotoxic Hepatocarcinogenicity, Decision Tree,
Chemical-Protein Interaction, Interpretable Rule, Toxicology.

1 Introduction

Chemical carcinogenesis can be classified into two main categories of genotoxic
(mutagenic) and non-genotoxic (non-mutagenic) agents according to the mech-
anism of action [1, 2]. Several short-term in vitro and in vivo assays have been
developed to assess genotoxic agents by measuring DNA damage, mutagenic ef-
fects, and chromosomal aberrations [3]. However, due to the complex nature of
non-genotoxic agents, the assessment of non-genotoxic hepatocarcinogenicity of
chemical compounds is based on 2-year rodent bioassays that is labor-intensive,
time-consuming and expensive. There are only 1500 chemicals studied by Na-
tional Toxicology Program during the past 30 years [4]. It is desirable to develop
alternative methods to efficiently prioritize potential non-genotoxic hepatocar-
cinogenicity of chemicals for further studies.
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Numerous computational models have been developed to predict various tox-
icity endpoints with reasonably good prediction performance. For example, the
quantitative structure-activity relationship (QSAR) models have been exten-
sively used to analyze and predict carcinogenicity [5–8]. QSAR model aiming
to correlate chemical structure information and toxicity endpoints could pro-
vide useful information of important structure for toxicity alerts. However, the
application of QSAR models for predicting non-genotoxic hepatocarcinogenic-
ity yields a low accuracy of 55% [9] showing the complexity of non-genotoxic
hepatocarcinogenicity.

Recently, toxicogenomics (TGx) correlating gene expression profiles and toxi-
city endpoints has emerged as important alternative methods. With the power of
machine learning methods, TGx performs well in non-genotoxic hepatocarcino-
genicity with a test accuracy of 80% [9, 10]. In contrast to traditional 2-year
rodent bioassays, TGx methods require much less experimental effort. Gener-
ally, published TGx methods select 29 to 120 genes as important biomarkers
and require short-term experiments with 5 to 28 days [9, 11, 10]. However, com-
pared to the pure computational method QSAR, TGx methods are still more
time-consuming and expensive. Also, chemical-protein interaction (CPI) as an
important mechanism for toxicity can not be modeled by TGx methods. The
development of fast and accurate methods can largely help the assessment of
non-genotoxic hepatocarcinogenicity of chemicals.

The data of CPI information grows very fast in recent years. Benefit from
the development of CPI databases, enormous interaction data obtained from
databases, experiments and text-mining can be easily accessed from the struc-
tured databases including STITCH [12–14], ChemProt [15, 16] and CTD [17].
The databases makes it possible to develop a CPI-based method for analyzing
and predicting non-genotoxic hepatocarcinogenicity.

In this study, a CPI based classification method is proposed to analyze and
predict non-genotoxic hepatocarcinogenicity of chemicals. Decision tree algo-
rithms capable of generating rule-based knowledge are applied to construct pre-
diction classifiers. The 5-fold cross-validation and independent test accuracies
on training and independent test dataset using only one protein are 82% and
86%, respectively. The independent test accuracy of the proposed CPI method
is better than that of TGx methods requiring 1 to 5-day experiments and 90
biomarkers. This is the first study that utilizes chemical-protein interaction data
to predict non-genotoxic hepatocarcinogenicity of chemicals.

2 Materials and Methods

2.1 Dataset

In this study, the development of datasets is based on a liver cancer database
NCTRlcdb [18]. In order to demonstrate and compare prediction performances of
different methods including CPI, QSAR and toxicogenomics models, only chem-
icals with existing gene expression data in rat were selected from NCTRlcdb.
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A final dataset consisting of 62 chemicals is utilized to develop and test classifiers
for non-genotoxic hepatocarcinogenicity that is developed by Liu et al. [9]. Class
labels of either liver carcinogens, carcinogens in other organisms, or noncarcino-
gens for chemicals were obtained from NCTRlcdb. In order to compare with the
QSAR and toxicogenomics models of the previous study [9], the 62 chemicals
are divided into a training dataset and an independent test dataset according to
the previous study [9]. The training and independent test datasets consisting of
8 positive and 32 negative chemicals and 5 positive and 17 negative chemicals
are utilized for training and testing models, respectively.

2.2 Chemical-Protein Interactions

Chemical-protein interaction data are obtained from STITCH 3.1 database
[13, 14, 12]. STITCH database is an aggregated database of interactions connect-
ing over 300,000 chemicals and 2.6 million proteins from 1133 organisms. The
interaction data are obtained from three major sources of experiments, databases
and text-mining. The experiment part consists of direct chemical-protein bind-
ing data with experimental evidence. The database part contains interaction
data from pathway databases. The text-mining data is obtained by extracting
information of interactions from literatures using text-mining techniques. Likeli-
hood or relevance scores of interactions are available for each evidence type. An
overall score for a given chemical-protein interaction is generated by combining
three scores of corresponding evidence types that is available at STITCH [19].
The score is a integer value ranging from 0 (no interaction) to 1000 (strong in-
teraction). Chemical-protein interactions are transferred between species based
on the sequence similarity of the proteins [19].

2.3 Decision Tree Algorithm

Decision tree algorithms capable of generating interpretable rules based on train-
ing data are widely used in various classification and regression problems such
as immunogenic peptides [20], ubiquitination sites [21], gamma-turn types [22]
and protein subnuclear localization [23]. In this study, the decision tree method
C5.0 is applied to construct decision tree classifiers and derive interpretable rules
based on chemical-protein interaction profile for classifying non-genotoxic hep-
atocarcinogenicity. C5.0 is an improved version of C4.5 with smaller trees and
less computation time [24]. The implementation of C5.0 used in this study is the
R package C50 [25].

The construction of a decision tree is described as follows. First, information
gain is utilized to rank features. Second, the top-ranking features are iteratively
appended as nodes to split data into subsets. The tree growing process stops
when the data subset in each leaf node belongs to the same class. The fully-
grown tree is prone to over-fit the training data. Therefore, a pruning process
is applied to reduce the tree size by replacing a subtree with a leaf node to
avoid over-fitting problems. The pruning process is based on a default threshold
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value of 25% confidence. The samples in the leaf node are the covered samples of
this rule. The class label of a leaf node is determined by using majority rule. The
samples with a relative small size in the leaf node are regarded as misclassified
samples. The final decision tree can directly generate if-then rules where one leaf
node corresponds to one rule.

2.4 Performance Measurement

To evaluate classifiers for their prediction performance, the widely used 5-fold
cross-validation method is applied. Four measurements were applied to evaluate
classifiers including sensitivity, specificity, accuracy and Matthews correlation
coefficient (MCC) defined as follows:

Sensitivity =
TP

TP + FN
, (1)

Specificity =
TN

TN + FP
, (2)

Accuracy =
TP + TN

TP + FP + FN + TN
, (3)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (4)

where TP, FP, FN and TN are the numbers of true positives, false positives,
false negatives and true negatives, respectively. In this work, accuracy is used as
major indicator for estimating the performance of classifiers.

3 Results and Discussion

3.1 Classification Performance on Training Dataset

The proposed CPI method is based on information of chemical-protein inter-
actions. The chemical of N,N ’-diphenyl-p-phenylenediamine without a corre-
sponding record in STITCH database is excluded from the following analyses.
The chemicals in the training dataset is firstly transformed to 4 matrixes of
chemical-protein interaction scores obtained from combined scores, databases,
experiments and text-mining. Only the CPI information of Rattus norvegicus is
used because the hepatocarcinogenic annotation of the 62 chemicals is based on
rat and mouse. In order to provide better insights into protein biomarkers of
non-genotoxic hepatocarcinogenicity, the decision tree algorithm C5.0 is applied
to generate human interpretable rules based on training datasets for further
confirmation.
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Table 1. Cross-validation performance

Model type Classifier Feature selection Number of 5-CV
selected features accuracy

CPI C5.0 Information gain 1 0.82
QSAR* NCC Wrapper-based mRMR 15 0.76

TGx (1-day)* NCC Wrapper-based mRMR 90 0.87
TGx (3-day)* NCC Wrapper-based mRMR 90 0.87

TGx (5-day)* NCC Wrapper-based mRMR 90 0.90
* Model performance from Liu et al [9]

Fig. 1. Five-fold cross-validation performance of CPI method using various scores as
features

To evaluate the classification performance of the CPI method, a 5-fold cross-
validation (5-CV) is applied to the training dataset consisting of 7 positive and
31 negative chemicals. In the 5-CV, the training dataset is firstly divided into
5 folds with nearly equal number of chemicals. For each validation fold f of the
5-CV, C5.0 is applied to select important features for constructing a decision
tree classifier based on the remaining 4 folds and evaluate its performance on
the validation fold. The 5-CV performances of the CPI method for 4 matrixes
are shown in Fig. 1. The CPI scores obtained from databases and text-mining
perform best with the same accuracy of 82.05%. The accuracy of experiment-
derived CPI scores is slightly worse with an accuracy of 79.49%. The CPI scores
obtained by combining three data sources of databases, experiments and text-
mining perform worst with an accuracy of 76.92%.

The information obtained from databases including metabolic pathway in-
formation is used for the following analysis that could be more useful than in-
formation from text-mining because chemical metabolites might be more toxic
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than parent chemicals. Table 1 shows the detailed 5-CV performance of the CPI
method and published QSAR and TGx methods [9]. All the QSAR and TGx
methods are based on a nearest-centroid classifier (NCC) and a wrapper-based
feature selection based on the ranking calculated by a minimum redundancymax-
imum relevancy (mRMR) [26]. The CPI method utilizing a simple and human
interpretable classifier C5.0 shows good accuracy of 0.82 that is better than the
QSAR model. Although TGx models show better accuracies than CPI, its fea-
ture selection method is a wrapper-based method that is more likely to overfit
the training dataset and overestimate its prediction performance. Additionally,
the proposed CPI method utilizes only 1 feature for each fold with interpretable
rules that is much smaller than the QSAR and TGx models requiring 15 and 90
features without interpretable rules, respectively. The selected features will be
discussed in the next section.

3.2 Feature Selection of Important Proteins

For each fold of the 5-fold cross-validation, C5.0 select important features for
constructing a decision tree classifier. The interpretation of the decision tree clas-
sifier can provide better understanding of non-genotoxic hepatocarcinogenicity.
The important features of the five decision trees are shown in Table 2 with a
usage value showing the percentage of covered chemicals.

Due to the simple decision tree created for each fold with only one protein, all
the usage values are 100%. The ABCC3 protein is identified as an important pro-
tein in two folds (40%) showing its critical role in non-genotoxic hepatocarcino-
genicity. ABCC3 (ATP-binding cassette, subfamily C (CFTR/MRP), member
3) is a member of the superfamily of ATP-binding cassette (ABC) transporters
that transports various molecules across membranes. ABCC3, also known as the
canalicular multispecific organic anion transporter 2, exhibits drug transmem-
brane transporter activity that is critical for drug transport, multidrug resis-
tance and bile acid transport pathways. The rule associated with ABCC3 is ’IF
a chemical interacts with ABCC3 THEN it is a hepatocarcinogenic chemical’.

The protein MPO is a myeloperoxidase with peroxidase activity and is found
in extracellular space, mitochondrion and secretory granule. Previous studies
have reported possible roles of oxidative stress on carcinogenicity [27, 28]. MPO
as an antioxidant enzyme is able to detoxify the reactive oxygen species (ROS)
of oxidative stress. Chemicals interacting with MPO could interrupt the detoxi-
cification process and lead to carcinogenicity.

Serotransferrin (TF) exhibiting the activity of binding and transmembrane
transporter of ferric iron is identified in the third fold. Iron in its free form is
carcinogenic unless it is bound to ferritin or transferrin [29–31]. The carcino-
genicity of TF-interacting chemicals might be caused by their interference with
the loading of iron.

The protein RB1 of retinoblastoma 1 associated with retinoblastoma is found
to be involved in the non-genotoxic hepatocarcinogenicity [32]. RB1 is a tumor
suppressor protein for preventing excessive cell growth by inhibiting cell cycle
progression [33]. The dysfunction of RB1 could cause carcinogenicity.
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Table 2. Important proteins identified from 5-fold cross-validation

Fold Name Description Usage

1 ABCC3 ATP-binding cassette, subfamily C (CFTR/MRP), member 3 100%
2 MPO Myeloperoxidase 100%
3 TF Serotransferrin 100%
4 RB1 Retinoblastoma 1 100%
5 ABCC3 ATP-binding cassette, subfamily C (CFTR/MRP), member 3 100%

Altogether, the identified proteins and functions are consistent with possible
mechanisms of non-genotoxic carcinogenicity reported by previous studies, in-
cluding modulation of metabolic enzymes, induction of peroxisome proliferation
and alteration of intercellular communication [34–37].

3.3 Independent Test

To further evaluate the prediction ability of the CPI method, the proposed CPI
method is applied to train a decision tree classifier based on the training dataset
and predict the independent test dataset consisting of 20 chemicals. A search
of the chemical of lead(iv) acetate in STITCH database leads to the record of
lead(ii) acetate of the same CPI profiles. To avoid overestimate the prediction
performance of the CPI method, the chemical of lead(iv) acetate is excluded for
the following analysis. The same as the 5-CV with 1 protein selected for each fold,
only 1 protein is selected to construct a decision tree classifier. The decision tree
shown in Fig. 2 represents a very simple rule of ’IF a chemical interacts with
ABCC3 THEN it is a hepatocarcinogenic chemical’. The rule is surprisingly
simple and correctly predict 90% chemicals in the training dataset with only 4
misclassified chemicals. All 31 non-hepatocarcinogenic chemicals do not interact
with protein ABCC3. Fifty percent of hepatocarcinogenic chemicals interact with
ABCC3. Chemicals interact with ABCC3 might interfere the normal function of
chemical transportation.

Table 3. Independent test performance

Model type Number of Accuracy Sensitivity Specificity MCC
selected features

CPI 1 0.86 0.40 1.00 0.580

QSAR* 15 0.55 0.20 0.65 -0.138
TGx (1-day)* 90 0.77 0.40 0.88 0.307

TGx (3-day)* 90 0.77 0.20 0.94 0.206
TGx (5-day)* 90 0.82 0.60 0.88 0.482
* Model performance from Liu et al [9]

To demonstrate the prediction ability of the proposed CPI method, the deci-
sion tree classifier is applied to predict chemicals in the independent test dataset.
The prediction results are shown in Table 3. The simple decision tree classifier
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Fig. 2. The constructed decision tree based on the training dataset

of CPI performs very well with an accuracy of 86% that is better than QSAR,
1-day TGx, 3-day TGx and 5-day TGx models with accuracies of 55%, 77%,
77% and 82%. The MCC value as a more objective evaluation of performance
for unbalanced data is also used to evaluate prediction performance. The MCC
values for CPI, QSAR, 1-day TGx, 3-day TGx and 5-day TGx models are 0.580,
-0.138, 0.307, 0.206 and 0.482, respectively. The CPI method with highest MCC
value performs best.

The wrapper-based feature selection method used in the previous study [9]
might overestimate the 5-CV accuracies on the training dataset and result in a
large decrease in prediction accuracies on the independent test dataset. The pro-
posed CPI method utilizing only a single feature with human interpretable rules
outperforms QSAR and TGx methods showing that chemical-protein interac-
tions are useful for predicting non-genotoxic hepatocarcinogenicity of chemicals.

4 Conclusions

Alternative methods for assessing non-genotoxic hepatocarcinogenicity of chem-
icals could save a lot of time and money and reduce the consumption of animals
for testing. The traditional QSAR model is not effective in discrimination of hep-
atocarcinogenicity of non-genotoxic chemicals [9] showing the complex nature of
non-genotoxic hepatocarcinogenicity involving many genes and proteins. In con-
trast to chemical structure-based QSAR models, TGx methods based on gene
expression-profiles can model the complex mechanism in the transcriptomics
level and perform better than the QSAR model [9].

The mechanism of action of non-genotoxic hepatocarcinogenicitymight involve
complex regulations of proteins and chemicals. Hence, the application of CPI data
for developing classifiers is expected to outperformQSAR andTGxmethods. This
study presents a novel CPI-based method and demonstrates the effectiveness of
biomarker identification and superior prediction performance. The utilization of
simple decision tree algorithms generates human-interpretable rules for better un-
derstanding of key proteins for non-genotoxic hepatocarcinogenicity.
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The identified proteins could serve as important biomarkers for further appli-
cations to the assessment of non-genotoxic hepatocarcinogenicity of chemicals.
Compared to TGx methods requiring assessment of 100 gene expression val-
ues and 5 to 28-day experiments, the identified single biomarker could be more
cost-effective and time-saving. Future works include the application of advanced
machine learning algorithms such as support vector machines and collection of
a larger dataset for improving prediction accuracy.
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Abstract. Minimotifs are short contiguous peptide sequences in proteins that
are known to have functions. There are many repositories for experimentally val-
idated minimotifs. MnM is one of them. Predicting minimotifs (in unknown se-
quences) is a challenging and interesting problem in biology. Minimotifs stored
in the MnM database range in length from 5 to 15. Any algorithm for predicting
minimotifs in an unknown query sequence is likely to have many false positives
owing to the short lengths of the motifs looked for. Our team has developed a
series of algorithms (called filters) in the past to reduce the false positives and
improve the prediction accuracy. All of these algorithms are based on sequence
information. In a recent paper we have demonstrated the power of structural in-
formation in characterizing motifs. In this paper we present an algorithm that
exploits structural information for reducing false positives in motifs prediction.
We test the validity of our algorithm using the minimotifs stored in the MnM
database. MnM is a web system for minimotif search that our team has built. It
houses more than 300,000 minimotifs. Our new algorithm is a learning algorithm
that will be trained in the first phase and in the second phase its accuracy will be
measured. For any input query protein sequence, MnM identifies a list of puta-
tive minimotifs in the query sequence. We currently employ a series of sequence
based algorithms to reduce the false positives in the predictions of MnM. For ev-
ery minimotif stored in MnM, we also store a number of attributes pertinent to
the motif. One such attribute is the source of the minimotif. The source is nothing
but the protein in which the minimotif is present. For the analysis of our new al-
gorithm we only employ those minimtofis that have multiple sources for positive
control. Random data is used as negative data. The basic idea of our algorithm
is the hypothesis that a putative minimotif is likely to be valid if its structure in
the query sequence is very similar to its structure in its source protein. Another
important feature of our algorithm is that it is specific to individual minimotifs.
In other words, a unique set of parameters is learnt for every minimotif. We feel
that this is a better approach than learning a common set of parameters for all the
minimotifs together. Our findings reveal that in most of the cases the occurrences
of the minimotifs in their source proteins are structurally similar. Also, typically,
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the occurrences of a minimotif in its source protein and a random protein are dis-
similar. Our experimental results show that the parameters learnt by our algorithm
can significantly reduce false positives.

1 Introduction

Genetic linkage analysis and other approaches have identified many mutations that are
associated with inherited human disease. Many of these mutations are in protein coding
regions. An effective strategy for treating many diseases is to identify a drug that inter-
feres with the protein that contains the mutation. Thus, it is important to understand the
function of the protein such that drugs can be designed to interfere with its function.
Analysis of protein and DNA sequence is an important approach for predicting protein
function, thus an important part of the pipeline in drug discovery.

Analysis of DNA and protein sequences often involves the identification of patterns.
As a new tool for predicting new causes of disease, our group has built and operates the
Minimotif Miner (MnM) website/database (Balla, et al. 2006, Rajasekaran, et al. 2009).
MnM can be used to predict potential minimotifs and thus new functions in proteins.
These are not domain motifs, but the short functional motif determinants for binding
other molecules, the signatures for regulatory posttranslational modifications on pro-
teins, and the short sequence elements that code for protein trafficking. These motifs are
readily cross-mapped with disease-associated single nucleotide polymorphisms (SNPs)
on the MnM website, thus any scientist can determine a motif that is introduced or
eliminated by a disease-associated mutation. One of the principle problems with this
approach is that the short motifs are not very complex and false-positives overwhelm
the true motifs. In fact all the motif search systems currently available (such as ELM
[12], Scansite [7], Prosite [13], Dilimot [14], etc.) suffer from this problem. If this ap-
proach were refined, then the approach may be very useful for identifying new drug
targets.

In our previous work we have proposed a series of algorithms (called filters) (see e.g.,
[8,9]) to reduce false positives. Examples include protein-protein interaction filter [8],
molecular function filter [9], cell function filter [9], etc. These algorithms are all based
on sequence information. As is well known, in addition to sequences, structures also
contain a rich amount of useful information. In this paper we propose an algorithm for
reducing false positives in the prediction of minimotifs. We have tested the accuracy of
this algorithm using the minimotifs in MnM. Our empirical tests indicate that the new
algorithm is very effective. An interesting feature of our algorithm is that its predictions
are specific to individual motifs.

The rest of this paper is organized as follows. In the next section we provide some
preliminaries on protein structures. Followed by this we describe our algorithm. Subse-
quently we provide the results and discussions.
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1.1 Some Preliminaries

Every Protein has its primary and secondary structures. Primary structure of a protein
is its sequence. The secondary structure consists of helices, sheets, etc. Some of the
proteins might have quaternary structures. Protein architecture is one of the most fun-
damental research topics because the 3D protein structure is responsible for the cell
functional properties in all living systems. Amino acid residues are the building blocks
of protein primary structure.

The secondary structure of a protein mainly contains the following informa-
tion: Helix, Sheet, Connectivity Details (disulfide bonds, prolines and other peptides
found in cis conformations, etc.), Crystallographic and Coordinate Transformation
information (transformation from orthogonal coordinates, transformations expressing
non-crystallographic symmetry, etc.), Coordinate Information (collection of atomic co-
ordinates), etc. There exist databases that contain the above information for a subset of
the known proteins. An example is the World Wide Protein Data Bank [2]. PIR [15],
developed by National Biomedical Research Foundation (NBRF), is one of the earli-
est primary protein databases. Later in 1988 Martinsried Institute for Protein sequences
collected the protein sequences from PIR and developed a web server. Swiss-prot [3] is
one of the well known primary protein databases maintained collaboratively by Swiss
Institute of Bioinformatics(SIB) and European Bioinformatics Institute(EBI)/European
Molecular Biology Laboratory(EMBL). Swiss-prot provides a lot of information
including functions of proteins, structures of their domains, post-translational modi-
fications information, etc. This database is a valuable resource produced by PIR from
sequences extracted from the Brookhaven Protein Data Bank (PDB). The significance
of this database is that it makes available the protein sequence information in the
PDB for keyword interrogation and for similarity searches. It includes bibliographic
references, MEDLINE cross-references active site, secondary structure and binding
site annotations. Also there are composite databases like Non-Redundant DataBase
(NRDB)by NCBI (National Center for Biotechnology Information)[5], BLAST (Basic
Local Alignment Search Tool) service[16], OWL from the UK EMBnet National Node
and the UCL Specialist Node[6] etc. Secondary databases are a consequence of anal-
ysis of the sequences of the primary databases, mainly based from Swiss-prot. Prosite
[13] is the first among all the secondary databases. This consists of entries about pro-
tein families, domains, functional sites, amino acid patterns, etc. This was introduced
by Swiss Institute of Bioinformatics and this is mainly based on Swiss-prot.

Along with the above databases a number of web based tools have been developed to
allow investigators to search for motifs in a protein query sequence. Scansite [7] is one
such tool which includes ten different programs. The Motif Scan ensemble of programs
computationally identifies all motifs within a given user-specified protein, while the
Database Search ensemble of programs finds all proteins in a protein database, such
as Swiss-prot, that match a given motif. One of the most successful tools in this area
of research is Minimotif Miner (MnM) that our team has built [8,9,10,11]. All of the
known motif search tools suffer from a high false positive rate especially when the
motif length is small. We offer a novel solution to this problem in this paper that utilizes
structural information.
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1.2 Implementation of the Algorithm

To implement the algorithm we make use of Worldwide Protein Data Bank (wwPDB).
PDB contains more than eighty thousand proteins and their structural information.
We downloaded the entire PDB from the following link: ftp://ftp.wwpdb.org/
pub/pdb/data/structures/divided/. A typical PDB file contains thousands
of lines like the ones shown in Figure 1.

Fig. 1. PDB Format

Figure 1 displays the information for the structure of 1C2N. The HEADER, TI-
TLE and AUTHORS records provide information about the investigators involved in
defining the structure and other information on the file. The SEQRES records provide
the sequences of the peptide chains. We are interested in the ATOM records. The first
amino acid GLY (Glycine, symbol G) spans 7 atoms (lines 1-7) and the rest of the atoms
correspond to amino acid ASP (Aspartic Acid, symbol D). The 3rd column in each line
indicates the type of the atom and the C-alpha atom is indicated by CA (highlighted).
The columns 7, 8, and 9 indicate the (X,Y,Z) coordinates of the atom. In the example

ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/
ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/
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of Figure 1, the CA atoms have the coordinates (-7.971, -11.573, -8.138) and (-11.025,
-11.993, -5.889), respectively.

The Minimotif Miner (MnM) database contains more than three hundred thousand
motifs. We only employ those motifs with multiple sources. Let Mi be such a minimotif
that occurs in the following set of source proteins: Si = {s1,s2,s3, . . . ,sn}. Note that,
if some motif Mi occurs as a substring in some protein s j it does not mean that s j is a
source of Mi. Whether this is the case or not can only be experimentally validated. On
the contrary, Mi may occur multiple times in its source protein s j. It is not mandatory
that all of these occurrences of Mi in s j are motifs. At least one of these occurrences of
Mi is a motif. So it is not enough for us to know only the source protein ID for a motif.
We have to know the location lk of motif Mi in source s j. The MnM database provides
all such information.

PDB is a much smaller and a slowly growing database than Swissprot/Uniprot. This
means that there are many motifs in MnM for which we do not have a valid PDB ID.
MnM uses a variety of IDs for proteins including Uniprot/Swissprot and Refseq. The
mapping between MnM and PDB is done using the mapping files obtained from the fol-
lowing link : http://www.bioinf.org.uk/pdbsprotec/mapping.txt.

We have implemented our algorithm using the Center of Gravity algorithm for com-
puting the distance between two structures [1]. The Center of Gravity algorithm is de-
scribed in the next subsection.

1.3 Center of Gravity Algorithm

This algorithm can be applied to compute the distance between two point sets in any n-
dimensional Euclidian space. We explain the algorithm for 3-dimensional case because
of simplicity and the scope of our work.
Input : This algorithm takes as input two sets of (x,y,z) coordinates. These are given by
S(x,y,z)i = {(xi
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i
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Output: Distance between S(x,y,z)i and S(x,y,z) j . We call it CoG distance.

Algorithm:

BEGIN
Compute (x,y,z) coordinates of the centroid of S(x,y,z)i .
This is given by (xi
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i
c,z

i
c);

Compute (x,y,z) coordinates of the centroid of S(x,y,z) j .
This is given by (x j
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j
c);
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CoG distance is given by DCoG
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END

http://www.bioinf.org.uk/pdbsprotec/mapping.txt
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2 Methods

Our algorithm is based on the following hypothesis: Positive occurrences of the same
motif in different sources are structurally similar. Also, the structure of a positive occur-
rence of a motif and any of its negative occurrences will be dissimilar. To compute the
distance between two structures we employ the center of gravity algorithm proposed in
[1].

Our algorithm is a learning algorithm that has to be trained with a set of positive
and negative examples in the first phase. We evaluate its accuracy in the second phase.
A special feature of our algorithm is that it learns the relevant parameters for each
individual motif separately. It turns out there is only one parameter that is learnt. This
parameter is nothing but a distance threshold between two structures. Let M be any
motif. If O1 and O2 are the structures corresponding to two positive occurrences of M,
then we expect the distance between O1 and O2 to be ’small’. On the other hand, if
O1 corresponds to a positive occurrence and O2 corresponds to a negative occurrence,
then we expect the distance between them to be ’large’. Since any learning algorithm
requires multiple positive and negative examples to learn from, and our algorithm is
motif-specific, we only employ those validated minimotifs in MnM that have multiple
sources. Each such source serves as a positive example. Finding negative examples for
any biological experiment is in general a challenge since we may not be able to be sure
that any data is negative. Like in our previous works on filters, in this paper also we
employ random data as negative data. As has been argued before, a random data has a
very high probability of being negative.

If M is a motif under concern and if its known sources are S1,S2, . . . ,Sn, we first get
all the occurrences of M in each of the sources. Let these occurrences be O1,O2, . . . ,Om.
Our hypothesis states that the Ois are structurally similar. Since a motif can occur more
than once in the same source, it is the case that m ≥ n. By structure information we
mean a point set in 3D. Specifically, by structure we mean the set of coordinates of
the alpha carbon atoms in the motif sequence. This information is available in the PDB
files. In this paper we consider only the alpha carbon atoms. Note that including other
atoms would only improve the prediction accuracy further. In the final version of the
paper we will include other atoms as well.

2.1 Steps in the Algorithm

1. Get a list of all the validated motifs in the MnM database that have multiple sources.
2. Let M be any motif whose sources are S1,S2, . . . ,Sq. For these source proteins Ref-

seq IDs are available in MnM.
3. We keep only those sources for which structure information is available in PDB.

This is done using a Refseq ID→ PDB ID mapping table.
4. For a given motif M, let its sources for which we are able to get PDB IDs be

S1,S2, . . . ,Sn. We pick one of these sources as the reference for our experiment and
call it Sre f . The others are used as positive controls. In other words, they serve as
positive examples in learning.

5. For each of the positive controls and the reference we apply the Center of Gravity
algorithm to perform the following tasks:
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a. Compute the Center of Gravity of the alpha carbon atoms in the motif sequence.
b. Compute the Euclidean distances between each of the alpha carbon atoms and

the center of gravity. Let these distances in sorted order be d1,d2, . . . ,dl , where
l is the length of the motif. Note that for every amino acid in the motif there
is a single alpha carbon atom. Also note that we will get one such sorted set
{d1,d2, . . . ,dl} for each of the positive controls.

c. Let the set of distances for the reference Sre f be given by {dre f
1 ,dre f

2 , . . . ,dre f
l }.

d. Calculate the Euclidean distance between {dre f
1 ,dre f

2 , . . . ,dre f
l } and

{d1,d2, . . . ,dl} for each positive control. Let the Euclidean distance for the
jth positive control be d j.

e. Take an average over all the d js. This is called the positive mean.
6. For a given motif M scan through the PDB to look for proteins which are not known

to be source proteins for M and in which M occurs as a substring. In other words,
exclude the set of positive controls and the reference from the set of all proteins
in PDB where M occurs as a substring. This new set is used as the set of negative
controls for the motif M. Let this set be {N1,N2, . . . ,Nt}.

7. For each of these negative controls and the reference protein we again apply the
Center of Gravity algorithm and compute a distance as in step 5. This will give us
the Euclidean distance between {dre f

1 ,dre f
2 , . . . ,dre f

l } and {d1,d2, . . . ,dl} for each
negative control. Let the Euclidean distance for the kth negative control be dk. We
get an average over all of these dks and obtain the negative mean.

8. We have to come up with a threshold using which we can separate the true positives
and false positives. One possibility is to use the negative mean as the threshold. In
this case we compute how many of the positive distances d js are above the negative
mean and how many of the negative distances dks are above the negative mean.

We expect that a large fraction of positive control distances will be below the negative
mean based on our hypothesis.

3 Results

We have tested our algorithm on a collection of almost 650 motifs (that have multiple
sources). We have performed two types of analyses. The first analysis is to test the
statistical significance of the results obtained using ROC plots. The second analysis
measures the accuracy of predictions.

3.1 ROC Plots

For each motif Mi we compute its negative mean D−
Mi

and use it as a threshold for
predictions. We calculate the number Count+Mi

of distance values below the threshold
value, from among the true positive occurrences. This count gives us the true positive
rate (TPR). We also calculate the number Count−Mi

of distance values below the same
threshold value from among the false positives (i.e., negative control). This number
will give us the false positive rate (FPR). According to our hypothesis there should be
a good structural similarity between occurrences of a motif in its source proteins. This
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means that the CoG distance between any two occurrences of the motif in its sources is
supposed to be smaller compared to the CoG distance of a true positive occurrence of
the motif and a false occurrence of the same motif. We plot FPR (as horizontal axis) vs
TPR (as vertical axis) curve and calculate the area under the curve (AUC) for various
threshold values. We do this for all the 650 motifs. Table 1 summarizes the outcomes
of our experiment.

Table 1. Areas Under the Curves

AreaUnderCurve(AUC) Number of Motifs (as a %)

> 90%and ≤ 100% 29.629

> 80%and ≤ 90% 7.407

> 70%and ≤ 80% 9.259

> 60%and ≤ 70% 7.407

> 50%and ≤ 60% 18.518

< 50% 27.777

Out of the 650 motifs (each having 67.85 positive controls on an average) used for
analysis, 216 have got an area under the curve (AUC) between 0.9 and 1. For almost
58 motifs the AUC is exactly 1. This demonstrates the power of our algorithm. The
idea is to use our new algorithm only for those motifs for which the AUC is at a level
comfortable to a biologist.

3.2 Accuracy Calculation

Accuracy is defined in the following equation:

Accuracy =

Number o f +ve distances below threshold + Number o f −ve distances above threshold
Total number o f distances

Table 2 shows number of motifs in different intervals of accuracy.
We have almost 147 motifs with a prediction accuracy between 90% and 100%. Here

again the filter corresponding to the new algorithm is to be used for only those motifs
for which the accuracy is at an acceptable level. Figure 2 displays the ROC plots for
a randomly chosen subset of the motifs. We show two ROC plots for each category of
Table 2.
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Table 2. Accuracy

Accuracy Number of Motifs (as a %)

> 90%and ≤ 100% 22.727

> 80%and ≤ 90% 9.09

> 70%and ≤ 80% 19.696

> 60%and ≤ 70% 15.151

> 50%and ≤ 60% 33.333

< 50% 0

Fig. 2. ROC plots

We plan to integrate the entire data and code as a part of the MnM web system.
We will associate a threshold and accuracy/AUC with each of the motifs in the MnM
database. Once a user enters a protein query Q, MnM reports the putative motifs in Q.
For any motif M if the query is one of the known sources then M is reported as a true
prediction with an accuracy of 100%. One the contrary, if Q is not one of the known
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sources of M, the filter checks to see if Q is present in PDB. If Q is found in PDB we
apply the center of gravity algorithm to compute the CoG distance DQ

M for M in Q. If
the difference between DQ

M and the CoG distance of M in the reference protein is below
the threshold set for M in the MnM database, then M is reported to be a true motif.
Accuracy of prediction and AUC value is also reported by MnM. If DQ

M is above the
threshold we will not report M as a putative motif.

4 Conclusion and Future Work

In this paper we have presented a novel structure based algorithm for reducing false
positives in the prediction of minimotifs. Our algorithm is a motif-specific learner. We
live in an era of personalized medicine and hence this approach is very relevant. The
statistical significance of the results obtained as well as the accuracy of the new algo-
rithm demonstrate that the new algorithm is indeed very effective. The outcomes of this
work points to the following directions for future work. We want to consider the coor-
dinate information of all the atoms in the amino acids. We want to see the best possible
set of features to come up with a better classification accuracy. As mentioned earlier
this could only improve the result. Also, we choose the positive reference arbitrarily.
We want to extend our the work by choosing each of the positive instances as a possible
reference. We will calculate the area under curve and accuracy for each one of them.
Finally we choose the best of these scores and the reference associated with it.

Acknowledgements. This work has been supported in part by the following grants:
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Abstract. The effects of residue substitution in protein can be dra-
matic and predicting its impact may benefit scientists greatly. Like in
many scientific domains there are various methods and tools available to
address the potential impact of a mutation on the structure of a protein.
The identification of these methods, their availability, the time needed
to gain enough familiarity with them and their interface, and the diffi-
culty of integrating their results in a global view where all view points
can be visualized often limit their use. In this paper, we present the
Structural Prediction for pRotein fOlding UTility System (SPROUTS)
workflow and describe our method for designing, documenting, and main-
taining the workflow. The focus of the workflow is the thermodynamic
contribution to stability, which can be considered as acceptable for small
proteins. It compiles the predictions from various sources calculating the
ΔΔG upon point mutation, together with a consensus from eight dis-
tinct algorithms, with a prediction of the mean number of interacting
residues during the process of folding, and a sub domain structural anal-
ysis into fragments that may potentially be considered as autonomous
folding units, i.e., with similar conformations alone and in the protein
body. The workflow is implemented and available online. We illustrate its
use with the analysis of the engrailed homeodomain (PDB code 1enh).

1 Introduction

As it has been reviewed by Tokuriki and Stawfik [42], amino acid substitution
is now considered as a major constraint on protein evolvability, while it was
previously admitted that most positions can tolerate drastic sequence changes,
provided the fold is conserved. Actually, mutations affect stability and stabil-
ity affects evolution. The level of deleterious mutations can be as high as one
third [42]. Therefore, the prediction of the effects of residue substitution can
be of great help in wet labs. In this paper, we focus only on the thermody-
namic contribution to stability, which can be considered as acceptable for small
proteins.

Potapov et al. [37] compared six different methods to predict the change in
protein stability on a set of mutations taken from the FOLDEF paper [13] and a
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second set from ProTherm [17]. The tested tools are: CC/PBSA [3], EGAD [35],
FoldX [41], Hunter [36], Imutant2 [4] and Rosetta [39]. The authors notice that
Rosetta is not trained for ΔΔG calculations, thus resulting in a low correlation
coefficient compared to EGAD, the best in their study. One of the drawbacks
of EGAD is the fact that they do not predict special mutations, namely Cys,
Gly and Pro, because the perturbation to the backbone is too large with these
residues. One can nevertheless notice that none of the methods is able to correctly
predict all the ΔΔGs for all mutations, but the general trend is correct on aver-
age. The average error is 1.72 kcal/mol, thus one can reasonably put a threshold
at 2 kcal/mol for the decision of hot spot positions. Khan and Vihinen [15] com-
pleted another study with: Automute [28], Cupsat [34], Dmutant [50], FoldX,
Multimutate [8], Mupro [5], Imutant versions 2 and 3 [4], and the set SCide [9],
SCpred [18] and SRide [27]. The latter three programs identify stability centers
rather than provide a general prediction of ΔΔG and so were excluded from
our selection. Khan and Vihinen also examined Automute [28] but could not
produce enough test data for statistical analysis.

Scientists interested in the prediction of the effects of residue mutations have
therefore to select a tool among many tools available to compute such prediction
[3,35,41,36,4,39,28,34,50,8,5,50,8,4,9,18,27], get familiar with its interface and
various built-in specifications and limitations (not always documented), run the
execution of the selected tool, and compare, often manually, the results with
results obtained with a similar tool or a tool implementing a complementary
concept. A benchmark study such as [37] may guide the selection of a tool, in
contrast we demonstrate the benefits of a workflow that orchestrates the best
tools, integrates the results and compiles a consensus into a single interface.

Workflows are used in business applications to assess, analyze, model, define
and implement business processes. A workflow automates the business proce-
dures where documents, information or tasks are passed between participants
according to a defined set of rules to support an overall goal. In the context of
scientific applications, a workflow approach may promote collaboration among
scientists, as well as the integration of scientific data and tools. Scientific work-
flows focus on the support of scientific experiments replay, design and data re-
trieval whereas Laboratory Information Management Systems (LIMS) support
the integration of different functionalities in a laboratory, such as sample track-
ing (invoicing/quoting), integrated bar-coding, instrument integration, personnel
and equipment management, etc.

The Structural Prediction for pRotein fOlding UTility System (SPROUTS)
workflow was developed to provide a global view of the potential impact of
mutations on proteins. It aims at integrating several concepts and implements
each of them with various methods and tools. In this paper we focus on the
predictions from eight resources calculating the ΔΔG upon point mutation and
a consensus method.

The paper is organized as follows. We first discuss work related to scientific
workflows in Section 2. The development of a scientific workflow requires ad-
dressing many challenges including design, implementation, maintenance, and
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performance. They are discussed in the context of the SPROUTS workflow in
Section 3 whereas our approach is described in Section 4. We present a use case
in Section 5. Future work is presented in Section 6.

2 Scientific Workflows

Scientific workflows often are executed manually. The reasons for manual exe-
cutions include, among others, the need to validate the results of intermediate
steps, the benefit of graphical interfaces of the tools they integrate, the better
knowledge of the resource functionalities by experiencing them manually, the
changes and updates made on resources that are more easily traceable when the
user is using them. These processes are very often poorly documented and sci-
entists experience difficulties in reproducing their datasets as the resources they
use may change over time (new database entries, data curation, new version of
a tool, etc.). This lack of documentation also affects the ability of integrating
and comparing datasets and analyses produced over time. Moreover, the manual
execution of a workflow is typically time and manpower consuming. Scripting
programming environments such as Perl and Python have also been proven in-
credibly successful to support the rapid development of workflows. Although this
automation saves time and manpower they typically fail to support the proper
design and documentation of the process. Lack of documentation not only affects
data integration and comparison but also workflow re-use and revision. Various
Web-based work benches offer an alternative solution to the problem of automa-
tion of orchestrated bioinformatics resources by providing unified access with a
simplified interface to multiple resources running on their servers. They include
PISE [23], wEMBOSS [40], and Mobyle [33] among many others.

Workflow systems are very successful among the biological community as they
provide scientists with the ability to express their scientific protocols as a se-
quence of connected steps [22]. They describe the scientific process from exper-
iment design, data capture, integration, processing, and analysis that leads to
scientific discovery. They typically express digital workflows and execute them
on platforms such as grids. The procedural support of a workflow resembles
the query-driven design of scientific problems and facilitates the expression of
scientific pipelines (as opposed to a database query). Kepler [25], which ex-
tends the Ptolemy II system [29,30], supports modular workflow design and task
scheduling. WOODSS [31] emphasize the support of several abstraction levels of
workflow design and facilitates workflow composition and reuse. Many scientific
workflow systems focus on execution in general [29,1] or in the Grid computing
environment. For example, the GriPhyN Project [12] is developing Grid tech-
nologies to collect and analyze distributed scientific and engineering datasets.
The Pegasus framework [7,26] uses the Chimera system [10] to describe ab-
stract workflows, and Condor DAGMan and schedulers [6] to generate concrete
workflows for execution on the Grid. In Taverna [14] a workflow is composed of
processors connected with data dependencies links. Its revised updated version
is now extensible and scalable that can be used from a workbench, a command
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line or remotely as a server [32]. One of the challenges not yet addressed by
these approaches is the legacy of scientific workflows. Indeed while they offer
support for the development of new workflows the automation, documentation,
and revision of legacy workflows such as SPROUTS remains a challenge.

3 The SPROUTS Workflow

The initial process was designed to populate the SPROUTS database [24] with
six tools: DFIRE version 2.0 [49], I-Mutant 2.04 and I-Mutant-DSSP 2.04 [4],
MUpro version 1.1 [5], PoPMuSiC [11], and a stability consensus method. The
development of the new revised workflow followed three successive revision steps:
automation of the database population process, update of the workflow with
more recent tools, and support of on-line submission of proteins.

To compose the revised SPROUTS workflow we concentrated on programs
that could be run on our servers, therefore excluding the Web submission sys-
tems, such as Eris [48] (the standalone version is commercial), Cupsat, Auto-
mute, in order to avoid manipulation of various formats when new releases of
the programs are proposed. We had intended to include CUPSAT, however, we
were unable to contact the authors due to issues with their website and contact
addresses. We performed trial use of MultiMutate but found it incompatible (un-
stable) with the existing (Ubuntu based) server that the workflow must execute
on. In addition to the tools analyzed by Khan and Vihinen, we also examined
SDM [46] and Pro-Maya [44] but they are not currently available as a local exe-
cutable or a Web service and so cannot be integrated with the existing workflow.

The new revised SPROUTS workflow processes data for DFIRE 1.1 (Dmu-
tant), FoldX 3.0 beta 5.1, I-Mutant 2.0 sequence/structure modes, I-Mutant 3.0
sequence/structure modes, and MUpro. Our database also contains legacy data
from PoPMuSiC [19], these data were part of the original database. Because no
local executable version of this tool was available, we were unable to include it
in our workflow. These represent the most recent versions of the respective tools
with one exception: DFIRE 2.1 [47]. This most recent version of DFIRE operates
directly on a (possibly) mutated PDB structure. Because our current workflow
does not support dependencies between tools, we were unable to produce the
necessary mutant PDBs to use DFIRE 2.1. MuD [45] an interactive Web server
for the prediction of mutations from a structure based on a machine learning
algorithm was published recently. We have not integrated this tool yet because it
does not provide a ΔΔG calculation but rather an estimate of function conserva-
tion. The revision of the SPROUTS workflow with MuD would require changing
the consensus method in such a way the ΔΔG calculation of the other tools can
be combined with an estimate of the function conservation.

The SPROUTS workflow1 populates the SPROUTS database [24]. Submitting
a new protein to the SPROUTS system executes the whole SPROUTS workflow
and uploads the results into the database. Because the execution of the workflow

1 The SPROUTS workflow is available online at
http://bioinformatics.engineering.asu.edu/sprouts.
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takes time, a link to the the database entry is provided to the user to retrieve the
results from the database after completion of the workflow. The user retrieves the
information pertaining to one protein at a time through its PDB ID. The user
may then select a single tool or access the results of all the tools. A specific residue
and mutation may also be selected (by default every residue and every mutation
will be returned). The residue number may be specified (note that SPROUTS
numbering does not follow PDB numbering: in case the user specifies an amino
acid and a number, SPROUTS will check if this is the right amino acid at this
position). By default, no residue is specified and so all residues will be considered.
Another parameter offers the possibility to visualize only the mutations which
increase the stability or at the opposite which decrease the stability (the default
mode is to return all results. The last parameter offers the possibility to limit
the number of results displayed on the result page. By default, the value is set
to 190 lines which correspond to the results of all the 19 possible mutations for
2 residues and for all the tools. Even if the option is available, it is strongly
advised not to select the ”all” option especially for long proteins.

4 Developing the SPROUTS Workflow

Our method for workflow development involves the characterization of the work-
flow at four levels: semantic, implementation, execution, and data. To document
the workflow we follow the approach developed with ProtocolDB where work-
flows are first expressed in terms of a domain ontology where each task expresses
a specific aim [16]. Domain ontologies2 can be used to describe the concepts and
relationships of a discipline as well as to document the tools and methods [20].
A design protocol (or workflow) is defined top-down from a conceptual design
task that describes the workflow as a whole. The conceptual design is defined
in terms of input and output parameters which are expressed as complex con-
ceptual types (collections of concept variables). Each design task may be split
either sequentially (with the ⊗ operator) or in parallel (with the ⊕ operator)
into two design tasks. The semantic characterization of the workflow enables
reasoning on workflows at a conceptual level. Semantic equivalence of workflow
implementations (mapped to the same semantic representation) can be used to
validate data integration, compare implementations performances and support
workflow optimization [21].

The concepts involved in the SPROUTS workflow include Protein, speci-
fied with its name and PDB code, sequence, structure, and secondary structure,
Residue, specified by its name and location on the sequence, and the value of
Gibbs free energy as an approximation to characterize the stability of a given
structure. See [43] for an ontology devoted to structural bioinformatics. We con-
sider the difference of energy for the wild type of the protein ΔGwild and for the
mutant ΔGmutant. We define3 the difference as ΔΔG = ΔGmutant −ΔGwild in

2 See The Open Biological and Biomedical Ontologies at
http://www.obofoundry.org/ for a list of ontologies for various scientific domains.

3 Note that different stability prediction methods use different definitions.
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Fig. 1. SPROUTS Implementation Workflow

kcal/mol. At this level of definition, the workflow consists of a single task that
links the concept Protein to a score that expresses the impact of a mutation on
its stability for each residue. The revisions of the workflow discussed in Section 3
do not impact the semantics of SPROUTS. The phase of automating the legacy
population workflow does not change its semantics nor does updating the tools
the workflow is composed of. Indeed, the design workflow captures the semantic
aim of the workflow which is not affected by the proposed revision.

The second development phase consists of the specification of the resources
that are implementing each of the design tasks. Each design task is mapped to
a implementation protocol (or workflow) defined as follows. An implementation
protocol is a graph composed of connected scientific resources (database queries
or tools) whose inputs and outputs are data types. A single bioinformatics service
is an implementation protocol. Complex implementation protocols are composed
of scientific resources connected with the same two binary operators ⊕ and ⊗
used to express design protocols. Here, the design task can be implemented by
many existing resources as discussed in Section 1. Because we chose to exploit
multiple stability prediction methods, and integrate their results in a consensus
step, the single design task will be first mapped to two successive implementation
steps connected with the ⊗ operator. The second implementation step will be
specified with the consensus method. The first implementation step will be split
with the parallel operator ⊕. The first of the two steps will be specified with
the first stability prediction tool DFIRE 1.1 when the second one will be split
into two parallel steps. The first of the two will be assigned to FoldX 3.0 beta
5.1 whereas the the second one will be, again, split into two parallel steps, and
so on.
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The resulting implementation workflow is expressed by

(S1 ⊕ (S2 ⊕ (S3 ⊕ (S4 ⊕ (S5 ⊕ (S6 ⊕ S7))))))) ⊗ Consensus

where S1, . . . S7 denote respectively DFIRE 1.1, FoldX 3.0 beta 5.1, I-Mutant 2.0
sequence, I-Mutant 2.0 structure, I-Mutant 3.0 sequence, I-Mutant 3.0 structure,
and MUpro.

The input (resp. output) of the implementation workflow consists of the input
(resp. output) datatype. The input of the implementation workflow describes
the concept Protein as follows. It consists of a 4-character code (that may be
a PDB ID), the protein primary structure or sequence in FASTA format, the
description of the secondary structure in DSSP format, and the 3-D structure in
PDB format. The output consists of the protein sequence (list of residues) and
the stability scores (for each residue, 8 scores are computed: one for each tool
and the consensus score). The SPROUTS implementation workflow illustrated
in Figure 1 can be represented with a binary tree.

The third level of workflow characterization is the execution plan. This level
requires the specification of the programmatic environment (e.g., Taverna, Ke-
pler, or scripting language such as Python, Perl). The first step of the SPROUTS
workflow revision (automation of the database population process) did not af-
fect the first two layers of representation. The revision consisted in replacing
the manual execution by a Python program. Although the orchestration of the
steps that were initially used to populate the database into a single script was
not likely to produce a well designed workflow with suitable performance and
adaptability, it was the chosen path because it was also the one less likely to im-
pact the availability of the SPROUTS database. The second step of the revision
(workflow update with more recent tools) had an impact on both the imple-
mentation layer as new tools were used and the execution layer as the overall
structure of the workflow had also changed. The main challenges of SPROUTS
development have been importing applications and tools which lack documenta-
tion, including the specification of the limitations (often implicit) of their input,
a description of their computational time (performance) and execution failures.
Moreover, none of the tools exploited in the workflow offers a description of its
interface expressed in a machine readable format such as Web Service which
limits the ability of implementing and executing the workflow on a system such
as Taverna.

5 Use Case

The SPROUTS workflow is implemented and available online. Once the protein
has been submitted to the SPROUTS workflow and the execution has completed,
the results are stored in the SPROUTS database and can be accessed with the
query form. All stability prediction tools of the workflow are selected by default.

The results for 1enh are shown in the table (left of Figure 2). In the 2D mode,
the results of all the tools but FoldX 3 are displayed (right). The consensus graph
is currently created by taking the mean of the available data. Due to evolution,
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Fig. 2. Engrailed homeodomain (PDB code 1enh)

the number of stabilizing mutations is smaller than destabilizing ones. One must
mention that a stabilizing mutation is not necessarily related to an improved
efficiency of the mutated protein, as far as function is concerned. Sometimes, a
more stable structure results in an increased rigidity, while the function requires a
certain level of flexibility. This is the case for instance with enzyme catalysis [46].
Therefore, it seems reasonable to place a threshold of 2 kcal/mol in either way of
ΔΔG (stabilizing or destabilizing) in order to claim to a putative malfunction.
Mutations in conserved positions usually cause large stability decreases. The 3D
mode (bottom right) displays the protein structure retrieved from PDB.

The engrailed homeodomain (PDB code 1enh) is a small single domain (54
residues), monomeric, composed of three helices, and without any disulfide bridge.
It is considered as a model for the hierarchic type of folding, and one Leucine, at
position 14, is deeply buried in the core of the structure, stabilized by hydropho-
bic interactions with amino acids from the two other helices. This particular
residue has been mutated by the group of Fersht [38] and the NMR structure
determined (PDB code 1ztr). The mutated form is no more a globular protein,
since the accessible surface area is increased by 50% due to mutation. Neverthe-
less, most of the local stability remains since the three helices are still present.

When comparing the 1enh and 1ztr 2D plots, the differences are not sig-
nificant, unless some N and Cter effects due to the non symmetrical process
of smoothing. But introducing the structure in the algorithm has an effect in
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I-Mutant. Although the general shape is similar between 1enh and 1ztr for I-
Mutant 2.0 with structure, the highest divergence occurs around position 14.
Such a peak does not appear in the two algorithms considering only the se-
quence. It pleads in favor of the proof of a better prediction with structures
included, specially when single mutations are concerned. When comparing now
the two versions of I-Mutant (2.0 vs 3.0) the high peak of instability is conserved
for 1enh around position 8. But the peak previously discussed around 15 in I-
Mutant 2.0 almost vanishes with I-Mutant 3.0. Nevertheless, although the peak
decreases in the middle of the first helix, the global gross features of the shape
of the curves are looking like for the wild type structure. This is not the case
for the mutated structure, and one may argue that the underlying principles
ruling I-Mutant 3.0 are scaled on compact globular proteins, and do not apply
to proteins looking like NUP (Natively Unfolded Protein).

6 Conclusion and Future Work

The workflow is under significant revision and extension with new functionali-
ties and improved interface to come. Once the revision is completed, a mirror
of SPROUTS 2.0 will be deployed in the Ressource Parisienne en Bioinforma-
tique Structurale (RPBS) [2]. The current version of the SPROUTS workflow is
available at http://bioinformatics.engineering.asu.edu/springs/Sprouts/.
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Abstract. Viral haplotype estimation in a population is an important
problem in virology. Viruses undergo a high number of mutations and
recombinations during replication for their survival in host cells and exist
as a population of closely related genetic variants. Due to this, estimating
the number of haplotypes and their relative frequencies in the population
becomes a challenging task. The usage of a sequenced reference genome
has its limitations due to the high mutational rates in viruses. We propose
a method for estimating viral haplotypes based only on the counts of k-
mers present in the viral population without using the reference genome.
We compute k-mer pairs that are related to each other by one mutation,
and compute a minimal set of viral haplotypes that explain the whole
population based on these k-mer pairs. We compare our method to the
software ShoRAH (which uses a reference genome) on simulated dataset
and obtained comparable results, even without using a reference genome.

Keywords: viral haplotype estimation, structural variants detection,
k-mer counting, variant detection, greedy generating set algorithm.

1 Introduction

Viruses only replicate within living cells of a host-organism to form a viral popu-
lation. The within-host virus population consists of a collection of closely related
genetic variants, known as quasi species, wherein the genetic variants occur with
different relative frequencies. The genetic variability of these haplotypes is due
to the high rate of mutations, resulting in insertions, deletions and substitutions,
in the genomes of existing viruses.

Viral population reconstruction involves identification of the genetic variants
of the virus present in a viral population. The high genetic diversity of a pathogen
population has important consequences in disease progression. It allows the virus
to evade host defenses and confounds preventative and therapeutic interventions.
The toll of viral evolution on prevention effort is exemplified by the influenza
virus; new vaccines must be formulated annually to keep abreast of the season-
ally circulating strains of this virus. It is important to reconstruct the different
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haplotypes and their relative frequencies in a viral population to understand
pathogenesis, for drug design and to develop effective public health intervention
strategies. Because of their high replication rates, simple genomes, large pop-
ulation sizes, and high mutation and recombination rates, viruses make good
models for studying and testing the evolutionary theory.

Next Generation Sequencing (NGS) technologies have opened up an array of
possibilities for characterization of genetic diversity in viral populations. NGS
technologies generate a large number of genomic sequences (also known as reads)
efficiently and economically. Typically, one obtains multiple random copies of the
genomic sequences covering all parts of the viral genomes. The high coverage and
enormous sequence data output by NGS technologies has the potential to resolve
the genetic variation within the virus sample and thereby infer the population
dynamics and structure[9].

2 Related Work

A number of methods have been published for viral population reconstruction
[1,10,11]. A survey of viral haplotype estimation methods can be found in [2].
Haplotype estimation (viral population reconstruction) can be performed locally
along segments of the viral genome or globally across the whole genome. The
local haplotype estimation is based on first aligning the reads to a reference
genome and then estimating the number of haplotypes. The global estimation of
the haplotypes is based on a graph theoretic solution, wherein a set of haplotypes
were obtained by calculating a minimal coverage set of paths over a graph of
aligned reads [8,18,16]. Probabilistic methods for estimating the haplotypes have
been explored in [14,18]. The frequency of individual haplotypes can be computed
using an expectation-maximization (EM) algorithm [14,8,18,16].

However, all of the methods rely on the existence of an assembled reference
genome. This limits their use to well studied viruses. An imperfect alignment to
an inaccurate reference genome due to sequencing errors and high mutational
rates in viruses further restricts their usage. In this paper, we propose a method
for reconstructing viral haplotypes in a population based on counting the k-mers
observed in the viral population without using a reference genome.

Our method is based on the fact that within a population, the viral haplotypes
occur in an equilibrium distribution of closely related haplotypes [7]. The viral
haplotypes can be changed from one to another by making mutational changes
in either of the viral haplotypes. Thus, if the k-mers obtained from a read sam-
pled from one haplotype, is changed by a few mutations (insertion, deletion or
substitution) to another k-mer observed in the viral population, then the two
k-mers capture a genetic variant of the population. We define these two k-mers
as a k-mer pair. This assumes that a k-mer pair maps uniquely in the genomic
sequence, and few changes does not leads to the k-mers in a pair mapping to
a different location of the genome. This is true if the value of k is large and
thus one can determine such mutationally related k-mer pairs. As the number of
sampled reads (or k-mers) follows a Poisson distribution [12], we estimate a set
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of occurrences which explain all the observed k-mer pairs. We finally estimate a
minimal set of haplotypes that explains all the mutationally related k-mer pairs
based on a greedy heuristic algorithm proposed in [13]. The method does not
depend on the presence of a sequenced reference genome of the viral population,
and only requires the counts of individual k-mers present in the viral population.
This gives a unique advantage to our method, as it can predict the haplotypes
based on intrinsic information present in the viral population.

We evaluate our method over viral populations of varying diversity and pop-
ulation depths and compare our results to that obtained from the software
ShoRAH [17]. The number of predicted haplotypes and their frequencies by our
method matches closely with those obtained from ShoRAH. ShoRAH provides
a large number of false positive viral haplotypes, while our method provides a
minimal set that explains all the reads.

The paper is organized as follows: Section 3 describes the methodology for
computing the viral haplotypes in the population based on k-mer counting. We
define the meaning of mutationally related k-mer pairs and describe an algorithm
for inferring their occurrence values based on a mixture of Poisson distributions.
Section 4 describes the results obtained from simulated data from HIV samples.
We conclude the paper with a summary and discussion of future extensions of
this work in Section 5.

3 Methods

Let the viral haplotypes in a population be denoted as the set VP,

VP = {H1,H2, ...,HK}, (1)

whereK is the number of haplotypes in the population. For simplicity, we assume
that each haplotype Hi is of length G, that is,

Hi = {hi1hi2...hiG}, (2)

where hij ∈ {A,G,C, T }. The haplotype Hi occurs with relative frequency of αi

in the population, such that
K∑
i=1

αi = 1. (3)

We denote the set of N reads obtained from the population by R = {R1, R2,
..., RN}, where each read is of length L. Typically, the size of the genome G is
much larger than the read length L, which depends on the sequencing technology
used for obtaining the samples. The reads may contain sequencing errors in the
form of substitutions, deletions, and insertions depending on the sequencing
technology. Also the read length L can be an average length across all the reads.

Our task is to estimate the number of haplotypes K, their genomic sequences
(set VP), and their relative frequencies (αi) based on the read set R.

We estimate the number of haplotypes and their genomic sequences based on
counting k-mers present in the read set R. We use k-mers as they provide a
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better resolution as compared to the reads to find mutations amongst the viral
haplotypes. The k-mers are classified into three groups based on their relative
counts as erroneous, possible variants, and dominant haplotype k-mers. As the
reads across the genome follow a Poisson distribution based on the coverage
depth, we model the possible variant and dominant haplotype groups as a mix-
ture of Poisson distributions and estimate their means. We also compute the
relationship between individual k-mers in each group to find pairs of related k-
mers. We estimate a minimal set of viral haplotypes from the estimated means
based on a greedy generating set algorithm [6].

Our method is related to an algorithm, previously proposed by us, MutantBin
[13], wherein we compute the means of the Poisson curves based on a variable
bandwidth mean-shift algorithm. In this paper, we compute the means of the
Poisson curves based on the relationship of k-mers to each other and the estimate
the Poisson means from the counts of the related k-mer pairs. We implement
the greedy generating set algorithm for estimating the minimal set of haplotypes
from the means of the related k-mers.

We next describe our method and its assumptions in detail . We describe an
algorithm to compute the means of the Poisson mixtures based on the related
k-mers, and then describe the algorithm for computing the generating set based
on the estimated means.

3.1 Assumptions and Definitions

We assume haplotypes in the viral population are closely related to each other.
In other words, a haplotype Hi can be transformed to haplotype Hj by chang-
ing certain bases, {i1, i2, ..., ip} in haplotype Hi. Thus, if we change the bases
{hii1 , hii2 , ..hiip} in Hi to a value from the set M = {A,G,C, T,−}, we will
obtain the haplotype Hj. The number p for any two haplotypes in the viral pop-
ulation is small, but can vary from different populations and to the variants being
considered. The − in the set M denotes a gap or removal of a nucleotide from a
haplotype Hi when transforming it into another haplotype Hj. This assumption
is valid, as the different viral haplotypes are obtained from high mutational rate
during replication of viruses in the population [4].

For example, consider a viral population containing three haplotypes as de-
picted in Figure 1. The differences in the haplotypes are highlighted by their
colors, wherein haplotype A has a “G” at position 5, while haplotypes B and C
have a “T” nucleotide. Also haplotype A differs from haplotype B by a “A” at
position 14, and a “G” at position 23. Thus, changing these three bases would
transform the haplotype A to haplotype B.

A k-mer is a sequence of consecutive k-bases in a read obtained from the read
set R. The read set R contains multiple reads from all parts of the haplotype
set V, therefore, the k-mers obtained from the reads will also span all parts of
the haplotype set. A k-mer corresponds to a unique region in a haplotype Hi

as long as the value of k is sufficiently large and there are no repeat regions
in the genome. Indeed, one does not observe repeats in viruses, and choosing a
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AGTAG GTGCC  GTAGC  GTACC  GTCAG 

AGTAT GTGCC  GTAAC  GTACC  GTGAG  

AGTAT GTGCC  GTAGC  GTACC  GTCAG 

Haplotype A 

Haplotype B 

Haplotype C 

12345 67890 12345 67890 12345 

Fig. 1. An example viral population containing 3 different haplotypes A,B and C,
where the differences in them are colored in red compared to the others

large value of k (> 20 bp) ensures unique mapping of k-mers to a region of the
haplotype.

The number of times a k-mer is observed corresponds to the coverage of the
viral haplotype constituting it. This is because the number of times a position
i in the genome Hi is sampled follows a Poisson distribution with mean value
equal to the coverage of the genome [12]. Thus, a k-mer sampled from a region
in the haplotypes Hi which is common to all other haplotypes Hj in the viral
population set V will be sampled from a Poisson distribution with mean equal
to the sum of abundances (or coverages) of each population.

Interestingly, if the k-mer corresponding to the unique region in haplotype Hp

is transformed to the k-mer that is common amongst all the other haplotypes
{Hj : j �= i}, then the sum of the abundances of these two k-mers will also be
sampled from a Poisson distribution of mean equal to the sum of abundances
of each population. However, a k-mer corresponding to a unique region of a
particular haplotype, say Hp, would occur from a Poisson distribution with
mean value of abundance of that haplotype. Also, if a k-mer contains an error
from sequencing or contamination of the sample, the k-mer will be observed a
few number of times in the viral population.

3.2 Computation of Related k-mer Pairs and Estimation of Poisson
Parameters

We can estimate a minimum number of viral haplotypes that are required to ex-
plain all the k-mers observed in the viral population. The histogram of observed
k-mers can be plotted to visualize the mixture of Poisson distributions observed
in the population. An example of such a histogram is shown in Figure 2, wherein
the histogram is obtained by counting 21-mers from a simulated viral population
containing 3 different haplotypes.

The set of k-mers observed in a viral population can also be classified into
three distinct groups based on their counts of occurrence. The k-mers with very
low counts correspond to sequencing errors, and constitute the first group (Group
A). We assume that Group A does not contain k-mers corresponding to even
the lowest abundant viral haplotype in the population. These k-mers occur on
the left side of the k-mer histogram. We consider all k-mers that occur below
a certain threshold of occurrence as errors. At the other extreme, the k-mers
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Fig. 2. Abundance plot of 21-mers obtained from a simulated viral population con-
taining 3 haplotypes of hiv-1 glycoprotein (env) gene

that are observed in all haplotypes in the population, will have a high coverage,
and occur on the right end of the histogram. These constitute the second group
of k-mers (Group C), and provide information about the coverage had there
been only a single viral haplotype in the population. The k-mers observed with
intermediate counts constitute the last group (Group B), and correspond to
regions of mutations amongst the viral haplotypes. The boundary between Group
B and C can be determined empirically, based on the fact that k-mers in group
B can be transformed into k-mers of Group C.

A k-mer present in one group can be transformed into a k-mer of the other
group based on one or two mutations. This is easy to see for k-mers belonging
in Group A. A change in one nucleotide of a k-mer in Group A might match it
to a variant region (Group B) in the viral haplotype or to the common region
amongst all the haplotypes (Group C). Similarly, the k-mers in group B can be
transformed to k-mers in group C by mutational changes.

We model the distribution of k-mers as a mixture of Poisson distributions. An
important first step for that is inferring the number of Poisson distributions that
represent all the error-free k-mers in the population. One can infer the number
of Poisson distributions present in groups B and C of k-mers by observing the
occurrences of pairs of related k-mers. These pairs of k-mers capture the local
viral haplotype variants present in the population.

The algorithm for estimating the Poisson distributions parameters is described
in Algorithm 1. The basic idea is that the number of Poisson distributions present
is bounded by the pairs of related k-mers observed in the population, and that
all occurrence values within two standard deviations of the mean of a Poisson
distribution belong to that particular distribution. This is because the probabil-
ity of a value to lie within two standard deviations of the mean is close to one
for large range of mean values.

The computation of the k-mer counts from the reads is linear in the number
of reads, while finding the pairs of related k-mers in step 2 has time complexity
O(|R|k). The computation of Poisson means is linear in the number of k-mers,
making the overall complexity of the algorithm to be O(|R|k).
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Algorithm 1. Algorithm for inferring number of Poisson distribution mixtures
in the k-mer counting

Input: R = {Ri}Ni=1, value k to be used for k-mer counting
Output: A number of Poisson distribution means representing all pairs of related
k-mers

1. Compute counts of all k-mers present in the read set R. Denote the set of k-mers
as V, and count of a k-mer v as C(v).

2. For each v ∈ V
(a) Transform v by single nucleotide changes to another k-mer, u ∈ V, such that

C(u) > C(v). Associate all such k-mers u to v. Denote the set as Sv.
(b) Store the counts of the k-mers in set Sv to a collective set B.

3. Estimation of means of Poisson distributions from the set B

Sort the values in set B

P= (); # Set of Poisson Means

for b in set B

b_found = 0

foreach p in P

if( abs(b-p) < 2 sqrt(p) )

b_found = 1

if(b_found ==0 )

P = [P;b]

return P

3.3 Greedy Algorithm for Minimal Haplotype set Estimation

Once we obtain the set of means corresponding to the various local haplotype
variants we can infer the haplotypes globally based on a greedy heuristic as pro-
posed in [13]. The greedy approach estimates the minimal number of haplotypes
explaining the set of Poisson means by formulating the problem as a minimal
generating set problem with no repeats. This generating set problem was proven
to be NP complete [6].

The generating set algorithm is described in Algorithm 2. The algorithm takes
as input a set of numbers corresponding to the means of the observed Poisson
distributions and outputs a minimal set of numbers corresponding to the fre-
quencies of the viral haplotypes. The input numbers can be explained by sums
of combinations of output numbers. Here the set P denotes the set of means ob-
tained from Algorithm 1, while the set X denotes the set of output frequencies
for the viral haplotypes. The algorithm starts with an empty set for X . Next
it traverses through the set P in increasing order, and adds numbers to the set
X only if the current number in P cannot be explained by sums of numbers
present in set X . The aim is that the number added in X should explain as
many possible elements in P as possible. The difference set D makes sure that
we do not remove the most common difference from the set P .
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Algorithm 2. Algorithm for computing the generating set (minimal set of ex-
plaining viral haplotypes)

Input: P = {p1, p2, ..., pn} set of means from Algorithm 1
Output: X = {x1, x2, .., xK} set of abundances of the K haplotypes in the population

1. Initialize set X = {φ}, T ← P
2. Create difference set D = {All differences in set P}
3. While the set T �= φ

(a) Add the minimum value of set T to X and remove it from T
(b) For all subsets of X, compute the sum of values in the subset and see if it

belongs in the set T . If it does, and the sum is not a mode of the difference
set D, then remove it from set T .

4. Return set X

4 Results

We evaluate our method on a number of simulated datasets of varying levels of
diversity, both in the number of haplotypes present and their relative similarity.
The similarity between two viral haplotypes is defined based on the pairwise
comparison of the haplotypes [13]. The simulated datasets were generated from
HIV samples. The viral population consisted of haplotypes of 2000 bp fragment
of HIV-1 genome from the 5’ end, which were obtained by using the population
sampler toolkit in sequencing simulation software Metasim [15].

We simulated four datasets from the HIV-1 genome with varying degrees of
diversities. The diversity of a sample is defined as percentage of bases that are
mutations amongst the population. Three of these four datasets contain two viral
haplotypes with different relative frequencies, while one of them contains three
viral haplotypes with relative frequencies of 1:3:5. The details of the simulated
datasets are listed in Table 1. Datasets 1-3 contain populations of lengths (1000,
2000 and 4000 bps) and diversities varying between 0.2% to 10% in steps of 0.2%
(overall 150 populations each). Dataset 4 contains populations of length 1000bp
and diversity varying between 0.2% to 5% in steps of 0.2% (25 populations). The
first three datasets were generated to evaluate the performance of our algorithm
in reproducing the relative frequencies of the viral haplotypes when the dominant
virus is more prevalent, while the fourth evaluates the ability of our algorithm
to resolve more than two viral haplotypes in a population.

We simulated 454-Roche sequencing technology reads for each of the viral pop-
ulations using the simulation software Metasim [15]. All the simulation settings
except the insert size were kept at default values. We simulated 10,000 to 50,000
reads for each of the four datasets. We conduct experiments with different values
of k (13,15,17,21,23,25). We set the value of k for computing k-mer counts to
21 as it provides the best results based on F-score values. The value of k should
be large enough so that every k-mer maps uniquely to a reference genome of
the virus. We next compute the pairs of mutationally related k-mers. Such k-
mer pairs are computed by finding all one-two mutation versions of a k-mer and
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Table 1. Statistics of the simulated datasets used for evaluation of our method. The
diversity is computed as an average of all pairs pairwise distances of the haplotypes in
the population [13].

Data source Diversity in the sample Number of haplotypes Relative frequencies

1. HIV-1 2000bp 0.2% to 10% 2 1:6
2. HIV-1 2000bp 0.2% to 10% 2 4:6
3. HIV-1 2000bp 0.2% to 10% 2 1:9
4. HIV-1 2000bp 0.2% to 5% 3 1:3:5

associating it to the k-mer which has the highest occurrence in the popula-
tion. Next we estimate the means of mixture of Poisson distributions based on
Algorithm 1. We use a threshold occurrence of 5, below which every k-mer is
considered an error. This value is chosen to be the first minimum in the abun-
dance plot. We estimate the number of viral haplotypes in the population and
their frequencies using the greedy algorithm proposed in [13].

We assign k-mers to different viral haplotypes based on their pairings to the
related k-mers. Two k-mers in a pair end up in different viral haplotypes. The
k-mers which are present in all the viral haplotypes are assigned to each of the
viral haplotypes. We compute the precision and recall values for the assignment
of k-mers into different haplotypes. The precision is defined as the ratio of the
number of correctly assigned k-mers to the total number of k-mers assigned to a
viral haplotype. Recall is defined as the ratio of the number of correctly assigned
k-mers to the number of true k-mers present in a viral haplotype.

Figure 3 summarizes the precision and recall values for viral populations for
datasets 1-3. We observe high recall and precision values for populations with
small diversity while it is difficult to decipher populations with higher diversity
using this particular method. These results are as expected as the diversity in
population increases, the number of mutations per k-mer required for computing
the k-mer pairs also increases. Thus, we observe that for the particular value of k
(21) we are able to resolve low diversity populations quite accurately. We observe
that the precision and recall values for dataset 3 have a high variance and are
in general low. This is because the minimum number of haplotypes predicted by
our algorithm for this dataset was 3 as compared to 2 present in the data. This
led to consistent low values for precision and recall for dataset 3.

We also compare the relative frequencies of the haplotypes predicted by our
method to those predicted by the software ShoRAH. Table 2 shows the com-
parison results for datasets 1-3. For datasets 1 and 2, our method predicts a
minimum two haplotypes for populations of all diversities, and predicts 3 hap-
lotypes for 45 out of 150 datasets. Thus our generating set algorithm provides
correct solution in 70% of the datasets. ShoRAH on the other hand predicts
more than two haplotypes for all the three datasets. There are a large number
of false positives predicted by ShoRAH. For comparison purposes, we report
the number of cases (numbers inside brackets) in which the top two predicted
haplotypes from ShoRAH explain more than 95 % of the reads. Our method
outperfoms ShoRAH in two out of three datasets.
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Fig. 3. Precision and recall values for datasets 1-3. Each data point contains the pre-
cision and recall values computed over 30 populations, varying within the percentage
indicated on the x-axis.

Dataset 4 contains 3 viral haplotypes with varying degrees of diversity. Our
method reproduces the relative frequencies of the haplotypes accurately in 22
out of 25 runs.

Table 2. Comparison of relative frequencies of populations as predicted by K-mer
pairing and ShoRAH. The number in brackets indicate the number of populations for
which the predictions contain more than 95% of the reads.

Data sets K-mer pairing ShoRAH

Data 1 (1:6) 1:5.52 (150/150) 1:5.77 (123/150)
Data 2 (4:6) 4:7.86 (150/150) 4:6.04 (123/150)
Data 3 (1:9) 1:7.01 (105/150) 1:9 (118/150)

5 Conclusion and Future Work

We have proposed a method for predicting the viral haplotypes in a population
without using the reference genome. We use the information from the counts
of k-mers observed in the population for inferring the viral haplotypes. Our
method improves haplotype identification compared to the software ShoRAH
even without using the reference genome. It provides a minimal set of haplotypes
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that explains all the reads in the population. We have not performed assembly
of the k-mers that are clustered together in this paper. The major challenge in
assembly of viral haplotypes is resolving the k-mers into individual haplotypes.
As our method provides clustering of k-mers into individual haplotypes, one
can obtain the viral haplotype genome by performing de-novo assembly of the
k-mers, and thus the reads.

The next step will be to apply our method on real datasets, which are more
complex and might contain several haplotypes. The presence of sequencing bias
in the NGS technologies may affect our method on real datasets. It is possible
that common k-mers from all haplotypes cannot be modeled by a single Poisson
distribution. There are methods available for correcting the sequencing bias,
which can be employed [3]. Binning and smoothening techniques have been used
for compensating the GC content bias in the sequenced reads [5]. Moreover, the
sequencing technologies are working on reducing the sequencing bias.

That being said, our algorithm is a work in progress. As our method tries
to find a minimal set of haplotypes that explain the reads, it is challenging to
resolve haplotypes which occur with same relative abundances. The k-mer pairs
would get associated with same Poisson peaks, making it difficult to resolve
them. We can use reads information to guide our haplotype reconstruction by
eliminating haplotypes which are not seen amongst the reads. We have not con-
sidered recombinations amongst viral populations in this work. For future work,
we would like to incorporate the assumptions of recombination amongst the vi-
ral population for predicting the viral haplotypes. Nevertheless, we believe that
estimating the viral haplotypes on the basis of counts of k-mers is a direction
that should be pursued due to their high mutational and recombination rates.
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likovsky, A.: Inferring viral quasispecies spectra from 454 pyrosequencing reads.
BMC Bioinformatics 12(6) (2011)

2. Beerenwinkel, N., Gunthard, H.F., Roth, V., Metzner, K.J.: Challenges and oppor-
tunities in estimating viral genetic diversity from next-generation sequencing data.
Frontiers in Microbiology 329(3) (2012)

3. Benjamini, Y., Speed, T.P.: Summarizing and correcting the gc content bias in
high-throughput sequencing. Nucleic Acids Research 40(10), e72 (2012)

4. Boerlijst, M.C., Bonhoeffer, S., Nowak, M.A.: Viral quasi-species and recombi-
nation. Proceedings of the Royal Society of London. Series B: Biological Sci-
ences 263(1376), 1577–1584 (1996)

5. Boeva, V., Zinovyev, A., Bleakley, K., Vert, J.-P., Janoueix-Lerosey, I., Delattre,
O., Barillot, E.: Control-free calling of copy number alterations in deep-sequencing
data using gc-content normalization. Bioinformatics 27(2), 268–269 (2011)

6. Collins, M.J., Kempe, D., Saia, J., Young, M.: Nonnegative integral subset repre-
sentations of integer sets. Inf. Process. Lett. 101, 129–133 (2007)

7. Eigen, M., McCaskill, J., Schuster, P.: The molecular quasi-species. Adv. Chem.
Phys. 75, 149–263 (1989)



276 R. Malhotra et al.

8. Eriksson, N., Pachter, L., Mitsuya, Y., Rhee, S.-Y., Wang, C., Gharizadeh, B.,
Ronaghi, M., Shafer, R.W., Beerenwinkel, N.: Viral population estimation using
pyrosequencing. PLoS Comput. Biol. 4(5), e1000074 (2008)

9. Hoffmann, C., Minkah, N., Leipzig, J., Wang, G., Arens, M.Q., Tebas, P., Bushman,
F.D.: DNA bar coding and pyrosequencing to identify rare HIV drug resistance
mutations. Nucleic Acids Research 35, 91 (2007)

10. Jojic, V., Hertz, T., Jojic, N.: Population sequencing using short reads: HIV as a
case study. In: Proc. Pac. Symp. Biocomput., pp. 114–125 (2008)

11. Macalalad, A.R., Zody, M.C., Charlebois, P., Lennon, N.J., Newman, R.M., Mal-
boeuf, C.M., Ryan, E.M., Boutwell, C.L., Power, K.A., Brackney, D.E., Pesko,
K.N., Levin, J.Z., Ebel, G.D., Allen, T.M., Birren, B.W., Henn, M.R.: Highly
sensitive and specific detection of rare variants in mixed viral populations from
massively parallel sequence data. PLoS Comput. Biol. 8(3), e1002417 (2012)

12. Port, E., Sun, F., Martin, D., Waterman, M.S.: Genomic mapping by end charac-
terized random clones: A mathematical analysis. Genomics 26, 84–100 (1995)

13. Prabhakara, S., Malhotra, R., Poss, M., Acharya, R.: Mutant Bin: Unsupervised
Haplotype Estimation of Viral Population Diversity Without Reference Genome.
Journal of Computational Biology (in press)

14. Prosperi, M., Prosperi, L., Bruselles, A., Abbate, I., Rozera, G., Vincenti, D., Sol-
mone, M., Capobianchi, M., Ulivi, G.: Combinatorial analysis and algorithms for
quasispecies reconstruction using next-generation sequencing. BMC Bioinformat-
ics 12, 5 (2011)

15. Richter, D.C., Ott, F., Auch, A.F., Schmid, R., Huson, D.H.: Metasim: A sequenc-
ing simulator for genomics and metagenomics. PLoS One 3, 3373 (2008)

16. Westbrooks, K., Astrovskaya, I., Campo, D., Khudyakov, Y., Berman, P., Ze-
likovsky, A.: HCV quasispecies assembly using network flows. In: Măndoiu, I.,
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Abstract. The information theory has been used for quite some time in
the area of computational biology. In this paper we discuss and improve
the function Entropic Profile, introduced by Vinga and Almeida in [23].
The Entropic Profiler is a function of the genomic location that captures
the importance of that region with respect to the whole genome. We pro-
vide a linear time linear space algorithm called Fast Entropic Profile, as
opposed to the original quadratic implementation. Moreover we propose
an alternative normalization that can be also efficiently implemented. We
show that Fast EP is suitable for large genomes and for the discovery of
motifs with unbounded length.

Keywords: patterndiscovery, information theory, computationalbiology.

1 Introduction

The concept of information theory was originally introduced by Claude E. Shan-
non as a tool to systematically analyze data flow in general communication sys-
tems [20]. The theory has been extended and subsequently applied to many fields
including DNA sequence analysis [24]. Methods of Information theory focusing
on DNA sequence compression have found differences between coding and non-
coding sequences [17] and they have been applied also for classification [3,4]. In
[12] the authors applied the mutual information to discover SNPs that are sig-
nificantly associated with diseases. Also compression based classification relying
on mutual information can be successfully applied to phylogeny [2]. Moreover
the identification of splicing mutations can benefit from the use of Informa-
tion Theory[18]. In [11] sequence motifs are modeled based on the maximum
entropy principle. Such models can be utilized to discriminate between signals
and decoys. In [5] an entropic segmentation method is discussed to detect bor-
ders between coding and noncoding DNA. These are just a few examples of the
computational biology applications inspired by information theory.

In this paper we discuss and improve the function Entropic Profile, introduced
by Vinga and Almeida in [23]. The concept of Entropic Profiler was introduce
to analyze DNA sequences. The Entropic Profiler is a function of the genomic
location that captures the importance of that region with respect to the whole
genome. This score is based on the Shannon entropies of the words distribution.
This method proved useful for the identification of conserved genomic regions.
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Other types of sequence profile have also been previously explored like Se-
quence Logos [19], that provide the information content per position. This
method, however, requires the alignment of a set of sequences and thus it is
not suited for a single sequence. Moreover this approach does not comply to the
alignment-free paradigm like [8].

One of the most important requirements is the development of efficient meth-
ods for the analysis of whole genomes that can scale gracefully with the size of
input. In this paper we study the use of Suffix Tree for the computation of the
Entropic Profiler. We show that the same function can be evaluated in linear
time and space as opposed to the quadratic implementation of EP [23]. This
will allow the use of longer genomes and the discovery of motifs with unbounded
length, removing the limitations of the current implementation. Moreover we
propose an alternative normalization that can be also efficiently implemented
within the Suffix Tree structure. The resulting implementation will be named
Fast Entropic Profile (FastEP). We show that FastEP proved useful for the de-
tection of conserved signals.

1.1 Entropic Profiler

Although DNA is a flexible three-dimensional molecule interacting in a dynamic
environment, its digital information can be represented by a one dimensional
character string of G’s, A’s, T’s and C’s. Following this standard assumption,
two of its most striking features are the extent to which repeated L-tuples oc-
cur and the variety of repeated structures it contains. These topics have been
discussed extensively and various mechanisms try to explain the functional and
evolutionary role of repeats. The degree of predictability and randomness of a
substring is described by its entropy [23]. Entropic Profiles (EP) are plots esti-
mated by this local entropy formulation, defined for each position/symbol, from
the complete sequence of DNA. The original definition is based on the distribu-
tion of words that end at a particular location i. Let s be the input genome of
length |s| = n, we define s[i, i + k − 1] as the word of length k that starts at
position i. Let c[i, i+k−1] be the number of time the word s[i, i+k−1] appears
in the genome s. The function local entropy for position i is defined as:

gL,φ(i) =
1 + 1/n

∑L
k=1 4

kφkc[i− k + 1, i]∑L
k=0 φ

k
(1)

where φ is a normalization parameter. This function can be interpreted as a lin-
ear combination of suffix counts up to a given length L, with different weights.
It computes, for each location of the sequence, the information about the abun-
dance of the corresponding L-tuple suffix inside the entire sequence. For ease
of explanation we redefine the above formula to evaluate the statistic of words
starting at position i, instead of ending at position i.

fL,φ(i) =
1 + 1/n

∑L
k=1 4

kφkc[i, i+ k − 1]∑L
k=0 φ

k
(2)
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Fig. 1. Truncated suffix tree, L=3, and side links of the word ATTACAC

Note that the function gL,φ(i) is equivalent to compute fL,φ(n − i) for the re-
verse of s. This function is then normalized to allow the comparison of different
parameter combinations. EP values are normalized as a z-score: EPL,φ(i) =
fL,φ(i)−mL,φ

sL,φ
, where the mean is mL,φ = 1

n

∑n
i=1 fL,φ(i) and the standard devia-

tion sL,φ =
√

1
n−1

∑n
i=1 (fL,φ(i)−mL,φ)

2
.

We will discuss an alternative normalization in section 3. The original imple-
mentation of the entropic profiler is based on a truncated suffix trie, see Figure 1.
A standard trie, storing the collection of n suffixes of the entire DNA sequence,
has the following properties:

– the number of nodes is O(n2).
– the height is equal to the length of the longest string, that is the length of

the whole sequence, n.
– word matching for a pattern of length L takes O(L) time.
– constructing the entire trie takes O(n2) time.

The counters at each node represent the number of occurrences of the corre-
sponding word. This allows the main EP function to be worked out by simply
word matching. All nodes at the same depth are connected by side links in or-
der to speed up the normalization, otherwise the computation of mL,φ and sL,φ

would involve the repeated calculation of the main EP function for all positions.
There are two problems with this implementation. The first issue is that it

is space inefficient. Specifically, there may be a lot of nodes that have only one
child, and the existence of such nodes is a waste. The second problem is that
the Entropic Profiler can be computed only for small L. In fact in [23] the
function EP can explored only for motif shorter than 15 bases, and thus the trie
is truncated at depth 15. These observations have prompted the idea to consider
instead of a trie its compressed version also known as Suffix Tree.

1.2 Preliminaries on Suffix Trees

The Suffix Tree is one of the most studied data structures and it is funda-
mental for string processing. It stores a string in such a way that enables the
implementation of efficient searches. Traditionally the suffix tree has been used
in very different fields, spanning from data compression [26,3] to clustering [10]
and classification [9,8]. The use of suffix tree has become very popular in the
field of bioinformatics allowing a number of string operations, like detection of
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repeats [14], local alignment [16], the discovery of regulatory elements [6,7] and
extensible patterns [1]. The optimal construction of suffix tree has already been
addressed by [22,15], that provided algorithms in linear time and space. Figure
2 shows an example of suffix tree for the string s = TCGGCGGCAAC. We can
observe that each suffix of the string s is present in the tree as a labeled path
from the root to a leaf.

2 Fast Entropic Profiler

This section we describe how the entropic profiler can be efficiently computed
using the suffix tree. Let assume that we have already computed the suffix tree of
the input string s using the algorithm of Ukkonen [22]. We extend this structure
so that every node v contains a variable count(v) that stores the number of times
that the word represented by v appears in s. With a simple O(n) traversal of
the tree we can compute the variable count(v) of each internal node v, where
count(l) = 1 if l is a leaf.

The goal is to find an efficient way to compute the main EP function 2 for
every possible substring and parameter combination. If the substring taken into
consideration is encoded by the suffix tree, there are two main cases: it may be
spelled out by the concatenation of the edge-labels on the path from the root to
a node or not. In the latter case the substring ends between two nodes.

The function fL,φ(i) for each sequence belonging to the former case can be
preprocessed and stored in a variable entropy(v), for each node v. Now assume
that the node v represents the string s[i, i+L− 1] then the variable entropy(v)

will contain
∑L

k=1 4
kφkc[i, i+ k − 1], the main sum of fL,φ(i). Once entropy(v)

is available we can calculate fL,φ(i) in constant time. The following preprocessing
is a preorder traversal of the tree that computes the value of entropy(v) for all
nodes. Let assume that par(v) is the parent node of v, and that h(v) is the
length of the string spelled out by the concatenation of the node-labels on the
path from the root to that node. In other words h(v) is the length of the string
represented by the node v.

Preprocess(T,v)

A suffix tree T and a node v are given.
begin [visit]
if v is the root then

entropy(v) = 0
else

entropy(v) = entropy(par(v)) + count(v)
∑h(v)

k=h(par(v))+1 [4
kφk]

end if
for all child w of v do

begin [recursive traversal]
Preprocess(T,w);

end for
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Fig. 2. Suffix tree of the string TCGGCGGCAAC. Every copy of the terminal symbol
$ is removed from the edge labels. The nodes are labeled with the corresponding values
of entropy|count, where for simplicity 4φ = 1.

Let’s consider the string TCGGCGGCAAC and the suffix tree in Figure 2.
The main sum for the function f4,φ(2) is

∑4
k=1 4

kφkc[2, 2 + k − 1]. For ease
of explanation we write c[s[i, j]] instead of c[i, j]. This sum can be expanded
in: 4φc[C] + (4φ)2c[CG] + (4φ)3c[CGG] + (4φ)4c[CGGC]. Now the information
contained in the suffix tree allows us to simplify this sum. We can note that
every time we see CG it is always followed by a GC, thus c(CG) = c(CGG) =
c(CGGC), that is also count(v), where v represent the word CGGC. Finally if
we consider that entropy(C) = 4φc[C] that is also the node par(v). Thus the
previous sum can be simplified in : 4φc[C] + ((4φ)2 + (4φ)3 + (4φ)4)c[CGGC] =

entropy(par(CGGC)) + count(CGGC)
∑4

2 [4
kφk]. This is equivalent to the for-

mula used in the preprocessing, where part of the summation is simplified thanks
to the suffix tree. Using the properties of the geometric series we can observe

that
∑h(v)

k=h(par(v))+1 [4
kφk] is equivalent to [(4φ)h(par(v))+1−(4φ)h(v)+1]/[1−4φ].

Thus each visit takes time O(1), and the total time spent in this preprocessing
is O(n), linear the number of nodes.

After this preprocessing, the EP function can be retrieved efficiently for all
words represented by some node in the tree T . The following algorithm computes
the EP function of any word s[i, i+ L− 1] of length L using as input the suffix
tree T .

FastEP (Input: T, i, L, φ; Output:fL,φ(i))

Search the input word s[i, i+ L− 1] in the suffix tree T .
if it is represented by the node v then

the algorithm returns the preprocessed value of the variable entropy(v)
of the internal node v.

end if
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if the search ends within an edge, between the two nodes u and v then
the algorithm returns the preprocesses value of entropy(u)

plus the correction factor count(v)
∑L

k=h(u)+1 4
kφk.

end if

In summary if the query word is represented in the suffix tree by a node v it is
enough to return entropy(v), otherwise we need to add a correction factor that
is proportional to the number of times the word as a whole appears, and thus
using count(v). Again from the output of this procedure we can compute in con-
stant time the Entropic Profile function (formula 2). Thus FastEP after a linear
time linear space preprocessing can evaluate a certain position or equivalently
a specific pattern in constant time. The original implementation requires O(n2)
time and space to answer the same query.

3 Fast Entropic Profiler Normalization

The aim of this section is to provide an alternative normalization of EP such
that, in order to be computed, it does not require to process all positions of s
and for all L. Algebraic considerations [23] allow the mean mL,φ to be rewritten
as:

mL,φ =
(φ− 1)(m2 +

∑L
i=1 C

2[k])

m2(φL+1 − 1)
(3)

where C2[k] stands for the sum of the squared counts of all distinct words of size
k in the whole sequence. Similarly, the standard deviation sL,φ becomes:

sL,φ =

√√√√√√ 1

m− 1

⎛
⎜⎝ S[L](

φL+1−1
φ−1

)2 −m2
L,φ ·m

⎞
⎟⎠ (4)

where the recursive function S[L], depending on the number of distinct word of
length L, is fairly intricate. Even if L-tuples are less than the length of the whole
sequence n, this kind of normalization takes still O(n3) time and O(n2) space.

There are several alternatives to the above normalization. In this paper we
propose to define FastEP, FastEPL,φ(i) as :

FastEPL,φ(i) =
fL,φ(i)

max0≤j<n[fL,φ(j)]
(5)

where the function max0≤j<n[fL,φ(j)] returns the maximum value of fL,φ over
all words of size L. Similarly to the original normalization this formulation allows
to compare the entropic profile scores for words of different length. In fact FastEP
assumes values in the range [0, 1].
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3.1 Finding the Maximum Entropy fL,φ for all L Using a Branch
and Bound Approach

In the following we discuss a branch and bound strategy to efficiently recover
the values of max0≤j<n[fL,φ(j)] for all L, or simply maxL. Instead of naively
comparing each word of length L, the search for the maximum FastEP can be
restricted to some regions of the tree. Again for ease of explanation we will con-
sider only the sum

∑L
k=1 4

kφkc[i, i+ k − 1], as the main fL,φ(j) can be trivially
derived.

If L > 1, two definitions are needed to define which regions of the tree must
be taken into consideration and which can be pruned:

Definition 1. The minimum potential maximum mpmL defines a lower bound
to the maximum fL,φ(j) for all L:

mpmL = maxL−1 + 4LφL

Definition 2. The maximum potential maximum MPML(v), where L > 1 and
v is a node such that h(v) < L, is defined as:

MPML(v) = entropy(v) + [count(v)− 1] ∗
L∑

k=h(v)+1

4kφk

The maximum potential maximums, MPM bounds, are progressively computed
and they allow to prune the search space for the maximum EP. The maximum
potential maximum MPML(v) is associated to any node v. At each step they
define an upper bound to the maximum FastEP obtainable for a path starting
from the root and passing trough the node v. In fact, if a MPML(v) is less than
mpmL that region can be discarded and not considered. Otherwise if MPML(v)
is greater than mpmL we extend this path to the child of v as long as these
nodes have height not greater than L.

The following numerical example, which computes the values of maxL for
L from 1 to 2, clarifies these concepts. Let’s consider the example of Figure 2
where for simplicity we use 4φ = 1. For L = 1 it is enough to consider the most
frequent character, that is G or C, that produces max1 = entropy(C) = 4. If
L=2 it must be max2 ≥ max1 + 1 = 5, where the second term is the minimum
potential maximum mpm2 = 4 + 1 = 5. Now for L = 2 we have that:

A: MPM2(A) = 2 + 1 = 3 < mpm2 = 5 → NOT acceptable path;
C: MPM2(C) = 4 + 3 = 7 > mpm2 = 5 → acceptable path;
G: MPM2(G) = 4 + 3 = 7 > mpm2 = 5 → acceptable path;
T: MPM2(T ) = 1 + 1 = 2 < mpm2 = 5 → NOT acceptable path;

Two nodes are left out because a priori the maximum for L = 2 cannot be found
traversing those nodes of the tree. Thus, after following every acceptable path,
the value max2 is worked out by simply comparing:
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CA: entropy(CC) = 4 + 1 = 5
CG: entropy(CG) = 4 + 2 = 6
GC,GG: entropy(GC) = entropy(GG) = 4 + 2 = 6 → max2 = 6

Note that at this step no more nodes are traversed, but since h(v) < L we just
take the path with the maximum value of counts. In summary we can observe
that to obtain maxL it requires maxL−1, thus overall maxL can be computed
in L steps. If L = n in the worse case we can traverse the entire suffix tree, that is
O(n) nodes. Thus overall the n values of maxL can be computed in O(n2) time
and O(n) space. There are some tricks that one can use in the implementation to
speedup further this process. We can note that if a node is part of an acceptable
path while calculating maxL it will be also traversed for maxL+1. Thus we
don’t need to traverse that part of the tree from the root, but we can just start
from the latest nodes visited for maxL. Another observation is that the value of
mpmL should be reset if the previous maximum ends in a leaf. For comparison
with the original approach, based on truncated tries, the normalization process
can take O(n3) time and O(n2) space, whereas our branch and bound strategy
requires O(n2) times and linear space.

3.2 Expected and Real Efficiency

The expected fraction of nodes in the tree that are pruned can be computed as
the following probability:

P (

L∑
k=1

4kφkc[i, i+ k − 1] < mpmL)

Given that c[i, i + k − 1] is a Binomial(n, pwk
), for large values of n it can be

approximated as a Normal(npwk
, npwk

(1− pwk
)). Also the sum can be approx-

imated with
L∑

k=1

4kφkc[i, i+ k − 1] → N (μ, σ2)

where μ =
∑L

k=1 4
kφknpwk

= n
∑L

k=1 φ
k and σ2 =

∑L
k=1 4

kφknpwk
(1− pwk

) =

n
∑L

k=1 φ
k(1− 1/4k).

In practice the expected efficiency depends on the distribution of words in the
string s, that will determine mpmL. For example Figure 3 reports the number of
nodes visited while computing maxL for all L for the string TCGGCGGCAAC.
Similar results are obtained also for longer random sequences (data not shown).
In general small values of φ drastically prune the tree.

4 Results

The Fast Entropic Profiler was tested in several DNA sequences, but in this
section we report the results for two genomes. Here we illustrate an example of
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Fig. 3. Number of nodes visited for different values of φ while computing maxL for all
possible L for the string TCGGCGGCAAC

Fig. 4. Example of study of the E-Coli genome starting at position 78440 for various
values of L

study around a target position. We can select a window length to study a certain
range of values around the position. Also the length L can be chosen and in this
case we search for pattern of length from 6 to 12. Note that after computing
the values for L = 12 all other values for L < 12 can be computed in constant
time. Figure 4 shows the output results for the Escherichia coli K12 genome with
φ = 10, starting position 78440 and window length of 100.

The figure reports the values of FastEP for all positions in the range [78440-
78540]. For each position several values are reported varying the parameter L.
The most important peak is at position 78445 and the value of L that maximizes
this peak is L = 8. This highly rated motif is in fact GCTGGTGG, which
corresponds to a Chi site, a region that modulates the activity of RecBCD (an
enzyme involved in the chromosomal repair)[21]. It is important to notice that
this pattern can be discovered just by looking at the histogram, and by analyzing
the values L that maximize the score for this position, and without a previous
knowledge of the length of the motif under study.
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Fig. 5. Example of study of the H.Influenza genome starting at position 14165 for
various values of L

Table 1. Running times in second for EP and FastEP

FastEP
Size EP Single Run New Query New Parameters

1 Mbases 12 4 0,09 1,5
1 Kbases 0,346 0,066 0,021 0,032

In Figure 5 a similar results is shown for the H.Influenza genome. We study
the positions from 14165 to 14215 with φ = 10 for various values of L. The most
important peak is obtained at position 14202 for L = 9, that corresponds to the
pattern AAGTGCGGT. This well known pattern represents an uptake signal
sequence (USS+) involved in the horizontal gene transfer [13].

In a second series of experiments we test the time performance on a common
laptop with a 1.5GHz Centrino and 2Gb of Ram. Table 1 reports the average
times over 10 runs for two genomes of length 1kbases and 1Mbases. For all runs
we use L = 10, φ = 10 and a window of 100. In column “EP” is reported the time
for the original method. For FastEP three times are illustrated. The construc-
tion and query correspond to the column “Single Run”. A new query, e.g. a new
starting position or a shorter L, is represented by the column “New Query”. If a
larger L or a new value of φ are required the inner structure is updated in a time
reported in the last column. On a single run FastEP is always faster than the
original method. If multiple queries are required the advantage becomes immedi-
ately embarrassing. The small space requirements and the improved performance
will enable the study on large genomes.

Moreover in the original implementation the parameter L can not be greater
than 15, whereas FastEP does not have limitation and can search for longer
patterns.
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5 Conclusions

To summarize we improve the original Entropic Profile with a faster and more
flexible implementation that can search for longer patterns in a genome. We
proposed a new normalization that can be efficiently computed within the inner
structure of FastEP. We provide some examples where FastEP is used for the
detection of conserved signals in a genome.

Acknowledgments. M. Comin was partially supported by the Ateneo Project
CPDA110239. S. Mazzocca implemented the software FastEP.
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Lam, Tak-Wah 102
Li, Yifeng 91, 138
Liu, Xinyi 102
Loog, Marco 184
Lyons, James 196, 208

Maduranga, D.A.K. 13, 79
Malhotra, Raunaq 265
Manjunath, Ramya 220
Marchiori, Elena 69
Meschinchi, Soheil 47
Mundra, Piyushkumar A. 13, 79

Ngom, Alioune 1, 91, 138

Ochs, Michael F. 47

Paliwal, Kuldip 196, 208
Pathak, Sudipta 242
Pizzuti, Clara 59
Porter, Lisa 138
Poss, Mary 265
Prabhakara, Shruthi 265

Rahman, Mohammad S. 1
Rajapakse, Jagath C. 13, 79
Rajasekaran, Sanguthevar 242
Reinders, Marcel J.T. 23, 35, 159, 184
Rezaeian, Iman 138
Rombo, Simona E. 59
Rueda, Luis 138
Rust, Alistair G. 35

Sattar, Abdul 196, 208
Schiller, Martin R. 242
Sharma, Alok 196, 208
Spirov, Alexander V. 126
Spirova, Ekaterina N. 126
Stantic, Bela 114

Tung, Chun-Wei 231

Uren, Anthony G. 35

Vanario-Alonso, Carlos E. 126
van Lohuizen, Maarten 35
Van Mieghem, Piet 23

Wang, Huijuan 23
Wang, Yin-Ying 149
Wei, Yingying 47



290 Author Index

Wessels, Lodewyk 35
Winterbach, Wynand 23
Wong, Thomas K.F. 102

Xie, Luyu 172
Xiong, Wei 172

Yiu, Siu-Ming 102

Zhao, Xing-Ming 149

Zheng, Jie 13

Zhou, Shuigeng 172


	Preface
	PRIB 2013 Organization
	Table of Contents
	Part I: Bio-molecular Networks and PathwayAnalysis
	A Fast Agglomerative Community Detection Methodfor Protein Complex Discovery in Protein InteractionNetworks
	1 Introduction
	2 Related Works
	3 Relative Vertex-to-Vertex Clustering Value
	4 The FAC-PIN Algorithm
	5 Computational Experiments and Discussions
	6 Protein Complex Discovery
	7 Conclusion
	References

	Inferring Gene Regulatory Networksfrom Time-Series Expressions Using RandomForests Ensemble
	1 Introduction
	2 Method
	3 Experiments and Results
	3.1 Synthetic Expression Data Generation
	3.2 Real Dataset
	3.3 Performance
	3.4 Time Complexity

	4 Discussion
	References

	Local Topological Signatures for Network-BasedPrediction of Biological Function
	1 Introduction
	2 Methods
	2.1 Topological Signatures
	2.2 Datasets
	2.3 Classification

	3 Results and Discussion
	4 Conclusion
	References

	Mutational Genomics for Cancer Pathway Discovery
	1 Introduction
	1.1 Mutational Genomics
	1.2 Multilocus Interactions

	2 Results
	2.1 Insertions Affect Local Transcription
	2.2 Mutational Genomics Reveals eQMLs

	3 Discussion
	4 Materials and Methods
	References

	Outlier Gene Set Analysis Combinedwith Top Scoring Pair ProvidesRobust Biomarkers of Pathway Activity
	1 Introduction
	1.1 Outlier Gene Set Analysis
	1.2 Pathway-Based Top Scoring Pairs
	1.3 Pediatric AML and the TARGET Initiative
	1.4 Outline of Paper

	2 Methods
	2.1 Outlier Gene Set Analysis
	2.2 Pathway-Based Top Scoring Pairs
	2.3 Analysis of TARGET Methylation Data

	3 Results
	3.1 Outlier Analysis and Gene Ranks
	3.2 Significant Pathways from OGSA
	3.3 kTSP Classifiers for Hedgehog and Cytochrome P450 Pathways

	4 Discussion
	References

	Restricted Neighborhood Search Clustering Revisited:An Evolutionary Computation Perspective
	1 Introduction
	2 Restricted Neighborhood Search Clustering Algorithm
	3 Evolutionary RNSC
	4 Evaluation Measures
	5 Experimental Results
	6 Conclusions
	References


	Part II: Learning, Classification, and Clustering
	Class Dependent Feature Weighting and K-NearestNeighbor Classification
	1 Introduction
	2 Methods
	2.1 Class Dependent FeatureWeighting

	3 Applications
	3.1 Class DependentWeights and Relative Difficulty of the Classification Task
	3.2 Class DependentWeights and Feature Relevance

	4 Conclusions
	References

	Simultaneous Sample and Gene Selection UsingT-score and Approximate Support Vectors
	1 Introduction
	2 Method
	2.1 T-score
	2.2 Efficient Sample Selection Technique
	2.3 T-score with Sample Selection (T-SS)

	3 Experiments and Results
	3.1 Datasets and Preprocessing
	3.2 Parameter Estimation
	3.3 Performance Evaluation
	3.4 Stability Analysis
	3.5 Redundancy Analysis
	3.6 Results

	4 Discussion and Conclusion
	References

	Versatile Sparse Matrix Factorization and ItsApplications in High-Dimensional Biological DataAnalysis
	1 Introduction
	2 Related Work
	3 Method
	3.1 The Versatile Sparse Matrix FactorizationModel
	3.2 Optimization

	4 Computational Experiment
	4.1 Feature Extraction and Classification
	4.2 Feature Selection
	4.3 Biological Process Identification

	5 Conclusions
	References


	Part III: Data Mining and Knowledge Discovery
	A Local Structural Prediction Algorithmfor RNA Triple Helix Structure
	1 Introduction
	2 Standard Triple Helix
	3 Method
	3.1 Simple Tree Adjoining Grammar
	3.2 Structural Prediction for Triple Helix

	4 Experimental Results
	5 Discussion and Conclusions
	References

	Combining Protein Fragment Feature-BasedResampling and Local Optimisation
	1 Background
	2 Methods
	2.1 Local Optimisation
	2.2 Fragment Feature – Based Resampling

	3 Results and Discussion
	3.1 Empirical Results
	3.2 Analysis of Results

	4 Conclusions
	References

	Experimental Determination of Intrinsic DrosophilaEmbryo Coordinates by Evolutionary Computation
	1 Introduction
	Data and Nature of the Problems
	2.1 Flattened vs. Intact Embryos
	2.2 Coordinate Transformation

	3 Techniques
	3.1 Stripe Straightening
	3.2 Implementation

	4 Biologically Significant Results and Discussion
	5 Challenges and New Developments
	6 Conclusions
	References

	Identifying Informative Genesfor Prediction of Breast Cancer Subtypes
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Training Phase
	3.2 Prediction Phase
	3.3 Characteristics of the Method
	3.4 Implementation

	4 Computational Experiments and Discussions
	4.1 Experiments
	4.2 Biological Insight

	5 Conclusion and Future Work
	References

	Predicting Therapeutic Targets with Integrationof Heterogeneous Data Sources
	1 Introduction
	2 Materials and Methods
	2.1 Data Sources
	2.2 Drug Similarity
	2.3 Protein Similarity
	2.4 Therapeutic Target Prediction

	3 Results and Discussion
	4 Concluding Remarks
	References

	Using Predictive Models to Engineer Biology:A Case Study in Codon Optimization
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Sequence Features
	2.3 Regression Model Training
	2.4 Sequence Optimization

	3 Results
	3.1 Regression Model
	3.2 Codon Optimization
	3.3 Applicability to Other Datasets

	4 Discussion
	References


	Part IV: Protein: Structure, Function, andInteraction
	Active Learning for Protein Function Predictionin Protein-Protein Interaction Networks
	1 Introduction
	2 Method
	2.1 Notation and Problem Definition
	2.2 Active Learning Strategies for Protein Function Prediction
	2.3 Collective Classification: The Gibbs Sampling Approach

	3 Experimental Evaluation
	3.1 Interaction and Annotation Data
	3.2 Experimental Methodology
	3.3 Experimental Results

	4 Related Work
	5 Conclusion
	References

	Conditional Random Fields for Protein FunctionPrediction
	1 Introduction
	2 Method
	2.1 Conditional Random Fields
	2.2 The Model
	2.3 Conditional Probability
	2.4 Inference
	2.5 Parameter Estimation

	3 Experimental Setup
	3.1 Dataset
	3.2 Performance Evaluation

	4 Results and Discussion
	4.1 Model Behavior
	4.2 Some Additional Sources Improve Prediction

	5 Discussion
	References

	Enhancing Protein Fold Prediction AccuracyUsing Evolutionary and Structural Features
	1 Introduction
	2 DataSets
	3 Feature Extraction Method
	3.1 Global Features
	3.2 Local Features

	4 Support Vector Machine
	5 Results and Discussion
	5.1 Investigating the Impact of
	5.2 Determining the Effect of the Proposed Feature Groups on the Protein Fold Prediction Accuracy
	5.3 Comparison with the Existing Methods

	6 Conclusion
	References

	Exploring Potential Discriminatory InformationEmbedded in PSSM to Enhance ProteinStructural Class Prediction Accuracy
	1 Introduction
	2 Benchmarks
	3 Feature Extraction Method
	3.1 Consensus Sequence-Based Occurrence (AAO)
	3.2 Semi Occurrence (PSSM-AAO)
	3.3 Segmented Distribution (PSSM-SD)
	3.4 Segmented Auto Covariance (PSSM-SAC)

	4 Support Vector Machine
	5 Results and Discussion
	5.1 The Effectiveness of PSSM-SAC versus PSSM-AC
	5.2 The Effectiveness of PSSM-SD Feature Group
	5.3 The Effectiveness of AAO Feature Group
	5.4 Performance Comparison with Existing Methods

	6 Conclusion and Future Works
	References

	Inferring the Association Network from p53 SequenceAlignment Using Granular Evaluations
	1 Introduction
	2 Associations at Different Levels
	3 p53- Guardian of o the Genome and Its Homologs
	4 Methodology
	4.1 The First Phase of Analysis
	4.2 Selection of Statistical Test
	4.3 Correction for Multiple Testing
	4.4 Detection of D-sites Using Different Sizes of Contingency Tables
	4.5 Full Contingency Table Analysis (RF Method)
	4.6 2x2 Contingency Sub-table Analysis (R2x2 Method)
	4.7 Single Cell Contingency Table Analysis (R1 Method)
	4.8 The Second Phase of Analysis
	4.9 Test of Independence in the Second Phase of Analysis

	5 Experimental Studies Using the p53 Protein Alignment
	6 Discussions and Conclusions
	References

	Prediction of Non-genotoxicHepatocarcinogenicity Using Chemical-ProteinInteractions
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Chemical-Protein Interactions
	2.3 Decision Tree Algorithm
	2.4 Performance Measurement

	3 Results and Discussion
	3.1 Classification Performance on Training Dataset
	3.2 Feature Selection of Important Proteins
	3.3 Independent Test

	4 Conclusions
	References


	Part V: Motifs, Sites, and Sequences Analysis
	A Structure Based Algorithm forImproving Motifs Prediction
	1 Introduction
	1.1 Some Preliminaries
	1.2 Implementation of the Algorithm
	1.3 Center of Gravity Algorithm

	2 Methods
	2.1 Steps in the Algorithm

	3 Results
	3.1 ROC Plots
	3.2 Accuracy Calculation

	4 Conclusion and Future Work
	References

	A Workflow for the Prediction of the Effects ofResidue Substitution on Protein Stability
	1 Introduction
	2 Scientific Workflows
	3 The SPROUTS Workflow
	4 Developing the SPROUTS Workflow
	5 Use Case
	6 Conclusion and Future Work
	References

	Estimating Viral Haplotypes in a PopulationUsing k-mer Counting
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Assumptions and Definitions
	3.2 Computation of Related k-mer Pairs and Estimation of Poisson
	3.3 Greedy Algorithm for Minimal Haplotype set Estimation

	4 Results
	5 Conclusion and Future Work
	References

	Fast Computation of Entropic Profiles for theDetection of Conservation in Genomes
	1 Introduction
	1.1 Entropic Profiler
	1.2 Preliminaries on Suffix Trees

	2 Fast Entropic Profiler
	3 Fast Entropic Profiler Normalization
	3.1 Finding the Maximum Entropy
	3.2 Expected and Real Efficiency

	4 Results
	5 Conclusions
	References


	Author Index



