
Modeling and Detecting Community Hierarchies

Maria Florina Balcan and Yingyu Liang

School of Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

Abstract. Community detection has in recent years emerged as an in-
valuable tool for describing and quantifying interactions in networks. In
this paper we propose a theoretical model that explicitly formalizes both
the tight connections within each community and the hierarchical nature
of the communities. We further present an efficient algorithm that prov-
ably detects all the communities in our model. Experiments demonstrate
that our definition successfully models real world communities, and our
algorithm compares favorably with existing approaches.
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1 Introduction

The structure of networks has been extensively studied over the past several
years in many disciplines, ranging from mathematics and computer science to
sociology and biology. A significant amount of recent work in this area has fo-
cused on the development of community detection algorithms. The community
structure reflects how entities in a network form meaningful groups such that
interactions within the groups are more active compared to those between the
groups and the outside world. The discovery of these communities is useful for
understanding the structure of the underlying network, or making decisions in
the network [8,9,28,29].

Generally, a community should be thought of as a subset whose members have
more interactions with each other than with the remainder of the network. This
intuition is captured by some recently proposed models [2,3,1,12,15]. Addition-
ally, recent studies show that networks often exhibit hierarchical organization,
in which communities can contain groups of sub-communities, and so forth over
multiple scales. For example, this can be observed in ecological niches in food
webs, modules in biochemical networks or groups of common interest in social
websites [31,19,7]. It is also shown empirically and theoretically that hierarchi-
cal structures can simultaneously explain and quantitatively reproduce many
commonly observed topological properties of networks [6,32,10]. This suggests
that the hierarchical structure should also be reflected when modeling real world
communities.

Although some heuristic approaches [10,21] have been proposed to detect
community hierarchies, few works have formalized this hierarchical property,
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and there are no theoretical performance guarantees for the algorithms. Inspired
by the related work in clustering [4], in this paper we define a notion of commu-
nities that both reflects the tight connections within communities and explicitly
models the hierarchy of communities. In our model, each member of a commu-
nity falls into a sub-community, and the sub-communities within this community
have active interactions with each other while entities outside this community
have fewer interactions with members inside. Given this formalization, we then
propose an efficient algorithm that detects all the communities in this model, and
prove that all the communities form a hierarchy. Empirical evaluations demon-
strate that our formalization successfully models real world communities, and
our algorithm compares favorably with existing approaches.

In the remainder of the paper, we formalize our model in Section 2, and then
describe and analyze our algorithm in Section 3. We then present the results of
our experiments in Section 4, and conclude our paper in Section 5.

2 Hierarchical Community Model

A network is typically represented as a graph G = (V,E) on a set of n = |V |
points1, where the edges could be undirected or directed, unweighted or weighted.
The graph implicitly specifies a neighborhood structure on the points, i.e. for
each point there is a ranking of all other points according to the level of possible
interaction. More precisely, we assume that we have a neighborhood function N
which given a point p and a threshold t outputs a list Nt(p) containing the t
nearest neighbors of p in V .

The neighborhood function can be used to formalize a model of hierarchical
communities. Using this neighborhood function, the tight connections within
communities can be naturally rephrased as follows: for suitable t, most points
p in the community have most of the nearest neighbors Nt(p) from the com-
munity while points outside have just a few nearest neighbors from the com-
munity. Besides this, we also want to formalize the hierarchical structure that
sub-communities in a lower, more local level actively interacting with each other
form a community in a higher, more global level. The connections between the
sub-communities can also be rephrased using the language of neighborhood: a
majority of points in each sub-community have most of the nearest neighbors
from the sub-communities in the same community.

In the remainder of the section, we specify our model based on the neighbor-
hood function. We begin with the following notion of compact blobs, which will
serve as a building block for our model.

Definition 1. A subset A of points is called an α-compact blob, if out of the |A|
nearest neighbors:

– any point p ∈ A has at most αn neighbors outside A, i.e. |N|A|(p)\A| ≤ αn;
– any point q �∈ A has at most αn neighbors inside A, i.e. |N|A|(q)∩A| ≤ αn.

1 We distinguish the nodes in the hierarchy our algorithm builds from the points in
the graph.
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Fig. 1. Illustration of an α-compact blob. An edge (x, y) means that y is one of x’s
nearest neighbors.

Note that the notion of compact blobs is the same as the clusters that satisfy
the α-good neighborhood property defined in [4]. The notion captures the de-
sired property of communities to be detected: members in the community have
many more interactions with other members inside the community and have
fewer interactions with those outside. However, in practice, the notion may seem
somewhat restricted. First, it requires all the members in the community have
most interactions with other members inside the community, which may not be
the case in real life. For example, some members in the boundary may have
more interactions with the outside world, i.e. they have more than αn neighbors
from outside. Based on this consideration, we define the (α, β)-stable property
as follows.

Definition 2. A community C is (α, β)-stable if

– any point p ∈ C falls into a α-compact blob Ap ⊆ C of size greater than 6αn,
– for any point p ∈ C, at least β fraction of points in Ap have all but at most

αn nearest neighbors from C out of their |C| nearest neighbors,
– any point q outside C has at most αn nearest neighbors from C out of their

|C| nearest neighbors.
Informally, the first condition means that every point falls into a sufficiently large
compact blob in its community. This condition formalizes the local neighborhood
structure that each member interacts actively with sufficiently many members in
the community. Note that the compact blob should be large enough so that the
membership of the point is clearly established, i.e. it should have size comparable
to αn, the number of connections to points outside. Here we choose a minimum
size of 6αn mainly because it guarantees that our algorithm can still identify
the blob in the worst case. The second condition means that at least β fraction
of points in these compact blobs have most of their nearest neighbors from the
community. This condition formalizes more global neighborhood structure about
how the compact blobs interact with each other to form a community. The third
condition formalizes how the community is separated from the outside.
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Fig. 2. Illustration of an (α, β)-stable community. An edge (x, y) means that y is one
of x’s nearest neighbors. Note that point w lies on the “boundary” of the community.
It falls into the compact blob Ap, but does not have most of its nearest neighbors from
the community.

Note that we no longer require all the members in the community have most
interactions inside; we only require each member interacts with sufficiently many
members and a majority of members in these local groups interact actively. Also
note that the definition is hierarchical in nature: sufficiently large compact blobs
clearly satisfy the definition of (α, β)-stable property and thus can be viewed as
communities in lower levels. Furthermore, in the next section we will show that
all the (α, β)-stable communities form a hierarchy. We show this by presenting
an algorithm and proving that each (α, β)-stable community is a node in the
hierarchy output by the algorithm. So our formulation explicitly models the
hierarchical structure of communities observed in networks.

Next we propose a further generalization that considers possible noise in real
world data. There may be some abnormal points that do not exhibit clear mem-
bership to any community, in the presence of which our definition above does
not model the communities well. For example, suppose there is a point that
has connections to all other points in the network, then no non-trivial subsets
satisfy our definition above. We call such points bad since they do not fit into
our community model above. To deal with the noise, we can naturally relax the
(α, β)-stable property to the (α, β, ν)-stable property defined as follows. Infor-
mally, it requires that the target community satisfies the (α, β)-stable property
after removing a few bad points B. For convenience, we call the other points in
S \B good points.

Definition 3. A community C is (α, β, ν)-stable if there exist a subset of bad
points B of size at most νn, such that

– any good point p ∈ G = C \ B falls into a compact blob Ap ⊆ C of size
greater than 6(α+ ν)n,

– for any point p ∈ G, at least β fraction of points in Ap have all but at most
αn nearest neighbors from G out of their |G| nearest neighbors in S \B,

– any good point q outside C ∪B has at most αn nearest neighbors from G out
of their |G| nearest neighbors in S \B.
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Fig. 3. Illustration of an (α, β, ν)-stable community. An edge (x, y) means that y is one
of x’s nearest neighbors. Point b is a bad point and does not exhibit clear membership
to any community.

Note 1. The parameters α, ν are defined globally, i.e. they are defined as ratios
with respect to the total number of points. So a local change to some community
can affect the values of these parameters for the other communities. For example,
suppose we add Kn new points to some community, with all the new points
having neighbors only inside this special community. Since the number of points
increases to (K+1)n, the communities outside the modified community are now
(α/(1 +K), β, ν/(1 +K))-stable. However, the local change does not affect the
identifiability of these communities. Our algorithm described in the next section
can still detect these communities, given the value of (α+ ν)n.

Note 2. The input of the community detection task is usually a graph represent-
ing the network, and there are different ways to lift the graph to a neighborhood
function. The simplest one is to directly sort for each point p all the other points
q according to the weights of the edges (p, q) and break ties randomly (we as-
sume without loss of generality that the weights are in [0, 1] and the weight of
an edge not in E is regarded as 0). However, as pointed out in [3], we also have
alternative approaches to convert the observed graph into a neighborhood func-
tion. More specifically, we assume the observed graph reflects some underlying
unobserved set of relations, and thus we can lift the graph to an affinity system
based on various beliefs about the connection between the latent relations and
the observed graph, and then sort the points according to the affinity system to
get the neighborhood function. For example, based on the belief that random
walks on the graph can reflect the similarities between entities, we can define
the affinity to be the diffusion kernel exp{λA} where A is the adjacent matrix
and λ is a parameter. Note that the results of appropriate lifting procedures can
better reflect the true relationships between entities, and thus the conversion
can address the challenging issue of sparsity in the observed graph.

3 Hierarchical Community Detection Algorithm

In the section, we propose an algorithm for detecting communities satisfying
the (α, β, ν)-stable property. The goal of our algorithm is to output a set of
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Algorithm 1. Hierarchical Community Detection Algorithm

Input: neighborhood function N on a set of points V , n = |V |, α > 0, ν > 0.

Step 1 Initialize C′ to be a set of singleton points, and t = 6(α + ν)n + 1.
while |C′| > 1 do

Step 2 Build Ft on V as follows.
for any x, y ∈ V that satisfy |Nt(x) ∩Nt(y)| ≥ t− 2(α + ν)n do

Connect x, y in Ft.
Step 3 Build Ht on C′ as follows. Let NF (x) denote the neighbors of x in Ft.

for any U,W ∈ C′ do
if U,W are singleton subsets, i.e. U = {x},W = {y} then

Connect U,W in Ht, if |NF (x) ∩NF (y)| > (α + ν)n.
else

Set St(x, y) = |NF (x) ∩NF (y) ∩ (U ∪W )|, ∀x ∈ U, y ∈ W .

Connect U,W in Ht, if medianx∈U,y∈WSt(x, y) > |U|+|W |
4

.
Step 4 for any component R in Ht that satisfies |⋃C∈R C| ≥ 4(α + ν)n do

Update C′ by merging subsets in R into one subset.
Step 5 t = t + 1.

end while

Output: Hierarchy T with single points as leaves and internal nodes corresponding
to the merges performed.

communities such that each community satisfying the (α, β, ν)-stable property
is close to one in the output. To be precise, we say that a community C is ν-close
to another community C′ if |C \C′|+ |C′ \C| ≤ νn. We first describe the details
in Algorithm 1, and then present the analysis in Theorem 1.

Now we prove that the algorithm successfully outputs a hierarchy such that
any community satisfying the (α, β, ν)-stable property with sufficiently large β
is close to one of the nodes in the hierarchy. Formally,

Theorem 1. Algorithm 1 outputs a hierarchy such that any community sat-
isfying the (α, β, ν)-stable property with β ≥ 5/6 is ν-close to a node in the
hierarchy. The algorithm runs in time O(nω+1), where O(nω) is the state of the
art for matrix multiplication.

The correctness of the theorem follows from Lemma 3 and the running time
follows from Lemma 4. In the following analysis, we always assume β ≥ 5/6.
Before presenting the analysis for the general communities in Lemma 3, we first
prove a lemma for the base case of compact blobs, showing that for any compact
blob, a node close to it will be formed.

Lemma 1. For any good point p, when t ≤ |Ap|, good points from Ap will not
be merged with good points outside Ap. At the end of the threshold t = |Ap|, all
points in Ap have been merged into a subset.

Proof. We prove this by induction on t. The claim is clearly true initially. Now
assume for induction that at the beginning of a threshold t ≤ |Ap|, in C′ good
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points from Ap are not merged with good points outside Ap, i.e. any subset can
contain good points from only one of Ap and V \ B \ Ap. We now analyze the
properties of the graphs Ft and Ht, and show that at the end of the current
threshold, the claim is still true.

First, as long as t ≤ |Ap|, the graph Ft has the following properties.

– No good point x in Ap is connected to a good point y outside Ap. By the
definition of compact blobs, out of the t nearest neighbors, x has at most
(α+ ν)n neighbors outside Ap. For y ∈ V \B \Ap, y has at most (α+ ν)n
neighbors in Ap. Then x, y have at most 2(α+ ν)n < t− 2(α+ ν)n common
neighbors, so they are not connected.

– No bad point z is connected to both a good point x in Ap and a good point
y outside Ap. We know that out of the t nearest neighbors, x has at most
(α + ν)n neighbors outside Ap. So if z is connected to x, then z must have
more than t− 3(α+ ν)n neighbors in Ap and less than 3(α+ ν)n neighbors
outside Ap. Since y has at most (α+ ν)n neighbors in Ap, we have that y, z
share less than 3(α+ ν)n+ (α+ ν)n < t− 2(α+ ν)n neighbors, so they are
not connected.

Based on the properties of Ft and the inductive assumption that any subset can
contain good points from only one of Ap and V \B \Ap, we show that the graph
Ht has the following properties.

– No subset U containing good points from Ap is connected to a subset W
containing good points outside Ap. This is clearly true if they are singleton
subsets. In the other cases, note that the fraction of bad points in U or W
is at most 1/4. Then the number of pairs (x, y) with good points x ∈ U
and y ∈ W is at least 3

4 |U | × 3
4 |W | > |U ||W |/2, i.e. more than half of the

pairs (x, y) with x ∈ U and y ∈ W are pairs of good points. This means
there exist good points x∗ ∈ U, y∗ ∈ W such that St(x

∗, y∗) is no less than
medianx∈U,y∈WSt(x, y). By the properties of Ft, x∗, y∗ have no common
neighbors. Therefore, U and W are not connected.

– If a subset W contains only bad points, then it cannot be connected to both
a subset containing good points from Ap and a subset containing good points
outside Ap. Suppose it is connected to U which contains good points from
Ap. Note that since W contains only bad points, it must contain only a
single point z. If U = {x} is singleton, then x, z share more than (α + ν)n
neighbors in Ft. Since in Ft, x is only connected to good points from Ap and
bad points, z and x must share some common neighbors from Ap, then z
must be connected to some good points in Ap. In the other cases, note that
the fraction of bad points in U is at most 1/4. So there exists a good point
x∗ ∈ U such that St(x

∗, z) ≥ medianx∈USt(x, z). Then we have St(x
∗, z) >

(|U |+ |W |)/4 > νn, and thus z must also be connected to some good points
in Ap. Similarly, if W is connected to a subset containing good points outside
Ap, then the point in W must connect to some good point outside Ap. But
this is contradictory to the fact that in Ft no bad point is connected to both
a good point in Ap and a good point outside Ap.
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By the properties of Ht, no connected component contains both good points in
Ap and good points outside Ap. So at the end of this threshold t, the claim is
still true. Then by induction, we know that when t ≤ |Ap|, we will not merge
good points from Ap with good points outside Ap.

Next we show that at the end of the threshold t = |Ap|, we will merge all
points in Ap into a subset. First, at this threshold, all good points in Ap are
connected in Ft. Any good point in Ap has at most (α+ ν)n neighbors outside
Ap, so when t = |Ap|, any two good points x, y in Ap are connected, and thus
they share at least |Ap| common neighbors in Ft. Second, all subsets containing
good points in Ap are connected inHt. If no good points in Ap have been merged,
then these singleton points will be connected in Ht since they share at least |Ap|
singleton subsets as common neighbors in Ft. If some good points in Ap have
already been merged into non-singleton subsets, we can show that in Ht these
non-singleton subsets will be connected to each other and connected to singleton
subsets containing good points from Ap. For any such pair of subsets U and W ,
the fraction of bad points in U or W is at most 1/4, so there exist good points
x∗ ∈ U, y∗ ∈ W such that medianx∈U,y∈WSt(x, y) is no less than St(x

∗, y∗). Since
x∗, y∗ are connected to all good points in Ap in Ft, St(x

∗, y∗) is no less than the
number of good points in U and W . So medianx∈U,y∈WSt(x, y) ≥ St(x

∗, y∗) >
(|U | + |W |)/4, and thus U,W are connected in Ht. Therefore, all points in Ap

are merged into a subset. 	

The following is a consequence of Lemma 1, which will be used in the analysis
for the general communities in Lemma 3.

Lemma 2. In Algorithm 1, if a subset U satisfies that for any good point p ∈ U ,
Ap ⊆ U , then there exist a subset of good points P ⊆ U , such that {Ap : p ∈ P}
is a partition of U \B.

Proof. We have U \ B = ∪p∈U\BAp. We only need to show that sets in {Ap :
p ∈ U \B} are laminar, i.e. for any p, q ∈ U \B, either Ap ∩Aq = ∅ or Ap ⊆ Aq

or Aq ⊆ Ap. Assume for contradiction that there exist Ap and Aq such that
Ap \ Aq �= ∅, Aq \ Ap �= ∅ and Ap ∩ Aq �= ∅. Without loss of generality, suppose
|Ap| ≤ |Aq|. Then by Lemma 1, at the end of the threshold t = |Ap|, we have
merged all good points in Ap into a subset. Specifically, this means that we have
merged Ap ∩ Aq with Ap \ Aq. So for t ≤ |Aq|, we have merged good points in
Aq with good points outside Aq, which is contradictory to Lemma 1. 	

By the above lemmas, for any good point p, the subset Ap will be formed be-
fore points in it are merged with good points outside. Once these subsets are
formed, we can show that subsets in the same target community will be merged
together before they are merged with those from other communities, and thus
the hierarchy produced has a node close to the target community. Formally, we
have the following result.

Lemma 3. For any community C satisfying the (α, β, ν)-stable property with
β ≥ 5/6, C′ \B in Algorithm 1 is always laminar to C \B, i.e. for any C′ ∈ C′,
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either (C′ \ B) ∩ (C \ B) = ∅ or (C′ \ B) ⊆ (C \ B) or (C \ B) ⊆ (C′ \ B).
Furthermore, there is a node U in the hierarchy produced such that U \B = C\B.

Proof. we will show by induction on t that: for any community C satisfying the
(α, β, ν)-stable property with β ≥ 5/6,

– at the end of threshold t, C′ \B is laminar to C \B,
– at the end of threshold t, for any C such that |C \ B| ≤ t, we have merged

all points in C \B into a subset.

These claims are clearly true initially. Assume for induction that they are true
for the threshold t− 1, we now show that they are also true for the threshold t.

We first show that the laminarity is preserved. The laminarity is broken only
when we connect in Ht two subsets U,W such that U is a strict subset of C
after removing the bad points, and W is a subset containing good points from
outside. If there is a good point p ∈ U such that Ap �⊆ U , then by Lemma 1,
they cannot be connected. So we only need to consider the other case when
for any good point p ∈ U,Ap ⊆ U . For convenience, we call a point great
if it is a good point in C, and it has less than αn neighbors outside C \ B
out of the |C \ B| nearest neighbors in V \ B. We now show that U,W are
not connected in Ht. Since U \ B is a strict subset of C \ B, by induction on
the second claim, we have t ≤ |C \ B|. Then great points in U and points in
W share at most 2(α + ν)n < t − 2(α + ν)n common neighbors, so they are
not connected in Ft. By Lemma 2 and the second condition of the (α, β, ν)-
stable property, we know that at least 5/6 fraction of points in U \B are great
points. Then there exist a great point x∗ ∈ U and a point y∗ ∈ W such that
St(x

∗, y∗) is no less than medianx∈U,y∈WSt(x, y). Since in Ft great points in
U are not connected to points in W , we have St(x

∗, y∗) ≤ (|U | + |W |)/4. So
medianx∈U,y∈WSt(x, y) ≤ (|U | + |W |)/4 and U,W are not connected in Ht.
Therefore, the laminarity is preserved.

Next we show that at the end of the threshold t = |C\B|, all points in C\B are
merged into a subset. By Lemma 1, all good points in C\B are now in sufficiently
large subsets. We claim that any two of these subsets U,W are connected in Ht,
and thus will be merged. Again by Lemma 2, we know at least 5/6 fraction of
points in U \ B or W \ B are great points, and thus there exist great points
x∗ ∈ U, y∗ ∈ W such that St(x

∗, y∗) is no more than medianx∈U,y∈WSt(x, y).
Notice that all great points in U are connected to great points in W in Ft, since
they share at least t− 2(α+ ν)n neighbors. Then St(x

∗, y∗) ≥ 3(|U |+ |W |)/4 >
(|U |+ |W |)/4, and thus medianx∈U,y∈WSt(x, y) > (|U |+ |W |)/4. Therefore, any
two subsets containing good points from C \B are connected in Ht and thus are
merged.

So the two claims hold for all t, specially for t = n. Then the algorithm must
stop after this threshold, and we have the lemma as desired. 	

Lemma 4. Algorithm 1 has a running time of O(nω+1).

Proof. To implement the algorithm, we introduce some data structures. For any
x ∈ V , if y is within the t nearest neighbors of x, let It(x, y) = 1, otherwise
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It(x, y) = 0. Initializing It takes O(n2) time. Next we compute CNt(x, y),
the number of common neighbors between x and y. Notice that CNt(x, y) =∑

z∈V It(x, z)It(y, z), so CNt = ItI
T
t . Then we can compute the adjacent matrix

Ft (overloading notation for the graph Ft) from CNt. These take
O(nω) time.
To compute the graph Ht, we introduce the following data structures. Let
FSt(x, y) = 1 if x, y are singleton subsets and Ft(x, y) = 1, and let FSt(x, y) = 0
otherwise. Let NSt = FSt(FSt)

T , then for two singleton subsets x, y, NSt(x, y)
is the number of singleton subsets they share as neighbors in common in Ft.
Similarly, let FCt(x, y) = 1 if x and y are in the same subset and Ft(x, y) = 1,
and let FCt(x, y) = 0 otherwise. Let St(x, y) = NSt(FCt)

T +FCt(NSt)
T , then

for two points x ∈ U, y ∈ W where U,W are two non-singleton subsets, St(x, y)
is the number of points in U ∪ W they share as neighbors in common in Ft.
Based on NSt and St we can build the graph Ht. All these take O(nω) time.

When we perform merge or increase the threshold, we need to update the
data structures, which takes O(nω) time. Since there are O(n) merges and O(n)
thresholds, Algorithm 1 takes time O(nω+1) in total. 	


4 Experiments

In this section, we present our experimental results on evaluating our model and
algorithm.While our main concern is building theoretical model for communities,
empirical study is valuable in verifying the model and providing guidance for
further improvement. Therefore, we applied our algorithm on both real world
and synthetic data sets.

Note that the networks are represented as graphs, and we need to lift the
graphs to get neighborhood functions for our algorithm. We use two lifting ap-
proaches for our experiments. The first approach is direct lifting: first, for any
x, y set the affinity between x and y to be 1 if (x, y) ∈ E and 0 otherwise; then
for each x, sort all the other points according to the affinities; break ties ran-
domly to avoid bias. The second approach is diffusion lifting: first set the affinity
matrix K between entities to be K = exp{λA} where λ = 0.05 and A is the
adjacent matrix of the graph; then for each x, sort all the other points according
to the affinities.

For comparison, we implemented two other algorithms: the lazy random walk
algorithm (LRW [34]) and the Girvan-Newman algorithm (GN [10]). The lazy
random walk algorithm performs truncated random walk from a seed point in
the network and outputs selected communities where the selection is guided by
the walk distribution and conductance. The conductance has been widely used
as a criterion for quantifying the tight connections within communities, and thus
the comparison to the lazy random walk algorithm provides an evaluation on
how well our model and algorithm capture this intuition. The GN algorithm re-
peatedly removes the edge with the maximum edge-betweenness and regards the
created connected components as communities. Although no theoretical model
of hierarchical communities is targeted, the algorithm builds a hierarchy during
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its execution. It has been shown that the algorithm performs remarkably well on
modeling communities in real-world data sets [10,29]. We use the code from [5]
for fast computation of edge betweenness in the algorithm.

For algorithms with parameters, we run them multiple times with different
values of parameters, and report the best result. More specifically, we run our
algorithm using parameters (α + ν) = i

5n (i = 1, 2, . . . , 5). For the lazy ran-
dom walk algorithm, we enumerate the parameters θ0 = 0.05i(i = 1, . . . , 4) and
b = 1, 2, . . . , �logm. In each run, 100 seed points are generated uniformly at
random, each of which leads to a community. Since not all communities are
meaningful (e.g. a singleton subset or the entire set of points), communities con-
taining less than 10 points or containing more than n− 10 points are removed,
and the rest communities are regarded as the output communities. We then eval-
uate the average error of the output communities. The error for a ground-truth
community C with respect to a set C of output communities is defined as

error(C, C) = min
C′∈C

|C \ C′|+ |C′ \ C|
n

.

This criterion measures how well the ground-truth communities are recovered
by the algorithm. We further note that our algorithm outputs fewer communi-
ties than the other algorithms in all the conducted experiments, and thus has
advantage when they achieve similar performance.

4.1 Evaluation on Real-World Networks

To assess the performance of the proposed method in terms of accuracy, we
conduct experiments on the following real world data sets2 : karate [36], dol-
phins [23], polbooks [18], and football [10].

Figure 4 shows the average error and running time of the algorithms. We
observe that our algorithm with diffusion lifting achieves the best performance on
3 out of 4 data sets, and achieves performance comparable to the GN algorithm
on the football data set. It recovers the ground truth communities remarkably
well over all the data sets. Our algorithm with direct lifting does not achieve
good results. Note that this is due to the fact that diffusion lifting reflects the
true neighborhood structure more accurately than direct lifting. More precisely,
when we sort neighbors for a point p in direct lifting, all points not adjacent to
p are ranked randomly. In fact some of them can be reached by a few steps and
thus should be ranked as close neighbors, while others are actually far away from
the point p. On the other hand, diffusion lifting leads to a neighborhood function
that more accurately reflects the neighborhood information. The LRW algorithm
has the worst performance, though it is the fastest. Our algorithm, especially
with the diffusion lifting, runs 10-100 faster than the GN algorithm. Therefore,
our algorithm with suitable neighborhood functions is the most favorable for
detecting real world communities.

2 Detailed descriptions and links for download can be found on
http://www-personal.umich.edu/~mejn/netdata/

http://www-personal.umich.edu/~mejn/netdata/
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Fig. 4. The average error and running time using our hierarchical community detection
algorithm with direct lifting (HCD+direct) or diffusion lifting neighborhood function
(HCD+diffusion), Lazy Random Walk (LRW [34]) and the Girvan-Newman algorithm
(GN [10]). Note that the running time is in log scale.

4.2 Evaluation on Synthetic Networks

Table 1. The parameters of the synthetic data sets for performance evaluation.
n/m: number of nodes/edges; k/maxk: average/maximum degree of the nodes;
minc/maxc: minimum/maximum size of the lower level communities; minC/maxC:
minimum/maximum size of the higher level communities.

Data set n m k maxk minc maxc minC maxC

LF50 50 ≈500 10 15 10 15 20 30
LF100 100 ≈1500 15 20 15 20 30 40
LF150 150 ≈3000 20 30 20 30 40 60
LF200 200 ≈6000 30 40 30 40 60 80

Besides real-world networks, we further use the Lancichinetti-Fortunato (LF)
benchmark3 graphs [20] to evaluate the performance of the algorithms. By vary-
ing the parameters of the networks, we can analyze the behavior of the algo-
rithms in detail. We generate four unweighted undirected benchmark networks
with two level community hierarchies. The numbers of nodes are 50, 100, 150 and
200 respectively, and some important parameters of the networks are given in
Table 1. For each type of dataset, we range the mixing parameter μ from 0.1 to
0.5 with a span of 0.1, and set the low-level mixing parameter μ1 = μ/4 and the
high-level mixing parameter μ2 = μ− μ1, resulting in five networks. Generally,
the higher the mixing parameter of a network is, the more difficult it is to reveal
the community structure.

3 The source code we use and details about the parameters can be found on
https://sites.google.com/site/andrealancichinetti/software

https://sites.google.com/site/andrealancichinetti/software
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Fig. 5. The average error on the synthetic data sets
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Fig. 6. The running time on the synthetic data sets

Figure 5 shows the average errors of the algorithms and Figure 6 shows the
running time. Our algorithm with direct or diffusion lifting and the GN algo-
rithm achieve similar results on all the benchmark networks. The errors of these
algorithms are below 5%, and hardly increase with the mixing parameter. This
suggests that they recover the ground truth communities remarkably well even
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in the hard case when the members of the communities have significant con-
nections with the outside. In contrast, the LRW algorithm does not recover the
communities well, even though it runs much faster than the other algorithms.
Our algorithm runs about 50 times faster than the GN algorithm over all the
data sets. These results are consistent with those observed on real world data
sets, and again demonstrate the advantage of our algorithm.

5 Conclusion

In this paper we propose a model of communities that both reflects the tight
connections within communities and explicitly models the hierarchy of communi-
ties. We present an efficient algorithm that provably detects all the communities
in this model. Experiments demonstrate that our definition successfully models
communities arising in the real world, and our algorithm compares favorably
with existing approaches.

For future work, we plan to perform systematic empirical study of our
model and algorithm using more neighborhood functions and on more real-world
data sets. Another direction would be to speed up the computation of the
neighborhood function and the algorithm and adapt them to large-scale scenarios.
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