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Abstract. Multi-task averaging deals with the problem of estimating
the means of a set of distributions jointly. It has its roots in the fifties
when it was observed that leveraging data from related distributions can
yield superior performance over learning from each distribution indepen-
dently. Stein’s paradox showed that, in an average square error sense,
it is better to estimate the means of T Gaussian random variables us-
ing data sampled from all of them. This phenomenon has been largely
disregarded and has recently emerged again in the field of multi-task
learning. In this paper, we extend recent results for multi-task averaging
to the n-dimensional case and propose a method to detect from data
which tasks/distributions should be considered as related. Our experi-
mental results indicate that the proposed method compares favorably to
the state of the art.

Keywords: multi-task averaging, information theory, spectral cluster-
ing.

1 Introduction

Multi-task averaging (MTA) problem can be posed as follows: we have T datasets
{xt1,xt2, . . . ,xtNt}, t = 1, . . . , T each of which is sampled from a fixed but
unknown probability distribution (Nt denotes the size of dataset t). Our goal is
to estimate the means of each distribution. The first direct approach would be
to estimate the means one at a time. However, it turns out that leveraging data
from related distributions/tasks1 can yield superior performance over learning
each mean independently. Early evidence of this phenomenon dates back in the
fifties from Stein’s work, who showed that it is better (in an average square
error sense) to estimate each of the means of T Gaussian random variables using
data sampled from all of them, even if the random variables are independent

1 Throughout the paper we use the words “distribution”, “task” and “mean”
interchangeably.
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and have different means. This surprising result is often referred to as Stein’s
paradox [3]. A recent work [4], studies MTA problem in one dimension (that is,
taking R as input space) and presents different optimal results both for MTA
mean estimator formula and its hyper-parameters. The proposed estimators are
proved to be more accurate than those previously studied in the literature [6,7],
but the study of their performance in an n-dimensional space is not treated and
the proposed optimal hyper-parameter expression is only valid for the case when
all the tasks are related to each other.

In this paper, we study MTA problem in R
n and also explore the impact of

task grouping on the estimation accuracy of the estimation method. We propose
optimal formulas for the n-dimensional case and a practical algorithm for task
grouping based on information theoretic divergence measures and spectral clus-
tering. When combining these two results, a practical algorithm for MTA in R

n is
obtained. It will be showed that in certain circumstances, when not all the tasks
at hand should be considered as related, then the optimal estimators presented
in [4] have a null improvement when compared with independent mean estima-
tion for each of the T tasks. On the other hand, we will demonstrate that the
proposed method can improve estimation accuracy in an average mean square
error sense. These findings may pave the way for more accurate algorithms in a
multi-task scenario.

The paper is organized in the following manner. In Section 2, a summary of
the key results in [4] are reviewed as the base for the present work. Section 3
presents the extension of the estimators in [4] for the n-dimensional case. Section
4 presents the proposed k-MTA method. In Section 5, we report on our numerical
experiments with this method and with previous approaches. Finally, Section 6
contains concluding remarks and suggestions for future work.

2 Background

In the recent paper [4], MTA estimation in R is presented as the optimal solution
to the following convex problem:

c∗ = arg min
c∈RT

{
1

T

T∑
t=1

Nt∑
i=1

(xti − ct)
2

σ2
t

+
γ

T 2

T∑
s,t=1

Ast(cs − ct)
2

}

where xt1, xt2, . . . , xtNt are independent and identically distributed (iid) random
samples for each task t = 1, . . . , T , σ2

t is the variance of t-th distribution and c =
(c1, . . . , cT ) is the vector of means we wish to estimate. Matrix A = (Ast)

T
s,t=1

describes the relatedness or similarity of any pair of the T tasks (with Att = 0
for all t without loss of generality because the diagonal self-similarity terms are
canceled in the objective). It can be noted that the proposed MTA objective
regularizes the estimates of each of the means, that is, it ties them together. The
regularization parameter γ balances the empirical risk (error) and the multi-
task regularizer. Note that if γ = 0, the MTA objective decomposes into T
separate minimization problems, producing the simple separate sample averages
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x̂t = 1/Nt

∑Nt

i=1 xti. Tasks’ similarity matrix A for a specific problem at hand
can be specified from the knowledge of a domain expert, but often this side
information is not available or it may not be clear how to transform semantic
notions of tasks’ similarity into an appropriate choice for the values in A. In
addition to this difficulty, parameter γ has a great impact on the final result and
an optimal choice from a mean square error perspective is desirable. However,
the problem of finding an optimal formula for this parameter for a general form
of matrix A is often analytically intractable. In [4], the optimal solution in cases
when A = a11′ (called “constant MTA”) was found. We restate this result for
completeness:

Lemma 1 (constant MTA). Assume that A = a11′ and 0 <
σ2
t

Nt
< ∞ for all

t. The optimal c∗ (in terms of mean square error) is given by the formula

c∗ = (IT +
a

T
ΣL(11′))−1x̂

where

a =
2

1
T (T−1)

T∑
s,t=1

(μs − μt)2
. (1)

In the above formula Σ = diag
( σ2

1

N1
, . . . ,

σ2
T

NT

)
, L(A) is the Laplacian of matrix A

and μt is the true mean of task t. Note that in this result γ is considered equal
to 1 without loss of generality.

There are two main issues when applying this lemma in a practical situation.
First, the result involves σ2

t and μt, both quantities which are not known in
practice (the second quantity is indeed the one that we are trying to estimate).
This issue is solved in [4] using empirical estimates for both quantities and proved
to be accurate in practice. Therefore such approach is also used in this paper.
The second issue has to do with the form of matrix A considered in Lemma
1. With A = a11′ we are assuming that all the T tasks are mutually related,
which is very unlikely to happen in practice. An analytical result for the case
when T = 2 proves that the proposed MTA estimation is better than single
task estimation only if the true means are close with respect to the variances of
their distributions. This observation will be experimentally observed in Section
5. In addition, a closer look at formula (1) shows us that, if far apart tasks are
considered as related, the optimal value of parameter a will approximate 0, so
that the MTA estimator will bring no benefit.

In order to use the above results in a general case, in addition to extend them
to R

n, it is necessary to devise a strategy that, directly from data, estimates
which tasks should be considered as related. In the remaining part of the paper
we will tackle these problems and demonstrate experimentally that our strategy
yields improved results in an average mean square error sense when compared
to previous strategies.
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3 MTA in High Dimensional Spaces

In this section, we extend the problem presented in [4] to R
n in a straightforward

manner. This will be the first step towards the general MTA algorithm presented
in Section 4. MTA in R

n consist in finding the optimal solution to the problem

c∗ = argmin
c

{
T∑

t=1

Nt∑
i=1

‖xti − ct‖2
σ2
t

+
γ

2T

T∑
s,t=1

Ast‖cs − ct‖2
}

(2)

where c ∈ R
Tn denotes the vector with all the means ct, t = 1, . . . , T concate-

nated and γ is a hyper-parameter that balances the weighting of the two terms.
Problem (2) is similar to equation proposed in [4] but including the 2-norm in
R

n instead of in R. The next two lemmas will be proved in the appendix.

Lemma 2 (MTA in R
n). The optimal solution of problem (2) is given by

c∗ = ((IT +
γ

T
ΣL(A))−1 ⊗ In)x̂ (3)

where IT (resp. In) is the T × T (resp. n × n) identity matrix, Σ =

diag(
σ2
1

N1
, . . . ,

σ2
T

NT
), L(A) is the Laplacian of matrix A and x̂ ∈ R

Tn is the vector

of independent means x̂t =
1
Nt

Nt∑
i=1

xti concatenated in the same order as in c∗.

Lemma 3 (constant MTA in R
n). Assume that A = a11′ and 0 <

σ2
t

Nt
< ∞

for all t. The optimal (in a mean square error sense) mean estimator is given by

c∗ = ((IT +
a

T
ΣL(11′))−1 ⊗ In)x̂ (4)

for

a =
2n

1
T (T−1)

T∑
s,t=1

‖μs − μt‖2
(5)

where n is the dimension of the input space and μt are the true mean vectors of
the distributions of each task.

Note that the obtained formulas for the estimator involve the inverse of a matrix
which depends neither on the dimension of the space nor on the sample sizes.
Hence, its calculation can be done in a very efficient way. Estimators from data
of the actual values of μt and σ2

t in equations (4) and (5) will be used in the
practical implementation of these formulas.

4 k-MTA: Multi-task Averaging via Information
Theoretic Clustering

In this section, k-MTA algorithm is proposed. It is divided in two phases: (a)
first, the sets of tasks which should be considered as related are detected via
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spectral clustering; (b) for each cluster of tasks, equations (5) and (4) are applied
separately in order to find the means of each task in the cluster. This approach
aims at tackling the limitations of the direct application of the results in [4] when
a clustered set of tasks is presented and their respective means are required.
Following the results sketched in [4], MTA is only effective when the distance
between the true means of the tasks is small when compared to the variance
of their distributions. So, for this first phase, we need a measure of divergence
between tasks which is able to detect (from data samples) whether the supports
of probability distributions largely overlap or not. Based on those similarities,
tasks are subsequently clustered and their means estimated. In the next section,
we present the divergence measure which will be used in this paper. Subsequently,
the spectral clustering algorithm used to construct the groups is described.

4.1 Information Theoretic Tasks’ Similarity Measure

The work in [10] considers the quadratic Renyi’s entropy as the basic expression
for building cost functions for clustering, linear models, and other machine learn-
ing problems. The cost and divergence measures developed under the Renyi’s
entropy framework have been proved effective when dealing with these different
learning problems. In particular, the divergence measure between probability
density functions (pdfs) called euclidean pdf distance is given by

DED =

∫
Rn

(f(x)− g(x))2dx. (6)

In the absence of an expression for both f and g, in [10], a parzen estimation
using a Gaussian Kernel [11] of both is considered. Using these approximations
for f and g, this quantity can be rewritten as:

DED =

∫
Rn

(f(x) − g(x))2dx =

∫
Rn

f(x)2dx+

∫
Rn

g(x)2dx− 2

∫
Rn

f(x)g(x)dx

=

∫
Rn

(
1

N

N∑
i=1

Gσ(x− xf
i )

)2

dx+

∫
Rn

(
1

M

M∑
i=1

Gσ(x− xg
i )

)2

dx

− 2

∫
Rn

( 1

N

N∑
i=1

Gσ(x− xf
i )
)( 1

M

M∑
i=1

Gσ(x − xg
i )
)
dx

=
1

N2

N∑
i=1

N∑
j=1

G√
2σ(x

f
j − xf

i )
2 +

1

M2

M∑
i=1

M∑
j=1

G√
2σ(x

g
j − xg

i )
2

− 2

MN

N∑
i=1

M∑
j=1

G√
2σ(x

g
j − xf

i )
2 = V̂f + V̂g − 2V̂c (7)

where σ is the width of the gaussian kernel and has to be selected. This measure
has proven to be an effective way of computing the divergence between two pdfs



Multi-task Averaging and Task Clustering 153

represented by a sample in many learning scenarios and in this work will be
used as the similarity measure between tasks. Specifically, a normalized version
of this measure is used

DN
ED(f, g) = 2− 2V̂c/V̂f V̂g. (8)

This expression still maintains the properties of a divergence and has the ad-
vantage of being normalized in the interval [0, 2] which will be useful for graph
construction in the k-MTA algorithm. Since the clustering technique presented
below requires a similarity measure, we transform the aforementioned divergence
DN

ED into the following similarity measure in the interval [0, 1]:

Sij =
2−DN

ED(fi, fj)

2
(9)

4.2 Spectral Clustering

Spectral clustering [14] aims at clustering similar objects oi, i = 1, . . . , T into
k groups given a similarity graph G between all these objects. It can be used
virtually with a sample of any kind of items as long as we are given a similarity
measure between them. These similarities are used to build a similarity graph
G which subsequently is fed into the clustering subroutine. When constructing
similarity graphs the goal is to model the local neighborhood relationships be-
tween the data points. There are several popular constructions to transform a
given set o1, . . . , on of objects with pairwise similarities Sij into a graph: (a)
ε-neighborhood, where all points whose pairwise similarities are greater than ε
are connected; (b) k-nearest neighbor graphs, where if a vertex vi is among the
k-nearest neighbors of vj those two vertex are connected, and (c) fully connected
graph, in which all points are connected with positive similarity given by Sij . In
this work we will use ε-neighborhood strategy to build the similarity graph.

Once we have the similarity graph G, the graph Laplacian of matrix G is
constructed. At this point three main algorithms are proposed in the literature
depending on the kind of Laplacian used: unnormalized spectral clustering [14]
and the works in [9,13] which use a normalized Laplacian. In this work we will
use the version of [13] since it has proved more accurate and stable in practice.
Algorithm 1 summarizes the steps of this algorithm (more details can be found
in [14]).

4.3 Proposed Algorithm

In this section, we combine the results and components described in previous
sections in the proposed algorithm k-MTA. Algorithm 2 summarizes its main
steps. First, the task clusters are detected combining the similarity measure
presented in Section 4.1 with the spectral clustering algorithm of Section 4.2.
Thanks to this step, we will apply the MTA formula derived in Section 3 to the
task groups which are similar to each other and we will not blend in tasks which
are completely dissimilar, thus avoiding negative transfer.
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Algorithm 1. Spectral clustering main steps

Input : Similarity matrix S ∈ R
T×T , number of clusters k, barrier ε.

Output : Clusters A1, . . . , Ak with Ai = {j | oj ∈ Ci}
1. Construct a similarity graph G by ε-neighborhood based on S.
2. Compute the unnormalized Laplacian L = D−G.
3. Compute the first k generalized eigenvectors u1, . . . ,uk of the genera

lized eigenproblem Lu = λDu.
4. Let U ∈ R

T×k be the matrix containing the vectors u1, . . . ,uk as
columns.

5. Let yi ∈ R
k be the vector corresponding to the i-th row of U (each yi

corresponds to each object oi).
6. Cluster the points yi ∈ R

k, i = 1, . . . , T with the k-means algorithm into
clusters A1, . . . , Ak.

Algorithm 2. k-MTA algorithm

Input : Similarity matrix S ∈ R
T×T , number of clusters k, barrier ε.

Output : Clusters A1, . . . , Ak with Ai = {j | oj ∈ Ci}
1. Construct a similarity graph G by ε-neighborhood based on S.
2. Compute the unnormalized Laplacian L = D−G.
3. Compute the first k generalized eigenvectors u1, . . . ,uk of the genera

lized eigenproblem Lu = λDu.
4. Let U ∈ R

T×k be the matrix containing the vectors u1, . . . ,uk as
columns.

5. Let yi ∈ R
k be the vector corresponding to the i-th row of U (each yi

corresponds to each object oi).
6. Cluster the points yi ∈ R

k, i = 1, . . . , T with the k-means algorithm into
clusters A1, . . . , Ak.

5 Experimental Results

In this section, we explore the performance of k-MTA when compared to its
predecessor MTA in [4] and with the single task mean calculation method. To
this end, we test the methods on both an artificial dataset which exhibits the
behavior of all the methods when clusters of tasks are present, as well as a real
dataset where final marks of groups of students are to be predicted.
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Fig. 1. Mean square distance to the actual means compared to single task result

5.1 Artificial Dataset

The artificial generated dataset has the following properties:

– Number of tasks: 50;
– Number of clusters of tasks: 5;
– Number of task per cluster: 10;
– Input Space: R10;
– Distribution of data: first the means of the Gaussians are selected from 5

Gaussians μt ∼ N(μc1, σId)) for μc = {−10,−5, 0, 5, 10} and σ = 0.1, where
Id denotes the d× d identity matrix. Ten centers are selected for each value
of μc. Then, for each task, a set of iid random data points are generated as
xti ∼ N(μt, Id).

In this selection, we obtain a convenient distribution of the data for k-MTA since
the task are clustered in 5 distant clusters and the expected distance between
their centers is small compared to the variance of each task. Figure 1 depicts
the average mean square distance from the estimated means to the actual ones
compared to the average mean distances obtained with single task means. The
results in the figure are the averages of 30 random runs, having 5 data points
per task (a scarce sample when compared to the number of parameters to be
estimated). The value k of the x axis is the number of clusters k that were
configured for k-MTA (optimal ε was selected from the interval [0, 0.5]). It can
be observed how MTA directly applied to the data does not bring any benefit
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when compared with the single task means while k-MTA obtains an increment
of up to −45% when the exact number of clusters is given. Also, the mean result
for the oracle, when the correct clustering is always provided to the k-MTA, is
shown. It can be observed how the risk of the k-MTA is similar to the oracle
one when the correct number of clusters is given as value for k. In addition, it
should be noted that even when the number of asked clusters is not exactly the
number of actual clusters in the dataset, k-MTA is indeed able to obtain very
good accuracy increments.

5.2 School Dataset

The goal of this application is to predict the final class grades μ1, . . . , μT of T
students, given only each student’s N homework grades yti, i = 1, . . . , N . The
final class grades include all tests and final exams made by the students but only
homework grades are used to predict the final grade. The 16 anonymized datasets
were provided by instructors at the University of Washington Department of
Electrical Engineering. We consider each class as an experiment and the students
in that class the tasks. All grades are normalized in the interval [0, 100] and never
handed homework was assigned 0 points. For each class, a single pooled variance
estimate was used for all tasks. In other words σ2

t = σ2, for every t = 1, . . . , T .
Table 1 shows the results obtained when compared with MTA. The reported
results are the gains in percentage in final marks prediction when compared
with single task means, thus lower value is better.

Table 1. School dataset results

# of stud. 68 69 72 44 50 50 47 16

k-MTA -37.29 -38.73 (*) -26.92 -36.91 -18.14 (*) -26.58 -8.62 -1.80 (*)

MTA -37.29 -38.42 -26.94 -36.91 3.33 -26.58 -8.62 1.0

# of stud. 29 36 57 48 58 39 149 110

k-MTA -10.26 -13.99 -3.82 (*) -12.80 (*) -12.35 -5.38 -9.15 -11.52

MTA -10.26 -13.99 -3.47 -11.53 -12.35 -5.38 -9.15 -11.52

In the table it can be observed that, since k-MTA includes MTA as an special
case (when k = 0) it has always an equal or better performance than MTA. It is
important to note that k-MTA performs better in 5 out of 16 classes and that it
always presents a gain with respect to single task means. It is able to obtain a
gain even when MTA can not improve single task means. This may be due the
presence of clusters in those classes, which are not treated by MTA. In this case,
optimal values were selected from the intervals k = [1, 30] and ε = [0, 0.5].

6 Conclusions and Future Work

We have proposed a new algorithm for multi-task averaging. It extends the work
in [4] to a n-dimensional space and tackles a key issue when dealing with real
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data, namely the presence of clusters of related tasks. The algorithm is based
on two steps. First, tasks are clustered based on their samples and subsequently
MTA is applied for each cluster of tasks. Experimental results show that direct
application of MTA in a case where tasks are clustered is useless compared with
the results obtained by the single task means. On the other hand, k-MTA is able
to detect the underlying clusters of tasks and obtains a significant increment of
accuracy. The experiments also suggest that, when dealing with more than two
tasks, their relatedness should reflect the similarity between their distributions
and this issue should be taken into account when building algorithms like for
example multitask one-class classifiers [5,15]. In the future it would be interesting
to study extension of the ideas presented here to learn multiple mean embeddings
in reproducing kernel Hilbert spaces (see e.g. [2]). Another interesting direction
of research is to consider different models of task relatedness and groupping such
as in [1,8].
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A Appendix: Proof of Lemmas

Proof of Lemma 2

We first rewrite the objective function in equation (2) as

T∑
t=1

(at +
Nt

σ2
t

‖ct‖2 − 2
Nt

σ2
t

c′tct) +
γ

2T

T∑
s,t=1

Ast(‖cs‖2 + ‖ct‖2 − 2c′sct)

where at :=
Nt∑
i=1

‖xti‖2

σ2
t

Next we rewrite this equation as in terms of c ∈ R
Tn and x̂ ∈ R

Tn as

T∑
t=1

at + c′(Σ−1 ⊗ In)c − 2c′(Σ−1 ⊗ In)x̂ +
γ

T
c′(L(A)⊗ Id)c.

Taking the derivative with respect to c and setting it equal it to 0 yields that

c∗ = (ITn +
γ

T
(Σ⊗ In)(L(A) ⊗ In))

−1x̂.

Applying the mixed-product property of the kronecker product to the second
term of the inverse, then the associativity of the kronecker product and the
inverse property we find that

(IT ⊗ In +
γ

T
(ΣL(A))⊗ In)

−1 = ((IT +
γ

T
ΣL(A))−1 ⊗ In).

The result follows.
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A Proof of Lemma 3

Without loss of generality we assume that γ = 1. Let σ = tr(Σ)
T and observe that

c∗ = ((IT +
a

T
ΣL(11′))−1 ⊗ In)x̂

= ((IT +
a

T
Σ(TIT − 11′)−1 ⊗ In)x̂

= ((IT + aΣIT − a

T
Σ11′)−1 ⊗ In)x̂

= ((IT + aΣIT )
−1 +

(IT + aΣIT )
−1 a

T Σ11′(IT + aΣIT )
−1

1− a
T 1

′(IT + aΣIT )−1Σ1
)⊗ In)x̂

= (
1

aσ + 1

(
IT + a

σ

T
11′

)
⊗ In)x̂

where we have made use of the Sherman-Morrison formula for the inverse and
omitted some tedious algebra. We will call the matrix on the right-hand side Z
when substituting.

Next, we define the expression for the expected mean square error of an es-
timator of the form Wx̂ of a mean vector μ, where x̂ is the simple average of
each task. We have that:

R(Wx̂, μ) = E(‖Wx̂− μ‖2)
= E((Wx̂− μ)′(Wx̂− μ))

= tr(WΣW′) + μ′(W − I)′(W − I)μ

where the expected value is taken with respect to the random sample and μ and
Σ are the actual mean and covariance of the distribution. In this work we will
suppose that all the distributions have an isotropic diagonal covariance matrix
so we can use this expression with μ ∈ RTn and covariance matrix Σ = ΣT ⊗ In

with ΣT = diag(
σ2
1

N1
, . . . ,

σ2
T

NT
). If we substitute the optimal expression for W in

this expression we have that:

R(Wx̂, μ) = tr((Z⊗ In)Σ(Z⊗ In)
′) + μ′((Z⊗ In)− ITn)

′((Z⊗ In)− ITn)μ

= tr((ZΣZ′)⊗ In) + μ′((Z− IT )
′(Z− IT )⊗ In)μ

= tr(ZΣZ′)tr(In) + μ′((Z − IT )
′(Z− IT )⊗ In)μ

= n

[
σ

(aσ + 1)2
(T + 2aσ + (aσ)2)

]
+

(aσ)2

(aσ + 1)2
μ′

[
L(

1

T
11′)⊗ In

]
μ

where σ = tr(Σ)
T , we have used the idempotency of matrix L( 1

T 11
′) and omitted

some tedious algebra in the last step. The derivative of this expression with
respect to a is given by

δR((Z⊗ In)x̂, μ)

δa
=

2σ2[(1− T )n+ aμ′ [L( 1
T 11

′)⊗ In
]
μ]

(aσ + 1)3
. (10)

In order for this expression to be equal to zero, the numerator must be zero. The
result follows.
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