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Preface

This volume contains the papers presented at the Second International Workshop
on Similarity-Based Pattern Analysis and Recognition, held in York, UK, during
July 3–5, 2013 (SIMBAD 2013). The aim of this series of workshops, the first
edition of which was held in Venice, Italy, in September 2011, is to consolidate
research efforts in the area of similarity-based pattern recognition and machine
learning and to provide an informal discussion forum for researchers and prac-
titioners interested in this important yet diverse subject. The idea of running
these workshops originated from the EU FP7 Project SIMBAD (http://simbad-
fp7.eu), which was devoted precisely to this theme.

The call for papers produced 33 submissions, resulting in the 18 contributed
papers appearing in this volume, 10 of which were presented as long (40 min)
talks and 8 as short ones (20 min). We make no distinction between these two
types of contributions in the book. The papers cover a wide range of problems
and perspectives, from supervised to unsupervised learning, from generative to
discriminative models, from theoretical issues to real-world practical applica-
tions, and offer a timely picture of the state of the art in the field.

In addition to regular, original contributions, we also solicited papers that
have been recently published, or accepted for publication, elsewhere. These pa-
pers underwent the same review process as regular ones, and the accepted ones
were presented at the workshop either as a long or short talk. The workshop’s
program included the following non-original talks that, of course, are not con-
tained in this book:

– Balcan, M.-F., Liang, Y.: Clustering under perturbation resilience. In: Proc.
ICALP 2012, Warwick, UK, pp. 63–74 (2012)

– Bonev, B., Chuang, L., Escolano, F.: How do image complexity, task de-
mands and looking biases influence human gaze behavior? Pattern Recogni-
tion Letters 34(7), 723–730 (2013)

– Chehreghani, M.H., Busse, L.M., Buhmann, J.M.: Information-theoretic anal-
ysis of clustering algorithms

– Lourenco, A., Rota Bulò, S., Rebagliati, N., Fred, A., Figueiredo, M., Pelillo,
M.: Probabilistic consensus clustering using evidence accumulation. Machine
Learning (2013, in press)

– Prabhakaran, S., Metzner, K., Boehm, A., Roth, V.: Recovering networks
from distance data. In: JMLR: Workshop and Conference Proceedings, vol.
25, pp. 349–364 (2012)

Finally, the workshop also featured invited keynote talks by Avrim Blum, from
Carnegie Mellon University, USA, Nello Cristianini, from the University of Bris-
tol, UK, and Frank Nielsen, from Sony Computer Science Laboratories Inc.,
Japan.



VI Preface

We would like to take this opportunity to express our gratitude to all those
who helped to organize the workshop. First of all, thanks are due to the members
of the Scientific Committees and to the additional reviewers. Special thanks are
due to the members of the Organizing Committee. In particular, Samuel Rota
Bulò managed the workshop’s website and the online review system, and Luca
Rossi helped assemble the proceedings.

Finally, we offer our appreciation to the editorial staff at Springer in produc-
ing this book, and for supporting the event through publication in the LNCS
series. We also thank all the authors and the invited speakers for helping to make
this event a success, and producing a high-quality publication to document the
event.

April 2013 Edwin Hancock
Marcello Pelillo
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Pattern Learning and Recognition on Statistical

Manifolds: An Information-Geometric Review

Frank Nielsen

Sony Computer Science Laboratories, Inc.
Tokyo, Japan

Frank.Nielsen@acm.org

www.informationgeometry.org

Abstract. We review the information-geometric framework for statisti-
cal pattern recognition: First, we explain the role of statistical similarity
measures and distances in fundamental statistical pattern recognition
problems. We then concisely review the main statistical distances and
report a novel versatile family of divergences. Depending on their intrin-
sic complexity, the statistical patterns are learned by either atomic para-
metric distributions, semi-parametric finite mixtures, or non-parametric
kernel density distributions. Those statistical patterns are interpreted
and handled geometrically in statistical manifolds either as single points,
weighted sparse point sets or non-weighted dense point sets. We ex-
plain the construction of the two prominent families of statistical mani-
folds: The Rao Riemannian manifolds with geodesic metric distances, and
the Amari-Chentsov manifolds with dual asymmetric non-metric diver-
gences. For the latter manifolds, when considering atomic distributions
from the same exponential families (including the ubiquitous Gaussian
and multinomial families), we end up with dually flat exponential family
manifolds that play a crucial role in many applications. We compare the
advantages and disadvantages of these two approaches from the algorith-
mic point of view. Finally, we conclude with further perspectives on how
“geometric thinking” may spur novel pattern modeling and processing
paradigms.

Keywords: Statistical manifolds, mixture modeling, kernel density
estimator, exponential families, clustering, Voronoi diagrams.

1 Introduction

1.1 Learning Statistical Patterns and the Cramér-Rao Lower Bound

Statistical pattern recognition [1] is concerned with learning patterns from ob-
servations using sensors, and with analyzing and recognizing those patterns effi-
ciently. We shall consider three kinds of statistical models for learning patterns
depending on their intrinsic complexities:

E. Hancock and M. Pelillo (Eds.): SIMBAD 2013, LNCS 7953, pp. 1–25, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.informationgeometry.org


2 F. Nielsen

1. parametric models: A pattern is an atomic parametric distribution,
2. semi-parametric models: A pattern is a finite mixture of parametric

distributions, and
3. non-parametric models: A pattern is a kernel density distribution.

Given a set of n observations {x1, ..., xn}, we may estimate the pattern pa-
rameter λ of the atomic distribution p(x;λ) by using the maximum likelihood
principle. The maximum likelihood estimator (MLE) proceeds by defining a
function L(λ;x1, ..., xn), called the likelihood function and maximizes this func-
tion with respect to λ. Since the sample is usually assumed to be identically and
independently distributed (iid.), we have:

L(λ;x1, ..., xn) =
∏
i

p(xi;λ).

This maximization is equivalent (but mathematically often more convenient) to
maximize the log-likelihood function:

l(λ;x1, ..., xn) = logL(λ;x1, ..., xn) =
∑
i

log p(xi;λ).

This maximization problem amounts to set the gradient to zero: ∇l(λ;x1, ..., xn)
= 0, and solve for the estimated quantity λ̂ provided that it is well-defined
(ie., that ML does not diverge to ∞). We can view the MLE as a function

λ̂(X1, ..., Xn) on a random vector and ask for its statistical performance. (In-
deed, we can build a family of moment estimators by matching the sample l-th
moments with the distribution l-th moments. This raises the question to compare
them by analyzing, say, their variance characteristics.) Cramér [2], Fréchet [3]
and Rao [4] independently proved a lower bound on the variance of any unbiased

estimator λ̂:
V [λ̂] � I(λ)−1,

where � denotes the Löwner partial ordering1 on positive semidefinite matrices,
and matrix I(λ) is called the Fisher information matrix:

I(λ) = [Iij(λ)], Iij(λ) = E[∂il(x;λ)∂j l(x;λ)],

with ∂k the shortcut notation: ∂k = ∂
∂λk

. The Fisher information matrix [5]

(FIM) is the variance of the score function s(λ) = ∇λ log p(λ;x): I(λ) = V [s(λ)].
This lower bound holds under very mild regularity conditions.

Learning finite mixtures of k atomic distributions is traditionally done using
the Expectation-Maximization algorithm [6]. Learning a non-parametric distri-
bution using a kernel density estimator (KDE) proceeds by choosing a kernel
(e.g., Gaussian kernel), and by then fitting a kernel at each sample observation

1 A symmetric matrix X is positive definite if and only if ∀x �= 0, x�Xx > 0, and
A � B iff. A − B � 0. When the inequality is relaxed to include equality, we have
the semi-positive definiteness property.



Pattern Learning and Recognition on Statistical Manifolds 3

(controlling adaptively the kernel window is important in practice). Those three
ML estimation/EM/KDE algorithms will be explained using the framework
of information geometry in Section 5 when considering dually flat statistical
exponential family manifolds (EFMs).

We now describe briefly the fundamental tasks of pattern recognition us-
ing eiher the unsupervised setting or the supervised setting. We recommend the
introductory textbook [7] of Fukunaga for further explanations.

1.2 Unsupervised Pattern Recognition

Given a collection of n statistical patterns represented by their distributions
(or estimated parameters λ1, ..., λn), we would like to categorize them. That is,
to identify groups (or clusters) of patterns inducing pattern categories. This is
typically done using clustering algorithms. Observe that since patterns are repre-
sented by probability distributions, we need to have clustering algorithms suited
to statistical distributions: Namely, clustering algorithms tailored for informa-
tion spaces. We shall explain and describe the notions of statistical distances in
information spaces in the following Section.

1.3 Supervised Pattern Recognition

When we are given beforehand a training set of properly labeled (or annotated)
patterns, and seek to classify incoming online patterns, we may choose to label
that query pattern with the label of its most similar annotated pattern in the
database, or to vote by considering the k “nearest” patterns. Again, this requires
a notion of statistical similarity that is described in Section 2.

1.4 Core Geometric Structures and Algorithmic Toolboxes

Since we are going to focus on two types of construction for defining statistical
manifolds of patterns, let us review the wish list tools required by supervised or
unsupervised pattern recognition. We need among others:

– Clustering (e.g., hard clustering à la k-means) with respect to statistical
distances for unsupervised category discovery,

– To study the statistical Voronoi diagrams induced by the distinct category
patterns,

– Data-structures for performing efficiently k-NN (nearest neighbor) search
with respect to statistical distances (say, ball trees [8] or vantage point
trees [9]),

– To study minimum enclosing balls (MEB) [10,11,12,13] (with applications
in machine learning using vector ball machines [14])

– Etc.
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1.5 Outline of the Paper

The paper is organized as follows: In Section 2, we review the main statistical
divergences, starting from the seminal Kullback-Leibler divergence, and explain
why and how the intractable distribution intersection similarity measure needs
to be upper bounded. This allows to explain the genesis of the Bhattacharyya
divergence, the Chernoff information and the family of α-divergences. Following
this interpretation, we further present the novel concept of quasi-arithmetic α-
divergences and quasi-arithmetic Chernoff informations. Section 3 recalls that
geometry is grounded by notion of invariance, and introduces the concepts of
statistical invariance with the class of Ali-Silvey-Csiszár f -divergences [15,16].
We then describe two classical statistical manifold constructions: In Section 4,
we present the Rao Riemannian manifold and discuss on its algorithmic consid-
erations. In Section 5, we describe the dual affine Amari-Chentsov manifolds,
and explain the process of learning parametric/semi-parametric/non-parametric
patterns on those manifolds. Finally, Section 6 wrap ups this review paper and
hints at further perspectives in the realm of statistical pattern analysis and
recognition.

2 Statistical Distances and Divergences

2.1 The Fundamental Kullback-Leibler Divergence

The Kullback-Leibler divergence between two probability distributions P (x) and
Q(x) (with density p(x) and q(x) with respect to a measure ν) is equal to the
cross-entropy H×(P : Q) minus the Shannon entropy H(P ):

KL(P : Q) =

∫
p(x) log

p(x)

q(x)
dν(x) = H×(P : Q)−H(P ) ≥ 0,

with

H×(P : Q) =

∫
−p(x) log q(x)dν(x),

H(P ) =

∫
−p(x) log p(x)dν(x) = H×(P : P ).

In practice, the Kullback-Leibler divergence KL(P̃ : P ) [17] can be interpreted
as the distance between the estimated distribution P̃ (derived from the observed
samples) and the true hidden distribution P . The Kullback-Leibler divergence
does not satisfy the metric axioms of symmetry and triangular inequality. There-
fore we call this dissimilarity2 measure a divergence as it is a smooth and dif-
ferentiable distance function that satisfies the essential separability property:
KL(P : Q) = 0 if and only if P = Q. Computing the Kullback-Leibler may
not be tractable analytically (eg., for patterns modeled by mixtures or KDEs)

2 Note that there are Finslerian distances [34] that preserve the triangular inequality
without being symmetric.
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and requires costly Monte-Carlo stochastic approximation algorithms to esti-
mate. To bypass this computational obstacle, several alternative distances like
the Cauchy-Schwarz divergences [18] have been proposed. Since the inception
of the Kullback-Leibler divergence, many other statistical distances have been
proposed. We shall review in the context of classification the most prominent
divergences.

2.2 Genesis of Statistical Distances

How can we define a notion of “distance” between two probability distributions
P1 and P2 sharing the same support X with respective density p1 and p2 with
respect to a dominating measure ν? What is the meaning of defining statistical
distances? A distance D(·, ·) can be understood as a non-negative dissimilarity
measure D(P1, P2) ≥ 0 that is related to the notion of a similarity measure
0 < S(P1, P2) ≤ 1. We present an overview of statistical distances based on the
framework of Bayesian binary hypothesis testing [7].

Consider discriminating P1 and P2 with the following classification problem
based on the mixture P = 1

2P1 +
1
2P2. To sample mixture P , we first toss an

unbiased coin and choose to sample from P1 if the coin fell on heads or to sample
from P2 if it fell on tails. Thus mixture sampling is a doubly stochastic process.
Now, given a random variate x of P (i.e., an observation) we would like to decide
whether x was sampled from P1 or from P2? It makes sense to label x as class
C1 if p1(x) > p2(x) and as class C2, otherwise (if p2(x) ≥ p1(x)). Since the
distribution supports of P1 and P2 coincide, we can never be certain, and shall
find a decision rule to minimize the risk. We seek for the best decision rule that
minimizes the probability of error Pe, that is, the probability of misclassification.

Consider the decision rule based on the log-likelihood ratio log p1(x)
p2(x)

:

log
p1(x)

p2(x)

C2

�
C1

0.

The expected probability of error is:

Pe = EP [error(x)] =

∫
x∈X

error(x)p(x)dν(x),

where p(x) = 1
2p1(x) +

1
2p2(x) denotes the mixture density, and

error(x) = min

(
1

2

p1(x)

p(x)
,
1

2

p2(x)

p(x)

)
.

Indeed, suppose that at x (with probability 1
2 ), p1(x) < p2(x). Since we label

x as C2 then we misclassify with proportion p1(x)
p(x) , and vice-versa [7]. Thus the

probability of error Pe =
1
2S(P1, P2) where:

S(P1, P2) =

∫
min(p1(x), p2(x))dν(x).
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S is a similarity measure since S(P1, P2) = 1 if and only if P1 = P2. It is known in
computer vision, in the discrete case, as the histogram intersection similarity [19].

In practice, computing S is not tractable3, specially for multivariate distribu-
tions. Thus, we seek to upper bound S using mathematically convenient tricks
purposely designed for large classes of probability distributions. Consider the
case of exponential families [20] that includes most common distributions such
as Poisson, Gaussian, Gamma, Beta, Dirichlet, etc. distributions. Their natural
canonical density decomposition is:

pi = p(x|θi) = exp(〈θi, t(x)〉 − F (θi) + k(x)),

where θi is the natural parameter belonging to natural parameter space Θ. Func-
tion F is strictly convex and characterize the family. t(x) is the sufficient statistic
and k(x) is an auxiliary carrier term [20]. Table 1 summarizes the canonical de-
composition and related results for the multinomial and Gaussian families, with
pi = p(x|λi) = p(x|θ(λi)). We can upper bound the probability intersection
similarity S using the fact that:

min(p1(x), p2(x)) ≤
√
p1(x)p2(x).

We get:

S(P1, P2) ≤ ρ(P1, P2) =

∫ √
p1(x)p2(x)dν(x).

The right hand-side is called the Bhattacharrya coefficient or Bhattacharrya
affinity. For distributions belonging to the same exponential family (e.g., P1 and
P2 are multivariate Gaussians [20]), we have:

ρ(P1, P2) = e−JF (θ1,θ2),

where JF is a Jensen divergence defined over the natural parameter space:

JF (θ1, θ2) =
F (θ1) + F (θ2)

2
− F

(
θ1 + θ2

2

)
≥ 0.

Of course, the bound is not the tightest. Therefore, we may consider for α ∈ (0, 1)
that min(p1(x), p2(x)) ≤ p1(x)

αp2(x)
1−α. It follows the α-skewed Bhattacharrya

coefficient upper bounding S:

S(P1, P2) ≤ ρα(P1, P2) =

∫
p1(x)

αp2(x)
1−αdν(x).

3 In fact, using the mathematical rewriting trick min(a, b) = a+b
2

− 1
2
|b − a|, the

probability intersection similarity is related to computing the total variation metric
distance: S(P1, P2) = 1 − TV(P1, P2), with TV(P1, P2) =

1
2

∫ |p1(x) − p2(x)|dν(x).
Bayes error that relies on a cost design matrix [7] to account for the different cor-
rect/incorrect classification costs extends the concept of the probability of error.
Similarly, Bayes error can also be expressed using total variation distance on scaled
probabilities (with scales depending on the prior mixture weights and on the cost
design matrix).
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This definition of affinity coefficient is still mathematically convenient for
exponential families since we find that [20]:

ρα(P1, P2) = e−J
(α)
F (θ1,θ2),

where J
(α)
F denotes a skewed Jensen divergence defined on the corresponding

natural parameters:

J
(α)
F (θ1, θ2) = αF (θ1) + (1 − α)F (θ2)− F (αθ1 + (1− α)θ2) ≥ 0,

with equality to zero if and only if θ1 = θ2 since F is a strictly convex and
differentiable function. Setting α = 1

2 , we get back the Bhattacharrya coefficient.
The upper bound can thus be “best” improved by optimizing over the α-range

in (0, 1):
S(P1, P2) ≤ min

α∈[0,1]
ρα(P1, P2) = ρα∗(P1, P2)

The optimal value α∗ is called best error exponent in Bayesian hypothesis test-
ing [7]. For an iid. sequence of n observations, the probability of error is thus
bounded [21] by:

P (n)
e ≤ 1

2
ρnα∗(P1, P2)

Historically, those similarity or affinity coefficients upper bounding the proba-
bility intersection similarity yielded respective notions of statistical distances:

Bα(P1, P2) = − log ρα(P1, P2) = J
(α)
F (θ1, θ2),

the skew Bhattacharyya divergences. Let us rescale Bα by a factor 1
α(1−α) , then

we have for α 
∈ {0, 1}:

B′
α(P1, P2) =

1

α(1− α)
Bα(P1, P2) =

1

α(1− α)
J
(α)
F (θ1, θ2) = J ′(α)

F (θ1, θ2).

When α → 1 or α → 0, we have B′
α that tends to the direct or reverse Kullback-

Leibler divergence. For exponential families, that means that the scaled skew

Jensen divergences J ′(α)
F tends to the direct or reverse Bregman divergence [22]:

lim
α→0

J ′
F
(α)

(θ1, θ2) = BF (θ1, θ2),

where a Bregman divergence is defined for a strictly convex and differentiable
genetor F by:

BF (θ1, θ2) = F (θ1)− F (θ2)− (θ1 − θ2)
�∇F (θ2).

Furthermore, the Chernoff divergence (historically called Chernoff information)
is defined by:

C(P1, P2) = max
α∈[0,1]

− log ρα(P1, P2) = Bα∗(P1, P2)
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The mapping of a similarity coefficient by the monotonous function − log(·)
mimicked the unbounded property of the Kullback-Leibler divergence. However,
we can also map a similarity coefficient S ∈ (0, 1] to a distance D ∈ [0, 1) by
simply defining:

D(P1, P2) = 1− S(P1, P2)

For example, we can define dα(P1, P2) = 1−ρα(P1, P2). Since distances are used
relatively to compare distributions and rank them as nearer or farther away,
we can also rescale them. Another mathematical convenience is to scale dα by

1
α(1−α) so that we get:

Dα(P1, P2) =
1− ρα(P1, P2)

α(1 − α)
=

1−
∫
p(x)αq(x)1−αdν(x)

α(1 − α)

This is known as the α-divergences of Amari that are the canonical divergences in
information geometry [23]. When α → 1, we get the Kullback-Leibler divergence.
When α → 0, we get the reverse Kullback-Leibler divergence. When α = 1

2 , we
find the (scaled) squared of the Hellinger distance. In information geometry,
it is customary to set α ∈ [− 1

2 ,
1
2 ] instead of [0, 1] by remapping α ← α − 1

2 .
For members P1 and P2 belonging to the same exponential family, we have the
following closed-formula for the α-divergences:

Aα(P : Q) =
4

1− α2

(
1−

∫
x∈X

p
1−α

2 (x)q
1+α

2 dx

)
,

Aα(P : Q) =
4

1− α2

(
1− e−J

( 1−α
2 )

F (θ(P ) : θ(Q))

)
.

2.3 Novel Quasi-Arithmetic α-Divergences and Chernoff
Information

Note that we can design many similar divergences by similarly upper bounding
the probability intersection histogram similarity S. By definition, a weighted
mean should have the property that it lies inside the range of its elements. Thus
we can bound min(a, b) by any other kind of weighted means:

min(a, b) ≤ M(a, b;α),

with α ∈ [0, 1]. Instead of bounding S by a geometric weighted mean, let us con-
sider for a strictly monotonous function f the quasi-arithmetic weighted means:

Mf (a, b;α) = f−1(αf(a) + (1− α)f(b)).

We get:

S(P1, P2) ≤ ρ(f)α (P1, P2) =

∫
Mf(p1(x), p2(x);α)dν(x),
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for α ∈ (0, 1), since the extremities α = 0, 1 are not discriminative:

ρ
(f)
0 (P1, P2) = ρ

(f)
1 (P1, P2) = 1.

When distributions coincide, notice that we have maximal affinity: ρ
(f)
α

(P, P ) = 1.
Similarly, we can also generalize the Chernoff information to quasi-arithmetic

f -Chernoff information as follows:

Cf (P1, P2) = max
α∈[0,1]

− log

∫
Mf (p1(x), p2(x))dν(x).

For example, if we consider distributions not belonging to the exponential fam-
ilies like the univariate Cauchy distributions or the multivariate t-distributions
(related to the unnormalized Pearson type VII elliptical distributions), in or-
der to find a closed-form expression for

∫
Mf (p1(x), p2(x))dν(x), we may choose

the harmonic mean with f(x) = 1
x = f−1(x) instead of the geometric weighted

mean.
To summarize, we have explained how the canonical α-divergences upper

bounding the probability of error have been designed to include the sided (i.e.,
direct and reverse) Kullback-Leibler divergence, and explained the notion of
probability separability using a binary classification task. We now turn our
focus to build geometries for modeling statistical manifolds.

3 Divergence, Invariance and Geometry

In Euclidean geometry, we are familiar with the invariant group of rigid transfor-
mations (translations, rotations and reflections). The Euclidean distance
d(P1, P2) of two points P1 and P2 does not change if we apply such a rigid
transformation T on their respective representations p1 and p2:

d(P1, P2) = d(p1, p2) = d(T (p1), T (p2)).

In fact, when we compute the distance between two points P1 and P2, we should
not worry about the origin. Distance computations require numerical attributes
that nevertheless should be invariant of the underlying geometry. Points exist
beyond a specific coordinate system. This geometric invariance principle by a
group of action has been carefully studied by Felix Klein in his Erlangen program.

A divergence is basically a smooth C2 function (statistical distance) that may
not be symmetric nor satisfy the triangular inequality of metrics. We denote by
D(P : Q) the divergence from distribution P (with density p(x)) to distribution
Q (with density q(x)), where the “:” notation emphasizes the fact that this
dissimilarity measure may not be symmetric: D(P : Q) 
= D(Q : P ).

It is proven that the only statistical invariant divergences [23,24] are the Ali-
Silvey-Csiszár f -divergences Df [15,16] that are defined for a functional convex
generator f satisfying f(1) = f ′(1) = 0 and f ′′(1) = 1 by:
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Df (P : Q) =

∫
x∈X

p(x)f

(
q(x)

p(x)

)
dν(x).

Indeed, under an invertible mapping function (with dim(X ) = dim(Y) = d):

m : X → Y
x → y = m(x)

a probability density p(x) is converted into another probability density q(y) such
that:

p(x)dx = q(y)dy, dy = |M(x)|dx,
where |M(x)| denotes the determinant of the Jacobian matrix [23] of the
transformation m (i.e., the partial derivatives):

M(x) =

⎡⎢⎣
∂y1

∂x1
. . . ∂y1

∂xd

...
. . .

...
∂yd

∂x1
. . . ∂yd

∂xd

⎤⎥⎦ .
It follows that we have:

q(y) = q(m(x)) = p(x)|M(x)|−1.

For any two densities p1 and p2, we have the f -divergence on the transformed
densities q1 and q2 that can be rewritten mathematically as:

Df(q1 : q2) =

∫
y∈Y

q1(y)f

(
q2(y)

q1(y)

)
dy,

=

∫
x∈X

p1(x)|M(x)|−1f

(
p2(x)

p1(x)

)
|M(x)|dx,

= Df (p1 : p2).

Furthermore, the f -divergences are the only divergences satisfying the data-
processing theorem [25]. This theorem characterizes the property of information
monotonicity [26]. Consider discrete distributions on an alphabet X of d letters.
For any partition B = X1 ∪ ...Xb of X that merge alphabet letters into b ≤ d
bins, we have

0 ≤ Df (p̄1 : p̄2) ≤ Df (p1 : p2),

where p̄1 and p̄2 are the discrete distribution induced by the partition B on X .
That is, we loose discrimination power by coarse-graining the support of the
distributions. The most fundamental f -divergence is the Kullback-Leibler diver-
gence [17] obtained for the generator f(x) = x log x: In general,
statistical invariance is characterized under Markov morphisms [27,24] (also
called sufficient stochastic kernels [24]) that generalizes the deterministic trans-
formations y = m(x). Loosely speaking, a geometric parametric statistical man-
ifold F = {pθ(x)|θ ∈ Θ} equipped with a f -divergence must also provide
invariance by:
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Non-singular Parameter Re-Parameterization. That is, if we choose a dif-
ferent coordinate system, say θ′ = f(θ) for an invertible transformation f ,
it should not impact the intrinsic distance between the underlying distri-
butions. For example, whether we parametrize the Gaussian manifold by
θ = (μ, σ) or by θ′ = (μ5, σ4), it should preserve the distance.

Sufficient Statistic. When making statistical inference, we use statistics T :
Rd → Θ ⊆ RD (e.g., the mean statistic Tn(X) = 1

n

∑n
i=1Xi is used for esti-

mating the parameter μ of Gaussians). In statistics, the concept of
sufficiency was introduced by Fisher [28]:
Mathematically, the fact that all information should be aggregated inside
the sufficient statistic is written as

Pr(x|t, θ) = Pr(x|t).

It is not surprising that all statistical information of a parametric distribution
with D parameters can be recovered from a set of D statistics. For example,
the univariate Gaussian with d = dim(X ) = 1 and D = dim(Θ) = 2 (for
parameters θ = (μ, σ)) is recovered from the mean and variance statistics.
A sufficient statistic is a set of statistics that compress information without
loss for statistical inference.

4 Rao Statistical Manifolds: A Riemannian Approach

4.1 Riemannian Construction of Rao Manifolds

We review the construction first reported in 1945 by C.R. Rao [4]. Consider a
family of parametric probability distribution {pθ(x)}θ with x ∈ R

d (dimension
of the support) and θ ∈ RD denoting the D-dimensional parameters of the
distributions. It is called the order of the probability family. The population
parameter space is defined by:

Θ =

{
θ ∈ R

D
∣∣∣ ∫

pθ(x)dx = 1

}
.

A given distribution pθ(x) is interpreted as a corresponding point indexed by
θ ∈ RD. θ also encodes a coordinate system to identify probability models:
θ ↔ pθ(x).

Consider now two infinitesimally close points θ and θ+ dθ. Their probability
densities differ by their first order differentials: dp(θ). The distribution of dp over
all the support aggregates the consequences of replacing θ by θ+dθ. Rao’s revolu-
tionary idea was to consider the relative discrepancy dp

p and to take the variance
of this difference distribution to define the following quadratic differential form:

ds2(θ) =

D∑
i=1

D∑
j=1

gij(θ)dθidθj ,

= (∇θ)�G(θ)∇θ,
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with the matrix entries of G(θ) = [gij(θ)] as

gij(θ) = Eθ

[
1

p(θ)

∂p

∂θi

1

p(θ)

∂p

∂θj

]
= gji(θ).

In differential geometry, we often use the symbol ∂i as a shortcut to ∂
∂θi

.
The elements gij(θ) form the quadratic differential form defining the elemen-

tary length of Riemannian geometry. The matrix G(θ) = [gij(θ)] � 0 is posi-
tive definite and turns out to be equivalent to the Fisher information matrix:
G(θ) = I(θ). The information matrix is invariant to monotonous transformations
of the parameter space [4] and makes it a good candidate for a Riemannian met-
ric as the concepts of the concepts of invariance in statistical manifolds[29,27]
later was revealed.

4.2 Rao Riemannian Geodesic Metric Distance

Let P1 and P2 be two points of the population space corresponding to the dis-
tributions with respective parameters θ1 and θ2. In Riemannian geometry, the
geodesics are the shortest paths. The statistical distance between the two pop-
ulations is defined by integrating the infinitesimal element lengths ds along the
geodesic linking P1 and P2. Equipped with the Fisher information matrix tensor
I(θ), the Rao distance D(·, ·) between two distributions on a statistical manifold
can be calculated from the geodesic length as follows:

D(pθ1(x), pθ2(x)) = min
θ(t)

θ(0)=θ1,θ(1)=θ2

∫ 1

0

(√
(∇θ)�I(θ)∇θ

)
dt (1)

Therefore we need to calculate explicitly the geodesic linking pθ1(x) to pθ2(x)
to compute Rao’s distance. This is done by solving the following second order
ordinary differential equation (ODE) [23]:

gkiθ̈i + Γk,ij θ̇iθ̇j = 0,

where Einstein summation [23] convention has been used to simplify the mathe-
matical writing by removing the leading sum symbols. The coefficients Γk,ij are
the Christoffel symbols of the first kind defined by:

Γk,ij =
1

2

(
∂gik
∂θj

+
∂gkj
∂θi

− ∂gij
∂θk

)
.

For a parametric statistical manifold with D parameters, there areD3 Christoffel
symbols. In practice, it is difficult to explicitly compute the geodesics of the
Fisher-Rao geometry of arbitrary models, and one needs to perform a gradient
descent to find a local solution for the geodesics [30]. This is a drawback of the
Rao’s distance as it has to be checked manually whether the integral admits a
closed-form expression or not.
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To give an example of the Rao distance, consider the smooth manifold of
univariate normal distributions, indexed by the θ = (μ, σ) coordinate system.
The Fisher information matrix is

I(θ) =

[
1
σ2 0
0 2

σ2

]
� 0. (2)

The infinitesimal element length is:

ds2 = (∇θ)�I(θ)∇θ,

=
dμ2

σ2
+

2dσ2

σ2
.

After the minimization of the path length integral, the Rao distance between
two normal distributions [4,31] θ1 = (μ1, σ1) and θ2 = (μ2, σ2) is given by:

D(θ1, θ2) =

⎧⎪⎨⎪⎩
√
2 log σ2

σ1
if μ1 = μ2,

|μ1−μ2|
σ if σ1 = σ2 = σ,√
2 log

tan
a1
2

tan
a2
2

otherwise.

where a1 = arcsin σ1

b12
, a2 = arcsin σ2

b12
and

b12 = σ2
1 +

(μ1 − μ2)
2 − 2(σ2

2 − σ2
1)

8(μ1 − μ2)2
.

For univariate normal distributions, Rao’s distance amounts to computing the
hyperbolic distance for H( 1√

2
), see [32].

The table below summarizes some types of Rao geometries:

Riemannian geometry Fisher-Rao statistical manifold

Euclidean Normal distributions with same covariance matrices
Spherical Discrete distributions (multinomials)
Hyperbolic Location-scale family (i.e, univariate normal, Cauchy)

4.3 Geometric Computing on Rao Statistical Manifolds

Observe that in any tangent plane Tx of the Rao statistical manifold, the inner
product induces a squared Mahalanobis distance:

Dx(p, q) = (p− q)�I(x)(p − q).

Since matrix I(x) � 0 is positive definite, we can apply Cholesky decomposition
on the Fisher information matrix I(x) = L(x)L�(x), where L(x) is a lower trian-
gular matrix with strictly positive diagonal entries. By mapping the points p to
L(p)� in the tangent space Tp, the squared Mahalanobis amounts to computing
the squared Euclidean distance DE(p, q) = ‖p− q‖2 in the tangent planes:
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Dx(p, q) = (p− q)�I(x)(p− q) = (p− q)�L(x)L�(x)(p− q) = DE(L
�(x)p,L�(x)q).

It follows that after applying the “Cholesky transformation” of objects into
the tangent planes, we can solve geometric problems in tangent planes as one
usually does in the Euclidean geometry. Thus we can use the classic toolbox of
computational geometry in tangent planes (for extrinsic computing and mapping
back and forth on the manifold using the Riemannian Log/Exp).

Let us consider the Rao univariate normal manifold that is equivalent to the
hyperbolic plane. Classical algorithms like the clustering k-means do not apply
straightforwardly because, in hyperpolic geometry, computing a center of mass
e is not available in closed-form but requires a numerical scheme. To bypass this
limitation, we rather consider non-Kärcher centroids called model centroids that
can be easily built in hyperbolic geometry [33,34]. The computational geome-
try toolbox is rather limited even for the hyperbolic geometry. We proved that
hyperbolic Voronoi diagrams is affine in the Klein model and reported an opti-
mal algorithm based on power diagram construction [35,36]. We alo generalized
the Euclidean minimum enclosing ball approximation algorithm using an itera-
tive geodesic cut algorithm in [13]. This is useful for zero-centered multivariate
normal distributions that has negative curvature and is guaranteed to converge.

In general, the algorithmic toolbox on generic Riemannian manifolds is very
restricted due to the lack of closed-form expressions for the geodesics. One of the
techniques consists in using the Riemannian Log/Exp mapping to go from/to
the manifold to the tangent planes. See [37] for a review with applications on
computational anatomy.

The next section explains the dual affine geometry induced by a convex func-
tion (with explicit dual geodesic parameterizations) and shows how to design
efficient algorithms when consider the exponential family manifolds.

5 Amari-Chentsov Statistical Manifolds

5.1 Construction of Dually Flat Statistical Manifolds

The Legendre-Fenchel convex duality is at the core of information geometry: Any
strictly convex and differentiable function F admits a dual convex conjugate F ∗

such that:
F ∗(η) = max

θ∈Θ
θ�η − F (θ).

The maximum is attained for η = ∇F (θ) and is unique since F (θ) is strictly
convex (∇2F (θ) � 0). It follows that θ = ∇F−1(η), where ∇F−1 denotes the
functional inverse gradient. This implies that:

F ∗(η) = η�(∇F )−1(η) − F ((∇F )−1(η)).

The Legendre transformation is also called slope transformation since it maps
θ → η = ∇F (θ), where ∇F (θ) is the gradient at θ, visualized as the slope
of the support tangent plane of F at θ. The transformation is an involution for
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strictly convex and differentiable functions: (F ∗)∗ = F . It follows that gradient
of convex conjugates are reciprocal to each other: ∇F ∗ = (∇F )−1. Legendre
duality induces dual coordinate systems:

η = ∇F (θ),

θ = ∇F ∗(η).

Furthermore, those dual coordinate systems are orthogonal to each other since,

∇2F (θ)∇2F ∗(η) = Id,

the identity matrix.
The Bregman divergence can also be rewritten in a canonical mixed coordinate

form CF or in the θ- or η-coordinate systems as

BF (θ2 : θ1) = F (θ2) + F ∗(η1)− θ�2 η1 = CF (θ2, η1) = CF∗(η1, θ2),

= BF∗(η1 : η2).

Another use of the Legendre duality is to interpret the log-density of an
exponential family as a dual Bregman divergence [38]:

log pF,t,k,θ(x) = −BF∗(t(x) : η) + F ∗(t(x)) + k(x),

with η = ∇F (θ) and θ = ∇F ∗(η).

5.2 Dual Geodesics: Exponential and Mixture Geodesics

Information geometry as further pioneered by Amari [23] considers dual affine ge-
ometries introduced by a pair of connections: the α-connection and−α-connection
instead of taking the Levi-Civita connection induced by the Fisher information
Riemmanian metric of Rao. The±1-connections give rise to dually flat spaces [23]
equipped with the Kullback-Leibler divergence [17]. The case of α = −1 denotes
the mixture family, and the exponential family is obtained for α = 1. We omit
technical details in this expository paper, but refer the reader to the monograph
[23] for details.

For our purpose, let us say that the geodesics are defined not anymore as
shortest path lengths (like in the metric case of the Fisher-Rao geometry) but
rather as curves that ensures the parallel transport of vectors [23]. This de-
fines the notion of “straightness” of lines. Riemannian geodesics satisfy both the
straightness property and the minimum length requirements. Introducing dual
connections, we do not have anymore distances interpreted as curve lengths, but
the geodesics defined by the notion of straightness only.

In information geometry, we have dual geodesics that are expressed for the
exponential family (induced by a convex function F ) in the dual affine coordinate
systems θ/η for α = ±1 as:
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γ12 : L(θ1, θ2) = {θ = (1− λ)θ1 + λθ2 | λ ∈ [0, 1]},
γ∗12 : L∗(η1, η2) = {η = (1 − λ)η1 + λη2 | λ ∈ [0, 1]}.

Furthermore, there is aPythagorean theorem that allows one to define information-
theoretic projections [23]. Consider three points p, q and r such that γpq is the
θ-geodesic linking p to q, and γ∗qr is the η-geodesic linking q to r. The geodesics
are orthogonal at the intersection point q if and only if the Pythagorean relation
is satisfied:

D(p : r) = D(p : q) +D(q : r).

In fact, a more general triangle relation (extending the law of cosines) exists:

D(p : q) +D(q : r)−D(p : r) = (θ(p) − θ(q))�(η(r) − η(q)).

Note that the θ-geodesic γpq and η-geodesic γ∗qr are orthogonal with respect
to the inner product G(q) defined at q (with G(q) = I(q) being the Fisher
information matrix at q). Two vectors u and v in the tangent place Tq at q are
said to be orthogonal if and only if their inner product equals zero:

u ⊥q v ⇔ u�I(q)v = 0.

Information geometry of dually flat spaces thus extend the traditional self-
dual Euclidean geometry, obtained for the convex function F (x) = 1

2x
�x (and

corresponding to the statistical manifold of isotropic Gaussians).
The construction can be extended to dual constant curvature manifolds using

Amari-Chentsov’s affine α-connections. We omit those details here, but refer the
reader to the textbook [23].

5.3 Learning Statistical Patterns

We mentioned in the introduction that statistical patterns can either be learned
from (1) a parametric model, (2) a mixture model, or (3) a kernel density es-
timator. We concisely review algorithms to learn those statistical patterns by
taking into consideration the exponential family manifold (EFM).

Parametric Distribution. Let x1, ..., xn be n data points assumed to be iid.
from an exponential family. The maximum likelihood estimator (MLE)
yields [20]:

η(P̂ ) =
1

n
t(xi) = t

The point P̂ on the EFM with η-coordinates t is called the observed point in
information geometry [23]. The MLE is guaranteed to exist [39,40] provided
that matrix:
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T =

⎡⎢⎣1 t1(x1) ... tD(x1)
...
...

...
...

1 t1(xn) ... tD(xn)

⎤⎥⎦ (3)

of dimension n× (D + 1) has rank D + 1 [40].
Furthermore, the log-likelihood achieved by the MLE can be expressed as:

l(θ̂;x1, ..., xn) = F ∗(η̂) +
1

n

n∑
i=1

k(xi)

For exponential families, the MLE is consistent and efficient (i.e., matches the
Cramér-Rao lower bound) and has normal asymptotic distribution with
covariance matrix the inverse of the Fisher information matrix:

√
n(θ̂ − θ)

distribution−→ N(0, I−1(θ)).

Notice that to choose between two different exponential family models, say,
parameterized by F1 and F2, we can evaluate their MLE log-likelihood using
their respective convex conjugates F ∗

1 and F ∗
2 , and choose the model which

yielded the highest likelihood.

Learning Finite Mixture Distributions. By using the duality between (reg-
ular) exponential families and (regular) Bregman divergences, Banerjee et al. [38]
showed that the classical EM algorithm for learning mixtures of the same ex-
ponential families amount to a soft Bregman clustering. The EM maximizes the
expected complete log-likelihood [7]. Recently, it has been shown that maxi-
mizing the complete log-likelihood (by labeling all observation data with their
component number) for an exponential family mixture amounts to perform a
k-means clustering for the dual Bregman divergence BF∗ on the sufficient statis-
tic data: {yi = t(xi)}ni=1. Thus by using Lloyd batched k-means algorithm that
optimizes the k-means loss, we obtain an algorithm for learning mixtures. This
algorithm is called k-MLE [41] and outperforms computationally EM since it
deals with hard membership. Furthermore, a generalization of k-MLE considers
for each component a different exponential family and adds a step to choose the
best exponential family of a cluster. This generalized k-MLE has been described
specifically for learning generalized gaussian mixtures [42], gamma mixtures [43],
and Wishart mixtures [44]. (The technical details focus on computing the dual
convex conjugate F ∗ and on how to stratify an exponential family with D > 1
parameters as a family of exponential families of order D − 1.)

Learning Non-parametric Distributions with KDEs. For each datum xi,
we can associate a density with weight 1

n and mode matching xi. This is the
kernel density estimator [7] (KDE). For the kernel family, we can choose the
univariate location-scale families or multivariate elliptical distributions. Normal
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P

p̄∗
p̃

exponential family
mixture sub-manifold

manifold of probability distribution

m-geodesic

EF

p

e-geodesic

Fig. 1. Simplifying a statistical mixture of exponential families or KDE p̃ to a single
component model amounts to perform a Kullback-Leibler projection of the mixture
onto the exponential family manifold [45]. Optimality is proved using the Pythagorean
theorem of dually flat geometries.

distributions belong both to the exponential families and the elliptical families.
Since the mixture model is dense and has n components, we can simplify this
representation to a sparse model by performing mixture simplification.

Simplifying KDEs and Mixtures. A statistical mixture or a KDE is repre-
sented on the exponential family manifold as a weighted point set. We simplify a
mixture by clustering. This requires to compute centroids and barycenters with
respect to information-theoretic distances. The Kullback-Leibler and Jeffreys
centroid computations have been investigated in [46].

A neat geometric characterization of the mixture simplification is depicted in
Figure 1. We project the mixture p̃ on the exponential family manifold using the
m-geodesic. This amounts to compute a barycenter of the weighted parameter
points on the manifold. See [45] for further details.

Instead of clustering groupwise, we can also consider hierarchical cluster-
ing to get a dendrogram [7] (a binary tree-structured representation): This
yields a mixture representation with levels of details for modeling statistical
mixtures [47]. We can extend the centroid computations to the wider class of
skewed Bhattacharrya centroids [22] that encompasses the Kullback-Leibler di-
vergence. In [48,49], we further consider the novel class of information-theoretic
divergences called total Bregman divergences. The total Bregman divergence
(and total Kullback-Leibler divergence when dealing with exponential family
members) is defined by:

tB(P : Q) =
B(P : Q)√

1 + ‖∇F (θ(Q))‖2
,

and yields conformal geometry [49]. We experimentally improved application
performance for shape retrieval and diffusion tensor imaging.
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5.4 Statistical Voronoi Diagrams

It is well-known that the k-means algorithm [7] is related to ordinary Voronoi
diagrams since data points are associated to their closest centroid. Namely, the
centroids play the role of Voronoi seeds. The Kullback-Leibler k-means inter-
venes in the description of the k-MLE or the mixture simplification algorithms.
For distributions belonging to the same exponential families, those statisti-
cal Voronoi diagrams amount to perform Bregman Voronoi diagrams on the
distribution parameters (using either the natural θ-coordinates, or the dual η-
coordinates). The Bregman Voronoi diagrams and its extensions have been in-
vestigated in [50,51,52,53]. They can always be reduced to affine diagrams (i.e.,
hyperplane bisectors) which can be computed either as equivalent power dia-
grams or by generalizing the Euclidean paraboloid lifting procedure by choos-
ing the potential function (x, F (x)) instead of the paraboloid [50]. Statistical
Voronoi diagrams can also be used for multiple class hypothesis testing: Figure 2
illustrates a geometric characterization of the Chernoff distance of a set of n dis-
tributions belonging to the same exponential families. Refer to [54] for further
explanations.

pθ1

pθ2

pθ∗
12

m-bisector

e-geodesic Ge(Pθ1 , Pθ2)

(a) (b)

η-coordinate system

Pθ∗
12

C(θ1 : θ2) = B(θ1 : θ∗12)

Bim(Pθ1 , Pθ2)

Chernoff distribution between
natural neighbours

Fig. 2. Geometry of the best error exponent in Bayesian classification [54]. Binary
hypothesis (a): The Chernoff distance is equal to the Kullback-Leibler divergence from
the midpoint distribution Pθ∗12 to the extremities, where the midpoint distribution
Pθ∗12 (×) is obtained as the left-sided KL projection of the sites to their bisector [55].
(b) Multiple hypothesis testing: The Chernoff distance is the minimum of pairwise
Chernoff distance that can be deduced from statistical Voronoi diagram by inspecting
all Chernoff distributions (×) lying on (d − 1)-faces. Both drawings illustrated in the
η-coordinate system where m-bisectors are hyperplanes.
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6 Conclusion and Perspectives

We concisely reviewed the principles of computational information geometry
for pattern learning and recognition on statistical manifolds: We consider sta-
tistical patterns whose distributions are either represented by atomic distri-
butions (parametric models, say, of an exponential family), mixtures thereof
(semi-parametric models), or kernel density estimations (non-parametric mod-
els). Those statistical pattern representations need to be estimated from datasets.
We presented a geometric framework to learn and process those statistical pat-
terns by embedding them on statistical manifolds. A statistical pattern is then
represented either by a single point (parametric model), a k-weighted point set or
a n-point set on the statistical manifold. To discriminate between patterns, we in-
troduced the notion of statistical distances, and presented a genesis that yielded
the family of α-divergences. We described the two notions of statistical invari-
ances on statistical manifolds: invariance by sufficient statistic and invariance by
1-to-1 reparameterization of distribution parameters. We then introduced two
kinds of statistical manifolds that fulfills the statistical invariance: The Rao man-
ifolds based on Riemannian geometry using the Fisher information matrix as the
underlying metric tensor, and the Amari-Chentsov dually flat manifolds based
on the convex duality induced by a convex functional generator. We then ex-
plained why the usual lack of closed-form geodesic expression for Rao manifolds
yields a limited algorithmic toolbox. By contrast, the explicit dual geodesics of
Amari-Chentsov manifolds provides a handy framework to extend the Euclidean
algorithmic toolbox. We illustrated those concepts by reviewing the Voronoi
diagrams (and dual Delaunay triangulations), and considered simplifying mix-
tures or KDEs using clustering techniques. In particular, in the Amari-Chentsov
manifolds, we can compute using either the primal, dual, or mixed coordinate
systems. This offers many strategies for efficient computing. For the exponential
family manifolds, we explained the bijection between exponential families, dual
Bregman divergences and quasi-arithmetic means [10].

We would like to conclude with perspectives for further work. To begin with,
let us say that there are several advantages to think “geometrically”:

– First, it allows to use simple concepts like line segments, balls, projections
to describe properties or algorithms. The language of geometry gives special
affordances for human thinking. For example, to simplify a mixture of expo-
nential families to a single component amount to project the mixture model
onto the exponential family manifold (depicted in Figure 1). Algorithmically,
this projection is performed by computing a barycenter.

– Second, sometimes we do not have analytical solution but nevertheless we
can still describe geometrically exactly where the solution is. For example,
consider the Chernoff information of two distributions: It is computed as
the Kullback-Leibler divergence from the mid-distribution to the extremities
(depicted in Figure 2). The mid-distribution is the unique distribution that
is at the intersection of the exponential geodesic with the mixture bisector.
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We implemented those various algorithms in the jMEF4 [56] or PyMEF5 [57]
software libraries.

To quote mathematician Jules H. Poincaré: “One geometry cannot be more
true than another; it can only be more convenient”. We have exemplified this
quote by showing that geometry is not absolute nor ultimate: Indeed, we have
shown two kinds of geometries for handling statistical manifolds: Rao Rieman-
nian manifolds and Amari-Chentsov dual affine manifolds. We also presented
several mathematical tricks that yielded computational convenience: Bounding
the intersection similarity measure with quasi-arithmetic means extends the
α-divergences. Besides the Rao and Amari-Chentsov manifolds, we can also
consider Finsler geometry [58] or Hilbert spherical geometry in infinite dimen-
sional spaces to perform statistical pattern recognition. Non-extensive entropy
pioneered by Tsallis also gave birth to deformed exponential families that have
been studied using conformal geometry. See also the infinite-dimensional expo-
nential families and Orlicz spaces [59], the optimal transport geometry [60], the
symplectic geometry, Kähler manifolds and Siegel domains [61], the Geometry of
proper scoring rules [62], the quantum information geometry [63], etc, etc. This
raises the question of knowing which geometry to choose? For a specific appli-
cation, we can study and compare experimentally say Rao vs. Amari-Chentsov
manifolds. However, we need deeper axiomatic understandings in future work to
(partially) answer this question. For now, we may use Rao manifolds if we require
metric properties of the underlying distance, or if we want to use the triangular
inequality to improve k-means clustering or nearest-neighbor searches. Some ap-
plications require to consider symmetric divergences: We proposed a parametric
family of symmetric divergences [64] including both the Jeffreys divergence and
the Jensen-Shannon divergence, and described the centroid computations with
respect to that class of distances.

Geometry offers many more possibilities to explore in the era of big data
analytics as we are blinded with numbers and need to find rather qualitative
invariance of the underlying space of data. There are many types of geometries
to explore or invent as mothers of models. Last but not least, we should keep
in mind statistician George E. P. Box quote: “Essentially, all models are wrong,
but some are useful.” When it comes to data spaces, we also believe that all
geometries are wrong, but some are useful.
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Abstract. In this paper, we experimentally evaluate the validity of
dimension-reduction methods for the computation of the similarity in
pattern recognition. Image pattern recognition uses pattern recognition
techniques for the classification of image data. For the numerical achieve-
ment of image pattern recognition techniques, images are sampled using
an array of pixels. This sampling procedure derives vectors in a higher-
dimensional metric space from image patterns. For the accurate achieve-
ment of pattern recognition techniques, the dimension reduction of data
vectors is an essential methodology, since the time and space complexities
of data processing depend on the dimension of data. However, dimen-
sion reduction causes information loss of geometrical and topological fea-
tures of image patterns. The desired dimension-reduction method selects
an appropriate low-dimensional subspace that preserves the information
used for classification.

1 Introduction

Pattern recognition techniques are applied to various areas such as face recogni-
tion [1], character recognition[2], spatial object recognition[3], fingerprint classi-
fication [4] and iris recognition[5]. These applications deal with image patterns.
In image pattern recognition, images are sampled so that they can be embeded
in a vector space. Kernel methods are promised to analyse a relational data
with more complex structure[6,7]. For practical computation, we embedding the
image in a vector space too. Furthermore, dimension reduction is operated to
reduce the dimensions of image patterns.

In practice, as shown in Fig. 1, two methods are used for dimension reduc-
tion. One method reduces the dimension of data in a sampled image space using
image compression methods such as the pyramid transform, wavelet transform
and low-pass filtering. The other method is data compression in a vector space
after vectorisation of sampled image patterns using operations such as random
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Fig. 1. Differences in the dimension-reduction path among downsampling, the Gaus-
sian pyramid transform, two-dimensional discrete transformation, the two-dimensional
random projection and random projection. After the sampling of an original image,
dimension-reduction methods mainly follow two paths. In the first path, after the re-
duction of the image, the reduced image will be converted to a vector. In the second
path, after vectorisation, the feature vector is be reduced. Here, m,m′, n, n′, d, k ∈ Z

and n′ < n,m′ < m, k < d.

projection. The reduction and vectorisation operations are generally noncommu-
tative as shown in Fig. 1. The pyramid transform is a nonexpansion mapping.
As shown in this paper, a nonexpansion mapping affects the similarity, while
a random projection is a stochastically unitary operation which preserves the
metric between original image patterns and compressed image patterns.

In this paper, we evaluate the effects and performance of these two proper-
ties of data compression. We adopted the following dimension-reduction tech-
niques: downsampling of the pixels, the Gaussian-based pyramid transform, the
two-dimensional discrete cosine transform and random projection. For classifi-
cation, we adopted the subspace method, mutual subspace method, constraint
mutual subspace method and two-dimensional tensorial subspace method. We
tested each pair of these dimension-reduction techniques and classifiers for face
recognition, spatial object recognition and character recognition.

2 Related Works

The local preserving projection (LPP) was introduced as a linear approximation
of the Laplacian eigenmap of a nonflat discrete data manifold[8]. The method
locally preserves the distance relation among data.

Principal component analysis (PCA) was introduced for the linear approxima-
tion of a subspace of Chinease characters and spatial data[9,10]. PCA selects the
subspace in which the covariance of class data is maximised. To improve the accu-
racy of the eigenspace computed using learning data, Leonardis et al. dealt with
a locally low-dimensional structure for appearance-based image matching[3]. The
constant normalisation in PCA[9] subtracts the constant bias, since each image
pattern contains a constant bias. This process is a nonexpansion mapping.
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The classical subspace method computes the orthogonal projection of inputs
to each category. As an extension, the mutual subspace method[11,12] computes
the orthogonal projection of the subspaces spanned by inputs with perturbations.
A combination of a generalisation of the constant normalisation and the mutual
subspace method is proposed in ref. [12]. The method subtracts the elements in
the common linear subspace of many categories.

Two-dimensional PCA (2DPCA)[1,13] is a special case of tensor PCA[14],
since 2DPCA deals with images, which are linear two-dimensional arrays, as a
tensor of order two. 2DPCA considers only the row distribution of images[13] al-
though there is a method which considers both the column and row distributions
of images[15].

Linear discriminant analysis (LDA) and the related Fisher’s linear discrimi-
nant are methods which reduce the dimension of data by maximising the ratio
between the inter- and intraclass distances[16,4].

As a nonlinear pattern recogntion method, the kernel method is a promising
techniques[6,7]. The kernel method is extended from metric data to combina-
trial data, such as graph structural data. This extension provides a powerful
method to data mining for biochemistry. The graph kernel is an discrete version
of diffusion based data, which produce the combinatrial structure.

These methods are not able to deal with images with too high resolution.
Therefore, we need a dimension-reduction methods for preprocessing.

3 Dimension Reduction Methods

3.1 Gaussian-Based Pyramid Transform

We define the image reduction method as

g(x, y) = Rf(x, y) =

∫ ∫
R2

w1(u)w1(v)f(2x− u, 2y − v)dudv, (1)

w1(x) =

{
1
2 (1−

|x|
2 ), |x| ≤ 2

0, |x| > 2
. (2)

The dual operation of R is

Eg(x, y) = 4

∫ ∫
R2

w1(u)w1(v)g(
x − u

2
,
y − v

2
)dudv. (3)

For g = Rf , the derivative of g satisfies the relations

gx =
1

2
Rfx, gy =

1

2
Rfy. (4)

Therefore, we have the following relation.

Theorem 1. For g = Rf , we have the relation(
gxx, gxy
gyx, gyy

)
=

1

22

(
Rfxx, Rfxy
Rfyx, Rfyy

)
.
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Furthermore, the pyramid transform globally preserves the geometry of the ter-
rain z = f(x, y) same as the case of the Gaussian scale space transform 1.

For L1 and L2, the norm is defined as

‖f‖2 =

(∫ ∫
R2

|f(x, y)|2 dxdy
) 1

2

, (5)

‖g‖1 =

∫ ∫
R2

|g(x, y)| dxdy. (6)

For the convolution of f(x, y) and g(x, y) such as h(x, y) = g(x, y) ∗ f(x, y), we
have the following proposition.

Proposition 1. For the energy of a convolution, we have the following property:

‖h(x, y)‖2 = ‖g(x, y) ∗ f(x, y)‖2 ≤ ‖g‖1‖f‖2. (7)

For the linear operator R, if Rf = 0, we have the following theorem.

Theorem 2. For both for f ∈ L2 and g ∈ L2, the relation

‖Rf −Rg‖2 ≤ ‖f − g‖2 (8)

is satisfied.

This theorem implies that if g exists in the neighbourhood of f , that is, ‖f−g‖2 <
ε, ε� 1, then Rg exists in the neighbourhood of Rf , and ‖Rf −Rg‖2 < ε′, ε′ �
ε� 1. Therefore, Rf preserves the local topology of the pattern space. For the
nonexpansion mapping φ such that

‖φ(f)− φ(g)‖2 ≤ r‖f − g‖2, 0 ≤ r ≤ 1, (9)

with the condition φ(f) ≤ rf , we have the following property. Figure 2 illustrates
the following theorem.

Theorem 3. Setting ∠(f, g) to be the angle between f and g in the Hilbert space
H, the relation

∠(φ(f), φ(g)) ≤ ∠(f, g) (10)

is satisfied.

(Proof) From the assumptions for the norms, we have the relations ‖φ(f)‖2 ≤
‖f‖2, ‖φ(g)‖2 ≤ ‖g‖2 and ‖φ(f)− φ(g)‖2 ≤ ‖f − g‖2. Furthermore, φ(f) 
= λf ,
φ(g) 
= μg and φ(f − g) 
= ν(f − g). These relations imply the relation

(f, g)

‖f‖2‖g‖2
≤ (φ(f), φ(g))

‖φ(f)‖2‖φ(g)‖2
. (11)

1 The pyramid transform preserves the local geometry and topology of an image pat-
tern, whereas the random projection preserves the local topology of the vectors of
an image pattern.
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Fig. 2. Angle between two functions and the nonexpansion map. f, g ∈ H are set to
be functions and φ is set to be a nonexpansion map. Here, ∠(f, g) represents the angle
between f and g.

Setting θ = ∠(f, g), cos θ = (f,g)
‖f‖2‖g‖2

. Therefore, ∠(φ(f), φ(g)) = θφ ≤ θ

(Q.E.D.)
From Theorem 1 and Theorem 2, image reduction by the pyramid transform
reduces the angle between two images preserving their geometric properties.

For the sampled function fij = f(i, j), the pyramid transform R and its dual
transform E [17] are expressed as

Rfmn =

1∑
i,j=−1

wiwjf2m−i, 2n−j , Efmn = 4

2∑
i,j=−2

wiwjfm−i
2 ,n−j

2
, (12)

where w±1 = 1
4 and w0 = 1

2 . Moreover, the summation is carried out for integers
(m− i) and (n− j). These two operations involves the reduction and expansion
of the image size. As a nonexpansion mapping, the pyramid transform com-
presses the nth-order tensor with O(1/2n), preserving the differential geometric
structure of the tensor data.

3.2 Random Projection

Let R be a k×dmatrix whose k row vectors span a k-dimensional linear subspace
in Rd (k < d). We obtain a low-dimensional representation x̂ for each xi ∈ X as

x̂i =

√
d

k
Rxi. (13)

Figure 3(a) shows the basic idea of the random projection[18]. For the ran-
dom projection, we have the following embedding property from the Johnson-
Lindenstrauss lemma[19,20].

Theorem 4. (Johnson-Lindenstrauss embeddings). For any 0 < ε, set X of N

points {x1, . . . ,xN} and k < d, one can map X to X̂ = {x̂1, . . . , x̂N ∈ Rd̂} by

the random projection in Eq. (13) with probability (1 − e−O(kε2)) when

(1− ε)‖xj − xi‖2 ≤ ‖x̂j − x̂i‖2 ≤ (1 + ε)‖xj − xi‖2. (14)
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Fig. 3. (a) Random projection. Let xi ∈ X be a point and x̂i = Rxi. The distance
between xi and xj is preserved in the projected space Rk. (b) Differences in two random
projection paths.

The random projection preserves the local topological structure of the vectors
of an image pattern.

An efficient random projection is proposed as an improved version of the
random projection[20]. Using spectrum spreading and circular convolution, we
can speed up the random projection.

3.3 Two-Dimensional Random Projection

For a set of two-dimensional arrays {Xi|Xi ∈ Rm×n}Ni=1 such that Ei(Xi) = 0,
setting RL ∈ Rk1×m and RR ∈ Rk2×n to be random projection matrices, we
define the transform

X̂i = RLXiR
�
R. (15)

For the set X̂ = {X̂i}Ni=1, we have the following theorem.

Theorem 5. X̂i ∈ X̂ and Xi ∈ X satisfy the Johnson-Lindenstrauss property.

(Proof) From X̂i = RLXiRR, we have the relation

vecX̂i = (RL ⊗RR)vecXi (16)

where RL ⊗RR = R ∈ Rk×d is a random projection matrix. Here, k = k1 × k2
and d = m×n. Therefore, for any 0 < ε and set of X of N images {X1, . . . ,XN},
X̂i and X̂j satisfy the property

(1− ε)‖Xj −Xi‖2 ≤ ‖X̂j − X̂i‖2 ≤ (1 + ε)‖Xj −Xi‖2. (17)

Here, setting ‖A‖2 to be the Frobenius norm of matrix A, the relation

‖xi‖2 = ‖vecXi‖2 = ‖Xi‖22 (18)

is satisfied for xi = vecXi. Therefore, by replacing the Euclidean norm of vecXi

with the Frobenius norm of Xi, we have the statement of the theorem. (Q.E.D.)

Considering the two-dimensional array as a second-order tensor, we can reduce
the dimension of the tensorial data to an arbitrary dimension. The random
projection preserves the topology of the tensor in the function space, since the
Frobenius norm of a tensor is preserved.
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(a) (b) (c) (d)

Fig. 4. Image representations in three coordinates. (a) uij , ui′j′ , ui′′j′′ are the bases
which represent each pixel of an image. (b) dij , di′j′ , di′′j′′ are the bases of the DCT.
(c) ϕi, ϕi′ , ϕi′′ are the bases of the PCA. (d) There is a projection PΠ which projects
the image f to the linear subspace Π = {ϕi, ϕi′} from the space spanned by the cosine
bases.

3.4 Two-Dimensional Discrete Cosine Transform

For a real image, the discrete Fourier transformation can be replaced with the
discrete cosine transform (DCT). Furthermore, the eigenfunction and eigendis-
tribution of the DCT approximately coincide with those of the Karhunen-Loeve
expansion for images. Moreover, in special cases, the reduction using the DCT is
equal to the reduction using the PCA. Figure 4 illustrates the representation of
an image by the DCT and PCA and the special case. The DCT and PCA are uni-
tary transforms; therefore, these bases are related to a rotation transformation.

4 Classification Methods

4.1 Subspace Method

Setting H to be the space of patterns, we assume that in H the inner product
(f, g) is defined. Furthermore, we define the Schatten product 〈f, g〉, which is an
operator from H to H . Let f ∈ H and Pk, i = 1, . . . , N be a pattern and an
operator for the ith class where the ith class is defined as

Ci = {f |Pif = f, P ∗
i Pi = I}. (19)

Since patterns have perturbations, we define the ith class as

Ci(δ) = {f | ‖Pif − f‖2 � δ, P ∗
i Pi = I}, (20)

where δ is a small perturbation of the pattern and a small value, respectively. For
input g ∈ H and class Ci, we define the similarity and classification
criteria as

θi = ∠(Ci(δ), g), 0 < θi <
∃θ0 → g ∈ Ci(δ), (21)

since we define the angle between input pattern g and the space of the
pattern as

θi = cos−1 ‖Pig‖2
‖g‖2

. (22)
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(a) (b)

Fig. 5. (a) Geometric property of the SM. Let ϕ1 and ϕ2 be the bases of a class
pattern. For input g, similarity is defined as the orthogonal projection to the pattern
space. (b) Multiclass recognition using the SM. Let P1 and P2 be operators for subspace
C1 and C2, respectively. Input g is labeled as being in the 1st class, since the subspaces
C1 has the longest projection length of g.

The angle between the input pattern and pattern space represents their
similarity.

For input g ∈ H , we construct

Cg = {g |Qg = g, Q∗Q = I}, (23)

Cg(δ) = {g | ‖Qg − g‖2 � δ, Q∗Q = I}. (24)

Then, we define the generalisation of Eq. (21) as

θi = ∠(Ci(δ), Cg(δ)), θ < θi <
∃θ0 → Cg(δ) ∈ Ci(δ), (25)

where �|Cg\Ck(δ) ∩ Cg(δ)| � δ.
We construct an operator Pi for fi ∈ Ci such that

E(‖f − Pif‖2) → min, P ∗
i Pi = I, (26)

where f ∈ Ci, I is the identity operator and E is the expectation over H .
For practical calculation, we set {ϕj}nj=1 to be the eigenfunction of M =

E〈f, f〉. We define the eigenfunction ofM as ‖ϕj‖2 = 1 for eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λj ≥ · · · ≥ λn. Therefore, operator P is defined as Pn =

∑n
j=1〈ϕj , ϕj〉.

Figure 5(a) shows the basic idea of the subspace method (SM). To identify
whether the input data are in the subspace of the classes or not, we calculate
the angle between the input data and the subspace of the classes. If g belongs
to the space, the length of the orthogonal projection is close to 1. Figure 5(b)
shows multiclass recognition using the SM.

4.2 Mutual Subspace Method

Let Pi and Q be operators for Ci and Cg, respectively. If a pattern is expressed
as an element of the linear subspace Cg = {f |Qf = f,Q∗Q = I}, we are required
to compute the angle between Cg and Ci as the extension of the classical pattern
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(a) (b)

Fig. 6. (a) Angle between two linear subspaces C1 and C2. The minimal angle between
the two subspace is 0. However, in the MSM, we adopt the angle θ to indicate the
similarity between two subspaces. (b) Multiclass recognition using the MSM. For input
subspace Cg, let θ1 and θ2 be its angles relative to C1 and C2, respectively. The input
subspace Cg is labeled as being in the 1 class since θ1 < θ2.

recognition such that rankQ = 1 and dim Cg = 1. Then, the angle between Pi

and Q is computed by

cos θi = max E

(
‖QPif‖2
‖f‖2

)
= max E

(
‖PiQf‖2
‖f‖2

)
, (27)

where f satisfies ‖f‖2 
= 0. Figure 6(a) shows the angle between two subspaces.
For practical calculation, we adopt the following theorem[21].

Theorem 6. The angle between Ci and Cg is calculated as the maximum
eigenvalue of PiQPi and QPiQ.

Figure 6(b) shows multiclass recognition using the mutual subspace method
(MSM).

4.3 Constraint Mutual Subspace Method

We next define a common subspace. For f 
= g, in a common subspace APCf =
PCg and ‖APCf‖2 = ‖PCg‖2 are satisfied, where A and PC are an appropri-
ate equi-affine operation and orthogonal projection, respectively. All patterns in
a common subspace are written in terms of the equi-affine transform. For the pro-
jections {Pi}Ni=1 to the class {Ci}Ni=1, we have the operator for the common subspace

PC =

N∏
i=1

Pi. (28)

Therefore, we define the constraint subspace as the operator QC = I − PC ,
where I is the identity operator. Using the operator QC , we can calculate the
angle in the constraint subspace by Eq. (27). The orthogonal projection for the
constraint subspace is a nonexpansion mapping.

In the constraint subspace, the angle θC,i between the projected reference
subspace CC,i, i = 1, . . . , N and the projected input subspace CC,g is defined as

cos θC,i = max E

(
‖QcQQcPif‖2

‖f‖2

)
= max E

(
‖QcPiQcQf‖2

‖f‖2

)
, (29)

where f satisfies ‖f‖2 
= 0.
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The generalised difference subspace Dk is defined for the constraint mutual
subspace method (CMSM) as the constraint subspace[12]. For the construction of

the operator Qc for Dk, setting {ψj}NC

j=1 to be the eigenfunction of G =
∑N

i=1 Pi,
we define the eigenfunction of G as

Gψj = λjψj , ‖ψj‖2 = 1, (30)

where λ1 ≥ λ2 ≥ · · · ≥ λj ≥ · · · ≥ λNc and Nc = n × N . Using {ψj}Nj=1, the
operator Qc is defined as

QC =

k∑
j=1

〈ψNc−(j−1), ψNc−(j−1)〉, (31)

where k < NC . The dimension k of the difference subspace is selected
experimentally.

If the dimension of the common space is unity and the base of this space corre-
sponds to the first eigenfunction, which is associated with the largest eigenvalue
of the covariance of the space of the pattern space, the operation is called the
constant normalisation of patterns.

According to Theorem 3, if an input pattern has a high similarity to a class in
the MSM, the input pattern has higher similarity to the class in the CMSM than
one in the MSM. However, the CMSM does not guarantee the preservation of
dissimilarity according to [12]. The projection onto the constraint subspace is a
nonexpansion mapping, therefore the angle between the two subspaces becomes
small.

4.4 Two-Dimensional Tensorial Subspace Method

As an extension of the subspace method for vector data, we introduce a lin-
ear subspace method for a bilinear array as two-dimensional tensorial subspace
method (2DTSM). For a bilinear array X, setting PL and PR to be orthogonal
projections, we call the operation

Y = PLXPR (32)

the orthogonal projection of X to Y . Therefore, using this expression for a
collection of bilinear forms {X}ni=1, such that Ei(Xi) = 0, the solutions of

J(PL,PR) = Ei

(
‖PLXiPR‖2

‖Xi‖2

)
→ max, w.r.t. P ∗

LPL = I, P ∗
RPR = I (33)

define a bilinear subspace which approximates {X}ni=1. Here, norm ‖X‖2 for
matrix X represents the Frobenius norm. Therefore, using the solutions of Eq.
(33), if an input data array G satisfies the condition

arg

(
max

i

‖PLiGPRi‖2
‖G‖2

)
= {PLk,PRk}, (34)
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Table 1. Details of each database

# data image size vectorised reduced reduced dimensions
# class /class [pixel] size dimension of image [pixel]

Yale B 38 64 192×168 32,256 1024 32×32
ETH80 30 41 128×128 16,384 1024 32×32
MNIST 10 7,000 28×28 784 225 15×15

(a) (b) (c)

Fig. 7. Examples of data. (a) Yale B. (b) ETH80. (c) MNIST.

we conclude that G ∈ Ck(δ) when Ck = {X | ‖PLkXPRk − X‖2 � δ}. In
practical computation to find the projections PL and PR, we adopt the marginal
eigenvalue (MEV)[15].

5 Experiments

We evaluate the performance of the dimension-reduction methods using cropped
versions of the extended Yale B database[22], the ETH80 database[23] and the
MNIST dataset[24]. Table 1 lists the details of the three databases. Figure 7
shows examples of images for each database. We adopt downsampling (DS),
the Gaussian-based pyramid transform (PT), the two-dimensional discrete co-
sine transform (2DDCT), random projection (RP) and two-dimensional random
projection (2DRP) as the dimension-reduction methods. We calculate the recog-
nition rate for each pair of dimension reduction methods and classifiers. The RP
is applied to images after their vectorisation. The other reduction methods are
applied before the vectorisation of images. For the Yale B and ETH80 databases,

Table 2. Dimensions of the class subspace in classification

# query # basis dimension of constraint subspace

Yale B

SM 1 1∼32 -
MSM 3,5,7,9 1∼10 -
CMSM 3 3 938,950,960,. . . ,1000,1024
2DTSM 1 1×1 ∼ 32×32 -

ETH 80

SM 1 1∼21 -
MSM 3,5,7,9 1∼10 -
CMSM 5 5 938,950,960,. . . ,1000,1024
2DTSM 1 1×1 ∼ 32×32 -

MNIST

SM 1 1∼225 -
MSM 3,5,7,9 1∼10 -
CMSM 3 3 10,20,. . . ,220,225
2DTSM 1 1×1 ∼ 15×15 -
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Fig. 8. Cumulative contribution ratios. (a) Yale B. (b) ETH80. (c) MNIST. (d) Preser-
vation of power in the 2DDCT. In (a), (b) and (c), red, green, blue, magenta and black
curves represent the cumulative contribution ratio of PT, DS, 2DRP and 2DDCT,
respectively. x and y axes represent cumulative contribution ratios and ith eigenvec-
tors, respectively. In (d), raisin, carrot and mint curves represent Yale B, ETH80 and
MNIST database, respectively. x and y axes represent power preservation rates, and
sizes of width and height for image, respectively.

images labelled with even numbers are used as training data and the others are
used as test data. The MNIST dataset is divided into training and test data in
advance. The recognition rates are the successful label-estimation ratios of 1000
iterations in the estimations. In each estimation, queries are randomly chosen
from the test data. For recognition, we use the SM, MSM, CMSM and 2DTSM
as classifiers. The 2DTSM adopts the matrix representing the image as a feature.
The other methods adopt the vector representing the image as a feature. Tables
2 illustrates the dimension of the class subspace used in the recognition for each
database.

For the three databases, Figs. 8(a), (b) and (c) show the cumulative contri-
bution ratios of the eigenvalues for a each class. The blue, red and green curves
represent the ratios for the Yale B, ETH80 and MNIST databases, respectively.
Figure 8(d) illustrates the mean preservation ratio of the power of the 2DDCT
for images in the three databases. For the three databases, Figs. 9(a), (b) and (c)
show the recognition rates of the SM, MSM and CMSM, respectively. In these
figures, the red, green, blue, magenta and black curves represent the recognition
rates of the PT, DS, RP, 2DRP and 2DDCT, respectively. Figure 10 shows the
recognition rate of the 2DTSM for the three databases. In Fig. 10, the red, green,
magenta and black curves represent the recognition rates of the PR, DS, 2DRP
and 2DDCT, respectively.

As shown in Fig. 8, for all databases, the PT has the highest cumulative con-
tribution in a low-dimensional linear subspace. Since the PT is an nonexpansion
mapping, distances among data become small. Figure 8(d) shows that the low-
frequency 32×32 bases have almost the same power as the 192×168 pixel image
in the Yale B and ETH80 databases. For the MNIST database, the low-frequency
24× 24 bases have almost the same power as a 28×28 pixel image. That is, the
images are potentially compressible.
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For the Yale B database, Fig. 8(a) shows that image patterns are efficiently
approximated in a low-dimensional linear subspace. Figure 9(a) shows that the
recognition rates of all classifiers are larger than 95% because discriminative
features exist in the low-dimensional linear subspace and furthermore, the spec-
trum of these texture concentrates in low-frequency band. For a two-dimensional
image with a small perturbation, using three eigenvectors we can approximately
represent the image[9,11]. As shown in middle row of Fig. 9(a), using three or
more bases, MSM has almost 100% classification. As shown in the bottom row
of Fig. 9(a), the CMSM possesses a higher recognition rate than the MSM with
a smaller number of bases. That is, the CMSM detects the common subspace
for all classes, since the human face basically contains a common structures. Us-
ing three or more bases, the recognition rates for the three dimension-reduction
methods are almost the same. For the ETH80 database, in contrast with the
Yale B database, Fig. 8(b) shows that a discriminative low-dimensional linear
subspace does not exist, since the cumulative contribution ratio is smaller than
95% in a low-dimensional subspace. Figure 9(b) illustrates that the SM has a
recognition rate of less than 50%. The recognition rate of the MSM is smaller
than 90%. In this case, we cannot obtain a discriminative low-dimensional linear
subspace. The CMSM has a smaller recognition rate than the MSM, since the
CMSM cannot find the optimal common structure of the linear subspace of all
classes. Among the three classifiers, the PT has a larger recognition rate than
the DS and RP. For the MNIST database, Fig. 8(c) shows that a discriminative
low-dimensional subspace exists. Figure 9(c) illustrates that the recognition rates
are larger than 95% for all classifiers. The CMSM has a smaller recognition rate
than the MSM, since the CMSM cannot find a common subspace for all classes.
Using 3 to 50 bases, the three dimension-reduction methods possess almost the
same recognition rate. For the three databases, the 2DTSM gives almost the
same results. The recognition rates of the PT, DS and 2DDCT are almost same.
Using the 2DRP, none of the any classification methods can recognise the classes
in any of the datasets. The width and height of images are too small to reduce the
dimensions with a random projection, therefore, the distances among randomly
projected images are not preserved. The 2DTSM has a smaller recognition rate
than the SM, MSM and CMSM.

From these experiments, we observe that the Gaussian-based pyramid trans-
form has a different recognition rate from the other methods for the SM, MSM
and CMSM, since the pyramid transform is a nonexpansion mapping. As shown
in the middle row of Fig. 9(a), the PT has the smallest recognition rate, whereas
in the middle of Fig. 9(b), the PT has the highest recognition rate. In the bot-
tom row of Fig. 9(b), the shape of the recognition rate for PT is different from
those of the others. In the 2DTSM, all method have almost the same results.
These results imply that RP works well comparing other methods if we have no
a priori information for input data.
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(a) Recognition rate for Yale B
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(b) Recognition rate for ETH80
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(c) Recognition rate for MNIST

Fig. 9. Recognition rates for each pair of dimension-reduction method and classifier. In
each graph, x and y axes represent the number of bases and recognition rate[%], respec-
tively. In each graph, red, green, magenta and brack curves represent the recognition
rate of PT, DS, 2DRP and 2DDCT, respectively.
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Fig. 10. Recognition rates for the 2DTSM. x and y axes represent sizes of images and
recognition rates [%], respectively. (a) Yale B. (b) ETH80. (c) MNIST. In each graph,
red, green, magenta and black curves represent the recognition rate of PT, DS, 2DRP
and 2DDCT, respectively.

6 Conclusions

We experimentally evaluated the validity of dimension-reduction methods for
image pattern recognition. The desired dimension-reduction method selects
an appropriate low-dimensional subspace that preserves the information for
classification.

By experimental evaluation of the reduction operation, we clarified the
following properties. First, for three databases, the Gaussian-based pyramid
transform has a higher cumulative contribution ratio than ones of the random
projection and downsampling. Second, using feature vectors for recognition, the
pyramid transform has the same or a higher recognition rate than the random
projection and downsampling. The pyramid transform preserves the local geom-
etry and topology of a image. However, it changes distances and angles among
the vectors used as data since it is a nonexpansion mapping. Third, the using
features of images for recognition, the pyramid transform, downsampling, two-
dimensional random projection and the two-dimensional discrete transform have
almost the same recognition rate. These reduction methods preserve the geome-
try and topology of images. Fourth, using the feature vectors results in a higher
recognition rate than using a feature of images. From the fourth property, the
classification should be computed in a vector space. Therefore, pyramid trans-
form must not be used for classification since it changes the topology of the
vector space. In contrast, the random projection preserves the topology of the
vector space. These results imply that RP works well comparing other methods
if we have no a priori information for input data. Therefore, for the application
to remote exploration and field robot vision, the RP has theoretical and practi-
cal priorities, since the camera captures sceneries and sequences without ground
truth in these applications.
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Abstract. We present a framework for performing efficient regression in
general metric spaces. Roughly speaking, our regressor predicts the value
at a new point by computing a Lipschitz extension — the smoothest func-
tion consistent with the observed data — while performing an optimized
structural risk minimization to avoid overfitting. The offline (learning)
and online (inference) stages can be solved by convex programming, but
this naive approach has runtime complexity O(n3), which is prohibitive
for large datasets. We design instead an algorithm that is fast when the
doubling dimension, which measures the “intrinsic” dimensionality of the
metric space, is low. We make dual use of the doubling dimension: first,
on the statistical front, to bound fat-shattering dimension of the class of
Lipschitz functions (and obtain risk bounds); and second, on the compu-
tational front, to quickly compute a hypothesis function and a prediction
based on Lipschitz extension. Our resulting regressor is both asymptoti-
cally strongly consistent and comes with finite-sample risk bounds, while
making minimal structural and noise assumptions.

Keywords: metric space, regression, convex program.

1 Introduction

The classical problem of estimating a continuous-valued function from noisy ob-
servations, known as regression, is of central importance in statical theory with
a broad range of applications, see e.g. [BFOS84, Nad89, GKKW02]. When no
structural assumptions concerning the target function are made, the regression
problem is termed nonparametric. Informally, the main objective in the study
of nonparametric regression is to understand the relationship between the reg-
ularity conditions that a function class might satisfy (e.g., Lipschitz or Hölder
continuity, or sparsity in some representation) and the minimax risk convergence
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rates [Tsy04, Was06]. A further consideration is the computational efficiency of
constructing the regression function.

The general (univariate) nonparametric regression problem may be stated as
follows. Let (X , ρ) be a metric space, namely X is a set of points and ρ a distance
function, and let H be a collection of functions (“hypotheses”) h : X → [0, 1].
(Although in general, h is not explicitly restricted to have bounded range, typical
assumptions on the diameter of X and the noise distribution amount to an
effective truncation.) The space X × [0, 1] is endowed with some fixed, unknown
probability distribution μ, and the learner observes n iid draws (Xi, Yi) ∼ μ.
The learner then seeks to fit the observed data with some hypothesis h ∈ H so
as to minimize the risk, usually defined as the expected loss E |h(X)− Y |q for
(X,Y ) ∼ μ and some q ≥ 1.

Two limiting assumptions have traditionally been made when approaching
this problem: (i) the space X is Euclidean and (ii) Yi = h∗(Xi) + ξi, where h

∗

is the target function and ξi is an iid noise process, often taken to be Gaussian.
Although our understanding of nonparametric regression under these assump-
tions is quite elaborate, little is known about nonparametric regression in the
absence of either assumption.

The present work takes a step towards bridging this gap. Specifically, we
consider nonparametric regression in an arbitrary metric space, while making no
assumptions on the distribution of the data or the noise. Our results rely on the
structure of the metric space only to the extent of assuming that the metric space
has a low “intrinsic” dimensionality. The dimension in question is the doubling
dimension of X , denoted ddim(X ), which was introduced by [GKL03] based on
earlier work of [Cla99], and has been since utilized in several algorithmic contexts,
including networking, combinatorial optimization, and similarity search, see e.g.
[KSW09, KL04, BKL06, HM06, CG06, Cla06]. Following the work in [GKK10]
on classification problems, our risk bounds and algorithmic runtime bounds are
stated in terms of the doubling dimension of the ambient space and the Lipschitz
constant of the regression hypothesis, although neither of these quantities need
be known in advance.

Our Results. We consider two kinds of risk: L1 (mean absolute) and L2 (mean
square). More precisely, for q ∈ {1, 2} we associate to each hypothesis h ∈ H the
empirical Lq-risk

Rn(h) = Rn(h, q) =
1

n

n∑
i=1

|h(Xi)− Yi|q (1)

and the (expected) Lq-risk

R(h) = R(h, q) = E |h(X)− Y |q =
∫
X×[0,1]

|h(x)− y|q μ(dx, dy). (2)

It is well-known that h(x) = M[Y |X = x] (where M is the median) minimizes
R(·, 1) over all integrable h ∈ [0, 1]X and h(x) = E[Y |X = x] minimizes R(·, 2).
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However, these expressions are of little use as neither is computable without
knowledge of μ. To circumvent this difficulty, we minimize the empirical Lq-risk
and assert that the latter is a good approximation of the expected risk, provided
H meets certain regularity conditions.

To this end, we define the following random variable, termed uniform
deviation:

Δn(H) = Δn(H, q) = sup
h∈H

|Rn(h)−R(h)| . (3)

It is immediate that

R(h) ≤ Rn(h) +Δn(H) (4)

holds for all h ∈ H (i.e., the expected risk of any hypothesis does not exceed

its empirical risk by much), and it can further be shown [BBL05] that R(ĥ) ≤
R(h∗) + 2Δn(H), where ĥ ∈ H is a minimizer of the empirical risk and h∗ ∈ H
is a minimizer of the expected risk (i.e., the expected risk of ĥ does not exceed
the risk of the best admissible hypothesis by much).

Our contribution is twofold: statistical and computational. The algorithm in
Theorem 3.1 computes an η-additive approximation to the empirical risk min-
imizer in time η−O(ddim(X ))n log3 n. This hypothesis can be evaluated on new
points in time η−O(ddim(X )) logn. The expected risk of this hypothesis decays
as the empirical risk plus 1/poly(n). Our bounds explicitly depend on the dou-
bling dimension, but the latter may be efficiently estimated from the data, see
e.g. [KL04, CG06, GK10, GKK13].

Related Work. There are many excellent references for classical Euclidean non-
parametric regression assuming iid noise, see for example [GKKW02, BFOS84,
DGL96]. For metric regression, a simple risk bound follows from classic VC
theory via the pseudo-dimension, see e.g. [Pol84, Vap95, Ney06]. However, the
pseudo-dimension of many non-trivial function classes, including Lipschitz func-
tions, grows linearly with the sample size, ultimately yielding a vacuous bound.
An approach to nonparametric regression based on empirical risk minimization,
though only for the Euclidean case, may already be found in [LZ95]; see the com-
prehensive historical overview therein. Indeed, Theorem 5.2 in [GKKW02] gives
a kernel regressor for Lipschitz functions that achieves the minimax rate. Note
however that (a) the setting is restricted to Euclidean spaces; and (b) the cost
of evaluating the hypothesis at a new point grows linearly with the sample size
(while our complexity is roughly logarithmic). As noted above, another feature
of our approach is its ability to give efficiently computable finite-sample bounds,
as opposed to the asymptotic convergence rates obtained in [GKKW02, LZ95]
and elsewhere.

More recently, risk bounds in terms of doubling dimension and Lipschitz con-
stant were given in [Kpo09], assuming an additive noise model, and hence these
results are incomparable to ours; for instance, these risk bounds worsen with
an increasingly smooth regression function. Following up, a regression technique
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based on random partition trees was proposed in [KD11], based on mappings
between Euclidean spaces and assuming an additive noise model. Another recent
advance in nonparametric regression was Rodeo [LW08], which escapes the curse
of dimensionality by adapting to the sparsity of the regression function.

Our work was inspired by the paper of von Luxburg and Bousquet [vLB04],
who were apparently the first to make the connection between Lipschitz classi-
fiers in metric spaces and large-margin hyperplanes in Banach spaces, thereby
providing a novel generalization bound for nearest-neighbor classifiers. They de-
veloped a powerful statistical framework whose core idea may be summarized
as follows: to predict the behavior at new points, find the smoothest function
consistent with the training sample. Their work raises natural algorithmic ques-
tions like how to estimate the risk for a given input, how to perform model selec-
tion (Structural Risk Minimization) to avoid overfitting, and how to perform the
learning and prediction quickly. Follow-up work [GKK10] leveraged the doubling
dimension simultaneously for statistical and computational efficiency, to design
an efficient classifier for doubling spaces. Its key feature is an efficient algorithm
to find the optimal balance between the empirical risk and the penalty term for
a given input. Minh and Hoffman [MH04] take the idea in [vLB04] in a more
algebraic direction, establishing a representer theorem for Lipschitz functions on
compact metric spaces.

2 Bounds on Uniform Deviation via Fat Shattering

In this section, we derive tail bounds on the uniform deviation Δn(H) defined in
(3) in terms of the the smoothness properties of H and the doubling dimension
of the underlying metric space (X , ρ).

2.1 Preliminaries

We rely on the powerful framework of fat-shattering dimension developed by
[ABCH97], which requires us to incorporate the value of a hypothesis and the
loss it incurs on a sample point into a single function. This is done by associating
to any family of hypothesesHmapping X → [0, 1], the induced family F = Fq

H of
functions mapping X×[0, 1] → [0, 1] as follows: for each h ∈ H the corresponding
f = f q

h ∈ Fq
H is given by

f q
h(x, y) = |h(x) − y|q , q ∈ {1, 2} . (5)

In a slight abuse of notation, we define the uniform deviation of a class F of
[0, 1]-valued functions over X × [0, 1]:

Δn(F) = sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi, Yi)−Ef(X,Y )

∣∣∣∣∣ , (6)

where the expectation is over μ, as in (2). Obviously, Δn(Fq
H) = Δn(H, q).
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2.2 Basic Generalization Bounds

Let us write

HL =
{
h ∈ [0, 1]X : ‖h‖

Lip
≤ L

}
(7)

to denote the collection of [0, 1]-valued L-Lipschitz functions on X . We proceed
to bound the γ-fat-shattering dimension of Fq

HL
.

Theorem 2.1. Let HL be defined on a metric space (X , ρ), where diam(X ) = 1.
Then

fatγ(Fq
HL

) ≤
(
1 +

1

γ(q+1)/2

)(
L

γ(q+1)/2

)ddim(X )+1

holds for q ∈ {1, 2} and all 0 < γ ≤ 1
2 .

Proof. (Sketch) Fix a γ > 0 and recall what it means for Fq
HL

to γ-shatter a set

S = (T, Z) = {(t, z) : t ∈ X , z ∈ [0, 1]}

(where T ∈ X |S| and Z ∈ [0, 1]|S|): there exists some function r ∈ RS such

that for each label assignment b ∈ {−1, 1}S there is an f ∈ Fq
HL

satisfying
b(s)(f(s)− r(s)) ≥ γ for all s ∈ S.

Put K =
⌈
γ−(q+1)/2

⌉
and define the map π : S → {0, 1, . . . ,K} by

π(s) = π(t, z) = �Kz� .

Thus, we may view S as being partitioned into K + 1 buckets:

S =

K⋃
k=0

π−1(k). (8)

Consider two points, s = (t, z) and s′ = (t′, z′), belonging to some fixed bucket
π−1(k). By construction, the following hold:

(i) |z − z′| ≤ K−1 ≤ γ(q+1)/2

(ii) since Fq
HL

γ-shatters S (and recalling (5)), there is an h ∈ HL satisfying
|h(t)− z|q ≤ r − γ and |h(t′)− z′|q ≥ r′ + γ for some γ ≤ r ≤ r′ < 1− γ.

Conditions (i) and (ii) imply that

|h(t)− h(t′)| ≥ (r′ + γ)1/q − (r − γ)1/q − |z − z′| ≥ γ(q+1)/2. (9)

The fact that h is L-Lipschitz implies that ρ(t, t′) ≥ |h(t)− h(t′)|/L ≥ γ(q+1)/2/L
and hence ∣∣π−1(k)

∣∣ ≤ (
L

γ(q+1)/2

)ddim(X )+1

(10)

for each k ∈
{
0, 1, . . . ,

⌈
γ−(q+1)/2

⌉}
. Together (8) and (10) yield our desired

bound on |S|, and hence on the fat shattering dimension of Fq
HL

. ��
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The following generalization bound, implicit in [ABCH97], establishes the
learnability of continuous-valued functions in terms of their fat-shattering
dimension.

Theorem 2.2. Let F be any admissible function class mapping X × [0, 1] to
[0, 1] and define Δn(F) as in (6). Then for all 0 < ε < 1 and all n ≥ 2/ε2,

P (Δn(F) > ε) ≤ 24n

(
288n

ε2

)d log(24en/ε)

exp(−ε2n/36)

where d = fatε/24(F).

Corollary 2.1. Fix an 1 > ε > 0 and q ∈ {1, 2}. Let HL be defined on a metric
space (X , ρ) and recall the definition of Δn(HL, q) in (3). Then for all n ≥ 2/ε2,

P (Δn(HL, q) > ε) ≤ 24n

(
288n

ε2

)d log(24en/ε)

exp(−ε2n/36) (11)

where

d =

(
1 +

1

(ε/24)(q+1)/2

)(
L

(ε/24)(q+1)/2

)ddim(X )+1

.

We can conclude from Corollary 2.1 that there exists ε(n, L, δ) such that with
probability at least 1− δ,

Δn(HL, q) ≤ ε(n, L, δ), (12)

and by essentially inverting (11), we have

ε(n, L, δ) ≤ O

(
max

{√
log(n/δ)

n
,

(
Lddim(X )+1

n
log2 n

) 1

2+
q+1
2

(ddim(X)+1)

})
(13)

(For simplicity, the dependence of ε(·) on ddim(X ) is suppressed.) This implies
via (4) that

R(h) ≤ Rn(h) + ε(n, L, δ)

uniformly for all h ∈ HL with high probability.

2.3 Simultaneous Bounds for Multiple Lipschitz Constants

So far, we have established the following. Let (X , ρ) be a doubling metric space
and HL a collection of L-Lipschitz [0, 1]-valued functions on X . Then Corollary
2.1 guarantees that for all ε, δ ∈ (0, 1) and n ≥ n0(ε, δ, L, ddim(X )), we have

P (Δn(HL) > ε) ≤ δ, (14)

where Δn(HL) is the uniform deviation defined in (3). Since our computational
approach in Section 3 requires optimizing over Lipschitz constants, we will need
a bound such as (14) that holds for many function classes of varying smooth-
ness simultaneously. This is easily accomplished by stratifying the confidence
parameter δ, as in [SBWA98]. We will need the following theorem:
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Theorem 2.3. Let
H(1) ⊂ H(2) ⊂ . . .

be a sequence of function classes taking X to [0, 1] and let pk ∈ [0, 1], k = 1, 2, . . .,
be a sequence summing to 1. Suppose that ε : N×N× (0, 1)→ [0, 1] is a function
such that for each k ∈ N, with probability at least 1− δ, we have

Δq
n(H(k)) ≤ ε(n, k, δ).

Then, whenever some h ∈
⋃

k∈N
[H(k)]η achieves empirical risk Rn(h) on a

sample of size n, we have that with probability at least 1− δ,

R(h) ≤ Rn(h) + ε(n, k, δpk) ∀k. (15)

Proof. An immediate consequence of the union bound. ��

The structural risk minimization principle implied by Theorem 2.3 amounts
to the following model selection criterion: choose an h ∈ H(k) for which the
right-hand side of (15) is minimized.

In applying Theorem 2.3 to Lipschitz classifiers in Section 3 below, we impose
a discretization on the Lipschitz constant L to be multiples of η

24q . Formally, we

consider the stratification H(k) = HLk
,

HL1 ⊂ HL2 ⊂ . . . ,

where Lk = kη with corresponding pk = 2−k for k = 1, 2, . . .. This means
that whenever we need a hypothesis that is an L-Lipschitz regression function,
we may take k = !Lη" and use ε(n, k, δ2−k) as the generalization error bound.
Note that all possible values of L are within a factor of 2 of the discretized
sequence Lk.

3 Structural Risk Minimization

In this section, we address the problem of efficient model selection when given
n observed samples. The algorithm described below computes a hypothesis that
approximately attains the minimum risk over all hypotheses. Since our approx-
imate Lipschitz extension algorithm will evaluate hypotheses up to an additive
error, we define an η-perturbation [H]η of a given hypothesis class H by

[H]η =
{
h′ ∈ R

X : ∃h ∈ H s.t. ‖h− h′‖∞ ≤ η
}
. (16)

Recall the risk bound achieved as a consequence of Theorem 2.3. In the full
paper [GKK11], we extend this result to perturbations, showing that whenever
some h ∈

⋃
k∈N

[
H(k)

]
η
achieves empirical risk Rn(h) on a sample of size n, we

have the following bound on R(h), the true risk of h:

R(h) ≤ Rn(h) + ε(n, k, δpk) + 24qη, (17)
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with probability at least 1 − δ (where the diameter of the point set has been
taken as 1, and ε(n, k, δpk) ≥

√
2/n is the minimum value of ε for which the

right-hand side of (11) is at most δ). In the rest of this section, we devise an
algorithm that computes a hypothesis that approximately minimizes our bound
from (17) on the true risk, denoted henceforth

R̃η(h) = Rn(h) + ε(n, k, δpk) + 24qη.

Notice that on the right-hand side, the first two terms depend on L, but only
the first term depends on the choice of h, and only the third term depends on η.

Theorem 3.1. Let (Xi, Yi) for i = 1, . . . , n be an iid sample drawn from μ,
let η ∈ (0, 14 ), and let h∗ be a hypothesis that minimizes R̃η(h) over all h ∈⋃

k∈N

[
H(k)

]
η
. There is an algorithm that, given the n samples and η as input,

computes in time η−O(ddim(X ))n log3 n a hypothesis h′ ∈
⋃

k∈N

[
H(k)

]
η
with

R̃η(h
′) ≤ 2R̃η(h

∗). (18)

Remark. We show in Theorem 4.1 how to quickly evaluate the hypothesis h′ on
new points.

The rest of Section 3 is devoted to describing an algorithm that realizes the
bounds of Theorem 3.1 for q = 1 (Sections 3.1 and 3.2) and q = 2 (Section 3.3).
In proving the theorem, we will find it convenient to compare the output h′ to
a hypothesis h̄ that is smooth (i.e. Lipschitz but unperturbed). Indeed, let h∗

be as in the theorem, and h̄ ∈
⋃

k∈N
H(k) be a hypothesis that minimizes R̃η(h̄).

Then Rn(h
∗) ≤ Rn(h̄) ≤ Rn(h

∗)+ η, and we get R̃η(h
∗) ≤ R̃η(h̄) ≤ R̃η(h

∗) + η.

Accordingly, the analysis below will actually prove that R̃η(h
′) ≤ 2R̃η(h̄) − 2η,

and then (18) will follow easily, essentially increasing the additive error by 2η.
Moreover, once (18) is proved, we can use the above to conclude that R̃η(h

′) ≤
2R̃0(h̄) + O(η), which compares the risk bound of our algorithm’s output h′ to
what we could possibly get using smooth hypotheses.

In the rest of this section we consider the n observed samples as fixed values,
given as input to the algorithm, so we will write xi instead of Xi.

3.1 Motivation and Construction

Suppose that the Lipschitz constant of an optimal unperturbed hypothesis h̄ were
known to be L = L̄. Then ε(n, k, δpk) is fixed, and the problem of computing both
h̄ and its empirical risk Rn(h̄) can be described as the following optimization
program with variables f(xi) for i ∈ [n] to represent the assignments h(xi). Note
it is a Linear Program (LP) when q = 1 and a quadratic program when q = 2.

Minimize
∑

i∈[n] |yi − f(xi)|q
subject to |f(xi)− f(xj)| ≤ L · ρ(xi, xj) ∀i, j ∈ [n]

0 ≤ f(xi) ≤ 1 ∀i ∈ [n]

(19)
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It follows that h̄ could be computed by first deriving L̄, and then solving the
above program. However, it seems that computing these exactly is an expensive
computation. This motivates our search for an approximate solution to risk
minimization. We first derive a target Lipschitz constant L′ that “approximates”
L̄, in the sense that there exists an h′ with Lipschitz constant L′ which minimizes
the objective max{Rn(h

′), ε(n, k, δpk)}. Notice that Rn(h
′) may be computed

by solving LP (19) using the given value L′ for L. We wish to find such L′

via a binary search procedure, which requires a method to determine whether
a candidate L satisfies L ≤ L′, but since our objective need not be a monotone
function of L, we cannot rely on the value of the objective at the candidate
L. Instead, recall that the empirical risk term Rn(h

′) is monotonically non-
increasing, and the penalty term ε(n, k, δpk) is monotonically non-decreasing,
and therefore we can take L′ to be the minimum value L for which Rn(h

′) ≤
ε(n, k, δpk) (notice that both terms are right-continuous in L). Our binary search
procedure can thus determine whether a candidate L satisfies L ≤ L′ by checking
instead whether Rn(h

′) ≤ ε(n, k, δpk).
Were the binary search on L to be carried out indefinitely (that is, with

infinite precision), it would yield L′ and a smooth hypothesis h′ satisfying

R̃η(h
′) ≤ 2R̃η(h̄), where the factor 2 originates from the gap between maxi-

mum and summation. In fact, a slightly stronger bound holds:

R̃η(h
′)−24qη≤ 2max{Rn(h

′), ε(n, k, δpk)}≤ 2
(
Rn(h̄)+ε(n, k, δpk)

)≤ 2
(
R̃η(h̄)−24qη

)
.

(In our actual LP solver below, h′ will not be necessarily smooth, but rather a
perturbation of a smooth hypothesis.) However, to obtain a tractable runtime,
we fix an additive precision of η to the Lipschitz constant, and restrict the target
Lipschitz constant to be a multiple of η. Notice that R̃η(h̄) ≤ 2 for sufficiently
large n (since this bound can even be achieved by a hypothesis with Lipschitz
constant 0), so by (13) it must be that L̄ ≤ nO(1), since L̄ is the optimal Lips-
chitz constant. It follows that the binary search will consider only O(log(n/η))
candidate values for L′.

To bound the effect of discretizing the target L′ to multiples of η, we shall show
the existence of a hypothesis ĥ that has Lipschitz constant L̂ ≤ max{L̄ − η, 0}
and satisfies R̃η(ĥ) ≤ R̃η(h̄) + η. To see this, assume by translation that the
minimum and maximum values assigned by h̄ are, respectively 0 and a ≤ 1. Thus,
its Lipschitz constant is L̄ ≥ a (recall we normalized diam(X ) = 1). Assuming

first the case a ≥ η, we can set ĥ(x) = (1− η
a ) · h̄(x), and it is easy to verify that

its Lipschitz constant is at most (1− η
a )L̄ ≤ L̄− η, and R̃η(ĥ) ≤ R̃η(h̄) + η. The

case a < η is even easier, as now there is trivially a function ĥ with Lipschitz
constant 0 and R̃η(ĥ) ≤ R̃η(h̄) + η. It follows that when the binary search is

analyzed using this ĥ instead of h̄, we actually get

R̃η(h
′) ≤ 2R̃η(ĥ)− 24qη ≤ 2R̃η(h̄)− 22qη ≤ 2R̃η(h

∗)− 20qη.

It now remains to show that given L′, program (19) may be solved quickly
(within certain accuracy), which we do in Sections 3.2 and 3.3.
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3.2 Solving the Linear Program

We show how to solve the linear program, given the target Lipschitz constant
L′.

Fast LP-Solver Framework. To solve the linear program, we utilize the frame-
work presented by Young [You01] for LPs of the following form: Given non-
negative matrices P,C, vectors p, c and precision β > 0, find a non-negative
vector x such that Px ≤ p and Cx ≥ c. Young shows that if there exists a
feasible solution to the input instance, then a solution to a relaxation of the
input program (specifically, Px ≤ (1 + β)p and Cx ≥ c) can be found in time
O(md(logm)/β2), where m is the number of constraints in the program and d
is the maximum number of constraints in which a single variable may appear.

In utilizing this framework for our problem, we encounter a difficulty that
both the input matrices and output vector must be non-negative, while our LP
(19) has difference constraints. To bypass this limitation, for each LP variable
f(xi) we introduce a new variable x̃i and two new constraints:

f(xi) + x̃i ≤ 1
f(xi) + x̃i ≥ 1

By the guarantees of the LP solver, we have that in the returned solution 1 −
f(xi) ≤ x̃i ≤ 1 − f(xi) + β and x̃i ≥ 0. This technique allows us to introduce
negated variables−f(xi) into the linear program, at the loss of additive precision.

Reduced Constraints. A central difficulty in obtaining a near-linear runtime for
the above linear program is that the number of constraints in LP (19) is Θ(n2).
We show how to reduce the number of constraints to near-linear in n, namely,
η−O(ddim(X ))n. We will further guarantee that each of the n variables f(xi)
appears in only η−O(ddim(X )) constraints. Both these properties will prove useful
for solving the program quickly.

Recall that the purpose of the Θ(n2) constraints is solely to ensure that the
target Lipschitz constant is not violated between any pair of points. We will
show below that this property can be approximately maintained with many
fewer constraints: The spanner described in our full paper [GKK11], has stretch
1 + δ, degree δ−O(ddim(X )) and hop-diameter c′ logn for some constant c′ > 0,
that can be computed quickly. Build this spanner for the observed sample points
{xi : i ∈ [n]} with stretch 1+η (i.e., set δ = η) and retain a constraint in LP (19)
if and only if its two variables correspond to two nodes that are connected in the
spanner. It follows from the bounded degree of the spanner that each variable
appears in η−O(ddim(X )) constraints, which implies that there are η−O(ddim(X ))n
total constraints.

Modifying Remaining Constraints. Each spanner-edge constraint |f(xi)−f(xj)|
≤ L′ · ρ(xi, xj) is replaced by a set of two constraints

f(xi) + x̃j ≤ 1 + L′ · ρ(xi, xj)
f(xj) + x̃i ≤ 1 + L′ · ρ(xi, xj)
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By the guarantees of the LP solver we have that in the returned solution, each
spanner edge constraint will satisfy

|f(xi)− f(xj)| ≤ −1 + (1 + β)[1 + L′ · ρ(xi, xj)]
= β + (1 + β)L′ · ρ(xi, xj).

Now consider the Lipschitz condition for two points not connected by a span-
ner edge: Let x1, . . . , xk+1 be a (1 + η)-stretch (k ≤ c′ logn)-hop spanner path
connecting points x = x1 and x′ = xk+1. Then the spanner stretch guarantees
that

|f(x)− f(x′)| ≤
∑k

i=1[β + (1 + β)L′ · ρ(xi, xi+1)]
≤ βc′ logn+ (1 + β)L′ · (1 + η)ρ(x, x′).

Choosing β = η2

24qc′ log n , and noting that (1+β)(1 + η) < (1+ 2η), we have that
for all point pairs

|f(x)− f(x′)| < η2

24q + (1 + 2η)L′ · ρ(x, x′).

We claim that the above inequality ensures that the computed hypothesis h′ (rep-
resented by variables f(xi) above) is a 6η-perturbation of some hypothesis with
Lipschitz constant L′. To prove this, first note that if L′ = 0, then the statement
follows trivially. Assume then that (by the discretization of L′), L′ ≥ η. Now
note that a hypothesis with Lipschitz constant (1 + 3η)L′ is a 3η-perturbation
of some hypothesis with Lipschitz constant L′. (This follows easily by scaling
down this hypothesis by a factor of (1 + 3η), and recalling that all values are
in the range [0, 1].) Hence, it suffices to show that the computed hypothesis h′

is a 3η-perturbation of some hypothesis h̃ with Lipschitz constant (1 + 3η)L′.
We can construct h̃ as follows: Extract from the sample points S = {xi}i∈[n] a

(η/L′)-net N , then for every net-point z ∈ N set h̃(z) = h′(z), and extend this
function h̃ from N to all of S without increasing Lipschitz constant by using the
McShane-Whitney extension theorem [McS34, Whi34] for real-valued functions.
Observe that for every two net-points z 
= z′ ∈ N ,

|h̃(z)− h̃(z′)| ≤ η2

24q
+ (1 + 2η)L′ · ρ(z, z′) < (1 + 3η)L′ · ρ(z, z′).

It follows that h̃ (defined on all of S) has Lipschitz constant L̃ ≤ 1 + 3η. Now,
consider any point x ∈ S and its closest net-point z ∈ N ; then ρ(x, z) ≤ η/L′.
Using the fact h̃(z) = h′(z), we have that |h′(x)− h̃(x)| ≤ |h′(x)−h′(z)|+ |h̃(z)−
h̃(x)| ≤

[
η2

24q + (1 + 2η)L′ · ρ(x, z)
]
+ (1+ 3η)L′ · ρ(x, y) ≤ η2

24q + (2+ 5η)η ≤ 3η.

We conclude that h′ is 3η-perturbation of h̃, and a 6η-perturbation of some
hypothesis with Lipschitz constant L′.

Objective Function. We now turn to the objective function 1
n

∑
i |yi−f(xi)|. We

use the same technique as above for handling difference constraints: For each
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term |yi − f(xi)| in the objective function we introduce the variable wi and the
constraint

f(xi) + wi ≥ yi

Note that the solver imposes the constraint that wi ≥ 0, so we have that
wi ≥ max{0, yi − f(xi)}. Now consider the term f(xi) + 2wi, and note that
the minimum feasible value of this term in the solution of the linear program is
exactly equal to yi + |yi − f(xi)|: If f(xi) ≥ yi then the minimum feasible value
of wi is 0, which yields f(xi)+2wi = f(xi) = yi+(f(xi)−yi) = yi+ |yi−f(xi)|.
Otherwise we have that f(xi) < yi, so the minimum feasible value of wi is
yi − f(xi), which yields f(xi) + 2wi = 2yi − f(xi) = yi + |yi − f(xi)|.

The objective function is then replaced by the constraint

1
n

∑
i(f(xi) + 2wi) ≤ r,

which by the above discussion is equal to 1
n

∑
i(yi + |yi− f(xi)|) ≤ r, and hence

is a direct bound on the empirical error of the hypothesis. We choose bound r via
binary search: Recalling that R̃n(h

′) ≤ 1 (since even a hypothesis with Lipschitz
constant 0 can achieve this bound), we may set r ≤ 1. By discretizing r in
multiples of η (similar to what was done for L′), we have that the binary search
will consider only O(log η−1) guesses for r. Note that for guess r′, the solver
guarantees only that the returned sum is less than (1 + β)r′ ≤ r′ + β < r′ + η.
It follows that the discretization of r and its solver relaxation of r introduce,
together, at most an additive error of 2η in the LP objective, i.e., in Rn(h

′) and
in R̃η(h

′).

Correctness and Runtime Analysis. The fast LP solver ensures that h′ computed
by the above-described algorithm is a 6η-perturbation of a hypothesis with Lips-
chitz constant L′. As for R̃(h′), which we wanted to minimize, an additive error of
2η is incurred by comparing h′ to h̄ instead of to h∗, another additive error of 2η
arises from discretizing L̄ into L′ (i.e., comparing to ĥ instead of h̄), and another
additive error 4η introduced through the discretization of r and its solver relax-
ation. Overall, the algorithm above computes a hypothesis h′ ∈

⋃
k∈N

[
H(k)

]
6η

with R̃η(h
′) ≤ 2R̃η(h

∗) − 16η. The parameters in Theorem 3.1 are achieved by

scaling down η to η
6 and the simple manipulation R̃η/6(h) = R̃η(h)− 20qη.

Finally, we turn to analyze the algorithmic runtime. The spanner may be
constructed in time O(η−O(ddim(X ))n logn). Young’s LP solver [You01] is in-
voked O(log n

η log 1
η ) times, where the log n

η term is due to the binary search

for L′, and the log 1
η term is due to the binary search for r. To determine

the runtime per invocation, recall that each variable of the program appears
in d = η−O(ddim(X )) constraints, implying that there exist m = η−O(ddim(X ))n
total constraints. Since we set β = O(η2/ logn), we have that each call to the
solver takes time O(md(logm)/β2) ≤ η−O(ddim(X ))n log2 n, for a total runtime
of η−O(ddim(X ))n log2 n log n

η log 1
η ≤ η−O(ddim(X ))n log3 n. This completes the

proof of Theorem 3.1 for q = 1.
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3.3 Solving the Quadratic Program

Above, we considered the case when the loss function is linear. Here we modify
the objective function construction to cover the case when the loss function is
quadratic, that is 1

n

∑
i |yi − f(xi)|2. We then use the LP solver to solve our

quadratic program. (Note that the spanner-edge construction above remains as
before, and only the objective function construction is modified.)

Let us first redefine wi by the constraints

f(xi) + wi ≤ 1
f(xi) + wi ≥ 1

It follows from the guarantees of the LP solver that in the returned solution,
1− f(xi) ≤ wi ≤ 1− f(xi) + β and wi ≥ 0.

Now note that a quadratic inequality v ≥ x2 can be approximated for x ∈ [0, 1]
by a set of linear inequalities of the form

v ≥ 2(jη)x− (jη)2

for 0 ≤ j ≤ 1
η ; these are just a collection of tangent lines to the quadratic

function. Note that the slope of the quadratic function in the stipulated range
is at most 2, so this approximation introduces an additive error of at most 2η.

Since |yi−f(xi)|2 takes values in the range [0, 1], we will consider an equation
set of the form

vi ≥ 2(jη)|yi − f(xi)| − (jη)2 + 2η

which satisfies that the minimum feasible value of vi is in the range [|yi −
f(xi)|2, |yi − f(xi)|2 + 2η]. It remains to model these difference constraints in
the LP framework: When f(xi) ≤ yi, the equation set

vi + 2(jη)f(xi) ≥ 2(jη)yi − (jη)2 + 2η

exactly models the above constraints. When f(xi) > yi, the lower bound of this
set may not be tight, and instead the equation set

vi + 2(jη)wi ≥ −2(jη)yi − (jη)2 + 2η + 2(jη)(1 + β)

models the above constraints, though possibly increasing the value of vi by
2(jη)β < η. (Note that when f(xi) < yi, the lower bound of the second equa-
tion set may not be tight, so the first equation set is necessary. Also, note that
whenever the right hand side of an equation is negative, the equation is vacuous
and may be omitted.)

The objective function is then replaced by the inequality

1
n

∑
i vi ≤ r,

where r is chosen by binary search as above.
Turning to the runtime analysis, the replacement of a constraint by O(1/η)

new constraints does not change the asymptotic runtime. For the analysis of the
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approximation error, first note that a solution to this program is a feasible solu-
tion to the original quadratic program. Further, given a solution to the original
quadratic program, a feasible solution to the above program can be found by
perturbing the quadratic program solution by at most 3η (since additive terms
of 2η and η are lost in the above construction). The proof of Theorem 3.1 for
q = 2 follows by an appropriate scaling of η.

4 Approximate Lipschitz Extension

In this section, we show how to evaluate our hypothesis on a new point. More
precisely, given a hypothesis function f : S → [0, 1], we wish to evaluate a
minimum Lipschitz extension of f on a new point x /∈ S. That is, denoting S =

{x1, . . . , xn}, we wish to return a value y = f(x) that minimizes maxi{ |y−f(xi)|
ρ(x,xi)

}.
Necessarily, this value is not greater than the Lipschitz constant of the classifier,
meaning that the extension of f to the new point does not increase the Lipschitz
constant of f and so Theorem 2.3 holds for the single new point. (By this local
regression analysis, it is not necessary for newly evaluated points to have low
Lipschitz constant with respect to each other, since Theorem 2.3 holds for each
point individually.)

First note that the Lipschitz extension label y of x /∈ S will be determined by
two points of S. That is, there are two points xi, xj ∈ S, one with label greater
than y and one with a label less than y, such that the Lipschitz constant of (x, y)

relative to each of these points (that is, L = f(xi)−y
ρ(x,xi)

=
y−f(xj)
ρ(x,xj)

) is maximum

over the Lipschitz constant of (x, y) relative to any point in S. Hence, y cannot
be increased or decreased without increasing the Lipschitz constant with respect
to one of these points.

Note then that an exact Lipschitz extension may be derived in Θ(n2) time in
brute-force fashion, by enumerating all point pairs in S, calculating the optimal
Lipschitz extension for x with respect to each pair alone, and then choosing the
candidate value for y with the highest Lipschitz constant. However, we demon-
strate that an approximate solution to the Lipschitz extension problem can be
derived more efficiently.

Theorem 4.1. An η-additive approximation to the Lipschitz extension problem
can be computed in time η−O(ddim(X )) logn.

Proof. The algorithm is as follows: Round up all labels f(xi) to the nearest term
jη/2 (for any integer 0 ≤ j ≤ 2/η), and call the new label function f̃ . We seek the
value of f̃(x), the optimal Lipschitz extension value for x for the new function
f̃ . Trivially, f(x) ≤ f̃(x) ≤ f(x) + η/2. Now, if we were given for each j the
point with label jη/2 that is the nearest neighbor of x (among all points with this
label), then we could run the brute-force algorithm described above on these 2/η
points in time O(η−2) and derive f̃(x). However, exact metric nearest neighbor
search is potentially expensive, and so we cannot find these points efficiently.
We instead find for each j a point x′ ∈ S with label f̃(x′) = jη/2 that is a
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(1 + η
2 )-approximate nearest neighbor of x among points with this label. (This

can be done by presorting the points of S into 2/η buckets based on their f̃ label,
and once x is received, running on each bucket a (1 + η

2 )-approximate nearest

neighbor search algorithm due to [CG06] that takes η−O(ddim(X )) logn time.)
We then run the brute force algorithm on these 2/η points in time O(η−2). The
nearest neighbor search achieves approximation factor 1 + η

2 , implying a similar
multiplicative approximation to L, and thus also to |y−f(x′)| ≤ 1, which means
at most η/2 additive error in the value y. We conclude that the algorithm’s
output solves the Lipschitz extension problem with additive η. ��
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[GKKW02] Györfi, L., Kohler, M., Krzyżak, A., Walk, H.: A distribution-free theory
of nonparametric regression. Springer Series in Statistics. Springer, New
York (2002)

[GKL03] Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and
low-distortion embeddings. In: FOCS, pp. 534–543 (2003)

http://arxiv.org/abs/1111.4470
http://arxiv.org/abs/1302.2752


58 L. Gottlieb, A. Kontorovich, and R. Krauthgamer

[HM06] Har-Peled, S.,Mendel,M.: Fast construction of nets in low-dimensional met-
rics and their applications. SIAM Journal on Computing 35(5), 1148–1184
(2006)

[KD11] Kpotufe, S., Dasgupta, S.: A tree-based regressor that adapts to intrinsic
dimension. Journal of Computer and System Sciences (2011) (to appear)

[KL04] Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for prox-
imity search. In: 15th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 791–801 (January 2004),
http://dl.acm.org/citation.cfm?id=982792.982913

[Kpo09] Kpotufe, S.: Fast, smooth and adaptive regression in metric spaces. In: Ben-
gio,Y., Schuurmans,D., Lafferty, J.,Williams,C.K.I.,Culotta,A. (eds.)Ad-
vances in Neural Information Processing Systems 22, pp. 1024–1032 (2009)

[KSW09] Kleinberg, J., Slivkins, A., Wexler, T.: Triangulation and embedding using
small sets of beacons. J. ACM 56, 32:1–32:37 (2009)

[LW08] Lafferty, J., Wasserman, L.: Rodeo: Sparse, greedy nonparametric regres-
sion. Ann. Stat. 36(1), 28–63 (2008)

[LZ95] Lugosi, G., Zeger, K.: Nonparametric estimation via empirical risk mini-
mization. IEEE Transactions on Information Theory 41(3), 677–687 (1995)

[McS34] McShane, E.J.: Extension of range of functions. Bull. Amer. Math.
Soc. 40(12), 837–842 (1934)

[MH04] Minh, H.Q., Hofmann, T.: Learning over compact metric spaces. In:
Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120,
pp. 239–254. Springer, Heidelberg (2004)
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Abstract. Domain specific (dis-)similarity or proximity measures, employed
e.g. in alignment algorithms in bio-informatics, are often used to compare com-
plex data objects and to cover domain specific data properties. Lacking an under-
lying vector space, data are given as pairwise (dis-)similarities. The few available
methods for such data do not scale well to very large data sets. Kernel methods
easily deal with metric similarity matrices, also at large scale, but costly trans-
formations are necessary starting with non-metric (dis-) similarities. We propose
an integrative combination of Nyström approximation, potential double center-
ing and eigenvalue correction to obtain valid kernel matrices at linear costs.
Accordingly effective kernel approaches, become accessible for these data. Eval-
uation at several larger (dis-)similarity data sets shows that the proposed method
achieves much better runtime performance than the standard strategy while keep-
ing competitive model accuracy. Our main contribution is an efficient linear tech-
nique, to convert (potentially non-metric) large scale dissimilarity matrices into
approximated positive semi-definite kernel matrices.

1 Introduction

In many application areas such as bioinformatics, different technical systems, or the
web, electronic data is getting larger and more complex in size and representation, us-
ing domain specific (dis-)similarity measures as a replacement or complement to Eu-
clidean measures. Many classical machine learning techniques, have been proposed for
Euclidean vectorial data. However, modern data are often associated to dedicated struc-
tures which make a representation in terms of Euclidean vectors difficult: biological
sequence data, text files, XML data, trees, graphs, or time series [14,10,1] are of this
type. These data are inherently compositional and a feature representation leads to in-
formation loss. As an alternative, a dedicated dissimilarity measure such as pairwise
alignment, or kernels for structures can be used as the interface to the data. In such
cases, machine learning techniques which can deal with pairwise similarities or dissim-
ilarities have to be used [15]. Native methods for the analysis of dissimilarity data have
been proposed in [15,8,7], but are widely based on non-convex optimization schemes
and with quadratic to linear memory and runtime complexity, the later employing some
of the approximation techniques discussed subsequently and additional heuristics.

Especially kernel methods, based on metric similarity matrices, revolutionized the
possibility to deal with large electronic data, offering powerful tools to automatically
extract regularities [19] in a convex optimization framework. But complex preprocess-
ing steps are necessary, as discussed in the following, to apply them on non-metric
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(dis-) similarities. Large (dis-)similarity data are common in biology like the famous
UniProt/SwissProt-DB with ≈ 500.000 entries or GenBank with ≈ 135.000 entries,
but there are many more (dis-)similarity data as discussed in the work based on [15,16].
These growing data sets request effective modeling approaches. For protein and gene
data recent work, proposed widely heuristically, strategies to improve the situation for
large applications in unsupervised peptide retrieval [21].

Here we will show how potentially non-metric (dis-)similarities can be effectively
processed by standard kernel methods with linear costs, also in the transformation
step, which, to the authors best knowledge has not been reported before1. The pro-
posed strategies permit the effective application of many kernel methods for these type
of data under very mild conditions. Especially for metric dissimilarities the approach
keeps the known guarantees like generalization bounds (see e.g. [3]) while for non-psd
data corresponding proofs are still open, but our experiments are promising. The paper
is organized as follows. First we give a short review about transformation techniques
for dissimilarity data and discuss the influence of non-euclidean measures, by eigen-
value corrections. Subsequently, we discuss alternative methods for processing small
dissimilarity data. We extend this discussion to approximation strategies, recalling the
derivation of the low rank Nyström approximation for similarities and transfer this prin-
ciple to dissimilarities. Then we link both strategies effectively to use kernel methods
for the analysis of (non-)metric dissimilarity data and show the effectiveness by dif-
ferent exemplary supervised experiments. We also discuss differences and commons to
some known approaches supported by experiments on simulated data.

2 Transformation Techniques for Dissimilarity Data

Let vj ∈ V be a set of objects defined in some data space, with |V| = N . We assume,
there exists a dissimilarity measure such that D ∈ RN×N is a dissimilarity matrix
measuring the pairwise dissimilarities Dij = d(vi,vj) between all pairs (vi,vj) ∈ V.
Any reasonable (possibly non-metric) distance measure is sufficient. We assume zero
diagonal d(vi,vi) = 0 for all i and symmetry d(vi,vj) = d(vj ,vi) for all i, j.

2.1 Analyzing Dissimilarities by Means of Similarities for Small N

For every dissimilarity matrix D, an associated similarity matrix S is induced by a
process referred to as double centering with costs of O(N2)[15]:

S = −JDJ/2

J = (I− 11�/N)

with identity matrix I and vector of ones 1. D is Euclidean if and only if S is pos-
itive semi-definite (psd). This means, we do not observe negative eigenvalues in the
eigenspectrum of the matrix S associated to D.

1 Matlab code of the described transformations and test routines are available on request.
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Many classification techniques have been proposed to deal with such psd kernel ma-
trices S implicitly such as the support vector machine (SVM). In this case, prepro-
cessing is required to guarantee psd. In [1] different strategies were analyzed to obtain
valid kernel matrices for a given similarity matrix S, most popular are: clipping, flip-
ping, shift correction, vector-representation. The underlying idea is to remove negative
eigenvalues in the eigenspectrum of the matrix S .

Assuming we have a symmetric similarity matrix S, it has an eigenvalue decom-
position S = UΛU�, with orthonormal matrix U and diagonal matrix Λ collecting
the eigenvalues. In general, p eigenvectors of S have positive eigenvalues and q have
negative eigenvalues, (p, q,N − p− q) is referred to as the signature.

The clip-operation sets all negative eigenvalues to zero, the flip-operation takes the
absolute values, the shift-operation increases all eigenvalues by the absolute value of
the minimal eigenvalue.

The corrected matrix S∗ is obtained as S∗ = UΛ∗U�, with Λ∗ as the modified
eigenvalue matrix using one of the above operations. The obtained matrix S∗ can now
be considered as a valid kernel matrix K.

As an alternative, data points can be treated as vectors which coefficients or variables
are given by the pairwise (dis-)similarity. These vectors can be processed using standard
kernels. However, this view is changing the original data representation and leads to a
finite data space, limited by the number of samples.

Interestingly, some operations such as shift do not affect the location of global optima
of important cost functions such as the quantization error [12], albeit the transformation
can severely affect the performance of optimization algorithms [9]. The analysis in [17]
indicates that for non-Euclidean dissimilarities some corrections like above may change
the data representation such that information loss occurs.

A schematic view of the relations between S andD and its transformations2 is shown
in Figure 1. Here we also report the complexity of the transformations using current typ-
ical approaches. Some of the steps can be done more efficiently by known methods, but
with additional constraints or in under atypical settings as discussed in the following.

2.2 Analyzing Dissimilarities by Dedicated Methods for Small N

Alternatively, techniques have been introduced which directly deal with possibly
non-metric dissimilarities. Given a symmetric dissimilarity with zero diagonal, an em-
bedding of the data in a pseudo-Euclidean vector space determined by the eigenvector
decomposition of the associated matrix S is always possible. A symmetric bilinear form
in this space is given by 〈x,y〉p,q = x�Ip,qy where Ip,q is a diagonal matrix with p
entries 1 and q entries −1. Taking the eigenvectors of S together with the square root of
the absolute value of the eigenvalues, we obtain vectors vi in a pseudo-Euclidean space
such that Dij = 〈vi−vj ,vi−vj〉p,q holds for every pair of data points. If the number
of data is not limited, a generalization of this concept to Krein spaces with according
decomposition is possible [15].

Vector operations can be directly transferred to the pseudo-Euclidean space, i.e. we
can deal with center points (similar to k-means) as linear combinations of data in this

2 Transformation equations are given also in the following sections.
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Fig. 1. Schema to illustrate the relation between similarities and dissimilarities

space. Hence we can use multiple machine learning algorithms explicitly in pseudo-
Euclidean space, relying on vector operations only. One problem of this explicit trans-
fer is given by the computational complexity of the embedding which is O(N3), and,
further, the fact that out-of-sample extensions to new data points characterized by pair-
wise dissimilarities are not immediate. An improved strategy for learning a valid rela-
tional kernel from a matrix S was recently proposed in [13], employing latent wishart
processes, but this approach does not scale for larger datasets. A further strategy is to
employ so called relational or proximity learning methods as discussed e.g. in [7] The
underlying models consist of prototypes, which are implicitly defined as a weighted lin-
ear combination of training points: wj =

∑
i αjivi with

∑
i αji = 1 . But this explicit

representation is not necessary because the algorithms are solely based on a specific
form of distance calculations using only the matrix D, the potentially unknown vector
space V is not needed. The basic idea is an implicit computation of distances d(·, ·)
during the model calculation based on the dissimilarity matrix D using weights α:

d(vi,wj) = [D · αj ]i −
1

2
· α�

j Dαj (1)

details can be found in the aforementioned paper. As shown e.g. in [9] the mentioned
methods do not rely on a metric dissimilarity matrix D, but it is sufficient to have a
symmetric D in a pseudo-euclidean space, with constant self-dissimilarities.

The methods discussed before are suitable for data analysis based on similarity or
dissimilarity data where the number of samples N is rather small, e.g. scales by some
thousand samples. For larger N only for metric, similarity data (valid kernels) effi-
cient approaches have been proposed before, e.g. low-rank linearized SVM [25] or the
Core-Vector Machine (CVM) [22].
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In the following we discuss techniques to deal with larger sample sets for, poten-
tially non-metric similarity and especially dissimilarity data. Especially we show how
standard kernel methods can be used, assuming that for non-metric data, the necessary
transformations have no severe negative influence on the data accuracy. Basically also
core-set techniques become accessible for large potentially non-metric (dis-)similarity
data in this way, but at the cost of multiple additional intermediate steps.

3 Nyström Approximation

The aforementioned methods depend on the similarity matrix S or dissimilarity matrix
D, respectively. For kernel methods and more recently for prototype based learning
the usage of the Nystöm approximation is a well known technique to obtain effective
learning algorithms [23,7].

3.1 Nyström Approximation for Similarities

The Nyström approximation technique has been proposed in the context of kernel meth-
ods in [23] with related proofs and bounds given in [3]. Here, we give a short review of
this technique. One well known way to approximate a N × N Gram matrix, is to use
a low-rank approximation. This can be done by computing the eigendecomposition of
the kernel K = UΛU�, where U is a matrix, whose columns are orthonormal eigen-
vectors, and Λ is a diagonal matrix consisting of eigenvalues Λ11 ≥ Λ22 ≥ ... ≥ 0,
and keeping only the m eigenspaces which correspond to the m largest eigenvalues of
the matrix. The approximation is K ≈ UN,mΛm,mUm,N , where the indices refer to
the size of the corresponding submatrix. The Nyström method approximates a kernel in
a similar way, without computing the eigendecomposition of the whole matrix, which
otherwise is an O(N3) operation.

By the Mercer theorem kernels k(x,y) can be expanded by orthonormal
eigenfunctions ψi and non negative eigenvalues λi in the form

k(x,y) =

∞∑
i=1

λiψi(x)ψi(y).

The eigenfunctions and eigenvalues of a kernel are defined as the solution of the integral
equation ∫

k(y,x)ψi(x)p(x)dx = λiψi(y),

where p(x) is the probability density of x. This integral can be approximated based on
the Nyström technique by sampling xk i.i.d. according to p(x):

1

m

m∑
k=1

k(y,xk)ψi(x
k) ≈ λiψi(y).

Using this approximation and the matrix eigenproblem equation

K(m)U(m) = U(m)Λ(m)
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of the correspondingm×m Gram sub-matrix K(m) we can derive the approximations
for the eigenfunctions and eigenvalues of the kernel k

λi ≈
λ
(m)
i

m
, ψi(y) ≈

√
m

λ
(m)
i

kyu
(m)
i , (2)

where u
(m)
i is the ith column of U(m). Thus, we can approximate ψi at an arbitrary

point y as long as we know the vector ky = (k(x1,y), ..., k(xm,y))�.
For a given N × N Gram matrix K we randomly choose m rows and respective

columns. The corresponding indices’s are also called landmarks, and should be chosen
such that the data distribution is sufficiently covered. A specific analysis about selection
strategies was recently discussed in [24]. We denote these rows by Km,N . Using the

formulas (2) we obtain K̃ =
∑m

i=1 1/λ
(m)
i · K�

m,Nu
(m)
i (u

(m)
i )�Km,N , where λ(m)

i

and u
(m)
i correspond to the m × m eigenproblem. Thus we get, K−1

m,m denoting the
Moore-Penrose pseudoinverse, an approximation of K as

K̃ = K�
m,NK−1

m,mKm,N .

This approximation is exact, if Km,m has the same rank as K.

3.2 Nyström Approximation for Dissimilarity Data

For dissimilarity data, a direct transfer is possible, see [7] for earlier work on this
topic. Earlier work in this line, but not equivalent, also appeared in the work around
Landmark Multi-Dimensional-Scaling (LMDS) [20] which we address in the next sec-
tion. According to the spectral theorem, a symmetric dissimilarity matrix D can be
diagonalized D = UΛU� with U being a unitary matrix whose column vectors are
the orthonormal eigenvectors of D and Λ a diagonal matrix with the corresponding
eigenvalues of D, Therefore the dissimilarity matrix can be seen as an operator

d(x,y) =

N∑
i=1

λiψi(x)ψi(y)

where λi ∈ R correspond to the diagonal elements of Λ and ψi denote the eigenfunc-
tions. The only difference to an expansion of a kernel is that the eigenvalues can be
negative. All further mathematical manipulations can be applied in the same way and
we can write in an analogy to the equation 3.1

D̂ = DN,mD−1
m,mD�

N,m.

It allows to approximate dissimilarities between a point wk represented by a coefficient
vector αk and a data point xi, as discussed within Eq (1), in the way

d(xi,wk) ≈
[
D�

m,N

(
D−1

m,m (Dm,Nαk)
)]

i

−1

2
·
(
α�

k D
�
m,N

)
·(

D−1
m,m (Dm,Nαk)

)
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with a linear submatrix of m rows and a low rank matrix Dm,m. Performing these ma-
trix multiplications from right to left, this computation is O(m2N) instead of O(N2),
i.e. it is linear in the number of data points N , assuming fixed approximation m.

A benefit of the Nyström technique is that it can be decided priorly which linear parts
of the dissimilarity matrix will be used in training. Therefore, it is sufficient to compute
only a linear part of the full dissimilarity matrix D to use these methods. A drawback
of the Nyström approximation is that a good approximation can only be achieved if the
rank of D is kept as much as possible, i.e. the chosen subset should be representative.
The specific selection of the m landmark points has been recently analyzed in [24]. It
was found that best results can be obtained by choosing the potential cluster centers of
the data distribution as landmarks, rather a random subset, to be able to keep m smallest
at lowest representation error. However the determination of these centers can become
complicated for large data sets, since it can be obviously not be based on a Nyström
approximated set. However the effect is not such severe as long as m is not too small.

4 Transformations of (Dis-)Similarities with Linear Costs

For metric similarity data, kernel methods can be applied directly, or in case of large
N , the Nyström approximation can be used. We will discuss non-metric data later and
focus now on metric or almost metric dissimilarity data D.

4.1 Transformation of Dissimilarities to Similarities

As pointed out before current methods for large dissimilarity matrix D are non-convex
approaches. On the other hand multiple effective convex kernel methods are available
for metric similarity data using a matrix S = K which we will now make accessible for
matrices D in an effective manner. This requests for a transformation of the matrix D to
S using double-centering as discussed above. This transformation contains a summation
over the whole matrix and thus has quadratic complexity, which would be prohibitive
for larger data sets.

One way to achieve this transformation in linear time, is to use landmark multidi-
mensional scaling (LMDS) [20] which was shown to be a Nyström technique as well
[18]. The idea is to sample a small amount m of points, called landmarks, compute
the corresponding dissimilarity matrix, apply double centering on this matrix and fi-
nally project the data to a low dimensional space using eigenvalue decomposition. The
remaining points can then be projected into the same space, taking into account the
distances to the landmarks, and applying triangulation. Having vectorial representation
of the data, it is then easy to retrieve the similarity matrix as a scalar product between
the points.

Another possibility arises if we take into account our key observation, that we can
combine both transformations, double centering and Nyström approximation, and make
use of their linearity. Instead of applying double centering, followed by the Nyström
approximation we first approximate the matrix D and then transform it by double
centering, which yields the approximated similarity matrix Ŝ.
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Both approaches have the costs of O(m2N) and produce the same results, up to
shift and rotation. This is because LMDS, in contrast to our approach, makes double
centering only on a small part of D, and thus is unable to detect the mean and the pri-
mary components of the whole data set. This can result in an unreliable impact, since
similarities which are not centered might lead to an inferior performance of the algo-
rithms and, thus, our approach should be used instead3. Additionally LMDS implicitly
assumes that the dissimilarities are metric, respectively the negative eigenvalues of the
corresponding similarity matrix are automatically clipped. This can have a negative im-
pact on the data analysis as we show in a synthetic example in the following. Further
LMDS is proposed as a projection technique leading to a low-dimensional, typically
2 − 3 dimensional embedding of the data. Higher dimensional embeddings by LMDS
are possible (limited by the number of positive eigenvalues), but to our best knowledge
neither used nor discussed so far. A Nyström approximated kernel, avoiding the calcu-
lations of all dissimilarities, as shown in the following is not directly obtained but only
after embedding of the corresponding dissimilarities and subsequent calculation of the
inner products. But for this kernel the negative eigenvalues are always clipped which
can have a negative impact on the analysis. Accordingly, the connection of LMDS to
our approach is rather weak4, which will get more obvious in the following derivations.

As mentioned before double centering of a matrix D is defined as:

S = −JDJ/2

where J = (I − 11�/N) with identity matrix I and vector of ones 1. S is positive
semi-definite (psd) if and only if D is Euclidean.

Lets start with a dissimilarity matrix D where we apply double centering, subse-
quently we approximate the obtained S by integrating the Nyström approximation to
the matrix D.

S = −1

2
JDJ

= −1

2

((
I− 1

N
11�

)
D

(
I− 1

N
11�

))
= −1

2

(
IDI− 1

N
11�DI− ID

1

N
11� +

1

N
11�D

1

N
11�

)
= −1

2

(
D− 1

N
D11� − 1

N
11�D+

1

N2
11�D11�

)

3 For domain specific dissimilarity measures and non-vectorial data as discussed here, it is, under
practical conditions, hard to ensure that the underlying, implicit space is normalized to N(0,1),
this is getting even more complicated if the measure is non-metric.

4 Although LMDS can be adapted to provide similar results, with the exception that the small
inner matrix is calculated differently with the pre-discussed influence on unnormalized data.
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S
Ny
≈ Ŝ = −1

2

[
DN,m ·D−1

m,m ·Dm,N − 1

N
DN,m (3)

·(D−1
m,m · (Dm,N1))1� − 1

N
1((1�DN,m) ·D−1

m,m)

·Dm,N +
1

N2
1((1�DN,m) ·D−1

m,m · (Dm,N1))1�
]

This equation can be rewritten for each entry of the matrix Ŝ

Ŝij = −1

2

[
Di,m ·D−1

m,m ·Dm,j −
1

N

∑
k

Dk,m ·D−1
m,m ·Dm,j

− 1

N

∑
k

Di,m ·D−1
m,m ·Dm,k

+
1

N2

∑
kl

Dk,m ·D−1
m,m ·Dm,l

]
,

as well as for the sub-matrices Ŝm,m and ŜN,m, in which we are interested for the
Nyström approximation

Ŝm,m = −1

2

[
Dm,m − 1

N
1 ·

∑
k

Dk,m

− 1

N

∑
k

Dm,k · 1�

+
1

N2
1 ·

∑
kl

Dk,m ·D−1
m,m ·Dm,l · 1�

]

ŜN,m = −1

2

[
DN,m − 1

N
1 ·

∑
k

Dk,m

− 1

N

∑
k

DN,m ·D−1
m,m ·Dm,k · 1�

+
1

N2
1 ·

∑
kl

Dk,m ·D−1
m,m ·Dm,l · 1�

]
.

It should be noted that Ŝ is only a valid kernel if D̂ is metric. The information loss
obtained by the approximation is 0 if m corresponds to the rank of S and increases for
smaller m.
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4.2 Non-metric (Dis-)Similarities

In case of a non-metric D the transformation shown in equation 3 can still be used, but
the obtained matrix Ŝ is not a valid kernel. A strategy to obtain a valid kernel matrix Ŝ is
to apply an eigenvalue correction as discussed above. This however can be prohibitive
for large matrices, since to correct the whole eigenvalue spectrum, the whole eigenvalue
decomposition is needed, which has O(N3) complexity. The Nyström approximation
can again decrease computational costs dramatically. Since we now can apply the ap-
proximation on an arbitrary symmetric matrix, we can make the correction afterward.
To correct an already approximated similarity matrix Ŝ it is sufficient to correct the
eigenvalues of Sm,m. Altogether we get O(m2N) complexity.

We can write for the approximated matrix Ŝ its eigenvalue decomposition as

Ŝ = SN,mS−1
m,mS�

N,m = SN,mUΛ−1U�S�
N,m,

where we can correct the eigenvalues Λ by some technique as discussed in section 2.1
to Λ∗. The corrected approximated matrix Ŝ∗ is then simply

Ŝ∗ = SN,mU (Λ∗)
−1

U�S�
N,m. (4)

This approach can also be used to correct dissimilarity matrices D by first approx-
imating them, converting to similarities Ŝ using equation 3 and then correcting the
similarities. If it is desirable to work with the corrected dissimilarities, then we should
note, that it is possible to transform the similarity matrix S to a dissimilarity matrix
D: D2

ij = Sii + Sjj − 2Sij . This obviously applies as well to the approximated and

corrected matrices Ŝ∗ and D̂∗ and we get by substitution:

D̂∗ = D∗
N,m

(
D∗

m,m

)−1
D∗�

N,m. (5)

Usually the algorithms are learned on a so called training set and we expect them to
perform well on the new unseen data, or the test set. In such cases we need to provide
an out of sample extension, i.e. a way to compute the algorithm on the new data. This
might be a problem for the techniques dealing with (dis)similarities. If the matrices are
corrected, we need to correct the new (dis)similarities as well to get consistent results.
Fortunately, it is quite easy in the Nyström framework. By examining the equations 4
and 5 we see, that we simply need to extend the matrices DN,m or SN,m, respectively,
by uncorrected (dis)similarities between the new points and the landmarks to obtain the
full approximated and corrected (dis)similarity matrices, which then can be used by the
algorithms to compute the out of sample extension.

In [1] a similar approach is taken. First, the whole similarity matrix is corrected
by means of a projection matrix. Then this projection matrix is applied to the new
data, so that the corrected similarity between old and new data can be computed. This
technique is in fact the Nyström approximation, where the whole similarity matrix S is
treated as the approximation matrix Sm,m and the old data, together with the new data
build the matrix SN,m. Rewriting this in the Nyström framework makes it clear and
more obvious, without the need to compute the projection matrix and with an additional
possibility to compute the similarities between the new points. In Figure 2 we depict
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Fig. 2. Left: Updated schema from Figure 1 using the discussed approximation. The costs are now
substantially smaller m � N . Right: Runtime in seconds at log-scale for the SwissProt-Runtime
experiment. The standard approach is two magnitudes slower than the proposed technique.

schematically the new situation for similarity and dissimilarity data incorporating the
proposed approach.

As a last point it should be mentioned that corrections like flipping, clipping or others
are still under discussion and not always optimal [15]. Additionally the selection of
landmark points can be complicated as discussed in [24]. Further for very large data
sets (e.g. some 100 million points) the Nyström approximation may still be too costly
and some other strategies have to be found.

We close this section by a small experiment on the ball dataset as proposed in [5]. It
is an artificial dataset based on the surface distances of randomly positioned balls of two
classes having a slightly different radius. The dataset is non-euclidean with substantial
information encoded in the negative part of the eigenspectrum. We generated the data
with 100 samples per class leading to a dissimilarity matrixD = N×N , withN = 200.
Now the data have been processed in four different ways to obtain a valid kernel matrix
S. First we converted D into a valid kernel matrix by a full eigenvalue decomposition,
followed by flipping of the negative eigenvalues and a reconstruction of the similarity
matrix K = S, denoted as SIM1. This approach has a complexity of O(N3). Further
we generated an approximated similarity matrix Ŝ by using the proposed approach,
flipping in the eigenvalue correction and 10 landmarks for the Nyström approximation.
This dataset is denoted as SIM2 and was obtained with a complexity of O(m2N). The
third dataset SIM3 was obtained in the same way but the eigenvalues were clipped.
The dataset SIM4 was obtained using landmark MDS with the same landmarks as for
SIM2 and SIM3. The data are processed by a Support Vector Machine in a 10-fold
crossvalidation results on the test sets are shown in Table 1. As mentioned the data

Table 1. Test set results of a 10-fold SVM run on the ball dataset using the different encodings

SIM1 SIM2 SIM3 SIM4

Test-Accuracy 100± 0 87.00 ± 7.53 68.00 ± 6.32 52.00 ± 11.83
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contain substantial information in the negative fraction of the eigenspectrum, accord-
ingly one may expect that this eigenvalues should not be removed. This is also reflected
in the results. LMDS removed the negative eigenvalues and the classification model
based on this data shows random prediction accuracy. The SIM3 encoding is slightly
better. Also in this case the negative eigenvalues are removed but the limited amount
of class separation information, encoded in the positive fraction was better preserved,
probably due to the different calculation of the matrix Ŝmm. The SIM2 data used the
flipping strategy and shows already quite good prediction accuracy, taking into account
that the kernel matrix is only approximated by 10 landmarks and the relevant (original
negative) eigenvalues are of small magnitude.

5 Experiments

We now apply the priorly derived approach to three non-metric dissimilarity and sim-
ilarity data and show the effectiveness for a classification task. The considered data
are (1) the SwissProt similarity data as described in [10] (DS1, 10988 samples, 30
classes, imbalanced, signature: [8488, 2500, 0]) (2) the chromosome dissimilarity data
taken from [14] (DS2, 4200 samples, 21 classes, balanced, signature: [2258, 1899, 43])
and the proteom dissimilarity data set [4] (DS3, 2604 samples, 53 classes, imbalanced,
signature: [1502, 682, 420]). All datasets are non-metric, multiclass and contain mul-
tiple thousand objects, such that a regular eigenvalue correction with a prior double-
centering for dissimilarity data, as discussed before, is already very costly. The data
are analyzed in two ways, employing either the flipping strategy as an eigenvalue cor-
rection, or by not-correcting the eigenvalues5. To be effective for the large number of
object we also apply the Nyström approximation as discussed before using a sample
rate of 1%, 10%, 30%6, by selecting random landmarks from the data. Other sampling
strategies have been discussed in [24,6], also the impact of the Nyström approximation
with respect to kernel methods has been discussed recently in [2], but this is out of the
focus of this paper.

To get comparable experiments, the same randomly drawn landmarks are used in
each of the corresponding sub-experiments (along a column in the table). New land-
marks are only drawn for different Nyström approximations and sample sizes like in
Figure 3. Classification rates are calculated in a 10-fold crossvalidation using the Core-
Vector-Machine (CVM) and the Support-Vector-Machine (SVM) (see [22,19]). The
crossvalidation does not include a new draw of the landmarks, to cancel out the se-
lection bias of the Nyström approximation, accordingly SVM and CVM use the same
kernel matrices. However, our objective is not maximum classification performance
(which is only one possible application) but to demonstrate the effectiveness of our ap-
proach for dissimilarity data of larger scale. The classification results are summarized

5 Clipping and flipping were found similar effective, with a little advance for flipping. With
flipping the information of the negative-eigenvalues is at least somewhat kept in the data rep-
resentation so we focus on this representation. Shift correction was found to have a negative
impact on the model as already discussed in [1].

6 A larger sample size did not lead to further substantial improvements in the results.
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Table 2. Average test set accuracy for SwissProt (DS1), Chromosome (DS2), Proteom (DS3)
using a Nyström approximation of 1% and 10% and no or flip eigenvalue correction. Kernel
matrices have been Nyström approximated either, as proposed during the eigenvalue correction,
or later on, like in the standard approach. The signatures are based on the approximated kernel
matrices.

DS11% DS21% DS31% DS110% DS210% DS310%

Signature [109,1,10878] [ 41,1,4158] [25,1,2492] [1078,19,9891] [296,123,3781] [235,10,2273]

CVM-No 92.81 ± 0.74 94.64 ± 0.88 64.42 ± 2.89 75.53 ± 0.90 40.43 ± 2.12 23.95 ± 2.4
SVM-No 92.82 ± 0.90 94.24 ± 1.00 45.59 ± 3.01 82.92 ± 2.00 47.21 ± 2.42 27.56 ± 2.93

Signature [110,0,10878] [42,0,4158] [26,0,2492] [1097,0,9891] [419,0,3781] [245,0,2273]

CVM-Flip 92.78 ± 0.74 94.62 ± 0.85 91.62 ± 1.57 97.01 ± 0.54 96.98 ± 0.77 96.98 ± 1.28
SVM-Flip 93.02 ± 0.70 94.31 ± 1.37 93.65 ± 1.52 97.56 ± 0.51 96.98 ± 0.88 97.34 ± 0.73

Table 3. Average test set accuracy for SwissProt (DS1), Chromosome (DS2), Proteom (DS3) us-
ing a Nyström approximation of 30% and no or flip eigenvalue correction. Kernel matrices have
been Nyström approximated (with L = 30% ·N ) either, as proposed during the eigenvalue cor-
rection, or later on, like in the standard approach. The signatures are based on the approximated
kernel matrices.

DS1 DS2 DS3

Signature [2995,300,7693] [759,493,2948] [577,118,1823]

CVM-No 72.14 ± 2.01 60.24 ± 3.12 56.75± 2.56
SVM-No 77.01 ± 3.03 66.36 ± 2.94 49.21± 2.51
Signature [3295,0,7693] [1252,0,2948] [695,0,1823]

CVM-Flip 96.85 ± 0.53 96.90 ± 0.66 99.17± 0.28
SVM-Flip 97.49 ± 0.36 96.98 ± 0.45 98.85± 0.78

in Table 2-3 for the different Nyström approximations 1%, 10% and 30%. First one ob-
serves that the eigenvalue correction has a strong, positive effect on the classification
performance consistent with earlier findings [1]. However in case of a small number
of landmarks the effect of the eigenvalue correction is less pronounced compared to
the uncorrected experiment as shown in Table 2 for DS1 and DS2. In these cases the
Nyström approximation has also reduced the number of non-negative eigenvalues, as
shown by the corresponding signatures, such that an implicit eigenvalue correction is
obtained. For DS3 the remaining eigenvector has a rather high magnitude and a strong
impact accordingly, such that the classification performance is sub-optimal for the un-
corrected experiment. Raising the number of landmarks Table 2-3 also the classification
performance improves for the experiments with eigenvalue correction. The experiments
without eigenvalue correction show however a degeneration in the performance, be-
cause more and more negative eigenvalues are still kept by the Nyström approximation
as shown in the signatures7.

7 Comparing signatures at different Nyström approximations also shows that many eigenvalues
are close to zero and are sometimes counted as positive,negative or zero.
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Fig. 3. Top: box-plots of the classification performance for different sample sizes of DS1 using
the proposed approach with 100 landmarks. Bottom: The same experiment but with the standard
approach. Obviously our approach does not sacrifice performance for computational speed.

As shown exemplary in Figure 3 the classification performance on eigenvalue-
corrected data is approximately the same using our proposed strategy or the standard
technique, but the runtime performance (right plot in Figure 2) is drastically better for
an increase in the number of samples. To show this we selected subsets from the Swis-
sProt data with different sizes from 1000 to 10000 points and calculated the runtime
and classification performance using the CVM classifier in a 10-fold crossvalidation,
with a fixed Nyström approximation of L = 100 and a flipping eigenvalue correc-
tion. The results of the proposed approach are shown in the left box-plots of Figure 3
and the results for the standard technique are shown in the right plot. The correspond-
ing runtimes are shown in Figure 3, with the runtime of our approach as the curve on
the bottom and the runtime of the standard method on the top, two magnitudes larger
on log-scale.
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6 Outlook and Conclusions

In this paper we discussed the relation between similarity and dissimilarity data and
effective ways to move across the different representations in a systematic way. Using
the presented approach, effective and accurate transformations are possible. Kernel ap-
proaches but also dissimilarity learners are now accessible for both types of data. While
the parametrization of the Nyström approximation is already studied in [11,24] there
are still different open issues. In future work we will analyze more deeply the han-
dling of extremely large (dis-)similarity sets and transfer our approach to unsupervised
problems. While the proposed strategy was found to be very effective e.g. to improve
supervised learning of non-metric dissimilarities by kernel methods, it is however also
limited again by the Nyström approximation, which may fail to provide sufficient ap-
proximation. Accordingly it is still very interesting to provide dedicated methods for
such data as argued in [17]. For non-psd data the error introduced by the Nyström ap-
proximation is not yet fully understood and bounds similar as proposed in [3] are still
an open issue. In our experiments we observed that flipping was an effective approach
to keep the relevant structure of the data but this are only heuristic findings and not yet
completely understood, we will address this in future work.
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Universidad Nacional de Colombia - Sede Manizales, Colombia

morozcoa@unal.edu.co

Abstract. A widely used approach to cope with asymmetry in dissim-
ilarities is by symmetrizing them. Usually, asymmetry is corrected by
applying combiners such as average, minimum or maximum of the two
directed dissimilarities. Whether or not these are the best approaches
for combining the asymmetry remains an open issue. In this paper we
study the performance of the extended asymmetric dissimilarity space
(EADS) as an alternative to represent asymmetric dissimilarities for clas-
sification purposes. We show that EADS outperforms the representations
found from the two directed dissimilarities as well as those created by
the combiners under consideration in several cases. This holds specially
for small numbers of prototypes; however, for large numbers of proto-
types the EADS may suffer more from overfitting than the other ap-
proaches. Prototype selection is recommended to overcome overfitting in
these cases.

1 Introduction

Statistical and structural representations of patterns are two complementary
approaches in pattern recognition. Recently, dissimilarity representations [14,10]
arose as a bridge between these representations. Dissimilarities can be computed
from the original objects, but also on top of features or structures such as graphs
or strings. This provides a way for bridging the gap between structural and sta-
tistical approaches. Dissimilarities are also a good alternative when the definition
and selection of good features can be difficult or intractable (e.g. the search for
the optimal subset of features has a computational complexity of O(2n), where
n is the number of features) while a robust dissimilarity measure can be defined
more easily for the problem at hand.

The classification of objects represented in a dissimilarity space (DS) has been
an active research topic [16,15,17,20,4], but not much attention has been paid
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to the treatment of the asymmetry that can be present in the dissimilarities.
Most traditional classification and clustering methods are devised for symmet-
ric dissimilarity matrices, and therefore cannot deal with asymmetric input. In
order to be suitable for these methods, asymmetric dissimilarities need to be
symmetrized, for instance by averaging the matrix with its transpose. However,
in the dissimilarity space, symmetry is not a required property and therefore a
wider range of procedures for classification can be applied.

Asymmetric dissimilarity or similarity measures can arise in several situa-
tions; see [9] for a general analysis of the causes of non-Euclidean data. Asym-
metry is common in human judgments. Including expert knowledge in defining a
(dis)similarity measure, such as for fingerprint matching [4], may lead to asym-
metry. In general, matching processes may often lead to asymmetric dissimilar-
ities. Exact matches are often impossible and suboptimal procedures may lead
to different matches from A to B than from B to A.

Symmetrization by averaging is widely used before embedding asymmetric
dissimilarity data into (pseudo-)Euclidean spaces [14]. The use of a positive
semi-definite matrix KTK, where K denotes a nonsymmetric kernel [21] is also
proposed in the context of kernel-based classification to make the kernel symmet-
ric. A comparative study of methods for symmetrizing the kernel matrix for the
application of the support vector machine (SVM) classifier can be found in [13].
While such methods that require symmetrized matrices show good results, it
remains an open question whether asymmetry is an undesirable property,
or that it, perhaps, contains useful information that is disregarded during
symmetrization.

In this paper we explore using the information from asymmetric dissimilar-
ities by concatenating them into an extended asymmetric dissimilarity space
(EADS). Following up on [18], we investigate a broader range of circumstances
where EADS may be a good choice for representation, and compare EADS to the
directed dissimilarities, as well as to several symmetrization methods. The rep-
resentation is studied for two shape matching and two multiple instance learning
(MIL) problems. We show that EADS is able to outperform the directed and
symmetrized dissimilarities, especially in cases where both directed dissimilar-
ities are informative. It must be noted that EADS doubles the dimensionality
of the problem, which may not be desirable. Therefore, we also include results
using prototype selection in order to compare dissimilarity spaces with the same
dimensionality, and show that EADS also leads to competitive results in the
examples considered.

We begin with a number of examples that lead to asymmetric dissimilarities in
Section 2. The dissimilarity space is explained in Section 3. Ways of dealing with
asymmetry are then described: symmetrization (Section 4) and the proposed
EADS (Section 5). Experimental results and discussion are provided in Section 6,
followed by the conclusions in Section 7.
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2 Asymmetric Dissimilarities

Although our notions of geometry may indicate otherwise, asymmetry is a nat-
ural characteristic when the concept of similarity or proximity is involved. Just
think of a network of roads, where the roads can be one-way streets and one
street is longer than the other. It is then clear that traveling from A to B may
take longer than returning from B to A. Asymmetric dissimilarities also appear
in human judgments [1]: it may be more natural to say that “Dutch is similar
to German” than “German is similar to Dutch” because more people might be
familiar with the German language and it is therefore a better point of reference
for the comparison. Interestingly, this is also evidenced by the number of hits in
Google: about ten times as many for the “Dutch is similar to German” sentence.
When searching for these sentences in Dutch, the reverse is true.

Here we provide two examples of pattern recognition domains which may also
naturally lead to asymmetric dissimilarities.

2.1 Shapes and Images

One possible cause of asymmetry is that the distances used directly on raw data
such as images may be expensive to compute accurately. For example in [3],
the edit distance used between shapes is originally symmetric. The distance has
the problem that the returned values are different if the starting and ending
points of the string representation of the shape are changed. In order to over-
come this drawback, an improved rotation invariant distance was proposed. The
computation of the new distance suffers from a higher computational complexity.
Therefore, suboptimal procedures are applied in practice and, as a consequence,
the distances returned are asymmetric.

In template matching, the dissimilarity measure may be designed to compute
the amount of deformation needed to transform one image into the other as
in [12]. The amount of deformation required to transform image Ij into image
Ik is generally different from the amount of deformation needed to transform
image Ik into Ij . This makes the resulting dissimilarity matrix asymmetric.

2.2 Multiple Instance Learning

Multiple instance learning (MIL) [6] extends traditional supervised learning
methods in order to learn from objects that are described by a set (bag) of fea-
ture vectors (instances), rather than a single feature vector only. The bag labels
are available, but the labels of the individual instances are not. A bag with ni

instances is therefore represented as (Bi, yi) where Bi = {xik; k = 1...ni}. In this
setting, traditional supervised learning techniques cannot be applied directly.

It is often assumed that the instances have (hidden) labels which influence
the bag label. For instance, one assumption is that a bag is positive if and only
if at least one of its instances is positive. Such positive instances are also called
concept instances. One application for MIL is image classification. An image with
several regions or segments can be represented by a bag of instances, where each
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instance corresponds to a segment in the image. For images that are positive for
the “Tiger” class, concept instances are probably segments containing (parts of)
a tiger, rather than segments containing plants, trees and other surroundings.

One of the approaches to MIL is to learn on bag level, by defining kernels [11]
or (dis)similarities [22,5] between bags. Such dissimilarities are often defined
by matching the instances of one bag to instances of another bag, and defin-
ing a statistic (such as average or maximum) over these matches. This creates
asymmetric dissimilarities, as illustrated in Fig.1.

(a) Dissimilarity from Bi to Bj (b) Dissimilarity from Bj to Bi

Fig. 1. Asymmetry in bag dissimilarities. The minimum distances of one bag’s in-
stances are shown. In this paper, the bag dissimilarity is defined as the average of
these minimum distances.

The direction in which the dissimilarity is measured defines which instances
influence the dissimilarity. When using a positive prototype, it is important that
the concept instances are involved, as these instances are responsible for the
differences between the classes. Therefore, for positive prototypes it is expected
that the dissimilarity from the prototype to the bag is more informative than
the dissimilarity from the bag to the prototype. A more detailed explanation of
this intuition is given in [5].

3 Dissimilarity Space

The DS was proposed in the context of dissimilarity-based classification [14]. It
was postulated as a Euclidean vector space, implying that classifiers proposed
for feature spaces can be used there as well. The motivation for this proposal
is that the proximity information is more important for class membership than
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features [14]. Let R = {r1, ..., rk} be the representation set, where k is its cardi-
nality. This set is usually a subset of the training set T , though a semi-supervised
approach with more prototypes than training objects may be preferable [7]. In
order to create the DS, using a proper dissimilarity measure d, the dissimilarities
of training objects to the prototypes in R are computed. The object represen-
tation is a vector of the object’s dissimilarities to all the prototypes. Therefore,
each dimension of the DS corresponds to the dissimilarities to some prototype.
The representation dx of an object x is:

dx = [d(x, r1) ... d(x, rk)] (1)

3.1 Prototype Selection

Prototype selection has been proposed for the dimension reduction of DS [16].
Supervised (wrapper) and unsupervised (filter) methods can be considered for
this purpose as well as different optimization strategies to guide the search.
They select the ‘best’ prototypes according to their criterion. The selected pro-
totypes are used for the generation of the DS. Prototype selection allows one to
obtain low-dimensional spaces avoiding as much as possible a decrease in perfor-
mance (e.g. classification accuracy). Therefore, they are very useful to achieve a
trade-off between the desirable properties of compact representation and reason-
able classification accuracy. The approach considered in this study for selecting
prototypes is the forward selection optimizing the leave-one-out (LOO) nearest
neighbour (1-NN) error (so supervised) in the dissimilarity space for the train-
ing set. It starts from the empty set, and sequentially adds the prototype that
together with the selected ones ensures the best 1-NN classification accuracy.

4 Combining the Asymmetry Information

For two point sets, there are different ways to combine the two directed asym-
metric dissimilarities. The maximum, minimum and average are used extensively
and are very intuitive. Let A = {a1, ..., ak} and B = {b1, ..., bl} be two sets
of points, and D1 = d(A,B) and D2 = d(B,A) the two directed dissimilari-
ties. The maximum, minimum and average combiners are defined in (2) to (4)
respectively:

max(A,B) = max(D1, D2) (2)

min(A,B) = min(D1, D2) (3)

avg(A,B) =
1

2
(D1 +D2) (4)

All these rules for combining asymmetry information ensure a symmetric
measure.
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5 Extended Asymmetric Dissimilarity Space

For the purpose of combining the asymmetry information in both directions,
we study the EADS. From the two directed dissimilarities D1, D2, we have that
Di → Xi ∈ Rk, i = 1, 2 represents the mapping of the dissimilarities to the
dissimilarity space. The EADS is constructed by: [D1 D2] → X1 ×X2 ∈ Rk×2,
which means that the extended space is the Cartesian product of the two directed
spaces. Given the prototypes R = {r1, ..., rk}, the representation of an object in
the EADS is defined by:

dx = [d(x, r1) ... d(x, rk) d(r1, x) ... d(rk, x)] (5)

In the case that we have the full dissimilarity matrix using all training objects as
prototypes, the EADS is constructed from the concatenation of the original ma-
trix and its transpose. Rows of this new matrix correspond to the representation
of objects in the EADS. As a result, the dimension of the EADS space is twice
the dimension of the DS. Classifiers can be trained in the EADS in the same way
they are trained in the DS. By doubling the dimension, the expressiveness of the
representation is increased. This may be particularly useful when the number of
prototypes is not very large. When the number of prototypes is large compared
to the number of training objects, the EADS is expected to be more prone to
overfitting than any of the symmetrized approaches.

Despite the fact that in the EADS symmetric distances or similarity mea-
sures can be used on top of the asymmetric representation, this does not mean
that we are not exploiting the asymmetry information present in the original
dissimilarities. The original asymmetric dissimilarities in the two directions are
used in the object representation that is the input for classifiers in the EADS.
These classifiers can use any symmetric distance or kernel computed on top of
the representation.

Note that if the asymmetry does not exist in the measure, the representa-
tion of objects in the EADS contains the same information replicated. These
redundancies in the best case lead to the same classification results as in the
standard DS using only one direction [18]. However, it may even be counterpro-
ductive since it may lead to overfitting and small sample size problems for some
classifiers. Therefore, doubling the dimension is not the cause for possible classi-
fication improvements when using the EADS. The fact that the two asymmetric
dissimilarities are taken into account in the representation is what may help the
classifiers to improve their outcomes.

6 Experiments

In this section we first describe the datasets and how the corresponding dissim-
ilarity matrices are obtained. This is followed by the experimental setup and a
discussion of the results.
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6.1 Datasets

The dissimilarity dataset Chickenpieces-35-45 is computed from the Chicken-
pieces image dataset [3]. The images are in binary format representing silhouettes
from five different parts of the chicken: wing (117 samples), back (76), drum-
stick (96), thigh and back (61), and breast (96). From these images the edges
are extracted and approximated by segments of length 35 pixels, and a string
representation of the angles between the segments is derived. The dissimilarity
matrix is composed by edit distances between these strings. The cost function
between the angles is defined as the difference in case of substitution, and as 45
in case of insertion or deletion.

The Zongker digit dissimilarity data is based on deformable template match-
ing. The dissimilarity measure was computed between 2000 handwritten NIST
digits in 10 classes. The measure is the result of an iterative optimization of the
non-linear deformation of the grid [12].

AjaxOrange is a dataset from the SIVAL multiple instance datasets [19]. The
original dataset has 25 distinct objects (such as bottle of dish soap called Ajax-
Orange) portrayed against 10 different backgrounds, and from 6 different orien-
tations, resulting in 60 images for each object. This dataset has been converted
into 25 binary MIL datasets by taking one class (AjaxOrange) in this case as the
positive class (with 60 bags), and all others (with 1440 bags) as the negative one.
Each image is represented by a bag of segments, and each segment is described
by a feature vector with color and texture features.

The dissimilarity of two images is computed by what we call the “meanmin”
dissimilarity, which is similar to modified versions of the Hausdorff distance:

dmeanmin(Bi, Bj) =
1

|Bi|
∑

xik∈Bi

min
xjl∈Bj

d(xik, xjl) (6)

where d(xik, xjl) is the squared Euclidean distance between two feature vectors.
Winter Wren is one of the binary MIL bird song datasets [2], created in a

similar one-against-all way as SIVAL. Here, a bag is a spectrogram of an audio
fragment with different birds singing. A bag is positive for a particular bird
species (e.g. Winter Wren) if its song is present in the fragment. There are 109
fragments where the Winter Wren song is heard, and 439 fragments without it.
Also here we use (6) to compute the dissimilarities.

The datasets and their properties are shown in Table 1. For each dissimilarity
matrix we computed its asymmetry coefficient as follows:

AC =
1

n(n− 1)

n∑
i=1

n∑
j=i+1

|dij − dji|
min(dij , dji) + ε

(7)

where n is the number of objects in the dataset. This coefficient measures the
average normalized difference of the directed dissimilarities and is 0 for
symmetric data.
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Table 1. Properties of the datasets used in this study, AC refers to the asymmetry
coefficient from (7); the larger the AC, the larger the asymmetry

Dataset # Classes # Obj. per class AC
ChickenPieces-35-45 5 117, 76, 96, 61, 96 0.08

Zongker 10 10×200 0.18
AjaxOrange 2 60, 1440 0.31
Winter Wren 2 109, 439 0.23

The formulation in (7) assumes that dij 
= 0 for i 
= j, which may not nec-
essarily be true for dissimilarity data. In the case that dij = dji, a term ε with
a very small value such as 0.0001 must be added in the denominator to avoid
divisions by zero.

6.2 Experimental Setup

For each of the dissimilarity datasets, we evaluate the performances using
asymmetric dissimilarity measuresD1 and D2, the symmetrized measures (using
minimum, average and maximum) and the EADS.

The classifiers compared are the linear discriminant classifier (LDA, but de-
noted LDC in our experiments) and the SVM, both in the dissimilarity space
and implemented in PRTools [8]. For LDC we use regularization parameters
R = 0.01 and S = 0.9, for SVM we use a linear kernel and a regularization
parameter C = 100. These parameters show reasonable performances on all the
datasets under investigation, and are, therefore, constant across all experiments
and not optimized to fit a particular dataset.

We provide learning curves over 20 runs for each dissimilarity / classifier
combination, for increasing training sizes from 5 to 30 objects per class. In each
of the learning curves, the number of prototypes is fixed to either 5 or 20 per
class in order to explore the behavior with a small and a large representation set
size. This means that the dimensionality of the dissimilarity space is the same
for D1, D2 and the symmetrized versions, but twice as much for the EADS. The
approaches compared are:

– DS resulting from the computation of dissimilarities in the direction from
the objects to the prototypes (D1).

– DS resulting from the computation of dissimilarities from the prototypes to
the objects (D2).

– DS resulting from averaging the dissimilarities in the two directions ((D1 +
D2)/2).

– DS resulting from the maximum of the two dissimilarities (max(D1, D2)).
– DS resulting from the minimum of the two dissimilarities (min(D1, D2)).
– The extended asymmetric dissimilarity space (EADS).
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Fig. 2. LDC and SVM classification results in dissimilarity spaces for Zongker dataset

6.3 Results and Discussion

In Figs. 2 and 3 it can be seen from the results on the Zongker and Chicken
Pieces datasets that the EADS outperforms the other approaches. This is es-
pecially true for a small number of prototypes (see Figs. 2 and 3 (a) and (c)).
The results of the different approaches become more similar for the represen-
tation set of 20 prototypes per class, especially when SVM is used (see Figs. 2
and 3 (d)). The EADS is better than the individual spaces created from the
directed dissimilarities, one explanation for this is that the directed dissimilar-
ities provide complementary information so together they are more useful than
individually. The EADS contains more information of the relations between the
objects than an individual directed DS. The maximum operation is usually very
sensitive to noise and outliers what explains its bad performance. The maximum
dissimilarity makes objects belonging to the same class more different. These
higher differences inside the class are likely to contain noise since objects of the
same class should potentially be more similar. The average is more robust than
maximum since it combines the information from both directed dissimilarities
avoiding in some degree the influence of noise and outliers. Still, by averaging
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Fig. 3. LDC and SVM classification results in dissimilarity spaces for Chicken Pieces
dataset

we may hamper the contribution of a very good directed dissimilarity if there
is a noisy counterpart. The EADS may improve upon the average because the
EADS does not obstructs the contribution of a good directed dissimilarity. The
minimum operator is usually worse than EADS and averaging. One possible
cause is that by using the minimum, the representation of all the objects is ho-
mogenized to some extent because for objects belonging to different classes the
separability is decreased by selecting the minimum dissimilarity. Therefore, some
discriminatory power is lost.

In AjaxOrange, it is an important observation that D2 is more informative
than D1, especially for the LDC classifier (see Fig. 4 (a) and (b)). D2 means that
the dissimilarities are measured from the prototypes to the bags. The meanmin
dissimilarity in (6) therefore ensures that, for a positive prototype, the positive
instances (the AjaxOrange bottle) influence the dissimilarity value by definition,
as all instances of the prototype have to be matched to instances in the training
bag. Measuring the dissimilarity to positive prototypes, on the other hand, may
result in very similar values for positive and negative bags because of identical
backgrounds, therefore creating class overlap.
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Fig. 4. LDC and SVM classification results in dissimilarity spaces for AjaxOrange
dataset

Because D1 contains potentially harmful information, the combining methods
do not succeed in combining this information from D1 and D2 in a way that is
beneficial to the classifier. This is particularly evident for the LDC classifier (see
Fig. 4 (a) and (b)), where only EADS has similar (but still worse) performance
thanD2. For the SVM classifier, EADS performs well only when a few prototypes
are used, but as more prototypes (and more harmful information from D1) are
involved, there is almost no advantage over D2 alone.

From the results reported in Fig. 5 for Winter Wren, we again see that D2 is
more informative than D1. However, what is different in this situation is that
both directions contain useful information for classification, this is evident due
to the success of the average, maximum and EADS combiners. The difference
lies in the negative instances (fragments of other birds species, or background
objects in the images) of positive bags. While in AjaxOrange, background objects
are non-informative, the background in the audio fragments may be informative
for the class of the sound. In particular, it is possible that some bird species
are heard together more often: e.g. there is a correlation of 0.63 between the
labels of Winter Wren and Pacific-slope Flycatcher. Therefore, also measuring



86 Y. Plasencia-Calaña et al.

5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

Training set size per class

A
ve

ra
ge

d 
er

ro
r 

(2
0 

ex
pe

rim
en

ts
)

 

 

LDC+D1
LDC+D2
LDC+(D1+D2)/2
LDC+max(D1,D2)
LDC+min(D1,D2)
LDC+EADS

(a) 5 prototypes per class

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

Training set size per class

A
ve

ra
ge

d 
er

ro
r 

(2
0 

ex
pe

rim
en

ts
)

 

 

LDC+D1
LDC+D2
LDC+(D1+D2)/2
LDC+max(D1,D2)
LDC+min(D1,D2)
LDC+EADS
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Fig. 5. LDC and SVM classification results in dissimilarity spaces for the Winter Wren
dataset

dissimilarities to the prototypes produces dissimilarity values that are different
for positive and negative bags.

The increased dimensionality of the EADS is one of the main problems of
this approach, as in small sample size cases the increased dimensionality may
lead to overfitting. In order to overcome this, prototype selection can be con-
sidered. We developed other experiments using prototype selection for all the
spaces compared. A fixed training set size of 200 objects was used, leading to
spaces of dimensionality 5, 10, 15, 20 and 25. The choice to perform the se-
lection of the prototypes was the forward selection optimizing the LOO 1-NN
classification error in the training set. One example of standard and MIL dis-
similarity datasets were considered: the Zongker and Winter Wren. Prototypes
are selected for EADS as it is usually done for a standard DS. Prototypes using
the two directed dissimilarities are available as candidates but the prototype
selection method may discard one of the two or maybe both if they are not
discriminative according to the selection criterion. The EADS is compared now
with the other spaces on the basis of the same dimensionality.
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Fig. 6. Classification results after prototype selection for the Zongker and Winter Wren
datasets

From the results in Fig. 6 (a) it can be seen that, for the Zongker dataset,
the best approaches are the EADS and the average. An interesting observa-
tion is that this dataset is intrinsically high-dimensional because the number
of principal components (PCs) that retain 95% of the data variance is equal
to 529. The average approach adds more information in each dimension since
every dissimilarity encodes a combination of two. This implies that, for the
dimensions considered that are small compared to 529, it performs as good
as the EADS. On the contrary, the Winter Wren dataset is intrinsically low-
dimensional, since the number of PCs retaining 95% of the data variance is
equal to 3. This is a possible explanation of why the EADS is the best in
this case (see Fig. 6 (b)), because the average approach is likely to introduce
some noise.

One interesting issue of using prototype selection in EADS is that not only
the dimensions are decreased, but also the accuracy of the EADS itself may
be improved especially in the datasets where one of the directed dissimilarities
is the best and the other is very bad (e.g. MIL datasets). The EADS with-
out prototype selection in these cases may be worse than the best directed
dissimilarity (see Fig. 4 (a) and (b)). However, by using a suitable prototype
selection method in the EADS, only the prototypes from the best directed dis-
similarity should be kept, and noisy prototypes from the bad directed dissim-
ilarity should be discarded. This should make the results of the EADS similar
to those of the best directed dissimilarity. This can be achieved if a proper
prototype selection method is used. In the prototype selection executed for
the Winter Wren, where one directed dissimilarity is remarkably better than
the other, this can partially be seen. For example, in one run, the method se-
lected 18 prototypes from the best directed dissimilarity in the set of 25 proto-
types selected. Future work will include the study of suitable prototype selectors
for EADS.
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7 Conclusions

In this paper we study the EADS as an alternative to different approaches for
dealing with asymmetric dissimilarities. The EADS outperforms the other ap-
proaches for a small number of prototypes in standard dissimilarity datasets,
when both dissimilarities are about equally informative.

In MIL datasets, conclusions are slightly different because of the way the
dissimilarities are created. It may be the case that the best option is one of
the directed dissimilarities. However, if there is no knowledge on which directed
dissimilarity is the best, the EADS may be the best choice. This especially holds
when only a low number of prototypes is available.

It should be noted that the EADS increases the dimensionality as opposed to
other combining approaches, therefore increasing the risk of overfitting. Proto-
type selection should be considered to keep the dimensionality low. After pro-
totype selection, the EADS also shows good results in examples of intrinsically
low- and high-dimensional datasets. However, for intrinsically high-dimensional
datasets, averaging is also worth considering as combining rule.

Our main conclusion is that asymmetry is not an artefact that has to be
removed in order to apply embedding or kernel methods to the classification
problem. On the contrary, asymmetric dissimilarities may contain very useful
information, and it is advisable to consider the dissimilarity representation as a
means to fully use this information.
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Abstract. This is a survey paper in which we explore the connec-
tion between graph representations and dissimilarity measures from an
information-theoretic perspective. Firstly, we pose graph comparison (or
indexing) in terms of entropic manifold alignment. In this regard, graphs
are encoded by multi-dimensional point clouds resulting from their em-
bedding. Once these point clouds are aligned, we explore several dissim-
ilarity measures: multi-dimensional statistical tests (such as the Henze-
Penrose Divergence and the Total Variation k-dP Divergence), the Sym-
metrized Normalized Entropy Square variation (SNESV) and Mutual
Information. Most of the latter divergences rely on multi-dimensional
entropy estimators. Secondly, we address the representation of graphs in
terms of populations of tensors resulting from characterizing topological
multi-scale subgraphs in terms of covariances of informative spectral fea-
tures. Such covariances are mapped to a proper tangent space and then
considered zero-mean Gaussian distributions. Therefore each graph can
be encoded by a linear combination of Gaussians where the coefficients
of the combination rely on unbiased geodesics. Distributional graph rep-
resentations allows us to exploit a large family of dissimilarities used in
information theory. We will focus on Bregman divergences (particularly
Total Bregman Divergences) based on the Jensen-Shannon and Jensen-
Rényi divergences. This latter approach is referred to as tensor-based
distributional comparison for distributions can be also estimated from
embeddings through Gaussian mixtures.

1 Introduction

One of the key elements for building a pattern theory is the definition of a set of
principled dissimilarity measures between the mathematical objects motivating
that theory. For instance, in vectorial pattern recognition, one of the fundamen-
tal axes of an information theoretic algorithm is the definition of a divergence:
mutual information, Kullback-Leibler, Bregman divergence, and so on [1]. How-
ever, when the object at hand is an structural pattern, the extension of the latter
concepts, as the first step for formulating an information theory for graphs, is
a challenging task. Following the path of entropy bypass estimators which do
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not rely on probability density functions, we address the point of bypassing the
rigid discrete representation of graphs. This implies defining transformations ei-
ther between vertices and multi-dimensional spaces (embeddings) or between
subgraphs and other spaces like tensorial ones. In both cases, we pursue prob-
abilistic representations which encode the rich topological information of the
original graphs. With such representations at hand it is possible to build princi-
pled information-theoretic divergences whose estimation is highly influenced by
the development of bypass methods. The rest of the paper is a survey of such
representations and divergences. Firstly we will investigate divergences between
embeddings (including kernels) and later we will address the transformation of
a graph into a set of node coverages (redundancy is needed to some extent) so
that we can propose divergences between tensors projected into a proper tan-
gent space. The computational cost of computing both types of representation
is a serious drawback that recommends a trade-off. At the end of the paper we
will address such trade-off by proposing the computation of mutual information
between graphs.

2 Divergences between Embeddings

Let G = (V,E) be an undirected and unweighted graph with: node set V , edge
set E, adjacency matrix A of dimension n × n (where n = |V |) and Lapla-
cian matrix L = D − A (where D is the diagonal degree matrix whose trace
is the volume of the graph vol = trace(D)). Then, a graph embedding is typi-
cally a function of the eigenvalues and/or eigenvectors of L. For instance, Heat
Kernel (HK) and Commute Times (CT) embeddings result from a function
F(.) of the Laplacian eigen-decomposition F(L) = ΦF(Λ)ΦT = ΘTΘ. For CT,
F(L) =

√
volΛ−1/2ΦT ; for HK we have F(L) = exp

(
− 1

2 tΛ
)
where t is time;

and for Diffusion Maps (DM), we have F(L) = Λt where Λ results from a gen-
eralized eigenvalue/eigenvector problem as in the case of Laplacian Eigenmap
(LEM) where F(L) = Φ. Finally, ISOMAP considers the top eigenvectors of
the geodesic distance matrix. Different embeddings yield different point distri-
butions for the same dimensionality. In general F(L) = ΘTΘ, where Θ results
from the Young-Householder decomposition. In general, Θ is an n × n matrix
where column i−th represent the n coordinates of the i−th node in the space
defined by the embedding, therefore Θ : V → Rn and different embeddings pro-
duce also different multi-dimensional point clouds. For instance, CT produces
denser clouds than LEM (see [2]). Such point clouds encode spectral properties
of the graph. In this regard, CT embedding is an interesting choice because the
squared Euclidean distance between two columns (mappings of the correspond-
ing nodes) is equal to the commute time between the corresponding nodes, that
is ||Θ(i)−Θ(j)||2 = CT (u, v). In [3] we show that CT embedding outperforms the
other ones in terms of retrieval/recall for the best dissimilarity measure (see be-
low). In addition, the fact that the latter embedding induces a metric allows us to
work in the multi-dimensional space of the embedding, where problems such as
finding prototypes, are more tractable and then return to the original embedding
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space via inverse embedding [4]. Therefore, in this section we exploit commute
time embeddings from normalized Laplacian matrices L = D−1/2LD−1/2 which
is given by F(L) =

√
volΛ−1/2ΦTD−1/2 . Therefore, Θ has the following form

for the i−th node:

Θ(i) =

√
vol

di

(
1√
λ(2)

φ(2)(i) . . .
1√
λ(n)

φ(n)(i)

)T

, (1)

where di = D(i, i), and {φ(z), λ(z)}z=2...n are the non-trivial eigenvectors and
eigenvalues of L. The commute time CT (i, j) is the expected time for the random
walk to travel from node i to reach node j and then return. As a result CT (i, j) =
O(i, j) +O(j, i). In terms of the Green’s function the commute time is given by

CT (i, j) = vol (G(i, i) +G(j, j) − 2G(i, j)) , (2)

where

G(i, j) =

n∑
z=2

1

λ(z)
φ(z)(i)√

di

φ(z)(j)√
dj

. (3)

Therefore, the spectral definition of CT is given by

CT (i, j) = vol
n∑

z=2

1

λ(z)

(
φ(z)(i)√

di
− φ(z)(j)√

dj
.

)2

(4)

Let X = (VX , EX) and Y = (VY , EY ) be two undirected and unweighted graphs
with respective node-sets VX and VY , edge-sets EX and EY and number of nodes
n = |VX | and m = |VY |. Given a dimension d << min(m,n), their approximate
CT are given by

ĈT (i, j) = volX

d+1∑
z=2

1

λ
(z)
X

(
φ
(z)
X (i)√
di

− φ
(z)
X (j)√
dj

)2

≤ CT (i, j) , (5)

for i, j ∈ VX , and similarly for nodes u, v ∈ VY . Let i ∈ VX and u ∈ VY be nodes
of graphs X and Y and let T be a non rigid transformation which aligns the

approximated manifold Θ̂Y with Θ̂X . Then, we can define C̃T
∗
(i, u) = ||Θ̂(i)

X −
T ∗(Θ̂

(u)
Y )||2 where T ∗(.) is the optimal non rigid transformation aligning Θ̂Y with

Θ̂X . Finding C̃T
∗
is then posed in terms of non-rigid manifold alignment. In this

regard, the CPD (Coherent Point Drift) formulation [5] is particularly useful in
the context of manifold alignment because it generalizes non-rigid alignment to
an arbitrary number of dimensions, say d, of the input data (manifolds in this
case). The key point to note here is that the ability of CPD for managing an
arbitrary number of dimensions allows us to increase the impact of the structural
information contained in the graphs in pattern recognition and shape recognition
tasks as we increase d. At low d we cancel high frequencies in the manifold which
contain the local structure of the graphs being compared. In practice we are
performing non-linear (kernel) PCA. Later, we will show the impact, in terms
of pattern discrimination, of setting d with respect to the estimated intrinsic
dimension [6].
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2.1 Symmetrized Normalized Entropy Square Variation

After obtaining the optimal transformation T ∗(Θ̂Y ) a principled similarity mea-
sure between the manifolds requires incorporating a criterion that compares
the spatial distributions of both the deformed/aligned T ∗(Θ̂Y ) and the static
Θ̂X manifolds. If well designed, such a distributional measure could quantify
implicitly both the matching costs and the transformation cost. Distributional
measures are not new in point registration. In [7] the estimation of the cumu-
lative distribution functions (CDFs) of the point sets and then the estimation
and minimization of their Havrda-Charvát (HC) divergence drives point-set reg-
istration. In this latter case, the quality of the registration is evaluated through
a Kolmogorov-Smirnov test for 2D/3D. Therefore, Information Theory (IT) is a
valuable source of inspiration for cost functions for registration. However, their
role in point-set similarity (manifolds in this case) has been poorly evaluated
in the past. In this regard, here we introduce a new IT measure referred as the
normalized-entropy-square variation (NESV) [3]:

V(Θ̂X , T ∗(Θ̂Y )) =
(H(T ∗(Θ̂Y ))−H(Θ̂X))2

H(T ∗(Θ̂Y )) +H(Θ̂X)
(6)

=
(H(T ∗(Θ̂Y ))−H(Θ̂X))2

I(T ∗(Θ̂Y ); Θ̂X) +H(T ∗(Θ̂Y ), Θ̂X)
,

where H(.) and H(., .) are respectively the Shannon entropy and joint entropy,
and I(.; .) denotes the mutual information. The above measure quantifies the de-
gree of entropy similarity after alignment, normalized by the sum of entropies.
Normalization is key when comparing graphs (manifolds) with a significantly dif-
ferent number of nodes (points) and is also consistent with mutual information
maximization. Despite its discrimination capability (we will be more precise in the
experimental section) one of the benefits of the NESV is that we can infer a kernel
between the probability functions for the manifolds and, thus, implicitly between
the graphs. Inferring such kernels is of pivotal importance for principled compar-
isons of the probability distributions associated with the manifolds [8], and when
these manifolds result from graph embedding we are implicitly learning kernels
between graphs. It is straightforward to prove that the induced p.d. kernel is

KV(pX , p
∗
Y ) =

e−β(H(T ∗(Θ̂Y ))−H(Θ̂X ))2

H(T ∗(Θ̂Y )) +H(Θ̂X) + a
(7)

where a > 0, β > 0, pX and p∗Y are the pdfs induced by Θ̂X and T ∗(Θ̂Y )
respectively. As a resultKV is p.d. However, it is not a kernel because, in general
V(Θ̂X , T ∗(Θ̂Y )) 
= V(T ∗(Θ̂X), Θ̂Y ), that is, it is not symmetric with respect
to transforming Θ̂X , or equivalently locating T ∗(Θ̂X) in order to match Θ̂Y .
Consequently, the symmetrized normalized-entropy-square variation SNESV is
defined by

SV(Θ̂X , Θ̂Y ) =
(H(T ∗(Θ̂Y ))−H(Θ̂X))2

H(T ∗(Θ̂Y )) +H(Θ̂X)
+

(H(T ∗(Θ̂Y ))−H(Θ̂X))2

H(T ∗(Θ̂X)) +H(Θ̂Y )
. (8)
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Consequently, its associated p.d. kernel is

KSV(p
∗
X , p

∗
Y ) =

e−βy(H(T ∗(Θ̂Y ))−H(Θ̂X ))2

H(T ∗(Θ̂Y )) +H(Θ̂X) + ay
+

e−βx(H(T ∗(Θ̂X ))−H(Θ̂Y ))2

H(T ∗(Θ̂X)) +H(Θ̂Y ) + ax
,

(9)
where βy, βx, ay, ax > 0. If we have a training set, the latter parameters must
be learned in order to optimize the kernel machine used for manifold/graph
classification.

2.2 Leonenko et al. Entropy Estimator

One of the problems of using IT measures in high dimensional domains is the
estimation of the measures themselves. Given that the dimensionality of the
manifolds may be too high for a plug-in entropy estimator, in this work we
exploit the kNN-based bypass estimator proposed by Leonenko et al. [9]:

ĤN,k,1 =
1

N

N∑
i=1

log{(N − 1)e−Ψ(k)Vd(ρ
(i)
k,N−1)

d}, (10)

whereN is the number of i.i.d. samples (points) x1, . . . ,xn in Rd, k the maximum
number of nearest neighbors, Ψ(k) = Γ ′(k)/Γ (k) = −γ + Ak−1 the digamma

function with γ ≈ 0.5772 (Euler constant) and A0 = 0,Aj =
∑j

i=1 1/i, Vd =

πd/2/Γ (d/2 + 1) is the volume of the unit ball B(0, 1) in Rd, and ρ
(i)
k,N−1 is the

k−th nearest neighbor distance from xi to some other xj . This estimator is both
consistent and fast to compute.

2.3 Henze-Penrose Divergence

The Henze and Penrose divergence [10] between two distributions f and g is

DHP (f ||g) =
∫

p2f2(z) + q2g2(z)

pf(z) + qg(z)
dz , (11)

where p ∈ [0, 1] and q = 1−p. This divergence is the limit of the Friedman-Rafsky
run length statistic [11], that in turn is a multi-dimensional generalization based
on MST1s of the Wald-Wolfowitz test. The Wald-Wolfowitz statistic computes
the divergence between two distributions fX and gO in Rd, when d = 1, from two
sets of nx and no samples, respectively. First, the n = nx+no samples are ordered
in ascending order and labeled as X and O according to their corresponding
distribution. The test is based on the number of runs R, being a run a sequence
of consecutive and equally labeled samples. The test is calculated as:

W =
R− 2nonx

n − 1(
2nxno(2nxno−n)

n2(n−1)

) 1
2

. (12)

1 Minimum-Spanning Tree.
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The two distributions are considered similar if R is low and therefore W is also
low. This test is consistent in the case that nx/no is not close to 0 or ∞, and
when nx, no → ∞. The Friedman-Rafsky test generalizes Eq. 12 to d > 1, due
to the fact that the MST relates samples that are close in Rd. Let X = {xi} and
O = {oi} be two sets of samples drawn from fX and gO, respectively. The steps
of the Friedman-Rafsky test are:

1. Build the MST over the samples from both X and O.
2. Remove the edges that do not connect a sample from X with a sample from

O.
3. The proportion of non-removed edges converges to 1 minus the Henze

Penrose divergence (Eq. 11) between fX and gO.

See an example in Fig. 1.

Fig. 1. Two examples of Friedman-Rafsky estimation of the Henze and Penrose diver-
gence applied to samples drawn from two Gaussian densities. Left: the two densities
have the same mean and covariance matrix (DHP (f ||g) = 0.5427). Right: the two
densities have different means (DHP (f ||g) = 0.8191).

2.4 Total Variation k-dP Divergence

The main drawback of both the Henze-Penrose and the Leonenko’s-based diver-
gences is the high temporal cost of building the underlying data structures (e.g.
MSTs). This computational burden is due to the calculation of distances. A new
entropy estimator recently developed by Stowell and Plumbley overcomes this
problem [12]. They proposed an entropy estimation algorithm that relies on data
spacing without computing any distance. This method is inspired by the data
partition step in the k-d tree algorithm. Let X be a d-dimensional random vari-
able, and f(x) its pdf. Let A = {Aj |j = 1, . . . ,m} be a partition of X for which
Ai∩Aj = ∅ if i 
= j and

⋃
j Aj = X . Then, we can approximate f(x) in each cell

as fAj =
∫
Aj

f(x)/μ(Aj), where μ(Aj) is the d-dimensional volume of Aj . If f(x)

is unknown and we are given a set of samples X = {x1, . . . ,xn} from it, being
xi ∈ R

d, we can approximate the probability of f(x) in each cell as pj = nj/n,

where nj is the number of samples in cell Aj . Thus, f̂Aj(x) = nj/nμ(Aj) being

f̂Aj (x) a consistent estimator of f(x) as n → ∞. Then, to obtain the entropy
estimation for A we have
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Ĥ =
m∑
j=1

nj

n
log

(
n

nj
μ(Aj)

)
. (13)

The partition is created recursively following the data splitting method of the
k-d tree algorithm. At each level, data is split at the median along one axis.
Then, data splitting is recursively applied to each subspace until an uniformity
stop criterion is satisfied. The aim of this stop criterion is to ensure that there
is an uniform density in each cell in order to best approximate f(x). The chosen
uniformity test is fast and depends on the median. The distribution of the median
of the samples in Aj tends to a normal distribution that can be standardized as:

Zj =
√
nj

2medd(Aj)−mind(Aj)−maxd(Aj)

maxd(Aj)−mind(Aj)
, (14)

where medd(Aj), mind(Aj) and maxd(Aj) are the median, minimum and max-
imum, respectively, of the samples in cell Aj along dimension d. An improbable
value of Zj, that is, |Zj | > 1.96 (the 95% confidence threshold of a standard nor-
mal distribution) indicates significant deviation from uniformity. Non-uniform
cells should be divided further. An additional heuristic is included in the algo-
rithm in order to let the tree reach a minimum depth level: the uniformity test
is not applied until there are less than

√
n data points in each partition, that

is, until the level Ln =
⌈
1
2 log2(n)

⌉
is reached. Then, our k-d partition based

divergence (k-dP divergence) follows the spirit of the total variation distance,
but may also be interpreted as a L1-norm distance. The total variation dis-
tance between two probability measures P and Q on a σ-algebra F 2 is given
by sup{|P (X) − Q(X)| : X ∈ F}. In the case of a finite alphabet, the total

variation distance is δ(P,Q) = 1
2

∑
x

|P (x) − Q(x)|. Let f(x) and g(x) be two

distributions, from which we draw a set X of nx samples and a set O of no

samples, respectively. If we apply the partition scheme of the k-d partition algo-
rithm to the set of samples X

⋃
O, the result is a partition A of X

⋃
O, being

A = {Aj |j = 1, . . . , p}. For f(x) and g(x) the probability of any cell Aj is
respectively given by

f(Aj) =
nx,j

nx
= fj , g(Aj) =

no,j

no
= gj (15)

where nx,j is the number of samples of X in cell Aj and no,j is the number of
samples of O in the cell Aj . Since the same partition A is applied to both sample
sets, and considering the set of cells Aj a finite alphabet, we can compute the
k-dP total variation divergence between f(x) and g(x) as:

DkdP (f ||g) =
1

2

p∑
j=1

|fj − gj| . (16)

2 A σ-algebra over a set X is a non-empty collection of subsets of X (including X
itself) that is closed under complementation and countable unions of its members.
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The latter divergence satisfies 0 ≤ D(f ||g) ≤ 1. The minimum value D(O||X) =
0 is obtained when all the cells Aj contain the same proportion of samples from
X and O. By the other hand, the maximum value D(O||X) = 1 is obtained
when all the samples in any cell Aj belong to the same distribution. We show
in Fig. 2 two examples of divergence estimation using Eq. 16.

Fig. 2. Two examples of divergence estimation applied to samples drawn from two
Gaussian densities. Left: both densities have the same mean and covariance matrix
(D(f ||g) = 0.24). Right: the two densities have different means. Almost all the cells
contain samples obtained from only one distribution (D(f ||g) = 0.92).

Fig. 3. Examples of the Gator database (left) and average recall-retrieval curves (right)

2.5 Retrieval from GatorBait

In order to test SNESV, Henze Penrose and kdP we have chosen a challening
database, the GatorBait 100 3 ichthyology database. GatorBait has 100 shapes
representing fishes from 30 different classes [3] . We have extracted Delaunay
graphs from their shape quantization (Canny algorithm followed by contour
decimation). Since the classes are associated to fish genus and not to species,

3 http://www.cise.ufl.edu/~anand/publications.html

http://www.cise.ufl.edu/~anand/publications.html
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we find high intraclass variability in many cases – see a) in Fig. 3-left where
the corresponding class has 8 species. There are also very similar species from
different classes (row b)) and few homogeneous clases (row c)). There are 10
classes with one species (not included in the analysis and performance curves),
11 with 1− 3 individuals, 5 with 4− 6 individuals and only 4 classes with more
than 6 species. Hence, it is hard to devise a measure which produces an average
retrieval-recall curve (Fig. 3-right) far above the diagonal. This is the case for
SNESV. We have focused all our analysis in the curves for d = 5, where the 5D
setting is selected experimentally since the estimations of the intrinsic dimen-
sions are in the interval (11.6307±2.8846). Overestimation is due to the curse of
dimensionality. For instance, for 10D, SNESV is near diagonal. The more com-
petitive IT measure with respect to SNESV is the Henze-Penrose divergence.
Two alternative measures which originate a p.d. kernel are studied: a) the sym-
metrized Kullback-Leibler divergence which is also close to the diagonal and b)
the Jensen-Tsallis divergence for q = 0.1 (both estimated through Leonenko’s
method). We also studied the behavior of a total variation (L1) divergence (kdP)
where the entropy is estimated through k-d tree partitions. In all cases k = 4.
In all these experiments the CT embedding is considered.

3 Tensor-Based Divergences

3.1 Tensor-Based Graph Representations

Let G = (V,E) with |V | = n. Then the history of a node i ∈ V is hi(G) =
{e(i), e2(i)), . . . , ep(i)} where: e(i) ⊆ G is the first-order expansion subgraph
given by i and all j ∼ i, e2(i) = e(e(i)) ⊆ G is the second-order expansion con-
sisting on z ∼ j : j ∈ Ve(i), z 
∈ Ve(i), and so on until p cannot be increased. If G is
connected ep(i) = G, otherwise ep(i) is the connected component to which i be-
longs [16]. Every hi(G) defines a set of subgraphs hi(G) = {e(i), e2(i)), . . . , ep(i)}
where el(i) ⊆ ek(i) when k > l. If we select k < p we obtain a k−order partial
node coverage given by the subgraph ek(i). If we overlap the k−order partial cov-
erages associated to all i ∈ V we obtain a k−order graph coverage. For instance,
in Fig. 4 we show that two subgraphs with the same order but around different
nodes (B and C) with the same order have, in general, a different structure (but
in a complete graph). As happens in images, where scale invariance is key for
the persistence of local descriptors, given the graph structure it should be de-
sirable to select a different value of k for different nodes. However, translating
the concept of scale analysis to the domain of graphs is quite computational
demanding; we suggest a sort of optimal k selection using a Harris detector, but
in graphs: define a set of features for each subgraph and track their variabil-
ity until a peak in the node history is detected. Consequently, in this paper we
will set experimentally a constant order k for all subgraphs. In this regard, it
is convenient to choose a small constant order in comparison to |V | in order to
maximize the entropy of the subgraph distribution, that is, for providing more
informative coverages.
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Fig. 4. Examples of partial node coverages in a 5 × 5 regular and 4-neighboring grid.
Nodes with the same gray intensity have been added in the same order expansion. The
lighter the intensity the higher the order. We consider nodes A (k = 3) (left), B (k = 2)
and C (k = 2).

In the information-geometry approach followed here (see [17][18]), the features
are covariance matrices relying on spectral descriptors. More precisely, the fea-
tures are vectorized covariances projected on a given tangent space (exponential
chart). Consider Φ(i) = (f1(i), . . . , fd(i))

T a vector of spectral descriptors of the
partial node coverage H = ek(i) ⊆ G (commute times, Fiedler vector, Perron-
Frobenius vector and node centrality. Such descriptors have been determined to
be very informative for graph discrimination [19]. For commute times (CT) we
consider both the Laplacian and the normalized Laplacian of H : the elements
of the upper off-diagonal elements of the CT kernel are downsampled to select
m = |VH | elements and they are normalized bym2. Fiedler and Perron-Frobenius
vectors have m elements by definition. Node centrality is more selective than de-
gree and it is related to the number of closed walks starting and ending at a
each node. This measure is also normalized by m2. For each partial coverage H
we can compute the statistics of d spectral descriptors taking m samples (one
sample per element of H). Such statistics can be easily encoded in a covariance
matrix. In this paper we assume non-attributed graphs, but if the application
domain imposes weights in the edges it is also possible to compute the spectral
features described or referenced above.

The set of d × d covariance matrices Xi =
1

n−1

∑m
i=1(Φ(i) − μ)(Φ(i) − μ)T ,

being m = |VH |, lie in a Riemannian manifold M (see Fig. 5). For each X ∈M
there exists a neighborhood which can be mapped to a given neighborhood
in Rd×d. Such mapping is continuous bidirectional and one-to-one. As a Rie-
mann manifold is differentiable, the derivatives at each X always exist, and
such derivatives lie in the so called tangent space TX , which is a vector space
in Rd×d. The tangent space at TX is endowed with an inner product < ., . >X

being < u,v >X= trace(X− 1
2uX−1vX− 1

2 ). The tangent space is also endowed
with an exponential map expX : TX → M which maps a tangent vector u to a
point U = expX(u) ∈ M. Such mapping is one-to-one, bidirectional and con-
tinuously differentiable and maps u to the point reached by the unique geodesic
(minimum-length curve connecting two points in the manifold) from X to U :
g(X,U). The exponential map is only one-to-one in the neighborhood of X and
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this implies that the inverse mapping logX : M → TX is uniquely defined in a
small neighborhood of X. Therefore, we have the following mappings for going
to the manifold and back (to the tangent space) respectively:

expX(u) = X
1
2 exp(X− 1

2uX− 1
2 )X

1
2 , logX(U) = X

1
2 log(X− 1

2UX− 1
2 )X

1
2 ,
(17)

and the corresponding geodesic between two tensors X and U in the manifold:

g2(X ,U) =< logX(U), logX(U ) >X= trace
(
log2(X− 1

2UX− 1
2 )
)
. (18)

In all the definitions above we take the matrix exponentiation and logarithm.
Each graph X has nX = |VX | partial coverages, one for each node. Therefore,

we have n overlapped subgraphs HXi each one characterized by a covariance
matrix Xi based on mHXi

= |VHXi
| samples. Then, ech graph can be encoded

by a population of nX points in a manifold M. For instance, another graph Y
will be encoded by nY covariance matrices Y j in the same manifold M. In order
to compare both populations we can map then back to a given tangent space.
However we must determine what is the origin of such space. Let us denote by
Zk with k = 1, . . . , N (being N = nX+nY ) each covariance matrix coming from
X or from Y . A fair selection of the tangent space origin is the Karcher mean
defined as μ = argminZ∈M d2(Zk,Z). The Karcher mean can be obtained after

few iterations of μt+1 = expμt(X̄
t
) where X̄

t
= 1

N

∑N
k=1 logμt(Zk). Once we

have μ, we have an origin for the tangent space, and then we can project all
matrices Zk in such space (see Fig. 5-left) through Zk = logμ(Zk).

Therefore, in the tangent space, whose origin is logμ(μ) = 0, we will have two
distributions of tensors: X = {X1, . . . ,Xnx} and Y = {Y1, . . . ,Yny}. In [20]

μ

X1

X2

x1x2

0

Xm

xm

Y1

Y1

Y2

Y2

Yn

Yn
logμ

expμ

Tμ

M

g(X1,X2)

||x1,x2|| v

w

Fig. 5. Left: Riemannian manifold (the sphere) and tangent space Tμ at point μ. Points
in the tangent space are the de-projections (log) of their corresponding projections
(exp) which lie in the Manifold. We show in different colors points corresponding to
subgraphs of two different graphs: Xi and Yj . We also show some examples of distances
in the manifold (geodesics) g(., .) and in the tangent space ||., .|| (vectorization), and
tangents u and w. Right: Tangent space (from a zenithal view) with the geodesics
||.||F (Frobenius norms) used for building the linear combination of Gaussians (the
barycenter).
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computing graph similarity is posed in terms of vectorizing each distribution
and then compute a multi-dimensional divergence, the Henze-Penrose one [10],
which is estimated by the Friedman-Rafsky test. Although this divergence out-
performs our results obtained through entropic manifold alignment followed by
the application of the SNESV divergence, such success is due to two facts: (i) in
the node coverage each sugraph is characterized by highly discriminative spectral
features, and (ii) the multi-dimensional Friedman-Rafsky test in this context is
more structural than comparing entropies of two different manifolds. However,
we argue herein that there is additional room for improvement: the Friedman-
Rafsky test relies on computing minimum spanning trees, that is, on computing
Euclidean distances between the vectorized tensors in the tangent space. Such
distances are different from geodesics and consequently their use may imply a
significant loss of metric information. Metric errors are attenuated by placing
the tangent space at the Karcher mean, but they may exist. As each tensor in
the tangent space defines a geodesic from the origin (pole) of the manifold, its
Frobenius norm ||X||F = trace(XXT ) is coincident with its geodesic distance to
the pole μ = logμ(μ) = 0:

g(μ,X) =
∥∥∥log(μ− 1

2Xμ− 1
2 )
∥∥∥
F
=

∥∥logμ(X)
∥∥
F
= ‖X‖F . (19)

Therefore we can use the latter norms safely to build an error-free distributional
representative (prototype) for each set of tensors (graph).

Given that the tensors in the tangent space are covariance matrices, they
define zero mean d-dimensional Gaussian variables xi (respectively yj) with pdf

p(xi;0,Xi) =
1√

(2π)d|Xi|
exp

(
−1

2
xT
i X

−1
i xi

)
, (20)

and similarly for yj . A simple way of combining or fusing several variables to
define a prototype is to perform a linear combination:

cx =

nx∑
i=1

aixi, cx ∼ N
(
0,

nx∑
i=1

a2
iXi

)
, cy =

ny∑
i=1

biyi, cy ∼ N
(
0,

ny∑
j=1

b2jYj

)
,

(21)

where ai = 1
||Xi||F and bj = 1

||Yj||F are the inverses of the Frobenius norms

(distances to the origin) as we show in Fig. 5-right. The choice of the barycenter
is, by far, more discriminative than the uniform weighting: ai =

1
nx

, bi =
1
ny

. In

addition, using the latter inverse Frobenius coefficients we tend to non-trivially
minimize the entropy of the prototype: large (distant) covariances contribute
less to the linear combination than smaller (close) ones. In any case, neither the
variables of the linear combination nor the resulting prototypes lie in the tangent
space; we exploit them to focus on the resulting covariances because in the
Gaussian case, the entropy relies only on the covariance of the distribution [21].
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3.2 Bregman and Total Bregman Divergences

The Bregman divergence [13] df associated with a real valued strictly convex
and differentiable function f defined on a convex set X between points x, y ∈ X
is given by,

df (x, y) = f(x)− f(y)− 〈x− y,∇f(y)〉, (22)

where ∇f(y) is the gradient of f at y and 〈·, ·〉 is the inner product determined
by the space on which the inner product is being taken.

For example, if f :Rn → R, then 〈·, ·〉 is just the inner product of vectors
in Rn, and df (·, y) can be seen as the distance between the first order Taylor
approximation to f at y and the function evaluated at x. Bregman divergence
df is non-negative definite and does not satisfy the triangular inequality thus
making it a divergence. As shown in Fig. 6, Bregman divergence measures the
ordinate distance, the length of the dotted red line which is parallel to the y-
axis. It is dependent on the coordinate system, for example, if we rotate the
coordinate system, the ordinate distance will change (see the dotted lines in Fig.
6(a) and (b)). This coordinate dependent distance has great limitations because
it requires a fixed coordinate system, which is unrealistic in the cases where a
fixed coordinate system is difficult to build. With the motivation to overcome this
shorting and release the freedom of choosing coordinate systems, we proposed
total Bregman divergence.

The total Bregman divergence [14] δf associated with a real valued strictly
convex and differentiable function f defined on a convex set X between points
x, y ∈ X is defined as,

δf (x, y) =
f(x)− f(y)− 〈x− y,∇f(y)〉√

1 + ‖∇f(y)‖2
, (23)

〈·, ·〉 is inner product as in the definition of Bregman divergence, and ‖∇f(y)‖2 =
〈∇f(y),∇f(y)〉 generally.

d
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(x,y)

δ
f
(x,y)

y x

f

(a)

d
f
(x,y)

δ
f
(x,y)

y

x

f

(b)

Fig. 6. In each figure, df (x, y) (dotted red line) is BD, δf (x, y) (bold green line) is TBD,
and the two arrows indicate the coordinate system. (a) shows df (x, y) and δf (x, y)
before rotating the coordinate system. (b) shows df (x, y) and δf (x, y) after rotating
the coordinate system. Note that df (x, y) changes with rotation unlike δf (x, y) which
is invariant to rotation.
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Fig. 7. Average recall (Y axis) vs number of retrievals (X axis). Left: Curves for tensor-
based divergences. Right: Curves for (estimated) Mutual Information between aligned
manifold.

As shown in Fig. 6, TBD measures the orthogonal distance, and if we translate
or rotate the coordinate system, δ(·, ·) will not change. Also δf (·, y) can be seen
as a higher order “Taylor” approximation to f at y and the function evaluated
at x. Then

δf(x, y) = df (x, y)−
‖∇f(y)‖2

2
df (x, y) +O(‖∇f(y)‖4) (24)

where O(·) is the Big O notation, which is usually small compared to the first
term and thus one can ignore it without worrying about the accuracy of the
result. Also, we can choose the higher order “Taylor“ expansion if necessary.

Compared to the BD, TBD contains a weight factor (the denominator) which
complicates the computations. However, this structure brings up many new
and interesting properties and makes TBD an ”adaptive” divergence measure
in many applications. Note that, in practice, X can be an interval, the Eu-
clidean space, a d-simplex, the space of non-singular matrices or the space of
functions[15]. For instance, in the application to shape representation, we let p
and q be two pdfs, and f(p): =

∫
p log p, then δf (p, q) becomes what we will call

the total Kullback-Leibler divergence (tKL).
Jeffreys divergence is a symmetrized version of the Kullback-Leibler Diver-

gence. Let p and q two pdfs defined respectively by prototypes cx and cy, where
we set Σx =

∑nx

i=1 a
2
iXi and Σy =

∑ny

j=1 b
2
jYi, then the Jeffreys divergence

between them is given by

J(p, q) =
1

2

(
trace(Σ−1

y Σx) + trace(Σ−1
x Σy

)
− d . (25)

Therefore, the definition of the tJ(p, q) (Jeffreys TBD) depends on the definition
of tLK(., .) (the KL TBD):

tJ(p, q) = tKL(p, q) + tKL(q, p) =
log

∣∣Σ−1
x Σy

∣∣+ trace(Σ−1
y Σx)− d

2
√
2(1−H(q))

+

+
log

∣∣Σ−1
y Σx

∣∣+ trace(Σ−1
x Σy)− d

2
√
2(1−H(p))

, (26)
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being H(.) the entropy: H(p) = log
√
(2πe)d|Σx| and similarly for H(q). This

divergence (tJ) is the most discriminative for GatorBait, outperforming SNESV
and many other TBD divergences (see Fig. 7-left). It is highly competitive with
total Jensen-Shannon (tJS) and the quadratic Jensen-Rényi (JR2). These latter
divergences outperform the Henze-Penrose divergence applied to vectorization
of covariance matrices (HP). These good results are both due to a change of
representation (which contributes to break iso-spectrality) and the use of novel
divergences (total Bregman ones). However, the computational cost of building
a node coverage given a fixed order (k = 5 in this paper) is O(n3 × k) where
n = |V |, k << n. Then we must compute the spectra for the features (O(n3)),
the covariance matrices, the projection in the tangent space (product of several
matrices including the matrix logarithm of the product of 3 matrices which also
implies a spectral decomposition; then we have O(n8) (for each tensor) and the
Karcher mean (several iterations, each one involving N = nx + ny matrix log-
arithms taking O(n3) each). After that we compute the divergence. Therefore
the global complexity of tensor representation is dominated by O(n8). On the
other hand, when we use the entropic manifold alignment, the cost of making
the alignment can be linear per iteration. Then, the embedding takes O(n3) for
computing the spectral decomposition and then a product of matrices, and this
is done once (before alignment). Estimating the entropy is O(n2+n logn). In any
case, entropic alignment is more efficient than tensor-based methods but these
latter ones are more discriminative. Is it possible to improve discriminability
without increasing also the computational cost? Fortunately there is an inter-
mediate method relying on manifold alignment but changing the divergence.
This new divergence is an approximation of multi-dimensional mutual informa-
tion using the estimator described in [22]. This estimator relies on computing
copulas which require a sorting for each dimension and then a kNN estimator
of the Rényi entropy (quadratic). If we have d−dimensional samples, we must
estimate a 2d joint entropy and 2 d−dimensional ones (unfortunately we do not
have space in this paper to detail this method and we have only preliminary
results and insights). As we show in Fig. 7-right, for d = 5 in the embedding
mutual information outperforms tJ, the best tensor-based divergence.

4 Conclusions

The main contribution of this paper is to explore the link between graph rep-
resentations and divergences. Future work includes the development of mutual
information estimators jointly with optimal alignment.
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Information Theoretic Pairwise Clustering
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Abstract. In this paper we develop an information-theoretic approach
for pairwise clustering. The Laplacian of the pairwise similarity matrix
can be used to define a Markov random walk on the data points. This
view forms a probabilistic interpretation of spectral clustering methods.
We utilize this probabilistic model to define a novel clustering cost func-
tion that is based on maximizing the mutual information between con-
secutively visited clusters of states of the Markov chain defined by the
graph Laplacian matrix. The algorithm complexity is linear on sparse
graphs. The improved performance and the reduced computational com-
plexity of the proposed algorithm are demonstrated on several standard
datasets.

1 Introduction

Effective automatic grouping of objects into clusters is one of the fundamental
problems in machine learning and in other fields of study. In many approaches,
the first step toward clustering a dataset is extracting a feature vector from each
object. This reduces the problem to the aggregation of groups of vectors in a
feature space. A commonly used algorithm in this case is the k-means. However,
in many cases we are only given pairwise similarity information between data
points. For example, in social networks, only binary neighborhood relations are
given. In these cases k-means cannot be applied in a straightforward way. Instead,
we seek for a partition of the data based on the similarity measure between the
points. Out of the numerous clustering algorithms, spectral clustering [14,16] has
gained considerable attention in recent years due to its strong performance on
arbitrary shaped clusters, and its well-defined mathematical framework [20].

Another family of clustering algorithms, that are derived from information-
theory concepts, corresponds to the case of distributional clustering. Here each
data point is described as a distribution. This situation is illustrated by the
generic example of document clustering based on word histograms [18],[17]. In
this case, the mutual information between word occurrences and clusters of doc-
uments is a natural clustering criterion [19] [4] that has been proven to be pow-
erful in many cases. The information-theoretical principle described above is
only applicable when a feature distribution, associated with each data point,
is provided as part of the problem setup. In this paper we extend the mutual
information clustering criterion to the domain of pairwise clustering. The prob-
abilistic interpretation of spectral clustering, based on a Markov random walk,
is used to associate a distribution with each data point via the corresponding

E. Hancock and M. Pelillo (Eds.): SIMBAD 2013, LNCS 7953, pp. 106–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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conditional distribution row in the Markov transition matrix. In particular, we
define a random walk on the data points and maximize the mutual informa-
tion between cluster labels of data-points that are visited during the random
walk. We show that this results in an efficient clustering method with state-
of-the-art performance on real-world datasets. The remainder of this paper is
organized as follows. Section 2 defines the notation of similarity graphs and the
associated Laplacian matrix. Section 3 describes the minimum information-loss
criterion for clustering the Markovian random-walk states. Section 4 introduces
the Information-Theoretic Pairwise Clustering (ITPC) algorithm. Section 5 re-
views related work and Section 6 describes numerical experiments on several
standard datasets.

2 Similarity Graphs and Random Walks

Given a set of data points x1, ..., xn and some symmetric notion of similarity
wij ≥ 0 between all pairs of data points xi and xj , the goal of clustering is to
divide the data points into several groups such that points in the same group are
similar and points in different groups are dissimilar to each other. In the common
case where the data points live in the Euclidean space Rd, a reasonable candidate
for a similarity measure is the Gaussian function wij = exp(−‖xi − xj‖2/(2σ2))
(where the parameter σ controls the width of the local neighborhoods). Ulti-
mately, the choice of the similarity function depends on the domain the data
come from and the specific clustering task.

In the case where we have information in the form of similarities between data
points, we can represent the data as a similarity graph G = (V,E). Each vertex
i in this graph represents a data point xi. Two vertices are connected if the
similarity wij between the corresponding data points xi and xj is positive and
the edge is weighted by wij . The problem of clustering can now be reformulated
using the similarity graph: we want to find a partition of the graph in which
existing edges between different groups have low weights and edges within a
group have high weights.

Denote the similarity matrix by W = (wij). The degree of a vertex i ∈ V
is defined as di =

∑n
j=1 wij . The degree matrix D is defined as the diagonal

matrix with the degrees d1, ..., dn on the diagonal. The normalized Laplacian
matrix L is defined as L = I−D−1W [1]. (Note that in the literature there is no
unique convention as to which matrix exactly is called “Graph Laplacian” [20].)
All variants of the spectral clustering algorithm are based on using eigenvectors
of the Laplacian matrix to represent the abstract data points as points in the
Euclidean space. The clusters can be then obtained by applying simple cluster-
ing algorithms such as k-means in the embedded space [14,16,22]. The matrix
P = D−1W = I − L is a stochastic matrix (non-negative entries, row sums
are all 1). Using n × n transition matrix P we can define a stationary Markov
chain that corresponds to a random walk on the graph nodes. Let X = {Xt}
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be the n-valued stationary Markov chain defined by:

Pij = (D−1W )ij = p(X2 = j|X1 = i) =
wij∑
k wik

(1)

The transition probability Pij of jumping in one step from i to j is proportional
to the edge weight wij . Let π = (π1, ..., πn), where πi = di/(

∑
j dj). It can be

easily verified that P
�
π = π. Hence, if the graph is connected and non-bipartite,

then π is the unique stationary distribution of the Markov chain defined by P
[20]. Therefore, the joint stationary probability of X1 and X2 is:

p(X1 = i,X2 = j) =
wij∑
kl wkl

. (2)

Given the random walk model (1) we can translate the pairwise clustering
problem, into the problem of clustering the states of a Markov chain.

3 Clustering the States of a Markov Chain

Let {A1, ..., Am} be a partition of the states {1, ..., n} into m clusters and let C
denote the subset membership function, i.e. C(i) = j if i ∈ Aj . For each t we
define a random variable Yt = C(Xt) indicating the cluster membership of the
state visited by the random walk at time t. The joint distribution of the random
variables (Y1, Y2) defined on the clusters is:

p(Y1 = i, Y2 = j) = p(X1 ∈ Ai, X2 ∈ Aj) (3)

=
1

vol(V )

∑
k∈Ai,l∈Aj

wkl

such that vol(V ) =
∑

ij wij . The model is illustrated by the following diagram:

X1 −−−−→ X2 −−−−→ X3 −−−−→ ...

C

⏐⏐3 C

⏐⏐3 C

⏐⏐3 ⏐⏐3
Y1 Y2 Y3 ...

Each clustering {A1, ..., Am} induces a joint distribution p(Y1, Y2) on the clusters
visited on consecutive time units. To find the best clustering based on the joint
distribution of Y1 and Y2, we need to extract from the m ×m matrix (p(Y1 =
i, Y2 = j)) a single number that measures the clustering quality. Once decided on
a suitable clustering score, we can find the clustering that optimizes this score.

An intuitive clustering score, that we would like to minimize, is:

p(Y2 
= Y1) =

m∑
i=1

p(Y2 
= i|Y1 = i)p(Y1 = i) (4)
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which is the probability that consecutive visited points would be in different
clusters. However, the clustering that minimizes criterion (4) is the one formed
by a single cluster that contains all the data points. Even if we enforce that all
the m clusters should be non-empty, the score (4) still favors clusterings that
are very unbalanced. To overcome this degeneracy we can modify the clustering
score we minimize as follows:

Ncut(A1, ..., Am) =

m∑
i=1

p(Y2 
= i|Y1 = i) (5)

where Ncut is the Normalized-Cut score of the partition C = {A1, ..., Am}. Meila
and Shi [12] showed that the Ncut spectral clustering algorithm [16] [21] is an
algorithm that finds an optimal solution for a relaxation of the Ncut criterion (5)
for clustering the states of the random walk defined by the Laplacian of affinity
graph. Dhillon et el. [3] applied kernel k-means (with kernel K = D−1WD−1)
to directly optimize the Ncut score.

In this study we suggest to apply the information-theoretical principle of
minimal information loss to cluster the states of the random walk. The mutual
information induced by the clustering C = {A1, ..., Am} is:

MI(A1, ..., Am) = I(Y1;Y2) = (6)∑
ij

p(Y1 = i, Y2 = j) log
p(Y1 = i, Y2 = j)

p(Y1 = i)p(Y2 = j)
.

The original walk over the points also determines a walk over the clusters. The
goal of clustering is to choose the clustering such that the loss in mutual informa-
tion due to clustering is minimized. A good Markov-state clustering should pre-
serve maximum information on the visited points. Using the mutual information
criterion, the best clustering of the given n points into m clusters is the one that
minimizes the information loss of the mutual information I(X1;X2)− I(Y1;Y2)
over all the partitions of the state-space into m subsets. The definition of mutual
information implies that:

I(Y1;Y2) = H(Y2)−
m∑
i=1

H(Y2|Y1 = i)p(Y1 = i) (7)

When maximizing I(Y1;Y2) the first term of (7) encourages clusters to have
similar sizes and the second term discourages the random walk from jumping
from cluster to cluster.

Utilizing standard information-theory manipulations we can derive several
equivalent forms for the information loss function we want to minimize.

score(C) = I(X1;X2)− I(Y1;Y2) (8)

= D(p(X1, X2)‖p(Y1, Y2)p(X1|Y1)p(X2|Y2))
= H(Y1, Y2) +H(X1|Y1) +H(X2|Y2)−H(X1, X2)

= D(p(X2|X1)‖p(X2|Y1)) +D(p(Y1|X2)‖p(Y1|Y2))
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where Y1=C(X1), Y2=C(X2),D is the Kullback-Leibler divergence andH is the
entropy function [2]. The optimal state-clustering is the one that minimizes the
information-loss function score(C). Note that the information-theoretic equality
(8) is correct for clustering the states of a general Markov chain. In our case,
because the similarity matrix is symmetric, the Markov chain is also reversible.

(a) (b) (c)

(d)

Fig. 1. The steps of the ITPC algorithm on a three-circles data set. (a) random ini-
tializing, (b),(c) intermediate results, (d) final results (obtained after two passes over
the data points).

Following [14], to understand the cost function we optimize, it is instructive to
consider its behavior in the “ideal” case in which all points in different clusters are
infinitely far apart and them clusters are equal in shape. In this case the joint clus-
ter distribution (C(X1), C(X2)) of the correct clustering is them×m scalarmatrix
1
mI.Hence, for the correct clusteringH(C(X1)) = log(m) andH(C(X2)|C(X1)) =
0 and therefore, I(C(X1);C(X2)) = log(m). However, for any joint distribution
(U, V ) onm×m elements we have: I(U ;V ) = H(U)−H(U |V ) ≤ H(U) ≤ log(m).
Hence, the mutual information score I(C(X1);C(X2)) of the correct clustering is
maximal.

4 The Clustering Algorithm

There is no closed-form solution for the minimal information-loss criterion stated
in the previous section. Several standard optimization algorithms can be utilized
to find the best clustering. In this study we apply a greedy sequential algorithm
(see e.g. [17]). The sequential greedy algorithm has been found to perform well in
terms of both clustering quality and computational complexity. The sequential
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clustering algorithm starts with a random clustering of the n graph nodes into
m clusters. We then go over the data points in a circular manner and check
for each point whether its removal from one cluster to another can reduce the
information loss. This loop is iterated until no single-point transition offers an
improvement. Since there is no guarantee that the algorithm will find the global
optimum, we can run the algorithm on several initial random partitions and
choose the best local optimum. Alternatively we can use a multi-level clustering
approach [9].

The basic step of this algorithm is computing the information loss caused
by merging a singleton cluster into an existing cluster. More generally we can
define a distance measure between two clusters as the information-loss caused by
merging the two clusters into a single one; i.e. the difference between the mutual
information before and after the two clusters are merged. Direct computation of
I(Y1;Y2) requires O(m2) operations where m is the number of clusters. We next
show that we can efficiently compute the information loss caused by merging
two clusters in a time that is linear in the number of clusters.

Assume we are given a data partition {A1, ..., Am} and we want to compute
the information loss caused by merging the clusters A1 and A2 to obtain a new
partition {A1∪A2, A3, ..., Am} composed of m − 1 clusters. Let Y1 and Y2 be
the cluster membership random variable associated with the original clustering
{A1, ..., Am} and Ŷ1 and Ŷ2 are the cluster membership random variables as-
sociated with the clustering after merging A1 and A2 into a single cluster. The
following formula provides an efficiently computed expression for the information
loss caused by the merging:

d(A1, A2) = I(Y1;Y2)− I(Ŷ1; Ŷ2) (9)

= 2
2∑

i=1

m∑
j=1

p(Y1= i, Y2=j) log
p(Y2 = j|Y1 = i)

p(Y2 = j|Y1∈{1, 2})

−
2∑

i=1

2∑
j=1

p(Y1= i, Y2=j) log
p(Y2 = j|Y1 = i)

p(Y2∈{1, 2}|Y1∈{1, 2})

= 2p(Y1 ∈ 12)JS(p(Y2|Y1 = 1)||p(Y2|Y1 = 2))

−p(Y1 ∈ 12, Y2 ∈ 12)I(Y1;Y2|Y1 ∈ 12, Y2 ∈ 12)

such that JS is the Jensen-Shannon divergence [2] and ‘12’ is an abbreviation for
{1, 2}. The equality follows from the fact that the joint distributions of (Y1, Y2)
and (Ŷ1; Ŷ2) are very similar. For every i, j that are both larger than 2 we have
p(Y1 = i, Y2 = j) = p(Ŷ1 = i, Ŷ2 = j). Hence, most terms in the difference
I(Y1;Y2)− I(Ŷ1; Ŷ2) are canceled and the distance measure d(Ai, Aj) (9) can be
computed in O(m) operations where m is the number of clusters. The sequential
clustering algorithm requires the computation of the change in the cost function
when moving a point from one cluster to another. This can be efficiently done
using expression (9).
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Table 1. The Information-Theoretic Pairwise Clustering (ITPC) algorithm

Input: A similarity graph defined by the n× n weight matrix W.
Output: A partition of the graph vertices into m clusters.

Algorithm:

1. Convert the graph into a Markov chain:

w̃ij � p(X1 = i, X2 = j) =
wij∑
kl wkl

2. Choose a random partition A1, ..., Am of the Markov states and compute the
cluster distribution m×m matrix:

qij = p(Y1 = i, Y2 = j) = p(X1 ∈ Ai, X2 ∈ Aj).

3. Loop until there is no change
– for i = 1, ..., nmove state i into the cluster that minimizes the information

loss.
• Remove state i from its current cluster.
• for j = 1, ..., m

∗ Add state i to cluster Aj and compute d({i}, Aj) (see Eq. (9)).
• Choose the cluster which minimize the information-loss.

Removing/Adding state i from/to cluster Aj in a constant time (assuming
each node has at most k neighbors):

– Go over all s ∈neighbors of node i
• Assume s is in cluster Al.
• qjl ← qjl − w̃is / qjl ← qjl + w̃is

• qlj ← qlj − w̃is / qlj ← qlj + w̃is

The computational complexity of the proposed clustering algorithm is as fol-
lows. To recompute the joint distribution of (Y1, Y2) after moving a point i from
one cluster to another we need to go over all weights on edges connected to i.
Hence, it takes O(n) for the basic step of searching all possible cluster mem-
berships of a given data point. Assuming a fixed number of iterations over the
dataset, the complexity is O(n2). In the (usual) case where the graph is sparse
and each point is connected to at most k neighbors, the number of operations
needed to recompute the clustering joint distribution, after moving a point from
one cluster to another, is bounded by k. Hence, the computational complexity for
sparse graphs is linear in the size of the dataset n. Note that when using spectral
clustering methods, finding the eigenvectors of a large matrix is computation-
ally costly. It takes O(n3) in general, and even with fast approximating tech-
niques vast amount of space and time are required for larger datasets. We dub
the proposed algorithm “Information-Theoretic Pairwise Clustering” (ITPC).
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(a) (b)

(c) (d)

Fig. 2. Clustering of several synthetic datasets by ITPC (using Euclidean knn graph)

The linear time implementation of the ITPC algorithm is summarized in Table
1. An example of applying the sequential procedure on a synthetic dataset is
shown in Figure 1.

One drawback of the sequential algorithm (in contrast to agglomerative ap-
proaches) is that the number of clusters must be given as input to the algorithm.
In case we do not know the exact number of clusters we can slightly modify the
algorithm in such a way that we can simply provide a rough estimation (upper
bound) on the number of desired clusters. Consider the case of a cluster that
contains a single object i. The iterative-sequential algorithm will not merge i
into any other cluster because obviously this cannot increase the cost function
I(Y1;Y2). The algorithm will always prefer to leave i as a single member of a
cluster. In the modified version we enforce a singleton cluster to be merged into
another cluster. More generally if a cluster size is less than a predefined number,
we enforce the cluster’s members to be merged into other clusters. This step re-
duces the number of clusters by one. Utilizing this scheme, the number of output
clusters can be adapted to the data.

5 Related Work

Information-theoretic approaches have been intensively used for data clustering
algorithms. The standard problem setup is based on a given joint distribution of
objects and features denoted by the random variables X1 and X2 respectively.
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A one-sided clustering of the object set X1, denoted by C(X1), aims to max-
imize the mutual information I(C(X1);X2) between the object clusters and the
features [19,17]. A co-clustering (aka two-sided clustering) applies a clustering
procedure on both the objects set and the feature set. Denote the object cluster-
ing by C1(X1) and the feature clustering by C2(X2). The best co-clustering is
the one that maximizes the mutual information between the object clusters and
the feature clusters I(C1(X1);C2(X2)) [5]. Note that in the co-clustering setup
the object set and the feature set are different and therefore the object clustering
and the feature clustering are different. In our setup of pairwise clustering the ob-
jects set and the feature set are the same and therefore by clustering the objects
we automatically also cluster the features. The two random variables X1 and X2

correspond to two instances of the same set and the same clustering function
is simultaneously applied to the two random variables X1 and X2. The target
is to find a clustering C such that the mutual information I(C(X1);C(X2)) is
maximized. The three clustering cases are illustrated bellow:

Y1
C←− X1 ←→ X2 one-sided (10)

Y1
C1←−− X1 ←→ X2

C2−−→ Y2 two-sided (11)

Y1
C←− X1 ←→ X2

C−→ Y2 simultaneous (12)

Sequential optimization algorithm has been applied for one-sided clustering [17].
In that case if the number of features is kept fixed, the algorithm is linear in
the number of data points. The basic step of the sequential algorithms is find-
ing the best cluster assignment for a given point. This step requires computing
the Jensen-Shannon (JS) divergence between the cluster and the point. Com-
puting the JS divergence is linear in the number of features. Hence, in our case
of pairwise clustering, where the number of features is equal to the number of
data points, the complexity of the one-sided algorithm is quadratic in the data
size. Note that even if the graph is sparse and therefore the distribution corre-
sponds to each object is sparse, the cluster distribution is not necessarily sparse.
Hence, the complexity of the one-sided clustering algorithm [17], applied to pair-
wise clustering problem, is quadratic. When applying a sequential optimization
to the case of co-clustering (11), we need to iterate between feature clustering
given the object clusters and object clustering given the feature clusters [5]. In
contrast to previous methods, the complexity of the proposed ITPC algorithm
when applied to sparse pairwise clustering is linear and there is no need to it-
erate between feature clustering and object clustering. An information theoretic
clustering approach of the states of a general Markov chain has been suggest
in [7]. Unlike our algorithm whose complexity is linear (on sparse graphs), the
complexity of their algorithm is quadratic in the dataset size. Another iterative
bipartition algorithm which uses JS divergence as the statistical dissimilarity
measure has been suggest in [6].
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Spectral clustering algorithms [14] [16], are based on finding a low dimensional
embedding using eigenvector computation which can be slow. The Power Itera-
tion Clustering (PIC) [10] is a variant of spectral clustering that directly finds
the low-dimensional embedding. Graclus [3] is another efficient graph cluster-
ing algorithm that is based on directly optimize the Ncut score using multilevel
kernel k-means and avoids the eigenvector computations. The main difference
between our algorithm and the Graclus algorithm [3] is the cost function that
is being optimized. We optimize the mutual information score (6) while Gra-
clus optimizes the Ncut score (5). Another minor difference is that Graclus uses
a batch version of the kernel k-means which is not guaranteed to converge if
the kernel is not positive definite. We use a sequential greedy algorithm which
monotonically improves the cost function and therefore always converges to a
local optimum.

6 Experimental Results

In this section, we demonstrate our proposed ITPC method on the following
commonly used real-world datasets: Iris contains flower petal and sepal mea-
surements from three species of irises, 150 instances. Glass has 214 instances
separated into six classes of glass. Wine are the results of a chemical analysis of
wines. The analysis determined the quantities of 13 constituents found in each
of three types of wines. 178 instances. Wisconsin Diagnostic Breast Cancer
(WDPC) has 359 instances separated into two classes. Each instance has 30
continuous features. Features are computed from a digitized image of a fine nee-
dle aspiration (FNA) of a breast mass. Olivetti Faces (OlFace5) 10 images of
5 different people, 64 × 64 size [15]. USPS-01: 1100 instances of handwritten
digits 0 and 1 from the USPS dataset. USPS-17: 1100 instances of handwritten
digits 1 and 7 from the USPS dataset. USPS-245: 1650 instances of handwrit-
ten digits 2,4 and 5 from the USPS dataset [8]. 20ng* are subsets of the 20
newsgroups text dataset [13]. The dataset 20ngA contains 100 documents from
2 newsgroups: misc.forsale and soc.religion.christian, 20ngB adds 100 documents
to each group of 20ngA, 20ngC adds 200 from talk.politics.guns to 20ngB and
20ngD adds 200 from rec.sport.baseball to 20ngC.

To construct the pairwise similarity matrix we first need to choose a kernel and
tune its parameters. Automatic parameter and kernel selection for unsupervised
learning is still a difficult problem. Furthermore, different parameter values may
be found to be optimal for different clustering algorithms. To avoid this problem
we chose parameter-free affinity matrices. For the text datasets 20ng*, the
affinity matrix we used is the cosine similarity between feature vectors. Note that
no parameter needs to be tuned in the cosine kernel. In all other datasets, we
used the k-nearest neighbor graph, based on the Euclidean distance, to construct
the pairwise relations. We set wij = 1 if node i is a k-nearest neighbor of node
j or j is a k-nearest neighbor of i. Otherwise, we set wij = 0.
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Table 2. Clustering performance comparison on several real datasets. For all measures
a higher number means better clustering. Bold numbers mark the best results for each
dataset.

PIC NJW Graclus ITPC
[10] [14] [3]

Dataset k Pur NMI RI Pur NMI RI Pur NMI RI Pur NMI RI

Iris 3 .687 .510 .727 .900 .778 .887 .840 .722 .837 .973 .901 .966
Glass 6 .579 .235 .702 .594 .299 .718 .584 .280 .713 .626 .326 .727
Wine 3 .961 .837 .947 .966 .878 .955 .966 .878 .955 .955 .847 .940
WDBC 2 .747 .307 .622 .932 .628 .872 .947 .719 .900 .893 .494 .809
OlFace5 5 .500 .365 .754 .560 .439 .793 .600 .462 .806 .620 .460 .803
USPS-01 2 .692 .243 .574 .988 .915 .982 .991 .934 .982 .991 .934 .982
USPS-17 2 .548 .010 .505 .979 .856 .959 .982 .869 .964 .982 .869 .964
USPS-245 3 .700 .510 .765 .664 .492 .707 .864 .660 .847 .958 .844 .947
20ngA 2 .960 .759 .923 .960 .759 .923 .945 .701 .896 .955 .736 .914
20ngB 2 .885 .568 .796 .508 .030 .500 .927 .626 .865 .958 .747 .919
20ngC 3 .642 .489 .692 .625 .339 .679 .603 .387 .678 .713 .401 .736
20ngD 4 .539 .295 .650 .504 .281 .669 .599 .402 .687 .616 .345 .748

Average .703 .427 .721 .765 .558 .803 .821 .637 .844 .853 .659 .871

To evaluate the performance of the clustering methods we measured the clus-
tering results against the true labels using three external validation indices:
cluster purity (Pur), normalized mutual information (NMI), and the Rand in-
dex (RI). We used all these measures to ensure a more thorough evaluation of
clustering results due to the different characteristics of each measure. We refer
the reader to [11] for details regarding these measures.

Table 2 presents the results of comparing ITPC to three other clustering algo-
rithms: Spectral clustering (NJW) [14], Power Iteration Clustering (PIC) [10] and
the Graclus algorithm [3]. We also tried the Ncut [16] version of spectral cluster-
ing and the results were slightly worse than those obtained by the NJW algorithm.
We also ran the k-means algorithm (using the i-th row of the weight matrixW as
the feature vector for the point i) and its results were the worst. It can be seen
that on most datasets ITPC outperformed the other methods or at least produced
quite similar results which indicates that the MI clustering score is more suitable
for pairwise clustering than the Ncut score. Note that the Graclus algorithm out-
performs spectral methods which validates our optimization strategy and indi-
cates that direct optimization of a pairwise clustering score is better (and faster)
than applying eigen-vector based methods. Note also that in one case the NJW
algorithm failed badly (20ngB) and in another case (USPS-17) the PIC algorithm
failed badly. The most likely cause being that the top eigen-vectors of the graph
Laplacian failed to provide a good low-dimensional embedding for the k-means.
Such problem does not exist in sequential optimization.

The ITPC algorithm utilizes a greedy approach to maximize the mutual infor-
mation score I(Y1;Y2) (6). In principle, this optimization approach can get stuck
in local maxima points. Next we demonstrated that in the datasets we used there
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was no problem of getting stuck in local optima. Using the ground-truth labels
we can compute the mutual-information score of the true clustering and compare
it to the score of the clustering obtained by the ITPC algorithm. Table 3 shows
the mutual-information score for all the datasets we used. In all cases the score of
the clustering obtained by ITPC algorithm was higher than the score of the true
clustering. Therefore, although there is no guarantee that we obtained the global
maximum, it indicates that our optimization process works well.

Table 3. Comparison of the cluster-membership mutual-information score (6) of the
ITPC clustering vs. the ground-truth clustering.

Dataset ITPC Score True Score

Iris .949 .903
Glass 1.127 .349
Wine .806 .761
WDBC .474 .413
OlFace5 .554 .382
USPS-01 .580 .564
USPS-17 .539 .502
USPS-245 .916 .871
20ngA .599 .595
20ngB .535 .530
20ngC .775 .756
20ngD .886 .849

Although in pathological cases a sequential algorithm can take many iterations
until convergence, in practice the number of needed iterations is much less than
the number of points. In our experiments we limited the number of iterations on
the data points to be 30. Note that in spectral methods, even if we use efficient
algorithms to find eigenvectors, in the second step we apply k-means on the
embedding results and we face a complexity issue that is also solved by limiting
the number of k-means iterations.

7 Conclusion

To conclude, we introduced a simple pairwise clustering method based on ap-
plying a random-walk associated with the affinity matrix of the data points and
computing the mutual information between visited clusters. The main point of
our paper is defining an information theoretical criterion for pairwise clustering
and showing that it yields better results than Ncut criterion and its variants.
Dhillon et al. [3] showed that direct optimization of Ncut, using variants of
K-means, outperforms spectral methods (that optimize an approximated cost
function) in terms of both accuracy and complexity. Hence, even if we try hard to
develop efficient spectral clustering variants we will not gain much. We validated
this observation in Table 2.
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The proposed ITPCmethod has linear computational complexity which makes
it easily scalable for large datasets. Therefore, our algorithm is applicable to
large-scale clustering tasks. Experimental results show that our algorithm out-
performs state-of-the-art pairwise clustering algorithms in terms of speed, mem-
ory usage, and clustering quality. A possible weakness of the greedy method we
used for optimization is getting stuck in local optima points. We showed, how-
ever, that this problem does not occur in the real datasets we analyzed. The
main advantage of spectral clustering is that there is an analytic solution (for a
relaxation of the Ncut cost function) and hence there is no problem of getting
stuck on local optimum. We can combine ITPC and spectral clustering by first
applying spectral clustering on a small subset of our data and using the result
as a starting point for our approach by merging the other points to one of the
obtained clusters. In this study we concentrated on the problem of pairwise clus-
tering. The proposed method can be applied also to the more general problem
of aggregating the states of a large scale Markov chain.
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1 VTT Technical Research Centre of Finland, 02044, Finland
nicola.rebagliati@gmail.com

2 Department of Enviromental Science, Computer Science and Statistics,
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Abstract. Correlation clustering is the problem of finding a crisp par-
tition of the vertices of a correlation graph in such a way as to minimize
the disagreements in the cluster assignments. In this paper, we discuss
a relaxation to the original problem setting which allows probabilistic
assignments of vertices to labels. By so doing, overlapping clusters can
be captured. We also show that a known optimization heuristic can be
applied to the problem formulation, but with the automatic selection of
the number of classes. Additionally, we propose a simple way of building
an ensemble of agreement functions sampled from a reproducing kernel
Hilbert space, which allows to apply correlation clustering without the
empirical estimation of pairwise correlation values.

Keywords: Correlation clustering, stochastic labelling, ensemble
clustering, Baum-Eagon inequality.

1 Introduction

Correlation Clustering is a recent clustering formulation, introduced in [4], which
consists in partitioning vertices of a graph, whose edges are labelled as positive
(similar) or negative (dissimilar). The goal is to find a partition in such a way
as to minimize the number of negative intra-cluster edges and positive inter-
cluster edges. Such a setting can be found, e.g., in document clustering, where
the number of clusters (topics) is not known in advance and a classifier is given
which outputs whether two documents are similar or not. Unlike traditional
partitional clustering approaches, this formulation does not need the number of
clusters as a user parameter, but it is able to automatically perform a model
selection.

Due to the difficulty of the problem, which is NP-complete [4], much work has
been done in the direction of finding bounds and approximate solutions. In [4],
the authors provide a constant time approximation for minimizing the disagree-
ment and a polynomial time approximation scheme for maximizing the agree-
ments. Later theoretical and practical improvements were made by [1][13][26]
with insightful approximation algorithms that exploit linear programming or

E. Hancock and M. Pelillo (Eds.): SIMBAD 2013, LNCS 7953, pp. 120–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Correlation Clustering with Stochastic Labellings 121

semidefinite programming. A spectral approach to solve correlation clustering
with 2 clusters has been proposed in [12]. A learning theoretical analysis of cor-
relation clustering is presented in [19]. Practical considerations, comparison and
experimentation with different algorithms, also heuristical ones, can be found in
[20][14].

An important application of correlation clustering is consensus clustering
[25,23,16], i.e. a methodology for summarizing an ensemble of different
partitions of the same dataset into a single partition. The partitions are typ-
ically obtained by applying different clustering algorithms with possibly differ-
ent parametrizations on the dataset. Correlation clustering can be used for the
consensus clustering algorithm, by noting that each partition in the ensemble
provides observations of graph vertices to co-occur in a cluster. Indeed, these
observations can be combined to estimate the similarity or dissimilarity among
vertices in the graph.

Motivation and Contribution. The classic correlation clustering formulation
leads to a hard partition of the graph vertices. This inhibits the possibility of cap-
turing overlapping clusters, which is useful in many applications. To overcome
this limitation, we discuss in this paper two alternative formulations of correla-
tion clustering, where the requirement of having a crisp partition of the graph
vertices is relaxed by allowing probabilistic assignments of vertices to clusters,
which are regarded to as stochastic labellings. By so doing, vertices can be poten-
tially assigned to multiple clusters. However, we show that the first formulation
is essentially equivalent to classic correlation clustering, whereas the second one
is different as it is able to capture overlapping clusters, preserving nevertheless
the important property of automatic selection of the number of clusters. For
each formulation an iterative scheme, based on the work of [10,9], allows to find
a locally minimizing solution. In addition, we introduce a simple way of building
an ensemble of agreement functions sampled from a reproducing kernel Hilbert
space, without resorting on empirical estimations of the probability that two
vertices will co-occur in the same class.

Previous Work. Our reference scheme is an adaptation of [24] to correlation
clustering. In [24] they use stochastic assignments for finding overlapping com-
munities in a social network. See also [3] for a rather different approach to the
problem of finding groups from similarity matrices. However both [3,24] fix the
number of classes K. By modifying the approach of [10] we have a different al-
gorithm which automatically selects the number of classes K. In [8] they attack
the problem of finding overlapping groups in correlation clustering by extending
the Correlation Clustering functional with multi-labelling functions, instead of
relaxing the ownership assignments.

Outline. The paper is organized as follows. Section 2 formally introduces the
problem of correlation clustering within a more general setting, where we might
have missing edges in the graph and noisy labels on the edges. Section 3
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introduces two relaxed formulations of correlation clustering, which allow for
stochastic assignments of vertices to clusters, and show some theoretical proper-
ties among which the ability of capturing overlapping clusters. We address the
optimization problems related to the two proposed formulations in Section 4,
where we make use of a result due to Baum and Eagon. In section 5 we in-
troduce our ensemble of agreement functions sampled from kernel space and in
Section 6 we show experiments on real and synthetic datasets. In section 7 we
draw the conclusions.

2 Correlation Clustering

A correlation graph G = (V,E,w) is an edge-weighted graph without self-loops,
where V = {1, . . . , n} is a set of vertices, E ⊆ V × V is a set of edges and
w : E → {0, 1} is a function mapping edges (i, j) ∈ E to 1 or 0 according to
whether i and j are correlated or not. Hereafter, we write wij for w(i, j).

Let Lk = {1, . . . , k} be a set of k labels. A (stochastic) k-labelling, or simply
labelling if k is understood by the context, for a correlation graph G = (V,E,w)
is a matrix Y = (y1, . . . ,yn) ∈ Δn

k , where yi ∈ Δk is a probabilistic assignment
of a label in Lk to a vertex i ∈ V , where

Δk =

{
z ∈ R

k :
∑
�∈Lk

z� = 1 and z� ≥ 0 for all � ∈ Lk

}

is the (k − 1)-dimensional simplex. We denote by Λk = Δk ∩ {0, 1}k the set
of deterministic assignments of labels to vertices, i.e. the set of distributions
with full mass on a specific label in Lk. A labelling X ∈ Λn

k is regarded as a
deterministic labelling. Note that for stochastic as well as deterministic labellings,
parameter k should be intended as the maximum number of labels assignable to
vertices. This implies that some labels in Lk may not be used. Moreover, for all
k′ > k, Λk and Δk can be naturally embedded in Λk′ and Δk′ , respectively.

Given a deterministic labelling X ∈ Λn
k for a correlation graph G = (V,E,w),

we say that two vertices connected by an edge (i, j) ∈ E agree if x�
i xj = wij .

We say that they disagree, in all other cases. The total disagreement φG(X) of
a labelling X ∈ Λn

k for a correlation graph G = (V,E,w) is the number of edges
in G consisting of disagreeing vertices, i.e.

φG(X) =
∑

(i,j)∈E

wij(1− x�
i xj) + (1− wij)x

�
i xj . (1)

Similarly, the total agreement of a labelling X ∈ Λn
k for G is the number of edges

in E consisting of agreeing vertices.
A correlation k-clustering of a correlation graph G = (V,E,w) is a k-labelling

X∗ ∈ Λn
k minimizing the total disagreement, i.e.

φ∗
G,Λk

= φG(X
∗) = min {φG(X) : X ∈ Λn

k} . (2)
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A correlation n-clustering for a correlation graph G with n vertices is called
simply a correlation clustering for G. As argued by [4], we can state the following
remark.

Remark 1 (Model Selection Property). There is an optimal parameter value k∗

such that φ∗
G,Λk

≥ φ∗
G,Λk∗ holds for all k. Furthermore, if k′ > k it holds that

φ∗
G,Λk′ ≤ φ∗

G,Λk
. Hence, by selecting k = n, where n is the number of vertices of

G, we are guaranteed that X∗ is a k-labelling achieving minimum disagreement
over all possible choices of k.

2.1 Clustering with Noisy Correlation Graphs

We depart from the standard correlation clustering problem, by assuming input
graphs to be noisy with respect to the edge correlation values. Specifically, we
are not given wij explicitly, but probabilities pij are provided of observing i
and j correlated. Let G = (V,E, p) be a random variable generating correlation
graphs (random correlation graph variable) with vertex set V and edge set E,
where for each edge (i, j) ∈ E the value of wij is independently drawn according
to a Bernoulli distribution with parameter pij . The expected total disagreement
of a labelling X ∈ Λn

k with respect to G is given by:

φG(X) = EG [φG(X)] =
∑

(i,j)∈E

pij + x�
i xj(1 − 2pij) . (3)

For notational convenience, we express total disagreement in equation (1) and
expected total disagreement in equation (3) with the same symbol φ, but they
differ in the subscript being a correlation graph in the former case and a random
correlation graph variable in the latter.

In order to cope with random correlation graphs, we consider a correlation
clustering formulation, where we aim at finding a labelling in such a way as to
minimize the expected total disagreement with respect to a random correlation
graph variable G. This yields the following minimization problem

φ∗
G,Λk

= φG(X
∗) = min {φG(X) : X ∈ Λn

k} , (P)

where X∗ ∈ Λn
k denotes a labelling achieving minimum expected disagreement.

The model selection property stated in Remark 1 holds straightforwardly also
for this formulation. Note that weighted versions of correlation clustering has
been addressed also in [19].

3 Relaxed Formulations with Stochastic Labellings

In this section we will relax the assumption on the labelling by allowing for
stochastic assignments of vertices to labels. There is a two-fold reason why we
introduce stochastic labellings. In first place it allows us to move from a discrete
optimization problem to a continuous one and make use of a result known as
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Baum-Eagon inequality in probability domain for finding a local solution (see
Section 4). Secondly, having stochastic label assignments allows to capture over-
lapping clusters, by letting graph vertices to be assigned to more labels with
non-zero probability.

We move from deterministic labellings to stochastic ones by replacing the
variables X ∈ Λn

k with variables Y ∈ Δn
k in (3):

φG(Y) =
∑

(i,j)∈E

pij + y�
i yj(1− 2pij) . (4)

Here, y�
i yj represents the probability of vertices i and j to occur in the same

class, under independence assumption. The relaxed version of correlation
k-clustering can thus be formulated as

φ∗
G,Δk

= φG(Y
∗) = min {φG(Y) : Y ∈ Δn

k} , (Q1)

where Y∗ ∈ Δn
k denotes an optimal stochastic k-labelling achieving minimum

expected disagreement.
The relaxed formulation of correlation clustering in (Q1) is a continuous op-

timization problem, which turns out to be substantially equivalent to (P). Con-
sequently, despite the stochastic label assignments, overlapping clusters are not
captured. The following proposition shows that, for all choices of k, (P) and (Q1)
yield the same value.

Proposition 1. Let G = (V,E, p) be a random correlation graph variable. Then
φ∗
G,Λk

= φ∗
G,Δk

for all choices of k > 0.

Proof. Note that any variable X ∈ Λn
k ⊂ Δn

k . Hence, the domain of program (P)
is a strict subset of the one of (Q1), which implies φ∗

G,Λk
≥ φ∗

G,Δk
. On the other

hand, let Y ∗ = (y∗
1 , . . . ,y

∗
n) be a solution of (Q1), let Xi ∈ Λk, 1 ≤ i ≤ n, be

multinomial random vectors with parameters n = 1 and probabilities y∗
i , and

let X = (X1, . . .Xn) ∈ Λn
k be a random (deterministic) labelling generator. Then

EX [φG(X )] ≥ φ∗
G,Λk

, but since EX [φG(X )] = φ∗
G,Δk

we have that φ∗
G,Δk

≥ φ∗
G,Λk

.

We show in Figure 1 an example of correlation clustering, where we have 3 clear
overlapping clusters. In 1(a) we show the values of pij and in 1(b) we can clearly
see that the solution obtained by (Q1) is a deterministic labelling Y∗ ∈ Λn

k as
the matrix of probabilities of co-occurrence (Y∗)�Y∗ contains 0s and 1s. This
confirms the intuition coming from Proposition 1 and shows a clear inability of
this formulation to capture overlapping clusters.

In order to overcome the limitations of (Q1) we consider a different way of
computing the total disagreement of a labelling X ∈ Λk for a correlation graph
G = (V,E,w), which is given by

ϕG(X) =
∑

(i,j)∈E

(
x�
i xj − wij

)2
. (5)
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In the presence of random correlation graphs generated according to G = (V,E, p),
the corresponding expected total disagreement of a labelling X for G gives

ϕG(X) = EG [ϕG(X)] =
∑

(i,j)∈E

pij + x�
i xj(x

�
i xj − 2pij) . (6)

Note that ϕG(X) = φG(X) and ϕG(X) = φG(X). The relaxed version of (6),
which uses a stochastic labelling Y, is

ϕG(Y) =
∑

(i,j)∈E

pij + y�
i yj(y

�
i yj − 2pij) . (7)

Finally, the relaxed correlation k-clustering formulation related to (7) is given
by

ϕ∗
G,Δk

= ϕG(Y
∗) = min {ϕG(Y) : Y ∈ Δn

k} , (Q2)

where Y∗ ∈ Δn
k denotes an optimal stochastic k-labelling for the minimization.

Let dG(Y) be the following function

dG(Y) =
∑

(i,j)∈E

y�
i yj(1− y�

i yj)

which measures the uncertainty of the stochastic labelling Y. Indeed, dG(X) = 0
for all X ∈ Λn

k , while it is strictly positive in general.
The next result, which is close in spirit to Proposition 1, relates the correlation

clustering formulations (Q2) and (P). Specifically it provides a lower and upper
bound for (P) in terms of (Q2) and dG(·) for all choices of k.

Proposition 2. Let G = (V,E, p) be a random correlation graph variable.Then

ϕ∗
G,Δk

≤ φ∗
G,Λk

≤ ϕ∗
G,Δk

+ dG(Y
∗)

for all choices of k > 0, where Y∗ ∈ Δn
k is a solution of (Q2).

Proof. The first inequality ϕ∗
G,Δk

≤ φ∗
G,Λk

trivially holds because Λk ⊂ Δk. The
second inequality follows by noting that φG(Y) = ϕG(Y)+dG(Y), which implies
φ∗
G,Δk

≤ ϕ∗
G,Δk

+ dG(Y
∗). By Proposition 1 the result derives.

From Proposition (2) we can see that if the solution of (Q2) is deterministic,
then it is also a solution of (P). Otherwise, the higher the distance from a
deterministic labelling, the larger the gap between ϕ∗

G,Δk
and φ∗

G,Λk
might be.

In Figure 1(c) we show the behaviour of formulation (Q2) with the toy example
with 3 overlapping clusters, which has been previously introduced. We note that
as opposed to (Q1), this formulation is indeed able to assign vertices to multiple
classes, obtaining thereby a solution which reflects to the desired clustering.

Also for formulations (Q1) and (Q2) the model selection property of Remark
1 holds, clearly on the respective objective functions. It is worth mentioning that
a formulation, which is equivalent to (Q2), has been used in [24] for communities



126 N. Rebagliati, S.R. Bulò, and M. Pelillo
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Fig. 1. Example of correlation clustering with 3 clear overlapping clusters. Left to
right: Original correlation graph; (Y∗)�Y∗ with Y∗ solution of (Q1); (Y∗)�Y∗ with
Y∗ solution of (Q2).

detection. However, the authors were not aware of the relation with correlation
clustering and, thus, the automatic selection of the number of clusters.

Formulation (Q2) is, unfortunately, an highly non-convex minimization prob-
lem which is very difficult to attack with an exact algorithm working in a rea-
sonable computational time. In the next section we propose to use non-exact
algorithms based on two iterative formulations, for both (Q1) and (Q2), which
ensure to return a locally minimizing solution.

4 Optimization Using the Baum-Eagon Inequality

In order to solve our optimization problem we shall use the following important
result which is generally known as the Baum-Eagon inequality [5].

Theorem 1 (Baum-Eagon). Let Y ∈ Δn
k and Q(Y) be a homogeneous poly-

nomial in the variables yi� with nonnegative coefficients. Define the mapping
Z = M(Y) ∈ Δn

k as follows:

zi� = yi�
∂Q(Y)

∂yi�

/ ∑
�′∈Lk

yi�′
∂Q(Y)

∂yi�′
, (8)
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for all i = 1 . . . n and � ∈ Lk. Then Q(M(Y)) > Q(Y), unless M(Y) = Y. In
other words M is a growth transformation for the polynomial Q.

Although the original theorem applies to homogeneous polynomials only, the
result has been generalized later by Baum and Sell [7] who proved that Theorem
1 still holds in the case of arbitrary polynomials with nonnegative coefficients,
and further extended the result by proving that M increases Q homotopically,
which means that for all 0 ≤ η ≤ 1, Q(ηM(Y)+(1−η)Y) ≥ Q(Y) with equality
if and only if M(Y) = Y.

The Baum-Eagon inequality provides an effective iterative means for maxi-
mizing polynomial functions in probability domains, and in fact it has served
as the basis for various statistical estimation techniques developed within the
theory of probabilistic functions of Markov chains [6]. As pointed out in [7], we
remark that the mapping M defined in Theorem 1 makes use of the first deriva-
tive only and yet is able to take finite steps while increasing Q. This contrasts
sharply with classical gradient methods, for which an increase in the objective
function is guaranteed only when infinitesimal steps are taken, and determining
the optimal step size entails computing higher-order derivatives.

It is not difficult to show that, by starting from the interior of the simplex, the
fixed points of the Baum-Eagon dynamics satisfy the first-order Karush-Kuhn-
Tucker necessary conditions for local maxima and that strict local solutions are
in correspondence to asymptotically stable points.

4.1 Algorithms for Correlation Clustering with Stochastic
Labellings

We show now how the Baum-Eagon inequality can be used in order to optimize
the relaxed formulations of correlation k-clustering introduced in Section 3. The
theorem, however, cannot be applied directly as its hypothesis are not fulfilled.
Indeed, the polynomials with variables in probability domain of (Q1) and (Q2)
need to be minimized and not maximized, and they do not have in general
nonnegative coefficients. Nevertheless, by exploiting the simplex constraints, we
can transform the aforementioned formulations into equivalent ones, which can
then be tackled by using the Baum-Eagon theorem. Hereafter, we denote with
E a k × k matrix of all 1’s, and with I the k × k identity matrix.

As for (Q1), by observing that y�
i Eyj = 1 for all (i, j) ∈ E and Y ∈ Δn

k , it
is straightforward to rewrite −φG(Y) as

−φG(Y) = −|E|+
∑

(i,j)∈E

y�
i [E+ (2pij − 1)I]yj − pij

which is a homogeneous polynomial with nonnegative coefficients (constant
terms can be dropped), in probability domain Δn

k . This equivalence allows us
to find a local solution of (Q1) by maximizing −φG . Hence, we can apply the
Baum-Eagon theorem by using (8) with Q = −φG . This yields the following
update rule for Y = (yi�):
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y
(t+1)
i� = y

(t)
i�

[∑
j∈Ei

1− (1− 2pij)y
(t)
j�

]
∑

�∈Lk
y
(t)
i�

[∑
j∈Ei

1− (1− 2pij)y
(t)
j�

] , (Alg-Q1)

where Ei = {j | (i, j) ∈ E} and the starting labelling Y(0) might be any point in
the interior of Δn

k .
Similarly for (Q2), we can rewrite −ϕG(Y) as the following homogeneous

polynomial with nonnegative coefficients:

−ϕG(Y) = −|E|+
∑

(i,j)∈E

[
y�
i (E− I)yj

]2 − pij

which can be locally maximized by means of the Baum-Eagon result obtaining
a local solution of (Q2). This yields the following update rule:

y
(t+1)
i� = y

(t)
i�

∑
j∈Ei

(
1− y

(t)
j�

)
(1− y�

i yj) + 2pijy
(t)
j�∑

�∈Lk

y
(t)
i�

∑
j∈Ei

(
1− y

(t)
j�

)
(1− y�

i yj) + 2pijy
(t)
j�

, (Alg-Q2)

where the starting labelling Y(0) might be any point in the interior of Δn
k .

Both update rules (Alg-Q1) and (Alg-Q2) satisfy the invariant propertyY(t) ∈
Δn

k for all t > 0 if Y(0) ∈ Δn
k and lead to a local solution of the respective

correlation clustering formulations.

5 Ensemble of Random Functions Sampled from Kernel
Space

In this section we show how to construct a simple ensemble of agreement func-
tions sampled from a reproducing kernel Hilbert space, which allows to obtain a
random correlation graph variable for our algorithm from an arbitrary clustering
dataset, without resorting on empirical estimations of the probability that two
vertices will co-occur in the same class. This is an alternative approach to in
[15].

A kernel is a symmetric function K : X × X → R such that for any dataset
(x1, . . . ,xn) ∈ Xn the comparison matrix K with entries kij = K(xi,xj), re-
garded to as Gram matrix, is positive semidefinite, i.e. all its eigenvalues are
nonnegative. A kernel uniquely determines a reproducing kernel Hilbert space [2].
This is a vector space H of functions f : X → R with the following
properties:

– f(x) = 〈f,K(x, ·)〉H
– ∀x ∈ X.K(x, ·) ∈ H

where H = span{K(x, ·) : x ∈ H}.
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A feature map is a function Φ : X → H associated to a kernel K such that
kij = 〈Φi, Φj〉H, where Φi = Φ(xi). By the reproducing kernel property, we can
associate each function f ∈ H with an evaluating hyperplane wf , such that
f(x) = 〈wf , Φ(x)〉H. At the same time, a function f ∈ H, can be regarded as a
2-class classifier mapping x ∈ X to a label according to the sign of f(x).

The probability pij that a randomly drawn function from f ∈ H with uni-
form distribution will put two data points xi,xj ∈ X in the same class can be
computed as a function of the angle θij between Φi and Φj [18]:

pij = 1− θij
π

.

The angle here is given by θij = arccos(kij/
√
kiikjj). The matrix P = (pij) of

the probabilities can thus be computed as the following function of the kernel
matrix K:

P = E− 1

π
arccos(D

− 1
2

K KD
− 1

2

K ) ,

where DK is the diagonal of K. Note that for the Gaussian kernel the formula
is simpler because the features have norm 1 as K(x,x) = 1. In this case indeed
we obtain

Prbf = E− 1

π
arccos(Krbf) .

Matrix P can be used to obtain a random correlation graph variable G represent-
ing the data to cluster by means of one of the correlation clustering approaches,
previously described.

In order to account for classifiers with a larger number of classes, we consider
the possibility of specifying the number of functions f that should be drawn
from H for the classification. Under independence assumption the probability
that two sample points xi and xj will be given the same class by each of the
sampled functions, say d, is simply pdij .

6 Experiments

In this section we assess the effectiveness of the relaxed formulations introduced
in section 3 on both real and synthetic datasets.

For the experiments we considered the heuristics we introduced in Section 4,
namely Alg-Q1 and Alg-Q2, which provide solutions to (Q1) and (Q2), respec-
tively. We compared our algorithms against two heuristics for (P). The first is a
randomized heuristic, called CC-Pivot, yielding a 11/7 approximation, which
has been introduced in [1]. The second one is a local search heuristic, called Best
One Element Move (BOEM), introduced in [17]. All four heuristics are repeated
with 25 different random initializations and best results are returned.

We evaluated the algorithms on two real datasets from the UCI Machine
Learning Repository: Iris and House-Votes. Iris consists of 150 data points in
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4-dimensional space divided uniformly into 3 classes. House-Votes consists of 435
data points in 17-dimensional space divided into 2 classes (267/168). We also
considered a synthetic dataset “4NG” composed by four overlapping gaussians
with 50 points each and 50 points uniformly sampled in the hyperbox containing
the data as outliers.

For each dataset we created a random correlation graph variable according
to the method described in Section 5 in conjunction with a RBF kernel with
manually tuned scale parameter, and with d = 3 sampled functions.

Note that as for our algorithms, we run them with a maximum number of
classes k = 20, which was larger than the number of classes found in the datasets.
By so doing, the algorithms were able to automatically find the number of clus-
ters. The running time of Alg-Q1 and Alg-Q2 is comparable to other methods
and take few minutes (< 15) with Matlab 7.8.0 [21] for Windows 7 c©Intel R©Core
TMDuo CPU T6600 2.20GHz, 4GB RAM.

We assessed the quality of the clusterings obtained from the algorithms by
computing the confusion error [22]. Since confusion error does not penalize the
selection of a number of clusters larger than the ground truth we report also the
associated number of clusters.

In Table 1 we report best results obtained by all the methods on all datasets.
Beside the name of each dataset, we show the optimal number of classes. For each
combination of dataset and algorithm we provide the number of classes obtained
and the associated confusion error. As we can see among the four approaches,
Alg-Q2 is the one achieving the best compromise between the automatic selection
of the number of classes, and the confusion error, while the other approaches
tend to overestimate the number of actual clusters in the data. Note that an
advantage of having stochastic labelling is that we can measure the uncertainty
in a label assignment. Since our algorithm is the only one which is able to capture
such information, we report in Figure 2 the effect on the confusion error of the
removal of points with the most uncertain label assignments obtained by it. As
we can see, the error nicely decreases to zero. This indicates that the points
where the algorithm exhibits uncertain label assignments are those leading to
misclassification.

We also compared our method with the algorithm Left-Stochastic Decompo-
sition (LSD) of [3] on datasets from [11] using the Misclassification Error [22].

Table 1. Results obtained on the datasets. We report for each combination of dataset
and algorithm the number of clusters found by the algorithm and the confusion error
of the solution found. We also report the optimal value of σ used for the experiment.
For the Ten-Digits dataset both BOEM and CC-Pivot returned an high number of
classes and their result are not significant.

Dataset (K) σ BOEM CC-Pivot Alg-Q1 Alg-Q2

Iris (3) 0.4 (31, 0.08) (10, 0.10) (11, 0.13) (3, 0.10)
House-Votes (2) 0.8 (8, 0.11) (5, 0.14) (20, 0.37) (2, 0.12)
Ten-Digits (10) 0.05 * * (20, 0.21) (15, 0.17)
4NG (4) 0.1 (42, 0.13) (56, 0.10) (19, 0.13) (7, 0.16)
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As we can see from Table 2, both approaches perform comparably well, although
our method achieves the best scores on most of the datasets that have been taken
into account.
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(a) Iris
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Fig. 2. Plot of the confusion error obtained by (Alg-Q2) by iteratively removing vertices
with uncertain labels. On the x-axis we report the number of vertices removed from
the dataset.

Table 2. A comparison with [3] on datasets of [11]. Number of used clusters in
parenthesis.

Dataset (K) Alg-Q2 LSD

Amazon Binary (2) .354 .390
Aural Sonar (2) .120 .140
Patrol (8) .253 .440
Protein (4) .347 .200
Voting (2) .094 .100
Yeast Pfam 7-12 (2) .380 .360
Yeast SW 5-7 (2) .295 .28
Yeast SW 5-12 (2) .090 .090
Yeast SW 7-12 (2) .095 .100
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7 Conclusions

The aim of this work is showing the relationship between classical Correlation
clustering and a relaxed version which allows for stochastic labellings instead of
hard ones. In proposition 1 we show that this relaxation is necessary, because
Correlation clustering by itself cannot capture stochastic labellings. In propo-
sition 2 the two functionals are put in relation. Moreover, we argue that the
relaxation still preserves the property of model selection peculiar of Correlation
Clustering. For both formulations we provide how to apply the Baum-Eagon
inequality in order to obtain converging algorithms. As a further contribution,
we show how we can practically build a simple ensemble of agreement functions
sampled from a reproducing kernel Hilbert space of functions. In the experiments
we obtain promising results compared to other, state-of-the-art, methods.
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9. Bulò, S.R., Lourenço, A., Fred, A., Pelillo, M.: Pairwise probabilistic clustering us-
ing evidence accumulation. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy,
I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 395–404. Springer,
Heidelberg (2010)
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Break and Conquer: Efficient Correlation

Clustering for Image Segmentation
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Abstract. We present a probabilistic model for image segmentation and
an efficient approach to find the best segmentation. The image is first
grouped into superpixels and a local information is extracted for each
pair of spatially adjacent superpixels. The global optimization problem
is then cast as correlation clustering which is known to be NP hard. This
study demonstrates that in many cases, finding the exact global solution
is still feasible by exploiting the characteristics of the image segmenta-
tion problem that make it possible to break the problem into subprob-
lems. Each sub-problem corresponds to an automatically detected image
part. We demonstrate a reduced computational complexity with com-
parable results to state-of-the-art on the BSDS-500 and the Weizmann
Two-Objects datasets.

1 Introduction

Image segmentation is a fundamental process in many image, video, and com-
puter vision applications. It is essentially the partitioning of an image into several
constituent components. The basic task of image segmentation is thus to assign
each pixel in the image to one of the image components. Many segmentation al-
gorithms have been proposed and studied in recent decades and new algorithms
are continuously emerging. These segmentation algorithms are usually based on
various combinations of local low-level features and global optimization methods.
In this paper we focus on the global optimization aspect of image segmentation.

Many visual tasks including segmentation can benefit from the complexity
reduction achieved by transforming an image with millions of pixels into a few
hundred or thousand “superpixels”. Superpixels are small, homogeneous regions
preserving almost all boundaries between different regions and are obtained by
a low-level process based on cues such as color, edges and texture. The use of
superpixels as primitive objects for clustering significantly reduce computational
cost and allow feature extraction to be conducted from a larger homogeneous
region. Given a superpixel graph we can first extract a local similarity measure
for each pair of spatially adjacent superpixels and then find a global segmenta-
tion that is consistent with the local cues. This paradigm is common to many
graph based image segmentation algorithms (e.g. [2,7,10]). However, current seg-
mentation approaches, even when applied to superpixels, do not aim to find an
exact optimal segmentation. Instead, they utilize approximation methods such
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as greedy hierarchical superpixels merging [7], LP-relaxation [24,17], dual de-
composition [25] and spectral clustering algorithms that find an approximation
of the optimal normalized-cut [22].

In this study we define a probabilistic model for image segmentation given
a superpixel map that is based on correlation clustering [9,8]. Correlation clus-
tering has recently been applied to image segmentation. In [17] the correlation
clustering model is solved using higher order potentials and LP relaxation. [4]
uses an integer linear programming (ILP) branch-and-cut strategy. It was also
utilized for computing the ensemble segmentation from a given set of segmenta-
tions [3] that is based on the observation that segmentations of the same image
are expected to agree on image parts that are clearly separated from the rest
of the image and when the segmentations are projected on a superpixel map,
the correlation clustering problem can be broken into non-overlapping parts and
solved independently. The concept of decomposing image analysis to smaller sub-
problems is also related to dual decomposition optimization which was recently
applied by [25] for image segmentation. In this work we show that unsuper-
vised image segmentation that is based only on local cues can also benefit from
decomposing the segmentation problem into sub-problems.

To find the optimal segmentation, based on correlation clustering model, we
need to solve an Integer Linear Programm (ILP). The ILP problem is known
to be NP hard which has prevented the algorithm from being applied to image
segmentation problem. The main contribution of this study is showing that find-
ing the exact global segmentation which is consistent with the local cues, is still
tractable. This is done by a careful analysis of the implementation of the general
ILP formulation to the image segmentation task.

The rest of this paper is organized as follows. In the next section we review
correlation clustering and previous attempts to apply it to image segmentation.
Section 3 presents an efficient method to solve the ILP problem and experimental
results are shown in Section 4.

2 Correlation Clustering for Image Segmentation

Assume we are given an undirected graph G = (V,E) such that V is the data
points {1, ..., n} we want to cluster. For each edge ij ∈ E we are given a sym-
metric notion of similarity wij ∈ (−∞,∞) such that a positive weight indicates
a local tendency to group i and j into the same cluster and vice versa. The goal
of clustering is to divide the data points into several groups such that points
in the same group are similar and points in different groups are dissimilar to
each other. We want to find a global clustering of the node set V that is most
consistent with the local cues. A clustering of a set {1, ..., n} can be transformed
into a set of n-over-two binary decisions x = {xij |1 ≤ i < j ≤ n)} such that
xij = 1 if i and j are in the same cluster and 0 otherwise. The correspondence
between clusterings and binary decision sets is not one-to-one. Each clustering
is represented by a different set of binary decisions but not every set of binary
decisions corresponds to a valid clustering. The pairwise relation ‘i and j are
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in the same cluster’ is a transitive relation. If i, j and j, k are in the same clus-
ter then necessarily i, k should be in the same cluster. It can be easily verified
that the correspondence between clusterings and transitive binary decision sets
is one-to-one.

Define the clustering score we want to maximize to be
∑

wij , where the
summation is over all data pairs that are in the same cluster. Observing that
the transitivity constraints are linear, the optimal graph partition is obtained
by solving the following Integer Linear Programm (ILP):

max
x

∑
i<j

wijxij (1)

s.t. xij + xjk − xik ≤ 1 ∀i, j, k
xij ∈ {0, 1} ∀i, j

The linear constraint xij + xjk − xik ≤ 1 on the binary variables, enforces tran-
sitivity on the binary decisions, i.e., xij = xjk = 1, implies that xik = 1.

There is a simple probabilistic interpretation of the clustering approach de-
scribed above that motivates the cluster score we optimize. Assume that for each
edge ij ∈ E we are given a probability pij(1) = p(xij = 1) that i and j are in
the same cluster (the probability that they are in different clusters is denoted by
pij(0) = 1−pij(1)). Assuming a uniform prior over the clusterings, the posterior
probability of a clustering x is:

p(x) ∝
∏
i<j

pij(xij) (2)

Note that in this simplified probabilistic model the binary local information cues
are assumed to be independent. The optimal global clustering which is consistent
with the local pairwise evidence, can be found by computing argmaxx p(x). It
can be easily verified that:

log p(xij) = log pij(1)1{xij=1} + log pij(0)1{xij=0} (3)

= log
pij(1)

pij(0)
1{xij=1} + log pij(0) = log

pij(1)

pij(0)
xij + log pij(0)

Hence,

log p(x) =
∑
i<j

log p(xij) =
∑
i<j

wijxij + const (4)

such that ‘const’ is a scalar that is not dependent on x and

wij = log
pij(1)

pij(0)
(5)

The best clustering is argmaxx p(x) = argmaxx
∑

i<j wijxij such that the maxi-
mization is done over all the sets of transitive binary decisions x. Hence the most
likely clustering is obtained as the solution of the ILP maximization problem (1).
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We can easily incorporate prior knowledge on the clustering x into the ILP
framework. Let q be a prior probability that any two points are in the same
cluster. For large values of q the optimal clustering tends to have a small num-
ber of clusters and vice versa. The modified weight function for the posterior
probability is:

wij = log
pij(1)

pij(0)
+ log

q

1− q

The graph clustering problem (1) is known as “correlation clustering” [9,8]. This
clustering approach has several advantages. It does not require users to specify
a parametric form for the clusters, nor to pick the number of clusters. The
main drawback of the ILP approach is its high complexity which impedes its
applicability for clustering of large sets. The ILP problem (1) is known to be
NP-hard [8].

Assume we are given a superpixel map of an image and a similarity measure
between each two neighboring superpixels. We can form the segmentation prob-
lem as an instance of correlation clustering and solve the ILP (1) to find the
optimal segmentation. This segmentation approach, however, is NP-hard and is
not tractable for a graph of hundreds or more superpixels. Most of previously sug-
gested graph-based methods for image segmentation try, explicitly or implicitly,
to handle this NP-hardness of the ILP problem by either approximate solutions
to the ILP clustering problem (e.g. greedy incremental superpixel merging [7]) or
find optimal solutions to modified problems (e.g. minimal normalized cut [12]).

A simple approximation approach is to delete all the edges between dissimilar
superpixels (i.e., with weights below a predefined threshold), and then look for
connected components in the remaining graph. This approach, however, is too
local since a single edge with weight above threshold is sufficient to cause two
almost separately regions to be merged. Felzenszwalb and Huttenlocher [13]
proposed an agglomerative global approach based on constructing a minimum
spanning tree. A standard approximate solution of the global ILP problem (1) is
obtained by an LP relaxation that replaces the binary constraint xij ∈ [0, 1] with
the linear constraint 0 ≤ xij ≤ 1 [14,21,24,17]. The LP solution, however, is not
binary and it is not clear how to convert it into a binary solution that satisfies
transitivity. Given the solution of the relaxed LP problem, the segmentation
can be found by considering the connected components obtained by eliminating
edges with xij values below a specified threshold.

In the next sections we show that finding the exact solution for the NP-hard
ILP problem (1) is still tractable for image segmentation applied to superpixels.

3 Efficiently Finding the Optimal Segmentation

In this section we describe an efficient method for solving the ILP problem (1)
by breaking it into small sub-problems and by incrementally adding transitivity
constraints that are not satisfied by the current solution. Assume we are given
an undirected weighted graph G = (V,E) such that the vertices V = {1, ..., n}
are the data points we want to cluster. For each undirected edge ij ∈ E we are
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also given a weight wij ∈ (−∞,∞) such that a positive weight indicates a local
tendency to group i and j into the same cluster. The goal is to solve the ILP
optimization problem (1). Our approach is based on dividing the problem into
smaller problems in which applying standard ILP solvers is still feasible.

We use the following notation. Let V1, ..., Vk be a partition of V . For each
i, j ∈ {1, ..., k}, denote E ∩ (Vi × Vj) by Eij . For i 
= j, an edge in Eij is called
a crossing edge; otherwise the edge is called an internal edge. Denote the set of
all the crossing edges by Ecross =

⋃
i�=j Eij .

Theorem 1. Assume V can be divided into disjoint subsets V1, ..., Vk such that
there is no edge with a positive weight between members of different subsets (i.e.,
wij ≤ 0 for every ij ∈ Ecross). Then the data clustering, which is the optimal
solution of the ILP problem (1), is a refinement of the partition V1, ..., Vk and is
obtained by separately applying the ILP optimization on each subset.

Proof. The cost function (1) can be written as a sum of two components:

∑
ij∈E

wijxij =
∑

ij∈Ecross

wijxij +
k∑

t=1

∑
ij∈Ett

wijxij (6)

Eq. (6) decomposes the variables that appear in the cost function (1) into two
disjoint subsets. The first set contains the crossing edges and the second set
contains the internal edges. Hence, by separately maximizing each one of the two
sub-problems, we get an upper bound on the solution of the ILP problem (1).
Since we assume that wij ≤ 0 for all (i, j) ∈ Ecross, the optimal zero-one solution
of: max

∑
ij∈Ecross

wijxij is obtained by setting xij = 0 for all (i, j) ∈ Ecross.
Solving an ILP problem on each sub-graph Gt = (Vt, Ett), t = 1, .., k separately:

max
∑

ij∈Ett

wijxij (7)

s.t. xij + xjk − xik ≤ 1 ∀i, j, k ∈ Vt

xij ∈ {0, 1} ∀i, j ∈ Vt

we get an upper bound on the optimal global solution. It can be easily verified
that the combined solution (with xij = 0 for all crossing edges) satisfies all the
transitivity constraints in (1) and hence it is optimal.

The most refined partition V1, ..., Vk that satisfies the requirement of Theorem
1 (no positive weight on crossing edges) can be found by utilizing a greedy
approach. We begin with some vertex v ∈ V defining the initial set of vertices
V1 = {v}. Then, at each iteration, we look for a positive weight edge (u, v),
where u ∈ V1 and v 
∈ V1. Then vertex v is brought into V1. This process is
repeated until no vertex can be added to V1. We next choose a vertex outside
of V1 and start constructing V2 from the remaining vertices, etc. We call the
members of the obtained partition the ‘positively connected components’ (they
are actually the connected components of the graph obtained by eliminating
all the non-positive weight edges in the original graph). The complexity of the
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Algorithm 1. An efficient solver for the ILP problem (1).

Input: A weighted undirected graph G = (V,E) with weights {wij}.
Output: A clustering of the graph nodes.

Break the graph into positively connected components V1, ..., Vk.
for i = 1, ..., k do

Solve the ILP problem restricted to the subset Vi using edge-based variables and
the cutting-plane method.

end for
The clustering of V is the union of the clusters of its positively connected components.

image components segmentation segmentation

Fig. 1. Examples of positively connected components and final segmentations from the
Weizmann dataset

algorithm applied to a n-vertex graph is O(n2). As a result of Theorem 1, we can
solve the ILP problem (1) for each positively connected component separately.

For each positively connected component we still need to solve an NP-hard
ILP problem that corresponds to correlation clustering restricted to that compo-
nent. In the case of image segmentation the graph we want to partition is sparse
since it is planar and each node has only a small number of spatially adjacent
nodes. In case of sparse graph we can formulate the ILP problem much more
compactly by associating binary variables only to edges of the graph instead of
all the node pairs [4]. The edge labeling consistency constraint can be enforced
by adding a linear constraint for each pair of nodes that prevents the situation
that the two adjacent nodes are belonging to different clusters but there is a
path connecting them in which all the nodes along the path are labeled as
connected. The exponential number of such constraints can be implemented
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using the cutting plane method [16]. The efficient ILP optimization algorithm is
summarized in Algorithm-Box 1.

The success of applying the graph partitioning approach described above to
image segmentation depends on the existence of image parts that can be sep-
arated from the rest of the image. Figures 1 and 3 demonstrates that this is
indeed a common situation (implementation details are described in Section 4).
In these images we show the positively connected components and the final
segmentation that is obtained by solving an ILP problem for each component
separately. Therefore, the obtained segmentation is a refinement of the positively
connected components partition. We dub the proposed segmentation algorithm
“Graph Decomposition ILP Segmentation” (GDIS). The GDIS algorithm was
implemented in C. We used the Gurobi software (www.gurobi.com) to solve the
ILP optimization sub-problems. Applying the GDIS algorithm on a an image
where the size of the largest positively connected component is 1000 takes few
seconds.

4 Experimental Results

We present visual and quantitative results of our algorithm for the Weizmann
Two-Objects dataset [1] and for the Berkeley BSDS500 dataset [7]. We also show
the effect of the efficient ILP algorithm on the segmentation procedure.

4.1 Extracting Superpixels and Local Weights

We used a state-of-the-art superpixel map suggested by Arbelaez et al. [7]. The
first step is shifting from pixels to superpixels. The Oriented Watershed Trans-
form (OWT) [7] is used to produce an over-segmentation of the image into a few
hundred superpixels. It was observed in [5] that on the average it is enough to
represent an image with few hundred superpixels to obtain almost full boundary
recall for low enough thresholds.

For each pair of spatially adjacent superpixels we need to obtain (based on
the image content) the probability that they are part of the same segment.
Arbelaez et al. [7] proposed a similarity measure that combines multiple local
cues into a globalization framework based on spectral clustering. The similarity
measure takes the form of a logistic-regression that is optimized using an an-
notated training set. The outcome of this approach is an OWT superpixel map
in which each arc pixel (a pixel separating two neighboring superpixels) has a
score of being a boundary pixel (a pixel separating two neighboring segments).
They refer to this score as the ‘globalized probability of boundary’ (gPb-owt) [6].
This pixel-level score can be converted into a score between adjacent superpixels
by averaging all the scores of the pixels on the corresponding arc. The values
of the gPb-owt score increase monotonically with the probability of existing a
segmentation boundary but they are not probabilities in the strict sense. Mono-
tonicity is enough for agglomerative clustering that iteratively merges the most
similar regions [7]. However, for our approach which avoids agglomerative clus-
tering and is based instead on a global optimization, we need the score to have
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Fig. 2. True segment boundary probabilities vs. the gPb-owt scores

a strict probabilistic interpretation. To convert the gPb-owt score of an arc into
a probability to be on a segment boundary, we apply the following procedure.
For each arc pixel, using a ground-truth annotation, we can check whether it
is on a segment boundary or not. Next, for each value of the gPb-owt score we
compute the relative number of arc pixels that have that gPb-owt score and are
part of a segmentation boundary. The result of this analysis, performed using
the training part of Weizmann database [1]. is shown in Fig. 2. As can be seen,
the gPb-owt score indeed increases monotonically but it does not coincide with
the exact boundary probability. The graph in Fig. 2 can be used to convert the
gPb-owt score into meaningful probability values. Using Eq. (5), the probabili-
ties are converted to weights that are used for the ILP optimization (1) to obtain
the final image segmentation.

It is not the focus of our work but there are many other features [10,5,2] and
learning methods [17,14] to compute a similarity measure between two neigh-
boring superpixels. Our efficient ILP optimization procedure is also relevant for
all these cases.

4.2 Segmentations Results on Weizmann Two-Objects Dataset

The Weizmann Segmentation Dataset consists of 200 images; 100 images with
a single object and 100 images with two objects [1]. We used the single object
images as our training set for learning the true probability mapping as explained
above. The two object images were used as the testing set. The testing proce-
dure we describe next was similar to the one mentioned in [2] using their publicly
available testing code [1]. The segmentation results were assessed by their con-
sistency with ground truth segmentation using the F-measure [19]. As in [2]
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image components segmentation segmentation

Fig. 3. Examples of positively connected components and final segmentations from the
BSDS500 dataset

we selected for each segmentation algorithm the final score that gave the best
performance on the Two-Objects Dataset.

In the segmentation experiment, in each run, for each object (of the two
objects of each image) we selected separately the best segment that best fit the
foreground. The averaged results for both objects are reported in Table 1. As can
be seen, the GDIS algorithm scored the highest. Note that the only differences
between the implementation of our optimization approach and the UCM [7] are
the similarity weight scaling (Figure 2) and the global ILP optimization that we
apply instead of the greedy superpixel merging procedure that is done in [7].

4.3 Segmentations Results on BSDS500

Before applying our method on the test portion of the BSDS500 dataset, we
converted the gPb-owt scores [7] to probabilities based on the train set of the
BSDS500 as explained in section 4.1. We used several standard methods for
objective segmentation evaluation: the probabilistic Rand index (PRI) [23], the
variation of information (VOI) [20] ,the boundary-based F-measure [19] and the
Covering score.

Using the training set we chose the parameters set that scored the highest
F-measure for each algorithm. Using the same parameter set, all four measures
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Table 1. Average single segment coverage test results on the Weizmann Two-Objects
Data Set. Higher is better.

Algorithm Average F-measure

GDIS 0.76

UCM [7] 0.72

Alp [2] 0.68

SWA V1 [15] 0.66

SWA V2 [15] 0.61

Mean Shift [11] 0.61

N-Cuts [18] 0.58

Table 2. Comparison of our method and the UCM segmentations on the BSDS500
test set using four measures: F, PRI, VI(lower is better) and Covering(higher is better)

Algorithm F PRI VI Covering

GDIS 0.73 0.83 1.95 0.59

UCM [7] 0.73 0.83 1.97 0.58

PlanarCC [25] 0.72 - - -

Kim [17] 0.70 - - -

mentioned above were recorded for the testing set. The results for our algorithm
and the UCM [7] are shown in Table 2. Table 2 shows that the GDIS also
outperforms two other recently introduced approximated graph optimization
methods [25,17]. Compared to the UCM, the GDIS scores similar results on F
and PRI and only slightly better results with respect to VI and Covering.

To alleviate any confusion, when comparing the UCM results to the ones
mentioned in [7], in [7] the different measures mentioned were recorded while
optimizing for each measure separately using different results sets. Sample results
for the BSDS500 test set are shown in Fig. 3. The fact that the GDIS results
are very close to those of the UCM on the BSDS500 is because we use the same
superpixels maps and the same underlying similarity score that was tuned on the
BSDS500 dataset. It should be emphasized that in contradiction to the UCM
which is based on greedy iterative merging, we find the exact global maximum,
although it seems as though the UCM even though based on local mergin decision
satisfies a global solution.

4.4 Efficiency Analysis of the ILP Algorithm

In this study we present an efficient method for solving the ILP problem (1) by
breaking it into small sub-problems. Next, we demonstrate the efficiency contri-
bution of these two elements when applied to an image segmentation task. The
complexity of our ILP algorithms depends on the size of the largest component
in the decomposition. We computed the following statistics. Next we constructed



144 A. Alush and J. Goldberger

image segmentation segmentation segmentation

Fig. 4. From left to right: original image followed by three intermediate valid segmen-
tations created as a result of adding more cutting plane constraints (moving to the
right). The intermediate segmentations become more refined as we add constraints.
Example images were taken from the BSDS500.

the positively connected components and measured the size of the largest com-
ponent. Fig. 5 shows a histogram of the size of the largest component for the
BSDS500. As can be seen, the average size of the largest component is smaller
than the number of superpixels in the images. The average size of the super-
pixel graph for the for BSDS500 is 1160 while the average size of the largest
component is 830.

To validate the effect of the cutting plane method we ran it on the BSDS500
dataset and for each instance of applying the (Gurobi) ILP software we measured
the number of constraints at the last iteration. Fig. 6a shows the average number
of constraints used by the cutting plane method as a function of the number of
superpixels in the ILP problem. Note that the total number of constraints is
exponential of the problem size. Fig. 6b shows the runtime statistics (measured
on Intel Duo-Core, 2.5GHz, 4GB RAM) of the ILP Gurobi software combined
with the cutting-plane method applied to positively connected components taken
from the BSDS500 images.

4.5 Cutting Plane Intermediate Segmentation Results

The cutting plane algorithm produces an intermediate non-consistent solution.
Figure 4 demonstrates on two examples from the BSDS500 the valid segmen-
tations produced by computing the connected components of the intermediate
solution. Each intermediate solution is less than the score of the optimal solution
which is obtained at the end of the optimization process when the cutting plane
method validates that no transitivity constraint is overruled. The intermediate
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Fig. 5. Histogram of the ILP problem size. Statistics for the BSDS500 test part.

(a) (b)

Fig. 6. (a) Number of constraints used in the cutting-plane method as a function
of number of graph nodes. (b) Run time of the ILP solver (Gurobi) combined with
the cutting-plane method as a function of number of graph nodes. Statistics for the
BSDS500 test part.

segmentations usually become more refined at each iteration and as such can be
considered as a hierarchical map of segmentations.

To conclude, we have presented a probabilistic modeling for image segmen-
tation based on correlation clustering and an efficient algorithm for the ILP
optimization problem. We showed that, given local scores on a map of several
hundred superpixels, finding the global segmentation that is most consistent with
the local evidence, is still tractable. We then applied the method to a dataset
with manually segmented images and compared its performance to several recent
algorithms obtaining favorable results. In recent years there was a lot of effort
towards extracting better region based features between neighbor superpixels
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and developing novel machine learning methods to extract better informative
similarity weights from those feature. In this study we focused on the global
optimization aspect of image segmentation, based on a given superpixel map
and local similarly scores between adjacent superpixels. In our implementation
we used the probabilistic information score extracted from the gPb-owt score.
Exploiting additional content based features from the superpixels as shown in
[10,5,2], can be beneficial. The ideas presented in this study can be combined
with recent approaches (e.g. [17,10,5]) to further improve segmentation and
object detection results.
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Abstract. Multi-task averaging deals with the problem of estimating
the means of a set of distributions jointly. It has its roots in the fifties
when it was observed that leveraging data from related distributions can
yield superior performance over learning from each distribution indepen-
dently. Stein’s paradox showed that, in an average square error sense,
it is better to estimate the means of T Gaussian random variables us-
ing data sampled from all of them. This phenomenon has been largely
disregarded and has recently emerged again in the field of multi-task
learning. In this paper, we extend recent results for multi-task averaging
to the n-dimensional case and propose a method to detect from data
which tasks/distributions should be considered as related. Our experi-
mental results indicate that the proposed method compares favorably to
the state of the art.

Keywords: multi-task averaging, information theory, spectral cluster-
ing.

1 Introduction

Multi-task averaging (MTA) problem can be posed as follows: we have T datasets
{xt1,xt2, . . . ,xtNt}, t = 1, . . . , T each of which is sampled from a fixed but
unknown probability distribution (Nt denotes the size of dataset t). Our goal is
to estimate the means of each distribution. The first direct approach would be
to estimate the means one at a time. However, it turns out that leveraging data
from related distributions/tasks1 can yield superior performance over learning
each mean independently. Early evidence of this phenomenon dates back in the
fifties from Stein’s work, who showed that it is better (in an average square
error sense) to estimate each of the means of T Gaussian random variables using
data sampled from all of them, even if the random variables are independent

1 Throughout the paper we use the words “distribution”, “task” and “mean”
interchangeably.
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and have different means. This surprising result is often referred to as Stein’s
paradox [3]. A recent work [4], studies MTA problem in one dimension (that is,
taking R as input space) and presents different optimal results both for MTA
mean estimator formula and its hyper-parameters. The proposed estimators are
proved to be more accurate than those previously studied in the literature [6,7],
but the study of their performance in an n-dimensional space is not treated and
the proposed optimal hyper-parameter expression is only valid for the case when
all the tasks are related to each other.

In this paper, we study MTA problem in Rn and also explore the impact of
task grouping on the estimation accuracy of the estimation method. We propose
optimal formulas for the n-dimensional case and a practical algorithm for task
grouping based on information theoretic divergence measures and spectral clus-
tering. When combining these two results, a practical algorithm for MTA in Rn is
obtained. It will be showed that in certain circumstances, when not all the tasks
at hand should be considered as related, then the optimal estimators presented
in [4] have a null improvement when compared with independent mean estima-
tion for each of the T tasks. On the other hand, we will demonstrate that the
proposed method can improve estimation accuracy in an average mean square
error sense. These findings may pave the way for more accurate algorithms in a
multi-task scenario.

The paper is organized in the following manner. In Section 2, a summary of
the key results in [4] are reviewed as the base for the present work. Section 3
presents the extension of the estimators in [4] for the n-dimensional case. Section
4 presents the proposed k-MTA method. In Section 5, we report on our numerical
experiments with this method and with previous approaches. Finally, Section 6
contains concluding remarks and suggestions for future work.

2 Background

In the recent paper [4], MTA estimation in R is presented as the optimal solution
to the following convex problem:

c∗ = arg min
c∈RT

{
1

T

T∑
t=1

Nt∑
i=1

(xti − ct)
2

σ2
t

+
γ

T 2

T∑
s,t=1

Ast(cs − ct)
2

}

where xt1, xt2, . . . , xtNt are independent and identically distributed (iid) random
samples for each task t = 1, . . . , T , σ2

t is the variance of t-th distribution and c =
(c1, . . . , cT ) is the vector of means we wish to estimate. Matrix A = (Ast)

T
s,t=1

describes the relatedness or similarity of any pair of the T tasks (with Att = 0
for all t without loss of generality because the diagonal self-similarity terms are
canceled in the objective). It can be noted that the proposed MTA objective
regularizes the estimates of each of the means, that is, it ties them together. The
regularization parameter γ balances the empirical risk (error) and the multi-
task regularizer. Note that if γ = 0, the MTA objective decomposes into T
separate minimization problems, producing the simple separate sample averages
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x̂t = 1/Nt

∑Nt

i=1 xti. Tasks’ similarity matrix A for a specific problem at hand
can be specified from the knowledge of a domain expert, but often this side
information is not available or it may not be clear how to transform semantic
notions of tasks’ similarity into an appropriate choice for the values in A. In
addition to this difficulty, parameter γ has a great impact on the final result and
an optimal choice from a mean square error perspective is desirable. However,
the problem of finding an optimal formula for this parameter for a general form
of matrix A is often analytically intractable. In [4], the optimal solution in cases
when A = a11′ (called “constant MTA”) was found. We restate this result for
completeness:

Lemma 1 (constant MTA). Assume that A = a11′ and 0 <
σ2
t

Nt
< ∞ for all

t. The optimal c∗ (in terms of mean square error) is given by the formula

c∗ = (IT +
a

T
ΣL(11′))−1x̂

where

a =
2

1
T (T−1)

T∑
s,t=1

(μs − μt)2
. (1)

In the above formula Σ = diag
( σ2

1

N1
, . . . ,

σ2
T

NT

)
, L(A) is the Laplacian of matrix A

and μt is the true mean of task t. Note that in this result γ is considered equal
to 1 without loss of generality.

There are two main issues when applying this lemma in a practical situation.
First, the result involves σ2

t and μt, both quantities which are not known in
practice (the second quantity is indeed the one that we are trying to estimate).
This issue is solved in [4] using empirical estimates for both quantities and proved
to be accurate in practice. Therefore such approach is also used in this paper.
The second issue has to do with the form of matrix A considered in Lemma
1. With A = a11′ we are assuming that all the T tasks are mutually related,
which is very unlikely to happen in practice. An analytical result for the case
when T = 2 proves that the proposed MTA estimation is better than single
task estimation only if the true means are close with respect to the variances of
their distributions. This observation will be experimentally observed in Section
5. In addition, a closer look at formula (1) shows us that, if far apart tasks are
considered as related, the optimal value of parameter a will approximate 0, so
that the MTA estimator will bring no benefit.

In order to use the above results in a general case, in addition to extend them
to Rn, it is necessary to devise a strategy that, directly from data, estimates
which tasks should be considered as related. In the remaining part of the paper
we will tackle these problems and demonstrate experimentally that our strategy
yields improved results in an average mean square error sense when compared
to previous strategies.
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3 MTA in High Dimensional Spaces

In this section, we extend the problem presented in [4] to Rn in a straightforward
manner. This will be the first step towards the general MTA algorithm presented
in Section 4. MTA in Rn consist in finding the optimal solution to the problem

c∗ = argmin
c

{
T∑

t=1

Nt∑
i=1

‖xti − ct‖2
σ2
t

+
γ

2T

T∑
s,t=1

Ast‖cs − ct‖2
}

(2)

where c ∈ RTn denotes the vector with all the means ct, t = 1, . . . , T concate-
nated and γ is a hyper-parameter that balances the weighting of the two terms.
Problem (2) is similar to equation proposed in [4] but including the 2-norm in
R

n instead of in R. The next two lemmas will be proved in the appendix.

Lemma 2 (MTA in Rn). The optimal solution of problem (2) is given by

c∗ = ((IT +
γ

T
ΣL(A))−1 ⊗ In)x̂ (3)

where IT (resp. In) is the T × T (resp. n × n) identity matrix, Σ =

diag(
σ2
1

N1
, . . . ,

σ2
T

NT
), L(A) is the Laplacian of matrix A and x̂ ∈ RTn is the vector

of independent means x̂t =
1
Nt

Nt∑
i=1

xti concatenated in the same order as in c∗.

Lemma 3 (constant MTA in Rn). Assume that A = a11′ and 0 <
σ2
t

Nt
< ∞

for all t. The optimal (in a mean square error sense) mean estimator is given by

c∗ = ((IT +
a

T
ΣL(11′))−1 ⊗ In)x̂ (4)

for

a =
2n

1
T (T−1)

T∑
s,t=1

‖μs − μt‖2
(5)

where n is the dimension of the input space and μt are the true mean vectors of
the distributions of each task.

Note that the obtained formulas for the estimator involve the inverse of a matrix
which depends neither on the dimension of the space nor on the sample sizes.
Hence, its calculation can be done in a very efficient way. Estimators from data
of the actual values of μt and σ2

t in equations (4) and (5) will be used in the
practical implementation of these formulas.

4 k-MTA: Multi-task Averaging via Information
Theoretic Clustering

In this section, k-MTA algorithm is proposed. It is divided in two phases: (a)
first, the sets of tasks which should be considered as related are detected via
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spectral clustering; (b) for each cluster of tasks, equations (5) and (4) are applied
separately in order to find the means of each task in the cluster. This approach
aims at tackling the limitations of the direct application of the results in [4] when
a clustered set of tasks is presented and their respective means are required.
Following the results sketched in [4], MTA is only effective when the distance
between the true means of the tasks is small when compared to the variance
of their distributions. So, for this first phase, we need a measure of divergence
between tasks which is able to detect (from data samples) whether the supports
of probability distributions largely overlap or not. Based on those similarities,
tasks are subsequently clustered and their means estimated. In the next section,
we present the divergence measure which will be used in this paper. Subsequently,
the spectral clustering algorithm used to construct the groups is described.

4.1 Information Theoretic Tasks’ Similarity Measure

The work in [10] considers the quadratic Renyi’s entropy as the basic expression
for building cost functions for clustering, linear models, and other machine learn-
ing problems. The cost and divergence measures developed under the Renyi’s
entropy framework have been proved effective when dealing with these different
learning problems. In particular, the divergence measure between probability
density functions (pdfs) called euclidean pdf distance is given by

DED =

∫
Rn

(f(x)− g(x))2dx. (6)

In the absence of an expression for both f and g, in [10], a parzen estimation
using a Gaussian Kernel [11] of both is considered. Using these approximations
for f and g, this quantity can be rewritten as:

DED =

∫
Rn

(f(x) − g(x))2dx =

∫
Rn

f(x)2dx+

∫
Rn

g(x)2dx− 2

∫
Rn

f(x)g(x)dx

=

∫
Rn

(
1

N

N∑
i=1

Gσ(x− xf
i )

)2

dx+

∫
Rn

(
1

M

M∑
i=1

Gσ(x− xg
i )

)2

dx

− 2

∫
Rn

( 1

N

N∑
i=1

Gσ(x− xf
i )
)( 1

M

M∑
i=1

Gσ(x − xg
i )
)
dx

=
1

N2

N∑
i=1

N∑
j=1

G√
2σ(x

f
j − xf

i )
2 +

1

M2

M∑
i=1

M∑
j=1

G√
2σ(x

g
j − xg

i )
2

− 2

MN

N∑
i=1

M∑
j=1

G√
2σ(x

g
j − xf

i )
2 = V̂f + V̂g − 2V̂c (7)

where σ is the width of the gaussian kernel and has to be selected. This measure
has proven to be an effective way of computing the divergence between two pdfs
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represented by a sample in many learning scenarios and in this work will be
used as the similarity measure between tasks. Specifically, a normalized version
of this measure is used

DN
ED(f, g) = 2− 2V̂c/V̂f V̂g. (8)

This expression still maintains the properties of a divergence and has the ad-
vantage of being normalized in the interval [0, 2] which will be useful for graph
construction in the k-MTA algorithm. Since the clustering technique presented
below requires a similarity measure, we transform the aforementioned divergence
DN

ED into the following similarity measure in the interval [0, 1]:

Sij =
2−DN

ED(fi, fj)

2
(9)

4.2 Spectral Clustering

Spectral clustering [14] aims at clustering similar objects oi, i = 1, . . . , T into
k groups given a similarity graph G between all these objects. It can be used
virtually with a sample of any kind of items as long as we are given a similarity
measure between them. These similarities are used to build a similarity graph
G which subsequently is fed into the clustering subroutine. When constructing
similarity graphs the goal is to model the local neighborhood relationships be-
tween the data points. There are several popular constructions to transform a
given set o1, . . . , on of objects with pairwise similarities Sij into a graph: (a)
ε-neighborhood, where all points whose pairwise similarities are greater than ε
are connected; (b) k-nearest neighbor graphs, where if a vertex vi is among the
k-nearest neighbors of vj those two vertex are connected, and (c) fully connected
graph, in which all points are connected with positive similarity given by Sij . In
this work we will use ε-neighborhood strategy to build the similarity graph.

Once we have the similarity graph G, the graph Laplacian of matrix G is
constructed. At this point three main algorithms are proposed in the literature
depending on the kind of Laplacian used: unnormalized spectral clustering [14]
and the works in [9,13] which use a normalized Laplacian. In this work we will
use the version of [13] since it has proved more accurate and stable in practice.
Algorithm 1 summarizes the steps of this algorithm (more details can be found
in [14]).

4.3 Proposed Algorithm

In this section, we combine the results and components described in previous
sections in the proposed algorithm k-MTA. Algorithm 2 summarizes its main
steps. First, the task clusters are detected combining the similarity measure
presented in Section 4.1 with the spectral clustering algorithm of Section 4.2.
Thanks to this step, we will apply the MTA formula derived in Section 3 to the
task groups which are similar to each other and we will not blend in tasks which
are completely dissimilar, thus avoiding negative transfer.
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Algorithm 1. Spectral clustering main steps

Input : Similarity matrix S ∈ R
T×T , number of clusters k, barrier ε.

Output : Clusters A1, . . . , Ak with Ai = {j | oj ∈ Ci}
1. Construct a similarity graph G by ε-neighborhood based on S.
2. Compute the unnormalized Laplacian L = D−G.
3. Compute the first k generalized eigenvectors u1, . . . ,uk of the genera

lized eigenproblem Lu = λDu.
4. Let U ∈ R

T×k be the matrix containing the vectors u1, . . . ,uk as
columns.

5. Let yi ∈ R
k be the vector corresponding to the i-th row of U (each yi

corresponds to each object oi).
6. Cluster the points yi ∈ R

k, i = 1, . . . , T with the k-means algorithm into
clusters A1, . . . , Ak.

Algorithm 2. k-MTA algorithm

Input : Similarity matrix S ∈ R
T×T , number of clusters k, barrier ε.

Output : Clusters A1, . . . , Ak with Ai = {j | oj ∈ Ci}
1. Construct a similarity graph G by ε-neighborhood based on S.
2. Compute the unnormalized Laplacian L = D−G.
3. Compute the first k generalized eigenvectors u1, . . . ,uk of the genera

lized eigenproblem Lu = λDu.
4. Let U ∈ R

T×k be the matrix containing the vectors u1, . . . ,uk as
columns.

5. Let yi ∈ R
k be the vector corresponding to the i-th row of U (each yi

corresponds to each object oi).
6. Cluster the points yi ∈ R

k, i = 1, . . . , T with the k-means algorithm into
clusters A1, . . . , Ak.

5 Experimental Results

In this section, we explore the performance of k-MTA when compared to its
predecessor MTA in [4] and with the single task mean calculation method. To
this end, we test the methods on both an artificial dataset which exhibits the
behavior of all the methods when clusters of tasks are present, as well as a real
dataset where final marks of groups of students are to be predicted.
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Fig. 1. Mean square distance to the actual means compared to single task result

5.1 Artificial Dataset

The artificial generated dataset has the following properties:

– Number of tasks: 50;
– Number of clusters of tasks: 5;
– Number of task per cluster: 10;
– Input Space: R10;
– Distribution of data: first the means of the Gaussians are selected from 5

Gaussians μt ∼ N(μc1, σId)) for μc = {−10,−5, 0, 5, 10} and σ = 0.1, where
Id denotes the d× d identity matrix. Ten centers are selected for each value
of μc. Then, for each task, a set of iid random data points are generated as
xti ∼ N(μt, Id).

In this selection, we obtain a convenient distribution of the data for k-MTA since
the task are clustered in 5 distant clusters and the expected distance between
their centers is small compared to the variance of each task. Figure 1 depicts
the average mean square distance from the estimated means to the actual ones
compared to the average mean distances obtained with single task means. The
results in the figure are the averages of 30 random runs, having 5 data points
per task (a scarce sample when compared to the number of parameters to be
estimated). The value k of the x axis is the number of clusters k that were
configured for k-MTA (optimal ε was selected from the interval [0, 0.5]). It can
be observed how MTA directly applied to the data does not bring any benefit
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when compared with the single task means while k-MTA obtains an increment
of up to −45% when the exact number of clusters is given. Also, the mean result
for the oracle, when the correct clustering is always provided to the k-MTA, is
shown. It can be observed how the risk of the k-MTA is similar to the oracle
one when the correct number of clusters is given as value for k. In addition, it
should be noted that even when the number of asked clusters is not exactly the
number of actual clusters in the dataset, k-MTA is indeed able to obtain very
good accuracy increments.

5.2 School Dataset

The goal of this application is to predict the final class grades μ1, . . . , μT of T
students, given only each student’s N homework grades yti, i = 1, . . . , N . The
final class grades include all tests and final exams made by the students but only
homework grades are used to predict the final grade. The 16 anonymized datasets
were provided by instructors at the University of Washington Department of
Electrical Engineering. We consider each class as an experiment and the students
in that class the tasks. All grades are normalized in the interval [0, 100] and never
handed homework was assigned 0 points. For each class, a single pooled variance
estimate was used for all tasks. In other words σ2

t = σ2, for every t = 1, . . . , T .
Table 1 shows the results obtained when compared with MTA. The reported
results are the gains in percentage in final marks prediction when compared
with single task means, thus lower value is better.

Table 1. School dataset results

# of stud. 68 69 72 44 50 50 47 16

k-MTA -37.29 -38.73 (*) -26.92 -36.91 -18.14 (*) -26.58 -8.62 -1.80 (*)

MTA -37.29 -38.42 -26.94 -36.91 3.33 -26.58 -8.62 1.0

# of stud. 29 36 57 48 58 39 149 110

k-MTA -10.26 -13.99 -3.82 (*) -12.80 (*) -12.35 -5.38 -9.15 -11.52

MTA -10.26 -13.99 -3.47 -11.53 -12.35 -5.38 -9.15 -11.52

In the table it can be observed that, since k-MTA includes MTA as an special
case (when k = 0) it has always an equal or better performance than MTA. It is
important to note that k-MTA performs better in 5 out of 16 classes and that it
always presents a gain with respect to single task means. It is able to obtain a
gain even when MTA can not improve single task means. This may be due the
presence of clusters in those classes, which are not treated by MTA. In this case,
optimal values were selected from the intervals k = [1, 30] and ε = [0, 0.5].

6 Conclusions and Future Work

We have proposed a new algorithm for multi-task averaging. It extends the work
in [4] to a n-dimensional space and tackles a key issue when dealing with real
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data, namely the presence of clusters of related tasks. The algorithm is based
on two steps. First, tasks are clustered based on their samples and subsequently
MTA is applied for each cluster of tasks. Experimental results show that direct
application of MTA in a case where tasks are clustered is useless compared with
the results obtained by the single task means. On the other hand, k-MTA is able
to detect the underlying clusters of tasks and obtains a significant increment of
accuracy. The experiments also suggest that, when dealing with more than two
tasks, their relatedness should reflect the similarity between their distributions
and this issue should be taken into account when building algorithms like for
example multitask one-class classifiers [5,15]. In the future it would be interesting
to study extension of the ideas presented here to learn multiple mean embeddings
in reproducing kernel Hilbert spaces (see e.g. [2]). Another interesting direction
of research is to consider different models of task relatedness and groupping such
as in [1,8].
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A Appendix: Proof of Lemmas

Proof of Lemma 2

We first rewrite the objective function in equation (2) as

T∑
t=1

(at +
Nt

σ2
t

‖ct‖2 − 2
Nt

σ2
t

c′tct) +
γ

2T

T∑
s,t=1

Ast(‖cs‖2 + ‖ct‖2 − 2c′sct)

where at :=
Nt∑
i=1

‖xti‖2

σ2
t

Next we rewrite this equation as in terms of c ∈ RTn and x̂ ∈ RTn as

T∑
t=1

at + c′(Σ−1 ⊗ In)c − 2c′(Σ−1 ⊗ In)x̂ +
γ

T
c′(L(A)⊗ Id)c.

Taking the derivative with respect to c and setting it equal it to 0 yields that

c∗ = (ITn +
γ

T
(Σ⊗ In)(L(A) ⊗ In))

−1x̂.

Applying the mixed-product property of the kronecker product to the second
term of the inverse, then the associativity of the kronecker product and the
inverse property we find that

(IT ⊗ In +
γ

T
(ΣL(A))⊗ In)

−1 = ((IT +
γ

T
ΣL(A))−1 ⊗ In).

The result follows.
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A Proof of Lemma 3

Without loss of generality we assume that γ = 1. Let σ = tr(Σ)
T and observe that

c∗ = ((IT +
a

T
ΣL(11′))−1 ⊗ In)x̂

= ((IT +
a

T
Σ(TIT − 11′)−1 ⊗ In)x̂

= ((IT + aΣIT − a

T
Σ11′)−1 ⊗ In)x̂

= ((IT + aΣIT )
−1 +

(IT + aΣIT )
−1 a

T Σ11′(IT + aΣIT )
−1

1− a
T 1

′(IT + aΣIT )−1Σ1
)⊗ In)x̂

= (
1

aσ + 1

(
IT + a

σ

T
11′

)
⊗ In)x̂

where we have made use of the Sherman-Morrison formula for the inverse and
omitted some tedious algebra. We will call the matrix on the right-hand side Z
when substituting.

Next, we define the expression for the expected mean square error of an es-
timator of the form Wx̂ of a mean vector μ, where x̂ is the simple average of
each task. We have that:

R(Wx̂, μ) = E(‖Wx̂− μ‖2)
= E((Wx̂− μ)′(Wx̂− μ))

= tr(WΣW′) + μ′(W − I)′(W − I)μ

where the expected value is taken with respect to the random sample and μ and
Σ are the actual mean and covariance of the distribution. In this work we will
suppose that all the distributions have an isotropic diagonal covariance matrix
so we can use this expression with μ ∈ RTn and covariance matrix Σ = ΣT ⊗ In

with ΣT = diag(
σ2
1

N1
, . . . ,

σ2
T

NT
). If we substitute the optimal expression for W in

this expression we have that:

R(Wx̂, μ) = tr((Z⊗ In)Σ(Z⊗ In)
′) + μ′((Z⊗ In)− ITn)

′((Z⊗ In)− ITn)μ

= tr((ZΣZ′)⊗ In) + μ′((Z− IT )
′(Z− IT )⊗ In)μ

= tr(ZΣZ′)tr(In) + μ′((Z − IT )
′(Z− IT )⊗ In)μ

= n

[
σ

(aσ + 1)2
(T + 2aσ + (aσ)2)

]
+

(aσ)2

(aσ + 1)2
μ′

[
L(

1

T
11′)⊗ In

]
μ

where σ = tr(Σ)
T , we have used the idempotency of matrix L( 1

T 11
′) and omitted

some tedious algebra in the last step. The derivative of this expression with
respect to a is given by

δR((Z⊗ In)x̂, μ)

δa
=

2σ2[(1− T )n+ aμ′ [L( 1
T 11

′)⊗ In
]
μ]

(aσ + 1)3
. (10)

In order for this expression to be equal to zero, the numerator must be zero. The
result follows.
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Modeling and Detecting Community Hierarchies
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Abstract. Community detection has in recent years emerged as an in-
valuable tool for describing and quantifying interactions in networks. In
this paper we propose a theoretical model that explicitly formalizes both
the tight connections within each community and the hierarchical nature
of the communities. We further present an efficient algorithm that prov-
ably detects all the communities in our model. Experiments demonstrate
that our definition successfully models real world communities, and our
algorithm compares favorably with existing approaches.

Keywords: community detection, hierarchical structure.

1 Introduction

The structure of networks has been extensively studied over the past several
years in many disciplines, ranging from mathematics and computer science to
sociology and biology. A significant amount of recent work in this area has fo-
cused on the development of community detection algorithms. The community
structure reflects how entities in a network form meaningful groups such that
interactions within the groups are more active compared to those between the
groups and the outside world. The discovery of these communities is useful for
understanding the structure of the underlying network, or making decisions in
the network [8,9,28,29].

Generally, a community should be thought of as a subset whose members have
more interactions with each other than with the remainder of the network. This
intuition is captured by some recently proposed models [2,3,1,12,15]. Addition-
ally, recent studies show that networks often exhibit hierarchical organization,
in which communities can contain groups of sub-communities, and so forth over
multiple scales. For example, this can be observed in ecological niches in food
webs, modules in biochemical networks or groups of common interest in social
websites [31,19,7]. It is also shown empirically and theoretically that hierarchi-
cal structures can simultaneously explain and quantitatively reproduce many
commonly observed topological properties of networks [6,32,10]. This suggests
that the hierarchical structure should also be reflected when modeling real world
communities.

Although some heuristic approaches [10,21] have been proposed to detect
community hierarchies, few works have formalized this hierarchical property,
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and there are no theoretical performance guarantees for the algorithms. Inspired
by the related work in clustering [4], in this paper we define a notion of commu-
nities that both reflects the tight connections within communities and explicitly
models the hierarchy of communities. In our model, each member of a commu-
nity falls into a sub-community, and the sub-communities within this community
have active interactions with each other while entities outside this community
have fewer interactions with members inside. Given this formalization, we then
propose an efficient algorithm that detects all the communities in this model, and
prove that all the communities form a hierarchy. Empirical evaluations demon-
strate that our formalization successfully models real world communities, and
our algorithm compares favorably with existing approaches.

In the remainder of the paper, we formalize our model in Section 2, and then
describe and analyze our algorithm in Section 3. We then present the results of
our experiments in Section 4, and conclude our paper in Section 5.

2 Hierarchical Community Model

A network is typically represented as a graph G = (V,E) on a set of n = |V |
points1, where the edges could be undirected or directed, unweighted or weighted.
The graph implicitly specifies a neighborhood structure on the points, i.e. for
each point there is a ranking of all other points according to the level of possible
interaction. More precisely, we assume that we have a neighborhood function N
which given a point p and a threshold t outputs a list Nt(p) containing the t
nearest neighbors of p in V .

The neighborhood function can be used to formalize a model of hierarchical
communities. Using this neighborhood function, the tight connections within
communities can be naturally rephrased as follows: for suitable t, most points
p in the community have most of the nearest neighbors Nt(p) from the com-
munity while points outside have just a few nearest neighbors from the com-
munity. Besides this, we also want to formalize the hierarchical structure that
sub-communities in a lower, more local level actively interacting with each other
form a community in a higher, more global level. The connections between the
sub-communities can also be rephrased using the language of neighborhood: a
majority of points in each sub-community have most of the nearest neighbors
from the sub-communities in the same community.

In the remainder of the section, we specify our model based on the neighbor-
hood function. We begin with the following notion of compact blobs, which will
serve as a building block for our model.

Definition 1. A subset A of points is called an α-compact blob, if out of the |A|
nearest neighbors:

– any point p ∈ A has at most αn neighbors outside A, i.e. |N|A|(p)\A| ≤ αn;
– any point q 
∈ A has at most αn neighbors inside A, i.e. |N|A|(q)∩A| ≤ αn.

1 We distinguish the nodes in the hierarchy our algorithm builds from the points in
the graph.
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Fig. 1. Illustration of an α-compact blob. An edge (x, y) means that y is one of x’s
nearest neighbors.

Note that the notion of compact blobs is the same as the clusters that satisfy
the α-good neighborhood property defined in [4]. The notion captures the de-
sired property of communities to be detected: members in the community have
many more interactions with other members inside the community and have
fewer interactions with those outside. However, in practice, the notion may seem
somewhat restricted. First, it requires all the members in the community have
most interactions with other members inside the community, which may not be
the case in real life. For example, some members in the boundary may have
more interactions with the outside world, i.e. they have more than αn neighbors
from outside. Based on this consideration, we define the (α, β)-stable property
as follows.

Definition 2. A community C is (α, β)-stable if

– any point p ∈ C falls into a α-compact blob Ap ⊆ C of size greater than 6αn,
– for any point p ∈ C, at least β fraction of points in Ap have all but at most
αn nearest neighbors from C out of their |C| nearest neighbors,

– any point q outside C has at most αn nearest neighbors from C out of their
|C| nearest neighbors.

Informally, the first condition means that every point falls into a sufficiently large
compact blob in its community. This condition formalizes the local neighborhood
structure that each member interacts actively with sufficiently many members in
the community. Note that the compact blob should be large enough so that the
membership of the point is clearly established, i.e. it should have size comparable
to αn, the number of connections to points outside. Here we choose a minimum
size of 6αn mainly because it guarantees that our algorithm can still identify
the blob in the worst case. The second condition means that at least β fraction
of points in these compact blobs have most of their nearest neighbors from the
community. This condition formalizes more global neighborhood structure about
how the compact blobs interact with each other to form a community. The third
condition formalizes how the community is separated from the outside.
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Fig. 2. Illustration of an (α, β)-stable community. An edge (x, y) means that y is one
of x’s nearest neighbors. Note that point w lies on the “boundary” of the community.
It falls into the compact blob Ap, but does not have most of its nearest neighbors from
the community.

Note that we no longer require all the members in the community have most
interactions inside; we only require each member interacts with sufficiently many
members and a majority of members in these local groups interact actively. Also
note that the definition is hierarchical in nature: sufficiently large compact blobs
clearly satisfy the definition of (α, β)-stable property and thus can be viewed as
communities in lower levels. Furthermore, in the next section we will show that
all the (α, β)-stable communities form a hierarchy. We show this by presenting
an algorithm and proving that each (α, β)-stable community is a node in the
hierarchy output by the algorithm. So our formulation explicitly models the
hierarchical structure of communities observed in networks.

Next we propose a further generalization that considers possible noise in real
world data. There may be some abnormal points that do not exhibit clear mem-
bership to any community, in the presence of which our definition above does
not model the communities well. For example, suppose there is a point that
has connections to all other points in the network, then no non-trivial subsets
satisfy our definition above. We call such points bad since they do not fit into
our community model above. To deal with the noise, we can naturally relax the
(α, β)-stable property to the (α, β, ν)-stable property defined as follows. Infor-
mally, it requires that the target community satisfies the (α, β)-stable property
after removing a few bad points B. For convenience, we call the other points in
S \B good points.

Definition 3. A community C is (α, β, ν)-stable if there exist a subset of bad
points B of size at most νn, such that

– any good point p ∈ G = C \ B falls into a compact blob Ap ⊆ C of size
greater than 6(α+ ν)n,

– for any point p ∈ G, at least β fraction of points in Ap have all but at most
αn nearest neighbors from G out of their |G| nearest neighbors in S \B,

– any good point q outside C ∪B has at most αn nearest neighbors from G out
of their |G| nearest neighbors in S \B.
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Fig. 3. Illustration of an (α, β, ν)-stable community. An edge (x, y) means that y is one
of x’s nearest neighbors. Point b is a bad point and does not exhibit clear membership
to any community.

Note 1. The parameters α, ν are defined globally, i.e. they are defined as ratios
with respect to the total number of points. So a local change to some community
can affect the values of these parameters for the other communities. For example,
suppose we add Kn new points to some community, with all the new points
having neighbors only inside this special community. Since the number of points
increases to (K+1)n, the communities outside the modified community are now
(α/(1 +K), β, ν/(1 +K))-stable. However, the local change does not affect the
identifiability of these communities. Our algorithm described in the next section
can still detect these communities, given the value of (α+ ν)n.

Note 2. The input of the community detection task is usually a graph represent-
ing the network, and there are different ways to lift the graph to a neighborhood
function. The simplest one is to directly sort for each point p all the other points
q according to the weights of the edges (p, q) and break ties randomly (we as-
sume without loss of generality that the weights are in [0, 1] and the weight of
an edge not in E is regarded as 0). However, as pointed out in [3], we also have
alternative approaches to convert the observed graph into a neighborhood func-
tion. More specifically, we assume the observed graph reflects some underlying
unobserved set of relations, and thus we can lift the graph to an affinity system
based on various beliefs about the connection between the latent relations and
the observed graph, and then sort the points according to the affinity system to
get the neighborhood function. For example, based on the belief that random
walks on the graph can reflect the similarities between entities, we can define
the affinity to be the diffusion kernel exp{λA} where A is the adjacent matrix
and λ is a parameter. Note that the results of appropriate lifting procedures can
better reflect the true relationships between entities, and thus the conversion
can address the challenging issue of sparsity in the observed graph.

3 Hierarchical Community Detection Algorithm

In the section, we propose an algorithm for detecting communities satisfying
the (α, β, ν)-stable property. The goal of our algorithm is to output a set of
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Algorithm 1. Hierarchical Community Detection Algorithm

Input: neighborhood function N on a set of points V , n = |V |, α > 0, ν > 0.

Step 1 Initialize C′ to be a set of singleton points, and t = 6(α+ ν)n+ 1.
while |C′| > 1 do

Step 2 Build Ft on V as follows.
for any x, y ∈ V that satisfy |Nt(x) ∩Nt(y)| ≥ t− 2(α+ ν)n do

Connect x, y in Ft.
Step 3 Build Ht on C′ as follows. Let NF (x) denote the neighbors of x in Ft.

for any U,W ∈ C′ do
if U,W are singleton subsets, i.e. U = {x},W = {y} then

Connect U,W in Ht, if |NF (x) ∩NF (y)| > (α+ ν)n.
else

Set St(x, y) = |NF (x) ∩NF (y) ∩ (U ∪W )|, ∀x ∈ U, y ∈ W .

Connect U,W in Ht, if medianx∈U,y∈WSt(x, y) >
|U|+|W |

4
.

Step 4 for any component R in Ht that satisfies |⋃C∈R C| ≥ 4(α+ ν)n do
Update C′ by merging subsets in R into one subset.

Step 5 t = t+ 1.
end while

Output: Hierarchy T with single points as leaves and internal nodes corresponding
to the merges performed.

communities such that each community satisfying the (α, β, ν)-stable property
is close to one in the output. To be precise, we say that a community C is ν-close
to another community C′ if |C \C′|+ |C′ \C| ≤ νn. We first describe the details
in Algorithm 1, and then present the analysis in Theorem 1.

Now we prove that the algorithm successfully outputs a hierarchy such that
any community satisfying the (α, β, ν)-stable property with sufficiently large β
is close to one of the nodes in the hierarchy. Formally,

Theorem 1. Algorithm 1 outputs a hierarchy such that any community sat-
isfying the (α, β, ν)-stable property with β ≥ 5/6 is ν-close to a node in the
hierarchy. The algorithm runs in time O(nω+1), where O(nω) is the state of the
art for matrix multiplication.

The correctness of the theorem follows from Lemma 3 and the running time
follows from Lemma 4. In the following analysis, we always assume β ≥ 5/6.
Before presenting the analysis for the general communities in Lemma 3, we first
prove a lemma for the base case of compact blobs, showing that for any compact
blob, a node close to it will be formed.

Lemma 1. For any good point p, when t ≤ |Ap|, good points from Ap will not
be merged with good points outside Ap. At the end of the threshold t = |Ap|, all
points in Ap have been merged into a subset.

Proof. We prove this by induction on t. The claim is clearly true initially. Now
assume for induction that at the beginning of a threshold t ≤ |Ap|, in C′ good



166 M.F. Balcan and Y. Liang

points from Ap are not merged with good points outside Ap, i.e. any subset can
contain good points from only one of Ap and V \ B \ Ap. We now analyze the
properties of the graphs Ft and Ht, and show that at the end of the current
threshold, the claim is still true.

First, as long as t ≤ |Ap|, the graph Ft has the following properties.

– No good point x in Ap is connected to a good point y outside Ap. By the
definition of compact blobs, out of the t nearest neighbors, x has at most
(α+ ν)n neighbors outside Ap. For y ∈ V \B \Ap, y has at most (α+ ν)n
neighbors in Ap. Then x, y have at most 2(α+ ν)n < t− 2(α+ ν)n common
neighbors, so they are not connected.

– No bad point z is connected to both a good point x in Ap and a good point
y outside Ap. We know that out of the t nearest neighbors, x has at most
(α + ν)n neighbors outside Ap. So if z is connected to x, then z must have
more than t− 3(α+ ν)n neighbors in Ap and less than 3(α+ ν)n neighbors
outside Ap. Since y has at most (α+ ν)n neighbors in Ap, we have that y, z
share less than 3(α+ ν)n+ (α+ ν)n < t− 2(α+ ν)n neighbors, so they are
not connected.

Based on the properties of Ft and the inductive assumption that any subset can
contain good points from only one of Ap and V \B \Ap, we show that the graph
Ht has the following properties.

– No subset U containing good points from Ap is connected to a subset W
containing good points outside Ap. This is clearly true if they are singleton
subsets. In the other cases, note that the fraction of bad points in U or W
is at most 1/4. Then the number of pairs (x, y) with good points x ∈ U
and y ∈ W is at least 3

4 |U | ×
3
4 |W | > |U ||W |/2, i.e. more than half of the

pairs (x, y) with x ∈ U and y ∈ W are pairs of good points. This means
there exist good points x∗ ∈ U, y∗ ∈ W such that St(x

∗, y∗) is no less than
medianx∈U,y∈WSt(x, y). By the properties of Ft, x

∗, y∗ have no common
neighbors. Therefore, U and W are not connected.

– If a subset W contains only bad points, then it cannot be connected to both
a subset containing good points from Ap and a subset containing good points
outside Ap. Suppose it is connected to U which contains good points from
Ap. Note that since W contains only bad points, it must contain only a
single point z. If U = {x} is singleton, then x, z share more than (α + ν)n
neighbors in Ft. Since in Ft, x is only connected to good points from Ap and
bad points, z and x must share some common neighbors from Ap, then z
must be connected to some good points in Ap. In the other cases, note that
the fraction of bad points in U is at most 1/4. So there exists a good point
x∗ ∈ U such that St(x

∗, z) ≥ medianx∈USt(x, z). Then we have St(x
∗, z) >

(|U |+ |W |)/4 > νn, and thus z must also be connected to some good points
in Ap. Similarly, ifW is connected to a subset containing good points outside
Ap, then the point in W must connect to some good point outside Ap. But
this is contradictory to the fact that in Ft no bad point is connected to both
a good point in Ap and a good point outside Ap.
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By the properties of Ht, no connected component contains both good points in
Ap and good points outside Ap. So at the end of this threshold t, the claim is
still true. Then by induction, we know that when t ≤ |Ap|, we will not merge
good points from Ap with good points outside Ap.

Next we show that at the end of the threshold t = |Ap|, we will merge all
points in Ap into a subset. First, at this threshold, all good points in Ap are
connected in Ft. Any good point in Ap has at most (α+ ν)n neighbors outside
Ap, so when t = |Ap|, any two good points x, y in Ap are connected, and thus
they share at least |Ap| common neighbors in Ft. Second, all subsets containing
good points in Ap are connected inHt. If no good points in Ap have been merged,
then these singleton points will be connected in Ht since they share at least |Ap|
singleton subsets as common neighbors in Ft. If some good points in Ap have
already been merged into non-singleton subsets, we can show that in Ht these
non-singleton subsets will be connected to each other and connected to singleton
subsets containing good points from Ap. For any such pair of subsets U and W ,
the fraction of bad points in U or W is at most 1/4, so there exist good points
x∗ ∈ U, y∗ ∈ W such that medianx∈U,y∈WSt(x, y) is no less than St(x

∗, y∗). Since
x∗, y∗ are connected to all good points in Ap in Ft, St(x

∗, y∗) is no less than the
number of good points in U and W . So medianx∈U,y∈WSt(x, y) ≥ St(x

∗, y∗) >
(|U | + |W |)/4, and thus U,W are connected in Ht. Therefore, all points in Ap

are merged into a subset. ��

The following is a consequence of Lemma 1, which will be used in the analysis
for the general communities in Lemma 3.

Lemma 2. In Algorithm 1, if a subset U satisfies that for any good point p ∈ U ,
Ap ⊆ U , then there exist a subset of good points P ⊆ U , such that {Ap : p ∈ P}
is a partition of U \B.

Proof. We have U \ B = ∪p∈U\BAp. We only need to show that sets in {Ap :
p ∈ U \B} are laminar, i.e. for any p, q ∈ U \B, either Ap ∩Aq = ∅ or Ap ⊆ Aq

or Aq ⊆ Ap. Assume for contradiction that there exist Ap and Aq such that
Ap \ Aq 
= ∅, Aq \ Ap 
= ∅ and Ap ∩ Aq 
= ∅. Without loss of generality, suppose
|Ap| ≤ |Aq|. Then by Lemma 1, at the end of the threshold t = |Ap|, we have
merged all good points in Ap into a subset. Specifically, this means that we have
merged Ap ∩ Aq with Ap \ Aq. So for t ≤ |Aq|, we have merged good points in
Aq with good points outside Aq, which is contradictory to Lemma 1. ��

By the above lemmas, for any good point p, the subset Ap will be formed be-
fore points in it are merged with good points outside. Once these subsets are
formed, we can show that subsets in the same target community will be merged
together before they are merged with those from other communities, and thus
the hierarchy produced has a node close to the target community. Formally, we
have the following result.

Lemma 3. For any community C satisfying the (α, β, ν)-stable property with
β ≥ 5/6, C′ \B in Algorithm 1 is always laminar to C \B, i.e. for any C′ ∈ C′,
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either (C′ \ B) ∩ (C \ B) = ∅ or (C′ \ B) ⊆ (C \ B) or (C \ B) ⊆ (C′ \ B).
Furthermore, there is a node U in the hierarchy produced such that U \B = C\B.

Proof. we will show by induction on t that: for any community C satisfying the
(α, β, ν)-stable property with β ≥ 5/6,

– at the end of threshold t, C′ \B is laminar to C \B,
– at the end of threshold t, for any C such that |C \ B| ≤ t, we have merged

all points in C \B into a subset.

These claims are clearly true initially. Assume for induction that they are true
for the threshold t− 1, we now show that they are also true for the threshold t.

We first show that the laminarity is preserved. The laminarity is broken only
when we connect in Ht two subsets U,W such that U is a strict subset of C
after removing the bad points, and W is a subset containing good points from
outside. If there is a good point p ∈ U such that Ap 
⊆ U , then by Lemma 1,
they cannot be connected. So we only need to consider the other case when
for any good point p ∈ U,Ap ⊆ U . For convenience, we call a point great
if it is a good point in C, and it has less than αn neighbors outside C \ B
out of the |C \ B| nearest neighbors in V \ B. We now show that U,W are
not connected in Ht. Since U \ B is a strict subset of C \ B, by induction on
the second claim, we have t ≤ |C \ B|. Then great points in U and points in
W share at most 2(α + ν)n < t − 2(α + ν)n common neighbors, so they are
not connected in Ft. By Lemma 2 and the second condition of the (α, β, ν)-
stable property, we know that at least 5/6 fraction of points in U \B are great
points. Then there exist a great point x∗ ∈ U and a point y∗ ∈ W such that
St(x

∗, y∗) is no less than medianx∈U,y∈WSt(x, y). Since in Ft great points in
U are not connected to points in W , we have St(x

∗, y∗) ≤ (|U | + |W |)/4. So
medianx∈U,y∈WSt(x, y) ≤ (|U | + |W |)/4 and U,W are not connected in Ht.
Therefore, the laminarity is preserved.

Next we show that at the end of the threshold t = |C\B|, all points in C\B are
merged into a subset. By Lemma 1, all good points in C\B are now in sufficiently
large subsets. We claim that any two of these subsets U,W are connected in Ht,
and thus will be merged. Again by Lemma 2, we know at least 5/6 fraction of
points in U \ B or W \ B are great points, and thus there exist great points
x∗ ∈ U, y∗ ∈ W such that St(x

∗, y∗) is no more than medianx∈U,y∈WSt(x, y).
Notice that all great points in U are connected to great points in W in Ft, since
they share at least t− 2(α+ ν)n neighbors. Then St(x

∗, y∗) ≥ 3(|U |+ |W |)/4 >
(|U |+ |W |)/4, and thus medianx∈U,y∈WSt(x, y) > (|U |+ |W |)/4. Therefore, any
two subsets containing good points from C \B are connected in Ht and thus are
merged.

So the two claims hold for all t, specially for t = n. Then the algorithm must
stop after this threshold, and we have the lemma as desired. ��

Lemma 4. Algorithm 1 has a running time of O(nω+1).

Proof. To implement the algorithm, we introduce some data structures. For any
x ∈ V , if y is within the t nearest neighbors of x, let It(x, y) = 1, otherwise
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It(x, y) = 0. Initializing It takes O(n2) time. Next we compute CNt(x, y),
the number of common neighbors between x and y. Notice that CNt(x, y) =∑

z∈V It(x, z)It(y, z), so CNt = ItI
T
t . Then we can compute the adjacent matrix

Ft (overloading notation for the graph Ft) from CNt. These take
O(nω) time.
To compute the graph Ht, we introduce the following data structures. Let
FSt(x, y) = 1 if x, y are singleton subsets and Ft(x, y) = 1, and let FSt(x, y) = 0
otherwise. Let NSt = FSt(FSt)

T , then for two singleton subsets x, y, NSt(x, y)
is the number of singleton subsets they share as neighbors in common in Ft.
Similarly, let FCt(x, y) = 1 if x and y are in the same subset and Ft(x, y) = 1,
and let FCt(x, y) = 0 otherwise. Let St(x, y) = NSt(FCt)

T +FCt(NSt)
T , then

for two points x ∈ U, y ∈ W where U,W are two non-singleton subsets, St(x, y)
is the number of points in U ∪ W they share as neighbors in common in Ft.
Based on NSt and St we can build the graph Ht. All these take O(nω) time.

When we perform merge or increase the threshold, we need to update the
data structures, which takes O(nω) time. Since there are O(n) merges and O(n)
thresholds, Algorithm 1 takes time O(nω+1) in total. ��

4 Experiments

In this section, we present our experimental results on evaluating our model and
algorithm.While our main concern is building theoretical model for communities,
empirical study is valuable in verifying the model and providing guidance for
further improvement. Therefore, we applied our algorithm on both real world
and synthetic data sets.

Note that the networks are represented as graphs, and we need to lift the
graphs to get neighborhood functions for our algorithm. We use two lifting ap-
proaches for our experiments. The first approach is direct lifting: first, for any
x, y set the affinity between x and y to be 1 if (x, y) ∈ E and 0 otherwise; then
for each x, sort all the other points according to the affinities; break ties ran-
domly to avoid bias. The second approach is diffusion lifting: first set the affinity
matrix K between entities to be K = exp{λA} where λ = 0.05 and A is the
adjacent matrix of the graph; then for each x, sort all the other points according
to the affinities.

For comparison, we implemented two other algorithms: the lazy random walk
algorithm (LRW [34]) and the Girvan-Newman algorithm (GN [10]). The lazy
random walk algorithm performs truncated random walk from a seed point in
the network and outputs selected communities where the selection is guided by
the walk distribution and conductance. The conductance has been widely used
as a criterion for quantifying the tight connections within communities, and thus
the comparison to the lazy random walk algorithm provides an evaluation on
how well our model and algorithm capture this intuition. The GN algorithm re-
peatedly removes the edge with the maximum edge-betweenness and regards the
created connected components as communities. Although no theoretical model
of hierarchical communities is targeted, the algorithm builds a hierarchy during
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its execution. It has been shown that the algorithm performs remarkably well on
modeling communities in real-world data sets [10,29]. We use the code from [5]
for fast computation of edge betweenness in the algorithm.

For algorithms with parameters, we run them multiple times with different
values of parameters, and report the best result. More specifically, we run our
algorithm using parameters (α + ν) = i

5n (i = 1, 2, . . . , 5). For the lazy ran-
dom walk algorithm, we enumerate the parameters θ0 = 0.05i(i = 1, . . . , 4) and
b = 1, 2, . . . , !logm". In each run, 100 seed points are generated uniformly at
random, each of which leads to a community. Since not all communities are
meaningful (e.g. a singleton subset or the entire set of points), communities con-
taining less than 10 points or containing more than n− 10 points are removed,
and the rest communities are regarded as the output communities. We then eval-
uate the average error of the output communities. The error for a ground-truth
community C with respect to a set C of output communities is defined as

error(C, C) = min
C′∈C

|C \ C′|+ |C′ \ C|
n

.

This criterion measures how well the ground-truth communities are recovered
by the algorithm. We further note that our algorithm outputs fewer communi-
ties than the other algorithms in all the conducted experiments, and thus has
advantage when they achieve similar performance.

4.1 Evaluation on Real-World Networks

To assess the performance of the proposed method in terms of accuracy, we
conduct experiments on the following real world data sets2 : karate [36], dol-
phins [23], polbooks [18], and football [10].

Figure 4 shows the average error and running time of the algorithms. We
observe that our algorithm with diffusion lifting achieves the best performance on
3 out of 4 data sets, and achieves performance comparable to the GN algorithm
on the football data set. It recovers the ground truth communities remarkably
well over all the data sets. Our algorithm with direct lifting does not achieve
good results. Note that this is due to the fact that diffusion lifting reflects the
true neighborhood structure more accurately than direct lifting. More precisely,
when we sort neighbors for a point p in direct lifting, all points not adjacent to
p are ranked randomly. In fact some of them can be reached by a few steps and
thus should be ranked as close neighbors, while others are actually far away from
the point p. On the other hand, diffusion lifting leads to a neighborhood function
that more accurately reflects the neighborhood information. The LRW algorithm
has the worst performance, though it is the fastest. Our algorithm, especially
with the diffusion lifting, runs 10-100 faster than the GN algorithm. Therefore,
our algorithm with suitable neighborhood functions is the most favorable for
detecting real world communities.

2 Detailed descriptions and links for download can be found on
http://www-personal.umich.edu/~mejn/netdata/

http://www-personal.umich.edu/~mejn/netdata/
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Fig. 4. The average error and running time using our hierarchical community detection
algorithm with direct lifting (HCD+direct) or diffusion lifting neighborhood function
(HCD+diffusion), Lazy Random Walk (LRW [34]) and the Girvan-Newman algorithm
(GN [10]). Note that the running time is in log scale.

4.2 Evaluation on Synthetic Networks

Table 1. The parameters of the synthetic data sets for performance evaluation.
n/m: number of nodes/edges; k/maxk: average/maximum degree of the nodes;
minc/maxc: minimum/maximum size of the lower level communities; minC/maxC:
minimum/maximum size of the higher level communities.

Data set n m k maxk minc maxc minC maxC

LF50 50 ≈500 10 15 10 15 20 30
LF100 100 ≈1500 15 20 15 20 30 40
LF150 150 ≈3000 20 30 20 30 40 60
LF200 200 ≈6000 30 40 30 40 60 80

Besides real-world networks, we further use the Lancichinetti-Fortunato (LF)
benchmark3 graphs [20] to evaluate the performance of the algorithms. By vary-
ing the parameters of the networks, we can analyze the behavior of the algo-
rithms in detail. We generate four unweighted undirected benchmark networks
with two level community hierarchies. The numbers of nodes are 50, 100, 150 and
200 respectively, and some important parameters of the networks are given in
Table 1. For each type of dataset, we range the mixing parameter μ from 0.1 to
0.5 with a span of 0.1, and set the low-level mixing parameter μ1 = μ/4 and the
high-level mixing parameter μ2 = μ− μ1, resulting in five networks. Generally,
the higher the mixing parameter of a network is, the more difficult it is to reveal
the community structure.

3 The source code we use and details about the parameters can be found on
https://sites.google.com/site/andrealancichinetti/software

https://sites.google.com/site/andrealancichinetti/software
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Fig. 5. The average error on the synthetic data sets
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Fig. 6. The running time on the synthetic data sets

Figure 5 shows the average errors of the algorithms and Figure 6 shows the
running time. Our algorithm with direct or diffusion lifting and the GN algo-
rithm achieve similar results on all the benchmark networks. The errors of these
algorithms are below 5%, and hardly increase with the mixing parameter. This
suggests that they recover the ground truth communities remarkably well even
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in the hard case when the members of the communities have significant con-
nections with the outside. In contrast, the LRW algorithm does not recover the
communities well, even though it runs much faster than the other algorithms.
Our algorithm runs about 50 times faster than the GN algorithm over all the
data sets. These results are consistent with those observed on real world data
sets, and again demonstrate the advantage of our algorithm.

5 Conclusion

In this paper we propose a model of communities that both reflects the tight
connections within communities and explicitly models the hierarchy of communi-
ties. We present an efficient algorithm that provably detects all the communities
in this model. Experiments demonstrate that our definition successfully models
communities arising in the real world, and our algorithm compares favorably
with existing approaches.

For future work, we plan to perform systematic empirical study of our
model and algorithm using more neighborhood functions and on more real-world
data sets. Another direction would be to speed up the computation of the
neighborhood function and the algorithm and adapt them to large-scale scenarios.

Acknowledgements. This work was supported in part by NSF grant CCF-
0953192, AFOSR grant FA9550-09-1-0538, and a Microsoft Research Faculty
Fellowship.
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Abstract. In this paper we present a new approach for characterizing
graphs using the solution of the wave equation. The wave equation pro-
vides a richer and potentially more expressive means of characterizing
graphs than the more widely studied heat equation. Unfortunately the
wave equation whose solution gives the kernel is less easily solved than
the corresponding heat equation. There are two reasons for this. First,
the wave equation can not be expressed in terms of the familiar node-
based Laplacian, and must instead be expressed in terms of the edge-
based Laplacian. Second, the eigenfunctions of the edge-based Laplacian
are more complex than that of the node-based Laplacian. In this paper
we present a solution to the wave equation, where the initial condition
is Gaussian wave packets on the edges of the graph. We propose a global
signature of the graph which is based on the amplitudes of the waves at
different edges of the graph over time. We apply the proposed method
to both synthetic and real world datasets and show that it can be used
to characterize graphs with higher accuracy.

Keywords: Edge-based Laplacian, Wave Equation, Gaussian wave
packet, Graph Characterization.

1 Introduction

Graphs-based methods are frequently used to solve problems in many areas in-
cluding computer vision machine learning and pattern recognition. This is due
to the fact that most real world data can be conveniently represented by graphs
or meshes. For example a color or a gray-scale image can be represented using a
planar graph, where vertices are corners of the objects and edges represent some
geometric relationship between the vertices. Similarly a chemical data structure
can be represented using a graphs, where vertices represent atoms and edges
represent bonds between the edges. A three-dimensional shapes can be conve-
niently represented using a mesh that approximates the bounding surface of the
body. Once the graph of the object is extracted, we can use these graphs to find
both the local and global properties of the object itself.

One of the most popular way of characterizing graph structure is to use spec-
tral methods, which make use of the eigenvalues and eigenvectors of the Lapla-
cian matrix. The Laplacian matrix is defined using the adjacency matrix of the
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graph and can be used to link equations from analysis to graph. Over the recent
years many researchers have successfully used the solutions of partial differential
equations defined using the Laplacian matrix to characterize graphs. For exam-
ple, Xiao et al [1] have used heat kernel, which is derived from graph Laplacian,
to embed the nodes of a graph in Euclidean space. Zhang et al[2] have used the
heat kernel for anisotropic image smoothing. Sun et al[3] have used the heat ker-
nel on mesh for defining signatures for 3D shapes and this is referred to as Heat
Kernel Signature. Aubry et al[4] have used the solution of Schrödinger equation
to define Wave Kernel Signature, which represents the average probability of
measuring a quantum mechanical particle at a specific location. There are many
other applications of graph Laplacian in the literature.

The discrete Laplacian defined over the vertices of a graph, however, cannot
link most results in analysis to a graph theoretic analogue. For example the wave
equation utt = Δu, defined with discrete Laplacian, does not have finite speed
of propagation. In [5,6], Friedman and Tillich develop a calculus on graph which
provides strong connection between graph theory and analysis. Their work is
based on the fact that graph theory involves two different volume measures.
i.e., a “vertex-based” measure and an “edge-based” measure. This approach has
many advantages. It allows the application of many results from analysis directly
to the graph domain.

While the method of Friedman and Tillich leads to the definition of both a
divergence operator and a Laplacian (through the definition of both vertex and
edge Laplacian), it is not exhaustive in the sense that the edge-based eigen-
functions are not fully specified. In a recent study we have fully explored the
eigenfunctions of the edge-based Laplacian and developed a method for explicitly
calculating the edge-interior eigenfunctions of the edge-based Laplacian [7]. This
reveals a connection between the eigenfunctions of the edge-based Laplacian and
both the classical random walk and the backtrackless random walk on a graph.
The eigensystem of the edge-based Laplacian contains eigenfunctions which are
related to both the adjacency matrix of the line graph and the adjacency matrix
of the oriented line graph.

As an application of the edge-based Laplacian, we have recently presented a
new approach to characterizing points on a non-rigid three-dimensional shape[8].
This is based on the eigenvalues and eigenfunctions of the edge-based Laplacian,
constructed over a mesh that approximates the shape. This leads to a new shape
descriptor signature, called the Edge-based Heat Kernel Signature (EHKS). The
EHKS was defined using the heat equation, which is based on the edge-based
Laplacian. This has applications in shape segmentation, correspondence match-
ing and shape classification.

Wave equation provides potentially richer characterisation of graphs than heat
equation. Initial work by Howaida and Hancock [9] has revealed some of its
potential uses. They have proposed a new approach for embedding graphs on
pseudo-Riemannian manifolds based on the wave kernel. However, there are two
problems with the rigourous solution of the wave equation; a) we need to compute
the edge-based Laplacian, and b) the solution is more complex than the heat
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equation. Recently we [10] have presented a solution of the edge-based wave
equation on a graph. We assume that initial condition is a Gaussian wave packet
on the edge of the graph, and show the evolution of this wave packet over time.

In this paper we propose a new signature for characterizing graphs, which is
based on the solution of edge-based wave equation. The signature is constructed
by assuming a Gaussian wave packet on a single edge of the graph and use
the amplitude of the wave on different edges over different times to construct
a unique signature for the graph.The remainder of this paper is organized as
follows. We commence by introducing graphs and some definitions. In section
3, we introduce the eigensystem of the edge-based Laplacian. In section 4, we
give a general solution of the wave equation, and the solution for the Gaussian
wave packet as initial condition. In section 5, we define the proposed wave packet
signature for the graph. Finally, in the experiment section, we apply the proposed
method to both synthetic and real-world dataset.

2 Graphs

A graph G = (V , E) consists of a finite nonempty set V of vertices and a finite
set E of unordered pairs of vertices, called edges. A directed graph or digraph
D = (VD, ED) consists of a finite nonempty set VD of vertices and a finite set
ED of ordered pairs of vertices, called arcs. So a digraph is a graph with an
orientation on each edge. A digraph D is called symmetric if whenever (u, v)
is an arc of D, (v, u) is also an arc of D. There is a one-to-one correspondence
between the set of symmetric digraphs and the set of graphs, given by identifying
an edge of the graph with an arc and its inverse arc on the digraph on the same
vertices. We denote by D(G) the symmetric digraph associated with the graph
G.

The line graph L(G) = (VL, EL) is constructed by replacing each arc of D(G)
by a vertex. These vertices are connected if the head of one arc meets the tail of
another. Therefore

VL = {(u, v) ∈ D(G)}
EL = {((u, v), (v, w)) : (u, v) ∈ D(G), (v, w) ∈ D(G)}

The oriented line graph OL(G) = (VO; EO) is constructed in the same way as
the L(G) except that reverse pairs of arcs are not connected, i.e. ((u, v), (v, u))
is not an edge. The vertex and edge sets of OL(G) are therefore

VO = {(u, v) ∈ D(G)}

EO = {((u, v), (v, w)) : (v, w)), (u, v) ∈ D(G), (v, w) ∈ D(G), u 
= w}
The complement or inverse of a graph G is a graph with the same vertex set
but whose edge set consists of the edges not present in G. The complement is
denoted by G = (V , E), where

V = V
E = {(u, v) : (u, v) /∈ E}
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(a) Graph (b) Diagraph (c) Oriented line
graph

Fig. 1. Graph, its digraph, and its oriented line graph

Figure 1(a) shows a simple graph, 1(b) its digraph, and 1(c) the correspond-
ing oriented line graph. A random walk on the vertices of L(G) represents the
sequence of edges traversed in a random walk on the original graph G. Similarly,
a random walk on the OL(G) represents the sequence of edges traversed in a
random walk on G where backtracking steps are not allowed (a backtrackless
walk).

3 Edge-Based Eigensystem

In this section we review the eigenvalues and eigenfunction of the edge-based
Laplacian[5][7]. Let G = (V , E) be a graph with a boundary ∂G. Let G be
the geometric realization of G. The geometric realization is the metric space
consisting of vertices V with a closed interval of length le associated with each
edge e ∈ E . We associate an edge variable xe with each edge that represents the
standard coordinate on the edge with xe(u) = 0 and xe(v) = 1. For our work, it
will suffice to assume that the graph is finite with empty boundary (i.e., ∂G = 0)
and le = 1.

3.1 Vertex Supported Edge-Based Eigenfunctions

The vertex-supported eigenpairs of the edge-based Laplacian can be expressed in
terms of the eigenpairs of the normalized adjacency matrix of the graph. Let A be
the adjacency matrix of the graphG, and Ã be the row normalized adjacency ma-
trix. i.e., the (i, j)th entry of Ã is given as Ã(i, j) = A(i, j)/

∑
(k,j)∈E A(k, j). Let

(φ(v), λ) be an eigenvector-eigenvalue pair for this matrix. Note φ(.) is defined
on vertices and may be extended along each edge to an edge-based eigenfunc-
tion. Let ω2 and φ(e, xe) denote the edge-based eigenvalue and eigenfunction.
Here e = (u, v) represents an edge and xe is the standard coordinate on the edge
(i.e., xe = 0 at v and xe = 1 at u). Then the vertex-supported eigenpairs of the
edge-based Laplacian are given as follows:

1. For each (φ(v), λ) with λ 
= ±1, we have a pair of eigenvalues ω2 with
ω = cos−1 λ and ω = 2π − cos−1 λ. Since there are multiple solutions to
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ω = cos−1 λ, we obtain an infinite sequence of eigenfunctions; if ω0 ∈ [0, π] is
the principal solution, the eigenvalues are ω = ω0 + 2πn and ω = 2π − ω0 +
2πn, n ≥ 0. The eigenfunctions are φ(e, xe) = C(e) cos(B(e) + ωxe) where

C(e)2 =
φ(v)2 + φ(u)2 − 2φ(v)φ(u) cos(ω)

sin2(ω)

tan(B(e)) =
φ(v) cos(ω)− φ(u)

φ(v) sin(ω)

There are two solutions here, {C,B0} or {−C,B0 + π} but both give the
same eigenfunction. The sign of C(e) must be chosen correctly to match the
phase.

2. λ = 1 is always an eigenvalue of Ã. We obtain a principle frequency ω = 0,
and therefore since φ(e, xe) = C cos(B) and so φ(v) = φ(u) = C cos(B),
which is constant on the vertices.

3. If the graph is bipartite then λ = −1 is an eigenvalue of Ã. We obtain a
principle frequency ω = π, and therefore since φ(e, xe) = C cos(B + πxe)
and so φ(v) = −φ(u), implying an alternating sign eigenfunction.

3.2 Edge-Interior Eigenfunctions

The edge-interior eigenfunctions are those eigenfunctions which are zero on ver-
tices and therefore must have a principle frequency of ω ∈ {π, 2π}. Recently we
have shown that these eigenfunctions can be determined from the eigenvectors
of the adjacency matrix of the oriented line graph[7]. We have shown that the
eigenvector corresponding to eigenvalue λ = 1 of the oriented line graph provides
a solution in the case ω = 2π. In this case we obtain |E| − |V|+ 1 linearly inde-
pendent solutions. Similarly the eigenvector corresponding to eigenvalue λ = −1
of the oriented line graph provides a solution in the case ω = π. In this case we
obtain |E| − |V| linearly independent solutions. This comprises all the principal
eigenpairs which are only supported on the edges.

3.3 Normalization of Eigenfunctions

Note that although these eigenfunctions are orthogonal, they are not normal-
ized. To normalize these eigenfunctions we need to find the normalization fac-
tor corresponding to each eigenvalue and divide each eigenfunction with the
corresponding normalization factor. Let ρ(ω) denotes the normalization factor
corresponding to eigenvalue ω. Then

ρ2(ω) =
∑
e∈E

∫ 1

0

φ2 (e, xe) dxe

Evaluating the integral, we get

ρ(ω) =

√∑
e∈E

C(e)2
[
1

2
+

sin (2ω + 2B(e))

4ω
− sin(2B(e))

4ω

]
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Once we have the normalization factor to hand, we can compute a complete
set of orthonormal bases by dividing each eigenfunction with the corresponding
normalization factor. Once normalized, these eigenfunctions form a complete set
of orthonormal bases for L2(G, E).

4 Solution of the Wave Equation

Let a graph coordinateX defines an edge e and a value of the standard coordinate
on that edge x. The eigenfunctions of the edge-based Laplacian are

φω,n(X ) = C(e, ω) cos (B(e, ω) + ωx+ 2πnx)

The edge-based wave equation is

∂2u

∂t2
(X , t) = ΔEu(X , t) (1)

We look for separable solutions of the form u(X , t) = φω,n(X)g(t). This gives

φω,n(X )g′′(t) = g(t) (ω + 2πn)
2
φ(ω, n)

which gives a solution for the time-based part as

g(t) = αω,n cos [(ω + 2πn)t] + βω,nsin [(ω + 2πn)t]

By superposition, we obtain the general solution

u (X , t) =
∑
ω

∑
n

C(e, ω) cos [B(e, ω) + ωx+ 2πnx]

{αω,n cos [(ω + 2πn)t] + βω,nsin [(ω + 2πn)t]} (2)

4.1 Initial Conditions

Since the wave equation is second order partial differential equation, we can
impose initial conditions on both position and speed

u(X , 0) = p(X )

∂u

∂t
(X , 0) = q(X )

and we obtain

p(X ) =
∑
ω

∑
n

αω,nC(e, ω) cos [B(e, ω) + ωx+ 2πnx]

q(X ) =
∑
ω

∑
n

βω,n(ω + 2πn)C(e, ω) cos [B(e, ω) + ωx+ 2πnx]
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We can obtain these coefficients using the orthogonality of the eigenfunctions.
So we get

αω,n =
∑
e

C(e, ω)
1

2

[
Fω,n + F ∗

ω,n

]
where

Fω,n = eiB
∫ 1

0

dxp(e, x)eiωxei2πn

similarly

βω,n(ω + 2πn) =
∑
e

C(e, ω)
1

2

[
Gω,n +G∗

ω,n

]
where

Gω,n = eiB
∫ 1

0

dxq(x, e)ei(ω+2πn)x = eiB
∫ 1

0

dxp′(x, e)ei(ω+2πn)x

4.2 Gaussian Wave Packet

Let the initial position be a Gaussian wave packet p(e, x) = e−a(x−μ)2 on one
particular edge and zero everywhere else. Then we have

Fω,n = eiB
∫ 1

0

dxe−a(x−μ)2eiωxei2πnx

= eiBeiμωe−
ω2

4a

∫ 1

0

dxe−a(x−μ− iω
2a )

2

ei2πnx

Let the Gaussian is fully contained on one edge. i.e., p(x, e) is only supported
on this edge, then

Fω,n = eiBeiμωe−
ω2

4a

∫ ∞

−∞
dxe−a(x−μ− iω

2a )
2

ei2πnx

Solving, we get

Fω,n =

√
π

a
ei[B+μ(ω+2πn)]e−

1
4a (ω+2nπ)2

Similarly we obtain

F ∗
ω,n =

√
π

a
e−i[B+μ(ω+2πn)]e−

1
4a (ω+2nπ)2

and so

αω,n =

√
π

a
e−

1
4a (ω+2nπ)2C(e, ω) cos[B + μ (ω + 2πn)] (3)

Since p(x, e) is zero at both ends the coefficients β can be found straightforwardly.

βω,n =

√
π

a
e−

1
4a (ω+2nπ)2C(e, ω) sin[B + μ (ω + 2πn)] (4)
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4.3 Complete Reconstruction

Let f be the edge on which the initial function is non-zero. Let the Gaussian is
fully contained on one edge. Then

u(X , t) =
∑
ω

√
π

a
C(ω, e)C(ω, f)

∑
n

e−
1
4a (ω+2πn)2

cos [B(ω, e) + ωx+ 2πnx] cos [B(ω, f) + (ω + 2πn)(t+ μ)]

For a particular sequence with principal eigenvalue ω, we need to calculate

uω =
∑
n

√
π

a
e−

1
4a

(ω+2πn)2 cos [B(ω, e) + ωx+ 2πnx] cos [B(ω, f) + (ω + 2πn)(t+ μ)]

Writing the cosine in exponential form, we obtain

uw =
∑
n

√
π

a
e−

1
4a (ω+2πn)2

×1

4

[
ei[B(e,ω)+B(f,ω)]ei(ω+2πn)(x+t+μ) + e−i[B(e,ω)+B(e,ω)]e−i(ω+2πn)(x+t+μ)

+ei[B(e,ω)−B(f,ω)]ei(ω+2πn)(x−t−μ) + e−i[B(e,ω)−B(e,ω)]e−i(ω+2πn)(x−t−μ)
]

We need to evaluate terms like terms like
∑

n
π
a e

− 1
4a ei[B(e,ω)+B(f,ω)]ei(ω+2πn)(x+t+μ),

where the values of ω and n depend on the particular eigenfunction sequence
under evaluation.

Let W(z) be z wrapped to the range [− 1
2 ,

1
2 ), i.e.,

W(z) = z −
⌊
z +

1

2

⌋
Solving for all cases, the complete solution becomes

u(X , t) =
∑

ω∈Ωa

C(ω, e)C(ω, f)

2

(
e
−aW(x+t+μ)2

cos

[
B(e, ω) + B(f, ω) + ω

⌊
x + t + μ +

1

2

⌋]

+ e−aW(x−t−μ)2 cos

[
B(e, ω) − B(f, ω) + ω

⌊
x− t − μ +

1

2

⌋])

+
1

2|E|

(
1

4
e−aW(x+t+μ)2 +

1

4
e−aW(x−t−μ)2

)

+
∑

ω∈Ωc

C(ω, e)C(ω, f)

4

(
e−aW(x−t−μ)2 − e−aW(x+t+μ)2

)

+
∑

ω∈Ωc

C(ω, e)C(ω, f)

4

(
(−1)

⌊
x−t−μ+1

2

⌋
e−aW(x−t−μ)2

−(−1)

⌊
x+t+μ+1

2

⌋
e−aW(x+t+μ)2

)
(5)

where Ωa represents the set of vertex-supported eigenvalues and Ωb and Ωc

represent the set of edge-interior eigenvalues respectively. i.e., π and 2π.
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5 Wave Packet Signatures

Once a complete solution of the edge-based wave equation is known, we can
use it to define both local and global signatures for graphs and meshes. In this
paper we define a global signature for characterizing graphs which is based on
amplitudes of waves on the edges of the graph over time. To define the signature
we assume that the initial condition is a Gaussian wave packet on a single edge
of the graph. For this purpose we select the edge (u, v) ∈ E, such that u is
the highest degree vertex in the graph and v is the highest degree vertex in the
neighbours of u. We define the local signature of an edge as

WPS(X ) = [u(X , t0), u(X , t1), u(X , t2), ...u(X , tn)] (6)

Given a graph G, we define its global wave packet signature as

GWPS(G) = hist
(
WPS(X1),WPS(X2), , ...,WPS(X|E|)

)
(7)

where hist(.) is the histogramoperator which bins the list of argumentsWPS(X1),
WPS(X2), , ...,WPS(X|E|).

6 Experiments

In this section we apply our proposed method on both synthetic and real world
datasets.

6.1 Synthetic Dataset

To show the evolution of Gaussian wave packet on a graph, we take a simple
graph with 5 nodes and 6 edges. We assume the initial condition as a Gaussian
wave packet on a single edge and zero everywhere else. Figure 2(a) shows the
results for the times t = 0, t = 1, t = 2 and t = 3 in a three dimensional space.
Note that when the wave packet hits a node with degree greater than 2, some
part of the packet is reflected back while the other part is equally distributed to
the connecting edges. Figure 2(b) shows a similar analysis but with a different
initial condition. Here we assume that initially a Gaussian wave packet exist on
every edge of the graph and show its evolution for the times t = 0, t = 1, t = 2
and t = 3.

One of the advantage of using the solution of equations defined using edge-
based Laplacian is that it is less prone to the problem of failing to distinguish
graphs due to cospectrality of the Laplacian or adjacency matrices. This is due
to the fact that the structure of edge-interior eigenfunctions of the edge-based
Laplacian are determined by the eigenvectors of the oriented line graph which is
closely related to discrete time quantum walk on a graph [11]. Figure 3(a) and
Figure 3(b) show two pairs of graphs with 9 and 10 vertices respectively, which
are cospectral with respect to both their adjacency matrices and the adjacency
matrices of their complements. Figure 4(a) and Figure 4(b) show the global wave
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(a) Evolution of a single wave packet

(b) Evolution of multiple wave packets

Fig. 2. Solution of wave equation on a graph with 6 vertices and 8 edges
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(a) cospectral graphs with 9
nodes

(b) cospectral graphs with 10 nodes

Fig. 3. Examples of cospectral graphs

(a) Histogram for the graphs of Figure 3(a)

(b) Histogram for the graphs of Figure 3(b)

Fig. 4. Histograms for cospectral graphs

packet signature for the graphs of Figure 3(a) and Figure 3(b). Results show
the ability of the wave equation to distinguish cospectral graphs. This is due to
the fact that although these graphs cannot be distinguished by random walks on
the graph, backtrackless walks on the other hand can distinguish such graphs[12].

6.2 Real-World Dataset

Finally, we apply the proposed method on real world dataset. Our dataset con-
sists of graphs extracted from the images in the Columbia object image library



Gaussian Wave Packet on a Graph 187

(COIL) dataset [13]. This dataset contains views of 3D objects under controlled
viewer and lighting condition. For each object in the database there are 72
equally spaced views. The objective here is to cluster different views of the same
object onto the same class. To establish a graph on the images of objects, we
first extract feature points from the image. For this purpose, we use the Harris
corner detector [14]. We then construct a Delaunay graph using the selected
feature points as vertices. Figure 5(a) shows some of the object views (images)
used for our experiments and Figure 5(b) shows the corresponding Delaunay
triangulations.

(a) COIL

(b) Delaunay triangulation

Fig. 5. COIL objects and their Delaunay triangulations

We compute the wave signature for an edge by taking tmin = 10, tmax = 100
and xe = 0.5. We then compute the GWPS for the graph by fixing 100 bins
for histogram. To visualize the results, we have performed principal component
analysis (PCA) on GWPS. PCA is mathematically defined [15] as an orthogonal
linear transformation that transforms the data to a new coordinate system such
that the greatest variance by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on
the second coordinate, and so on. Figure 6(a) shows the results of the embedding
of the feature vectors on the first three principal components.

To measure the performance of the proposed method we compare it with
truncated Laplacian, random walk [16] and Ihara coefficients [17]. Figure 6 shows
the embedding results for different methods. To compare the performance, we
cluster the feature vectors using k-means clustering [18]. k-means clustering is
a method which aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean. We compute Rand
index [19] of these clusters which is a measure of the similarity between two
data clusters. The rand indices for these methods are shown in Table 1. It is
clear from the table that the proposed method can classify the graphs with
higher accuracy.
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(a) Wave Kernel Signature (b) Truncated Laplacian spectra

(c) Random Walk Kernel (d) Ihara Coefficients

Fig. 6. Graph, its digraph, and its oriented line graph

Table 1. Experimental results on Mutag dataset

Method Accuracy

Wave Kernel Signature 0.9965

Random Walk Kernel 0.9526

Truncated Laplacian Spectra 0.8987

Ihara Coefficients 0.9864

7 Conclusion and Future Work

In this paper we have used the solution of the wave equation on a graph to
characterize graphs. The wave equation is solved using the edge-based Laplacian
of a graph. We assume the initial distribution be a Gaussian wave packet and
shown its evolution with time on different graphs. We use the amplitudes of the
wave over different edges to define a signature for graph characterization. The
advantage of using the edge-based Laplacian over vertex-based Laplacian is that
it allows the direct application of many results from analysis to graph theoretic
domain. For example it allows the study of non-dispersive solutions or solitons.
In future our goal is to use the solution of other equations defined using the
edge-based Laplacian for defining local and global signatures for graphs.
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Abstract. In this paper, we apply the solution of the Schrödinger equa-
tion, i.e. the Schrödinger operator, to the graph characterization problem.
The motivation behind this approach is two-fold. Firstly, the mathemati-
cally similar heat kernel has been used in the past for this same problem.
And secondly, due to the quantum nature of the Schrödinger equation, our
hypothesis is that it may be capable of providing richer sources of informa-
tion. The two main features of the Schrödinger operator that we exploit
in this paper are its non-ergodicity and the presence of quantum interfer-
ences due to the existence of complex amplitudes with both positive and
negative components. Our proposed graph characterization approach is
based on the Fourier analysis of the quantum equivalent of the heat flow
trace, thus relating frequency to structure. Our experiments, performed
both on synthetic and real-world data, demonstrate that this new method
can be successfully applied to the characterization of different types of
graph structures.

Keywords: graph characterization, heat flow, Schrödinger equation,
quantum walks.

1 Introduction

Many physical, biological or social systems may be represented by means of a
network or a graph. The analysis of graph structure and features thus becomes
significant as a way of understanding the structure and dynamics of these sys-
tems. This fact hence motivated the appearance of several graph characterization
techniques reported in the literature. The aim of graph characterization is to pro-
vide a way to distinguish and compare different types of graph structures without
applying subgraph isomorphism, a procedure that is NP-complete. Among these
graph characterization algorithms several are based on random walks [1], the
Ihara zeta function [2] or the spectral radius [3]. In a recent paper, Escolano et
al. [4] introduced an alternative technique based on the analysis of the heat flow.
The heat flow is derived from the heat kernel [5], which is the solution of the
heat diffusion equation, and provides a method to represent the heat transfer
between nodes of a graph over time.

E. Hancock and M. Pelillo (Eds.): SIMBAD 2013, LNCS 7953, pp. 190–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Analysis of the Schrödinger Operator 191

The Schrödinger equation is mathematically similar in structure to the heat
diffusion equation [6]. However, they describe rather different physical phenom-
ena. While the heat equation describes how heat is transfered in a system, the
Schrödinger equation characterizes the dynamics of a particle in a quantum sys-
tem. The quantum nature of the Schrödinger equation and its complex-valued
solutions give rise to many interesting non-classical effects, including quantum
interferences. These interferences have proved to be useful in several applications,
including the detection of symmetric motifs in graphs via continuous-time quan-
tum walks [7] and graph embedding by means of quantum commute times [8].
Motivated by previous works on graph characterization from the solution of
the heat diffusion equation, in this paper we demonstrate that the solution of
the Schrödinger equation, i.e. the Schrödinger operator, may also be useful for
this task. We exploit the non-ergodicity of dynamic quantum systems based on
the Schrödinger equation and propose a new frequency domain characterization,
based on the Fourier analysis of the quantum equivalent to the heat flow trace [4].
The resulting characterization relates frequency and graph structure. Our ex-
periments both on synthetic and real-world datasets demonstrate that such an
approach successfully distinguishes different types of network structures.

The remainder of this paper is structured as follows. In Section 2 we sum-
marize the concept of heat flow for graph characterization. In Section 3 the
Schrödinger operator is introduced. The main contributions of this paper are
presented in Section 4, in which we formally analyze the Schrödinger operator
and propose a new graph characterization technique based on an equivalent of
the heat flow. Then, in Section 5, we show some experimental results. Finally
we draw some conclusions and point out ways in which this work can be further
extended.

2 Heat Flow

Let G = (V,E) be an undirected graph where V is its set of nodes and E ⊆ V ×V
is its set of edges. The Laplacian matrix L = D − A is constructed from the
|V | × |V | adjacency matrix A, in which the element A(u, v) = 1 if (u, v) ∈ E
and 0 otherwise, where the elements of the diagonal |V | × |V | degree matrix are
D(u, u) =

∑
v∈V A(u, v). The |V |×|V | heat kernel matrix Kt is the fundamental

solution of the heat equation

∂Kt

∂t
= −LKt, (1)

and depends on the Laplacian matrix L and time t. It describes how information
flows across the edges of a graph with time, and its solution is Kt = e−Lt.

The heat kernel Kt is a doubly stochastic matrix. Double stochasticity implies
that diffusion conserves heat. In [4], a graph is characterized from the constraints
it imposes to heat diffusion due to its structure. This characterization is based
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on the normalized instantaneous flow Ft(G) of graph G, that accounts the edge-
normalized heat flowing through the graph at a given instant t, and it is defined
as:

Ft(G) =
2|E|
n

n∑
i=1

∑
j �=i

A(i, j)

(
n∑

k=1

φk(i)φk(j)e
−λkt

)
. (2)

A more compact definition of the edge-normalized instantaneous flow is Ft(G) =
(2|E|/n)A : Kt, where X : Z = trace(XZT ) is the Frobenius inner product. The
heat flow trace describing the graph is constructed by computing Eq. 2 on the
interval [0, tmax].

3 Heat Kernel vs. Schrödinger Operator

The Schrödinger equation describes how the complex state vector |ψt〉 ∈ C|V | of
a continuous-time quantum walk varies with time [9]:

∂|ψt〉
∂t

= −iL|ψt〉. (3)

Given an initial state |ψ0〉 the latter equation can be solved to give |ψt〉 =
Ψt|ψ0〉, where Ψt = e−iLt is a complex |V | × |V | unitary matrix. In this paper
we refer to Ψt as the Schrödinger operator. Our attention in this paper will be
focused on the operator itself and not on the quantum walk process. As can be
seen, Eq. 3 is similar to Eq. 1. However, the physical dynamics induced by the
Schrödinger equation are totally different, due to the existence of oscillations
and interferences.

In this section we address the question of whether the Schrödinger operator
may be used to characterize the structure of a graph. Empirical analysis on dif-
ferent graph structures shows that both the heat kernel and the Schrödinger op-
erator evolve with time in a manner which strongly depends on graph structure.
1 However, the underlying physics and the dynamics are different (see Fig. 1). In
the case of heat flow heat diffuses between nodes through the edges, eventually
creating transitive links (energy exchanges between nodes that are not directly
connected by an edge), until reaching a stationary energy equilibrium state. The
Schrödinger operator yields a faster energy distribution through the system (e.g.
for a 100 nodes line graph, it takes t = 50 time steps for the Schrödinger oper-
ator to reach every possible position on the graph, taking more than twice this
time in the case of the heat kernel [4]). Moreover, due to negative components of
the complex amplitudes, interferences are created, producing energy waves. The
main difference is that the Schrödinger operator never reaches an equilibrium
state. In other words, it is non-ergodic. Graph connectivity imposes constraints
on the distribution of energy. In the case of the heat kernel, a higher number of
energy distribution constraints implies the creation of more transitive links with
time [4]. This is also true in the case of the Schrödinger operator, for which lower
frequency and more symmetrical energy distribution patterns are also observed.
1 Videos showing the evolution of both heat kernel and Schrödinger operator are avail-

able at http://www.dccia.ua.es/~pablo/downloads/schrodinger_operator.zip

http://www.dccia.ua.es/~pablo/downloads/schrodinger_operator.zip
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Fig. 1. Evolution with time (t = 1, 25 and 100). From top to bottom: heat kernel for
a 100 node line graph, Schrödinger operator for a 100 node line graph, Schrödinger
operator for a 100 node circle graph, Schrödinger operator for a 10×10 grid graph
with 4 neighbour connectivity and Schrödinger operator for a 10×10 grid graph with
8 neighbour connectivity.
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3.1 Analysis of the Schrödinger Operator

Further formal analysis of the Schrödinger operator supports the empirical evi-
dence stated above. We first consider the Schrödinger operator when t tends to
zero. Its Taylor expansion is given by:

Ψt = e−iLt = cosLt− i sinLt = I|V | − iLt− t2

2!
L2 + i

t3

3!
L3 +

t4

4!
L4 · · · , (4)

where I|V | is the |V | × |V | identity matrix. Hence

lim
t→0

Ψt ≈ I|V | − iLt, (5)

where Ψt = Kt when t = 0. At this time instant every node conserves its energy
(as in the case of the Heat Kernel). The role of the identity matrix is to make the
Schrödinger operator unitary. Due to the −iLt term, it can be seen that energy
spreads as a wave even for t values close to zero. Thus, the Schrödinger operator
causes energy to distribute in a waveform from the initial time instant.

In order to explore the ergodicity of the Schrödinger operator we consider
both its spectral decomposition and that of the heat kernel:

Kt =

n∑
p=1

e−tλpφpφ
T
p and (6)

Ψt =

n∑
p=1

e−itλpφpφ
T
p , (7)

where λp is the p-th eigenvalue of the Laplacian L and φp its corresponding
eigenvector.

The spectral decomposition of the heat kernel demonstrates that it is dom-
inated by the lowest eigenvalues, due to the fact that e−tλp tends to zero as t
tends to infinity. However, the limit of e−itλp when t tends to minus infinity is
infinite. Thus, there are two important differences with the heat kernel. Firstly,
the Schrödinger operator never converges (it is non-ergodic), and secondly, it is
not dominated by any particular eigenvalue (i.e. there is more dependence on
global graph structure as t tends to infinity).

Finally, we can compare the Euler equation based Schrödinger operator Ψt

with the wave equation formula

ψ = υei(kx−wt+ε), (8)

where υ is the amplitude, ε is the initial phase, k is the wavenumber, and w is
the angular frequency. The Schrödinger operator can be interpreted as a wave
with υ = 1, k = ε = 0 and w = L. In fact, Eq. 7 expresses the Schrödinger
operator as a linear combination of p = 1 . . . n waves with different frequencies
λp.
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3.2 The Quantum Energy Flow

As stated in Section 2 the heat flow characterizes a graph by means of a trace
that accounts for the information flowing on the graph with time. Due to the
similarity between the heat diffusion and the Schrödinger equations, we could
define the quantum energy flow (QEF) as

Qt(G) = A : Ψt, (9)

and the quantum energy trace (the equivalent of heat flow) as the evolution of
Qt with time. It must be noted that the Hamiltonian of the quantum system
defined by Ψt is given by the graph Laplacian L. The adjacency matrix A in
Eq. 9 causes the QEF to only account for the energy distributing through edges.
In Fig. 2 we compare the heat flow and the QEF traces for two different types of
graphs. In [4], graph structure is characterized by the heat flow’s phase transition
point (PTP). The overall information transmitted in the system increases until
reaching a PTP, and then decreases until convergence. This is illustrated inf
Fig. 2 (left). A PTP based characterization can not be applied in the case of
the Schrödinger operator, due to its non-ergodicity and the existence of several
PTPs. However, we observe again a difference in phase transition frequency
depending on the structure of the graph.

Fig. 2. Heat flow (left) and QEF (right) for two different 10 node graphs: a 2×5 grid
graph with 8 neighbour connectivity (top) and a circle graph (bottom). In both cases,
the x axis represents time.

3.3 Frequency Domain Analysis of the Schrödinger Operator

The results and analysis above suggest a correlation between graph structure and
both the Schrödinger operator and the QEF frequency patterns. We therefore
propose a graph characterization based on the QEF in the frequency domain.
In order to obtain this characterization, we consider the QEF as a non-periodic
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signal: we select a time interval [0, T ] and we apply the Fast Fourier Transform
to the QEF. We refer to this representation as the frequency domain trace. The
frequency domain trace for the graphs in Fig. 2 can be seen in Fig. 3. The first
conclusion from these plots is that the more complex graphs are characterized
by the presence of higher frequencies.

Fig. 3. Frequency domain trace obtained from the quantum energy flow of the grid
graph (left) and the circle graph (right) in Fig. 2

However, this representation depends on graph size. Fig. 4 (left) shows the
frequency domain trace for four differently sized line graphs. This plot demon-
strates that the maximum spectral amplitude is proportional to the graph size.
In order to compare arbitrarily sized graphs we apply a simple frequency do-
main trace normalization based on its maximum amplitude. The result of this
normalization can be seen in Fig. 4 (right).

During our experiments we will represent graphs by means of a cumulative
frequency domain trace, obtained by accumulating the normalized amplitudes

Fig. 4. Unnormalized (left) and normalized (right) frequency domain traces for four
different size circle graphs (10, 20, 30 and 40 nodes)
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from lower to higher frequencies of their corresponding frequency domain traces.
In Fig. 5 we compare the cumulative frequency domain trace obtained from
five graphs and their corresponding heat flows. In the case of the cumulative fre-
quency domain trace, the area under the curve provides a good estimate of graph
complexity. Simpler graphs yield larger areas. The PTPs of the corresponding
heat flow traces also provide a good complexity estimate. In this case, the PTP
for simple graphs is reached later in time. However, in this particular example,
the heat flow trace estimates the complexity of the line graph to be lower than
that of the circle graph. That is not the case of the cumulative frequency domain
trace, for which the complexity of the line graph is higher.

Fig. 5. Cumulative frequency domain traces (left) and heat flow (right) for five simple
10 node graphs: a random graph (Gauss10), a 8-connected 2x5 grid (Grid8N10), a
4-connected 2x5 grid (Grid4N10), a line graph (Line10) and a circular graph (Circle10)

4 Experimental Results

4.1 Noise Sensitivity

The aim of this first experiment is to show the sensitivity of frequency domain
traces to graph noise. We first constructed a base 400 nodes random graph by
means of the Erdös-Rényi model [10]. We then compared the frequency domain
trace of the base graph to those obtained after applying random edit operations
on it. In this experiment we only applied edge removal operations, and thus, in
each iteration, we remove a random edge from the base graph and we compute
the Euclidean distance between the unnormalized traces. The results are shown
in Fig. 6. Four experiments were performed, using four different time intervals
[0..T ] to construct the frequency domain traces.

From Fig. 6, it is clear that the final trace is not strongly affected by small
disturbances. For larger time intervals there appears to be a significant sensitivity
to noise. However, difference between traces is still low. The remainder of the
experiments in this paper are conducted after setting T = 1024.
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Fig. 6. Results of the noise sensitivity experiment. Number of edit operations (edge
removals) versus distance between edited graph’s frequency domain trace and base
graph’s one, for four different T values.

4.2 Characterization of Synthetic Data

In order to test the discriminative power of our characterization we constructed
a dataset of synthetic graphs. The dataset consists of three groups of 32 graphs,
each group characterized by a different graph structure. All of the graphs in
the dataset have 90 nodes. The graphs in the first group are random graphs
constructed using the Erdös-Rényi [10] model, in which each pair of nodes is
linked by an edge with probability given by p. In our experiments we set p = 0.1.
The graphs in the second group belong to the category of scale free graphs
(i.e. graphs for which its degree distribution follows a power law), and were
constructed using the Barabási and Albert’s model [11]. In this model we have
set m0 = 5 for the initial size of the graphs and m = 2 for the number of
links to add during each iteration, following the addition of a node. Finally, the
graphs in the third group correspond to small world graphs (i.e. graphs in which
most nodes are not neighbours of each other, but in which average path length
between a graph pair of nodes is small). These small world graphs are generated
by means of the Watts and Strogatz algorithm [12]. In this case we set the mean
degree value to K = 10 and the rewiring probability to p = 0.2.

A cumulative frequency domain trace was computed for all graphs in the set,
and the results are shown in Fig. 7. The first conclusion of our experiment is
that these traces clearly discriminate between different graph structures. This
conclusion is supported by a Multidimensional Scaling analysis (MDS) of the
traces (also shown in Fig. 7). The aim of MDS is to apply dimensionality reduc-
tion on data while preserving relative distances between patterns. If we project
the traces onto a 2D space, the graphs in the three groups are clearly split into
three different clusters with high intra-cluster homogeneity and high-inter cluster
separability.

In Fig. 7 we explore the relationship between frequency and structure. The
frequency spectrum of random graphs is characterized by higher amplitudes at
high frequencies. In the case of small world graphs, the predominant frequencies



Analysis of the Schrödinger Operator 199

Fig. 7. Characterization of synthetic graphs. Left: cumulative frequency domain traces.
Right: MDS results.

are in the middle part of the spectrum. Scale free graphs are characterized by
higher amplitudes at lower frequencies. These results suggest that the structure
of random graphs is more complex in the sense that it imposes more constraints
to the distribution of energy on the graph. As a consequence, energy waves
exhibit higher frequency as they propagate. Scale free and small world graphs
impose less restrictions on the distribution of energy through the graph, and are
associated with lower frequency patterns.

4.3 Characterization of Real-World Data

Our aim in this experiment was to evaluate the validity of our method when
applied to real-world data. The 24 graphs studied in this experiment are part
of a dataset that has been previously utilized for complex network characteriza-
tion [14] or network robustness assessment [15]. Our subset of graphs is divided
into two categories: a) 9 networks having a homogeneous degree distribution
and b) 15 networks having a power law degree distribution. The first category
consists of the following graphs: Benguela, Reef Small, Coachella Valley, Shelf,
Skipwith, St. Marks Seagrass and Stony food webs and two Macaque visual cor-
tex networks. The second category contains a more heterogeneous set of graphs:
four software networks (Abi, Digital, VTK and XMMS), a network of sexual
partners in Colorado Springs, a network of injectable drugs users, the airport
transportation network in the US in 1997, the Scotch Broom food web, two
transcription interaction networks concerning E. Coli and yeast and five differ-
ent protein interaction networks. In Fig. 8 we show the cumulative frequency
domain traces for all the aforementioned graphs. It must be noted that all of
them vary widely in size and edge density.

The results of this experiment demonstrate that the relationship between fre-
quency and structure is also held in the context of real-world data. Networks
having a homogeneous degree distribution are not characterized by any predom-
inant frequency. Therefore, this type of network produces an almost diagonal
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Fig. 8. Characterization of real-world networks

cumulative frequency domain trace. Networks following a power law degree dis-
tribution are mainly characterized by lower and medium frequencies. Power law
degree distribution arise as a feature of scale free networks, in which there ex-
ist nodes with a degree that greatly exceeds the average in the network. This
kind of structure is commonly associated with the existence of hub nodes that
increase the overall robustness of the network, thus improving network connect-
edness. This observation again supports that the correlation between the lack of
constraints to energy propagation on the graph and the predominance of lower
frequencies in its characteristic trace.

4.4 Network Dynamics Analysis

In this last experiment we apply our characterization method to the analysis of
dynamic network structures, in order to test if such characterization can give
an insight into the existence of structural changes with time. We computed the
traces for several graphs generated according to the activity-based preferential
attachment (APA) model [16]. This model has proved to be the best approxima-
tion of the evolution of several real-world cortical networks. The APA model is a
generalization of the Barabási and Albert’s model, in which new connections are
established proportionally to a dynamical process on the entire network, rather
than according to a local structural property. Nodes with higher activity have
a higher probability of establishing new connections. In the APA model, the
activity of a node i is computed from the stationary distribution π of frequency
of visits to nodes of a random walk, where πi = limt→∞ vi/t and vi the number
of times the random walker visits the node i after t time steps.

The plot in Fig. 9 shows the evolution of the APA cumulative frequency do-
main trace over time for one of the realizations of the model. The plots obtained
from other realizations were very similar. Network evolution starts at t = 0 with
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a fully connected network having 5 nodes. At each time step a new node is added,
following the APA model. The process is repeated until t = 1000. It must be
noted that the graphs constructed using the this model are directed. They were
converted to undirected ones by simply transforming each directed arc into an
undirected edge before computing the graph characteristic trace.

Fig. 9. Cumulative frequency domain trace over time for one dynamic graph

The results show that the structure of a graph modeled by means of activity-
based preferential attachment is not subject to significant changes after an early
stage in the evolutionary process. This was the expected outcome of the ex-
periment since the APA model is intended to conserve the overall structural
properties of the network through time. Moreover, this experiment shows that
network growth does not have an impact on its cumulative frequency domain
trace as long as global structure is conserved due to the frequency domain nor-
malization process, making the cumulative frequency domain trace capable of
comparing the structure of networks having a different amount of nodes.

5 Conclusions and Future Work

Heat flow, based on the heat kernel, has been successfully used to character-
ize graph structure. The aim of the present paper was to answer the question
of whether the Schrödinger operator (the solution to the Schrödinger equation)
can be used also to characterize graph structure. After analyzing energy distribu-
tion through the graph based on the Schrödinger operator, we introduced a new
characterization method based on the analysis in the frequency domain of the
quantum equivalent of the heat flow trace that relates frequency to graph struc-
ture. Experiments performed both on synthetic and real-world datasets show
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that the cumulative frequency domain trace is a useful tool for graph analysis,
that is not sensitive to small changes in graph structure.

However, based on these promising preliminary results, further in depth anal-
ysis is required. Firstly, and similarly to heat flow, the cumulative frequency
domain trace does not provide us with a quantitative measure to directly com-
pare graph structures. A first step in this direction could be to apply this trace as
part of the thermodynamic depth complexity measurement framework, in order
to obtain a numerical representation of graph structure [4][13]. Secondly, during
our analysis of the Schrödinger operator we detected the presence of symmetric
energy distribution patterns on the graph. We could analyze how this symmetry
depends on graph structure and whether the results of this analysis are related
to previous work on symmetry detection based on quantum walks [7]. Finally,
an additional future work idea comes from the results of the experiment on the
dynamic dataset. This experiment proved that it would be of great interest to
extend our algorithm to the directed graphs domain.
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Abstract. One of the most fundamental problem that we face in the
graph domain is that of establishing the similarity, or alternatively the
distance, between graphs. In this paper, we address the problem of mea-
suring the similarity between attributed graphs. In particular, we pro-
pose a novel way to measure the similarity through the evolution of a
continuous-time quantum walk. Given a pair of graphs, we create a de-
rived structure whose degree of symmetry is maximum when the original
graphs are isomorphic, and where a subset of the edges is labeled with the
similarity between the respective nodes. With this compositional struc-
ture to hand, we compute the density operators of the quantum systems
representing the evolution of two suitably defined quantum walks. We
define the similarity between the two original graphs as the quantum
Jensen-Shannon divergence between these two density operators, and
then we show how to build a novel kernel on attributed graphs based on
the proposed similarity measure. We perform an extensive experimen-
tal evaluation both on synthetic and real-world data, which shows the
effectiveness the proposed approach.

Keywords: Graph Similarity, Graph Kernel, Continuous-Time Quan-
tum Walk, Quantum Jensen-Shannon Divergence.

1 Introduction

Graph-based representations have become increasingly popular due to their abil-
ity to characterize in a natural way a large number of systems which are best
described in terms of their structure. Concrete examples include the use of graphs
to represent shapes [1], metabolic networks [2], protein structure [3], and road
maps [4]. However, the rich expressiveness and versatility of graphs comes at a
cost. In fact, our ability to analyse data abstracted in terms of graphs is severely
limited by the restrictions posed by standard pattern recognition techniques,
which usually require the graphs to be first embedded into a vectorial space,
a procedure which is far from being trivial. The reason for this is that there
is no canonical ordering for the nodes in a graph and a correspondence order
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must be established before analysis can commence. Moreover, even if a corre-
spondence order can be established, graphs do not necessarily map to vectors of
fixed length, as the number of nodes and edges can vary.

One of the most fundamental problem that we need to face in the graph do-
main is that of measuring the similarity, or alternatively the distance, between
graphs. Generally, the similarity between two graphs can be defined in terms of
the lowest cost sequence of edit operations, for example, the deletion, insertion
and substitution of nodes and edges, which are required to transform one graph
into the other [5]. Another approach is that of Barrow and Burstall [6], where
the similarity of two graphs is characterized using the cardinality of their maxi-
mum common subgraphs. Similarly, Bunke and Shearer [7] introduced a metric
on unattributed graphs based on the maximum common subgraph, which later
Hidović and Pelillo extended to the case of attributed graphs [8]. Unfortunately,
both computing the graph edit distance and finding the maximum common sub-
graphs turn out to be a computationally hard problem.

Closely related to this problem is that of defining a kernel [9] over graphs.
Graph kernels are powerful tools that allow the researcher to overcome the re-
strictions posed by standard pattern recognition techniques by shifting the prob-
lem from that of finding an embedding of a graph to that of defining a positive
semidefinite kernel, via the well-known kernel trick. In fact, once we define a
positive semidefinite kernel k : X×X → R on a set X , then we know that there
exists a map φ : X → H into a Hilbert space H , such that k(x, y) = φ(x)�φ(y)
for all x, y ∈ X . Thus, any algorithm that can be formulated in terms of scalar
products of the φ(x)s can be applied to a set of data on which we have defined
our kernel. However, due to the rich expressiveness of graphs, the problem of
defining effective graph kernels has proven to be extremely difficult.

Many different graph kernels have been proposed in the literature [10,11,12].
Graph kernels are generally instances of the family of R-convolution kernels in-
troduced by Haussler [13]. The fundamental idea is that of defining a kernel
between two discrete objects by decomposing them and comparing some simpler
substructures. For example, Gärtner et al. [10] propose to count the number of
common random walks between two graphs, while Borgwardt and Kriegel [11]
measure the similarity based on the shortest paths in the graphs. Shervashidze
et al. [12], on the other hand, count the number of graphlets, i.e. subgraphs with
k nodes. These kernels can be generally defined both on unattributed and at-
tributed graphs, where in the attributed case one simply enumerates the number
of substructures which share the same sequence of labels.

In this paper, we introduce a novel similarity measure between attributed
graphs which is based on the evolution of a continuous-time quantum walk [14].
In particular, we are taking advantage of the fact that the interference effects
introduced by the quantum walk seem to be enhanced by the presence of sym-
metrical motifs in the graph [15,16]. Thus, given a pair of graphs, we create
a derived structure whose degree of symmetry is maximum when the original
graphs are isomorphic. To encode the information on the node attributes, in the
new structure we will label the edges connecting one graph to the other with the
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value of the similarity between the corresponding nodes. With this structure to
hand, we will define two continuous-time quantum walks which have orthogo-
nal density operators under the evolution of the walk whenever the two original
graphs are isomorphic. Then, to define the similarity measure we make use of the
quantum Jensen-Shannon divergence, a measure which has recently been intro-
duced as a means to compute the distance between quantum states [17]. Finally,
we use the proposed similarity measure to define a novel kernel for attributed
graphs.

The remainder of this paper is organized as follows: Section 2 provides an
essential introduction to the basic terminology required to understand the pro-
posed quantum mechanical framework. In Section 3 we introduce our similarity
measure and we define a novel attributed graph kernel. Section 4 illustrates the
experimental results, and the conclusions are presented in Section 5.

2 Quantum Mechanical Background

Quantum walks are the quantum analogue of classical random walks [14]. In
this paper we consider only continuous-time quantum walks. Given a graph G =
(V,E), the state space of the continuous-time quantum walk defined on G is the
set of the vertices V of the graph. Unlike the classical case, where the evolution
of the walk is governed by a stochastic matrix (i.e. a matrix whose columns
sum to unity), in the quantum case the dynamics of the walker is governed by a
complex unitary matrix i.e., a matrix that multiplied by its conjugate transpose
yields the identity matrix. Hence, the evolution of the quantum walk is reversible,
which implies that quantum walks are non-ergodic and do not possess a limiting
distribution. Using Dirac notation, we denote the basis state corresponding to
the walk being at vertex u ∈ V as |u〉. A general state of the walk is a complex
linear combination of the basis states, such that the state of the walk at time t
is defined as

|ψt〉 =
∑
u∈V

αu(t) |u〉 (1)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V | are both complex.
At each point in time the probability of the walker being at a particular vertex

of the graph is given by the square of the norm of the amplitude of the relative
state. More formally, let Xt be a random variable giving the location of the
walker at time t. Then the probability of the walker being at the vertex u at
time t is given by

Pr(Xt = u) = αu(t)α
∗
u(t) (2)

where α∗
u(t) is the complex conjugate of αu(t). Moreover αu(t)α

∗
u(t) ∈ [0, 1], for

all u ∈ V , t ∈ R+, and in a closed system
∑

u∈V αu(t)α
∗
u(t) = 1.

Recall that the adjacency matrix of the graph G has elements

Auv =

{
1 if (u, v) ∈ E
0 otherwise

(3)
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The evolution of the walk is governed by Schrödinger equation, where we take
the Hamiltonian of the system to be the graph adjacency matrix, which yields

d

dt
|ψt〉 = −iA |ψt〉 (4)

Thus, given an initial state |ψ0〉, we can solve Equation 4 to determine the state
vector at time t

|ψt〉 = e−iAt |ψ0〉 (5)

With the graph adjacency matrix to hand, we can compute its spectral decompo-
sition A = ΦΛΦ�, where Φ is the n×nmatrix Φ = (φ1|φ2|...|φn) with the ordered
eigenvectors as columns and Λ = diag(λ1, λ2, ..., λn) is the n×n diagonal matrix
with the ordered eigenvalues as elements, such that 0 = λ1 ≤ λ2 ≤ ... ≤ λn.
Using this spectral decomposition and the fact that e−iAt = Φe−iΛtΦ� we can
finally re-write Eq. 5 as

|ψt〉 = Φe−iΛtΦ� |ψ0〉 (6)

2.1 Quantum Jensen-Shannon Divergence

A pure state is defined as a state that can be described by a ket vector |ψi〉.
Consider a quantum system that can be in a number of states |ψi〉 each with
probability pi. The system is said to be in the ensemble of pure states {|ψi〉 , pi}.
The density operator (or density matrix) of such a system is defined as

ρ =
∑
i

pi |ψi〉 〈ψi| (7)

The Von Neumann entropy [18] of a density operator ρ is

HN (ρ) = −Tr(ρ log ρ) = −
∑
j

λj logλj , (8)

where the λjs are the eigenvalues of ρ. With the Von Neumann entropy to hand,
we can define the quantum Jensen-Shannon divergence between two density
operators ρ and σ as

DJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN (ρ)− 1

2
HN (σ) (9)

This quantity is always well defined, symmetric and negative definite. It can also
be shown that DJS(ρ, σ) is bounded, i.e.

0 ≤ DJS(ρ, σ) ≤ 1 (10)

Let ρ =
∑

i piρi be a mixture of quantum states ρi, with pi ∈ R
+ such that∑

i pi = 1, then we can prove that

HN (
∑
i

piρi) ≤ HS(pi) +
∑
i

piHN (ρi) (11)
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Fig. 1. Given two graphs G1(V1, E1, ν1) and G2(V2, E2, ν2) we build a new graph G =
(V, E) where V = V1∪V2, E = E1∪E2 and we add a new edge (u, v) between each pair
of nodes u ∈ V1 and v ∈ V2.

where the equality is attained if and only if the states ρi have support on orthog-
onal subspaces, where the support of an operator is the subspace spanned by the
eigenvectors of the operator with non-zero eigenvalues. By setting p1 = p2 = 0.5,
we see that

DJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN (ρ)− 1

2
HN (σ) ≤ 1 (12)

Hence DJS is always less or equal than 1, and the equality is attained only if ρ
and σ have support on orthogonal subspaces.

3 A Similarity Measure for Attributed Graphs

Given two graphs G1(V1, E1, ν1) and G2(V2, E2, ν2), where ν1 and ν2 are re-
spectively the functions assigning attributes to the nodes of G1 and G2, we
build a new graph G = (V , E , ω) where V = V1 ∪ V2, E = E1 ∪ E2 ∪ E12, and
(u, v) ∈ E12 only if u ∈ V1 and v ∈ V2 (see Fig. 1 for an example). More-
over, the edges (u, v) ∈ E12 are labeled with a real value ω(ν1(u), ν2(v)) rep-
resenting the similarity between ν1(u) and ν2(v). With this new structure to
hand, we define two continuous-time quantum walks

∣∣ψ−
t

〉
=

∑
u∈V ψ−

0u |u〉 and∣∣ψ+
t

〉
=

∑
u∈V ψ+

0u |u〉 on G with starting states

ψ−
0u =

{
+ du

C if u ∈ G1

− du

C if u ∈ G2
ψ+
0u =

{
+ du

C if u ∈ G1

+ du

C if u ∈ G2
(13)

where du is the degree of the node u and C is the normalisation constant such
that the probabilities sum to one. Note that the walk will spread at a speed
proportional to the edge weights, which means that given an edge (u, v) ∈ E12,
the more similar ν1(u) and ν2(v) are, the faster the walker will propagate along
the inter graphs connection (u, v). On the other hand, the intra-graph connection
weights, which are not dependent on the nodes similarity, will not affect the
propagation speed.

Given this setting, we allow the two quantum walks to evolve until a time T ,
and we define the average density operators ρT and σT over this time as

ρT =
1

T

∫ T

0

∣∣ψ−
t

〉 〈
ψ−
t

∣∣ dt σT =
1

T

∫ T

0

∣∣ψ+
t

〉 〈
ψ+
t

∣∣ dt (14)



Attributed Graph Similarity from the Quantum Jensen-Shannon Divergence 209

In other words, we have defined two mixed systems with equal probability of
being in any of the pure states defined by the evolution of the quantum walks.

In the next section we will prove that, whenever G1 and G2 are isomorphic,
the quantum Jensen-Shannon divergence between ρT and σT will be maximum,
i.e., it will be equal to 1. Hence, it seems reasonable to use the value of the
quantum Jensen-Shannon divergence as a measure of the similarity between the
two graphs. In particular, in the next section we use the QJSD to define a novel
kernel for attributed graphs.

3.1 A QJSD Kernel for Attributed Graphs

Given two attributed graphs G1 and G2, we define the quantum Jensen-Shannon
kernel kT (G1, G2) between them as

kT (G1, G2) = DJS(ρT , σT ) (15)

where ρT and σT are the density operators defined as in Eq. 14. Note that in
this formulation the kernel is parametrised by the time variable T . As it is not
clear how we should set this parameter, in this paper we propose to let T →∞,
i.e., we compute lim

T→+∞
kT (G1, G2). In the following section we will show how to

compute analytically this limit.
We now proceed to show some interesting properties of our kernel. First,

however, we need to prove the following

Lemma 1. If G1 and G2 are two isomorphic graphs, then ρT and σT have
support on orthogonal subspaces.

Proof. We need to prove that

(ρT )
†σT =

1

T 2

∫ T

0

ρt1 dt1

∫ T

0

σt2 dt2 = 0 (16)

where 0 is the matrix of all zeros, ρt =
∣∣ψ−

t

〉 〈
ψ−
t

∣∣ and σt =
∣∣ψ+

t

〉 〈
ψ+
t

∣∣. Note
that if ρ†t1σt2 = 0 for every t1 and t2, then ρ†σ = 0. We now prove that if G1 is

isomorphic to G2 then
〈
ψ−
t1

∣∣ψ+
t2

〉
= 0 for every t1 and t2.

If t1 = t2 = t, then 〈
ψ−
0

∣∣ (U t)†U t
∣∣ψ+

0

〉
= 0 (17)

since (U t)†U t is the identity matrix and the initial states are orthogonal by
construction. On the other hand, if t1 
= t2, we have〈

ψ−
0

∣∣UΔt
∣∣ψ+

0

〉
= 0 (18)

where Δt = t2 − t1.
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To conclude the proof we rewrite the previous equation as〈
ψ−
0

∣∣UΔt
∣∣ψ+

0

〉
=

∑
k

ψ+
k0

∑
l

ψ+
l0U

Δt
lk

=
∑
k1

ψ+
k10

∑
l

ψ+
l0U

Δt
lk1

−
∑
k2

ψ+
k20

∑
l

ψ+
l0U

Δt
lk2

=
∑
l

ψ+
l0

(∑
k1

ψ+
k10

UΔt
lk1

−
∑
k2

ψ+
k20

UΔt
lk2

)
= 0 (19)

where the indices l, k, run over the nodes of G, and k1 and k2 run over the nodes
G1 and G2 respectively.

To see that Eq. 19 holds, note that U is a symmetric matrix and it is invariant
to graph symmetries, i.e., if u and v are symmetric then UΔt

uu = UΔt
vv , and that

if G1 and G2 are isomorphic, then k1 = k2 and ψ+
1:k10

= ψ+
k1+1:k20

. Recall that

U t = e−iAt, where A is the graph adjacency matrix. A symmetry orbit is defined
as a group of vertices where v1 and v2 belong to the same orbit if there is an
automorphism σ ∈ Aut(G) such that σv1 = v2, where Aut(G) is the set of
automorphisms of G. In other words, if u and v belong to a symmetry orbit,
there exists an automorphism of the graph with a corresponding permutation
matrix P such that

A = P�AP (20)

and

P |eu〉 = |ev〉 (21)

This in turn implies that the graph adjacency matrix is invariant to symmetries.
As we will show, the same holds for the unitary operator of the quantum walk.
In fact, given the spectral decomposition of A = ΦΛΦ�, we can see that the
following equality holds

ΦΛΦ� = P�(ΦΛΦ�)P (22)

and thus

Φ = P�Φ (23)

Let us now write the unitary operator in terms of the adjacency matrix eigen-
decomposition, which yields

e−iAt = Φe−iΛtΦ� (24)

From Equations 23 and 24 it follows that

Φe−iΛtΦ� = P�Φe−iΛtΦ�P (25)

This in turn implies that if u and v are symmetrical then U t
uu = U t

vv, which
concludes the proof.
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Corollary 1. Given a pair of graphs G1 and G2, the kernel satisfies the follow-
ing properties: 1) 0 ≤ k(G1, G2) ≤ 1 and 2) if G1 and G2 are isomorphic, then
k(G1, G2) = 1.

Proof. The first property is trivially proved by noting that, according to Eq. 15,
the kernel between G1 and G2 is defined as the quantum Jensen-Shannon di-
vergence between two density operators, and then recalling that the value of
quantum Jensen-Shannon divergence is bounded to lie between 0 and 1.

The second property follows again from Eq. 15 and Theorem 1. It is sufficient
to note that the quantum Jensen-Shannon divergence reaches its maximum value
if and only if the density operators have support on orthogonal spaces.

Unfortunately we cannot prove that our kernel is positive semidefinite, but both
empirical evidence and the fact that the Jensen-Shannon Divergence is nega-
tive semidefinite on pure quantum states [21] while our graph kernel is maximal
on orthogonal states suggest that the kernel constraints are never violated in
practice.

3.2 Kernel Computation

We conclude this section with a few remarks on the computational complexity of
our kernel. In particular, we show that the solutions to Eq. 14 can be computed
analytically. Recall that |ψt〉 = e−iAt |ψ0〉, then we rewrite Eq. 14 as

ρT =
1

T

∫ T

0

e−iAt |ψ0〉 〈ψ0| eiAt dt (26)

Since e−iAt = Φe−iΛtΦ�, we can rewrite the previous equation in terms of the
spectral decomposition of the adjacency matrix,

ρT =
1

T

∫ T

0

Φe−iΛtΦ� |ψ0〉 〈ψ0|ΦeiΛtΦ� dt (27)

The (r, c) element of ρT can be computed as

ρT (r, c) =
1

T

∫ T

0

(∑
k

∑
l

φrke
−iλktφlkψ

−
0l

)

·
(∑

m

∑
n

ψ†
0mφmne

iλntφcn

)
dt (28)

Let ψ̄k =
∑

l φlkψ0l and ψ̄n =
∑

m φmnψ
†
0n, then

ρT (r, c) =
1

T

∫ T

0

(∑
k

φrke
−iλktψ̄k

∑
n

φcne
iλntψ̄n

)
dt (29)
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Fig. 2. Edit distance matrix and Multidimensional Scaling of the graph distances for
the synthetic dataset

which can be finally rewritten as

ρT (r, c) =
∑
k

∑
n

φrkφcnψ̄kψ̄n
1

T

∫ T

0

ei(λn−λk)t dt (30)

If we let T →∞, Eq. 30 further simplifies to

ρT (r, c) =
∑
λ∈Λ̃

∑
k

∑
n

φrkφcnψ̄kψ̄n (31)

where Λ̃ is the set of distinct eigenvalues of A, while k and n are indices which run
over the dimensions of the eigenspace associated with λ ∈ Λ̃. As a consequence,
we see that the complexity of computing the QJSD kernel is upper bounded by
that of computing the eigendecomposition of G, i.e. O(|V|3).

4 Experimental Results

In this section, we evaluate the performance of the proposed kernel and we
compare it with a number of well-known alternative graph kernels, namely the
classic random walk kernel [10], the shortest-path kernel [11] and the 3-nodes
graphlet kernel [12], both in their unattributed and attributed versions. Note
that since the attributed versions of these kernels are defined only on graphs
with categorically labeled nodes, in our experiments we will need to bin the
node attributes before computing the kernels.

We use a binary C-SVM to test the efficacy of the kernels. We perform 10-fold
cross validation, where for each sample we independently tune the value of C, the
SVM regularizer constant, by considering the training data from that sample.
The process is averaged over 100 random partitions of the data, and the results
are reported in terms of average accuracy ± standard error.
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Fig. 3. The effects of Erdös-Rényi structural noise applied to the nodes and edges of
the graph on the kernel value. Using the proposed similarity measure, the noisy versions
of the graph belonging to the first class are clearly distinguishable from the instances
of the second class. As expected, taking the attributes into account (right) makes the
distinction even clearer (note the difference in the scale).

4.1 Synthetic Data

We start by evaluating the proposed kernel on a set of synthetically generated
graphs. To this end, we have randomly generated 3 different weighted graph
prototypes with size 16, 18 and 20 respectively. For each prototype we started
with an empty graph and then we iteratively added the required number of
nodes each labeled with a random mean and variance. Then we added the edges
and their associated observation probabilities up to a given edge density. Given
the prototypes, we sampled 20 observations from each class being careful to
discard graphs that were disconnected. Details about the generative model used
to sample the graphs can be found in [19]. Figure 2 shows the edit distance matrix
of the dataset and the Multidimensional Scaling [20] of the graph distances.

With the synthetic graphs to hand, we initially investigate how the value of the
kernel between two graphs varies as we applyErdös-Rényi noise to the graph struc-
ture. In this case the similarity between two nodes u and v is defined as ω(u, v) =

e−λ(ν1(u)−ν2(v))
2

, where ν1(u) and ν2(v) are the real-valued attributes associated
with u and v respectively. Figure 3 shows the result of this experiment. Here we
randomly pick a graph G belonging to class 1, and we compute a number of in-
creasingly noisy versions of it. The noise is applied either to the edges only, i.e.
adding or deleting edges, or to the nodes as well, i.e. adding or deleting nodes and
edges. We then compute the average value of the kernel between G and its cor-
rupted versions, and we plot it against the average similarity between G and the
graphs of class 2. Figure 3 shows that, even at considerably high levels of noise,G is
clearly distinguishable from the instances of the second class. As expected, taking
the attributes into account renders the distinction even clearer (note the change in
the y-scale). However, when augmented with the attributes information, our simi-
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Fig. 4. The four selected objects from the COIL [22] dataset and a sample of their asso-
ciated Delaunay graphs. Each node of the graphs is labeled with the (x, y) coordinates
of the corresponding feature point.

larity measure seems to be slightly more sensitive to structural noise, in particular
when the noise is affecting the nodes of the graph.

As a second experiment, we test the accuracy of our kernel in a classification
task. The results are shown in Table 1. As we can see, our kernel outperforms or
is competitive with the alternatives, and yields a close to 100% average accuracy.
Note also that, as expected, taking the similarity between the node attributes
into account results in a marked increase in the kernel performance. Quite sur-
prisingly, however, we found that the random walk kernel on the categorically
labeled graphs yields a lower performance than its unattributed version.

4.2 Delaunay Graphs

We then tested the efficacy of the proposed kernel on the COIL [22] dataset,
which consists of images of different objects, with 72 views of each object ob-
tained from equally spaced viewing directions over 360◦. For each image, a graph
is obtained by computing the Delaunay triangulation of the corner points ex-
tracted by the Harris corner detection algorithm. Moreover, each node is labeled
with the (x, y) coordinates of the corresponding feature point. The similarity

between two nodes is ω(u, v) = e−λ||ν1(u)−ν2(v)||22 , where ||ν1(u) − ν(v)||2 is the
Euclidean distance between the two feature points u and v. Here we choose 4
different objects, each with 21 different 5◦ rotated views. Figure 4 shows the four
selected objects together with their associated graphs, while Figure 5 shows the
edit distance matrix and the MDS of the graph distances.
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Fig. 5. Edit distance matrix and Multidimensional Scaling of the graph distances for
the COIL dataset

We first investigate how integrating the information on the nodes attributes
influences the expressive power of our kernel. Figure 6 shows the MDS embed-
ding on the graph distances computed from the unattributed kernel (left) and
the attributed one (right). Although the embedding shows that a considerable
overlap remains between the different classes, taking the node attributes sim-
ilarities into account adds a further dimension which can help to discriminate
better among the 4 selected objects.

This is indeed reflected in the results of the classification task shown in Ta-
ble 1. In the attributed case, in fact, the average accuracy of the QJSD kernel is
increased by more than 10%, and it outperforms that of all the remaining ker-
nels. Note, however, that if the node labels are dropped, the performance of the
QJSD kernel is among the lowest, which once again underlines the importance
of incorporating the attributes similarities in the compositional structure.
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Fig. 6. Multidimensional Scaling of the graph distances computed from the kernel
matrix of the COIL dataset. Left, completely structural approach; right, including the
information on the nodes attributes.
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Fig. 7. Top row: Left, shape database; right, edit distance matrix. Bottom row: Multi-
dimensional Scaling of the edit distances. As we can see, the class structure is not very
clear and there is a considerable overlap between different classes.

4.3 Shock Graphs

Finally, we experimented using shock graphs, a skeletal-based representation of the
differential structure of the boundary of a 2D shape. We extracted graphs from a
database composed of 120 shapes divided into 8 classes of 15 shapes each. Each
graph has a node attribute that reflects the size of the boundary feature generating
the corresponding skeletal segment. Figure 7 shows the shape database, the edit
distancesmatrix between the shock graphs and the correspondingMDS. As we can
see, the class structure is not very clear, and there is a considerable overlapbetween
different classes. This is reflected in the average accuracy of the kernels, which is the
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Table 1. Classification accuracy (± standard error) on attributed graph datasets.
QJSD is the proposed kernel, SP is the shortest-path kernel of Borgwardt and
Kriegel [11], RW is the random walk kernel of Gartner et al. [10], while G3 denotes
the graphlet kernel computed using all graphlets of size 3 described in Shervashidze
et al. [12]. The subscript w identifies the kernels which make use of the attributes
information. The best performing kernel for each dataset is highlighted in bold.

Kernel Synth Shock COIL

QJSDw 95.87 ± 0.14 66.65± 0.22 95.56± 0.20

QJSD 84.57 ± 0.25 53.97 ± 0.19 84.05 ± 0.22

SPw 96.36± 0.12 65.05 ± 0.25 94.40 ± 0.14

SP 91.13 ± 0.15 52.62 ± 0.32 85.25 ± 0.21

RWw 92.97 ± 0.18 53.26 ± 0.29 90.78 ± 0.26

RW 80.23 ± 0.30 26.11 ± 0.32 78.60 ± 0.25

G3w 88.75 ± 0.25 41.18 ± 0.27 89.25 ± 0.21

G3 85.60 ± 0.25 38.85 ± 0.32 84.20 ± 0.22

lowest among the three datasets, as Table 1 shows. However, the proposed kernel
still outperforms or is competitive with the others.

5 Conclusions and Future Work

In this paper, we have introduced a novel similarity measure for attributed graphs
based on the time evolution of a continuous-time quantum walk. More precisely,
given a pair of graphs we computed the quantum Jensen-Shannon divergence
between the evolution of two quantum walks on a suitably defined union of
the original graphs. With the quantum Jensen-Shannon divergence to hand, we
then established our similarity measure. Finally, we introduced a novel kernel
on attributed graphs based on the proposed similarity measure. We performed
an extensive experimental evaluation both on synthetic and real-world datasets,
and we demonstrated the effectiveness of the proposed approach.

However, in this paper we limited our definition of the kernel to the case where
the time parameter T is taken to the limit, i.e., T →∞. Future work will focus on
studying the role of the time parameter more in depth, and it will try to develop a
heuristic to establish the optimal time T in terms of classification accuracy.

Acknowledgments. Edwin Hancock was supported by a Royal Society Wolfson
Research Merit Award.
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21. Briët, J., Harremoës, P.: Properties of classical and quantum jensen-shannon di-
vergence. Physical Review A 79, 052311 (2009)

22. Nayar, S., Nene, S., Murase, H.: Columbia object image library (coil 100). Technical
report, Tech. Report No. CUCS-006-96. Department of Comp. Science, Columbia
University (1996)



Entropy and Heterogeneity Measures

for Directed Graphs

Cheng Ye1, Richard C. Wilson1, César H. Comin2, Luciano da F. Costa2,
and Edwin R. Hancock1,


1 Department of Computer Science, University of York,
York, YO10 5GH, UK

{cy666,richard.wilson,edwin.hancock}@york.ac.uk
2 Institute of Physics at São Carlos, University of São Paulo,

P.O. Box 369, São Carlos, São Paulo, 13560-970, Brazil
{appdnails,ldfcosta}@gmail.com

Abstract. In this paper, we aim to develop novel methods for measuring
the structural complexity for directed graphs. Although there are many
existing alternative measures for quantifying the structural properties of
undirected graphs, there are relatively few corresponding measures for
directed graphs. To fill this gap in the literature, we explore a number of
alternative techniques that are applicable to directed graphs. We com-
mence by using Chung’s generalisation of the Laplacian of a directed
graph to extend the computation of von Neumann entropy from undi-
rected to directed graphs. We provide a simplified form of the entropy
which can be expressed in terms of simple vertex in-degree and out-
degree statistics. Moreover, we find approximate forms of the von Neu-
mann entropy that apply to both weakly and strongly directed graphs,
and that can be used to characterize network structure. Next we ex-
plore how to extend Estrada’s heterogeneity index from undirected to
directed graphs. Our measure is motivated by the simplified von Neu-
mann entropy, and involves measuring the heterogeneity of differences in
in-degrees and out-degrees. Finally, we perform an analysis which reveals
a novel linear relationship between heterogeneity and resistance distance
(commute time) statistics for undirected graphs. This means that the
larger the difference between the average commute time and shortest re-
turn path length between pairs of vertices, the greater the heterogeneity
index. Based on this observation together with the definition of commute
time on a directed graph, we define an analogous heterogeneity measure
for directed graphs. We illustrate the usefulness of the measures defined
in this paper for datasets describing Erdos-Renyi, ’small-world’, ’scale-
free’ graphs, Protein-Protein Interaction (PPI) networks and evolving
networks.
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1 Introduction

Recently there has been considerable interest in analyzing the properties of com-
plex networks since they play a significant role in modelling large-scale systems
in biology, physics and the social sciences. In fact, complex networks provide con-
venient models for complex systems. However, to render such models tractable,
it is essential to have to hand methods for characterizing their salient properties.
As Costa and Rodrigues [7] stated, complex networks are graphs whose connec-
tivity properties deviate from those of regular graphs, which can be defined as
a process of being ’simple’, and the complexity of a network can be understood
as the complement of simplicity. Structural complexity is therefore perhaps the
most important property of a complex network. In order to analyze the features
of a complex network it is imperative that computationally efficient measures are
to hand that can be used to represent and quantify the structural complexity.

In this context graph theoretic methods are often used since they provide
effective tools for characterizing network structure together with the intrinsic
complexity. This approach has lead to the design of several practical methods for
characterizing the global and local structure of undirected networks. However,
there is relatively little work aimed at characterizing directed network struc-
ture. One of the reasons for this is that the graph theory underpinning directed
networks is less developed than that for undirected networks.

The aim in this paper is to explore whether a number of different charac-
terizations developed for undirected graphs can be extended to the domain of
directed graphs, using some recent results from spectral graph theory.

1.1 Related Literature

Recently, Amancio et al. [1] have shown that labyrinths can be modelled as
complex networks and studied in terms of the concept of absorption time, defined
as the time it takes for a random walk from an internal node to an output node,
to classify networks’ metrics. Moreover, Estrada [10] has proposed an index that
can be used to quantify the heterogeneity characteristics of undirected graphs.
This index depends on vertex degree statistics and graph size. The lower bound
of this quantity is zero, which occurs for a regular graph (i.e. all the vertices
have the same degree). The upper bound is equal to one, which is obtained for
a star graph (i.e. there exists a central vertex and all other vertices connect and
only connect to it).

Working in the domain of structural pattern recognition, Xiao et al. [19] have
explored how the heat kernel trace can be used as a means to characterize the
structural complexity of graphs. To do this, they first consider the zeta function
associated with the Laplacian eigenvalues and use the derivative of zeta function
at origin as a characterization for distinguishing different types of graphs. Ren
et al. [15] have developed a novel method to characterize unweighted graphs by
using the polynomial coefficients determined by the Ihara zeta function. To do
this, they construct a pattern vector of Ihara coefficients, and successfully use this
to cluster unweighted graphs. Furthermore, they extend their work by applying
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Ihara coefficients from unweighted graphs to edge-weighted graphs, which is
achieved by establishing the Perron-Frobenius operator with the assistance of a
reduced Bartholdi zeta function.

Escolano et al. [8] have used the concept of thermodynamic depth to measure
the complexity of networks. They first define the polytopal complexity of a graph
and then introduce a phase-transition principle which links this complexity to
the heat flow, and thus obtain a complexity measure referred as flow complexity.
Recently, Han et al. [12] have developed simplified expressions of von Neumann
entropy on undirected graphs. To do this, they replace the Shannon entropy by
its quadratic counterpart, investigate how to simplify and approximate the cal-
culation of von Neumann entropy. They also explore the relationship among the
heterogeneity index, commute time and the von Neumann entropy, and introduce
a graph complexity measure based on thermodynamic depth.

The above provides a brief survey of recent work on the structural complex-
ity of undirected graphs. However, in the real world, directed graphs are also
common as many networks can be modelled with them. For example, the World
Wide Web is a directed network in which vertices represent web pages while
edges are the hyperlinks between pages.

Turning our attention to directed graphs, Riis [16] has extended the concept of
entropy to directed graphs, using the definitions of guessing number and shortest
index code. He shows that the entropy is the same as the guessing number and
can be bounded by the graph size and shortest index code size. Berwanger et
al. [4] have proposed a new parameter for the complexity of infinite directed
graphs by measuring to what extent the cycles in graphs are intertwined. This
index is defined according to the definitions of tree width, directed tree width
and hypertree width and a similar ’robber-and-cops’ game. Recently Escolano
et al. [9] have extended the concept of heat diffusion thermodynamic depth for
undirected networks to directed networks and thus obtain a measure to quantify
the complexity of structural patterns encoded by directed graphs.

1.2 Paper Outline

One natural way of capturing the structure of directed networks is to use statis-
tics that capture the balance of in-degree and out-degree at vertices. In this pa-
per we commence from Passerini and Severini’s work [13], which interprets the
normalized Laplacian as a density matrix for an undirected graph, and this in
turn allows the graph to be characterized in terms of the von Neumann entropy
associated with the density matrix. We extend this work to directed graphs,
using Chung’s [6] definition of the normalized Laplacian on a directed graph.
According to this definition, the directed normalized Laplacian is Hermitian,
so Passerini and Severini’s interpretation still holds for the domain of directed
graphs. The von Neumann entropy is essentially the Shannon entropy associ-
ated with the normalized Laplacian eigenvalues. If we approximate the Shannon
entropy by its quadratic counterpart, then the von Neumann entropy can be
simplified. The resulting expression depends on the in-degree and out-degree of
pairs of vertices connected by edges.
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To simplify this resulting expression a step further, we consider graphs that
are either weakly or strongly directed, i.e. those in which there are large or small
proportions of bidirectional edges, and develop corresponding approximations of
the von Neumann entropy.

Finally, we explore how Estrada’s heterogeneity index can be extended from
undirected to directed graphs. Our study of von Neumann entropy suggests a
statistic determined by the in-degree and out-degree for nodes connected by
a directed edge. We show that the resulting heterogeneity index is linked to
the difference between the elements of the normalized adjacency matrix (as a
local measure of connectivity) and the average commute time between nodes (or
resistance distance) as a more global measure of connectivity structure.

The outline of this paper is as follows. In Sect.2, we develop the simplified
forms of von Neumann entropy of directed graphs, and in Sect.3, we introduce the
heterogeneity index and commute time on directed graphs and then investigate
their correlation. In Sect.4, we analyze our theoretical result by undertaking
experiment on network datasets and finally we conclude this paper with an
evaluation of our contribution and suggestions for future work.

2 Von Neumann Entropy of Directed Graphs

In this section, we propose novel methods for characterizing the complexity of
directed graphs. The first method is based on extending the definition of von
Neumann entropy from undirected to directed graphs. To do this we commence
from Chung’s definition of the Laplacian for directed graphs. This leads to an
expression for the von Neumann entropy in terms of the in-degree and out-degree
statistics of vertices. We then provide approximations for the von Neumann
entropy for both strongly directed graphs where there are few bidirectional edges
and weakly directed graphs where there are few edges that are not bidirectional.

2.1 Laplacian of Directed Graphs

Suppose G(V,E) is a directed graph with vertex set V and edge set E ⊆ V ×V ,
then the structure of this graph can be represented by a |V | × |V | adjacency
matrix A as follows (where |V | is the number of vertices in the graph)

Aij =

{
1 if (i, j) ∈ E
0 otherwise.

(1)

The in-degree and out-degree of vertex i are

dini =

|V |∑
j=1

Aji, douti =

|V |∑
j=1

Aij . (2)

With these ingredients, the transition matrix P for the directed graph G is
defined as
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Pij =

{
Aij

dout
i

if (i, j) ∈ E

0 otherwise.
(3)

According to the Perron-Frobenius Theorem, for a strongly connected directed
graph, the transition matrix P has a unique left eigenvector φ with φ(i) > 0, ∀i
which satisfies φP = ρφ where ρ denotes the eigenvalue of P . The theorem also
implies that if P is aperiodic, the eigenvalues of P have absolute values smaller
than the leading eigenvalue ρ = 1. Thus any random walk on a directed graph
will converge to a unique stationary distribution if the graph satisfies the prop-

erties of strong connection and aperiodicity. We normalize φ s.t.
∑|V |

i=1 φ(i) = 1,
this normalized vector corresponds to the unique stationary distribution. There-
fore, the probability of a random walk is at vertex i is the sum of all incoming
probabilities of vertices j satisfying (j, i) ∈ E, i.e. φ(i) =

∑
j,(j,i)∈E φ(j)Pji, then

we can obtain the following approximate equation

φ(i)

φ(j)
≈ dini

dinj
. (4)

As stated in Chung [6], if we let Φ = diag(φ(1), φ(2), ...), then the normalized
Laplacian matrix of a directed graph can be defined as

L̃ = I − Φ1/2PΦ−1/2 + Φ−1/2PTΦ1/2

2
. (5)

Clearly, the normalized matrix is Hermitian matrix, i.e. L̃ = L̃T where L̃T

denotes the conjugated transpose of L̃.

2.2 Von Neumann Entropy of Undirected Graphs

Having defined the prerequisites, we now show how the concept of von Neumann
entropy can be extended from undirected to directed graphs. Passerini and Sev-
erini [13] have argued that the normalized Laplacian can be interpreted as the
density matrix of an undirected graph, and hence the associated von Neumann
entropy of the graph is the Shannon entropy associated with the normalized
Laplacian eigenvalues, i.e.

HU
V N = −

|V |∑
i=1

λ̃i
|V | ln

λ̃i
|V | (6)

where λ̃i, i = 1, ..., |V | are the eigenvalues of the normalized Laplacian matrix.
Commencing from their definition, Han et al. [12] have shown that for an

undirected graph G(V,E), the Shannon entropy HU
S = −

|V |∑
i=1

λ̃i
|V | ln

λ̃i
|V | can be

approximated by the quadratic entropy HU
Q =

|V |∑
i=1

λ̃i
|V | (1−

λ̃i
|V | ). As a result the

von Neumann entropy of undirected graphs can be approximated by
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HU
V N =

Tr[L̃]

|V | − Tr[L̃2]

|V |2 . (7)

For undirected graphs, the traces appearing in the above expression can be
approximated by degree statistics, with the result that

HU
VN = 1− 1

|V | −
1

|V |2
∑

(i,j)∈E

1

didj
. (8)

2.3 Von Neumann Entropy of Directed Graphs

To extend the analysis of Han et al. [12] to directed graphs, we commence from
(7) and repeat the computation of traces for the case of a directed graph. This
is not a straightforward task, and requires that we distinguish between the in-
degree and out-degree of vertices. To commence, we turn to Chung’s expression
for the normalized Laplacian of directed graphs and write

Tr[L̃] = Tr[I − Φ1/2PΦ−1/2 + Φ−1/2PTΦ1/2

2
]

= Tr[I]− 1

2
Tr[Φ1/2PΦ−1/2]− 1

2
Tr[Φ−1/2PTΦ1/2]. (9)

Since the trace is invariant under cyclic permutations, i.e. Tr[ABC] = Tr[BCA]
= Tr[CAB], we have

Tr[L̃] = Tr[I]− 1

2
Tr[PΦ−1/2Φ1/2]− 1

2
Tr[PTΦ1/2Φ−1/2]

= Tr[I]− 1

2
Tr[P ]− 1

2
Tr[PT ]. (10)

The diagonal elements of the transition matrix P are all zeros, hence we obtain

Tr[L̃] = Tr[I] = |V |, (11)

which is exactly the same as in the case of undirected graphs.
Next we turn our attention to Tr[L̃2],

Tr[L̃2] = Tr[I2 − (Φ1/2PΦ−1/2 + Φ−1/2PTΦ1/2) +

1

4
(Φ

1/2
PΦ

−1/2
Φ

1/2
PΦ

−1/2
+ Φ

1/2
PΦ

−1/2
Φ

−1/2
P

T
Φ

1/2
+

Φ−1/2PTΦ1/2Φ1/2PΦ−1/2 + Φ−1/2PTΦ1/2Φ−1/2PTΦ1/2)]

= Tr[I
2
] − Tr[P ] − Tr[P

T
] +

1

4
(Tr[P

2
] + Tr[PΦ

−1
P

T
Φ] + Tr[P

T
ΦPΦ

−1
] + Tr[P

T2
])

= |V |+
1

2
(Tr[P

2
] + Tr[PΦ

−1
P

T
Φ]), (12)

which is different to the result obtained in the case of undirected graphs.
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To continue the development we first divide the edge set E into two dis-
joint subsets E1 and E2, where E1 = {(i, j)|(i, j) ∈ E and (j, i) /∈ E}, E2 =
{(i, j)|(i, j) ∈ E and (j, i) ∈ E} that satisfy the conditions E1

⋃
E2 = E,

E1

⋂
E2 = ∅. Then according to the definition of the transition matrix, we

find

Tr[P 2] =

|V |∑
i=1

|V |∑
j=1

PijPji =
∑

(i,j)∈E2

1

douti doutj

. (13)

Using the fact that Φ = diag(φ(1), (2), ...) we have

Tr[PΦ−1PTΦ] =

|V |∑
i=1

|V |∑
j=1

P 2
ij

φ(i)

φ(j)
=

∑
(i,j)∈E

φ(i)

φ(j)dout
2

i

. (14)

Using (4), i.e. φ(i)
φ(j) ≈ din

i

din
j
, we can approximate the von Neumann entropy of a

directed graph in terms of the in-degree and out-degree of the vertices as follows

HD
V N = 1− 1

|V | −
1

2|V |2

{ ∑
(i,j)∈E

(
1

douti doutj

+
dini

dinj dout
2

i

)
−

∑
(i,j)∈E1

1

douti doutj

}
,

(15)
or equivalently,

HD
VN = 1− 1

|V | −
1

2|V |2

{ ∑
(i,j)∈E

dini
dinj dout

2

i

+
∑

(i,j)∈E2

1

douti doutj

}
. (16)

We can simplify this expression a step further according to the relative sizes of
the sets E1 and E2.

For weakly directed graphs, |E1| � |E2|, i.e. few of the edges are not bidi-
rectional, and we can ignore the summation over E1 in (15). Re-writing the
remaining terms in curly braces in terms of a common denominator and then
dividing numerator and denominator by douti doutj we obtain

HWD
VN = 1− 1

|V | −
1

2|V |2
∑

(i,j)∈E

din
i

dout
i

+
din
j

dout
j

douti dinj
. (17)

The first term 1 − 1
|V | tends to unity as the graph size becomes large and the

remaining term is normalized by 2|V |2. In its second term above, the numerator
is given in terms of the sum of the ratios of in-degree and out-degree at the two
vertices. Since the directed edges cannot commence at a sink (a node of zero out-

degree), the ratios do not become infinite. Replacing dout
2

i in the denominator by
dini douti , we obtain the following expression that approximates the von Neumann
entropy for weakly directed graphs
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HWD
V N = 1− 1

|V | −
1

2|V |2
∑

(i,j)∈E

{
1

douti dinj
+

1

dini doutj

}
. (18)

On the other hand, for strongly directed graphs, there are few bidirectional edges,
i.e. |E2| � |E1|, and we can ignore the summation over E2 in (16), giving the
approximate entropy for strongly directed graphs

HSD
V N = 1− 1

|V | −
1

2|V |2
∑

(i,j)∈E

{
1

douti dinj

}
. (19)

Both the weakly and strongly directed forms of the von Neumann entropy (HWD
V N

and HSD
V N ) contain two terms. The first is the graph size while the second one

depends on the in-degree and out-degree statistics of each pair of vertices linked
by an edge. Moreover, the computational complexity of these expressions is
quadratic in the graph size.

There are a number of points to note concerning the development above. First,
the normalized Laplacian matrix of directed graphs denoted by L̃ in (5) satisfies
Passerini and Severini’s conditions [13] for the density matrix. Moreover, we
have shown that L̃ is Hermitian matrix, so its eigenvalues are all real. Hence
theoretically, the density matrix interpretation of Passerini and Severini [13] can
be extended to directed graphs. Second, when the out-degree and in-degree are
the same at a vertex, then the von Neumann entropy for directed and undirected
graphs are identical.

3 Heterogeneity Index and Commute Time

In this section, we present an index which quantifies the heterogeneous properties
of directed graphs. We introduce the definitions of hitting time and commute
time and describe how to compute them, then explore that on undirected graphs,
there exists a relationship between heterogeneity index and commute time, and
show that the similar relationship also applies to the directed graphs.

3.1 Heterogeneity Index of Directed Graphs

Following Estrada [10], in order to compute a heterogeneity index for directed
graphs, we first require a local index to measure the irregularity associated with
a single edge (i, j) ∈ E. Estrada [10] uses the following quantity to measure the
variation in degree

σU
ij = [f(di)− f(dj)]

2 (20)

where f(d) is a function of the vertex degree. To extend this measure to directed
graphs, we measure the difference in out-degrees and in-degrees and write

σD
ij = [f(douti )− f(dinj )]2. (21)
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This local heterogeneity measure takes on a value zero when the out-degree of the
starting vertex is the same as the in-degree of the end vertex. On the other hand,
the index should become larger when the difference of both degrees increases,
thus we can select f(d) = d−1/2. The local heterogeneity index associated with
the irregularity of the edge (i, j) ∈ E in a directed graph is given by

σD
ij =

(
1√
douti

− 1√
dinj

)2

. (22)

To compute the global heterogeneity index of a directed graph we sum the local
measure over all the edges in the graph to obtain

ρD(G) =
∑

(i,j)∈E

{
1√
douti

− 1√
dinj

}2

=
∑

(i,j)∈E

{
1

douti

+
1

dinj

}
−2

∑
(i,j)∈E

1√
douti dinj

.

(23)

The heterogeneity index should take on a minimal value when the graph is
regular, i.e. all the vertices have the same in-degree and out-degree. It is maximal
when the graph is a star graph, i.e. there exists a central vertex such that all the
other vertices connect and only connect to it. We calculate the lower and upper
bounds of ρD(G) according to these constraints. For a regular directed graph,
suppose all the vertices have the same in-degree and out-degree d0, then

ρD(G) =
∑

(i,j)∈E

{
1

d0
+

1

d0

}
−2

∑
(i,j)∈E

1

d0
= 0.

On the other hand, for a star graph, suppose that the central vertex has out-
degree (in-degree) |V | − 1 and all the other vertices have in-degree (out-degree)
1. Then,

ρD(G) =

|V |∑
i=1

(
1

|V | − 1
+1)−2

|V |∑
i=1

1√|V | − 1
=

|V |(|V | − 2
√|V | − 1)

|V | − 1
≈ |V |−2

√
|V | − 1.

We hence have the following lower and upper bounds for the heterogeneity index

0 ≤ ρD(G) =
∑

(i,j)∈E

{
1

douti

+
1

dinj
− 2√

douti dinj

}
≤ |V | − 2

√
|V | − 1. (24)

Therefore we can define the normalized heterogeneity index of directed graphs
as

ρ̃D(G) =
1

|V | − 2
√
|V | − 1

∑
(i,j)∈E

{
1

douti

+
1

dinj
− 2√

douti dinj

}
(25)

This index is zero for regular directed graphs, one for star graphs, i.e. 0 ≤
ρ̃D(G) ≤ 1.
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3.2 Commute Time of Directed Graphs

To take our development one step further, we establish a relationship between
the heterogeneity index and the commute time (or resistance distance) between
nodes in a graph. To this end we commence by introducing the definitions of
hitting time and commute time on directed graphs. The hitting time QD

ij is the
expected number of steps for a random walk to reach vertex j for the first time,
starting from vertex i. The commute time CD

ij is the sum of QD
ij and QD

ji, i.e.

CD
ij = QD

ij +QD
ji, is the expected number of steps of a random walk starting at

vertex i, visits j for the first time and then returns to vertex i.
Our expressions for both the hitting time and commute time are from Boley

et al. [5]. We first introduce the definition of fundamental matrix Z which has
elements

Zij =

∞∑
t=0

(P t
ij − φ(j)), 1 ≤ i, j ≤ |V | (26)

or in matrix form,

Z =
∞∑
t=0

(P t − 1φ) (27)

where P is the transition matrix, 1 = (1, ..., 1)T and φ is the stationary distri-
bution.

The formulae for hitting time and commute time are

QD
ij =

Zjj − Zij

φ(j)
, CD

ij = QD
ij +QD

ji =
Zjj − Zij

φ(j)
+
Zii − Zji

φ(i)
. (28)

3.3 Relationship between Heterogeneity Index and Commute Time

According to Estrada [10], the normalized heterogeneity index of undirected
graph has the following form

ρ̃U (G) =
1

|V | − 2
√
|V | − 1

∑
(i,j)∈E

{
1

di
+

1

dj
− 2√

didj

}
. (29)

Recently, von Luxburg et al. [17] have shown that if the graph size is large
enough, then the hitting time and commute time can be approximated by the
resistance distance which takes on a simple form in terms of the vertex degree.

In particular, CU
ij ≈ vol

(
1
di

+ 1
dj

)
where vol is the volume of graph defined

by vol =
∑|V |

i=1 di. As a result the first term appearing in the expression for
Estrada’s heterogeneity index can be expressed in terms of commute time.

To take this development one step further, we note that the normalized ad-
jacency matrix for an undirected graph is given by Ã = D−1/2AD−1/2 where
D is the diagonal matrix of vertex degrees. The normalized adjacency matrix
has elements Ãij = 1√

didj

, if (i, j) ∈ E. As a result, in the heterogeneity index
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formula, if we make the substitutions 1
di

+ 1
dj

=
CU

ij

vol and 1√
didj

= Ãij we obtain

the approximation

ρ̃U (G) ≈ 1

|V | − 2
√
|V | − 1

∑
(i,j)∈E

{
CU

ij

vol
− 2Ãij

}
. (30)

To extend this result to directed graphs, we note that

∑
(i,j)∈E

{
1

douti

+
1

dinj

}
≈

∑
(i,j)∈E

CD
ij

vol
(31)

where vol =
∑|V |

i=1 d
out
i =

∑|V |
i=1 d

in
i . If we denote by Dout, Din the diagonal

matrices of vertex out-degrees and in-degrees respectively, then the normalized

adjacency matrix for a directed graph is ÃD = D
−1/2
out AD

−1/2
in with elements

ÃD
ij =

1√
dout
i din

j

, if (i, j) ∈ E.

Hence, we obtain the following relationship between the heterogeneity index
and commute time on directed graphs as

ρ̃D(G) ≈ 1

|V | − 2
√
|V | − 1

∑
(i,j)∈E

{
CD

ij

vol
− 2ÃD

ij

}
. (32)

Thus we have shown that this relationship between heterogeneity index and
commute time applies not only to undirected graphs but also to directed graphs.

Hence for both directed and undirected graphs, if the heterogeneity index
is chosen in an appropriate way then there are two observations that can be
drawn from this analysis. First, the heterogeneity index is proportional to the
average commute time over pairs of nodes connected by an edge. Second, the
heterogeneity index is greatest when the difference between the commute time
and the twice the normalized adjacency matrix element is greatest. Hence, the
heterogeneity index will be smallest for regular graphs and greatest for trees or
star graphs.

4 Experiments and Evaluations

We have suggested several novel methods to measure the structural complexity
of directed graphs. In this section, we aim to evaluate these methods on network
data and give empirical analysis of their properties. First we examine both the
weakly and strongly directed forms of von Neumann entropy, and compare their
performance. Next, we explore whether our theoretically derived relationship
between the heterogeneity index and commute time holds for both undirected
and directed graphs.
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4.1 The Datasets

Before undertaking our experiments, we first give a brief overview of the datasets
used. The first dataset contains 150 undirected graphs in which the graph
size varies from 50 to 100 nodes. Of this sample, 50 graphs are generated us-
ing the Erdos-Renyi model, which is considered as the most classical random
graph model. An additional 50 graphs are generated according to the ’small-
world’ model, which was introduced by Watts and Strogatz [18]. The remaining
50 graphs are generated using the ’scale-free’ model, which was developed by
Barabasi and Albert [3]. The second dataset contains Protein-Protein Interac-
tion (PPI) networks extracted from Franceschini et al. [11]. These graphs repre-
sent the interaction relationships between histidine kinase in different species of
bacteria. The third dataset consists of 10 evolving directed networks. Each net-
work commences from a fully connected network of size 5, and evolves gradually
with new connections being established proportionally to the current dynamical
activity of each vertex (preferential attachment). This dataset is generated using
the model developed by Antiqueira et al. [2].

4.2 Entropy for Weakly and Strongly Directed Graphs

Equations (18) and (19) give the simplified forms of the von Neumann entropy for
weakly and strongly directed graphs. We calculate them according to these two
equations respectively and compare their behaviours with a reference entropy,
i.e. the approximate von Neumann entropy generated using (15) (or equivalently,
(16)), on the weakly and strongly directed networks in the third dataset.
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Fig. 1. Entropy for weakly & strongly directed graphs

We see in both Fig.1(a) and Fig.1(b), as the network evolves, both the simpli-
fied form and the reference entropy increase approximately monotonically until
a plateaux value of unity is reached. Moreover, it is worth noting that the dif-
ference between these two quantities is negligible, thus we conclude that for
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weakly (strongly) directed graphs, the approximate von Neumann entropy and
the simplified weakly (strongly) directed form we suggested are approximately
equivalent.

We then explore whether the von Neumann entropy can be used to distinguish
different types of graph. To this end we create directed versions of the Erdos-
Renyi, ’small-world’ and ’scale-free’ graphs by deleting at random elements from
the adjacency matrix. This has the effect of creating directed edges. In this
analysis we consider the quantity

J =

∣∣∣∣HD
VN − (1− 1

|V | )
∣∣∣∣= 1

2|V |2

{ ∑
(i,j)∈E2

1

douti doutj

+
∑

(i,j)∈E

dini
dinj dout

2

i

}

which removes some of the size dependence of the entropy.
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Fig. 2. Directed/Undirected graph characterization using von Neumann Entropy

In the left-hand of Fig.2, the plot shows superimposed histograms of J for each
of the three types of directed graph. The main feature to note is that the Erdos-
Renyi graphs are well separated from the ’small-world’ and ’scale-free’ graphs.
Moreover, the ’scale-free’ and ’small-world’ networks although overlapped are
reasonably well separated. The right-hand panel of Fig.2 repeats this analysis
for the undirected versions of the three types of graph, using the original form of
the von Neumann entropy suggested by Han et al. [12]. Here there is significantly
more overlap, and the different types of network can not be easily separated,
especially for the ’small-world’ and ’scale-free’ networks.

4.3 Heterogeneity Index and Commute Time

We have shown theoretically that the heterogeneity index has a linear depen-
dance on the the commute time for both undirected and directed graphs. In
this subsection we aim to confirm these results empirically. In Fig.3 we plot the
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heterogeneity index versus commute time for different types of graphs. Here the
commute time of undirected graphs is calculated precisely using the graph spec-
tral formula used by Qiu and Hancock [14]. Figure 3(a) shows the result for the
Erdos-Renyi, ’small-world’ and ’scale-free’ graphs (shown in different colours).
All three types of graphs follow a linear trend (i.e. they satisfy our theoretical
prediction), but populate different parts of the ’heterogeneity-commute time’
space. The second plot is for the protein-protein interaction networks. Although
there are some outliers, most of the data falls in a linear regression curve. In fact,
these outliers represent the graphs with particularly small graph size (e.g. 6 or
8), which is too small compared with others, thus these graphs do not perform
the similar relation as other graphs do. Then we turn our attention to Fig.3(c),
which is the plot of heterogeneity index versus average commute time for the
directed graphs in the evolving sequence. The commute time here is computed
according to (28). For the tightly clustered points in the upper right-hand cor-
ner of the plot, there is again a clear linear relationship, which confirms our
theoretical prediction in (32).

Finally we explore the performance of directed graph characterization us-
ing the heterogeneity index. The histogram of the directed graph heterogeneity
index is shown in Fig.4. In the histogram the ’scale-free’ graphs are perfectly
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Fig. 3. Relationship between Heterogeneity Index and Commute Time on undi-
rected/directed graphs

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

heterogeneity index

fr
eq

ue
nc

y

 

 

Erdos−Renyi
small−world
scale−free

Fig. 4. Directed graph characterization using Heterogeneity Index
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separated from the Erdos-Renyi and ’small-world’ graphs. The result is not un-
expected since for ’scale-free’ graphs, the difference in the vertex in-degrees and
out-degrees is particularly large, and the heterogeneity index of such graphs is
greater than that for other types of graphs.

5 Conclusion

In this paper, motivated by the aim of developing novel and effective methods
for quantifying the structural complexity of directed graphs, first we have devel-
oped approximations of the von Neumann entropy for both strongly and weakly
directed graphs. They both depend on the vertex in-degree and out-degree statis-
tics. Our approximations are based on using Chung’s definition of normalized
Laplacian matrix of directed graphs and simplifying the calculation via replac-
ing the Shannon entropy by the quadratic entropy. Next, following the idea of
developing the heterogeneity index for undirected graphs proposed by Estrada
[10], we construct a similar measure which quantifies the heterogeneous proper-
ties of directed graphs. Moreover, concerning the commute time (or resistance
distance), we have found that on an undirected graph, the heterogeneity index
has a particular relation with it. Extending this correlation to directed graphs,
we have discovered that they also exhibit a similar behaviour, which shows that
the heterogeneity index can be approximated by the commute time and the nor-
malized adjacency matrix. Then, in order to evaluate these methods and analyze
their properties, we have undertaken some experiments on both undirected and
directed network data and the experimental outcomes have demonstrated the
effectiveness of our methods. In the future, our work can be extended by intro-
ducing more approaches to improving the measures we proposed in this paper
for representing the structural complexity for directed graphs, and developing
more novel indices which can reflect a directed graph’s structure based on the
entropy and heterogeneity index.
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Abstract. We introduce a novel algorithm to learn mixtures of Gamma
distributions. This is an extension of the k-Maximum Likelihood Esti-
mator algorithm for mixtures of exponential families. Although Gamma
distributions are exponential families, we cannot rely directly on the ex-
ponential families tools due to the lack of closed-form formula and the
cost of numerical approximation: our method uses Gamma distributions
with a fixed rate parameter and a special step to choose this parameter is
added in the algorithm. Since it converges locally and is computationally
faster than an Expectation-Maximization method for Gamma mixture
models, our method can be used beneficially as a drop-in replacement in
any application using this kind of statistical models.

1 Introduction and Prior Work

Statistical mixtures are among the most used tools in many applications which re-
quire to model experimental data with probability distributions. Such a mixture
m(x) is a weighted sum of components which are themselves probability distribu-
tions (usually the same kind of distribution is shared by all the components):

m(x) =

k∑
i=1

ωip(x; θi) (1)

The big challenge here is to learn the parameter vectors ω and θ and the number
of components k (we limit us to the case of finite mixtures but some algorithms
may consider mixtures with an infinite number of components [1]). One of the
most famous algorithms to learn the parameters ω and θ is the Expectation-
Maximization (EM) algorithm [2].

We address here the problem of learning mixtures of Gamma distributions
(see Fig. 1). Although not as common as Gaussian mixture models, Gamma
mixtures are of interest in many applications as various as bioinformatics [3],
communication networks modeling [4] or health services analysis [5] and a lot of
work has been devoted to these mixtures.

Our new algorithm is an extension of thek-Maximum Likelihood Estimator (k-
MLE) algorithm by Nielsen [6]. It relies on the same principle which was already
used for mixtures of generalized Gaussians [7]. Our contribution is to provide

E. Hancock and M. Pelillo (Eds.): SIMBAD 2013, LNCS 7953, pp. 235–249, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. A mixture of Gamma distributions with 3 components: ω1 = 0.12, α1 = 1, β1 =
1; ω2 = 0.4, α2 = 4, β2 = 2; ω3 = 0.48, α3 = 30, β3 = 0.5

a new algorithm for Gamma mixtures which is faster than methods based on
Expectation-Maximization.

Since the studied method relies on the exponential families framework, the nec-
essary backgroundabout exponential families is recalled and we show that Gamma
distributions are members of the exponential families. After a description of two
algorithms designed to learn mixtures of exponential families, Bregman Soft Clus-
tering, which relies on EM and k-MLE, we explain why they are not well suited
for the particular case of Gamma mixtures. In the following section we present our
extension of k-MLE which allows to efficiently learn mixtures of Gamma distribu-
tions. In the last section we evaluate the effectiveness of our proposed algorithm
both in terms of computational cost and in terms of quality of the models.

2 Exponential Families and Their Parametrizations

2.1 Definition

Exponential families are a widespread class of distributions and many commonly
used distributions belong to this class (with the notable exception of the uniform
distribution): for example Gaussian, Beta, Gamma, Rayleigh, Von Mises are all
members of this class ([8] provides a vast list of exponential families with their
decomposition). An exponential family is a set of probability mass or probability
density functions which admits the following canonical decomposition:

p(x; θ) = exp(〈t(x), θ〉 − F (θ) + k(x)) (2)

with

– t(x) the sufficient statistic,
– θ the natural parameters,
– 〈·, ·〉 the inner product,
– F the log-normalizer,
– k(x) the carrier measure.
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The log-normalizer characterizes the exponential family and is derived from∫
p(x; θ)dx = 1 as:

F (θ) = log

∫
x

exp(〈t(x), θ〉 + k(x)) dx (3)

Many common distributions like the Beta, Gaussian or Dirichlet distributions
are exponential families once a 1-to-1 mapping from the usual parameterization
λ to the natural parameter θ is expressed [8]:

p(x;λ) = p(x; θ(λ)). (4)

Since this log-normalizer F is a strictly convex and differentiable function, it
admits a dual representation, the convex conjugate F ∗, by the Legendre-Fenchel
transform:

F 
(η) = sup
θ

{〈θ, η〉 − F (θ)} (5)

We get the maximum for θ = (∇F )−1 (η) and F 
 can be computed with:

F 
(η) = 〈η, (∇F )
−1

(η)〉 − F ((∇F )
−1

(η)) (6)

Thus we deduce that the gradient of F and of its dual F 
 are inversely reciprocal:

∇F = (∇F 
)
−1 (7)

The duality between F and its Legendre transform F 
 leads to a new
parametrization for the exponential families, which is the dual of the natural
parameters: the expectation parameters η = ∇F (θ). The parameters η are called
expectation parameters since η = E [t(x)] [8].

In the general case, the dual F 
 may be not known in closed-form and thus
may require numerical approximation (which is time consuming and proned to
various practical problems like the choice of the initialization for an iterative
procedure).

2.2 Bregman Divergences

Bregman divergences are a family of divergences parametrized by the set of
strictly convex and differentiable functions and is written as:

BF (p‖q) = F (p) − F (q) − 〈p − q, ∇F (q)〉 (8)

The function F is called the generator of the Bregman divergence.
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The family of Bregman divergences generalizes many usual divergences, for
example:

– the squared Euclidean distance, for F (x) = x2,
– the Kullback-Leibler (KL) divergence, with the Shannon negative entropy
F (x) =

∑d
i=1 xi log xi (also called Shannon information).

2.3 Bijection between Exponential Families and Bregman
Divergences

Banerjee et al. [9] showed that Bregman divergences are in bijection with the
exponential families through the generator F . For each exponential family with a
log-normalizer F there is one and only one Bregman divergence whose generator
is F 
, the Legendre dual of F . We can rewrite the exponential family in terms
of the corresponding Bregman divergence:

p(x; θ) = exp(〈t(x), θ〉 − F (θ) + k(x)) (9)
= exp(−BF�(t(x)‖η) + F 
(t(x)) + k(x)) (10)

where η is the expectation parameter of the family (η = ∇F (θ)).
This bijection allows in particular to compute the Kullback-Leibler divergence

between two members of the same exponential family:

KL (p(x, θ1); p(x, θ2)) =

∫
x

p(x; θ1) log
p(x; θ1)

p(x; θ2)
dx (11)

=BF (θ2‖θ1) (12)

where F is the log-normalizer of the exponential family and the generator of the
associated Bregman divergence.

Thus, computing the Kullback-Leibler divergence between two members of
the same exponential family is equivalent to computing a Bregman divergence
between their natural parameters (with swapped order).

2.4 Gamma Family Is an Exponential Family

The general case of the Gamma distribution is

p(x;α, β) =
βαxα−1 exp(−βx)

Γ (α)
(13)

with α, β > 0 and x is a positive real number.
The parameter α is called the shape parameter and β is called the rate pa-

rameter (or inverse scale parameter). It is common to find another parametriza-
tion which replace the rate parameter by the scale parameter θ = 1

β .
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This distribution is an exponential family with the following parametrization:

Natural Parameters. (θ1, θ2) = (−β, α− 1)

Sufficient Statistics. t(x) = (x, log x)

Log Normalizer. F (θ1, θ2) = (−(θ2 + 1) log(−θ1) + logΓ (θ2 + 1))

Gradient Log Normalizer. ∇F (θ1, θ2) =
(

θ2+1
−θ1

,− log(−θ1) + ψ(θ2 + 1)
)

Dual Log Normalizer. F 
(η1, η2) =
〈
(∇F )−1(η1, η2), (η1, η2)

〉
−

F
(
(∇F )−1(η1, η2)

)
Although the log-normalizer F and its gradient ∇F are known in closed-form, it
is not the case for its dual F 
 and for the gradient of the dual ∇F 
 = (∇F )

−1.
It thus requires numerical approximation, which is computationally costly.

3 Learning Mixtures of Exponential Families

3.1 Bregman Soft Clustering

The Bregman Soft Clustering for mixtures of exponential families has been in-
troduced in [9]. It is a meta-algorithm which takes the considered family as an
input of the algorithm and which does not require specific adaptation for each
family, contrary to most of the previously proposed methods. As a variant of
EM, it still relies on the usual two steps:

Expectation Step. The usual Expectation-Maximization algorithm gives us
the following formulation for the posterior probabilities:

p(i|xt, η) =
ωip(xt; ηi)∑k

j=1 ωjp(xt; ηj)
(14)

Using the bijection between exponential families, we can replace the probability
density function of the exponential family by its expression using the associated
Bregman divergence:

p(i|xt, η) =
ωi exp (−BF�(t(xi)‖ηi)) exp k(xt)∑k

j=1 ωj exp (−BF�(t(xt)‖ηj)) expk(xt)
(15)

=
ωi exp (−BF�(t(xt)‖ηi))∑k

j=1 ωj exp (−BF�(t(xt)‖ηj))
(16)
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Since BF�(p‖q) = F 
(p)−F 
(q)−〈p−q,∇F 
(q)〉 we can expand the expression
of the Bregman divergence in the previous expression:

p(i|xt, η) =
ωi exp (−F 
(t(xt))− F 
(ηi)− 〈t(xt)− ηi,∇F 
(ηi)〉)∑k

j=1 ωj exp (−F 
(t(xt))− F 
(ηj)− 〈t(xt)− ηj ,∇F 
(ηj)〉)
(17)

=
ωi exp (F


(ηi) + 〈t(xt)− ηi,∇F 
(ηi)〉)∑k
j=1 ωj exp (F 
(ηj) + 〈t(xt)− ηj ,∇F 
(ηj)〉)

(18)

Maximization Step. The maximization step is done with the maximum like-
lihood estimator for exponential families [9]. It can be computed as the average
of the sufficient statistics on the observations:

η̂ = E [t(x)] =
1

n

∑
t(xi) (19)

Notice that we get an estimate which lives in the space of the expectation pa-
rameters. If one wants the associated natural parameter θ̂ = ∇F 
(η̂), the ∇F 


function will be needed, either in closed-form or with a numerical approxima-
tion (which will be computationally costly). Note that the MLE is guaranteed
to exist if and only if η̂ falls inside the interior of the convex hull of the t(xi)’s.

3.2 k-Maximum Likelihood Estimator

Assume we have a set X = {x1, . . . , xn} of n observations which have been
sampled from a finite mixture model with k components. The joint probability
distribution of theses samples with the missing components zi (indicating from
which component each observation xi comes from) is:

p(x1, z1, . . . , xn, zn) =
∏
i

p(zi|ω)p(xi|zi, θ) (20)

Since the variables zi are not observed in practice, we marginalize these variable
and we get:

p(x1, . . . , xn|ω, θ) =
∏
i

∑
j

p(zi = j|ω)p(xi|zi = j, θ) (21)

The straightforward way to optimize this distribution would be to test the kn

labels but this is not tractable in practice. Instead, Expectation-Maximization
optimizes the following quantity, the expected log-likelihood:

l̄(x1, . . . , xn) =
1

n
log p(x1, . . . , xn) (22)

=
1

n

∑
i

log
∑
j

p(zi = j|ω)p(xi|zi = j, θ) (23)
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Contrary to this approach, the k-Maximum Likelihood Estimator maximizes the
average complete log-likelihood:

l̄′(x1, z1, . . . , xn, zn) =
1

n
log p(x1, z1, . . . , xn, zn) (24)

=
1

n

∑
i

log
∏
j

(
(ωjpF (xi, θj))

δ(zi)
)

(25)

=
1

n

∑
i

∑
j

δj(zi) (log pF (xi, θj) + log ωj) , (26)

where δj(zi) = 1 if and only if zi emanates from the j-th component.
Since pF is an exponential family, we have:

log pF (xi, θj) = −BF∗(t(x), ηj) + F 
(t(x)) + k(x)︸ ︷︷ ︸
does not depend on θ

(27)

The terms which do not depend on θ are of no interest for the maximization
problem and can be removed: We can then rewrite Eq. (26) to get the equivalent
problem:

argmin
∑
i

∑
j

δ(zi) (BF∗(t(x), ηj)− logωj) (28)
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Fig. 2. Block diagram for the original k-MLE algorithm and its extension
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As stated in [6] this problem can be solved for a fixed set of weights ωi using the
Bregman k-means algorithm with the Bregman divergence BF∗ (actually, any
heuristic for k-means is convenient).

The weights can now be optimized by taking ωi = |Ci|
n (where |Ci| is the

number of observations put in the cluster Ci by the solution of the previous
clustering problem). This step amounts to maximize the cross-entropy of the
mixture [6].

The full algorithm can be summarized as follows (see Fig. 2(a) for a block
diagram):

1. Initialization (choose seeds θi randomly or by using k-MLE ++[6]);
2. Assignment zi = argmaxj log(ωjpF (xi|θj));
3. Update of the η parameters ηi = 1

nj

∑
x∈Cj

t(xi);
Goto step 2 until local convergence;

4. Update of the parameters ωj ;
Goto step 2 until local convergence of the complete likelihood.

4 k-MLE for Gamma

4.1 Gamma with Fixed Rate Parameter

The algorithms described in the two previous sections needs frequent conversions
between natural parameters θ and expectation parameters η. The bijection be-
tween the two parameter spaces uses the functions ∇F and ∇F 
. ∇F 
 is not
known in closed-form for the Gamma distribution. Moreover, the evaluation of
the Bregman divergence BF� is also needed, but the function F 
 is also miss-
ing in closed-form. k-MLE may still be applicable to Gamma mixtures but the
numerical approximations needed would dramatically reduce the speed of the
algorithm, which is one of its main interests [10].

To avoid the computational difficulties for the functions which are not known
in closed form, we introduce the Gamma distribution with a fixed rate parameter.
The parameter β is not any more a member of the source parametrization and
is instead a parameter of the exponential family {pβ(x;α)}:

pβ(x;α) =
βαxα−1 exp(−βx)

Γ (α)
(29)

This is still an exponential family with the following parametrization (a compre-
hensive list of formulas is given in Table 1):

Natural Parameters. θ = α− 1

Log Normalizer. F (θ) = −(θ + 1) log(β) + logΓ (θ + 1)

Gradient Log Normalizer. ∇F (θ) = − log(β) + ψ(θ + 1)



Fast Learning of Gamma Mixture Models with k-MLE 243

Dual Log Normalizer. F 
(η) = 〈∇F 
(η), η〉 − F (∇F 
(η))

Gradient of the Dual Log Normalizer. ∇F 
(η) = (∇F )−1(η)

The ∇F function can be inverted in closed-form with respect to the inverse
digamma function ψ−1, yielding:

(∇F )−1(η) = ψ−1(η + log β)− 1 = ∇F 
(η) (30)

We can now compute the F 
 function by directly applying the Legendre trans-
form to the log-normalizer F :

F 
(η) = 〈∇F 
(η), η〉 − F (∇F 
(η)) (31)

= η (ψ−1(η + log β)− 1) + ψ−1(η + log β) log β

− logΓ
(
ψ−1(η + log β)

) (32)

Strictly speaking, this is still not a closed-form but, contrary to the functions we
get for the full Gamma distribution, the two missing functions Γ and ψ−1 can
be computed efficiently: algorithms for the Γ function are well known [11] and
ψ−1 is numerically well behaved and can be computed efficiently computed with
a dichotomic search1.

4.2 Maximum Likelihood Estimator

Results from exponential families [9] give an estimator for the expectation pa-
rameters of the fixed rate family:

η̂ =
1

n

∑
t(xi) =

1

n

∑
log(xi) = − log α̂+ ψ(β) (33)

Since the family is univariate (i.e., one parameter α), the MLE always exist.
By derivation of the likelihood function, we get an estimator for the rate

parameter β [4]:

β̂ =
nα̂∑
xi

(34)

4.3 Learning Mixtures

The original k-MLE algorithm builds mixture models where all the components
belong to the same exponential family. Although generic Gamma distributions
1 See http://hips.seas.harvard.edu/files/invpsi.m for a working Matlab(R) im-

plementation which can be easily translated in any language.

http://hips.seas.harvard.edu/files/invpsi.m
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Table 1. Gamma distribution with fixed rate as an exponential family

PDF pβ(x;α) =
βαxα−1 exp(−βx)

Γ (α)

Λ → Θ θ = α− 1

Θ → Λ α = θ + 1

Λ → H η = − log β + ψ(α)

H → Λ α = ψ−1 (η + log β)

Θ → H η = ∇F (θ)

H → Θ θ = ∇F �(η)

Log normalizer F (θ) = −(θ + 1) log β + log Γ (θ + 1)

Gradient log normalizer ∇F (θ) = − log β + ψ(θ + 1)

Dual log normalizer F �(η) = η(ψ−1(η + log β) − 1) + ψ−1(η + log β) log β +
log Γ (ψ−1(η + log β))

Gradient dual log normalizer ∇F �(η) = ψ−1(η + log β)− 1

Sufficient statistic t(x) = log x

Carrier measure k(x) = −βx

are exponential families, Gamma distributions with fixed rate are not in the
same exponential family if the rate parameter is not the same across compo-
nents. In order to build a mixture with a different β parameter for each com-
ponent, we will follow the approach introduced in [7] (for generalized Gaussian)
which adds a supplementary step to the k-MLE procedure (see Fig. 2(b)): before
updating the weights, the family of each component is chosen using a maximum
likelihood estimator. In the Gamma case, it amounts to choosing the rate pa-
rameter of each component, using the MLE given in Eq. (34).

The new k-MLE algorithm for Gamma mixtures (k-MLE-Gamma) can be
summarized as follows:

1. Initialization (random or using k-MLE ++[6]);
2. Assignment zi = argmaxj log(ωjpFj (xi|θj));
3. Update of the η parameters ηi = 1

nj

∑
x∈Cj

log(xi);
Goto step 2 until stability (local convergence of the k-means);

4. Update of the parameters ωj and βj (for all j);
Goto step 2 until local convergence of the complete likelihood.

Notice that this algorithm can be interpreted as a hard EM-type algorithm with
two Maximization (M) steps.
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4.4 Convergence to a Local Maximum

As the one proposed for generalized Gaussian, this algorithm converges to a local
maximum of the complete log-likelihood. We want to minimize the same cost func-
tion as the original k-MLE algorithm, the complete log-likelihood of the mixture,
with the slight difference that the log-normalizer is not shared among components
but now depends on the values βj and is now written Fj instead of F :

l̄(x1, z1, ..., xn, zn|w, θ) =
1

n

n∑
i=1

k∑
j=1

δj(zi)(log pFj (xi|θj) + logωj) (35)

=
1

n

n∑
i=1

k∑
j=1

δj(zi)
(
−BFj

∗(t(xi), ηj)

+ Fj
∗(t(xi)) + kj(xi) + logωj

) (36)

Let Cj be the set of the indices of the observations sampled from the j-th com-
ponent. Maximizing the log-likelihood l̄ is equivalent to minimizing the cost
function −l̄:

l̄′ = −l̄ = 1

n

k∑
j=1

∑
i∈Cj

Uj (xi, ηj) (37)

where

Uj(xi, ηj) =−
(
log pFj (xi|θj) + logωj

)
(38)

= BFj
∗(t(xi) : ηj)− Fj

∗(t(xi)) (39)
− kj(xi)− log ωj

is the cost for the observation i to have been sampled from the component j.
Notice this cost depends on j since each component has a different generator Fj

and a different auxiliary carrier measure kj .
This minimization problem can be solved with the Lloyd k-means algorithm

[12] using the cost function U (which is not a distance nor a divergence and can
even be negative). A proof of the convergence of the Lloyd algorithm for this
cost function is given in [6,7].

After the execution of the Lloyd algorithm, the log-likelihood has been opti-
mized for fixed ωj and βj . The final step is to update these two parameters using
the proportion of samples in each cluster for the weights and the estimator for
β (from Eq. (34)).

5 Expectation-Maximization for Gamma Mixtures

Almhana et al. [4] proposed a specific variant of Expectation-Maximization for
Gamma mixtures. The E step is unchanged compared to the classical EM algo-
rithm, the only changes are in the M step: a specific update step is used for the
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α and β parameters. We will use this algorithm as a reference in the experiments
presented in Section 6.

Maximization Step. Given the current estimate for the parameters ω, α and
β, the new values can be computed with:

ω
(k+1)
i =

1

n

n∑
t=1

p(i|xt, θ(k)) (40)

β
(k+1)
i =

α
(k)
i

∑n
t=1 p(i|xt, θ(k))∑n

t=1 xtp(i|xt, θ(k))
(41)

α
(k+1)
i = α

(k)
i +

1

k
G (42)

with

G =
1

n

n∑
t=1

(
log xt + log β

(k)
i − ψ(α

(k)
i )

)
p(i|xt, θ(k)) (43)

6 Experiments

An implementation (in the C language) of the EM algorithm for
Gamma mixtures and of the k-MLE for Gamma mixtures is available at
http://www.lix.polytechnique.fr/~schwander/libmef/. In addition to the
algorithms studied in the article, some other mixture models related algorithms
are available (in particular: Bregman Soft Clustering, Bregman Hard Clustering,
others variant of k-MLE). The following experiments use this implementation to
evaluate our proposed algorithm.

6.1 On Synthetic Data

The first experiment evaluates the convergence of k-MLE and the convergence
of EM on a synthetic example: 15000 observations are sampled from a given
three-component Gamma mixture and the two evaluated methods are used to
estimate Gamma mixture models with three components. We draw in Fig. 3 the
log-likelihood of each mixture at each iteration of the two algorithms. Although
the goal of k-MLE is to maximize the complete log-likelihood (Eq. (24)) and not
the log-likelihood (Eq. (22) we see that both algorithms converge to a (local)
maximum of the log-likelihood. Moreover k-MLE provides better results and
converges way faster than EM.

6.2 On a Real Dataset

The second experiment describes experimental results on a real dataset which
collects distances between atoms inside RNA molecules in order to predict the

http://www.lix.polytechnique.fr/~schwander/libmef/
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Fig. 3. Log-likelihood with respect to the number of components for k-MLE (dashed
curve) and EM (plain curve). Higher curve (k-MLE model) means better model.

3D structure of these molecules. Gaussian mixture models were successfully used
to model the density of these distances [13] [14] but since the observations are
intrinsically positive a mixture model with a positive support (remember that
Gaussian distribution is defined on R whereas the Gamma distribution is defined
on R+) would be more statistically meaningful.
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Fig. 4. Log-likelihood and computation time ratios for k-MLE (right red bars) and EM
(left blue bars) with respect to the number of components in the mixture. EM is our
reference for comparison and thus has the score 1.

Fig. 4 presents results on this dataset, in terms of log-likelihood and compu-
tation time with respect to the number of components in the mixture (4, 8, 12
and 16 components). Since absolute value for likelihood and time are difficult to
compare meaningfully, we plot the mean ratio between the values we got with
k-MLE and the one got with EM (which is our reference for comparison and
represented by 1 on the graphics). We observe that k-MLE for Gamma mixtures
performs similarly (or even better) to EM for Gamma mixtures for the quality
of the models and outperforms EM for the computation time (between 10% and
40%). The only case where k-MLE is worse than EM is for 4 components: k-MLE
seems to be less robust when the number of components is not enough to model
accurately the observations.
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7 Conclusion

We presented a new algorithm for mixtures of Gamma distributions which is
both fast and accurate. Accuracy is important since it means that the quality
of the produced models (and thus the performances in the considered applica-
tions) will not decrease: our new algorithm could thus be considered as a drop-in
replacement for other Gamma mixtures algorithms. The faster speed not only
means that the computation time will decrease in applications where Gamma
mixtures are already used but also that these mixtures will become of new inter-
est in areas where the use of the Gamma distribution was theoretically interesting
but not feasible in practice due to the high computation time. Moreover, this
new extension of the k-Maximum Likelihood estimator shows the power and
the genericity of the method which allows interesting perspectives for new and
unexplored kinds of mixtures.

Acknowledgments. We thank the anonymous referees for their insightful com-
ments and their careful proofreading.
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Abstract. In this paper we exploit the use of known information about
the geometry structure of a recently proposed generative model, namely
Counting Grid (CG) [1] to improve the performance of classification accu-
racy. Once the generative model is trained, the geometric structure of the
model introduces a natural spatial relations among the estimated latent
variables. Such relation is generally ignored when standard maximum like-
lihood approach (or classical hybrid generative-discriminative approach)
is employed for classification purpose. In this work, we propose to take into
account the geometric relations of the generative model by proposing an
ad hoc similarity measure for CG. In particular, the values relative to each
point of the grid is spread around its neighborhood by using information
coming from the CG training phase. The proposed approach is succesfully
applied in two applicative scenarios: expression microarray classification
and MRI brain classification. Experiments show a drastic improvement
over standard schemes when our approach is employed.

Keywords: generative models, kernels, microarray, MRI.

1 Introduction

In pattern recognition some counting strategies are often introduced, especially
when source data is not naturally lying on a vectorial space. A very popular
example is the Bag of Words approach, where objects are represented as dis-
organized bags of basic components such as the words of a dictionary. This
approach has been succesfully employed in very different applicative domains
like computer vision for 2D image or 3D shape retrieval, in bioinformatics for
microarray classification, or in medical domain for brain disease detection [2–8].
However, the Bag of Words (BoW) method has some disadvantage since in many
situations it looses a lot of important information. For instance, BoW approach
does not take into account words relations or co-occurences. To this aim, LDA
or pLSA models have been succesfully proposed by showing how inter-relations
among words, i.e., topics are crucial to improve object encoding [9, 10]. Re-
cently, a new generative model has been proposed, namely Counting Grid (CG)
[1] which goes beyond topic-based approach. Indeed, CG exploits not only words
co-occurences but also topological relations among words. In particular, with CG
an ordering procedure between BoWs is introduced by allowing BoWs to lie in

E. Hancock and M. Pelillo (Eds.): SIMBAD 2013, LNCS 7953, pp. 250–264, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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an n-dimensional grid structure. Such approach has already shown its bene-
fits on document retrieval, 2D scene classification, and microarray expression
classification[1, 11]. In all these applications, the classification stage has been
computed by standard maximum likelihood scheme, or by employing discrim-
inative classifiers like Support Vector Machine (SVM) with generative kernels,
nevertheless without taking into account the peculiar geometry of the model.

In this paper we propose to further exploit the advantage of CGs by studing
an ad hoc (dis)similarity measure. We start from the observation that in the CG
scenario, the classical classification scheme is based on the grid posterior of a
given sample, which is treated as a vector and used for comparison. In such a
way, spatial relation between values is lost. Nevertheless, due to the nature of
the CG, in the training phase a BoW, or a count, is distributed on a local region
around a specific point in the grid which is defined by an hidden variable. This
leads to a spatial relation among grid points which can be used to improve the
classification stage. The idea is to spread the posterior evaluated on a single grid-
point around its neighborhood. In this fashion, when two samples are compared,
an implicit cross-count evaluation is introduced by avoiding a fully grid alignment
constraint. Experiments show that our new (dis-)simmilarity approach leads to
a drastic improvement in comparison with standard methods.

The rest of the paper is organized as following. In Section 2 the background on
Counting Grids is introduced. Section 3 describes the proposed (dis-)similarity
measure for the proposed generative model. Section 4 reports experiments on
two applicative domains, namely expression microarray classification and MRI
brain disease classification. Finally, conclusions and future work are discussed in
Section 5.

2 Background: Counting Grid Model

Data samples are often represented as an unordered bags of features, where
each t-th observation is characterized by a vector called count vector {ctz} which
contains the number of occurrences of each feature z [12, 9]. For instance, a text
document can be described by the number of words occurrences it contains (or an
image with the number of occurrences of different visual features it contains).
This choice is often motivated by the difficulty or computational efficiency of
modeling the known structure of the data.

The counting grid model, recently introduced in [1], is a generative model
that extends such representations. The models starts from a common choice in
counting data modelling, which implies that the bag of features of a given sample
is generated by a latent variable; in the counting grid model, nevertheless it
is assumed that a spatial relation between latent variables exists, and can be
learnt and used to improve the understanding of the models or to provide rich
descriptors for classification. More explicitly, we can unformally say that the
generative process of a given bag of features is based on a latent variable but
also on some of its spatial neighbours. Formally, the basic counting grid πi,z is a
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Fig. 1. An example of a counting grid geometry

set of normalized counts of features indexed by z on the 2-dimensional1 discrete
grid indexed by i = (i, j) where i ∈ [1 . . . E1], j ∈ [1 . . . E2] and E = [E1, E2]
describes the extent of the counting grid. Since π is a grid of distributions,∑

z πi,z = 1 everywhere on the grid.
A given bag of features, represented by counts {cz} is assumed to follow a

count distribution found in a patch of the counting grid. In particular, using
a window of dimensions W = [W1,W2], each bag can be generated by first
selecting a position k on the grid and then by placing the window in the grid
such that k is its upper left corner. Then, all counts in this patch are averaged
to form the histogram hk,z = 1

W1·W2

∑
i∈Wk

πi,z , and finally a set of features in
the bag is generated. In other words, the position of the window k in the grid is
a latent variable given which the probability of the bag of features {cz} is

p({cz}|k) =
∏
z

(hk,z)
cz =

1

W1 ·W2

∏
z

(
∑
i∈Wk

πi,z)
cz

where with Wk we indicate the particular window placed at location k (see
Figure 1).

We will refer to E and W respectively as the counting grid and the win-
dow size. We will also often refer to the ratio of the CG area and the window
area κ = E1·E2

W1·W2
, as the capacity of the model, which can be seen – using a

topic models parallelism – as an equivalent number of topics (this is how many
nonoverlapping windows can be fit onto the grid). Computing and maximizing
the log likelihood of the data turns to be an intractable problem; therefore it is
necessary to employ an iterative EM algorithm. The E step aligns all bags of
features to grid windows, to match the bags’ histograms, inferring the posterior
probability qtk, the probability that the sample t is generated from the position

1 N-dimensional in general, here we focus on 2 dimensions.
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k, i.e., where each bag maps on the grid. This posterior can be computed as
qtk ∝ exp

∑
z c

t
z · log hk,z. In the M-step the model parameter, i.e. the counting

grid π, is re-estimated. To avoid severe local minima it is important to consider
the Counting Grid as a torus, and perform all windowing operation accordingly.
For details on the learning algorithm and on its efficiency see [1].

3 (Dis-)Similarity Measure for CG

Once the training phase is performed, the CG πi,z is available and can be used
for classification purposes. Given a sample A, represented by counts {cAz }, its
posterior qAk is computed. In general, the matrix qAk can be used in a maximum
likelihood scheme or it can be fed in a discriminative classifier such as a Support
Vector Machine, after its vectorization, representing a straightforward hybrid
generative-discriminative classification approach. When using standard vector-
based kernels (like linear kernel), the implicit assumption is that counts are well
aligned, so that each count in one sample is only compared to corresponding
count in another sample. Here, we exploit cross-count distances by observing
that each point in the grid depends by its neighborhood which is defined by
W. Indeed, we propose to spread the values qAk around a neighborhood region
defined by Wk. Actually, by construction, the value in a given location k is
computed by using all CG parameters belonging to the subwindow W.

More in details, given two samples A and B, our similarity measure – which
we call Spreading Similarity Measure is defined by:

SSMS(A,B) = SM(qAk ∗ SW, qBk ∗ SW), (1)

where SW(x) is a box function, of dimension defined by the spreading window
W, defined as:

SW(x) =

{
1 if x ∈ W
0 otherwise,

(2)

and SM(·, ·) is any (dis)-similarity measure. In our experiments we evaluate stan-
dard inner product[13], histogram intersection [14], and Jensen-Shannon distance
[15]. Reasonably, we chose to set the size of the spreading windows as the size
of the Counting Grid Window. In the experimental part we make some exper-
iments while varying the dimension of the spreading window, showing that, as
expected, our choice is almost always the best choice.

Figure 2 shows the effect of our new (dis)similarity measure. Two posteriors
are displayed, each with a peak in a particular zone of the grid. When using a
punctual kernel (such as the histogram intersection kernel), which needs aligned
grids, we can observe that even if the two peaks are close in the grid the intersec-
tion is almost null, and therefore the similarity is null as well (see Figure 2(top)).
Conversely, in Figure 2(center) and 2(bottom) the grid intersection, and there-
fore the similarity, is significative and it increases with the size of the convolution
window.
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Fig. 2. The spreding effect of using our approach in comparing q1 and q2. The his-
togram intersection (KHI(·, ·)) is considered as measure SM(·, ·). When standard KHI

is considered no intersection is observed (top), while using the spreding strategy the
similarity between q1 and q2 is significative (center), and it increases with the size of
W.

As a further note: it is straightforward to show that if SM(·) is a kernel,
also our SSMS(·, ·) is a kernel. This may be of great practical importance, since
permits to develop a hybrid generative-discriminative scheme where SVM can
be used as discriminative classifiers.

4 Experimental Evaluation

In this section the experimental evaluation is presented. In particular, the pro-
posed framework is evaluated within two biomedical applications: cancer clas-
sification via the analysis of expression microarray and schizophrenia detection
through brain classification using MRI scans.

4.1 Microarray Classfication

In this application, the goal is to analyze gene expression microarray data in
order to distinguish between healthy people and people affected by cancer. The
starting point is a microarray gene expression matrix, where the element at
position (i, j) represents the expression level of the i − th gene in the j − th
subject/sample. Methods based on counting values (as CG and topic models)
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have been recently and successfully applied in this context (see, e.g., [16, 17,
11]). This is possible if we establish an analogy between a word-document pair
and a gene-sample pair; it seems reasonable to interpret samples as documents
and genes as words. In this way, the gene expression levels in a sample may
interpreted as the word counts in a document. Consequently, we can simply take
a gene expression matrix and (of course, after a preprocessing step, for example,
to remove possibly negative numbers [16]) interpret it as a count matrix C from
which a CG or a LDA model can be estimated.

The experiments presented in this paper have been performed using two mi-
croarray datasets: the ovarian [18] and the colon [19] datasets, whose character-
istics are summarized in table 1.

Table 1. Summary of the employed microarray datasets

Dataset Name n. of genes n. of samples n. of classes citation

1. Ovarian cancer 1513 53 2 [18]
2. Colon cancer 2000 62 2 [19]

4.2 Brain Classification

In this application the main goal is to distinguish between healthy and
schizophrenic people through the classification of MRI brain scans.

Data Set. The study population used in this work consists of 42 patients (21
male, 21 female) who were being treated for schizophrenia and 40 controls (19
male, 21 female) with no DSM-IV axis I disorders and had no psychiatric disor-
ders among first-degree relatives. Diagnoses for schizophrenia were corroborated
by the clinical consensus of two psychiatrists. T1 weighted structural MRI scans
were acquired with a 1.5 Tesla machine and to minimize biases and head motion,
restraining foam pads were used. The original image size is 384x512x144; these
images are then rotated and realigned to a resolution of 256x256x192. After this
alignment, they were segmented into specific brain regions called Regions of In-
terest (ROIs) manually by experts following a specific protocol for each ROI [20].
In this work, we use three ROIs from the two hemispheres of the brain summing
upto a total of six different brain regions: Dorsolateral prefrontal cortex (ldlpfc
and rdlpfc), Entorhinal Cortex (lec and rec), and Thalamus (lthal and rthal)
which are found to be impaired in schizophrenic patients.

Preprocessing. After the alignment and ROI tracing, DARTEL [21] tools within
SPM software [22] was used to pre-process the data. Initially, images are seg-
mented into grey and white matter in Native and DARTEL imported spaces. The
DARTEL imported images have lower resolution than the original images but
are used to spatially align to standard MNI atlas. In the second step, DARTEL
template generation is applied which creates an average template from the in-
put data while simultaneously aligning white and grey matter. In this step, the
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flowfields of the registration are also computed which will be used to segment
the MNI space normalized images into ROIs. In the final step, the DARTEL
template is used to spatially normalize all images into standard MNI space. In
this way, smoothed (12 mm Gaussian), and Jacobian scaled grey matter images
are constructed which is general practice in neuroimaging applications.

Feature Extraction. The images at the end of the preprocessing pipeline are the
intensity probability maps which are then used to construct the features for our
classification experiments. Since we already have ROI segmented source images,
using the flow fields computed in the second step of preprocessing we create the
intensity maps for every subject and ROI instead of extracting a single set of
features for the whole brain. Since the ROIs have different bounding boxes, the
sizes of these images are not the same for all subjects. By applying thresholding
at 0.2 level, we compute histograms of probability maps for every subject and
ROI. Number of bins in each histogram is chosen to be 40 which showed the
best performance in our experiments. As a result, we have a data set of six
different ROIs, 82 subjects with a counting vector of size 40 which we apply our
classification pipeline.

4.3 Experimental Details

The experimental evaluation is aimed at validating the proposed approach. In
particular, we start by assessing the baseline CG results, without any spread-
ing operation, using the ovarian dataset. Then we evaluate the impact of the
proposed approach. Third, we investigate the impact of the dimension of the
spreading window. Finally, we show some more results on the colon microarray
experiment and on the Brain MRI classification task.

For all the experiments the following protocol has been adopted:

– Since, as a base level, we are mostly interested in the quality of unsuper-
vised learning of the distributions over the samples, the whole dataset has
been used to train a CG (of course labels are ignored in this phase), in a
transductive way [13, 4]. As explained in the methodological section, here
we employed bidimensional squared Counting Grid models (in principle, also
higher dimensional/not squared grids can be used, see [1]). Two parameters
should be set when learning the Couting Grid: the dimension of the Grid
E and the dimension of the Window W. Here we performed a large scope
analysis, reporting results for many different configurations, with E ranging
from [10, 10] to [90, 90], and W ranging from [4, 4] to [19, 19]2. An interest-
ing parameter which can be used to summarize the dimension of a Counting
Grid is the capacity κ, which, as explained in the methodological section,
represents the ratio between the dimension of the grid and the dimension of
the window, and can be seen as the number of topics in the standard topic
models.

2 Of course only valid configurations were retained – e.g. E = [10, 10],W = [15, 15] is
not a valid configuration.



Exploiting Geometry in Counting Grids 257

– In order to avoid to get stuck in local optima during the learning procedure
(given the initialization, E-M converges to the nearest local optima), we
repeated the training 10 times, starting from random initialization, retaining
the model with the highest training likelihood.

– Given the model, an hybrid generative-discriminative approach is used to
perform classification. In particular, for every pair of samples A,B, rep-
resented by counts {cAz }, {cBz }, we computed its posterior qAk , q

B
k given the

learned counting grid, comparing them with a kernel, employed to perform a
discriminative classification via Support Vector Machines. In all experiments
the parameter C of the SVM was set, after some preliminary evaluations, to
10000.

– In all experiments, classification accuracy has been computed using Leave-
One-Out Cross validation, as typically done with these small size problems.

– In all the experiments we also computed and reported the performances of
the Latent Dirichlet Allocation (LDA - [23]), the most famous topic model,
whose usefulness has been already shown in these contexts [17, 16, 24]. LDA
can straightforwardly be considered as a counting grid where the Window
Size is equal to 1, since there are no interactions between latent variables
(i.e. topics). For classification, the same hybrid generative-discriminative ap-
proach explained before is used. In this case, given a pair of samples A, B,
the posterior Dirichlet parameters have been computed through the learned
LDA model and compared via a kernel, to be used in a SVM classification
scenario. Given the parallelism between the concept of the capacity of the
Counting Grids and the number of topics, we performed an experiment with
LDA for every capacity value experimented for our approach.

Similarity Measures and Kernels Concerning the similarity measures / kernels
to be adopted in our hybrid generative-discriminative scheme, different options
can been used. Given the modularity of our proposed scheme, we can straightfor-
wardly apply the same kernel S(·, ·) with and without performing the spreading
via the convolution. This will permit us to directly investigate the impact of the
spreading operation. In particolar, we experimented three different options:

1. Linear Kernel. This is the standard inner product between the representa-
tions of the two objects, namely

K LI(qAk , q
B
k ) = qAk · qBk (3)

2. Jensen Shannon Kernel. This represents a standard and well known Informa-
tion Theoretic Kernel, namely a kernel based on probability measures. These
kernels have been shown very effective in classification problems involving
text, images, and other types of data [25–27]. Very recently, moreover, they
have been found to be very suitable in hybrid generative discriminative sce-
narios [28]. Given two posterior probabilities qAk and qBk , representing two
objects, the Jensen-Shannon kernel is defined as

K JS(qAk , q
B
k ) = ln(2)− JS(qAk , q

B
k ), (4)
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with JS(qAk , q
B
k ) being the Jensen-Shannon divergence

JS(qAk , q
B
k ) = H

(
qAk + qBk

2

)
− H(qAk ) +H(qBk )

2
, (5)

where H(p) is the usual Shannon entropy.
3. Histogram Intersection Kernel. This Kernel, initially designed to compare

histograms, can be safely used also in case of multinomials (as the Counting
Grid posteriors), which are simply normalized Histograms. Given two object
representations qAk and qBk , the kernel is defined as [29]

K HI(qAk , q
B
k ) =

∑
k

min(qAk , q
B
k ) (6)

A further note: by looking at the formulation of our proposed dissimilarity mea-
sure, some similarities with the diffusion distance [30] can be found. Actually,
in both cases, the value of every particular point is spread/diffused in its neigh-
borhood. It seems therefore interesting to compare our approach with this dis-
tance3, applied on the original model posteriors. More in detail, the distance
between two representations qAk , q

B
k is defined as a temperature field T (k, t)

with T (k, 0) = qAk − qBk . Using the heat diffusion equation

∂T

∂t
=

∂2T

∂k2

which has a unique solution

T (k, t) = T (k, 0) ∗ φ(k, t)

where

φ(k, t) =
1

(2φ)1/2t
exp− k2

2t2
,

we can compute the distance D as:

D(qAk , q
B
k ) =

∫ r

0

η(|T (k, t)|)dt

where η(·, ·) is a norm which measures how T (k, t) differs from 0. Given this
distance, we can obtain a kernel following the extended gaussian kernels recipe
[31]:

K DD(qAk , q
B
k ) = e−ρD(qAk ,qBk ) (7)

In our experiments, following the suggestion given in [32], the scale parameter ρ
has been set to the average diffusion distance between all pairs of objects in the
training set.

3 The code has been taken from the author’s home page:
http://www.ist.temple.edu/~hbling/code_data.htm

http://www.ist.temple.edu/~hbling/code_data.htm
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Fig. 3. Baseline results
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Fig. 4. Results obtained with the proposed spreading operation

4.4 Results

Results are presented in figures 3, 4, 5 and 6. More in detail, in Figure 3
the performances of the original Counting Grids scheme, without any spreading
operation, are presented for the different kernels. In particolar, on the x-axis
we have the different model size (different capacities), whereas in the y-axis we
reported the accuracy. The solid line represents the performances of the LDA.
The dimension E of the counting grid is represented by the color. From this figure
we can infer that Counting grids are better than the LDA model only for small
capacities, whereas for larger capacities the simpler LDA model is preferrable.
Moreover it can be noted that the diffusion distance-based kernel represents
the best choice (especially for LDA), confirming the intuition that diffusing the
values of the posterior represents a good idea. This is more evident by looking at
Figure 4, where we plot also the results with the proposed approach (marked with
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Fig. 5. Analysis of the impact of the dimension of the spreading window

an asterisk), for three of the four kernels – we excluded the diffusion distance-
based kernel since already possessing the property of spreading the values. In
this case, results with the Counting Grids always outperform the corresponding
LDA, making the choice of the capacity less crucial. In that figure, moreover,
we also plotted the different accuracies obtained by varying the dimension (from
2 to 10) of the spreading window (marked with a dot). From this figure, it is
evident that selecting as the size of the spreading window the size of the counting
grid window almost always represents the best choice, as expected. This can be
confirmed with the analysis plotted in Figure 5, where for some configurations
of the Counting Grid the accuracy for different values of the spreading window
is plotted. Also in this case, the asterisk indicates the CG window size, which is
almost everywhere among the best values.

Finally, with the same visualization scheme of figure 4, in figure 6 we plot
results for the MRI Brain dataset and for the colon cancer microarray dataset.
Also in these cases it is evident the gain obtained by the spreading approach.
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Fig. 6. Results on other datasets

5 Conclusions

In this paper a new approach to compare data represented by counts is intro-
duced. Starting from the recently proposed CGs, we show how the classification
perfomance can increase by carefully taking into account of information com-
ing from the generative learning procedure. The proposed Spreading Similarity
Mesure leads to a drastic improvement in comparison with standard approaches
as shown on different applicative scenarios. In particular, our SSM approach
outperfoms diffusion distance which is known to well dealing with cross-count
contraints.

Acknowledgements. Authors would like to thank Dr. A. Ulas for the help in
the preprocessing of the Brain MRI dataset.
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Abstract. Robust bio-cryptographic schemes employ encoding meth-
ods where a short message is extracted from biometric samples to en-
code cryptographic keys. This approach implies design limitations: 1) the
encoding message should be concise and discriminative, and 2) a dissim-
ilarity threshold must provide a good compromise between false rejec-
tion and acceptance rates. In this paper, the dissimilarity representation
approach is employed to tackle these limitations, with the offline signa-
ture images are employed as biometrics. The signature images are repre-
sented as vectors in a high dimensional feature space, and is projected on
an intermediate space, where pairwise feature distances are computed.
Boosting feature selection is employed to provide a compact space where
intra-personal distances are minimized and the inter-personal distances
are maximized. Finally, the resulting representation is projected on the
dissimilarity space to select the most discriminative prototypes for en-
coding, and to optimize the dissimilarity threshold. Simulation results on
the Brazilian signature DB show the viability of the proposed approach.
Employing the dissimilarity representation approach increases the en-
coding message discriminative power (the area under the ROC curve
grows by about 47%). Prototype selection with threshold optimization
increases the decoding accuracy (the Average Error Rate AER grows by
about 34%).

Keywords: Dissimilarity-representation, Prototype selection, Bio-
Cryptography, Offline signatures.

1 Introduction

Bio-cryptographic systems are introduced to replace the traditional usage of
simple user passwords by biometric traits like fingerprint, iris, face, signatures,
etc., to secure the cryptographic keys within security schemes like encryption
and digital signatures [1]. Different than the simple passwords, biometrics pro-
vide a more trusted authentication tool. However, their fuzzy nature harden the
classification decision. Similarities between inter-personal traits result in false
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acceptance and dissimilarities between intra-personal traits result in false rejec-
tions.

Robust bio-cryptographic systems operate in the key-binding mode where
classical crypto-keys are coupled with the biometric message. For key binding,
some encoding schemes like Fuzzy Commitment [2] and Fuzzy Vault (FV) [3]
are the most commonly employed. In the enrollment phase, a prototype bio-
metric message encodes the secret key. In the authentication phase, a message
is extracted from the query sample to decode the key. The idea behind these
schemes is to consider the query biometric message as a noisy version of the
encoded message. If the query sample is genuine, the dissimilarity between the
encoding and decoding messages is limited, so this noise can be eliminated by
the decoder. On the other hand, if the query sample belongs to another person,
or if it is a forged sample, the dissimilarity between the two messages is too high
to cancel. Accordingly, the secret key will be unlocked only to users who apply
similar enough query samples.

Some error correction codes like R-S codes [4] are employed to realize the
key binding approach. Practical decoding complexity of such codes need that
employed biometric messages should be concise. Also, error correction capacity of
such codes can be controlled by adjusting a dissimilarity threshold. The decoder
succeeds to unlock the secret, only if the dissimilarity between the prototype and
the query message is beyond the threshold. Accordingly, this threshold should be
properly adjusted based on the expected dissimilarity ranges. So that, the code
can cancel the intra-personal dissimilarities and fails to cancel the inter-personal
dissimilarities.

For physiological biometrics like fingerprint and iris, small number of simple
features extracted in the spacial domain can be employed to constitute informa-
tive encoding messages. This is simply because the intrinsic stability and discrim-
inative nature of such biometrics. On the other hand, for behavioral biometrics
like offline signature images, the intra-personal variability and inter-personal
similarity are intrinsic properties. Moreover, it is easy to produce forged signa-
ture images. Accordingly, discrimination between genuine and forged signatures
needs high dimensional feature representation and complicated classifiers [5]. It
is a challenging task to produce a concise and informative messages from the sig-
nature images, and to use simple classifiers like the bio-cryptographic decoders
to differentiate between genuine and forged signatures.

In this paper, design of reliable decoders for offline signature-based bio-
cryptography is tackled by employing the concept of dissimilarity-representation
[6]. This concept is originally introduced to build classical classifiers, by replac-
ing the feature representation of objects by their dissimilarity to a fixed set of
prototypes. Performance of these classifiers relies on the accuracy of the em-
ployed dissimilarity measure and how carefully the prototypes are chosen [8].
In literature, dissimilarity measures often composed of graphs, strings, or nor-
malized versions of the raw measurements. However, the dissimilarity approach
may also be used on top of a feature representation, where object proximity is
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represented by computing the distance between ordinary feature representations
in a vectorial space [7].

As most of work on classical offline signature verification is feature-based,
where many techniques of feature extraction are already proposed [5], we base
our method on top of a feature representation. In such case, the encoding mes-
sages are composed of a set of features. The dissimilarity between the prototype
and query messages is measured by the distance between the feature vectors that
constitute these messages. The rational behind the proposed method is that the
overall dissimilarity between two messages is an accumulation of individual dis-
similarities between every pair of corresponding elements of the message. So, to
increase the separation between the intra-personal and inter-personal dissimilar-
ity ranges, we select features that decrease the intra-personal distances and that
increase the inter-personal distances.

The enrolling signature images are first represented as vectors in a high dimen-
sional feature space. This representation is projected on an intermediate space,
which we call a ”feature-dissimilarity” space, where pairwise feature distances
are computed. Boosting feature selection is employed in this intermediate space,
producing a compact space with the intra-personal distances are minimized and
the inter-personal distances are maximized. Finally, the resulting representation
is projected on the dissimilarity space to select the most discriminative proto-
types for encoding, along with optimizing the dissimilarity threshold.

For proof of concept simulations, the Brazilian signature DB (including gen-
uine and samples with different levels of forgeries) is employed [9]. The impact of
proposed dissimilarity representation approach is investigated by analyzing the
separation between the intra-personal and the inter-personal dissimilarity dis-
tributions. The benefit of prototype selection with optimizing the dissimilarity
threshold is tested by its impact on the overall recognition accuracy.

The rest of this paper is organized as follows. The next section provides some
background on the dissimilarity representations as applied to bio-cryptographic
offline signature based systems. The proposed dissimilarity representation and
prototype selection approach for designing signature-based bio-cryptographic
systems is illustrated in section 3. The experimental methodology is illustrated
in section 4. The experimental results are presented and discussed in section 5.

2 Background

Signature Verification systems (SV) are employed to authenticate individuals
based on their handwritten signatures. Classical SV systems output a simple
acceptance/rejection decision for a query signature sample. On the other hand,
signature-based bio-cryptographic systems release a secret cryptographic key
only for a user who applies a genuine signature sample. There are two modes
of operation for signature-based systems: online and offline. For online systems,
users use special devices like special pens and tablets to acquire their signature
dynamics such as velocity, pressure, etc. On the other hand, offline signature-
based systems use scanned signature images for the recognition task. Only static
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information can be acquired from the signature images, producing less informa-
tive signals, and hence, a harder pattern recognition task.

Most of work done in the signature verification area applied feature-based
pattern recognition approaches, where feature representations are constituted
from signature signals. The classifiers are then designed in the feature space.
Performance of such systems are basically limited by the quality of employed
feature representations.

Handwritten signature images imply high variability between different user sam-
ples, and also high similarity between signatures of different users. Accordingly,
the feature-based approach succeeds to produce offline SV verification systems,
only when high dimensional feature representations and complex classifiers are
employed. For a comprehensive review on the different approaches see [5].

For bio-cryptographic systems design, there are some restrictions on the size
of the employed feature representations, and on the classification complexity. Ac-
cordingly, direct application of the feature-based approach produces inaccurate
systems. In literature, few bio-cryptographic implementations are done based on
the handwritten signatures. The online signatures produced bio-cryptographic
systems with acceptable performance [14], as discriminative features like ve-
locity, pressure, etc, are employed. On the other hand, it is shown that static
features extracted from the offline signature images are unstable and they are
not discriminant enough to design a bio-cryptographic system [15].

Different than the feature-based approach, the concept of dissimilarity-based
classification has been proposed by Elzbieta Pekalska and Robert P.W. Duin.,
[6]. The rational behind this concept is that modeling the proximity between
objects may be more discriminative than modeling the objects themselves. This
is because objects belong to a specific class have a shared degree of commonality
that could be captured by a dissimilarity value.

We propose that the dissimilarity-based approach can be employed to design
reliable key-binding bio-cryptographic systems. In such systems, error correction-
based decoders are used. If the dissimilarity between the decoding and the encod-
ing signals is less than a specific threshold, the decoder succeeds to decouple the
encoded bio-ctyptographic key. So, functionality of these decoders can be consid-
ered as two-class simple thresholding classifiers that operate in the dissimilarity
space.

In literature, the concept of dissimilarity representation is not directly em-
ployed to design bio-cryptographic systems. However, some authors proposed
methodologies to absorb the dissimilarities between encoding and decoding bio-
metric signals, so that they are within the error correction capacity of the de-
coder. For instance, Fingerprint-based fuzzy vaults are designed by using some
minutia points extracted in the spatial space to constitute the encoding message
[16]. The dissimilarity between encoding and decoding messages is decreased by
aligning the query and the template fingerprints prior to the decoding process.
For our proposed method, instead of aligning the dissimilar messages, we design
them in a way that produces similar intra-personal messages and dissimilar inter-
personal encoding messages. A preliminary realization of the proposed method is
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appeared in [17], where a Fuzzy Vault (FV) system based on the offline signature
images is proposed. Boosting feature selection (BFS) is employed to select infor-
mative representation, so that intra-personal dissimilarities are minimized and
inter-personal dissimilarities are maximized. Although produced discriminative
representations, this method did not cancel some of the intrinsic fuzziness of the
signature signals.

In this paper, we extend the method in [17], so that some of the residual
fuzziness of the signature representations is canceled. Inspired by fingerprint
alignment technique proposed by Nandakumar et al., [16], we model the repre-
sentation dissimilarities, and use this information to absorb the residual message
fuzziness before sending it to the bio-cryptographic decoders. Moreover, as qual-
ity of representation relies mainly on the quality of employed reference signatures
(few work is done on selecting a reference subset for classical signature verifica-
tion systems, e.g., [10].), we extend this idea to the bio-cryptography domain.
The designed messages are projected to the dissimilarity space, where each di-
mension is the message distance to a prototype message. In this space, the most
discriminative prototypes are selected, along with optimizing the dissimilarity
threshold.

3 Proposed Dissimilarity Representation and Prototype
Selection Method

Assume an encoding biometric message: Ep = {fp
i }ti=1, where p is the signature

prototype used for message extraction, fp
i is a feature extracted from p to con-

stitute a message element, and t is the message length. In the enrollment phase,
Ep is extracted and used to encode a secret cryptographic key K. In the authen-
tication time, a decoding query message EQ = {fQ

i }ti=1 is extracted, where Q
is the query signature sample applied to decode the locked key K1. Assume the
dissimilarity between the two messages is DQp. For error correction decoders like
the R-S decoders [4], the decoder succeeds to cancel the dissimilarity between Q
and p, if the dissimilarity (error) DQp is less than its error correction capacity
Θ. Hence, decoder functionality DF can be formulated as follows:

DF =

{
1 if DQp ≤ Θ

0 if DQp > Θ
(1)

where Θ is the error correction capacity of the decoder (dissimilarity threshold).
Hence, to achieve perfect decoding accuracy, the following condition should be
satisfied:

1 Details of how the crypto-key is encoded/decoded by means of a biometric message
is out of the scope of this paper. For more details on this aspect see [3], and [2].
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Fig. 1. Illustration of feature selection in the original feature space (left) and in the
feature-dissimilarity space (right)

DQp

{
≤ Θ if Q is a genuine sample

> Θ if Q is a forgery sample
(2)

Satisfying the above condition relies on the following design issues:

1. selection of the message elements {fi}ti=1.
2. the dissimilarity measure employed to produce the dissimilarity score DQp.
3. selection of the signature prototype p for encoding.
4. the correction capacity of the decoder (dissimilarity threshold) Θ.

In this paper we propose a methodology to optimize these design issues, so
high decoding accuracy is achieved. The proposed method consists of two main
stages: 1) design of the encoding messages and the dissimilarity measure, and 2)
prototype selection and dissimilarity threshold optimization.

3.1 Design of the Encoding Messages and the Dissimilarity Measure

For a message of length t, consider Euclidean distance δQjpr between the query
message Qj and the prototype pr:

δQjpr =

√√√√ t∑
i=1

(δf
Qjpr

i )2 (3)

where δf
Qjpr

i = ‖fQj

i − fpr

i ‖.



On the Dissimilarity Representation and Prototype Selection 271

Hence, the overall dissimilarity between messages is an accumulation of the
individual dissimilarities between every two corresponding elements of the mes-
sage. So, to increase the separation between the intra-personal and inter-personal
dissimilarity ranges, we select features that decrease the intra-personal distances
and that increase the inter-personal distances.

The enrolling signature images are first represented as vectors in a high di-
mensional feature space F . This representation is projected on an intermediate
space, which we call a ”feature-dissimilarity” space FD, where pairwise feature
distances are computed. Figure 1 illustrates the transformation from space F
to space FD. In the left side, signatures of three writers are represented in F .
For simplicity, only two features f1 and f2 are shown in this figure, while typi-
cal representations might have high dimensionality. In this example, we assume
that writer 1 is the only authentic person, whose signatures should succeed to
decode the cryptographic key K. Two signatures are considered as prototypes
for this user, p1 and p2. Euclidean distance is employed as a dissimilarity mea-
sure. It is clear that a dissimilarity representation that is built on top of this
feature representation is discriminative. Distances among intra-personal signa-
tures (like δQ1p1) are generally smaller than the distances among inter-personal
signatures (like δQ2p1). However, in this space it is not clear which feature is
more discriminative. With representations of high dimensionality, high number
of system users, unknown forgeries and a small number of training samples, it
is not feasible to select the most discriminative features in the feature space F .

Accordingly, we project this representation on a feature-dissimilarity space
FD, as shown in the right side of Figure 1. In this space, distance between each
corresponding features, for each pair of signatures, is computed and used as new
set of features {δfi}ti=1. So, dimensionality of the F and FD spaces is equal. A
distance δQjpr between a query Qj and a prototype pr is mapped from F to FD
as a point dQjpr :

dQjpr = {δfQjpr

i }ti=1 (4)

where, δQjpr is represented by the distance from the origin point to dQjpr . Here,
the impact of every individual feature on the signature dissimilarities is clear. It is
obvious that f2 is more discriminative than f1. For all genuine query samples like

Q1, δf
Q1pr

2 < δ2 and for all forgery query samples like Q2 and Q3, δf
Qjpr

2 > δ2.

On the other hand, f1 is less discriminant. For the forgery queryQ2, δf
Q2p1

1 < δ1,
same as that for the genuine sample Q1. Accordingly, it is easier to rank and
select features in the FD space, as the impact of the individual features on the
overall dissimilarity is clear in this space. Moreover, the multi-class problem with
few training samples per class in F space is transformed to a two-class problem
in FD space, with more training samples per class.

Ranking and selecting the most discriminant features in the FD space, pro-
duces encoding/decoding messages with low dissimilarities between intra-
personal instances and with high dissimilarities between inter-personal instances.
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However, some of the intrinsic fuzziness of the signature signal will not be can-
celed through this feature selection approach. To alleviate that, we propose an
adaptive distance measure that is computed in the DF space, and absorbs some
of the residual fuzziness. For a feature representation F = {fi}ti=1, the feature
dissimilarity vector Δ = {δi}ti=1 is learnt in FD space, where δi discriminates
between the intra-personal and the inter-personal dissimilarities for a feature fi.
Based on this modeled dissimilarity, we replace the Euclidean distance measure
(δQjpr ) by an adaptive dissimilarity measure:

DQjpr =

t∑
i=1

(D
Qjpr

i ), where D
Qjpr

i =

{
0 if (δf

Qjpr

i < δi)

1 otherwise
(5)

Employing this adaptive distance measure absorbs some of the intrinsic feature
variability and increases its discriminative power. For instance, according to
Eq.5, distances among the genuine query and its prototypes DQ1pr = 0. More-
over, most of the distances between the unauthorized queries and the genuine
prototypes DQjpr = 2, ∨j ∈ [2, 3]. Hence, some of the variability of the dissimi-
larity values is canceled.

Ranking the features {fi}ti=1 and learning the dissimilarity vector {δi}ti=1 in
the FD space is a general approach, that can be achieved by employing different
feature selection methods. However in this paper, this concept is realized by
employing a two-step boosting feature selection (BFS) method [12], for fast
searching in high dimensional spaces. Decision-stumps (DS) [19], that are single-
split single-level classification trees, are trained through a boosting process [18].
Training of a DS is equivalent to selection of a single feature that discriminats
between two classes based on a splitting threshold. If the BFS runs in the FD
space, a DSi at a learning iteration i, locates the best dissimilarity feature δfi,
that splits the two classes around a splitting dissimilarity threshold δi.

In the first step, a development database (DevDB) containing samples of
simulated users, is used for training. The reason is that the signature samples
of real users are not enough for feature selection in high dimensional spaces.
Then, population-based representation is produced by running a BFS process
in a DF space, generated by multi-feature representations extracted from the
DevDB database. This approach is employed by Rivard et al., to design a writer-
independent (WI) classical offline signature verification system [11]. However,
the produced population-based spaces have high dimensionality. This is not suit-
able for encoding bio-cryptographic systems, as the encoding/decoding messages
should be concise.

In the second step, the exploitation database (ExpDB), containing samples
of the real users, is used for training. Signature samples are represented in the
population-based space defined through the first step, and additional BFS pro-
cess runs in this user-based space. Recently, we employed this approach to adapt
WI systems to specific writers [13]. Reliable writer-dependent (WD) systems are
achieved based on concise and discriminative user-based feature spaces. In this
paper, a similar two-step BFS process is employed, however, the user-based BFS
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Fig. 2. Illustration of the transformation from the feature-dissimilarity space (left) to
the dissimilarity space (right)

step is employed in a FD space, in order to model the feature dissimilarity vector
Δ = {δi}ti=1.

3.2 Prototype Selection and Dissimilarity Threshold Optimization

The aforementioned approach enlarges the separation between the dissimilar-
ity distributions of the genuine and impostor encoding messages. However, the
distributions differ based on the prototype used for the dissimilarity computa-
tions (Eq.5). To get the best possible dissimilarity representation, we propose a
prototype selection method.

To this end, the user-based representation, produced through the two-step
BFS process, is projected from the FD space to a dissimilarity spaceD. Consider
the available set of R prototypes P = {p1, p2, ..., pR}. The adaptive dissimilarity
distance for a query Qj is computed for every prototype pr ∈ P , according to
Eq.5. This operation produces a dissimilarity vector DQj in the dissimilarity
space, where

DQj = {DQjp1 , DQjp2 , ..., DQjpR}. (6)

Figure 2 illustrates the transformation between the FD and D spaces. In the left
side, distances between prototype and query messages are represented in the FD
space. It is obvious that different prototypes produce different distance values,
where significant variability exists for the genuine and the forgery classes. Also,
in this space, it is not clear which prototype is the most informative. For space D
shown in the right figure, it is obvious that some variability is absorbed through
employing the adaptive dissimilarity measure. For instance, DQj = {0, 0} for
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all genuine queries (see Eq.5 and Eq.6), as feature dissimilarities δf
Qjpr

1 < δ1
and δf

Qjpr

2 < δ2, for the genuine queries. Also, for most of the forgery queries,

DQj = {2, 2}, as δfQjpr

1 > δ1 and δf
Qjpr

2 > δ2 for the forgery queries.
Moreover, the dissimilarity space representation provides easier way to rank

prototypes according to their discriminative power. For instance, p2 is more
discriminative than p1, as for all forgery queries, DQjp2 = 2. While for Q2,
DQ2p1 = 1 (as δfQ2p1

1 < δ1). So, measuring the dissimilarity relative to p2
results in more isolated clusters.

Finally, in the D space, we optimize the dissimilarity threshold (Θ). In the
illustrated example, if the selected prototype is p2, then any Θ2 < 2 is dis-
criminant. For p1, any Θ1 < 1 is discriminant. Selection of prototypes with
higher margin between clusters, provides wider range for selecting the dissimi-
larity threshold Θ. This results in more flexibility for parameter setting of the
bio-cryptographic decoder and hence, higher security and recognition accuracy
can be achieved [16].

Based on the proposed method, the decoding functionality DF formulated by
Eq.1 can be reformulated as:

DFr(Qj) = sign(Θr −DQjpr ). (7)

where r is the index of the selected prototype pr, Qj is the query encoding
message, Θr is the dissimilarity threshold associated with this prototype, and
DQjpr is the dissimilarity value computed according to Eq. 5.

The prototype selection method can be realized by various feature selection
techniques (with considering prototypes as features), however, we realized it
through employing the BFS approach [12].

4 Experimental Methodology

4.1 Database

The Brazilian database [9] is used for proof-of-concept simulations. It contains
7,920 samples of signatures that were digitized as 8-bit grayscale images over
400X1000 pixels at resolution of 300 dpi. This DB contains three types of sig-
nature forgery: random, simple and simulated. Random forgeries do not know
neither the signerś name nor the signature morphology. It can also happen when
a genuine signature presented to the system is mislabeled to another user. For
simple forgery, the forger knows the writerś name but not the signature mor-
phology. He can only produce a simple forgery using a style of writing of his
liking. Simulated forgeries have access to a sample of the signature. A forger can
therefore imitate the genuine signature.

The signatures were provided by 168 writers and are organized as follows:
the first 60 writers have 40 genuine signatures, 10 simple forgeries and 10 simu-
lated forgeries per writer, and the other 108 have only 40 genuine signatures
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per writer. The experimental database is split into two sets: a development
dataset (DevDB) composed of the last 108 writers, and an exploitation dataset
(ExpDB) composed of the first 60 writers. SetDevDB is used for the population-
based BFS step as illustrated in Section. 3.1.

Set ExpDB is split into two subsets: the reference subset (R) contains the
first 30 genuine signatures, and the query subset (Q) contains the rest 10 genuine
samples, 10 simple and 10 simulated forgeries. The subset R is used for the user-
based BFS step as illustrated in Section. 3.1, and for the prototype selection and
dissimilarity threshold optimization as illustrated in Section. 3.2. Both subsets
of ExpDB are used for evaluating the method performance.

4.2 Feature Extraction

Extended-Shadow-Code (ESC) [20], and Directional Probability Density Func-
tion (DPDF) [21] are employed. Features are extracted based on different grid
scales, hence a range of details are detected in the signature image. A set of 30
grid scales is used for each feature type, producing 60 different single scale fea-
ture representations. These representations are then fused to produce a feature
representation of huge dimensionality (30, 201) [11].

4.3 Design of Encoding Messages and Dissimilarity Measure

The two-step BFS process is implemented as illustrated in section 3.1. First, the
(DevDB) is used for the population-based BFS phase. We followed the same
experimental settings as in the system in [11]. This phase produced a population-
based representation (PR) of dimensionality L = 555. Second, the reference
subset (R) is used for the user-based BFS phase. For each user in ExpDB,
the signatures in R are used to represent the genuine class, and some signatures
from theDevDB are used to represent the forgery class. Then, signatures of both
classes are represented in the PR space of L dimensionality. This representation
is then transformed to the FD space, where the user-based BFS step runs for
t boosting iterations. The process outputs the message elements {fi}20i=1, along
with their dissimilarities Δ = {δi}20i=1, that are used for computing the adaptive
dissimilarity measure defined by Eq. 5.

4.4 Prototype Selection and Dissimilarity Threshold Optimization

The thirty signatures in the reference subset (R) are used as a prototype set P =
{pr}30r=1. To constitute the dissimilarity space D, the adaptive dissimilarity value
is computed for every signature in R against all of the thirty signatures (Eq.6).
To constitute the forgery class, samples from DevDB are chosen randomly, and
dissimilarities between them and the prototypes are computed. BFS runs in
this dissimilarity space, to select the best prototype of pr with the associated
threshold Θr.
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Fig. 3. Dissimilarity score distribution for a specific user

4.5 Performance Measures

To assess the impact of the proposed dissimilarity representation approach on the
separability of the genuine and impostor clusters, we use the Hellinger distance.
Assuming normal distributions G and I for the genuine and impostor classes,
respectively. the squared Hellinger distance between them is give by:

H2(G, I) = 1−
√

2σ1σ2
σ2
1 + σ2

2

e
− 1

4
(μ1−μ2)2

σ2
1+σ2

2 . (8)

where, μ1, μ2 and σ1, σ2 are the mean and variance values for G and I, respec-
tively.

To measure the clusters separability for the different types of forgeries, we
report Hrandom, Hsimple and Hsimulated, where the parameters μ and σ of the
impostor cluster I are computed each time, based on the dissimilarities against
samples of a specific type of forgeries. Also, we reportHall, where the distribution
parameters are computed according to dissimilarities of all forgery types.

Also, as the recognition accuracy of bio-cryptographic decoders relies on the
dissimilarity ranges separability and on the employed dissimilarity threshold,
we measure the recognition errors for all of the dissimilarity scores and use
them to generate ROC curves. A ROC curve plots the False Accept Rate (FAR)
against the Genuine Accept Rate (GAR) for all possible thresholds (all generated
dissimilarity scores). FAR for a specific threshold is the ratio of forgery samples
with a dissimilarity score smaller than this threshold. GAR is the ratio of genuine
samples with a dissimilarity score smaller than the threshold.

In order to have a global assessment on the quality of encoding messages
representation, we compute and average the area under the ROC curves (AUC),
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for all users in the ExpDB subset. High AUC indicates more separation between
the dissimilarity score distributions for the genuine and impostor classes.

To assess the impact of the prototype and threshold selection step, we compute
the recognition rates. Decoder outputs are estimated by employing Eq. 7 for the
selected prototypes and thresholds. By comparing the decoder outputs to the
actual class labels, we compute the average error rate (AERall), where

AERall = (FRR+ FARrandom + FARsimple + FARsimulated)/4 (9)

False Reject Rate (FRR) is the ratio of genuine queries that produce ’0’ decoding
outputs, FARrandom, FARsimple and FARsimulated are the ratio of random,
simple, and simulated forgeries respectively that produce ’1’ decoding outputs.
The error rates are also computed when no prototype selection step is employed
and for a fixed threshold Θ = 6. 2

5 Experimental Results

The power of the proposed method for designing the encoding messages and
employing the adaptive dissimilarity measure is assessed by its impact on the
separability of the genuine and impostor dissimilarity distributions. Figure 3 il-
lustrates the impact of each step of the proposed method for a specific user of
the ExpDB dataset. It is obvious that, when no feature selection is employed
to constitute the encoding message, the genuine and impostor distributions are
overlapped. Running BFS based on population signature samples increases the
separation between the two distribution. Running the user-based BFS step en-
hanced the separability. Employing the adaptive distance measure, increased the
stability of the genuine class. For instance, the maximum dissimilarity score for
the genuine class is decreased from 9 to 5. However, this impact differs for the
different forgery types. For instance, in Figure 4, it is clear that while the ran-
dom forgery class distribution is significantly separated, the simulated forgery
distribution still has significant class overlap.

To asses the average performance of the proposed method, the average
Hellinger distance is computed over the 60 Users, and for the different types
of forgeries. Table 1 shows the results of this analysis. It is obvious that each
processing step increased the distances between the genuine and impostor distri-
butions, for all types of forgeries. Average distance of the all forgeries distribu-
tions Hall is increased from 0.2496 to 0.6617. Also, the average AUC is increased
by about 47% (from 0.6577 to 0.9700).

The dissimilarity scores reported above are averaged for all prototypes in
the subset R. However, class separation differs for the different prototypes. For
instance, Figure 5 shows distributions of the best and worst prototypes for a

2 Θ = 6 is equivalent to encoding a crypto-key of 128− bits by a biometric message of
length t = 20, by implementing the FV key-binding scheme [3]. Also, for technical
issues, the message elements {fi}ti=1 are quantized in 8-bit words before computing
the dissimilarities.
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Fig. 4. Dissimilarity score distribution for different forgery types

Table 1. Average Hellinger distance over all Users for the different design scenarios

Design Without Population-based User-based User-based
Aspect Feature Feature Feature Feature Selection

Selection Selection Selection with Adaptive
Distance Measure

Average Hrandom 0.2976 0.6093 0.6617 0.7398
Average Hsimple 0.2519 0.5531 0.6011 0.6951
Average Hsimulated 0.1466 0.4395 0.4786 0.5907
Average Hall 0.2496 0.5590 0.5923 0.6617

Average AUC 0.6577 0.7724 0.9328 0.9700

Fig. 5. Dissimilarity score distributions for different prototypes
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Table 2. Impact of the Prototype Selection on Average Error Rate over all Users

Design Aspect Without Prototype Selection With Prototype Selection

Average FRR 5.25 4.83
Average FARrandom 2.74 0.6
Average FARsimple 3.49 1.5
Average FARsimulated 33.14 22.33

Average AER 11.15 7.32

specific user. For the worst prototype, a dissimilarity threshold Θ = 4 results
in FRR = 10%, FARrandom = 10% and FARsimulated = 30%. For the best
prototype, FRR = 0%, FARrandom = 0% and FARsimulated = 20%.

The overall impact of running the prototype selection and threshold optimiza-
tion step is investigated by computed the recognition error rates for both cases.
Tabel 2 shows that AER is decreased by about 34% (from 11.15% to 7.32%),
through employing this selection step.

6 Conclusions and Future Work

In this paper, a methodology for designing bio-cryptographic systems based on
the dissimilarity representation approach, is proposed. Separation between gen-
uine and impostor distributions is increased through maximizing the distance
between the individual elements of the encoding messages. Some of the intrinsic
variability of the messages is absorbed by employing an adaptive dissimilarity
measure. A prototype selection and dissimilarity threshold optimization method
is proposed, to enhance the recognition performance. Future work will employ
the proposed method to build a complete signature-based bio-cryptographic
system.
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Abstract. Given a gene expression data matrix where each cell is the
expression level of a gene under a certain condition, biclustering is the
problem of searching for a subset of genes that coregulate and coexpress
only under a subset of conditions. The traditional clustering algorithms
cannot be applied for biclustering as one cannot measure the similarity
between genes (or rows) and conditions (or columns) by normal geometric
similarities. Identifying a network of collaborating genes and a subset of
experimental conditions which activate the specific network is a crucial
part of the problem. In this paper, the BIClustering problem is solved
through a REpeated Local Search algorithm, called BICRELS. The
experiments on real datasets show that our algorithm is not only fast
but it also significantly outperforms other state-of-the-art algorithms.

Keywords: biclustering, co-clustering, local search, gene expression,
microarray.

1 Introduction

Gene expression is the process by which information from a gene is used in the
synthesis of proteins. Microarray experiments provide us with the expression
level of a large number of genes under different experimental conditions [2]. The
conditions can be different time points, different types of tissues, or individuals,
etc. The gene expression results are presented as a matrix where each gene is
a row and each condition is a column. Each cell of the data matrix is the ex-
pression level of a gene under a certain condition. The expression level measures
the relative abundance of a gene, usually as the logarithmic ratio between the
intensities of the dyes used in the experimental process.

Given the gene expression data, one would like to find a subset of genes that
coregulate and coexpress (think ”behave in a coherent manner”) only for a subset
of conditions. This problem is called biclustering by Cheng and Church [4]. The
objective is to find sub-matrices, i.e. maximal subgroups of genes and subgroups
of conditions where the genes exhibit highly correlated activities over a range of
conditions, and therefore often related to an underlying gene regulatory network
of biological interest.

Biclustering is also known as co-clustering, bidimensional clustering, or sub-
space clustering, and used in other areas like marketing and collaborative
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recommendations, although with different underlying models. In the traditional
clustering problem, only rows or columns of a data matrix are partitioned in
different groups based on some geometric similarity measures like the cosine
similarity, or Euclidean distance. Meanwhile, in the biclustering problem, both
rows and columns are clustered simultaneously and the identification of a rele-
vant subset of genes and a subset of experimental conditions is a prerequisite to
obtain a clustering of biological interest. Traditional clustering algorithms cannot
be applied for biclustering as they cannot be based on Euclidean or other geo-
metric properties. This raises the need of developing a new class of algorithms for
biclustering, which aim at identifying a relevant network of cooperating genes.

Several algorithms have been proposed for solving the biclustering problem
[8]. The algorithms can return a single large and ”coherent” bicluster or a set
of biclusters. The bicluster ”coherence” must be related to experimental process
used to identify biological gene regulatory networks. An additive model of the
gene expression is often used: the expression of a gene in a network is proportional
to the sum of a term associated to the specific gene and a term associated to
the specific experimental condition. The squared error w.r.t. this linear model,
averaged over the entire bicluster expression levels, called mean squared residue,
measures the lack of ”coherence” of the network [4].

In this paper, we consider the problem of searching for a largest bicluster
under the constraint that the mean squared residue is below a threshold. A
bicluster with mean squared residue less than or equal to a threshold δ is called
a δ-bicluster. The problem of finding the largest δ-bicluster is NP-hard [4].

We introduce a Repeated Local Search algorithm for BIClustering (abbre-
viated as BICRELS). Our algorithm is not only reasonably fast due to an
incremental evaluation scheme, but it also significantly outperforms other state-
of-the-art algorithms in both objectives, leading to larger biclusters with smaller
residues.

The rest of this paper is organized as follows. In Section 2, we summarize the
related work. Then, we describe formally the biclustering problem in Section 3
and our algorithm in Section 4. Finally, we report on the experimental results
in Section 5.

2 Related Work

The algorithms proposed for solving the biclustering problem can be classified
into different groups:

– Iterative row and column clustering combination: applying the standard clus-
tering methods on rows and columns of the data matrix and then combining
the row and column clusters to form biclusters [5].

– Divide and conquer: breaking the problem into smaller problems, solving
them recursively, and combining the solutions of sub-problems to form the
solution for the original problem [6].

– Greedy iterative search: removing rows or columns to reduce the bicluster
residue below the threshold and adding rows or columns to increase the
bicluster volume while the constraint on residue is still satisfied [4].
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– Exhaustive bicluster enumeration: enumerating all possible biclusters to iden-
tify the best ones in exponential time [10].

– Distribution parameter identification: assuming the data is generated from
a model and trying to fit parameters of that model by minimizing a certain
criterion [7].

Not all algorithms optimize the same ”coherence” criterion, therefore we only
compare our algorithmwith those based on the same additive mode and searching
for the largest bicluster with residue below a threshold.

One of the first biclustering algorithms searching for the largest δ-bicluster is
proposed by Cheng and Church [4]. The algorithm starts from the initial bicluster
which contains all genes and conditions. Each gene or condition is considered as
a node. The method iteratively deletes a set of nodes until the mean squared
residue of that bicluster below the threshold. Then, a set of nodes is added to
the bicluster to increase its volume until any further addition would cause the
residue to exceed the threshold. This algorithm is deterministic and very fast,
as a set of nodes can be deleted or added at the same time. Its complexity is
O(MN) where M and N are the number of genes and conditions. However,
modifying a set of nodes simultaneously can also make the algorithm stuck in
local minima. We refer this algorithm as ChengChurch in this paper.

Yang et al.[12] propose a probabilistic algorithm named FLOC (Flexible
Overlapped Clusters) which can discover a set of K biclusters in one run. The
algorithm starts from a set of random initial biclusters. Each initial bicluster is
formed by selecting randomly a subset of rows and a subset of columns from the
dataset, such that the bicluster residue is below a predefined threshold. Then,
it iteratively performs the best action for each row and column to improve the
bicluster quality. The actions are deleting or adding a row or a column to one of
K biclusters. The best action is the one that gives the highest improvement in
a gain function which is the sum of the reduction ratio in mean squared residue
and the increase ratio in volume. As two objectives (volume and residue) are
considered at the same time, FLOC can return biclusters with very small vol-
ume while their residues are much lower than the threshold. Besides, FLOC is
very sensitive to the initial biclusters and its complexity is O((M +N)2×K×p)
where M , and N are the number of genes and conditions, K is the number of
biclusters, and p is the number of iterations the algorithm runs until convergence.

Bleuler et al.[3] introduce a single-objective genetic framework for solving the
biclustering problem. In their framework, a bicluster is presented as a binary
string with the length of M +N where M and N are the number of genes and
conditions, respectively. Normal uniform crossover and bit mutation operators
are performed on the population. The minimized objective is the inverse of the
bicluster volume if the residue is below the threshold. Otherwise, the algorithm
minimizes the residue. However, the authors conclude that without the help
of local searchers, the genetic algorithm cannot produce the bicluster which is
larger than the one returned by the ChengChurch algorithm. Therefore, they
hybridize the genetic algorithm with the local search algorithm of Cheng and
Church, i.e., each instance in the population is improved by the local searcher
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before moving to the next generation. We denote this algorithm as SOGA (Sin-
gle Objective Genetic Algorithm). The complexity of SOGA is O(TPMN)
where T is the number of generations, P is the population size, M and N are
the number of genes and conditions, respectively.

Mitra et al.[9] also propose a multi-objective genetic algorithm for biclustering
(denoted asMOGA in this paper). The authors focus on searching for the largest
bicluster and present each bicluster as a binary string.MOGAmaximizes the vol-
ume and the residue simultaneously. When a bicluster has the residue exceeding
the threshold, its residue is set to zero. In other words, the quality of a solution
violating constraints is considered as zero. Similarly to the case of SOGA, the
ChengChuch algorithm is adapted as the local searcher for MOGA, i.e. each
instance in the population is improved by the local searcher before moving to the
next generation. The complexity of MOGA is O(TP 2MN) where T is the num-
ber of generations,P is the population size,M andN are the number of genes and
conditions, respectively.

3 The Biclustering Problem

We follow the same notation used in [4]. The biological motivation for the
model is that, in a gene regulatory network, the gene expression level is pro-
portional to a sum of a term characterizing the gene plus a term characterizing
the experimental condition which is activating the specific network. Let’s note
that, if logarithms of the original measures are taken, the model is multiplicative
in the original measures. Fig.1 shows an example of a bicluster with 9 genes and
6 conditions.

Let X be the set of genes and Y be the set of conditions. Let aij be the element
of the expression matrix A representing the expression level of the gene i under
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Fig. 1. An example of a bicluster with 9 genes and 6 conditions
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condition j. Let I ⊂ X and J ⊂ J be subsets of genes and conditions. The pair
(I, J) specifies a submatrix AIJ with the following mean squared residue score:

MSR(I, J) =
1

|I||J |
∑

i∈I,j∈J

(aij − aiJ − aIj − aIJ)
2 (1)

where

aiJ =
1

|J |
∑
j∈J

aij (2)

aIj =
1

|I|
∑
i∈I

aij (3)

aIJ =
1

|I||J |
∑
i∈I

∑
j∈J

aij =
1

|I|
∑
i∈I

aiJ =
1

|J |
∑
j∈J

aIj (4)

The biclustering problem is the problem of searching for a bicluster (I, J) such
that its volume is maximized and its mean squared residue is below a threshold.
Formally, the biclustering problem is defined as:

(I ′, J ′) = argmax
I⊂X,J⊂Y

|I||J | (5)

subject to

MSR(I, J) ≤ δ (6)

4 A Repeated Local Search Algorithm for Biclustering

Let rowMSR(i) and colMSR(j) are the mean squared residues of row i and
column j w.r.t a bicluster (I, J), respectively.

rowMSR(i) =
1

|J |
∑
j∈J

(aij − aiJ − aIj + aIJ)
2 (7)

colMSR(j) =
1

|I|
∑
i∈I

(aij − aiJ − aIj + aIJ)
2 (8)

The pseudo code of our local search algorithm for biclustering (BICRELS) is
shown in Algorithm 1. We first generate the initial set of biclusters by combing
gene and condition clusters. In detail, we partition the gene set into 100 clusters
by applying K-Means (with the cosine similarity distance) on the column-
normalized data where each gene is an instance, and each condition is a feature.
The column-normalized data is obtained from the original data by subtracting
the mean value from each column and then dividing the results by its sample
standard deviation. Similarly, we divide the conditions into ceil(N/10) clusters
on the row-normalized data where N is the number of conditions and ceil(x)
returns the nearest integer equal to or greater than x. Then, we pick randomly a
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Algorithm 1. BICRELS

Input : data matrix A, residue threshold δ
Output: A bicluster (I, J)

begin1

pool = create a set of initial biclusters.2

biclusterSet = ∅3

for i = 1 to numberOfRestarts do4

bicluster = pick randomly a bicluster from pool.5

Remove bicluster from pool.6

bicluster = replaceNodes(bicluster)7

bicluster = deleteNodes(bicluster, δ)8

repeat9

bicluster = replaceNodes(bicluster)10

bicluster = addNodes(bicluster, δ)11

until no change ;12

bicluster = deleteNodes(bicluster, δ)13

biclusterSet = biclusterSet ∪ {bicluster}14

end15

return bicluster ∈ biclusterSet with maximum size16

cluster of gene and a cluster of condition to form a bicluster. In the experiments
of this paper, we create 100 biclusters for the initial bicluster set.

The local search procedure from line 4 to 14 of the algorithm is restarted for a
number of runs to explore different local minima. Note that the normalized data
is used only to create the initial bicluster set, and the local search procedure
is run on the original data. In each run, the algorithm first picks randomly
a bicluster from the initial bicluster set. That bicluster is then removed from
the initial set. Next, the algorithm reduces the residue of that bicluster by the
procedure replaceNodes in Algorithm 2. This procedure shrinks the residue of
a bicluster by replacing the column (or row) with the highest residue in that
bicluster by a column (or row) not in that bicluster with the smallest residue
if the replacement can reduce the bicluster residue. The replacement process is
repeated until no columns or rows are replaced. After shrinking the bicluster
residue by replacing rows or columns, if the residue is still greater than the
threshold, some rows or columns are deleted in the deleteNodes procedure of
Algorithm 3 (which is the single-node deletion procedure proposed by Cheng
and Church [4]). The deleteNodes procedure keeps deleting the columns and
rows with highest mean residues until the residue of the bicluster drops below the
threshold. Note that, although both the replaceNodes and deleteNodes procedure
can decrease the residue, the replaceNodes procedure keeps the bicluster size
unchanged whereas the deleteNodes procedure also reduces the bicluster size.

Now, the bicluster residue is guaranteed to be lower than or equal to the
threshold. The algorithm starts optimizing the bicluster by repeating two steps:
replaceNodes and addNodes until convergence. The main idea is that while fix-
ing the volume, we try to reduce the residue of the bicluster and then while
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Algorithm 2. replaceNodes

Input : (I, J) are the sets of rows and columns
Output: (I ′, J ′) with smaller or equal residue

begin1

repeat2

// Replace columns3

repeat4

maxJ = argmax
j∈J

colMSR(j)
5

minJ = argmin
j∈Y \J

colMSR(j)
6

J ′ = J ∪ {minJ} \ {maxJ}7

if MSR(I, J) > MSR(I, J ′) then8

J = J ′
9

until J is not modified ;10

// Replace rows11

repeat12

maxI = argmax
i∈I

rowMSR(i)
13

minI = argmin
i∈X\I

rowMSR(i)
14

I ′ = I ∪ {minI} \ {maxI}15

if MSR(I, J) > MSR(I ′, J) then16

I = I ′17

until I is not modified ;18

until I, J are not modified ;19

end20

return (I, J)21

keeping the residue below the threshold, we try to increase the bicluster volume.
The addNodes procedure is presented in Algorithm 4. This procedure iteratively
adds a column or a row with the smallest residue until the residue of the biclus-
ter exceeds the threshold. Finally, to guarantee that the bicluster mean squared
residue is less than or equal to the threshold, we perform the deleteNodes proce-
dure before returning the bicluster. As the number of rows and columns is finite,
the loop of two steps replaceNodes and addNodes always terminates after a finite
number of iterations (which is less than or equal to (|X |+ |Y |)).

Algorithm Complexity. The most expensive steps in three procedures repla-
ceNodes, deleteNodes, and addNodes are the computation of MSR(I, J) and all
rowMSR(i), colMSR(j) which have the complexity of O(|X ||Y |) where |X | is
the number of rows, and |Y | is the number of columns. Therefore, the complexity
of these three procedures as well as the whole algorithm is also O(|X ||Y |). How-
ever, as each iteration, only one row or column is modified, the incremental up-
date strategy can be applied to reduce the complexity of computing MSR(I, J)
from O(|X ||Y |) to O(max(|X |, |Y |)). Besides, the cost of updating aiJ , aIj , aIJ
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Algorithm 3. deleteNodes

Input : (I, J) are the sets of rows and columns, threshold δ
Output: (I ′, J ′) with residue smaller than threshold δ

begin1

while MSR(I, J) > δ do2

maxJ = argmax
j∈J

colMSR(j)
3

maxI = argmax
i∈I

rowMSR(i)
4

if colMSR(maxJ) > rowMSR(maxI) then5

J = J \ {maxJ}6

else7

I = I \ {maxI}8

end9

return (I, J)10

Algorithm 4. addNodes

Input : (I, J) are the sets of rows and columns, threshold δ
Output: (I ′, J ′) with greater or equal size

begin1

while MSR(I, J) < δ do2

minJ = argmin
j∈Y \J

colMSR(j)
3

minI = argmin
i∈X\I

rowMSR(i)
4

if colMSR(minJ) < rowMSR(minI) then5

J = J ∪ {minJ}6

else7

I = I ∪ {minI}8

end9

return I, J10

necessary for the computation of all rowMSR(i), colMSR(j) can also be re-
duced from O(|X ||Y |) to O(max(|X |, |Y |)).
Incremental Update. As can be seen from Equation 7, before computing the
value of rowMSR(i) we need to update the values of aiJ , aIj, aIJ . There are six
cases where a bicluster (I, J) can be modified: add or delete a row or column,
replace a row (or a column) by another row (or column).

When we add, delete or replace a row from a bicluster (I, J), all columns
j ∈ J are unchanged, thus all mean rows aiJ (where i ∈ I) are also unaffected.
Therefore, we only need to update the mean columns aIj and the overall average
value aIJ . The update procedure for aIj, aIJ in each case is presented as follows.
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a) Adding a row r ∈ X \I to the bicluster (I, J): In this case, besides updating
the mean columns aIj and the overall average value aIJ , we also need to compute
the new mean row arJ :

arJ =
1

|J |
∑
j∈J

arj (9)

aIj =
1

|I|+ 1
(aIj ∗ |I|+ arj) (10)

aIJ =
1

|I|+ 1
(aIJ ∗ |I|+ arJ) (11)

Then, we update I = I ∪ {r}. The complexity of computing arJ is O(|Y |).
Because each aIj is updated with the complexity of O(1), the complexity of
updating all aIj is O(|Y |) (as J ⊂ Y ).

b) Deleting a row r ∈ I from the bicluster (I, J): In this case, we only need
to update the mean columns aIj and the overall average value aIJ :

aIj =
1

|I| − 1
(aIj ∗ |I| − arj) (12)

aIJ =
1

|I| − 1
(aIJ ∗ |I| − arJ) (13)

Then, we update I = I \ {r}. Because each aIj is updated with the complexity
of O(1), the complexity of updating all aIj is O(|Y |) (as J ⊂ Y ).

c) Replacing a row r1 ∈ I by a row r2 ∈ X \ I: In this case, besides updating
the mean columns aIj and the overall average value aIJ , we also need to compute
the new mean row ar2J :

ar2J =
1

|J |
∑
j∈J

ar2j (14)

aIj =
1

|I| (aIj ∗ |I| − ar1j + ar2j) (15)

aIJ =
1

|I| (aIJ ∗ |I| − ar1J + ar2J) (16)

Then, we update I = I\{r1}∪{r2}. The complexity of computing ar2J is O(|Y |).
Because each aIj is updated with the complexity of O(1), the complexity of
updating all aIj is O(|Y |) (as J ⊂ Y ).

Similarly, when we add, delete or replace a column from a bicluster (I, J), all
rows i ∈ I are unchanged, thus all mean columns aIj (where j ∈ J) are also
unaffected. Therefore, we only need to update the mean rows aiJ and the overall
average value aIJ . The update formulas can be derived similarly as in the cases
of rows. The update complexity for all mean rows aiJ is O(|X |). In other words,
the complexity of updating aiJ , aIj and aIJ in all cases is O(max(|X |, |Y |).

In addition, in each iteration of three procedures replaceNodes, deleteNodes,
and addNodes, we also need to recompute the mean squared residue of the
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updated bicluster. Let (I ′, J ′) be the updated bicluster obtained from the bi-
cluster (I, J) by applying one of six operations: add, delete or replace rows or
columns. To reduce the complexity of computing MSR(I, J) from O(|X ||Y |) to
O(max(|X |, |Y |)), we first derive another way to compute MSR(I, J):

MSR(I, J) =
1

|I||J |
∑
i∈I

∑
j∈J

(aij − aiJ − aIj − aIJ )
2 (17)

=
1

|I||J |
(∑

i∈I

∑
j∈J

a2ij + |I||J |a2IJ − |I|
∑
j∈J

a2Ij − |J |
∑
i∈I

a2iJ
)

(18)

It can be seen that the complexities of four terms in the bracket on the right hand
side of Equation 18 are O(|X ||Y |), O(1), O(|Y |) and O(|X |), respectively (as
I ⊂ X, J ⊂ Y ). However, the first term can be updated efficiently as follows. Let
sumAll(I, J) =

∑
i∈I

∑
j∈J

a2ij , we can compute efficiently sumAll(I ′, J ′) according

to one of six cases:
a) If the updated bicluster (I ′, J ′) is obtained by adding a row r to the bicluster

(I, J):

sumAll(I ′, J ′) = sumAll(I ∪ {r}, J) (19)

=
∑
i∈I′

∑
j∈J

a2ij (20)

=
∑
i∈I

∑
j∈J

a2ij +
∑
j∈J

a2rj (21)

= sumAll(I, J) +
∑
j∈J

a2rj (22)

b) If the updated bicluster (I ′, J ′) is obtained by deleting a row r from the
bicluster (I, J):

sumAll(I ′, J ′) = sumAll(I \ {r}, J) (23)

= sumAll(I, J)−
∑
j∈J

a2rj (24)

c) If the updated bicluster (I ′, J ′) is obtained by replacing a row r1 ∈ I by a
row r2 ∈ X \ I from the bicluster (I, J):

sumAll(I ′, J ′) = sumAll(I \ {r1} ∪ {r2}, J) (25)

= sumAll(I, J)−
∑
j∈J

a2r1j +
∑
j∈J

a2r2j (26)
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d) If the updated bicluster (I ′, J ′) is obtained by adding a column c to the
bicluster (I, J):

sumAll(I ′, J ′) = sumAll(I, J ∪ {c}) (27)

(28)

= sumAll(I, J) +
∑
i∈I

a2ic (29)

e) If the updated bicluster (I ′, J ′) is obtained by removing a column c from the
bicluster (I, J):

sumAll(I ′, J ′) = sumAll(I, J \ {c}) (30)

(31)

= sumAll(I, J)−
∑
i∈I

a2ic (32)

f) If the updated bicluster (I ′, J ′) is obtained by replacing a column c1 ∈ J by
a column c2 ∈ Y \ J from the bicluster (I, J):

sumAll(I ′, J ′) = sumAll(I, J \ {c1} ∪ {c2}) (33)

(34)

= sumAll(I, J)−
∑
i∈I

a2ic1 +
∑
i∈I

a2ic2 (35)

In all cases, the update of sumAll(I ′, J ′) has the complexity of O(|X |) or O(|Y |).
In other words, the complexity of computing MSR(I ′, J ′) form MSR(I, J) is
O(max(|X |, |Y |).

5 Experiments

A preliminary set of experiments has been dedicated to analyze the distribution
of final results found after individual runs of our local search technique. It is
the distribution of local maxima values found after starting from a randomly
picked initial seed bicluster. To estimate the distribution of bicluster volume
obtained by BICRELS, we run BICREL with 100 restart times and plot the
histograms of bicluster volume obtained by the individual local search processes
on two datasets in Fig.2a and Fig.2b. In both cases, we observe a non-negligible
probability for values of bicluster volumes that are close to the optimal one. This
was the main motivation for adding a restart technique: by starting from different
initial random seed biclusters the algorithm is sampling from this distribution
and the best sample is reported at the end of the repetitions.

Considering now the complete BICREL, we compare it with four other
state-of-the-art algorithms ChengChurch [4], SOGA (Single-objective GA)
[3], MOGA (Multi-objective GA) [9], and FLOC [12].
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dataset (δ = 300)
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(b) Volume Distribution on the Lymphoma
dataset (δ = 1200)

Fig. 2. Bicluster Volume Distribution of 100 restart times of BICRELS

5.1 Experimental Setup

The parameter α of ChengChurch is set to its default value (α = 1.2). The
number of initial rows and columns in the FLOC algorithm is set to 9 and 2,
respectively (as in the FLOC paper [12], the authors did not describe which
parameters are suitable for FLOC, thus we did some experiments to deter-
mine the suitable parameters for FLOC). The number of biclusters produced
by FLOC in each run is set to 10. The parameters of SOGA and MOGA
are set to their default parameters. All algorithms are implemented in Matlab
and run on the same machine with Ubuntu 12.04 operating system, CPU In-
tel(R)Xeon(R)X3363@2.83GHz, RAM 8GiB. FLOC, SOGA and MOGA are
run for 10 times to eliminate the randomness effect. BICRELS is run once
but restarted for 10 times by setting its parameter numberOfRestarts to 10.
ChengChurch is a deterministic algorithm and run only once.

In the experiments, we use two datasets Yeast [11] and Lymphoma [1]. The
Yeast dataset consists of 2884 genes and 17 conditions. The Lymphoma dataset
has 4026 genes and 96 conditions. These datasets are preprocessed by Cheng and
Church1. Missing values of these datasets are processed as in [4]. The residue
threshold of all algorithms on the Yeast and Lymphoma dataset are set to 300
and 1200 as in previous papers [4,3,9]. However, in some cases, some algorithms
like FLOC can be stuck in local minima and return biclusters with very small
volumes whereas their residues are much lower than the threshold. Therefore,
for a fair comparison, we set different residue thresholds in our algorithm to
produce biclusters with similar residues as in those of the other algorithms.

1 http://arep.med.harvard.edu/biclustering

http://arep.med.harvard.edu/biclustering
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5.2 Experimental Results

The maximum volumes of biclusters produced by all algorithms on two datasets
Yeast and Lymphoma are presented in Table 1a, Table 2a, Fig.3a, and Fig.3b.

It can be observed that BICRELS significantly outperforms the other algo-
rithms on the two datasets in both objectives (larger in volume and smaller in
residue). In addition, although setting the same residue threshold, FLOC can
get stuck at local minima and can only produce very small biclusters.

Table 1b and Table 2b show the statistical information on the bicluster vol-
ume obtained by five algorithms. The average bicluster volume of our algorithm

Table 1. The comparison of five algorithms on the Yeast dataset

Algorithm Max Volume (|I | × |J |) MSR

BICRELS (δ = 300) 16577 (1507× 11) 299.93

ChengChurch (δ = 300) 12012 (1001× 12) 237.33

BICRELS (δ = 237) 12114 (1346× 9) 236.95

SOGA (δ = 300) 13050 (1305× 10) 286.04

BICRELS (δ = 286) 15580 (1558× 10) 285.97

MOGA (δ = 300) 8480 (848× 10) 299.12

BICRELS (δ = 299) 16511 (1501× 11) 298.87

FLOC (δ = 300) 942 (314× 3) 143.20

BICRELS (δ = 143) 5362 (766× 7) 142.88

(a) The largest biclusters obtained from five algo-
rithms

Algorithm Max Volume Min Volume Average Volume (± Std)

BICRELS (δ = 300) 16577 11473 15103.80 (±1567.04)

ChengChurch (δ = 300) 12012 12012 12012.00 (±0.00)

BICRELS (δ = 237) 12114 7865 10695.40 (±1470.11)

SOGA (δ = 300) 13050 1443 7745.16 (±2701.19)

BICRELS (δ = 286) 15580 10659 14030.80 (±1434.14)

MOGA (δ = 300) 8480 3520 7271.09 (±803.33)

BICRELS (δ = 299) 16511 11418 15044.00 (±1564.90)

FLOC (δ = 300) 942 484 589.40 (±156.83)

BICRELS (δ = 143) 5362 2709 4345.60 (±938.51)

(b) Statistical information on the bicluster volume of five algo-
rithms

Algorithm Runtime

BICRELS (δ = 300) 2.26

ChengChurch (δ = 300) 0.12

BICRELS (δ = 237) 1.87

SOGA (δ = 300) 15.08

BICRELS (δ = 286) 2.13

MOGA (δ = 300) 19.52

BICRELS (δ = 299) 2.24

FLOC (δ = 300) 615.85

BICRELS (δ = 143) 1.12

(c) Average runtime (in sec-
onds) of five algorithms
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Table 2. The comparison of five algorithms on the Lymphoma dataset

Algorithm Max Volume (|I | × |J |) MSR

BICRELS (δ = 1200) 43907 (1909× 23) 1199.50

ChengChurch (δ = 1200) 39026 (1027× 38) 1101.52

BICRELS (δ = 1101) 39307 (1709 × 23) 1100.56

SOGA (δ = 1200) 35820 (995× 36) 1187.24

BICRELS (δ = 1187) 42274 (1838 × 23) 1186.72

MOGA (δ = 1200) 39032 (1394× 28) 1191.62

BICRELS (δ = 1191) 42458 (1846 × 23) 1190.98

FLOC (δ = 1200) 572 (143× 4) 363.22

BICRELS (δ = 363) 6440 (920× 7) 362.84

(a) The largest biclusters obtained by five algorithms

Algorithm Max Volume Min Volume Average Volume (± Std)

BICRELS (δ = 1200) 43907 29887 33932.50 (±4394.52)

ChengChurch (δ = 1200) 39026 39026 39026.00 (±0.00)

BICRELS (δ = 1101) 39307 25968 30064.10 (±4333.37)

SOGA (δ = 1200) 35820 2014 23983.98 (±8441.05)

BICRELS (δ = 1187) 42274 28964 33230.90 (±4191.15)

MOGA (δ = 1200) 39032 30875 35451.80 (±1970.40)

BICRELS (δ = 1191) 42458 29055 33348.60 (±4220.95)

FLOC (δ = 1200) 572 282 354.40 (±112.25)

BICRELS (δ = 363) 6440 1314 3779.00 (±1500.02)

(b) Statistical information on bicluster volume of five algorithms

Algorithm Runtime

BICRELS (δ = 1200) 13.37

ChengChurch (δ = 1200) 0.34

BICRELS (δ = 1101) 12.73

SOGA (δ = 1200) 76.67

BICRELS (δ = 1187) 13.02

MOGA (δ = 1200) 75.37

BICRELS (δ = 1191) 13.12

FLOC (δ = 1200) 345.93

BICRELS (δ = 363) 2.54

(c) Average runtime (in seconds)
of five algorithms

is much larger than that of the other algorithms. In order to study the rela-
tionship between the number of restart times and the maximum volume, we
run BICRELS with 10 different random seeds, and in each run BICRELS is
restarted for 100 times. Fig.4a and Fig.4b show the performance curves of our
algorithm on two datasets. It can be seen that our algorithm reaches very good
final results within about 30 restarts. Especially, on the Yeast dataset, our al-
gorithm always converges to the optimal solution after 41 restarts. BICRELS
also enjoys the anytime property: it can be terminated at any time after a given
number of restarts (greater than zero) delivering the best solution found so far.
This characteristic endows it with more flexibility to trade off CPU time w.r.t.
solution quality.
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Fig. 3. Performance comparison of five algorithms on two datasets. Let’s remind that
MSR has to be minimized, while volume has to be maximized. To improve visibility
BICRELS results are connected by segments.
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Fig. 4. The performance curves of BICRELS on two datasets. Each boxplot of 10
different runs with the same number of restarts shows the maximum, minimum volume
and lower, upper quartile together with median. The observations which are considered
as outliers are presented as red crosses.

As for the comparison on the runtime, except for the ChengChurch algo-
rithm, our algorithm is faster than the other algorithms as shown in Table 1c
and Table 2c. Our algorithm BICRELS is slower than the ChengChurch al-
gorithm because in each iteration, BICRELS only adds one row or column
whereas ChengChurch can add a set of rows or columns. The difference be-
tween runtime of our algorithm and ChengChurch is the computational cost
that we pay for the improvement in the solution quality. Because of the anytime
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property of BICRELS, an early termination after a smaller number of restarts
is the obvious way to reduce CPU time for a lower average solution quality.

6 Conclusion

In this paper, we proposed a repeated local search algorithm for biclustering,
called BICRELS. We also suggested an efficient incremental update scheme to
speed up the algorithm. Although our algorithm is simple, it is reasonably fast
and it significantly outperforms the other state-of-the-art algorithms on two real-
world datasets. Finally, as our algorithm has the any-time property, it provides
users with the flexibility in trading off CPU time w.r.t. solution quality.
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