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Abstract. Recent research has indicated that learning environments that 
intentionally induce confusion to promote deep inquiry can be beneficial for 
learning if students engage in confusion resolution processes and if relevant 
scaffolds are provided. However, it is unlikely that these environments will 
benefit all students, so it is necessary to identify the student profiles that most 
benefit from confusion induction. We investigated how individual differences 
(e.g., prior knowledge, interest, attributional complexity) impacted confusion 
and learning outcomes in an environment that induced confusion via false 
system feedback (e.g., negative feedback after a correct response). A k-means 
cluster analysis revealed four clusters that varied on cognitive ability and 
cognitive drive. We found that students in the high cognitive ability + high 
cognitive drive cluster reported more confusion after receiving false feedback 
compared to the other clusters. These students also performed better on tasks 
requiring knowledge transfer, but only when they were meaningfully confused.  
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1 Introduction 

Recent research has shown that intelligent tutoring systems (ITS) are an effective and 
comparable alternative to novice as well as accomplished (or expert) human tutors 
[1]. ITSs are effective because they are interactive, provide immediate feedback, and 
provide individualized instruction, which are similar to the techniques used by human 
tutors [2-4]. ITSs must attend to both student cognition and affect in order to provide 
effective, individualized instruction. Recently many ITSs have adopted this approach 
and provide individualized instruction that focuses on the affective states of the 
student in addition to their cognitive states (e.g., [5-9]).  

Confusion is one affective state that is particularly important to the learning 
process. Confusion is an epistemic or knowledge affective state [10-11] that occurs 
when students confront contradictions, anomalies, and discrepant events that create 
impasses and when students are uncertain about how to proceed [12-14]. In other 
words, confusion signals that there is something wrong with the state of one’s 
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knowledge [15]. Increased experiences of confusion have been linked to learning at 
deeper levels [16-17]. Importantly, it is not the mere experience of confusion that 
presumably benefits learning; instead it is the effortful cognitive activities inspired by 
confusion resolution (e.g., reflection, deliberation) that underlie improvements in 
learning [14,18]. However, all experiences of confusion are not expected to be 
beneficial for learning. Learning is unlikely to occur when students are unable to 
resolve their confusion either due to a lack of motivation, ability, or instructional 
scaffolds. This type of unresolved or hopeless confusion should be contrasted with 
productive confusion, which can eventually be resolved [18]. 

It has been suggested that ITSs can capitalize on the benefits of confusion by 
adaptively responding to natural occurrences of confusion. For example, UNC-
ITSpoke is a novel ITS that provides adaptive feedback and instruction based on the 
correctness and level of certainty in a student’s spoken response [8]. Similarly, the 
Affective AutoTutor provides motivational and supportive statements to help students 
persist in the learning task when it senses that they are confused [19]. Both systems 
have been shown to be more effective than non-affective counterparts, but only for a 
subset of students. This suggests that affective response strategies must take into 
consideration individual differences, an idea that is at the core of this paper. 

A somewhat different approach to reactively capitalizing on opportunities afforded 
by naturally occurring confusion, is a proactive approach in which learning environ-
ments create learning opportunities through confusion induction. We have experi-
mented with this approach and had some success with confusion induction through 
the presentation of system breakdowns [20], contradictory information [21-22], and 
false system feedback [23]. Space limitations preclude a detailed discussion of these 
studies, however, they all revealed that confusion induction and regulation was a 
successful learning strategy, but only for a subset of students. It is important, then, to 
understand the individual differences that influence the incidence of confusion itself, 
attempts at confusion resolution, and learning outcomes associated with these 
processes. In line with this, the present paper investigates the impact of individual 
differences in a learning environment that induces confusion via false feedback.  

Our focus is on the analysis of a data set collected from a study in which students 
attempted to learn research methods while interacting with an animated tutor agent 
[23]. Students diagnosed the flaws in research case studies and received feedback 
(accurate or inaccurate) on the quality of the flaw diagnosis. The false feedback was 
expected to trigger confusion, which would inspire deeper processing, and the 
learning environment provided explanatory texts to aid confusion resolution. We 
found that students learned the most when they received false feedback and were 
successfully confused by the feedback. The previous paper [23] did not analyze 
individual differences associated with successful learning in this environment. To 
address this issue, we investigated whether individual differences impacted (1) the 
effectiveness of false feedback as a method of confusion induction and (2) learning 
gains in a false feedback learning environment. The individual difference measures 
included in the present paper were prior knowledge, confidence in the ability to learn 
from a computer tutor, perceptions of research methods (interest, willingness to put in 
effort to learn), the School Failure Tolerance scale (SFT, [24]), the Attributional 
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Complexity scale (ACS, [25]), and the Theory of Intelligence scale (TOI, [26]). These 
measures were selected because they assess preferences for challenging material and 
responses to academic challenges like those posed by confusion inducing stimuli. 

2 Method 

2.1 Participants 

Participants (called students for the remainder of the paper) were 167 undergraduate 
students from a mid-south university in the US who received course credit for 
participation. Data from eleven students was not included in the present analyses 
because they did not complete the individual difference measures (described below). 
There were 115 females and 41 males in the sample, 62% of which were African-
American, 32% Caucasian, 4% Hispanic, and 2% Asian. 

2.2 Design and Manipulation 

The experiment had a within-subjects design with four conditions, one on each 
research method topic (control group, experimenter bias, random assignment, 
replication): positive-positive, positive-negative, negative-negative, and negative-
positive. Students completed two learning sessions in which they received accurate 
feedback and two sessions of false feedback. It was not guaranteed, however, that 
each student would be in all four conditions due to the fact that condition assignment 
was partially dependent upon student responses. Order of feedback condition, order of 
topics, and assignment of topics to conditions were counterbalanced across students 
with a Graeco-Latin Square. 

False feedback was delivered during dialogues with an animated tutor agent over 
the course of identifying flaws in research case studies. Each study contained one 
subtle methodological flaw pertaining to one of four topics. The four feedback 
conditions were based on student response quality (positive: correct and negative: 
incorrect) and tutor agent feedback (positive: “Yes, that’s right” and negative: “No, 
that’s not right”). Students who responded correctly either received accurate, positive 
feedback (positive-positive) or inaccurate, negative feedback (positive-negative). 
Students in the negative-negative condition received accurate, negative feedback, 
whereas those in the negative-positive condition received inaccurate, positive 
feedback. It should be noted that all misleading information presented via false 
feedback was corrected at the end of each dialogue and participants were fully 
debriefed at the end of the experiment. 

2.3 Procedure 

The experiment occurred over two phases: (1) knowledge assessments and learning 
sessions and (2) individual difference measures.  

Knowledge Tests. Research methods knowledge was assessed with a multiple-choice 
definition test and flaw identification task. The definition test consisted of eight 
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multiple-choice questions. There was one question pertaining to each topic that was 
discussed in the learning sessions. In addition, there were four questions that 
pertained to topics not covered in the learning sessions (construct validity, 
correlational studies, generalizability, measure quality). The definition test was 
presented before and after all of the learning sessions had been completed (pretest and 
posttest, respectively). Two versions of the test were created and order of presentation 
was counterbalanced across students.  

The flaw identification task consisted of a description of a previously unseen study and 
students were asked to identify flaw(s) in the study by selecting as many items as they 
wanted from a list of eight research methods topics. The list included four topics that could 
potentially be flawed (i.e., discussed in the learning sessions) and four distractor topics 
(i.e., not discussed in the learning sessions). Students also had the option of selecting that 
there was no flaw, although each study contained one flaw. Near and far transfer versions 
of studies were presented to students. The near transfer studies differed from the studies 
discussed in the learning sessions on surface features, whereas the far transfer studies 
differed on both surface and structural features. Each topic discussed during the learning 
sessions had one near and one far transfer study, resulting in eight transfer studies in all.  

Learning Sessions. First, students signed an informed consent, completed a brief 
demographics questionnaire, and completed the pretest. Students then read a short 
introductory text on research methods. Next, students completed a survey about their 
perceptions of learning research methods (PLRM). These questions assessed student 
interest in and willingness to put in effort when learning about research methods and 
student confidence in the ability to learn from a computer tutor.  

Students then began the first of four learning sessions. Each learning session 
consisted of four phases: manipulation, assumption check, remediation, and post-
remediation. For the present paper only the manipulation and remediation phases are 
relevant and the others are not discussed here. The manipulation phase began with 
students reading a description of the study that was being discussed. Next, students 
were presented with a forced-choice question to diagnose the flaw in that study. When 
discussing the study with replication as its flaw, for example, the tutor agent asked the 
student “Was this a good or bad replication?” Students then selected one of the three 
response options: target (correct), thematic miss (incorrect but generally related to the 
concept), and irrelevant distractor (incorrect and not related to the concept). Students 
also rated whether they were confident or not confident in the correctness of their 
response prior to receiving feedback. The majority of students (80%) were confident 
in the correctness of their response [23]. The tutor agent then provided feedback about 
the quality of the response. Based on the condition, the feedback delivered could 
either be accurate or inaccurate, regardless of the actual quality of the response.  

After receiving feedback, students were prompted to make a post-feedback 
confusion judgment. Students were prompted to indicate whether a classmate would 
be confused or not confused at this point in the learning session. The confusion 
prompt was phrased in this manner to avoid potential biases due to students’ negative 
perceptions of being in a state of confusion [21]. Reports of confusion were found to 
be significantly related to increased student processing time after feedback [23]. 
Student processing time was assessed by asking students to indicate when they were 
ready to proceed with the learning session after receiving feedback.  
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In the remediation phase students were presented with an explanatory text to 
potentially alleviate their confusion. The texts were adapted from the electronic text-
book that accompanies the Operation ARA! ITS [27]. Longer text reading times were 
considered to indicate greater depth of processing [28], which is ostensibly related to 
increased effort to resolve confusion. Post-feedback confusion judgments and 
explanatory text read times served as the learning process measures. 

Individual Difference Measures. In addition to the PLRM (see above), students also 
completed three individual difference measures after the posttest: SFT [24], ACS 
[25], and TOI [26]. The SFT consists of three subscales: prefer difficult material, 
experience negative affect after failure, and take action after failure. These subscales 
describe the type of material students generally prefer (difficult vs. easy; prefer 
difficult) as well as the affective states that they experience (negative vs. positive; 
negative affect) and how they respond after failure (take action vs. avoid; take action).  

The ACS consists of seven subscales. Only four of the subscales were used in the 
present analyses due to reliability issues within the current sample (see below). The 
four subscales used were motivation, metacognition, complex contemporary external 
explanations, and use of temporal dimension. These subscales assess the degree to 
which students look for (motivation) and monitor their own behavior for 
(metacognition) multiple explanations and prefer complex external explanations that 
are either temporally close (contemporary) or distant (temporal) from an event. The 
TOI has two subscales that represent either a theory that intelligence can be increased 
through effort and training (incremental mindset) or that people have a certain level of 
intelligence that cannot be altered (entity mindset). Reliability (Cronbach’s alpha) for 
the nine subscales included in the analyses ranged from .616 to .915. 

3 Results and Discussion 

The analyses are divided into two sections. First, we conducted a k-means cluster 
analysis to group students with similar characteristics. Second, we investigated 
differences between clusters for the learning process and learning outcome measures.  

3.1 Cluster Analysis 

We used a k-means clustering method to group the 156 students into clusters. 
Students were grouped based on 14 attributes that included their pretest score; self-
reported ACT score; interest, effort, and confidence from the PLRM; and the nine 
subscales from the SFT, ACS, and TOI. The k value was set to 4 based on an 
exploratory factor analysis and a hierarchical cluster analysis. We also experimented 
with k’s of 3 and 5; however, the clusters were most distinct with k = 4.  

ANOVAs indicated that 10 out of the 14 measures used to create the clusters 
significantly discriminated between clusters (p’s < .05). Incremental mindset (TOI) 
was only marginally significant (p < .1), while entity mindset (TOI), confidence 
(PLRM), and negative affect (SFT) did not discriminate between clusters (p’s > .1).     

We correlated the individual clusters (dummy coded) and the 10 aforementioned 
measures in an attempt to name the clusters. Table 1 shows the pattern of correlations 
and the N for each cluster. Cognitive Ability (CA) and Cognitive Drive (CD) appeared 
to be the latent factors that distinguished the clusters. CA included pretest and ACT 
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scores, whereas CD encompassed characteristics related to interest, effort, motivation, 
determination, and persistence. Thus the four clusters were named High CA + High 
CD (cluster 3), High CA + Low CD (cluster 1), Low CA + High CD (cluster 2), and 
Low CA + Low CD (cluster 4). 

Table 1. Patterns in correlation matrix used for cluster naming 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 
 High CA + 

Low CD 
Low CA + 
High CD 

High CA + 
High CD 

Low CA + 
Low CD 

 (N = 12) (N = 68) (N = 32) (N = 44) 

Cognitive Ability 
Pretest Score   + - 
ACT Score + - + - 
     

Cognitive Drive     
PLRM: Interest  + + - 
PLRM: Effort - +   
SFT: Prefer Difficult  +  - 
SFT: Action - + -  
ACS: Motivation -  + - 
ACS: Metacognition -    
ACS: Contemporary - + +  
ACS: Temporal -    

Notes. +’s or –’s indicate positive or negative correlations at p < .10. 

3.2 Differences between Clusters 

Next, we investigated differences between clusters for the learning process and 
learning outcome measures. Analyses were conducted separately for each type of 
learning session: positive-positive, positive-negative, negative-negative, and negative-
positive. The High CA + Low CD cluster was not included in the present analyses due 
to the low N of 12. We conducted non-parametric Kruskal-Wallis tests with  
Mann-Whitney U post hoc tests when the variables were not normally distributed and 
ANOVAs with Bonferroni post hoc tests otherwise. 

There were no significant cluster differences for the accurate feedback learning 
sessions (positive-positive, negative-negative). Thus, the discussion will focus on the 
false feedback learning sessions (positive-negative, negative-positive).  

Learning Process Measures. There were marginally significant differences between 
clusters for the post-feedback confusion judgments in both false feedback learning 
sessions: positive-negative: χ2(2, N = 119) = 5.47, p = .065; negative-positive: χ2(2, N 
= 99) = 4.56, p = .102 (see Table 2). For the positive-negative sessions the High CA + 
High CD cluster reported significantly more confusion than the Low CA + Low CD 
cluster (p = .034). The other cluster comparisons were not significant. For the 
negative-positive sessions, the High CA + High CD cluster reported more confusion 
than the Low CA + High CD cluster (p = .045) and was the only significant cluster 
difference. These findings suggest that students must know enough and be sufficiently 
driven to recognize that there is a discrepancy in the system feedback. 
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Table 2. Descriptives for learning process measures 

Measure High CA + High CD Low CA + High CD Low CA + Low CD 

Confusion 
(Proportion) 

Positive-Negative .704 .475 .636 
Negative-Positive .630 .381 .412 

Text Read Time 
M(SD) in secs 

Positive-Negative 75.5 (36.7) 68.5 (41.8) 78.2 (45.2) 
Negative-Positive 97.9 (45.8) 78.2 (52.6) 62.6 (46.9) 

There was a significant cluster difference in explanatory text reading times for the 
negative-positive sessions, F(2, 96) = 3.55, p = .032 but not for the positive-negative 
sessions (p = .528) (see Table 2). For the negative-positive sessions, the High CA + 
High CD cluster read for longer than Low CA + Low CD cluster (p = .027). The other 
cluster comparisons were not significant.  

Learning Outcome Measures. Student performance on the definition posttest was 
assessed by selection of the correct answer option. For both transfer tasks student 
performance was assessed with hits (correctly identifying the presence of a flaw). 
There were no significant differences on the definition posttest for either of the false 
feedback learning sessions (p’s > .1).  

However, there were significant cluster differences on the flaw identification task 
(see Table 3). For the near transfer task, there were significant differences between 
clusters for the positive-negative sessions, χ2(2, N = 118) = 6.24, p = .044. The High 
CA + High CD (p = .033) and Low CA + High CD (p = .026) clusters performed 
better than the Low CA + Low CD cluster. The High CA + High CD and Low CA + 
High CD clusters did not significantly differ. There was not a significant difference 
between clusters for the negative-positive sessions (p = .568).  

Table 3. Proportion of correct flaw detection for the flaw identification task 

Measure High CA + High CD Low CA + High CD Low CA + Low CD 

Near Transfer 
Positive-Negative .538 .466 .273 
Negative-Positive .500 .583 .471 

Far Transfer 
Positive-Negative .315 .169 .182 
Negative-Positive .545 .226 .318 

There were significant differences between clusters for the negative-positive 
sessions for the far transfer task, χ2(2, N = 97) = 7.32, p = .026. The only significant 
cluster difference was that the High CA + High CD cluster performed better than the 
Low CA + High CD cluster (p = .008). There was not a significant cluster difference 
for the positive-negative sessions (p = .248).  
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These findings show that false feedback can promote learning at a deeper level, but 
that false feedback was most beneficial for a particular group of students (i.e., High 
CA + High CD). It is interesting, however, that the High CA + High CD cluster only 
performed better on the near transfer task when in the positive-negative learning 
sessions and the far transfer task when in the negative-positive learning sessions. We 
hypothesized that the increased performance on the transfer tasks could be related to 
the increased effort to resolve confusion (i.e., longer text read times) by the High CA 
+ High CD cluster when in the false feedback learning sessions. 

To address this hypothesis, we explored cluster differences on the transfer tasks 
when students were divided into those who read the text more quickly and read more 
slowly via a median split. There were no significant cluster differences when students 
read more quickly (p’s > .05). However, when students read for longer, the High CA 
+ High CD cluster performed better than the Low CA + Low CD cluster on the near 
transfer task, χ2(2, N = 61) = 6.92, p = .031, and better than the Low CA + High CD 
cluster on the far transfer task, χ2(2, N = 62) = 5.88, p = .053, for the positive-negative 
sessions. A similar pattern was found for the far transfer task in the negative-positive 
sessions, χ2(2, N = 48) = 6.72, p = .035, with the High CA + High CD cluster 
outperforming the Low CA + High CD cluster. These findings suggest that effortful 
attempts at confusion resolution were needed to perform well on the transfer tasks. 

4 General Discussion 

Recent research has focused on developing ITSs that promote learning through 
adaptive scaffolding based on both student cognition and affect [5-9]. It is also 
important, however, to determine the individual differences (e.g., interest, prior 
knowledge, learning styles) that influence the effectiveness of these affect-aware 
learning interventions because there is no one-size-fits-all approach to learning. As a 
step in this direction, we investigated the relationship between individual differences, 
confusion, and learning within a learning environment that proactively induces 
confusion as a means to promote deep inquiry.  

A cluster analysis on a number of individual difference measures indicated that 
students differed with respect to cognitive ability and cognitive drive. We found that 
students with a combination of high cognitive ability and high cognitive drive 
benefited the most from the current learning environment. These students were 
successfully confused by the false feedback (induction) and performed better on the 
transfer tasks (learning). It is critically important to note that the high cognitive ability 
and high cognitive drive cluster did not simply learn more than the other clusters in all 
learning sessions. This cluster of students only outperformed the other clusters on 
transfer tasks when they received false feedback. Moreover, these students only 
outperformed the other clusters on the difficult far transfer task when they received 
false feedback and read the text for longer in an effort to resolve their confusion. 

Despite these promising findings, some critics might object to the use of false 
feedback due to the potential for negative impacts on learning. This is a valid concern 
for more authentic learning contexts and for this reason it is important to understand 
which students do and do not benefit from this method of confusion induction. 
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However, it is important to note that previous analyses showed that inaccurate 
feedback did not negatively impact learning in the present experimental research [23].  

Now that we have identified which students benefited from false feedback in the 
present learning environment, the next step is to determine how to help other students 
benefit from experiences of confusion during learning. There are two aspects of the 
learning environment that can be targeted. First, false feedback is not the only method 
of confusion induction. It may be the case that productive confusion is triggered by 
different stimuli for different students (e.g., system breakdowns [20], contradictory 
information [21-22]). Second, presentation of an explanatory text may not have been 
the most appropriate method of confusion remediation for all students. Students who 
are lower in cognitive ability and cognitive drive may need more adaptive, targeted 
scaffolding (e.g., critical information [8] or encouragement [19]). Or perhaps, it is 
simply better to avoid confusing these students and rely on more explanation-focused 
pedagogical approaches. Future research will need to differentially adapt both 
confusion induction and remediation strategies for different individual differences to 
maximize learning for all students.  
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