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Abstract. Csikszentmihalyi’s Flow theory states that a balance between  
challenge and skill leads to high engagement, overwhelming challenge leads to 
anxiety or frustration, and insufficient challenge leads to boredom. In this  
paper, we test this theory within the context of student interaction with an intel-
ligent tutoring system. Automated detectors of student affect and knowledge 
were developed, validated, and applied to a large data set. The results did not 
match Flow theory: boredom was more common for poorly-known material, 
and frustration was common both for very difficult material and very easy  
material. These results suggest that design for optimal engagement within  
online learning may require further study of the factors leading students to  
become bored on difficult material, and frustrated on very well-known material.     
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1 Introduction 

In recent years, substantial work has gone into increasing the sensitivity and respon-
siveness of intelligent tutoring systems (ITSs) to differences in student affect [10, 11]. 
One theory that has inspired design in education [cf. 28] is Csikszentmihalyi’s Flow 
theory [8]. This theory details the attributes of optimal experience during activity, 
making a number of specific claims that can be investigated, tested, and leveraged 
within design when a person is engaged in an activity with clear goals, with imme-
diate feedback, and when balance is achieved between the person’s perception of task 
difficulty and perception of one’s own skills to do the task [8]. Empirical work in 
classrooms using traditional approaches (e.g., not ITS) has found that high school 
students experience the highest engagement when students perceive both challenge 
and their skill as high [28]. Csikszentmihalyi [8, 9] also hypothesized that specific 
affective states (emotion in context [cf. 7]) emerge depending on the degree of  
challenge and skill that is present for an activity. His theory indicates that when an 
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activity is perceived to be too easy one becomes bored, and when the task is too diffi-
cult one gets anxious [8]. An additional hypothesis is that the same conditions that 
lead to anxiety also lead to frustration [13], implying that challenge is higher than 
skill, leading some researchers to use frustration rather than anxiety in applying 
Csikszentmihalyi’s theory [cf. 20, 25]. 

Flow theory, when applied to the context of education, asserts that a learning activ-
ity should be perceived as challenging but not too difficult [27]. As such, non-
adaptive learning materials are likely to fail in producing flow for most students, as 
materials at a specific difficulty level are likely to be boring for students with higher 
skill, and frustrating for students with lower skill [cf. 26]. However, a learning system 
that accurately infers student skill – as modern intelligent tutoring systems do – may 
be able to specifically select problems of appropriate difficulty, in an attempt to  
balance challenge with skill level [18].   

However, there is still not sufficient empirical evidence that Flow theory’s account 
of the consequences of failing to achieve a balance between difficulty and skill are as 
predicted. In particular, recent research has suggested that boredom is often characte-
ristic of the least successful students rather than students who have already achieved 
mastery [1, 7, 19]. This same research finds that frustration does not appear to be 
strongly connected with the poorest students [7, 22, 23].  These studies have the  
limitation of investigating these issues at a fairly coarse grain-size, looking solely at 
overall prevalence of affective states and long-term measures of learning. By studying 
these issues at a finer grain-size, we can understand these relationships better.  

In this paper, we operationalize boredom, frustration, and engaged concentration 
during online learning in the fashion proposed in [3, 7]. In this paradigm, affective 
states are conceptualized as atomic and distinct from one another.  Of particular  
importance to Flow theory are boredom [8, 15], frustration [13], and engaged concen-
tration [cf. 3], which is the affect associated with Csikszentmihalyi’s construct of flow 
but does not  involve the inherent task-related aspects of flow – clear goals,  
immediate feedback, and balance between challenge and skill. 

We conduct this research in a data set of 8,454 students learning online for a year 
apiece in the ASSISTment system [21], a free web-based tutoring system for middle 
school mathematics. Within ASSISTments, students complete mathematics problems 
and are formatively assessed – providing detailed information on their knowledge to 
their teachers – while being assisted with scaffolding, help, and feedback. Items in 
ASSISTments are designed to correspond to the skills and concepts taught in relevant 
state standardized examinations. Teachers have the ability to assign students questions 
on a particular skill and typically select the problems or problem sets their students 
receive (though mastery learning can also be activated by the teacher for some  
problem sets). As shown in Figure 1, the ASSISTment system provides feedback on 
incorrect answers. When a student answers a problem incorrectly, they are provided 
with scaffolding questions breaking the problem into its component steps. Hints are 
provided at each step and the student can ask for a bottom-out hint that eventually 
tells the answer.  

Within this paper, we use automated detectors of student affect within the  
ASSISTment system (published in previous work [16]) to operationalize student  
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affect within the ASSISTment system. These detectors, developed and validated using 
data from 229 students, are then applied to the full data set of 8,454 students. We 
combine these detectors with data from models of student knowledge in order to ana-
lyze the conditions under which each affective state occurs, and whether the relation-
ship between affect and the difficulty of a problem for a specific student accords with 
Flow theory. We conclude with a discussion of potential implications for the design 
of interactive educational systems.   

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Example of an ASSISTment. a) If a student gets it incorrect, hints and scaffolding prob-
lems are there to aid the student in eventually getting the correct answer. b) Example of Scaf-
folding and Hints in an ASSISTment. 

2 Measures Used 

2.1 Affect Detectors 

Within this paper, we leverage existing detectors of student affect within the  
ASSISTment system [16], to help us understand student affect across contexts.  
Detectors of three affective states are utilized: engaged concentration, boredom, and 
frustration. The detectors of engaged concentration and boredom used in this paper 
are identical to the detectors used in [16]. After publishing [16], we discovered a  
minor computation error in one of the features used in the frustration detector. Hence, 
a re-computed model is used here (the goodness of the detector is almost exactly iden-
tical between the [16] and this paper). Though anxiety plays a prominent role in 
Csikszentmihalyi’s Theory of Flow, no detector of anxiety in ASSISTments was 
available, in part because anxiety has been observed so rarely in classroom use of 
intelligent tutoring systems as to not merit its own coding category [12, 14, 23]. 

These detectors were developed using a two-stage process: first, student affect was 
labeled for a sample of 3,075 field observations [cf. 3] of 229 students conducted by 

                            a)                                                                b)
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two coders using an Android app, and then those labels were used to create automated 
detectors that can be applied to log files at scale. An inter-rater reliability session was 
conducted, where the two coders coded the same student at the same time (they ob-
served multiple students, but observed each student together). They conducted 51 
simultaneous observations, achieving a Cohen’s Kappa of 0.72, indicating agreement 
72% better than chance. The detectors were created by synchronizing log files gener-
ated by the ASSISTments system with field observations conducted at the same time. 
To enhance scalability, only log data was used as the basis of the detectors, instead of 
using physical sensors (and indeed, the research presented in this paper could not 
have been conducted if physical sensors were used). The detectors were constructed 
using only log data from student actions within the software occurring at the same 
time as or before the observations. By using information only from before and during  
the  observation, our detectors can be used for automated interventions, as well as the 
discovery with models analyses presented in this paper.  

All of the affect detectors performed better than chance. Detector goodness within 
ASSISTments was at the high end of previous reports of published models inferring 
student affect in an ITS solely from log files [cf. 4, 5, 11, 24]. The best detector of 
engaged concentration involved the K* algorithm, achieving an A' of 0.678 and a 
Kappa of 0.358. The best boredom detector was found using the JRip algorithm, 
achieving an A' of 0.632 and a Kappa of 0.229. The best frustration detector achieved 
an A' of 0.681 and a Kappa of 0.301, using the J48 algorithm.  These levels of  
detector goodness indicate models that are clearly informative, though there is still 
considerable room for improvement.  

Within the original observations, boredom was observed 17.7% of the time, fru-
stration was observed 4.4% of the time, and engaged concentration 53.0% of the time, 
with other affective states representing the remainder of student time.  The detectors 
emerging from the data mining process had some systematic error in prediction, 
where the average confidence of the resultant models was systematically higher or 
lower than the proportion of the affective states in the original data set. This type of 
bias does not affect correlation to other variables since relative order of predictions is 
unaffected, but it can reduce model interpretability. To increase model interpretabili-
ty, model confidences were rescaled to have the same mean as the original distribu-
tion, using linear interpolation. Rescaling the confidences this way does not impact 
model A’ or Kappa, as it does not change the relative ordering of model assessments. 

2.2 Prior Knowledge Assessment 

Estimates of student knowledge were used as a proxy for Flow theory’s “balance 
between challenge and skill.” These estimates were computed using Bayesian Know-
ledge Tracing (BKT) [6], a model used in several ITSs to estimate a student’s latent 
knowledge based on his/her observable performance. This model can predict how 
difficult the current problem will be for the current student, based on the skills  
required for that problem. As such, this model can implicitly capture the tradeoff  
between difficulty and skill for the current context. This model can inform us whether 
student skill is higher than current difficulty (resulting in a high probability of  
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correctness), when current difficulty is higher than student skill (resulting in a low 
probability of correctness), and when difficulty and skill are in balance (medium 
probabilities of correctness). To assess student skill, BKT infers student knowledge 
by continually updating the estimated probability a student knows a skill every time 
the student gives a first response to a new problem. It uses four parameters, each es-
timated separately per skill: LO, the initial probability the student knows the skill; T, 
the probability of learning the skill at each opportunity to use that a skill; G, the prob-
ability that the student will give a correct answer despite not knowing the skill; and S, 
the probability that the student will give an incorrect answer despite knowing the 
skill. In this model, the four parameters for each skill are held constant across con-
texts and students (variants of BKT relax these assumptions). BKT uses Bayesian 
algorithms after each student’s first response to a problem in order to re-calculate the 
probability that the student knew the skill before the response. Then the algorithm 
accounts for the possibility that the student learned the skill during the problem in 
order to compute the probability the student will know the skill after the problem [6]. 
With the data from the logs, BKT parameters were fit by employing brute-force grid 
search [cf. 2]. 

After obtaining the assessments of student affect and prior knowledge at each  
problem, we assessed the relationship between the two. The following section shows 
both qualitative and quantitative estimates of these relationships for each affective 
state. Since our models provide confidences in their predictions as well as overall 
predictions, we conduct analyses using the confidences of the affect predictions rather 
than the proportion of binary predictions. 

3 Studying the Relationship between Affect and Knowledge 

3.1 Data Set 

The detectors of student affect and student knowledge were applied to a data set  
consisting of five years of student usage of the ASSISTment system by four schools 
in New England, from 2004-2005 to 2008-2009. These four schools represent a  
diverse sample of students in terms of ethnicity and socio-economic status. Two dis-
tricts were urban with many students requiring free or reduced-price lunches due to 
poverty, relatively low scores on state standardized examinations, and many students 
learning English as a second language. The other two districts were suburban, serving 
relatively wealthier populations. The affect models were applied to this much larger 
dataset. This data set included 8,454 students and a total of 1,568,974 student actions 
within the learning software.  

3.2 Boredom and Student Knowledge 

Boredom is less common when student skill is higher, as shown in Figure 2. This 
finding contrasts with predictions by Csikszentmihalyi [8] and Shernoff et al. [28], 
which would suggest that boredom should mostly occur when material is too easy 
relative to student skill. The linear trend is fairly modest (a difference of 5% in aver-
age boredom between material where the student has a high probability of knowing 
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Fig. 2. The relationship between boredom and the probability that the student knows the skill. 
Note that the X axis denotes difficulty for the current problem for the current student, prior to 
the student completing the problems; i.e., the contextually hardest problems are on the left, and 
the contextually easiest problems are on the right. 

the skill and material where the student has a very low probability of knowing the 
skill). However, due to the large sample size, the negative linear trend is statistically 
significant (r = -0.157, F(1, 1560519) = 14223.174,  p < 0.0001). Note that a student 
term was included in the model (and all the statistical tests in this paper) to avoid 
violation of statistical independence. 

3.3 Frustration and Student Knowledge 

The relationship between frustration and student skill, shown in Figure 3, appears 
non-linear. Frustration appears to be significantly more common for students with 
very low skill and for students with very high skill, than for other students. When we 
fit a linear curve, there is a significant but small correlation between frustration and 
prior knowledge  (r = 0.093, F(1, 1560519) = 11647, p < 0.0001).  A  parabolic  curve  
 
 
 
 

 

 

                                                                                                                                       

 
Fig. 3. The relationship between frustration and the probability that the student knows the skill 
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(i.e., Frustration = (Knowledge – Mean(Knowledge))2) achieves better fit (r = 0.222, 
F(1, 1560519) = 63989, p < 0.0001). The difference in BiC’ values between these two 
models is 65,667, indicating that the parabolic curve fits the data substantially better 
than the linear function (differences in BiC’ of ten or greater indicate substantial dif-
ferences between models). The relationship between low skill and frustration accords 
with Flow theory, but the relationship between high skill and frustration is surprising, 
indicating that students may become frustrated when repeatedly given easy items. 

3.4 Engaged Concentration and Student Knowledge 

The incidence of engaged concentration is higher for more skilled students, as shown 
in Figure 4. The linear trend is fairly modest (a difference of 6% in average engaged 
concentration between material where the student has a high probability of knowing 
the skill and material where the student has a very low probability of knowing the 
skill). However, due to the large sample size, the linear trend is statistically significant 
(r = 0.184, F(1, 1560519) = 13660.477, p < 0.0001 ). In accordance with past studies 
[3, 24], engaged concentration is the most common affect when using ASSISTments 
regardless of student skill level. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 4. The relationship between engaged concentration and the probability that the student 
knows the skill 

4 Discussion and Conclusion 

Flow theory has emphasized the importance of achieving a balance between perceived 
challenge of a task and perceived skill for that task, to produce optimal student en-
gagement (i.e., flow). In these models, an imbalance between challenge and skill 
would result in either boredom or frustration (or anxiety, which is not studied here).   

In this paper, we study the relationship between these student affect and student 
knowledge within the context of an ITS, towards providing a concrete test of one 
aspect of Flow theory. We do so by applying automated detectors of student affect 
and knowledge to data from the ASSISTment system, a widely used intelligent  
tutoring system for middle school mathematics. By integrating these two types of 
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detectors, we can analyze the frequency of each affective state for students with  
different levels of knowledge.  

A limitation in this paper is that the model used for difficulty measures looked at 
estimations of actual knowledge and difficulty rather than a student's self-perceptions 
(as in from Flow theory). A challenge in obtaining measures of self-perception is that 
they may change the student’s emotions and learning if obtained in real-time, and 
may be prone to memory limitations if obtained retrospectively. They also present 
some risk of demand effects. However, replicating this research with self-report 
measures would be a valuable step for future work.  

Overall, we find that engaged concentration is the most likely affect, regardless of 
difficulty. This result shows that completing problems in ASSISTments is generally 
engaging, even when the problems are too easy or too difficult. Beyond this, problems 
are seen to become more engaging as student mastery increases, which contrasts 
somewhat with predictions made in Flow theory, which would predict that engage-
ment would be reduced for the most challenging problems. (However, this result  
replicates a result seen in [17]). Flow theory predicts that these highly challenging 
problems will result in student frustration. Indeed, higher frustration is seen for the 
most challenging problems. However, higher boredom is also seen for these highly 
challenging problems, contrary to Flow theory. Boredom is generally lower for easy 
problems than hard problems, also contrary to Flow theory. In addition, higher  
frustration is seen for easy problems than for problems of middling difficulty, a  
finding that cannot be easily explained with Flow theory. 

Given that these results are different from earlier predictions, it is worth thinking 
about their interpretation. There have been reports of boredom being associated with 
poorer learning [7, 19] and with disengaged behaviors that in turn lead to poorer 
learning [3]. Recent studies using other methods have also found that students become 
bored and disengaged when they find items difficult [1, 19]. These results accord with 
our findings that boredom is characteristic of less successful students rather than high-
ly successful students. Perhaps these students are bored because they have given up 
on succeeding with the material, but must continue to work with the software. It may 
be that this type of boredom is more common in intelligent tutoring systems than 
boredom resulting from overly low challenge – especially since many tutors such as 
ASSISTments are designed to advance students when they reach mastery.  

One possibility is that the relatively low boredom seen for easy items and the  
unexpected frustration seen on these items is due to the student’s lack of control over 
problem difficulty. Perhaps a student who wishes to receive more challenging prob-
lems, but cannot obtain these problems within the software, becomes frustrated and 
upset with the software. In general, further research may be necessary in order to 
understand why students become frustrated with easy material. One possible approach 
would be to pop-up an automated question in this situation (detected frustration on 
easy material), asking students if they are frustrated and why. An interesting aspect of 
the current finding on frustration and student knowledge is that this result provides an 
account for a surprising result from previous studies. Past research has failed to find 
significant relationships between frustration and learning outcomes [cf.7, 22], con-
trary to theoretical predictions [13]. If unsuccessful students are not more likely to 
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become frustrated, one would not expect to see such a relationship. In general, frustra-
tion appears to be a more complex construct than originally thought [cf. 13]. 

Overall, our findings suggest that there may be substantial holes in our understand-
ing of the situations where different affective states emerge, during human-computer 
interaction. Current theory does not explain these results, and makes predictions that 
are in some cases contrary to the findings presented here. It is important to note that 
these findings only involve one intelligent tutor, and rely upon imperfect detectors of 
both affect and knowledge (though each of these detectors is approximately as good 
as the current state-of-the-art for sensor-free detection of these constructs). Replicat-
ing these results (or failing to) in other learning software will be an important step 
towards understanding the generality of these findings, and towards creating general 
principles for how intelligent tutoring systems should respond to users when they 
demonstrate these affective states. It is likely that we will find that each of the affec-
tive states can emerge in multiple situations, driven by differences in tutor design, and 
perhaps by individual differences as well. Hence, further investigation of the contexts 
of affect will be needed to fully understand these relationships.  
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