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Abstract. Recent research has shown that differences in software design and 
content are associated with differences in how much students game the system 
and go off-task. In particular the design features of a tutor have found to predict 
substantial amounts of variance in gaming and off-task behavior. However, it is 
not yet understood how this influence takes place. In this paper we investigate 
the relationship between a student’s affective state, their tendency to engage in 
disengaged behavior, and the design aspects of the learning environments, to-
wards understanding the role that affect plays in this process. To investigate this 
question, we integrate an existing taxonomy of the features of tutor lessons [3] 
with automated detectors of affect [8]. We find that confusion and frustration 
are significantly associated with lesson features which were found to be  
associated with disengaged behavior in past research. At the same time, we find 
that the affective state of engaged concentration is significantly associated with 
features associated with lower frequencies of disengaged behavior. This  
analysis suggests that simple re-designs of tutors along these lines may lead to 
both better affect and less disengaged behavior.  

Keywords: Educational Data Mining, Intelligent Tutoring System, design features, 
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1 Introduction 

There has been considerable research into students’ disengaged behaviors in intelli-
gent tutoring systems over the last few years [6, 7, 10, 11, 13, 15, 21, 29, 32]. This 
work has generally found that a range of disengaged behaviors are associated with 
negative learning outcomes, including both gaming the system and off-task behavior 
[cf. 1, 15, 30].  

Early work on why students became disengaged investigated whether fairly non-
malleable factors such as goal orientation or motivation could predict disengaged 
behaviors [e.g. 10, 11]. However, recent research has suggested that differences in the 
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design of intelligent tutoring systems can also have substantial impacts on student 
engagement. Relatively simple aspects of design such as the concreteness of problem 
scenarios and hints were found to predict a considerable proportion of the variance in 
gaming the system among a group of students using Cognitive Tutor Algebra over the 
course of a year [6]. Off-task behavior has also been found to vary according to de-
sign features such as presence or absence of problem scenarios [3]. These findings 
suggest that design aspects of tutor lessons may play a significant role in influencing 
the prevalence of disengaged behavior.   

However, we do not yet understand the mechanisms through which differences in 
the design of tutor lessons may influence disengaged behavior. One mechanism hy-
pothesized in those earlier papers was that affect might be mediating the relationship 
between tutor design and disengaged behavior. There is evidence for reasonably 
strong relationships between affect and disengaged behavior. Research in Aplusix and 
The Incredible Machine (an ITS and a puzzle game) found that boredom preceded and 
co-occurred with a student’s choice to game the system [7]. Boredom has also been 
found to precede off-task behavior [9] and off-task behavior within the learning envi-
ronment (also called WTF/“without thinking fastidiously” behavior) within intelligent 
tutoring systems [32]. There is also evidence that boredom leads to future off-task 
behavior, within both the Chemistry Virtual Laboratory [9] and Science ASSIST-
ments [22]. However, it is not yet known how strong the relationships are between 
intelligent tutor design features and affect. 

Understanding the factors leading to differences in affect is important by itself as 
well. There is increasing evidence that differences in affect during use of educational 
software can have a substantial impact on learning. Craig and colleagues [16] investi-
gated the relationships between learning gains and affect state and found that  
confusion and flow were positively associated with learning gains but boredom was 
negatively associated with learning. Pardos and colleagues [30] also found that affect 
in intelligent tutors can predict not just local learning, but longer-term learning out-
comes (state standardized exam scores) as well, specifically finding that boredom is 
negatively associated with longer-term learning outcomes while engaged concentra-
tion (e.g. flow) and frustration were positively associated with learning gains.  
Evidence in that paper suggested that the context of affect matters more than the 
overall prevalence, with the relationship between boredom and learning outcomes 
reversing and becoming positive if the boredom occurs during scaffolding. Other 
work has suggested that the duration of affect also matters, with brief confusion corre-
lating positively with learning but lengthy confusion correlating negatively with 
learning [26]. Flow/engaged concentration has also been shown to be associated with 
longer-term engagement with specific domains [17] One possible explanation for this 
finding is that positive affect may lead to increased situational interest [23], which in 
turn has been theorized to lead to greater long term personal interest in the content 
domain [25]. 

Given the relationship between disengaged behavior and affect, and the importance 
of affect in general, it may be worth considering the ways in which tutor design fea-
tures drive not just disengaged behaviors, but affect as well. In this paper we study the  
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relationships between these three factors. We use an existing taxonomy of the features 
of tutor lessons [6] to express the differences between lessons. Taxonomies of this 
nature, also referred to as “design pattern languages” [34], can be useful tools for 
studying and understanding design. We integrate data from the application of this 
taxonomy to a set of lessons from an algebra tutor, with predictions from previously 
published automated detectors of affect [8] and disengaged behaviors [4, 5]. We then 
conduct correlation mining (with post-hoc controls) to study the relationships between 
these variables.  

2 Data Set 

Data was obtained from the PSLC DataShop (dataset: Algebra I 2005-2006 Hampton 
Only; this data set was chosen because it is readily available in the DataShop and has 
been studied in other research as well), for 58 students’ use of Cognitive Tutor  
Algebra during an entire school year. A full description of the Cognitive Tutor used in 
this study can be found in [24]. The data set was composed of approximately 437,000 
student transactions (entering an answer or requesting help) in the tutor software. All 
of the students were enrolled in algebra classes in one high school in the Pittsburgh 
suburbs which used Cognitive Tutors two days a week, as part of their regular  
mathematics curriculum. None of the classes were composed predominantly of gifted 
or special needs students. The students were in the 9th and 10th grades (approximate-
ly 14-16 years old). The Cognitive Tutor Algebra curriculum involves 32 lessons, 
covering a complete selection of topics in algebra, including formulating expressions 
for word problems, equation solving, and algebraic function graphing.  

Data from 10 lessons was eliminated from consideration, to match the original 
analysis of this data in [6], where the relationship between tutor design and gaming 
the system was studied. In that original study, lessons were eliminated due to having 
insufficient data to be able to conduct a sufficient number of text replays to effective-
ly measure gaming the system. On average, each student completed 9.9 tutor lessons 
(among the set of lessons considered), for a total of 577 student/lesson pairs. 

3 Method 

In describing the methods sections, first we will describe taxonomic feature genera-
tion process and then describe affect detection process used to build machine learned 
affect models which were in-turn used in this analysis to obtain affect predictions. 

3.1 The Cognitive Tutor Lesson Variation Space (CTLVS) 

The enumeration of the ways that Cognitive Tutor lessons can differ from one another 
was originally developed in [6]. This enumeration, in its current form, is called the 
Cognitive Tutor Lesson Variation Space version 1.2 (CTLVS1.2). The CTLVS was  
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developed by a six member design team with diverse expertise, including three Cog-
nitive Tutor designers (with expertise in cognitive psychology and artificial intelli-
gence), a researcher specializing in the study of gaming the system, a mathematics 
teacher with several years of experience using Cognitive Tutors in class, and a de-
signer of non-computerized curricula who had not previously used a Cognitive Tutor. 

During the first step of the design process, the six member design team generated a 
list with 569 features. In the next step a list of criteria for features that would be worth 
coding, were developed. Finally the list was narrowed down to a more tractable size 
of 79 features. Inter-rater reliability checks were not conducted, owing to the  
hypothesis-generating nature of this study. Then CTLVS1 was labeled with reference 
to the 21 lessons studied in this paper by a combination of educational data mining 
and hand coding by the educational designer and mathematics teacher. The 10 fea-
tures among 79 within the CTLVS1.1 which were significant predictors of disengaged 
behaviors in [3, 6] are shown in Table 1. 

After initial publication of the results [e.g. 3, 6], using the CTLVS 1.1, additional 
coding was conducted by the gaming the system researcher and the designer of non-
computerized curricula resulting in the addition of 5 more features, shown in Table 2. 
This produced a total of 84 quantitative and binary features within the CTLVS1.2.  

Table 1. Design features which were significant predictors of disengaged behaviors in [3, 6] 

1. Lesson is an equation-solver lesson, where a student is given an equation to solve mathe-
matically (with no story problem) 

2. Avg. amount that reading on-demand hints improves performance on future opportunities 
to use skill (using model from [12]) 

3. % of hint sequences with final “bottom-out” hint that explicitly tells student what to 
enter [cf. 1] 

4. Reference in problem statement to interface component that does not exist (ever occurs) 

5. Not immediately apparent what icons in toolbar mean 

6. Hint requests that student perform some action  

7. % of hints that explicitly refer to abstract principles 

8. % of problem statements that use same numeric value for two constructs 
9. % of problem statements with text not directly related to problem-solving task (typically 

included to increase interest) 

10. Any hint gives directional feedback (example: “try a larger number”)  

3.2 Affect Detection Process 

In order to study the relationship between students’ affect and tutor design, we used 
previously developed detectors of student affect within Cognitive Tutor Algebra [cf. 
8]. See [8] for a full discussion of the detectors. Unlike many of the pioneering efforts 
to detect student affect in intelligent tutoring systems [2, 18, 27], this work does not  
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make use of any visual, audio or physiological sensors such as webcams, pressure 
sensing keyboard and mice, pressure sensitive seat pads and back pads, or wireless 
conductance bracelets in detecting affect. Instead, affect is detected solely from log 
files, supporting scalable analyses. These affect detectors were originally developed 
by labeling a set of students’ affective states with field observations and then using 
those labels to create machine-learned models which automatically detect the stu-
dent’s affective state. Affect detectors were developed for the states of boredom, con-
fusion, frustration, and engaged concentration (the affect associated with the flow 
state [cf. 7]. A separate detector was developed for each affective state. The goodness 
of the detectors (under student-level cross-validation) is given in Table 3; the detec-
tors agree with human coders approximately half as well as human coders agree with 
each other. Note that the A’ values for the models are lower than presented in the 
original paper [8]. This is because the implementation of AUC in RapidMiner 4.6 [28] 
was used to compute the A’ values. This implementation has a bug, where estimates 
of A’ are inflated, if multiple data points have the same confidence. In this paper we 
report estimates computed through directly computing the A’/Wilcoxon statistic, 
which is more computationally intensive but mathematically simpler (involving a set 
of pairwise comparisons rather than integrating under a complex function), using the 
code at http://www.columbia.edu/~rsb2162/edmtools.html .  

Table 2. The design features added in CTLVS1.2 

1. % of hints with requests for students with politeness indicators 

2. % of scenarios with text not directly related to problem-solving task 

3. Maximum number of times any skill is used in problem 

4. Average number of times any skill is used in problem 
5. Were any of the problem scenarios lengthy and with extraneous text? (Long 

Extraneous Text) 

Table 3. Goodness of the affect models [cf. 8] 

Affect Algorithm Kappa A’ 

Engaged Concentration K* 0.31 0.67 

Boredom Naïve Bayes 0.28 0.69 

Confusion JRip 0.40 0.71 

Frustration REPTree 0.23 0.64 

 
To apply the machine-learned models to the data set used in this paper, we com-

puted the features which were used in the models. The data was divided into “clips”, 
of 20 second intervals of student behavior (the same grain-size used in the original 
observations which were used to build the detector), using the absolute time of each  
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student action.  Next, the 15 features used in the detectors [cf. 8] were computed for 
each clip. Finally RapidMiner 4.6 [28] was used to load each of the affect models and 
then each of the affect models were applied on the algebra data set to obtain assess-
ments of affect for each clip, which were then aggregated to compute each student’s 
proportion of each affective state in each lesson.  

4 Results 

For each lesson in the data set, we computed values for each of the 84 taxonomical 
features discussed in the data section. The value of each taxonomic feature was then 
correlated to the proportion of each of the four affective states (engaged concentra-
tion, boredom, confusion and frustration) detected within the log data for the lesson. 
As this represents a substantial number of statistical analyses (84*4 = 336), we  
controlled for multiple comparisons. In specific, the analyses in this study utilize the 
false discovery rate (FDR) [14] paradigm for post-hoc hypothesis testing, using Sto-
rey’s method [33]. This method produces a substitute or p-values, termed q-values, 
driven by controlling the proportion of false positives obtained via a set of tests.  
Whereas a p-value expresses that 5% of all tests may include false positives, a q-value 
indicates that 5% of significant tests may include false positives. As such, the FDR 
method does not guarantee each test’s significance, but guarantees a low overall  
proportion of false positives. This avoids the substantial Type II errors (over-
conservatism) associated with the better-known Bonferroni correction [see 31 for a 
discussion of current statistical thought on the Bonferroni correction]. The FDR cal-
culations in the results section were made using the QVALUE software package [33] 
within the R statistical software environment. 

Across the features, only the five following tutor design features achieved statisti-
cally significant correlation to any of the affective states. 

1.  Lesson is an Equation Solver lesson (Equation Solver) 
2. % of problem statements with text not directly related to problem-solving 

task (Extraneous Text),  
3. % of problem statements which involve concrete people/places/things (Con-

crete Problem Statements),  
4. Were any of the problem scenarios lengthy and with extraneous text? (Long 

Extraneous Text) 
5. Average percent error in problem (Percent Error)  

Table 4 summarizes the results. Equation Solver was statistically significantly posi-
tively associated with Concentration, r=0.728, t(1,19)=4.622, q<0.01; on the other 
hand 2 of the features Concrete Problem Statements and Long Extraneous Text were 
statistically significantly negatively associated with Concentration; Concrete Problem 
Statements r= -0.604, t(1,19)= -3.31, q=0.013; Long Extraneous Text  r= -0.538, 
t(1,19)= -2.78, q=0.032. 
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Table 4. Statistical Significant results with q-values from FDR analysis 

Design Features Affect r Q 

Equation Solver Concentration 0.728 <0.01 

Extraneous Text Confusion 0.787 <0.001 

Concrete Problem Statements Concentration -0.604 0.013 

Concrete Problem Statements Confusion 0.644 <0.01 

Long Extraneous Text Concentration -0.538 0.032 

Long Extraneous Text Confusion 0.716 <0.01 

Percent Error Frustration -0.718 <0.01 

Three of the features were statistically significantly positively associated with Con-
fusion, Concrete Problem Statement r=0.644, t(1,19)=3.67, q<0.01; Long Extraneous 
Text r=0.716, t(1,19)=4.47, q<0.0; Extraneous Text r=0.787, t(1,19)=5.56, q<0.001.  

Only one of the features, Percent Error was statistically significantly negatively  
associated with Frustration, r= -0.718, t(1,19)= -4.5, q<0.01.  

None of the features showed significant association with Boredom. The strongest 
correlation was achieved by “Hint gives directional feedback (example: “try a larger 
number”)”, r=0.50, t(1,19) = 2.5, q=0.30. It is worth noting that the original p value, 
before post-hoc correction, was p=0.02; hence, it may be worth considering this fea-
ture in future research, but there is insufficient evidence to make a conclusive infe-
rence about it at this point. 

In terms of past features associated with gaming (in [6], it was hypothesized that 
this relationship was mediated by boredom), boredom appeared to be weakly corre-
lated with Extraneous Text r=0.160, t(1,19) = 0.71, q=0.78 and Long Extraneous Text 
r=0.264, t(1,19)=1.19, q=0.64 and appeared to be moderately correlated with  
Concrete Problem Statements, r=0.335, t(1,19)= 1.55, q=0.64. None of these relation-
ships, however, would be statistically significant even without post-hoc controls.  

5 Discussion and Conclusions 

The result here suggests that there are significant relationships between affect state of 
students, and the taxonomic features of an intelligent tutoring system. Five out of 84 
taxonomic features were found to be statistically significantly associated with three 
affective states, engaged concentration, frustration, and confusion. These findings 
correspond in interesting ways to prior results regarding the relationship between 
disengaged behaviors and these same taxonomic features [cf. 3, 6].  

Students were found to be concentrating significantly more during equation-solver 
lessons. These same lessons have also been found to be associated with a lower de-
gree of off-task behavior and gaming the system in the previous research [3, 6].  

We also found that students’ concentration was reduced when the student encountered 
lessons with substantial extraneous text, as well as or problem statements and scenarios  
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with concrete people, places or things. These same features were also associated with 
increased confusion. These are somewhat surprising findings, as extraneous text was also 
associated with gaming the system in earlier research [6]. Since gaming is thought to be 
negatively associated with engaged concentration [7], it is surprising that the same fea-
tures of an interface are associated both with gaming and less engaged concentration. 
This finding clearly calls for greater research to understand its full implications. 

At the same time, the connection between substantial extraneous text and concrete 
scenarios, and confusion, accords well to past findings in other contexts. The details in 
these long concrete scenarios could be considered “seductive details” – details which 
draw student attention away from the content. Seductive details have been found to be 
associated with poorer learning in laboratory studies [20]; the initial interpretation of [6] 
seemed to contradict this finding, but our results here seem more in keeping with it. Of 
course, it also may be that tutor designers have chosen (whether consciously or not) to 
increase the complexity of the scenarios when material is more confusing; as such, it 
would take an experimental study to be fully confident of the hypothesis generated here.  

One unexpected finding was negative correlation between percent error and  
frustration, which should be investigated further. In a different intelligent tutor,  
frustration was found to be positively correlated with learning, suggesting that  
frustration’s role in learning may be somewhat different than typically hypothesized 
[cf. 30].  

Another surprising finding is that none of the taxonomic features were significantly 
associated with boredom, a persistent affect state within several types of learning 
environments [7]. We had earlier hypothesized that the negative relationship between 
gaming and lengthier scenarios would be mediated by boredom [e.g. 6], a finding not 
obtained here.  Though we found some appearance of correlation between boredom 
and lengthier scenarios as well as other features known to be associated with gaming, 
these associations were not significant even without taking post-hoc adjustment into 
account, suggesting that it is unlikely that boredom is a key mediator between these 
tutor design features and gaming the system. 

One valuable area of future work would be to extend the research here to additional 
affective states, such as delight, disgust, and anxiety. The affective states chosen in this 
research were selected because relevant detectors already existed, and because these 
states have high theoretical importance and/or are known to correlate with differences in 
learning outcomes and engagement; extending to additional affective states would help to 
create a fuller picture of the relationships between affect and tutor design. 

One of the final things that can be noted from this analysis is that the designs of 
educational interfaces can have a considerable impact on student affect. Although 
only a relatively small number of relationship remained significant after post-hoc 
testing, it is worth noting that the conservatism of post-hoc approaches meant that the 
relationships that remained significant had extremely high correlations (in the 0.7 
range). This finding implies that relatively small differences in intelligent tutors may 
result in substantial impacts on student experiences.  
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