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Abstract. Both Knowledge Tracing and Performance Factors Analysis, are ex-
amples of student modeling frameworks commonly used in AIED systems (i.e., 
Intelligent Tutoring Systems). Both of them use student correctness as a binary 
input, but student performance on a question might better be represented with a 
continuous value representing a type of partial credit. Intuitively, a student who 
has to make more attempts, or has to ask for more hints, deserves a score closer 
to zero, while students who asks for no hints and just needs to make a second 
attempt on a question should get a score close to one.  In this work, we present 
a simple change to the Knowledge Tracing model and a simple (non-optimized) 
method for assigning partial credit. We report our real data experiment result in 
which we compared the original Knowledge Tracing (OKT) model with this 
new Knowledge Tracing model that uses partial credit as input (KTPC). The 
new model outperforms the traditional model reliably. The practical implication 
of this work is that this new technique can be widely used easily, as it is a small 
change from the traditional way of fitting KT models. 

Keywords: Knowledge Tracing, Intelligent Tutoring Systems, Student Res-
ponses, Partial Credit. 

1 Introduction 

In many important student models, such as the Knowledge Tracing model and the 
Performance Factor Analysis (Pavlik, Cen and Koedinger 2009), student performance 
is presented as a binary value of correct or incorrect. The amount of assistance a  
student needed to eventually get a problem correct is ignored in these models. Feng 
and Heffernan (2010) showed that we can predict student performance better by ac-
counting for amount of assistance they received, but they did not provide the  
field with a model that could be used in “run time” to predict individual responses. 
Arroyo, et al.(2010) showed how to use this information to predict learning gains. 
Their work suggests that using hints and attempts to model student behavior online 
could be effective. 

There is good work in the psychometric literature on using partial credit, which 
goes back 30 years. Psychometricians have shown that different multiple choice an-
swers might worth different credits [6, 10]. For instance, choice A might be totally 
wrong but choice B is close, choice C is the correct answer. 
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More recently, a new type of partial credit is coming online.  For instance, Attila 
and Powers (2010) at the Educational Testing Service showed they could better pre-
dict student GRE scores if they let students make multiple attempts. Their score on a 
question would go down by a third for each attempt (students could only make three 
attempts). Our work generalizes their work in two ways. First, we show how to incor-
porate the partial credit score into a model with learning (i.e., Knowledge Tracing) as 
their model did not model learning. Second, we show how to incorporate penalties for 
each hint student request.  

In our previous work (Wang and Heffernan, 2010), we presented a naïve algorithm 
to assign partial credit, and showed it accounts for some variance in student know-
ledge.  But in that work, we did not present a model that could do this task.  In this 
paper we want to see if we can improve one of the dominant methods of student mod-
eling (i.e., the Knowledge Tracing model) by relaxing the assumption of binary cor-
rectness: replacing the discrete performance node with continuous partial credit node.  

In the next section, we describe our modification to the original Knowledge Trac-
ing (OKT) model, and the method we use to make the correctness continuous. Section 
3 describes the tutoring system and dataset used in our experiments and the experi-
ment result. In Sections 5 and 6 we discuss our conclusions and future directions for 
our work. 

2 Approach 

2.1 Knowledge Tracing with Continuous Performance Node 

The Knowledge Tracing model shown in Fig.1 has been widely used in ITS to model 
student knowledge and learning over time. It has become the dominant method of 
student modeling and many variants have been developed to improve its performance 
(Baker et al., 2010, Pardos and Heffernan 2010). Knowledge Tracing uses one latent 
and one observable dynamic Bayesian network to model student learning. As shown 
in Fig.1, four parameters are used for each skill, with two for student knowledge (ini-
tial knowledge and probability of learning the skill) and the other two for student 
performance (the probability of guessing correctly when the student doesn’t know the 
skill and the probability of slipping when the student does know the skill). 

The structure of the Knowledge Tracing model with a continuous performance 
node is the same as the original Knowledge Tracing model. The only difference is 
how we set up the “Student Performance” node. The idea is straight forward, yet there 
has never been positive result reported in this field. Some other Intelligent Tutoring 
System groups, such as LISTEN (http://www.cs.cmu.edu/~listen/) tried this approach 
before but failed for unknown reasons. 

In this model, instead of assign the “Guess” and “Slip” parameters in a CPT table as 
the original Knowledge Tracing model, we assigned two Gaussian distributions for 
“Guess” and “Slip” with given standard deviations. Four parameters: guess_mu, 
guess_sigma, slip_mu, slip_sigma, are used to describe the two Gaussian distributions. 

Similarly, when we predict student performance, we also get a Gaussian distribu-
tion with a mean value and a standard deviation value, in which the mean value will 
be the prediction and the standard deviation contains the information of how good the 
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attempt. For multiple choice questions with x choices, the penalty was computed by 
one over the number of remaining multiple choice options minus one. So a true false 
question will have a penalty of one if a student guessed wrong. If there were 4 choic-
es, a student’s first wrong attempt would get a penalty of 1/3, a second wrong attempt 
would get a penalty of ½, and a third wrong attempt would get a penalty of 1. 

After computing hint penalty (phint) for each hint and attempt penalty (pattempt) 
for each attempt, we add them together to compute the total hint penalty (total_phint) 
and the total attempt penalty (total_pattempt) for this problem. If the number is less 
than zero we make it zero.  The last column of Table 2 shows two examples of for-
mula doing this calculation.  

Table 1 shows the details of computing partial credit for scaffolding questions. Our 
dataset has a special type of feedback called scaffolding. Since it’s only a small 
amount of our data this detail might not be that important. But for completeness, we 
wanted to describe this. (Please note that all of our code and data are available at 
http://users.wpi.edu/~yutaowang/ so that others can attempt to improve upon our 
work).  For those problems with scaffolding questions, if a student gets the original 
question wrong, the system will give the student a series of questions we call “scaf-
folding” that walk the student through the steps. Each of these scaffolding questions 
has hints and so can be scored with this partial credit function just like normal ques-
tions. The only question left is how to score the “original question”. If a student gets a 
question wrong and is given three scaffolding questions, the total credit of the whole 
problem is computed by averaging the partial credit scores of the three scaffolding 
questions and penalized by 10% for answering the original question incorrectly. If a 
student got the original question wrong but then got all the scaffolding questions  
correct, he/she should get a score close to 1, which in our method would be 0.9.  
Again these parameters such as 0.9 are not optimized and could be learned from data 
in future work. 

Table 1. The algorithm of computing partial credit 

function pc = partial_credit(problem){ 

if first attempt correct then  
return pc = 1 

else if problem has no scaffold then 
pc = 1 - #hint * phint – total_pattempt 
if pc<0 then return pc = 0 
return pc 

else 
for each scaffold question i in the problem do 

pc_scaffold(i)  =  partial_credit(scaffold(i)) 
end for 
pc = 0.9 * average(pc_scaffold(i)) 
return pc 

} 
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The algorithm is used only for testing the effect of relaxing the assumption of bi-
nary correctness in a Knowledge Tracing model.  

3 Evaluation 

3.1 The Tutoring System and Dataset 

Our dataset consisted of student responses from ASSISTments, a web based tutoring 
system for 7th-12th grade students that provides preparation for the state standardized 
test by using released math items from previous years’ tests as questions. The tutorial 
helps the student learn the required knowledge by breaking the problem into sub ques-
tions called scaffolding or giving the student hints on how to solve the question. Fig.2. 
shows an example of a hint. A second type of assistance is presented if the student 
clicks on (or types in) an incorrect answer, at which point the student is given feed-
back that he/she answered incorrectly (sometimes, but by no means always, the stu-
dent will get a context-sensitive message called “buggy message”). Examples can be 
seen at “tinyurl.com/buaesc2”. 

 

Fig. 2. Assistance in ASSISTment 

The data we analyzed was drawn from ASSISTments. It comes from 72 twelve- 
through fourteen-year old 8th grade students in a school district of the Northeast United 
States. There were 106 skills (e.g., area of polygon, Venn diagram, division, etc.) that 
students were working on. The data consisted of 52,529 log records during the period Jan 
2009-Feb 2009 where each log record is similar to one row in Table 2, which shows the 
details of one problem done by one student. We use the same data format as the KDD 
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Cup 2010: Educational Data Mining Challenge (https://pslcdatashop.web.cmu.edu/ 
KDDCup/FAQ/#data-format).  Table 2 shows an example of the type of data we used. 
There are in total 12 columns, the first 9 columns in the table are straight from the KDD 
Cup data format (https://pslcdatashop.web. cmu.edu/KDDCup/rules_data_format.jsp), 
and we added three extra columns, which are used for partial credit. In particular, column 
10 “Number of Choices (if Multiple Choice)” was added to describe if the problem is 
multiple choice problem or not, and how many choices there are. Total number of hints 
available for the problem is put in column 11, to help compute the partial penalty per 
hint. The last hint always gives away the answer, so if a student asked for all of the hints, 
their score should be zero. This column allows us to give a bigger penalty for hints if the 
number of total available hints is small. Column 12 is for showing how we compute the 
partial credit score, a continuous value between 0 and 1 that the student would get given 
the data log. Note that the original KT model will only use the 7th column, “Error Rate”, 
as model input; while the KT with partial credit model will only use the 12th column, 
“Partial Credit”. The 7th column is generated as 1 if the student answered the problem 
correctly, otherwise 0. 

Table 2. An example of a few rows of data, showing how we calculate partial credit 

1.Row 2.Student 3.Problem 4.Step 5.Incorrects 6.Hints 
7.Error 
Rate 

1 S01 
WATERING
_VEGGIES 

(WATERED-
AREA Q1) 

0 0 0 

2 S01 
WATERING
_VEGGIES 

(TOTAL-
GARDEN Q1) 

2 1 1 

 

8.Knowledge 
component 

9.Opportunity 
Count 

10.Number of Choices 
(If Multiple Choice) 

11.Total Hints 
Available 

12.Partial 
Credit 

Circle-Area 1 
4 Choice Multiple 

Choice 
2 1 

Rectangle-
Area 

1 Fill in the Blank 3 
1-2*0.1-

1*1/3=0.46 

3.2 Results 

To evaluate how well the new model fits the data, we used the Root Mean Squared 
Error (RMSE) to examine the predictive performance on an unseen test set. Lower 
values for RMSE indicate better model fitting. There were randomly 2,313 student 
data in the test set and 3,297 students in the training set. 

Table 3 shows the result of the comparison of the two different models, the original 
Knowledge Tracing(OKT) model and the Knowledge Tracing with partial cre-
dit(KTPC) model. 

We compared the RMSE in predicting the partial credit performance and in pre-
dicting the traditional binary performance respectively. The Knowledge Tracing  
with partial credit model has lower RMSE value in both situations. The lower left 
column shows that KTPC does a great job in predicting partial credit scores, which is 
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expected. The top left cell shows that OKT can do some reasonable job of predicting 
partial credit scores. The more interesting result is the right column, which shows that 
OKT has higher RMSE than the KTPC in predicting binary performances. 

Table 3. Original KT (OKT) vs KT with partial credit (KTPC) 

Model RMSE
 Partial Credit Binary Performance 

OKT 0.4128 0.4637 
KTPC 0.2824 0.4572 

We determined whether the difference between these two models is statistically relia-
ble by computing the RMSE value for each student to account for the non-independence 
of student actions, and then compared these two models using a two tailed paired t-test.   

The t-test p value of the RMSE between using the original Knowledge Tracing 
model and the Knowledge Tracing with partial credit model to predict the partial cre-
dit is 0. The p value between using the original Knowledge Tracing model and the 
Knowledge Tracing with partial credit model to predict the binary performance is 
p<.001. The degree of freedom of the t-test is 2,312 (since we are doing a student 
level t-test, the degree of freedom is the same as the number of students in the test 
set). Thus, the Knowledge Tracing with partial credit model is statistically reliably 
better at predicting student performance than the original Knowledge Tracing model. 

4 Conclusions and Future Work 

In this paper, we extended Bayesian Network student modeling to include continuous 
performance node. The effectiveness is demonstrated by incorporating a partial credit 
algorithm that assigns continuous performance given detailed student responses. Ex-
periment results show that relaxing the assumption of binary correctness in student 
modeling can help improve predictions of student performance. This also proves that 
our intuition based heuristic for partial credit might be broadly applicable. 

One topic we are interested in exploring is other partial credit schemes, for example, a 
method to refine the algorithm to generate partial credits that can better fit student data 
and more accurately infer student knowledge. Also, since we observed some abnormal 
parameters in the performance parameters (guess/slip), we are interested in finding out 
why the parameters are so different compare to normal Knowledge Tracing model. 

5 Contributions 

Moving from binary performance to continuous performance could make Intelligent 
Tutoring Systems more flexible. In this paper, on one hand, we extended the Know-
ledge Tracing framework to include a continuous performance node. This allows the 
Knowledge Tracing model to combine with all possible continuous performances 
such as essay score, speech recognition score. On the other hand, we presented an 
understandable and easy to refine algorithm to assign partial credit according to  
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detailed student responses. This algorithm is one of many possible ways to convert 
student detailed responses into a continuous value. 

The model presented in this paper enhanced student model accuracy by improving 
upon the classic Knowledge Tracing model. The result shows that the new model 
makes statistical reliably improvement in predicting both students’ partial credit per-
formances and binary performances. Also, freely available code is shared online, 
which could be useful for researchers that are trying to do the same task. 
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