

K. Yacef et al. (Eds.): AIED 2013, LNAI 7926, pp. 181–188, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Extending Knowledge Tracing to Allow Partial Credit:
Using Continuous versus Binary Nodes

Yutao Wang and Neil Heffernan

Worcester Polytechnic Institute
{yutaowang,nth}@wpi.edu

Abstract. Both Knowledge Tracing and Performance Factors Analysis, are ex-
amples of student modeling frameworks commonly used in AIED systems (i.e.,
Intelligent Tutoring Systems). Both of them use student correctness as a binary
input, but student performance on a question might better be represented with a
continuous value representing a type of partial credit. Intuitively, a student who
has to make more attempts, or has to ask for more hints, deserves a score closer
to zero, while students who asks for no hints and just needs to make a second
attempt on a question should get a score close to one. In this work, we present
a simple change to the Knowledge Tracing model and a simple (non-optimized)
method for assigning partial credit. We report our real data experiment result in
which we compared the original Knowledge Tracing (OKT) model with this
new Knowledge Tracing model that uses partial credit as input (KTPC). The
new model outperforms the traditional model reliably. The practical implication
of this work is that this new technique can be widely used easily, as it is a small
change from the traditional way of fitting KT models.

Keywords: Knowledge Tracing, Intelligent Tutoring Systems, Student Res-
ponses, Partial Credit.

1 Introduction

In many important student models, such as the Knowledge Tracing model and the
Performance Factor Analysis (Pavlik, Cen and Koedinger 2009), student performance
is presented as a binary value of correct or incorrect. The amount of assistance a
student needed to eventually get a problem correct is ignored in these models. Feng
and Heffernan (2010) showed that we can predict student performance better by ac-
counting for amount of assistance they received, but they did not provide the
field with a model that could be used in “run time” to predict individual responses.
Arroyo, et al.(2010) showed how to use this information to predict learning gains.
Their work suggests that using hints and attempts to model student behavior online
could be effective.

There is good work in the psychometric literature on using partial credit, which
goes back 30 years. Psychometricians have shown that different multiple choice an-
swers might worth different credits [6, 10]. For instance, choice A might be totally
wrong but choice B is close, choice C is the correct answer.

182 Y. Wang and N. Heffernan

More recently, a new type of partial credit is coming online. For instance, Attila
and Powers (2010) at the Educational Testing Service showed they could better pre-
dict student GRE scores if they let students make multiple attempts. Their score on a
question would go down by a third for each attempt (students could only make three
attempts). Our work generalizes their work in two ways. First, we show how to incor-
porate the partial credit score into a model with learning (i.e., Knowledge Tracing) as
their model did not model learning. Second, we show how to incorporate penalties for
each hint student request.

In our previous work (Wang and Heffernan, 2010), we presented a naïve algorithm
to assign partial credit, and showed it accounts for some variance in student know-
ledge. But in that work, we did not present a model that could do this task. In this
paper we want to see if we can improve one of the dominant methods of student mod-
eling (i.e., the Knowledge Tracing model) by relaxing the assumption of binary cor-
rectness: replacing the discrete performance node with continuous partial credit node.

In the next section, we describe our modification to the original Knowledge Trac-
ing (OKT) model, and the method we use to make the correctness continuous. Section
3 describes the tutoring system and dataset used in our experiments and the experi-
ment result. In Sections 5 and 6 we discuss our conclusions and future directions for
our work.

2 Approach

2.1 Knowledge Tracing with Continuous Performance Node

The Knowledge Tracing model shown in Fig.1 has been widely used in ITS to model
student knowledge and learning over time. It has become the dominant method of
student modeling and many variants have been developed to improve its performance
(Baker et al., 2010, Pardos and Heffernan 2010). Knowledge Tracing uses one latent
and one observable dynamic Bayesian network to model student learning. As shown
in Fig.1, four parameters are used for each skill, with two for student knowledge (ini-
tial knowledge and probability of learning the skill) and the other two for student
performance (the probability of guessing correctly when the student doesn’t know the
skill and the probability of slipping when the student does know the skill).

The structure of the Knowledge Tracing model with a continuous performance
node is the same as the original Knowledge Tracing model. The only difference is
how we set up the “Student Performance” node. The idea is straight forward, yet there
has never been positive result reported in this field. Some other Intelligent Tutoring
System groups, such as LISTEN (http://www.cs.cmu.edu/~listen/) tried this approach
before but failed for unknown reasons.

In this model, instead of assign the “Guess” and “Slip” parameters in a CPT table as
the original Knowledge Tracing model, we assigned two Gaussian distributions for
“Guess” and “Slip” with given standard deviations. Four parameters: guess_mu,
guess_sigma, slip_mu, slip_sigma, are used to describe the two Gaussian distributions.

Similarly, when we predict student performance, we also get a Gaussian distribu-
tion with a mean value and a standard deviation value, in which the mean value will
be the prediction and the standard deviation contains the information of how good the

prediction is. In this work,
but it has potential to be use
prediction.

(Figu

In our experiment, we u
phy (2001) to implement
(EM) algorithm. The EM a
lihood of the data. Since EM
nan 2010b), we report the i
0.1, guess_mu = 0.1, guess
KTPC model, and knowled
OKT model.

2.2 Make the Correctn

Partial credit can be assign
algorithm that was mention
be continuous. Since we ne
this section in detail.

In a model with binary p
the problem correctly on th
the purpose of this paper w
score between ‘0’ and ‘1’ a
required to answer a questio
method could be optimized
same, or should the first hin
effective and we leave to ot

Intuitively, the more hint
derstands the skill, so we p
the hint penalty, which is 1
ple, if there are 4 hints poss
problem correct he/she wo
indicate a lower possibility
attempt. The size of the pen
choice” or “Fill in the Blan
“Fill in the Blank” questio

Extending Knowledge Tracing to Allow Partial Credit

we are not using the standard deviation of the predicti
eful in the future to determine how confident we are in

Fig. 1. Knowledge Tracing model

ure comes from Gong, Beck et al. 2010)

sed the Bayes Net Toolbox for Matlab developed by M
Knowledge Tracing and the Expectation Maximizat

algorithm finds a set of parameters that maximizes the li
M can be sensitive to initial conditions (Pardos and Hef
nitial settings. We used initial knowledge = 0.5, learnin
s_sigma = 0.02, slip_mu = 0.1, slip_sigma = 0.02 for
dge = 0.5, learning = 0.1, guess = 0.1, slip = 0.1 for

ness Continuous: Partial Credit

ned in different ways. In our experiment, we are using
ned in our previous poster [11] to make the correctnes
ever introduce the algorithm completely, it is described

performance, a student would get a ‘1’ if he/she answe
he attempt without asking for a hint and ‘0’ otherwise.
we “made up” a scoring method that would give studen
according to how many attempts and how many hints t
on correctly based on intuition. We are well aware that
d in lots of ways, for example, should each hint cost
nt cost less? As shown in our result, this simple metho
thers different ways to optimize it.
ts that are asked for, the less likely it is that the student
penalize a student for each hint asked for by what we
1 divided by the total number of hints available. For exa
sible and a student asks for three of them and then gets
ould get a .25 score. In a similar manner, more attem
y of understanding the required skill, and we penalize e
nalty depends upon whether the question type is “multi
nk”. In our data set, we have about 80% questions that
ons, for which we picked a penalty 0.1 for each wro

183

ion,
our

Mur-
tion
ike-
ffer-
ng =

the
the

the
s to
d in

ered
For

nts a
they
this
the
d is

un-
call
am-
the

mpts
each
iple
are

ong

184 Y. Wang and N. Heffernan

attempt. For multiple choice questions with x choices, the penalty was computed by
one over the number of remaining multiple choice options minus one. So a true false
question will have a penalty of one if a student guessed wrong. If there were 4 choic-
es, a student’s first wrong attempt would get a penalty of 1/3, a second wrong attempt
would get a penalty of ½, and a third wrong attempt would get a penalty of 1.

After computing hint penalty (phint) for each hint and attempt penalty (pattempt)
for each attempt, we add them together to compute the total hint penalty (total_phint)
and the total attempt penalty (total_pattempt) for this problem. If the number is less
than zero we make it zero. The last column of Table 2 shows two examples of for-
mula doing this calculation.

Table 1 shows the details of computing partial credit for scaffolding questions. Our
dataset has a special type of feedback called scaffolding. Since it’s only a small
amount of our data this detail might not be that important. But for completeness, we
wanted to describe this. (Please note that all of our code and data are available at
http://users.wpi.edu/~yutaowang/ so that others can attempt to improve upon our
work). For those problems with scaffolding questions, if a student gets the original
question wrong, the system will give the student a series of questions we call “scaf-
folding” that walk the student through the steps. Each of these scaffolding questions
has hints and so can be scored with this partial credit function just like normal ques-
tions. The only question left is how to score the “original question”. If a student gets a
question wrong and is given three scaffolding questions, the total credit of the whole
problem is computed by averaging the partial credit scores of the three scaffolding
questions and penalized by 10% for answering the original question incorrectly. If a
student got the original question wrong but then got all the scaffolding questions
correct, he/she should get a score close to 1, which in our method would be 0.9.
Again these parameters such as 0.9 are not optimized and could be learned from data
in future work.

Table 1. The algorithm of computing partial credit

function pc = partial_credit(problem){

if first attempt correct then
return pc = 1

else if problem has no scaffold then
pc = 1 - #hint * phint – total_pattempt
if pc<0 then return pc = 0
return pc

else
for each scaffold question i in the problem do

pc_scaffold(i) = partial_credit(scaffold(i))
end for
pc = 0.9 * average(pc_scaffold(i))
return pc

}

 Extending Knowledge Tracing to Allow Partial Credit 185

The algorithm is used only for testing the effect of relaxing the assumption of bi-
nary correctness in a Knowledge Tracing model.

3 Evaluation

3.1 The Tutoring System and Dataset

Our dataset consisted of student responses from ASSISTments, a web based tutoring
system for 7th-12th grade students that provides preparation for the state standardized
test by using released math items from previous years’ tests as questions. The tutorial
helps the student learn the required knowledge by breaking the problem into sub ques-
tions called scaffolding or giving the student hints on how to solve the question. Fig.2.
shows an example of a hint. A second type of assistance is presented if the student
clicks on (or types in) an incorrect answer, at which point the student is given feed-
back that he/she answered incorrectly (sometimes, but by no means always, the stu-
dent will get a context-sensitive message called “buggy message”). Examples can be
seen at “tinyurl.com/buaesc2”.

Fig. 2. Assistance in ASSISTment

The data we analyzed was drawn from ASSISTments. It comes from 72 twelve-
through fourteen-year old 8th grade students in a school district of the Northeast United
States. There were 106 skills (e.g., area of polygon, Venn diagram, division, etc.) that
students were working on. The data consisted of 52,529 log records during the period Jan
2009-Feb 2009 where each log record is similar to one row in Table 2, which shows the
details of one problem done by one student. We use the same data format as the KDD

186 Y. Wang and N. Heffernan

Cup 2010: Educational Data Mining Challenge (https://pslcdatashop.web.cmu.edu/
KDDCup/FAQ/#data-format). Table 2 shows an example of the type of data we used.
There are in total 12 columns, the first 9 columns in the table are straight from the KDD
Cup data format (https://pslcdatashop.web. cmu.edu/KDDCup/rules_data_format.jsp),
and we added three extra columns, which are used for partial credit. In particular, column
10 “Number of Choices (if Multiple Choice)” was added to describe if the problem is
multiple choice problem or not, and how many choices there are. Total number of hints
available for the problem is put in column 11, to help compute the partial penalty per
hint. The last hint always gives away the answer, so if a student asked for all of the hints,
their score should be zero. This column allows us to give a bigger penalty for hints if the
number of total available hints is small. Column 12 is for showing how we compute the
partial credit score, a continuous value between 0 and 1 that the student would get given
the data log. Note that the original KT model will only use the 7th column, “Error Rate”,
as model input; while the KT with partial credit model will only use the 12th column,
“Partial Credit”. The 7th column is generated as 1 if the student answered the problem
correctly, otherwise 0.

Table 2. An example of a few rows of data, showing how we calculate partial credit

1.Row 2.Student 3.Problem 4.Step 5.Incorrects 6.Hints
7.Error
Rate

1 S01
WATERING
_VEGGIES

(WATERED-
AREA Q1)

0 0 0

2 S01
WATERING
_VEGGIES

(TOTAL-
GARDEN Q1)

2 1 1

8.Knowledge
component

9.Opportunity
Count

10.Number of Choices
(If Multiple Choice)

11.Total Hints
Available

12.Partial
Credit

Circle-Area 1
4 Choice Multiple

Choice
2 1

Rectangle-
Area

1 Fill in the Blank 3
1-2*0.1-

1*1/3=0.46

3.2 Results

To evaluate how well the new model fits the data, we used the Root Mean Squared
Error (RMSE) to examine the predictive performance on an unseen test set. Lower
values for RMSE indicate better model fitting. There were randomly 2,313 student
data in the test set and 3,297 students in the training set.

Table 3 shows the result of the comparison of the two different models, the original
Knowledge Tracing(OKT) model and the Knowledge Tracing with partial cre-
dit(KTPC) model.

We compared the RMSE in predicting the partial credit performance and in pre-
dicting the traditional binary performance respectively. The Knowledge Tracing
with partial credit model has lower RMSE value in both situations. The lower left
column shows that KTPC does a great job in predicting partial credit scores, which is

 Extending Knowledge Tracing to Allow Partial Credit 187

expected. The top left cell shows that OKT can do some reasonable job of predicting
partial credit scores. The more interesting result is the right column, which shows that
OKT has higher RMSE than the KTPC in predicting binary performances.

Table 3. Original KT (OKT) vs KT with partial credit (KTPC)

Model RMSE
 Partial Credit Binary Performance

OKT 0.4128 0.4637
KTPC 0.2824 0.4572

We determined whether the difference between these two models is statistically relia-
ble by computing the RMSE value for each student to account for the non-independence
of student actions, and then compared these two models using a two tailed paired t-test.

The t-test p value of the RMSE between using the original Knowledge Tracing
model and the Knowledge Tracing with partial credit model to predict the partial cre-
dit is 0. The p value between using the original Knowledge Tracing model and the
Knowledge Tracing with partial credit model to predict the binary performance is
p<.001. The degree of freedom of the t-test is 2,312 (since we are doing a student
level t-test, the degree of freedom is the same as the number of students in the test
set). Thus, the Knowledge Tracing with partial credit model is statistically reliably
better at predicting student performance than the original Knowledge Tracing model.

4 Conclusions and Future Work

In this paper, we extended Bayesian Network student modeling to include continuous
performance node. The effectiveness is demonstrated by incorporating a partial credit
algorithm that assigns continuous performance given detailed student responses. Ex-
periment results show that relaxing the assumption of binary correctness in student
modeling can help improve predictions of student performance. This also proves that
our intuition based heuristic for partial credit might be broadly applicable.

One topic we are interested in exploring is other partial credit schemes, for example, a
method to refine the algorithm to generate partial credits that can better fit student data
and more accurately infer student knowledge. Also, since we observed some abnormal
parameters in the performance parameters (guess/slip), we are interested in finding out
why the parameters are so different compare to normal Knowledge Tracing model.

5 Contributions

Moving from binary performance to continuous performance could make Intelligent
Tutoring Systems more flexible. In this paper, on one hand, we extended the Know-
ledge Tracing framework to include a continuous performance node. This allows the
Knowledge Tracing model to combine with all possible continuous performances
such as essay score, speech recognition score. On the other hand, we presented an
understandable and easy to refine algorithm to assign partial credit according to

188 Y. Wang and N. Heffernan

detailed student responses. This algorithm is one of many possible ways to convert
student detailed responses into a continuous value.

The model presented in this paper enhanced student model accuracy by improving
upon the classic Knowledge Tracing model. The result shows that the new model
makes statistical reliably improvement in predicting both students’ partial credit per-
formances and binary performances. Also, freely available code is shared online,
which could be useful for researchers that are trying to do the same task.

Acknowledgements. This research was made possible by the U.S. Department of Educa-
tion, Institute of Education Science (IES) grants #R305K03140 and #R305A070440, the
Office of Naval Research grant # N00014-03-1-0221, NSF CAREER award to Neil
Heffernan, and the Spencer Foundation. All the opinions, findings, and conclusions
expressed in this article are those of the authors, and do not reflect the views of any of the
funders.

References

1. Arroyo, I., Cooper, D.G., Burleson, W., Woolf, B.P.: Bayesian Networks and Linear Re-
gression Models of Students’ Goals, Moods, and Emotions. In: Handbook of Educational
Data Mining, pp. 323–338. CRC Press, Boca Raton (2010)

2. Attali, Y., Powers, D.: Immediate feedback and opportunity to revise answers to open-end
questions. Educational and Psychological Measures 70(1), 22–35 (2010)

3. Baker, R.S.J.d., Corbett, A.T., Gowda, S.M., Wagner, A.Z., MacLaren, B.A., Kauffman,
L.R., Mitchell, A.P., Giguere, S.: Contextual Slip and Prediction of Student Performance
after Use of an Intelligent Tutor. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010.
LNCS, vol. 6075, pp. 52–63. Springer, Heidelberg (2010)

4. Corbett, A., Anderson, J.: Knowledge Tracing: Modeling the Acquisition of Procedural
Knowledge. User Modeling and User-Adapted Interaction 4, 253–278 (1995)

5. Feng, M., Heffernan, N.: Can We Get Better Assessment from a Tutoring System Com-
pared to Traditional Paper Testing? Can We Have Our Cake (Better Assessment) and Eat
It too (Student Learning during the Test)? In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS
2010, Part II. LNCS, vol. 6095, pp. 309–311. Springer, Heidelberg (2010)

6. Masters, G.N.: A rasch model for partial credit scoring. Psychometrica 47, 149–174 (1982)
7. Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a bayesian networks imple-

mentation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010.
LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010a)

8. Pardos, Z.A., Heffernan, N.T.: Navigating the parameter space of Bayesian Knowledge
Tracing models: Visualization of the convergence of the Expectation Maximization algo-
rithm. In: Proceedings of the 3rd International Conference on EDM (2010b)

9. Pavlik, P.I., Cen, H., Koedinger, K.: Performance Factors Analysis – A New Alternative to
Knowledge. In: Proceedings of the 14th International Conference on Artificial Intelligence
in Education, pp. 531–538 (2009)

10. Tang, K.L.: Polytomous item response theory (IRT) models and their applications in large-
scale testing problems: Review of the literature. Educational Testing Service Technical
Report (1996), http://www.ets.org/Media/Research/pdf/RM-96-08.pdf

11. Wang, Y., Heffernan, N.T., Beck, J.E.: Representing Student Performance with Partial
Credit. In: Proceedings of the 3rd International Conference on Educational Data Mining,
Pittsburgh, PA (2010)

	Extending Knowledge Tracing to Allow Partial Credit: Using Continuous versus Binary Nodes
	1 Introduction
	2 Approach
	2.1 Knowledge Tracing with Continuous Performance Node
	2.2 Make the Correctn ness Continuous: Partial Credit

	3 Evaluation
	3.1 The Tutoring System and Dataset
	3.2 Results

	4 Conclusions and Future Work
	5 Contributions
	References

