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Abstract. For decades, intelligent tutoring systems researchers have been de-
veloping various methods of student modeling. Most of the models, including 
two of the most popular approaches: Knowledge Tracing model and Perfor-
mance Factor Analysis, all have similar assumption: the information needed to 
model the student is the student’s performance. However, there are other 
sources of information that are not utilized, such as the performance on other 
students in same class.  This paper extends the Student-Skill extension of 
Knowledge Tracing, to take into account the class information, and learns four 
parameters: prior knowledge, learn, guess and slip for each class of students 
enrolled in the system. The paper then compares the accuracy using the four pa-
rameters for each class versus the four parameters for each student to find out 
which parameter set works better in predicting student performance. The result 
shows that modeling at coarser grain sizes can actually result in higher predic-
tive accuracy, and data about classmates’ performance is results in a higher pre-
dictive accuracy on unseen test data. 

Keywords: Bayesian Networks, Knowledge Tracing, Individualization,  
student-skill model, class-skill model. 

1 Introduction 

Student modeling is crucial for Intelligent Tutoring Systems (ITS) to improve and to 
provide better tutoring for students. For decades, researchers in ITS have been devel-
oping various methods of modeling students. Two of the most popular approaches are 
Bayesian Knowledge Tracing (KT) [1], which uses a dynamic Bayesian Network to 
model student learning, and Performance Factor Analysis (PFA) [2], which uses a 
logistic regression to predict student performance.  Both techniques have a similar 
underlying assumption that two things are needed to model the student: one compo-
nent concerns the domain, such as skill information in KT and PFA models, or item 
information in the PFA model; the other component is the student’s problem solving 
performance on the skill. 

However, there are other sources of knowledge that are not utilized, such as the 
performance of other students in the same class.  Instead, only this student’s previous 
performances are taken into account. Imagine there is a class of 20 students, 19 of 
whom get the first item on a skill wrong, and you want to predict the performance of 
the 20th student’s first item on the skill. Intuitively, predicting that this student would 
also respond incorrectly seems like a safe bet.  However, current student models such 
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as KT and PFA will not be affected by those 19 incorrect responses, as they were all 
made by other students. What would the effect on predictive accuracy be if which 
class a student is currently in was factored into student models? Our intuition is that 
class perhaps contains important information such as the student’s prior knowledge 
about a skill.  Since all students in a class share a common teacher, curriculum, and 
assigned homework problems, we should expect similarities in performance.  Our 
goal is to capitalize on this dependency to improve student modeling.  

In fact, the US Institute for Educational Sciences requires grant proposals’ power 
analyses to discount the sample size if there are multiple students in the same class-
room, due to their lack of independence from each other (most statistical tests require 
each sample to be independent).  Given that we know this dependence effect exists 
statistically, why not make use of it?  In this paper, we are focusing on utilizing the 
class information to improve student modeling and trying to determine under which 
circumstances, using other students’ information could be more beneficial than using 
current student’s individual information. 

Section 2 introduces the model and dataset we are using in our experiments. Sec-
tion 3 shows the experimental results. In section 4 and 5 we discuss the conclusions 
and future directions for our work. 

2 Approach 

This section briefly introduces the Student Skill model and the modification of it in 
order to allow class level individualization. The modified model also allows us to run 
experiments on various combinations of student and class information to determine 
whether or not the class information is better than the student information for each 
parameter. 

2.1 Model 

Knowledge Tracing is one of the most popular methods for modeling student know-
ledge.  The original Knowledge Tracing model do not allow for individualization, 
and assumes that all students have the same probability of knowing a particular skill 
at their first opportunity, or slipping (making a careless mistake) on a skill, or learning 
a particular skill.  This assumption is almost certainly invalid, as students are likely 
to differ in these aspects. Several researchers have tried to show the power of indivi-
dualization [4, 5]. The model we use in this work is build upon one of the individuali-
zation model called the Student Skill model [4]. The idea of the Student Skill model is 
that rather than estimating a learning rate for each skill, instead view learning rate as 
being a function of the skill and of this individual learner.  Perhaps some skills are 
learned more quickly or slowly than others, and perhaps some students learn more 
quickly or slowly than others.  By combining both effects, it is possible to more ac-
curately model the student.   

The Student Skill model structure is shown in Fig.1. The goal of the Student Skill 
model is to add individualization into the original Knowledge Tracing model. It can 
learn four student parameters and four skill parameters simultaneously. The lowest 
two levels of this model is the same as the original Knowledge Tracing model (nodes 
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generalize to unseen data.  One approach is, rather than modeling the students as indi-
viduals, to instead model which mathematics class the student is enrolled in.  Students 
within the same class have the same teacher, textbook, homework, and may even be 
grouped by ability in the subject.  Given that, in our datasets, there are typically about 24 
students per class, modeling class-level effects has 24 times as much data to estimate 
parameters.  In addition, if we only model class parameters, we only have to estimate 1 
set of parameters for each class of students, rather than 1 set for each individual students.  
Thus, the use of class information can be seen as a coarser grain-size individualization 
compared to the Student Skill model.  We demonstrate the Class Skill model in figure 2, 
and the nodes are identified as follows: 

─ St: A multinomial node represents each student’s identity, observable. 
─ Sk: A multinomial node represents each skill’s identity, observable. 
─ StP: Student Prior Knowledge, binary node, latent. 
─ StG: Student Guess rate, binary node, latent. 
─ StS: Student Slip rate, binary node, latent. 
─ StL: Student Learning rate, binary node, latent. 
─ SkP: Skill Prior Knowledge, binary node, latent. 
─ SkG: Skill Guess rate, binary node, latent. 
─ SkS: Skill Slip rate, binary node, latent. 
─ SkL: Skill Learning rate, binary node, latent. 
─ P: Prior Knowledge of a particular student and a particular skill, binary node, latent. 
─ G: Guess rate of a particular student and a particular skill, binary node, latent. 
─ S: Slip rate of a particular student and a particular skill, binary node, latent. 
─ L: Learning of a particular student and a particular skill, binary node, latent. 
─ K1~Kn: Knowledge, binary node, latent.  
─ Q1~Qn: Question performance, binary node, latent. 

The Student Skill model can easily be changed to consider the class information ra-
ther than the student information by replacing the St node to be a class node (Cl), and 
the parameters StP, StG, StS and StL will be turned into class prior (ClP), class guess 
(ClG), class slip (ClS) and class learning rate (ClL). 

Instead of simply using class information to replace the student information, which 
is still considering only one resource of information, this paper combines these two 
models together to explore whether knowing which class a student is in is a better 
predictor than knowing which student, for each parameter in the model. For example, 
perhaps slip rate is best modeled at the individual student level, while learning rate is 
best estimated at the class level?  Therefore, we have run experiments with different 
ways of combine the two resources of information trying to determine which parame-
ter is best modeled using which source of information.   

As shown in Fig. 2, the model is almost the same as the Student Skill model in Fig. 
1. The only difference is the addition of the class (Cl) node, which is a multinomial 
node, represents which class a student is in. Nodes StP, StG, StS, StL turns into 
StP/ClP, StG/ClG, StS/ClS, StL/ClL, which means the nodes can either be a student 
level parameter or a class level parameter. The dash line between node Cl and node 
StP/ClP is a potential relationship in the model, as well as the dash line between node 
St and node Stp/ClP. If we choose one of these two dash lines, the other one will be 
ignored as if it does not exist. For example, if we choose to use class information for 
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prior knowledge, the dash line between St and node StP/ClP is ignored, and the node 
StP/ClP only contains the class prior (ClP). The same assumption is hold for all the 
other dash lines and parameters of class and student: StS/ClS, StG/ClG, StL/ClL. 

Based on this model, by choosing different dash lines, we can test the best combi-
nation of class and student parameters and find the variability. 

In our experiment, we used the Bayes Net Toolbox for Matlab developed by Murphy 
[6] to implement the Bayesian network student models and the Expectation Maximiza-
tion (EM) algorithm to fit the model parameters to the dataset. The EM algorithm finds a 
set of parameters that maximize the likelihood of the data by iteratively running an ex-
pectation step to calculate expected likelihood given student performance data and a 
maximization step to compute the parameters that maximize that expected likelihood. 

 

Fig. 2. Combination of Class Skill model and Student Skill model 

2.2 Data and Model-Fitting 

The data used in the analysis presented here came from the ASSISTments platform 
(www.assistments.org), a freely available web-based tutoring system for 4th through 
10th grade mathematics. The performance of a question is marked as wrong if the first 
response is incorrect, or if the student asks for help. 

We randomly sampled data of one hundred 12-14 year old 8th grade students from 
4 classes and fifty skills from the school year September 2010 to September 2011. 
There are in total 53,450 problem solved in the dataset. 
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To make sure there were sufficient data in the training set to estimate parameters 
for students and skills, we divide the dataset into a training set and a test set using the 
following strategy: for each student, for every skill that she was practicing we flipped 
a coin and assigned this student-skill pair into either the training set or into the testing 
set.  This process enables us to have a broad coverage of students and skills in the 
training set, to enable generalization to the testing set.  However, we do not have data 
for the same student-skill pair in both the training and in the testing data.  In this 
way, we maintain a relatively independent test set, but still enable our approach to see 
enough types of data to estimate all of the required parameters. 

In the experiment, we estimate each knowledge tracing parameter using data about 
the skill, and either data about this student’s or the student’s classmates’ performance 
on this skill.  Thus, for each parameter we tried two ways of estimating its value.  
We examined each combination of settings for all four knowledge tracing parameters 
(P,G,S,L) To simplify the problem, we group the performance parameters, guess and 
slip, together. This leaves us in total 23= 8 different combinations in parameters. The 
models and experimental results are shown in the next section. 

3 Results 

The accuracy of the predictions was evaluated in terms of the Root Mean Squared 
Error (RMSE), with lower values meaning higher accuracy. We compared different 
models to analyze the best individualization level for prior Knowledge (K0), learning 
rate (L) and Guess and Slip (G/S) respectively. That is, for each of the parameters 
(K0, L, G/S), we choose Class level individualization or Student level individualiza-
tion, there are in total 8 possible combinations. The different combination models and 
their RMSE results on the test set are shown in Table 1.  

The first column shows which parameter is chosen for the prior knowledge, the 
second column shows which parameter is chosen for the learning rate, the third col-
umn shows which parameter is chosen for the performance parameters (guess and 
slip), the fourth column shows the RMSE result of each model on the test dataset. We 
order the rows in this table based on the RMSE on the test set, with the top rows 
representing higher accuracy on the test set.  

Table 1. RMSE result on test and training data 

K0 L G/S RMSE 
Class Student Class 0.413 
Class Class Class 0.415 
Class Student Student 0.417 
Class Class Student 0.419 

Student Student Student 0.421 
Student Student Class 0.423 
Student Class Class 0.424 
Student Class Student 0.425 
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For comparison, the standard Knowledge Tracing model produces an RMSE of 
0.428 on the test data, which is less accurate than all of the models we experimented 
with in Table 1.  Therefore, it appears that both of the class level and the student 
level individualization can help improve Knowledge Tracing’s predictive accuracy.  

A second point of comparison is our baseline Student Skill model, represented in 
the 5th row in this table (underlined), which represents estimating all of the parameters 
using information about each student.  Thus, each student has a customized estimate 
of prior knowledge (K0), learning (L), and guess (G) and slip (S), as they are derived 
from the student node. In this case, model in Fig. 2 degenerates to be the same as the 
Student Skill model in Fig. 1. The fact that this model is only at the middle of the 
table shows that, it is not as strong as other methods of estimating parameters.   

In other words, sometimes it is better to use the class information rather than using 
individual student information. This result could occur if students within a class do 
not vary very much on a particular parameters.  In that case, it would be better to 
estimate that parameter for the entire class to take advantage of the larger quantity of 
data.  For example, the fact that the 4th row, which has prior and learning comes from 
class information, and guess and slip comes from the student information results in 
lower RMSE value on the test data than the 5th row, indicates that the prior knowledge 
and learning rate may be better estimated through the class information rather than 
estimated from completely individualization of student. Back to the example at the 
beginning of this paper, this means that for prior knowledge, and guess and slip rate, 
knowing the information of all of the other students in the class may be slightly more 
beneficial than only knowing the information of the current student. If all of the other 
students in the class do not know a skill initially, it is more likely the current student 
do not know the skill either, no matter how good the student is on other skills. 

Among all of these models, the best mode (the first row in the table) is the one with 
prior knowledge (K0) and performance parameters (guess and slip) derived from the 
class information, and the learning rate (L) is derived from individual student infor-
mation. The result seems plausible because all students in a class normally get the 
same instruction, thus might have similar prior knowledge (K0) about a particular 
skill, and some students learn faster than others, thus the learning rate (L) would be 
beneficial from individual student information.  To be clear, we are not asserting that 
all students have the same prior knowledge, as some students will not complete 
homework or might not pay attention in class.  However, within a class, prior know-
ledge varies less than the other parameters, and, at least in this instance, the potential 
benefit of customizing K0 to each student is not worth the additional parameters.   

Besides finding the best combination of grain-sizes for estimating various parameters, 
there are also some interesting general trends visible in Table 1. The most interesting one 
is that prior knowledge (K0) is always better modeled at the class level: the top 4 rows 
are all with class information used to estimate the K0 parameter. This result confirms our 
intuition that all students in a class tend to have similar prior knowledge, which could be 
caused by the fact that they are going through similar instructions, or the fact that similar 
students are tend to be assigned to the same classroom.  

The trend in learning rate (L) is the opposite as the trend for prior knowledge. 
Since the bottom two rows both have class information as the resource for learning 
rate, student information seems to be a more powerful resource.  Therefore, within a 
class, students’ ability to learn mathematics appears to vary more than their prior 
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knowledge.  However, these differences appear to be rather small:  comparing the 
first and second lines results in a difference in RMSE of 0.002; similarly, comparing 
the third and fourth lines also results in a difference in RMSE of 0.002.  This differ-
ence is rather small, so estimating learning rate at the class level or at the student level 
works approximately equally well.   

As for the performance parameters (guess and slip), there seems to be a general 
advantage to modeling these effects at the class level, but the trend is not completely 
clear.  We expected guess and slip behaviors to vary considerably within a class, and 
to be better modeled at the student level.  Therefore, we found this result somewhat 
surprising.   

4 Contributions, Future Work, and Conclusions 

This paper makes three main contributions. Philosophically, it considers the learner’s 
classmates as a viable source of information for predicting the learner’s behavior.  
This source of information seems to have been overlooked by the ITS community. 

The second contribution this paper makes computational, as it extends the Baye-
sian knowledge tracing framework to take into account the class information. Our 
model structure enables us to model parameters at the class- or student-level, and to 
mix and match grain sizes within an experiment.  In a similar effort, a PFA-like 
model was modified to account for class-level information [7]. 

The third contribution this paper makes is empirical.  Our results suggest that ini-
tial knowledge of a skill is probably best modeled at the class level.  Prior work  
either assumed the initial knowledge is determined either by the skill itself or a com-
bination of the student and skill.  This paper’s experimental results suggest that stu-
dent modelers should consider additional sources of power for understanding learners. 

Currently, the way we utilize the student and class information is to consider using 
either class parameters or student parameters.  That is, each of the models we com-
pared considered using one source of power for each of the parameters, but not both.  
It is possible that we can look at both sources information simultaneously and even 
take into account the fact that a student is a member of a class, to build a hierarchical-
ly structured model that blends the two sources of information together. In this model, 
class could be the parent node of different students. The model is easy for people to 
understand and interpret, yet we are not sure if a complex Bayesian Network repre-
sentation of this model can be properly built and learn back the expected parameters.  
Both experiments with real and simulated data will be helpful for evaluating such 
approaches.  It is also unclear if the model will be practical given the large number of 
parameters required.   

One issue that we have not yet addressed is whether the performance parameters 
(guess and slip) should be grouped together. In this paper, we group the performance 
parameters together to simplify the experiments based on the assumption that these 
two parameters are both related to performance and should have similar properties 
with respect to the best grain size for modeling. Yet, it is likely that guess and slip 
behaves very differently at the class level compared to the student level. For example, 
some type of instruction may cause all students in the class very likely to guess the 
correct answer for some skills, even though the students do not fully understand the 
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skill. We suspect that slip is best modeled at the individual level.  The mixed result in 
the performance parameters in section 3 could perhaps become more clear if we run 
more experiments with separate guess and slip parameters. 

Another question that we are interested in exploring is whether the results about 
class-level parameters transfer across years? Currently, our evaluation looks at only 
one year’s data and generates the test and training set from that year. This approach 
has the normal cold start problem, that if it is the start of a new school year and we 
have no information about the class yet, what would be a reasonable information to 
use to build the student model? One possible solution that we are interested in is to 
use the class information of previous school years. If we can find a class that we have 
data from previous years that is similar to a current class, we might be able to use the 
information from that class to start building the model for the current class. How to 
define similarity of different classes, however, is a challenging question. We could 
look at the teacher or use the very first performance of each student in the class as an 
estimate of prior knowledge. We could also choose a set of similar previous classes 
and use the average of their parameters instead of choose only one from all.  Or, we 
could use whichever prior class has the highest predictive accuracy for this student, as 
in [3]. 

Finally, from a broader perspective, class can be seen as a group of students, thus is 
a natural way of clustering students. There are literatures that focus on clustering in 
student modeling such as [8,9]. What are the differences and connections between 
using class and using other clustering methods? Class could be an effect of the teacher 
or ability grouping; in this case, using clustering algorithms on features such as teach-
er and student ability could result in similar clusters as classes. There are also other 
levels of abstraction and natural clustering, such as which grade or school a student is 
in, exploring models that utilizing these new sources of information is also new and 
interesting. 

In summary, this paper introduces a framework for using a dynamic Bayesian net-
work to model parameters as a combination of student-skill effects, or class-skill ef-
fects. We have found that using either source of knowledge is more accurate than a 
standard knowledge tracing model.  By selectively estimating some parameters at a 
coarser grain size, we are able to improve accuracy a bit over the class-skill model.   
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