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Abstract. User modeling in AIED has been extended in the past decades to in-
clude affective and motivational aspects of learner’s interaction in intelligent tu-
toring systems. In order to study those factors, various detectors have been 
created that classify episodes in log data as gaming, high/low effort on task, ro-
bust learning, etc. In this article, we present our method for creating a detector 
of shallow modeling practices within a meta-tutor instructional system. The de-
tector was defined using HCI (human-computer interaction) task modeling as 
well as a coding scheme defined by human coders from past users’ screen re-
cordings of software use. The detector produced classifications of student beha-
vior that were highly similar to classifications produced by human coders with a 
kappa of .925. 
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1 Introduction 

Advances in student modeling in the past two decades enabled the detection of vari-
ous cognitive [1], meta-cognitive [2], and affective [4] processes during learning 
based on classification of episodes in log data. Steps have been taken toward detect-
ing when learning occurs [1] and to predict how much of the acquired knowledge 
students can apply to other situations [2]. However, an obstacle in such research is the 
lack of generality of the detectors for tutoring systems involving problem solving 
tasks, especially when trying to gain an understanding of the user’s cognitive or meta-
cognitive processes while learning. While some of the indicators used in the literature 
are common to any intelligent tutoring system, others are closely linked to the activi-
ties and pedagogical goals of a specific application. The adaptation of such indicators 
from one application to another often necessitates a detailed analysis of the new do-
main and how the tutoring system guides learners to acquire its skills and knowledge. 
We view the specificity of detectors as unavoidable, so the best solution is to develop 
good methods for analyzing the new tutoring system and designing the detectors.  
This short article describes our method and its application to AMT. 
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AMT teaches students how to create and test a model of a dynamic system. The in-
struction is divided into three phases: (1) an introduction phase where students learn 
basic concepts of dynamic system model construction and how to use the interface; 
(2) a training phase where students are guided by a tutor and a meta-tutor to create 
several models; and (3) a transfer phase where all scaffolding is removed from  
software and students are free to model as they wish.  The tutor gives feedback  
and corrections on domain mistakes. The meta-tutor requires students to follow a 
goal-reduction problem solving strategy, the Target Node Strategy [6], which decom-
poses the overall modeling problem into a series of “atomic” modeling problems 
whose small scope encourages students to engage in deep modeling rather than shal-
low guess-based modeling strategies. To assess students, the project needed detectors 
that detect shallow and deep modeling practices both with and without the meta-tutor. 

2 Task Modeling: Analysis of User’s Actions on Software 

A task model is a formal representation of the user’s activity in an interactive system. 
It is represented by a hierarchical task tree to express all sub-activity that enables the 
user to perform the planned activity. The tasks need to be achieved in a specific order, 
defined in the task tree by the order operators. In AMT, every modeling activity fol-
lows the same procedure involving the same help features, task flow, and meta-tutor 
interventions. With a single task model of a prototypical modeling task, it is therefore 
possible to account for all of the user’s activity in software. The task modeling lan-
guage K-MAD and its task model creation and simulation environment, K-MADe [3] 
were chosen because they enable the creation and replay of scenarios of student’s 
actions and they enable a formal verification of the model.  

The task model developed with K-MADe was used to define the episode structure.  
This established the unit of coding to be used in the next phase. Screen videos 
representing the learners’ use of the AMT software with and without the meta-tutor 
were recorded during an experimental study described in [6]. These videos were stu-
died to determine how much shallow vs. deep modeling occurred and the contexts, 
which tended to produce each type. A coding system was then created for video re-
cordings of the learners’ behavior. Three iterations of design for this coding scheme 
were performed, ending with a coding scheme that reached a multi-rater pairwise 
kappa of .902. The final coding scheme mapped learners’ behavior to six classifica-
tions, which were implemented as the following depth detectors: 

• GOOD_METHOD: The students followed a deep method in their model-
ing.  They used the help tools appropriately, including the one for planning 
each part of the model. 
• VERIFY_INFO: Before checking their step for correctness, students 
looked back at the problem description, the information provided by the in-
struction slides, or the meta-tutor agent. 
• SINGLE_ANSWER:  The student’s initial response for this step was 
correct, and the student did not change it.  
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• SEVERAL_ANSWERS: The student made more than one attempt at 
completing the step.  This includes guessing and gaming the system: 

o The user guessed the answer, either by clicking on the correct an-
swer by mistake or luck, or by entering a loop of click and guessing to find 
the answer. 

o The user “games the system” by using the immediate feedback giv-
en to guess the answer: series of checks on wrong answers that help deduce 
the right answer. 
• UNDO_GOOD_WORK: This action suggests a modeling misconception 
on the students’ part. One example is when students try to run the model 
when not all of the nodes are fully defined. 
• GIVEUP: The student gave up on finding how to do a step and clicked on 
the “give up” button. 

Another detector was defined as a linear function of the six episode detectors.  It was 
intended to measure the overall depth of the students’ modeling, therefore providing 
an outcome measure in the transfer phase in future experimental studies.  It consi-
dered two measures (GOOD_ANSWER, VERIFY_INFO) to indicate deep modeling, 
one measure (SINGLE_ANSWER) to be neutral, and three measures 
(SEVERAL_ANSWERS, UNDO_GOOD_WORK, and GIVE_UP) to indicate shal-
low modeling. 

Once the coding scheme reached a sufficient level of agreement between coders, 
the task model was used to adapt the coding to students’ actions on the software. The 
episodes that were coded for depth by human analysts in the sample video were ana-
lyzed by creating scenarios from the task model within K-MADe.  The validation of 
six detectors’ implementation involved three human coders, who watched a sample of 
50 episodes, paying attention to the depth of modeling exhibited by the student’s ac-
tions, and chose the classification that best represented the depth of the learner model-
ing at the time of the detected value.  A multi-rater and pairwise kappa was then 
performed, reaching a level of inter-reliance of .925. 

3 Conclusion and Future Work 

In this paper, a method to create a detector of deep modeling within a meta-tutor us-
ing HCI task modeling and video coding schemes was described. The main outcome 
of this process was the creation of detectors inferring the depth of students’ modeling 
practices while they learn on a meta-tutoring system, reaching a multi-rater and pair-
wise kappa score of .925. One use of the detectors was to consider the proportion of 
shallow versus deep learning as an outcome measure in the transfer phase. This was 
used as a dependent measure of shallow learning in an experimental study investigat-
ing the effectiveness of the meta-tutor versus the original interface, described in [6]. 
The second use of the detectors was to help drive the behavior of an affective learning 
companion in the current phase of the AMT project [5]. A limitation of the method 
however is the applicability to different types of tutoring systems. In AMT, a single 
task model was able to represent the entirety of a users’ learning activity. In tutoring 
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systems that teach a set of skills through different pedagogical approaches for diverse 
types of learning tasks, the creation of such task models might prove more costly and 
may not be completely adapted to the creation of detectors that need to be adapted to 
each task specifically.  
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