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Abstract. A formulation of hyperspectral images as function-valued
mappings is introduced, along with a set of simple models of affine self-
similarity for digital hyperspectral images. As in the case of greyscale
images, these models examine how well vector-valued image subblocks
are approximated by other subblocks, as measured by the distribution of
approximation errors. This set of models includes both same-scale and
cross-scale modes of approximation, the latter of which provides the basis
of a method of fractal transforms over hyperspectral images.

1 Introduction

In this paper, we introduce a simple model of affine self-similarity for hyper-
spectral images [6]. Our model may be viewed as an extension of earlier work
[1,4,13] involving greyscale images. Here, as in [15], we view hyperspectral im-
ages mathematically as function-valued mappings: At each location or pixel x,
the hyperspectral image u(x) is a function which is supported on a domain which
is appropriate to the application. For example, in the case of remote sensing, in
which u(x) is defined by a set of reflectance values measured at various wave-
lengths, this domain is a subset of the non-negative real line, R+. In the case
of diffusion magnetic resonance images, where u(x) may be defined by a set of
probabilities of diffusion from x in various directions, the domain is S2, the unit
sphere in R3.

Our studies of image self-similarity have been motivated by the effectiveness
of a number of nonlocal image processing methods, including nonlocal-means
denoising [5], compression [10], restoration [18], superresolution [8,9] and fractal
image coding [11,14]. Such effectiveness may be attributed to the fact that pixel
blocks of a natural image can, in some way, be well approximated by a number of
other blocks of the same image. A function-valued formalism allows this notion
of image self-similarity to be extended to hyperspectral images and shows that
they may be treated by various nonlocal methods.

Some very interesting questions still remain unanswered, e.g., whether it is
better to perform such methods (i) along separate channels, (ii) separately at
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fixed pixels, (iii) with particular subgroups of channels or (iv) a combination of
(i)-(iii). We continue to pursue these most interesting avenues of inquiry.

Finally, we mention that the work presented here complements the well-
established notion that hyperspectral images generally demonstrate a high de-
gree of correlation which can be exploited to accomplish various tasks [16], e.g.,
compression, compressed sensing, denoising.

2 Mathematical Formulation of Hyperspectral Images

It is important to begin with a brief account of the mathematical foundations
of our study. The basic ingredients of our formalism are:

The base space X: The compact support of the hyperspectral images, with
metric dX . For convenience, X = [0, 1]n, where n = 2 or 3. In practical
considerations, i.e., digitized hyperspectral images, X will be replaced by a
discrete array, the pixel space, as described in Section 3.

The range or spectral space L2(Rs): The space of square-integrable func-
tions supported on a compact set Rs ⊂ R+, where R+ = {y ∈ R | y ≥ 0}.
L2(Rs) is a Hilbert space with inner product defined as follows,

〈f, g〉 =
∫
Rs

f(t) g(t) dt, ∀f, g ∈ L2(Rs). (1)

This inner product defines a norm on L2(Rs), to be denoted as ‖ · ‖L2(Rs).

Now let Y denote the set of all function-valued mappings from the base space
X to L2(Rs). Given a hyperspectral image u ∈ Y , its value u(x) at a particular
location x ∈ X will be a function – more precisely, an element of the space
L2(Rs). Following the same prescription as in [15], the norm ‖ · ‖L2(Rs) arising
from Eq. (1) may be used to define a metric dY over the space Y : The distance
between two hyperspectral images u, v ∈ Y will then be defined as

dY (u, v) =

[∫
X

‖u(x)− v(x)‖2L2(Rs)
dx

]1/2
. (2)

Furthermore, the metric space (Y, dY ) of hyperspectral images is complete.

3 A Simple Model for the Affine Self-similarity of a
Digital Hyperspectral Image

The remainder of this paper will be concerned with a discrete version of the
formulation in the previous section: digital hyperspectral images supported on
an N1 ×N2 -pixel array, M channels per pixel. Formally, a digital hyperspectral
image I may be represented by a vector-valued image function, u : X → RM

+ ,
where X = {1, 2, · · · , N1}×{1, 2, · · · , N2} is the base or pixel space and RM

+ , the
nonnegative orthant of RM , is the spectral space. At a pixel location (i1, i2) ∈
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X , the hyperspectral image function u(i1, i2) is a non-negative M -vector with
components uk(i1, i2), 1 ≤ k ≤ M .

As in [1] let R(n) denote a set of nonoverlapping n × n-pixel subblocks Ri,
such that X = ∪iRi, i.e., R(n) forms a partition of X . We let u(Ri) denote
the portion of the hyperspectral image function u that is supported on subblock
Ri ⊂ X . In this setting, u(Ri) is an n×n×M cube of nonnegative real numbers.

We now wish to examine how well a hyperspectral image subblock u(Ri) is
approximated by other image subblocks u(Rj), j �= i. For convenience, we denote
an image subblock u(Ri) being approximated as a range block and a subblock
u(Rj), j �= i, approximating it as a domain block. In order to clarify the roles
of these blocks, we shall denote the domain blocks as u(Dj). This notation
also allows for the possibility of considering the eight possible mappings (four
rotations and four inversions) of the pixels in Dj to the pixels in Ri, in which

case an additional index will be required, i.e., u(D
(k)
j ), 1 ≤ k ≤ 8. In this paper,

for simplicity, we consider only the identity mapping, so that Dj = Rj .
At this point, it is tempting to consider the approximations of subblocks

separately channel by channel, i.e., to treat the hyperspectral image u as a set of
M greyscale images and evaluate the approximations over each greyscale image,
along the lines done in [1]. This is certainly possible, but it defeats the purpose
of examining any similarity/correlation across channels. As such, we shall define
the distance between two image subblocks u(Ri), u(Dj) ∈ R(n) to be

Δij =
1

n
√
M

[
I1+n−1∑
i1=I1

I2+n−1∑
i2=I2

M∑
k=1

[uk(i1, i2)− uk(i1 + J1, i2 + J2)]
2

]1/2

, (3)

where the summation is understood to be performed over corresponding pixels
of Ri and Dj = Rj . (Here it is assumed that subblock Rj is simply a translation
of Ri by (J1, J2).) The RHS of Eq. (3) is, up to a factor, a discretized version
of the distance between two image subblocks in Eq. (2). The factor 1/

√
M pro-

duces a root-mean-squared (RMS)/L2 distance in the spectral space RM
+ at each

pixel. The additional normalization factor 1/n produces a per-pixel error. This
is helpful in the comparison of distributions for different range block sizes.

Case 1 Approximation: The distance Δij in Eq. (3) is the error associated
with the approximation

u(Ri) ≈ u(Dj), (Case 1). (4)

As in [1], we consider this to be the simplest approximation scheme.

Case 2 Approximations with Spectral Shift: In [1], the Case 1 approxima-
tion for greyscale images was greatly improved by adding a constant greyscale
value β to the approximating block u(Dj). The optimal value of β is easily found
to be the difference in the mean values of the greyscale blocks u(Ri) and u(Dj).

As shown in the next section, numerical experiments indicate that the
approximation,

u(Ri) ≈ u(Dj) + β, (Case 2(a)), (5)
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where β ∈ R is a constant, does not, in general, improve the Case 1 approxi-
mation in Eq. (4) significantly. It is too much to expect a constant shift β to
accomodate the many channels of a hyperspectral image. A significantly greater
improvement is achieved if we allow a separate shift for each channel. The re-
sulting approximation has the form

u(Ri) ≈ u(Dj) + β , (Case 2(b)), (6)

where β ∈ RM
+ is an M -vector. Eq. (6) is to be interpreted as follows: At each

pixel (i1, i2) of the range block Ri, we have the vector-valued approximation,

uk(i1, i2) ≈ uk(j1, j2) + βk, 1 ≤ k ≤ M, (7)

where (j1, j2) denotes the corresponding pixel location in the domain block Dj .
The values of βk that minimize the approximation error associated with Eq.

(6), are easily found to be

βk = uk(Ri)− uk(Dj), 1 ≤ k ≤ M. (8)

Here, uk(Ri) denotes the mean value of the kth channel of the hyperspectral
image supported on subblock Ri. In other words, the channels are treated sepa-
rately in this approximation.

Case 3 Approximation with Affine Scaling + Spectral Shift: In [1], the
Case 2 approximation for greyscale images was greatly improved in many cases
by scaling the approximating block, i.e., u(Ri) ≈ αu(Rj) + β. With reference
to Eq. (6), one could introduce a separate αk scaling coefficient to accompany
the constant βk for each channel, essentially treating a hyperspectral image as
M separate greyscale images. A more “hyperspectral” approach that captures
the similarity between channels is to employ only one scaling coefficient α for all
channels, i.e.,

u(Ri) ≈ αu(Dj) + β, (Case 3). (9)

The optimal values for α and the βk are derived in the Appendix.
In fact, we have found experimentally that when separate scaling coefficients

αk are employed for each channel, a histogram plot of the variances of the optimal
α-vectors is strongly peaked at zero, implying that for many blocks the αk values
are close to each other. Consequently, employing a single α coefficient does not
increase the approximation error significantly for many blocks.

For m ∈ {1, 2(a), 2(b), 3}, we let Δ(Case m)
ij denote the error in approximating

the range block u(Ri) with the domain block u(Dj) using the Case m approxi-
mation schemes defined above. Since more optimization parameters involved as
we move from Case 1 to Case 3, it follows that

0 ≤ Δ
(Case 3)
ij ≤ Δ

(Case 2(b))
ij ≤ Δ

(Case 2(a))
ij ≤ Δ

(Case 1)
ij . (10)

As m increases, the distributions Δ
(Case m)
ij should become more concentrated

toward zero error. This effect was observed for greyscale images in [1].
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4 Results of Some Numerical Experiments

Here we report briefly on an examination of the self-similarity properties of two
hyperspectral data sets. (Similar results have been obtained for a number of
other images.)

1. A 33-channel hyperspectral image, “Scene 2,” downloaded from the webpage
of D.H. Foster, University of Manchester [12], to be referred to as the “HS
fern image”.

2. AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) image, “Yellow-
stone calibrated scene 0,” a 224-channel image, available from the Jet Propul-
sion Laboratory site [2], to be referred to as the “Yellowstone AVIRIS” image.

In Figure 1 are presented histogram plots of the Δ
(Case m)
ij error distributions,

m = 1, 2(a), 2(b) and 3, for the 33-channel HS fern image. The four plots employ
the same scaling of x- and y-axes so that comparisons can easily be made. Unlike
the situation for natural greyscale images, as seen in [1], the Case 1 error distri-
bution is quite flat and unimpressive. We also observe that the Case 2(a) error
distribution is quite similar to that of Case 1, indicating that the use of a sin-
gle constant β for each block does not improve the approximation significantly.
The Case 2(b) error distribution demonstrates a much greater peaking toward
zero error, showing that the use of a vector shift β improves the approximations
significantly. A dramatic increase in near-zero peaking is demonstrated by the
Case 3 error distribution, indicating a much improved approximation.

In Figure 2 are presented histogram approximations of the Δ
(Case m)
ij error

distributions for the 224-channel AVIRIS image.
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Fig. 1. Per-pixel error distributions Δ
(Case m)
ij for 33-channel hyperspectral fern image.

In all cases, 8× 8-pixel blocks Ri and Dj were used.
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Fig. 2. Per-pixel error distributions Δ
(Case m)
ij for the 224-channel AVIRIS image. In

all cases, 8× 8-pixel blocks Ri and Dj were used.

Single-Pixel Self-similarity of Spectral Functions. The self-similarity study
of greyscale images reported in [1] was limited to a particular partition size,
namely, 8× 8-pixel blocks. Experimentally, it is observed, as expected, that the
Δij error distributions for a given block size demonstrate increased peaking to-
ward zero error as we move from Case 1 to Case 3. And for a given Case m, the

Δ
(Case m)
ij error distributions shift toward zero error as the partition size n is

decreased since it is generally easier to fit a lower number of data points.
Hyperspherical images, however, possess an additional degree of complexity

since each pixel no longer supports a single greyscale value but rather an M -
vector of spectral values. As such, it is feasible to look for “single-pixel” similarity.
In Figure 3 are presented the Case 1 Δij error distributions for the HS fern and
Yellowstone AVIRIS images when the range and domain blocks Rj are single
pixels. A significant amount of similarity is already demonstrated for this Case.
Much of this is due to the high correlation of spectral functions supported on
neighbouring pixels which is often graphically demonstrated by plotting these
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Fig. 3. Case 1 per-pixel error distributions Δ
(Case 1)
ij for spectral functions supported

on single-pixel blocks Ri.
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Fig. 4. Pairwise correlations between single-pixel spectral functions

functions next to each other. Such high correlation will manifest itself in a prin-
cipal components analysis (PCA) of hyperspectral images.

Correlation of “Single-Pixel” Spectral Functions. It is well known that
the RMSE/L2 distance is not a good measure of signal fidelity and image qual-
ity [17]. This has motivated a study of self-similarity [4] in terms of the “struc-
tural similarity” image quality measure. Here, as a complement to the RMS/L2

distance-based single-pixel self-similarity results of Figure 3, we present, in Fig-
ure 4, plots of the correlations between single-pixel spectral functions of the
hyperspherical fern and Yellowstone AVIRIS images. The correlation C(x,y)
between two M -vectors x and y was computed with the usual formulas, i.e.,

C(x,y) =
σxσy

σxy
, σxy =

1

M − 1

M∑
k=1

(xi − x̄)(yi − ȳ). (11)

The dramatic correlation demonstrated in these plots strongly suggests that
single-pixel spectral functions are quite suitable for nonlocal methods of image
processing. This may not be so clearly demonstrated by PCA or related methods.

Finally, we mention that our use of nonoverlapping range/domain blocks Ri,
as opposed to the sliding block method usually employed in methods such as
nonlocal means denoising, was motivated by a desire to reduce computational
effort. The error distributions presented above may be viewed as a kind of “lower
bound” in the characterization of self-similarity: Given the high correlation be-
tween spectral functions associated with neighbouring pixels, it is expected that
theΔ-error distributions produced by sliding blocks will exhibit far more peaking
than the distributions shown above. Furthermore, the single-pixel case, which
clearly employs sliding blocks, yields “upper bounds” for self-similarity, since
single spectral functions should be, in general, easiest to approximate.

Clearly, there is also the possibility of approximating spectral functions within
subsets of channels. Once again, our results, based upon the entire M -channel
spectrum, may be viewed as providing “lower bounds” to self-similarity.

5 A Class of Fractal Transforms on Hyperspectral Images

Fractal transforms of greyscale and color images [11,14] are based on an addi-
tional “cross-scale” self-similarity property, denoted as “Case 4” in [1].
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Very briefly, a greyscale (i.e., M = 1-channel) image subblock u(Ri) supported
on an n × n-pixel range block Ri ⊂ X is approximated by a geometrically-
contracted (i.e., pixel decimated) and affine greyscale-modified copy of an image
subblock u(Dj) that is supported on a larger, m×m-pixel domain block Dj ⊂ X ,
where m > n. (Typically, m = 2n.) We refer the reader to [1] for more details
regarding the greyscale fractal transform.

The formalism over greyscale images extends naturally to our M -channel dig-
ital hyperspectral image model of Section 3. In addition to the partition R(n)

of the support X formed by n× n-pixel blocks, Ri, we introduce an associated
domain pool D(m) of m × m-pixel blocks, Dj ⊂ X , with m = 2n. This set of
blocks need not be overlapping but we normally require that ∪jDj = X .

Given anM -channel digital hyperspectral image u, an associated fractal trans-
form operator T may be defined as follows: For each image block u(Ri), Ri ∈
R(n), we choose fromD(m) a domain block u(Dj(i)) to produce an approximation
of the form,

u(Ri) ≈ (Tu)(Ri) := αi u(Dj(i))
′ + βi 1 ≤ i ≤ NR (Case 4). (12)

Here, NR denotes the cardinality of the set R(n) and the prime denotes an
appropriate 2n × 2n → n × n pixel decimation operation. The set of range-
domain assignments (i, j(i)), 1 ≤ i ≤ NR, and affine transformation parameters
(αi, βi) define a fractal transform T . Numerical experiments show that the cross-
scale Case 4 error distributions are very similar to their same scale Case 2(b)
counterparts of Eq. (6), as observed for (single-channel) greyscale images in [1].

Here we state without proof that under appropriate conditions on the αi and
the contraction factors ci = 1/4 associated with the geometric transformations
from domain to range blocks, the fractal transform T is contractive on the metric
space (Y, dY ) of hyperspectral images. From Banach’s Fixed Point Theorem,
these exists a unique fixed point of T , a hyperspectral image ū ∈ Y such that
ū = T ū. Moreover, ū may be generated by the iteration procedure vn+1 = Tvn,
where v0 ∈ Y is any “seed” image, since vn → ū as n → ∞. (In fact, because we
are working with discrete digital images, vK = ū for some finite integer K.)

The error associated with the approximation u ≈ Tu in Eq. (12) is ‖u−Tu‖2,
where ‖·‖2 denotes the norm on L2(X). It may be related to the distance between
u and ū, the fixed point of T by means of the following consequence of Banach’s
Theorem, known in the fractal coding literature as the Collage Theorem [3],

‖u− ū‖ ≤ 1

1− cT
‖u− Tu‖. (13)

Here, cT denotes the contraction factor of T .
Eq. (13) provides the basis of fractal image coding [11,14], in which an image

u is approximated by the fixed point ū of a fractal transform operator T . One
tries to make the approximation error ‖u−ū‖ by minimizing the so-called collage
error ‖u−Tu‖. With reference to Eq. (12), such collage coding is accomplished as
follows: For each range block u(Ri), choose the domain block u(Dj(i)) which best
approximates u(Ri), i.e., minimizes the approximation error ‖u(Ri)−(Tu)(Ri)‖2.
This procedure minimizes the total collage error ‖u− Tu‖.
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Appendix

The approximation problem in Eq. (9) may be expressed in the form

yik ≈ αxik + βk, 1 ≤ i ≤ N, 1 ≤ k ≤ M, (14)

where N = n2. We wish to find the parameters α and βk which minimize the
squared L2 distance,

Δ2 =

N∑
i=1

M∑
k=1

(yik − αxik − βk)
2
. (15)

Imposition of the stationarity criterion
∂Δ2

∂a
= 0 yields the following linear

equation in α and the βk,

(
N∑
i=1

M∑
k=1

x2
ik

)
α+

M∑
k=1

(
N∑
i=1

xik

)
βk =

N∑
i=1

M∑
k=1

xikyik . (16)

Imposition of the stationarity criteria
∂Δ2

∂βk
= 0, 1 ≤ k ≤ M , yields the following

linear equations in α and the βk,

(
N∑
i=1

xik

)
α+ nβk =

N∑
i=1

yik , 1 ≤ k ≤ M. (17)

Dividing both sides of the above equation by n yields the relations,

βk = ȳk − αx̄k, 1 ≤ k ≤ M, (18)

where

x̄k =
1

N

N∑
i=1

xik, ȳk =
1

N

N∑
i=1

yik, (19)

denote the means over each channel. Substitution of (18) into Eq. (17) yields
the following solution for α:

α =

∑M
k=1

∑N
i=1 xik (yik − ȳk)∑N

i=1

∑M
k=1 x

2
ik − n

∑M
k=1 x̄

2
k

. (20)

From this result, we may solve for the βk using Eq. (18).
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