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Abstract. We propose a spectral-geometric skeletal graph for nonrigid
3D shape retrieval. The skeleton is constructed from the isocontours
of the second eigenfunction of the Laplace-Beltrami operator. We also
introduce a graph matching mechanism based on a dissimilarity between
the endpoints of the skeletal graph. Experimental results on a database
of 3D models demonstrate the feasibility of our proposed framework.
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1 Introduction

Recognition of 3D objects is becoming increasingly important due largely to
the difficulty in processing information expeditiously without its recognition or
identification. With the whopping increase in 3D scanners’ usage and as a re-
sult of the latest developments in multimedia computing technologies, numerous
databases of 3D models are distributed freely on the World Wide Web. The
availability and widespread usage of such databases has sparked the need to
efficiently search these 3D objects and retrieve the most relevant ones.

Recent years have witnessed a surge of interest in the spectral geometric anal-
ysis of the Laplace-Beltrami (LB) operator and its diverse applications to object
recognition and shape analysis [1–3]. Reuter [1] proposed a shape registration
and segmentation approach in the Morse-theoretic setting using the topological
properties of the LB eigenfunctions. These eigenfunctions are determined via a
cubic finite element method on mesh surfaces, and are arranged in increasing
order of their associated eigenvalues. Rustamov [2] introduced the global point
signature (GPS), which is defined as a vector whose elements are scaled eigen-
functions of the LB operator calculated at each surface point. GPS is isometric
invariant, but it suffers from the problem of eigenfunctions switching whenever
the associated eigenvalues are close to each other. Bronstein et al. [3] proposed
a non-rigid shape retrieval approach using bags of features based on the heat
kernel signature (HKS) [4]. HKS is a temporal shape descriptor for deformable
shape analysis, and is defined as an exponentially-weighted combination of the
LB squared eigenfunctions. HKS is a local shape descriptor that has a num-
ber of attractive properties, including robustness to small perturbations of the
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shape, efficiency, and invariance to isometric transformations. Shi et al. [5] used
the level curves of the second eigenfunction of the LB operator to construct
the spectral skeleton of 3D neuroanatomical structures. In addition to having
a nice geometric property of following the pattern of the overall shape of a 3D
object, the second eigenfunction of the LB operator captures well the intrinsic
form of shapes, particularly the elongated ones (e.g. hippocampus) and it is also
invariant to isometric transformations [5].

In this paper, we introduce a spectral geometric approach that aims at repre-
senting a 3D shape with a skeletal graph, which we refer to as the Spectral Reeb
Graph (SRG). The core idea is to design a 3D shape descriptor from the Morse-
theoretic perspective. To that end, the level sets (isocontours) of the second
eigenfunction of the LB operator are first computed (identified); then each level
set is encoded as a skeleton node representing the centroid of the isocontour.

The outline of this paper is as follows. In the next section, we introduce a
spectral geometric framework for skeletal extraction from 3D shapes. Section 3
presents the skeleton-based graph matching algorithm based on the comparison
of the relative shortest paths between the skeleton endpoints. The effectiveness
of the spectral Reeb graph as a shape descriptor in nonrigid 3D shape retrieval
is demonstrated in Section 4. In Section 5, we conclude with a summary.

2 Proposed Approach

Spectral geometry is concerned with the eigenvalue spectrum of the LB operator
on a compact Riemannian manifold, and aims at describing the relationships
between such a spectrum and the geometric structure of the manifold.

2.1 Laplace-Beltrami Operator

Let M denote a smooth orientable surface (2-manifold) embedded in the Eu-
clidean space R

3. A global parametric representation of M is a smooth vector-
valued map x defined from a connected open set U ⊂ R

2 to M ⊂ R
3 such that

x(u) =
(
x1(u), x2(u), x3(u)

)
, where u = (u1, u2) ∈ U .

Given a twice-differentiable function f : M → R, the Laplace-Beltrami (LB)
operator is defined by

ΔMf = − 1√
det g

2∑

i,j=1

∂

∂uj

(√
det g gij

∂f

∂ui

)
, (1)

where the matrix g = (gij) is the Riemannian metric tensor on M, and gij denote
the elements of the inverse of g. The metric tensor g is an intrinsic quantity in
the sense that it relates to measurements inside the surface.

2.2 Discrete Laplace-Beltrami Operator

The use of triangle meshes for 3D object modeling/representation has become
the de facto standard in the vast majority of computer graphics applications.
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A triangle mesh M is usually denoted by M = (V , T ), where V = {v1, . . . ,vm}
is the set of vertices and T = {t1, . . . , tn} is the set of triangles. Two distinct
vertices vi,vj ∈ V are adjacent (denoted by vi ∼ vj or simply i ∼ j) if they are
connected by an edge.

Fig. 1. Cotangent scheme

Using a mixed finite element/finite volume
method on triangle meshes [6], the value ofΔMf
at a vertex vi can be approximated using the
cotangent weight scheme:

ΔMf(vi)≈
1

ai

∑

j∼i

cotαij + cot βij

2
[f(vj)− f(vi)]

where αij and βij are the angles ∠(vivk1vj)
and ∠(vivk2vj) of two faces tα = {vi,vj ,vk1}
and tβ = {vi,vj ,vk2} that are adjacent to the
edge [i, j], and ai is the area of the Voronoi
cell (shaded polygon), as shown in Fig. 1. It should be noted that the
cotangent weight scheme is numerically consistent and preserves several im-
portant properties of the continuous LB operator, including symmetry and
positive-definiteness [7].

2.3 Spectral Skeleton

The eigenvalues λi and the associated eigenfunctions ϕi of the LB operator can
be computed by solving the following generalized eigenvalue problem:

Cϕi = λiRϕi, i = 1, 2, . . . ,m (2)

where ϕi is the unknown eigenfunction evaluated at m mesh vertices, R =
diag(ai) is a positive-definite diagonal matrix, and C is a sparse symmetric
matrix given by

C =

⎧
⎨

⎩

∑m
i=1 cij if i = j

−cij if i ∼ j
0 o.w.

with cij =

{
cotαij + cotβij

2
if i ∼ j

0 o.w.
(3)

We may sort the eigenvalues in ascending order as 0 = λ1 < λ2 ≤ · · · ≤ λm with
associated eigenfunctions as ϕ1,ϕ2, . . . ,ϕm, where each eigenfunction ϕi is an
m-dimensional vector.

Uhlenbeck [8] showed that the eigenfunctions of the LB operator are Morse
functions on the interior of the domain of the operator. By a Morse function we
mean a smooth function f : M → R such that all its singular (critical) points
are nondegenerate. Morse theory explains the presence and the stability of the
singular points of f in terms of the topology of M.

An intriguing concept related to Morse theory is the so-called Reeb graph,
which is defined as a quotient space M/� with the equivalence relation given
by x � y if and only if f(x) = f(y) and x,y belong to the same connected
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component of f−1(f(x)). An equivalence class is [x] = {y ∈ M : x � y}. Such
classes are the connected components for the Reeb graph. Moreover, belonging
to the same connected component is an equivalence relation given by

y � x ⇐⇒ f(y) = f(x) and x,y ∈ C, (4)

where C is the connected component of f−1(f(x)).
Consequently, the Morse function property of the eigenfunctions of the LB

operator gives rise to constructing their associated Reeb graphs. As shown in
Fig. 2(a), the second eigenfunction of the LB operator captures well the overall
shape of the 3D horse model. Motivated by the isometry invariance property of
the second eigenfunction of the LB operator and also by its generic property as
a Morse function, we propose to use this eigenfunction to construct the spec-
tral Reeb graph (shape skeleton) of a 3D object as follows: First, the level sets
(isocontours) of the second eigenfunction are computed (identified), as depicted
in Fig. 2(b); then each level set is encoded as a skeleton node representing the
centroid of the isocurve, as shown in Fig. 2(c).

(a) (b) (c)

Fig. 2. (a) 3D horse model colored by ϕ2; (b) level sets of ϕ2; (c) spectral Reeb graph

3 Skeleton Endpoints Matching

In this section, we outline a skeleton graph matching mechanism via a dissimi-
larity measure that is defined by assigning geometric features to the endpoints of
the skeletal graph [9]. This dissimilarity is defined in terms of the shortest paths
between the endpoints of the spectral Reeb graphs. We refer to the skeleton
node that is connected by only one edge as the skeleton endpoint, as illustrated
in Fig. 3, where the endpoints are shown in blue color. It should be noted that
endpoints are the salient points of the graph and may be viewed as visual parts
of the 3D object. Thus, considering only the shortest paths between the skele-
ton endpoints would help dodge the instability issue with the skeleton junction
points (i.e. points that have at least three neighboring points). To define our ge-
ometric dissimilarity measure, we use the shortest path between each endpoint
and all other endpoints of the skeleton. The shortest path provides a valuable
endpoint feature.
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Fig. 3. Spectral Reeb graph of an
octopus

After constructing the 3D object skeleton,
we then design a robust mechanism for graph
matching. To that end, we perform graph
matching by establishing a correspondence
between endpoints of any two graphs [9].
Then, we perform pruning to eliminate non-
salient nodes from the graph. Our matching
approach consists of two main steps: (1) in-
dexing, which reduces the number of skele-
tons to be compared with; and (2) we match
the spectral Reeb graphs using a geometric
dissimilarity to retrieve the closest shape.

Endpoint Features: After constructing the spectral Reeb graph of a 3D ob-
ject, we then assign three distinct geometric features to each endpoint of the
graph. The first geometric feature is the relative node area, which is defined as
the area of the neighboring triangles of the endpoint divided by the total area
of the 3D shape. The relative area feature provides valuable information about
the endpoint. As a result, adding such a feature will help discriminate between
endpoints based on the original 3D object and not just its skeleton. Addition-
ally, the use of the relative area is largely credited to its invariance to scaling
transformation. As a second feature, we assign the relative node path to to an
endpoint. This feature is defined as the sum of shortest path distances from
each endpoint to all other endpoints divided by the sum of the shorted paths
from the mesh centroid (root node) to each endpoint. Finally, each endpoint is
assigned a third feature called the relative centroid path, which corresponds to
the shortest path from the mesh centroid to each endpoint, divided by the sum
of the shortest paths from the mesh centroid to all the skeleton endpoints.

Endpoints Dissimilarity: Let G and G̃ the spectral Reeb graphs of two 3D
shapes M and M̃, respectively. The skeleton endpoints sets of G and G̃ are
denoted by E = {vi}i=1,..,n1 and Ẽ = {ṽj}j=1,..,n2 , respectively. We define the
local dissimilarity measure between two endpoints vi and ṽj as the Euclidean
distance

Φ(vi, ṽj) = ‖ωi − ω̃j‖, (5)

between the 3D vectors ωi = (ai, dvi, dci)
T and ω̃j = (ṽj , dṽj , dc̃j)

T , whose
components are defined by:

• ai and ãj are the relative node areas of vi and ṽj

• dvi =
∑n1

k=1 δ(vi,vk)/
∑n1

k=1 δ(c,vk) and dṽj =
∑n2

k=1 δ(ṽj , ṽk)/
∑n2

k=1 δ(c̃, ṽk)

are the relative node paths of vi and ṽj

• dci = δ(c,vi)/
∑n1

k=1 δ(c,vk) and dc̃j = δ(c̃, ṽj)/
∑n2

k=1 δ(c̃, ṽk) are the rel-
ative centroid paths of vi and ṽj

• c and c̃ are the centroids of M and M̃, respectively
• δ(·, ·) is the Dijkstra’s shortest path distance.
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Therefore, the geometric dissimilarity between two spectral Reeb graphs is given
by the distance:

D(G, G̃) =

n1∑

i=1

n2∑

j=1

Φ(vi, ṽj) =

n1∑

i=1

n2∑

j=1

‖ωi − ω̃j‖. (6)

Algorithm 1 shows in detail the main steps of the proposed framework.

Algorithm 1 Proposed graph matching approach

Given two 3D objects M and M̃

1: Construct the spectral Reeb graphs G and G̃ of M and M̃, respectively
2: Perform pruning to clean-off non-salient nodes
3: Determine the skeleton endpoints sets E = {vi}i=1,..,n1 and Ẽ = {ṽj}j=1,..,n2 of

G and G̃, respectively
4: for all endpoints {vi} and {ṽj} do
5: Compute the relative node areas ai and ãj of vi and ṽj , respectively
6: Compute the relative node paths dvi and dṽj

7: Compute the relative centroid paths dci and dc̃j
8: end for
9: Determine the correspondence between the spectral Reeb graphs
10: Compute the geometric dissimilarity D(G, G̃).

4 Experimental Results

To assess the performance of our approach, we tested it on McGill’s database [10].
This benchmark provides a 3D shape repository, which consists of 255 objects
that are divided into ten categories. Sample shapes are displayed in Fig. 4.

Fig. 4. Sample shapes from McGill Articulated Shape Database. Only two shapes for
each of the 10 classes are shown.

The matching results on McGill’s database are displayed in Table 1, which
shows that our approach provides correct output results. A smaller value (dis-
played in boldface with a colored box around it for emphasis) of the geometric
dissimilarity imply that the shapes are more similar.
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Table 1.Matching results using our approach. Each database object is matched against
all the other objects in the database. Each cell displays the geometric dissimilarity
D(G, G̃) between two shapes selected from the benchmark. The smallest value corre-
sponds to the correct match.

0.0124 0.1127 0.1216 0.1258 0.1131 0.1344 0.1257

0.1116 0.0073 0.1136 0.1297 0.1227 0.1124 0.1131

0.1311 0.1142 0.0653 0.1356 0.1315 0.1171 0.1137

0.1146 0.1329 0.1113 0.0055 0.1332 0.1621 0.1552

0.1193 0.1248 0.1342 0.1421 0.1131 0.1572 0.1592

0.1327 0.1109 0.1152 0.1474 0.11719 0.1021 0.1116

0.1223 0.1128 0.1175 0.1453 0.1623 0.1121 0.0042
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Fig. 5. Precision-Recall curves for spherical harmonics, medial surfaces, Reeb graph
patch dissimilarity, and our approach on McGill’s database
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Additionally, we carried out a performance comparative study between our
approach and existing methods, including spherical harmonics (SH) [11], medial
surfaces (MS) [10], and Reeb graph patch dissimilarity (RGPD) method [9]. To
that end, we performed experimental comparison on the entire benchmark by
evaluating the performance of our approach via Precision versus Recall curve,
which is a standard information retrieval evaluation measure. It should be noted
that a Precision-Recall curve that is shifted upwards and to the right reveals
superior retrieval performance. Our proposed framework outperforms spherical
harmonics and medial surfaces, and performs slightly better than RGPD, as
evinced by Fig. 5.

5 Conclusions

In this paper, we introduced a spectral geometric approach for 3D object match-
ing and retrieval using a skeleton constructed from the second eigenfunction of
the LB operator. The better performance of proposed framework was success-
fully demonstrated on McGill’s articulated shape database in comparison with
spherical harmonics, medial surfaces, and Reeb graph path dissimilarity method.
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