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Abstract. Marginal Fisher Analysis (MFA) was introduced to remedy
some of the shortcomings of the Fisher Discriminant Analysis (FDA).
It performs local discrimination between classes. Whenever the training
data set is small, MFA cannot directly be used with the original high-
dimensional samples. This is referred to as the small sample size (SSS)
phenomenon that happens whenever the feature dimension is higher than
the number of examples. The classic remedy was using the projection of
the raw data (e.g., using (PCA)). This paper introduces two regulariza-
tion schemes that overcome the singularity and near singularity of the
locality preserving scatters. The first scheme uses ridge regression reg-
ularization. The second scheme uses matrix exponential and introduces
an implicit distance diffusion mapping. The experiments are conducted
on four face data sets. These experiments demonstrate that the intro-
duced schemes can enhance the performance of the MFA framework much
better than the widely used PCA based regularization.

1 Introduction

The linear Manifold Learning paradigms are more and more used in data min-
ing and machine learning [1]. These methods provide an explicit embedding
from high dimensional space into latent spaces having lower dimension. These
approaches can enhance the classification performance. The classic linear ap-
proaches (e.g., PCA, FDA, Maximum Margin Criterion (MMC)[2]) are suitable
for many tasks, such as classification and recognition. PCA embeds the data
samples using projection axes having the maximal variances. Unlike PCA which
is a unsupervised technique, FDA [3] is supervised and seeks axes that enhance
data discrimination. Several linear approaches for dimensionality reduction can
be obtained from a data graph where the samples are the nodes and the sim-
ilarity between samples are encoded by the edges. [4] proposes a supervised
technique called average Neighborhood Margin Maximization (ANMM). In this
method, the authors seek a linear embedding that maximizes the sum of margin
distances (computed locally) in the projected space. Each such a margin is set to
the difference between the average distance to heterogeneous neighbors and the
average distance to the homogeneous neighbors. [5] adopted a similar strategy
that is based on the use of similar and dissimilar samples. Maximally Collapsing
Metric Learning (MCML) algorithm [6] generates a metric (from which a linear
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transform is estimated) by trying to map all samples in the same class to a single
point and push samples in other classes infinitely far away.

Marginal Fisher Analysis (MFA) [7] is introduced to remedy some of the
shortcomings of the FDA technique. It is intended to perform local discrimi-
nation between classes. Whenever the training data set is small, MFA cannot
directly be used with the original high-dimensional samples. This is referred to
as the small sample size (SSS) phenomenon that happens whenever the feature
dimension is higher than the number of examples. The classic remedy was using
the projection of the raw data (e.g., using (PCA)). [8], introduces Exponential
Discriminant Analysis (EDA) approach that is based on the exponential of the
global within-class and between class covariance matrices. The EDA approach
overcomes the SSS problem but it still similar to FDA framework in the sense
that it does not take into account the local structures of the data.

In this paper, we propose two regularization frameworks that solve the SSS
problem associated with MFA. Our frameworks can retain the discriminant in-
formation discarded by using the PCA pre-stage in MFA. The remainder of the
paper is organized as follows. Section 2 reviews the MFA method. Section 3 de-
scribes our proposed frameworks. Experimental results obtained with four face
data sets are presented in Section 4.

2 Review of Marginal Fisher Analysis (MFA)

The goal of MFA is to compute a transform that maximizes the distance between
heterogeneous data samples and makes the data samples belonging to the same
class closer to each other. We assume that we have a set of N labeled examples
{xi}Ni=1 ⊂ R

D. In order to find the discriminant structure of the data manifold,
two graphs will be reconstructed: the within-class graph Gw (intrinsic graph)
and between-class graph Gb (penalty graph). Let l(xi) be the class label of xi.
For each data sample xi, two subsets, Nw(xi) and Nb(xi) are computed. Nw(xi)
contains the neighbors sharing the same label with xi, while Nb(xi) contains the
neighbors having different labels. Those two sets are usually estimated using two
nearest neighbor graphs: one graph is constructed for the data samples having the
same label (this graph will have a parameter denoted by K1). and one graph for
the data samples with different label (this graph will have a parameter denoted
by K2). K1 and K2 can be selected empirically. Each of these graphs, Gw and
Gb, is represented by its weight (affinity) matrix Ww and Wb, respectively. The
elements of these symmetric matrices are given by:

Ww,ij =

{
sim(xi,xj) if xj ∈ Nw(xi) or xi ∈ Nw(xj)
0, otherwise

(1)

Wb,ij =

{
1 if xj ∈ Nb(xi) or xi ∈ Nb(xj)
0, otherwise

(2)

where sim(xi,xk) encodes the similarity between sample xi and sample xk. This
function can be set to the Kernel heat or the cosine.
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Any linear embedding method aims at computing a matrix transform that
projects xi intoA

T xi (low dimensional representation of xi). MFA estimates the
unknown, A, that simultaneously maximizes the margins between heterogenous
samples and moves the homogeneous samples closer to each other (after the
transformation). Mathematically, this leads to:

min
A

1

2

∑
i,j

‖AT (xi − xj)‖2 Ww,ij = min
A

tr
(
AT XLw XT A

)
(3)

max
A

1

2

∑
i,j

‖AT (xi − xj)‖2 Wb,ij = max
A

tr
(
AT XLb X

T A
)

(4)

where tr(·) denotes the matrix trace operator, X = (x1,x2, . . . ,xN ) is the data
matrix, Lw = Dw − Ww is the Laplacian matrix of the graph Gw, Dw is the
diagonal weight matrix, whose diagonal elements are column (or row, since Ww

is symmetric) sums of Ww.
The two criteria, Eq. (3) and Eq. (4), can be merged into one criterion that

should be maximized:

J =
tr
(
AT XLb X

T A
)

tr
(
AT XLw XT A

) =
tr

(
AT S̃b A

)

tr
(
AT S̃w A

) (5)

where the symmetric matrix S̃b = XLb X
T is the locality preserving between

class scatter matrix, and the symmetric matrix S̃w = XLw XT is the locality
preserving within class scatter matrix. Maximizing the trace ratio (5) can be
replaced by the simpler form:

max
A

tr

{(
AT S̃w A

)−1 (
AT S̃b A

)}
(6)

The columns of the unknown transform A will be obtained by the generalized
eigenvectors associated with the largest eigenvalues of:

S̃b a = λ S̃w a (7)

The Small Sample Size problem. In many practical cases such as face recog-
nition, both matrices XLbX

T and XLwX
T can be rank deficient. Indeed, very

often the number of the training samples, N , is much smaller than the image
dimension, D. This is referred to as the Small Sample Size (SSS) problem. In
order to avoid getting singular matrices, the classical way is to project origi-
nal high-dimensional data onto a PCA subspace so that the resulting matrices
XLbX

T and XLwX
T are non-singular.

3 Proposed Schemes for Overcoming the SSS Problem

The SSS problem associated with MFA was solved by applying a PCA on the
high-dimensional data. This process removes the null spaces of XLbX

T and
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Fig. 1. The expected embedding carried out by EMFA

XLwX
T . Thus, by adopting PCA as an pre-stage in MFA framework some dis-

criminative knowledge can be lost and will not exploited by the MFA framework.
In this section, we propose two regularization schemes. The first one is based on
regularizing the within-class scatter matrix. The second one is based on the use
of Exponential matrices.

Regularized MFA (RMFA). Whenever the within-class matrix S̃w is singu-
lar, solving (7) directly will not be feasible. Therefore, the idea is to remove the

singularity of S̃w by adding a regularization term. Therefore, the regularized ver-
sion of MFA (RMFA) consists in estimating the generalized eigenvectors given
by:

S̃b a = λ (S̃w + β tr(S̃w) I)a (8)

where β is a positive scalar and I is theD×D identity matrix. This regularization
is linked to ridge regression in which the L2 norm of the unknown transform [9]
is minimized.

Exponential MFA (EMFA). The exponential of an N ×N matrix F is given
by [8]:

exp (F) = I+ F+
F2

2!
+ . . .+

Fm

m!
+ . . .

where I is the N × N identity matrix. Matrix exponential has the following
interesting property:

Property 1. If v1,v2, . . . ,vN are eigenvectors of F that are associated to the
eigenvalues λ1, λ2, . . . , λN , then v1,v2, . . . ,vN are also eigenvectors of exp (F)
that are associated with the eigenvalues eλ1 , eλ2 , . . . , eλN . It is well known
that the obtained matrix is non-singular.
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The exponential version of MFA (EMFA) is got by inserting the exponential

of the matrices S̃b and S̃w into the framework of MFA. As a result of this
replacement, two beneficial effects on the whole embedding will be obtained: (i)
the SSS problem will be overcome, and (ii) a distance diffusion mapping will be
applied. These effects are resulting from property 1 (more explanation can be
found in [8]). The second effect is implicit and has similar properties of the kernel
methods used to get non-linear version of classic linear embedding methods such
as Kernel PCA and Kernel FDA. The only difference is that EMFA works on
the scatter matrices, while the kernel methods work on the original variables.

Figure 1 depicts a geometrical representation of the two processes that are
induced by the EMFA method. The novel score to be optimized will be given
by:

max
A

tr

{(
AT exp(S̃w)A

)−1 (
AT exp(S̃b)A

)}
(9)

The unknown A is given by the generalized eigenvectors of the following:

exp(S̃b)a = λ exp(S̃w)a (10)

Note that S̃b and S̃w should be normalized, because exp(S̃b) and exp(S̃w) may
have large numbers. We use Frobenius norm in order to normalize these matri-
ces. However, this normalization may deteriorate the diffusion distance property
induced by the use of matrix exponential. For this reason, we add two scaling
parameters σb and σw that re-scale the normalized matrices S̃b and S̃w, respec-
tively. Finding the best values of these two parameters is carried out using the
Differential Evolution algorithm [10] that maximizes the recognition rate over a
validation set.

4 Performance Study

Databases. To verify the effectiveness of our proposed frameworks, we applied
them to the face recognition problem. Four public face data sets are considered.
Some images from PIE and FERET
databases are illustrated in Figure 2. In our experiments, all face images are
resized to 32×32.

1. Yale1: The YALE face database contains 15 persons. Each person has 11
images. This database shows variations in facial expression and in lighting.

2. PIE2: Our experiments use a subset containing 1926 images of 68 individu-
als. The images contain variations related to poses, illumination, and facial
expression.

3. PF013: It contains 103 persons. Each person has 17 images (1 normal face,
4 illumination modes, 8 pose modes, 4 expression modes) per individual.

1 http://see.xidian.edu.cn/vipsl/database_Face.html
2 http://www.ri.cmu.edu/projects/project_418.html
3 http://nova.postech.ac.kr/special/imdb/imdb.html

http://see.xidian.edu.cn/vipsl/database_Face.html
http://www.ri.cmu.edu/projects/project_418.html
 http://nova.postech.ac.kr/special/imdb/imdb.html
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4. FERET4: The proposed method is evaluated on a subset of FERET database,
which includes 1400 images of 200 distinct subjects, each subject has seven
images. The subset involves variations in facial expression, illumination and
pose.

Tuning the scaling parameters. Before presenting the method comparison,
we first show the usefulness of tuning the scaling parameters σb and σw for the
EMFA scheme. Table 1 illustrates the recognition rate obtained over a validation
subset of the PF01 dataset. The first column corresponds to the recognition rate
obtained with the raw normalization of the locality preserving matrices (Frobe-
nius normalization) for which σb and σw are both set to one. The remaining
columns depicts the best solution (recognition rate) obtained by three succes-
sive iterations of the Differential Evolution algorithm. We observe that in general
the DE algorithm has converged in only 2 iterations.

In another experiment, we consider the PIE dataset. We split it into three
parts: training part (15 images per person), validation part (3 images per person)
and test part (10 images per person). The training and validation parts are used
for inferring the best linear transform as well as the best scaling parameters (σb

and σw) using the Differential Evolution algorithm. Once these parameters are
estimated the recognition rate on the test part is estimated. Table 2 illustrates
the test recognition rate for ten random splits of the PIE dataset. As can be
seen, the parameter tuning was very useful for enhancing the distance diffusion
mapping of the EMFA framework.

Fig. 2. Some images in FERET database (top) and in PIE database (bottom)

Table 1. Recognition rates on a given split of the PF01 dataset using the EMFA
method. The first column corresponds to the recognition rate obtained with the raw
normalization of the locality preserving matrices (Frobenius normalization) for which
σb and σw are both set to one. The remaining column depicts the best solution obtained
by three successive iterations of the DE algorithm.

DE iterations Frobenius norm Ite. 1 Ite. 2 Ite. 3

Recognition rate 72.12 80.99 83.17 83.17

4 http://www.itl.nist.gov/iad/humanid/feret/

http://www.itl.nist.gov/iad/humanid/feret/
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Table 2. PIE recognition rate using the EMFA method

Split 1 2 3 4 5 6 7 8 9 10 Average

No tuning 83.5 81.9 71.9 83.6 82.5 77.5 81.5 79.9 76.5 83.9 80.0

With tuning 90.5 88.6 81.2 91.6 88.3 87.5 92.0 91.6 86.3 90.2 88.6

Table 3. Best average recognition rate (%) over 10 random splits using some embed-
ding methods as well as the proposed regularization schemes (see text)

Method Yale (3) PIE (5) PF01 (3) FERET (3)

PCA 86.0 35.2 43.2 61.3

FDA 81.9 62.9 60.5 67.3

EDA 89.3 65.1 63.3 69.9

MCML 88.6 55.7 55.1 69.3

MFA 88.4 60.5 58.6 66.3

RMFA 92.7 67.7 68.7 72.0

EMFA 93.1 70.5 70.4 74.5

Table 4. Best average recognition rate (%) (see text)

Method Yale (7) PIE (15) PF01 (7) FERET (5)

PCA 88.9 55.8 53.3 68.2

FDA 91.6 85.9 74.1 81.0

EDA 94.7 86.4 75.0 81.8

MCML 95.3 81.6 69.3 79.6

MFA 93.7 85.0 72.3 79.7

RMFA 96.8 87.7 82.0 84.6

EMFA 97.2 89.3 81.1 86.6

Experimental results. Each data set is randomly partitioned into ten train-
ing/testing splits. For every person, we randomly selected l images as training
examples, and the remaining images were used as test images. From the learning
samples, a face subspace is built through the estimation of a linear transform us-
ing the following approaches: PCA, FDA, EDA, MCML, MFA, and the proposed
schemes RMFA and EMFA. The FDA and MFA methods that suffer from the
SSS problem used a PCA projection that retained 95% of the total variability of
the training data. For all mapping methods, a test image is projected using the
estimated the associated linear transform. The recognition is then performed in
the novel projected subspace using the Nearest Neighbor classifier. The process
is repeated for all (train/test) splits. We calculate the average recognition rate
over these ten splits. In general, the recognition rate depends on the retained di-
mension of the mapping. Therefore, the average recognition rate will be a curve
giving the recognition as a function of this retained dimension. Table 3 illustrates
the best average recognition rate (%) over 10 random splits using the PCA, FDA,
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EDA, MCML, MFA, RMFA and EMFA methods. For RMFA and EMFA the re-
sults correspond to the best performance over the tuning parameters. The results
were obtained with Yale, PIE, PF01, and FERET data sets with small training
sets. Table 4 illustrates the same results of Table 3 but this time the number of
training images per person was increased. We can observe that: (1) EDA is supe-
rior to MFA and FDA, (2) both proposed schemes RMFA and EMFA are superior
to EDAand to the classic regularization (PCA followed byMFA) and, (3) formany
cases the EMFA scheme outperformed the RMFA scheme.

5 Conclusion

We proposed two solution schemes for overcoming the SSS problem of the Marginal
Fisher Analysis method. The first scheme uses ridge regression regularization.
The second scheme uses matrix exponential and introduces an implicit distance diffu-
sion mapping. It integrates a similar effect to the non-linear Kernel-based embedding.
The experiments are conducted on four face data sets. We have shown that the proposed
schemes gave better results than using the classical solution based a PCA pre-stage.
We found that in general the second scheme gave more accurate results than the first
regularization scheme based on ridge regression.
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