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Abstract. Facial expression analysis relies on the accurate detection of a few 
subtle face traces. According to specialists [3], facial expressions can be  
decomposed into a set of small Action Units (AU) corresponding to different 
face regions. In this paper, we propose to detect facial expressions with sparse 
reconstruction methods. Inspired by sparse regularization and sparse  
over-complete dictionaries, we aim at finding the minimal set of face atoms that 
can represent a given expression. l1 based reconstruction computes the deviation 
from the average face as an additive model of facial expression atoms and  
classify unknown expressions accordingly. We compared the proposed  
approach to existing methods on the well-known Cohn-Kanade (CK+) dataset 
[6]. Results indicate that sparse reconstruction with l1 penalty outperforms SVM 
and k-NN baselines with the tested features. The best accuracy (97%) was  
obtained using sparse reconstruction in an unsupervised setting.  

1 Introduction 

Facial expressions are commonly represented by the Emotion Facial Action Coding 
System (EMFACS) proposed by Eckman et al. [3]. This system identifies seven basic 
facial expressions: happiness, sadness, surprise, fear, anger, disgust, contempt and a 
state of no expression, neutral. These facial expressions are representations of a per-
son’s emotional state. Amongst other definitions, EMFACS also constructs a set of rules 
relating a facial expression to particular face muscle actions (the Action Units, AUs). 

Traditional facial expression detection, involves an initial feature extraction step 
followed by a classifier. Previous approaches for representing facial features have 
exploited global contours [7] and small binary patterns [10]. Both approaches do not 
explicitly consider the AUs positions. In contrast, in EMFACS, a facial expression is 
represented by the articulation of the various AUs. 

In this article, we cast facial expression analysis as a signal reconstruction problem 
of different face components. We decompose the face into regions where most salient 
AUs are more active. In these regions, we apply a set of Local Gabor filters to detect 
orientations. With this approach, we bring together into a single method, the  
advantages of explicit AU analysis and contour-based analysis methods. 
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In the next section, we discuss previous work. Section 3 describes the local  
frequency analysis of face regions. Section 4 presents the recovery method to detect 
the facial expression. The evaluation process is discussed in section 5. 

2 Related Work 

Facial expression representation deals with face features that create and distinguish 
between facial expressions. In this paper,  we have used Emotional Facial Action 
Coding System (EMFACS) [4] based on the Facial Action Coding System (FACS) 
[3]. FACS primary goal was “to develop a comprehensive system which could distin-
guish all possible visually distinguishable facial movements” [3]. FACS is an index of 
Action Units (AU). An AU is an individual action that humans are able to distinguish, 
that can be performed by one or more muscles of the face. EMFACS combines AU 
into seven universally recognizable expressions: happiness, sadness, surprise, fear, 
anger, disgust and contempt. We have chosen EMFACS because it is widely recog-
nized and there are facial expression datasets available to the scientific community 
made according to the EMFACS methodology, such as the CK+ dataset [6]. 

For facial feature extraction, we applied banks of Gabor wavelets with multiple 
scales and orientations. Gabor wavelets are widely adopted for facial expression rec-
ognition [2, 5, 14] and we have combined them with hard partitioning of the face area 
into multiple rectangular areas. 

Facial expression classification has been tested with multiple features and classifi-
ers in the literature. Zhao et Pietikäinen [16] proposed LBP and Support Vector  
Machines (SVM) achieving an accuracy of 96.26% on 10-fold validation on the CK+ 
dataset. Asthana et al. [1] tested various Active Appearance Models (AAM) fitting 
techniques with SVM. They achieved their best accuracy 95.88% on the CK+ dataset 
with Iterative Error Bound Minimization Methods scheme, but AAM techniques  
require manual annotation of the eye position for calibration. A thorough review of 
facial expression recognition techniques can be found in Valstar et al. [11].  

 Sparse representation was also tested for face recognition. Wright et al. [13]  pro-
posed sparse representation with the facial recognition training data as overcomplete 
dictionary of face pixels (without any transformation). They suggest that as long as 
the feature space is large enough to represent the original space a regression approach 
with proper regularization is adequate for face recognition. Other authors have  
proposed similar approaches for facial expression recognition [15] or face recognition 
robust to facial expression variations [9]. We propose facial expression recognition  
as a regression problem of AU regions, using sparse reconstruction with localized 
analysis of AU regions. 

3 A Robust Dictionary for Facial Expression Analysis 

Action Units (AU) were identified as the muscular basis actions underlying to  
every facial expression. They have been studied for its ability to associate a facial 
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image to produce the filter output, as illustrated in Figure 2. The detected face con-
tours with the orientation of the filter are represented in white – it is clear that the 
mouth area is highly expressive on the 0° (horizontal) orientation. 

3.2 Robust Features 

Since we aim at inferring a facial expression automatically and without any human 
intervention, we cannot rely on approaches that manually register the position of fa-
cial key-points on an image. Thus, in this section, we detail how to make Gabor 
wavelets robust to small alignment variations and to subject variations. 

Localized Gabor-Filter Moments 
A facial expression is represented by the position of the various face components - 
different expression will make specific AU (mouth wide open: AU26 and arched 
eyebrows: AU1+AU2+AU5 equal Surprise). To classify an expression, it is necessary 
to estimate the state of each the AU and compare them to the existing facial expres-
sion models. 

Instead of tracking each AU point, we propose a localized analysis of face regions 
grouping nearby AU. Examining the FACS data and the contour representation pro-
vided by the dictionary of Gabor filters, we followed a hard-partitioning of the face 
image where we observed the largest variations per expression (for example, 
eyes/brows area and mouth area). This way, each face region groups a set of AUs, and  
 

 

Fig. 3. AU regions highlighted on a surprise Gabor face. Each region groups a set of AUs and 
the Local Gabor filters analyze the face traits direction in each region. Fh is the face image 
height and Fw is the face image width. 

a local analysis of each region allows a specific assessment of the face traits in a  
particular direction. This renders a greater sense of locality to the Gabor filters output, 
and increase the robustness to small pans and rotations in the face image. In Figure 3, 
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we show an average face (created from the data from CK+ dataset) with the different 
rectangular areas highlighted.  

The dictionary of Gabor filters is applied to each one of these regions to obtain the 
face regions contours.  To improve the features robustness, each the output of each 
filter is represented by its mean and variance. These features are of particular interest 
because they are highly robust to poor facial alignment. Since there are six regions 
and twenty-four filters (four scales: ݉, six orientations: ߠ), the dimensionality of the 
robust representation is 288. Thus, a facial expression j is represented by the vector ௝݂ ൌ ൫ ௝݂భ , … , ௝݂మఴఴ൯, where ௝݂೔ ൌ ߠ ோைூሻ, with݁݃ܽ݉ܫሺݒ݁݀_݀ݐݏ ோைூሻ and ௝݂೔శభୀ݁݃ܽ݉ܫሺ݃ݒܽ  א
{0°, 30°, 60°, 90°, 120°, 150°}, ݉ א ሼ1, 2 ,3 ,4ሽ  and ݁݃ܽ݉ܫோைூis the feature vector 
from one of the ROI (from Figure 3) of the image. 

Normalization: Deviation from Neutral 
To increase the relation between Gabor filters output and facial expressions, a proper 
normalization must be performed. When a facial expression occurs, the different mus-
cles must act accordingly and position themselves at some distance from its neutral 
position. We argue that facial expressions are best represented as the difference be-
tween the neutral expression and the current expression. Thus, we subtract the fea-
tures of a given expression features from the neutral face features and represent a 
facial expression as this normalized vector. 

In some situations, it might be easy to obtain the individual’s neutral face, while in 
others the individual’s average face might be easier to obtain. We compared these two 
scenarios and a third one where the global average face is the normalizing variable. 
The CK+ dataset allows for both approaches as it contains the neutral face for every 
expression. 

4 Sparse Reconstruction with Robust Features 

Let us consider a set of k training face images, where each image j contains a facial 
expression label ݈୨ א  ሼ ݄ܽݕ݌݌, ,݀ܽݏ ,݁ݏ݅ݎ݌ݎݑݏ ,ݎ݂ܽ݁ ,ݎ݁݃݊ܽ ,ݐݏݑ݃ݏ݅݀  ሽ. We alsoݐ݌݉݁ݐ݊݋ܿ
define D as the dictionary of Localized Gabor Moments (of dimension m) of all k 
training examples: 

D ൌ ሾ ଵ்݂ ڮ ௠்݂   ௠݂ାଵ் ڮ ଶ݂௠் ଶ݂௠ାଵ் ڮ ௞݂௠்ሿ. (2) 

One can reconstruct an unseen face image feature vector ݕ௜ , as a linear combination of 
a set of several micro-expressions, i.e., the columns of the dictionary D. The recon-
struction algorithm gets more support data by reconstructing a facial expression from 
several images belonging to all expressions. This intuition relies on the fact that mi-
cro-expressions are present in all expressions, making it easier to use support data 
from a different facial expressions that share a common micro-expression in  
some particular AU. This helps the reconstruction algorithm in minimizing the global 
representation error. 
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Thus, given the unseen face image feature vector ݕ௜, we wish to minimize the dif-
ference between this feature vector and the D · ௜ݔ  linear combination while concen-
trating the ݔ௜ non-null components to a few dimensions. This is cast as the quadratic 
optimization problem: ݔ௜ ൌ arg min௫೔ ԡݕ௜ െ D · ௜ԡݔ         subject to ԡݔ௜ԡ଴ ൏  (3) ߝ

The l1 norm is particularly important, because it aims at maximizing the number of 
null entries in the ݔ௜ vector, thus, it tries to minimize the error by concentrating its 
representation in a few micro-expressions of the dictionary. We implemented the 
FISTA optimization algorithm to handle the l1 constrained minimization. 

To classify a face image with its facial expression, the contribution that each facial 
expression provides to the minimization of the error is the selected expression.  
The label expression of the vector ݔ௜ is given by the facial expression that most  
contributed to the minimization of representation error: ݈௜ ൌ arg min௝ ฮݕ௜ െ D · ௝ݎ ·  ௜ฮ (4)ݔ

where ݎ௝ is an indicator matrix containing all elements equal to zero except for the 
elements corresponding the facial expression j. This allows reconstructing the ݕ௜   
image with a dictionary 

D ൌ ൣሾ0 ڮ 0ሿ ሾ ௠݂ାଵ் ڮ ଶ݂௠்ሿ ڮ ሾ0 ڮ 0ሿ൧ (5) 

containing the columns corresponding to the jth facial expression and the columns 
corresponding to the other facial expressions set to zero. 

5 Evaluation 

5.1 Experimental Setup 

To assess the facial expression detection performance, we followed a standard pattern 
recognition experiment setup. The dataset was split into a training set (70%) and a test 
set (30%). Each image is labeled with a facial expression, which is used to measure 
accuracy. The proposed sparse reconstruction method (SR) is compared to a k-NN 
classifier (with the Euclidean distance) and an SVM classifier (with no kernel). 

Dataset. The dataset chosen for facial expression detection was the CK+ dataset [6]. 
It is a comprehensive set of sequences of labeled face images. It contains images with 
various facial expressions: anger, contempt, disgust, fear, happiness, sadness and 
surprise and a neutral face for each sequence. Before passing the face images to the 
facial expression analyzer, the dataset images are pre-processed as follows: (i) a face 
image dataset is pre-processed to detect every existing faces [12]; (ii) faces are 
aligned by detecting the best eye pair; and cropped (iii) to ensure that the images are 
correctly aligned for facial expression recognition. 
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5.2 Results and Discussion 

We conducted two experiment to assess the proposed methods: first we examined the 
Localized Gabor Moments (LGM), comparing it to the average of all Gabor filters 
(GM), and the full set of grayscale face pixels similarly to [13] (results in Table 1). 
Second, we evaluated influence of the different feature normalizations:  
non-normalized features; normalized with own neutral facial expression; normalized 
with own average facial expression; and normalized with average of all observed 
faces (results in Table 2). 

Table 1. Accuracy results for the rectangular features 

SR SVM k-NN: k = 1 k-NN: k = 3

LGM 0.97 0.95 0.79 0.78 

GP 0.82 0.29 0.76 0.68 

Pixels 0.89 0.29 0.76 0.70 

Table 2. Accuracy results for the rectangular features 

SR SVM k-NN: k = 1 k-NN: k = 3 

No normalization 0.88 0.91 0.79 0.68 

Individual neutral 0.97 0.95 0.79 0.78 

Individual's average face 0.96 0.88 0.71 0.66 

Global average face 0.87 0.86 0.71 0.64 

 
The best results were obtained using proposed the sparse reconstruction with Loca-

lized Gabor Moments and features with own neutral subtraction (97% accuracy) and 
average individual’s face subtraction (96% accuracy). The SVM came close with 96% 
accuracy with features with own neutral subtraction, but performed much worse using 
other types of neutral faces. The k-NN did not achieve good results for any experi-
ment. We believe that the main reason behind this is the lack of training images (only 
170 faces for all expressions), which lead to a bias towards the facial expressions with 
more images (for example surprise). 

Localized Gabor Moments perform better than the other tested features, as they are 
more resilient to small changes in the face (pans and rotations). Individual neutral 
subtraction is better for classification, as the differences between the neutral and the 
peak expression are only the ones provoked by the expression (little to no noise 
present), but this neutral face is only available in very specific settings and might not 
be possible to obtain it in an unsupervised setup. This was fundamental for the sparse 
reconstruction approach.  

Finally, it should be noted that using the individual’s average face to normalized 
new facial expressions works almost as well (1% accuracy difference), and the  
normalizing vector can be easily captured in a real setting. 
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6 Conclusions 

In this article, we proposed a facial expression detection approach based on the sparse 
reconstruction of a facial expression with robust representations of localized Gabor-
filter moments. The method relaxed the correct positioning of AUs points (removing 
the need for manual intervention) by examining regions grouping AUs. This creates a 
robust representation, unaffected by small variations in face alignment and rotation. 
Signal reconstruction by sparse approximation with a dictionary of AU regions ob-
tained the best results (97%) in the CK+ dataset. Our approach performs on par with 
the state of the art techniques [1, 11, 15, 16] and can be performed in a fully unsuper-
vised setting. 
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