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imen.boukhris@hotmail.com, benferhat@cril.univ-artois.fr,
zied.elouedi@gmx.fr

Abstract. Eliciting the cause of an event will be easier if an agent can directly
intervene on some variables by forcing them to take a specific value. The state
of the target variable is therefore totally dependent of this external action and in-
dependent of its original causes. However in real world applications, performing
such perfect interventions is not always feasible. In fact, an intervention can be
uncertain in the sense that it may uncertainly occur. It can also have uncertain
consequences which means that it may not succeed to put its target into one spe-
cific value. In this paper, we use the belief function theory to handle uncertain
interventions that could have uncertain consequences. Augmented causal belief
networks are used to model uncertain interventions.

1 Introduction

Despite its importance, causality is undefinable if a general and precise definition is
sought (i.e., not restrained to particular cases) [22]. However, causal relations should
be distinguished from mere statistical correlations. A paradigmatic assertion in causal
relations is that the exterior manipulation (intervention) of a genuine cause will result
in the variation of an effect. Therefore, interventions play a crucial role for an efficient
causal analysis.

Bayesian networks [9,11,14] are successful graphical models representing a com-
pact joint probability distribution. Causal Bayesian networks [14] go beyond Bayesian
networks where arcs between variables follow the causal process. Probabilistic causal
graphical models are effective when a very complete statistical knowledge description
of the modeled system is available. If not, alternative causal networks will be more
appropriate (possibilistic causal networks [3,4], causal belief networks [6]). On these
networks, we can compute the simultaneous effect of observations and interventions.
Interventions are distinguished from observations with the “do” operator [14]. An in-
tervention forcing a variable Ai to be at a specific value aij is denoted by do(aij). This
action deems that the original causes of the target variable are no more responsible of
its state.

However, considering an intervention as a perfect external action is not realistic.
Indeed, it may happen that due to an inattention, to ethical issues or to a lack of knowl-
edge, the experimenter may not know the state of his action or its possible conse-
quences. In fact, the occurrence of an intervention may be uncertain (e.g., injecting
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a drug whose expiration date has been exceeded). Moreover, an intervention may fail
to set the target variable into one specific state (e.g., the use of a nicotine patches). In
these cases, choosing random values will lead to the mis-estimation of the effects and
accordingly to bad policies decisions.

Only few works in the probabilistic setting addressed the issue of intervention im-
perfection [10,12,20]. Besides in these works, interventions are defined differently from
what is considered in the scope of this paper. In fact, they are considered as external ac-
tions certainly occurring represented with dummy variables that change the local prob-
ability distribution of the target variable.

The belief function theory is an uncertain framework that is especially appropriate
to represent cases of partial and total ignorance. Therefore, it is an ideal tool to deal
with these imperfect interventions. Despite its representation power, no work has been
presented to handle uncertain interventions in the belief function framework.

This paper focuses on the modeling of uncertain interventions (i.e., uncertainly tak-
ing place) under the belief function framework. Graphically, to represent such inter-
ventions, augmented causal belief networks where conditional distributions are defined
for any number of parents are used. In these networks, a conditional table is provided
for the target variable given the intervention aside for the ones specified in the con-
text of the initial causes. By this way, interactions with other causal factors are taken
into consideration. Discounting technique is used to weaken the impact of the uncertain
intervention on the distribution of the target variable. Moreover, a certain intervention
may have uncertain consequences [7]. In this paper, we investigate the case of uncertain
interventions that may have either certain or uncertain consequences.

The rest of the paper is organized as follows: in Section 2, we recall the basic con-
cepts of the belief function theory and explain how causal knowledge can be repre-
sented on belief causal networks. The effect of uncertain interventions with certain
consequences is handled in Section 3, whereas the case of uncertain interventions with
uncertain consequences is treated in Section 4. Section 5 concludes the paper.

2 Belief Function Theory

2.1 Basics

We briefly recall the belief function theory. For more details see [15,19].
Let Θ be a finite set of mutually exhaustive and exclusive events referred to as the

frame of discernment. The basic belief assignment (bba), denoted by mΘ, is a mapping
from 2Θ to [0,1] such that: ∑

A⊆Θ

mΘ(A) = 1 (1)

When there is no ambiguity, mΘ will be shortened m. The part of belief exactly com-
mitted to the event A of Θ is represented with the basic belief mass (bbm) denoted by
m(A). Subsets of Θ such that m(A)> 0 are called focal elements. When the emptyset
is not a focal element, the bba is called normalized. A bba is said to be certain if the
whole mass is allocated to a unique singleton of Θ and Bayesian when all focal ele-
ments are singletons. If the bba has Θ as unique focal element, it is called vacuous and
it represents the case of total ignorance.
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Two bbas m1 and m2 induced by two distinct items of evidence can be aggregated
using Dempster’s rule of combination to give one resulting bba m1 ⊕m2.

m1 ⊕m2(A) =

{
K · ∑

B∩C=A

m1(B) ·m2(C), ∀B,C ⊆ Θ if A �= ∅
0 otherwise

(2)

where K−1 = 1− ∑
B∩C=∅

m1(B) ·m2(C) is the normalization factor.

The initial knowledge encoded with a mass value, m(A), is revised using Dempster’s
rule of conditioning upon the arrival of a new certain piece of information B. All non
vacuous events implying B will be transferred to the part of A compatible with the
evidence namely, A∩B [17]. In the case, where A ∩ B = ∅, several methods exist for
transferring the remaining evidence [18]. m(A|B) denotes the degree of belief of A in
the context where B holds. It is defined as:

m(A|B) =

∑
C,B∩C=A m(C)

1−∑
B∩C=∅m(C)

(3)

A basic belief assignment can be weakened (or discounted) before the combination to
take into account the reliability of an expert by the discounting method defined as:

mα(A) =

{
(1− α) ·m(A), ∀A ⊂ Θ

α+ (1 − α) ·m(A), if A = Θ
(4)

The discounting operation is controlled by a discount rate α taking values between 0
and 1. If α = 0, the source is fully reliable and beliefs remain unchanged. However, if α
= 1, the bba is transformed into the vacuous bba, meaning that the information provided
by the expert is completely discarded.

When a decision has to be made, beliefs held by the agent and represented by a
bba could be transformed to a probability measure called BetP , using the pignistic
transformation. It is defined as follows:

BetP (A) =
∑

B⊆Θ

|A ∩B|
|B|

m(B)

1−m(∅), ∀A ∈ Θ (5)

2.2 Causal Belief Networks

Belief networks [1,6,21] are simple and efficient tools to compactly represent uncer-
tainty distributions. They have shown their efficiency in several applications (e.g., sys-
tem analysis [16], threat assessment [2]). One main advantage of these networks is that
they limit the use of a priori. They differ from Bayesian networks in the definition of
conditional distributions and in the way to compute the global joint distribution. Causal
belief networks [6,8] are seen as belief networks with some particular properties con-
cerning the interpretation of arcs. They are defined on two levels as follows:

- qualitative level: a DAG G = (V,E) where arcs describe causal influence. Each vari-
able Ai is associated with a finite set namely its frame of discernment ΘAi representing
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all its possible instances, i.e., {aij,j=1,...,|ΘAi
|}. A variable Aj is called a parent of a

variable Ai if there is an edge pointing from Aj towards Ai. The set of all parents of
Ai is denoted by U(Ai). Some of the parents of Ai are denoted by PA(Ai) where a
single parent is denoted by PAj(Ai). An instance from U(Ai), PA(Ai) or PAj(Ai)
is denoted respectively by u(Ai), Pa(Ai) and Paj(Ai).

- quantitative level: represented by the set of bbas associated to each node in the
graph. For each root node Ai (i.e., PA(Ai) = ∅) having a frame of discernmentΘAi , an
a priori mAi is defined on the powerset of 2ΘAi , such that

∑
subik⊆ΘAi

mAi(subik) =

1. It is possible to model the total ignorance of the a priori by defining a vacuous bba
on Ai (i.e., setting m(ΘAi) = 1). For the rest of the nodes, conditional distributions can
be defined for each subset of each variable Ai in the context of its parents (either one
or more than one parent node).

In causal belief networks, local conditional mass distributions are aggregated using
the Dempster rule of combination. Since this rule is looking for intersections, each local
distribution should be first extended to a joint frame. Thus, each conditional distribution
will be deconditionalized (denoted by �) and non-conditionalized distribution will be
vacuously extended to a joint frame (denoted by ↑)[5].

mV=A1,...,An = ⊕Ai∈V (⊕Paj(Ai)m
Ai(ai|Paj(Ai)) �Ai×PAj(Ai))↑V (6)

where the vacuous extension is computed as:

mAi↑Ai×Aj (ai) = mAi,Aj(ai ×ΘAj )

and a conditional distribution is deconditionalized as follows:

mAi(ai|Paj(Ai)) �Ai×PAj(Ai) = mAi,Aj ({ai × Paj ∪ΘAi × Paj(Ai)})
On causal belief networks, it is possible to compute the effect of observations (seeing
the natural behavior of the system) and interventions (intended external acting forcing a
variable to take a specific value). If a manipulation of the eventB leads to a change in A,
then B is considered as a cause of A. While the effects of observations are computed
with conditioning rules, those of interventions are handled by means of the so-called
“do” operator [14]. An intervention in this case is considered as an external that totally
control the state of its target variable. Such interventions make the original causes of
the manipulated variable no more responsible of its state. All the other causes than the
one of the intervention will be excluded. Graphically, interventions are described in
two equivalent ways, namely graph mutilation and graph augmentation. The first way
consists in modifying the causal graph by cutting off the links pointing into the target
variable. The second equivalent way consists in adding, for the target variable, a new
parent variable denoted DO.

3 Handling Uncertain Interventions with Certain Consequences

The occurrence of interventions recalled in the last section is assumed to be certain.
However, it is not realistic to always consider interventions as fully certain external ac-
tions. An intervention having the variable Ai as target may uncertainly occur by forcing
Ai to take an unknown specific value aij(aij ∈ ΘAi ) or it may fail to take place.
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Example 1. This example will be used in the rest of the paper to illustrate the main
results. It concerns a description of knowledge regarding the causal link between the
use of sugar and the sweetness of a coffee.

Fig. 1. Causal belief network

Fig. 1, depicts a causal belief network where S describes the presence of sugar in
the cup of coffee, ΘS = {s1, s2} where s1 is yes and s2 is no and C represents the
sweetness of the coffee, ΘC = {c1, c2} where c1 is sweet and c2 is bitter.

Let us assume that you have gone to a restaurant and ordered a coffee. A friend
sees on the table a container with some white powder, without tasting it, he adds some
of this powder into your cup of coffee because he knows that you like sweet coffee.
Unfortunately, later he realizes that it may be either sugar or something else, and since
you are in a restaurant it is most likely to be salt. If afterward, you taste the coffee and
you find it sweet, you do not know if it is due to the action of your friend or to the way the
coffee has been prepared. This latest alternative has no relation with the intervention of
your friend. Thus, links relating the sweetness of the coffee with the initial use of sugar
should not be deleted.

As in handling standard interventions, to represent uncertain interventions, we will alter
the belief network by adding a new fictive node (DO) as a new parent of the variable
Ai concerned by a manipulation, i.e., PA(Ai) ← PA(Ai) ∪ DO. The DO node is
taking value in do(x), x ∈ {ΘAi ∪ {nothing}}. do(nothing) means that there are no
actions on the variable Ai, it represents the state of the system when no interventions
are made or totally fail to occur. do(aij) means that the variable Ai is forced to take the
value aij . This way allows to represent the effect of interventions and also observations.
The augmented graph is denoted by Gaug . By taking advantage of the representation of
causal belief networks to define conditional distributions [8], a conditional bba in the
context of the fictive node DO will be “naturally” specified.

3.1 Interventions with an Unknown Specific Value

In the following, we propose a method to handle uncertain interventions that force the
target variable to take an unknown specific value. To compute the distribution of the
target variable, we need to address four different issues:
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1- Deciding about the nature of the external action. We propose a general method
where the nature of the intervention is undefined and we have to specify it. A bba,
mI , expressing the beliefs about the genuine nature of the external action expressed
on a frame of discernment ΘI = {θ1, . . . , θn} is defined. Note that the frame ΘI may
be different from the frame of the target variable. Deciding about the actual nature of
the intervention will allow us to know which states will be affected by a change. The
decision operation is made using the pignistic transformation.

Example 2 (continued). Suppose that the beliefs about the nature of the substance in
the container are flexibly expressed within the belief function formalism. They are de-
fined on ΘI = {sugar, salt, flour} such that mI ({sugar}) = 0.2, mI ({salt}) = 0.7,
mI ({flour}) = 0.01 and mI ({sugar,salt}) = 0.09. The corresponding probabilistic
knowledge of this bba is computed with the pignistic probability measure as follows:
BetP I ({sugar}) = 0.2 + 0.09 * 0.5 = 0.245, BetP I({flour}) = 0.01, BetP I({salt})
= 0.7 + 0.09 * 0.5 = 0.745.

2- Defining the possible states of the intervention. The frame ΘI is different from
the frame of the target variable ΘAi . However, instances of ΘI may affect the state
of the target variable Ai by forcing it to take the value aij . Thus in the case of un-
certain interventions, a matching between each θi and a state from ΘAi is defined
as match(θi) = aij . If θi has no impact on Ai, then we will say that match(θi) =
nothing. Note that more than one element of ΘI may affect the same state aij .

Example 3 (continued). The target variable has a frame of discernment ΘC=
{c1=sweet, c2=bitter} while the intervention is represented on ΘI={sugar, salt, flour}.
Table 1 presents the results of the matching between elements θi with instances of C.

Table 1. Matching function: match(θi)

θi match(θi)

sugar c1
salt nothing

flour c2

Recall that the DO node represents the intervention. It has the same instances than its
target to which the value nothing is added. do(aij) means that the intervention attempts
to set the target variable Ai into the state aij . This is achieved by performing the action
θi. Therefore, executing θi amounts to do(aij). Accordingly, beliefs about the state
of the variable DO reflecting the occurrence of the intervention will be defined from
the knowledge about the decided nature of the intervention computed in the last step
through BetPs. Since this latter reflects a probabilistic knowledge (i.e., computed for
singletons), the bba of the DO node will be Bayesian and defined as:

mDO(do(x)) =

{∑
θi,match(θi)=aij

BetP I(θi) if x = {aij}∑
θi,match(θi)=nothing BetP I(θi) if x = {nothing} (7)
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Example 4 (continued). According to the added substance, the coffee will be either
sweet, bitter or remain as it was prepared. Therefore, forcing it to be at a specific state is
not given for sure by adding the white powder. Hence, beliefs expressed about the actual
occurrence of the intervention are computed using the BetP of each ingredient. In fact,
the BetP takes into account all the focal elements that intersect with the substance of in-
terest. The bba of the nodeDO is defined as:mDO({do(c1)}) = BetP I (sugar) = 0.245,
mDO({do(c2)}) = BetP I (flour) = 0.01 and mDO({do(nothing)}) = BetP I(salt) =
0.745.

3- Defining Conditionals Given the DO Node. When occurring, an intervention
do(aij) succeeds to force the variable Ai to take a certain value aij . Therefore, a con-
ditional bba given an intervention is a certain bba focused on aij defined as:

mAi(subik|do(aij)) =
{
1 if subik = {aij}
0 otherwise

(8)

One can consider that mAi(.|do(aij)) is provided by an information source and this
latest expects that it will be a certain bba. Since the occurrence of the intervention is
uncertain, the bba defined by applying Equation 8 is not appropriate. Accordingly, this
source is seen as not fully reliable. In fact, even if the intervention succeeds to put its
target into one specific value, its occurrence remains uncertain. A Bayesian bba express-
ing the actual values concerning the occurrence of the intervention has been computed
with BetP as explained in the last step. It will be used to evaluate the reliability of the
source.

When considering the case of an intervention forcing the variableAi to take the value
aij , the occurrence of the intervention in the form of other states does not matter. What
it was predicted by the source is an intervention certainly occurring at the state aij ,
mDO(do(aij)) = 1, whereas the actual belief about the occurrence of the intervention
succeeding to put the variable Ai into the state aij is defined as mDO(do(aij)) = α ∈
[0, 1]. Since the degree of confidence in the reliability of a source can depend on the
true value of the variable of interest, the difference between what is was predicted and
the actual value is considered as its discounting factor defined as 1 − α. Consequently,
the conditional distribution given the DO node is discounted by taking into account
the reliability of each source, namely αdo(aij). This information, will transform the
conditional given the DO node from a certain bba into a weaker, less informative one.
Hence, the new conditional bba of the target variable given the DO node becomes:

m
Ai,αdo(aij )(subik|do(aij)) =

{
1− α if subik = {aij}
α if subik = ΘAi

(9)

Proposition 1. Standard interventions are a particular case of uncertain interventions
when the source is fully reliable, i.e., α = 0.

m
Ai,αdo(aij )=0

(subik|do(aij)) =
{
1 if subik = {aij}
0 otherwise

(10)
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Example 5 (continued). Graphically, an extra node DO representing the intervention
on the variable C is added as its new parent in the augmented graph. Each conditional
distribution for the target variable C given an instance of the DO node is seen as
provided by a distinct source of information. These sources affirm that performing an
intervention will lead to a known change in the state of the manipulated variable. The
conditional distributions as presented by the sources are presented in Table 2.

Table 2. Certain bba: mC(.|do(x))

{do(c1)} {do(c2)} {do(nothing)}
{c1} 1 0 0
{c2} 0 1 0
ΘC 0 0 1

Since the intervention achievement is uncertain, conditional local distributions pre-
sented in Table 2 are not appropriate. In fact, even when the intervention occurs with
a degree of belief and succeeds to put its target into one specific value, one should
take into consideration the cases where it fails to take place. Therefore, certain condi-
tional local distributions will be discounted according to the reliability of each source.
The degree of confidence in the reliability of a source is computed according the true
value of the variable of interest, i.e., the DO bba. Hence, discount rates are denoted by
1−αdo(x). They are defined as 1- αdo(c1) = 0.245, 1- αdo(c2) = 0.01 and 1- αdo(nothing)

= 0.745. The new discounted conditional bba is presented in Table 3.

Table 3. Discounted bba: mC,αdo(x)(.|do(x))

{do(c1)} {do(c2)} {do(nothing)}
{c1} 1*0.245=0.245 0*0.01=0 0*0.745=0
{c2} 0*0.245=0 1*0.01=0.01 0*0.745=0
ΘC 0*0.245+0.755 =0.755 0*0.01+0.99=0.99 1*0.745+0.255=1

4- Defining Conditionals Given an Uncertain Intervention. The impact of the un-
certain intervention on the target variable will not only depend from the intervention
but also from the initial causes of the variable. To get the conditional bba given all the
parent nodes, Dempster’s rule of combination is used to aggregate the conditional distri-
bution given the initial causes with the discounted conditional given the DO parent. We
use mAi(aj |Pa(Ai)) to represent the conditional mass function induced on the space
ΘAi given Pa(Ai) ⊆ ΘPA(Ai), and mAi,αdo(x)(ak|do(x)) to represent the discounted
conditional mass function induced on the space ΘAi given the intervention do(x). The
bba of the target variable mAi(ai|Pa(Ai), do(x)) is computed as follows:

mAi(ai|Pa(Ai), do(x)) =
∑

aj∩ak=ai

mAi(aj |Pa(Ai)) ·mAi,αdo(x)(ak|do(x)) (11)
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Example 6 (continued). The conditional bbas given the initial causes and that of the
DO node can be aggregated to give the conditional bba mC(.|si, do(x)). For instance,
mC(.|s1, do(c1)) is obtained by computing mC(.|s1) ⊕ mC,αdo(c1)(.|do(c1)). Results
are presented in Table 4.

Unlike the case of standard interventions, mC(c1|s1, do(c1)) �= 1. However, the
action of the friend has raised the beliefs about the sweetness of the coffee. A small
increase from 0.8 to 0.845 is explained by the fact that it is more likely that the used
ingredient is salt. In the same way, mC(c2|s2, do(c1)) has decreased from 0.7 to 0.638.

Table 4. Conditional bba: mC(.|si, do(c1))

{(s1, do(c1))} {(s2, do(c1))}
{c1} 0.8450 0.180
{c2} 0.0775 0.638
ΘC 0.0775 0.182

3.2 Interventions Not Occurring

The approach we proposed for handling interventions uncertainly happening remains
valid to deal with the case of non-interventions. This is represented by setting the vari-
able DO with certainty to the value do(nothing).

In this paper, we consider that the situation of non-intervention encompasses:
- not acting on the target variable and observing the spontaneous behavior of the system,
- failing to act on the target variable and therefore the intervention will not occur.

Formally, in this case:

∀θi,match(θi) = {nothing} (12)

From Equations 7 and 12, the bba of the DO node is defined by:

mDO(do(x)) =

{
1 if x = {nothing}
0 otherwise

(13)

In this case, the state of the target variable will not depend on the intervention (i.e.,
from the DO node). The conditional bba given the DO node is not informative. It is
represented with the vacuous bba defined as:

mAi(subik|do(nothing)) =
{
1 if subik = ΘAi

0 otherwise
(14)

The “non-intervention” occurs certainly. Therefore, the source is fully reliable and the
discounting factor is equal to zero. Hence, our approach well handles the particular case
of standard interventions.

Proposition 2. The beliefs provided about the non-occurrence of an intervention are
accepted without any modification. They are defined like standard interventions.x

mAi,αdo(nothing)(.|do(nothing)) = mAi(.|do(nothing)) (15)
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The conditional bbas defined in the context of the DO node and of the initial causes are
computed by combining each conditional defined per single parent as follows:

mAi(.|Pa(Ai), do(nothing)) = mAi(.|do(nothing))⊕mAi(.|Pa(Ai))
= mAi(.|Pa(Ai))

(16)

Proposition 3. An augmented causal belief graph where the DO node is set to the
value nothing encodes the same joint distribution than the initial causal belief network.

mGaug (.|do(nothing)) = mG (17)

4 Handling Uncertain Intervention with Uncertain Consequences

In the last section, we dealt with interventions occurring in an uncertain way. When
happening, even with a belief m({do(aij)}), they succeed to put the target variable
into exactly one specific state. This situation is not always feasible. Therefore, our
proposed approach in this section is to handle uncertain interventions with uncertain
consequences, i.e., failing to put their target into a specific value.

4.1 Certain Interventions with Uncertain Consequences

In [7], we dealt with interventions that certainly take place but have uncertain conse-
quences. To handle such cases, we proposed to specify a new bba on the target variable
representing the consequences of the intervention. Let us denote by FAi , the set of the
focal elements representing the uncertain consequences of the intervention where a bbm
βj is allocated to each focal element. The conditional bba of the target variable given
a certain intervention on the variable Ai attempting to force it to take the value aij is
defined as follows:

mAi(subik|do(aij)) =
{
βj if subik ∈ FAi , βj ∈]0, 1]
0 otherwise

(18)

Example 7 (continued). Let us continue with the network of Fig. 1. Imagine here that
your friend puts Lactose into your cup of coffee which is a disaccharide sugar. However
it is known that it is poorly soluble. Therefore, even if the substance is a kind of sugar,
adding it will obviously affect the sweetness of the coffee but without certainty. The
conditional bba mC(.|do(c1)) defined upon this intervention is expressed as follows:
mC(c1|do(c1)) = 0.8, mC(c2|do(c1)) = 0.05, mC(ΘC |do(c1)) = 0.15.

4.2 Uncertain Interventions with Uncertain Consequences

In this paper, we also investigate the case of uncertain interventions with uncertain con-
sequences. In fact, an intervention even taking place with a given degree of belief may
have uncertain consequences. Remember that to deal with uncertain interventions suc-
ceeding to set their target into a specific value aij , the conditional bbas given instances
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of the DO node are discounted according to the actual occurrence of the intervention
(see Equation 9). In the case of uncertain interventions with uncertain consequences,
we take into consideration possible states that can take the target variable. Therefore,
we define the resulting bba as a mixture of Equation 9 and 18 as follows:

mAi(subik|do(aij)) =
{
(1− α) · βj if subik ∈ FAi

α+ (1− α) · βj if subik = ΘAi

(19)

Proposition 4. Uncertain interventions with a certain consequence are a particular case
of uncertain ones with uncertain consequences when the parameter βj is set to one.

mAi(subik|do(aij)) =
{
1− α if subik = {aij}
α if subik = ΘAi

Example 8 (continued). In context of a restaurant, it is more likely that what your
friend has putted into your coffee is salt. We are focusing in the occurrence of the
intervention as attempting to set its target into the value sweet, which means that the
powder is sugar. However, some kinds of sugar (e.g., lactose, saccharine) are either not
very soluble or may have a bitter or metallic unpleasant aftertaste. Adding them may
lead to uncertain consequences. Note that the bbm that the added substance is sugar
is represented with m({do(c1)})= 0.245. Hence, to represent this case the conditional
bba given the DO node will be discounted. The resulting bba is presented in Table 5.

Table 5. mC,αdo(c1)(.|do(c1)) upon an uncertain intervention with uncertain consequences

{do(c1)}
{c1} 0.8*0.245 = 0.2
{c2} 0.05*0.245 = 0.01
ΘC 0.15*0.245+0.755 = 0.79

Note that as for uncertain interventions with certain consequences, the conditional dis-
tribution given the DO parent can be combined with the discounted conditional dis-
tribution given the initial causes using Dempster’s rule of combination to obtain the
conditional distribution given all the parent nodes.

5 Conclusion

This paper provided a causal graphical model to deal with interventions under the belief
function framework. We argued that for several practical cases, interventions may be
uncertain and should be consequently adequately modeled. Furthermore, we addressed
the issue of uncertain interventions failing to be at one specific state so-called uncertain
interventions with uncertain consequences.

We emphasized on that uncertain interventions have a natural encoding under
the belief function framework and may be graphically modeled using causal belief
networks. The effect of an uncertain intervention is computed on an altered structure,
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namely belief augmented graphs. In these networks, conditionals can be defined for any
number of parents and are can be seen as provided by distinct sources of information.

As future works, we intend to explore the relationships between interventions and
the belief changes using Jeffrey-Dempster’s rule [13].
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