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Abstract. Recently, a propositional logic modeling of analogical pro-
portions, i.e., statements of the form “A is to B as C is to D”, has been
proposed, and has then led to introduce new related proportions in a
general setting. This framework is well-suited for analogical reasoning
and classification tasks about situations described by means of Boolean
properties. There is a clear need for extending this approach to deal with
the cases where i) properties are gradual ; ii) properties may not apply
to some situations ; iii) the truth status of a property is unknown. The
paper investigates the appropriate extension in each of these three cases.

Keywords: analogical proportion, multiple-valued logic, three-valued
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1 Introduction

Analogy is not a mere question of similarity between two objects (or situations),
but rather a matter of proportion or relation between objects. This view dates
back to Aristotle and was enforced by Scholastic philosophy. An analogical pro-
portion equates a relation between two objects with the relation between two
other objects. These relations can be considered as a symbolic counterpart to
the case where the ratio or the difference between two similar things is a matter
of degree or number. As such, an analogical proportion of the form “A is to B
as C is to D” poses an analogy of proportionality by (implicitly) stating that
the way the two objects A and B, otherwise similar, differ is the same way as
the two objects C and D, which are similar in some respects, differ.

A propositional logic modeling of analogical proportions viewed as a quater-
nary connective between the Boolean values of some property pertaining to A,
B, C, and D has been proposed in [6]. This logical modeling amounts to pre-
cisely state that the difference between A and B is the same as the one between
C and D, and that the difference between B and A is the same as the one be-
tween D and C. This view can then be proved to be equivalent to state that the
considered Boolean property is true for A and D (resp. A or D) each time it
is true for B and C (resp. B or C). This latter point shows that a counterpart
of a characteristic behavior of numerical geometrical proportions (ab = c

d), or of
numerical arithmetic proportions (a − b = c − d), namely that the product, or
in the second case that the sum, of the extremes is equal to the product (or, in
the second case, the sum) of the means, is still observed here.
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The statement of the equality of numerical ratios, or of numerical differences,
is useful for extrapolating a fourth value knowing three others that are linked
by such a proportionality relation with it. Similarly, the solving of analogical
proportion equations is at the basis of an analogical inference process which is of
interest for solving non trivial reasoning tasks (e.g., such as IQ tests [2]), or for
dealing with classification problems [5,10]. The underlying inference mechanism
considers four Boolean vectors that describe four situations in terms of n binary
properties. When an analogical proportion holds for a large number of properties
between the four situations, then one makes the plausible inference that an
analogical proportion should also hold for a (n + 1)th property whose truth
value is known for 3 of the situations, and unknown for the fourth one, which
can thus be obtained as a solution of an analogical proportion equation. But,
situations may be more generally described in terms of properties that are not
always Boolean. This is the case if the properties are gradual, or if they are
binary but may not apply. It may also happen that for some situations it is not
known if a property holds or not. In these three types of cases (gradual property,
property non applicable, and missing information about a property), it is thus
of interest to be still able to evaluate in each case if one may consider that
an analogical proportion holds. The paper investigates these three cases where
different multiple-valued logical calculi are involved.

The paper is organized as follows. After a short background on Boolean ana-
logical proportions (and two related proportions that play a role in the analysis
of the problems encountered) in Section 2, the cases of gradual properties, of
non-applicable properties and of unknown properties are successively discussed
and contrasted in Sections 3, 4, and 5.

2 Background on Analogical and Related Proportions

A logical proportion [8] T (a, b, c, d) is a particular type of Boolean expression
involving 4 variables a, b, c, d, with truth values in B = {0, 1}. It is made of the
conjunction of 2 distinct equivalences, involving a conjunction of variables a, b
on one side, and a conjunction of variables c, d on the other side of ≡, where
each variable may be negated or not. Both a ∧ ¬b and ¬a ∧ b capture the idea
of dissimilarity between a and b, while a ∧ b and ¬a ∧ ¬b capture the idea of
similarity, positively and negatively. For instance, (ab ≡ cd) ∧ (ab ≡ cd)1 is the
expression of the analogical proportion [6]. As can be seen, analogical proportion
uses only dissimilarities and could be informally read as what is true for a and
not for b is exactly what is true for c and not for d, and vice versa. When a
logical proportion does not mix similarities and dissimilarities in its definition, we
call it homogeneous: For instance, analogical proportion is homogeneous. More
generally, it has been proved that there are 120 semantically distinct logical
proportions that can be built. Moreover, each logical proportion has exactly 6
lines leading to 1 in its truth table (and the 10 remaining lines lead to 0).

1 For sake of brevity, a is a compact notation for ¬a and ab for a ∧ ¬b, when useful.
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Two properties seem essential for defining the logical proportions that could
be considered as the best counterparts to numerical proportions:

– When all the items are identical, the logical proportion should hold true,
i.e., the postulate T (a, a, a, a) should be satisfied.

– The validity of a numerical proportion does not depend on the representation
of the numbers in a particular basis. In the same spirit, logical proportions
should satisfy the so-called code independency property: T (a, b, c, d) =⇒
T (a, b, c, d) insuring that the proportion T holds whether we encode falsity
as 0 (resp. truth as 1) or vice versa.

Only 3 among the 120 proportions satisfy the two previous properties [9]. They
are shown in Table 1. They are all homogeneous.

Table 1. 3 remarkable logical proportions: A,R, P

A R P

ab ≡ cd ∧ ab ≡ cd ab ≡ cd ∧ ab ≡ cd ab ≡ cd ∧ ab ≡ cd

Their truth tables (restricted to the 6 valuations leading to truth value 1),
are derived from their Boolean expressions, and shown in Table 2.

Table 2. A, R, P: Boolean truth tables

A R P
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0

A(a, b, c, d) is the analogical proportion, which expresses that a (resp. b) differs
from b (resp. a) as c (resp. d) differs from d (resp. c). R(a, b, c, d) is the reverse
analogical proportion, where R(a, b, c, d) = A(a, b, d, c) (a is to b as d is to c).
P (a, b, c, d) has been named paralogy [8] and expresses that what a and b have
in common, c and d have it also. Most of the semantical properties of these 3
proportions can be easily checked from their truth tables, and may be viewed as
counterparts of properties of the numerical (geometrical) proportion a

b = c
d . For

instance, the property a
b =

1
b
1
a

parallels the property T (a, b, b, a) (called exchange

mirroring) for a logical proportion T where the negation operator plays the role
of the inverse. Table 3 summarizes the results: the third column enumerates
the proportions among A,R, P satisfying the property respectively named and
described in the 1st and 2nd columns. Note that A,R and P satisfy the symmetry
property T (a, b, c, d) = T (c, d, a, b): the pairs (a, b) and (c, d) play symmetrical
roles. The 2 last lines of Table 3 highlight the strong link between A,R, P .
Indeed, there also exists an equivalent expression for A that does not involve
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Table 3. Boolean properties of A,R, P

Property name Formal definition Proportion

full identity T (a, a, a, a) A,R,P

1-full identity T (1, 1, 1, 1) ∧ ¬T (0, 0, 0, 0) none

0-full identity T (0, 0, 0, 0) ∧ ¬T (1, 1, 1, 1) none

reflexivity T (a, b, a, b) A,P

reverse reflexivity T (a, b, b, a) R,P

sameness T (a, a, b, b) A,R

symmetry T (a, b, c, d) → T (c, d, a, b) A,R,P

permutation of means T (a, b, c, d) → T (a, c, b, d) A

permutation of extremes T (a, b, c, d) → T (d, b, c, a) A

all permutations of 2 terms ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) none

transitivity T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f) A,P

semi-mirroring T (a, b, a, b) R

exchange mirroring T (a, b, b, a) A

negation compatib. T (a, a, b, b) P

link A R A(a, b, c, d) ≡ R(a, b, d, c)

link A P A(a, b, c, d) ≡ P (a, d, c, b)

any negation, namely A(a, b, c, d) = (a∧d ≡ b∧ c) ∧ (a∨d ≡ b∨ c). It looks like
the counterpart of the equality of the product of the extremes and of the product
of the means for geometrical numerical proportions. As can be seen from this
table, the three proportions A,R, P , and in particular the analogical proportion
A, enjoy properties that parallel properties of numerical proportions.

The idea of proportion is closely related to the idea of extrapolation, i.e. to
guess / compute a new value on the ground of existing values. In other words, if
for some reason, it is believed or known that a proportion should hold between
4 binary items, 3 of them being known, then one may try to infer the value of
the 4th one, at least in the case this extrapolation leads to a unique value. For
a proportion T , there are exactly 6 distinct valuations for (a, b, c, d) such that
T (a, b, c, d) = 12. In our context, the problem can be stated as follows. Given
a logical proportion T and a 3-tuple (a, b, c), does it exist a Boolean value x
such that T (a, b, c, x) = 1, and in that case, is this value unique? It is easy to
see that there are always cases where the equation has no solution, since the
triple a, b, c may take 23 = 8 values, while any proportion T is true only for 6
distinct valuations. For instance, when we deal with analogy A, the equations
A(1, 0, 0, x) and A(0, 1, 1, x) have no solution. And it can be checked that the
analogical equation A(a, b, c, x) is solvable iff (a ≡ b) ∨ (a ≡ c) holds. In that
case, the unique solution is x = a ≡ (b ≡ c). Similar results hold for R and P .

A,R, P proportions lead to successful applications when applied to reason-
ing and classification tasks. To cope with real world applications where objects
cannot be simply encoded with a unique Boolean value, we need to extend to
Boolean vectors what has been done for a single Boolean value. For a given
proportion T , the extension to vectors in B

n is done componentwise as follows:

2 By abuse of notation, we use the same symbol for a variable and its valuation.
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T (−→a ,
−→
b ,−→c ,−→d ) iff ∀i ∈ [1, n], T (ai, bi, ci, di)

where −→a = (a1, · · · , an) and so on. All the previous properties still hold for
A,R, P extensions and the equation solving process, when successful, provides
a complete Boolean vector instead of a unique Boolean value. In practice, the
analogical inference machinery is then based on the idea that if the same logical

proportion holds for a number of components of −→a ,
−→
b ,−→c ,−→d , then it may still

hold for a new component known for −→a ,
−→
b ,−→c , but not for

−→
d , which can then

be extrapolated (see e.g., [8]).
However, this vectorial extension may not still be enough for handling prac-

tical problems where we have to deal with missing information or properties
whose satisfaction is a matter of levels. To cover such situations, extensions of
the Boolean interpretation to multiple-valued logics (3-valued at least) is neces-
sary. At this stage, two questions arise:

1) in a given model, what are the valuations that correspond to a “perfect”
proportion of a given type (i.e., having 1 as truth value)? For instance, does
T (a, a, a, a) postulate still have to be satisfied by A,R, P or can we consider
models where A(u, u, u, u) = u, u being a truth value distinct from 0 and 1?

2) are there valuations that could be regarded as “approximate” proportions
(i.e. with a truth value distinct from 0 and 1) of a given type and in that case,
what is their truth value?

In order to properly answer these two types of questions, we should carefully
distinguish between three cases:

– when property satisfaction is a matter of levels or degrees instead of being
binary, i.e. the truth value of a given property may be an intermediary value
between 0 and 1.

– when property satisfaction does not make sense for a given item, i.e., the
property is non applicable to it.

– when information about some properties is missing, i.e., we have no clue
about the truth value of some properties for some items.

These are the questions we investigate in the following sections keeping in mind
an essential principle: the Boolean model should be the limit case of our models
when restricted to Boolean valuations.

3 Gradual Properties

When the satisfaction of properties may be a matter of degree, we have to
consider that the truth values belong to a linearly ordered scale L. The simplest
case is when L = {0, α, 1}, with the ordering 0 < α < 1, which can be generalized
into a finite chain L = {α0 = 0, α1, · · · , αn = 1} or ordered grades 0 < α1 <
· · · < 1, or to an infinite chain using the real interval [0, 1]. A proposal for
extending A in such cases has been advocated in [7]. It takes its source in the
expression A(a, b, c, d) = (a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d), where now
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– i) the central ∧ is taken as equal to min;
– ii) s ≡ t is taken as min(s →L t, t →L s) where →L is �Lukasiewicz implica-

tion, defined by s →L t = min(1, 1 − s + t), for L = [0, 1] (in the discrete
cases, we take α = 1/2 and αi = i/n), and thus s ≡ t = 1 − |s− t| ;

– iii) s∧¬t = max(0, s− t) = 1− (s →L t), i.e. ∧¬ is understood as expressing
a bounded difference.

The resulting expression for A(a, b, c, d) is given in Table 4. Then, we understand
the truth value of A(a, b, c, d) as the extent to which the truth values a, b, c, d
make an analogical proportion. For instance, in such a graded model, the truth
value of A(0.9, 1, 1, 1) = 0.9, which fits the intuition. It can be checked that the
semantics of A(a, b, c, d) thus defined in the graded case, reduces to the previous
definition when restricted to the Boolean case. It is interesting to study in what
cases A(a, b, c, d) = 1 and in what cases A(a, b, c, d) = 0. Then it is clear that
A(a, b, c, d) = 1 when a − b = c − d. When a, b, c, d ∈ {0, α, 1} with α = 1/2,
it yields the 19 following patterns (1, 1, 1, 1); (0, 0, 0, 0); (α, α, α, α); (1, 0, 1, 0);
(0, 1, 0, 1); (1, α, 1, α); (α, 1, α, 1); (0, α, 0, α); (α, 0, α, 0); (1, 1, 0, 0); (0, 0, 1, 1);
(1, 1, α, α); (α, α, 1, 1); (α, α, 0, 0); (0, 0, α, α); (1, α, α, 0); (0, α, α, 1); (α, 1, 0, α);
(α, 0, 1, α).

This means that A(a, b, c, d) = 1 when the change from a to b has the same
direction and the same intensity as the change from c to d. However, the last
4 patterns show that there is no need to have a = b and a = c while these
conditions hold for the 15 first patterns, which are all of the form (x, y, x, y),
(x, x, y, y), or (x, x, x, x). In contrast, note that the last 4 patterns exhibit 3
distinct values.

Table 4. Graded definitions for A,R, P proposed in [7]

A(a, b, c, d) =
1− | (a− b)− (c− d) | if a ≥ b and c≥ d, or a ≤ b and c ≤ d
1−max(|a− b |,|c− d |) if a ≤ b and c≥ d, or a ≥ b and c ≤ d

R(a, b, c, d) = A(a, b, d, c)

P (a, b, c, d) =
min(1− |max(a, b)−max(c, d)|, 1− |min(a, b)−min(c, d)|)

A(a, b, c, d) = 0 when a−b = 1 and c ≤ d, or b−a = 1 and d ≤ c, or a ≤ b and
c−d = 1, or b ≤ a and d−c = 1. It means the 22 following patterns in the 3-valued
case: (1, 1, 1, 0); (1, 1, 0, 1); (1, 0, 1, 1); (0, 1, 1, 1); (0, 0, 0, 1); (0, 0, 1, 0); (0, 1, 0, 0);
(1, 0, 0, 0); (1, 0, 0, 1); (0, 1, 1, 0); (1, 0, α, α); (0, 1, α, α); (α, α, 1, 0); (α, α, 0, 1);
(1, 0, 0, α); (0, 1, 1, α); (1, 0, α, 1); (α, 0, 0, 1); (0, α, 1, 0); (1, α, 0, 1); (0, 1, α, 0);
(α, 1, 1, 0). Thus, A(a, b, c, d) = 0 when the change inside the pairs (a, b) and (c, d)
is maximal, while the other pair shows no change or a change in the opposite
direction. Thus, A(a, b, c, d) = α for 81 - 19 - 22 = 40 distinct patterns when we
use L = {0, α, 1}.

In [7], R(a, b, c, d) is defined by permuting c and d in the definition of A,
but P is no longer obtained by permuting b and d in the definition of A. In
fact, P (a, b, c, d) is defined directly from its definition given in Table 1, changing
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¬a ∧ ¬b ≡ ¬c ∧ ¬d into a ∨ b ≡ c ∨ d, and taking ∧ = min, ∨ = max, and
s ≡ t = 1 − |s− t|, we obtain the definition in Table 4. If we exchange b and d
in this definition, we obtain an alternative definition for the graded analogical
proportion, namely

A∗(a, b, c, d) = min(1 − |max(a, d) −max(b, c)|, 1 − |min(a, d) −min(b, c)|)
This is the direct counterpart of the definition without negation of the analogical
proportion in the Boolean case. It can checked that A∗(a, b, c, d) = 1 only for
the 15 patterns with at most two distinct values for which A(a, b, c, d) = 1, while
A∗(a, b, c, d) = α for the 4 other patterns for which A(a, b, c, d) = 1, namely for
(1, α, α, 0); (0, α, α, 1); (α, 1, 0, α); (α, 0, 1, α). Besides, A∗(a, b, c, d) = 0 for only
18 among the 22 patterns that make A(a, b, c, d) = 0. The 4 patterns for which
A∗(a, b, c, d) = α (instead of 0) are (1, 0, α, α); (0, 1, α, α); (α, α, 1, 0); (α, α, 0, 1).
Thus, A∗(a, b, c, d) = α for 81 - 15 - 18 = 48 distinct patterns when we use
L = {0, α, 1}.

Thus, it appears that A∗(a, b, c, d) does not acknowledge as perfect the ana-
logical proportion patterns where the amount of change between a and b is the
same as between c and d and has the same direction, but where this change ap-
plies in different areas of the truth scale. Still, A∗(a, b, c, d) remains half-true
in these cases, for L = {0, α, 1}. When L = [0, 1], it can be checked that
A∗(a, b, c, d) ≥ 1/2 when a − b = c − d; in particular, ∀a, b, A∗(a, b, a, b) = 1,
which corresponds to the case where a = c and b = d. In the same spirit, if
L = {0, α, 1} as well as for L = [0, 1], A∗(a, b, c, d) = 0 when a change inside
the pairs (a,b) and (c,d) is maximal, while the other pair shows a change in the
opposite direction starting from 0 or 1. However, A∗(1, 0, c, c) = min(c, 1 − c)
and A∗ takes the same value for the 7 other permutations of (1, 0, c, c) obtained
by applying symmetry and/or central permutation.

As can be seen in Table 5, A∗ and A also coincide on some patterns hav-
ing intermediary truth values, but diverge on others. Generally speaking, A∗ is
smoother than A in the sense that more patterns have intermediary truth values
with A∗ than with A. A∗ also maintains the link with P , which is no longer true
with A. However, it would be possible to define another, maybe less natural,
graded paralogy as P ∗(a, b, c, d) = A(a, d, c, b). In practice, the graded version A
has been used, apparently in a rather successful way, for classification [10], while
A∗, which is considered here for the first time, has not been experienced yet. It
is still unclear if A∗ may be more suitable for classification purposes.

Table 5. The two graded definitions of the analogical proportion in [0, 1]

A A∗

A(1, 1, u, v) = 1− |u− v| A∗(1, 1, u, v) = 1− |u− v|
A(1, 0, u, v) = u− v if u ≥ v A∗(1, 0, u, v) = min(u, 1− v)

= 0 if u ≤ v
A(0, 1, u, v) = v − u if u ≤ v A∗(0, 1, u, v) = min(v, 1− u)

= 0 if u ≥ v
A(0, 0, u, v) = A(1, 1, u, v) A∗(0, 0, u, v) = A∗(1, 1, u, v)
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Both A and A∗ continue to satisfy the symmetry property (as P,R, and P ∗, R∗

with R∗(a, b, c, d) = A∗(a, b, d, c) = P ∗(a, c, d, b)). However, only A∗ still en-
joys the means permutation properties and the extremes permutation properties.
This is no longer the case with A, as shown by the following counter-example.
A(0.8, 0.6, 1, 0.3) = 1− | (0.8 − 0.6) − (1 − 0.3) |= 1− | 0.2 − 0.7 |= 0.5 since
0.8≥0.6 and 1≥0.3, and A(0.8, 1, 0.6, 0.3) = 1 −max(| 0.8 − 1 |, | 0.6 − 0.3 |) =
1 −max(0.2, 0.3) = 0.7 since 0.8 ≤ 1 and 0.6≥ 0.3.

But, both A and A∗ continue to satisfy the code independency property with
respect to a = 1 − a. Some more Boolean properties which remain valid in the
multiple-valued case are summarized in Table 6.

Table 6. Graded properties of A,A∗, R, P

Property name Formal definition Proportion

full identity T (a, a, a, a) A∗, A,R, P

reflexivity T (a, b, a, b) A∗, A, P

reverse reflexivity T (a, b, b, a) R,P

sameness T (a, a, b, b) A∗, A,R

symmetry T (a, b, c, d) → T (c, d, a, b) A∗, A,R, P

permutation of means T (a, b, c, d) → T (a, c, b, d) A∗

permutation of extremes T (a, b, c, d) → T (d, b, c, a) A∗

all permutations ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) none

semi-mirroring T (a, b, a, b) R

exchange mirroring T (a, b, b, a) A

negation compatib. T (a, a, b, b) none

link A R A(a, b, c, d) ≡ R(a, b, d, c)

link A P A(a, b, c, d) �≡ P (a, d, c, b)

link A∗ P A∗(a, b, c, d) ≡ P (a, d, c, b)

4 Non-applicable Properties

The abbreviation ‘n/a’ is currently used in data tables when an attribute does not
apply, when a property does not make sense or is not applicable for a particular
item. However, the extensive use of ‘n/a’ may be often ambiguous when it also
appears in the same tables when information is not available for some attribute
values of some items. Indeed one has to carefully distinguish the case where the
property does apply to the item, but it is not known if the property is true or
is false for the item, from the case where the property is neither true nor false
for the item since the property does not apply to it. The case of unknown truth
values is discussed in the next section, while we now address the problem of
dealing with genuinely non applicable properties.

The idea of introducing a third truth value for ‘not applicable’ (na for short
in the following) in the context of analogy can be already found in the pioneer-
ing work of Sheldon Klein [3,4] who was the first to propose to solve analogical
proportion equations A(a, b, c, x) = 1, where x is unknown, as x = c ≡ (a ≡ b)
(without providing an explicit definition for A(a, b, c, d)). However, his handling
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of na is based on (na ≡ na) = na, which suggests that the evaluation of an ana-
logical proportion where na appears may receive the truth value na, which seems
to be more in the spirit of understanding na as ‘not available’, or ‘unknown’.

Indeed, although a property may be ‘true’, ‘false’, or ‘not applicable’ for an
item, it seems natural to expect that A(a, b, c, d) can only be ‘true’ or ‘false’,
since (1, na, 1, na) looks intuitively satisfactory as an analogical proportion, while
(1, na, 0, 0) is not. More precisely, the acceptable 4-tuples of valuations that
make an analogical proportion true are of the form (x, x, x, x), (x, y, x, y), and
(x, x, y, y), where x, y ∈ {0, 1, na}, where any other 4-tuple should make it false,
since 0, 1 and na play the same role. This leads to acknowledge as true the 15
following patterns (1, 1, 1, 1); (0, 0, 0, 0); (na, na, na, na); (1, 0, 1, 0); (0, 1, 0, 1);
(1, na, 1, na); (na, 1, na, 1); (0, na, 0, na); (na, 0, na, 0); (1, 1, 0, 0); (0, 0, 1, 1);
(1, 1, na, na); (na, na, 1, 1); (na, na, 0, 0); (0, 0, na, na), all the others being false.

In other words, we are in a situation somewhat similar to the one encountered
in the previous section in the case of a unique intermediary truth-value α between
true and false, meaning ‘half-true’ (or equivalently ‘half-false’), when we refuse
the four patterns (1, α, α, 0), (0, α, α, 1), (α, 0, 1, α) and (α, 1, 0, α) as being true,
except that now no pattern has the third truth value. It is possible to find logical
definitions of the analogical proportion having the expected behavior for the
truth values {0, 1, na}. First, it can be checked that this is obtained with the
following expression

A(a, b, c, d) = (a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c)

where the {0, 1, na} are ordered as the chain 1 > na > 0 (i.e. ∧ is Kleene
conjunction, see, e.g., [1], and x ≡ y = 1 if and only if x = y, and x ≡ y = 0
otherwise.

A counterpart to A(a, b, c, d) = (a \ b ≡ c \ d) ∧ (b \ a ≡ d \ c) where \ here
denotes the Boolean logical connective corresponding to set difference, can also
be found. However, since we do not want to have (1, na, na, 0) true, the difference
between 1 and na and the difference between na and 0 should not be the same,
neither the same as between 1 and 0, nor 1 between 1 for sure. Thus we need
4 distinct values for the difference. This is impossible with 3 truth values! This
contrasts with the Boolean case where there are only two possible difference
values needed. The solution is then to use 2 connectives for differences:
x \1 y=1 if x=1 and y=0; x \1 y=na if x=1 and y=na; x \1 y=0 otherwise;
x \2 y=1 if x=1 and y=0; x \2 y=na if x=na and y=0; x \2 y=0 otherwise.
Then the definition of A(a, b, c, d) becomes

(a \1 b ≡ c \1 d) ∧ (b \2 a ≡ d \2 c) ∧ (a \2 b ≡ c \2 d) ∧ (b \1 a ≡ d \1 c)
where x ≡ y = 1 iff x = y; x ≡ y = 0 otherwise; and ∧ is any conjunction
connective that coincides with classical conjunction on {0, 1}. This definition
yields 1 for the 15 expected patterns and is 0 otherwise for the 81 − 15 = 66
remaining patterns.

It is even possible to find an expression for A(a, b, c, d) where \1 and \2 are
expressed in terms of a conjunction and negations, i.e. where x\1 y is replaced
by x ∧∗ ¬1(y) and x \2 y is replaced by x ∧∗ ¬2(y). We obtain a definition for
A(a, b, c, d) under the form
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(a∧∗¬1b ≡ c∧∗¬1d)∧∗(b∧∗¬2a ≡ d∧∗¬2c)∧∗(a∧∗¬2b ≡ c∧∗¬2d)∧∗(b∧∗¬1a ≡ d∧∗¬1c)

where the two negations are Post-like negations defined through a circular or-
dering of the three truth-values, where the negation of a value is the succes-
sor value in the ordering, namely ¬1(0) = na;¬1(na) = 1;¬1(1) = 0 and
¬2(0) = 1;¬2(na) = 0;¬2(1) = na. This acknowledges the fact that in some
sense these three truth-values play similar roles. The non-standard three-valued
conjunction ∧∗, which is defined by

x ∧∗ y = 1 if x = 1 and y = 1
x ∧∗ y = na if x = na and y = na
x ∧∗ y = 0 otherwise

also agrees with this view, while coinciding with classical conjunction in the
binary case. As in the previous section, we summarize in Table 7 the properties
of the Boolean case that remain valid in this 3-valued model where na, standing
for non applicable, is the third truth value.

Table 7. Properties of A,R, P with truth value na (as non applicable)

Property name Formal definition Proportion

full identity T (a, a, a, a) A,R,P

reflexivity T (a, b, a, b) A,P

reverse reflexivity T (a, b, b, a) R,P

sameness T (a, a, b, b) A,R

symmetry T (a, b, c, d) → T (c, d, a, b) A,R,P

permutation of means T (a, b, c, d) → T (a, c, b, d) A

permutation of extremes T (a, b, c, d) → T (d, b, c, a) A

all permutations ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) none

link A R A(a, b, c, d) ≡ R(a, b, d, c)

link A P A(a, b, c, d) ≡ P (a, d, c, b)

5 Unknown Properties

In this section, we briefly consider a situation that is quite different from the
ones studied in the two previous sections. We assume now that the features
used for describing situations are all binary (i.e., they can be only true or false),
but their truth value may be unknown. Thus, the possible states of information
regarding a Boolean variable x pertaining to a given feature may be represented
by one of the 3 truth value subsets {0}, {1} or {0, 1}, corresponding respectively
to the case where the truth value of x is false, true or unknown. We denote this
state of information by x̃, which is a subset of {0, 1}. The evaluation of a logical
proportion T (a, b, c, d) amounts to compute the state of information denoted
T (ã, b̃, c̃, d̃) about its truth value, knowing ã, b̃, c̃, d̃. It is given by the standard
set extension where v denotes a Boolean valuation:

T (ã, b̃, c̃, d̃) = {v(T (a, b, c, d)) | v(a) ∈ ã, v(b) ∈ b̃, v(c) ∈ c̃, v(d) ∈ d̃}
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From now on, we focus on analogical proportion A only, but R,P and I could be
handled in a similar manner. For instance, let us take the example A(a, b, c, d)
where ã = {1}, b̃ = {0}, c̃ = d̃ = {0, 1}. Applying the previous formula leads to

A(ã, b̃, c̃, d̃) = {0, 1}

since the truth value of A(a, b, c, d) may be 0 for the valuations 1001, 1000,
1011, and 1 for 1010. If we consider the following expression A(a, b, a, b) when
ã = b̃ = {0, 1}, a similar computation leads to

A(ã, b̃, ã, b̃) = {1}

since the truth value of A(a, b, a, b) is 1 for any of the valuations 1010, 1111, 0101,
or 0000. Similarly, the truth value of A(a, a, a, a) is 1, even when ã = {0, 1}.
But, the set of possible truth values for A(a, b, c, d) is {0, 1} when ã = {0, 1}, b̃ =
{0, 1}, c̃ = {0, 1}, d̃ = {0, 1}, i.e. we have the same state of information for all
of them. This expresses that the full identity property does not hold any longer
at the information level for analogical proportion. And this illustrates the fact
that the logic of uncertainty is no longer truth functional, since the state of
information about the truth value of A(a, b, c, d) does not only depend on the
state of information about the truth values of a, b, c, and d, but is also constrained
by the existence of possible logical dependencies between these variables.

Nevertheless, some key properties of homogeneous proportions remain valid
at the information level such as symmetry, or central and extreme permutations.
Indeed it can be checked that, for instance, for symmetry:

A(ã, b̃, c̃, d̃) = A(c̃, d̃, ã, b̃)

Using the set extension evaluation of logical proportions in presence of incom-
plete information, we can compute the set of possible truth values of the analog-
ical proportion for the different 4-tuples of states of information. We now denote
by u the state {0, 1}, and respectively by 0 and 1, the states of information {0}
and {1}. A 4-tuple of states of information will be called information pattern,
or pattern for short, and denoted by a 4-tuple of elements of {0, 1, u} without
blank space. For instance, 01u1 is such a pattern and should be understood as
the 4-tuple of states of information ({0}, {1}, {0, 1}, {1}).

Then, the 6 patterns 0000, 1111, 0011, 1100, 1010, 0101 that makes A true in
the Boolean case, and where u does not appear, are the only ones that are still
true with the above view (for which we get the singleton {1} as information
state for A(a, b, c, d)). As soon as at least one state of information is u in the
pattern, the state of information for A(a, b, c, d) is u or 0. Indeed, for instance,
01u0 leads to 0 since whatever the truth value of the 3rd variable, the analogical
proportion does not hold. Thus, despite the lack of knowledge regarding the 3rd
variable, we know the exact truth value of the proportion in this case, namely
it is false. It appears that there are 18 patterns that lead to 0. They are the 10
patterns of the Boolean case and the 8 following ones: 01u0, 0u10, u001, 100u,
10u1, 1u01, u110, 011u. Thus, in the 81− 6− 18 = 57 remaining cases, the state
of information for A(a, b, c, d) is u.
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It can be checked that these results can be retrieved both with the initial
definition of A or with A∗ where complete ignorance u is handled with ,̄ ∧,∨
as the strong Kleene connectives (see [1]) and ≡ as Bochvar connective, where
u is an absorbing element. The corresponding truth tables are recalled in Table
8. This provides a way to extend the definition of the analogical proportion in

Table 8. Truth tables for u as lack of knowledge

¯ ∧ 0 1 u ∨ 0 1 u ≡ 0 1 u

0 1 0 0 0 0 0 0 1 u 0 1 0 u
1 0 1 0 1 u 1 1 1 1 1 0 1 u
u u u 0 u u u u 1 u u u u u

case of lack of knowledge when no dependencies between the variables exist. As
in the Boolean case, the definitions A (resp. R,P, I) and A∗ (resp. R∗, P ∗, I∗)
are equivalent. Nevertheless, this truth-functional calculus provides only a de-
scription of the evaluation of the patterns at the information level. Namely, it
enables us to retrieve the tri-partition of the patterns in respectively 6, 18 and
57 patterns leading respectively to 1, 0 and u, but it does not account for the full
calculus of the extended definition of logical proportions in presence of incom-
plete information, when dependencies take place between variables, for instance
it can be checked that A(a, b, a, b) and A∗(a, b, a, b), when a and b are unknown,
does not yield 1 as expected, but u (this is just due to the fact that constraints
a = c and b = d are ignored).

6 Concluding Remarks

This paper has discussed three extensions of the notion of analogical propor-
tions (and related logical proportions) by carefully distinguishing the problems
of handling graded truth values, of dealing with non applicable properties, and
of coping with unknown truth values. In each case, a different modeling has been
obtained with a different repartition of the patterns found to be true, false, or
having another value, and where the set of properties preserved for the analogical
proportion is not the same. More generally, it would be of interest of developing
an approach where the three types of problem can be handled together.
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