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Abstract. Lazy Propagation (LP) is a propagation scheme for belief
update in Bayesian networks based upon Shenoy-Shafer propagation. So
far the secondary computational structure has been a junction tree (or
strong junction tree). This paper describes and shows how different tree
structures can be used for LP. This includes the use of different junction
trees and the maximal prime subgraph decomposition organised as a
tree. The paper reports on the results of an empirical evaluation on a
set of real-world Bayesian networks of the performance impact of using
different tree structures in LP. The results indicate that the tree structure
can have a significant impact on both time and space performance of
belief update.
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1 Introduction

A Bayesian network (BN) is an efficient knowledge base for representing un-
certain knowledge [22, 3, 8, 9]. It consists of a graph specifying dependence and
independence relations over a set of variables and a set of conditional probability
distributions (CPDs) encoding the strengths of the dependence relations effec-
tively combining elements of probability and graph theory. Due to the intuitive
graphical nature of BNs, they have and are being used for handling uncertainty
in a wide range of domains.

The key element in handling uncertainty with BNs is to perform probabilistic
inference or belief update, i.e., to compute posterior probabilities given (partial
or incomplete) information about the state of the domain. As both exact and
approximate probabilistic inference in BNs are NP-hard [2, 4], methods that in
the worst case have exponential complexity are justified (unless P=NP). Methods
such as Variable Elimination (VE) [29] (equivalent to Fusion [27] and Bucket
elimination [5]), Symbolic Probabilistic Inference (SPI) [24, 11] and Arc-Reversal
(AR) [20, 25] are often referred to as direct methods as they focus on computing
a single posterior marginal by manipulating the set of CPDs directly. On the
other hand, methods such as Lauritzen-Spiegelhalter propagation [10], HUGIN
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propagation [7] and Shenoy-Shafer propagation [28] are referred to as indirect
methods as they focus on computing all posterior marginals by passing messages
in a secondary computational structure.

A number of hybrid algorithms combining direct and indirect methods have
been proposed such as, for instance, factor trees [1] and LP [18]. LP is based on a
Shenoy-Shafer propagation scheme using a direct method for message computa-
tion [12–14]. In [19] an algorithm for decomposing a BN into its maximal prime
subgraphs is presented. The work reported in this paper was motivated by the
potential use of the maximal prime subgraph decomposition (MPD) organised
into a tree as a computational structure of LP. We evaluate the use of different
tree structures in LP. This includes evaluating the potential use of the MPD
organised into a tree, using a (near-) optimal junction tree versus a non-optimal
junction tree and a junction tree with a single node as the tree structure. The
results of an extensive empirical evaluation indicate that the tree structure can
have a significant impact on both time and space performance of belief update.

The rest of the paper is organised as follows. Section 2 contains preliminaries.
Section 3 presents the VE and LP algorithms as used in this paper and Section 4
describes the use of LP on different tree structures. Section 5 describes the
design of the empirical evaluation and the results. Section 6 discusses the findings
presented in this paper. Our conclusions are contained in Section 7.

2 Preliminaries

A (discrete) BN N = (X , G,P) consists of a set of random variables X , an
acyclic, directed graph (DAG) G = (V,E) where V ∼ X is the set of vertices
and E is the set of edges and a set of CPDs P . It represents a factorization of a
joint probability distribution into a set of conditionals:

P (X ) =
∏

X∈X
P (X |pa(X)), (1)

where pa(X) denotes the parents of X in G and fa(X) = pa(X) ∪ {X}.
Belief update is defined as the task of computing the posterior marginal distri-

bution P (X |ε) for each non-observed variable X ∈ X given a set of evidence ε.
An evidence function f(X) is used to force an evidence variable X to its ob-
served state x by assigning the value 1 to x and 0 otherwise. The set of observed
variables is denoted Xε. Barren variables are variables that are neither evidence
nor target variables and have only barren descendants, if any [25].

A probability potential on domain dom(φ) = Y is a function φ such that
φ(y) ≥ 0, for each configuration y ∈ Y and at least one φ(y) > 0 [26]. A
conditional probability potential φ of H given T is a probability potential of H
when T is known where dom(φ) = H∪T is divided into head variablesH denoted
head(φ) and tail variable T denoted tail(φ). That is, head(φ) and tail(φ) are the
conditioned and conditioning variables of dom(φ), respectively

The domain graph representation G(φ) = (V,E) of a potential φ has vertices
V = dom(φ) and edges E = {(H1, H2), (H2, H1) |H1, H2 ∈ head(φ)} ∪ {(T,H) |
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H ∈ head(φ), T ∈ tail(φ)}. The notion of barren variables can be extended to
domain graphs [13].

Let G be an undirected graph. A clique C is a maximal, complete subgraph
of G. If the vertices V of a undirected graph G can be partitioned into a triple
(V ′, S, V ′′) of nonempty sets where S is a complete separator of V ′ and V ′′ in G
such that every path from a vertex in V ′ to a vertex in V ′′ includes a vertex in
S, then G is decomposable; otherwise G is prime. A subgraph G(U) of a graph
G = (V,E) is a maximal prime subgraph of G, if G(U) is prime and G(W )
is decomposable for all W with U ⊂ W ⊆ V [19]. The set of maximal prime
subgraphs of a Bayesian network N = (X , G,P) are defined with respect to GM .

A junction tree representation T = (C,S) of N with cliques C and separators
S is constructed from a triangulated graph GT produced by triangulating the
moral graph GM of G. The size s(C) of a clique (separator) C ∈ C (S ∈ S)
is defined as the combined state space size of C (S), i.e., s(C) =

∏
X∈C ||X ||.

The size of a junction tree T is defined as s(T ) =
∑

C∈C s(C) and T over N is
optimal if s(T ) ≤ s(T ′) for any T ′ over N . We denote an optimal junction as
T̂ . The number of cliques in C is denoted |C|. A junction tree with |C| = 1 is
denoted T1.

The algorithm of [19] produces a cluster tree from a junction tree T by recur-
sively aggregating cliques connected by incomplete separators (in GM ) to larger
clusters where T should be minimal. The resulting cluster tree is referred to as
the MPD tree T ′ = (C′,S ′) with clusters C′ and (complete) separators S ′.

A junction tree T = (C,S) is initialised by associating each CPD P ∈ P with
the smallest clique A ∈ C such that dom(P ) ⊆ A. The set of CPDs associated
with a cluster C′ is defined by the aggregated cliques producing it.

For example, consider Asia [10] with BN N = (X , G,P). Figure 1 shows G
(i), GM (ii), an optimal junction tree (not showing separators) T̂ = (Ĉ, Ŝ) with
|Ĉ| = 6, s(T̂ ) = 40 and max s(C) = 8 (iii) and the MPD tree T ′ = (C′,S ′) with
|C′| = 5, s(T ′) = 40 and max s(C′) = 16 (iv). Each P ∈ P is associated with a
clique C ∈ C that can hold it and BEL is the only clique with no P associated.
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Fig. 1. (i) Asia (ii) GM (iii) an optimal junction tree (iv) the MPD

In Asia only two cliques (BLS and BEL) are aggregated to form a single
cluster (BELS) in C′. The other cliques Ĉ \ {BLS,BEL} remain clusters in C′
as their adjacent separators are complete in GM .
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3 Belief Update

There exists a number of different approaches to exploiting the decomposition
of P (X ) in (1) to perform belief update (efficiently). As mentioned above, this
paper considers VE and LP.

3.1 Variable Elimination

In VE, a posterior marginal probability distribution P (X |ε) for a non-observed
variable X is, in principle, computed by normalising:

P (X, ε) =
∑

Y �=X

∏

P∈P
P

∏

Z∈Xε

f(Z), (2)

where f(Z) is an evidence potential reflecting the instantiation of Z.
Barren variables are removed before variable elimination is performed. Barren

variables have the property that when eliminated they produce a uniform like-
lihood over the conditioning variables and can therefore be eliminated without
performing any computations. Also, we will assume that in (2) distributions are
instantiated to reflect the evidence ε (as opposed to summing out Xε).

The order ρ = (Y1, . . . , Y|X\{X}|) in which the variable eliminations are per-
formed is the elimination order. The elimination order can be identified using a
range of different algorithms. Since optimal triangulation is NP-hard, heuristics
are often used. The fill-in-weight (fiw) heuristic [6], for instance, aims to min-
imise the sum of the weights of the fill-in edges produced by a node elimination
operation, i.e., sfiw(X) =

∑
(Yi,Yj)∈F ||Yi|| · ||Yj ||, where F is the set of fill-ins

added by the elimination of X .

3.2 Lazy Propagation

LP [12–14] is based on a Shenoy-Shafer scheme where messages are passed in
two phases over a junction tree representation T of the BN N = (X , G,P)
to propagate the evidence ε. After initialisation and prior to message passing,
each P ∈ P such that dom(φ)∩Xε 
= ∅ is instantiated to reflect ε. Each clique C
holds an initial clique potential ΦC = {Pi1 , . . . , Pin} which is a set of instantiated
CPDs. Propagation of evidence is the process of collecting and distributing mes-
sages to and from a chosen root of T . When VE is used for message (marginal)
computation, the message passed from clique A to clique B is computed as

ΦA→B =
∑

A\B
(ΦA ∪

⋃

C∈adj(A)\{B}
ΦC→A), (3)

where adj(A) are the cliques adjacent to A in T . Prior to computing (3) barren
variables and potentials corresponding to domain graphs over variables all sep-
arated from B given ε are removed. Notice that the result is a set of potentials.
Notice also that the moralization step of the junction tree compilation in effect
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ignores a lot of the information contained in a DAG. A key element in LP is to
use information from the DAG to improve efficiency of inference. After message
passing has terminated, P (X | ε) can be computed from any C ∈ C or S ∈ S
such that X ∈ C or X ∈ S. This version of LP is referred to as LPVE.

4 Tree Structure

In previous work on LP, the secondary computational tree structure of LP has
been a junction tree (or in some cases a strong junction tree [17, 13]). In [19],
the authors suggest using the MPD of N as the computational tree structure
of LP. This paper evaluates the impact on performance of using different tree
structures in LP. This includes different junction trees and MPD trees. The tree
structure of LP is, in principle, a structure for caching intermediate results.

4.1 Junction Tree

There exists a number of different heuristics for generating a junction tree rep-
resentation T of N = (X , G,P). Some algorithms such as, for instance, fiw are
based on node elimination where the next node elimination operation is based
on the node with lowest scores, some are based on decomposing the graph G
into its minimal separators and others are based on exhaustive search [21].

A special case is when the junction tree has only a single clique. LP over a
single clique is, in principle, equivalent to VE. In a junction tree T1 = ({X}, ∅)
there is no caching of intermediate results. Each marginal P (X |ε) is computed
from P given ε after removing barren variables and potentials corresponding to
variables separated from X given ε. The computations corresponds to (2).

Proposition 1. Let A = X be the single cluster in a junction tree T = (C =
{X}, ∅). We have

P (A, ε) =
∏

φ∈ΦA

φ
n∏

i=1

fi, (4)

where ΦA = P is the set of potentials associated with A.

Proof. (4) is (1) now with evidence functions. �


4.2 Maximal Prime Subgraph Decomposition Tree

The nodes of the MPD tree T ′ represent maximal prime subgraphs in GM

whereas the nodes of a junction tree represent maximal complete subgraphs
in GT . As mentioned in Section 2, a MPD tree T ′ can be constructed from a
junction tree T representing any minimal triangulation GT of G by iteratively
aggregating adjacent cliques connected by an incomplete separator in GM . By
construction the structure of T ′ is equivalent to T up to complete separators in
GM . Each cluster C′ ∈ C′ represents a connected set of cliques in C.



On the Tree Structure Used by LP for Inference in BNs 405

Propagation of evidence in a MPD tree T ′ is similar to propagation of evidence
in a junction tree as described in Section 3.2. Messages are collected to and
distributed from a chosen root of T ′ where messages are computed as in (3).

Proposition 2. Let A be a cluster in a MPD tree, let S be a neighboring sep-
arator and let ε = {ε1, . . . , εn} be the evidence. After a full round of message
passing, we have

P (A, ε) =
∏

φ∈ΦA

φ

n∏

i=1

fi
∏

C∈adj(A)

∏

φ′∈ΦC→A

φ′,

P (S, ε) =
∏

φ∈ΦS→A

φ
∏

φ′∈ΦS←A

φ′,

where ΦA is the set of potentials associated with A, ΦC→A is the set of potentials
passed to A, and ΦS→A and ΦS←A are the sets of potentials passed over S.

Proof. The MPD tree T ′ corresponds to a triangulated graph GT of GM , where
each maximal prime subgraph is made complete and its set of nodes is equivalent
to the cliques of the junction tree created from GT . �

The maximal prime subgraph can be independently triangulated to produce an
optimal triangulation if each maximal prime subgraph is optimally triangulated.
This does, however, not take into account the independence and barren variable
properties induced by a specific set of evidence. Hence, an optimal junction tree
may not be the best tree structure for belief update using LP given a specific
set of evidence.

4.3 Example

In Asia of Figure 1 (i), consider the calculation of P (D) and P (E) using three
different structures, namely, a single cluster tree, an optimal tree T̂ in Figure 1
(iii), and the MPD tree in Figure 1 (iv). Using a single cluster with all variables
to guide the computation will identify X as barren relative to P (D) and elim-
inate the remaining variables, for example, in the order ρD = (A, T, L, S,E,B)
and identify {D,B,X} as barren relative to P (E) and eliminate the remaining
variables, for instance, in the order ρE = (A, T, L, S). Notice the amount of re-
peated computations. In an optimal tree T̂ , P (E) and P (D) can be computed
from clique BDE after a collect to it (even though this may not be the optimal
choice as P (E) can be computed more efficiently from EX). Variables A and X
are identified as barren relative to the message passed to BDE while B is not
identified as barren as the elimination of S creates the potential φ(B,L). Note
that the elimination of A and T is cached at BEL eliminating the repeated com-
putations. Lastly, in the MPD tree T ′, the situation is the same as for T̂ except
that in the cluster BELS there are more degrees of freedom to determine ρ than
in the clique BEL as the latter case corresponds to restricting ρ (in BELS) to
have S as the first variable. This may in some cases be suboptimal.
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5 Experimental Analysis

We give an empirical evaluation of the performance impact of using different
secondary computational structures in LP based upon a set of real-world BNs.

5.1 Setup

Table 11 shows statistics on the BNs used in the evaluation and their optimal
(or believed to be near-optimal) junction tree (T̂ ), a junction tree generated
using sfiw (Tfiw) and the MPD tree (T ′), respectively. In the table |Y| is the
cardinality of Y and sizes are on a log-scale in base 10. The junction trees have
been generated using the total weight and fill-in-weight heuristics as implemented
in the HUGIN tool [6, 16]. The test set consists of networks of different size and
complexity in terms of the size of the tree structure.

For each network, one hundred sets of evidence have been generated at ran-
dom. For each evidence set, LPVE computes the posterior marginal distribution
of each non-evidence variable. The same set of evidence sets is used to evaluate
each tree structure for a specific network. In the experiments, the fiw heuristic
is applied to determine the online elimination order when computing messages
and posterior marginals [15].

The experiments were performed using a Java implementation (Java (TM)
SE Runtime Environment, Standard Edition (build 1.7.0 10-b18)) running on a
Linux Ubuntu 12.10 (kernel 3.5.0-21-generic) PC with an Intel Core i7(TM) 920
Processor (2.67GHz) and 12 GB RAM.

5.2 Results

Table 2 presents the time performance results of the evaluation for T̂ , Tfiw, T1

and T ′, respectively. Table 2 shows the sample average run-time in seconds and
the sample variance for propagating one hundred sets of evidence generated at
random, for each network and each type of secondary computational structure.

Table 3 shows size of the largest potential created during belief update using
tree structures T̂ , Tfiw, T1 and T ′, respectively. The table shows the sample
average and variance when propagating one hundred sets of randomly generated
evidence, for each network and each type of secondary computational structure.
The time performance measurements include time for finding the on-line trian-
gulation orders and do not include time used to generate the secondary compu-
tational structure. It is expected that on-line triangulation is more expensive for
T1 and T ′ than for T̂ and Tfiw.

Notice that two different implementations of the fill-in-weight heuristic have
been used. The junction trees have been generated using the HUGIN tool while
the online triangulation have been generated using our own implementation.
This may in part explain why T1 produces a larger average largest potential size
than the largest clique in Tfiw. The total cost of online triangulation is expected

1 The size of the largest cluster for Diabetes cannot be represented using a Java double.
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Table 1. Description of test BNs, T̂ , Tfiw and T ′ where * means that the triangulation
is optimal, ** means that the triangulation has been created using a maximum of
200,000 separators and no * means that the best known triangulation is used

max max max

N |X | |Ĉ| |Cfiw| |C′| s(Ĉ) s(Cfiw) s(C′) s(T̂ ) s(Tfiw) s(T ′)
3nt* 58 41 41 22 3.5 3.7 16.8 4.1 4.4 16.8
Barley* 48 36 36 14 6.9 6.9 29.5 7.2 7.3 29.5
Diabetes 413 337 337 77 4.9 5.5 - 7.0 7.1 -
Hepar II* 70 58 58 55 2.6 2.6 2.9 3.4 3.4 3.5
KK* 50 38 38 15 6.8 6.8 30.2 7.1 7.2 30.2
Mildew* 35 29 28 15 6.1 6.6 20.6 6.5 7.0 20.6
Munin1 189 162 160 70 7.6 7.9 69.2 7.9 8.3 69.2
Munin2 1,003 854 860 48 5.2 5.7 189.6 6.3 6.7 189.6
Munin3 1,044 904 904 53 5.2 5.2 174.5 6.5 6.5 174.5
Munin4 1,041 877 875 49 5.7 5.9 221.9 6.9 7.1 221.9
Water* 32 21 19 9 5.8 6.2 13.3 6.5 6.6 13.3
andes** 223 180 175 79 4.8 5.4 40.0 5.3 5.6 40.0
cc145* 145 140 140 13 3.0 3.0 3.0 3.6 3.6 3.6
cc245* 245 235 235 23 5.4 5.4 6.0 5.8 5.8 6.3
hailfinder* 56 43 43 29 3.5 3.5 11.6 4.0 4.0 11.6
medianus* 56 44 44 15 5.7 5.7 28.4 6.1 6.2 28.4
oow* 33 22 22 6 6.3 6.8 21.7 6.8 7.3 21.7
oow bas* 33 19 19 8 5.7 6.2 18.4 6.3 6.6 18.4
oow solo* 40 29 28 9 6.2 7.2 24.2 6.7 7.5 6.3
pathfinder* 109 91 91 86 4.5 4.5 6.8 5.3 5.3 6.8
sacso** 2,371 1,229 1,175 98 5.2 6.4 107.5 6.0 6.8 107.5
ship* 50 35 35 10 6.6 8.1 35.6 7.4 8.4 35.6
system v57* 85 75 72 26 4.8 6.7 57.9 6.1 6.8 57.9
win95pts* 76 50 50 33 2.7 2.7 9.3 3.4 3.4 9.3

to be higher for T1 as elimination orders on average are expected to be longer for
this structure in the following sense. For T1 all variables are in a single clique.
This means that to compute any posterior marginal P (X |ε) all variables X \{X}
have to be eliminated (in principle) and the elimination order has length |X |−1.
Using Tfiw, on the other hand, each marginal P (X | ε) is computed from any
clique or separator containing X . Since the number of variables in the largest
clique is usually much smaller than |X |, the elimination orders are usually much
shorter for Tfiw. The implementation of the online triangulation has not been
optimised to cope with large domain graphs.

Observe that for a few networks average time performance on T1 and T ′ is
much worst than Tfiw and T̂ with a high variance. For a few evidence sets the
time performance is significantly worse for these structures. For instance, the
average run-time performance on Diabetes is high with a high variance.

T1 seems to have the worst time performance except for a few instances, while
time performance of T ′ in one case is much worse than T1 (as well as Tfiw and

T̂ ) and in a number of cases is comparable with the performance of Tfiw and T̂ .

In almost all cases time performance of Tfiw is similar to the performance of T̂ ,
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Table 2. Run-time in seconds (mean ± standard deviation)

N T̂ Tfiw T1 T ′

3nt* 0.03±0.00 0.03±0.00 0.05±0.04 0.04±0.00
Barley* 0.13±0.18 0.15±0.21 0.34±0.64 0.33±0.61
Diabetes 0.45±0.39 0.47±0.41 27.69±72.84 93.83±282.90
Hepar II* 0.05±0.00 0.05±0.03 0.1±0.07 0.05±0.00
KK* 0.12±0.15 0.14±0.18 0.38±0.63 0.22±0.32
Mildew* 0.06±0.06 0.08±0.10 0.22±0.67 0.17±0.50
Munin1 0.84±1.99 1.49±4.40 4.49±19.47 3.98±18.53
Munin2 0.6±0.25 0.61±0.26 8.37±11.50 1.6±1.90
Munin3 0.81±0.41 0.81±0.41 25.14±46.30 8.06±17.20
Munin4 0.75±0.38 0.76±0.41 15.25±22.70 3.96±6.13
Water* 0.08±0.08 0.07±0.06 0.09±0.11 0.09±0.11
andes** 0.19±0.09 0.18±0.09 0.69±0.69 0.51±0.39
cc145* 0.12±0.06 0.12±0.06 0.14±0.10 0.11±0.06
cc245* 0.27±0.12 0.26±0.12 0.35±0.30 0.26±0.12
hailfinder* 0.04±0.00 0.04±0.00 0.09±0.07 0.04±0.00
medianus* 0.05±0.03 0.06±0.04 0.1±0.14 0.09±0.13
oow* 0.1±0.12 0.14±0.22 0.17±0.44 0.13±0.24
oow bas* 0.05±0.04 0.07±0.08 0.08±0.10 0.06±0.06
oow solo* 0.1±0.12 0.29±0.61 0.79±3.29 0.55±2.14
pathfinder* 0.15±0.11 0.15±0.11 0.15±0.13 0.14±0.11
sacso** 0.66±0.25 0.67±0.26 44.51±76.62 1.85±2.20
ship* 0.25±0.46 1.4 ±4.90 1.42±5.13 0.88±3.76
system v57* 0.09±0.05 0.12±0.14 0.71±1.56 0.6±1.35
win95pts* 0.05±0.00 0.05±0.00 0.12±0.07 0.08±0.04

while T̂ is better than Tfiw in a few cases. On the other hand, in many cases the
space performance of T1 and T ′ is better than the space performance of Tfiw

and T̂ . There are a few significant exceptions though, which is surprising.

6 Discussion and Analysis

Traditionally, LP has been based on message passing in a junction tree repre-
sentation of a BN. This paper has described and evaluated how different tree
structures can be used for LP. This includes different junction trees, MPD trees
and junction trees with a single clique.

The identification of the MPD tree can be relatively efficient compared to
finding the optimal junction tree, which can be a relatively expensive operation.
The MPD is identified using a minimal triangulation and a linear search guided
by the junction tree. The classical triangulation algorithm LEX M [23] can be
used to determine a minimal triangulation with time complexity O(ne), where
n is the number of vertices and e is the number of edges in the graph [23].
The complexity of constructing the MPD tree from a minimal junction tree is
O(n2) [19]. In the evaluation, we have generated MPD trees from the junction
trees generated using total-weight.
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Table 3. Size of largest potential (mean ± standard deviation)

N T̂ Tfiw T1 T ′

3nt* 2.9±3.0 2.9±3.1 2.6±2.7 2.6±2.7
Barley* 5.7±6.2 5.7±6.2 5.2±5.6 5.3±5.7
Diabetes 4.6±4.5 5.0±5.1 6.3±7.0 7.2±7.9
Hepar II* 2.0±2.1 2.0±2.1 2.0±2.1 2.0±2.1
KK* 5.7±6.1 5.7±6.1 5.3±5.7 5.3±5.7
Mildew* 5.3±5.6 5.6±6.0 5.4±5.9 5.4±5.9
Munin1 6.3±6.8 6.6±7.0 6.0±6.7 6.1±6.8
Munin2 4.3±4.5 4.6±5.0 3.6±3.9 3.6±3.9
Munin3 4.6±4.8 4.6±4.8 5.1±5.5 5.1±5.5
Munin4 5.0±5.2 5.2±5.4 4.9±5.3 4.9±5.3
Water* 4.9±5.2 4.9±5.2 4.6±5.0 4.6±5.0
andes** 3.5±3.9 3.5±3.9 2.8±3.1 2.8±3.1
cc145* 2.2±2.3 2.2±2.3 2.2±2.3 2.2±2.3
cc245* 4.0±4.2 4.0±4.2 3.9±4.2 3.9±4.2
hailfinder* 3.0±3.1 3.0±3.1 2.8±3.0 2.8±3.0
medianus* 4.6±5.0 4.7±5.1 4.4±5.3 4.4±5.3
oow* 5.4±5.7 5.9±6.3 5.8±6.5 5.5±6.2
oow bas* 4.9±5.2 5.4±5.7 5.1±5.6 5.1±5.6
oow solo* 5.5±5.7 6.1±6.5 5.8±6.3 5.9±6.6
pathfinder* 3.8±4.0 3.8±4.0 3.8±4.0 3.8±4.0
sacso** 3.8±4.1 4.3±4.7 3.4±3.9 3.4±3.8
ship* 5.9±6.1 6.9±7.5 6.5±7.3 5.7±6.2
system v57* 4.5±4.4 5.5±6.0 5.8±6.4 5.9±6.5
win95pts* 2.1±2.2 2.1±2.2 1.9±2.0 1.9±2.0

A junction tree is a caching structure. It caches in the separator potentials
the results of intermediate variable elimination operations. This may give T̂ an
advantage over T1 which has to identify an complete elimination order for each
posterior marginal. On the other hand, T̂ is wide enough to accommodate any set
of evidence. This may be a disadvantage compared to T1, which can exploit all
information in the structure of the evidence. The results reported in this paper
indicates that for only a few networks the time performance is insensitive to
the tree structure, e.g., for pathfinder and Water the four structures considered
produce almost equal time performance. In some cases the time performance
is almost the same for T̂ , T ′ and Tfiw. This is the case, e.g., for Hepar II and

hailfinder. In other cases, the time performances of T̂ and Tfiw are similar,
whereas the time performances of T ′ and T1 are much worse. This is the case,
e.g., for Barley, Munin4 and Mildew. In some cases the time performance of T1

or/and T ′ is poor compared to the other algorithms. In these cases, the time
performance variance is very high. This indicates that the time performance is
poor on a few sets of evidence producing a high average time performance. The
poor time performance is due to large potentials created during belief update
and the large potentials are created due to a poor elimination order. It should
be noted that in some cases T̂ is not known to be optimal (finding the optimal
triangulation is infeasible as the number of minimum separators in GM is large).



410 A.L. Madsen and C. Butz

In general, the evaluation illustrates that the tree structure can have a signifi-
cant impact on performance. In most cases, T̂ and Tfiw produce the best results.
In almost all cases (except one) T1 produced the worst results. Notice that in
some cases T1 produces a larger largest potential than Tfiw.

7 Conclusion

This paper has considered the impact of the secondary computational structure
used by LP in belief update. The results of the empirical evaluation indicate
that the tree structure can have a significant impact on both time and space
performance of belief update. The structures T̂ and Tfiw most often produced
the best performance on the networks considered in the evaluation.

Future work includes assessing the impact of using a binary tree structure such
as the binary join tree [27] as well as evaluating different variants of LP such
as LP using AR or SPI as the message computation algorithm. In addition, the
option to consider almost complete separators as complete should be considered
in order to divide large maximal prime subgraphs into smaller clusters, i.e., to
increase the level of caching in the tree structure.
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