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Abstract. CP-nets (Conditional preference networks) are a well-known
compact graphical representation of preferences in Artificial Intelligence,
that can be viewed as a qualitative counterpart to Bayesian nets. In case
of binary attributes it captures specific partial orderings over Boolean
interpretations where strict preference statements are defined between
interpretations which differ by a single flip of an attribute value. It re-
spects preferential independence encoded by the ceteris paribus property.
The popularity of this approach has motivated some comparison with
other preference representation setting such as possibilistic logic. In this
paper, we focus our discussion on the possibilistic representation of CP-
nets, and the question whether it is possible to capture the CP-net partial
order over interpretations by means of a possibilistic knowledge base and
a suitable semantics. We show that several results in the literature on
the alleged faithful representation of CP-nets by possibilistic bases are
questionable. To this aim we discuss some canonical examples of CP-net
topologies where the considered possibilistic approach fails to exactly
capture the partial order induced by CP-nets, thus shedding light on the
difficulties encountered when trying to reconcile the two frameworks.

1 Introduction

The representation and the handling of preferences has been extensively stud-
ied in artificial intelligence (AI), operations research, and data bases; see [1] for
an introductory survey. “CP-nets" [2] have been especially popular in AI as a
framework for expressing conditional preferences, based on a graphical represen-
tation. CP-nets express that in a given context, a partially described situation
is strictly preferred to another partially described situation, every other variable
having the same value in both situations; this is the ceteris paribus condition.

However the systematic application of the ceteris paribus principle introduces
restrictions in the expression of preferences. This has motivated the compari-
son between CP-nets and possibilistic logic [3] since the latter provides another
flexible setting for representing preferences [4, 5]. In possibilistic logic, classical
propositions state goals, and weights are priority levels that express how imper-
ative are these goals. A merit of a logic-based representation of preferences is
also the capability of reasoning about preferences and in particular to deal with
their possible inconsistency. A series of publications [6–10] have dealt with the
question of representing CP-nets by means of a possibilistic logic base. Since
CP-nets may leave some interpretations non comparable, a possibilistic logic
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representation of them should use partially ordered symbolic weights [11] that
leave room for incomparability. It has been also noticed that CP-nets implicitly
privilege the preference constraints associated with father nodes with respect to
the ones associated to children nodes in the graphical representation.

However, the possibilistic logic representation of CP-nets advocated in [8–10]
is not always completely faithful and may remain locally approximate. The aim
of this paper is to fully investigate this state of facts, also highlighting when the
existing approach does provide an exact representation for CP-nets.

The paper is organized as follows. First, a short background on possibilistic
logic, on CP-nets and its encoding with possibilistic logic formulas having sym-
bolic weights is provided in Sections 2 and 3. Then in Section 4 we discuss the
different partial orders that can be used for comparing the vectors of symbolic
weights which reflect the violation of preferences and are associated with each
interpretation. Used as such, each of the considered orders are successful for re-
trieving the CP-net ordering on specific graphical structures and fail on others,
as shown in Section 5. Section 6 identifies on which particular structures the ex-
isting possibilistic representation is exact, and shows more generally how lower
and upper representations can be obtained. Section 7 briefly discusses the related
work and exhibits a final example that points out the difficulty of capturing the
CP-net ordering exactly in a logical way.

2 Possibilistic Logic

We consider a propositional language where formulas are denoted by p1, ..., pn,
and Ω is its set of interpretations. Let BN = {(pj, αj) | j = 1, . . . ,m} be a
possibilistic logic base where pj is a propositional logic formula and αj ∈ L ⊆
[0, 1] is a priority level [3]. The logical conjunctions and disjunctions are denoted
∧ and ∨. Each formula (pj , αj) means that N(pj) ≥ αj , where N is a necessity
measure, i.e., a set function satisfying the property N(p∧q) = min(N(p), N(q)).
A necessity measure is associated to a possibility distribution π (a mapping
Ω → [0, 1] here expressing preference) as follows:

N(p) = minω �∈M(p)(1− π(ω)) = 1−Π(¬p),
where Π is the possibility measure associated to N and M(p) is the set of models
induced by the underlying propositional language for which p is true.

The base BN is associated to the possibility distribution
πN
B (ω) = minj=1,...,m π(pj ,αj)(ω)

on the set of interpretations, where π(pj ,αj)(ω) = 1 if ω ∈ M(pj), and π(pj ,αj)

(ω) = 1 − αj if ω �∈ M(pj). An interpretation ω is all the more possible as it
does not violate any formula pj having a higher priority level αj . So, if ω �∈
M(pj), πN

B (ω) ≤ 1 − αj , and if ω ∈ ⋂
j∈J M(¬pj), πN

B (ω) ≤ minj∈J (1 − αj).
It is a description “from above" of πN

B , which is the least specific possibility
distribution in agreement with the knowledge base BN . A possibilistic base BN

can be transformed in a base where the formulas pi are clauses (without altering
the distribution πN

B ). We can still see BN as a conjunction of weighted clauses,
i.e., as an extension of the conjunctive normal form.
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3 CP-Nets and Their Encoding in Possibilistic Logic

A CP-net [2] is graphical in nature, and exploits conditional preferential inde-
pendence in structuring the preferences provided by a user. The model is remi-
niscent of a Bayes net; however, the nature of the relation between nodes within
a network is generally quite weak, compared with the probabilistic relations in
Bayes nets. The aim in using the graph is to capture statements of qualitative
conditional preferential independence.

Definition 1. A CP-net N over the set of Boolean variables V = {X1, · · · , Xn}
is a directed graph over the nodes X1, · · · , Xn, and there is a directed edge from
Xi to Xj if the preference over the value Xj is conditioned on the value of Xi.
Each node Xi ∈ V is associated with a conditional preference table CPT (Xi)
that associates a strict preference (xi > ¬xi or ¬xi > xi) with each possible
instantiation ui of the parents of Xi (if any).

A complete (preference) ordering of interpretations satisfies a CP-net N iff it
satisfies each conditional preference expressed in N . In this case, the ordering
is said to be consistent with N . We denote by Pa(X) the set of direct parent
variables of X , and by Ch(X) the set of direct successors (children) of X . The
set of interpretations of a group of variables S ⊆ V is denoted by Ast(S), with
Ω = Ast(V ). Given a CP-net N , for each node Xi, i = 1, . . . , n, each entry in
a conditional preference table CPTi is of the form φ = u : �xi > �¬xi, where
u ∈ Ast(Pa(Xi)), � is blank if the preference is xi > ¬xi and is ¬ otherwise. This
is encoded by a constraint of the form N(¬u∨�xi) ≥ αi > 0, in possibility theory,
where N is a necessity measure [3]. The weight αi stands for the priority of the
formula ¬u∨�xi. Although valued on [0, 1] this priority is not instantiated, that
is, αi is a variable attached to node i. It expresses that having ¬�xi is somewhat
not satisfactory in context u, as the possibility of ¬ � xi ∧ u is upper bounded
by 1− αi. Clearly, satisfying ¬ � xi ∧ u is all the more impossible as αi is large.

The encoding of a CP-net in possibilistic logic is performed as follows:

– According to the above conventions, each entry of the form u : �xi > �¬xi

in the conditional preference table CPTi of each node Xi, i = 1, . . . , n is
encoded by the possibilistic logic clause (¬u ∨ �xi, αi), where αi > 0 is a
symbolic weight.

– Since the same weight is attached to each clause built from CPTi, the set
of weighted clauses induced from CPTi is thus equivalent to the weighted
conjunction φi = (

∧
u∈Ast(Pa(Xi))

(¬u ∨ �xi), αi), one per variable, or to the
pair of weighted clauses (φ+

i , φ
−
i ) of the form:

(¬(∨u∈A+
i
u) ∨ xi, αi), (¬(∨u∈A−

i
u) ∨ ¬xi, αi),

where {A+
i , A

−
i } is a partition of Ast(Pa(Xi)), such that xi > ¬xi on A+

i

and ¬xi > xi on A−
i .

– Additional constraints over weights are added. The weight αi attached to
each node Xi, is supposed to be strictly smaller than the weight of each of
its parents α∗

i (thus leading to constraints of the form max({αi}) < α∗
i ).
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A partially ordered possibilistic base (Σ,
Σ) is built from a CP-net in this way,
where 
Σ stands for the order relation over weights. Let us denote by Fω ⊆ Σ,
the set of formulas falsified by the interpretation ω ∈ Ω. For each interpretation
ω, we associate a vector ω(Σ) obtained as follows. For each weighted formula
φ+
i ∧φ−

i in the possibilistic base Σ satisfied by ω, we put 1 in the ith component
of the vector, and 1−αi otherwise, in agreement with possibilistic logic semantics
[3]. By construction, L = {1, 1 − αi, i = 1 . . . , n}, with 1 > 1 − αi, ∀i. Vector
ω(Σ) has a specific format. Namely its component vi (one per CP-net node) lies
in {1, 1 − αi} for i = 1, . . . , n. We consider different possible partial orders for
comparing such vectors in the next section.

Example 1: [2]. Fig. 1(a) illustrates a CP-net about preferences for evening
dress. It involves variables J , P , and S, standing for the jacket, pants, and shirt:

Fig. 1. CP-net and partial order induced by it

– preferred color is black (b) rather than white (w) for J and P : Pb > Pw, which
yields formula φP = (Pb, α), and Jb > Jw, which yields formula φJ = (Jb, β).

– the preference between the red and white shirts is conditioned on the combi-
nation of jacket and pants: if they have the same color, then a white shirt will
make my outfit too colorless, thus a red shirt is preferred: Pb ∧Jb : Sr > Sw;
Pw ∧ Jw : Sr > Sw, which yields formula φ−

S = (¬(J = P ) ∨ Sr, γ).
– Otherwise, if the jacket and the pants are of different colors, then a red

shirt will probably make the outfit too flashy, thus a white shirt is preferred.
Pb∧Jw : Sw>Sr; Pw∧Jb : Sw>Sr, which yields formula φ+

S =((J=P )∨Sw, γ).
Moreover, we assume α > γ and β > γ since P and S are father nodes of J .

4 Partial Order Relations over Vectors

In this section we will present a number of partial order relations with the
purpose to use them to generate a particular ordering over interpretations.
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In Section 3, we have shown how to encode a CP-net in a possibilistic logic
format. Since we can associate a vector to each interpretation with respect to
formulas in the possibilistic base, comparing two interpretations amounts to com-
paring their associated vectors. We first give definitions of some order relations
over vectors, and then discuss how to capture CP-net orderings when we inter-
pret possibilistic logic bases based on these vector comparison techniques. Let
v=(v1, ..., vk),v

′=(v′1, ..., v
′
k) ∈ Lk be two vectors, where L is a scale partially

ordered by >:

Definition 2 (Pareto). v �Pareto v′ if and only if ∀i, vi ≥ v′i and ∃j, vj > v′j.

Definition 3 (symmetric Pareto). v �SP v′ if and only if there exists a
permutation σ the components of v′, yielding vector v′σ, such that v �Pareto v′σ.

The discrimin order, denoted by �discrimin is defined for totally ordered scales
in the following way: identical vector components are discarded, and the mini-
mum of the remaining components for each vector are compared. Since here the
minimum does not always correspond to a single value, but to subsets of Lk, we
propose the following procedure for comparing the vectors:

Definition 4 (discrimin). Let D(v,v′) = {j|vj �= v′j} be the set of component
indices where the two vectors v and v′ differ. Then v �discrimin v′ iff
min({vi|i ∈ D(v,v′)}∪{v′i|i ∈ D(v,v′)}) ⊆ {v′i|i ∈ D(v,v′)}\{vi|i ∈ D(v,v′)}.
where min here returns the subset of the smallest incomparable values (wrt >).

In the standard case of a totally ordered scale, the leximin order is defined by
first reordering the vectors in an increasing way and then applying the discrimin
order to the reordered vectors. Since we deal with a partial order, the reordering
of vectors is no longer unique, and we have to generalize the definition:

Definition 5 (leximin). First, delete all pairs (vi, v
′
j) such that vi = v′j in

v and v′ (each deleted component can be used only one time in the deletion
process). Thus, we get two non overlapping sets r(v) and r(v′) of remaining
components, namely r(v) ∩ r(v′) = ∅. Then, v �lex v′ iff min(r(v) ∪ r(v′)) ⊆
r(v′).

In the following, we shall apply these relations to the particular vectors associated
to the possibilistic encoding of CP-nets, as explained in Section 3, where the
possible values of a vector component i are either 1 or 1 − αi (the αi being
distinct variables), and L = {1, 1− αi, i = 1, . . . , n} such that 1 > 1− αi.

Proposition 1. Leximin and discrimin orders coincide on these particular vec-
tors.

Proof. Indeed, since the value of a vector component is either ‘1’ or ‘1−αi’, and
since each possibilistic formula attached to a node in the CP-net is associated
with a different weight αi, we are sure that a given ‘1 − αi’ is present only in
one component position. With these hypotheses, the difference between leximin
and discrimin procedures is that leximin deletes some components with value ‘1’
because it is the only component value that can be in different ranks. But we
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know that ‘1’ is the greatest component value, so this cannot affect the result of
the final application of min operator in each case. Thus, leximin and discrimin
orders coincide on these particular vectors.

These relations have been previously used for capturing the CP-nets ordering:
symmetric Pareto (SP), discrimin in [8, 9], or leximin in [10] or min order in [6, 7].
In the next section, we provide a comparative discussion of these proposals and
we point out when each ordering fails to exactly retrieve the CP-net ordering.

5 CP-Nets vs. Possibilistic Logic: Counterexamples

It has been claimed that CP-net orderings can be captured by using the encoding
explained in Section 3 and applying the symmetric Pareto order [8, 9] recalled in
Section 4, or the leximin order [10], to vectors ω(Σ). This is in fact true only for
special families of CP-nets, as shown in the example below. But the possibilistic
encoding of CP-nets together with the use of one of the previously cited orders
do not always lead to an exact representation of CP-nets in the general case, as
we shall see on further examples.

Considering Ex. 1 again, Table 2 gives the satisfaction levels for the possi-
bilistic clauses encoding the 3 elementary preferences, and the 8 possible inter-
pretations (choices), where α, β, γ are the weights of nodes J, P, S respectively.

Table 1. Possible alternative choices in Example 1

Ω φP φJ φS

PbJbSr 1 1 1
PbJbSw 1 1 1- γ
PbJwSw 1 1-β 1
PwJbSw 1-α 1 1
PbJwSr 1 1-β 1-γ
PwJbSr 1-α 1 1-γ
PwJwSr 1-α 1-β 1-γ
PwJwSw 1-α 1-β 1

We introduce the following constraints, α > γ and β > γ between the symbolic
weights, which give priority to the constraint associated to father nodes J, P over
the ones corresponding to the child node S. Then, the application of symmetric
Pareto order or leximin order, allows us to rank-order interpretations. It can be
checked that the ordering of interpretations obtained by these two orders applied
to vectors ω(Σ) coincide with the ordering �N induced by the CP-net N , as
indicated in Fig. 1(b) (for short, PbJbSr is denoted bbr, etc.):

– bbr �N bbw �N bww �N bwr �N bwr �N wwr �N www.
– bbr �N bbw �N wbw �N wbr �N wwr �N www.

In order to provide a clear discussion about the possibilistic logic representation,
we first establish that a preference between interpretation vectors differing by
a single variable flip only depends on the instantiations of the corresponding
variable and its children:
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Proposition 2. Let Xi be a node in a CP-net N and Yi = V \{{Xi} ∪ Pa(Xi)}.
Let (Σ,
Σ) be the partially ordered possibilistic base associated with N using the
procedure of Section 3. If the CP-net contains the statement u : xi > ¬xi (resp:
u : ¬xi > xi), the preference only depends on the instantiations of variable xi

and its children nodes.

Proof: Let ω+ = uixiyi and ω− = ui¬xiyi, ui ∈ A+
i . Since they share the same

assignment of variables in Pa(Xi), both models satisfy either φ+
j or φ−

j , ∀Xj ∈
Pa(X). We denote by FPa the set of formulas φ+

j , φ
−
j , Xj ∈ Pa(Xi) falsified

by ω+, ω− (they are the same); and by FY the set of formulas φ+
j , φ

−
j , Xj ∈

Yi \Ch(Xi), (i.e. Xj is a neither a direct descendant of Xi nor one of its parents)
and falsified by ω+, ω−; and by FCh

ω+ the set of formulas φ+
j , φ

−
j , Xj ∈ Ch(Xi)

falsified by ω+ and FCh
ω− the set of formulas falsified by ω−. Then, Fω+ = FPa∪

FY ∪FCh
ω+ and Fω− = FPa∪{φ+

i }∪FY ∪FCh
ω− . So we have Fω \Fω′ = FCh

ω+ and
Fω′ \Fω = {φ+

i }∪FCh
ω− . Following the construction of (Σ,
Σ) we have that φ+

i

is strictly preferred to all formulas in FCh
ω+ ∪FCh

ω− . Then ∀φ ∈ Fω \Fω′, φ+
i �Σ φ.

Let Xk be a child of Xi. Note that by construction, ω+ |= φ+
k and ω− |= φ−

k .
Besides, ω+ |= ¬φ−

k if and only if ω+ |= uk, and ω− |= ¬φ+
k if and only if

ω− |= uk. Hence there are three cases for the child Xk:
– either ω+ |= uk and ω− |= ¬uk (then φ−

k ∈ FCh
ω+ , but φ+

k �∈ FCh
ω+ );

– or ω+ |= ¬uk and ω− |= uk (then φ+
k ∈ FCh

ω− , but φ−
k �∈ FCh

ω− );
– or ω+ |= ¬uk and ω− |= ¬uk, and FCh

ω− ∪FCh
ω+ does not contain any formula

pertaining to variable Xk.
Now, it becomes clear that ω+(Σ) and ω−(Σ) only differ on components per-
taining to children nodes of Xi and to Xi itself. �

Due to the specific structure of CP-nets, and since we have shown that a prefer-
ence is only related to a variable node and their children nodes (Proposition 2),
we have to consider the three following elementary cases:
– Case a: Two father nodes and a child node (see Fig 2(a)) (also Fig. 1);
– Case b: A father node and two children nodes (see Fig 2(b));
– Case c: A grandfather node, a father node and a child node (see Fig 2(c)).

Fig. 2. Elementary cases of CP-nets



188 D. Dubois, H. Prade, and F. Touazi

Then, any CP-net is a combination of these three elementary cases (with possibly
more fathers or children). Considering these three basic structures, the following
examples show in which case a particular order induced by (Σ,�Σ) fails to
capture the ordering of interpretations induced by the CP-net.

Example 2: V = {X,Y, Z} is the set of variables involved in the examples on
Fig. 2. In these examples, preference constraints are as follows: φ1 = x > x̄, φ2 =
y > ȳ, φ3 = (X ⇐⇒ Y : z > z̄,¬(X ⇐⇒ Y ) : z̄ > z), φ4 = (x : z > z̄, x̄ : z̄ >
z), φ5 = (x : y > ȳ, x̄ : ȳ > y) and φ6 = (y : z > z̄, ȳ : z̄ > z). The possibilistic
logic bases obtained in the different examples in Fig 2 are:

- Σa = {φ1, φ2, φ3}: φ1 = (x, α1), φ2 = (y, α2), φ3 = (((¬(x ∧ y) ∧ ¬(¬x ∧
¬y)) ∨ z) ∧ (¬(x ∧ ¬y) ∧ ¬(¬x ∧ y)) ∨ ¬z), α3), and min(α1, α2) �Σa α3,

- Σb = {φ1, φ4, φ5} with φ4 = ((¬x ∨ z) ∧ (x ∨ ¬z), α4), φ5 = ((¬x ∨ y) ∧ (x ∨
¬y), α5), and is such that α1 �Σb

max(α4, α5),
- Σc = {φ1, φ5, φ6} with φ6 = ((¬y∨z)∧ (y∨¬z), α6) and α1 �Σc α5 �Σc α6.

Table 2. Possible alternative choices in Example 2

Ω φ1 φ2 φ3 φ1 φ4 φ5 φ1 φ5 φ6

xyz 1 1 1 1 1 1 1 1 1
xyz̄ 1 1 1-α3 1 1-α4 1 1 1 1-α6

xȳz 1 1-α2 1-α3 1 1 1-α5 1 1-α5 1-α6

xȳz̄ 1 1-α2 1 1 1-α4 1-α5 1 1-α5 1
x̄yz 1-α1 1 1-α3 1-α1 1-α4 1-α5 1-α1 1-α5 1
x̄yz̄ 1-α1 1 1 1-α1 1 1-α5 1-α1 1-α5 1-α6

x̄ȳz 1-α1 1-α2 1 1-α1 1-α4 1 1-α1 1 1-α6

x̄ȳz̄ 1-α1 1-α2 1-α3 1-α1 1 1 1-α1 1 1

Results are as follows:

– In the 1st case (Na), symmetric Pareto and leximin orders are able to cap-
ture the ordering of the CP-net exactly. Otherwise, the min order fails to
distinguish between the interpretations {x̄yz, x̄yz̄, x̄ȳz, x̄ȳz̄} and between
{xȳz̄, xȳz}.

– In the 2nd case (Nb), symmetric Pareto order fails to capture the CP-net or-
dering exactly by leaving the two interpretations ω = xȳz̄ and ω′ = x̄ȳz̄ non
compared (while node X in the CP-net N� ensures xȳz̄ �N x̄ȳz̄). Otherwise
the representation is exact. The associated vectors ω(Σ)=(1, 1−α4, 1−α5)
and ω′(Σ) = (1 − α1, 1, 1) are not comparable by symmetric Pareto. In-
deed � σ s.t. ω(Σ) �SP ω′σ(Σ), since 1 − α1 < min(1 − α4, 1 − α5) while
1 > max(1− α4, 1− α5). Otherwise, the min order is able to compare these
two interpretations xȳz̄ �min x̄ȳz̄, but it fails to distinguish between the
interpretations {x̄yz, x̄yz̄, x̄ȳz, x̄ȳz̄} and between {xȳz̄, xyz̄}. But leximin is
able here to capture the CP-net ordering exactly.

– In the 3rd case (Nc), both leximin and min orders fail to capture the CP-net
ordering: the two interpretations ω = xȳz and ω′ = x̄ȳz̄ become comparable
while the CP-net cannot compare them. Since ω(Σ) = (1, 1−α5, 1−α6) and
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ω′(Σ) = (1 − α1, 1, 1), with min(ω(Σ))= 1 − α5, min(ω′(Σ))= 1 − α1 and
1 − α1 < 1 − α5, we have ω �lex ω′ and ω �min ω′. But symmetric Pareto
can capture the CP-net ordering exactly in this case.

To summarize, as observed in the Example, the symmetric Pareto order fails
to compare two interpretations when the concerned variable has more than one
child node as in Case b (Fig.2 (b)). Besides, in Case c (Fig.2 (c)) leximin and
min break the incomparability of some interpretations in the CP-net.

6 Approaching CP-Net Preferences by Possibilistic Logic

As seen in Ex. 2 of Section 5, the symmetric Pareto relation is not fine-grained
enough to capture the CP-net partial order in general, while the lexi-min order
may make some CP-net-incomparable interpretations comparable. In this Sec-
tion, we point out a class of CP-nets for which possibilistic logic with symbolic
weights can capture the CP-net partial order exactly. First, we prove that any
strict comparison obtained by symmetric Pareto is true for the CP-net order.

Proposition 3. Let N be an acyclic CP-net and (Σ,
Σ) be its associated par-
tially ordered base. Let 
SP be the partial order associated to (Σ,
Σ).

∀ω, ω′ ∈ Ω,ω �SP ω′ ⇒ ω �N ω′

Proof of Proposition 3
Suppose that ω �SP ω′. This means that there exists a permutation σ of ω′(Σ)
such that when comparing the result of this permutation with ω(Σ), the second
vector is greater than or equal to, componentwise, the reordered one. There are
two cases: either for any component, where there is no equality, the compari-
son between the two vectors is of the form 1 > 1 − ασ(i), or there is at least
one component where the comparison takes the form 1 − αj > 1 − ασ(k). This
corresponds respectively to two different situations:
i) ω′ falsifies more formulas in Σ than ω, and Fω ⊂ Fω′ , where Fω (resp.

F ′
ω) denotes the set of nodes falsified by interpretation ω (resp. ω′). This

corresponds to the first case above, where Fω′ \ Fω corresponds precisely
to the violated formulas whose priority ασ(i) is involved in the observed
inequalities 1 > 1− ασ(i); it is known that Fω ⊂ Fω′ entails ω �N ω′.

ii) ω′ falsifies at least one formula whose priority is greater than the one of
another formula violated by ω, namely 1−αj > 1−ασ(k), equivalent to αj <
ασ(k). In fact, there is at least one component in ω′(Σ) of the form 1−ασ(r)

which is a minimal component among those in the two subvectors on which
ω(Σ) and ω′(Σ) differ. It corresponds to a formula having maximal priority
(ασ(r)) violated by ω′ and not by ω. Now, the constraints αj < ασ(k) ≤ ασ(r)

reveal that the nodes corresponding in the CP-nets to these priorities are
related by a path in the CP-net linking an ancestor Xσ(r) (having maximal
priority) to a descendent Xj . The set of such paths can be associated with
a chain of improving flips from ω′ to ω, and thus ω �N ω′. �
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We have noticed that there are cases where the symmetric Pareto order together
with the possibilistic logic encoding does capture the CP-net ordering exactly.
The following proposition indicates a class of CP-nets where it is indeed the case.

Proposition 4. Let N be an acyclic CP-net with every node have at most one
child node. Let (Σ,
Σ) be its associated partially ordered base. Let 
SP be the
partial order associated to (Σ,
Σ). Then, ∀ω, ω′ ∈ Ω,ω �SP ω′ iff ω �N ω′.

Proof of Proposition 4
i) Suppose that ω �N ω′. We know that ω dominates ω’ (i.e. ω �N ω′) if and

only if there is a chain of worsening flips which consists of a change of the in-
stantiation of one variable each time. This means that there exists a sequence
ω0, · · · , ωk such that ω � ω0 � · · · � ωk � ω′, where ω � ω0, . . . , ωk � ω′ are
ceteris paribus preferences. We have shown in Proposition 1 that such pref-
erence statements are related to the concerned variable (which corresponds
here to the flip) and its children. Since we have supposed that each node
has at most one child node, the associated evaluation vectors for every two
interpretations in a chain of worsening flips differ on at most two compo-
nents corresponding to the flipped variable and its child node. Since we give
the priority to father node over the child node, the two interpretations are
ordered by �SP . So we have ω �SP ω0 �SP · · · �SP ωk �SP ω′, and finally
ω �SP ω′ by transitivity.

ii) By Proposition 3, we have: if ω �SP ω′ then ω �N ω′. �
We have also noticed on some examples that leximin order is more refined than
the order induced by the considered CP-net. The following proposition estab-
lishes that any strict comparison obtained by a CP-net is also true in its possi-
bilistic logic counterpart using leximin order:

Proposition 5. Let N be an acyclic CP-net. Let (Σ,
Σ) be its associated par-
tially ordered base. Then: ∀ω, ω′ ∈ Ω,ω �N ω′ ⇒ ω(Σ) �lex ω′(Σ)

Proof of Proposition 5
Since �N is transitive, it is enough to prove that this is true for ω �N ω′

where there is one worsening flip which consists in a change of the instantiation
of one variable, in the ceteris paribus preference style. By transitivity we get
the general case where there is a chain of worsening flips since leximin order
is also transitive. We have shown in Proposition 2 that such a ceteris paribus
preference pertains to the concerned variable and its children. So for ω and ω′,
min({vi ∈ ω(Σ)} ∪ {vi ∈ ω′(Σ)}) ⊆ {vj ∈ (ω′(Σ)} \ {vj ∈ (ω(Σ)}). Indeed
the evaluation associated to the father node is smaller than any other evaluation
associated with its children, and then the min will downrank the interpretation
that violates the father node. So we have ω �lex ω′. �

7 Related Work and Final Discussion

Possibilistic logic for preferences representation has been first advocated in [4, 5].
Its use with symbolic weights for approximating acyclic Boolean CP-nets [2] and
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TCP-nets [12], has been discussed in [6, 7, 13]. Then, a representation of CP-net
has been proposed using the symmetric Pareto order in [8, 9], and recalled in
[10, 14] using leximin order. This representation has been presented as being
faithful in the general case (without providing the proof). It turns out that
the representation using the symmetric Pareto order is exact only in special
cases. We have shown that it is indeed the case for the particular CP-nets where
nodes have at most one child. We have also proved that in general it is a lower
approximation, while the use of leximin order leads to an upper approximation.

Thus, the semantics of possibilistic logic that could lead to an exact repre-
sentation of any (acyclic) CP-net in the general case is still to be found (if it
exists). However, the partial ordering induced by the CP-net approach may ap-
pear somewhat questionable, as exemplified now, which in turn questions the
possibility of an exact representation of the latter by means of an approach that
handles preferences in a more global way.

Fig. 3. CP-net related to Example 3

Example 3: Let us consider the CP-net of Fig. 3 on variables V = {X,Y, S, Z, T }.
Let us consider the interpretations ω = xyzs̄t̄, ω′ = xȳz̄s̄t̄, ω′′ = x̄ȳz̄s̄t̄ and
ω′′′ = xyz̄s̄t. We notice that ω violates the preferences at two grandson nodes
S, T , but ω′ violates the preferences at children nodes Y, Z. Moreover, ω′′ violates
the preference at the father node X and ω′′′ violates preference at a child Z and
a grandson T . The CP-net order is such that ω �N ω′ �N ω′′, ω �N ω′′′, but
it tells nothing on ω′′′ vs. ω′′ and ω′. Thus, violating preferences at grandsons
S, T (ω) is better than violating preferences at children nodes Y, Z (ω′), which is
better than violating preferences at the father node X (ω′′), in agreement with
the CP-net implicit priorities. But it is troublesome that violating CP-net prefer-
ences at one child node Z and one grandson node T (ω′′′) is neither comparable
with the violation of preference at the two children nodes Y, Z (ω′), let alone
the father node X (ω′′). This is not acknowledged by the possibilistic approach
using leximin ordering.

8 Concluding Remarks

The interest for preference representation of the possibilistic logic framework re-
lies first on the logical nature of the representation and constitutes an alternative
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to the introduction of a preference relation inside the representation language,
as in, e.g., [15]. Moreover, the possibilistic representation is expressive (see [10]
for an introductory survey), and can capture partial orders thanks to the use of
symbolic weights, without being obliged to impose greater priority weights to
any preference (as it is the case for father node preferences in CP nets). Still
much remains to be done. First, the question of an exact representation of any
CP-net remains open. Moreover, an attempt has been made recently [10] for
representing more general CP-theories [16] in the possibilistic logic approach
(by introducing further inequalities between symbolic weights in order to take
into account the CP-theory idea that some preferences hold irrespective of the
values of some variables), where the leximin order seems to provide an upper
approximation. This remains to be confirmed and developed further. Comparing
CP-nets with Bayesian possibilistic nets would be also of interest.

Acknowledgements. The authors are grateful to Nic Wilson for useful com-
ments on their previous workshop paper [10].
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