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Abstract. The Dendritic Cell Algorithm (DCA) is an immune inspired
classification algorithm based on the behavior of natural dendritic cells.
The DCA performance relies on its data pre-processing phase based on
the Principal Component analysis (PCA) statistical method. However,
using PCA presents a limitation as it destroys the underlying semantics
of the features after reduction. One possible solution to overcome this
limitation was the application of Rough Set Theory (RST) in the DCA
data pre-processing phase; but still the developed rough DCA approach
presents an information loss as data should be discretized beforehand.
Thus, the aim of this paper is to develop a new DCA data pre-processing
method based on Fuzzy Rough Set Theory (FRST) which allows deal-
ing with real-valued data with no data quantization beforehand. In this
new fuzzy-rough model, the DCA data pre-processing phase is based on
the FRST concepts; mainly the fuzzy lower and fuzzy upper approxi-
mations. Results show that applying FRST, instead of PCA and RST,
to DCA is more convenient for data pre-processing yielding much better
performance in terms of accuracy.

Keywords: Dendritic cell algorithm, Fuzzy rough set theory, Feature
selection, Classification.

1 Introduction

The Dendritic Cell Algorithm (DCA) [1] is a bio-inspired classification binary
algorithm derived from behavioral models of natural dendritic cells (DCs) [2].
DCA has the ability to combine a series of informative signals with a sequence of
repeating abstract identifiers, termed “antigens”, to perform anomaly detection.
To achieve this and through the pre-processing phase, DCA selects a subset
of features and categorizes each selected feature into one of three signal types
which are defined as “Danger Signal” (DS), “Safe Signal” (SS) and as “Pathogen-
Associated Molecular Pattern”(PAMP). The resulting combination signal values
are then classified to form an anomaly detection style of two-class classification.

Initially, in [3], the principal component analysis (PCA) statistical method
was introduced in the DCA data pre-processing phase which is composed of
two main sub-steps; namely feature reduction and signal categorization. The
use of PCA aims to automatically reduce data dimension by generating new
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features to retain, which is achieved throughout the first sub-step, and to perform
their categorization to their specific signal types (SS, DS, and PAMP), which is
achieved throughout the second sub-step. However, applying PCA in the DCA
data pre-processing step, destroys the underlying meaning behind the features
present, initially, in the input database; seen as an undesirable property for the
DCA [4].

To have a more reliable data pre-processing phase and to overcome the PCA
limitation, in [4], a rough DCA version was introduced. The algorithm, named
RC-DCA, is based on the application of Rough Set Theory (RST) [5] for the
DCA data pre-processing task. To select features and based on the RST con-
cepts, RC-DCA selects the most informative attributes, a subset termed reduct,
that preserve nearly the same classification power of the original database. Fur-
thermore, in RC-DCA, the signal categorization step is based on the RST Reduct
and Core concepts. It was shown, in [4], that applying RST, instead of PCA,
to DCA is more convenient for data pre-processing yielding much better perfor-
mance in terms of accuracy.

However, based on rough set theory and to perform feature selection, the
attribute values of the input database should be discretized beforehand. Thus,
important information may be lost as a result of quantization [6]. Formally, in
most databases, the attribute values may be real, and this is where RST encoun-
ters a problem. It is not possible within this theory to say whether two attribute
values are similar and to what extent they are the same [6]. For instance, two
close values may only differ as a result of noise, but in RST they are considered
to be as different as two values of a different order of magnitude. One answer
to this problem has been to discretize the dataset beforehand, producing a new
database with crisp values. This is often still inadequate as it is a source of in-
formation loss; which is against the rough set objective of retaining information
content [6]. This information loss may influence the RC-DCA feature selection
process by generating an incorrect set of selected features; as a consequence,
this will misguide the algorithm categorization phase by categorizing the fea-
tures to erroneous signal categories. As a result, this will influence the algorithm
classification process by generating unreliable classification results.

To overcome the RST applicability restriction, Fuzzy Rough Set Theory
(FRST) [7] was introduced as a data reduction technique dealing with crisp
and real-valued attributed datasets. FRST, which utilizes the extent to which
values are similar, encapsulates the related but distinct concepts of vagueness
(for fuzzy sets) and indiscernibility (for rough sets), both of which occur as a
result of uncertainty in data; a method employing fuzzy-rough sets can han-
dle this uncertainty. We, therefore, in this paper, propose to develop a novel
fuzzy-rough DCA model based on a new feature selection and signal categoriza-
tion technique. Our fuzzy-rough DCA classification model, named FBR-DCA, is
based on the use of fuzzy rough set theory and more precisely on the use of the
fuzzy boundary region (FBR); to guarantee a more rigorous data pre-processing
phase.
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The major contributions of this paper are to introduce the concept of FRST
in the DCA data pre-processing phase and to show how FRST can be applied to
search for the most convenient set of features to select. Additionally, we aim to
show how the application of FRST can be appropriate for the categorization of
each selected feature to its right type of signal. This will be achieved by avoiding
the information loss already discussed, by keeping the semantics of the initial
attributes and with no need for a quantization process beforehand.

2 The Dendritic Cell Algorithm

DCA is a population based system, with each agent in the system is represented
as a cell. Each cell has the capacity to collect data items, termed antigens.
Formally, the DCA initial step is the automatic data pre-processing phase where
feature selection and signal categorization are achieved. More precisely, DCA
selects the most important features, from the initial input database, and assigns
each selected attribute to its specific signal category (SS, DS or PAMP). To do
so, the PCA was used. Once data pre-processing is achieved and after calculating
the values of the safe, PAMP and DS signals [8], DCA adheres these three signal
categories and antigen to fix the context of each object (DC) which is the step
of Signal Processing.

In fact, the algorithm processes its input signals (already pre-categorized) in
order to get three output signals: costimulation signal (Csm), semi-mature sig-
nal (Semi) and mature signal (Mat) [8]. A migration threshold is incorporated
into the DCA in order to determine the lifespan of a DC. As soon as the Csm
exceeds the migration threshold; the DC ceases to sample signals and antigens.
The migration state of a DC to the semi-mature state or to the mature state is
determined by the comparison between cumulative Semi and cumulative Mat.
If the cumulative Semi is greater than the cumulative Mat, then the DC goes
to the semi-mature context, which implies that the antigen data was collected
under normal conditions. Otherwise, the DC goes to the mature context, signi-
fying a potentially anomalous data item. This step is known to be the Context
Assessment phase.

The nature of the response is determined by measuring the number of DCs
that are fully mature and is represented by the Mature Context Antigen Value
(MCAV). MCAV is applied in the DCA final step which is the Classification
procedure and used to assess the degree of anomaly of a given antigen. The closer
the MCAV is to 1, the greater the probability that the antigen is anomalous.
By applying thresholds at various levels, analysis can be performed to assess the
anomaly detection capabilities of the algorithm. Those antigens whose MCAV
are greater than the anomalous threshold, which can be automatically generated
from the input data, are classified as anomalous while the others are classified as
normal. For a detailed description of the DCA and its implementation, please,
refer to [8].
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3 Rough Sets and Fuzzy-Rough Sets for Feature Selection

3.1 Fundamentals of Rough Set Theory

In Rough Set Theory (RST) [5], an information table is defined as a tuple
T = (U,A) where U and A are two finite, non-empty sets, U the universe of
primitive objects and A the set of attributes. A may be partitioned into C and
D, called condition and decision attributes, respectively. Let P ⊂ A be a subset
of attributes. The indiscernibility relation, IND(P ), is an equivalence relation
defined as: IND(P ) = {(x, y) ∈ U2 : ∀a ∈ P, a(x) = a(y)}, where a(x) denotes
the value of feature a of object x. The family of all equivalence classes of IND(P )
is denoted by U/IND(P ). Equivalence classes U/IND(C) and U/IND(D) are
respectively called condition and decision classes. For any concept X ⊆ U and
attribute subset R ⊆ A, X could be approximated using only the information
contained within P by constructing the P-lower and the P-upper approximations
of X defined as P (X) = {x ∈ U |[x]p ⊆ X} and P (X) = {x ∈ U |[x]p ∩X �= ∅},
respectively. The lower approximation of X is the set of objects of U that are
surely in X and the upper approximation of X is the set of objects of U that are
possibly in X . The tuple < P (X), P (X) > is called a rough set. Let P and Q be
sets of attributes inducing equivalence relations over U , then the positive region
can be defined as: POSP (Q) =

⋃
X∈U/Q P (X). The positive region contains all

objects of U that can be classified into classes of U/Q using the information in
attribute P .

For feature selection, RST defines the core and the reduct concepts. The
core is equivalent to the set of features which are indispensable attributes that
cannot be removed without loss of prediction accuracy of the original database.
The reduct is a combination of all these features and some features that can
sometimes contribute to prediction accuracy. In RST, a subset R ⊆ C is said to
be a D-reduct of C if POSR(D) = POSC(D) and there is no R′ ⊂ R such that
POSR′ (D) = POSC(D). There may exist a family (F ) of reducts, REDF

D(C),
in T . The core is the set of attributes that are contained in all reducts, defined
as: CORED(C) =

⋂
REDF

D(C).

3.2 Fundamentals of Fuzzy Rough Set Theory

Fuzzy Rough Set Theory (FRST) [7] comes as an extension to RST as this
latter theory can only operate effectively with datasets containing discrete values.
As most datasets contain real-valued attributes, it is necessary to perform a
discretization step beforehand. To avoid this information loss, fuzzy rough set
theory is applied.

Basic Concepts. In the same way that crisp equivalence classes are central to
rough sets, fuzzy equivalence classes are central to the fuzzy-rough set approach.
For typical applications, this means that the decision values and the conditional
values may all be fuzzy. The concept of crisp equivalence classes can be ex-
tended by the inclusion of a fuzzy similarity relation S on the universe, which
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determines the extent to which two elements are similar in S. The fuzzy lower
and fuzzy upper approximations become μRPX(x) = infy∈UI(μRP (x, y), μX(y))
and μRPX(x) = supy∈UT (μRP (x, y), μX(y)). In the presented formulae, I is a
fuzzy implicator and T is a t-norm. RP is the fuzzy similarity relation induced
by the subset of features P : μRP (x, y) =

⋃
a∈P {μRa(x, y)} where μRa(x, y) is

the degree to which objects x and y are similar for feature a. A fuzzy sim-
ilarity relation can be constructed for this purpose, defined as: μRa(x, y) =

max(min( (a(y)−(a(x)−σa))
(a(x)−(a(x)−σa))

, ((a(x)+σa)−a(y))
((a(x)+σa)−a(x)) ), 0) where σa is the standard devi-

ation of feature a. The tuple < P (X), P (X) > is called a fuzzy-rough set.
The difference between the fuzzy lower approximation, containing information
regarding the extent of certainty of object membership to a given concept,
and the fuzzy upper approximation, containing information regarding the de-
gree of uncertainty of objects, generates the fuzzy boundary region; defined as:
μBNDRP

(X)(x) = μRPX(x) − μRPX(x). This subset contains objects within the
boundary region with less uncertainty.

Reduction Process. To search for the optimal subset of features, the fuzzy-
rough reduct, the uncertainty for every concept has to be calculated. The un-
certainty for a concept X using features in P can be calculated as follows:

UP (X) =

∑
x∈U μBNDRP

(X)(x)

|U| . This is the average extent to which objects belong

to the fuzzy boundary region for the concept X . The total uncertainty degree

for all concepts, given a feature subset P , is defined as: γ
′
P (Q) =

∑
X∈U/Q UP (X)

|U/Q| .

A Fuzzy-Rough QuickReduct algorithm, defined in Fig.1, can be constructed
for locating a fuzzy-rough reduct based on this measure. The task of the algo-
rithm is to minimize the total uncertainty degree. When this reaches the mini-
mum for the dataset, a fuzzy-rough reduct has been found. A worked example
on how to compute a fuzzy-rough reduct using the Fuzzy-Rough QuickReduct
algorithm, based on the fuzzy boundary region, can be found in [9].

Fig. 1. Fuzzy-Rough QuickReduct algorithm
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4 FBR-DCA: The Fuzzy-Rough Solution Approach

In this Section, we focus mainly on our FBR-DCA data pre-processing step as
the rest of the fuzzy-rough FBR-DCA steps including Signal Processing, Con-
text Assessment and the Classification procedure are performed the same as the
standard DCA and as described, previously, in Section 2.

4.1 The FBR-DCA Signal Selection Process

For antigen classification, our learning problem has to select high discriminat-
ing features from the original input database which corresponds to the antigen
information dataset. We may formalize this problem as an information table,
where universe U = {x1, x2, . . . , xN} is a set of antigen identifiers, the condi-
tional attribute set C = {c1, c2, . . . , cA} contains each feature of the information
table to select and the decision attribute D of our learning problem corresponds
to the class label of each sample. As FBR-DCA is based on the standard DCA
concepts, except for the data pre-processing phase, and since DCA is applied
to binary classification problems; then our developed FBR-DCA will be, also,
applied to two-class datasets. Therefore, the decision attribute, D, of the input
database of our FBR-DCA has binary values dk: either the antigen is collected
under safe circumstances reflecting a normal behavior (classified as normal) or
the antigen is collected under dangerous circumstances reflecting an anomalous
behavior (classified as anomalous). The condition attribute feature D is defined
as follows: D = {normal, anomalous}.

For feature selection, FBR-DCA has to determine, first of all, the fuzzy bound-
ary region for both concepts, the two-class labels, dk. To do so, the fuzzy lower
and the fuzzy upper approximations of each concept dk for each feature ci and
for all objects xj must be calculated. The fuzzy boundary region, the fuzzy
lower and the fuzzy upper approximations are denoted by: μBNDRci

(dk)(xj),

μRci
({dk})(xj) and μRci

({dk})(xj), respectively. Once the fuzzy boundary regions

are measured, FBR-DCA calculates the uncertainty degrees for each attribute
ci for each concept dk, denoted by Uci(dk), as presented in Section 3.

To find the fuzzy-rough reduct, FBR-DCA starts off with an empty set and
moves to calculate the total uncertainty degrees for each feature ci; defined as
γ

′
ci(D). The attribute cm having the smallest total uncertainty degree among all

the calculated total uncertainty degrees of the remaining features is added to
the empty fuzzy-rough reduct set. Once the first attribute cm is selected, FBR-
DCA adds, in turn, one attribute to the selected first attribute and computes
the total uncertainty degrees of each obtained attributes’ couple γ

′
{cm,ci}(D). The

algorithm chooses the couple having the smallest total uncertainty degree. The
process of adding each time one attribute to the subset of the selected features
continues until the total uncertainty degree of the obtained subset results in the
minimal uncertainty for the dataset.
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The generated subset of the selected features, constituting the fuzzy-rough
reduct, shows the way of reducing the dimensionality of the original dataset
by eliminating those conditional attributes that do not appear in the set. Those
discarded attributes are removed in each FBR-DCA computation level since they
do not add anything new to the target concept nor help the FBR-DCA to perform
well its classification task. In fact, the obtained fuzzy-rough reduct includes the
most informative features that preserve nearly the same classification power
of the original dataset. Using the fuzzy-rough reduct concept, our method can
guarantee that attributes of extracted feature patterns will be the most relevant
for the FBR-DCA classification task.

4.2 The FBR-DCA Signal Categorization Process

The second step of our FBR-DCA data pre-processing phase is signal catego-
rization. More precisely, our method has to assign for each selected attribute,
produced by the previous step and which is included in the generated fuzzy-
rough reduct, its definite and specific signal category. The general guidelines for
signal categorization are based on the semantic of each signal type [1]:

• Safe signals: Certainly indicate that no anomalies are present.
• PAMPs: Usually mean that there is an anomalous situation.
• Danger signals: May or may not show an anomalous situation, however the
probability of an anomaly is higher than under normal circumstances.

From the definitions stated above, both PAMP and SS are positive indicators of
an anomalous and normal situation while the DS is measuring situations where
the risk of anomalousness is high, but there is no signature of a specific cause.
In other words, PAMP and SS have a certain final context (either an anomalous
or a normal behavior) while the DS cannot specify exactly the final context to
assign to the collected antigen. This is because the information returned by the
DS is not certain as the collected antigen may or may not indicate an anomalous
situation. This problem can be formulated as follows:

Based on the semantics of the mentioned signals, a ranking can be performed
for these signals. More precisely, both SS and PAMP are more informative than
DS which means that both of these signals can be seen as indispensable at-
tributes; reflecting the first and the second ranking positions. To represent this
level of importance, our method uses the first obtained couple of features through
the fuzzy-rough reduct generation. On the other hand, DS is less informative
than PAMP and SS; reflecting the last and third ranking position. Therefore,
our method applies the rest of the fuzzy-rough reduct attributes, discarding the
two first selected attributes that are chosen to represent the SS and PAMP
signals, to represent the DS. More precisely, our method processes as follows:

As FBR-DCA has already calculated the total uncertainty degree of each
attribute ci a part, γ

′
ci(D), FBR-DCA selects the first attribute cm having the

smallest total uncertainty degree to form the SS as it is considered the most
informative first feature added to the fuzzy-rough reduct. With no additional
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computations and since FBR-DCA has already computed the total uncertainty
degree of each attributes’ couple γ

′
{cm,ci}(D) when adding, in turn, one attribute

ci to the selected first attribute cm that represents the SS, FBR-DCA chooses
the couple having the smallest total uncertainty degree. More precisely, FBR-
DCA selects that second attribute cr having the smallest γ

′
{cm,cr}(D) among

the calculated γ
′
{cm,ci}(D); to form the PAMP signal. Finally, the rest of the

fuzzy-rough reduct attributes are combined and affected to the DS as it is less
than certain to be anomalous.

Once the selected features are assigned to their suitable signal types, our
method calculates the values of each signal category using the same process
as the standard DCA [8]. The output is, thus, a new information table which
reflects the signal database. In fact, the universe U of the induced signal dataset
is U = {x′

1, x
′
2, . . . , x

′
N} a set of antigen identifiers and the conditional attribute

set C = {SS, PAMP,DS} contains the three signal types: SS, PAMP and DS.
Once data pre-processing is achieved, FBR-DCA processes its next steps which
are the Signal Processing, the Context Assessment and the Classification phase
as the DCA does and as described in Section 2.

5 Experimental Setup

To test the validity of our FBR-DCA fuzzy-rough model, our experiments are
performed on two-class, real-valued attributes, databases from [10]. The used
databases are described in Table 1.

Table 1. Description of Databases

Database Ref � Instances � Attributes

Sonar SN 208 61
Molecular-Bio Bio 106 59
Spambase SP 4601 58
Cylinder Bands CylB 540 40
Chess Ch 3196 37
Ionosphere IONO 351 35
Sick Sck 3772 30
Mushroom Mash 8124 23
Horse Colic HC 368 23
German-Credit GC 1000 21
Red-White-Win RWW 6497 13

It is likely that not all of the attributes presented in the mentioned databases,
are required to determine the class of each instance. Hence, feature selection,
which is the first sub-step of the DCA data pre-processing phase, is needed.
In [4], this is achieved by applying RST. However, as the datasets are entirely
composed of real-valued attributes, discretization had to be performed. This is
clearly a potential source of information loss. By applying the present work,
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FBR-DCA, such loss can be reduced as attribute values are kept unchanged;
no quantization is performed on the original databases. We try to show that
our FBR-DCA can operate well in case of real-valued attributes avoiding the
mentioned information loss while generating better classification results than
when applying the crisp rough set theory. Thus, we will compare our FBR-DCA
model to the crisp rough DCA approach, RC-DCA. Note that FBR-DCA and
RC-DCA are based on the same concepts, except for the data pre-processing
phase, as the standard DCA version, PCA-DCA. For data pre-processing, FBR-
DCA applies FRST, RC-DCA applies RST and the standard DCA applies PCA.

For the DCA approaches, namely FBR-DCA, RC-DCA and PCA-DCA, each
data item is mapped as an antigen, with the value of the antigen equal to the
data ID of the item. For all DCA algorithms, a population of 100 cells is used.
The migration threshold of an individual DC is set to 10. To perform anomaly
detection, a threshold which is automatically generated from the data is ap-
plied to the MCAVs. The MCAV threshold is derived from the proportion of
anomalous data instances of the whole dataset. Items below the threshold are
classified as class one and above as class two. The resulting classified antigens
are compared to the labels given in the original datasets. For each experiment,
the results presented are based on mean MCAV values generated across a 10-fold
cross validation.

We evaluate the performance of the DCA methods in terms of number of
extracted features, running time, sensitivity, specificity and accuracy which are
defined as: Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP );
Accuracy = (TP + TN)/(TP + TN + FN + FP ); where TP, FP, TN, and
FN refer respectively to: true positive, false positive, true negative and false
negative. We will, also, compare the classification performance of our FBR-
DCA method to well known classifiers which are the Support Vector Machine
(SVM), Artificial Neural Network (ANN) and the Decision Tree (DT) and to
the standard DCA version, PCA-DCA. The parameters of SVM, ANN and DT
are set to the most adequate parameters to these algorithms using the Weka
software. All experiments are run on a Sony Vaio G4 2.67 Ghz machine.

FRST has been experimentally evaluated with other leading feature selec-
tion techniques, such as Relif-F and entropy-based approaches in [11], and has
been shown to outperform these in terms of resulting classification performance.
Hence, only comparison to fuzzy rough set theory and rough set theory are
given here. In addition, in [4], it was already shown that RC-DCA outperforms
PCA-DCA. Thus, comparisons are made between FBR-DCA and RC-DCA.

6 Results and Analysis

Let us remind that the first step of the DCA classification algorithm is data
pre-processing which is based on the use of PCA [3]. In [4], results showed
that applying PCA for both feature selection and signal categorization is not
convenient for the DCA as both phases are not consistent. It was, also, shown
that applying rough set theory with DCA is a good alternative leading to a
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better classification performance. However, the developed RC-DCA rough model
suffers from a main limitation which is the performance of data discretization
beforehand.

Table 2. Comparison Results of DCA Approaches

Specificity(%) Sensitivity(%) Accuracy(%) Time(s) � Attributes
Database DCA DCA DCA DCA DCA

RC FBR RC FBR RC FBR RC FBR RC FBR

SN 93.82 97.93 90.10 97.29 91.82 97.59 1705.79 14.87 20 9

Bio 79.24 92.45 77.35 86.79 78.30 89.62 1679.53 13.58 19 9

SP 98.49 99.89 98.40 99.77 98.45 99.84 3184.83 2119.95 8 8

CylB 97.75 98.39 97.00 97.00 97.46 97.85 1441.93 29.06 7 5

Ch 98.88 98.82 98.80 99.40 98.84 99.12 1779.83 714.95 11 4

IONO 97.33 99.11 96.82 98.41 97.15 98.86 668.32 41.12 19 9

Sck 97.68 99.09 96.96 96.53 97.64 98.93 1401.43 704.95 20 14

Mash 99.76 99.95 99.51 99.92 99.64 99.93 4567.34 4092.6 6 3

HC 94.73 97.36 93.05 96.29 93.75 96.73 260.08 39.84 14 5

GC 90.77 90.35 89.05 87.95 90.30 89.70 533.72 196.9 17 10

RWW 99.49 99.37 99.22 99.18 99.29 99.23 2201.98 1599.11 6 3

In this Section, we aim to show that applying FRST, instead of RST, can avoid
the information loss caused by the mandatory step of data quantization. We,
also, aim to show that by leaving the attribute values unchanged, our proposed
FBR-DCA algorithm is able to select fewer features than the crisp rough RC-
DCA approach, leading to better guide the FBR-DCA algorithm classification
process. This is confirmed by the results presented in Table 2. For instance,
from Table 2, we can notice that our new fuzzy-rough DCA model, FBR-DCA,
has fewer features than the rough DCA model, RC-DCA. This is explained by
the fact that FBR-DCA, by applying the Fuzzy-Rough QuickReduct algorithm,
incorporates the information usually lost in crisp discretization by utilizing the
fuzzy boundary region to provide a more informed technique. The results show
that FBR-DCA selects features without much loss in information content. Our
FBR-DCA new approach performs much better than traditional RST on the
whole, in terms of both feature selection and classification quality. For instance,
applying FBR-DCA to the Bio database, the number of selected attributes is 9.
However, when applying RC-DCA to the same database, the number of selected
features is set to 19. A second example can be the HC dataset where the number
of selected features, by applying FBR-DCA, is reduced by more than 50% (5
features) in comparison to the number of features selected by the crisp rough
DCA model, RC-DCA, which is set to 14.

Furthermore, from Table 2, we can notice that our FBR-DCA outperforms
RC-DCA in terms of classification accuracy. For instance, when applying the
algorithms to the SN dataset, the classification accuracy of FBR-DCA is set to
97.59%. However, when applying RC-DCA to the same database, the accuracy
is set to 91.82%. Same remark is observed for the specificity and the sensitivity
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criteria. When comparing the results in terms of running time, we can notice
that the time taken by our FBR-DCA to process is less than the time needed by
RC-DCA to function. This is explained by the fact that our FBR-DCA gener-
ates only one fuzzy-rough reduct as it is based on the Fuzzy-Rough QuickReduct
algorithm. In contrast, RC-DCA generates all possible reducts that can be pro-
duced from data. Obviously, this is an expensive solution to the problem. Most
of the time only one reduct is required as, typically, only one subset of fea-
tures is used to reduce a dataset, so all the calculations involved in discovering
the rest are pointless. Moreover, RC-DCA proposes different solutions for signal
categorization; in case where the algorithm generates one reduct and when the
algorithm generates a family of reducts; which is seen as a time consuming task.
For example, when applying the algorithms to the Bio database, the amount of
time taken by our FBR-DCA to process is 13.58(s) which is much less than the
time taken by RC-DCA which is set to 1679.53(s).

We have, also, compared the performance of our FBR-DCA to other classifiers
which are SVM, ANN and DT. The comparison made is in terms of the average
of accuracies on the databases presented in Table 1. Fig.2 shows that the stan-
dard PCA-DCA has nearly the same classification performance as SVM and a
better one than ANN and DT. It, also, shows that RC-DCA outperforms all the
mentioned classifiers including the PCA-DCA in terms of overall accuracy. This
is explained by the fact that RC-DCA applies rough set theory, instead of PCA,
in the algorithm data pre-processing phase. Most importantly, the highest clas-
sification accuracy is noticed for our fuzzy-rough DCA new model, FBR-DCA.
These promising FBR-DCA results are explained by the appropriate application
of FRST to the DCA data pre-processing phase. This makes the algorithm a
better classifier by generating more reliable and more pertinent results.

Fig. 2. Classifiers’ Average Accuracies

To summarize, we have shown, in this Section, that our proposed FBR-DCA
has the advantages of selecting fewer features than our proposed first work; RC-
DCA. FBR-DCA is capable of avoiding the information loss caused by the use
of the crisp rough set theory. The application of FBR-DCA to the unchanged
attribute values led our new fuzzy-rough model to better guide its classification
task yielding better performance in terms of classification accuracy. FBR-DCA
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is, also, characterized by its lightweight in terms of running time in comparison to
RC-DCA. Another characteristic of our FBR-DCA approach, when comparing it
to the standard DCA version when applying PCA, is that it holds the semantics
of the initial attributes. Adding to this, our fuzzy-rough DCA model, FBR-DCA,
can effectively select features with no need for user-supplied information.

7 Conclusion and Future Works

In this paper, we have proposed a new hybrid DCA classification model based on
fuzzy rough set theory. Our model aims to select the convenient set of features
and to perform their signal categorization using the Fuzzy-Rough QuickReduct
algorithm. Our proposed solution, FBR-DCA, ensures a more rigorous data
pre-processing, for the DCA, when dealing with databases with real-valued at-
tributes. Results show that FBR-DCA is capable of performing better its classi-
fication task than the standard DCA, the crisp rough RC-DCA model and other
classifiers.
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