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Preface

The biennial ECSQARU conferences constitute a forum for advances in the
theory and practice of reasoning under uncertainty. Contributions typically come
from researchers who are interested in advancing technology and from practi-
tioners using uncertainty techniques in real-world applications. The scope of
the conference series encompasses fundamental issues, representation, inference,
learning, and decision making in qualitative and numeric uncertainty paradigms.

Previous ECSQARU events were held in Marseille (1991), Granada (1993),
Fribourg (1995), Bonn (1997), London (1999), Toulouse (2001), Aalborg (2003),
Barcelona (2005), Hammamet (2007), Verona (2009), and Belfast (2011). The
12th European Conference on Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty was held in Utrecht, The Netherlands, from July 8 to
July 10, 2013. The 44 papers presented at the conference were selected from
89 submitted manuscripts. Each submission underwent rigorous reviewing by at
least three members of the ECSQARU Program Committee. From the 44 ac-
cepted papers, eight papers were selected for plenary presentation to honor their
high quality.

In addition to the main program of paper presentations, ECSQARU 2013 fea-
tured a tutorial program on July 7; we are thankful to Hans L. Bodlaender, Fabio
G. Cozman, Sébastien Destercke, and Jonathan Lawry for their most insightful
tutorials. ECSQARU 2013 further included keynote talks by three outstanding
researchers in the field:

Gert de Cooman (Ghent University, Ghent, Belgium):
Inference Under Exchangeability Using Sets of Desirable Gambles

A. Philip Dawid (University of Cambridge, Cambridge, UK):
Conditional Independence for Causal Reasoning

Simon Parsons (Brooklyn College, New York, USA):
The State of the Argument

We are most grateful for their highly inspiring presentations.
To conclude, we would like to thank the members of the Program Committee

and the additional reviewers for their efforts; their reviews were most instru-
mental in selecting the best submissions for presentation during the conference.
Thanks are also due to the student volunteers for letting the conference run
smoothly. And, last but not least, we are most indebted to our sponsors for their
financial support.

May 2013 Linda C. van der Gaag
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A Formal Concept View

of Abstract Argumentation

Leila Amgoud and Henri Prade

IRIT University of Toulouse, 118 rte de Narbonne, Toulouse, France
{amgoud,prade}@irit.fr

Abstract. The paper presents a parallel between two important theo-
ries for the treatment of information which address questions that are
apparently unrelated and that are studied by different research communi-
ties: an enriched view of formal concept analysis and abstract argumenta-
tion. Both theories exploit a binary relation (expressing object-property
links, attacks between arguments). We show that when an argumenta-
tion framework rather considers the complementary relation does not
attack, then its stable extensions can be seen as the exact counterparts
of formal concepts. This leads to a cube of oppositions, a generaliza-
tion of the well-known square of oppositions, between eight remarkable
sets of arguments. This provides a richer view for argumentation in cases
of bi-valued attack relations and fuzzy ones.

Keywords: argumentation, formal concept analysis, possibility theory,
square of oppositions.

1 Introduction

Formal concept analysis [34, 29] exploits a binary relation that links objects and
properties. This relation, called ‘formal context’, is usually a classical 2-valued
one (i.e., an object has, or not, a property), but may be also a fuzzy relation
[5–7] when properties may be a matter of degree. From this relation, the notion
of ‘formal concept’ is defined as maximal sets of pairs made of a subset of objects
and a subset of properties, such that each object in a subset has all the properties
in the associated subsets, and the objects in a subset are the only ones to have all
these properties, in the considered context. Formal concepts are characterized
by a fixed-point equation through a Galois connection. A recent parallel [18]
with possibility theory [19] has shown the interest of introducing operators in
this setting other than the one underlying the notion of formal concept, which
leads to consider other connexions as well [15, 22].

In a fully independent way, an abstract theory of argumentation [24] has
been developed on the basis of a binary attack relation between arguments.
This relation, generally a classical one, may also become fuzzy when one tries
to model the strength of arguments [25]. The objective is then to determine
noticeable subsets of arguments that in particular constitute stable extensions

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 L. Amgoud and H. Prade

in the sense they are without internal conflict, and where each argument outside
the extension is attacked by an argument of the extension.

The exploitation in each setting of a classical binary relation, which may be
more generally fuzzy, may lead to wonder about a possible parallel between the
two theories, and about their possible mutual enrichment. In the next section
we restate the formal elements of the abstract theory of argumentation and em-
phasize the different existing relational equations. Then in Section 3 in the same
spirit, we recall the basis of formal concept analysis enriched by the operators
induced by the parallel with possibility theory. In Section 4, we make a paral-
lel between the abstract theory of argumentation and formal concept analysis,
which especially sheds light on the parallel between stable extension and formal
concept. Section 5 provides an analysis in terms of opposition structures that
help to get an organized view of different subsets of remarkable arguments. The
concluding remarks briefly considers the case of fuzzy relations, and in particu-
lar suggests lines of research for extending abstract theory of argumentation to
situations where attacks are weighted.

2 Argumentation

P. M. Dung [24], in a famous article which has raised considerable interest, has
proposed to define an argumentation system as a pair (A,R) where A is a set
of arguments, and R (�= ∅) a binary relation over A, i.e., R ⊆ A×A. Given two
arguments a ∈ A and b ∈ A, (a, b) ∈ R, or equivalently aRb, then means that a
attacks b. An argumentation system (A,R) can then be seen as an oriented graph,
where arguments are its nodes, and where the elements of R are the vertices. As
can be seen the notion of argument, which intuitively corresponds in the logical
view (see, e.g., [31]) to a minimal consistent set of formulas that in a given
logical setting enable us to deduce a formula of interest, is here “abstractized”,
as well as the notion of attack (which amounts in practice to challenge a deduced
formula, either directly, or by challenging one of the formulas appearing in the
argument for establishing its conclusion). Dung’s framework has been often used
as a reference setting and as a starting point in many artificial intelligence works
in argumentation until now.

A subset S ⊆ A of arguments attacks an argument a

if ∃s ∈ S and sRa.

A subset S ⊆ A of arguments attacks a subset S′ ⊆ A

if ∃s ∈ S and ∃s′ ∈ S′ and sRs′.

A subset S of arguments is conflict free

if �(a, b) ∈ S × S such as aRb.
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Given an argumentation system (A,R), a key question that naturally arises is the
definition of acceptable subsets of arguments; an acceptable subset of arguments
is called extension. Different forms of acceptability exist. A well-known one is
the notion of stable extension.

A subset S of arguments without conflict is a stable extension if and only if

∀a �∈ S, ∃s ∈ S and sRa.

In other words, a stable extension attacks all the arguments outside. Other forms
of acceptability use the notion of defense. An argument a ∈ A is defended by
a subset of arguments S if and only if for each argument b ∈ A that attacks a,
∃s ∈ S such that sRb. A conflict-free subset S of arguments is an admissible
extension if and only if each argument of S is defended by S. A stable extension
is admissible.

One can then introduce remarkable sets associated with an argument a, or
with a subset of arguments S in terms of attack or defense, which help to make
the definitions more precise and to establish some properties :

– the set of arguments attacking a

Ra = {s ∈ A|sRa};
– the set of arguments attacked by a

aR = {s ∈ A|aRs};
– the set of arguments attacked by S

R+(S) = {a ∈ A|S attacks a}
= {a ∈ A|∃s ∈ S, sRa}
= {a ∈ A|S ∩Ra �= ∅};

– the set of arguments attacking S
R−(S) = {a ∈ A|a attacksS}

= {a ∈ A|∃s ∈ S, aRs}
= {a ∈ A|S ∩ aR �= ∅};

– the set of arguments defended by S
Def(S) = {a ∈ A|S defends a}

= {a ∈ A|∀b ∈ A t.q. bRa, ∃s ∈ S s.t. sRb}
= {a ∈ A|Ra ⊆ R+(S)}.

The set of arguments defended by S is indeed made of the arguments whose
attackers are attacked by S.

It can be checked that

– S is conflict-free if and only if [1]
S ⊆ R+(S),

where T = A \ T . Indeed, the arguments that S attacks are then in S
(R+(S) ⊆ S).

– S is a stable extension if and only if [24]

S = R+(S). (1)
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This follows from above, and from the definition of stability that requires
S ⊆ R+(S). Note also that the set of arguments non attacked by S is equal
to

R+(S) = {a ∈ A|∀s ∈ S, sRa}, i.e., we have

R+(S) = {a ∈ A|S ⊆ Ra} (2)

where sRa means that s does not attack a. One can then establish that:

– Def(S) = R+(R+(S)) [1].

Indeed, applying Equation 2 one gets R+(R+(S)) = {a ∈ A|R+(S) ⊆ Ra},

which provides the proof since Ra = Ra, taking into account the definition
of Def(S).

Thus if S is a stable extension, Equation 1 holds, and then

Def(S) = S

In a stable extension, the arguments are thus defending themselves.

One can still establish that [8]

– S is an admissible extension if and only if

S ⊆ Def(S) ∩R+(S).

Indeed, this is equivalent to S ⊆ Def(S) ∧ S ⊆ R+(S), which indeed means
that the arguments in S are both defended by S and non attacked by S (S
is thus conflict-free). This condition can be still written

S ⊆ {a ∈ A|R+(S) ⊆ Ra ∧ S ⊆ Ra}
⇔ S ⊆ {a ∈ A|(R+(S) ∪ S) ⊆ Ra}
⇔ S ⊆ {a ∈ A|Ra ⊆ (R+(S) ∩ S)}.

– S is an admissible extension if and only if

S ⊆ Def(S ∩R−(S)).

Indeed, this condition guarantees that S is conflict-free, since it expresses
that each argument in S is defended by an argument in S that does not attack
S (we have R−(S) = {a ∈ A|S ⊆ aR}). Indeed, if aRb with (a, b) ∈ S2, b
cannot be defended by c (i.e. cRa and thus c ∈ R−(S)) with c ∈ R−(S).

– An admissible extension S is said complete if and only if each argument
which is defended by S is in S [24]. Thus S is complete if and only if S is
admissible and Def(S) ⊆ S. Thus, we have
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S is a complete extension if and only if

S = Def(S) ∩R+(S).

Moreover, if S is a complete extension, then

S = Def(S).

3 Formal Concept Analysis

Formal concept analysis (FCA) [4, 34] provides a theoretical setting for the learn-
ing of hierarchies of concepts (from which association rules can be extracted). It
starts with a formal context K = (O,P ,R) where R is a binary relation com-
pletely defined between a set of objects O and a set of Boolean properties P .
Namely, R ⊆ O × P . A formal context is often visualized under the form of a
table such that the presence of a cross (×) (resp. its absence) in a cell indicates
if an objet satisfies (resp. does not satisfy) the corresponding property.

Given an object x and a property y, let R(x) = {y ∈ P | xRy} be the set
of properties satisfied by object x (xRy means that x has property y) and let
R(y) = {x ∈ O | xRy} be the set of objects having property y. In FCA, one
defines correspondences between the sets 2O and 2P . These correspondences are
called Galois derivation operators. The Galois operator, which is at the basis of
FCA, here denoted (.)Δ (for reasons made clear later), enables us to express the
set of properties satisfied by all the objects in X ⊆ O as :

XΔ = {y ∈ P | ∀x ∈ O (x ∈ X ⇒ xRy)}
= {y ∈ P | X ⊆ R(y)} =

⋂
x∈X R(x)

We can also express, in a dual manner, the set of objects satisfying all the
properties in Y as :

Y Δ = {x ∈ O | ∀y ∈ P (y ∈ Y ⇒ xRy)}
= {x ∈ O | Y ⊆ R(x)} =

⋂
y∈Y R(y)

The dual pair of operators ((.)Δ, (.)Δ) applied respectively to 2O and to 2P

constitutes a Galois connexion that enables the definition of formal concepts.
Aformal concept is a pair (X,Y ) such as

XΔ = Y and Y Δ = X.

In other words, X is the maximal set of objects satisfying all the properties
already satisfied by all the objects in X . The set X (resp. Y ) is called extension
(resp. intension) of the concept. It can be shown that in an equivalent way,
(X,Y ) is a formal concept if and only if it is a maximal pair in the sense of set
inclusion such as

X × Y ⊆ R.
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The set of all the formal concepts is naturally equipped with an order relation
(denoted �) and defined as : (X1, Y1)  (X2, Y2) iff X1 ⊆ X2 (or Y2 ⊆ Y1).
This set equipped with the order relation � forms a complete lattice B(K). The
operators meet and join in the lattice are described by the fundamental result
due to Ganter and Wille [29] :

∧
j∈J

(Xj , Yj) =

⎛⎜⎜⎝⋂
j∈J

Xj ,

⎛⎜⎝
⎛⎝⋃

j∈J

Yj

⎞⎠Δ
⎞⎟⎠

Δ
⎞⎟⎟⎠

∨
j∈J

(Xj , Yj) =

⎛⎜⎜⎝
⎛⎜⎝
⎛⎝⋃

j∈J

Xj

⎞⎠Δ
⎞⎟⎠

Δ

,
⋂
j∈J

Yj

⎞⎟⎟⎠
In [18], on the basis of a parallel with possibility theory (indeedXΔ =

⋂
x∈X R(x)

may be seen as the counterpart of the definition of a guaranteed possibility mea-
sure Δ(F ) = minx∈F π(x) where π is a possibility distribution), other operators
have been introduced: namely the possibility operator (denoted (.)Π) and its
dual, the necessity operator (denoted (.)N ), as well as the operator (.)∇, dual of
the operator (.)� at the basis of FCA, defined as follows:

– XΠ is the set of properties satisfied by at least one object in X :

XΠ = {y ∈ P | ∃x ∈ X, xRy}
= {y ∈ P | X ∩R(y) �= ∅}
=
⋃

x∈X R(x)

– XN is the set of properties that only the objects in X have:

XN = {y ∈ P | ∀x ∈ O (xRy ⇒ x ∈ X)}
= {y ∈ P | R(y) ⊆ X}
=
⋂

x �∈X R(x)

(where R(x) is the set of properties that x does not have)

– X∇ is the set of properties that are not satisfied by at least one object
outside X (X∇ should not be confused with the notion of weak opposition
in FCA, often denoted in a similar way):

X∇ = {y ∈ P | ∃x ∈ X, xRy}
= {y ∈ P|R(y) ∪X �= O}
=
⋃

x �∈X R(x)

The operators Y Π , Y N , Y ∇ are obtained in a dual manner. As established in
[15, 22], the pairs (X,Y ) such as XN = Y and Y N = X (or in an equivalent
way XΠ = Y and Y Π = X) characterize independent sub-contexts (i.e. which
have not any objects or properties in common) inside the initial context. The
pairs (X,Y ) such as XN = Y and Y N = X are such that:

(X × Y ) ∪ (X × Y ) ⊇ R.
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Regarding X∇ = Y and Y ∇ = X , it constitutes another characterization of
formal concepts.

It has been shown [18, 22] that the four sets XΠ , XN , XΔ, X∇ represent
complementary pieces of information, which are all necessary for a complete
analysis of the situation of a set X in the formal context K = (O,P ,R).

4 Stable Extensions in Argumentation and Formal
Concepts

There is a striking parallel between Equation 2 in Section 2

R+(S) = {a ∈ A|S ⊆ Ra}

and the expression

XΔ = {y ∈ P | X ⊆ R(y)} =
⋂
x∈X

R(x)

as well as between the definition 1 of a stable extension S

S = R+(S)

and the one of a formal concept (X,Y )

XΔ = Y and Y Δ = X,

taking into account the similarity of the definitions of R+(S) and XΔ.
However, there is an obvious difference: in argumentation one is in the par-

ticular case O = P = A. What plays the role of the formal context is thus the
relation R (“does not attack”) defined on A×A = O × P .

It is well-known that stable extensions do not always exist. For instance,
(A = {a, b, c, d}, R = {(a, b), (b, c), (c, a)}) has no stable extension. While formal
concepts always exist when R �= ∅, here it is no longer the case, when we work
on A×A, rather than with O×P where O �= P . Since here the only acceptable
formal concepts (X,Y ) should be such that X = Y (= S in the above notation).

Then, one can look at the argumentative counterparts of XΠ , XN , or X∇.
They are respectively:

– R
+
(S) = {a ∈ A|S ∩Ra �= ∅}

the set of arguments not attacked by all the arguments in S. It means that for

each argument in R
+
(S) there exists at least one argument in S that does not

attack it. It should not be confused with the set of arguments not attacked by
some arguments in S: R+(S) = {a ∈ A|S ∩ Ra = ∅}; Thus we have R+(S) ⊆
R

+
(S), just as Δ ≤ Π in possibility theory.

– R
+
(S)={a∈A|Ra ⊆ S}={a∈A|S ⊆ Ra}



8 L. Amgoud and H. Prade

the set of arguments that are attacked by all the arguments outside S ;

– R+(S) = {a ∈ A|S ∪Ra �= A}
= {a ∈ A|S ∩Ra �= ∅}

the set of arguments that are attacked by arguments outside S. We have R
+
(S) ⊆

R+(S), as well as N ≤ ∇ holds in possibility theory. Moreover, if R �= ∅ and

R �= ∅, we have R
+
(S) ⊆ R

+
(S) and R+(S) ⊆ R+(S), counterparts of N ≤ Π

and Δ ≤ ∇ respectively. Thus, finally it holds that

R+(S) ∪R
+
(S) ⊆ R+(S) ∩R

+
(S).

If one leaves aside complementations, it can thus be seen that given S, there are
four basic sets of arguments:

R+(S), R
+
(S), R+(S), R

+
(S).

They are i) the arguments attacked by S, ii) the arguments not attacked by S,
iii) the arguments attacked by non S, iv)the arguments not attacked by non S.
Considering these four sets is necessary for a complete characterization of the
relative position of the set of attackers of an argument a with respect to a set S
of arguments (see [22] for the detailed possibilistic counterpart of this fact). It
is clear that in a dual manner, there are four other noticeable sets in terms of
R− rather than of R+.

We are thus led to consider the counterparts of the four conditions XΔ = Y
and Y Δ = X , X∇ = Y and Y ∇ = X , XΠ = Y and Y Π = X , and XN = Y
and Y N = X . They are respectively S = R+(S), S = R+(S), which equivalently
characterizes a stable extension on the one hand, and the equivalent constraints

S = R
+
(S) and S = R

+
(S) on the other hand, which correspond to extensions

S and S that present a form of independence. Indeed S = R
+
(S)⇔ S = R

+
(S)

expresses that the set of arguments that are attacked by all the arguments outside
S are precisely the arguments outside S.

5 Structures of Opposition and Abstract Argumentation

Structures of opposition have been studied in logic for a long time. In particular,
the square of oppositions invented by Aristotle and its modern generalization
to an hexagon of oppositions after the works of Robert Blanché [11] and Béziau
[10] are encountered each time an internal negation and an external negation are
at work on formal expressions.

Taking advantage of results presented in [23] regarding the structures of op-
positions in formal concept analysis and in possibility theory, one may study in
a similar manner the structures of oppositions at work in the theory of abstract
argumentation, and in particular obtain the cube of oppositions pictured in Fig-
ure 1, where the four sets of arguments and their complements appear (a set
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i: R+(S)

I: R
+
(S) O: R

+
(S)

o: R+(S)

a: R+(S)

A: R
+
(S) E: R

+
(S)

e: R+(S)

Fig. 1. Cube of oppositions between 8 remarkable sets of arguments

and its complement are at the two extremities of diagonals). The vertical arrows
express inclusions. For example R+(S) ⊆ R+(S) (provided that R �= ∅).

It is worth noticing that the different meaningful sets of arguments can be
organized in such a structure that has played an important role through the
whole history of logic. Moreover, the hexagonal structure of oppositions obtained
in the logic of argumentation proposed in [3] should also be compared to the one
obtained here.

6 Concluding Remarks: The Gradual Case

The idea to extend FCA to a fuzzy formal context, which enables us to express
that an object satisfies a property to an intermediary degree, has been initially
proposed by Burusco and Fuentes-Gonzalez [12] before being considerably de-
veloped by Belohlavek [5–7], and by a number of other authors, as in particular
[30, 26, 32, 33]. For a discussion of different meaningful gradual extensions of
FCA, the reader is referred to [14, 16].

We only give here the basic operator of fuzzy FCA [6]:

XΔ(y) =
∧
x∈O

(X(x)→ R(x, y))

where now R is a fuzzy relation, R(x, y) is the degree to which x is in relation R
with y, and X and XΔ are fuzzy sets of objects and properties respectively, and∧

is the conjunction operator min and→ an implication operator. An appropri-
ate choice of this connective (such as Gödel residuated implication: a→ b = 1 if
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a ≤ b, and a→ b = b if a > b) enables us to see a fuzzy formal concept in terms
of its level cuts Xα, Yα in such a way that

(Xα × Yα) ⊆ Rα

where Xα × Yα is maximal, with Rα = {(x, y)|R(x, y) ≥ α}, Xα = {x ∈
O|X(x) ≥ α}, Yα = {y ∈ P|Y (y) ≥ α}.

The idea of an abstract argumentation theory allowing for a graded attack
relation has been recently advocated by some authors, in particularly in [25].
Following the parallel presented here, we are thus led to characterize a fuzzy
stable extension by the equation

S(s) =
∧
a∈A

(S(s)→ R(s, a))

where S(s) is the degree to which the argument s belongs to the fuzzy stable
extension S, R(s, a) = 1−R(s, a), R(s, a) being the degree with which s attacks
a, which generalizes S = R+(S) = {a ∈ A|S ⊆ Ra}.

By exploiting the counterpart of(Xα×Yα) ⊆ Rα, in the argumentative setting,
one sees that we are back to the study of the level cuts of the relation of “non-
attack” R.

In the same spirit, one could define fuzzy admissible extensions, or define

fuzzy extensions of R
+
(S), R+(S), and R

+
(S).

The association of degrees to arguments may have different meanings: They
may in particular reflect the strength of the argument, or the uncertainty associ-
ated to its components. The nature of the degrees is as much important in FCA,
since uncertainty and satisfaction level of a gradual property should not be han-
dled in the same way [16]. Different treatments should as well be considered in
argumentation according to the meaning of the degrees. What is suggested above
rather applies to the strength of the arguments rather than to their uncertainty.

The computation of extensions in argumentation can be expressed in the
setting of propositional logic in terms of algebraic equations as shown in [9] (see
also [2]). This idea has been recently reused by Gabbay [28], thus putting abstract
argumentation in the framework of the equational semantics of propositional
logic, first developed one century ago by Louis Couturat [13]. The exploitation
of this idea can be extended to fuzzy logic [28]. One can thus also reconsider
what is proposed above in this paper in that perspective.

This paper is a preliminary attempt at bridging four noticeable areas in the
formal treatment of information, namely abstract argumentation, formal con-
cept analysis, but also possibility theory and squares of opposition, which have
remained completely related until recently. Such parallels should contribute to
enrich each domain: for instance, in argumentation by considering new sets of
arguments and understanding better how they are related. It may also provide
useful guidelines for introducing grades in argumentation.
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11. Blanché, R.: Structures Intellectuelles. Essai sur l’Organisation Systématique des
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Abstract. An algorithm for approximate credal network updating is
presented. The problem in its general formulation is a multilinear opti-
mization task, which can be linearized by an appropriate rule for fixing
all the local models apart from those of a single variable. This simple
idea can be iterated and quickly leads to very accurate inferences. The
approach can also be specialized to classification with credal networks
based on the maximality criterion. A complexity analysis for both the
problem and the algorithm is reported together with numerical experi-
ments, which confirm the good performance of the method. While the
inner approximation produced by the algorithm gives rise to a classifier
which might return a subset of the optimal class set, preliminary empir-
ical results suggest that the accuracy of the optimal class set is seldom
affected by the approximate probabilities.

1 Introduction

Credal networks [5] are a generalization of Bayesian networks (e.g., [11]) based
on the notion of credal sets. A credal set is a set of probability mass functions,
thus representing a quite general and expressive model of uncertainty. Other
uncertainty models like belief functions [14] or possibility measures can be re-
garded as (special classes of) credal sets. A Bayesian network can be turned into
a credal network by simply replacing the local models, which are conditional
probability mass functions, with conditional credal sets over the same variables.
Exactly as a Bayesian network defines a joint probability mass function over its
whole set of variables, a credal network defines a joint credal set, which is (the
convex closure of) the set of all joint mass functions obtained from the Bayesian
networks consistent with the local credal sets.

Compared to the case of Bayesian networks, inference in credal networks is
considerably harder. For instance, a marginalization task corresponds to a mul-
tilinear optimization problem (updating is a fractional multilinear task) [7]. This
is known to be NP-hard even for singly connected networks [8], while the analo-
gous inference in Bayesian networks can be performed in polynomial time [11].
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Despite the hardness of the problem, some algorithms are known to perform rea-
sonably well under certain conditions. Exact approaches have been proposed that
implement some branch-and-bound method with local searches [4,6,8,9]. Unfor-
tunately they all suffer from serious efficiency issues unless the credal network is
very simple. For instance, none of these methods can deal well with a binary node
having four ternary parents, because this setting is already equivalent to 34 = 81
free optimization variables to be chosen, meaning a space of 281 possible solu-
tions just locally to this node! On the other hand, approximate methods either
are fast and provide no accuracy guarantee [3,4,6] or provide theoretical guar-
antees but are as slow as exact methods [13]. Moreover, all these approximate
methods are only capable of treating credal networks under a vertex-based rep-
resentation, while a constraint-based specification of credal networks still lacks
any practical algorithm.

In this paper we present a fast approximate algorithm for inferences in credal
networks based on solving a sequence of linear programming problems. It uses a
constraint-based specification, which allows us to deal with domains where the
local credal sets are given by their linear constraints. It does not suffer from
many parents and large credal sets because the optimization is done by compact
linear problems. To the best of our knowledge, this is the first method for general
credal networks to truly run the inference with a constraint-based specification.
We describe the method and some heuristic ideas to improve its accuracy. Unlike
similar ideas already proposed in the literature [6], our approach does not require
an explicit enumeration of the extreme points of the credal sets and should be
therefore used when the number of extreme points in the local credal sets is
exponentially large (e.g., variables with many states and/or parents, credal sets
defined by probability intervals, etc). We also discuss how the method can be
used for decision making under the maximality criterion [15].

Sections 2 and 3 review the basic notation and definitions of Bayesian and
credal networks. The proposed procedure is presented in Sections 4 and 5. Nu-
merical experiments show that the proposed method compares favorably against
other available methods in the literature (Section 7). Results are particularly
positive when the algorithm is specialized to the case of classification in credal
networks based on the maximality criterion. Although this problem is shown to
be even harder than the marginalization inferences (discussed in Section 6), clas-
sifications based on our approximate algorithm are empirically shown to coincide
with those based on exact methods.

2 Bayesian Networks

Consider a set of variables X := (X0, X1, . . . , Xn) in one-to-one correspondence
with the nodes of an acyclic directed graph G. For each i = 0, . . . , n, the joint
variable Πi ⊆ X denotes the parents of Xi according to G. All these variables
are categorical: Xi takes its values on the finite set ΩXi and so does Πi in
ΩΠi := ×Xj∈ΠiΩXj , for each i = 0, . . . , n.1 The graph G represents stochastic

1 Symbol × denotes Cartesian set product.
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independence relations by means of a Markov condition: any variable is con-
ditionally independent of its non-descendant non-parents given its parents (see
e.g., [11]). The specification of a conditional probability mass function P (Xi|πi)
for each πi ∈ ΩΠi and i = 0, . . . , n, induces, for each x ∈ ×n

i=0ΩXi , the factor-
ization:

P (x) :=
n∏

i=0

P (xi|πi), (1)

where the values of xi and πi are those consistent with x.
We call Bayesian network a specification of the conditional probability mass

functions {P (Xi|πi)}
πi∈ΩΠi

i=0,...,n. In particular, the mass functions associated to Xi,
i.e., {P (Xi|πi)}πi∈ΩΠi

are called the local models of Xi, for each i = 0, . . . , n.
Inference in Bayesian networks is based on the joint probability mass function
in Eq. (1). Marginals, for instance, are obtained by summing out other variables
from the joint, i.e., the marginalization of X0 corresponds to the computation,
for each x0 ∈ ΩX0 , of

P (x0) =
∑

x1,...,xn

n∏
i=0

P (xi|πi), (2)

where
∑

x is a shortcut for
∑

x∈ΩX
. With straightforward calculations, the

marginal in Eq. (2) can be expressed as a linear combination of the local prob-
abilities associated to an arbitrary Xj ∈X, i.e.,

P (x0) =
∑
xj,πj

[P (x0|xj , πj) · P (πj)] · P (xj |πj), (3)

where probabilities P (πj) and P (x0|xj , πj) can be computed from the joint as
in Eq. (1),2 while probabilities P (xj |πj) are already available in the Bayesian
network specification. As special case, note that for j = 0, Eq. (3) rewrites
as P (x0) =

∑
π0

P (π0) · P (x0|π0); while if X0 ∈ Πj , and Π ′
j := Πj \ {X0},

P (x0) =
∑

xj ,π′
j
P (x0, π

′
j)P (xj |x0, π

′
j). Remarkably, values of both P (πj) and

P (x0|xj , πj) are not affected by those of the local models of Xj in the Bayesian
network specification. To see that, note that when computing a marginal, the
descendants and hence their local models can be removed without affecting the
probability. As Xj is a child of all the variables in Πj , the computation of P (πj)
is not affected by the local models {P (Xj |πj)}πj∈ΩΠj

. Similarly, when comput-

ing a conditional probability, arcs leaving the variables after the conditioning
bar can be removed: thus, in the case of P (x0|xj , πj), we can disconnect Xj

from the rest of the network, thus making its local model irrelevant for the par-
ticular calculation. This remark, together with Eq. (3) will be exploited by the
approximate algorithm presented later.

2 Given a joint probability mass function, conditionals are obtained from Bayes’ rule.
For instance, P (x0|xj , πj) = P (x0, xj , πj)/P (xj , πj), provided that P (xj , πj) > 0.
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3 Credal Networks

The Bayesian theory of subjective probability has been extended by more gen-
eral uncertainty theories in order to model situations of highly incomplete or
conflicting information. Among others, the theory of imprecise probability in
[15] adopts credal sets, which are (convex) sets of probability mass functions, as
a more general model of uncertainty about the state of a categorical variable. In
particular, here we focus on finitely generated credal sets, which are specified by
a finite number of linear constraints on the probabilities (e.g., see Fig. 1).

(1,0,0)

(0,1,0)

(0,0,1)

(a)

(1,0,0)

(0,1,0)

(0,0,1)

(b)

Fig. 1. Credal sets over a ternary variable X (i.e., ΩX = {x′, x′′, x′′′}). The repre-
sentation is in a three-dimensional space with coordinates [P (x′), P (x′′), P (x′′′)]. The
polytopes represent respectively: (a) the credal set defined by constraint P (x′) > P (x′′);
(b) a credal set whose extreme points are {[.1, .3, .6]T , [.3, .3, .4]T , [.1, .5, .4]T }.

Credal sets can be used to extend Bayesian networks to imprecise probabil-
ities. In order to do that, in the definition of Bayesian network, every condi-
tional probability mass function P (Xi|πi) is replaced by a (conditional) credal
set K(Xi|πi) for each πi ∈ ΩΠi and i = 0, . . . , n. As we focus on credal sets
defined by a finite number of linear constraints, the set of extreme points of
K(Xi|πi), to be denoted by ext[K(Xi|πi)], has finite cardinality. We call credal

network a specification of conditional credal sets {K(Xi|πi)}
πi∈ΩΠi

i=0,...,n. Under this
generalized setting, Eq. (1) can be used to obtain different joint probability mass
functions. Let us consider all the possible extreme specifications, and then take
the convex hull (denoted as CH), i.e., build the following joint credal set:

K(X) := CH

⎧⎨⎩P (X)

∣∣∣∣∣∣P (x) :=

n∏
i=0

P (xi|πi),
∀x ∈ ×n

i=0ΩXi ,
∀P (Xi|πi) ∈ ext[K(Xi|πi)]
∀i = 0, 1, . . . , n, ∀πi ∈ ΩΠi

⎫⎬⎭ .

(4)

The credal set in Eq. (4) is called the strong extension of the credal network.
Here inference in credal networks is intended as based on the strong extension.
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For instance, the lower bound with respect to K(X) of the marginal probability
in Eq. (2) is:

P (x0) := min
P (X)∈K(X)

P (x0) = min
P (Xi|πi)∈K(Xi|πi)
πi∈ΩΠi

,i=0,...,n

∑
x1,x2,...,xn

n∏
i=0

P (xi|πi), (5)

and similarly for the upper P (x0). Eq. (5) corresponds to the optimization of
a non-linear (namely multilinear [7]) function over a feasible region defined by
linear constraints on the optimization variables. In the next section we present
an approximate algorithm for this task.

4 The Algorithm

The algorithm we present is based on Lukatskii and Shapot’s approach [12]
to approximate the solution of multilinear problems. In essence, a multilinear
problem can be converted into a linear one if we fix all but one optimization
variable in each of its multilinear terms. In Lukatskii and Shapot’s terminology,
there is a partition S1 ∪ S2 ∪ . . . ∪ Sw of the optimization variables such that
fixing the optimization variables in every set of the partition apart from Sj , the
multilinear problem becomes linear. By iterating over j, which defines the set Sj

to remain free, one can approximate the solution of the multilinear problem with
a sequence of linear ones. Da Rocha et al. [10] have already used similar ideas
to perform approximate inference in credal networks, but their approach had
to enumerate all the extreme points of credal sets and used a less sophisticated
search.

Our algorithm finds an inner approximation of the interval [P (x0), P (x0)],
i.e., an upper approximation of the lower probability as in Eq. (5) and a lower
approximation of the upper probability. The idea is to reduce the multilinear task
in Eq. (5) to a linear program by fixing all the local credal sets to singletons
apart from those associated to an arbitrarily chosen variable Xj ∈ X, which we

call the free variable. Given a free Xj ∈X, we pick an extreme point P̃ (Xi|πi) ∈
ext[K(Xi|πi)], for each πi ∈ ΩXi and i = 0, . . . , n, i �= j. These are additional
constraints to the optimization problem in Eq. (5), which becomes:

P ′(x0) := min
P (Xj |πi)∈K(Xj |πj)

πj∈ΩΠj

∑
x1,x2,...,xn

⎡⎣ n∏
i=0,i�=j

P̃ (xi|πi)

⎤⎦ · P (xj |πj) =

= min
P (Xj |πj)∈K(Xj |πj)

∑
xj ,πj

[
P̃ (x0|xj , πj) · P̃ (πj)

]
· P (xj |πj),

(6)

where the last derivation is based on Eq. (3) and probabilities P̃ (x0|xj , πj)

and P̃ (πj) are denoted by a tilde as they are computed from the joint of a

Bayesian network with local models {P̃ (Xi|πi)}. The discussion of the special
cases j = 0 andX0 ∈ Πj is exactly as in the Bayesian case (see the end of Sect. 2).
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We focus on marginal probabilities just for the sake of clarity. Yet, the compu-
tation with conditional probabilities is straightforward as the linear programs
become linear-fractional programs.

Let us comment on two important facts about Eq. (6). First, being the solution
of an optimization with additional constraints with respect to Eq. (5) (see the
second term in the equation), we clearly have P (x0) ≤ P ′(x0). Secondly, it
is clear from the third term of Eq. (6) that the computation of P ′(x0) is a
linear program whose optimization variables are the local probabilities of Xj ,
i.e., {P (xj |πj)}xj∈ΩXj

,πj∈ΩΠj
. Moreover, as the solution of a linear program lies

on an extreme point of the feasible region (i.e., an extreme point of the credal
set), there is a specification P ∗(Xj |πj) ∈ ext[K(Xj |πj)], for each πj ∈ ΩΠj such
that:

P ′(x0) =
∑

x1,x2,...,xn

P ∗(xj |πj)

⎡⎣ n∏
i=0,i�=j

P̃ (xi|πi)

⎤⎦ . (7)

Coping with Zero Probabilities. In order to obtain the coefficients of the
objective function in the linear task in Eq. (6), the conditionals P̃ (x0|xj , πj)

(and the marginals P̃ (πj)) should be computed for each xj ∈ ΩXj , πj ∈ ΩΠj .

For zero-probability conditioning events, i.e., P̃ (xj , πj) = 0, the conditionals
cannot be computed. In this case, the term of the sum in Eq. (6) associated to
(xj , πj) rewrites as: P̃ (x0|xj , πj)·P̃ (πj)·P̃ (xj |πj) = P̃ (x0|xj , πj)·P̃ (xj , πj), being
therefore zero. Thus, the corresponding term does not appear in the objective
function and its coefficient can be safely set to zero.

5 Searching for the Optimum

In the previous section, we defined a procedure which, given a free variable Xj

and the specification of an extreme point for all conditional credal sets of non-
free variables, returns an upper approximation of the lower probability P (x0),
together with the specification of the extreme points of the local credal sets
associated to the free variable which produced that optimum.

If we call almost-Bayesian network a credal network whose local credal sets
are singletons apart from those associated to a single variable, the optimization
procedure we proposed consists in taking an almost-Bayesian network consistent
with the original credal network (i.e., its strong extension is included in that
of the original credal network) and exploiting the fact that marginalization of
almost-Bayesian networks is a linear problem. By solving the linear problem, we
obtain: (i) an upper (lower) approximation of the lower (upper) probability; (ii)
a specification of the extreme points of the credal sets associated to the only
“non-Bayesian” variable in the almost-Bayesian network. These extreme points
can be used as an assignment for the extreme points of those local credal sets,
and another variable can be “freed”, leading to a new linear program. In the rest
of this section we suggest a possible initialization and two iteration strategies.
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Initialization. The optimization in Eq. (6) requires an initialization, i.e., the
specification of an almost-Bayesian network consistent with the credal network.
This can be done by randomly picking an extreme point (or a simple point) from
each local credal set apart for those associated to Xj . A deterministic alternative
to the random choice is the center of mass of the credal set:3

PCM(xi|πi) :=
∑

P (Xi|πi)∈ext[K(Xi|πi)]

P (xi|πi)

|ext[K(Xi|πi)]|
(8)

for each xi ∈ ΩXi , πi ∈ ΩΠi , i = 0, 1, . . . , n, with i �= j. Note that the center
of mass belongs to its credal set, but it is not an extreme point of it (unless the
credal set includes a single point). As we know that the exact solution of Eq. (5)
corresponds to a Bayesian network whose local models are extreme points of the
local credal sets, this means that if a solution includes a center of mass it cannot
be exact. Yet, this can be easily overcome by iterating the procedure at least
once for each variable, as all those linear problems will certainly pick extreme
points.

Greedy Search. The solution in Eq. (7) of the linear program in Eq. (6)
provides an approximate solution for the computation of the marginal of a credal
network. This procedure can be iterated by changing the “free” variable Xj and
using the optimal solution {P ∗(Xj |πj)}πj∈ΩΠj

of the previous problem as a

different initialization. This improves the solution as shown here.

Proposition 1. Let {P̃ (Xj |πj)}
πj∈ΩΠj

j=0,1,...,n be a Bayesian network specification

consistent with a credal network specification {K(Xj|πj)}
πj∈ΩΠj

j=0,1,...,n. As in Eq. (2),

let P̃ (x0) :=
∑

x1,...,xn

∏n
i=0 P̃ (xi|πi) and, as in Eq. (6):

P̃
′
(x0) := min

P (Xj |πj)∈K(Xj |πj)

∑
x1,...,xn

⎡⎢⎣ n∏
i=0
i�=j

P̃ (xi|πi)

⎤⎥⎦P (xj |πj). (9)

Then P̃
′
(x0) ≤ P̃ (x0).

Proof. It suffices to put in evidence the terms {P̃ (xj |πj)}πj∈ΩΠi in the definition

of P̃ (x0) and note that, by definition of consistency between Bayesian and credal
networks, P̃ (Xj |πj) ∈ K(Xj |πj) for each πj ∈ ΩΠj . ��

As a corollary of Prop. 1, it follows that iterating the algorithm can only improve
the quality of the approximation. A greedy iteration strategy is therefore the
following: given a candidate solution P (x0), we evaluate the improved solution
obtained by keeping the same specification of the extreme mass functions as
those used to obtain P (x0) and we free one of the variables a time. Let P ′

j(x0)

3 In the language of evidence theory [14], this corresponds to the so-called pignistic
transformation which associates a probability mass function to a belief functions.
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denote the candidate solution obtained by freeing Xj , for each j = 0, 1, . . . , n.
During the first iteration, we pick as free variable Xj∗ such that:

j∗ := argminj=0,1,...,n P ′
j(x0). (10)

This naturally provides us with a partition of the optimization variables as de-
fined by Lukatskii and Shapot [12]. Hence, if all estimated solutions in Eq. (10)
coincide with the previously obtained solution, a stationarity area has been
reached and the algorithm stops. Often this will be a local optimum of the
multilinear problem. Yet, this is not always the case because there might be a
neighborhood of candidates with no improving solution, but whose neighbors
might have an improving solution. The only way to ensure local optimality is to
keep track of all the candidates with equal solution until such set is completely
explored or an improving solution is found [12]. In practice, this is not an issue,
and can be overcome by the use of multiple starts, perturbations of solutions in
case of achieving a stationary area, and/or a queue of candidate solutions, as we
describe in the following.

Improving the Greedy Approach. The greedy approach based on Eq. (10)
and described in the previous paragraph can be improved by defining a priority
queue of size k, which includes not only the best candidate, but the k-best ones
(each candidate is tracked together with its relative Bayesian network specifi-
cation). The solutions {P j(x0)}nj=0 are evaluated for the candidate in the peak
of the priority queue, and are themselves included back in the queue (as long
as they are improving solutions). In this variant, the algorithm stops when the
queue is empty, which guarantees that all candidates have been explored (this
will certainly include the previously explained greedy approach). The queue can
be seen as many greedy searches in distinct “directions”.

Computational Complexity (Algorithm). Let m and l denote, respectively,
the maximum number of states and incoming parents (i.e., the indegree) of the
network variables: m := maxi=0,...,n |ΩXi | and l := maxi=0,...,n |Πi|. Let q be the
maximum number of linear constraints required to define a local credal set. A
linear program as in Eq. (5) has at most ml+1 variables and ml · q constraints.
Because the input size should already be proportional to ml · q, the algorithm
spends time equivalent to run a linear programming solver on the (local) input
specification times the total number of iterations.

6 Maximality-Based classification

Credal networks have been used to implement both knowledge-based systems
(e.g., [1]) and classifiers (e.g., [16]). Given a credal network over X, let X0 be
the class variable and X̃ ⊆X \{X0} the variables (features) for which evidential
information is available. Given an instance x̃ of the features, the identification of
the optimal class(es) of X0 should be therefore based on the conditional credal
set K(X0|x̃) obtained by conditioning the strong extension in Eq. (4). Such an
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identification depends on the adopted decision criterion. E.g., the so called Γ -
maximin approach returns x∗

0 := argmaxx0∈ΩX0
P (x0|x̃). Another criterion is

maximality [15], which returns the following set of classes:

Ω∗
X0

:=

{
x′
0 ∈ ΩX0

∣∣∣∣ �x′′
0 ∈ ΩX0 :

P (x′′
0 |x̃) > P (x′

0|x̃)
∀P (X0|x̃) ∈ K(X0|x̃)

}
. (11)

In practice, Ω∗
X0

should be initialized to ΩX0 . Then, for each x′
0, x

′′
0 ∈ ΩX0 , the

following dominance should be checked:

min
P (X0|x̃)∈K(X0|x̃)

[P (x′′
0 |x̃)− P (x′

0|x̃)] > 0, (12)

and, if satisfied, x′
0 removed from Ω∗

X0
. The test in Eq. (12) cannot be directly

checked by algorithms for credal networks. Nevertheless, in a recent paper [2],
the test has been mapped to a standard updating task in a credal network. This
is obtained by augmenting the original credal network with an auxiliary node
associated to a Boolean variable Y and such that Y is a leaf child of X0. The
quantification of the conditional credal sets for Y given X0 is precise:

P (Y = true|x0) =

⎧⎨⎩
0 if x0 = x′

0

1 if x0 = x′′
0

1
2 otherwise.

(13)

After this quantification, the dominance test in Eq. (12) is equivalent to check
whether P (Y = true|x̃) > 1

2 . The algorithm proposed in [2] can be used to
evaluate the dominance for each pair of classes and determine the undominated
ones according to Eq. (11). The upper approximation P ′(Y = true|x̃) ≥ P (Y =
true|x̃) implies that some dominances detected by the algorithm might not re-
ally take place. Hence, the set of optimal classes evaluated by the approximate
algorithm is a subset of the exact one.

Computational Complexity (classification). We characterize the computa-
tional complexity of maximality-based classification. The evaluation in Eq. (12)
is called dominance test. Given a credal network, evidence x̃, q ∈ ΩQ, and a ratio-
nal r, the inference query decides whether exists P ∈ K(X) such that P (q|x̃) ≥ r
[8]. The treewidth of a network measures the extent to which it resembles a tree
(see [11] for a more formal definition).

Theorem 1. The dominance test is coNP-complete in bounded treewidth net-
works and coNPPP-complete in networks of general topology.

Proof. We show hardness by demonstrating that the complementary decision,
that is, whether the minimization of Eq. (12) is less than or equal to zero, is
NPPP-hard in general, and NP-hard for bounded treewidth networks. For that,
we reduce the marginal inference problem in a credal network to it. Marginal
inference in credal networks is shown to be NP-hard in polytrees with at most
two parents per node and NPPP-hard in general networks [8].
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Take a credal network with inference query ∃P : P (q|x̃) ≥ r, for a given
rational r, query q and evidence x̃. Build a new network by adding a binary
node X0, which has Q as sole parent and precise probability mass functions
defined as P (x′′

0 |q) = r
2 and P (x′′

0 |¬q) = 1+r
2 . Note that the new network has the

same topology (and treewidth) of the original one. Now, the complement of the
dominance test asks whether

min
P

[P (x′′
0 |x̃)− P (x′

0|x̃)] ≤ 0 ⇐⇒ min
P

[2P (x′′
0 |x̃)− 1] ≤ 0

⇐⇒ min
P

[rP (q|x̃) + (1 + r)P (¬q|x̃))− 1] ≤ 0 ⇐⇒

min
P

[r − P (q|x̃)] ≤ 0 ⇐⇒ max
P

P (q|x̃) ≥ r ⇐⇒ ∃P : P (q|x̃) ≥ r,

which is exactly the credal network marginal query. As the treewidth of the net-
work has not been modified, the hardness results follow. Pertinence of this com-
plementary decision in NP for the case of bounded treewidth (respectively in
NPPP for the general case) is immediate, since given P ∈ K(X), we can use
a Bayesian network inference to certify that P (x′′

0 |x̃) ≤ P (x′
0|x̃) (in polynomial

time for bounded treewidth nets and by using the PP oracle for the general case).
��

Hence, deciding whether a class is in the maximal set is a very demanding
query, because it is tested against all other classes, and each of such tests can be
itself hard. For example, if the network has bounded treewidth, the problem of
deciding whether a class is maximal falls in the class of decision problems that
can be solved by polynomial time machines with access to non-adaptive queries
to an NP oracle, namely P||NP. Even if a hard task to do exactly, we shall see
that our algorithm is able to recover the set of maximal classes successfully in
practice (but without guarantee of exactness).

7 Experiments

To validate the performance of our algorithm, we use a benchmark made of dif-
ferent credal nets with random topology, either multiply or singly connected, and
two classical (multiply connected) models, namely the Alarm and the Insurance
networks. The maximum indegree for the networks with random topology is lim-
ited to 5. The number of states for the Alarm and the Insurance networks is the
same as in their original specifications, while for the other networks the number
of states is randomly chosen between 2 and 8. All the models are quantified
by randomly generated conditional credal sets with a fixed number of extreme
points, whose number is ranging from 2 to 8 for each network. Inferences are
computed by a Java implementation of the algorithm linked to the COIN-OR
linear program solver. The code is available as a free software tool.4 In these
experiments, the greedy approach described in Sect. 4 is considered and the al-
gorithm is therefore called G-LP. Centers of mass are used for the first iteration.

4 See http://ipg.idsia.ch/software and http://www.coin-or.org.
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Table 1. Benchmark results (mean square absolute errors). Upper marginal probabil-
ities have been computed for each state of each network in the benchmark such that
the exact solver took less than three minutes to find the optimum.

Networks # of tests G-LP G-LP’ GL2U ILS

Alarm 973 .0474 .0076 .1218 .2709
Insurance 650 .0767 .0795 .1818 .2700
Random (single) 6162 .0816 .0109 .1724 .1528
Random (multi) 2963 .0855 .0140 .1594 .1269

Exact inferences are computed by mapping the problem to an integer linear pro-
gram [9], which is solved by CPLEX. Comparisons are with other approximate
algorithms: the iterated local search (ILS) [6] and the GL2U algorithm [3].

Before commenting on the results in Tab. 1, note that our approach assumes
the local credal sets to be specified by linear constraints. This is often the case in
real scenarios (e.g., credal classifiers or knowledge-based expert systems quanti-
fied by probability intervals). Conversely, credal networks used for benchmarking
represent their local credal sets by explicit enumeration of the extreme points.
The reason is that most of the algorithms for credal networks require the lo-
cal credal sets to be described by their extreme points. In the first experiment,
we evaluate the lower and upper bounds of the probabilities w.r.t. the extreme
points. E.g., for the credal set in Fig. 1(b): P (x′) ∈ [.1, .3], P (x′′) ∈ [.3, .5],
P (x′′′) ∈ [.4, .6]. These constraints define larger credal sets compared to the
original ones. The third column of Tab. 1 reports the results, i.e., the mean
square difference between the inner approximation obtained by G-LP and the
exact inferences. The accuracy is fairly good on the whole benchmark. In the
fourth column of Tab. 1, the same inferences computed by G-LP in the third col-
umn are regarded here as approximations for credal networks with local credal
sets defined by the original extremes (and not by the induced linear constraints).
We denote this heuristic variant as G-LP’. The inner approximation of G-LP is
now balanced by the outer approximation introduced by considering the linear
constraints and this produces smaller errors (MSE< .02) for the Alarm and the
random networks. The performance is less accurate for the Insurance network,
probably because of the relatively high number of states for the variables of this
network, which makes the outer approximation too coarse. Regarding the pro-
posed improvement of the greedy approach, the results (with queue size k = 40
and still one minute as maximum running time) are just marginally better than
those based on G-LP and for this reason are not reported. Finally, we evaluate
the performance of G-LP for maximality-based classification. We consider ten
benchmark networks with the Alarm topology. As classes we choose the variables
with four states with no evidence (i.e., X̃ = ∅). On all these classification tasks
the two sets of optimal classes coincide. Thus, the small approximation in the
inferences based on G-LP seems to have no effect when finding the set of max-
imal solutions, which were recovered exactly. While this is somehow expected
(because the dependency on the exact probability value is less important), this
empirical result is promising for the use of credal networks in classification.
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8 Conclusions

A new algorithm based on a sequence of linear optimizations is proposed for
approximate credal network updating. The algorithm can deal with a constraint-
based specification of credal networks, and provides inner approximation solu-
tions. It is also extended to find the maximal classes in a classification problem.
The complexities of these problems and of the algorithm are presented. In a
practical perspective, preliminary results are promising: the algorithm is fast
and accurate. As future work, we intend to test the algorithm on larger net-
works and with other search heuristics, and support other decision criteria.
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Abstract. Min-based possibilistic networks, which are compact repre-
sentations of possibility distributions, are powerful tools for representing
and reasoning with uncertain and incomplete information in the possi-
bility theory framework. Inference in these graphical models has been
recently the focus of several researches, especially under compilation. It
consists in encoding the network into a Conjunctive Normal Form (CNF)
base and compiling this latter to efficiently compute the impact of an evi-
dence on variables. The encoding strategy of such networks can be either
locally using local structure or globally using possibilistic local structure.
This paper emphasizes on a comparative study between these strategies
for compilation-based inference approaches in terms of CNF parameters,
compiled bases parameters and inference time.

1 Introduction

Knowledge compilation [6] is a common technique for propositional logic knowl-
edge bases. It is a mapping from a given knowledge base into a special form
of propositional bases, for which queries can be answered efficiently. Assuming
that the input knowledge base does not often change, so it is turned into a com-
piled one during an off-line compilation phase which is then used to answer the
queries on-line. Answering such queries using the compiled base should be com-
putationally easier than answering them from the input base. One of the most
prominent successful applications of knowledge compilation is in the context of
graphical models by including probabilistic networks [7,9]. The objective be-
hind these works is to ensure an efficient computation of a-posteriori probability
degrees given an evidence on a set of variables.

Using the possibility theory framework, we recently explored compilation-
based inference approaches in while dealing with min-based possibilistic networks
[2,3]. These latters are encoded in a Conjunctive Normal Form (CNF) base, then
compiled into the appropriate target compilation language in order to ensure an
efficient computation of a-posteriori possibility degrees given an evidence on a set
of variables. Min-based possibilistic networks can be encoded using either local
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structure by associating a unique propositional variable per equal parameters
per conditional possibility table [3] or possibilistic local structure by handling
equal parameters from a global point of view, i.e., per all conditional possibility
tables [2]. Possibilistic local structure, which is exclusively useful for a qualitative
setting, goes beyond the classical local structure in terms of CNF parameters by
exploiting the idempotency property of the min operator.

In [1], we emphasized on common points and unveiled differences between
compilation-based inference process in the probabilistic and the possibilistic set-
ting from a spatial viewpoint. However, no comparison has been held between
proposed compilation-based inference approaches in the possibility theory frame-
work. The investigation in this paper serves to spotlight the behavior of different
encoding strategies via a detailed experimental study in terms of CNF param-
eters (variables and clauses), compiled bases parameters (edges) and inference
time.

The remaining paper is organized as follows: Section 2 presents a brief re-
fresher on min-based possibilistic networks. Section 3 reviews compilation-based
inference approaches of min-based possibilistic networks. Section 4 compares
methods from an experimental point of view.

2 Min-Based Possibilistic Networks

This section introduces min-based possibilistic networks which can be viewed
as the possibilistic counterpart of Bayesian networks [13] when we consider the
qualitative interpretation of the possibilistic scale. We start at first by presenting
basic concepts and notations and a reminder on possibility theory.

Let V = {X1, ..., XN} be a set of variables. By v we denote instantiations of
all variables Xi ∈ V . We denote by DXi = {x1, .., xn} the domain associated
with the variable Xi. By xi we denote any instance of Xi. By xij we denote the
jth instance of Xi. When there is no confusion we use xi to mean any instance
of Xi. Ω denotes the universe of discourse, which is the Cartesian product of all
variable domains in V . Each element ω ∈ Ω is called a state of Ω. Possibility
theory [12] is seen as a simple and natural model for handling uncertain data.
The basic building block in this theory is the concept of possibility distribution
π, which is a mapping from Ω to the unit interval [0, 1] such that π(ω) = 1 and
π(ω) = 0 refer to a totally possible state and an impossible state, respectively.
It is generally assumed that there exists at least a state ω which is totally
possible. In this case, π is said to be normalized. From a normalized possibility
distribution π, we can compute two dual measures Π(φ) = maxω∈φπ(ω) and
N(φ) = 1−Π(¬φ).

A min-based possibilistic network over a set of N variables V , denoted by
ΠGmin, is composed of:

– A graphical component composed of a Directed Acyclic Graph (DAG) where
nodes represent variables and edges encode links between variables. The parent
set of any variable Xi is denoted by Ui = {Ui1, Ui2, ..., Uim} where Uij is the jth
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parent of Ui and m is the number of parents of Xi. In what follows, we use xi,
ui, uij to denote, respectively, possible instances of Xi, Ui and Uij .
– A numerical component that quantifies different links. Uncertainty of each node
Xi is represented by a local normalized conditional possibility table (denoted by
CΠTi) in the context of its parents. The set of all CΠTi is denoted by CΠT .
Conditional possibility tables should respect the normalization constraint for
each variable Xi ∈ V expressed by: ∀ui,maxxi Π(xi|ui) = 1.

Example 1. Let us consider the ΠGmin, depicted by Figure 1, containing two
binary variables A and B. Each node, either A or B, is quantified by a possibility
distribution in the context of its parents.
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Fig. 1. Example of a min-based possibilistic network

3 Possibilistic Compilation-Based Inference Approaches

Knowledge compilation is a common technique for propositional logic knowledge
bases. It is a mapping from a given knowledge base into a special form of propo-
sitional bases, for which queries can be answered efficiently. It consists mainly in
splitting query answering of a particular problem into two phases [6]. In the first
phase, knowledge bases are preprocessed in order to obtain the data structures
the most appropriate for the given application (such a phase is called the off-line
reasoning). In the second phase, queries are answered using the output of the
first phase(such a phase is the on-line reasoning). A logical form is qualified to
be a target compilation language if it supports some set of nontrivial queries,
usually including clausal entailment, in a polynomial time. There are several
compilation languages as it has been studied in the knowledge map of [11]. We
are in particular interested in Decomposable Negation Normal Form (DNNF) [8],
which is the set of all NNF sentences that satisfy decomposability stating that
conjuncts of any conjunction share no variables. DNNF and its variants sup-
port a rich set of polynomial-time operations which can be performed efficiently,
namely clausal deduction, conditioning, etc.

Inference under compilation in min-based possibilistic networks has been re-
cently explored in [2,3]. Globally these methods are grouped into classes de-
pending on the compilation phase input (initial min-based possibilistic network
or the possibilistic knowledge base associated with it) and the encoding strategy
(local structure or possibilistic local structure). This section provides a sufficient
grounding relative to these approaches, as is necessary for the remainder of the
article.
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3.1 Π-DNNF and Its Variants

The first class of methods represents the possibilistic adaptation, denoted by
Π-DNNF, of the standard approach of Darwiche [9], and its refinements using
local structure and possibilistic local structure encoding strategies.

The basic idea of Π-DNNF method [3] consists in encoding the network into a
CNF base using two types of propositional variables, namely: instances indicators
λxij associated to different instances xij of variables Xi and parameter variables
θxi|ui

relative to possibility degrees Π(xi|ui). The CNF encoding of ΠGmin,
denoted by Cmin, can be defined as follows:

Definition 1. Using the set of instance indicators and parameter variables,
Cmin contains the following clauses:

– Mutual exclusive clauses:

λxi1 ∨ λxi2 ∨ · · · ∨ λxin (1)

¬λxij ∨ ¬λxik
, j �= k (2)

– Parameter clauses: ∀ θxi|ui1,ui2,...,uim
, we have:

λxi ∧ λui1 ∧ . . . ∧ λuim → θxi|ui1,ui2,...,uim
(3)

θxi|ui1,ui2,...,uim
→ λxi (4)

θxi|ui1,...,uim
→ λui1 , · · · , θxi|ui1,...,uim

→ λuim (5)

The resulting CNF encoding Cmin is then compiled into one of the most succinct
target compilation language, namely DNNF, which is then used to efficiently
compute the effect of an evidence on variables. It is clear that Π-DNNF method
does not consider numerical values while encoding the network. In other terms,
it associates a parameter variable for each possibility degree, regardless of its
numerical value. However, parameters values can be exploited in the encoding
phase locally using local structure or globally using possibilistic local structure
in order to reduce CNF variables and generate more compact compiled bases. By
local structure, we mean encoding equal parameters per conditional possibility
table using the same parameter variable θj . This encoding strategy reduces the
number of variables and clauses since equal parameters per table are encoded
using only a simple implication (i.e. clause (3)) instead of a logical equivalence
(i.e. clauses (3), (4) and (5)) [3]. The approach (resp. CNF encoding) that uses
local structure is denoted by Π-DNNFLS (resp. CLS

min).
From a global point of view, possibility degrees can be encoded using what we

call possibilistic local structure [2]. This encoding strategy takes advantage of the
idempotency property of the min operator by associating a unique parameter
variable Πθj per equal parameters per all conditional possibility tables. Using
possibilistic local structure, the CNF encoding CPLS

min encodes each parameter
using a simple implication (i.e. clause (3)), regardless of its occurrence number
per tables. This variant is denoted by Π-DNNFPLS .
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Example 2. Let us consider the ΠGmin of Figure 1. Before encoding the net-
work, we should at first associate λxi for each instance xi, then encode possibility
degrees by parameter variables as shown in Table 1. We can deduce that the num-
ber of parameter variables is equal to 6 when no strategy is used. It corresponds
to 4 (resp. 3) in the case of local structure (resp. possibilistic local structure). We
should then encode ΠGmin as shown in Table 2. We can point that the number
of parameter clauses is decreasing from one strategy to another. In fact, it is
equal to 16, 8 and 6 in the case of Cmin, C

LS
min and CPLS

min , respectively.

Table 1. Parameter variables used in Cmin, C
LS
min and CPLS

min

Variables Possibility degrees Cmin CLS
min CPLS

min

A
Π(a1) = 1 θa1 θa1 Πθ1
Π(a2) = 0.4 θa2 θa2 Πθa2

B

Π(b1|a1) = 1 θb1|a1
θ1 Πθ1

Π(b1|a2) = 0.8 θb1|a2
θ2 Πθ2

Π(b2|a1) = 0.8 θb2|a1
θ2 Πθ2

Π(b2|a2) = 1 θb2|a2
θ1 Πθ1

Table 2. CNF encodings Cmin, C
LS
min and CPLS

min

Variables Mutual exclusive clauses

A (λa1 ∨ λa2) ∧ (¬λa1 ∨ ¬λa2)

B (λb1 ∨ λb2) ∧ (¬λb1 ∨ ¬λb2)

Π(xi|ui) Parameter clauses

A Cmin CLS
min CPLS

min

Π(a1) = 1 (λa1 → θa1) (λa1 → θa1) (λa1 → Πθ1)
∧(θa1 → λa1) ∧(θa1 → λa1)

Π(a2) = 0.4 (λa2 → θa2) (λa2 → θa2) (λa2 → Πθa2)
∧(θa2 → λa2) ∧(θa2 → λa2)

B Cmin CLS
min CPLS

min

Π(b1|a1) = 1 (λa1 ∧ λb1 → θb1|a1
) (λa1 ∧ λb1 → θ1) (λa1 ∧ λb1 → Πθ1)

∧(θb1|a1
→ λb1)

∧(θb1|a1
→ λa1)

Π(b2|a1) = 0.8 (λa1 ∧ λb2 → θb2|a1
) (λa1 ∧ λb2 → θ2) (λa1 ∧ λb2 → Πθ2)

∧(θb2|a1
→ λb2)

∧(θb2|a1
→ λa1)

Π(b1|a2) = 0.8 (λa2 ∧ λb1 → θb1|a2
) (λa1 ∧ λb2 → θ2) (λa2 ∧ λb1 → Πθ2)

∧(θb1|a2
→ λb1)

∧(θb1|a2
→ λa2)

Π(b2|a2) = 1 (λa2 ∧ λb2 → θb2|a2
) (λa2 ∧ λb2 → θ1) (λa2 ∧ λb2 → Πθ1)

∧(θb2|a2
→ λb2)

∧(θb2|a2
→ λa2)
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3.2 DNNF-PKB

The second approach, considered as purely possibilistic and named DNNF-PKB,
is based on the transformation of min-based possibilistic networks into logic-
based representations [5].

Definition 2. Let ΠGmin be a min-based possibilistic network, then its possi-
bilistic knowledge base is expressed by:

Σmin = ΣX1 ∪ΣX2 ∪ · · · ∪ΣXN (6)

where ΣXi = {(¬xi ∨ ¬ui, ai) : ai = 1−Π(xi|ui) �= 0}, ∀Xi ∈ V .

Encoding the possibilistic base Σmin associated with the possibilistic network
into a CNF base is performed by affecting new propositional variables for the
different necessity degrees Ai existing in the possibilistic knowledge base. This
means that to each formula (αi, ai) corresponds the propositional formula αi∨Ai.
Hence, the propositional encoding of Σmin, denoted by KΣ is expressed by:

KΣ = {αi ∨ Ai : (αi, ai) ∈ Σmin} (7)

Note that in this approach the notion of local structure is meaningless since
equal parameters corresponding to necessity degrees are handled from a global
point of view, i.e., per base.

Example 3. Let us re-consider the ΠGmin of Figure 1. Then, the possibilistic
knowledge base of ΠGmin is the following: Σmin = ((a1, 0.6), (a2 ∨ b1, 0.2), (a1 ∨
b2, 0.2)). We can deduce that Σmin does not contain zero-weighted formulas cor-
responding to possibility degrees equal to 1. The CNF encoding of the possibilistic
knowledge base Σmin is shown in Table 3.

Table 3. The CNF encoding KΣ of Σmin

Clauses of A

(a1, 0.6) (a1 ∨ A1)

Clauses of B

(a2 ∨ b1, 0.2) (a2 ∨ b1 ∨A2)

(a1 ∨ b2, 0.2) (a1 ∨ b2 ∨A2)

To efficiently compute a-posteriori possibility degrees, KΣ should be com-
piled into any target compilation language that supports both of conditioning
and clausal entailment. This approach is qualified to be flexible since it takes
advantage of existing propositional knowledge bases compilation methods.
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4 Experimental Study

This section proposes an experimental study aiming to compare our possibilistic
compilation-based inference algorithms in terms of CNF parameters, compiled
bases parameters and the inference time w.r.t the one of the standard junction
tree method [4]. To this end, we implement different CNF encodings of possi-
bilistic networks using Matlab R2010, then compile these latters using the state
of the art c2d compiler1 [10] and finally implement inference using the resulting
compiled bases. Experiments ran on a 2.27 GHz Core i3 processor with 4 GB of
memory. We start with describing the experimental protocol then we compare
compilation-based inference methods.

4.1 Experimental Protocol

As possibilistic networks have a graphical component and a numerical one, then
it is judicious to specify which kind of networks to use during the experimen-
tal process. In fact, we randomly generate a possibilistic network by setting the
number of nodes to 50, the maximum number of parents per node to 3, the
number of instances per variable to 2 and the number of roots to 10. Moreover,
we vary values of possibility distributions (except for the normalization value
1) using EPCΠT stating the percent of equal parameters within conditional pos-
sibility tables (i.e., CΠT ). We set EPCΠT to {0%, 10%, 30%, 50%, 70%, 100%}.
When EPCΠT is equal to 50%, this means that each possibility degree appears
in 50% of CΠT . The extreme case 0% states that each possibility degree, except
for 1, appears in a unique conditional possibility table, i.e., CΠTi. While the
case of 100% means that there are two degrees, including the normalization one,
which appear in all conditional possibility tables, i.e., CΠT . Of course when we
affect equal parameters per CΠT , we should specify which tables are involved
by EPCΠT . In order to vary parameters positions, we propose to generate ran-
domly indexes of tables involved by EPCΠT . We perform this process 100 times,
for each percentage of EPCΠT .

4.2 Comparing Inference Approaches

Using the experimental protocol described above, we will compare inference ap-
proaches over 100 different randomly generated parameters locations. Interest-
ingly enough, we establish a comparison covering the inference time averaged
over 30 different randomly generated evidence sets. The experimental results
are shown in Table 4. A deep analysis of these results are established for each
criterion separately.

CNF Variables Let us analyze the variables behavior of each method, depicted
by Figure 2 (a):

1 Available at http://reasoning.cs.ucla.edu/c2d/.

http://reasoning.cs.ucla.edu/c2d/
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Table 4. Π-DNNF vs Π-DNNFLS vs Π-DNNFPLS vs DNNF-PKB (better values are
in bold)

Method EPCΠT Variables Clauses Edges Inf(sec)

Π-DNNF 0-100 358 1048 3428 0.489

Π-DNNFLS

0 278 684 2504 0.377
10 276 668 2412 0.367
30 271 632 2353 0.356
50 262 574 2121 0.306
70 254 520 1951 0.295
100 200 358 1148 0.235

Π-DNNFPLS

0 179

358

76695 32.254
10 127 251712 212.355
30 112 30151 5.775
50 108 7232 0.859
70 107 3856 0.287
100 102 608 0.152

DNNF-PKB

0 178

229

76414 31.563
10 126 245368 201.809
30 111 30003 4.701
50 107 7019 0.748
70 106 3623 0.269
100 101 502 0.138

– Π-DNNF : Row 1 of Table 4 shows that the number of variables remains
unaltered even if EPCΠT is rising. Obviously, this is an expected result since
Π-DNNF does not take into consideration any numerical value by encoding
each possibility degree by a parameter variable, regardless of its value.

– Π-DNNFLS: Local structure exploited in Π-DNNFLS has a positive impact
on CNF variables since equal parameters, especially the normalization degree
1, are encoded by the same parameter variable. It is also clear that the
number of variables is reduced for each increase of EPCΠT , as shown in
Figure 2 (a).

– Π-DNNFPLS: In this method, CNF variables are increasingly reduced since
equal parameters per CΠT are increased for each percentage of EPCΠT .
When EPCΠT = 100%, the number of variables is equal to 102 since we
have 100 indicator variables and 2 parameter variables.

– DNNF-PKB : Row 4 of Table 4 shows that the number of variables of DNNF-
PKB is reduced by one comparing to those of Π-DNNFPLS . Indeed, the
possibility degree equal to 1 in Π-DNNFPLS is not encoded in DNNF-PKB
since it corresponds to a necessity degree equal to 0, which is not represented
in possibilistic knowledge bases.

CNF Clauses. The behavior of CNF clauses of each compilation-based method
of Table 4 is depicted by Figure 2 (b) and detailed below:
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Fig. 2. (a): Number of variables and (b): Number of clauses

– Π-DNNF : As shown in Table 4, the number of clauses does not depend on
EPCΠT since each parameter is encoded using a right-side clause and a set
of left-side clauses, regardless of its numerical value.

– Π-DNNFLS: The number of clauses per parameter depends on its occurrence
number per CΠTi. In fact, by increasing the number of equal parameters per
CΠTi, the number of clauses is reduced since these parameters are encoded
using only right-side clauses.

– Π-DNNFPLS: The number of clauses is increasingly reduced inΠ-DNNFPLS

comparing to those of Π-DNNFLS since the number of equal parameters
per CΠT is rising for each EPCΠT and consequently are encoded using only
right-side clauses. Obviously, this number is not altered for any EPCΠT since
only right-side clauses are considered.

– DNNF-PKB : Each clause encoding the possibility degree 1 in Π-DNNFPLS

is not within DNNF-PKB’s clauses since it corresponds to a zero-weighted
clause. This justifies the gain of clauses.

Compiled Bases Edges. Let us now study and interpret Figure 3 (a) showing
the impact of CNF encoding strategies on compiled bases edges:

– Π-DNNF : As shown in row 1 of Table 4, the number of edges is equal to
3428. This value remains the same for each EPCΠT , as for CNF variables
and clauses.

– Π-DNNFLS: Encoding equal parameters per table using a unique parameter
variable has a positive impact on compiled bases edges. This behavior follows
the one of CNF variables and clauses.

– Π-DNNFPLS: Compiled bases edges are higher when we deal with possi-
bilistic local structure, as shown in Figure 3 (a). By paying more attention
on row 3 and column 5 of Table 4, we can remark that compiled bases edges
depend on EPCΠT . In fact, when EPCΠT = 10%, generated compiled bases
have more edges than those of EPCΠT = 0%. However, edges decrease from
EPCΠT = 30% until EPCΠT = 100%.

– DNNF-PKB : DNNF-PKB has a number of edges smaller than those of Π-
DNNFPLS . This is especially due to the reduction of CNF parameters.
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Fig. 3. (a): Number of edges and (b): Inference time

A deep analysis of these results shows that the reduction of CNF variables and
clauses does not always imply more compact compiled bases. Indeed, using less
CNF parameters while exploiting the encoding strategy local structure induces
compiled bases with less edges. This is not the case of possibilistic local structure,
which increases compiled bases parameters even with a reduced number of CNF
parameters.

We can note that satisfying decomposability from CNF bases requires per-
forming case analysis over the variables shared by sub-formulas. When we use
local structure, equal parameters per table CΠTi are encoded using the same
parameter variable. In this case, the compiler c2d splits common variables per-
taining to the same conditional possibility table, which implies that a local in-
teraction between clauses is performed. However, when we use possibilistic local
structure the number of shared variables is increased since equal parameters are
handled from a global point of view (i.e., per CΠT ). Such encoding strategy in-
troduces many interactions among clauses corresponding to different conditional
possibility tables, which makes the resulting knowledge base harder to compile.

As we have mentioned above, we used c2d initially proposed to generate d-
DNNFs. This compiler uses the case analysis technique that efficiently enforces
the property of decomposability while enforcing determinism as well. This means
that we are subjected to the determinism property as a side effect of this com-
piler, which is useless in the possibility theory framework.

By paying more attention on purely possibilistic approaches, we point out that
these methods are very sensitive to equal parameters per tables (i.e., CΠT ). Let
us interpret the impact of each percentage of EPCΠT :

– EPCΠT = 0%: As shown in row 3 of Table 4, the number of propositional
variables in Π-DNNFPLS is equal to 179. Since we associate an instance
indicator for each instance of Xi ∈ V and knowing that we deal with 50
nodes, then the number of instance indicators is equal to 100. Consequently,
we have 79 parameter variables where 78 encode different possibility degrees
appearing once per CΠT and only one parameter variable θ1 encodes the
possibility degree 1 pertaining to all conditional possibility tables. The re-
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sulting base is more hard to compile than the one with local structure since
there is an interaction between all clauses weighted by θ1.

– EPCΠT = 10%: From row 3 of Table 4, we can deduce that the number of
redundant parameter variables in Π-DNNFPLS is equal to 27, in which one
parameter variable encoding the degree 1 appears in all tables and 26 ones
appear in 10% of CΠT (i.e., 5 tables). For DNNF-PKB method, there are
26 parameter variables encoding degrees different from 1. In such a case, the
compiler c2d performs case analysis for each parameter variable θi holding 5
tables and pertaining to the 26 ones. Since the number of parameter variables
θi encoding equal parameters per 5 tables is increased, interactions among
clauses is rising and consequently, the base is more hard to compile.

– EPCΠT = 30%, · · · , 100%: We can point out from row 3 of Table 4 that the
number of parameter variables appearing in 15, 25, 35 and 50 tables is equal
to 11, 7, 6 and 2 when EPCΠT = 30%, EPCΠT = 50%, EPCΠT = 70%
and EPCΠT = 100%, respectively. In such cases, c2d deals with a reduced
number of shared variables, which explains the reduction of compiled bases
edges.

Inference Time. Inference time of compilation-based approaches follows ex-
actly the same behavior as edges. In other terms, the smaller is the compiled base
the faster inference is. Let us now compare the inference time of the junction
tree method and the most compact compilation-based inference method, namely
Π-DNNFLS . We can deduce from Table 4 that the inference time in Π-DNNFLS

decreases each time EPCΠT is rising. Yet the time for on-line inference ranges
from 0.2 to 0.3 milliseconds. This illustrates the extent to which local structure
can improve the inference time.

Using the junction tree algorithm, the inference time ranges from 1.059 second
to 1.211 as shown in Figure 3 (b), but it does not follow a stationary behavior
since EPCΠTi and EPCΠT are not influential factors. This experimental result
confirms that the junction tree is structure-based. It depends on the network
topology and is invariant to parameters.

5 Conclusion

This paper proposed a study of the behavior of encoding strategies in compilation-
based inference approaches of min-based possibilistic networks in terms of CNF
parameters, compiled based parameters and inference time w.r.t the standard
junction tree. Indeed, the impact of both of local structure and possibilistic local
structure was explored.

Our experimental results point out that CNF parameters depend strongly on
the used encoding strategy, which takes into consideration numerical values lo-
cally or globally. However, the reduction of CNF parameters does not involve
more compact compiled bases with less edges and faster inference. Indeed, possi-
bilistic local structure, which deals with equal parameters from a global point of
view, rises compiled bases edges. This is especially due to the c2d compiler that
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enforces the use of the determinism property to satisfy decomposability and in
particular the use of the case analysis technique.

A future work is to study in depth transformations of Bayesian networks into
possibilistic networks and compare our compilation-based inference approaches
to those of possibilistic networks issued from Bayesian networks.
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{baioletti,davide.petturiti}@dmi.unipg.it
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Abstract. We deal with the problem of combining sets of independence
statements coming from different experts. It is known that the indepen-
dence model induced by a strictly positive probability distribution has a
graphoid structure, but the explicit computation and storage of the clo-
sure (w.r.t. graphoid properties) of a set of independence statements is
a computational hard problem. For this, we rely on a compact symbolic
representation of the closure called fast closure and study three different
combination strategies of two sets of independence statements, working
on fast closures. We investigate when the complete DAG representability
of the given models is preserved in the combined one.

Keywords: Graphoid, Fast closure, Combination of independence mod-
els, DAG, P-map.

1 Introduction

A well-known problem concerning Bayesian Networks (BNs) is the identification
of a directed acyclic graph (DAG) representing a given set of conditional inde-
pendencies: this constitutes a compact and intuitive representation of probability
distributions and for that it is very attractive for applications. Usually the iden-
tification task is carried out from data, by selecting one or more DAGs with a
high value according to the chosen scoring criterion. This is possible when joint
observations on the variables are available. However, in some applications the
available data are just on subsets of variables (instead of on the whole set), so to
merge the data we could use expert judgements expressing (conditional) inde-
pendence statements. Moreover, even if data on all the variables are available, it
is fundamental to use, without discarding, expert judgements [3, 4, 6–8, 14, 15].
In particular, we mention the area of multi-agent systems [8] where the agents
need to communicate and pool their knowledge represented by BNs (or sets of
independencies) and end up with a BN (or a set of independencies) which is a
synthesis of the original ones. In [9] some rules are given for building a DAG
encoding either all independencies implied by at least an input DAG or only
those independencies implied by all input DAGs.

In this paper we address the issue of combining experts opinions about inde-
pendencies, without necessarily starting from DAGs. This is done in a classical
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probabilistic context, so we deal with graphoid structures, induced by a strictly
positive probability distribution [5]. Note that these structures are also related
to other non-additive uncertainty measures, so the interest is not limited to
probability theory. The basic idea is to combine graphoid structures, each ob-
tained as the closure of a set J of independence statements. Nevertheless, the
construction of the closure J̄ is a computational hard problem [13], as its size
could be exponentially larger than the size of J , thus we use a compact symbolic
representation [2], called fast closure, which has been experimentally shown to
be computationally efficient.

Concerning the fusion of experts’ opinions, two strategies are easily envisaged
due to their semantic. The first possibility is to consider only those independen-
cies on which all the experts agree: this corresponds to take the intersection of
the related independence models. The resulting model I has always a graphoid
structure and an interesting problem is to find a compact representation of the
model I in terms of fast closure or by a DAG (the so called P-map).

Another possibility is to take into account also the individual opinions, that is
the union U of all the experts’ models. In this case, since in general the union of
two graphoids is not a graphoid, we can face the problem by finding the “closest”
graphoid to U . This approximation can be performed in two different ways. A
way consists in looking for the upper approximation of U , i.e., the smallest
graphoid containing U : this is equivalent to compute the closure (or better, the
fast closure) of U . A second alternative is to search for the lower approximation
of U , i.e., the greatest graphoid contained in U . In the lower approximation all
the independencies that cannot be derived by at least a single agent are not
taken (i.e., an independence, obtained by applying some graphoid properties to
two or more independencies coming from different agents, always belongs to the
upper approximation, but not to the lower approximation if it falls outside U).
As for the intersection, it is interesting to study the representability in terms of
fast closure or by a DAG.

The problem of combining independence models in terms of a graphical rep-
resentation has been faced by many authors, although in some restricted cases
[14, 8], while the approach adopted here is rather general. In particular, in [9, 10]
the combination of DAG models by means of set-theoretic (union and intersec-
tion) operations is investigated. In detail, the aim of [10] is to find a minimal
I-map for the intersection of two (or more) DAG models. In [12] a further con-
straint is added searching for the minimal I-map minimizing the number of
parameters in the corresponding BN. In [14], instead, they study how to create
an undirected graph representation for the union of two or more independence
models. The problem of fusing BNs is also investigated in [8], where an argu-
mentation framework for the negotiation of a common BN is proposed.

The paper is organized as follows. In Section 2 some basic notions are recalled,
while in Section 3 the intersection of two fast closures is investigated: the fc-
intersection operator is defined and a sufficient condition for its complete DAG
representability is provided. In Section 4 analogous work is carried on for the
union of two fast closures, by means of the fc-union and fc-subunion operators.
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2 Graphoids and Fast Closure

Let S̃ = {Y1, . . . , Yn} be a finite non-empty set of variables and S = {1, . . . , n}
the set of indices associated to S̃. Given a probability P on S̃, a conditional
independence statement YA⊥⊥ YB|YC , compatible with P , is simply denoted by
the ordered triple (A,B,C), where A, B, C are disjoint subsets of S. Then, in
the following we do not distinguish S̃ from S.

Denote with S(3) the set of all (ordered) triples (A,B,C) of disjoint subsets
of S, such that A and B are not empty. A conditional independence model I is
therefore a subset of S(3). We refer to a graphoid structure, which is a couple
(S, I), where I is a ternary relation on S satisfying the following properties [5]:

G1 if (A,B,C) ∈ I, then (B,A,C) ∈ I (Symmetry);
G2 if (A,B ∪ C,D) ∈ I, then (A,B,D) ∈ I (Decomposition);
G3 if (A,B ∪ C,D) ∈ I, then (A,B,C ∪D) ∈ I (Weak Union);
G4 if (A,B,C∪D) ∈ I and (A,C,D) ∈ I, then (A,B∪C,D) ∈ I (Contraction);
G5 if (A,B,C ∪ D) ∈ I and (A,C,B ∪ D) ∈ I, then (A,B ∪ C,D) ∈ I (Inter-

section);

where A,B,C,D are pairwise disjoint subsets of S.
If θ = (A,B,C), we denote X = (A ∪ B ∪ C) while θT stands for the triple

(B,A,C) obtained from θ through G1.
Given a set J ⊆ S(3) of conditional independence statements compatible with

a strictly positive probability, a relevant problem is to find the closure of J with
respect to graphoid rules G1–G5,

J̄ = {θ ∈ S(3) : θ is obtained from J by G1–G5}.

In particular, in the rest of the paper we simply call graphoid a set J ⊆ S(3) such
that J̄ = J . A related problem, called deduction, concerns to establish whether
a triple θ ∈ S(3) can be derived from J through a finite number of application of
G1–G5. We stress that, as already pointed out in Section 1, the computation of
J̄ is in general infeasible both in time and space. An efficient solution to these
untreatable problems is given in [2], following the line of the one proposed for
semi-graphoids (characterized by G1–G4) in [13].

We recall some definitions and results useful in the rest of the paper. Given a
pair of triples θ1, θ2 ∈ S(3), we say that θ1 is generalized-included in θ2 (briefly
g-included), in symbol θ1 � θ2, if θ1 can be obtained from θ2 by a finite number
of applications of the unary rules G1, G2 and G3. The definition of g-inclusion
between triples can be extended to sets of triples. Indeed, given two sets H, J ⊆
S(3), H � J if and only if for any triple θ ∈ H there exists a triple θ′ ∈ J such
that θ � θ′.

A triple θ ∈ J is said to be maximal in J if there exists no triple θ′ ∈ J ,
different from θ and θT , such that θ � θ′.

By using the relation �, it is possible to define a set J∗ which is in general
much smaller than J̄ , but having the same information of J̄ . This set is called
the fast closure of J and is defined as

J∗ = {τ ∈ J̄ : τ is maximal in J̄ w.r.t �}.
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In general the set of maximal triples w.r.t. � of an arbitrary (i.e., not neces-
sarily closed w.r.t. G1–G5) set J , denoted as J/

	
, carries the same information

of J in a more compact form. In [2] we show that J∗ can be computed by means
of two inference rules G4∗ and G5∗, which are a generalization of rules G4 and
G5. In the same paper, it is provided a faster way of computing J∗ using a
unique inference rule which is defined in terms of the fast closure of two triples
{θ1, θ2}∗ which can be computed “at once” being composed at most of 9 addi-
tional triples. Some experimental results comparing fast closure and closure are
reported in [2].

2.1 DAG Representation

A set of conditional independencies can be represented in a compact way by a
directed acyclic graph (DAG) [11]. A conditional independence relation (A,B,C)
is encoded in a DAG G by the fact that A is d-separated from B by C [11]. This
relation is denoted by the triple (A,B,C)G. Since the d-separated triples form
a graphoid, it makes sense to consider sets of triples closed with respect to
properties G1–G5.

Note that it is not always possible to completely represent a probabilistic
independence model by a DAG, so the following notions have been introduced
in [11]:

Definition 1. Let J be a set of conditional independence relations on S. A DAG
G is a dependence map (briefly a D-map) for J̄ if for each triple (A,B,C) ∈ S(3)

(A,B,C) ∈ J̄ ⇒ (A,B,C)G.

Moreover, G is an independence map (briefly an I-map) for J̄ if for each triple
(A,B,C) ∈ S(3)

(A,B,C)G ⇒ (A,B,C) ∈ J̄ .

G is a minimal I-map of J̄ if deleting any arc, G is no more an I-map.
G is said to be a perfect map (briefly a P-map) for J̄ if it is both an I-map

and a D-map.

If the DAG G is a P-map for J̄ , then there exists an ordering π = 〈π1, . . . , πn〉
of S such that J̄ is obtained as the closure w.r.t. the semi-graphoid properties,
of the following basic triples list [11]

BG
π = {({πi}, S(πi) \ paG(πi), pa

G(πi)) ∈ S(3) : i = 2, . . . , n}, (1)

where S(πi) = {π1, . . . , πi−1}, i = 2, . . . , n, and paG(πi) is the set of parents of
the node πi in G.

However, usually an expert is not able to assess a structured set such as a
basic triples list or a closure, but rather an arbitrary set of triples. Hence, due
to the difficulty of the closure computation we have provided in [1] a necessary
and sufficient condition for the existence of a P-map for J̄ , exclusively relying
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on the corresponding fast closure J∗. In order to recall this result we introduce
the function Π defined for any θ = (A,B,C) ∈ S(3), any x ∈ S and T ⊆ S as

Π(θ, T, x) =

⎧⎨⎩
T ∩ (A ∪ C) if C ⊆ T ⊆ A ∪B ∪ C and x ∈ A,
T ∩ (B ∪ C) if C ⊆ T ⊆ A ∪B ∪ C and x ∈ B,
T otherwise.

Theorem 1. Let J ⊆ S(3) be a set of independence statements. There is a P-
map for J̄ if and only if there exists an ordering π of S such that for each
θ = (A,B,C) ∈ J∗ the following conditions hold:

C1 for each c ∈ C such that S(c) ∩ A �= ∅ and S(c) ∩B �= ∅, there exists a triple
θc ∈ J∗ such that Π(θc, S(c), c) ∩A = ∅ or Π(θc, S(c), c) ∩B = ∅;

C2 for each a ∈ A such that S(a) ∩ B �= ∅ or S(a) ∩ (S \ X ) �= ∅ there exists a
triple θa ∈ J∗ such that Π(θa, S(a), a) ∩ [B ∪ (S \ X )] = ∅;

C3 for each b ∈ B such that S(b) ∩ A �= ∅ or S(b) ∩ (S \ X ) �= ∅ there exists a
triple θb ∈ J∗ such that Π(θb, S(b), b) ∩ [A ∪ (S \ X )] = ∅;

C4 for each c ∈ C such that S(c)∩ (S \X ) �= ∅, there exists a triple θ′c ∈ J∗ such
that Π(θ′c, S(c), c) ∩ (S \ X ) = ∅.

It is worth to notice that this criterion operates on J∗, instead of J̄ , thus in the
following we say equivalently that a DAG G is a P-map for J∗ or for J̄ .

This characterization of P-mapness can be applied whenever it is feasible to
compute the fast closure, while the whole closure can be avoided to be computed
(and stored) because of the aforementioned time and memory problems.

3 Intersection of Two Independence Models

The aim of this section is to study how to compute the intersection of two
independence models J̄ and K̄ given in terms of their corresponding fast closures
J∗ and K∗. Notice that, from a semantic point of view, this process consists in
taking only the independence statements common to the two experts.

Since it is known that the intersection of two graphoid structures is a graphoid
[10, 9], the intersection of J̄ and K̄ is still a graphoid, thus we are interested to
find the set of its maximal triples directly working with the fast closures J∗ and
K∗. For this we define the fc-intersection operator

J∗ �∗ K∗ = (J̄ ∩ K̄)/
	
. (2)

We provide now a characterization of J∗�∗K∗ only relying on fast closures J∗ and
K∗. Given two triples θ1 = (A1, B1, C1), θ2 = (A2, B2, C2) ∈ S(3), if A1∩A2 �= ∅,
B1 ∩ B2 �= ∅, C1 ⊆ A2 ∪ B2 ∪ C2 = X2, and C2 ⊆ A1 ∪ B1 ∪ C1 = X1, then the
triple τ = cm(θ1, θ2) = (A1 ∩A2, B1 ∩B2, C1 ∪ C2) belongs to S(3) and

τ � θ1, τ � θ2.

In all the other cases, we set cm(θ1, θ2) = ⊥.
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Proposition 1. Given two triples θ1 = (A1, B1, C1) and θ2 = (A2, B2, C2), the
maximal triples of the set Rθ1,θ2 = {θ ∈ S(3) : θ � θ1 and θ � θ2} are in the set

Cθ1,θ2 = {cm(θ∗1 , θ
∗
2) ∈ S(3)}

where θ∗i (i = 1, 2) stands either for θi or θTi .

Proof. If the set Rθ1,θ2 is empty, then cm(θ∗1 , θ
∗
2) are all ⊥. Indeed, if there is an

element θ = (A,B,C) in Rθ1,θ2, then θ is g-included in θ1 and in θ2. There are
four possible cases implied by the definition of g-inclusion [2]. In the first case,
suppose C1 ⊆ C ⊆ X1, A ⊆ A1, B ⊆ B1, C2 ⊆ C ⊆ X2, A ⊆ A2, B ⊆ B2. As
a consequence, cm(θ1, θ2) �= ⊥ and θ � cm(θ1, θ2). Indeed, it is easy to see that
∅ �= A ⊆ A1 ∩ A2, ∅ �= B ⊆ B1 ∩ B2, C1 ⊆ C ⊆ X2, C2 ⊆ C ⊆ X1. The other
three cases are similar.

Hence, for each element θ ∈ Rθ1,θ2 there exists an element of τ ∈ Cθ1,θ2 , such
that θ � τ . Now, let θ̄ be a maximal triple of Rθ1,θ2 . Suppose that θ̄ were not
an element of Cθ1,θ2 . Because of the previous argument θ̄ would be g-included
in some element of Cθ1,θ2 , contradicting its maximality.

Proposition 2. Given two sets of independence statements J,K ⊆ S(3), then

J∗ �∗ K∗ =
(⋃

{Cθ1,θ2 : θ1 ∈ J∗, θ2 ∈ K∗}
)/

	
.

Proof. To prove the claim it is sufficient to show that for each element θ ∈
J̄ ∩ K̄, there exists an element τ of the form cm(θ1, θ2), cm(θT1 , θ2), cm(θ1, θ

T
2 ),

or cm(θT1 , θ
T
2 ) for some θ1 ∈ J∗, θ2 ∈ K∗, such that θ � τ .

Since θ ∈ J̄ , then there exists an element θ1 ∈ J∗, such that θ � θ1. Analo-
gously, since θ ∈ K̄, then there exists an element θ2 ∈ K∗, such that θ � θ2.

Because of Proposition 1, θ is g-included in some element of Cθ1,θ2 . With the
same argument, all the maximal triples of J̄ ∩ K̄ must be elements of⋃

{Cθ1,θ2 : θ1 ∈ J∗, θ2 ∈ K∗}.

Suppose now that J∗ and K∗ are completely representable by DAGs G1 and
G2, respectively, i.e., G1 is a P-map for J∗ and G2 is a P-map for K∗. An
interesting problem is to establish (under previous hypothesis) whether also their
fc-intersection is completely representable by a DAG. Next example shows this
claim does not hold in general.

Example 1. Consider the set S = {1, 2, 3, 4} and the fast closures

J∗ = {({3}, {1, 4}, {2}), ({4}, {2, 3}, {1})},
K∗ = {({2}, {3, 4}, {1}), ({3}, {1, 2}, {4})}.

Both J∗ and K∗ are completely representable by a DAG. Indeed, a DAG repre-
senting J∗ is 4→ 1→ 2 → 3, while a DAG representing K∗ is 3 → 4→ 1→ 2.
Their fc-intersection is the set J∗ �∗ K∗ = {({3}, {1}, {2, 4}), ({4}, {2}, {1, 4})}
which is not completely representable by a DAG since there does not exist an
ordering π satisfying conditions C1–C4 of Theorem 1 for all triples in J∗ �∗ K∗.
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Next proposition gives a sufficient condition for the complete DAG repre-
sentability of J∗ �∗ K∗ when J∗ and K∗ are completely DAG representable.

Proposition 3. Given two sets of independence statements J,K ⊆ S(3). If there
exists an ordering π on S such that conditions C1–C4 hold for every θ ∈ J∗ and
θ′ ∈ K∗, then π satisfies conditions C1–C4 also for all τ ∈ (J∗ �∗ K∗).

Proof. Let π be the ordering of S satisfying conditions C1–C4 for J∗ and K∗.
This ordering π allows to define two DAGs G1 = (S,E1) and G2 = (S,E2) which
are P-maps for J̄ and K̄, respectively, and their basic triples lists are

BG1
π = {({πi}, S(πi) \ paG1(πi), pa

G1(πi)) ∈ S(3) : i = 2, . . . , n},
BG2

π = {({πi}, S(πi) \ paG2(πi), pa
G2(πi)) ∈ S(3) : i = 2, . . . , n},

where it is

paG1(πi) = min
⊆
{Π(θ, S(πi), πi) : θ ∈ J∗}, i = 2, . . . , n,

paG2(πi) = min
⊆
{Π(θ, S(πi), πi) : θ ∈ K∗}, i = 2, . . . , n.

By Theorem 7 in [9] it follows that the graph G3 = G1 ∪G2 = (S,E1 ∪E2) is a
minimal I-map of J̄ ∩ K̄, for which the corresponding basic triples list is

BG3
π = {({πi}, S(πi) \ paG3(πi), pa

G3(πi)) ∈ S(3) : i = 2, . . . , n},

with paG3(πi) = paG1(πi)∪paG2(πi), i = 2, . . . , n. Thus it remains to prove that
every θ ∈ J̄ ∩ K̄ belongs to the closure of BG3

π w.r.t. G1–G4. We have that each
triple θ = (A,B,C) ∈ J̄ ∩ K̄ can be generated applying a finite number of times
properties G1–G4 to some τπi1

, . . . , τπih
∈ BG1

π and some ρπj1
, . . . , ρπjk

∈ BG2
π .

In general, there could exist several choices for the τπis
’s and ρπjt

’s, but since θ

belongs to J̄ ∩ K̄ and for each πi in the ordering π, τπi = ({πi}, Bπi , Cπi) ∈ BG1
πi

and ρπi = ({πi}, B′
πi
, C′

πi
) ∈ BG2

πi
with Bπi ∪Cπi = B′

πi
∪C′

πi
= S(πi), then θ can

be obtained starting from a minimal set of basic triples with the same indices in
the two basic triples lists, i.e., by τπi1

, . . . , τπih
∈ BG1

π and ρπi1
, . . . , ρπih

∈ BG2
π .

In particular, up to property G1, it must hold A =
⋃h

s=1{πis}, B ⊆
⋂h

s=1 Bπij

and B ⊆
⋂h

s=1 B
′
πij

that is B ⊆
⋂h

s=1(Bπij
∩B′

πij
), C ⊆

⋃h
s=1 Cπij

\
⋃h

s=1{πij}
and C ⊆

⋃h
s=1 C

′
πij
\
⋃h

s=1{πij} that is C ⊆
⋃h

s=1(Cπij
∪C′

πij
)\
⋃h

s=1{πij}. This
implies that θ can be obtained through G1–G4 also by κπi1

, . . . , κπih
∈ BG3

π .

Example 2. Let S = {1, 2, 3, 4, 5} and consider the fast closures

J∗ = {({4}, {1, 2}, {3}), ({5}, {1, 3}, {2, 4}),
({1}, {3, 4, 5}, {2}), ({3}, {1, 5}, {2, 4})}

K∗ = {({4}, {2, 5}, {1, 3}), ({5}, {1, 2, 4}, {3}),
({1}, {3, 5}, {2}), ({2}, {4, 5}, {1, 3})},



44 M. Baioletti, D. Petturiti, and B. Vantaggi

(a) G1 (b) G2 (c) G3 = G1 ∪G2

Fig. 1. P-maps of J∗, K∗ and J∗ �∗ K∗

having P-maps G1 and G2 (see Figure 1 (a) and (b)), respectively.
For both fast closures, the order π = 〈1, 2, 3, 4, 5〉 satisfies conditions C1–C4

and is the order associated to G1 an G2, thus π satisfies the same conditions
also for their fc-intersection

J∗ �∗ K∗ = {({3}, {1}, {2}), ({4}, {2}, {1, 3}), ({5}, {1}, {2, 3, 4})},

implying its complete DAG representability, in particular, a P-map for J∗ �∗K∗
is G3 = G1 ∪G2 = (S,E1 ∪ E2) in Figure 1 (c).

We stress that the condition expressed in Proposition 3 is only sufficient, i.e.,
J∗ �∗ K∗ can be completely DAG representable (assuming J∗ and K∗ are), even
if there does not exist a common ordering π for J∗ and K∗, as shown below.

Example 3. Take S = {1, 2, 3, 4, 5} and consider the fast closures

J∗ = {({2}, {3}, {1}), ({5}, {1, 2, 3}, {4}), ({1}, {4, 5}, {2, 3})},
K∗ = {({2}, {3, 4}, {1}), ({5}, {1}, {2, 3, 4}), ({4}, {1, 2}, ∅)},

having P-maps G1 and G2 (see Figure 2 (a) and (b)), respectively.

(a) G1 (b) G2 (c) G3

Fig. 2. P-maps of J∗, K∗ and J∗ �∗ K∗

The orders on S satisfying C1–C4 for J∗ are 〈1, a, b, 4, 5〉 and 〈a, 1, b, 4, 5〉
with a, b ∈ {2, 3}, while those related to K∗ are 〈1, 4, a, b, 5〉 and 〈4, 1, a, b, 5〉
with a, b ∈ {2, 3}, and 〈2, c, d, 3, 5〉 and 〈c, 2, d, 3, 5〉 with c, d ∈ {1, 4}.

Thus no common ordering is present. Nevertheless, their fc-intersection is

J∗ �∗ K∗ = {({2}, {3}, {1}), ({5}, {1}, {2, 3, 4})},
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for which the order π = 〈1, 2, 3, 4, 5〉 satisfies conditions C1–C4, and the corre-
sponding P-map is the DAG G3 shown in Figure 2 (c).

4 Union of Two Independence Models

The fc-intersection conveys all the common opinions of the experts concerning
independence statements. Nevertheless, a different combination strategy would
take into account also the independence statements proper of each expert, and
this can be realized by means of the union operation.

Contrary to the intersection operation, the union of two graphoids is generally
not a graphoid, as shown by next example.

Example 4. Consider S = {1, 2, 3} and take (we omit symmetric triples) the
graphoids J̄ = {({1}, {2}, {3})} and K̄ = {({3}, {2}, {1})}, the union J̄ ∪ K̄ is
not a graphoid, indeed it is not closed with respect to G5, as it does not contain

the triple ({1, 3}, {2}, ∅). Thus, (J̄ ∪ K̄) ⊂ (J̄ ∪ K̄).

As a consequence, in order to combine all the qualitative information provided

by two experts we need to compute the closure of the union (J̄ ∪ K̄). Let us
stress that, even if the union J̄ ∪ K̄ is a graphoid, the individual complete
DAG representability of J̄ and K̄ does not assure that also the graphoid J̄ ∪ K̄
is completely DAG representable. In terms of fast closures, this combination
strategy corresponds to take (J∗ ∪K∗)∗ and we briefly call it fc-union.

Concerning the complete DAG representability we have the following result.

Proposition 4. Given two sets of independence statements J,K ⊆ S(3). If there
exists an ordering π on S such that conditions C1–C4 hold for every θ ∈ J∗ and
θ′ ∈ K∗, then π satisfies conditions C1–C4 also for all τ ∈ (J∗ ∪K∗)∗.

Proof. Consider the basic triples lists BG1
π and BG2

π determined by π, built as
in the proof of Proposition 3. By Theorem 4 in [9] it follows that the graph

G3 = G1 ∩ G2 = (S,E1 ∩ E2) is a minimal I-map of (J̄ ∪ K̄), for which the
corresponding basic triples list is

BG3
π = {({πi}, S(πi) \ paG3(πi), pa

G3(πi)) ∈ S(3) : i = 2, . . . , n},

with paG3(πi) = paG1(πi) ∩ paG2(πi), i = 2, . . . , n. In other terms, this means

B̄G3
π ⊆ (J̄ ∪ K̄). Thus it remains to prove that every triple in (J̄ ∪ K̄) belongs

to the closure of BG3
π w.r.t. G1–G4. Nevertheless, it is sufficient to show that

each θ ∈ J̄ and θ′ ∈ K̄ can be obtained through a finite number of applications
of G1–G4 from the basic triples list BG3

π , since this implies (J̄ ∪ K̄) ⊆ B̄G3
π

and, being B̄G3
π a graphoid, it must be (J̄ ∪ K̄) ⊆ B̄G3

π . Last claim immediately
follows since each basic triple in BG1

π is g-included in the corresponding basic
triple in BG3

π , and the same holds for each basic triple in BG2
π .
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Example 5. Consider the fast closures J∗ and K∗ of Example 2, admitting the
common order π = 〈1, 2, 3, 4, 5〉. Their fc-union is

(J∗ ∪K∗)∗ = {({1}, {3, 4, 5}, {2}), ({4}, {1, 2, 5}, {3}), ({5}, {1, 2, 3, 4}, ∅),
({4, 5}, {1, 2}, {3}), ({3, 4}, {1, 5}, {2})}.

As J∗ and K∗ admit, respectively, the P-maps G1 = (S,E1) and G2 = (S,E2)
corresponding to π, a P-map of (J∗ ∪K∗)∗ is G3 = G1 ∩G2 = (S,E1 ∩ E2).

Nevertheless, the fc-union combination can introduce some exogenous informa-
tion with the only purpose of achieving a structured set, for example it could
be derived from G5 on two triples θ1 ∈ J∗, θ2 ∈ K∗. Thus a possible alternative
is to consider the maximal (with respect to set inclusion) graphoid contained in
J̄ ∪ K̄, denoted by M(J̄ , K̄). The set M(J̄ , K̄) contains the graphoid J̄ ∩ K̄ and,
in some cases, it can coincide either with J̄ ∩ K̄ or with J̄ ∪ K̄ (when it is a
graphoid), or with both. However in the most general case M(J̄ , K̄) can contain
some triples of (J̄∪K̄)\(J̄ ∩K̄). These additional triples can be characterized as
those elements belonging to J̄ \K̄ (or to K̄ \ J̄) which cannot produce new triples
when they are used with the graphoid rules in connection with the elements of
K̄ \ J̄ (or J̄ \ K̄, respectively). In other words θ ∈M(J̄ , K̄) if and only if all the
triples that can be obtained from θ alone (through G1–G3) or with some other
triple τ ∈ J̄ ∪ K̄ (through G4–G5) are still elements of M(J̄ , K̄).

Being M(J̄ , K̄) a graphoid, we are interested in finding its maximal triples,
starting from the fast closure of J and K. We denote the set M(J̄ , K̄)/

	
by

J∗ �∗ K∗ and we call it fc-subunion.
It is easy to prove that J∗ �∗ K∗ is equal to(

{τ ∈ S(3) : ∃θ ∈ J∗, τ � θ and ∀ρ ∈ K∗, {ρ, τ}∗ � J∗ ∪K∗} (3)

∪ {τ ∈ S(3) : ∃θ ∈ K∗, τ � θ and ∀ρ ∈ J∗, {ρ, τ}∗ � J∗ ∪K∗}
)/

	
.

Indeed, τ is a maximal triple of M(J̄ , K̄) if and only if τ generates only triples
which are g-included in some other maximal triples of J∗ ∪K∗.

Let us stress that for any J∗ and K∗ it always holds J∗ �∗ K∗ � J∗ �∗ K∗ �
(J∗ ∪ K∗)∗. We also notice that, depending on J∗ and K∗, it could happen
J∗ �∗K∗ = J∗ �∗K∗ or J∗�∗K∗ = (J∗ ∪K∗)∗, for example in the case J∗ � K∗,
then trivially J∗ �∗ K∗ = J∗ and J∗ �∗ K∗ = (J∗ ∪K∗)∗ = K∗.

The set J∗ �∗ K∗ can be computed with Algorithm 1 which, in turn, relies
on Algorithms 2 and 3. Notice that the procedure FindMaximal finds all the
maximal triples of a set of conditional independencies [2].

It is worthwhile to notice that even when J̄ and K̄ are both completely rep-
resentable by DAGs, M(J̄ , K̄) is not necessarily completely representable by a
DAG, as shown in the next example.

Example 6. Consider the fast closures J∗ and K∗ of Example 3. Their fc-union
and fc-subunion are

(J∗ ∪K∗)∗ = {({5}, {1, 2, 3}, {4}), ({2}, {3, 4, 5}, {1}), ({3}, {2, 5}, {1, 4}),
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Algorithm 1. Computing the fc-subunion J∗ �∗ K∗
function FCSubunion(J∗, K∗)

return FindMaximal(SelectTriples(J∗,K∗)∪ SelectTriples(K∗, J∗))

Algorithm 2. Selecting candidate maximal triples for M(J̄ , K̄)

function SelectTriples(U,V )
T ← ∅
for all θ = (A,B,C) ∈ U do

for all A′ ⊂ A do
for all A′′ ⊆ A′ do

τ ← (A \A′, B,C ∪ A′′)
if Check(τ, U, V ) then T ← T ∪ {τ}

for all B′ ⊂ B do
for all B′′ ⊆ B′ do

τ ← (A,B \B′, C ∪B′′)
if Check(τ, U, V ) then T ← T ∪ {τ}

return T

Algorithm 3. Verifying if τ can be a candidate maximal triple for M(J̄ , K̄)

function Check(τ, C,D)
for all ρ ∈ D do

if not {τ, ρ}∗ � (C ∪D) then return FALSE

return TRUE

({1, 2}, {4, 5}, ∅), ({4, 5}{1, 2}, {3})},
J∗ �∗ K∗ = {({2}, {3, 4}, {1})({5}, {1}, {2, 3, 4}), ({4}, {1, 2}, ∅),

({5}, {3}, {4}), ({5}, {3}, {1, 4}), ({5}, {1}, {2, 3})}.

Even if J∗ and K∗ are completely DAG representable (but they do not have a
common order satisfying C1–C4), neither (J∗ ∪K∗)∗ nor J∗ �∗ K∗ is completely
DAG representable.

Next example shows a case where both the sets J∗ �∗ K∗ and (J∗ ∪ K∗)∗ are
completely DAG representable at the same time.

Example 7. Consider S = {1, 2, 3, 4}, together with J∗ = {({1}, {2}, ∅)} and
K∗ = {({3}, {1, 4}, {2})}. Then we have J∗ �∗ K∗ = ∅, while (J∗ ∪K∗)∗ = {({1},
{2, 3}, ∅), ({3}, {1, 4}, {2})} and J∗ �∗ K∗ = {({1}, {2}, ∅), ({3}, {1}, {2, 4})}. It
holds that the order π = 〈1, 2, 4, 3〉 satisfies conditions C1–C4 for all the fast clo-
sures, thus they all admit a complete DAG representation.

5 Conclusions

We studied the combination of graphoid structures by means of a compact
symbolic representation (fast closure). We defined the intersection operator (fc-
intersection) and two operators for the approximation of the union (fc-union and
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fc-subunion) working on fast closures. We also provided a sufficient condition for
the complete DAG representability of the fc-intersection and the fc-union. The
present work has mainly a theoretical objective, we plan a computational anal-
ysis of the presented issues in a future work.
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Abstract. We present a case-study of applying probabilistic logic to the
analysis of clinical patient data in neurosurgery. Probabilistic condition-
als are used to build a knowledge base for modelling and representing
clinical brain tumor data and expert knowledge of physicians working
in this area. The semantics of a knowledge base consisting of proba-
bilistic conditionals is defined by employing the principle of maximum
entropy that chooses among those probability distributions satisfying all
conditionals the one that is as unbiased as possible. For computing the
maximum entropy distribution we use the MEcore system that addi-
tionally provides a series of knowledge management operations like re-
vising, updating and querying a knowledge base. The use of the obtained
knowledge base is illustrated by using MEcore’s knowledge management
operations.

1 Introduction

In the medical domain, uncertain rules like “If symptoms S1, S2, and S3 are
present, then there is a probability of 70% that the patient has disease D.” oc-
cur frequently. An intelligent agent providing decision support for performing
medical diagnosis and for choosing a therapy must be able to deal with pieces of
knowledge expressed by such rules, requiring elaborate knowledge representation
and reasoning facilities. For instance, in neurosurgery, such an agent should be
able to answer diagnostic questions in the presence of evidential facts like “Given
the evidence that the patient has perceptual disturbances, suffers from unusual
pain in the head and that there are symptoms for intracranial pressure, what is
the probability that he has a cranialnerve tumor?”, and the agent should be able
to perform hypothetical reasoning as in: “There is evidence that the patient has
perceptual disturbances and that there are symptoms for intracranial pressure.
If we chose a surgery for therapy and if the correct diagnosis was gliobastoma,
what would be the patient’s chance to recover completely without any serious
complications?” Moreover, when the agent lives in an uncertain and dynamic
environment, she has to adapt her epistemic state constantly to changes in the
surrounding world and to react adequately to new demands (cf. [5], [10]).

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 49–60, 2013.
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In this paper, we report on a case study on the application of probabilistic
modelling and reasoning to clinical patient data in neurosurgery. A knowledge
base BT representing and integrating both statistical frequencies of brain tumors
reported in the literature as well as physicians’ expert beliefs is developed and
used to perform reasoning regarding the diagnosis of brain tumor types or the
prognosis for patients (see [22,21] for more information on the medical back-
ground). Uncertain rules as the first one above are modelled by probabilistic
conditionals, formally denoted by (D|S1∧S2∧S3)[0.7]. Semantics of such condi-
tionals are given by probability distributions over the possible worlds determined
by the underlying propositional variables, and satisfaction of a conditional by a
probability distribution P is defined via conditional probability, e.g., P satisfies
(D|S1∧S2∧S3)[0.7] iff P (D|S1∧S2∧S3) = 0.7. In order to complete any missing
or unspecified knowledge, the concept of maximum entropy [16,11] is used. The
required reasoning is carried out by the MEcore system [7] that implements
reasoning at optimum entropy and provides knowledge management operations
required for modelling an intelligent agent.

In the following section, we first recall some preliminaries of probabilistic
conditional logic and features of the MEcore system as they are presented in
[7]. In Sec. 3, the vocabulary of BT and a first version of this knowledge base
is presented. Section 4 introduces revision and update operations for BT, and in
Sec. 5 we illustrate the reasoning facilities for prognosis and hypothetical what-
if-analysis, demonstrating that the results are well in accordance with a clinical
physician’s point of view. In Sec. 6, we conclude and point out further work.

2 Background: Probabilistic Conditionals and MEcore

2.1 Probabilistic Conditional Logic in a Nutshell

We start with a propositional language L, generated by a finite set Σ of (binary)
atoms a, b, c, . . .. The formulas of L will be denoted by uppercase Roman letters
A,B,C, . . .. For conciseness of notation, we will omit the logical and -connector,
writing AB instead of A∧B, and over-lining formulas will indicate negation, i.e.
A means ¬A. Let Ω denote the set of possible worlds over L; Ω will be taken
here simply as the set of all propositional interpretations over L and can be
identified with the set of all complete conjunctions over Σ. For ω ∈ Ω, ω |= A
means that the propositional formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set (L | L) = {(B|A) |
A,B ∈ L} of (unquantified) conditionals (or rules) over L. (B|A) formalizes “if
A then B” and establishes a plausible, probable, possible etc connection between
the antecedent A and the consequent B. We will use SenC to denote the set of
all probabilistic conditionals (or probabilistic rules) of the form (B|A)[x] where
x is a probability value x ∈ [0, 1].

To give appropriate semantics to conditionals, they are usually considered
within richer structures such as epistemic states. Besides certain (logical) know-
ledge, epistemic states also allow the representation of e.g. preferences, be-
liefs, assumptions of an intelligent agent. Basically, an epistemic state allows
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one to compare formulas or worlds with respect to plausibility, possibility,
necessity, probability etc. In a quantitative framework, most appreciated rep-
resentations of epistemic states are provided by probability functions (or
probability distributions) P : Ω → [0, 1] with

∑
ω∈Ω P (ω) = 1. Thus, in this

setting, the set of epistemic states we will consider is EpState = {P | P : Ω →
[0, 1] is a probability function}. The probability of a formula A ∈ L is given by
P (A) =

∑
ω|=A P (ω), and the probability of a conditional (B|A) ∈ (L | L) with

P (A) > 0 is defined as P (B|A) = P (AB)/P (A), the corresponding conditional
probability. Conditionals are interpreted via conditional probability. So the sat-
isfaction relation |=C ⊆ EpState × SenC of probabilistic conditional logic is
defined by P |=C (B|A) [x] iff P (B|A) = x.

2.2 Epistemic States and Belief Management Operations

Initialization. First, a prior epistemic state has to be built up on the basis
of which the agent can start her computations. If no knowledge at all is at
hand, simply the uniform epistemic state is taken to initialize the system. In our
probabilistic setting, this corresponds to the uniform distribution where each
possible world is assigned the same probability. If, however, a set of probabilistic
rules is at hand to describe the problem area under consideration, an epistemic
state has to be found to appropriately represent this prior knowledge. To this
end, we assume an inductive representation method to establish the desired
connection between sets of sentences and epistemic states. Whereas generally, a
set R of sentences allows a (possibly large) set of models (or epistemic states),
in an inductive formalism we have a function inductive : P(SenC) → EpState
(where P(S) denotes the power set of S) such that inductive(R) selects a unique,
“best” epistemic state from all those states satisfying R.

In the probabilistic framework, the principle of maximum entropy associates
to a set R of probabilistic conditionals the unique distribution P ∗ = MaxEnt(R)
that satisfies all conditionals in R and has maximal entropy, i.e., MaxEnt(R) is
the unique solution to the maximization problem

arg max
P ′|=R

H(P ′) with H(P ′) = −
∑
ω

P ′(ω) logP ′(ω) (1)

The rationale behind this is that MaxEnt(R) represents the knowledge given by
R most faithfully, i.e. without adding information unnecessarily (cf. [16,11]).

Example 1. Consider the three propositional variables s - being a student, y
- being young, and u - being unmarried. Students and unmarried people are
mostly young. This commonsense knowledge an agent may have can be expressed
probabilistically e.g. by the set R = {(y|s)[0.8], (y|u)[0.7]} of conditionals. The
MaxEnt -representation P ∗ = MaxEnt(R) computed by MEcore is:

ω P ∗(ω) ω P ∗(ω) ω P ∗(ω) ω P ∗(ω)
syu 0.1950 syu 0.1758 syu 0.0408 sy u 0.0519
syu 0.1528 syu 0.1378 s yu 0.1081 s y u 0.1378
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Querying an Epistemic State. Querying an agent about her beliefs amounts
to pose a set of unquantified sentences and asking for the corresponding degrees
of belief with respect to her current epistemic state.

Example 2. Suppose the current epistemic state is currState = MaxEnt(R) from
Ex. 1, and our question is “What is the probability that unmarried students are
young?”, i.e. the set of queries is {(y|su)}. MEcore returns {(y|su)[0.8270]},
that is, unmarried students are supposed to be young with probability 0.8270.

New Information and Belief Change. Belief revision, the theory of dynam-
ics of knowledge, has been mainly concerned with propositional beliefs for a
long time. The most basic approach here is the AGM-theory presented in the
seminal paper [1] as a set of postulates outlining appropriate revision mecha-
nisms in a propositional logical environment. This framework has been widened
by Darwiche and Pearl [5] for (qualitative) epistemic states and conditional be-
liefs. An even more general approach, unifying revision methods for quantita-
tive and qualitative representations of epistemic states, is described in [12]. The
crucial meaning of conditionals as revision policies for belief revision processes
is made clear by the so-called Ramsey test, according to which a conditional
(B|A) is accepted in an epistemic state Ψ , iff revising Ψ by A yields belief in B:
Ψ |= (B|A) iff Ψ ∗A |= B where ∗ is a belief revision operator (see e.g. [8]).

Note, that the term “belief revision” is a bit ambiguous: On the one hand, it
is used to denote quite generally any process of changing beliefs due to incoming
new information [8]. On a more sophisticated level, however, one distinguishes
between different kinds of belief change. Here, (genuine) revision takes place
when new information about a static world arrives, whereas updating tries to
incorporate new information about a (possibly) evolving, changing world [10].
Further belief change operators are expansion, focusing, contraction, and erasure
(cf. [8,6,10]). In the following, we will use the general approach to belief change
developed in [12] where belief change is considered in a very general and advanced
form: Epistemic states are revised by sets of conditionals – this exceeds the
classical AGM-theory by far which only deals with sets of propositional beliefs.

In the probabilistic framework, a powerful operator to change probability dis-
tributions by sets of probabilistic conditionals is provided by the principle of
minimum cross-entropy which generalizes the principle of maximum entropy in
the sense of (1): Given a (prior) distribution P and a set R of probabilistic
conditionals, the MinCEnt-distribution P ∗ = MinCEnt(P,R) is the unique dis-
tribution that satisfies all constraints in R and has minimal cross-entropy Hce

with respect to P , i.e. P ∗ solves the minimization problem

arg min
P ′|=R

Hce(P
′, P ) with Hce(P

′, P ) =
∑
ω

P ′(ω) log
P ′(ω)

P (ω)
(2)

If R is basically compatible with P (i.e. P -consistent, cf. [12]), then P ∗ is guar-
anteed to exist (for further information and lots of examples, see [4,16,12]). The
cross-entropy between two distributions can be taken as a directed (i.e. asym-
metric) information distance [19] between these two distributions. Following the
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principle of minimum cross-entropy means to modify the prior epistemic state P
in such a way as to obtain a new distribution P ∗ which satisfies all conditionals
in R and is as close to P as possible. So, the MinCEnt -principle yields a prob-
abilistic belief change operator, associating to each probability distribution P
and each P -consistent set R of probabilistic conditionals a revised distribution
P ∗ = MinCEnt(P,R) in which R holds. In [13] it is shown how both revision and
update can be based on such a belief change operator, and the corresponding
conceptual agent model MEcore which realizes this approach is described in
[2].

Example 3. Suppose that some time later, the relationships in the population
from Example 1 between students and young people have changed, so that stu-
dents are young with a probability of 0.9. In order to incorporate this new
knowledge, the agent applies an updating operation to modify P ∗ appropriately.
The result P ∗∗ = MinCEnt(P ∗, {(y|s)[0.9]}) as determined by MEcore is:

ω P ∗∗(ω) ω P ∗∗(ω) ω P ∗∗(ω) ω P ∗∗(ω)
syu 0.2151 syu 0.1939 syu 0.0200 sy u 0.0255
syu 0.1554 syu 0.1401 s yu 0.1099 s y u 0.1401

It is easily checked that indeed, P ∗∗(y|s) = 0.9 (taking rounding into account).

Diagnosis. Diagnosing a given case is one of the most common operations in
knowledge based systems. Given some case-specific evidence E (formally, a set of
quantified facts), diagnosis assigns degrees of belief to the atomic propositions D
to be diagnosed (formally, D is a set of unquantified atomic propositions). Thus,
making a diagnosis in the light of some given evidence corresponds to determine
what is believed in the state obtained by focusing the current state P on the
given evidence, i.e. querying the epistemic state MinCEnt(P,E) with respect to
D. Thus, here focusing corresponds to conditioning P with respect to the given
evidence E.

Example 4. Let currState = P ∗ from Ex. 1. If there is now certain evidence for
being a student and being unmarried – i.e. E = {su[1]} – and we ask for the
degree of belief of being young – i.e. D = {y} –, MEcore computes {y[0.8270]}.
Thus, if there is certain evidence for being an unmarried student, then the degree
of belief for being young is 0.8270.

What-If-Analysis: Hypothetical Reasoning. Hypothetical reasoning asks
for the degree of belief of complex relationships (goals) under some hypothetical
assumptions. This is useful, e. g., to exploit in advance the benefits of some ex-
pensive or intricate medical investigations. Note that whereas in the diagnostic
case both evidence E and diagnoses D are just simple propositions, in hypothet-
ical reasoning both the assumptions A (formally, a set of quantified conditionals)
as well as the goals G (formally, a set of unquantified conditionals) may be sets of
full conditionals. However, since its underlying powerful MinCEnt -update oper-
ator can modify epistemic states by arbitrary sets of conditionals, MEcore can
handle hypothetical what-if-analysis structurally analogously to the diagnostic
case, i. e. by querying the epistemic state focussed state = MinCEnt(P,A) with
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respect to G where P is the current epistemic state. Since this is hypothetical
reasoning, the agent’s current epistemic state remains unchanged.

Example 5. Given currState = P ∗ from Ex. 1 as present epistemic state, a hypo-
thetical reasoning question is given by: “What would be the probability of being
young under the condition of being unmarried – i.e. G = {(y|u)} –, provided that
the probability of a student being young changed to 0.9 – i.e. A = {(y|s)[0.9]}?”
MEcore’s answer is {(y|u)[0.7404]} which corresponds to the probability given
by P ∗∗ from Ex. 3.

2.3 The MEcore System

The main objective of MEcore is to implement probabilistic reasoning at
optimum entropy and to support advanced belief management operations like
revision, update, diagnosis, or what-if-analysis in a most flexible and easily ex-
tendable way. MEcore is implemented in Java and uses a straight-forward,
direct implementation of a well-known MinCEnt algorithm, computing the dis-
tribution P ∗ = MinCEnt(P,R) in an iterative way [4], and provides a powerful
and flexible interface. MEcore can be controlled by a text command interface or
by scripts, i. e. text files that allow the batch processing of command sequences.
These scripts and the text interface use a programming language-like syntax
that allows to define, manipulate and display variables, propositions, rule sets
and epistemic states. The following example shows a way to generate an epis-
temic state using the initialize and update operators:

//define a set of rules
kb := ((y|s)[0.8], (y|u)[0.7]);
// initialize an epistemic state with these rules
currState := epstate().initialze(kb);

//query and output current belief in the conditional (y|su)
currState.query((y|su));
//update the epistemic state currState by (y|s)[0.9]
currState.update((y|s)[0.9]);

Hence, one is able to use both previously defined rule sets and rules that are
entered just when they are needed, and combinations of both. The ability to
manipulate rule sets, to automate sequences of updates and revisions, and to
output selected results for comparing, yields a very expressive command lan-
guage. This command language is a powerful tool for experimenting and testing
with different setups. All core functions of the MEcore system are also acces-
sible through a software interface in terms of a Java API; thus, MEcore can
easily be extended by a GUI or be integrated into another software application.

There are many systems performing inferences in probabilistic networks, espe-
cially in Bayesian networks. One system built upon network techniques to imple-
ment reasoning at optimum entropy is the expert system shell Spirit [18]. Graph
based methods are known to feature a very efficient representation of probabil-
ity distributions via junction trees and hypergraphs, while MEcore works on a
model based representation of probabilities. While this is clearly inefficient, the
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aim of MEcore is to implement subjective probabilistic reasoning, as it could be
performed by agents, making various belief operations possible. In particular, it
allows changing of beliefs in a very flexible way by taking new, complex informa-
tion into account. This is not possible with graph based systems for probabilistic
inference, as efficient methods of restructuring probabilistic networks still have
to be developed.

3 BT: Modelling Clinical Brain Tumor Data

For generating an initial knowledge base for clinical brain tumor data we will
use various binary and multi-valued variables considering aspects of the patient,
the patient’s anamnesis, the observed symptoms, the possible diagnosis, etc; a
medical justification for these variables and their values along with references
to the relevant medical literature is given in [21,22]. Since the prevalence of
different tumor types varies with the age of patients, the variable age distin-
guishes patients with respect to the three values le20 (less or equal 20 years
old), 20to80 (between 20 and 80 years), and ge80 (greater or equal 80 years).
The binary variable warningSymptoms is true iff warning symptoms like percep-
tual disturbances or unusual pain in the head are present. Given results of a
magnetic resonance tomography (MRT), the variable malignancy corresponds
to the assumed malignancy of the tumor with respect to the WHO grading sys-
tem [14]; a higher index corresponds to a higher malignancy. The binary variable
icpSymptoms indicates whether MRT results provide symptoms for intracranial
pressure (ICP). The preoperative physical fitness of patients is evaluated by the
ASA (American Society of Anesthesiologists) classification system represented
by the variable ASA. It is associated with perioperative risks, and a higher value
indicates a higher risk. Only the first four states are considered here, as treatment
of a brain tumor is of low priority for a higher value. Thus, so far we have:

age : le20, 20to80, ge80
warningSymptoms : true, false

malignancy : 1, 2, 3, 4, other
icpSymptoms : true, false

ASA : 1, 2, 3, 4

In BT, the ten most common brain tumor types like gliomas and meningiomas
[17] are taken into account. Together with the value other for any other tumor
types, these brain tumor types constitute the values of the variable diagnosis:

diagnosis : pilocytic-astrocytoma, diffuse-astrocytoma,
anaplastic-astrocytoma, glioblastoma,
oligodendroglioma, ependymoma, meningeoma,
medulloblastoma, cranialnerve-tumor,
metastatic-tumor, other

Finally, there are three variables denoting the therapy, possible complications,
and the expected health of the patient. The variable

therapy : conservative, surgery, none
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diagnosis Adults Children

glioma

- glioblastoma 15% unspecified
- pilocytic-astrocytoma unspecified 35%
- diffuse-astrocytoma 10% unspecified
- anaplastic-astrocytoma 10% unspecified
- oligodendroglioma 10% unspecified
- ependymoma 4% 8%

meningeoma 20% unspecified

medulloblastoma 7% 25%

cranialnerve-tumor 7% unspecified

metastatic-tumor 10% unspecified

other unspecified unspecified

Fig. 1. Empirical frequencies of brain tumor types, where unspecified stands for rare
or unknown (collected from [3,9,15,20])

refers to the therapy to be chosen. We distinguish a conservative therapy without
surgery, surgery, or no therapy at all. Possible complications during an inpatient
stay are expressed by the variable

complication : 1, 2, 3

which distinguishes the three stages 1 (no complications or minor, completely
reversible complications like temporary pain after surgery), 2 (medium or heavy
complications with uncertain reversibility like neurological or other functional
disorders), and 3 (life-threatening complications like serious internal bleeding or
neurological deficits at the risk of brain death). Thus, higher values correspond
to more serious complications. The expected health of the patient after inpatient
stay is denoted by:

prognosis : very good, good, intermediate, poor, very poor

The knowledge base BT uses these nine propositional variables as its vocabulary
to represent clinical brain tumor data and corresponding expert knowledge. Note
that although we have only 9 variables, due to the multiple values they induce
22 × 33 × 4× 52 × 11 = 118.800 possible worlds.

There are various publications containing empirical frequencies of certain
brain tumor types. For our initial version of our knowledge base BT, we en-
code the frequencies given in Fig. 1 that are collected from [3,9,15,20] and that
are given relative to the patient being an adult (age=20to80 or age=ge80) or
being a child (age=le20). The representation of these frequencies is given by
conditionals of the following type

(diagnosis=meningeoma| !(age=le20))[0.20] (3)
(diagnosis=medulloblastoma| !(age=le20))[0.07] (4)
(diagnosis=cranialnerve-tumor| !(age=le20))[0.07] (5)
(diagnosis=metastatic-tumor| !(age=le20))[0.10] (6)

where, using the input syntax of MEcore, ! denotes negation. Additionally, BT
contains the probabilistic facts (age=le20)[0.15] and (age=20to80)[0.62]

reflecting the age distribution in Germany in the year 2009.
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Note that there are some missing frequencies in Fig. 1, and thus, there are
no conditionals in BT for these missing frequencies. In order to obtain a full
probability distribution over all variables and their values, the missing knowledge
is completed in an information-theoretically optimal way by employing the ME
principle, thus by being as unbiased as possible with respect to each diagnosis
with unspecified probability. In MEcore, the computation of an epistemic state
incorporating the knowledge given by BT is started by

cmd-1: currState := epstate.initialize(BT);

so that currState denotes the ME distribution over BT.
In order to be able to ask a set of queries instead of just a single query at the

same time, MEcore allows the introduction of an identifier to denote a set of
queries. Here, we will illustrate this feature with a singleton set containing an
unquantified conditional for the diagnosis under the premise that the patient is
older than 80 and that he suffers from warning symptoms

cmd-2: queriesBT := (diagnosis|(age=ge80)∧ warningSymptoms);
cmd-3: currState.query(queriesBT);

which yields the following probabilities:

diagnosis probability
glioblastoma 0.150
pilocytic-astrocytoma 0.035
diffuse-astrocytoma 0.100
anaplastic-astrocytoma 0.100
oligodendroglioma 0.100
ependymoma 0.040

diagnosis probability
meningeoma 0.200
medulloblastoma 0.070
cranialnerve-tumor 0.070
metastatic-tumor 0.100
other 0.035

Note that up to now, BT does not contain any information about the influence
of warning symptoms or the observation that the patient is more than 80 years
old. Therefore, in the ME distribution given by currState, the corresponding
premise given in the queries in queriesBT (cf. command line cmd-2) does not
cause a deviation from the probabilities given in the original conditionals in
BT and taken from Fig. 1. Note also that the prababilities for the two possible
diagnosis values pilocytic-astrocytoma and othermissing for adults in Fig. 1
have also been computed as expected.

4 Revising and Updating BT

Besides available statistical data, another important knowledge source is the
clinical expert knowledge of a physician. For example, for adults, Fig. 1 tells
us that the most frequently appearing glioma tumor type is glioblastoma,
but no information is provided about its probability given specific symptoms.
An experienced physician working with brain tumor patients might state the
following conditionals expressing his expert beliefs about the probability of a
glioblastoma given various observations:

(diagnosis=glioblastoma| !(age=le20) ∧ warningSymptoms)[0.20] (7)
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(diagnosis=glioblastoma| !(age=le20) ∧ icpSymptoms)[0.20] (8)
(diagnosis=glioblastoma| !(age=le20) ∧ (malignancy=4))[0.40] (9)
(diagnosis=glioblastoma| !(age=le20) ∧ (malignancy=3))[0.10] (10)
(diagnosis=glioblastoma| !(age=le20) ∧ (malignancy=2))[0.05] (11)
(diagnosis=glioblastoma| !(age=le20) ∧ (malignancy=1)[0.01] (12)

Taking into account only Fig. 1, the probability for glioblastoma is 15%. There-
fore, given the respective preconditions, rules (7) - (9) would increase the prob-
ability, whereas rules (10) - (12) would decrease it.

In [21], about 90 conditionals expressing such expert knowledge from a physi-
cian’s point of view are formulated. With expertBT denoting the set of these
conditionals, we will incorporate this new knowledge into the current epistemic
state. We can achieve this in such a way as if it had been available already in
the original knowledge base BT by a kind of belief change called genuine revision
(cf. Sec. 2 and [13,2]). In MEcore, this is easily expressed by

cmd-4: currState.revise(expertBT);

Now, asking the queriesBT (cf. command line cmd-2) again, the probabilities
have changed considerably in the new epistemic state:

diagnosis probability
glioblastoma 0.223
pilocytic-astrocytoma 0.050
diffuse-astrocytoma 0.098
anaplastic-astrocytoma 0.106
oligodendroglioma 0.086
ependymoma 0.039

diagnosis probability
meningeoma 0.156
medulloblastoma 0.065
cranialnerve-tumor 0.057
metastatic-tumor 0.106
other 0.011

E.g., the probability for glioblastoma increased from 15% to 22.3%, while the
probability for meningeoma decreased from 20% to 15.6%. This is well in accor-
dance with the observations made by physicians working in this area [21].

Now suppose that later on, experts think that the probabilities of condition-
als (7) - (9) should be changed to 0.15%, 0.25%, and 0.45%, respectively, and
let gliobNew denote these three modified conditionals. Genuine revision of the
current epistemic state with gliobNew would lead to an inconsistency since (7)
- (9) and gliobNew cannot be satisfied simultaneously. However, MEcore’s up-
date operation of currState by gliobNew can incorporate the new knowledge in
the current epistemic state by choosing the distribution satisfying gliobNew and
having minimum cross entropy with respect to currState (cf. [13,2]). Note that
update is the more appropriate operation here, since the shift of the probabilities
reflects a changed environment.

5 Prognosis and What-If-Analysis

For the real documented case of a patient being older than 80 years, with
warningSymptoms, icpSymptoms, and malignancy=4, asking MEcore results in
a probability of 55.6% for the diagnosis glioblastoma, being very plausible from



A Case Study on the Application of Probabilistic Conditional Modelling 59

a physician’s point of view. Assuming that glioblastoma were indeed the correct
diagnosis and assuming further that a surgery would be chosen, the prognosis
for complications that might occur are determined by:

cmd-5: whatIfQ := (complication| (diagnosis| (age=ge80) ∧
warningSymptoms ∧ icpSymptoms ∧ malignancy=4));

cmd-6: hypothesis := ((diagnosis=glioblastoma)[1.0],

(therapy=surgery)[1.0]);

cmd-7: currState.whatif(hypothesis,whatIfQ);

Note that what-if is similar to an update except that it does not change the cur-
rent belief state. The resulting probabilities for complications of grade 1, 2, and 3
are 0.4%, 45.4%, and 54.2%, respectively. While complications of grade 2 or 3 are
rare in general, the provided evidence and the given assumptions causedMEcore
to rise the probabilities for these types of complications considerably. After sur-
gical treatment of the given patient, there was indeed a complication of grade
2. From a clinical perspective, the probabilities for complication computed by
MEcore is an adequate warning; however, the probability for grade 3 is a bit too
pessimistic, since compared to similar patient-risk constellations, life-threatening
complications are frequent, but less than 50%. Here, a corresponding adaptation
of the conditionals constraining the probabilities for grade 3 complications might
lead to a more realistic probability value for this query. Further types of queries
for BT asking MEcore for the expected health of patients after inpatient stay,
returned a very realistic prognosis from a medical point of view [21]. An exam-
ple for what-if-analysis where the assumptions are not just facts with probability
1.0 (as in cmd-7) is given by currState.whatif(gliobNew,whatIfQ), asking for
the probability of whatIfQ in the current epistemic state under the assumption
that the conditionals in gliobNew (cf. end of Sec. 4) hold.

6 Conclusions and Further Work

We reported on a case study using probabilistic logic and the principle of maxi-
mum entropy to model clinical brain tumor data and medical expert knowledge
in neurosurgery. The knowledge base BT contains approximately 110 probabilis-
tic conditionals over 9 multi-valued variables that medical experts identified to
be at the core of clinical brain tumor data analysis. Using MEcore for working
with BT produced realistic probabilities for diagnosis and prognosis from a clini-
cal physician’s point of view. We are currently working on extending BT, taking
into account additional variables and further refining the medical modelling.
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imen.boukhris@hotmail.com, benferhat@cril.univ-artois.fr,
zied.elouedi@gmx.fr

Abstract. Eliciting the cause of an event will be easier if an agent can directly
intervene on some variables by forcing them to take a specific value. The state
of the target variable is therefore totally dependent of this external action and in-
dependent of its original causes. However in real world applications, performing
such perfect interventions is not always feasible. In fact, an intervention can be
uncertain in the sense that it may uncertainly occur. It can also have uncertain
consequences which means that it may not succeed to put its target into one spe-
cific value. In this paper, we use the belief function theory to handle uncertain
interventions that could have uncertain consequences. Augmented causal belief
networks are used to model uncertain interventions.

1 Introduction

Despite its importance, causality is undefinable if a general and precise definition is
sought (i.e., not restrained to particular cases) [22]. However, causal relations should
be distinguished from mere statistical correlations. A paradigmatic assertion in causal
relations is that the exterior manipulation (intervention) of a genuine cause will result
in the variation of an effect. Therefore, interventions play a crucial role for an efficient
causal analysis.

Bayesian networks [9,11,14] are successful graphical models representing a com-
pact joint probability distribution. Causal Bayesian networks [14] go beyond Bayesian
networks where arcs between variables follow the causal process. Probabilistic causal
graphical models are effective when a very complete statistical knowledge description
of the modeled system is available. If not, alternative causal networks will be more
appropriate (possibilistic causal networks [3,4], causal belief networks [6]). On these
networks, we can compute the simultaneous effect of observations and interventions.
Interventions are distinguished from observations with the “do” operator [14]. An in-
tervention forcing a variable Ai to be at a specific value aij is denoted by do(aij). This
action deems that the original causes of the target variable are no more responsible of
its state.

However, considering an intervention as a perfect external action is not realistic.
Indeed, it may happen that due to an inattention, to ethical issues or to a lack of knowl-
edge, the experimenter may not know the state of his action or its possible conse-
quences. In fact, the occurrence of an intervention may be uncertain (e.g., injecting
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© Springer-Verlag Berlin Heidelberg 2013
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a drug whose expiration date has been exceeded). Moreover, an intervention may fail
to set the target variable into one specific state (e.g., the use of a nicotine patches). In
these cases, choosing random values will lead to the mis-estimation of the effects and
accordingly to bad policies decisions.

Only few works in the probabilistic setting addressed the issue of intervention im-
perfection [10,12,20]. Besides in these works, interventions are defined differently from
what is considered in the scope of this paper. In fact, they are considered as external ac-
tions certainly occurring represented with dummy variables that change the local prob-
ability distribution of the target variable.

The belief function theory is an uncertain framework that is especially appropriate
to represent cases of partial and total ignorance. Therefore, it is an ideal tool to deal
with these imperfect interventions. Despite its representation power, no work has been
presented to handle uncertain interventions in the belief function framework.

This paper focuses on the modeling of uncertain interventions (i.e., uncertainly tak-
ing place) under the belief function framework. Graphically, to represent such inter-
ventions, augmented causal belief networks where conditional distributions are defined
for any number of parents are used. In these networks, a conditional table is provided
for the target variable given the intervention aside for the ones specified in the con-
text of the initial causes. By this way, interactions with other causal factors are taken
into consideration. Discounting technique is used to weaken the impact of the uncertain
intervention on the distribution of the target variable. Moreover, a certain intervention
may have uncertain consequences [7]. In this paper, we investigate the case of uncertain
interventions that may have either certain or uncertain consequences.

The rest of the paper is organized as follows: in Section 2, we recall the basic con-
cepts of the belief function theory and explain how causal knowledge can be repre-
sented on belief causal networks. The effect of uncertain interventions with certain
consequences is handled in Section 3, whereas the case of uncertain interventions with
uncertain consequences is treated in Section 4. Section 5 concludes the paper.

2 Belief Function Theory

2.1 Basics

We briefly recall the belief function theory. For more details see [15,19].
Let Θ be a finite set of mutually exhaustive and exclusive events referred to as the

frame of discernment. The basic belief assignment (bba), denoted by mΘ, is a mapping
from 2Θ to [0,1] such that: ∑

A⊆Θ

mΘ(A) = 1 (1)

When there is no ambiguity, mΘ will be shortened m. The part of belief exactly com-
mitted to the event A of Θ is represented with the basic belief mass (bbm) denoted by
m(A). Subsets of Θ such that m(A)> 0 are called focal elements. When the emptyset
is not a focal element, the bba is called normalized. A bba is said to be certain if the
whole mass is allocated to a unique singleton of Θ and Bayesian when all focal ele-
ments are singletons. If the bba has Θ as unique focal element, it is called vacuous and
it represents the case of total ignorance.
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Two bbas m1 and m2 induced by two distinct items of evidence can be aggregated
using Dempster’s rule of combination to give one resulting bba m1 ⊕m2.

m1 ⊕m2(A) =

{
K ·

∑
B∩C=A

m1(B) ·m2(C), ∀B,C ⊆ Θ if A �= ∅

0 otherwise
(2)

where K−1 = 1−
∑

B∩C=∅
m1(B) ·m2(C) is the normalization factor.

The initial knowledge encoded with a mass value, m(A), is revised using Dempster’s
rule of conditioning upon the arrival of a new certain piece of information B. All non
vacuous events implying B will be transferred to the part of A compatible with the
evidence namely, A∩B [17]. In the case, where A ∩ B = ∅, several methods exist for
transferring the remaining evidence [18]. m(A|B) denotes the degree of belief of A in
the context where B holds. It is defined as:

m(A|B) =

∑
C,B∩C=A m(C)

1−
∑

B∩C=∅m(C)
(3)

A basic belief assignment can be weakened (or discounted) before the combination to
take into account the reliability of an expert by the discounting method defined as:

mα(A) =

{
(1− α) ·m(A), ∀A ⊂ Θ

α+ (1 − α) ·m(A), if A = Θ
(4)

The discounting operation is controlled by a discount rate α taking values between 0
and 1. If α = 0, the source is fully reliable and beliefs remain unchanged. However, if α
= 1, the bba is transformed into the vacuous bba, meaning that the information provided
by the expert is completely discarded.

When a decision has to be made, beliefs held by the agent and represented by a
bba could be transformed to a probability measure called BetP , using the pignistic
transformation. It is defined as follows:

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

1−m(∅), ∀A ∈ Θ (5)

2.2 Causal Belief Networks

Belief networks [1,6,21] are simple and efficient tools to compactly represent uncer-
tainty distributions. They have shown their efficiency in several applications (e.g., sys-
tem analysis [16], threat assessment [2]). One main advantage of these networks is that
they limit the use of a priori. They differ from Bayesian networks in the definition of
conditional distributions and in the way to compute the global joint distribution. Causal
belief networks [6,8] are seen as belief networks with some particular properties con-
cerning the interpretation of arcs. They are defined on two levels as follows:

- qualitative level: a DAG G = (V,E) where arcs describe causal influence. Each vari-
able Ai is associated with a finite set namely its frame of discernment ΘAi representing
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all its possible instances, i.e., {aij,j=1,...,|ΘAi
|}. A variable Aj is called a parent of a

variable Ai if there is an edge pointing from Aj towards Ai. The set of all parents of
Ai is denoted by U(Ai). Some of the parents of Ai are denoted by PA(Ai) where a
single parent is denoted by PAj(Ai). An instance from U(Ai), PA(Ai) or PAj(Ai)
is denoted respectively by u(Ai), Pa(Ai) and Paj(Ai).

- quantitative level: represented by the set of bbas associated to each node in the
graph. For each root node Ai (i.e., PA(Ai) = ∅) having a frame of discernmentΘAi , an
a priori mAi is defined on the powerset of 2ΘAi , such that

∑
subik⊆ΘAi

mAi(subik) =

1. It is possible to model the total ignorance of the a priori by defining a vacuous bba
on Ai (i.e., setting m(ΘAi) = 1). For the rest of the nodes, conditional distributions can
be defined for each subset of each variable Ai in the context of its parents (either one
or more than one parent node).

In causal belief networks, local conditional mass distributions are aggregated using
the Dempster rule of combination. Since this rule is looking for intersections, each local
distribution should be first extended to a joint frame. Thus, each conditional distribution
will be deconditionalized (denoted by �) and non-conditionalized distribution will be
vacuously extended to a joint frame (denoted by ↑)[5].

mV=A1,...,An = ⊕Ai∈V (⊕Paj(Ai)m
Ai(ai|Paj(Ai)) �Ai×PAj(Ai))↑V (6)

where the vacuous extension is computed as:

mAi↑Ai×Aj (ai) = mAi,Aj(ai ×ΘAj )

and a conditional distribution is deconditionalized as follows:

mAi(ai|Paj(Ai)) �Ai×PAj(Ai) = mAi,Aj ({ai × Paj ∪ΘAi × Paj(Ai)})

On causal belief networks, it is possible to compute the effect of observations (seeing
the natural behavior of the system) and interventions (intended external acting forcing a
variable to take a specific value). If a manipulation of the eventB leads to a change in A,
then B is considered as a cause of A. While the effects of observations are computed
with conditioning rules, those of interventions are handled by means of the so-called
“do” operator [14]. An intervention in this case is considered as an external that totally
control the state of its target variable. Such interventions make the original causes of
the manipulated variable no more responsible of its state. All the other causes than the
one of the intervention will be excluded. Graphically, interventions are described in
two equivalent ways, namely graph mutilation and graph augmentation. The first way
consists in modifying the causal graph by cutting off the links pointing into the target
variable. The second equivalent way consists in adding, for the target variable, a new
parent variable denoted DO.

3 Handling Uncertain Interventions with Certain Consequences

The occurrence of interventions recalled in the last section is assumed to be certain.
However, it is not realistic to always consider interventions as fully certain external ac-
tions. An intervention having the variable Ai as target may uncertainly occur by forcing
Ai to take an unknown specific value aij(aij ∈ ΘAi ) or it may fail to take place.
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Example 1. This example will be used in the rest of the paper to illustrate the main
results. It concerns a description of knowledge regarding the causal link between the
use of sugar and the sweetness of a coffee.

Fig. 1. Causal belief network

Fig. 1, depicts a causal belief network where S describes the presence of sugar in
the cup of coffee, ΘS = {s1, s2} where s1 is yes and s2 is no and C represents the
sweetness of the coffee, ΘC = {c1, c2} where c1 is sweet and c2 is bitter.

Let us assume that you have gone to a restaurant and ordered a coffee. A friend
sees on the table a container with some white powder, without tasting it, he adds some
of this powder into your cup of coffee because he knows that you like sweet coffee.
Unfortunately, later he realizes that it may be either sugar or something else, and since
you are in a restaurant it is most likely to be salt. If afterward, you taste the coffee and
you find it sweet, you do not know if it is due to the action of your friend or to the way the
coffee has been prepared. This latest alternative has no relation with the intervention of
your friend. Thus, links relating the sweetness of the coffee with the initial use of sugar
should not be deleted.

As in handling standard interventions, to represent uncertain interventions, we will alter
the belief network by adding a new fictive node (DO) as a new parent of the variable
Ai concerned by a manipulation, i.e., PA(Ai) ← PA(Ai) ∪ DO. The DO node is
taking value in do(x), x ∈ {ΘAi ∪ {nothing}}. do(nothing) means that there are no
actions on the variable Ai, it represents the state of the system when no interventions
are made or totally fail to occur. do(aij) means that the variable Ai is forced to take the
value aij . This way allows to represent the effect of interventions and also observations.
The augmented graph is denoted by Gaug . By taking advantage of the representation of
causal belief networks to define conditional distributions [8], a conditional bba in the
context of the fictive node DO will be “naturally” specified.

3.1 Interventions with an Unknown Specific Value

In the following, we propose a method to handle uncertain interventions that force the
target variable to take an unknown specific value. To compute the distribution of the
target variable, we need to address four different issues:
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1- Deciding about the nature of the external action. We propose a general method
where the nature of the intervention is undefined and we have to specify it. A bba,
mI , expressing the beliefs about the genuine nature of the external action expressed
on a frame of discernment ΘI = {θ1, . . . , θn} is defined. Note that the frame ΘI may
be different from the frame of the target variable. Deciding about the actual nature of
the intervention will allow us to know which states will be affected by a change. The
decision operation is made using the pignistic transformation.

Example 2 (continued). Suppose that the beliefs about the nature of the substance in
the container are flexibly expressed within the belief function formalism. They are de-
fined on ΘI = {sugar, salt, flour} such that mI ({sugar}) = 0.2, mI ({salt}) = 0.7,
mI ({flour}) = 0.01 and mI ({sugar,salt}) = 0.09. The corresponding probabilistic
knowledge of this bba is computed with the pignistic probability measure as follows:
BetP I ({sugar}) = 0.2 + 0.09 * 0.5 = 0.245, BetP I({flour}) = 0.01, BetP I({salt})
= 0.7 + 0.09 * 0.5 = 0.745.

2- Defining the possible states of the intervention. The frame ΘI is different from
the frame of the target variable ΘAi . However, instances of ΘI may affect the state
of the target variable Ai by forcing it to take the value aij . Thus in the case of un-
certain interventions, a matching between each θi and a state from ΘAi is defined
as match(θi) = aij . If θi has no impact on Ai, then we will say that match(θi) =
nothing. Note that more than one element of ΘI may affect the same state aij .

Example 3 (continued). The target variable has a frame of discernment ΘC=
{c1=sweet, c2=bitter} while the intervention is represented on ΘI={sugar, salt, flour}.
Table 1 presents the results of the matching between elements θi with instances of C.

Table 1. Matching function: match(θi)

θi match(θi)

sugar c1
salt nothing

flour c2

Recall that the DO node represents the intervention. It has the same instances than its
target to which the value nothing is added. do(aij) means that the intervention attempts
to set the target variable Ai into the state aij . This is achieved by performing the action
θi. Therefore, executing θi amounts to do(aij). Accordingly, beliefs about the state
of the variable DO reflecting the occurrence of the intervention will be defined from
the knowledge about the decided nature of the intervention computed in the last step
through BetPs. Since this latter reflects a probabilistic knowledge (i.e., computed for
singletons), the bba of the DO node will be Bayesian and defined as:

mDO(do(x)) =

{∑
θi,match(θi)=aij

BetP I(θi) if x = {aij}∑
θi,match(θi)=nothing BetP I(θi) if x = {nothing} (7)
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Example 4 (continued). According to the added substance, the coffee will be either
sweet, bitter or remain as it was prepared. Therefore, forcing it to be at a specific state is
not given for sure by adding the white powder. Hence, beliefs expressed about the actual
occurrence of the intervention are computed using the BetP of each ingredient. In fact,
the BetP takes into account all the focal elements that intersect with the substance of in-
terest. The bba of the nodeDO is defined as:mDO({do(c1)}) = BetP I (sugar) = 0.245,
mDO({do(c2)}) = BetP I (flour) = 0.01 and mDO({do(nothing)}) = BetP I(salt) =
0.745.

3- Defining Conditionals Given the DO Node. When occurring, an intervention
do(aij) succeeds to force the variable Ai to take a certain value aij . Therefore, a con-
ditional bba given an intervention is a certain bba focused on aij defined as:

mAi(subik|do(aij)) =
{
1 if subik = {aij}
0 otherwise

(8)

One can consider that mAi(.|do(aij)) is provided by an information source and this
latest expects that it will be a certain bba. Since the occurrence of the intervention is
uncertain, the bba defined by applying Equation 8 is not appropriate. Accordingly, this
source is seen as not fully reliable. In fact, even if the intervention succeeds to put its
target into one specific value, its occurrence remains uncertain. A Bayesian bba express-
ing the actual values concerning the occurrence of the intervention has been computed
with BetP as explained in the last step. It will be used to evaluate the reliability of the
source.

When considering the case of an intervention forcing the variableAi to take the value
aij , the occurrence of the intervention in the form of other states does not matter. What
it was predicted by the source is an intervention certainly occurring at the state aij ,
mDO(do(aij)) = 1, whereas the actual belief about the occurrence of the intervention
succeeding to put the variable Ai into the state aij is defined as mDO(do(aij)) = α ∈
[0, 1]. Since the degree of confidence in the reliability of a source can depend on the
true value of the variable of interest, the difference between what is was predicted and
the actual value is considered as its discounting factor defined as 1 − α. Consequently,
the conditional distribution given the DO node is discounted by taking into account
the reliability of each source, namely αdo(aij). This information, will transform the
conditional given the DO node from a certain bba into a weaker, less informative one.
Hence, the new conditional bba of the target variable given the DO node becomes:

m
Ai,αdo(aij )(subik|do(aij)) =

{
1− α if subik = {aij}
α if subik = ΘAi

(9)

Proposition 1. Standard interventions are a particular case of uncertain interventions
when the source is fully reliable, i.e., α = 0.

m
Ai,αdo(aij )=0

(subik|do(aij)) =
{
1 if subik = {aij}
0 otherwise

(10)
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Example 5 (continued). Graphically, an extra node DO representing the intervention
on the variable C is added as its new parent in the augmented graph. Each conditional
distribution for the target variable C given an instance of the DO node is seen as
provided by a distinct source of information. These sources affirm that performing an
intervention will lead to a known change in the state of the manipulated variable. The
conditional distributions as presented by the sources are presented in Table 2.

Table 2. Certain bba: mC(.|do(x))

{do(c1)} {do(c2)} {do(nothing)}
{c1} 1 0 0
{c2} 0 1 0
ΘC 0 0 1

Since the intervention achievement is uncertain, conditional local distributions pre-
sented in Table 2 are not appropriate. In fact, even when the intervention occurs with
a degree of belief and succeeds to put its target into one specific value, one should
take into consideration the cases where it fails to take place. Therefore, certain condi-
tional local distributions will be discounted according to the reliability of each source.
The degree of confidence in the reliability of a source is computed according the true
value of the variable of interest, i.e., the DO bba. Hence, discount rates are denoted by
1−αdo(x). They are defined as 1- αdo(c1) = 0.245, 1- αdo(c2) = 0.01 and 1- αdo(nothing)

= 0.745. The new discounted conditional bba is presented in Table 3.

Table 3. Discounted bba: mC,αdo(x)(.|do(x))

{do(c1)} {do(c2)} {do(nothing)}
{c1} 1*0.245=0.245 0*0.01=0 0*0.745=0
{c2} 0*0.245=0 1*0.01=0.01 0*0.745=0
ΘC 0*0.245+0.755 =0.755 0*0.01+0.99=0.99 1*0.745+0.255=1

4- Defining Conditionals Given an Uncertain Intervention. The impact of the un-
certain intervention on the target variable will not only depend from the intervention
but also from the initial causes of the variable. To get the conditional bba given all the
parent nodes, Dempster’s rule of combination is used to aggregate the conditional distri-
bution given the initial causes with the discounted conditional given the DO parent. We
use mAi(aj |Pa(Ai)) to represent the conditional mass function induced on the space
ΘAi given Pa(Ai) ⊆ ΘPA(Ai), and mAi,αdo(x)(ak|do(x)) to represent the discounted
conditional mass function induced on the space ΘAi given the intervention do(x). The
bba of the target variable mAi(ai|Pa(Ai), do(x)) is computed as follows:

mAi(ai|Pa(Ai), do(x)) =
∑

aj∩ak=ai

mAi(aj |Pa(Ai)) ·mAi,αdo(x)(ak|do(x)) (11)
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Example 6 (continued). The conditional bbas given the initial causes and that of the
DO node can be aggregated to give the conditional bba mC(.|si, do(x)). For instance,
mC(.|s1, do(c1)) is obtained by computing mC(.|s1) ⊕ mC,αdo(c1)(.|do(c1)). Results
are presented in Table 4.

Unlike the case of standard interventions, mC(c1|s1, do(c1)) �= 1. However, the
action of the friend has raised the beliefs about the sweetness of the coffee. A small
increase from 0.8 to 0.845 is explained by the fact that it is more likely that the used
ingredient is salt. In the same way, mC(c2|s2, do(c1)) has decreased from 0.7 to 0.638.

Table 4. Conditional bba: mC(.|si, do(c1))

{(s1, do(c1))} {(s2, do(c1))}
{c1} 0.8450 0.180
{c2} 0.0775 0.638
ΘC 0.0775 0.182

3.2 Interventions Not Occurring

The approach we proposed for handling interventions uncertainly happening remains
valid to deal with the case of non-interventions. This is represented by setting the vari-
able DO with certainty to the value do(nothing).

In this paper, we consider that the situation of non-intervention encompasses:
- not acting on the target variable and observing the spontaneous behavior of the system,
- failing to act on the target variable and therefore the intervention will not occur.

Formally, in this case:

∀θi,match(θi) = {nothing} (12)

From Equations 7 and 12, the bba of the DO node is defined by:

mDO(do(x)) =

{
1 if x = {nothing}
0 otherwise

(13)

In this case, the state of the target variable will not depend on the intervention (i.e.,
from the DO node). The conditional bba given the DO node is not informative. It is
represented with the vacuous bba defined as:

mAi(subik|do(nothing)) =
{
1 if subik = ΘAi

0 otherwise
(14)

The “non-intervention” occurs certainly. Therefore, the source is fully reliable and the
discounting factor is equal to zero. Hence, our approach well handles the particular case
of standard interventions.

Proposition 2. The beliefs provided about the non-occurrence of an intervention are
accepted without any modification. They are defined like standard interventions.x

mAi,αdo(nothing)(.|do(nothing)) = mAi(.|do(nothing)) (15)
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The conditional bbas defined in the context of the DO node and of the initial causes are
computed by combining each conditional defined per single parent as follows:

mAi(.|Pa(Ai), do(nothing)) = mAi(.|do(nothing))⊕mAi(.|Pa(Ai))
= mAi(.|Pa(Ai))

(16)

Proposition 3. An augmented causal belief graph where the DO node is set to the
value nothing encodes the same joint distribution than the initial causal belief network.

mGaug (.|do(nothing)) = mG (17)

4 Handling Uncertain Intervention with Uncertain Consequences

In the last section, we dealt with interventions occurring in an uncertain way. When
happening, even with a belief m({do(aij)}), they succeed to put the target variable
into exactly one specific state. This situation is not always feasible. Therefore, our
proposed approach in this section is to handle uncertain interventions with uncertain
consequences, i.e., failing to put their target into a specific value.

4.1 Certain Interventions with Uncertain Consequences

In [7], we dealt with interventions that certainly take place but have uncertain conse-
quences. To handle such cases, we proposed to specify a new bba on the target variable
representing the consequences of the intervention. Let us denote by FAi , the set of the
focal elements representing the uncertain consequences of the intervention where a bbm
βj is allocated to each focal element. The conditional bba of the target variable given
a certain intervention on the variable Ai attempting to force it to take the value aij is
defined as follows:

mAi(subik|do(aij)) =
{
βj if subik ∈ FAi , βj ∈]0, 1]
0 otherwise

(18)

Example 7 (continued). Let us continue with the network of Fig. 1. Imagine here that
your friend puts Lactose into your cup of coffee which is a disaccharide sugar. However
it is known that it is poorly soluble. Therefore, even if the substance is a kind of sugar,
adding it will obviously affect the sweetness of the coffee but without certainty. The
conditional bba mC(.|do(c1)) defined upon this intervention is expressed as follows:
mC(c1|do(c1)) = 0.8, mC(c2|do(c1)) = 0.05, mC(ΘC |do(c1)) = 0.15.

4.2 Uncertain Interventions with Uncertain Consequences

In this paper, we also investigate the case of uncertain interventions with uncertain con-
sequences. In fact, an intervention even taking place with a given degree of belief may
have uncertain consequences. Remember that to deal with uncertain interventions suc-
ceeding to set their target into a specific value aij , the conditional bbas given instances
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of the DO node are discounted according to the actual occurrence of the intervention
(see Equation 9). In the case of uncertain interventions with uncertain consequences,
we take into consideration possible states that can take the target variable. Therefore,
we define the resulting bba as a mixture of Equation 9 and 18 as follows:

mAi(subik|do(aij)) =
{
(1− α) · βj if subik ∈ FAi

α+ (1− α) · βj if subik = ΘAi

(19)

Proposition 4. Uncertain interventions with a certain consequence are a particular case
of uncertain ones with uncertain consequences when the parameter βj is set to one.

mAi(subik|do(aij)) =
{
1− α if subik = {aij}
α if subik = ΘAi

Example 8 (continued). In context of a restaurant, it is more likely that what your
friend has putted into your coffee is salt. We are focusing in the occurrence of the
intervention as attempting to set its target into the value sweet, which means that the
powder is sugar. However, some kinds of sugar (e.g., lactose, saccharine) are either not
very soluble or may have a bitter or metallic unpleasant aftertaste. Adding them may
lead to uncertain consequences. Note that the bbm that the added substance is sugar
is represented with m({do(c1)})= 0.245. Hence, to represent this case the conditional
bba given the DO node will be discounted. The resulting bba is presented in Table 5.

Table 5. mC,αdo(c1)(.|do(c1)) upon an uncertain intervention with uncertain consequences

{do(c1)}
{c1} 0.8*0.245 = 0.2
{c2} 0.05*0.245 = 0.01
ΘC 0.15*0.245+0.755 = 0.79

Note that as for uncertain interventions with certain consequences, the conditional dis-
tribution given the DO parent can be combined with the discounted conditional dis-
tribution given the initial causes using Dempster’s rule of combination to obtain the
conditional distribution given all the parent nodes.

5 Conclusion

This paper provided a causal graphical model to deal with interventions under the belief
function framework. We argued that for several practical cases, interventions may be
uncertain and should be consequently adequately modeled. Furthermore, we addressed
the issue of uncertain interventions failing to be at one specific state so-called uncertain
interventions with uncertain consequences.

We emphasized on that uncertain interventions have a natural encoding under
the belief function framework and may be graphically modeled using causal belief
networks. The effect of an uncertain intervention is computed on an altered structure,
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namely belief augmented graphs. In these networks, conditionals can be defined for any
number of parents and are can be seen as provided by distinct sources of information.

As future works, we intend to explore the relationships between interventions and
the belief changes using Jeffrey-Dempster’s rule [13].
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Abstract. An algorithm, called Semantics in Inference (SI) has been
proposed recently for determining semantics of the intermediate factors
constructed during exact inference in discrete Bayesian networks. In this
paper, we establish the soundness and completeness of SI. We also sug-
gest an alternative version of SI, one that is perhaps more intuitive as it
is a simpler graphical approach to deciding semantics.

1 Introduction

Zhang and Poole [14] proposed Variable Elimination (VE) as a simple approach
to exact inference in discrete Bayesian networks. Given a Bayesian network [11],
which consists of a directed acyclic graph and a corresponding set of conditional
probability tables, VE can compute the posterior probabilities of a set of vari-
ables given that another disjoint set of variables are observed taking certain
values. Koller and Friedman [8] state that it is interesting to consider the se-
mantics of the potentials constructed during inference, since only sometimes the
probabilities are defined with respect to the joint distribution.

In [1], we gave a method for determining the semantics of the intermediate
factors built by VE during inference. That method worked by checking for the
existence of a particular topological ordering of the n variables in a Bayesian
network, thereby having O(n!) time complexity. More recently, we suggested
in [2], the Semantics in Inference (SI) algorithm, which uses d-separation [11]
to decide the semantics of the intermediate factors. There it was shown that SI
has polynomial time complexity O(n3) and that SI is strongly complete. Due to
space constraints other properties were not shown.

In this theoretical paper, we establish the soundness and completeness of SI.
The work here also leads us to suggest an alternative version of SI, one that
is based upon the notions of ancestors and descendants. This is a third way to
decide semantics of intermediate factors in exact inference in discrete Bayesian
networks. The method in [1] is based upon the notion of topological orderings,
while the notion of d-separation is utilized in [2]. The approach taken here should
be more intuitive, since it can be understood as a simple visual test.

The remainder of this paper is organized as follows. Background knowledge is
given in Section 2. In Section 3, the soundness and completeness of SI are estab-
lished. Section 4 presents an alternative version of SI. Conclusions are delivered
in Section 5.
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2 Background Knowledge

2.1 Exact Inference in Bayesian Networks

A discrete Bayesian network [11] is a pair (B,C). B denotes a directed acyclic
graph with a finite vertex set U = {v1, v2, . . . , vn}, where for simplified notation,
we may write {v1, v2, . . . , vk} as v1, v2, . . . , vk. Each vertex represents a random
variable vi, which can take a value from a finite domain, dom(vi). C is a set of
conditional probability tables (CPTs) {p(vi|P (vi)) | i = 1, 2, . . . , n}, where P (vi)
denotes the parents (immediate predecessors) of vi ∈ B. The product of CPTs
in C is a joint probability distribution p(U). For example, the directed acyclic
graph in Figure 1 is called the extended student Bayesian network (ESBN) [8].
We give CPTs in Table 1, where only binary variables are used in examples, and
probabilities not shown can be obtained by definition. By the above,

p(U) = p(c) · p(d|c) · p(i) · p(g|d, i) · · · p(h|g, j). (1)

c

d i

g s

j
l

h

Fig. 1. The directed acyclic graph of ESBN

Table 1. CPTs for the ESBN in Figure 1

c p(c) c d p(d|c) g l p(l|g) i s p(s|i)
0 0.20 0 0 0.40 0 0 0.30 0 0 0.40

1 0 0.70 1 0 0.60 1 0 0.80
i p(i)

0 0.75 d i g p(g|d, i) s l j p(j|s, l) g j h p(h|g, j)
0 0 0 0.90 0 0 0 0.10 0 0 0 0.25
0 1 0 0.20 0 1 0 0.60 0 1 0 0.65
1 0 0 0.50 1 0 0 0.45 1 0 0 0.50
1 1 0 0.40 1 1 0 0.50 1 1 0 0.85

A topological ordering [8] is an ordering ≺ of the variables in a Bayesian
network B so that for every arc (vi, vj) in B, vi precedes vj in ≺. For example,
c ≺ d ≺ i ≺ g ≺ s ≺ l ≺ j ≺ h is a topological ordering of the variables in Figure
1, but d ≺ c ≺ i ≺ g ≺ h ≺ l ≺ j ≺ s is not. A path from v1 to vn is a sequence



On Semantics of Inference in Bayesian Networks 75

v1, v2, . . . , vn with arcs (vi, vi+1) in B, i = 1, . . . , n−1. With respect to a variable
vi, we define three more sets: (i) the ancestors of vi, denoted A(vi), are those
variables having a path to vi; (ii) the descendants of vi, denoted D(vi), are those
variables to which vi has a path; and, (iii) the children of vi are those variables
vj such that arc (vi, vj) is in B. The ancestors of a set X ⊆ U are defined as
A(X) = (∪vi∈XA(vi))−X . The descendants D(X) are defined similarly.

VE, shown as Algorithm 1, computes p(X |E = e) from a discrete Bayesian
network B by calling sum-out (SO) to eliminate variables one by one. More
specifically, in Algorithm 1, Φ is the set C of CPTs for B, X is a list of query
variables, E is a list of observed variables, e is the corresponding list of ob-
served values, and σ is an elimination ordering for variables U −XE, where XE
denotes X ∪ E. The evidence potential for E = e, denoted 1(E = e), assigns
probability 1 to the single value e of E and probability 0 to all other values of E.
Hence, for a variable v observed taking value λ and v ∈ {vi}∪P (vi), the product
p(vi|P (vi)) · 1(v = λ) keeps only those configurations agreeing with v = λ.

Algorithm 1. VE(Φ, X , E, e, σ)
Multiply evidence potentials with appropriate CPTs
While σ is not empty

Remove the first variable v from σ
Φ = SO(v, Φ)

p(X,E = e) = the product of all potentials ψ ∈ Φ
return p(X,E = e)/

∑
X p(X,E = e)

SO, shown as Algorithm 2, eliminates a single variable v from a set Φ of poten-
tials [8], and returns the resulting set of potentials. The algorithm collect-relevant
simply returns those potentials in Φ involving variable v.

Algorithm 2. SO(v,Φ)
Ψ = collect-relevant(v,Φ)
ψ = the product of all potentials in Ψ
τ =

∑
v ψ

return (Φ− Ψ) ∪ {τ}

As in [8], suppose the observed evidence for the ESBN is i = 1 and h = 0
and the query is p(j|h = 0, i = 1). The weighted-min-fill algorithm [8] can
yield σ = (c, d, l, s, g). VE first incorporates the evidence: ψ(i = 1) = p(i) ·
1(i = 1), ψ(d, g, i = 1) = p(g|d, i) · 1(i = 1), ψ(i = 1, s) = p(s|i) · 1(i = 1),
ψ(g, h = 0, j) = p(h|g, j) · 1(h = 0). To eliminate c, the SO algorithm computes
ψ(d) =

∑
c p(c) · p(d|c). SO computes the following to eliminate d ψ(g, i =

1) =
∑

d ψ(d) · ψ(d, g, i = 1). To eliminate l, ψ(g, j, s) =
∑

l p(l|g) · p(j|l, s). SO
computes the following when eliminating s,

ψ(g, i = 1, j) =
∑
s

ψ(i = 1, s) · ψ(g, j, s). (2)
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For g, SO can compute:∑
g

ψ(g, i = 1, j) · ψ(g, i = 1) · ψ(g, h = 0, j)

=
∑
g

ψ(g, i = 1, j) · ψ(g, h = 0, i = 1, j) (3)

= ψ(h = 0, i = 1, j).

VE then multiplies all remaining potentials as p(h = 0, i = 1, j) = ψ(i = 1) ·
ψ(h = 0, i = 1, j). Finally, VE answers the query by p(j|h = 0, i = 1) = p(h =
0, i = 1, j)/

∑
j p(h = 0, i = 1, j).

2.2 Semantics in Inference

In [3], we established the CPT structure of VE’s intermediate factors, namely,
every multiplication in VE ψ(X1|Y1) · ψ(X2|Y2) yields a CPT ψ(X1X2|Y1Y2 −
X1X2) and every summation

∑
v ψ(X |Y ) during VE yields ψ(X − v|Y ).

By semantics, we mean that a CPT ψ(X |Y ) constructed by VE’s manipulation
of Bayesian network CPTs is not necessarily equal to the CPT p(X |Y ) obtained
from the defined joint probability distribution p(U). For instance, it can be
verified that in the ESBN,

p(h|g, j) ·
∑
d

p(g|d, i) ·
∑
c

p(c) · p(d|c) (4)

produces the CPT ψ(g, h|i, j) in Table 2 (left). In contrast, the CPT p(g, h|i, j)
built from the joint distribution p(U) in (1) is shown in Table 2 (right).

The evidence expanded form [2] of ψ, denoted F (ψ), is the unique expression
defining how ψ was built using the multiplication and marginalization operators
on the Bayesian network CPTs together with any appropriate evidence poten-
tials. The evidence expanded form F (ψ) of any potential ψ constructed by VE
can always be equivalently written in evidence normal form [2], namely, γ ·N ,
where γ is the product of 1 and all evidence potentials in F (ψ), and N is the
same factorization as F (ψ) except without products involving evidence poten-
tials. The evidence expanded form F (ψ(g, i = 1, j)) of ψ(g, i = 1, j) in (2) is:∑

s

((p(s|i) · 1(i = 1)) · (
∑
l

(p(l|g) · p(j|l, s)))). (5)

Its normal form γ ·N is

1(i = 1) ·
∑
s

∑
l

p(s|i) · p(l|g) · p(j|l, s), (6)

where γ = 1(i = 1) and N = ψ(j|g, i).
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Table 2. CPT ψ(g, h|i, j) built by (4) and the CPT p(g,h|i, j) built from p(U) in (1)

i j g h ψ(g, h|i, j) i j g h p(g,h|i, j)
0 0 0 0 0.1890 0 0 0 0 0.1960
0 0 0 1 0.5670 0 0 0 1 0.5880
0 0 1 0 0.1220 0 0 1 0 0.1080
0 1 0 0 0.4914 0 1 0 0 0.4762
0 1 0 1 0.2646 0 1 0 1 0.2564
0 1 1 0 0.2074 0 1 1 0 0.2272
1 0 0 0 0.0680 1 0 0 0 0.0846
1 0 0 1 0.2040 1 0 0 1 0.2537
1 0 1 0 0.3640 1 0 1 0 0.3309
1 1 0 0 0.1768 1 1 0 0 0.1518
1 1 0 1 0.0952 1 1 0 1 0.0817
1 1 1 0 0.6188 1 1 1 0 0.6515

The transitive closure [5] of B is defined as the graph T = (U,E∗), where

E∗ = {(vi, vj) | there is a path from vertex vi to vj in B}.

The transitive closure T of the ESBN in Figure 1 is:

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c d i g l s j h

c 0 1 0 1 1 0 1 1
d 0 0 0 1 1 0 1 1
i 0 0 0 1 1 1 1 1
g 0 0 0 0 1 0 1 1
l 0 0 0 0 0 0 1 1
s 0 0 0 0 0 0 1 1
j 0 0 0 0 0 0 0 1
h 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For each variable, the columns of T represent its ancestors, while the rows of T
represent its descendants. For example, A(g) = {c, d, i} and D(l) = {j, h}. More
generally, for sets of variables, A(j, l, s) = {c, d, i, g} and D(j, l, s) = {h}, while
A({c, d, g, h}) = {i, j, l, s} and D({c, d, g, h}) = {j, l}.

The Semantics in Inference (SI) algorithm [2], given as Algorithm 3, denotes
the semantics of any potential ψ built by VE on a discrete Bayesian network
B. Each potential ψ constructed by VE is represented in evidence normal form
ψ(X |Y ). If the semantics ofB ensure the ψ(X |Y ) = p(X |Y ), then ψ is denoted as
pB(X |Y ); otherwise, it is denoted as φB(X |Y ). S is the set of variables marginal-
ized in F (ψ). A(XS) and D(XS) are computed from the transitive closure, de-
noted T , of B. IB(M,N,O) means an independence statement I(M,N,O) holds
in B by d-separation [11], where M,N,O ⊆ U .
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Algorithm 3. SI(ψ)
Compute the evidence expanded form F (ψ) of ψ
Compute the normal form γ ·N of F (ψ)
Compute the CPT structure ψ(X |Y ) of N
Compute Z = A(XS) ∩D(XS)
Compute X1 = X ∩ P (Z)
if IB(X1, ∅, Y ) holds in B by d-separation

return pB(X |Y )
else

return φB(X |Y )

Recall ψ(g, i = 1, j) in (2). The evidence normal form is (5) and the evidence
normal form is (6). The CPT structure ofN is ψ(j|i, g). NowX = {j}, Y = {i, g}
and S = {l, s}. By the transitive closure T of the ESBN, A(XS) = {c, d, i, g}
and D(XS) = {h}. Hence, Z = ∅, P (Z) = ∅, and X1 = ∅. Trivially, IB(X1, ∅, Y )
holds. Thus, SI denotes ψ(g, i = 1, j) in (2) as pB(j|g, i = 1).

Now consider ψ(g, h = 0, i = 1, j) in (3). Then F (ψ) is equal to

p(h|g, j) · 1(h = 0) ·
∑
d

p(g|d, i) · 1(i = 1) ·
∑
c

p(c) · p(d|c). (7)

In evidence normal form γ ·N , we have

1(h = 0, i = 1) ·
∑
d

∑
c

p(h|g, j) · p(g|d, i) · p(c) · p(d|c) (8)

where γ = 1(h = 0, i = 1) and N = ψ(g, h|i, j). With X = {g, h}, Y = {i, j}
and S = {c, d}, from T on the ESBN we have A({c, d, g, h}) = {i, j, l, s} and
D({c, d, g, h}) = {j, l}. Thus, Z = {j, l}, giving P (Z) = {g, s} and X1 = {g}.
Now, IB(X1, ∅, Y ) does not hold. Thereby, SI denotes ψ(g, h = 0, i = 1, j) in (3)
as φB(g, h = 0|i = 1, j).

3 Theoretical Foundation

Lemmas 1 - 4 are used to show soundness (Theorem 1), while Lemmas 4 - 7 are
used to show completeness (Theorem 2).

Lemma 1. In SI, IB(X1, ∅, Y )⇐⇒ X1 = ∅.

Proof. (⇐) Given X1 = ∅, then IB(X1, ∅, Y ) holds.
(⇒) Consider two cases. Suppose Y = ∅. As Y = P (XS) = ∅, A(XS) = ∅.

Therefore, Z = ∅, P (Z) = ∅, and X1 = ∅. Now suppose Y �= ∅. By contradiction,
suppose vi ∈ X1. By definition of X1, vi ∈ P (Z). Thus, there exists a vj ∈
Z with (vi, vj) ∈ B. By definition of Z, vj ∈ A(XS). If vj ∈ P (XS), then
IB(X1, ∅, Y ) does not hold. A contradiction. Otherwise, if vj �∈ P (XS), there
exists a vk ∈ P (XS) with vk ∈ D(vj). As vk ∈ D(vi), IB(X1, ∅, Y ) does not hold.
A contradiction. Thus, X1 = ∅. ��
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Lemma 2. In SI, X1 = ∅ ⇐⇒ A(XS) ∩D(XS) = ∅.

Proof. (⇐) Suppose A(XS)∩D(XS) = ∅. By definition, Z = A(XS)∩D(XS).
Therefore, P (Z) = ∅. Since X1 = X ∩ P (Z), we have X1 = ∅.

(⇒) Given X1 = ∅. By contradiction, suppose Z �= ∅. Then there exists a
vk ∈ Z such that (vi, vk) ∈ B and vi ∈ XS. Suppose vi ∈ S. By VE, all CPTs
involving vi will have been multiplied together, which includes p(vk|P (vk)) as
vk is a child of vi in B. This would mean that vk is in XS. A contradiction to
vk ∈ Z. Therefore, vi ∈ X . Now, as vk ∈ Z, we know vi ∈ P (Z). By definition,
vi ∈ X1. A contradiction to X1 = ∅. Therefore, Z = A(XS) ∩D(XS) = ∅. ��

Lemma 3. Given a discrete Bayesian network B on U and V ⊆ U . There exists
a topological ordering ≺ where the variables in V appear consecutively if and only
if A(V ) ∩D(V ) = ∅.

Proof. (⇒) Suppose A(V )∩D(V ) �= ∅, by contraposition. Then there is at least
one variable vj not in V that is both a descendant of a variable vi in V and an
ancestor of a variable vk in V . This means that no topological ordering exists
where the variables in V appear consecutively.

(⇐) Suppose A(V ) ∩ D(V ) = ∅. By definition, V ∩ D(V ) = ∅. This means
every element in D(V ) is in U − (V A(V )). Since V ∩ A(V ) = ∅, a topological
ordering ≺ can be constructed based on the directed acyclic graph of B in which
the variables in A(V ) appear consecutively first, followed by all variables in V ,
followed by all variables in U − (V A(V )). ��

A set V ⊆ U in a directed acyclic graph is an initial segment [12] if the parents
of each vi in V are also in V . Shafer [12] showed that if V is an initial segment,
then

p(V ) =
∏
vi∈V

p(vi|P (vi)).

Verma and Pearl [13] showed that d-separation is sound, i.e., IB(X,Y, Z) ⇒
Ip(X,Y, Z), where Ip(X,Y, Z) means an independence statement I(X,Y, Z) holds
in p(U) defined by a Bayesian network (B,C), X,Y, Z ⊆ U . Lastly, Lemma 4
means that potentials not involving the variable being eliminated can be ignored.

Lemma 4. [12] If ψ1 is a potential on W and ψ2 is a potential on Z, then
the marginalization of ψ1 · ψ2 onto W is the same as ψ1 multiplied with the
marginalization of ψ2 onto W ∩ Z, where W,Z ⊆ U .

We now can present our first main result, namely, that SI is sound.

Theorem 1. In a Bayesian network (B,C) defining a joint distribution p(U),
suppose VE computes a potential ψ whose evidence normal form is γ ·N . If SI
denotes the semantics of N as pB(X |Y ), then N = p(X |Y ).
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Proof. By SI, IB(X1, ∅, Y ) holds. By Lemmas 1, 2, and 3, there exists a topo-
logical order of B starting with A(XS) and followed by XS. Then

p(A(W )) =
∏

vi∈A(W )

p(vi|P (vi)),

where W denotes XS, and

p(A(W )W ) =
∏

vi∈A(W )

p(vi|P (vi)) ·
∏

vi∈W

p(vi|P (vi)).

By manipulation of the above two equations,

p(W |A(W )) =
∏

vi∈W

p(vi|P (vi)). (9)

Consider any vi ∈ W and vj ∈ A(W ). Suppose vj ∈ D(vi). Then vj ∈ D(W ),
contradictingA(W )∩D(W ) = ∅. Thus, there is no path fromW toA(W ). And, as
all paths from A(W ) to W necessarily go through Y = P (W ), IB(W,Y,A(WY ))
holds in B by d-separation. Thus,

p(W |A(W )) = p(W |Y ). (10)

By (9) and (10),

p(W |Y ) =
∏

vi∈W

p(vi|P (vi)).

Summing out S on both sides yields

p(X |Y ) =
∑
S

∏
vi∈W

p(vi|P (vi)). (11)

As previously mentioned, applying Lemma 4 on N in evidence normal form γ ·N ,
gives

N =
∑
S

∏
vi∈W

p(vi|P (vi)). (12)

By (11) and (12),

N = p(X |Y ). ��

Theorem 1 guarantees that if SI denotes the semantics of a VE potential ψ as
γ · pB(X |Y ), then

ψ = γ · p(X |Y ).

Recall potential ψ(g, i = 1, j) in (2). As illustrated in Table 3, Theorem 1 ensures
that ψ(g, i = 1, j) is equal to p(j|g, i = 1), since SI denotes it as pB(j|g, i = 1).

With respect to inference, the question of completeness is this. Can SI de-
termine the semantics of every VE potential defined with respect to the joint
distribution? The answer is no, due to the next result.
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Table 3. Potential ψ(g, i = 1, j) in (2) is p(j|g, i = 1).

i g j pB(j|g, i = 1)

1 0 0 0.457
ψ(g, i = 1, j) = p(j|g, i = 1) = 1 0 1 0.543

1 1 0 0.334
1 1 1 0.666

Lemma 5. Using B defining p(U), Ip(X1, ∅, Y ) ⇐⇒ VE builds p(X |Y ), where
X1 is defined in SI.

Proof. The claim follows from the discussion in [8], where, in the notation of SI,
IB(X1, ∅, Y )⇐⇒ VE builds p(X |Y ), under the assumption that IB(X1, ∅, Y )⇐⇒
Ip(X1, ∅, Y ). ��

As it is not feasible to test every Ip(X1, ∅, Y ) in p(U), we rely on d-separation
to test IB(X1, ∅, Y ) in B. However, it is known that independencies in p(U)
can escape detection in B. This means that SI will make mistakes in certain
situations. However, d-separation and SI satisfy a weaker notion of completeness.

Lemma 6. [10] Suppose that d-separation indicates that IB(X,Y, Z) does not
hold in a discrete Bayesian network B on U . Then there exists a set C of CPTs
for B defining a joint distribution p(U) such that Ip(X,Y, Z) does not hold.

IB(g, ∅, ij) does not hold by d-separation in the ESBN B of Figure 1. As required
by Lemma 6, there must exist a set C of CPTs, such as those in Table 1, defining
a p(U) such that Ip(g, ∅, ij) does not hold. Lemma 6 can be utilized to show a
similar kind of completeness for SI. First, one more result is needed.

Lemma 7. Suppose VE computes ψ′(X − vi|Y ) =
∑

vi
ψ(X |Y ). Then ψ′ and

ψ are both p or both φ.

Proof. It is known that p(X − vi|Y ) =
∑

vi
p(X |Y ). Now consider

∑
vi
φ(X |Y ),

where φ(X |Y ) �= p(X |Y ). By Lemma 5, φ(X |Y ) means Ip(X1, ∅, Y ) does not
hold, where X1 = X ∩ P (Z). Now marginalization gives ψ(X ′|Y ), where X ′ =
X − vi. Note that Y did not change. Similarly, XS = X ′ ∪ (Svi) meaning Z
did not change. Thus, P (Z) did not change. Suppose vi ∈ P (Z). Then there
exists a vk ∈ Z with (vi, vk) ∈ B. Similar to the proof of Lemma 2, this means
vk ∈ XS. A contradiction. Thus, vi �∈ P (Z). Then, by definition, vi �∈ X1.
Hence, X1 = X ′

1, where X ′
1 = X ′ ∩ P (Z). By above, Ip(X

′
1, ∅, Y ) does not hold.

By Lemma 5, ψ(X ′|Y ) = φ(X − vi|Y ). ��

Theorem 2. In a Bayesian network B on U , suppose VE computes a potential
ψ whose evidence normal form is γ · N . If SI denotes the semantics of N as
φB(X |Y ), there exists a set C of CPTs for B defining a joint distribution p(U)
such that N �= p(X |Y ).
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Proof. By SI, IB(X1, ∅, Y ) does not hold. There exists a C for B defining p(U)
such that, by Lemma 6,

p(Y ) �= p(Y |X1). (13)

We define an initial segment with four pairwise disjoint subsets: W = XS, Y ,
Z1 = Z − Y and V = A(W )− Y Z1. Their product is p(WYZ1V ), so p(WY ) is∑

V Z1

∏
vi∈W

p(vi|P (vi)) ·
∏

vi∈V Z1Y

p(vi|P (vi)).

By contradiction, suppose the product of W ’s CPTs is p(W |Y ). This means

p(WY ) =
∑
V Z1

p(W |Y ) ·
∏

vi∈V Z1Y

p(vi|P (vi)).

Lemma 4, and rearrangement, give

p(Y ) =
∑
V Z1

∏
vi∈V Z1Y

p(vi|P (vi)).

By [3],

p(Y ) =
∑
V Z1

ψ(V Z1Y |P (V Z1Y )).

We now show P (V Z1Y ) = X1. Here, P (V ) ⊆ Y , P (Z1) ⊆ X1V Y and P (Y ) ⊆
X1V Z1. Therefore,

P (V ) ∪ P (Z1) ∪ P (Y ) ⊆ X1V Z1Y.

By definition,

P (V Z1Y ) ⊆ X1.

To show X1 ⊆ P (V Z1Y ), let Y1 = Y ∩Z and Y2 = Y − Y1. By definition, X1 ⊆
P (Z). Now X1 ⊆ P (Z)−V Y2, since X1∩V Y2 = ∅. Similarly, X1 ⊆ P (Z)−V Y2Z
as P (Z)∩Z = ∅. It follows thatX1 ⊆ P (V )∪P (Z)∪P (Y2)−V ZY2. By definition,
X1 ⊆ P (V ZY2). Finally, Z = Z1Y1 means that P (V ZY2) = P (V Z1Y1Y2) =
P (V Z1Y ). Thus,

X1 ⊆ P (V Z1Y ).

Hence, X1 = P (V Z1Y ) giving

p(Y ) =
∑
V Z1

ψ(V Z1Y |X1).

By Lemma 7,

p(Y ) =
∑
V Z1

p(V Z1Y |X1).
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Taking the marginalization gives

p(Y ) = p(Y |X1),

a contradiction to (13). Therefore,

p(W |Y ) �=
∏

vi∈W

p(vi|P (vi)).

By Lemma 7, marginalizing S from both sides gives

p(X |Y ) �=
∑
S

∏
vi∈W

p(vi|P (vi)).

But this is our desired result, p(X |Y ) �= N . ��

Theorem 2 states that whenever SI indicates that a potential is not defined with
respect to the joint distribution, then this is true for at least one set of CPTs for
the given Bayesian network. Recall once again ψ(g, h = 0, i = 1, j) in (3), which
SI denotes as φB(g, h = 0, l|i = 1, j). With respect to p(U) defined by the CPTs
in Table 1, we have

ψ(g, h = 0, i = 1, j) �= p(g, h = 0|i = 1, j).

4 On the Role of d-Separation in Deciding Semantics

Our work here reveals that the last six lines of SI can be replaced with:

Compute A(XS) and D(XS) using T
if A(XS) ∩D(XS) = ∅

return pB(X |Y )
else

return φB(X |Y )

Recall ψ(g, i = 1, j) in (2). The evidence expanded form is (5). Its evidence
normal form γ · N is γ = 1(i = 1) and N = ψ(j|g, i). Now X = {j} and
S = {l, s}. By the transitive closure T of the ESBN, A(XS) = {c, d, i, g} and
D(XS) = {h}. Hence,

A(XS) ∩D(XS) = ∅.

Thus, SI denotes ψ(g, i = 1, j) in (2) as pB(j|g, i = 1).
Now consider ψ(g, h = 0, i = 1, j) in (3). The evidence expanded form is (7).

The evidence normal form γ · N is (8). Here N = ψ(g, h|i, j), as seen in (4).
With X = {g, h} and S = {c, d}, from T on the ESBN we have A({c, d, g, h}) =
{i, j, l, s} and D({c, d, g, h}) = {j, l}. With

A(XS) ∩D(XS) = {j, l},

SI denotes ψ(g, h = 0, i = 1, j) in (3) as φB(g, h = 0|i = 1, j).
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5 Conclusion

In [2], we gave an algorithm for deciding semantics in Bayesian network inference
that used one d-separation test, namely, IB(X1, ∅, Y ). Here we have shown that
IB(X1, ∅, Y )⇐⇒ A(XS) ∩D(XS) = ∅. A new version of SI based upon testing
A(XS)∩D(XS) = ∅ has a visual appeal to it in the sense that one simply deter-
mines whether or not there exists a path from any variable in XS to any other
variable in XS involving at least one variable not in XS. Thereby, the version
of SI proposed here is perhaps more intuitive. Whether d-separation is explic-
itly or implicitly used, SI brings improved clarity to denoting exact inference
in Bayesian network texts, including [4, 6–8, 11, 12]. Future work will include
applying the results here to differential semantics in Bayesian networks [6, 9].
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Abstract. This paper proposes the use of binary trees in order to repre-
sent and evaluate asymmetric decision problems with Influence Diagrams
(IDs). Constraint rules are used to represent the asymmetries between
the variables of the ID. These rules and the potentials involved in IDs
will be represented using binary trees. The application of these rules can
reduce the size of the potentials of the ID. As a consequence the efficiency
of the inference algorithms will be improved.

Keywords: Influence diagrams, asymmetric decision problems, binary
trees, probability trees.

1 Introduction

Influence Diagrams (IDs) [11] are a tool to represent and solve decision problems
under uncertainty. Their main advantage is that they can encode the indepen-
dence relations between variables allowing a compact representation. However,
they have weaknesses: decision problems are usually asymmetric in the sense
the set of legitimate states of variables may vary depending on different states of
other variables [1]. To be represented as an ID, an asymmetric decision problem
must be symmetrized and a considerable amount of unnecessary computation
may be involved. Several approaches have been made to solve this drawback.
Call and Miller [4], Fung and Shachter [18], Smith et al. [21], Qi et al. [17], Co-
valiu and Oliver [7], Shenoy [20], Nielsen and Jensen [15], Demirer and Shenoy
[8], Dı́ez and Luque [9] have proposed modifications to the IDs framework in
order to deal with asymmetries.

In this paper we propose representing the qualitative information about the
problem (constraints, due to asymmetries) using binary trees (BTs). Constraints
can be easily applied to potentials reducing the number of scenarios to consider.
Moreover, if BTs are too large, they can be pruned and converted into smaller
trees, thus leading to approximate algorithms. We compare BTs with a previous
approach for representing constraints, numerical trees (NTs), and show that
more efficient algorithms are obtained.

The paper is organized as follows: Section 2 introduces some basic concepts
about IDs and trees; Section 3 describes key issues about asymmetries and how
they can be represented using BTs; Section 4 describes the evaluation algorithm

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 85–96, 2013.
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adapted for working with constraints; Section 5 includes the experimental work
and results; finally Section 6 details our conclusions and lines for future work.

2 Preliminaries

2.1 Influence Diagrams

An ID [11] is a generalization of a Bayesian network (BN) [16] used for repre-
senting and solving decision problems under uncertainty. An ID contains three
types of nodes: chance nodes (representing random variables), decision nodes
(mutually exclusive actions which the decision maker can control) and utility
nodes (representing decision maker preferences). Fig. 1 shows an example of an
ID that represents the Car Buyer problem [17].

Fig. 1. Example of an ID representing the Car Buyer problem

The set of chance nodes is denoted by UC , the set of decision nodes is denoted
by UD, and the set of utility nodes is denoted by UV . The decision nodes have
a temporal order, D1, . . . , Dn, and the chance nodes are partitioned according
to when they are observed: I0 is the set of chance nodes observed prior to any
decision, and Ii is the set of chance nodes observed after Di is taken and before
deciding about Di+1. Finally, In is the set of chance nodes never observed or
observed after the last decision. That is, there is a partial temporal ordering:
I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In. For example, the temporal ordering of the ID
in Fig. 1 is FirstT estDecision ≺ FirstT estResults ≺ SecondTestDecision ≺
SecondTestResults≺ PurchaseDecision ≺ Car Conditions.

Let us suppose that each variable Xi of the ID takes values on a finite set
ΩXi = {x1, . . . , x|ΩXi

|}. If I is a set of indexes, we shall write XI for the set of
variables {Xi|i ∈ I}, defined on ΩXI = ×i∈IΩXi . The elements of ΩXI are called
configurations ofXI and will be represented as xI . Parents or direct predecessors
of a variable Xi are denoted pa(Xi).

In an ID, each chance node Xi has a conditional probability distribution
P (Xi|pa(Xi)) attached, where pa(Xi) are the parents of Xi. In the same way,
each utility node Vi has a utility function U(pa(Vi)) attached. In general, we will
talk about potentials (probability distributions are normalized potentials). Let
XI be the set of all variables involved in a potential, then a probability potential
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denoted by φ is a mapping φ : ΩXI → [0, 1]. A utility potential denoted by ψ is
a mapping ψ : ΩXI → R.

When evaluating an ID, it must be computed the best choice or optimal policy
δi for each decision Di, that is a mapping δi : Ωpa(Di) → ΩDi . The optimal
policy maximizes the expected utility for the decision. A strategy is an ordered
set of policies Δ = {δ1, . . . , δn} including a policy for each decision. An optimal

strategy Δ̂ returns the optimal choice the decision maker should take for each
decision.

2.2 Numerical and Binary Trees

Traditionally, potentials involved in an ID have been represented using tables.
An alternative representation are trees (numerical and binary)[6, 3] that will be
denoted NT and BT respectively. Each internal node of the tree is labelled with
a variable (random variable or decision). We use Lt to denote the label of a node
t. Each leaf node is labelled with a number (a probability or a utility value).
In a NT, each internal node has an outgoing arc for each state of the variable
associated with that node. The difference between NTs and BTs is that internal
nodes in BTs always have two children. As a consequence, outgoing arcs in a
BT can be labelled with more than one state. We denote by Llb(t) and Lrb(t) the
left and right labels of a node t respectively.

U(A,B) b1 b2 b3
a1 30 30 30
a2 45 45 20
a3 25 25 50

A

30

a1

B

45

b1

45

b2

20

b3

a2

B

25

b1

25

b2

50

b3

a3

A

30

a1

A

B

45

b1, b2

20

b3

a2

B

25

b1, b2

50

b3

a3

a2, a3

(a) (b) (c)

Fig. 2. Utility potential represented as (a) a table, (b) a NT and (c) a BT

Fig. 2 shows three different representations for the same utility potential: (a)
a table , (b) a NT, and (c) a BT. The use of trees offer the possibility of taking
advantage of context-specific independencies [2]. For example, when A = a1, the
potential will always take the value 30, regardless of the value of B. Therefore,
less space is needed for representing it as a tree. Besides, BT can capture finer-
grained independencies: when A = a2 and B ∈ {b1, b2}, the potential will always
be 45.

In a previous work [3], a comparison of the evaluation of IDs using NTs and
BTs was performed using the Variable Elimination algorithm. The experiments
showed that BTs offer better approximate solutions than NTs. The same error
level will be achieved using a BT of smaller size than the corresponding NT.
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2.3 Building and Approximating Trees

When a BT is built, variables are sorted in such a way that the most informative
variables must be situated at the highest nodes in the tree. BTs are built from
tables using a top-down approach, choosing at each step a variable and two
partitions of its states that maximizes the information gain.

Definition 1 (Information Gain). Let φ be the potential to be represented as
a tree BT j and BT j(t,Xi, Ω

tl
Xi

, Ωtr
Xi

) the tree resulting of expanding the leaf node
t with the candidate variable Xi and a partition of its available states into sets
Ωtl

Xi
and Ωtr

Xi
. Let D(φ,BT j) be the distance between a potential and a tree. The

information gain can be defined as:

I(t,Xi, Ω
tl
Xi

, Ωtr
Xi

) = D(φ,BT j)−D(φ,BT j(t,Xi, Ω
tl
Xi

, Ωtr
Xi

)) (1)

Kullback Leibler divergence and Euclidean distance are the distance measure
used for computing the information gain with probability and utility trees re-
spectively. If the size of a BT needs to be reduced, it can be pruned in order
to get a new BT which approximates the potential. Pruning a BT consists in
replacing a terminal tree (a node whose children are all leaves) by the average
value of its leaves. If the information gain between a terminal tree and the result-
ing pruned tree is lower than a threshold ε, the tree is pruned. The decision of
pruning a terminal tree is independent of the decision of pruning other terminal
trees. Variables in trees generated during evaluation can be sorted again using
the same procedure than for building: the most informative variables may not
be the same than in initial trees. This process allows obtaining better approxi-
mations, but it can be a very time consuming task since it implies building again
the tree. Further details about building and pruning BTs are given in [5, 3].

3 Asymmetries and Constraints

The drawback of using IDs to model asymmetric decision problem is well known.
An asymmetric decision problem must be symmetrized to be represented as an
ID. Therefore, a considerable amount of unnecessary computation may be in-
volved during the evaluation. It is sometimes possible to identify the source of
asymmetry and represent it with relations between variables. In our solution we
try to keep qualitative (constraints due to asymmetries) and quantitative (po-
tentials) knowledge separate, merely because qualitative knowledge may affect
several distributions, with some of them not being present in the model (i.e.
distributions managed during the evaluation process and derived from the ini-
tial ones). On the other hand, we attempt to store both kinds of knowledge in
similar structures, making their joint application easier. In order to represent
the qualitative knowledge about a decision problem, we therefore propose the
use of constraint rules.

A constraint rule is an expression antecedent⇒ consequent. An atomic sen-
tence is a pair (variable, set of values): Xi ∈ {xi, . . . xj}. Atomic sentences can
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be connected with logical operators to form logical sentences. Valid logical op-
erators are ∧(and), ∨(or) and ¬(not). For constraint rules, both antecedents
and consequents are expressed using logical sentences. For example, let us sup-
pose that X,Y and Z take values receptively on the sets ΩX = {x1, x2, x3},
ΩY = {y1, y2}, ΩZ = {z1, z2}, then the constraint rule:

X ∈ {x1, x3} ∧ Y ∈ {y2} ⇒ Z ∈ {z2} (2)

states that if X is equal to x1 or x3 and Y is equal to y2 then the variable Z will
always take the value z2. Considering this constraint rule and the conditional
probability P (Z|X,Y ), we can state that:

P (Z = z1|X = x1, Y = y2) = P (Z = z1|X = x3, Y = y2) = 0

The configurations {x1, y2, z1} and {x3, y2, z1} are impossible scenarios that
must not be considered for computations. An atomic sentence could have an
empty set of values for the consequent. For example, the constraint rule

X ∈ {x1, x3} ∧ Y ∈ {y2} ⇒ Z ∈ {} (3)

means that {x1, y2, z1}, {x1, y2, z2}, {x3, y2, z1} and {x3, y2, z2} are impossible
scenarios.

To decide if a constraint rule for the variables XJ is applicable to a potential
φ (probability or utility) for the variables XI , we have to check the applicability
of the constraint rule. The applicability of the complete constraint rule depends
on the logical operator involved with the atomic sentences of the rule. We use
the following definitions to decide if the constraint rule is applicable. We say that
an atomic sentence in a constraint rule for XJ is applicable to a potential XJ

for XI if the variable Xi of the atomic sentence is in XJ ∩XI . The negation of a
sentence is applicable if and only if the sentence itself is applicable. A conjunction
is applicable if and only if the two conjuncts are applicable. A disjunction is
applicable if and only if at least one of the disjuncts is applicable. With these
definitions, the constraint rule is applicable if and only if both the antecedent
and the consequent are applicable.

Sometimes the constraint rules are not applicable to any distribution of the
model. For example, we could have the following situation: a constraint links
the values of two decision nodes , but there is no distribution containing both
variables. However, during the evaluation process the value node will depend on
both of them and this will be the moment to activate the constraint.

The use of constraint rules have several advantages. First of all, they make
the elicitation process easier (reducing the number of scenarios and therefore the
number of parameters to assess); secondly, they help to make both qualitative
and quantitative knowledge consistent; and thirdly, they clearly state invalid
scenarios, making the contingent nature of the decision problem clear.
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3.1 Binary Constraint Trees

In a previous work, it was proposed the use of NTs for representing constraint
rules and applying them during the ID evaluation [10]. In the present paper, BTs
are proposed for representing constraint rules: binary constraint trees (BCTs).
BT can capture finer-grained independencies than those captured using NT.
Potentials and constraints need less space to be represented as a BT than as
NT. As a consequence, more efficient evaluation algorithms will be obtained.

Leaf nodes in a BCT contain the values 0 or 1. If T c is a BCT for a constraint
rule with variables XJ , then a value of 0 in a leaf node tn, means that the config-
uration of its ancestor variables corresponds to an impossible scenario in the ID.
A value equal to 1 means that, taking into account only this constraint tree, the
configuration is possible (it can be impossible according to another constraint).

Constraint rules and trees are useful when evaluating the ID in order to reduce
the size of the potentials (probability trees and utility trees). This reduction
causes that the complexity of operations (combination and marginalization) is
also reduced. For applying a constraint tree T c to a tree Tφ from a potential φ,
non-common variables are removed from T c using max-marginalization. Then,
the resulting constraint tree is combined with Tφ. Fig. 3 shows an example of the
application of the constraint tree T c(X,Y,X) obtained from the rule in Equation
3 to a utility tree ψ(X,Y, Z). In the constraint tree variable Z is not present
since it has previously been pruned.
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Fig. 3. Application of the constraint tree obtained from the rule in Equation 3 to a
utility tree

4 Evaluating Influence Diagrams

4.1 Variable Elimination with Constraint Trees

This section shows how BCTs can be applied to evaluate IDs. In particular
we have decided to work with the Variable Elimination algorithm (VE) and
can be used for solving BNs [22] and IDs [12]. This method uses the temporal
order between the decision nodes to partition the whole set of nodes according
to when they are observed. Once this order has been established, the algorithm
eliminates all the variables one by one, with two operations: sum-marginalization
and max-marginalization. The method adapted for working with constraints is
shown below.
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1. Initialization phase
(a) Build initial trees: for each potential in Φ ∪ Ψ obtain a tree Tφ.
(b) Apply constraints: ∀T c, if T c is applicable to Tφ then: T ′

φ = T c ⊗ Tφ,
else T ′

φ = Tφ.
(c) Sort and prune all trees

2. While there are variables to remove

(a) Decide next variable to remove (X) and combine all potentials (trees)
containing X : ΦX , ΨX . Remove X using sum-marginalization (chance
nodes) or max-marginalization (decision nodes). New trees are obtained
as result: Tφ and Tψ

(b) Apply constraints to resulting trees Tφ and Tψ , as in 1.b.
(c) Sort and prune the resulting trees (optional).

It can be seen in the algorithm that the global structure of VE is not changed:
the only difference is that it is performed a pre-processing at the beginning
and a post processing after removing each variable which modify the potentials
(their size is reduced). Constraints are applied to initial potentials (1.b) and to
potentials obtained from the removal of variables (2.b). This application reduces
the size of potentials, but a greatest reduction can be achieved if trees are sorted
and pruned (see Section 2.3). The pruning process is a time consuming task. For
that reason, if the features of the problem require to evaluate the ID in a short
period of time, it must only be perform during the initialization phase. However,
if the reduction in the storage size is more important, it can also be performed
after removing each variable.

4.2 Modified Operations

The application of constraints is performed by combining the BCTs and potential
trees when needed. Combine operation was described in a previous work about
using BTs for BNs inference [5]. However, the combination does not reduce
the size of potentials after applying a constraint. In fact, bigger potentials can
be obtained. For that reason, it should be necessary to prune the trees after
applying the constraints. The inconvenient of performing the pruning process is
that evaluation time can be increased.

In order to avoid pruning the trees, here we propose to modify the combine
operation (see Algorithm 1). When combining two trees, it is checked if one of
them is a leaf node with the value 1 or 0. In case of a 0, the algorithm will return
a leaf node with the value 0 (step 1). On the other hand, if it is the value 1, it
will return the other tree (steps 1 and 1). This operation requires restricting a

BT to a set of states L of a variable Xi, denoted BT R(Xi,L).
It must be noticed that, in order get the benefits from this new version of the

operator combine, the constraint tree must be the first input argument BT 1. The
combination process is illustrated in Fig. 4. It shows the differences in the process
between combining two trees with the modifications (bottom) and without them
(top). The same considerations can be made for the division operation, which is
used after the removal of each variable.
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Input : t1 and t2 (root nodes of BT 1 and BT 2)
Output: The root of BT = BT 1 ⊗ BT 2

Build a new node t1

if (t1 is a leaf node and Lt1 == 0) or (t2 is a leaf node and Lt1 == 0) then2

Set Lt = 0 the label of t3

else if t1 is a leaf node and Lt1 == 1 then4

Set t = t25

else if t2 is a leaf node and Lt2 == 1 then6

Set t = t17

else if t1 is a leaf node then8

if t2 is a leaf node then9

Lt = Lt1 · Lt210

else11

Set Lt = Lt2 the label of t12

Set Llb(t) = Llb(t2) and Lrb(t) = Lrb(t2) labels of the two branches of t13

Set Combine(t1,t2l) the left child of t14

Set Combine(t1,t2r) the right child of t15

else16

Suppose Xj is the variable labelling node t117

Set Lt = Lt1 the label of t18

Set Llb(t) = Llb(t1) and Lrb(t) = Lrb(t1) labels of the two branches of t19

Set Combine(t1l,BT
R(Xj ,Llb(t1))

2 ) the left child of t20

Set Combine(t1r,BT
R(Xj ,Lrb(t1))

2 ) the right child of t21

return t22

Algorithm 1. Modified combine operation
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Fig. 4. Combination process: It shows the differences in the process between combining
two trees with the modifications (bottom) and without them (top).

5 Experimentation

For testing purposes, two different IDs were used. First, a real world ID used for
the treatment of gastric NHL disease [13] with 3 decisions, 1 utility node and 17
chance nodes. This ID contains two constraint rules between its decisions:
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HelicobacterT reatment = {NO} =⇒ Surgery = {NONE}
HelicobacterT reatment = {NO} =⇒ CT RT Schedule = {NONE}

The second ID used represents the Car Buyer problem [17], which is shown
in Fig. 1. This ID has 3 decisions, 1 utility, 3 chance nodes and the following
constraint rules:

FirstT estDecision = {NO} ⇐⇒ FirstT estResult = {NONE}
FirstT estResult = {defects2} =⇒ FirstT estDecision = {FuelElectrical}

SecondTestDecision = {NO} ⇐⇒ SecondTestResult = {NONE}

Fig. 5. Size of all potentials stored in memory during the NHL ID evaluation

Fig. 6. Size of all potentials stored in memory during the Car Buyer ID evaluation
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Fig. 7. Computation time for the evaluation of the diagrams NHL and Car Buyer

Both IDs were evaluated using different variations of the VE algorithm: using
NTs and BTs without constraints (VENT and VEBT); using NTs and BTs
with constraints (VENTWC and VEBTWC); and using NTs and BTs with
constraints and using the sort and pruning operation after removing each variable
(VENTWCPR and VEBTWCPR); The modifications in combination operation
shown in Section 4.2 were only employed for the evaluation with constraints. The
ε threshold used for pruning was ranged in the interval [0, 0.1]. All the algorithms
were implemented in Java with the Elvira Software1. The tests were run on a
Intel Xeon Processor E3510 (4 cores, 1.6GHz).

Graphics included in Fig. 5 and Fig. 6 show the storage requirement for both
IDs using different thresholds. The vertical axis indicates the number of leaves
necessary for storing all the potentials and constraints. The horizontal axis shows
de number of operation. The measurement was performed after combining po-
tentials containing a variable to be removed, and after pruning the resulting
potentials of marginalization. That is, after steps 2.a and 2.c in the schema
shown in Section 4.1. If evaluations with NTs (VENT, VENTWC and VEN-
TWCPR) are compared with their equivalents using BTs (VEBT, VEBTWC
and VEBTWCPR), it can be observed that, in general, less space is needed
when using BTs. If constraints are applied, the size of potentials is reduced
even more (VENTWC and VEBTWC), and if potentials are pruned after each
operation (VENTWCPR and VEBTWCPR), the reduction is more significant.
Even though constraint rules are applicable to initial potentials, an important
reduction is obtained if they are applied to intermediate potentials: impossible
configurations may appear in intermediate potentials during evaluation.

The reduction of the potential sizes should lead to more efficient algorithms: op-
erationswith smaller potentials should be faster. In Fig. 7 it is shown the computa-
tion time for evaluating both IDs. It can be observed that pruning after
applying constraints (VENTWCPR and VEBTWCPR) is not always efficient for
lower threshold values: it requires an additional computing time that is not com-
pensated by the smaller potentials. Moreover, with higher threshold values,

1 http://leo.ugr.es/~elvira

http://leo.ugr.es/~elvira
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all variants of the evaluation algorithm obtain similar results. The fastest eval-
uation is obtained using BTs with constraints and without pruning after each op-
eration (VEBTWC). By contrast, worst results are obtained using NTs without
constraints (VENT).

6 Conclusions and Future Work

In the present paper, it is proposed a new method for representing and evaluating
asymmetric decision problems with IDs: potentials and asymmetries (constraint
trees) are represented using BTs. Using this kind of representation allows to re-
duce the number of scenarios to consider and also to approximate the potentials.
The paper shows how constraints can be used to improve the efficiency of the
VE algorithm. In the experimental work, it was proved that evaluating IDs with
BTs and BCTs is faster and requires less storage size than using NTs. However,
if BTs are pruned after removing each variable and applying constraints, the
evaluation with BTs is not efficient: the overhead introduced by pruning and
sorting trees is larger using BTs than with NTs.

As regards future directions of research, we shall study if applying constraints
reduces the error committed when approximating potentials. It could also be
interesting to study the behaviour of BTs with constraints using alternatives to
the VE inference algorithm, like Arc Reversal [19], Lazy propagation [14], etc
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argumentation theory (e.g. [3–6]). In particular, we examine the connection be-
tween argument-labellings at the abstract level and conclusion-labellings at the
instantiated level. With one notable exception, we are able to show that max-
imizing (or minimizing) a particular label (in, out or undec) at the argument
level coincides with maximizing (or minimizing) the same label at the conclusion
level. These results are relevant as they indicate the possibilities (and limitations)
of applying argument-based abstractions to formalisms for non-monotonic rea-
soning.

2 Preliminaries

In the current paper, we follow the approach of Dung [1]. We will restrict our-
selves to finite argumentation frameworks.

Definition 1 ([1]). An argumentation framework is a pair (Ar,Att) where Ar
is a finite set of arguments and Att ⊆ Ar ×Ar.

Arguments are related to others by the attack relation Att: an argument A at-
tacks B iff (A,B) ∈ Att. An argumentation framework can be seen as a directed
graph where the arguments are nodes and each attack is an arrow.

Definition 2 ([1]). (defense/conflict-free). Let (Ar,Att) be an argumentation
framework, A ∈ Ar and Args ⊆ Ar. We say Args is conflict-free iff there exists
no arguments A,B ∈ Args such that (A,B) ∈ Att. We say Args defends A iff
every argument attacking A is attacked by some argument in Args. We define
a function F : 2Ar → 2Ar, such that F (Args) = {A|A is defended by Args},
to determine the set of all arguments defended by Args. We define Args+ =
{A|A is attacked by Args} to refer to the set of arguments attacked by Args.

Traditional approaches to argumentation semantics are based on extensions of
arguments. Some of the mainstream approaches are summarized below:1

Definition 3. (extension-based argumentation semantics). Given an argumen-
tation framework AF = (Ar,Att), and a conflict-free set of arguments S:

– S is a complete extension of AF iff S = F (S).
– S is a grounded extension of AF iff S is a minimal2complete extension of AF .
– S is a preferred extension of AF iff S is a maximal complete extension ofAF .
– S is a stable extension of AF iff S is a complete ext. of AF with S+=Ar\S.
– S is a semi-stable extension of AF iff S is a complete ext. of AF with

maximal S ∪ S+ .

As for logic programming, we will focus on propositional normal logic programs,
which we will call logic programs or simply programs from now on.

1 The characterization of the extension-based semantics in Definition 3 differs slightly
from that in their original version (see [1]), but equivalence is proved in [7].

2 When referring to minimal/maximal, we assume the underlying order is set inclusion.
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Definition 4. A logic program P is a set of rules of the form c ← a1, . . . , am,
not b1, . . . , not bn (m,n ∈ N), where c, ai (1 ≤ i ≤ m) and bj (1 ≤ j ≤ n) are
atoms and not represents negation as failure. We say c is the head of the rule,
and a1, . . . , am, not b1, . . . , not bn is its body. The Herbrand Base of P is the
set HBP of all atoms occurring in P .

A wide range of logic programming semantics can be defined based on the 3-
valued interpretations (for short, interpretation) of programs [8]:

Definition 5. A 3-valued interpretation I of a program P is a pair < T ;F >,
where T∪F ⊆ HBP and T∩F = ∅. Atoms in T (resp. F ) are intended to be true
(resp. false) in I. Atoms in U = HBP \(T ∪F ) are considered as undefined in I.

Let I =< T ;F > be a 3-valued interpretation of the program P , take P/I to be
the program built by the execution of the following steps:

1. Remove any c← a1, . . . , am, not b1, . . . , not bn ∈ P with {b1, . . . , bn}∩T �= ∅;
2. Afterwards, remove any occurrence of not bi from P such that bi ∈ F .
3. Then, replace any occurrence of not bi left by a special atom u (u �∈ HBP ).

We note u was tailored to be undefined in every interpretation of P . As shown
in [8], P/I has a unique least 3-valued model: Ψ(I) =< TΨ ;FΨ > with minimal
TΨ and maximal FΨ such that, for every c ∈ HBP :

– c ∈ TΨ if c← a1, . . . , am ∈ P/I and {a1, . . . , am} ⊆ TΨ ;
– c ∈ FΨ if for every c← a1, . . . , am ∈ P/I, {a1, . . . , am} ∩ FΨ �= ∅;
– c ∈ UΨ otherwise.

We now specify the logic programming semantics to be examined in this paper.

Definition 6. Let P be a program and I =< T, F > be an interpretation:

– I is a partial stable model (p.s.m.) of P iff I = Ψ(I) [8].
– I is a well-founded model of P iff I is a p.s.m. of P with minimal T [8].
– I is a regular model of P iff I is a p.s.m. of P with maximal T [9].
– I is a stable model of P iff I is a p.s.m. of P where F=HBP\T , i.e., U=∅ [8].
– I is an L-stable model of P iff I is a p.s.m. of P with maximal T ∪ F [9].

3 Logic Programming as Argumentation; A 3-Step
Process

The next thing to examine is how argumentation theory can be applied in the
context of logic programming. Our treatment is based on [2]3. The idea is to
apply (as in [3–6]) the standard three-step process of instantiated argumenta-
tion. One starts with a knowledge base and builds the associated argumentation
framework (step 1), then applies abstract argumentation semantics (step 2) and
then looks at what the results of the argumentation semantics imply at the level
of conclusions (step 3).

3 One difference is that in our approach, arguments are recursive, whereas in [2], they
are trees of rules. However, if one identifies the nodes of a tree with rules, one cannot
apply the same rule at different positions in the argument. Our approach, which is
based on [3, 4], avoids this problem.
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3.1 Step 1: Argumentation Framework Construction

The approach of instantiated argumentation starts with a particular knowledge
base; in our case, it will be a normal logic program. From this program, one can
start to construct arguments recursively as follows:

Definition 7. Let P be a logic program.

– If c ← not b1, . . . , not bm is a rule in P then it is also an argument (say
A) with Conc(A) = c, Rules(A) = {c← not b1, . . . , not bm}, and Vul(A) =
{b1, . . . , bm}.

– If c ← a1, . . . , an, not b1, . . . , not bm is a rule in P and for each ai (1 ≤
i ≤ n) there exists an argument Ai with Conc(Ai) = ai and c ← a1, . . . , an,
not b1, . . . , not bm �∈ Rules(Ai) then c← (A1), . . . , (An), not b1, . . . , not
bm is an argument (say A) with Conc(A) = c, Rules(A) = Rules(A1) ∪
. . . ∪ Rules(An) ∪ {c ← a1, . . . , an, not b1, . . . , not bm} , and Vul(A) =
Vul(A1) ∪ . . . ∪ Vul(An) ∪ {b1, . . . , bm}.

An argument A can be seen as a tree-like structure of rules (the only difference
with a real tree is that a rule can occur at more than one place in A). We refer
to Conc(A) as the conclusion of A and Vul(A) as the vulnerabilities of A.

The next step is to determine the attack relation: an argument attacks another
iff its conclusion is one of the vulnerabilities of the attacked argument.

Definition 8. Let A and B be arguments in the sense of Definition 7. We say
that A attacks B iff Conc(A) ∈ Vul(B).

The notion of attack has a clear meaning: if b ∈ Vul(A), then A is built using
at least one rule with not b in its body. Hence, A is a defeasible derivation
that depends on b not being derivable. An argument B providing a (possibly
defeasible) derivation of b (i.e., Conc(B) = b) can thus be seen as attacking A.

Now one can define the argumentation framework associated to a program:

Definition 9. Let P be a logic program. We define its associated argumentation
framework as AFP = (ArP , attP ) where ArP is the set of arguments in the sense
of Definition 7 and attP is the attack relation in the sense of Definition 8.

3.2 Step 2: Applying Argumentation Semantics

Once the argumentation framework has been built, the next question is which
arguments should be accepted and which should be rejected. As shown in Section
2, several approaches have been stated for determining this. Here we will focus
on complete semantics [1], which can be defined via complete labellings [7, 10].

Definition 10. Let AF = (Ar , att) be an argumentation framework. An ar-
gument labelling is a function ArgLab : Ar → {in, out, undec}. It is called a
complete argument labelling iff for each A ∈ Ar it holds that:

– if ArgLab(A) = in, for every B ∈ Ar attacking A it holds ArgLab(B)=out
– if ArgLab(A) = out, there is a B ∈ Ar attacking A such that ArgLab(B)=in
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– if ArgLab(A) = undec then (i) not every B ∈ Ar that attacks A has
ArgLab(B) = out and (ii) no B ∈ Ar that attacks A has ArgLab(B) = in

With an argument labelling, one can express a position on which arguments
to accept (labelled in), which ones to reject (labelled out) and which ones to
abstain from having an explicit opinion about (labelled undec). The idea of
a complete labelling is that such a position is reasonable iff one has sufficient
reasons for each argument one accepts (all its attackers are rejected), for each
argument one rejects (it has an attacker that is accepted) and for each argument
one abstains (there are insufficient grounds to accept it and to reject it).

When ArgLab is an argument labelling, we write in(ArgLab) to denote the
set of {A | ArgLab(A) = in}, out(ArgLab) for {A | ArgLab(A) = out} and
undec(ArgLab) for {A | ArgLab(A) = undec}. As an argument labelling defines
a partition among arguments, we sometimes write it as (Args1,Args2,Args3)
where Args1 = in(ArgLab), Args2 = out(ArgLab) and Args3 = undec(ArgLab).

3.3 Step 3: Converting Argument Labellings to Conclusion
Labellings

For many practical purposes, what matters are not so much the arguments them-
selves, but the conclusions they support. Hence, for each position on which argu-
ments to accept, reject or abstain we need to specify the associated position on
which conclusions to accept, reject or abstain. For current purposes, we follow
the approach described in [11]. Here, the idea is for each conclusion to identify
the “best” argument that yields it. We assume a strict total order between dif-
ferent individual labels such that in > undec > out. The best argument for a
conclusion is the one with the highest label. If there is no argument at all for a
particular conclusion, it will be labelled out.

Definition 11 ([11]). Let P be a logic program. A conclusion labelling is a
function ConcLab : HBP → {in, out, undec}.

Let AFP = (ArP , attP ) be the argumentation framework associated with P
and ArgLab be an argument labelling of AFP . We say that ConcLab is the asso-
ciated conclusion labelling of ArgLab iff ConcLab is a conclusion labelling such
that for each c ∈ HBP it holds that ConcLab(c) = max({ArgLab(A) | Conc(A) =
c}∪{out}) where in > undec > out. We say that a conclusion labelling is com-
plete iff it is associated with a complete argument labelling.

When ConcLab is a conclusion labelling, we write in(ConcLab) to denote the
set of {c | ConcLab(c) = in}, out(ConcLab) for {c | ConcLab(c) = out} and
undec(ConcLab) for {c | ConcLab(c) = undec}. Sometimes we will write a
conclusion labelling as (Concs1, Concs2, Concs3) where Concs1 = in(ConcLab),
Concs2 = out(ConcLab) and Concs3 = undec(ConcLab).

4 Minimization/Maximization of Argument Labellings

In [7, 10] it was observed that for each complete argument labelling ArgLab of a
particular argumentation framework AF , it holds that:
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– in(ArgLab) is maximal among all complete argument labellings of AF iff
out(ArgLab) is maximal among all complete argument labellings of AF

– in(ArgLab) is minimal among all complete argument labellings of AF iff
out(ArgLab) is minimal among all complete argument labellings of AF iff
undec(ArgLab) is maximal among all complete argument labellings of AF

If a complete argument labelling has maximal in (or equivalently, maximal out)
we call it a preferred argument labelling. If it has minimal in (or equivalently,
minimal out or maximal undec), we call it a grounded argument labelling. Other-
wise, if it has minimal undec, we call it a semi-stable argument labelling. Lastly, if
it has no argument at all that is labelled undec, we call it an argstable argument
labelling.

Argument labellings and argument extensions are one-to-one related. In fact,
an extension is the in-labelled part of the associated labelling: if ArgLab is a
complete (resp. preferred, grounded, semi-stable or argstable) argument labelling
of argumentation framework AF = (Ar , att), then in(ArgLab) is a complete
(resp. preferred, grounded, semi-stable or stable) extension of AF . Furthermore,
if E is a complete (resp. preferred, grounded, semi-stable or stable) extension
of AF then (E,E+,Ar \ (E ∪ E+)) is a complete (resp. preferred, grounded,
semi-stable or argstable) labelling of AF (see [7, 10] for details).

Note that if ArgLab is a complete (or respectively, preferred, grounded, semi-
stable or argstable) argument labelling, then the associated conclusion labelling
(Definition 11) will be called a complete (or respectively, preferred, grounded,
semi-stable or argstable) conclusion labelling.

5 Minimization/Maximization of Conclusion Labellings

Preferred, grounded, semi-stable, and argstable conclusion labellings, as defined
in the previous section, are based on the common idea of performing the maxi-
mization/minimization at the level of argument labellings and then identifying
the associated conclusion labellings. An alternative procedure would be simply
to identify all complete conclusion labellings and then to perform the maximiza-
tion/minimization right at the level of the conclusion labellings.

It turns out that (as for argument labellings) some of the maximizations and
minimisations of the conclusion labellings are equivalent to others. In [12], it
is proved that for each complete conclusion labelling ConcLab of structured
argumentation framework AF , it holds that:

– in(ConcLab) is maximal among all complete conclusion labellings of AF iff
out(ConcLab) is maximal among all complete conclusion labellings of AF

– in(ConcLab) is minimal among all complete conclusion labellings of AF iff
out(ConcLab) is minimal among all complete conclusion labellings of AF iff
undec(ConcLab) is maximal among all complete argument labellings of AF

If a complete conclusion labelling has maximal in (or equivalently, maximal
out) we call it a regular conclusion labelling. If it has minimal in (or equiv-
alently, minimal out or maximal undec), we call it a well-founded conclusion
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labelling. Otherwise, if it has minimal undec, we call it an L-stable conclusion
labelling. Lastly, if it has no argument at all labelled undec, we call it a concstable
conclusion labelling.

Conclusion labellings and logic programming models turn out to be one-to-one
related. The basis of this result is [2], where the equivalence between complete
conclusion labellings and partial stable models was identified. More specifically:

– if ConcLab is a complete conclusion labelling of structured argumentation
framework AFP (generated by a logic program P ) then < in(ConcLab);
out(ConcLab) > is a partial stable model of P

– if < T ;F > is a partial stable model of P then (T, F,HBP \ (T ∪ F )) is a
complete conclusion labelling of the argumentation framework AFP

From this result, other correspondences between conclusion labellings and logic
programming models follow. As a regular model is a partial stable model with
maximal T , and a regular conclusion labelling is a complete conclusion labelling
with maximal in, it follows that they correspond to each other. Similar corre-
spondences hold between the well-founded model and the well-founded conclu-
sion labelling, between L-stable models and L-stable conclusion labellings, and
between stable models and concstable conclusion labellings. To sum up, the vari-
ous types of logic programming models are actually different forms of conclusion
labellings.

6 Maximizing/Minimizing Argument Labellings vs.
Maximizing/Minimizing Conclusion Labellings

So far, we have selected subsets of the complete conclusion labellings as follows:

1. Perform minimization (resp. maximization) of a label at the level of complete
argument labellings, then obtain the associated conclusion labellings. This
procedure was described in Section 4, and is in fact similar to what is done
in instantiated argumentation in general [3–6].

2. Take all complete conclusion labellings (these are the associated labellings
of all complete argument labellings) and then perform the minimization
(resp. maximization) of a particular label at the level of complete conclusion
labellings. This procedure was described in Section 5 and is in fact similar
to what is being done by various logic programming semantics.

An interesting question is whether the outcome of the two procedures is the
same. That is, does minimizing/maximizing a label at the level of argument
labellings equal to minimizing/maximizing the label at the level of conclusion
labellings? We will see that the answer is “yes”, with one notable exception.4

Theorem 1. Let ConcLab be a conclusion labelling of logic program P and as-
sociated argumentation framework AFP = (Ar , att). It holds that ConcLab is a
preferred conclusion labelling iff it is a regular conclusion labelling.

4 Proofs that have been omitted due to space restrictions can be found in [12].
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Theorem 2. Let ConcLab be a conclusion labelling of logic program P and as-
sociated argumentation framework AFP = (Ar , att). It holds that ConcLab is
the grounded conclusion labelling iff it is the well-founded conclusion labelling.

Theorem 3. Let ConcLab be a conclusion labelling of logic program P and as-
sociated argumentation framework AFP = (Ar , att). It holds that ConcLab is an
argstable conclusion labelling iff it is a concstable conclusion labelling.

One can also ask whether semi-stable conclusion labellings are the same as L-
stable conclusion labellings. Here, however, the answer is negative:

Example 1. Let P be the program below, whose associated argumentation frame-
work AFP is in Fig. 1, and let {A1, A2, A3, A4, A5} be arguments built from P .5

r1 : c← not c r2 : a← not b
r3 : b← not a r4 : c← not c, not a
r5 : g ← not g, not b

– A1 = r1, with Conc(A1) = c and Vul(A1) = {c}
– A2 = r2, with Conc(A2) = a and Vul(A2) = {b}
– A3 = r3, with Conc(A3) = b and Vul(A3) = {a}
– A4 = r4, with Conc(A4) = c and Vul(A4) = {c, a}
– A5 = r5, with Conc(A5) = g and Vul(A5) = {g, b}

A2A1

A3

A4

A5

Fig. 1. The argumentation framework AFP associated with P

Thecomplete argument labellings ofAFP areArgLab1=(∅, ∅,{A1, A2, A3, A4, A5}),
ArgLab2=({A2}, {A3, A4}, {A1, A5}), andArgLab3! =({A3}, {A2, A5}, {A1, A4}).
The associated complete conclusion labellings are ConcLab1 = (∅, ∅, {a, b, c, g}),
ConcLab2 = ({a}, {b}, {c, g}), and ConcLab3 = ({b}, {a, g}, {c}).

ArgLab2 and ArgLab3 are semi-stable argument labellings. Hence, the asso-
ciated conclusion labellings ConcLab2 and ConcLab3 are semi-stable conclusion
labellings. However, ConcLab2 is not L-stable, because undec(ConcLab2) is not
minimal. So here we have an example of a logic program where the semi-stable
and L-stable conclusion labellings do not coincide.

5 We thank Wolfgang Dvořák for this example.



On the Equivalence between LP Semantics and Argumentation Semantics 105

7 On the Connection between Argumentation Semantics
and Logic Programming Semantics

So far, we examined the general question of how argument labellings are related
to conclusion labellings. We found that for complete labellings:

– maximizing in (or, equivalently, maximizing out) at the argument level
yields the same result as maximizing in (or, equivalently, maximizing out)
at the conclusion level. Hence, preferred conclusion labellings and regular
conclusion labellings coincide.

– minimizing in (or, equivalently, minimizing out or maximizing undec) at
the argument level yields the same result as minimizing in (or, equivalently,
minimizing out or maximizing undec) at the conclusion level. Hence, the
grounded conclusion labelling and the well-founded conclusion labelling co-
incide.

– minimizing undec at the argument level does not yield the same result as
minimizing undec at the conclusion level. Hence, semi-stable conclusion la-
bellings and L-stable conclusion labellings do not coincide.

– ruling out undec at the argument level yields the same result as ruling out
undec at the conclusion level. Hence, argstable conclusion labellings and
concstable conclusion labellings coincide.

We have now arrived at the main point of this paper: the connection between (tra-
ditional) approaches to argumentation semantics and (traditional) approaches to
logic programming semantics. Let us again look at the 3-step process of Section
3. Assume that steps 1 and 3 are fixed. At step 2, it follows that

– if one applies complete semantics at step 2, the overall outcome is equivalent
to calculating the partial stable models of the original logic program [2]

– if one applies preferred semantics at step 2, the overall outcome is equivalent
to applying regular semantics to the original logic program

– if one applies grounded semantics at step 2, the overall outcome is equivalent
to applying well-founded semantics to the original logic program

– if one applies stable semantics at step 2, the overall outcome is equivalent
to applying stable model semantics to the original logic program

Thus, differences in logic programming semantics can be reduced to differences in
abstract argumentation semantics (see Table 1). We are also able to explain why
these semantics coincide, as what happens at the argument level tends to affect
the conclusion level. For instance, preferred semantics coincides with regular
semantics because maximizing in at either argument or conclusion level yields the
same results; grounded semantics coincides with well-founded semantics because
minimizing in at either argument or conclusion level yields the same results;
stable semantics coincides with stable model semantics because ruling out undec
at either argument or conclusion level yields the same results. Finally, semi-stable
semantics does not coincide with L-stable model because minimizing undec at
the argument level does not yield the same result as doing so at the conclusion
level.
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Table 1. Connections between argumentation semantics and LP semantics

Argument-Based Relation Logic Programming-Based
Conclusion Labelling Conclusion Labelling

Preferred ≡ Regular
Grounded ≡ Well-Founded
Semi-stable �≡ L-stable
Argstable ≡ Concstable

8 Semi-stable and L-Stable Semantics Revisited

We will now focus on the previously observed discrepancy between semi-stable
semantics and L-stable semantics. If semi-stable semantics is not able to generate
L-stable conclusion labellings, then is there perhaps any other abstract argumen-
tation semantics that can generate these? More precisely, we are interested in an
abstract argumentation semantics to be applied at step 2 of the argumentation
process, whose associated conclusion labellings (step 3) are precisely the L-stable
labellings. Furthermore, this semantics should purely be defined on the structure
of the graph (argumentation framework) and not rely on the actual contents of
the arguments. That is, the semantics should satisfy the language independence
principle [13].

Definition 12. We say that an abstract argumentation semantics X is L-stable
generating iff it is a function such that

1. For any logic program P , X takes as input AFP and yields as output a set
of argument labellings ArgLabs

2. X satisfies language independence [13, Definition 37], meaning that for any
pair of argumentation frameworks AF1, AF2 that are isomorphic6 by a map-
ping M of their arguments (the nodes in the graphs), each labelling of AF1

can be mapped to a different labelling of AF2 by the same mapping M .
3. It holds that {ConcLab | ConcLab is the associated conclusion labelling of

some ArgLab ∈ ArgLabs} is precisely the set of all L-stable conclusion la-
bellings of AFP .

Theorem 4. No abstract argumentation semantics is L-stable generating.

Proof. Consider the programs P with rules r1, ..., r4 and P ′ with rules r′1, ..., r
′
4:

r1 : c← not c r′1 : d← not c, not d
r2 : a← not b r′2 : a← not b
r3 : b← not a r′3 : b← not a
r4 : c← not c, not a r′4 : c← not c, not a, not d

The argumentation frameworks of P and P ′ are depicted in Fig. 2. Note that:

6 Two argumentation frameworks AF1, AF2 are isomorphic (as in graph isomorphism)
if there is an edge-preserving bijection from the arguments (the nodes) of AF1 to
those of AF2, when these argumentation frameworks are perceived as graphs.
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– P has three partial stable models: S1 =< ∅; ∅ >, S2 =< {a}; {b} > and
S3 =< {b}; {a} >, where S2 and S3 are L-stable models.

– P ′ has three partial stable models: S1 =< ∅; ∅ >, S2 =< {a}; {b, c} > and
S3 =< {b}; {a} >, where S2 is the single L-stable model.

The arguments A1, ..., A4 built from P and A′
1, ..., A

′
4 built from P ′ are

A1 : c← not c A1′ : d← not c, not d
A2 : a← not b A2′ : a← not b
A3 : b← not a A3′ : b← not a
A4 : c← not c, not a A4′ : c← not c, not a, not d

A2A1

A3

A4 A′
1 A′

2

A′
3

A′
4

Fig. 2. The argumentation frameworks associated with P and P ′

Though P has two L-stable models and P ′ has only one, they are indiscernible
in abstract argumentation semantics. Thus, no semantics of abstract argumen-
tation can coincide with the L-stable semantics for each and every program.

9 Discussion

In this paper, we have studied several connections between abstract argumen-
tation semantics and logic programming semantics. We observed that various
argumentation semantics are based on maximizations and minimizations (of
a particular label) at the argument level whereas various logic programming
semantics are based on maximizations and minimizations (of a particular la-
bel) at the conclusion level. Where performing the maximizations/minimizations
at the argument level yields the same results as performing the maximiza-
tions/minimizations at the conclusion level, the associated argumentation se-
mantics and logic programming semantics coincide. Where performing the max-
imizations/minimizations at the argument level does not yield the same results
as performing the maximizations/minimizations at the conclusion level, the cor-
responding argumentation semantics and logic programming semantics (semi-
stable / L-stable) do not coincide.

Although the current paper focuses mainly on instantiated argumentation
based on logic programming, its main findings are in fact relevant for instan-
tiated argumentation in general (like [3–6]) as it specifies the possibilities and
impossibilities of using the argumentation approach to specify nonmonotonic
entailment, or to model existing nonmonotonic formalisms. If the aim is, for in-
stance, to model a formalism that maximizes in or out at the conclusion level
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(like [14]) the argumentation approach will do fine (as evidenced by [15]). How-
ever, if the aim is to model a formalism that minimizes undec at the conclusion
level, the argumentation approach will not be able to provide any help (Theorem
4). Hence, the current paper has shed some light on the strengths and limitations
of using the argumentation approach for specifying nonmonotonic entailment.
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Abstract. The Dendritic Cell Algorithm (DCA) is an immune inspired
classification algorithm based on the behavior of natural dendritic cells.
The DCA performance relies on its data pre-processing phase based on
the Principal Component analysis (PCA) statistical method. However,
using PCA presents a limitation as it destroys the underlying semantics
of the features after reduction. One possible solution to overcome this
limitation was the application of Rough Set Theory (RST) in the DCA
data pre-processing phase; but still the developed rough DCA approach
presents an information loss as data should be discretized beforehand.
Thus, the aim of this paper is to develop a new DCA data pre-processing
method based on Fuzzy Rough Set Theory (FRST) which allows deal-
ing with real-valued data with no data quantization beforehand. In this
new fuzzy-rough model, the DCA data pre-processing phase is based on
the FRST concepts; mainly the fuzzy lower and fuzzy upper approxi-
mations. Results show that applying FRST, instead of PCA and RST,
to DCA is more convenient for data pre-processing yielding much better
performance in terms of accuracy.

Keywords: Dendritic cell algorithm, Fuzzy rough set theory, Feature
selection, Classification.

1 Introduction

The Dendritic Cell Algorithm (DCA) [1] is a bio-inspired classification binary
algorithm derived from behavioral models of natural dendritic cells (DCs) [2].
DCA has the ability to combine a series of informative signals with a sequence of
repeating abstract identifiers, termed “antigens”, to perform anomaly detection.
To achieve this and through the pre-processing phase, DCA selects a subset
of features and categorizes each selected feature into one of three signal types
which are defined as “Danger Signal” (DS), “Safe Signal” (SS) and as “Pathogen-
Associated Molecular Pattern”(PAMP). The resulting combination signal values
are then classified to form an anomaly detection style of two-class classification.

Initially, in [3], the principal component analysis (PCA) statistical method
was introduced in the DCA data pre-processing phase which is composed of
two main sub-steps; namely feature reduction and signal categorization. The
use of PCA aims to automatically reduce data dimension by generating new
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features to retain, which is achieved throughout the first sub-step, and to perform
their categorization to their specific signal types (SS, DS, and PAMP), which is
achieved throughout the second sub-step. However, applying PCA in the DCA
data pre-processing step, destroys the underlying meaning behind the features
present, initially, in the input database; seen as an undesirable property for the
DCA [4].

To have a more reliable data pre-processing phase and to overcome the PCA
limitation, in [4], a rough DCA version was introduced. The algorithm, named
RC-DCA, is based on the application of Rough Set Theory (RST) [5] for the
DCA data pre-processing task. To select features and based on the RST con-
cepts, RC-DCA selects the most informative attributes, a subset termed reduct,
that preserve nearly the same classification power of the original database. Fur-
thermore, in RC-DCA, the signal categorization step is based on the RST Reduct
and Core concepts. It was shown, in [4], that applying RST, instead of PCA,
to DCA is more convenient for data pre-processing yielding much better perfor-
mance in terms of accuracy.

However, based on rough set theory and to perform feature selection, the
attribute values of the input database should be discretized beforehand. Thus,
important information may be lost as a result of quantization [6]. Formally, in
most databases, the attribute values may be real, and this is where RST encoun-
ters a problem. It is not possible within this theory to say whether two attribute
values are similar and to what extent they are the same [6]. For instance, two
close values may only differ as a result of noise, but in RST they are considered
to be as different as two values of a different order of magnitude. One answer
to this problem has been to discretize the dataset beforehand, producing a new
database with crisp values. This is often still inadequate as it is a source of in-
formation loss; which is against the rough set objective of retaining information
content [6]. This information loss may influence the RC-DCA feature selection
process by generating an incorrect set of selected features; as a consequence,
this will misguide the algorithm categorization phase by categorizing the fea-
tures to erroneous signal categories. As a result, this will influence the algorithm
classification process by generating unreliable classification results.

To overcome the RST applicability restriction, Fuzzy Rough Set Theory
(FRST) [7] was introduced as a data reduction technique dealing with crisp
and real-valued attributed datasets. FRST, which utilizes the extent to which
values are similar, encapsulates the related but distinct concepts of vagueness
(for fuzzy sets) and indiscernibility (for rough sets), both of which occur as a
result of uncertainty in data; a method employing fuzzy-rough sets can han-
dle this uncertainty. We, therefore, in this paper, propose to develop a novel
fuzzy-rough DCA model based on a new feature selection and signal categoriza-
tion technique. Our fuzzy-rough DCA classification model, named FBR-DCA, is
based on the use of fuzzy rough set theory and more precisely on the use of the
fuzzy boundary region (FBR); to guarantee a more rigorous data pre-processing
phase.
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The major contributions of this paper are to introduce the concept of FRST
in the DCA data pre-processing phase and to show how FRST can be applied to
search for the most convenient set of features to select. Additionally, we aim to
show how the application of FRST can be appropriate for the categorization of
each selected feature to its right type of signal. This will be achieved by avoiding
the information loss already discussed, by keeping the semantics of the initial
attributes and with no need for a quantization process beforehand.

2 The Dendritic Cell Algorithm

DCA is a population based system, with each agent in the system is represented
as a cell. Each cell has the capacity to collect data items, termed antigens.
Formally, the DCA initial step is the automatic data pre-processing phase where
feature selection and signal categorization are achieved. More precisely, DCA
selects the most important features, from the initial input database, and assigns
each selected attribute to its specific signal category (SS, DS or PAMP). To do
so, the PCA was used. Once data pre-processing is achieved and after calculating
the values of the safe, PAMP and DS signals [8], DCA adheres these three signal
categories and antigen to fix the context of each object (DC) which is the step
of Signal Processing.

In fact, the algorithm processes its input signals (already pre-categorized) in
order to get three output signals: costimulation signal (Csm), semi-mature sig-
nal (Semi) and mature signal (Mat) [8]. A migration threshold is incorporated
into the DCA in order to determine the lifespan of a DC. As soon as the Csm
exceeds the migration threshold; the DC ceases to sample signals and antigens.
The migration state of a DC to the semi-mature state or to the mature state is
determined by the comparison between cumulative Semi and cumulative Mat.
If the cumulative Semi is greater than the cumulative Mat, then the DC goes
to the semi-mature context, which implies that the antigen data was collected
under normal conditions. Otherwise, the DC goes to the mature context, signi-
fying a potentially anomalous data item. This step is known to be the Context
Assessment phase.

The nature of the response is determined by measuring the number of DCs
that are fully mature and is represented by the Mature Context Antigen Value
(MCAV). MCAV is applied in the DCA final step which is the Classification
procedure and used to assess the degree of anomaly of a given antigen. The closer
the MCAV is to 1, the greater the probability that the antigen is anomalous.
By applying thresholds at various levels, analysis can be performed to assess the
anomaly detection capabilities of the algorithm. Those antigens whose MCAV
are greater than the anomalous threshold, which can be automatically generated
from the input data, are classified as anomalous while the others are classified as
normal. For a detailed description of the DCA and its implementation, please,
refer to [8].
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3 Rough Sets and Fuzzy-Rough Sets for Feature Selection

3.1 Fundamentals of Rough Set Theory

In Rough Set Theory (RST) [5], an information table is defined as a tuple
T = (U,A) where U and A are two finite, non-empty sets, U the universe of
primitive objects and A the set of attributes. A may be partitioned into C and
D, called condition and decision attributes, respectively. Let P ⊂ A be a subset
of attributes. The indiscernibility relation, IND(P ), is an equivalence relation
defined as: IND(P ) = {(x, y) ∈ U2 : ∀a ∈ P, a(x) = a(y)}, where a(x) denotes
the value of feature a of object x. The family of all equivalence classes of IND(P )
is denoted by U/IND(P ). Equivalence classes U/IND(C) and U/IND(D) are
respectively called condition and decision classes. For any concept X ⊆ U and
attribute subset R ⊆ A, X could be approximated using only the information
contained within P by constructing the P-lower and the P-upper approximations
of X defined as P (X) = {x ∈ U |[x]p ⊆ X} and P (X) = {x ∈ U |[x]p ∩X �= ∅},
respectively. The lower approximation of X is the set of objects of U that are
surely in X and the upper approximation of X is the set of objects of U that are
possibly in X . The tuple < P (X), P (X) > is called a rough set. Let P and Q be
sets of attributes inducing equivalence relations over U , then the positive region
can be defined as: POSP (Q) =

⋃
X∈U/Q P (X). The positive region contains all

objects of U that can be classified into classes of U/Q using the information in
attribute P .

For feature selection, RST defines the core and the reduct concepts. The
core is equivalent to the set of features which are indispensable attributes that
cannot be removed without loss of prediction accuracy of the original database.
The reduct is a combination of all these features and some features that can
sometimes contribute to prediction accuracy. In RST, a subset R ⊆ C is said to
be a D-reduct of C if POSR(D) = POSC(D) and there is no R′ ⊂ R such that
POSR′ (D) = POSC(D). There may exist a family (F ) of reducts, REDF

D(C),
in T . The core is the set of attributes that are contained in all reducts, defined
as: CORED(C) =

⋂
REDF

D(C).

3.2 Fundamentals of Fuzzy Rough Set Theory

Fuzzy Rough Set Theory (FRST) [7] comes as an extension to RST as this
latter theory can only operate effectively with datasets containing discrete values.
As most datasets contain real-valued attributes, it is necessary to perform a
discretization step beforehand. To avoid this information loss, fuzzy rough set
theory is applied.

Basic Concepts. In the same way that crisp equivalence classes are central to
rough sets, fuzzy equivalence classes are central to the fuzzy-rough set approach.
For typical applications, this means that the decision values and the conditional
values may all be fuzzy. The concept of crisp equivalence classes can be ex-
tended by the inclusion of a fuzzy similarity relation S on the universe, which
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determines the extent to which two elements are similar in S. The fuzzy lower
and fuzzy upper approximations become μRPX(x) = infy∈UI(μRP (x, y), μX(y))
and μRPX(x) = supy∈UT (μRP (x, y), μX(y)). In the presented formulae, I is a
fuzzy implicator and T is a t-norm. RP is the fuzzy similarity relation induced
by the subset of features P : μRP (x, y) =

⋃
a∈P {μRa(x, y)} where μRa(x, y) is

the degree to which objects x and y are similar for feature a. A fuzzy sim-
ilarity relation can be constructed for this purpose, defined as: μRa(x, y) =

max(min( (a(y)−(a(x)−σa))
(a(x)−(a(x)−σa))

, ((a(x)+σa)−a(y))
((a(x)+σa)−a(x)) ), 0) where σa is the standard devi-

ation of feature a. The tuple < P (X), P (X) > is called a fuzzy-rough set.
The difference between the fuzzy lower approximation, containing information
regarding the extent of certainty of object membership to a given concept,
and the fuzzy upper approximation, containing information regarding the de-
gree of uncertainty of objects, generates the fuzzy boundary region; defined as:
μBNDRP

(X)(x) = μRPX(x) − μRPX(x). This subset contains objects within the
boundary region with less uncertainty.

Reduction Process. To search for the optimal subset of features, the fuzzy-
rough reduct, the uncertainty for every concept has to be calculated. The un-
certainty for a concept X using features in P can be calculated as follows:

UP (X) =

∑
x∈U μBNDRP

(X)(x)

|U| . This is the average extent to which objects belong

to the fuzzy boundary region for the concept X . The total uncertainty degree

for all concepts, given a feature subset P , is defined as: γ
′
P (Q) =

∑
X∈U/Q UP (X)

|U/Q| .

A Fuzzy-Rough QuickReduct algorithm, defined in Fig.1, can be constructed
for locating a fuzzy-rough reduct based on this measure. The task of the algo-
rithm is to minimize the total uncertainty degree. When this reaches the mini-
mum for the dataset, a fuzzy-rough reduct has been found. A worked example
on how to compute a fuzzy-rough reduct using the Fuzzy-Rough QuickReduct
algorithm, based on the fuzzy boundary region, can be found in [9].

Fig. 1. Fuzzy-Rough QuickReduct algorithm
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4 FBR-DCA: The Fuzzy-Rough Solution Approach

In this Section, we focus mainly on our FBR-DCA data pre-processing step as
the rest of the fuzzy-rough FBR-DCA steps including Signal Processing, Con-
text Assessment and the Classification procedure are performed the same as the
standard DCA and as described, previously, in Section 2.

4.1 The FBR-DCA Signal Selection Process

For antigen classification, our learning problem has to select high discriminat-
ing features from the original input database which corresponds to the antigen
information dataset. We may formalize this problem as an information table,
where universe U = {x1, x2, . . . , xN} is a set of antigen identifiers, the condi-
tional attribute set C = {c1, c2, . . . , cA} contains each feature of the information
table to select and the decision attribute D of our learning problem corresponds
to the class label of each sample. As FBR-DCA is based on the standard DCA
concepts, except for the data pre-processing phase, and since DCA is applied
to binary classification problems; then our developed FBR-DCA will be, also,
applied to two-class datasets. Therefore, the decision attribute, D, of the input
database of our FBR-DCA has binary values dk: either the antigen is collected
under safe circumstances reflecting a normal behavior (classified as normal) or
the antigen is collected under dangerous circumstances reflecting an anomalous
behavior (classified as anomalous). The condition attribute feature D is defined
as follows: D = {normal, anomalous}.

For feature selection, FBR-DCA has to determine, first of all, the fuzzy bound-
ary region for both concepts, the two-class labels, dk. To do so, the fuzzy lower
and the fuzzy upper approximations of each concept dk for each feature ci and
for all objects xj must be calculated. The fuzzy boundary region, the fuzzy
lower and the fuzzy upper approximations are denoted by: μBNDRci

(dk)(xj),

μRci
({dk})(xj) and μRci

({dk})(xj), respectively. Once the fuzzy boundary regions

are measured, FBR-DCA calculates the uncertainty degrees for each attribute
ci for each concept dk, denoted by Uci(dk), as presented in Section 3.

To find the fuzzy-rough reduct, FBR-DCA starts off with an empty set and
moves to calculate the total uncertainty degrees for each feature ci; defined as
γ

′
ci(D). The attribute cm having the smallest total uncertainty degree among all

the calculated total uncertainty degrees of the remaining features is added to
the empty fuzzy-rough reduct set. Once the first attribute cm is selected, FBR-
DCA adds, in turn, one attribute to the selected first attribute and computes
the total uncertainty degrees of each obtained attributes’ couple γ

′
{cm,ci}(D). The

algorithm chooses the couple having the smallest total uncertainty degree. The
process of adding each time one attribute to the subset of the selected features
continues until the total uncertainty degree of the obtained subset results in the
minimal uncertainty for the dataset.
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The generated subset of the selected features, constituting the fuzzy-rough
reduct, shows the way of reducing the dimensionality of the original dataset
by eliminating those conditional attributes that do not appear in the set. Those
discarded attributes are removed in each FBR-DCA computation level since they
do not add anything new to the target concept nor help the FBR-DCA to perform
well its classification task. In fact, the obtained fuzzy-rough reduct includes the
most informative features that preserve nearly the same classification power
of the original dataset. Using the fuzzy-rough reduct concept, our method can
guarantee that attributes of extracted feature patterns will be the most relevant
for the FBR-DCA classification task.

4.2 The FBR-DCA Signal Categorization Process

The second step of our FBR-DCA data pre-processing phase is signal catego-
rization. More precisely, our method has to assign for each selected attribute,
produced by the previous step and which is included in the generated fuzzy-
rough reduct, its definite and specific signal category. The general guidelines for
signal categorization are based on the semantic of each signal type [1]:

• Safe signals: Certainly indicate that no anomalies are present.
• PAMPs: Usually mean that there is an anomalous situation.
• Danger signals: May or may not show an anomalous situation, however the
probability of an anomaly is higher than under normal circumstances.

From the definitions stated above, both PAMP and SS are positive indicators of
an anomalous and normal situation while the DS is measuring situations where
the risk of anomalousness is high, but there is no signature of a specific cause.
In other words, PAMP and SS have a certain final context (either an anomalous
or a normal behavior) while the DS cannot specify exactly the final context to
assign to the collected antigen. This is because the information returned by the
DS is not certain as the collected antigen may or may not indicate an anomalous
situation. This problem can be formulated as follows:

Based on the semantics of the mentioned signals, a ranking can be performed
for these signals. More precisely, both SS and PAMP are more informative than
DS which means that both of these signals can be seen as indispensable at-
tributes; reflecting the first and the second ranking positions. To represent this
level of importance, our method uses the first obtained couple of features through
the fuzzy-rough reduct generation. On the other hand, DS is less informative
than PAMP and SS; reflecting the last and third ranking position. Therefore,
our method applies the rest of the fuzzy-rough reduct attributes, discarding the
two first selected attributes that are chosen to represent the SS and PAMP
signals, to represent the DS. More precisely, our method processes as follows:

As FBR-DCA has already calculated the total uncertainty degree of each
attribute ci a part, γ

′
ci(D), FBR-DCA selects the first attribute cm having the

smallest total uncertainty degree to form the SS as it is considered the most
informative first feature added to the fuzzy-rough reduct. With no additional
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computations and since FBR-DCA has already computed the total uncertainty
degree of each attributes’ couple γ

′
{cm,ci}(D) when adding, in turn, one attribute

ci to the selected first attribute cm that represents the SS, FBR-DCA chooses
the couple having the smallest total uncertainty degree. More precisely, FBR-
DCA selects that second attribute cr having the smallest γ

′
{cm,cr}(D) among

the calculated γ
′
{cm,ci}(D); to form the PAMP signal. Finally, the rest of the

fuzzy-rough reduct attributes are combined and affected to the DS as it is less
than certain to be anomalous.

Once the selected features are assigned to their suitable signal types, our
method calculates the values of each signal category using the same process
as the standard DCA [8]. The output is, thus, a new information table which
reflects the signal database. In fact, the universe U of the induced signal dataset
is U = {x′

1, x
′
2, . . . , x

′
N} a set of antigen identifiers and the conditional attribute

set C = {SS, PAMP,DS} contains the three signal types: SS, PAMP and DS.
Once data pre-processing is achieved, FBR-DCA processes its next steps which
are the Signal Processing, the Context Assessment and the Classification phase
as the DCA does and as described in Section 2.

5 Experimental Setup

To test the validity of our FBR-DCA fuzzy-rough model, our experiments are
performed on two-class, real-valued attributes, databases from [10]. The used
databases are described in Table 1.

Table 1. Description of Databases

Database Ref � Instances � Attributes

Sonar SN 208 61
Molecular-Bio Bio 106 59
Spambase SP 4601 58
Cylinder Bands CylB 540 40
Chess Ch 3196 37
Ionosphere IONO 351 35
Sick Sck 3772 30
Mushroom Mash 8124 23
Horse Colic HC 368 23
German-Credit GC 1000 21
Red-White-Win RWW 6497 13

It is likely that not all of the attributes presented in the mentioned databases,
are required to determine the class of each instance. Hence, feature selection,
which is the first sub-step of the DCA data pre-processing phase, is needed.
In [4], this is achieved by applying RST. However, as the datasets are entirely
composed of real-valued attributes, discretization had to be performed. This is
clearly a potential source of information loss. By applying the present work,
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FBR-DCA, such loss can be reduced as attribute values are kept unchanged;
no quantization is performed on the original databases. We try to show that
our FBR-DCA can operate well in case of real-valued attributes avoiding the
mentioned information loss while generating better classification results than
when applying the crisp rough set theory. Thus, we will compare our FBR-DCA
model to the crisp rough DCA approach, RC-DCA. Note that FBR-DCA and
RC-DCA are based on the same concepts, except for the data pre-processing
phase, as the standard DCA version, PCA-DCA. For data pre-processing, FBR-
DCA applies FRST, RC-DCA applies RST and the standard DCA applies PCA.

For the DCA approaches, namely FBR-DCA, RC-DCA and PCA-DCA, each
data item is mapped as an antigen, with the value of the antigen equal to the
data ID of the item. For all DCA algorithms, a population of 100 cells is used.
The migration threshold of an individual DC is set to 10. To perform anomaly
detection, a threshold which is automatically generated from the data is ap-
plied to the MCAVs. The MCAV threshold is derived from the proportion of
anomalous data instances of the whole dataset. Items below the threshold are
classified as class one and above as class two. The resulting classified antigens
are compared to the labels given in the original datasets. For each experiment,
the results presented are based on mean MCAV values generated across a 10-fold
cross validation.

We evaluate the performance of the DCA methods in terms of number of
extracted features, running time, sensitivity, specificity and accuracy which are
defined as: Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP );
Accuracy = (TP + TN)/(TP + TN + FN + FP ); where TP, FP, TN, and
FN refer respectively to: true positive, false positive, true negative and false
negative. We will, also, compare the classification performance of our FBR-
DCA method to well known classifiers which are the Support Vector Machine
(SVM), Artificial Neural Network (ANN) and the Decision Tree (DT) and to
the standard DCA version, PCA-DCA. The parameters of SVM, ANN and DT
are set to the most adequate parameters to these algorithms using the Weka
software. All experiments are run on a Sony Vaio G4 2.67 Ghz machine.

FRST has been experimentally evaluated with other leading feature selec-
tion techniques, such as Relif-F and entropy-based approaches in [11], and has
been shown to outperform these in terms of resulting classification performance.
Hence, only comparison to fuzzy rough set theory and rough set theory are
given here. In addition, in [4], it was already shown that RC-DCA outperforms
PCA-DCA. Thus, comparisons are made between FBR-DCA and RC-DCA.

6 Results and Analysis

Let us remind that the first step of the DCA classification algorithm is data
pre-processing which is based on the use of PCA [3]. In [4], results showed
that applying PCA for both feature selection and signal categorization is not
convenient for the DCA as both phases are not consistent. It was, also, shown
that applying rough set theory with DCA is a good alternative leading to a
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better classification performance. However, the developed RC-DCA rough model
suffers from a main limitation which is the performance of data discretization
beforehand.

Table 2. Comparison Results of DCA Approaches

Specificity(%) Sensitivity(%) Accuracy(%) Time(s) � Attributes
Database DCA DCA DCA DCA DCA

RC FBR RC FBR RC FBR RC FBR RC FBR

SN 93.82 97.93 90.10 97.29 91.82 97.59 1705.79 14.87 20 9

Bio 79.24 92.45 77.35 86.79 78.30 89.62 1679.53 13.58 19 9

SP 98.49 99.89 98.40 99.77 98.45 99.84 3184.83 2119.95 8 8

CylB 97.75 98.39 97.00 97.00 97.46 97.85 1441.93 29.06 7 5

Ch 98.88 98.82 98.80 99.40 98.84 99.12 1779.83 714.95 11 4

IONO 97.33 99.11 96.82 98.41 97.15 98.86 668.32 41.12 19 9

Sck 97.68 99.09 96.96 96.53 97.64 98.93 1401.43 704.95 20 14

Mash 99.76 99.95 99.51 99.92 99.64 99.93 4567.34 4092.6 6 3

HC 94.73 97.36 93.05 96.29 93.75 96.73 260.08 39.84 14 5

GC 90.77 90.35 89.05 87.95 90.30 89.70 533.72 196.9 17 10

RWW 99.49 99.37 99.22 99.18 99.29 99.23 2201.98 1599.11 6 3

In this Section, we aim to show that applying FRST, instead of RST, can avoid
the information loss caused by the mandatory step of data quantization. We,
also, aim to show that by leaving the attribute values unchanged, our proposed
FBR-DCA algorithm is able to select fewer features than the crisp rough RC-
DCA approach, leading to better guide the FBR-DCA algorithm classification
process. This is confirmed by the results presented in Table 2. For instance,
from Table 2, we can notice that our new fuzzy-rough DCA model, FBR-DCA,
has fewer features than the rough DCA model, RC-DCA. This is explained by
the fact that FBR-DCA, by applying the Fuzzy-Rough QuickReduct algorithm,
incorporates the information usually lost in crisp discretization by utilizing the
fuzzy boundary region to provide a more informed technique. The results show
that FBR-DCA selects features without much loss in information content. Our
FBR-DCA new approach performs much better than traditional RST on the
whole, in terms of both feature selection and classification quality. For instance,
applying FBR-DCA to the Bio database, the number of selected attributes is 9.
However, when applying RC-DCA to the same database, the number of selected
features is set to 19. A second example can be the HC dataset where the number
of selected features, by applying FBR-DCA, is reduced by more than 50% (5
features) in comparison to the number of features selected by the crisp rough
DCA model, RC-DCA, which is set to 14.

Furthermore, from Table 2, we can notice that our FBR-DCA outperforms
RC-DCA in terms of classification accuracy. For instance, when applying the
algorithms to the SN dataset, the classification accuracy of FBR-DCA is set to
97.59%. However, when applying RC-DCA to the same database, the accuracy
is set to 91.82%. Same remark is observed for the specificity and the sensitivity
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criteria. When comparing the results in terms of running time, we can notice
that the time taken by our FBR-DCA to process is less than the time needed by
RC-DCA to function. This is explained by the fact that our FBR-DCA gener-
ates only one fuzzy-rough reduct as it is based on the Fuzzy-Rough QuickReduct
algorithm. In contrast, RC-DCA generates all possible reducts that can be pro-
duced from data. Obviously, this is an expensive solution to the problem. Most
of the time only one reduct is required as, typically, only one subset of fea-
tures is used to reduce a dataset, so all the calculations involved in discovering
the rest are pointless. Moreover, RC-DCA proposes different solutions for signal
categorization; in case where the algorithm generates one reduct and when the
algorithm generates a family of reducts; which is seen as a time consuming task.
For example, when applying the algorithms to the Bio database, the amount of
time taken by our FBR-DCA to process is 13.58(s) which is much less than the
time taken by RC-DCA which is set to 1679.53(s).

We have, also, compared the performance of our FBR-DCA to other classifiers
which are SVM, ANN and DT. The comparison made is in terms of the average
of accuracies on the databases presented in Table 1. Fig.2 shows that the stan-
dard PCA-DCA has nearly the same classification performance as SVM and a
better one than ANN and DT. It, also, shows that RC-DCA outperforms all the
mentioned classifiers including the PCA-DCA in terms of overall accuracy. This
is explained by the fact that RC-DCA applies rough set theory, instead of PCA,
in the algorithm data pre-processing phase. Most importantly, the highest clas-
sification accuracy is noticed for our fuzzy-rough DCA new model, FBR-DCA.
These promising FBR-DCA results are explained by the appropriate application
of FRST to the DCA data pre-processing phase. This makes the algorithm a
better classifier by generating more reliable and more pertinent results.

Fig. 2. Classifiers’ Average Accuracies

To summarize, we have shown, in this Section, that our proposed FBR-DCA
has the advantages of selecting fewer features than our proposed first work; RC-
DCA. FBR-DCA is capable of avoiding the information loss caused by the use
of the crisp rough set theory. The application of FBR-DCA to the unchanged
attribute values led our new fuzzy-rough model to better guide its classification
task yielding better performance in terms of classification accuracy. FBR-DCA
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is, also, characterized by its lightweight in terms of running time in comparison to
RC-DCA. Another characteristic of our FBR-DCA approach, when comparing it
to the standard DCA version when applying PCA, is that it holds the semantics
of the initial attributes. Adding to this, our fuzzy-rough DCA model, FBR-DCA,
can effectively select features with no need for user-supplied information.

7 Conclusion and Future Works

In this paper, we have proposed a new hybrid DCA classification model based on
fuzzy rough set theory. Our model aims to select the convenient set of features
and to perform their signal categorization using the Fuzzy-Rough QuickReduct
algorithm. Our proposed solution, FBR-DCA, ensures a more rigorous data
pre-processing, for the DCA, when dealing with databases with real-valued at-
tributes. Results show that FBR-DCA is capable of performing better its classi-
fication task than the standard DCA, the crisp rough RC-DCA model and other
classifiers.
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Abstract. Knowledge compilation is a powerful approach to exact in-
ference in probabilistic graphical models, which is able to effectively ex-
ploit determinism and context-specific independence, allowing it to scale
to highly connected models that are otherwise infeasible using more tra-
ditional methods (based on treewidth alone). Previous approaches were
based on performing two steps: encode a model into CNF, then compile
the CNF into an equivalent but more tractable representation (d-DNNF),
where exact inference reduces to weighted model counting. In this pa-
per, we investigate a bottom-up approach, that is enabled by a recently
proposed representation, the Sentential Decision Diagram (SDD). We
describe a novel and efficient way to encode the factors of a given model
directly to SDDs, bypassing the CNF representation. To compile a given
model, it now suffices to conjoin the SDD representations of its factors,
using an apply operator, which d-DNNFs lack. Empirically, we find that
our simpler approach to knowledge compilation is as effective as those
based on d-DNNFs, and at times, orders-of-magnitude faster.

1 Introduction

There are a variety of algorithms for performing exact inference in probabilistic
graphical models; see, e.g., [5,12]. They typically have time complexities that
are exponential in the treewidth of a given model, which make them unsuitable
for models with high treewidths. Another approach to exact probabilistic infer-
ence, known as knowledge compilation, is capable of exploiting local structure
in probabilistic graphical models, such as determinism and context-specific in-
dependence, allowing one to conduct exact inference efficiently, even in models
with high treewidth. The basic idea is to encode then compile a given model
into a target representation, where local structure can be exploited in more nat-
ural ways. Exact inference then reduces to weighted model counting, where the
complexity of inference is now just linear in the size of the representation found
[4,2]. The challenge is then to find effective encodings of a probabilistic graphical
model that can be efficiently compiled to representations of manageable size.

Previous approaches based on knowledge compilation can be summarized as
performing two steps [4,2]. First, a given model is encoded as a CNF, where
exact inference corresponds to weighted model counting in the CNF. Second,
this CNF is compiled into a more tractable representation called deterministic,

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 121–132, 2013.
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decomposable negation normal form (d-DNNF) [8]. The effectiveness of this
approach depends critically on (1) how we encode a model as a CNF, and (2)
on how we compile the CNF into d-DNNF. The ace system implements this
approach, using the c2d system to compile a CNF into a d-DNNF.1 Figure 1
illustrates the performance benefits of ace, at the UAI’08 evaluation [7] on an
example suite of high treewidth networks that are synthesized from relational
models. The average cluster size for this suite is greater than 50, making them
infeasible to solve without exploiting local structure.

We propose here a simpler bottom-up approach for compiling probabilistic
graphical models, that is enabled by a recently proposed representation, the
Sentential Decision Diagram (SDD) [6]. Unlike d-DNNFs, an efficient apply op-
eration is available for SDDs, which allows one to conjoin and disjoin two SDDs
efficiently. This allows us to bypass intermediate representations in CNF, and
encode the factors of a model directly to SDDs. Compilation then reduces to
conjoining factors together, as SDDs, also using the apply operator. Encoding
and compilation are now expressed in common terms, enabling novel, more effi-
cient ways to exploit local structure. Empirically, this leads to a more efficient
compilation algorithm, sometimes by orders-of-magnitude. In the process, we
propose further a new cardinality minimization algorithm for SDDs.

2 Probabilistic Inference as Weighted Model Counting

We first review how to reduce inference in probabilistic graphical models to
weighted model counting, as in [2]. As a running example, we use a simple

1
ace is available at http://reasoning.cs.ucla.edu/ace/ , and c2d is available at
http://reasoning.cs.ucla.edu/c2d/.

http://reasoning.cs.ucla.edu/ace/
http://reasoning.cs.ucla.edu/c2d/
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Bayesian network A→ B, where variable A has 2 states a and ā, and variable B
has 2 states b and b̄. This network has two CPTs, a CPT ΘA with 2 parameters
θa and θā, and a CPT ΘB|A with 4 parameters θb|a, θb̄|a, θb|ā and θb̄|ā.

We can encode a Bayesian network as a propositional knowledge base Δ repre-
sented in CNF, whose weighted model count will correspond to the probability of
evidence in a Bayesian network: Pr(e) =

∑
x∼e

∏
X θx|u, where x is a complete

network instantiation, e is an evidence instantiation, and relation ∼ denotes
compatibility between two instantiations (they agree on the values of common
variables). For probabilistic graphical models in general, weighted model counts
correspond to partition functions.

We first define the propositional variables of the CNF. First, for each BN
variable X we define indicator variables Ix of the CNF, one variable Ix for each
value x of BN variable X . Second, for each CPT ΘX|U of our BN, we define
parameter variables Px|u, one variable Px|u for each CPT parameter θx|u. In our
running example, we have the CNF variables:

BN variables CNF variables
A Ia, Iā
B Ib, Ib̄

BN CPTs CNF variables
ΘA Pa, Pā

ΘB|A Pb|a, Pb̄|a, Pb|ā, Pb̄|ā

We have two types of clauses in our CNF. First, for each BN variable, we have
indicator clauses, which enforce a constraint that exactly one of the correspond-
ing indicator variables is true. For each CPT, we have parameter clauses, which,
given the indicator clauses, enforce a constraint that exactly one of the cor-
responding parameter variables is true (the one consistent with the indicator
variables). In our example, we thus have the clauses:2

BN variables CNF clauses
A Ia ∨ Iā ¬Ia ∨ ¬Iā
B Ib ∨ Ib̄ ¬Ib ∨ ¬Ib̄

BN CPTs CNF clauses
ΘA Ia ⇔ Pa Iā ⇔ Pā

ΘB|A Ia ∧ Ib ⇔ Pb|a Ia ∧ Ib̄ ⇔ Pb̄|a
Iā ∧ Ib ⇔ Pb|ā Iā ∧ Ib̄ ⇔ Pb̄|ā

To do weighted model counting, we need to specify weights on each CNF literal.
For each indicator variable, we set both literal weightsW (Ix) andW (¬Ix) to one.
For each parameter variable, we set the positive literal weight W (Px|u) to the
value of the corresponding BN parameter θx|u, and the negative literal weight
W (¬Px|u) to one. The models w of the resulting knowledge base Δ are now
in one-to-one correspondence with rows of the joint distribution table induced
by our BN. The weight of a model w is W (w) =

∏
w|=�W (�), and the weighted

model count of Δ is wmc(Δ) =
∑

w|=ΔW (w). For example, we have the following

model w and model weight W (w):

w = (Ia,¬Iā,¬Ib, Ib̄, Pa,¬Pā,¬Pb|a, Pb̄|a,¬Pb|ā,¬Pb̄|ā)

W (w) = W (Pa) ·W (Pb̄|a) = θa · θb̄|a = Pr(a, b̄).

2 Ia∧Ib ⇔ Pb|a is shorthand for the clauses (¬Ia∨¬Ib∨Pb|a), (Ia∨¬Pb|a) (Ib∨¬Pb|a).
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Further, the weighted model count is one, just as a BN’s joint probability table
sums to one. We incorporate evidence by setting to zero the weights of any
indicator variable Ix that is not compatible with the evidence. The weighted
model count then corresponds to the probability of evidence in a BN.

2.1 Exploiting Local Structure

Zero Parameters. It is straightforward to encode determinism using CNFs.
Say that the parameter θb|a is zero. Any model w where parameter variable Pb|a
appears positively has a model weight that is zero, since W (Pb|a) = 0. We can
thus replace the parameter clauses for the BN parameter θx|u with the single
clause ¬Ia∨¬Ib, which also forces to zero the weight of a model where parameter
variable Pb|a appears positively. The parameter variable Pb|a is now superfluous,
and can be removed from the domain of the knowledge base Δ.

Equal Parameters. Efficiently encoding equal parameters can be a more subtle
process. Say that two parameters of a CPT, say θb|a and θb̄|ā, have the same value
p. The parameter clauses (given the indicator clauses) guarantee that exactly one
parameter variable from each CPT appears positively in any model w |= Δ. This
allows us to use a common parameter variable Pp, for equal parameters. If these
parameters have clauses Ia ∧ Ib ⇔ Pb|a and Iā ∧ Ib̄ ⇔ Pā|b̄ we first instead assert
the clauses Ia ∧ Ib ⇒ P and Iā ∧ Ib̄ ⇒ P. This by itself is not sufficient, as
the resulting knowledge base Δ admits too many models (the above clauses, by
themselves, do not prevent parameter variable P from being set to true when
neither Ia∧Ib nor Iā∧Ib̄ are true). We can filter out such models once we compile
the resulting CNF into d-DNNF, by performing cardinality minimization [2].

3 Sentential Decision Diagrams

The Sentential Decision Diagram (SDD) is a newly introduced target represen-
tation for propositional knowledge bases [6]. It is a strict subset of deterministic,
decomposable negation normal form (d-DNNF), used by the ace system. Fig-
ure 2(a) depicts an SDD: paired-boxes p s are called elements and represent
conjunctions (p ∧ s), where p is called a prime and s is called a sub. Circles are
called decision nodes and represent disjunctions of the corresponding elements.
SDDs satisfy stronger properties than d-DNNFs, allowing one, for example, to
conjoin two SDDs in polytime. In contrast, this is not possible in general with
d-DNNFs [8]. As we shall show, the ability to conjoin SDDs efficiently is critical
for incremental, bottom-up compilation of probabilistic graphical models.

An SDD is constructed for a given vtree, which is a full binary tree whose leaves
are in one-to-one correspondence with the given variables; see Figure 2(b). The
SDD is canonical for a given vtree (under some conditions) and its size depends
critically on the vtree used. Ordered Binary Decision Diagrams (OBDDs) [1]
are a strict subset of SDDs: OBDDs correspond precisely to SDDs that are con-
structed using a special type of vtree, called a right-linear vtree [6]. Theoretically,
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SDDs come with size upper bounds (based on treewidth) [6] that are tighter than
the size upper bounds that OBDDs come with (based on pathwidth) [13,11,9].
In practice, dynamic compilation algorithms can find SDDs that are orders-of-
magnitude more succinct than those found using OBDDs [3]. Compilation to
d-DNNF has also compared favorably against bottom-up compilation using OB-
DDs in other probabilistic representations [10].

Every decision node in an SDD is normalized for some vtree node. In Fig-
ure 2(a), each decision node is labeled with the vtree node it is normalized for.
Consider a decision node with elements p1 s1 , . . . , pn sn , and suppose that it
is normalized for a vtree node v which has variables X in its left subtree and
variables Y in its right subtree. We are then guaranteed that each prime pi will
only mention variables in X and that each sub si will only mention variables
in Y (this ensures decomposability). Moreover, the primes are guaranteed to
represent propositional sentences that are consistent, mutually exclusive, and
exhaustive (this ensures determinism). For example, the top decision node in
Figure 2(a) has elements that represent the following sentences:

{(A ∧B︸ ︷︷ ︸
prime

, true︸︷︷︸
sub

), (¬A ∧B︸ ︷︷ ︸
prime

, C︸︷︷︸
sub

), ( ¬B︸︷︷︸
prime

, D ∧ C︸ ︷︷ ︸
sub

)}

One can verify that these primes and subs satisfy the properties above.
In our experiments, we use the SDD package developed by the Automated

Reasoning Group at UCLA.3 This package allows one to efficiently conjoin, dis-
join and negate SDDs, in addition to computing weighted model counts in time
that is linear in the size of the corresponding SDD.

4 Bottom-Up Compilation into SDDs

There are a number of steps we need to take in order to compile a given prob-
abilistic graphical model into an equivalent representation as an SDD. At each
step, we make certain decisions that can have a significant impact on the size of
the resulting SDD, as well as on the efficiency of constructing it.

4.1 Choosing an Initial Vtree

Vtrees uniquely define SDDs (under some conditions), so the choice of an initial
vtree is critical to obtaining a compact SDD. Here, we consider one approach,
which we describe below, that was effective in our experiments.

We propose to obtain an initial vtree by inducing one from a variable or-
dering. We run the min-fill algorithm on a given model, and use the resulting
variable ordering to induce a vtree, as follows. First, we construct for each model
variable, a balanced vtree over indicator variables, and for each factor, a bal-
anced vtree over parameter variables. We then simulate variable elimination: (1)
when we multiply two factors, we compose their vtrees, and (2) when we forget

3 Publicly available at http://reasoning.cs.ucla.edu/sdd .

http://reasoning.cs.ucla.edu/sdd
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v3

v1

v2 v4

(b) Vtree for Network A → B

Fig. 3. Choosing an initial vtree for network A → B

a variable from a factor, we compose the vtrees of the variable and the factor.
Here, composing two vtrees vi and vj means that we create a new vtree v with
children vi and vj . In our experiments, we let the left subtree be the one with
fewer variables. Figure 3(a) shows the initial vtrees over indicator and parameter
variables for a Bayesian network A→ B. Figure 3(b) shows a vtree constructed
using variable ordering 〈B,A〉. First, forget variable B from CPT ΘB|A (com-
pose vtrees v2 and v4), then multiply with CPT ΘA (compose with vtree v3),
and finally forget variable A (compose with vtree v1).

4.2 Compiling Factors into SDDs

Here, we consider how to efficiently encode the factors of a given model as an
SDD. This encoding is possible as SDDs support an efficient apply operator,
which given two SDDs α and β and a boolean operator ◦, will return a new SDD
for α◦β, in polytime. When we encode a factor, we encode the indicator clauses
for each factor variable, and the parameter clauses for each factor parameter, as
in Section 2. This factor CNF can be compiled using apply, where we disjoin
the corresponding literals of each clause, and then conjoin the resulting clauses.
However, we could seek a more direct and efficient approach by relaxing our use
of the CNF representation. Consider the factor ΘB|A of network A → B, with
parameters θb|a, θb̄|a, θb|ā and θb̄|ā. Our factor CNF is equivalent to the following
DNF, over indicator variables Ia and Ib and parameter variables Pb|a:

(Ia ∧ ¬Iā ∧ Ib ∧ ¬Ib̄ ∧ Pb|a ∧ ¬Pb̄|a ∧ ¬Pb|ā ∧ ¬Pb̄|ā)

∨ (Ia ∧ ¬Iā ∧ ¬Ib ∧ Ib̄ ∧ ¬Pb|a ∧ Pb̄|a ∧ ¬Pb|ā ∧ ¬Pb̄|ā)

∨ (¬Ia ∧ Iā ∧ Ib ∧ ¬Ib̄ ∧ ¬Pb|a ∧ ¬Pb̄|a ∧ Pb|ā ∧ ¬Pb̄|ā)

∨ (¬Ia ∧ Iā ∧ ¬Ib ∧ Ib̄ ∧ ¬Pb|a ∧ ¬Pb̄|a ∧ ¬Pb|ā ∧ Pb̄|ā).

The constraints implied by indicator and parameter clauses result in a DNF
where each term represents a setting of indicator and parameter variables for
each factor parameter θx|u. In particular, the term for parameter θx|u has positive
literals for parameter variable Px|u and for the indicator variables consistent with
instantiation xu; all other literals are negative.
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Using apply, it is also easy to compile a DNF into an SDD. However, there are
as many terms in the DNF as there are parameters in a factor, and each term has
a sub-term with the same number of literals. Naively, this entails a quadratic
number of apply operations, just to construct the sub-terms over parameter
variables, which is undesirable when we have large factors.

Instead, we observe that each sub-term over parameter variables, has all but
one variable appearing negatively. We thus construct an SDD α for the sub-term
composed of all negative literals, using apply. We can use, and re-use, this SDD
to construct all parameter sub-terms, using two additional operations each. In
particular, for each parameter θx|u we compute (α | ¬Px|u)∧Px|u, where (α | �)
denotes conditioning α on a literal � (which is another operation supported by
SDDs). This conditioning is equivalent to replacing ¬Px|u with the constant true,
which drops the literal from the term α. The conjoin then replaces the literal
with the positive one. To construct all sub-terms over parameter variables, we
just need in total a linear number of apply operations and a linear number of
conditioning operations, which is much more efficient than a quadratic number
of apply’s. The same technique can be used to construct terms over indicator
variables, which is similarly effective when a factor contains variables with many
states. We can then conjoin the indicator sub-term with the parameter sub-term.

Encoding Determinism. If a factor contains a zero parameter θx|u, then any
model w satisfying that term, in the factor DNF, will evaluate to zero, since
W (Px|u) = 0. Setting variable Px|u to false does the same, which effectively
removes the term and variable from the DNF. The variable Px|u is now vacuous,
so we remove it from the domain of knowledge base Δ.

Encoding Equal Parameters. If a factor contains parameters θx|u that have
the same value p, then it suffices to have a single parameter variable Pp for those
parameters. For example, say parameter θb|a and θb̄|ā have the same value p in
CPT ΘB|A. The corresponding DNF is:

(Ia ∧ ¬Iā ∧ Ib ∧ ¬Ib̄ ∧ Pp ∧ ¬Pb̄|a ∧ ¬Pb|ā)

∨ (Ia ∧ ¬Iā ∧ ¬Ib ∧ Ib̄ ∧ ¬Pp ∧ Pb̄|a ∧ ¬Pb|ā)

∨ (¬Ia ∧ Iā ∧ Ib ∧ ¬Ib̄ ∧ ¬Pp ∧ ¬Pb̄|a ∧ Pb|ā)

∨ (¬Ia ∧ Iā ∧ ¬Ib ∧ Ib̄ ∧ Pp ∧ ¬Pb̄|a ∧ ¬Pb|ā).

Note that the weight of each term is unchanged. To compile this function using
the apply operator, it suffices to construct the parameter sub-term for equal
parameters once, and just disjoin the corresponding indicator sub-terms. This is
more efficient (fewer apply operations) than explicitly compiling the DNF.

Note that in the CNF encoding of Section 2, we resorted to encoding a repre-
sentation that contained too many models, and then filtered them by performing
cardinality minimization after compiling to d-DNNF. This is more efficient than
encoding equal parameters directly as a CNF, as a straightforward conversion
leads to a CNF with many clauses. However, such techniques are not needed
using an SDD representation, as we are not constrained to using CNFs/DNFs.
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4.3 Bottom-Up Compilation

Once we have obtained SDD representation of our model’s factors, we just need
to conjoin these SDDs to obtain an SDD representation of our model. However,
what order do we use to conjoin factor SDDs together? This decision impacts the
sizes of the intermediate representations that we encounter during compilation.
In the implementation we evaluate empirically, we mirror the process we used
to construct our vtree, using the same min-fill variable ordering. We start with
SDD representations of each factor, and simulate variable elimination: (1) when
we multiply two factors, we conjoin the corresponding SDDs, and (2) when we
forget a variable from a factor, we conjoin the variable’s indicator clauses.4

4.4 CNF Encodings: Revisited

Using SDDs, it is also possible to perform bottom-up compilation using the CNF
encoding [3]. Suppose we are given a probabilistic graphical model as a set of
indicator and parameter clauses, as in Section 2, and a vtree over its indicator
and parameter variables, as in Section 4.1. We can assign each clause c to the
lowest (and unique) vtree node v which contains its variables. This labeled vtree
provides a recursive partitioning of the CNF clauses, with each node v in the
vtree hosting a set of clauses Δv. To compile a CNF, we recursively compile the
clauses placed in the sub-vtrees rooted at the children of v, each child returning
with its corresponding SDD. We conjoin these two SDDs using apply, and then
iterate over the clauses at node v, compiling each into an SDD, and conjoining
the result with the existing SDD, all also using apply. We also visit the clauses
hosted by node v according to their size, visiting shorter clauses first.

4.5 Minimizing Cardinality

When exploiting local structure with a CNF as in Section 2, we appealed to
cardinality minimization in a compiled d-DNNF. We need to be able to do the
same when compiling CNFs to SDDs, which is not as straightforward.

Formally, the minimum cardinality of a given SDD α is defined as:5

mcard(α) =

⎧⎪⎪⎨⎪⎪⎩
0 if α is a negative literal or true;
1 if α is a positive literal;
∞ if α is false.
mini{mcard(pi) + mcard(si)} if α = {(p1, s1), ..., (pn, sn)}

Algorithm 1 describes how to recursively obtain an SDD αmin representing the
minimum cardinality models of a given SDD α, which we call a minimized SDD.

4 Conjoining indicator clauses is typically redundant, since we can normally assume
they are encoded in the SDD of each factor mentioning that variable.

5 More intuitively, the cardinality of a model w is the number of positive literals
that appear in that model. The minimum cardinality of a knowledge base Δ is the
minimum cardinality of all its models. Minimizing a knowledge base Δ produces
another knowledge base representing the minimum cardinality models of Δ.
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Algorithm 1. Minimize-SDD

Input: An SDD α, a vtree v for which α is normalized
Output: A minimized SDD αmin, normalized for v, for SDD α

1 if α ∈ {⊥, X,¬X} and v is leaf with variable X then return α;
2 else if α = � and v is leaf with variable X then return ¬X;
3 else
4 if cache(α) �= nil then return cache(α);
5 αmin ← empty decision node;
6 foreach element (p, s) in α do
7 if mcard(p) + mcard(s) > mcard(α) then add (p,⊥) to αmin;
8 else

9 pmin ← Minimize-SDD(p, vl), smin ← Minimize-SDD(s, vr);
10 add (pmin, smin) to αmin;
11 pcarry ← apply(p,¬pmin,∧);
12 if pcarry �= ⊥ then add (pcarry,⊥) to αmin;

13 add αmin to cache;
14 return αmin;

1

B A ¬Bâ¥

1

B ¬A ¬Bâ¥

1

¬B¬A B â¥

1

¬B A B â¥

3

       â¥

5

¬D¬C D â¥

5

¬D C D â¥

5

D C ¬Dâ¥

Fig. 4. Minimized SDD for (A ∧ B) ∨ (B ∧ C) ∨ (C ∧D)

For each element (p, s) ∈ α, if mcard(p) + mcard(s) > mcard(α), then (p,⊥)
is an element of αmin. If mcard(p) + mcard(s) = mcard(α), then (pmin, smin) is
an element of αmin, where pmin and smin are the minimized SDD’s for p and s
respectively. If a prime is minimized, then to ensure the exhaustiveness of the
primes, we need to add a new element to the minimized SDD (Line 12).

Figure 4 shows the minimized SDD αmin for SDD α in Figure 2. Each element
of α has a minimum cardinality of 2, so the minimum cardinality of α is 2.
For each element (p, s) of α, the minimization αmin has a minimized element
(pmin, smin). The minimization {(¬B,¬A),(B,⊥)} of prime ¬B is not equal to
itself, so αmin has an element with prime {(¬B,A),(B,⊥)} and sub ⊥.

5 Experiments

We evaluate our approach to compiling probabilistic graphical models (PGMs)
into SDDs, where we consider the impact that different encodings can have on
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the succinctness of the resulting compilation, and also on the time that it takes to
compile it. We compare 4 methods to compile a probabilistic graphical model:6

– compiling to SDD without exploiting local structure (denoted by none);

– compiling to SDD, exploiting local structure as in Section 4.2 (sdd);

– encoding the PGM as a CNF, and compiling to SDD (cnf);

– encoding the PGM as a CNF, and compiling to d-DNNF with c2d (c2d).

Note that method c2d is the one that underlies the ace system. All methods here
are driven by initial structures (vtrees for SDDs and dtrees for d-DNNFs), based
on min-fill variable orderings. We restrict ourselves to static initial structures,
although SDDs support the ability to dynamically optimize the size of an SDD
[3]; top-down approaches to compilation, like method c2d, typically do not.

Table 1 highlights statistics for a selection of benchmarks and their SDD and
d-DNNF compilations. Here, the size of an SDD is the aggregate size of an SDD’s
decompositions, and the number of nodes is the number of decision nodes. For
methods that compile to SDDs, we observe that encoding local structure (sdd,
cnf) can obtain much more compact SDDs than without (none). For example, in
network water, method sdd produced an SDD that was 73× more compact than
none. Such improvements are typical for knowledge compilation approaches to
exact inference, when there is sufficient local structure [2]. Next, methods cnf
and sdd encode the same local structure, so both approaches yield the same
compiled SDDs. However, by not constraining ourselves to CNFs, as method cnf
does, we can obtain these SDDs in much less time, often by orders-of-magnitude.

As for d-DNNFs compiled by c2d, we report the number of NNF edges as
the compilation size, and the number of AND-nodes and OR-nodes in an NNF
as the number of nodes. While the sizes for SDDs and d-DNNFs are not directly
comparable, we note that for instances where we obtained both an SDD and
a d-DNNF, the reported sizes are within an order-of-magnitude of each other
(or better). This suggests that methods sdd and c2d are performing comparably,
relatively speaking, across these benchmarks. In other cases, method sdd could
compile benchmarks that method c2d was unable to in one hour. For example,
method sdd was able to compile network diabetes in under 25 seconds (at least
144× faster), and method sdd was the only one to compile network munin1.

Finally, we note that d-DNNFs are in general more succinct than SDDs, and
for any given SDD there is a corresponding d-DNNF that is at least as succinct.
However, SDDs enjoy an efficient apply operator, which is critical for certain
applications that are out of the scope of d-DNNFs, which does not support an
apply. Our results here suggest that our simplified approach (method sdd) can
be orders-of-magnitude more efficient than other alternatives. In some cases, in
fact, the ability to encode directly to an SDD alone (none) appears to outweigh
the ability to exploit local structure using CNFs (given enough memory).

6 Our experiments were performed on an Intel i7-3770 3.4GHz CPU with 16GB RAM,
except for method none, which were on an Intel Xeon E5440 2.83GHz CPU with
32GB RAM (SDD size is the relevant comparison here, and less compilation time).
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Table 1. Under PGM stats, X is # of variables, θ is # of model parameters, 0 is #
of zeros, p is # of distinct parameter values, C is log2 size of largest jointree cluster.
We have 4 compilation methods: none is compilation to SDDs without encoding local
structure, sdd is to SDDs with encoding local structure, cnf is to SDDs via encod-
ing CNFs with local structure, c2d is to d-DNNFs via the same CNF using the c2d

compiler. Time reported in seconds. — is a 1 hour timeout, � is out-of-memory.

PGM stats compilation stats
benchmark X θ 0 p C method size nodes time

barley 48 130180 0 36926 23.4 none 231,784,907 96,062,825 227.46
sdd 49,442,901 17,678,076 32.48
cnf — — —
c2d — — —

diabetes 413 461069 352224 17574 17.5 none 78,641,365 32,312,892 308.74
sdd 21,704,366 7,882,652 24.49
cnf — — —
c2d — — —

diagnose-b 329 34704 51 976 18.1 none 15,622,318 7,115,750 67.23
sdd 227,170 102,856 0.84
cnf 227,170 102,856 245.12
c2d 369,426 124,393 77.56

mildew 35 547158 509234 6713 19.6 none 54,726,909 26,136,443 188.51
sdd 2,981,951 1,156,072 5.55
cnf — — —
c2d 167,676,317 3,120,074 1430.90

munin1 189 19466 10910 4246 26.2 none � � �
sdd 139,855,161 61,376,880 339.34
cnf — — —
c2d — — —

munin2 1003 83920 46606 22852 17.4 none 25,068,547 10,453,726 122.08
sdd 8,007,175 3,430,400 19.12
cnf 8,007,175 3,430,400 2377.67
c2d — — —

munin3 1044 85855 47581 24102 17.3 none 43,069,070 19,066,130 158.25
sdd 9,623,616 4,431,843 21.73
cnf — — —
c2d 66,048,268 2,297,199 132.96

water 32 13484 6970 3578 20.8 none 29,881,265 12,566,205 36.17
sdd 405,538 195,502 3.83
cnf 405,538 195,502 106.07
c2d 1,342,307 141,167 3.24

mm-5-8-3 1616 11278 5531 3367 28.0 none � � �
sdd 870,867 400,872 255.38
cnf 870,867 400,872 1830.93
c2d 4,920,481 214,281 8.78

gr-90-26-1 676 5202 2360 1704 40.0 none � � �
sdd 600,816 288,632 190.01
cnf 600,816 288,632 62.48
c2d 216,935 28,241 3.38
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6 Conclusion

In this paper, we outlined a knowledge compilation approach for exact infer-
ence in probabilistic graphical models, that is enabled by a recently proposed
representation, the Sentential Decision Diagram (SDD). SDDs support an ef-
ficient apply operation, which was not available in previous approaches based
on compilation to d-DNNFs. As we illustrated, an efficient apply operation
enables a more unified approach to knowledge compilation, that allows us to
encode a model, exploit its local structure, and compile it to a more compact
representation, in common and simplified terms. Empirically, we found that by
bypassing the auxiliary CNF representations that were previously used, we can
obtain SDDs that are of comparable succinctness to d-DNNFs found by c2d,
but more efficiently, by orders-of-magnitude in some cases. In the process, we
further proposed a new algorithm for minimizing cardinality in SDDs.
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2 Dip. S.B.A.I., Università di Roma “La Sapienza”, Italy
barbara.vantaggi@sbai.uniroma1.it

Abstract. In this paper we consider coherent T -conditional possibil-
ity assessments, with T a continuous t-norm, and introduce for them
a concept of independence already studied for the minimum and strict
t-norms. As a significant particular case of T -conditional possibility we
explicitly consider TDP -conditional possibility (obtained through the
minimum specificity principle) introduced by Dubois and Prade.

Keywords: Independence, T -conditional possibility, Coherence.

1 Introduction

The notion of conditioning is a problem of long-standing interest and it involves
different uncertainty measures. In this paper we focus on (finitely maxitive) pos-
sibility measures that can be seen as specific upper probabilities, arising from
a convex set of probabilities or as a result of a probabilistic inferential process
[8,18,22]. Various definitions of conditional possibility have been introduced: by
analogy with the Kolmogorovian probabilistic framework or by using some crite-
rion as the minimum specificity principle (see, e.g., [12,17]). All these definitions
have in common the fact that a conditional measure is obtained as a derived
concept from an “unconditional” one. In [3] a general notion of T -conditional
possibility has been introduced as a primitive concept: the conditional possibil-
ity is directly defined as a function on a set of conditional events which satisfies
a suitable set of axioms and it is not induced just by a single unconditional
possibility (as solution of an equation involving joint and marginal possibilities).

Referring to the aforementioned definition, we provide a comparison with the
conditioning notion obtained through the minimum specificity principle, called
here TDP -conditioning, introduced in [17].

However, all these definitions are not able to deal with partial assessments,
so a notion of coherence for possibility, which assures that a partial assessment
is the restriction of a T -conditional possibility, has been introduced in [10].

In this paper we present a notion of independence for coherent T -conditional
(and TDP -conditional) possibility, which is an extension to a general continuous
t-norm of that given for the minimum and strict t-norms (see [9,19]). One of the
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c© Springer-Verlag Berlin Heidelberg 2013



134 G. Coletti, D. Petturiti, and B. Vantaggi

main motivations for introducing this definition of independence is to capture
the following natural implication: the independence under an uncertainty mea-
sure (and so, in particular, under a possibility) must imply logical independence.
In other words if an event is “logically” related to another one, the two events
cannot be independent under any uncertainty measure. This implication, even
though very intuitive, can fail when we adopt the classical definitions of indepen-
dence. Moreover, taking into account logical constraints is interesting not only
from a theoretical point of view, but also for practical situations.

A brief comparison with the classical notions of possibilistic independence
[11,13,17,20,21] is shown and the main properties are studied. Among the prop-
erties we emphasize that our (conditional) independence structures do not nec-
essarily satisfy symmetry. The lack of symmetry is not surprising in possibility
theory: actually, even some of the above definitions do not satisfy this property
[1]. Our definition can be reinforced in order to satisfy symmetry in a way to get
symmetric independence models, that can capture associations among variables
and possibly can be represented through graphs. In fact, just few separation
criteria are present to represent asymmetric independence structures [15,25].

2 Conditioning in Possibility Theory

An event E is singled out by a Boolean proposition, that is a statement that can
be either true or false. Since in general it is not known whether E is true or not,
we are uncertain on E, which is said to be possible. Two particular events are
the certain event Ω and the impossible event ∅, that coincide with, respectively,
the top and the bottom of every Boolean algebra B of events, i.e., a set of events
closed w.r.t. the familiar Boolean operations of contrary c, conjunction ∧ and
disjunction ∨ and equipped with the partial order ⊆. A conditional event E|H
is an ordered pair (E,H), with H �= ∅, where E and H are events of the same
“nature”, but with a different role (in fact H acts as a “possible hypothesis”).
In particular any event E can be seen as the conditional event E|Ω.

In what follows, B × H denotes a set of conditional events with B a Boolean
algebra andH an additive set (i.e., closed with respect to finite disjunctions) such
that H ⊆ B0 = B \{∅}. Moreover, given a finite set G = {Ei|Hi }i=1,...,n, let B =
〈{Ei, Hi}i=1,...,n〉 be the Boolean algebra spanned by the events {Ei, Hi}i=1,...,n

and if B is a finite Boolean algebra denote with CB the relevant set of atoms.

Definition 1. Let T be any t-norm. A function Π : B × H → [0, 1] is a T -
conditional possibility if it satisfies the following properties:

(CP1) Π(E|H) = Π(E ∧H |H), for every E ∈ B and H ∈ H;
(CP2) Π(·|H) is a finitely maxitive possibility on B, for any H ∈ H;
(CP3) Π(E ∧ F |H) = T (Π(E|H), Π(F |E ∧ H)), for any H,E ∧ H ∈ H and

E,F ∈ B.

Let us stress that condition (CP2) requires that, for every H ∈ H, Π(·|H) is a
normalized finitely maxitive function [24] defined on B, i.e., it holds
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– Π(∅|H) = 0 and Π(Ω|H) = 1;
– Π(

∨
i=1,...,nAi|H) = maxi=1,...,n Π(Ai|H), for every {A1, . . . , An} ⊆ B.

In this paper we consider finitely maxitive possibility measures (even when not
explicitly stated), so we do not require that Π(·|H) must be supremum pre-
serving, i.e., Π(

∨
i∈I Ai|H) = supi∈I Π(Ai|H) with {Ai}i∈I ⊆ B, I arbitrary.

Moreover, any unconditional possibility measure Π(·) on B can be viewed as a
T -conditional possibility Π(·|Ω) on B × {Ω}, where T is an arbitrary t-norm.

Mimiking the concept of full conditional probability on B defined in [16],
given any t-norm T we say that Π is a full T -conditional possibility on B if it is
defined on B×B0. In the following T is assumed to be continuous (even when not
explicitly stated), since for non-continuous t-norms a T -conditional possibility
on B × H could be non-extendable as a full T -conditional possibility on B (see
Example 1 in [10]), while it is always possible if T is continuous.

A full T -conditional possibility Π(·|·) on B is not necessarily “represented” by
means of a single unconditional possibility, even when B is finite (see [10]), but in
this latter case there is a unique class of possibility measures P = {Π0, . . . , Πk}
all defined on B, called T -nested class agreeing with Π(·|·), whose distributions
on the set of atoms CB satisfy the following properties for α = 1, . . . , k:

1. Πα−1(C) ≤ Πα(C) if C ∈ Cα;
2. Πα(C) = 0 for all the atoms C ∈ C0 \ Cα;
3. for any C ∈ C0 there exists a (unique) jC ∈ {0, . . . , k} such that ΠjC (C) = 1;
4. for any C1, C2 ∈ Cα, Πα−1(C1) < Πα−1(C2)⇒ Πα(C1) < Πα(C2);
5. for any C ∈ Cα, Πα−1(C) = T (Πα(C), Πα−1(H

α
0 ));

where C0 = CB, Cα = {C ∈ Cα−1 : Πα−1(C) < 1}, for α ≥ 1, andHα
0 =

∨
C∈Cα

C.

Previous structure implies that for every E|H ∈ B×B0, the value Π(E|H) is
a (non-necessarily unique) solution of equations in x

Πα(E ∧H) = T (x,Πα(H)),

for α = 0, . . . , jH , where jH ∈ {0, . . . , k} is the minimum index suchΠjH (H) = 1.
This highlights an important difference with other approaches to condition-

ing, where the conditional possibility Π(E|H) is defined, starting from a single
unconditional possibility Π(·), as a solution of the equation in x

Π(E ∧H) = T (x,Π(H)). (1)

Indeed, continuity of T assures only the solvability of (1), while to reach the
uniqueness of the solution a further constraint must be imposed. At this aim,
the Dubois and Prade’s minimum specificity principle [17] consists in always
selecting the greatest solution of equation (1), by means of the residuum →T of
a continuous t-norm, defined as

x→T y = sup{z ∈ [0, 1] : T (x, z) ≤ y}.

In [2] the issue of the existence and uniqueness of the solution computed using
the possibilistic counterparts of Jeffrey’s rule is addressed: under product t-
norm, possibilistic version of Jeffrey’s rule admits a unique solution, while under
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minimum, it does not guarantee the existence of a solution (satisfying the two
conditions underlying Jeffrey’s rule of conditioning).

By referring to the conditioning notion based on the minimum specificity
principle (see, e.g., [17]) we deal with TDP -conditional possibility.

Definition 2. Let T be a continuous t-norm. A function Π : B × H → [0, 1] is
a TDP -conditional possibility if it satisfies the following conditions:

(DP1) Π(E|H) = Π(E ∧H |H) for every E ∈ B and H ∈ H;
(DP2) Π(·|H) is a finitely maxitive possibility for every H ∈ H;
(DP3) for every E|H ∈ B ×H it holds (with H0

0 =
∨

H∈H H ∈ H)

Π(E|H) =

{
Π(H |H0

0 )→T Π(E ∧H |H0
0 ) if E ∧H �= ∅,

0 otherwise.

Next proposition shows that TDP -conditional possibilities are particular
T -conditional possibilities.

Proposition 1. Let T be a continuous t-norm. If Π on B × H is a TDP -
conditional possibility, then Π is a T -conditional possibility.

Proof. It is sufficient to show that, for every E|H ∈ B × H it holds

Π(E ∧ F |H) = T (Π(E|H), Π(F |E ∧H)). (2)

We recall that the residuum satisfies the following properties of monotonicity:
for every x ≤ x′ and y ≤ y′, x →T y ≤ x →T y′ and x →T y ≥ x′ →T y.
Moreover, x→T y = 1 if and only if x ≤ y.

By Definition 2 it follows:

- Π(E|H) = (Π(H |H0
0 )→T Π(E ∧H |H0

0 )),
- Π(F |E ∧H) = (Π(E ∧H |H0

0 )→T Π(E ∧ F ∧H |H0
0 )),

- Π(E ∧ F |H) = (Π(H |H0
0 )→T Π(E ∧ F ∧H |H0

0 )).

Therefore Π(E ∧ F |H) ≤ Π(E|H) and Π(E ∧ F |H) ≤ Π(F |E ∧H).
If Π(E ∧ F |H) = 1 then equation (2) trivially holds.
If Π(E ∧F |H) < 1, and Π(E|H) = 1 (or analogously Π(F |E∧H) = 1), then

- Π(E ∧H |H0
0 ) = Π(H |H0

0 ),
- Π(E ∧ F ∧H |H0

0 ) = T (Π(E ∧ F |H), Π(H |H0
0 )),

- Π(E∧F∧H |H0
0 ) = T (Π(F |E∧H), Π(E∧H |H0

0 ))=T (Π(F |E∧H), Π(H |H0
0 )),

so Π(F |E ∧ H) is the unique value satisfying the above equation and it must
hold Π(F |E ∧H) = Π(F ∧ E|H), thus equation (2) is satisfied.

If all the three values are strictly less than 1, then

Π(F ∧ E ∧H |H0
0 ) = T (Π(F |E ∧H), T (Π(E|H), Π(H |H0

0 )))

= T (T (Π(F |E ∧H), Π(E|H)), Π(H |H0
0 ))

and
Π(F ∧ E ∧H |H0

0 ) = T (Π(F ∧ E|H), Π(H |H0
0 )).

So the validity of equation (2) follows by the continuity of T .
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Let us stress that not all the definitions of conditioning (defined over a Boolean
algebra) present in the literature are particular cases of T -conditional possibili-
ties: this is the case of Zadeh’s conditioning rule (see [9]). Actually, T -conditional
possibilities according to Definition 1 are consistent with the definition given in
[12] which solves the problem of conditioning by following the classic Kolmogoro-
vian line and by defining the concept of (Π,T )-almost everywhere equality. Nev-
ertheless, the class of conditional measures consistent with the definition given
in [12] contains also functions not consistent with our Definition 1, in the sense
that, for some conditioning event H we can have Π(H |H) �= 1.

Now we study TDP -conditional possibility in the case the Boolean algebra
B (and so the the additive set H ⊆ B) is finite. In the next Proposition 2 we
show that every TDP -conditional possibility on B × H can be extended (non-
necessarily in a unique way) to a full TDP -conditional possibility on B (i.e., a
TDP -conditional possibility on B × B0).

Proposition 2. Let T be a continuous t-norm, and B a finite Boolean algebra.
If Π : B × H → [0, 1] is a TDP -conditional possibility, then there exists a full
TDP -conditional possibility Π ′ : B × B0 → [0, 1] such that Π ′

|B×H = Π.

Proof. The proof for T = min has been given in [4,23]. Here assume T is a
continuous t-norm T . Denote H0

0 =
∨

H∈H H . If H0
0 = Ω, then the extension

Π ′(·|·) is obtained through (DP3) by setting for anyE|H ∈ B×(B0\H),Π ′(E|H)
equal to 0 if E ∧H = ∅, and Π(H |H0

0 )→T Π(E ∧H |H0
0 ) otherwise.

When H0
0 �= Ω, in order to define a possibility Π ′(·|Ω) on B, put for each

atom Cr ∈ CB,

Π ′(Cr|Ω) =

{
1 if Cr ∧H0

0 = ∅,
Π(Cr|H0

0 ) otherwise,

that is trivially seen to be a possibility distribution and so it induces a possibility
on B. The possibility Π ′(·|Ω) defines through axiom (DP3) a full T -conditional
possibility Π ′(·|·) on B extending Π(·|·), since for any E|H ∈ B×H all equalities
and strict inequalities of Π(·|H0

0 ) are preserved by Π ′(·|Ω).

Since a full TDP -conditional possibility is a particular full T -conditional pos-
sibility, it can be “represented” by means of a unique T -nested class P =
{Π0, . . . , Πk} agreeing with it [10].

Remark 1. By referring to the T -nested class of a full TDP -conditional possibil-
ity, note that given Π0(·) = Π(·|Ω), if Π0 takes k distinct values 1 > π1 > π2 >
. . . > πk ≥ 0, then for α = 1, . . . , k, the distribution of Πα is obtained assigning
Πα(Cr) = 0 to all those atoms Cr /∈ Cα and Πα(Cr) = πα →T Πα−1(Cr) to
all the atoms Cr ∈ Cα. Therefore the fact that TDP -conditional possibilities are
particular elements of the class of T -conditional possibilities can be captured
directly through the specificity of the structure of their corresponding T -nested
classes.

In the next proposition we show that every full TDP -conditional possibility on
B can be extended as a full TDP -conditional possibility on every finite Boolean
superalgebra B′ ⊇ B.
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Proposition 3. Let T be a continuous t-norm, B a finite Boolean algebra and
B′ ⊇ B a finite Boolean superalgebra. If Π : B × B0 → [0, 1] is a full TDP -
conditional possibility, then there exists a full TDP -conditional possibility Π ′ :
B′ × B′0 → [0, 1] such that Π ′

|B×B0 = Π.

Proof. Any Cr ∈ CB belongs to B′, moreover, for any C′
s ∈ CB′ there exists

a unique Cr ∈ CB such that C′
s ⊆ Cr. For any C′

s ∈ CB′ define Π ′(C′
s|Ω) =

Π(Cr|Ω). Π ′(·|Ω) determines through maxitivity a possibility on B′ which ex-
tends Π(·|Ω) and generates a full TDP -conditional possibility on B′ (through
(DP3)) extending Π(·|·).

All definitions of conditioning given so far deeply rely on a specific algebraic
structure of the domain of the function Π , thus in order to remove any restriction
on the domain we go back to the concept of coherence, originally introduced by
de Finetti for (finitely additive) probabilities [14].

Definition 3. Let T be a continuous t-norm. Given a set G = {Ei|Hi}i=1,...,n

of conditional events, an assessment Π : G → [0, 1] is a coherent T -conditional
[TDP -conditional] possibility if and only if there exits a full T -conditional [TDP -
conditional] possibility Π ′ on B = 〈{Ei, Hi}i=1,...,n〉, extending Π.

Proposition 1 implies that any coherent TDP -conditional possibility is a coherent
T -conditional possibility. Obviously the converse is not true, as the following
example shows:

Example 1. Let us consider G = {H,E|H} with E ∧ H �= ∅ and the relevant
assessment Π(H) = 0, Π(E|H) = γ. It is easy to see that, for any continuous t-
norm T the function Π is a coherent T -conditional possibility for every γ ∈ [0, 1],
but is a TDP -conditional possibility only for γ = 1.

In [10] the coherence of a T -conditional possibility assessment Π on a finite G
has been characterized also in terms of a proper sequence of compatible systems
SΠ
0 , . . . ,SΠ

k , whose solutions are the possibility distributions related to a T -
nested class of possibilities P = {Π0, . . . , Πk}.

We prove a characterization theorem for coherent TDP -conditional possibility.

Theorem 1. Let T be a continuous t-norm and G = {Ei|Hi}i=1,...,n. For a
function Π : G → [0, 1], the following statements are equivalent:

(a) Π is a coherent TDP -conditional possibility on G;
(b) for any Ei|Hi ∈ G such that Ei ∧ Hi = ∅, it is Π(Ei|Hi) = 0, and the

following system with unknowns xr ≥ 0 for Cr ∈ C0 = C〈{Ei,Hi}i=1,...,n〉, is
compatible

SDP
T =

⎧⎨⎩
max
Cr⊆Hi

xr →T max
Cr⊆Ei∧Hi

xr = Π(Ei|Hi) if Ei ∧Hi �= ∅

max
Cr∈C0

xr = 1.
(3)



Independence in Possibility Theory under Different Triangular Norms 139

Proof. The assessment Π is a coherent TDP -conditional possibility if and only
if there exists a full TDP -conditional possibility Π ′ on B = 〈{Ei, Hi}i=1,...,n〉
extending it. For the functionΠ ′, it must holdΠ ′(Ei|Hi) = 0 whenever Ei∧Hi =
∅, moreover the restriction of Π ′(·|Ω) to CB (which determines the whole Π ′

through axiom (DP3)) must satisfy all the constraints in system SDP
T , and so it

is a solution.

3 Possibilistic Independence under Different T -Norms

We extend to coherent T -conditional [TDP -conditional] possibilities a notion of
possibilistic independence (introduced in [9,19] for the minimum and strict t-
norms) able to avoid pathological situations whenever logical constraints are
involved. In what follows, E∗ stands either for E or Ec.

We first briefly recall the concept of significant layer for a coherentT -conditional
possibility assessment.

Definition 4. Let Π be a coherent T -conditional [TDP -conditional] possibility
on an arbitrary finite set of conditional events G, and P be a T -nested class
agreeing with Π. Then, for every event E ∈ B0, the significant layer of E
(denoted as ◦(E)) related to P is defined as the minimum index α such that
Πα(E) = 1. Moreover, define ◦(∅) = +∞. For every E|H ∈ B × B0 the signifi-
cant layer ◦(E|H) of E|H related to P, is defined as the (non-negative) number
◦(E|H) = ◦(E ∧H)− ◦(H).

Now we are able to introduce a definition of independence.

Definition 5. Let T be a continuous t-norm, G a set of conditional events con-
taining D = {A∗|B∗, B∗|A∗}. Given a coherent T -conditional [TDP -conditional]
possibility Π on G, A is independent of B under Π, in symbol A ⊥⊥ B[Π ], if both
the following conditions hold:

(i) Π(A|B) = Π(A|Bc) and Π(Ac|B) = Π(Ac|Bc);
(ii) there exists a T -nested class PD = {Πα}tα=0 agreeing with Π|D such that

◦ (A|B) = ◦(A|Bc) and ◦ (Ac|B) = ◦(Ac|Bc). (4)

Remark 2. The notion of independence given in [9] for strict t-norms relies on
zero layers instead of significant layers, nevertheless it is possible to prove that
the relevant characterizations remain the same by using significant layers.

The next theorem shows the connection between the logical independence and
possibilistic independence (according to Definition 5), and this holds for any
T -nested class.

Theorem 2. For any continuous t-norm T and for any coherent T -conditional
[TDP -conditional] possibility Π on G ⊇ D, if A ⊥⊥ B[Π ], then A and B are
logically independent.
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Proof. The proof is direct and is based on the fact that if two events A∗ and B∗

are incompatible then ◦(A∗|B∗) = +∞.

Since condition (ii) depends on the choice of the T -nested class PD agreeing with
Π|D (which is generally non-unique), for coherent T -conditional possibility, the
next theorem proves that the validity of condition (ii) is invariant with respect
to the choice of the T -nested class.

Theorem 3. Let A and B be two logically independent events, and let Π be
a coherent TDP -conditional possibility (with T any continuous t-norm), defined
on G containing D = {A∗|B∗, B∗|A∗} such that condition (i) of Definition 5
holds. If there exists a T -nested class agreeing with Π|D such that equation (4)
is satisfied, then equation (4) holds for any T -nested class agreeing with Π|D.

Proof. A sketch of the proof is done here for lack of space, a detailed version is
available in [5].

Consider the atoms generated by A,B, i.e., C1 = A ∧ B, C2 = A ∧ Bc,
C3 = Ac ∧ B and C4 = Ac ∧ Bc. We refer to the characterization of coherence
in terms of a sequence of systems SΠ

0 , . . . ,SΠ
k given in [10]. In particular, for

α = 0, putting x0
r = Π0(Cr), r = 1, . . . , 4, it must be

SΠ
0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0
1 = T (Π(A|B),max{x0

1, x
0
3})

x0
1 = T (Π(B|A),max{x0

1, x
0
2})

x0
2 = T (Π(A|Bc),max{x0

2, x
0
4})

x0
2 = T (Π(Bc|A),max{x0

1, x
0
2})

x0
3 = T (Π(Ac|B),max{x0

1, x
0
3})

x0
3 = T (Π(B|Ac),max{x0

3, x
0
4})

x0
4 = T (Π(Ac|Bc),max{x0

2, x
0
4})

x0
4 = T (Π(Bc|Ac),max{x0

3, x
0
4})

max{x0
1, x

0
2, x

0
3, x

0
4} = 1

x0
r ≥ 0 r = 1, . . . , 4.

(C1). If Π(A|B) = Π(Ac|B) = 1, then ◦(A∗|B∗) = 0 under any T -nested
class.

(C2). If Π(A|B) = 0 we can have the following subcases.
(C2.1). If Π(B|Ac) = 0, then x0

1 = x0
2 = x0

3 = 0 and x0
4 = 1, thus next system

is

SΠ
1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1
1 = T (0,max{x1

1, x
1
3})

x1
1 = T (Π(B|A),max{x1

1, x
1
2})

x1
2 = T (Π(Bc|A),max{x1

1, x
1
2})

x1
3 = T (1,max{x1

1, x
1
3})

max{x1
1, x

1
2, x

1
3} = 1

x1
r ≥ 0 r = 1, . . . , 3.

(C2.1.1). If Π(B|A) < 1, then different cases can occur and all T -nested
classes are such that (4) holds.
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(C2.1.2). If Π(B|A) = 1, then x1
1 = 0, x1

2 = 0 and x1
3 = 1, and the next

system is

SΠ
2 =

⎧⎪⎪⎨⎪⎪⎩
x2
1 = T (1,max{x2

1, x
2
2})

x2
2 = T (Π(Bc|A),max{x2

1, x
2
2})

max{x2
1, x

2
2} = 1

x2
r ≥ 0 r = 1, 2,

for which the unique solution is x2
1 = 1 and x2

2 = Π(Bc|A). Thus condition (4)
never holds, since ◦(A|Bc) = ◦(C2)− 0 = ◦(C2) ≥ 2 > ◦(A|B) = 2− 1 = 1.

(C2.2) When Π(B|Ac) ∈ (0, 1), the proof follows analogously to the case
(C2.1), so (4) holds only if Π(B|A) < 1.

(C2.3). If Π(B|Ac) = Π(Bc|Ac) = 1, then the unique solution of SΠ
0 is

x0
1 = x0

2 = 0, x0
3 = x0

4 = 1, thus condition (4) holds if and only if Π(B|A) =
Π(Bc|A) = 1.

(C2.4). The case Π(Bc|Ac) < 1 is as (C2.1), (C2.2), i.e., (4) holds if and only
if Π(Bc|A) < 1.

(C3). If Π(A|B) = α ∈ (0, 1) we can have the following subcases.
(C3.1). If Π(B|Ac) = 0, then the system SΠ

0 has solution if and only if either
Π(B|A) = 0 or Π(B|A) = β ∈ (0, 1) with β a zero divisor of α. If Π(B|A) = 0,
condition (4) holds under any T -nested class. Otherwise (0 < Π(B|A) < 1), a
contradiction arises in one of the following systems.

(C3.2). If 0 < Π(B|Ac) < α, then 0 < Π(B|A) < α and condition (4) holds
as ◦(A|B) = 3 − 2 = 1 = 1 − 0 = ◦(A|Bc) and ◦(Ac|B) = 2 − 2 = 0 = 0 − 0 =
◦(Ac|Bc).

(C3.3). If Π(B|Ac) = α ∈ (0, 1), then α ≤ Π(B|A) and α ≤ Π(Bc|A). In
particular, if α ≤ Π(B|A) < 1, then any T -nested class verifies (4). If α ≤
Π(Bc|A) < 1, then no T -nested class verifies (4). If Π(B|A) = Π(Bc|A) = 1,
then no T -nested class verifies (4).

(C3.4). If Π(B|Ac) = Π(Bc|Ac) = 1, then condition (4) holds if and only if
Π(B|A) = Π(Bc|A) = 1.

(C3.5). The case Π(Bc|Ac) = 0 is symmetric to Π(B|Ac) = 0 (C3.1). While
the case Π(Bc|Ac) = β ∈ (0, α) [Π(Bc|Ac) = α ∈ (0, 1)] is symmetric to
Π(B|Ac) = β ∈ (0, α) (C3.2) [Π(B|Ac) = α ∈ (0, 1) (C3.3)].

All the remaining cases are obtained by symmetry from (C2) and (C3) by
exchanging A and Ac.

Notice that, since TDP -conditional possibilities are particular T -conditional pos-
sibilities, previous theorem establishes also the invariance of condition (ii) of
Definition 5 for coherent TDP -conditional possibilities.

Next Theorem 4 characterizes independence of two events in terms of the
values of Π(B∗|A∗), giving up any direct reference to significant layers, in the
case of coherent T -conditional possibility with T any continuous t-norm.

Theorem 4. Let T be any continuous t-norm, and A and B two logically in-
dependent events. If a coherent T -conditional possibility is such that Π(A|B) =
Π(A|Bc) and Π(Ac|B) = Π(Ac|Bc), then A ⊥⊥ B[Π ] if and only if one (and
only one) of the following conditions holds:
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(a) Π(A|B) = Π(Ac|B) = 1;
(b) min{Π(A|B), Π(Ac|B)} = 0 and the extension of Π on {B∗|A∗} must sat-

isfy one of the following conditions whenever the values are coherent

• Π(B|A) < 1, Π(B|Ac) < 1;
• Π(Bc|A) < 1, Π(Bc|Ac) < 1;
• Π(B∗|A∗) = 1;

(c) Π(A|B) = α ∈ (0, 1) and the extension of Π on {B∗|A∗} must satisfy one
of the following conditions whenever the values are coherent

• Π(B|A∗) = 0 or Π(Bc|A∗) = 0;
• 0 < Π(B|A∗) < α or 0 < Π(Bc|A∗) < α;
• Π(B|Ac) = α and α ≤ Π(B|A) < 1 or Π(Bc|Ac) = α and α ≤

Π(Bc|A) < 1;
• Π(B∗|A∗) = 1;

(d) Π(Ac|B) = α ∈ (0, 1) and the extension of Π on {B∗|A∗} must satisfy one
of the following conditions whenever the values are coherent

• Π(B|A∗) = 0 or Π(Bc|A∗) = 0;
• 0 < Π(B|A∗) < α or 0 < Π(Bc|A∗) < α;
• Π(B|A) = α and α ≤ Π(B|Ac) < 1 or Π(Bc|A) = α and α ≤

Π(Bc|Ac) < 1;
• Π(B∗|A∗) = 1.

Proof. The proof follows directly from the proof of Theorem 3.

Remark 3. From previous theorem it is possible to derive also an analogous
characterization for coherent TDP -conditional possibilities. This can be done
(onceΠ(A|B∗) andΠ(Ac|B∗) are fixed) by taking into account only the coherent
values for Π(B|A∗) and Π(Bc|A∗) with respect to the TDP -conditioning that
satisfy condition (ii) of Definition 5. In this case the significant layers are implied
by Remark 1.

Theorem 4 implies that our definition of independence is stronger than usual
ones, in fact if A ⊥⊥ B[Π ] under a T -conditional possibility (or a TDP -conditional
possibility), then

Π(A) = max{Π(A ∧B), Π(A ∧Bc)} (5)

= max{T (Π(A|B), Π(B)), T (Π(A|Bc), Π(Bc))} = Π(A|B)

and moreover

Π(A ∧B) = T (Π(A|B), Π(B)) = T (Π(A), Π(B)). (6)

The proposed notion of independence is not symmetric, nevertheless, as there are
just few separation criteria able to represent asymmetric independence models,
symmetry is often required. From Theorem 4 we can obtain the corresponding
result related to the symmetric property.
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Corollary 1. Let A and B be two logically independent events. Consider a co-
herent T -conditional [TDP -conditional] (with T any continuous t-norm) pos-
sibility Π on a set G containing D = {A∗|B∗, B∗|A∗}, then A ⊥⊥ B[Π ] and
B ⊥⊥ A[Π ] if and only if Π(A|B) = Π(A|Bc) and Π(Ac|B) = Π(Ac|Bc) and
Π(B|A) = Π(B|Ac) and Π(Bc|A) = Π(Bc|Ac).

4 Conclusions

In every framework devoted to manage uncertainty, conditioning and indepen-
dence are the main concepts for updating information and for reasoning under
hypotheses. For that the concept of conditioning cannot be relegated only to the
role of restriction of the domain of possible events, when an event is occurred,
but it is important to regard the conditioned and conditioning events as entities
of the same kind, having in a certain moment a different role.

This consideration makes preferable to introduce a conditional measure as
a function directly defined on a structured set of conditional events, satisfying
suitable axioms. Such approach implies that, to give a Kolmogorovian-like repre-
sentation, it is necessary to refer not to a single unconditional measure, but rather
to a “structured” class of unconditional measures. The concept of independence
introduced here for T -conditional possibility (which is inspired to the one given
in [6,7] for conditional probability and generalizes the ones given in [9,19] in the
particular cases T = min or is strict) deeply relies on this class representation.
This notion in fact requires not only a classical condition based on T -conditional
possibility values Π(A∗|B∗), but also a reinforcement condition, regarding the
significant layers of a T -nested class agreeing with Π on D = {A∗|B∗, B∗|A∗}.
This last condition aims to guarantee that logical independence among A and B
is a necessary condition for possibilistic independence. Since to handle significant
layers can be non-immediately understandable, we provided a characterization
of independence only using the values of the T -conditional possibility on D. Due
to the generality of continuous t-norms, this characterization needs to take into
account many different situations.

In the paper we consider also T -conditional possibilities obtained through the
minimum specificity principle, introduced by Dubois and Prade, regarded as a
specific class of T -conditional possibilities. For them it is possible to introduce
exactly the same notion of independence, that however has a different charac-
terization in terms of the values of the TDP -conditional possibility on D.

As a future work we plan to deal with an ensuing notion of conditional inde-
pendence for variables and to study the related graphoid properties as already
done for T = min or strict [9,19].
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Abstract. This paper presents algorithms based on integer program-
ming, both for probabilistic satisfiability and coherence checking. That is,
we consider probabilistic assessments for both standard probability mea-
sures (Kolmogorovian setup) and full conditional measures (de Finettian
coherence setup), and in both cases verify satisfiability/coherence using
integer programming. We present empirical evaluation of our method,
with evidence of phase-transitions.

1 Introduction

The analysis of arguments that combine propositions and probabilities has de-
served attention for quite some time. For instance, in Boole’s work [8] we find
interesting examples such as:

The probability that it thunders upon a given day is p, the probability
that it both thunders and hails is q, but of the connexion of the two
phenomena of thunder and hail, nothing further is supposed to be known.
Required the probability that it hails on the proposed day.

Here we have propositions A and B, assessments P(A) = p and P(A ∩ B) = q.
Boole asks for P(B) and obtains the tight interval [q, 1−(p−q)]. The assessments
are coherent: there is a probability measure that satisfies them.

Suppose we have propositional sentences {φi}Mi=1, each containing a subset of
atomic propositions {Aj}nj=1. We may associate one or more of these sentences
with probabilities, writing for instance P(φi) = αi. To establish semantics for
these assessments, we consider a probability measure over the set of truth assign-
ments. The Probabilistic Satisfiability (PSAT) problem is to determine whether
it is possible to find a probability measure over truth assignments such that all
assessments are satisfied [14, 18–20, 23]. When assessments involve conditional
probabilities such as P(φ′

i|φ′′
i ) = αi, there are two paths to follow. The Kol-

mogorovian setup reduces such assessments to ratios of probabilities. The other
path is to use de Finetti’s theory of coherent probabilities, where full conditional
measures are used to interpret conditional assessments [11, 12, 32]. The Coherent
Probability Assessment (CPA) problem is to determine whether it is possible to
find a full conditional measure that satisfies all assessments [3, 4].

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 145–156, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Probabilistic satisfiability and coherence checking are central problems in rea-
soning under uncertainty. They serve as a foundation for logical and probabilis-
tic inference, as a basis for probabilistic rules [30], and as an initial necessary
step in the understanding of combinations of first-order logic and probabilities
[21, 27, 31].

The most direct way to solve a PSAT problem is to write down the problem
as a linear consistency problem [19]. The difficulty is that the resulting linear
program may be too large. One may resort to column generation techniques [25],
or to inference rules that capture probabilistic relationships [3, 16], or even to
combinations of column generation and inference rules [24]. There is also a dif-
ferent approach to probabilistic satisfiability that tackles it by transformation
into logical satisfiability [15].

In this paper we present another approach to Probabilistic Satisfiability, where
the original problem is written as an integer linear program of size that is poly-
nomial on the size of the original problem. The algorithm is extremely simple to
state; our implementation shows that it is quite efficient compared to alterna-
tives. Using our implementation we have studied the issue of phase transitions.
We report these experiments in this paper.

Section 2 summarizes necessary background. Our basic algorithm is described
in Section 3. Implementation and experiments, with a discussion of phase transi-
tions, are presented in Section 4. Conditional probabilities are handled in Section
5, and inference problems are discussed in Section 6.

2 SAT and PSAT

Consider n atomic propositions Aj and M sentences φi in propositional logic.
If a truth assignment ω is such that sentence φ is True, write ω |= φ. The
Satisfiability (SAT) problem is to determine whether or not there exists a truth
assignment to all variables such that all sentences evaluate to True [10, 17]. If
every sentence φi is a conjunction of clauses, then we have a SAT problem in
Conjunctive Normal Form (CNF). A SAT problem in CNF is a k-SAT problem
when each clause has k literals. The 2-SAT problem has a polynomial solution,
while k-SAT is NP-complete for k > 2.

For a fixed n, m and k, one may generate a random k-SAT with n propo-
sitions and a single sentence in CNF with m clauses, as follows. For each one
of the m clauses: select k variables at random, and for each variable produce a
literal that may be negated or not, with probability half. There has been intense
study of phase transition phenomena in random k-SAT; that is, study of the
observed fact that for small values of m/n the probability that a random k-SAT
is satisfiable tends to one as n grows (at fixed m/n), while for large values of
m/n the probability that a random k-SAT is satisfiable tends to zero as n grows.
Moreover, in the regions where satisfiability has probability approaching zero or
one we observe that generated random k-SAT problems can be easily solved,
while in the transition between the two regions we find hard problems.

Suppose that some sentences, say φ1 to φq, for q ≤ M , are associated with
probabilities through assessments of the form P(φi) �� αi, where �� is one of ≥,
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=, ≤. The semantics of such an assessment is as follows. Take the set of 2n truth
assignments that can be generated for the n propositions. A probability measure
P over this set satisfies the assessments if, for each assessment P(φi) �� αi,∑

ω|=φi

P(ω) �� αi. (1)

The Probabilistic Satisfiability (PSAT) problem is to determine whether a given
set of sentences and probabilistic assessments can be satisfied. That is, to deter-
mine whether there is a probability measure over those truth assignments that
satisfy sentences not associated with probabilities, such that all assessments are
satisfied by this probability measure. The k-PSAT problem is a PSAT problem
where each sentence is in CNF and where each clause has k literals. The k-
PSAT is NP-complete for all values of k > 1; note that even for k = 2 we obtain
NP-completeness [23]. A few polynomial special cases of PSAT are known [2].

There are many algorithms for PSAT. The most obvious one is to write down
M constraints of the form (1), one for each sentence; some will be actually
associated with assignments P(φi) �� αi, while others will encode “pure” logical
sentences as P(φi) = 1. Each constraint can be written as

2n∑
j=1

Iφi(ωj)P(ωj) �� αi, where Iφi(ωj) =

{
1 if ωj |= φi

0 otherwise,
(2)

while truth assignments ωj are ordered from 1 to 2n (say by the n-bit binary
number obtained by writing 0 for False and 1 for True as assigned to A1, . . . , An).
Add to these M linear constraints the necessary constraints

∑
ω P(ω) = 1 and

P(ω) ≥ 0 for all ω. Probabilistic Satisfiability is then obtained when the resulting
set of linear constraints has a solution. The challenge is that we have 2n truth
assignments, so the size of the linear constraints is exponential in the input.

The most efficient algorithms for PSAT combine linear programming tech-
niques and inference rules to simplify the problem [24]. These algorithms use
the fact that a PSAT problem is satisfiable if and only if there is a probability
measure that assigns positive probability mass to (M + 1) truth assignments;
all other truth assignments get zero probability mass [18]. Hence we can write
down a (M +1)× (M +1) matrix C and write the PSAT problem as feasibility
of Cp ������ ααα, where ααα denotes a vector of values αi and ������ refers to ≥, = or ≤ as
appropriate. Each column of C corresponds to a truth assignment; the challenge
is to select (M + 1) truth assignments. This is done through column generation
techniques from linear programming [5]. Initially a set of (M + 1) columns is
selected, and then pivoting operations exchange columns until the problem is
determined to be satisfiable or not. At each pivoting operation, a column is re-
moved from C, and the choice of the column to enter C happens through an
auxiliary optimization problem (there are several possible formulations for this
auxiliary problem) [23, 24]. Performance improvements are obtained if column
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generation is preceded by application of inference rules.1 This combination has
produced the best results so far, being able to solve PSAT problems with up to
200 propositions and 800 clauses, each one of them a clause associated with a
probability.

An entirely different approach to PSAT has been developed by Finger and De
Bona [15]; here the selection of columns of C is reduced to a SAT problem. All
operations with linear constraints are encoded into SAT by careful analysis of
numerical precision, and a SAT solver is used to solve the PSAT problem.

The resultingmethods are fairly sophisticated and require numerical care.More-
over, the extension of such methods to conditional probabilities in de Finetti’s co-
herency framework is difficult, and existing methods require sequences of linear
programs (Section 5). In this paper we propose a novel approach that addresses
these concerns.

A PSAT is in Normal Form if a single sentence φ is given, and each proba-
bilistic assessment is an equality associated with a single proposition (that is,
every probabilistic assessment is of the form P(Ai) = αi) [15]. Even though this
form may seem restrictive, every PSAT can be brought to it with polynomial
effort: basically, for each assessment P(φi) �� αi, introduce if necessary fresh
propositions to transform the assessment into P(φ′

i) = αi; then introduce a new
proposition A′

i and exchange the original assessment by a sentence A′
i ⇔ φ′

i

and an assessment P(A′
i) = αi; finally, generate a single sentence φ that is a

conjunction of all previous sentences. Every k-PSAT for k > 2 can be reduced
to Normal Form with q assessments P(Ai) = αi plus one CNF φ consisting of
clauses with exactly 3 literals each.

3 PSAT through Integer Programming

Assume our PSAT problem is in Normal Form with assessments {P(Aj) =
αj}qj=1 and a sentence φ in CNF with m clauses, each clause with k literals.
So our problem is parameterized by the number of propositions n, the number
of assessments q, the number of clauses m, and the number of literals per clause
k. Such a parameterized Normal Form neatly separates the probabilistic and the
propositional aspects of Probabilistic Satisfiability.

Our problem is: find the (q + 1) columns of C, each one corresponding to a
truth assignment ω such that ω |= φ, in such a way that Cp = ααα.

Hence we have (q + 1)2 optimization variables (elements of C to look for);
all of them are binary with values 0 and 1. As noted previously, Finger and De
Bona reduce the search for these variables to a SAT problem [15]. We instead
find C by solving an integer program.

Consider looking for the jth column of C; denote it by Cj . Such a column
corresponds to a truth assignment that satisfies φ. We explore the well known
connection between SAT and integer programming to find such a truth assign-
ment [10]. Start by generating a vector aj with n binary variables {ai,j}ni=1, all

1 An example of an inference rule [24]: if P(A1) ∈ [α1, α1] and P(¬A1 ∨A2) ∈ [α1, α2]
for α1 + α2 ≥ 1, then P(A2) ∈ [max(0, α1 + α2 − 1),min(1, α2)].
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1: procedure PSAT-IP(propositions {Aj}nj=1, assessments {P(Ai) = αi}qi=1, sen-
tence φ in CNF with m clauses)

2: � Variables ai,j are binary; variables bi,j and pj are real-valued in [0, 1].

3: for j ∈ {1, . . . , q + 1} and each clause (∨k′
l′=1Ail′ ) ∨ (∨k′′

l′′=1¬Ail′′ ) of φ do

4: Generate linear constraint (
∑k′

l′=1 ail′ ,j) + (
∑k′′

l′′=1(1− ail′′ ,j)) ≥ 1.

5: for i ∈ {1, . . . , q + 1} do
6: Generate linear constraint

∑q+1
j=1 bi,j = αi.

7: for j ∈ {1, . . . , q + 1} do
8: Generate linear constraints 0 ≤ bi,j ≤ ai,j and ai,j − 1 + pj ≤ bi,j ≤ pj .

9: return Satisfiable if linear constraints have a solution, Unsatisfiable otherwise.

Fig. 1. PSAT solution based on integer linear program

with values 0 and 1. Now take one clause of φ; suppose it is written as

(∨k′
l′=1Ail′ ) ∨ (∨k′′

l′′=1¬Ail′′ ).

For this clause, generate the linear inequality:⎛⎝ k′∑
l′=1

ail′ ,j

⎞⎠+

⎛⎝ k′′∑
l′′=1

(1− ail′′ ,j)

⎞⎠ ≥ 1. (3)

Consider the m inequalities generated this way (one per clause). A vector aj
that satisfies these m inequalities yields a truth assignment for φ by assigning
True to Ai when ai,j is one, and assigning False to Ai when ai,j is zero. Note
that the elements of Cj are exactly a1,j to aq,j .

We generate the whole matrix C by generating (q+1) sets of variables aj and
their related inequalities. We now have inequalities for all elements of C, and we
need to solve Cp = ααα. To do so, note that each row of C represents an equality
as follows:

q+1∑
j=1

ai,jpj = αi, (4)

where pj denotes the jth element of p. The challenge is to reduce the bilinear
term ai,jpj to linear constraints. We do that by introducing a new fresh variable
bi,j and the constraints:

0 ≤ bi,j ≤ ai,j and ai,j − 1 + pj ≤ bi,j ≤ pj . (5)

Note that if ai,j = 0, then bi,j = 0; and if ai,j = 1, then bi,j = pj.
The whole algorithm is presented in Figure 1; it basically collects constraints

from Expressions (3), (4), and (5). The algorithm produces an integer linear pro-
gram that has a solution if and only if the original PSAT problem is satisfiable.

4 Implementation, Experiments, and Phase Transition

We have coded our PSAT method using the Java language with calls to CPLEX
version 12, and run experiments in iMac computers with 4GBytes of memory.
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The algorithm is very compact, using only 45 lines of code (basically a direct
translation of the algorithm in Figure 1 into CPLEX calls).

We focused on two values of k, namely, 2 and 3. We investigated k = 2 because
2-SAT is polynomial and 2-PSAT is NP-complete, a property not shared by any
other k-PSAT. And we investigated k = 3 because any PSAT problem can be
polynomially reduced to a 3-PSAT problem; in fact, Finger and De Bona pay
attention to 3-PSAT for this reason [15].

Additionally, we were particularly interested in investigating phase transition
phenomena. Until the work of Baioletti et al. [4], and Finger and De Bona [15],
there was no evidence of phase transition in the literature. Consequently it makes
more sense at this stage to examine the behavior of PSAT for various values of
n, m and q, rather than to randomly try out large problems that may in the end
be easy.

Figure 2 summarizes a number of experiments for k = 2. In all of them, PSAT
problems were randomly generated from parameters n, m, q and k: m clauses
with k literals each were randomly generated by selecting propositions randomly
out of the n propositions; each literal was negated or not with probability 1/2;
finally, the first q propositions were associated with probabilities randomly se-
lected in the interval [0, 1]. Each point in each graph conveys mean values for 50
different random PSAT problems. We set a time limit of 10 minutes per problem;
some of the more difficult problems did not finish within this time limit.

The left graphs in Figure 2 show typical behavior for random 2-PSAT: the
darker line indicates the percentage of satisfiable problems, and the lighter line
indicates mean time spent in their solution (mean of 50 distinct random PSAT
problems). The top graph deals with 2-PSAT problems with 1000 variables and
up to 1500 clauses; these are rather large problems and the phase transition
phenomenon is clear (note that we are using larger values of q than in the
previous investigation by Finger and De Bona [15]). The lower graph conveys
the same information, but now for n = 100. The main point to note is that the
phase transition seems to occur for much smaller m/n. Indeed the presence of
probabilities seems to create relationships between n, q and m in ways that are
not observed in 2-SAT (where the phase transition occurs for m/n = 1). An
interesting display of this phenomenon can be found in the right graph, where
one can see that the phase transition is affected by q.

Similar results are displayed in Figure 3. In the left graph we see typical phase
transition behavior, now centered around m/n ≈ 3.5. The reason we show this
particular graph (with n = 40, q = 4) is that the same experiment is reported
by Finger and De Bona [15]; their reported times are about 10 times larger than
ours. The right graph shows the change in the location of phase transition as q
varies, similarly to what happens with 2-PSAT.

To give a better feel of the times involved in solving PSAT problems with our
method, Table 1 summarizes a large variety of tests; each entry is the mean of 50
distinct PSAT problems. Note that it is not correct to expect that the larger the
problem, the more time it takes; due to phase transition, some large problems
may be easy, while some apparently small problems may be hard.
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Fig. 2. Experiments with 2-PSAT

5 Checking Coherence of Conditional Assessments
through Integer Programming

Suppose that conditional assessments P(φ′
i|φ′′

i ) = αi must be processed. In the
standard, Kolmogorovian style, probability theory, this assessment means that
P(φ′

i ∧ φ′′
i )/P(φ

′′
i ) = αi if P(φ

′′
i ) > 0. This holds if and only if

P(φ′
i ∧ φ′′

i )− αiP(φ
′′
i ) = 0. (6)

The only change from “unconditional” PSAT is that each element of the matrix
C is now a linear expression. Indeed, if we only take conditional assessments
of the form P(A′

i|A′′
i ) = αi, then the element Ci,j is given by the nonlinear

expression a′i,ja
′′
i,j−αia

′′
i,j , where a

′
i,j and a′′i,j are binary variables corresponding

to propositions A′
i,j and A′′

i,j respectively. To handle this, the only change in our
previous algorithm is that the constraints in its line 6 must be replaced by∑q+1

j=1

(
b′i,j − αib

′′
i,j

)
= 0, and constraints in line 8 must be replaced by

0 ≤ b′i,j ≤ a′i,j , 0 ≤ b′i,j ≤ a′′i,j , a′i,j + a′′i,j − 2 + pj ≤ b′i,j ≤ pj,

0 ≤ b′′i,j ≤ a′′i,j , a′′i,j − 1 + pj ≤ b′′i,j ≤ pj .

This Kolmogorovian setup requires some care when interpreting conditional
assessments. Suppose first that A′′

i has probability zero in every probability
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Fig. 3. Experiments with 3-PSAT

Table 1. Experiments with 2-PSAT and 3-PSAT

n q m

2-PSAT,
mean time
(sec.)

3-PSAT,
mean time
(sec.)

500 25 500 2.5441801 1.8612529
500 25 750 0.1588879 1.8934227
500 25 1000 0.1802416 12.0530050
500 50 500 18.271062 16.1097538
500 50 750 0.3348024 48.0028159
500 50 1000 0.9317918 177.037949
750 25 500 8.9984422 4.6699495
750 25 750 7.6501204 5.5394115
750 25 1000 0.2109049 3.6071930
750 50 500 0.3424100 19.9149997

n q m

2-PSAT,
mean time
(sec.)

3-PSAT,
mean time
(sec.)

750 50 750 0.4221426 23.5807273
750 50 1000 1.0847125 30.1025869
1000 25 500 2.4382244 2.1816687
1000 25 750 1.5742295 2.2077639
1000 25 1000 0.5740323 3.1606671
1000 25 1500 0.3041526 3.0211587
1000 25 2000 0.5616025 28.1456910
1000 50 500 3.5237384 16.2340889
1000 50 750 1.0613374 15.0277582
1000 50 1000 0.4471337 17.4252168

measure that satisfies all assessments. In this case we may take P(A′
i|A′′

i ) = αi

to be a misguided assignment to a quantity that should really be left undefined.
However suppose that some satisfying probability measures assign zero prob-
ability to A′′

i , while others do not. The most reasonable interpretation of this
situation is that only those probability measures that assign positive probability
to A′′

i should be retained; the others do not satisfy the fact that P(A′
i|A′′

i ) has
been actually assessed.

An entirely different view of conditional probability can be found in de Finetti’s
theory of coherence. Here conditional probability is not a derived concept, but
rather the primary object of interest. Assessments can be given on arbitrary
events, and coherence of assessments is equated to existence of a full conditional
measure that satisfies the assessments. The selection of a particular conditional
measure imposes considerable structure on events, while de Finetti’s approach
assumes little algebraic structure on the assessments [7, 11]. A full conditional
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measure P : B × (B\∅) → &, where B is a Boolean algebra over a set Ω, is a
two-place set-function such that for every nonempty event C [13]:

• P(C|C) = 1 and P(A|C) ≥ 0 for all A;
• P(A ∪B|C) = P(A|C) + P(B|C) when A ∩B = ∅;
• P(A ∩B|C) = P(A|B∩C)P(B|C) when B ∩ C �= ∅.

Note that conditioning is defined for every nonempty event; whenever the con-
ditioning event is Ω, we suppress it and write the “unconditional” probability
P(A). There are other names for full conditional measures in the literature, such
as conditional probability measures [26]; and complete conditional probability sys-
tems [29]. Full conditional measures have been applied in economics [22, 29],
philosophy [1, 28], artificial intelligence [9].

So, suppose we have the same propositions and assessments as before, and
events are interpreted as sets of truth assignments. We say the assessments are
coherent if there is a full conditional measure that satisfies them [11, 12]. Note
that a set of assessments may be coherent even if P(B) = 0 and P(A|B) = α > 0;
a probability measure that assigns probability zero to a conditioning event need
not be discarded.

There are algorithms for coherency checking that basically work by dividing
the space of truth assignments into “layers”: the first layer contains the truth as-
signments with positive unconditional probability; the second layer contains the
truth assignments with positive conditional probability given the complement
of the first layer, and so on [9, 11]. For each layer an appropriately specified
PSAT problem is solved, and the collection of PSAT problems yields the desired
coherency check. Alternative algorithms employ local rules that mimic logical
inference [3, 4]. To the extent that these methods solve linear programs in inter-
mediate steps, and these linear programs are of size exponential in the input, the
reductions to integer programming that we have explored before can be used.

To illustrate the last comment, consider the formulation of coherence checking
that is due to Walley et al. [32]. They consider that assessments are of the form
P(A′

i|A′′
i ) ≥ αi, and show that existence of a satisfying full conditional measure

is equivalent to:

sup
ω|=Sλ

(
q∑

i=1

λiGi(ω)

)
≥ 0 whenever ∀i : λi ≥ 0 and ∃i : λi > 0,

where Gi(ω) = IA′′
i
(ω)(IA′

i
(ω)− αi), Sλ = ∨i:λi>0A

′′
i and IA(ω) is the indicator

function defined in Expression (2): 1 if ω |= A and 0 otherwise.
Walley et al. offer the following algorithm to check coherence, where a sequence

of linear programs with more than 2n constraints each is generated. First, set
I = {1, . . . , q}. Solve the linear program in Expression (7) below. If τi = 1 for
all i ∈ I, then coherence fails (problem is Unsatisfiable). Otherwise, replace I
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by {i ∈ I : τi = 1}. If I becomes empty, then coherence holds (problem is
Satisfiable); otherwise solve linear problem in Expression (7) again, and so on.

max
∑
i∈I

τi (7)

s.t.: ∀ω :
∑
i∈I

λiGi(ω) +
∑
i∈I

τiIA′′
i
(ω) ≤ 0; ∀λi : λi ≥ 0; ∀i ∈ I : τi ∈ [0, 1].

Note that at each step we have the dual of a linear program with 2n optimization
variables; one can therefore write a compact integer linear program at each step,
using the techniques described in previous sections.

6 Inference

In this section we offer a few brief comments on the inference problem: given
a satisfiable or coherent set of assessment, find all possible values for P(ϕ), the
probability of an additional sentence ϕ, such that all assessments together are
still satisfiable/coherent.

In the Kolmogorovian setup that is usually adopted for PSAT, both minP(ϕ)
and maxP(ϕ) can be obtained by adding appropriate linear objective functions
to our methods. If additionally one wants tight bounds on a conditional proba-
bility P(ϕ′|ϕ′′), then linear fractional programming [5] can be used in the Kol-
mogorovian setup to transform minP(ϕ′ ∧ ϕ′′)/P(ϕ′′) into a linear objective
function (and similarly for maxP(ϕ′ ∧ ϕ′′)/P(ϕ′′)).

The inference problem is considerably more complex in de Finetti’s frame-
work. Walley et al. [32, Algorithm 5] present solutions for such a situation that
rely on sequences of linear programs. The discussion in Section 5 applies to
that case. Here the verification of coherence is a preliminary step, because only
coherent assessments are allowed to be used in inference [6].

7 Conclusion

In this paper we have introduced an approach to probabilistic satisfiability and
coherence checking that translates these problems into integer linear program-
ming. Our algorithms have the advantage of simplicity when compared to al-
ternative approaches. Because we can rely on existing highly optimized linear
programming solvers, we do not worry about numerical stability; likewise, our
algorithms can inherit any gains from parallelization and heuristics applied to
integer linear programming.

Experiments indicate that our algorithms are quite effective for random PSAT
problems. Moreover, we have presented an analysis of phase transition in PSAT
that improves previous results in the literature. Of course more testing is neces-
sary to fully understand the properties of probabilistic satisfiability and coher-
ence checking.



Probabilistic Satisfiability and Coherence Checking 155

Acknowledgements. Both authors received support by CNPq. We thank the
reviewers for very useful suggestions, in particular for pointing us to Ref. [3]
and [4].

References

1. Adams, E.W.: A Primer of Probability Logic. CSLI Publications, Stanford (2002)
2. Andersen, K.A., Pretolani, D.: Easy cases of probabilistic satisfiability. Annals of

Mathematics and Artificial Intelligence 33(1), 69–91 (2001)
3. Baioletti, M., Capotorti, A., Tulipani, S., Vantaggi, B.: Simplification rules for the

coherent probability assessment problem. Annals of Mathematics and Artificial
Intelligence 35(1-4), 11–28 (2002)

4. Baioletti, M., Capotorti, A., Tulipani, S.: An empirical complexity study for a
2CPA solver. In: Bouchon-Meunier, Coletti, G., Yager, R.R. (eds.) Modern Infor-
mation Processing: From Theory to Applications, pp. 73–84 (2005)

5. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Sci-
entific, Belmont (1997)

6. Biazzo, V., Gilio, A.: A generalization of the fundamental theorem of de Finetti
for imprecise conditional probability assessments. International Journal of Approx-
imate Reasoning 24, 251–272 (2000)

7. Biazzo, V., Gilio, A., Lukasiewicz, T., Sanfilippo, G.: Probabilistic logic under
coherence: Complexity and algorithms. Annals of Mathematics and Artificial In-
telligence 45(1-2), 35–81 (2005)

8. Boole, G.: The Laws of Thought. Dover edition (1958)
9. Capotorti, A., Galli, L., Vantaggi, B.: How to use locally strong coherence in an

inferential process based on upper-lower probabilities. Soft. Computing 7(5), 280–
287 (2003)

10. Chandru, V., Hooker, J.: Optimization Methods for Logical Inference. John Wiley
& Sons Inc. (1999)

11. Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Trends in
logic, vol. 15. Kluwer, Dordrecht (2002)

12. de Finetti, B.: Theory of Probability, vol. 1-2. Wiley, New York (1974)
13. Dubins, L.E.: Finitely additive conditional probability, conglomerability and dis-

integrations. Annals of Statistics 3(1), 89–99 (1975)
14. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities.

Information and Computation 87, 78–128 (1990)
15. Finger, M., De Bona, G.: Probabilistic satisfiability: Logic-based algorithms and

phase transition. In: IJCAI, pp. 528–533 (2011)
16. Frisch, A.M., Haddawy, P.: Anytime deduction for probabilistic logic. Artificial

Intelligence 69, 93–122 (1994)
17. Gent, I.P., Walsh, T.: The SAT phase transition. In: European Conference on

Artificial Intelligence, pp. 105–109 (1994)
18. Georgakopoulos, G., Kavvadias, D., Papadimitriou, C.H.: Probabilistic satisfiabil-

ity. Journal of Complexity 4, 1–11 (1988)
19. Hailperin, T.: Best possible inequalities for the probability of a logical function of

events. American Mathematical Monthly 72, 343–359 (1965)
20. Hailperin, T.: Boole’s Logic and Probability: a Critical Exposition from the Stand-

point of Contemporary Algebra, Logic, and Probability Theory. North-Holland,
Amsterdam (1976)



156 F.G. Cozman and L.F. di Ianni

21. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)
22. Hammond, P.J.: Elementary non-Archimedean representations of probability for

decision theory and games. In: Humphreys, P. (ed.) Patrick Suppes: Scientific
Philosopher, vol. 1, pp. 25–59. Kluwer, Dordrecht (1994)

23. Hansen, P., Jaumard, B.: Probabilistic Satisfiability. Technical Report G-96-31,
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Abstract Coherent lower previsions constitute a convex set that is closed and
compact under the topology of point-wise convergence, and Maaß [2] has shown
that any coherent lower prevision can be written as a ‘countably additive convex
combination’ of the extreme points of this set. We show that when the possibility
space has a finite number n of elements, these extreme points are either degenerate
precise probabilities, or in a one-to-one correspondence with the (Minkowski)
indecomposable compact convex subsets of Rn−1.

Keywords: Extreme lower previsions, extreme credal sets, fully imprecise lower
previsions, fully imprecise credal sets, Minkowski decomposition.

1 Introduction

In his Ph.D. dissertation, Maaß [2] proved a general, Choquet-like representation re-
sult for what he called inequality preserving functionals. When we apply his results to
coherent lower previsions, which have an important part in the theory of imprecise prob-
abilities, we find that the set of all coherent lower previsions defined on a subset of the
linear space of all bounded real-valued maps (gambles) on a possibility space X con-
stitute a convex set, that is furthermore closed and compact under the topology of point-
wise convergence, and that any coherent lower prevision can be written as a ‘countably
additive convex combination’ of the extreme points of this set.

It became apparent quite soon, however, that finding these extreme coherent lower
previsions was a non-trivial task. Contributions to solving this problem were made by
Quaeghebeur [5], who essentially concentrated on coherent lower previsions defined
on finite domains. In this paper, we look at the extreme points of the set of all coherent
lower previsions defined on the space of all real-valued maps on a finite set X , contain-
ing n elements. We begin by defining (extreme) coherent lower previsions in Section 2.
In Section 3, we recall that coherent lower previsions are in a one-to-one relationship
with compact convex sets of probability mass functions, which allows us, in Sections 4
and 5, to establish a link between extreme coherent lower previsions on the one hand,
and (Minkowski) indecomposable compact convex subsets of Rn−1 on the other.

This link allows us to reduce the problem of finding all extreme coherent lower
previsions to a problem that has received quite a bit of attention in the mathematical
literature, and to use existing solutions for that problem. We give a short discussion of
what can and could be learned from this connection in Section 6, and go on to discuss
a number of avenues for further research and possible applications.

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 157–168, 2013.
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2 Coherent Lower Previsions

Consider a variable X taking values in some non-empty set X , called possibility space.
We will restrict ourselves to finite possibility spaces X = {x1, . . . ,xn}, with n∈N>1.1,2

The theory of coherent lower previsions models a subject’s beliefs regarding the uncer-
tain value of X by means of lower and upper previsions of so-called gambles. A gamble
is a real-valued map on X and we use G (X ) to denote the set of all of them. A lower
prevision P is a real-valued functional defined on this set G (X ). P is said to be coherent
if it satisfies the following three conditions: for all f ,g ∈ G (X ) and all real λ > 0

C1. P( f )≥min f
C2. P(λ f ) = λ P( f ) [non-negative homogeneity]
C3. P( f + g)≥ P( f )+P(g) [super-additivity]

The set of all coherent lower previsions on G (X ) is denoted by P(X ). The conjugate
of a lower prevision P ∈ P(X ) is called an upper prevision. It is denoted by P and
defined by P( f ) :=−P(− f ) for all gambles f ∈ G (X ). Coherent lower and upper pre-
visions can be given a behavioural interpretation in terms of buying and selling prices,
turning the three conditions above into criteria for rational behaviour; see Ref. [9] for
an in-depth study, and Ref. [4] for a recent survey.

2.1 Extreme Lower Previsions

Coherence is preserved under taking convex combinations [9, Section 2.6.4]. Consider
two coherent lower previsions P1 and P2 in P(X ) and any λ ∈ [0,1]. Then the lower
prevision P = λ P1 + (1− λ )P2, defined by P( f ) := λ P1( f ) + (1− λ )P2( f ) for all
f ∈ G (X ), will also be coherent. One can now wonder whether every coherent lower
prevision can be written as such a convex combination of others: given a coherent lower
prevision P∈ P(X ), is it possible to find coherent lower previsions P1 and P2 in P(X )
and λ ∈ [0,1] such that P = λ P1+(1−λ )P2? If we exclude the trivial decompositions,
where λ = 0, λ = 1 or P1 =P2 =P, then the answer can be no. We will refer to those co-
herent lower previsions for which no non-trivial decomposition exists as extreme lower
previsions. The goal of this paper is to characterise, and where possible to find, the set
extP(X ) of all extreme lower previsions on G (X ).

2.2 Special Kinds of Coherent Lower Previsions

In order to find these extreme lower previsions, it will be useful to split the set P(X )
into three disjoint subsets: linear previsions, lower previsions that are fully imprecise
and lower previsions that are partially imprecise.

1 N denotes the positive integers (excluding zero) and R the real numbers. Subsets are denoted
by using predicates as subscripts; e.g., N≤n :={i ∈ N : i≤ n}= {1, . . . ,n} denotes the positive
integers up to n and R>0 :={r ∈ R : r > 0} the strictly positive real numbers.

2 We do not consider n = 1 because this case is both trivial and of no practical use. Indeed, a
variable that can only assume a single value has no uncertainty associated with it.
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A coherent lower prevision P ∈ P(X ) is called a linear prevision if it has the addi-
tional property that P( f + g) = P( f )+P(g) for all f ,g ∈ G (X ). It is then generically
denoted by P and we use P(X ) to denote the set of all of them. It can be shown that
for every mass function p in the so-called X -simplex

ΣX :=
{

p ∈ RX :
n

∑
i=1

p(xi) = 1 and p(xi)≥ 0 for all i ∈ N≤n

}
, (1)

the corresponding expectation operator Pp, defined by Pp( f ) :=∑n
i=1 f (xi)p(xi) for all

f ∈ G (X ), is a linear prevision in P(X ). Conversely, every linear prevision P∈ P(X )
has a unique mass function p ∈ ΣX for which P = Pp. It is defined by p(xi) :=P(I{xi}),
i ∈ N≤n, where I{xi} denotes the indicator of {xi}: for all x ∈X , I{xi}(x) = 1 if x = xi

and I{xi}(x) = 0 otherwise.
Another special kind of coherent lower previsions are those that are fully imprecise.

They are uniquely characterised by the property that P(I{xi}) = 0 for all i ∈ N≤n. As
we shall see further on, we can interpret P(I{xi}) as the lower probability of xi, thereby
making fully imprecise lower previsions those for which the lower probability of all
elements in the possibility space is zero. We will use P(X ) to denote the set of all
such fully imprecise lower previsions. The reason why we call them fully imprecise is
because they differ most from the precise, linear previsions. This distinction is already
apparent from the following Proposition, but will become even clearer in Section 5.1,
where we prove that every coherent lower prevision that is neither linear nor fully im-
precise can be uniquely decomposed into a linear and a fully imprecise part.

Proposition 1. P(X ) and P(X ) are disjoint subsets of P(X ): linear previsions are
never fully imprecise.

We refer to coherent lower previsions in P(X ) that are neither fully imprecise nor
linear previsions as partially imprecise, and we denote by P˜(X ) the set of all partially
imprecise lower previsions. The next corollary is a direct consequence of Proposition 1.

Corollary 1. P(X ), P(X ) and P˜(X ) constitute a partition of P(X ).

3 Credal Sets

Linear previsions are not the only coherent lower previsions that can be characterised
by means of mass functions in ΣX . It is well known [9, Section 3.6] that every coherent
lower prevision can be uniquely characterised by a so-called credal set, which is a
closed (and therefore compact3) convex subset of ΣX . We denote a generic credal set by
M and use M(X ) to denote the set of all of them. For any P∈P(X ), its corresponding
credal set MP is the set of all mass functions that define a dominating linear prevision:

MP :=
{

p ∈M : Pp( f ) ≥ P( f ) for all f ∈ G (X )
}
. (2)

3 Since we only consider finite possibility spaces X , we can use the Euclidean topology instead
of the weak*-topology that is usually adopted for credal sets.
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The original lower prevision P and its conjugate upper prevision P can be derived from
the credal set MP: for all f ∈ G (X )

P( f ) = min{Pp( f ) : p ∈MP} and P( f ) = max{Pp( f ) : p ∈MP}. (3)

We can use this equation to justify our earlier statement in Section 2.2 that for all
i ∈ N≤n, we can interpret P(I{xi}) as the lower probability of xi. Indeed, we find that

P(I{xi}) = min{Pp(I{xi}) : p ∈MP}= min{p(xi) : p ∈MP} (4)

is the smallest probability of xi corresponding with the mass functions in MP.
Credal sets are therefore in a one-to-one correspondence with coherent lower previ-

sions, allowing us to think of a coherent lower prevision as a closed and convex set of
mass functions instead of as an operator on gambles. This geometric approach will be
useful in our search for extreme lower previsions, since it will enable us to establish
links with results already proved in fields other than coherent lower prevision theory.

3.1 Extreme Credal Sets

Similarly to what we have done in Section 2.1 for coherent lower previsions, we can
also take convex combinations of credal sets. Consider two credal sets M1 and M2 in
M(X ) and any λ ∈ [0,1]. Then the set M :=λM1 +(1−λ )M2, given by

M := {λ p1 +(1−λ )p2 : p1 ∈M1 and p2 ∈M2}, (5)

will again be a credal set in M(X ). Due to the equivalence between credal sets and
coherent lower previsions, the following proposition should not cause any surprise.

Proposition 2. Consider coherent lower previsions P, P1 and P2 in P(X ) and their
corresponding credal sets MP, MP1

and MP2
in M(X ). Then for all λ ∈ [0,1]:

P = λ P1 +(1−λ )P2 ⇔MP = λMP1 +(1−λ )MP2 . (6)

We now define an extreme credal set as a credal set M ∈M(X ) that cannot be written
as a convex combination of two other credal sets M1 and M2 other than in a trivial way,
trivial meaning that λ = 0, λ = 1 or M1 =M2 =M . We will denote the set of all such
extreme credal sets as extM(X ). The following immediate corollary of Proposition 2
shows that they are in a one-to-one correspondence with extreme lower previsions.

Corollary 2. A coherent lower prevision is extreme iff its credal set is. For all P∈ P(X ):

P ∈ extP(X )⇔MP ∈ extM(X ). (7)

3.2 Special Kinds of Credal Sets

Because of the one-to-one correspondence between coherent lower previsions and credal
sets, the special subsets of P(X ) that were introduced in Section 2.2 immediately lead
to corresponding subsets of M(X ). The set

M(X ) :={MP : P ∈ P(X )}= {{p} : p ∈ ΣX } (8)

of credal sets that correspond to linear previsions in P(X ) is the easiest one.
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Another subset of M(X ), which will become very important further on, contains
those credal sets that correspond to fully imprecise coherent lower previsions:

M(X ):={MP : P ∈ P(X )} (9)

={M ∈M(X ) : min{p(xi) : p ∈M }= 0 for all i ∈N≤n}, (10)

where the second equality is a consequence of Eq. (4) and the definition of fully impre-
cise lower previsions. It should also clarify our statement in Section 2.2 that for fully
imprecise lower previsions the lower probability of all elements of the possibility space
is zero. We refer to elements of M(X ) as fully imprecise credal sets.

The final subset of M(X ) that we need to consider contains the partially imprecise
credal sets, corresponding to partially imprecise lower previsions in P˜(X ):

M˜ (X ) :={MP : P ∈ P˜(X )}=M(X )\ {M(X )∪M(X )}. (11)

Finally, the following result is a direct consequence of Corollary 1.

Corollary 3. M(X ), M(X ) and M˜ (X ) constitute a partition of M(X ).

3.3 Projected Credal Sets

Mass functions on the possibility space X = {x1, . . . ,xn} are uniquely characterised by
the probability of the first n−1 elements because the final probability follows from the
requirement that ∑n

i=1 p(xi) = 1. This leads us to identify a mass function p on X with
a point vp in Rn−1, defined by (vp)i := p(xi) for all i ∈ N<n. Similarly, a credal set M
can be identified with a subset of Rn−1 by letting

KM :={vp : p ∈M }. (12)

We call KM the projected credal set of M . We will use KP as a shorthand notation for
KMP and call it the projected credal set of P. For all M ∈M(X ), KM is a closed and
convex subset of the so-called projected X -simplex

KX =

{
v ∈ Rn−1 :

n−1

∑
i=1

vi ≤ 1 and vi ≥ 0 for all i ∈N<n

}
, (13)

which is a compact, closed and convex subset of Rn−1. The set of all closed (and there-
fore compact) convex subsets of KX is denoted by K(X ). To show that both repre-
sentations are indeed equivalent, let us define for every point v ∈ KX a corresponding
mass function pv on X , defined by pv(xi) :=vi for all i∈N<n and pv(xn) :=1−∑n−1

i=1 vi.
It should be clear that vpv = v and pvp = p, whence the equivalence. Similarly, we can
define for all K ∈KX a corresponding credal set

MK :={pv : v ∈ K}. (14)

Again, we have that KMK = K and MKM
= M . Finally, the following intuitive result

shows that projecting credal sets on KX preserves convex combinations.

Proposition 3. Consider credal sets M , M1 and M2 in M(X ) and their correspond-
ing projected credal sets KM , KM1 and KM2 in K(X ). Then for all λ ∈ [0,1]:

M = λM1 +(1−λ )M2⇔ KM = λ KM1 +(1−λ )KM2. (15)
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3.4 Special Kinds of Projected Credal Sets

Due the equivalence between credal sets and their projected versions, we can use the
partition of M(X ) in Corollary 3 to construct a similar partition of K(X ). The first
set in that partition corresponds to the credal sets of linear previsions and is equal to

K(X ) :={KM : M ∈M(X )}= {K ∈K(X ) : K = {v}, with v ∈KX }. (16)

The second set consists of the projections of the credal sets in M(X ):

K(X ):={KM : M ∈M(X )} (17)

=

{
K ∈K(X ) : min

v∈K
vi = 0 for all i ∈ N<n and max

v∈K

n−1

∑
i=1

vi = 1

}
. (18)

The final set contains the projected credal sets of partially imprecise lower previsions:

K˜ (X ) :={KM : M ∈M˜ (X )} =K(X )\ {K(X )∪K(X )}. (19)

4 Minkowski Decomposition

Given two compact convex subsets A1 and A2 of Rn−1, their Minkowski sum or vector
sum is given by A1 +A2 :={a1 +a2 : a1 ∈ A1 and a2 ∈ A2}. They are called homothetic
if A1 = v+λ A2 := {v+λ a2 : a2 ∈ A2} for some λ > 0 and v ∈ Rn−1. If A = A1 +A2,
with A, A1 and A2 compact convex subsets of Rn−1, then A1 and A2 are called summands
of A. We say that A is written as a Minkowski sum in a non-trivial way, if neither of
its summands is homothetic to A or a singleton. If such a non-trivial decomposition
exists, we say that A is Minkowski decomposable. Otherwise, A is called Minkowski
indecomposable. Sections 6.2 and 6.3 point to relevant literature, where, incidentally,
the prefix “Minkowski” is not always used. We add it in the present paper to avoid
confusion with the decomposition of credal sets and lower previsions.

4.1 Connecting Both Theories

One of the main contributions of this paper will be to show how the extensive literature
on Minkowski decomposition of convex sets can be related to the search for extreme
lower previsions in imprecise probability theory. The results in this section take the first
step towards doing so, and will turn out to be crucial for our main theorem further on.

We start by associating with any compact set A⊆Rn−1 a point m(A)∈Rn−1 , defined
by mi(A) :=min{vi : v ∈ A} for all i ∈ N<n and a real number μ(A), given by

μ(A) :=max

{n−1

∑
i=1

vi : v ∈ A

}
−

n−1

∑
i=1

mi(A). (20)

Both m(A) and μ(A) are well-defined due to the compactness of A. If A is not a single-
ton, then it is easy to see that μ(A)> 0 and we can define

A :=
1

μ(A)
(
A−m(A)

)
=

{
1

μ(A)
(v−m(A)) : v ∈ A

}
. (21)
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Proposition 4. For any compact convex subset A of Rn−1 that is not a singleton, the
corresponding set A is an element of K(X ).

Proposition 5. A compact convex subset A of Rn−1 that is not a singleton is Minkowski
decomposable iff the corresponding set A is Minkowski decomposable.

The following result shows how the transformation that we have just introduced can be
usefully exploited to reformulate the property of Minkowski decomposability.

Theorem 1. A compact convex subset A of Rn−1 that is not a singleton is Minkowski
decomposable iff its corresponding set A can be written as a non-trivial convex com-
bination λ K1 +(1−λ )K2, with K1 and K2 both elements of K(X ), K1 �= K2 and
0 < λ < 1.

5 Characterising Extreme Lower Previsions

We now have all the tools needed to characterise the set extP(X ) of all extreme lower
previsions on G (X ), or equivalently, the set extM(X ) of all extreme credal sets. We
will show that partially imprecise lower previsions are never extreme as they can be
split up in a linear and a fully imprecise part. The only extreme linear previsions are
the degenerate ones, and the extreme fully imprecise models will turn out to be closely
related to the Minkowski indecomposable convex compact sets of Section 4.

5.1 Partially Imprecise Lower Previsions

We claimed earlier on in Section 2.2 that every partially imprecise lower prevision can
be uniquely decomposed in a linear and a fully imprecise part. To see why this is true,
first consider the following proposition, which is the counterpart of that statement in the
language of credal sets. The desired property is then a direct consequence of this result.

Proposition 6. Any partially imprecise credal set M ∈M˜ (X ) can be uniquely written
as a convex combination λM1+(1−λ )M2 of a credal set M1 ∈M(X ) that contains
only a single mass function p1 ∈ ΣX and a fully imprecise credal set M2 ∈M(X ).
Moreover, 0 < λ :=∑n

i=1 min{p(xi) : p ∈M }< 1, the mass function p1 that charac-
terises M1 is given by p1(xi) =

1
λ min{p(xi) : p ∈M } for all i ∈ N≤n, and

M2 =

{
1

1−λ
p− λ

1−λ
p1 : p ∈M

}
. (22)

Corollary 4. Any partially imprecise lower prevision P ∈ P˜(X ) can be uniquely writ-
ten as a convex combination λ P1 +(1−λ )P2 of a linear prevision P1 ∈ P(X ) and a
fully imprecise lower prevision P2 ∈ P(X ). Moreover, 0 < λ :=∑n

i=1 P(I{xi})< 1 and

P1( f ) =
1
λ

n

∑
i=1

f (xi)P(I{xi}) and P2( f ) =
1

1−λ
P( f )− λ

1−λ
P1( f ) for all f ∈ G (X ).

(23)
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The fact that partially imprecise models can be decomposed in this way has some im-
mediate important consequences for extreme credal sets and lower previsions.

Corollary 5. Extreme credal sets and lower previsions are never partially imprecise:

M ∈M˜ (X )⇒M /∈ extM(X ) and P ∈ P˜(X )⇒ P /∈ extP(X ). (24)

In our search for extreme lower previsions, we therefore only need to look at the subsets
of the linear previsions and of the fully imprecise lower previsions.

5.2 Linear Previsions

A special class of linear previsions are those that correspond to degenerate mass func-
tions. For every i ∈ N≤n, the corresponding degenerate mass function p◦i ∈ ΣX has
all its probability mass in xi and is therefore defined by p◦i := I{xi}. They satisfy the
following important property.

Proposition 7. A credal set M ∈M(X ) containing only a single mass function is ex-
treme iff that single mass function is degenerate. Furthermore, any other mass function
can be written as a convex combination of those degenerate ones.

The linear previsions that correspond to such a degenerate mass function are called
degenerate linear previsions. For every i ∈ N≤n, we have a corresponding degenerate
linear prevision P◦i , defined for all f ∈ G (X ) by P◦i ( f ) := f (xi). As a direct conse-
quence of Proposition 7, we find that these degenerate linear previsions are the only
linear previsions that are extreme.

Corollary 6. A linear prevision P ∈ P(X ) is extreme iff it is degenerate. Furthermore,
any other linear prevision can be written as a convex combination of degenerate ones.

For coherent lower previsions that are defined on a finite domain K ⊂ G (X ), a result
that combines Corollary 5 and 6 was already mentioned in Ref. [5, Proposition 1].

5.3 Fully Imprecise Lower Previsions

So far, we have shown that partially imprecise models are never extreme and that the
extreme linear models are those that are degenerate. The only models that are thus left to
investigate are those that are fully imprecise. We start with a property of decompositions
of fully imprecise credal sets.

Proposition 8. If a fully imprecise credal set M ∈M(X ) can be written as a non-
trivial convex combination λM1+(1−λ )M2, with M1,M2 ∈M(X ), M1 �= M2 and
0 < λ < 1, then M1 and M2 are both fully imprecise and therefore elements of M(X ).

In the language of coherent lower previsions, this turns into the following corollary.

Corollary 7. If a fully imprecise coherent lower prevision P ∈ P(X ) can be written as
a non-trivial convex combination λ P1 +(1−λ )P2, with P1,P2 ∈ P(X ), P1 �= P2 and
0 < λ < 1, then P1 and P2 are both fully imprecise and therefore elements of P(X ).
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Combined with Proposition 3 and Theorem 1, Proposition 8 leads to a crucial result.

Theorem 2. A fully imprecise credal set M ∈M(X ) can be written as a non-trivial
convex combination λM1 +(1−λ )M2, with M1,M2 ∈M(X ), M1 �= M2 and 0 <
λ < 1 iff its projected credal set KM is Minkowski decomposable.

When stated in terms of coherent lower previsions, this result looks as follows.

Corollary 8. A fully imprecise coherent lower prevision P ∈ P(X ) can be written as
a non-trivial convex combination λ P1 +(1−λ )P2, with P1,P2 ∈ P(X ), P1 �= P2 and
0 < λ < 1 iff its projected credal set KP is Minkowski decomposable.

The importance of these two results is that they provide us with an easy characterisation
of the extreme models that are fully imprecise.

Corollary 9. A fully imprecise credal set M ∈M(X ) is extreme iff its projected credal
set KM is Minkowski indecomposable. Equivalently, a fully imprecise lower prevision
P ∈ P(X ) is extreme iff its projected credal set KP is Minkowski indecomposable.

These alternative characterisations of fully imprecise extreme credal sets and lower pre-
visions will allow us to import known results from the literature on Minkowski decom-
posability, using them to find the sets extM(X ) and extP(X ), containing all extreme
credal sets and lower previsions respectively.

To conclude this section, we want to mention a very special fully imprecise credal
set. It contains every single mass function in ΣX and will be denoted as MV :=ΣX . It is
used to model complete ignorance and is called the vacuous credal set. The correspond-
ing (fully imprecise) lower prevision PV is referred to as the vacuous lower prevision
and is given, for all f ∈ G (X ), by PV ( f ) = min f .

Proposition 9. The vacuous credal set is extreme: MV ∈ extM(X ).

Corollary 10. The vacuous lower prevision is extreme: PV ∈ extP(X ).

6 Finding All Extreme Lower Previsions

The size of extM(X ) and extP(X ) and the complexity of their elements, turns out to
depend heavily on the number of elements in the possibility space X = {x1, . . . ,xn}.
We consider three distinct cases: n = 2, n = 3 and n > 3. We focus on constructing
extM(X ), since extP(X ) can be derived from it by applying Corollary 2.

6.1 Possibility Spaces with Two States

For n = 2, constructing extM(X ) is almost trivial. Nevertheless, it serves as a good
didactic exercise to get to know the basic tools in this paper.

It follows from the results in Section 5 that in our search for the extreme credal sets,
we do not need to consider the partially imprecise ones. It suffices to look at the precise
and the fully imprecise credal sets. We know from Proposition 7 that of all the precise
credal sets (those consisting of only a single mass function) the only extreme ones are
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those that correspond to a degenerate mass function. In the current binary case, with
X = {x1,x2}, this yields the extreme credal sets M ◦

1 := {p◦1} and M ◦
2 := {p◦2}. All

other extreme credal sets will be fully imprecise. We know from Proposition 9 that MV

is one of those fully imprecise extreme credal sets, but finding the other ones would
normally require the use of Corollary 9. However, in this simple binary case, MV is
the only fully imprecise credal set (we leave the simple proof of this statement as an
exercise for the reader) and we can therefore conclude that for binary possibility spaces:

extM(X ) = {M ◦
1 ,M

◦
2 ,MV}. (25)

By applying Corollary 2, we obtain the corresponding result for lower previsions:

extP(X ) = {P◦1 ,P◦2 ,PV }. (26)

6.2 Possibility Spaces with Three States

For n = 3, finding extM(X ) becomes a bit more involved. As always, the partially
imprecise credal sets are never extreme and the only precise extreme credal sets are
the degenerate ones. Finding the fully imprecise credal sets that are extreme is however
more difficult then it was in the binary case. Here, the vacuous credal set MV will not
be the only fully imprecise extreme credal set. In order to find the others, we rely on
Corollary 9, using it to import the following result by Silverman into our framework.

Theorem 3 ([8, Theorem 4]). A compact convex subset of R2 is Minkowski indecom-
posable if and only if it is a triangle or a line segment.

This theorem is highly non-trivial since it holds for general compact convex subsets
of R2 and not only for convex polygons. It allows us to derive the next result, which
concludes our search for the extreme credal sets of ternary possibility spaces.

Corollary 11. For possibility spaces X = {x1,x2,x3} containing only three elements,
a fully imprecise credal set M ∈M(X ) is extreme if and only if it is the convex closure
of three probability mass functions: we can find p1, p2, p3 ∈ ΣX such that

M =

{ 3

∑
i=1

λi pi : (λ1,λ2,λ3) ∈ ΣX

}
. (27)

Figure 1 should provide this result with some intuition. It presents an example of a fully
imprecise credal set with four vertices and its decomposition into two extreme ones with
three vertices. We depict the credal sets using the well-known simplex representation [9,
Section 4.2.3].

In order to obtain the extreme lower previsions of a ternary possibility space, all we
need to do now is apply Corollary 2. We find that apart from the three degenerate linear
previsions P◦1 , P◦2 and P◦3 , all other extreme lower previsions are characterised by the
following translation of Corollary 11.

Corollary 12. For possibility spaces X = {x1,x2,x3} containing only three elements,
a fully imprecise lower prevision P ∈M(X ) is extreme if and only if it is the lower
envelope of three linear previsions: one can find P1,P2,P3 ∈ P(X ) such that

P( f ) = min
i∈N≤3

Pi( f ) for all f ∈ G (X ). (28)
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= 3
8 + 5

8

Fig. 1. Decomposition of a fully imprecise credal set into two extreme ones

6.3 General Possibility Spaces

Due to the page limit constraint, we are not able to discuss the case n > 3 in full detail.
In contrast to the cases n = 2 and n = 3, we will not construct the set of all extreme
credal sets. It should however be clear that all extreme credal sets will again be fully
imprecise, except for the degenerate precise ones. We restrict ourselves to stating some
relevant results from the theory of Minkowski decomposability. Their implications for
extreme credal sets (and thus also extreme lower previsions) are fairly intuitive, but we
defer any more formal result to future work.

We know from Corollary 9 that fully imprecise extreme credal sets correspond to
Minkowski indecomposable compact and convex subsets of Rn−1. For n = 3, we were
dealing with Minkowski indecomposability in the plane, which is completely deter-
mined by Theorem 3. In higher dimensions, Minkowski indecomposability is not yet
fully resolved in the literature.

Most known results deal only with polytopes. Grünbaum [1, Chapter 15] provides
a good summary, explaining (amongst other interesting results) why every simplicial
polytope is indecomposable and every simple polytope, with the exception of a simplex,
is decomposable. Meyer [3, Theorem 3] provides two rather complicated algebraic con-
ditions, which are both necessary and sufficient for a polytope to be indecomposable.

For non-polytopes, the most important reference seems to be Ref. [7], in which Sallee
shows that a wide class of compact convex sets is decomposable, the only condition
being that they have on their boundary a sufficiently smooth neighbourhood. However,
unlike in the case of R2, in higher dimensions Minkowski indecomposable compact
convex sets need not be polytopes.

7 Conclusions

We have shown that when X has a finite number n of elements, then the extreme coher-
ent lower previsions on G (X ) are either degenerate linear previsions or fully imprecise
and in a one-to-one correspondence with (Minkowski) indecomposable compact con-
vex subsets of Rn−1. Using this connection, we have constructed the set of all extreme
lower previsions for the cases n = 2 and n = 3 and suggested what these sets might look
like for n > 3. For the case n = 3, we have found that a fully imprecise coherent lower
prevision is extreme if and only if it is the lower envelope of three linear previsions.

A first and rather obvious avenue of future research would be to use the results men-
tioned in Section 6.3 to try and construct extM(X ) and extP(X ) if n > 3, or to at least
get a better idea of what kind of elements they contain. Consider for example the case
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n = 4. Can one find non-degenerate extreme lower previsions that are not the lower en-
velope of four linear ones? And are fully imprecise lower previsions that are the lower
envelope of four linear previsions always extreme? We intend to answer these questions
in an extended journal version of this paper.

It would also be interesting to compare our results with those in Ref. [5], which con-
centrated on coherent lower previsions defined on finite domains, and Ref. [6], which
investigated the even more particular case of extreme lower probabilities. We conjec-
ture that our results subsume (at least some of) those obtained in Refs. [5] and [6], but a
detailed study is beyond the scope of this conference paper. Ref. [6] also looked at the
extreme points of sets formed by all lower probabilities that satisfy certain properties,
such as k-monotonicity and permutation invariance. We suspect that our results can be
adapted to conduct a similar study for extreme coherent lower previsions as well.

Finally, we would like to see to what extent extreme lower previsions can be used
to tackle practical problems. One idea would be to adapt the existing algorithms for
Minkowski decomposition to decompose coherent lower previsions into convex com-
binations of extreme ones. Such decompositions can then be used to approximate co-
herent lower previsions in such a way as to satisfy certain properties or to develop a
generalisation of the so-called random set product from the theory of belief functions.

Acknowledgements. Jasper De Bock is a Ph.D. Fellow of the Fund for Scientific Re-
search – Flanders (FWO) and wishes to acknowledge its financial support. The authors
also wish to thank three anonymous referees for their helpful comments.
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Abstract. This paper studies the structure of qualitative capacities, that is, mono-
tonic set-functions, when they range on a finite totally ordered scale equipped
with an order-reversing map. These set-functions correspond to general represen-
tations of uncertainty, as well as importance levels of groups of criteria in multi-
criteria decision-making. More specifically, we investigate the question whether
these qualitative set-functions can be viewed as classes of simpler set-functions,
typically possibility measures, paralleling the situation of quantitative capacities
with respect to imprecise probability theory. We show that any capacity is char-
acterized by a non-empty class of possibility measures having the structure of
an upper semi-lattice. The lower bounds of this class are enough to reconstruct
the capacity, and their number is characteristic of its complexity. We introduce a
sequence of axioms generalizing the maxitivity property of possibility measures,
and related to the number of possibility measures needed for this reconstruction.
In the Boolean case, capacities are closely related to non-regular multi-source
modal logics and their neighborhood semantics can be described in terms of qual-
itative Moebius transforms.

1 Introduction

A fuzzy measure (or a capacity) is a set-function that is monotonic under inclusion. If
its range is a finite totally ordered scale, the capacity is said to be qualitative. Then, the
connection with probability measures is lost as well, and a number of notions, mean-
ingful in the quantitative setting, are lost, like the Möebius transform, the conjugate,
nor can any qualitative capacity be viewed as encoding a family of probability distribu-
tions. Yet it seems that qualitative counterparts of many such quantitative notions can
be defined if we replace probability measures by possibility measures. For instance the
process of generation of belief functions, introduced by Dempster [6], was applied to
possibility measures by Dubois and Prade [11,12] so as to define upper and lower pos-
sibilities and necessities. It was noticed that upper possibilities and lower necessities
are still possibility and necessity measures respectively, but upper necessities and lower
possibilities are not. This study was pursued by Tsiporkova and De Baets [21] in a more
general setting. More recently in [18], it was shown that qualitative capacities can be
viewed as counterparts of belief functions, using the possibilistic counterpart of a ba-
sic probability assignment. In [5] it was proved that the upper envelope of the possible
extensions of a probability is a possibility measure.

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 169–180, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A natural question is then whether a qualitative capacity can be viewed as a family
of possibility measures as in Walley’s theory of imprecise probability [22]. A recent
paper [7] addressed this issue, taking up a pioneering work by Banon [2]. It is shown
that in the case of qualitative information, special subsets of possibility measures play
a role similar to convex sets of probability measures. This should not come as a sur-
prise. Indeed, it has been shown that possibility measures can be refined by probability
measures using a lexicographic refinement of the basic axiom of possibility measures,
and that capacities on a finite set can be refined by belief functions [9,10]. The aim
of this paper is to show that the maxitivity and minitivity axiom of possibility theory
can be generalized to define families of qualitative capacities of increasing complexity.
This property enables qualitative capacities to be seen as necessity modalities in a non-
regular class of modal logics, extending the links between possibility theory and modal
logic.

2 Capacities as Imprecise Possibilities and Necessities

Consider a finite set S and a finite totally ordered scale L with top 1 and bottom 0. A
capacity (or fuzzy measure) is a mapping γ : 2S → L such that γ(∅) = 0; γ(S) = 1;
and if A ⊆ B then γ(A) ≤ γ(B). A special case of capacity is a possibility measure.
In possibility theory, the available information is represented by means of a possibility
distribution. This is a function, usually denoted π, from the universe of discourse S to
the scale L. The function π is supposed to rank-order potential values of (some aspect
of) the state of the world - according to their plausibility. The value π(s) is understood as
the possibility that s be the actual state of the world. Precise information corresponds to
the situation where ∃s∗, π(s∗) = 1, and ∀s �= s∗, π(s) = 0, while complete ignorance
is represented by the vacuous possibility distribution π? such that ∀s ∈ S, π?(s) = 1.
The possibility measure is defined by Π(A) = maxs∈A π(s).

A possibility distribution π is said to be more specific than another possibility dis-
tribution ρ if ∀s ∈ S, π(s) ≤ ρ(s). Denote by γc the conjugate of γ, defined as
γc(A) = ν(γ(Ac)), ∀A ⊆ S, where Ac is the complement of set A, and ν the order-
reversing map on L. The conjugate of a possibility measure is called a necessity mea-
sure. The conjugate necessity measure is then of the form N(A) = ν(maxs�∈A π(s)) =
mins�∈A N(S \ {s}).

It is well-known that in the numerical setting some capacities g can be equiva-
lently represented by a convex set of probabilities of the form P(g) = {P, P (A) ≥
g(A), ∀A ⊆ S}. For instance, g can be a convex capacity (g(A∪B) ≥ g(A) + g(B)−
g(A∩B)) or a belief function. Then it holds that g(A) = min{P (A) : P ∈ P(g)}. This
is one example of a coherent lower probability in the sense of Walley [22] (exact capac-
ity after Schmeidler [20]). In the qualitative case this construction is impossible. The
natural question is then whether a similar construction may make sense with qualitative
possibility measures replacing probability measures.

2.1 Imprecise Possibility and Necessity

There is always at least one possibility measure that dominates any capacity: the vacu-
ous possibility measure, based on the distribution π? expressing ignorance, since then
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∀A �= ∅ ⊂ S,Π(A) = 1 ≥ γ(A), ∀ capacity γ, and Π(∅) = γ(∅) = 0. Let

R(γ) = {π : Π(A) ≥ γ(A), ∀A ⊆ S}

be the set of possibility distributions whose corresponding set-functions Π dominate γ.
We call R(γ) the possibilistic credal set induced by the capacity γ. In this section we
recall some results on the structure of this set of possibility distributions.

Let σ be a permutation of the n = |S| elements in S. The ith element of the permu-
tation is denoted by sσ(i). Moreover let Si

σ = {sσ(i), . . . , sσ(n)}. Define the possibility
distribution πγ

σ as follows:

∀i = 1 . . . , n, πγ
σ(sσ(i)) = γ(Si

σ) (1)

There are at most n! (number of permutations) such possibility distributions. It can be
checked that the possibility measure Πγ

σ induced by πγ
σ lies in R(γ) and that the n!

such possibility distributions enable γ to be reconstructed (already in [2]):

Proposition 1. For each permutation σ : ∀A ⊆ S,Πγ
σ (A) ≥ γ(A).

Moreover, ∀A ⊆ S, γ(A) = minσ Πγ
σ (A)

As a consequence,

Proposition 2. ∀π ∈ R(γ), π(s) ≥ πγ
σ(s), ∀s ∈ S for some permutation σ of S.

Proof: Just consider a permutation σ induced by π, that is σ(i) ≥ σ(j) ⇐⇒ π(si) ≤
π(sj). For this permutation, Π(Si

σ) = π(si) ≥ γ(Si
σ) = πγ

σ(si), ∀i = 1, . . . , n. �

This result says that the possibility distributions πγ
σ (we call the marginals of γ) include

the least elements of R(γ) in the sense of fuzzy set inclusion, i.e., the most specific
possibility distributions dominating γ. In other terms, R(γ) = {π, ∃σ, π ≥ πγ

σ}. Of
course the maximal element of R(γ) is the vacuous possibility distribution π?. In the
qualitative case, R(γ) is closed under the qualitative counterpart of a convex combi-
nation: if π1, π2 ∈ R(γ), then ∀α, β ∈ L, such that max(α, β) = 1, it holds that
max(min(α, π1), (min(β, π2)) ∈ R(γ). In fact R(γ) is an upper semi-lattice. Not all
the n! possibility distributions πγ

σ are least elements of R(γ). As a trivial example, if
γ = Π , this least element is unique and is precisely π. But other permutations yield
other less specific possibility distributions.

Conversely, for any set T of possibility distributions, the set-function γ(A) =
minπ∈T Π(A) is a capacity. It is easy to see that T ⊆ R(γ) and that if T contains only
possibility distributions that are not comparable with respect to specificity, T forms the
most specific elements of R(γ). Note that the set-function γ(A) = maxπ∈T Π(A) is
not only a capacity, but also a possibility measure with possibility distribution πmax(s)=
maxπ∈T π(s) [13].

We denote byR∗(γ) the set of minimal elements inR(γ). They are by construction
a finite set of possibility distributions none of which is more specific that another. It is
clear that the complexity of a qualitative capacity is clearly measured by the number
of elements in R∗(γ). These findings also show that any capacity can be viewed as a
lower possibility measure:

γ(A) = min{Π(A), π ∈ R∗(γ)}.
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This is similar to the case of a convex capacity g understood as a lower probabil-
ity with respect to a (probabilistic) credal set P(g) [22]. This probability set forms a
convex polyhedron whose vertices are among probability assignments P γ

σ of the form
pγσ(sσ(i)) = g(Si

σ)− g(Si+1
σ ), and P(g) is the convex hull of these probabilities.

Dually, though, we can describe capacities as upper necessities by means of a family
of necessity functions that stem from the lower possibility description of their conju-
gates. Then we can define two sets of possibility functions from γ:

– The setR(γ) of possibility measures that dominate γ;
– The setR(γc) of possibility measures that dominate its conjugate γc.

Clearly, possibility measures that dominate γc are conjugates of necessity measures
dominated by γ. In other words γ is also an upper necessity measure in the sense that

γ(A) = max{N(A), π ∈ R∗(γ
c)}.

We can denote the set of minimal possibility distributions generating maximal necessity
measures dominated by γ by R∗(γ) = R∗(γ

c). One representation of γ (by means
of R∗(γ) or R∗(γ

c)) may be simpler than the other. For instance, if γ is a necessity
measure based on possibility distribution π, then R∗(γ) = {π} while R∗(γ) contains
several possibility distributions including π. Note that Π(A) ≥ N(A) = Πc(A), so
that it looks more natural to reach N from below and Π from above. More generally if
a capacity γ is such that γ(A) ≥ γc(A), ∀A ⊆ S, (γ is an upper capacity) then it is clear
that R∗(γ) is more natural than R∗(γ

c) for representing γ by a family of possibility
measures that dominate it.

2.2 Generalized Minitivity and Maxitivity Axioms

For each capacity γ, there is a least integer n along with n necessity measures such that
γ(A) = maxni=1 Ni(A). We now show that this property can be described by means of
an axiom of the form:

n-adjunction: ∀Ai, i = 1, . . . n+ 1,minn+1
i=1 γ(Ai) ≤ max1≤i<j≤n+1 γ(Ai ∩ Aj)

that generalizes the minitivity axiom of necessity measures. Indeed, When n = 1, this
is the usual adjunction property min(γ(A), γ(B)) ≤ γ(A ∩B). It is then equivalent to
the minitivity axiom of necessity measures: N(A ∩ B) = min(N(A), N(B)) since γ
is inclusion-monotonic: 1-adjunctive capacities are necessity measures. Let us consider
the next step: 2-adjunction.

Proposition 3. min(γ(A), γ(B), γ(C)) ≤ max(γ(A∩B), γ(B ∩C), γ(A∩C)), ∀A,
B,C, if and only if there exist two necessity measures such that ∀A, γ(A)=max(N1(A),
N2(A)).

Proof:
⇐: Suppose γ(A) = max(N1(A), N2(A)). We can assume without loss of general-

ity that N1(A) ≥ N2(A), N1(B) ≥ N2(B), N2(C) ≥ N1(C) with one strict inequal-
ity, for some A,B,C (otherwise γ is a necessity measure) and then

min(γ(A), γ(B), γ(C)) = min(N1(A), N1(B), N2(C))
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follows. Now consider γ(A ∩B). We have

γ(A ∩B) = max(min(N1(A), N1(B)),min(N2(A), N2(B)).

Developing: γ(A ∩B) = min(max(N1(A), N2(A)),max(N1(A), N2(B)),
max(N1(B), N2(A)),max(N1(B), N2(B))).
Now since by construction N1(A) ≥ N2(A), N1(B) ≥ N2(B), it follows that

γ(A ∩B) = min(N1(A),max(N1(A), N2(B)),max(N1(B), N2(A)), N1(B))

= min(N1(A), N1(B)) = min(γ(A), γ(B)) ≥ min(γ(A), γ(B), γ(C))

Hence max(γ(A ∩B), γ(B ∩C), γ(B ∩ C)) ≥ min(γ(A), γ(B), γ(C)).
⇒: To get the converse, suppose that non trivially, γ(A) = max3i=1 Ni(A). Then

one may find distinct sets A,B,C such that

min(γ(A), γ(B), γ(C)) = min(N1(A), N2(B), N3(C)).

It is easy to find an example for whichmin(γ(A), γ(B), γ(C)) > max(γ(A∩B), γ(B∩
C), γ(B ∩ C)). For instance,we can choose the three distinct sets A,B,C such that
γ(A) = N1(A) and γ(A′) = 0, ∀A′ ⊂ A, γ(B) = N2(B) and γ(B′) = 0, ∀B′ ⊂ B,
γ(C) = N3(C) and γ(C′) = 0, ∀C′ ⊂ C. These are the least elements of the family :
{D, γ(D) > 0} that forms a union of three filters exactly (they are the cores of the pos-
sibility distributions inducing necessity functions Ni, i = 1, 2, 3). It is then clear that
A,B,C are not included into one another, so that max(γ(A ∩ B), γ(B ∩ C), γ(A ∩
C)) = 0. Indeed, for instance A ∩ B ⊂ A and A ∩ B ⊂ B (strict inclusion), and
γ(A ∩B) = 0 by construction. The same reasoning holds for B ∩ C,A ∩ C. �

Note that in general, if γ(A) = max(N1(A), N2(A)), there can be a strict inequal-
ity min(γ(A), γ(B), γ(C)) < max(γ(A ∩ B), γ(B ∩ C), γ(B ∩ C)). Indeed it is
enough that γ(C) < γ(A ∩ B). It contrasts with the case of n = 1 that comes down
to γ(A ∩ B) ≥ min(γ(A), γ(B)) and implies γ(A ∩ B) = min(γ(A), γ(B)), due to
monotonicity of γ.

In the general case, it holds that

Proposition 4. ∀Ai, i = 1, . . . n+1,minn+1
i=1 γ(Ai) ≤ maxi�=j γ(Ai ∩Aj) if and only

if there exist n necessity measures such that ∀A, γ(A) = maxnj=1 Nj(A).

Proof
⇐: Suppose ∀A, γ(A) = maxnj=1 Nj(A). As a consequence:

n+1
min
i=1

γ(Ai) =
n+1
min
i=1

n
max
j=1

Nj(Ai) =
n+1
min
i=1

Nji(Ai)

where Nji(Ai) ≥ Nk(Ai), ∀k �= ji, k = 1, . . . n, i = 1, . . . n + 1. It is clear that at
least two among indices ji, i = 1, n+1 are equal, since there are only n distinct values
of j. Suppose they are j1 = 1 = j2 without loss of generality, that is, minn+1

i=1 γ(Ai) =
min(N1(A1), N1(A2),minn+1

i=3 Nji(Ai)).
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Now γ(A1 ∩A2) = maxni=1 Ni(A1 ∩A2) = maxni=1 min(Ni(A1), Ni(A2)). How-
ever by assumption N1(A1) ≥ Nk(A1), k = 2, . . . n and N1(A2) ≥ Nk(A2), k =
2, . . . n, somin(N1(A1), N1(A2)) ≥ min(Nk(A1), Nk(A2)), k = 2, . . . n.As a conse-
quence, γ(A1∩A2) = min(N1(A1), N1(A2)) = min(γ(A1), γ(A2)) ≥ minn+1

i=1 γ(Ai).
⇒: For the converse, the proof is the same as for the case n = 3: suppose that non

trivially, γ(A) = maxn+1
i=1 Ni(A). Then one may find a family of n+ 1 distinct sets Ai

such that γ(Ai) = Ni(Ai), i = 1, . . . , n+ 1 and also choose them such that

n+1
min
i=1

γ(Ai) > max
1≤i<j≤n+1

γ(Ai ∩ Aj).

Indeed, choose the n + 1 distinct sets Ai with γ(Ai) = Ni(Ai) and γ(A) = 0, ∀A ⊂
Ai, i = 1, . . . , n+1. These are the least elements of the family: {D, γ(D) > 0} that is
formed by a union of n+ 1 filters exactly (they are the cores of the possibility distribu-
tions inducing Ni, i = 1, n+ 1). It is then clear that none of the A′

is are included into
one another, so that ∀i < j,Ai ∩ Aj ⊂ Ai and Ai ∩ Aj ⊂ Aj (strict inclusion) hence
γ(Ai ∩ Aj) = 0 by construction; so, max1≤i<j≤n+1 γ(Ai ∩Aj) = 0. �

Note that if a capacity possesses n-adjunction it provides an upper bound on the number
of its focal sets having a given weight. Indeed, if γλ denotes the Boolean capacity ob-
tained as γλ(A) = 1 if γ(A) ≥ λ, and 0 otherwise, then since γ(A) = maxni=1 Ni(A),
it follows that the set of focal sets of γλ is made of the n subsets Ei such that Ni(A) ≥
λ ⇐⇒ Ei ⊆ A.

In fact, if E is a focal set of γ, i.e. E ∈ Fγ , define the necessity measure NE

by ∀A �= S,NE(A) = γ#(E) if E ⊆ A and 0 otherwise. It is clear that γ(A) =
maxE∈Fγ NE(A). This is not the minimal form of course. To get the minimal form
one may consider all chains of nested subsets in Fγ : each such chain i defines a ne-
cessity measure Ni whose nested focal sets form the chain. If a capacity possesses
n-adjunction, it means that there are exactly n chains of focal sets in Fγ .

Note that in the extreme case where the focal sets inFγ are singletons, each necessity
measure NE is also a possibility measure (it is a Dirac measure based on E = {sE}),
hence γ is a possibility measure.

Of course the above results can be adapted, replacing necessity measures by possi-
bility measures, thus weakening the notion of maxitivity. We can consider the following
axiom, dual to n-adjunction:

n-max-dominance: maxn+1
i=1 γ(Ai) ≥ min1≤i<j≤n+1 γ(Ai ∪ Aj)

∀Ai, i = 1, . . . n+ 1, and prove the counterpart to the above proposition:

Proposition 5. maxn+1
i=1 γ(Ai) ≥ mini�=j γ(Ai ∪ Aj) if and only if if there exist n

possibility measures such that γ(A) = minni=1 Πi(A).

Comment: In the numerical setting, the n-superadditivity of a capacity is implied by
but does not imply its (n + 1)-superadditivity. The above concept of n-minitivity (in
fact n-adjunction) seems to play a similar role: we can generalize necessity functions
by steps since n-minitivity implies, but is not implied by (n+ 1)-minitivity.
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2.3 Qualitative Focal Sets, n-Adjunction and k-Maxitivity

The inner (qualitative) Moebius transform of a capacity γ is a mapping γ# : 2S → L
defined by

γ#(E) = γ(E) if γ(E) > max
B�E

γ(B) (2)

and 0 otherwise. In the above definition, due to the monotonicity property, the condition
γ(E) > maxB�E γ(B) can be replaced by maxx∈E γ(E \ {x}). It is easy to check
that

– γ#(∅) = 0; maxA⊆S γ#(A) = 1;
– If A ⊂ B, and γ#(A) > 0, γ#(B) > 0, then γ#(A) < γ#(B).

Let Fγ = {E, γ#(E) > 0} be the family of focal sets associated to γ. The last prop-
erty says that the inner qualitative Moebius transform of γ is strictly monotonic with
inclusion on Fγ . It is clear that the inner qualitative Moebius transform of a possibility
measure coincides with its possibility distribution: Π#(A) = π(s) if A = {s} and
0 otherwise. This property makes it clear that γ# generalizes the notion of possibility
distribution to the power set of S.

The inner (qualitative) Moebius transform contains the minimal information needed
to reconstruct the capacity γ since, by construction [14,9]:

γ(A) = max
E⊆A

γ#(E) (3)

The reader can check that if one of the values γ#(E) is changed, the corresponding
capacity will be different, namely the values γ(A) such that γ(A) = γ#(E). In a pre-
vious paper [7], it was shown that the qualitative Moebius transform is instrumental in
finding the most specific possibility distributions dominating γ, via a selection process
picking an element in each focal set.

The similarity between capacities and belief functions [19] is striking on the above
equation: max replaces the sum in the expression of a belief function, and γ# plays the
role of the mass assignment, which is the Moebius transform of the belief function [15].
The subsets E in Fγ receive positive support and play the same role as the focal sets in
Dempster-Shafer’s theory: they are the primitive items of knowledge.

A capacity is said to be k-maxitive if and only if its focal sets have at most k el-
ements. This notion was introduced by Mesiar [17] and Grabisch [14] as a class of
simpler capacities. We show here a connection between the k-adjunction of capaci-
ties and the notion of k-maxitivity. The minitivity (1-adjunction) of necessity measures
N go along with the fact that the focal elements of the conjugate possibility measure
Π(A) = ν(N(Ac)) are obviously the singletons {s} such that s ∈ A (1-maxitivity).

This construction can be generalized first to any qualitative capacity γ that ranges on
{0, 1}. Let Fγ be its focal sets (γ#(E) = 1), and γc is its conjugate. Then obviously,

γ(A) = 1 ⇐⇒ ∃E ∈ Fγ , E ⊂ A (4)

Lemma 1. Suppose Fγ = {E1, . . . Ek} for a Boolean capacity γ. Then γc(A) = 1 if
only if A contains a set the form {s1, . . . sk}, si ∈ Ei, i = 1 . . . , k.
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Proof: Indeed: γc(A) = 1 ⇐⇒ γ(Ac) = 0 ⇐⇒ ∀E ∈ Fγ , E �⊆ Ac

hence: γc(A) = 1 ⇐⇒ ∀E ∈ Fγ , E ∩ A �= ∅. We can write this as follows:
γc(A) = 1 ⇐⇒ ∀E ∈ Fγ , ∃sE ∈ E ∩ A ⇐⇒ ∃F = {sE : E ∈ Fγ}, F ⊆ A,
where for each focal set E of γ, sE is picked in E. �

Proposition 6. The set of focal sets of γc is Fγc

= min⊆{{s1, . . . sk}, si ∈ Ei, i =
1 . . . , k}, where min⊆ picks the smallest subsets for inclusion.

Proof: Note that Fγc

= min⊆{A, γc(A) = 1}. The result follows from Lemma 1. �

Clearly, the elements sE picked in focal sets E need not be distinct, in case the fo-
cal sets overlap. For instance, if Fγ = {E1, E2} with E1 = {s0, s1, s3}, E2 =
{s0, s2, s4}, then the focal elements of the conjugate are the least elements among the
family {{s0}}∪ {{s0, si}, i = 1, . . . , 4}∪ {{s1, s2}, {s1, s4}, {s3, s2}, {s3, s4}}, that
is Fγc

= {{s0}{s1, s2}, {s1, s4}, {s3, s2}, {s3, s4}}.
Denoting by c(Fγ) the transformation from Fγ to Fγc

, we can prove:

Proposition 7. c(c(Fγ)) = Fγ

Proof: It is obvious because (γc)c = γ. A direct proof is far less obvious.

For instance, if Fγ = {A,B}. Then Fγc

= {{s} : s ∈ A ∩ B} ∪ {{sA, sB} : sA ∈
A \ B, sB ∈ B \ A}. To build dual focal sets from the latter family, each such focal
set must contain A ∩ B. Then suppose we pick sA ∈ {sA, sB}. Clearly, this choice
covers all focal sets {sA, s}, s ∈ B \ A. It thus prevents us from picking the next
element in B \A. So the next elements to be picked lie in A. In fact, the focal sets left
{s, sB}, s �= sA can be deprived of sB since there is a focal set of the form {sA, sB}
that forbids sB from further consideration. So this process reconstructs the focal set A.

From Prop. 6, it is clear that if a Boolean capacity is k-adjunctive (it has k focal
sets), then its conjugate is k-maxitive, since the focal sets of its conjugate will have not
more than k elements. In the next section, we shall see that the computation of the focal
sets of a capacity from the ones of its conjugate corresponds in the modal logic setting
to the swapping of modalities. In the following, we denote by Fγ

β the set of the focal
elements A of a capacity γ such that γ(A) = β

Proposition 8. For a general capacity γ, suppose Fγ = {E1, . . . Ek}. Then, γc(A) =

1 if and only if ∀i = 1 · · · , k : Ei ∩ A �= ∅. Moreover, Fγc

1 = min⊆{{s1, . . . sk}, si ∈
Ei, i = 1 . . . , k}.

Proof: It is like the proof of Lemma 1 and the subsequent proposition.

Lemma 2. γc(A) = ν(α) �= 0, 1 if and only if ∀E, γ#(E) > α implies E ∩ A �= ∅
and ∃E,E ∩ A = ∅ such that γ#(E) = α.

Proof: γc(A) ≥ ν(α) if and only if γ(Ac) ≤ α if and only if ∀E, γ#(E) > α implies
E �⊆ Ac. Besides, the equality γc(A) = ν(α) is attained if moreover there is a focal set
E ⊆ Ac such that γ#(E) = α.
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Proposition 9. A is a focal element of γc such that γc
#(A) = ν(α) > 0 if and only if

it is a minimal element of the family {E = {sE : γ#(E) > α}, E ∩ F = ∅ for some
F ∈ Fγ

α}, where sE ∈ E.

Proof: A direct consequence of the lemma, since by construction γc
#(A) = ν(α) means

that A is a minimal set such that γc(A) = ν(α).
These results show how the inner qualitative Moebius transform of a capacity can

be computed from the one of its conjugate. It is easy to see that also in the general
case, if a capacity has k weighted focal sets, its conjugate will be k-maxitive, since
the largest focal elements of γc (they have weight equal to 1) are obtained by picking
one element in each focal set of γ. Another issue is now to compute the n possibility
distributions such that γ is n-adjunctive in terms of the m possibility distributions such
that γ is m-max-dominant. For instance, while a necessity measure N is 1-adjunctive
w.r.t. its associated possibility distribution π, it is also n-max-dominant with respect to
n possibility measures, where n is the number of (nested) focal sets of the necessity
measure N . They are all distinct sets Aαi = {s : π(s) ≥ αi} such that N#(Aαi) =
ν(αi+1), where α1 = 1 > α2 > · · · > αn > αn+1 = 0. Then N = minn

i=1 Πi, where
πi(s) = ν(αi+1), ∀s ∈ Aαi and 1 otherwise.

3 The Modal Logic View of Capacities

In this section, we show that our previous results suggest a new semantics for general
modal logics. Consider a propositional language L with Boolean variables {a, b, c...}
and standard connectives∧,∨,¬,→. Let S be the set of interpretations of this language
(assigning 1 or 0 to all variables). Given a proposition p ∈ L, necessity measure N on
S based on possibility distribution π, we denote by �p the statement N(A) ≥ λ > 0,
where A = [p] is the set of models of p. �p corresponds to a Boolean necessity measure
based on a possibility distribution that is the characteristic function of E = {s|π(s) >
ν(λ)}. Consider a higher level propositional language L� defined by: ∀p ∈ L,�p ∈
L�, and if φ, ψ ∈ L�, then ¬φ ∈ L�, and φ ∧ ψ ∈ L�. The variables of L� are thus
{�p : p ∈ L}. Let ♦p be short for ¬�¬p. Then |= ♦p stands for Π(A) ≥ ν(λ) where
Π is the conjugate of N . It defines a very elementary fragment of a KD modal logic
known as MEL [1]. Indeed, the following KD axioms are valid

– (K) : �(p→ q)→ (�p→ �q)
– (N) : �'
– (D) : �p→ ♦p

and imply axiom (C) : �(p ∧ q) ≡ (�p ∧ �q), which is the Boolean form of the
minitivity axiom.

A “model” of a formula in φ ∈ L� is a nonempty subset E ⊆ S of propositional
models. The set E is understood as an epistemic state (a meta-model). The satisfaction
of MEL-formulae is then defined recursively given φ, ψ ∈ L�:

– E |= �p , if and only if E ⊆ [p]
– E |= ¬φ, if and only if E �|= φ,
– E |= φ ∧ ψ, if and only if E |= φ and E |= ψ,
– So, E |= ♦p if and only if E ∩ [p] �= ∅
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For any set Γ ∪{φ} of L�-formulae, φ is a semantic consequence of Γ , written Γ |= φ,
provided for every epistemic state E,E |= Γ implies E |= φ. This Boolean possibilistic
logic, equipped with modus ponens, (the L�-fragment of KD) is sound and complete
w.r.t. this semantics [1]. In fact, if N is the Boolean necessity measure induced by E,
it defines precisely a classical interpretation of L�, of the form

∧
p∈L:N([p])=1 �p ∧∧

p∈L:N([p])=0 ¬�p obeying axioms K, D, N. In particular the semantics does not rely
on the use of accessibility relations.

Using the same language, denote now |= �p as standing for γ([p]) ≥ λ > 0 for any
qualitative capacity γ.�p now corresponds to a Boolean capacity defined by γλ(A) = 1
if γ([p]) ≥ λ > 0 and 0 otherwise. The following axioms are then verified [8]:

– (RE) : �p ≡ �q whenever ) p ≡ q.
– (RM) : �p→ �q, whenever ) p→ q.
– (N) : �'; (P ) : ♦'.

It is a non-regular modal logic. It is a fragment of the monotonic modal logic EMN,
Chellas [4], where modalities only apply to propositions. Its usual semantics is based
on so-called neighborhoods (families of subsets of possible worlds having some prop-
erties). This logic no longer satisfies axioms K, C nor D. This modal logic is the natural
logical account of qualitative capacities. Indeed, any classical interpretation of L� that
satisfies the above axioms defines and is defined by a Boolean capacity β and is of the
form

∧
p∈L:β([p])=1�p ∧

∧
p∈L:β([p])=0 ¬�p.

Interestingly, we can capture the n-adjunction axiom in the modal setting (see [8]
for n = 2). Let n be the smallest integer for which γ(A) = maxni=1 Ni(A). Denoting
by �ip the statement Ni([p]) ≥ λ > 0, it is clear that γ([p]) ≥ λ > 0 stands for
�p ≡ ∨n

i=1�ip, where �i are KD modalities. By duality we can define ♦p as short for
¬�¬p, that is, ♦p ≡ ∧n

i=1♦ip. So, applying the characterisation of n-minitivity to the
restriction of the modal logic EMN yields the axiom

(n-C) : ) (∧n+1
i=1 �pi)→ ∨n+1

i�=j=1�(pi ∧ pj)

It implies that if pi, i = 1 . . . , n+1 are mutually inconsistent, then ) ¬∧n+1
i=1 �pi. This

property claims that we cannot have γ([pi]) ≥ λ > 0 for all i = 1 . . . , n+ 1.
The semantics of the EMNP+n-C logic can be expressed in two ways:

– In terms of n-tuple of epistemic states (subsets of S) : (E1, . . . , En) |= �p if ∃i ∈
[1, n], Ei |= �ip. By construction, E1, . . . , En are the focal sets of the Boolean
capacity defined by γλ(A) = 1 if γ([p]) ≥ λ > 0 and 0 otherwise.

– More classically, in terms of neigborhoods: they are non-empty subsets N of 2S

such thatN |= �p if and only if [p] ∈ N and N |= ♦p if and only if [¬p] �∈ N .

For a KD modality, it is obvious that N = {A,N(A) ≥ λ} = {A|A ⊇ E} for some
non-empty E ⊆ S (N is a proper filter). For an EMNP modality N = {A, γ(A) ≥
λ > 0} �= 2S is closed under inclusion and not empty). For an EMNP+n-C modality,
N = {A, γ(A) ≥ λ > 0} is the union of n proper filters of the form {A,Ni(A) ≥
λ} = {A|A ⊇ Ei}.

In the extreme case when the sets (E1, . . . , En) are singletons (i.e., fully informed
conflicting sources), the necessity modality �p satisfies distributivity w.r.t. disjunction:
) �(p ∨ q) ≡ �p ∨ �q (but no longer w.r.t. conjunction !) and the opposite of axiom
D : ) ♦p → �p. In other words, necessity and possibility modalities are exchanged.
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We go back to the MEL logic exchanging the basic modalities � and ♦. In fact, the
swapping of modalities is a simple instance of the more general question, considered
in the previous section, of computing the focal sets of a capacity from the ones of its
conjugate. It comes down at the semantic level to the transformation of a logic based
on the epistemic states of k agents into the dual situation of multiple source epistemic
logic underlying a set of agents whose knowledge has limited imprecision (i.e., each
epistemic state involves at most k possible worlds).

4 Conclusion

We have studied the representation of capacities having values on a finite totally ordered
scale by families of qualitative possibility distributions. It turns out that any capacity
can be viewed either as a lower possibility measure or as an upper necessity measure
with respect to two distinct families of possibility distributions. This remark has led
to propose a generalisation of maxitivity and minitivity properties of possibility the-
ory, thus offering a classification of qualitative capacities in terms of increasing levels
of complexity and generality, based on the minimal number of possibility distributions
needed to represent them. In particular, it has been shown that a Sugeno integral is a
lower possibility integral [7]. Then the computation of Sugeno integral can be reduced
for k-adjunctive or k-max dominant capacities. Moreover, the study of relationships
between the focal sets of a capacity and the focal sets of its conjugate has shown the
links between k-adjunction and k-maxitive capacities. We have finally shown a con-
nection between qualitative capacities and non-regular modal logics, which generalize
KD-style modal logics in the same sense as capacities generalize necessity measures.

Numerous alleys of research are opened by the above results:

– On the logical side, we may reconsider the study of non-regular modal logics in
the light of capacity-based semantics. The fact that they lead to disjunctions of KD
necessity operators is clearly reminding of Belnap epistemic set-up [3], and para-
consistent logics. The fact that an extreme case of the EMN logic comes down to a
modal logic similar to a KD one where possibility and necessity are exchanged re-
flects the fact that in Belnap bilattices, the epistemic values representing conficting
information and absence thereof play symmetric roles

– One may also wish to evaluate the quantity of information (or uncertainty) con-
tained in a qualitative capacity [16]. In [7], the maximal specific possibility distri-
bution dominating a capacity was studied and shown to be the counterpart of the
contour function of belief functions for qualitative capacities. This notion could
suggest one approach based on the comparison of contour functions.

– The analogy between belief functions and qualitative capacities was discussed in
[18] and a qualitative counterpart of information ordering based on specialisation
(inclusion of focal sets) was also proposed, as well as counterparts to Dempster rule
of combination. These lines should be pursued in the scope of qualitative informa-
tion fusion techniques going beyond those based on possibility theory.
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Abstract. CP-nets (Conditional preference networks) are a well-known
compact graphical representation of preferences in Artificial Intelligence,
that can be viewed as a qualitative counterpart to Bayesian nets. In case
of binary attributes it captures specific partial orderings over Boolean
interpretations where strict preference statements are defined between
interpretations which differ by a single flip of an attribute value. It re-
spects preferential independence encoded by the ceteris paribus property.
The popularity of this approach has motivated some comparison with
other preference representation setting such as possibilistic logic. In this
paper, we focus our discussion on the possibilistic representation of CP-
nets, and the question whether it is possible to capture the CP-net partial
order over interpretations by means of a possibilistic knowledge base and
a suitable semantics. We show that several results in the literature on
the alleged faithful representation of CP-nets by possibilistic bases are
questionable. To this aim we discuss some canonical examples of CP-net
topologies where the considered possibilistic approach fails to exactly
capture the partial order induced by CP-nets, thus shedding light on the
difficulties encountered when trying to reconcile the two frameworks.

1 Introduction

The representation and the handling of preferences has been extensively stud-
ied in artificial intelligence (AI), operations research, and data bases; see [1] for
an introductory survey. “CP-nets" [2] have been especially popular in AI as a
framework for expressing conditional preferences, based on a graphical represen-
tation. CP-nets express that in a given context, a partially described situation
is strictly preferred to another partially described situation, every other variable
having the same value in both situations; this is the ceteris paribus condition.

However the systematic application of the ceteris paribus principle introduces
restrictions in the expression of preferences. This has motivated the compari-
son between CP-nets and possibilistic logic [3] since the latter provides another
flexible setting for representing preferences [4, 5]. In possibilistic logic, classical
propositions state goals, and weights are priority levels that express how imper-
ative are these goals. A merit of a logic-based representation of preferences is
also the capability of reasoning about preferences and in particular to deal with
their possible inconsistency. A series of publications [6–10] have dealt with the
question of representing CP-nets by means of a possibilistic logic base. Since
CP-nets may leave some interpretations non comparable, a possibilistic logic

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 181–193, 2013.
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representation of them should use partially ordered symbolic weights [11] that
leave room for incomparability. It has been also noticed that CP-nets implicitly
privilege the preference constraints associated with father nodes with respect to
the ones associated to children nodes in the graphical representation.

However, the possibilistic logic representation of CP-nets advocated in [8–10]
is not always completely faithful and may remain locally approximate. The aim
of this paper is to fully investigate this state of facts, also highlighting when the
existing approach does provide an exact representation for CP-nets.

The paper is organized as follows. First, a short background on possibilistic
logic, on CP-nets and its encoding with possibilistic logic formulas having sym-
bolic weights is provided in Sections 2 and 3. Then in Section 4 we discuss the
different partial orders that can be used for comparing the vectors of symbolic
weights which reflect the violation of preferences and are associated with each
interpretation. Used as such, each of the considered orders are successful for re-
trieving the CP-net ordering on specific graphical structures and fail on others,
as shown in Section 5. Section 6 identifies on which particular structures the ex-
isting possibilistic representation is exact, and shows more generally how lower
and upper representations can be obtained. Section 7 briefly discusses the related
work and exhibits a final example that points out the difficulty of capturing the
CP-net ordering exactly in a logical way.

2 Possibilistic Logic

We consider a propositional language where formulas are denoted by p1, ..., pn,
and Ω is its set of interpretations. Let BN = {(pj, αj) | j = 1, . . . ,m} be a
possibilistic logic base where pj is a propositional logic formula and αj ∈ L ⊆
[0, 1] is a priority level [3]. The logical conjunctions and disjunctions are denoted
∧ and ∨. Each formula (pj , αj) means that N(pj) ≥ αj , where N is a necessity
measure, i.e., a set function satisfying the property N(p∧q) = min(N(p), N(q)).
A necessity measure is associated to a possibility distribution π (a mapping
Ω → [0, 1] here expressing preference) as follows:

N(p) = minω �∈M(p)(1− π(ω)) = 1−Π(¬p),
where Π is the possibility measure associated to N and M(p) is the set of models
induced by the underlying propositional language for which p is true.

The base BN is associated to the possibility distribution
πN
B (ω) = minj=1,...,m π(pj ,αj)(ω)

on the set of interpretations, where π(pj ,αj)(ω) = 1 if ω ∈ M(pj), and π(pj ,αj)

(ω) = 1 − αj if ω �∈ M(pj). An interpretation ω is all the more possible as it
does not violate any formula pj having a higher priority level αj . So, if ω �∈
M(pj), πN

B (ω) ≤ 1 − αj , and if ω ∈
⋂

j∈J M(¬pj), πN
B (ω) ≤ minj∈J (1 − αj).

It is a description “from above" of πN
B , which is the least specific possibility

distribution in agreement with the knowledge base BN . A possibilistic base BN

can be transformed in a base where the formulas pi are clauses (without altering
the distribution πN

B ). We can still see BN as a conjunction of weighted clauses,
i.e., as an extension of the conjunctive normal form.
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3 CP-Nets and Their Encoding in Possibilistic Logic

A CP-net [2] is graphical in nature, and exploits conditional preferential inde-
pendence in structuring the preferences provided by a user. The model is remi-
niscent of a Bayes net; however, the nature of the relation between nodes within
a network is generally quite weak, compared with the probabilistic relations in
Bayes nets. The aim in using the graph is to capture statements of qualitative
conditional preferential independence.

Definition 1. A CP-net N over the set of Boolean variables V = {X1, · · · , Xn}
is a directed graph over the nodes X1, · · · , Xn, and there is a directed edge from
Xi to Xj if the preference over the value Xj is conditioned on the value of Xi.
Each node Xi ∈ V is associated with a conditional preference table CPT (Xi)
that associates a strict preference (xi > ¬xi or ¬xi > xi) with each possible
instantiation ui of the parents of Xi (if any).

A complete (preference) ordering of interpretations satisfies a CP-net N iff it
satisfies each conditional preference expressed in N . In this case, the ordering
is said to be consistent with N . We denote by Pa(X) the set of direct parent
variables of X , and by Ch(X) the set of direct successors (children) of X . The
set of interpretations of a group of variables S ⊆ V is denoted by Ast(S), with
Ω = Ast(V ). Given a CP-net N , for each node Xi, i = 1, . . . , n, each entry in
a conditional preference table CPTi is of the form φ = u : �xi > �¬xi, where
u ∈ Ast(Pa(Xi)), � is blank if the preference is xi > ¬xi and is ¬ otherwise. This
is encoded by a constraint of the form N(¬u∨�xi) ≥ αi > 0, in possibility theory,
where N is a necessity measure [3]. The weight αi stands for the priority of the
formula ¬u∨�xi. Although valued on [0, 1] this priority is not instantiated, that
is, αi is a variable attached to node i. It expresses that having ¬�xi is somewhat
not satisfactory in context u, as the possibility of ¬ � xi ∧ u is upper bounded
by 1− αi. Clearly, satisfying ¬ � xi ∧ u is all the more impossible as αi is large.

The encoding of a CP-net in possibilistic logic is performed as follows:

– According to the above conventions, each entry of the form u : �xi > �¬xi

in the conditional preference table CPTi of each node Xi, i = 1, . . . , n is
encoded by the possibilistic logic clause (¬u ∨ �xi, αi), where αi > 0 is a
symbolic weight.

– Since the same weight is attached to each clause built from CPTi, the set
of weighted clauses induced from CPTi is thus equivalent to the weighted
conjunction φi = (

∧
u∈Ast(Pa(Xi))

(¬u ∨ �xi), αi), one per variable, or to the
pair of weighted clauses (φ+

i , φ
−
i ) of the form:

(¬(∨u∈A+
i
u) ∨ xi, αi), (¬(∨u∈A−

i
u) ∨ ¬xi, αi),

where {A+
i , A

−
i } is a partition of Ast(Pa(Xi)), such that xi > ¬xi on A+

i

and ¬xi > xi on A−
i .

– Additional constraints over weights are added. The weight αi attached to
each node Xi, is supposed to be strictly smaller than the weight of each of
its parents α∗

i (thus leading to constraints of the form max({αi}) < α∗
i ).
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A partially ordered possibilistic base (Σ,*Σ) is built from a CP-net in this way,
where *Σ stands for the order relation over weights. Let us denote by Fω ⊆ Σ,
the set of formulas falsified by the interpretation ω ∈ Ω. For each interpretation
ω, we associate a vector ω(Σ) obtained as follows. For each weighted formula
φ+
i ∧φ−

i in the possibilistic base Σ satisfied by ω, we put 1 in the ith component
of the vector, and 1−αi otherwise, in agreement with possibilistic logic semantics
[3]. By construction, L = {1, 1 − αi, i = 1 . . . , n}, with 1 > 1 − αi, ∀i. Vector
ω(Σ) has a specific format. Namely its component vi (one per CP-net node) lies
in {1, 1 − αi} for i = 1, . . . , n. We consider different possible partial orders for
comparing such vectors in the next section.

Example 1: [2]. Fig. 1(a) illustrates a CP-net about preferences for evening
dress. It involves variables J , P , and S, standing for the jacket, pants, and shirt:

Fig. 1. CP-net and partial order induced by it

– preferred color is black (b) rather than white (w) for J and P : Pb > Pw, which
yields formula φP = (Pb, α), and Jb > Jw, which yields formula φJ = (Jb, β).

– the preference between the red and white shirts is conditioned on the combi-
nation of jacket and pants: if they have the same color, then a white shirt will
make my outfit too colorless, thus a red shirt is preferred: Pb ∧Jb : Sr > Sw;
Pw ∧ Jw : Sr > Sw, which yields formula φ−

S = (¬(J = P ) ∨ Sr, γ).
– Otherwise, if the jacket and the pants are of different colors, then a red

shirt will probably make the outfit too flashy, thus a white shirt is preferred.
Pb∧Jw : Sw>Sr; Pw∧Jb : Sw>Sr, which yields formula φ+

S =((J=P )∨Sw, γ).
Moreover, we assume α > γ and β > γ since P and S are father nodes of J .

4 Partial Order Relations over Vectors

In this section we will present a number of partial order relations with the
purpose to use them to generate a particular ordering over interpretations.
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In Section 3, we have shown how to encode a CP-net in a possibilistic logic
format. Since we can associate a vector to each interpretation with respect to
formulas in the possibilistic base, comparing two interpretations amounts to com-
paring their associated vectors. We first give definitions of some order relations
over vectors, and then discuss how to capture CP-net orderings when we inter-
pret possibilistic logic bases based on these vector comparison techniques. Let
v=(v1, ..., vk),v

′=(v′1, ..., v
′
k) ∈ Lk be two vectors, where L is a scale partially

ordered by >:

Definition 2 (Pareto). v +Pareto v′ if and only if ∀i, vi ≥ v′i and ∃j, vj > v′j.

Definition 3 (symmetric Pareto). v +SP v′ if and only if there exists a
permutation σ the components of v′, yielding vector v′σ, such that v +Pareto v′σ.

The discrimin order, denoted by +discrimin is defined for totally ordered scales
in the following way: identical vector components are discarded, and the mini-
mum of the remaining components for each vector are compared. Since here the
minimum does not always correspond to a single value, but to subsets of Lk, we
propose the following procedure for comparing the vectors:

Definition 4 (discrimin). Let D(v,v′) = {j|vj �= v′j} be the set of component
indices where the two vectors v and v′ differ. Then v +discrimin v′ iff
min({vi|i ∈ D(v,v′)}∪{v′i|i ∈ D(v,v′)}) ⊆ {v′i|i ∈ D(v,v′)}\{vi|i ∈ D(v,v′)}.
where min here returns the subset of the smallest incomparable values (wrt >).

In the standard case of a totally ordered scale, the leximin order is defined by
first reordering the vectors in an increasing way and then applying the discrimin
order to the reordered vectors. Since we deal with a partial order, the reordering
of vectors is no longer unique, and we have to generalize the definition:

Definition 5 (leximin). First, delete all pairs (vi, v
′
j) such that vi = v′j in

v and v′ (each deleted component can be used only one time in the deletion
process). Thus, we get two non overlapping sets r(v) and r(v′) of remaining
components, namely r(v) ∩ r(v′) = ∅. Then, v +lex v′ iff min(r(v) ∪ r(v′)) ⊆
r(v′).

In the following, we shall apply these relations to the particular vectors associated
to the possibilistic encoding of CP-nets, as explained in Section 3, where the
possible values of a vector component i are either 1 or 1 − αi (the αi being
distinct variables), and L = {1, 1− αi, i = 1, . . . , n} such that 1 > 1− αi.

Proposition 1. Leximin and discrimin orders coincide on these particular vec-
tors.

Proof. Indeed, since the value of a vector component is either ‘1’ or ‘1−αi’, and
since each possibilistic formula attached to a node in the CP-net is associated
with a different weight αi, we are sure that a given ‘1 − αi’ is present only in
one component position. With these hypotheses, the difference between leximin
and discrimin procedures is that leximin deletes some components with value ‘1’
because it is the only component value that can be in different ranks. But we
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know that ‘1’ is the greatest component value, so this cannot affect the result of
the final application of min operator in each case. Thus, leximin and discrimin
orders coincide on these particular vectors.

These relations have been previously used for capturing the CP-nets ordering:
symmetric Pareto (SP), discrimin in [8, 9], or leximin in [10] or min order in [6, 7].
In the next section, we provide a comparative discussion of these proposals and
we point out when each ordering fails to exactly retrieve the CP-net ordering.

5 CP-Nets vs. Possibilistic Logic: Counterexamples

It has been claimed that CP-net orderings can be captured by using the encoding
explained in Section 3 and applying the symmetric Pareto order [8, 9] recalled in
Section 4, or the leximin order [10], to vectors ω(Σ). This is in fact true only for
special families of CP-nets, as shown in the example below. But the possibilistic
encoding of CP-nets together with the use of one of the previously cited orders
do not always lead to an exact representation of CP-nets in the general case, as
we shall see on further examples.

Considering Ex. 1 again, Table 2 gives the satisfaction levels for the possi-
bilistic clauses encoding the 3 elementary preferences, and the 8 possible inter-
pretations (choices), where α, β, γ are the weights of nodes J, P, S respectively.

Table 1. Possible alternative choices in Example 1

Ω φP φJ φS

PbJbSr 1 1 1
PbJbSw 1 1 1- γ
PbJwSw 1 1-β 1
PwJbSw 1-α 1 1
PbJwSr 1 1-β 1-γ
PwJbSr 1-α 1 1-γ
PwJwSr 1-α 1-β 1-γ
PwJwSw 1-α 1-β 1

We introduce the following constraints, α > γ and β > γ between the symbolic
weights, which give priority to the constraint associated to father nodes J, P over
the ones corresponding to the child node S. Then, the application of symmetric
Pareto order or leximin order, allows us to rank-order interpretations. It can be
checked that the ordering of interpretations obtained by these two orders applied
to vectors ω(Σ) coincide with the ordering +N induced by the CP-net N , as
indicated in Fig. 1(b) (for short, PbJbSr is denoted bbr, etc.):

– bbr +N bbw +N bww +N bwr +N bwr +N wwr +N www.
– bbr +N bbw +N wbw +N wbr +N wwr +N www.

In order to provide a clear discussion about the possibilistic logic representation,
we first establish that a preference between interpretation vectors differing by
a single variable flip only depends on the instantiations of the corresponding
variable and its children:



Conditional Preference Nets and Possibilistic Logic 187

Proposition 2. Let Xi be a node in a CP-net N and Yi = V \{{Xi} ∪ Pa(Xi)}.
Let (Σ,*Σ) be the partially ordered possibilistic base associated with N using the
procedure of Section 3. If the CP-net contains the statement u : xi > ¬xi (resp:
u : ¬xi > xi), the preference only depends on the instantiations of variable xi

and its children nodes.

Proof: Let ω+ = uixiyi and ω− = ui¬xiyi, ui ∈ A+
i . Since they share the same

assignment of variables in Pa(Xi), both models satisfy either φ+
j or φ−

j , ∀Xj ∈
Pa(X). We denote by FPa the set of formulas φ+

j , φ
−
j , Xj ∈ Pa(Xi) falsified

by ω+, ω− (they are the same); and by FY the set of formulas φ+
j , φ

−
j , Xj ∈

Yi \Ch(Xi), (i.e. Xj is a neither a direct descendant of Xi nor one of its parents)
and falsified by ω+, ω−; and by FCh

ω+ the set of formulas φ+
j , φ

−
j , Xj ∈ Ch(Xi)

falsified by ω+ and FCh
ω− the set of formulas falsified by ω−. Then, Fω+ = FPa∪

FY ∪FCh
ω+ and Fω− = FPa∪{φ+

i }∪FY ∪FCh
ω− . So we have Fω \Fω′ = FCh

ω+ and
Fω′ \Fω = {φ+

i }∪FCh
ω− . Following the construction of (Σ,*Σ) we have that φ+

i

is strictly preferred to all formulas in FCh
ω+ ∪FCh

ω− . Then ∀φ ∈ Fω \Fω′, φ+
i +Σ φ.

Let Xk be a child of Xi. Note that by construction, ω+ |= φ+
k and ω− |= φ−

k .
Besides, ω+ |= ¬φ−

k if and only if ω+ |= uk, and ω− |= ¬φ+
k if and only if

ω− |= uk. Hence there are three cases for the child Xk:
– either ω+ |= uk and ω− |= ¬uk (then φ−

k ∈ FCh
ω+ , but φ+

k �∈ FCh
ω+ );

– or ω+ |= ¬uk and ω− |= uk (then φ+
k ∈ FCh

ω− , but φ−
k �∈ FCh

ω− );
– or ω+ |= ¬uk and ω− |= ¬uk, and FCh

ω− ∪FCh
ω+ does not contain any formula

pertaining to variable Xk.
Now, it becomes clear that ω+(Σ) and ω−(Σ) only differ on components per-
taining to children nodes of Xi and to Xi itself. �

Due to the specific structure of CP-nets, and since we have shown that a prefer-
ence is only related to a variable node and their children nodes (Proposition 2),
we have to consider the three following elementary cases:
– Case a: Two father nodes and a child node (see Fig 2(a)) (also Fig. 1);
– Case b: A father node and two children nodes (see Fig 2(b));
– Case c: A grandfather node, a father node and a child node (see Fig 2(c)).

Fig. 2. Elementary cases of CP-nets
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Then, any CP-net is a combination of these three elementary cases (with possibly
more fathers or children). Considering these three basic structures, the following
examples show in which case a particular order induced by (Σ,+Σ) fails to
capture the ordering of interpretations induced by the CP-net.

Example 2: V = {X,Y, Z} is the set of variables involved in the examples on
Fig. 2. In these examples, preference constraints are as follows: φ1 = x > x̄, φ2 =
y > ȳ, φ3 = (X ⇐⇒ Y : z > z̄,¬(X ⇐⇒ Y ) : z̄ > z), φ4 = (x : z > z̄, x̄ : z̄ >
z), φ5 = (x : y > ȳ, x̄ : ȳ > y) and φ6 = (y : z > z̄, ȳ : z̄ > z). The possibilistic
logic bases obtained in the different examples in Fig 2 are:

- Σa = {φ1, φ2, φ3}: φ1 = (x, α1), φ2 = (y, α2), φ3 = (((¬(x ∧ y) ∧ ¬(¬x ∧
¬y)) ∨ z) ∧ (¬(x ∧ ¬y) ∧ ¬(¬x ∧ y)) ∨ ¬z), α3), and min(α1, α2) +Σa α3,

- Σb = {φ1, φ4, φ5} with φ4 = ((¬x ∨ z) ∧ (x ∨ ¬z), α4), φ5 = ((¬x ∨ y) ∧ (x ∨
¬y), α5), and is such that α1 +Σb

max(α4, α5),
- Σc = {φ1, φ5, φ6} with φ6 = ((¬y∨z)∧ (y∨¬z), α6) and α1 +Σc α5 +Σc α6.

Table 2. Possible alternative choices in Example 2

Ω φ1 φ2 φ3 φ1 φ4 φ5 φ1 φ5 φ6

xyz 1 1 1 1 1 1 1 1 1
xyz̄ 1 1 1-α3 1 1-α4 1 1 1 1-α6

xȳz 1 1-α2 1-α3 1 1 1-α5 1 1-α5 1-α6

xȳz̄ 1 1-α2 1 1 1-α4 1-α5 1 1-α5 1
x̄yz 1-α1 1 1-α3 1-α1 1-α4 1-α5 1-α1 1-α5 1
x̄yz̄ 1-α1 1 1 1-α1 1 1-α5 1-α1 1-α5 1-α6

x̄ȳz 1-α1 1-α2 1 1-α1 1-α4 1 1-α1 1 1-α6

x̄ȳz̄ 1-α1 1-α2 1-α3 1-α1 1 1 1-α1 1 1

Results are as follows:

– In the 1st case (Na), symmetric Pareto and leximin orders are able to cap-
ture the ordering of the CP-net exactly. Otherwise, the min order fails to
distinguish between the interpretations {x̄yz, x̄yz̄, x̄ȳz, x̄ȳz̄} and between
{xȳz̄, xȳz}.

– In the 2nd case (Nb), symmetric Pareto order fails to capture the CP-net or-
dering exactly by leaving the two interpretations ω = xȳz̄ and ω′ = x̄ȳz̄ non
compared (while node X in the CP-net N� ensures xȳz̄ +N x̄ȳz̄). Otherwise
the representation is exact. The associated vectors ω(Σ)=(1, 1−α4, 1−α5)
and ω′(Σ) = (1 − α1, 1, 1) are not comparable by symmetric Pareto. In-
deed � σ s.t. ω(Σ) +SP ω′σ(Σ), since 1 − α1 < min(1 − α4, 1 − α5) while
1 > max(1− α4, 1− α5). Otherwise, the min order is able to compare these
two interpretations xȳz̄ +min x̄ȳz̄, but it fails to distinguish between the
interpretations {x̄yz, x̄yz̄, x̄ȳz, x̄ȳz̄} and between {xȳz̄, xyz̄}. But leximin is
able here to capture the CP-net ordering exactly.

– In the 3rd case (Nc), both leximin and min orders fail to capture the CP-net
ordering: the two interpretations ω = xȳz and ω′ = x̄ȳz̄ become comparable
while the CP-net cannot compare them. Since ω(Σ) = (1, 1−α5, 1−α6) and
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ω′(Σ) = (1 − α1, 1, 1), with min(ω(Σ))= 1 − α5, min(ω′(Σ))= 1 − α1 and
1 − α1 < 1 − α5, we have ω +lex ω′ and ω +min ω′. But symmetric Pareto
can capture the CP-net ordering exactly in this case.

To summarize, as observed in the Example, the symmetric Pareto order fails
to compare two interpretations when the concerned variable has more than one
child node as in Case b (Fig.2 (b)). Besides, in Case c (Fig.2 (c)) leximin and
min break the incomparability of some interpretations in the CP-net.

6 Approaching CP-Net Preferences by Possibilistic Logic

As seen in Ex. 2 of Section 5, the symmetric Pareto relation is not fine-grained
enough to capture the CP-net partial order in general, while the lexi-min order
may make some CP-net-incomparable interpretations comparable. In this Sec-
tion, we point out a class of CP-nets for which possibilistic logic with symbolic
weights can capture the CP-net partial order exactly. First, we prove that any
strict comparison obtained by symmetric Pareto is true for the CP-net order.

Proposition 3. Let N be an acyclic CP-net and (Σ,*Σ) be its associated par-
tially ordered base. Let *SP be the partial order associated to (Σ,*Σ).

∀ω, ω′ ∈ Ω,ω +SP ω′ ⇒ ω +N ω′

Proof of Proposition 3
Suppose that ω +SP ω′. This means that there exists a permutation σ of ω′(Σ)
such that when comparing the result of this permutation with ω(Σ), the second
vector is greater than or equal to, componentwise, the reordered one. There are
two cases: either for any component, where there is no equality, the compari-
son between the two vectors is of the form 1 > 1 − ασ(i), or there is at least
one component where the comparison takes the form 1 − αj > 1 − ασ(k). This
corresponds respectively to two different situations:
i) ω′ falsifies more formulas in Σ than ω, and Fω ⊂ Fω′ , where Fω (resp.
F ′

ω) denotes the set of nodes falsified by interpretation ω (resp. ω′). This
corresponds to the first case above, where Fω′ \ Fω corresponds precisely
to the violated formulas whose priority ασ(i) is involved in the observed
inequalities 1 > 1− ασ(i); it is known that Fω ⊂ Fω′ entails ω +N ω′.

ii) ω′ falsifies at least one formula whose priority is greater than the one of
another formula violated by ω, namely 1−αj > 1−ασ(k), equivalent to αj <
ασ(k). In fact, there is at least one component in ω′(Σ) of the form 1−ασ(r)

which is a minimal component among those in the two subvectors on which
ω(Σ) and ω′(Σ) differ. It corresponds to a formula having maximal priority
(ασ(r)) violated by ω′ and not by ω. Now, the constraints αj < ασ(k) ≤ ασ(r)

reveal that the nodes corresponding in the CP-nets to these priorities are
related by a path in the CP-net linking an ancestor Xσ(r) (having maximal
priority) to a descendent Xj . The set of such paths can be associated with
a chain of improving flips from ω′ to ω, and thus ω +N ω′. �
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We have noticed that there are cases where the symmetric Pareto order together
with the possibilistic logic encoding does capture the CP-net ordering exactly.
The following proposition indicates a class of CP-nets where it is indeed the case.

Proposition 4. Let N be an acyclic CP-net with every node have at most one
child node. Let (Σ,*Σ) be its associated partially ordered base. Let *SP be the
partial order associated to (Σ,*Σ). Then, ∀ω, ω′ ∈ Ω,ω +SP ω′ iff ω +N ω′.

Proof of Proposition 4
i) Suppose that ω +N ω′. We know that ω dominates ω’ (i.e. ω +N ω′) if and

only if there is a chain of worsening flips which consists of a change of the in-
stantiation of one variable each time. This means that there exists a sequence
ω0, · · · , ωk such that ω + ω0 + · · · + ωk + ω′, where ω + ω0, . . . , ωk + ω′ are
ceteris paribus preferences. We have shown in Proposition 1 that such pref-
erence statements are related to the concerned variable (which corresponds
here to the flip) and its children. Since we have supposed that each node
has at most one child node, the associated evaluation vectors for every two
interpretations in a chain of worsening flips differ on at most two compo-
nents corresponding to the flipped variable and its child node. Since we give
the priority to father node over the child node, the two interpretations are
ordered by +SP . So we have ω +SP ω0 +SP · · · +SP ωk +SP ω′, and finally
ω +SP ω′ by transitivity.

ii) By Proposition 3, we have: if ω +SP ω′ then ω +N ω′. �
We have also noticed on some examples that leximin order is more refined than
the order induced by the considered CP-net. The following proposition estab-
lishes that any strict comparison obtained by a CP-net is also true in its possi-
bilistic logic counterpart using leximin order:

Proposition 5. Let N be an acyclic CP-net. Let (Σ,*Σ) be its associated par-
tially ordered base. Then: ∀ω, ω′ ∈ Ω,ω +N ω′ ⇒ ω(Σ) +lex ω′(Σ)

Proof of Proposition 5
Since +N is transitive, it is enough to prove that this is true for ω +N ω′

where there is one worsening flip which consists in a change of the instantiation
of one variable, in the ceteris paribus preference style. By transitivity we get
the general case where there is a chain of worsening flips since leximin order
is also transitive. We have shown in Proposition 2 that such a ceteris paribus
preference pertains to the concerned variable and its children. So for ω and ω′,
min({vi ∈ ω(Σ)} ∪ {vi ∈ ω′(Σ)}) ⊆ {vj ∈ (ω′(Σ)} \ {vj ∈ (ω(Σ)}). Indeed
the evaluation associated to the father node is smaller than any other evaluation
associated with its children, and then the min will downrank the interpretation
that violates the father node. So we have ω +lex ω′. �

7 Related Work and Final Discussion

Possibilistic logic for preferences representation has been first advocated in [4, 5].
Its use with symbolic weights for approximating acyclic Boolean CP-nets [2] and
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TCP-nets [12], has been discussed in [6, 7, 13]. Then, a representation of CP-net
has been proposed using the symmetric Pareto order in [8, 9], and recalled in
[10, 14] using leximin order. This representation has been presented as being
faithful in the general case (without providing the proof). It turns out that
the representation using the symmetric Pareto order is exact only in special
cases. We have shown that it is indeed the case for the particular CP-nets where
nodes have at most one child. We have also proved that in general it is a lower
approximation, while the use of leximin order leads to an upper approximation.

Thus, the semantics of possibilistic logic that could lead to an exact repre-
sentation of any (acyclic) CP-net in the general case is still to be found (if it
exists). However, the partial ordering induced by the CP-net approach may ap-
pear somewhat questionable, as exemplified now, which in turn questions the
possibility of an exact representation of the latter by means of an approach that
handles preferences in a more global way.

Fig. 3. CP-net related to Example 3

Example 3: Let us consider the CP-net of Fig. 3 on variables V = {X,Y, S, Z, T }.
Let us consider the interpretations ω = xyzs̄t̄, ω′ = xȳz̄s̄t̄, ω′′ = x̄ȳz̄s̄t̄ and
ω′′′ = xyz̄s̄t. We notice that ω violates the preferences at two grandson nodes
S, T , but ω′ violates the preferences at children nodes Y, Z. Moreover, ω′′ violates
the preference at the father node X and ω′′′ violates preference at a child Z and
a grandson T . The CP-net order is such that ω +N ω′ +N ω′′, ω +N ω′′′, but
it tells nothing on ω′′′ vs. ω′′ and ω′. Thus, violating preferences at grandsons
S, T (ω) is better than violating preferences at children nodes Y, Z (ω′), which is
better than violating preferences at the father node X (ω′′), in agreement with
the CP-net implicit priorities. But it is troublesome that violating CP-net prefer-
ences at one child node Z and one grandson node T (ω′′′) is neither comparable
with the violation of preference at the two children nodes Y, Z (ω′), let alone
the father node X (ω′′). This is not acknowledged by the possibilistic approach
using leximin ordering.

8 Concluding Remarks

The interest for preference representation of the possibilistic logic framework re-
lies first on the logical nature of the representation and constitutes an alternative



192 D. Dubois, H. Prade, and F. Touazi

to the introduction of a preference relation inside the representation language,
as in, e.g., [15]. Moreover, the possibilistic representation is expressive (see [10]
for an introductory survey), and can capture partial orders thanks to the use of
symbolic weights, without being obliged to impose greater priority weights to
any preference (as it is the case for father node preferences in CP nets). Still
much remains to be done. First, the question of an exact representation of any
CP-net remains open. Moreover, an attempt has been made recently [10] for
representing more general CP-theories [16] in the possibilistic logic approach
(by introducing further inequalities between symbolic weights in order to take
into account the CP-theory idea that some preferences hold irrespective of the
values of some variables), where the leximin order seems to provide an upper
approximation. This remains to be confirmed and developed further. Comparing
CP-nets with Bayesian possibilistic nets would be also of interest.

Acknowledgements. The authors are grateful to Nic Wilson for useful com-
ments on their previous workshop paper [10].
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Abstract. Social network analysis is a methodology used extensively
in social sciences. While classical social networks can only represent the
qualitative relationships between actors, weighted social networks can
describe the degrees of connection between actors. In classical social net-
work, regular equivalence is used to capture the similarity between actors
based on their linking patterns with other actors. Specifically, two actors
are regularly equivalent if they are equally related to equivalent others.
The definition of regular equivalence has been extended to regular sim-
ilarity and generalized regular equivalence for weighted social networks.
Recently, it was shown that social positions based on regular equivalence
can be syntactically expressed as well-formed formulas in a kind of modal
logic. Thus, actors occupying the same social position based on regular
equivalence will satisfy the same set of modal formulas. In this paper,
we will present analogous results for regular similarity and generalized
regular equivalence based on many-valued modal logics.

Keywords: Weighted social network, regular similarity, generalized reg-
ular equivalence, many-valued modal logic.

1 Introduction

Social network analysis (SNA) is a methodology used extensively in social and
behavioral sciences, as well as in political science, economics, organization the-
ory, and industrial engineering [25,14,27]. Positional analysis of a social network
tries to find similarities between nodes in the network [3,4,10,16,28]. In SNA, a
category, called a social role or social position, is defined in terms of the simi-
larities of the patterns of relations among the nodes, rather than the attributes
of the nodes. One of the the most studied notions in the positional analysis of
social networks is called regular equivalence [3,6,23,24]. According to Borgatti
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and Everett [3], two actors are regularly equivalent if they are equally related
to equivalent others. Interestingly, it was shown that social positions based on
regular equivalence can be syntactically expressed as well-formed formulas (wff)
in a kind of modal logic [21]. Thus, actors occupying the same social position
based on regular equivalence will satisfy the same set of modal formulas.

In recent years, weighted social networks have also received considerable at-
tention because they can represent both the qualitative relationships and the
degrees of connection between nodes [2,11,12,15,22,26]. In [12], the notion of
regular equivalence is extended to weighted social networks based on two alter-
native definitions of regular equivalence. While the two definitions are equiv-
alent for ordinary networks, they induce different generalizations for weighted
networks. The first generalization, called regular similarity, is based on the defi-
nition of regular equivalence as an equivalence relation that commutes with the
underlying graph edges [4]. By the definition, regular similarity is a fuzzy rela-
tion that describes the degree of similarity between actors in the network. The
second generalization, called generalized regular equivalence, is based on the def-
inition of role assignment or coloring [16]. A role assignment (resp. coloring) is
a mapping from the set of actors to a set of roles (resp. colors). The mapping is
regular if actors assigned to the same role have the same roles in their neighbor-
hoods. Consequently, generalized regular equivalence is an equivalence relation
that can determine the role partition of actors in a weighted social network.

Due to the importance of weighted social networks, we would like to explore
the logical characterizations of regular similarity and generalized regular equiva-
lence. In this paper, many-valued modal logics are used to characterize these two
kinds of relations. On one hand, we show that the truth values of many-valued
modal logic formulas are invariant with respect to generalized regular equiva-
lence. On the other hand, we show that the degree of the maximum regular
similarity between any two actors is equal to the infimum equivalence degree of
truth values of many-valued modal logic formulas in these two actors.

The remainder of this paper is organized as follows. In Section 2, we review
some basic concepts about social networks, fuzzy relations, and positional anal-
ysis. In Sections 3 and 4, we present the logical characterizations of regular sim-
ilarity and generalized regular equivalence respectively. Finally, we summarize
the results in Section 5.

2 Preliminaries

2.1 Social Networks

Social networks are defined by actors and relations (or nodes and edges in terms
of graph theory) [14]. A social network is defined as a relational structure N =
(U, (Pi)i∈I , (Rj)j∈J ), where the universe U is a finite set of actors, Pi ⊆ U for all
i ∈ I, and Rj ⊆ U × U for all j ∈ J . For each x ∈ U , the out-neighborhood and
in-neighborhood of x with respect to a binary relation R, denoted respectively
by Rx and R−x, are defined as follows:

Rx = {y ∈ U | (x, y) ∈ R}, (1)
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R−x = {y ∈ U | (y, x) ∈ R}. (2)

If E is an equivalence relation on U and x is an actor, the E-equivalence class
of x is equal to its neighborhood, i.e., [x]E = Ex = E−x. Note that the latter
equality holds because of the symmetry of E. For any X ⊆ U , we denote by
[X ]E the set {[x]E | x ∈ X}.

Several equivalence relations have been proposed for exploring the structural
similarity between actors. Among them, regular equivalence has been extensively
studied [3,4,10,16,28]. Although there are several definitions of regular equiva-
lence, we only consider two of them in this paper. The first is given by Boyd and
Everett [4], which states that an equivalence relation E is a regular equivalence
with respect to a binary relation R if it commutes with R; i.e.,

E ·R = R ·E, (3)

where E · R = {(x, y) | ∃z ∈ U, (x, z) ∈ E ∧ (z, y) ∈ R} is the composition of
E and R. By this definition, if E is a regular equivalence with respect to R and
(x, y) ∈ E, then for each z ∈ Rx (resp. R−x), there exists z′ ∈ Ry (resp. R−y)
such that (z, z′) ∈ E. The property naturally leads to an alternative definition
of regular equivalence based on role assignment [16], which states that an equiv-
alence relation E is a regular equivalence with respect to a binary relation R if
for x, y ∈ U ,

(x, y) ∈ E ⇒ ([Rx]E = [Ry]E and [R−x]E = [R−y]E). (4)

According to this definition, if x and y are regularly equivalent, then they are con-
nected to equivalent neighborhoods. Obviously, the above definitions are equiv-
alent. Thus, we have the following definition.

Definition 1. Let N = (U, (Pi)i∈I , (Rj)j∈J ) be a social network and E be an
equivalence relation on U ; then E is a regular equivalence with respect to N if

1. (x, y) ∈ E implies x ∈ Pi iff y ∈ Pi for all i ∈ I; and
2. E is a regular equivalence with respect to Rj for all j ∈ J .

By the definition, there may exist more than one regular equivalence for a given
network. However, it has been shown that there always exists a maximum (i.e.,
coarsest) regular equivalence for a network [16].

2.2 Weighted Social Networks

Social networks can model the interactions and connections between actors. How-
ever, in most real-world networks, not all ties in a network have the same capac-
ity. In fact, ties are often associated with weights that differentiate them in terms
of their strength, intensity, or capacity [2]. Mathematically, we can use fuzzy sets
and relations to model weighted social networks. Fuzzy sets are sets whose ele-
ments have degrees of membership [29]. The membership degrees are typically
drawn from the unit interval [0, 1]. A t-norm operation on [0, 1] is usually used
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to define the intersection of fuzzy sets. A t-norm is a binary operation ⊗ on [0, 1]
satisfying commutativity, associativity, non-decreasing in both arguments, and
1 ⊗ c = c and 0 ⊗ c = 0 for all c ∈ [0, 1] [13]. The residuum of a t-norm ⊗ is
a binary operation ⇒ on [0, 1] defined as a ⇒ b = sup{c | a ⊗ c ≤ b} for all
a, b ∈ [0, 1]. Furthermore, the residuum defines its corresponding unary opera-
tion of precomplement −c = c⇒ 0. In this paper, we mainly use the well-known
Gödel t-norm a⊗ b = min(a, b). Hence, its corresponding residuum is defined by

a⇒ b =

{
1, if a ≤ b,
b, otherwise.

(5)

and its corresponding precomplement is the Gödel negation defined by

−a =

{
1, if a = 0,
0, otherwise.

(6)

In addition, we use a⇔ b to denote min(a⇒ b, b⇒ a). It is easy to see that

a⇔ b =

{
1, if a = b,
min(a, b), otherwise.

(7)

In fuzzy set theory, a fuzzy binary relation R on U can be characterized by its
membership function μR : U × U ,→ [0, 1]. Obviously, a fuzzy binary relation
is a generalization of a binary relation, so the upper-case letters R,S, T , etc.,
are used to denote both fuzzy and crisp relations. Since we only consider fuzzy
binary relations in this paper, we call them fuzzy relations hereafter, and the
term “binary relation” means crisp relations only. A fuzzy relation R is included
in another fuzzy relation S, denoted by R ⊆ S, if μR(x, y) ≤ μS(x, y) for all
x, y ∈ U . Several basic operations for binary relations can be easily generalized
to fuzzy relations.

Definition 2. Given two fuzzy relations R and S on U , the following fuzzy
relations can be derived:

1. the identity relation Id:

μId(x, y) =

{
1, if x = y,
0, otherwise;

(8)

2. the converse of R, R−:

μR−(x, y) = μR(y, x); (9)

3. the composition of R and S, R · S:

μR·S(x, y) = sup
z∈U

min(μR(x, z), μS(z, y)); (10)

4. the union of R and S, R ∪ S:

μR∪S(x, y) = max(μR(x, y), μS(x, y)); (11)
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5. the intersection of R and S, R ∩ S:

μR∩S(x, y) = min(μR(x, y), μS(x, y)). (12)

The composition of R with itself k times is denoted by Rk and the transitive
closure of R is defined as R∞ =

⋃
k≥1 R

k. Based on these definitions, the equiv-
alence relation is generalized to the similarity relation in fuzzy set theory.

Definition 3. A fuzzy relation R is called a similarity relation if it satisfies the
following properties:

– reflexivity: Id ⊆ R,
– symmetry: R = R−, and
– (sup-min) transitivity: R2 ⊆ R.

Intuitively, if R is a similarity relation, then R(x, y) specifies the degree of simi-
larity between x and y. The set of all similarity relations on a domain U forms a
lattice. The meet and join of two similarity relations R and S in the lattice are
defined as R � S = R ∩ S and R � S = (R ∪ S)∞ respectively.

Given the basic notations of fuzzy sets and relations, a weighted social network
can be defined as a structure N = (U, (Pi)i∈I , (Rj)j∈J ), where U is a finite set
of actors, Pi is a fuzzy subset of U for all i ∈ I, and Rj is a fuzzy relation on
U for all j ∈ J . Although the membership degrees of fuzzy sets and relations
may be any real numbers from the unit interval, in practice, the weights in a
weighted social network are rarely irrational numbers. Thus, we further assume
that the membership degrees of Pi’s and Rj ’s are all rational. Hereafter, when
we mention the unit interval [0, 1], it really means [0, 1] ∩Q.

We have presented the definition of regular equivalence in two ways. While
these two definitions coincide for classical social networks, they behave quite
differently in weighted social networks. Based on the commutativity between the
similarity relation and the underlying fuzzy relations, we can induce a kind of
structural similarity between actors. Such similarity is called a regular similarity.
Formally, a similarity relation S is called a regular similarity with respect to a
fuzzy relation R if it commutes with R, i.e., S · R = R · S. Hence, the regular
similarity of a weighted social network can be defined as follows.

Definition 4. Let N = (U, (Pi)i∈I , (Rj)j∈J ) be a weighted social network and S
be a similarity relation on U ; then S is a regular similarity with respect to N if

1. for all x, y ∈ U , μS(x, y) ≤ mini∈I(μPi(x)⇔ μPi(y)); and
2. S is a regular similarity with respect to Rj for all j ∈ J .

In [12], it is shown that regular similarities are closed with respect to the usual
join of similarity relations. Thus, we can define the maximum (with respect to
fuzzy inclusion) regular similarity of a weighted social network.

On the other hand, based on the notion of role assignment, we can derive
the concept of generalized regular equivalence (GRE). Although regular simi-
larity is a fuzzy relation, GRE gives a crisp partition of actors in a weighted
network. To define GRE, we need to consider the neighborhoods of the nodes in
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weighted networks. Let R be a fuzzy relation on U . Then, for each x ∈ U , the
out-neighborhood and in-neighborhood of x, still denoted by Rx and R−x re-
spectively, are two fuzzy subsets of U with the following membership functions:

μRx(y) = μR(x, y), (13)

μR−x(y) = μR(y, x), (14)

for any y ∈ U . Let F be a fuzzy subset of U and E be an equivalence relation
on U . Then, [F ]E is a fuzzy subset of the quotient set U/E = {[x]E | x ∈ U}
with the following membership function:

μ[F ]E (X) = max
y∈X

μF (y) (15)

for any X ∈ U/E. Then, an equivalence relation E is a GRE with respect to a
fuzzy relation R if (x, y) ∈ E implies that

[Rx]E = [Ry]E and [R−x]E = [R−y]E . (16)

Hence, the GRE of a weighted social network can be defined as follows.

Definition 5. Let N = (U, (Pi)i∈I , (Rj)j∈J ) be a weighted social network and
E be an equivalence relation on U ; then E is a GRE with respect to N if

1. (x, y) ∈ E implies μPi(x) = μPi(y) for all i ∈ I; and
2. E is a GRE with respect to Rj for all j ∈ J .

Like regular equivalences, GRE is also closed with respect to the usual join of
equivalence relations. Thus, we can define the maximum (the coarsest) GRE of
a weighted social network. In addition, we use x ≡g

N y to denote that (x, y) is in
the maximum GRE of the network.

3 Regular Similarity and Modal Logic

As in the case of ordinary social networks, we would like to find a logical lan-
guage that can characterize regular similarity in weighted social networks. One
candidate for such logic is the many-valued modal logic since its formulas typi-
cally have a degree of truth in the unit interval. Many-valued modal logic is the
extension of modal logic with the underlying propositional logic being replaced
by many-valued logic. There exist a variety of many-valued logics depending on
their choices of syntax and semantics. In particular, a family of [0,1]-valued logics
is introduced in [13], where the most important instances are �Lukasiewicz, Gödel
and product logics. These logic systems are interpreted in algebraic structures
called residuated lattices such that continuous t-norms and their correspond-
ing residua in the algebras are taken as the truth functions of the conjunction
and the implication respectively. For the purpose of this paper, we mainly con-
sider the Gödel logic. Hence, we introduce the many-valued modal logic G(�)
as follows.
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The alphabet of G(�) is close to that of classical modal logic. However, to
represent partial truth, G(�) is extended with the set of truth constants c for
each rational c ∈ [0, 1]. Thus, the alphabet of G(�) consists of a set of propo-
sitional symbols PV , the set of truth constant {c | c is a rational in [0, 1]}, a
set of relational symbols REL, the Boolean connectives ∧ and →, the relational
converse symbol −, and the modality-forming symbol 〈〉. The set of wffs of G(�)
is the smallest set containing PV and the set of truth constants that satisfies
the following conditions:

– if ϕ is a wff and α is a relational symbol, then 〈α〉ϕ and 〈α−〉ϕ are wffs;
– if ϕ and ψ are wffs, then ϕ ∧ ψ and ϕ→ ψ are wffs.

We abbreviate ϕ → 0 as ¬ϕ, (ϕ → ψ) ∧ (ψ → ϕ) as ϕ ↔ ψ, and ((ϕ → ψ) →
ψ) ∧ ((ψ → ϕ)→ ϕ) as ϕ ∨ ψ.

A Kripke model for G(�) is M = (W, (Rα)α∈REL, V ), where W is a set
of possible worlds, for each α ∈ REL, Rα is a fuzzy relation on W , and V :
W × PV ,→ [0, 1] is a truth assignment for evaluating the truth value of each
propositional symbol in each world. Let Φ denote the set of all G(�) wffs. Then,
the truth assignment V can be iteratively extended to a function V : W × Φ ,→
[0, 1] in the following way:

1. V (w, c) = c
2. V (w,ϕ ∧ ψ) = min(V (w,ϕ), V (w,ψ)),
3. V (w,ϕ→ ψ) = (V (w,ϕ)⇒ V (w,ψ)),
4. V (w, 〈α〉ϕ) = supu∈W min(Rα(w, u), V (u, ϕ)),
5. V (w, 〈α−〉ϕ) = supu∈W min(R−

α (w, u), V (u, ϕ)).

Obviously, we can derive the following results:

1. V (w,¬ϕ) = −V (w,ϕ),
2. V (w,ϕ↔ ψ) = (V (w,ϕ)⇔ V (w,ψ)),
3. V (w,ϕ ∨ ψ) = max(V (w,ϕ), V (w,ψ)).

For a given weighted social network N = (U, (Pi)i∈I , (Rj)j∈J ), we define a G(�)
language with the basic symbols PV = {pi | i ∈ I} and REL = {αj | j ∈ J}.
The weighted social network N is then transformed into a Kripke model for the
language MN = (U, (Rj)j∈J , V ), where V is defined by V (x, pi) = μPi(x) for all
x ∈ U and i ∈ I and Rj denotes Rαj for j ∈ J . Let ΦN denote the set of wffs
of this G(�) language. Then, the logical characterization of regular similarity is
presented as the following theorem.

Theorem 1. Let N = (U, (Pi)i∈I , (Rj)j∈J ) be a weighted social network, S be
its maximum regular similarity, and MN = (U, (Rj)j∈J , V ) be the corresponding
Kripke model. Then, for any x, y ∈ U , we have

μS(x, y) = inf
ϕ∈ΦN

(V (x, ϕ)⇔ V (y, ϕ)). (17)
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The theorem represents a fuzzified version of the semantic invariance of any
wffs with respect to the regular similarity. Intuitively, a wff can be seen as the
descriptive property of actors. Thus, V (x, ϕ) is the degree that the property ϕ is
true of the actor x. Hence, the theorem essentially means that the more similar
two actors are, the more equivalent their descriptive properties are. While regular
similarity is characterized by fuzzy equivalence, there is a special case that is
useful for the crisp partition of the network. We say that two actors, x and y,
are G(�)-equivalent with respect to N if for all ϕ ∈ ΦN, V (x, ϕ) = V (y, ϕ).

Corollary 1. Let S be the maximum regular similarity of N. Then, for any
actors x, y ∈ U , μS(x, y) = 1 iff x and y are G(�)-equivalent with respect to N.

4 Generalized Regular Equivalence and Modal Logic

To present the logical characterization of GRE, we have to extend G(�) with the
projection operator Δ. As the operator was first used by Baaz for Gödel logic,
it is also called the Baaz Delta [1]. The projection operator Δ : [0, 1] ,→ {0, 1} is
defined by

Δa =

{
1, if a = 1,
0, otherwise.

(18)

Let G�(�) be the extension of G(�) with the unary projection connective �.
Then, the formation rules for the wffs of G�(�) are those for G(�) and the
following one:

– if ϕ is a wff, then �ϕ is a wff.

The definition of Kripke models for G�(�) remains the same as that for G(�),
but, for a model M = (W, (Rα)α∈REL, V ), the truth assignment V satisfies the
additional condition:

V (w,�ϕ) = Δ(V (w,ϕ)).

The projection connective can be also defined by an involutive negation. A nega-
tion operator is involutive if it satisfies the double negation law. As it can be
easily seen, the negation in G(�) is not involutive. That is, ¬¬ϕ ↔ ϕ is not
a 1-tautology in G(�). The extensions of many-valued logic with an additional
involutive negation have been extensively studied in [5,9]. Let G∼(�) be the
extension of G(�) with the involutive negation ∼. Then, in addition of the for-
mation rules for wffs of G(�), we also have the following rule:

– if ϕ is a wff, then∼ϕ is a wff,

and, for a model M = (W, (Rα)α∈REL, V ), the truth assignment V satisfies the
following condition:

V (w,∼ϕ) = 1− V (w,ϕ).

In G∼(�), we can define �ϕ as the abbreviation of ¬∼ϕ. Thus, G∼(�) is more
expressive than G�(�). However, they can both characterize GRE in the same
way.
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Given a weighted social network N = (U, (Pi)i∈I , (Rj)j∈J ), we can define the
basic symbols in PV and REL from N and the Kripke model MN in the same
way as in the preceding section. Let Φ�

N and Φ∼
N denote the set of such G�(�) and

G∼(�) wffs respectively. We say that two actors x, y ∈ U are G�(�)-equivalent
(resp. G∼(�)-equivalent) with respect to N iff for any ϕ ∈ Φ�

N (resp. ϕ ∈ Φ∼
N),

V (x, ϕ) = V (y, ϕ). Then, we have the following theorem.

Theorem 2. Let N = (U, (Pi)i∈I , (Rj)j∈J ) be a weighted social network. Then,
for any x, y ∈ U , the following three statements are equivalent:

1. x ≡g
N y;

2. x and y are G∼(�)-equivalent with respect to N;
3. x and y are G�(�)-equivalent with respect to N.

Combining this theorem with Corollary 1 establishes a relationship between GRE
and regular similarity.

Corollary 2. Let S be the maximum regular similarity of N. Then, for any
actors x, y ∈ U , x ≡g

N y implies μS(x, y) = 1.

4.1 Special Case: Hybrid Social Network

In weighted social networks, each actor is associated with fuzzy attributes and
connected with other actors by fuzzy relations. However, there is a special
kind of weighted social networks in which the attributes are crisp although
the relations between actors are still weighted. For example, in a friendship
network, the strength of ties determines a degree of friendship between actors.
Hence, the friendship relation is modeled as a fuzzy relation. However, the per-
sonal attributes of each actor, such as gender, age, and occupation, etc. may
be all crisp. To model such networks, we say that a weighted social network
N = (U, (Pi)i∈I , (Rj)j∈J ) is a hybrid social network if for each i ∈ I, Pi is a crisp
subset of U .

For GRE of hybrid social networks, in addition to the characterizations above,
we can provide an alternative characterization based on quantitative modal logic
(QML) [17,18,19,20]. QML is a modal version of the possibilistic logic, which is
a logic for reasoning about uncertainty based on possibility theory [7,8]. In the
theory, a possibility distribution on the universe U is a function π : U ,→ [0, 1]
and two measures on U , called possibility and necessity measures and denoted
by Π and N respectively, can be derived from π. Formally, Π,N : 2U ,→ [0, 1]
are defined as

Π(X) = sup
u∈X

π(u), (19)

N(X) = 1−Π(X), (20)

whereX is the complement ofX with respect to U . In a weighted social network,
each actor’s out-neighborhood and in-neighborhood with respect to a fuzzy re-
lation can be seen as possibility distributions. In other words, the membership
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functions in equations (13) and (14) correspond to these possibility distributions.
The modalities in QML can represent lower bounds of the possibility measures of
propositions, where each proposition is interpreted as a subset of possible worlds
(or actors).

The alphabet of QML is the same as that of classical modal logic. However,
the formation rule for modal formulas is modified as follows:

– if ϕ is a wff, α is a relational symbol, and c is a rational in [0, 1] then 〈α≥c〉ϕ,
〈α>c〉ϕ, 〈α−

≥c〉ϕ, and 〈α
−
>c〉ϕ are all wffs.

For the semantics, a Kripke model of QML is a special kind of G�(�) model
M = (W, (Rα)α∈REL, V ) with the restriction of V : W × PV ,→ {0, 1}. Then,
the satisfaction of modal formulas are defined as follows:

1. M, w |= 〈α≥c〉ϕ iff supu∈|ϕ| μRα(w, u) ≥ c,
2. M, w |= 〈α>c〉ϕ iff supu∈|ϕ| μRα(w, u) > c,

3. M, w |= 〈α−
≥c〉ϕ iff supu∈|ϕ| μR−

α
(w, u) ≥ c,

4. M, w |= 〈α−
>c〉ϕ iff supu∈|ϕ| μR−

α
(w, u) > c,

where |ϕ| = {x ∈ W | M, x |= ϕ} is the truth set of ϕ. According to equations
(13) and (14), supu∈|ϕ| μRα(w, u) and supu∈|ϕ| μR−

α
(w, u) represent the possibil-

ity measures of ϕ derived from the out-neighborhood and in-neighborhood of w
respectively.

Unlike many-valued modal logics, QML is a two-valued multi-modal logic. The
main feature is that the numerical possibility measures are internalized by using
modal operators. For a given hybrid social networkN = (U, (Pi)i∈I , (Rj)j∈J ), we
define a QML language with the basic symbols PV = {pi | i ∈ I} and REL =
{αj | j ∈ J}. Then, N is transformed into a QML model MN = (U, (Rj)j∈J , V ),
where V is defined by V (x, pi) = 1 iff x ∈ Pi for all x ∈ U and i ∈ I and Rj

denotes Rαj for j ∈ J . We say that two actors, x and y, are QML-equivalent with
respect to N if for all ϕ in the given QML language, (MN, x |= ϕ iff MN, y |= ϕ).

Theorem 3. Let N = (U, (Pi)i∈I , (Rj)j∈J ) be a hybrid social network. Then,
for any x, y ∈ U , x ≡g

N y iff x and y are QML-equivalent with respect to N.

5 Conclusion

The notion of regular equivalence has been studied extensively in social network
analysis and found many applications in block modeling, network clustering,
role or position identification, and so on. To represent the intensity of ties and
interactions between actors, traditional social networks have been generalized
to weighted social networks. There exist different, but equivalent, definitions of
regular equivalences in the literature. However, when generalized to weighted
social networks, these definitions may result in different notions of similarity.
Two kinds of generalizations based on Gödel t-norm, called regular similarity
and generalized regular equivalence (GRE), have been proposed in [12].
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In this paper, we show that many-valued modal logic can characterize regular
similarity or GRE in a weighted social network. By viewing a weighted social
network as a model of the many-valued modal logic, similar or equivalent ac-
tors satisfy the set of modal logic formulas to the same degree. Specifically, the
many-valued modal logic G(�) based on the Gödel t-norm characterizes regular
similarity in the sense that the degree of similarity between two actors is equal
to the fuzzy equivalence of the actors’ truth degrees for any formulas of the logic.
Also, the extensions of G(�) with the involutive negation or projection operators
characterize GRE in the sense that two actors are equivalent iff they satisfy any
formula of the logics to the same degree. For a special kind of weighted social
network, called hybrid social network, where the actors’ attributes are all crisp
although their ties may be weighted, we also show its logical characterization by
a modal version of possibilistic logic, QML.
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Abstract. The investigation reported in this paper aims at clarifying
an important yet subtle distinction between (i) the logical objects on
which measure theoretic probability can be defined, and (ii) the inter-
pretation of the resulting values as rational degrees of belief. Our central
result can be stated informally as follows. Whilst all subjective degrees
of belief can be expressed in terms of a probability measure, the converse
doesn’t hold: probability measures can be defined over linguistic objects
which do not admit of a meaningful betting interpretation. The logical
framework capable of expressing this will allow us to put forward a pre-
cise formalisation of de Finetti’s notion of event which lies at the heart
of the Bayesian approach to uncertain reasoning.

1 Introduction: The Epistemic Structure of De Finetti’s
Betting Interpretation

De Finetti’s theory of subjective probability is well-known and widely scrutinized
in the literature (cf. [2]), so we will review only on those aspects which are directly
relevant to our present purposes1.

Let θ1, . . . , θn be events of interest. De Finetti’s betting problem is the choice
that an idealised agent called bookmaker must make when publishing a book, i.e.
when making an assignment B = {(θi, βi) : i = 1, . . . , n} in which each event of
interest θi is given value βi ∈ [0, 1]. Once a book has been published, a gambler
can place bets Si ∈ R on any event θi by paying Siβi to the bookmaker. In return
for this payment, the gambler will receive Si, if θi obtains and nothing otherwise.
Note that “betting on θi” effectively amounts, for the gambler, to choosing a
real-valued Si which determines the amount payable to the bookmaker2.

1 The reader who wishes to consult the originals is referred to [2,3,5,6].
2 In order to avoid potential distortions arising from the diminishing value of money,
de Finetti invokes the “rigidity hypothesis” to the effect that Si should be small.

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 206–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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De Finetti’s construction of the betting problem proceeds by forcing the book-
maker to write fair betting odds for any given book B. To this end, two modelling
assumptions are built into the problem, namely (i) the bookmaker must accept
any number of bets on B and (ii) when betting on θi, gamblers can choose the
sign of the stakes Si, thereby possibly (and unilaterally) imposing a payoff swap
to the bookmaker. Taken jointly, conditions (i-ii) force the bookmaker to pub-
lish books with zero-expectation, for doing otherwise may offer gamblers the
possibility of making a sure profit, possibly by swapping payoffs. As the game is
zero-sum, this is equivalent to forcing the bookmaker into sure loss. The Dutch
Book theorem states that this possibility is avoided exactly when the bookmaker
chooses betting odds which are probabilities.

This line of argument presupposes an epistemic structure which de Finetti
mentions only in passing in his major contributions to this topic [3,4,5]. A more
direct, albeit very informal, reference to the point appears in [6]. For reasons
that will be apparent in a short while, the underlying epistemic structure of the
betting problem is fundamental to understanding the notion of event :

[T]he characteristic feature of what I refer to as an “event” is that the
circumstances under which the event will turn out to be “verified” or
“disproved” have been fixed in advance. [6] (p. 150)

This very informal characterisation echoes the characterisation de Finetti gives
of random quantities –of which events are special cases. A random quantity is
a “well-determined” unknown, namely one which is so formulated as “to rule
out any possible disagreement on its actual value, for instance, as it might arise
when a bet is placed on it.” ([5], Section 2.10.4).

The epistemic structure implicit in the betting framework clearly builds on
the presupposition that at the time of betting bookmakers and gamblers ignore
the truth value of the event on which they are betting, i.e. they agree that, say
v(θ) is undefined. Yet, for the bet to be meaningful, i.e. payable at all, players
must also agree on the conditions which will decide the truth value of θ. This
implies that a betting interpretation of probability is meaningful only for those
sentences whose truth value is presently (at the time of betting) undecided, but
which the players know that will eventually be decided. Now, there are certainly
well-formed formulas escaping this restriction, so probability functions defined
on them cannot have a betting interpretation.

Before introducing the logical framework that will formalise this in Section
2, let us pause for a second to appreciate why the interpretation of probability
which arises in this context is clearly subjective. Whether a sentence qualifies
as an event depends crucially on the state of information of the individuals
involved in the betting problem. Compare this with the logical, measure-theory
inspired, characterisation of probability functions which is derived under the
tacit assumption that the agent’s state of information is empty, that is to say
the set of events includes all possible sentences. This assumption will be relaxed
in our framework and indeed this will lead us to generalise the scope of the
representation theorem of probability functions on sentences by introducing a
refinement of the notion of probability functions which we call bet functions
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and we denote by Bet(·). In particular, we shall be interested in characterising
sentences of SL in such a way that the resulting definitions of facts and events
(Section 3.2) will give us enough structure to prove that Bet(·) so defined is
consistent in the sense of de Finetti (Section 4) and to show that its extension
to inaccessible sentences preserves consistency (Section 5). Section 6 concludes
by pointing to the future work which we envisage within the framework fleshed
out in this paper.

2 Background

Let L = {p1, . . . , pn} be a finite set of propositional variables, and let SL =
{θ, φ, . . .} be the set of sentences built as usual from L in the language of clas-
sical propositional logic. Denote by ATL be the set of maximally elementary
conjunctions of L, that is the set of sentences of the form α = pε11 ∧pε22 ∧ . . .∧pεnn ,
with εi ∈ {0, 1} and where p1i = pi and p0i = ¬pi, for i = 1, . . . , n.

Note that the Lindenbaum algebra3 on SL is a finite Boolean algebra and
hence it is atomic. In particular the elements of ATL exactly correspond the
atoms of the Lindenbaum algebra.

ATL is in 1-1 correspondence with the set V of (classical) valuations on L. This
implies that there is a unique valuation satisfying v(α) = 1 namely vα(p

εi
i ) = εi

for 1 ≤ i ≤ n. Conversely, given a valuation v ∈ V there exists a unique atom
α ∈ ATL such that v(α) = 1. Now let

Mθ = {α ∈ ATL | α |= θ},

where |= denotes the classical Tarskian consequence. Since there exists a unique
valuation satisfying α, say vα, by definition of |= it must be the case that vα(θ) =
1. Thus

Mθ = {α ∈ ATL | vα(θ) = 1}.

This framework is sufficient to provide a very general representation theorem for
probability functions.

Theorem 1 (Paris 1994)

1. Let P be a probability function on SL.4 Then the values of P are completely
determined by the values it takes on ATL = {α1, . . . , αJ}, as fixed by the
vector

〈P (α1), P (α2), . . . , P (αJ )〉 ∈ DL = {a ∈ RJ | a ≥ 0,

J∑
i=1

ai = 1}.

3 Recall that the Lindenbaum algebra over L is the quotient set SL/ ≡, where ≡ is the
logical equivalence relation (defined as θ1 ≡ θ2 iff |= θ ↔ θ2), with the operations
induced by the classical conjunction, disjunction and negation connectives.

4 P : SL → [0, 1] is a probability function on sentences if (i) P (�) = 1, (ii) P (θ1∨θ2) =
P (θ1) + P (θ2) if |= ¬(θ1 ∧ θ2), and (iii) P (θ1) = P (θ2) if |= θ1 ↔ θ2.
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2. Conversely, fix a = 〈a1, . . . , aJ〉 ∈ DL and let P ′ : SL→ [0, 1] be defined by

P ′(θ) =
∑

i:αi∈Mθ

ai. (1)

Then P ′ is a probability function.

In words, Theorem 1 shows that every probability function arises from distribut-
ing the unit mass of probability across the J = 2n atoms of the Lindenbaum
algebra generated by L = {p1, . . . , pn}.

Our goal is to refine this result by isolating a class of sentences on which, we
argue, there should be no distribution of epistemically significant mass. More
specifically, we aim at building a framework in which those probabilities which
bear a meaning as betting quotients can be formally distinguished from those
which do not. Central to achieving this will be a rigorous definition of de Finetti’s
notion of event, which will be distinguished from the related notion of fact.
Under certain conditions, all sentences in SL will either be events or facts. Under
more general conditions a third class of inaccessible sentences will feature in SL.
The central result of this paper can be intuitively phrased as establishing that
probabilities which are defined on sentences which are not events can only be
given trivial values. Trivial, as we will shortly see, means one of two things. Either
a sentence can (coherently) be given only its truth value (and this characterises
betting on facts), or it should be given 0. This means that the “uncertainty mass”
is really concentrated only on events, for which we provide a formal definition.

3 Formal Preliminaries: Information Frames, Facts and
Events

In what follows, we denote subsets of SL by capital Greek letters Γ,Δ, . . ., and
the classical Tarskian consequence is denoted by either |= or Cn depending on
whether its relational or operational definition is more suited to the specific to
the context. Recall that a (total, classical) valuation is a function v : L→ {0, 1}
which extends uniquely to the sentences in SL. A total valuation represents a
“fully informed” epistemic state since it allows agents to assign a truth-value
(either 1 or 0) to any sentence of SL. However, an epistemic state determined
by a set Γ of sentences (the ones known to be true), will permit an assignment
of truth-values 1 or 0 only to some subset of sentences. In fact, each Γ uniquely
determines a three-valued map on SL, eΓ : SL→ {0, 1, u}, defined as

eΓ (θ) =

⎧⎪⎨⎪⎩
1 if θ ∈ Cn(Γ ),

0 if ¬θ ∈ Cn(Γ ),

u otherwise.

(2)

where the new value u reads as unknown.
Notice that partial evaluations are not truth-functional. Note also that, if

Γ ⊆ Γ ′ then Cn(Γ ) ⊆ Cn(Γ ′). From now on, we will say that a mapping
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e : SL → {0, 1, u} is a partial evaluation whenever there exists Γ ⊆ SL such
that e = eΓ .

Given two partial valuations e, e′, we say that e′ extends e, written e ⊆ e′,
when the class of formulas which e sends into {0, 1} is included into that one
which e′ sends into {0, 1}. Note that if e = eΓ and e′ = eΓ ′ then

e ⊆ e′ ⇔ Γ ⊆ Γ ′. (3)

By a theory we mean a deductively closed subset of SL. So, Γ is a theory if and
only if Cn(Γ ) = Γ . We denote the set of theories on L by T. Let us finally recall
that a theory Γ ∈ T is maximally consistent iff for every θ ∈ SL, either Γ |= θ,
or Γ |= ¬θ. Note also that for any maximally consistent Γ ∈ T, there exists a
(total) valuation v ∈ V such that for all θ ∈ SL, eΓ (θ) = v(θ).

Definition 1 (Determined sentences). We say that Γ ⊆ SL determines
θ ∈ SL, written Γ + θ if and only if, ∀pi ∈ V ar(θ), eΓ (pi) ∈ {0, 1}.
Definition 2 (Decided sentences). We say that Γ ⊆ SL decides θ ∈ SL,
written Γ � θ if and only if eΓ (θ) ∈ {0, 1}.
It is clear that for all Γ ⊆ SL and θ ∈ SL, if Γ + θ then Γ � θ as well.
Furthermore, as remarked above, if Γ ∈ T is maximally consistent, then Γ +
θ ⇔ Γ � θ. The following are immediate consequences of the above definitions.

Proposition 1. For all Γ ⊆ SL, and for all θ, ϕ ∈ SL, the following hold:

1. Γ + θ iff Γ + ¬θ; Γ � θ iff Γ � ¬θ.
2. If Γ � θ, and Γ � ϕ, then Γ � θ ◦ ϕ for all ◦ ∈ {∧,∨,→}.
3. If Γ � θ, Γ � ϕ, and eΓ (θ) = 0 then Γ � θ ◦ ϕ for every ◦ ∈ {∧,∨,→}, but

Γ � θ ∧ ϕ and Γ � θ → ϕ, and in particular eΓ (θ ∧ ϕ) = 0, eΓ (θ → ϕ) = 1.
4. If Γ � θ, Γ � ϕ, and eΓ (θ) = 1 then Γ � θ ◦ ϕ for every ◦ ∈ {∧,∨,→}, but

Γ � θ∨ϕ, Γ �ϕ→ θ and Γ � θ → ϕ, and in particular eΓ (θ∨ϕ) = eΓ (ϕ→
θ) = 1.

3.1 Information Frames

Definition 3 (Information frame). An information frame F is a pair 〈W,R〉
where W is a non-empty subset of partial valuations defined as in Equation (2)
and R is a binary transitive relation on W .

Remark 1. Since each partial valuation is uniquely determined by a Γ ⊆ SL, we
can freely use w1, w2, . . . to denote either subsets of SL or their associated partial
valuations, depending on which interpretation suits best the specific context. As
a consequence of Equation (3) the inclusion w ⊆ w′ is always defined.

We interpret wi ∈ W as an agent’s state of information, i.e. the sentences (equiv-
alently, the partial valuation) which capture all and only the information avail-
able to an agent who finds itself in state wi. Under this interpretation the relation
R models the agent’s possible transitions among information states. For reasons
that will soon be apparent, we always require R to be transitive. As more struc-
ture is needed further restrictions on R will be considered.
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Definition 4. Let F = 〈W,R〉 be an information frame. We say that F is

– Monotone if (w,w′) ∈ R implies w ⊆ w′.
– Complete if w ⊆ w′ implies (w,w′) ∈ R.

Under our interpretation, monotonicity captures the idea that agents can only
learn new information, but never “unlearn” the old one. In addition, monotonic-
ity implies that the dynamics of information is stable in the sense that once a
formula is either determined or decided at state w (i.e. it is given a binary truth-
value), this remains fixed at any information state reachable from w. Hence if
w + φ, then there cannot exist (w,w′) ∈ R such that w′ � φ. Completeness
ensures that the agent will learn all the possible consistent refinements to its
current information state. So, if (w,w′) �∈ R, there exists θ such that w′ + θ
and w + ¬θ. Finally, note that if F is monotonic and complete then obviously
R coincides with set-inclusion among states (equivalently, sets of sentences).

3.2 Facts and Events

The following definition captures the differences among facts, events and inac-
cessible sentences in a monotone information frame.

Definition 5. Let 〈W,R〉 be a monotone information frame, let w ∈ W , and
let θ ∈ SL. We say that θ is a w-fact if w � θ.

On the other hand, if w � θ, we say that θ is:

– a w-event if for every (total) valuation V extending w there exists w′ with
(w,w′) ∈ R such that w′ � θ and w′(θ) = V (θ).

– w-inaccessible if for every (total) valuation V and every world w′ such that
w′(θ) = V (θ), (w,w′) �∈ R.

We shall respectively denote by F(w), E(w) and I(w) the class of w-facts, w-
events, and w-inaccessible sentences, for some information frame 〈W,R〉 and
some w ∈W .

The following proposition sums up some key properties of the sets F(w), E(w)
and I(w).

Proposition 2. Let 〈W,R〉 be a monotone information frame, and let w ∈ W .
Then the following hold:

1. The structure 〈F(w),∧,¬,⊥〉 is a Boolean algebra.
2. If w is a total valuation, then SL = F(w), while if w = ∅ is the empty

valuation, then F(w) = ∅.
3. If 〈W,R〉 is complete, then 〈E(w),∧,¬,⊥〉 is a Boolean algebra.
4. If 〈W,R〉 is complete, then for all w ∈W , SL = F(w)∪E(w). Therefore, in

particular, if 〈W,R〉 is complete, then I(w) = ∅.
5. If I(w) �= ∅, then for every w′ such that its corresponding valuation is total,

(w,w′) �∈ R.
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It is worth noticing that in arbitrary monotone information frameworks one
cannot ensure that sentences which are neither w-facts nor w-events, are w-
inaccesible, so that the sets F(w), E(w), I(w) form a partition of SL. As we will
discuss in further detail in the concluding section, it is surprisingly difficult to
find natural properties on frames which ensure the rather desirable property that
SL = F(w) ∪ E(w) ∪ I(w). When the information framework is also complete
then we trivially get this condition since I(w) = ∅.

4 Formalising the Betting Problem

Next we formalise a notion of Dutch book in our generalised framework.

Definition 6. Let 〈W,R〉 be an information frame, and let Γ = {θ1, . . . , θn}. A
book is any mapping B : Γ → [0, 1]. Then we further define:

– for w ∈ W , the book B is said to be w-Dutch iff there exist S1, . . . , Sn ∈ R
such that for every w′ ∈W such that w′ � θi for every i, and (w,w′) ∈ R,

n∑
i=1

Si(w
′(θi)−B(θi)) < 0;

– the book B is said to be w-coherent, or non-w-Dutch, if B is not w-Dutch;
– the book B is said to be a w-book, if each formula θi ∈ Γ is a w-event.

For w-books, being w-Dutch is a notion that collapses to the usual case. In fact if
all the θi’s are w-events, by definition, each possible evaluation of θi is accessible
from w, and hence the extra requirement that the book be w-Dutch is redundant.
On the other hand, a w-coherent w-book can be extended to more general books
satisfying w-coherence, as shown by the following result.

Theorem 2. Let (W,R) be a monotone information frame, let w ∈ W and let
B : θi ∈ Γ ,→ βi ∈ [0, 1] be a w-coherent w-book. Let ϕ be a sentence which is
not a w-event and consider the book B′ = B ∪ {(ϕ, α)}. Then:

(1) B′ is w-coherent iff α = w(ϕ), in case ϕ is a w-fact.
(2) B′ is w-coherent iff α = 0, in case ϕ is w-inaccessible.

Proof: (1). (⇒). Suppose, to the contrary, that α �= w(ϕ), and in particular
suppose that w(ϕ) = 1, so that α < 1. Then, the gambler can secure a sure win
by betting a positive S on ϕ. In this case in fact, since the information frame
is monotonic by the definition of w-book, w(ϕ) = 1 holds in every world w′

accessible from w. Thus the gambler pays S · α in order to surely receive S in
any such w′. Conversely, if w(ϕ) = 0, then, under the absurd hypothesis, α > 0
and in that case it is easy to see that a sure-winning choice for the gambler
consists in swapping payoffs with the bookmaker, i.e. to bet a negative amount
of money on ϕ.
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(⇐). Let S1, . . . , Sn, S be a system of bets on on θ1, . . . , θn, ϕ. Since B is coherent,
there exists a w′ accessible from w that realizes every θi, and such that

n∑
i=1

Si(βi − w′(θi)) = 0.

Since ϕ is a w-fact and w′ is accessible from w, it follows that w′(ϕ) = w(ϕ) = α.
Therefore one also has(

n∑
i=1

Si(βi − w′(θi))

)
+ S(α− w′(ϕ)) = 0

and hence B′ is also w-coherent.

(2). (⇒). Suppose that α > 0. By contract, the bettor is accepting to pay a
positive stake S > 0 on ϕ, and this means that the he must pay α · S to the
bookmaker, thus occurring in a sure loss since ϕ will not be decided in any world
w′ accessible from w.
(⇐). Since B is w-coherent and since by hypothesis α = 0, B′ extends B in way
which is trivial in the following sense: any gambler betting strictly positive stakes
S1, . . . , Sn, S on B′ will pay to the bookmaker

∑
i Siαi+Sα =

∑
i Siαi+0. And

since ϕ is w inaccessible, in every world w′ accessible from w, she will receive∑
i Siw

′(θi). Hence the coherence of B′ follows from the coherence of B. �

The following example illustrates that w-coherent w-books cannot be charac-
terised, in general, within the standard axiomatic framework for probability.

Example 1. Let L = {p, q} with the following intuitive interpretation:

– p reads “the electron ε has position π”;
– q reads “the electron ε has energy η”.

Suppose further that our agent is in a state w such that the truth value of both
p and q are unknown. In the usual quantum mechanics interpretation, an agent
in w may either learn the position of ε, or its energy, but not both. This gives
rise to the information frame depicted in Figure 1 where we may assume the
following conditions hold:

w1 � p, w1 � q, and w1(p) = 0; w2 � p, w2 � q, and w2(p) = 1;
w3 � q, w3 � p, and w3(q) = 0; w4 � q, w4 � p, and w4(q) = 1;
w5 � p, q, and w5(p) = w5(q) = 1 w6 � p, q, and w5(p) = w5(q) = 0.
w7 � p, q, and w7(p) = 0, w7(q) = 1 w8 � p, q, and w8(p) = 1, w8(q) = 0.

It is immediate to see that p and q are w-events, but p ∧ q is not. In fact, for
instance, due to the inaccessibility of w5, the valuation v mapping p and q to 1
has no correspondence in the worlds which are accessible from w. Analogously,
¬p ∧ q, p ∧ ¬q and ¬p ∧ ¬q are not w-events either.

Each probability assignement which coherently assigns a value to p∧q returns
P (p ∧ q) = 0. In fact either p ∧ q turns out to be realized in an accessible state
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Fig. 1. Heisenberg’s principle allows for the information frame to be such that states
w1, w2, w3, w4 are reachable from w. Any world in which both variables are decided,
namely w5, w6, w7 and w8, are not accessible from w.

(i.e. in w1, or in w3) in which it turns out to be false, or it turns out to be true,
but in the world w5 which is not accessible. Therefore, by an argument entirely
analogous to the proof of Theorem 2, every assignment giving a positive value
β to p ∧ q would lead to a sure loss for the bookmaker.

Compare this with the standard measure-theoretic approach. In particular let
L2 be the 16 element Lindenbaum algebra generated by the variables p and q
with atoms p ∧ q, ¬p ∧ q, p ∧ ¬q, and ¬p ∧ ¬q. In the absence of the structure
imposed by information frames, it would be very natural to assume a uniform
probability distribution over the atoms of L2, thereby mapping p ∧ q into a
strictly positive value and therefore exposing the bookmaker to sure loss for the
bookmaker.

5 Betting on Inaccessible Sentences

Example 1 illustrates that an otherwise standard probability assignment on the
atoms of L2 may lead to sure loss because of the inaccessibility of w5. The
purpose of this section is to show that de Finetti’s own coherence criterion fully
applies when the information frame shared by the bookmaker and gamblers are
complete, so that no sentence is inaccessible.

Definition 7 (Bet functions). Let 〈W,R〉 be a monotone information frame,
and w ∈W . We say that a partial function Bet : SL→ [0, 1] satisfying:

Bet(θ) =

{
w(θ) ∈ {0, 1}, if θ ∈ F(w)
0, if θ ∈ I(w)

(4)

is a w-bet function if in addition it satisfies:

– Bet(θ) = Bet(ϕ), for all θ, ϕ ∈ E(w) such that |= θ ↔ ϕ,
– for all θ, ϕ, (θ ∨ ϕ) ∈ E(w) ∪ F(w) in the domain of Bet such that θ |= ¬ϕ,

Bet(θ ∨ ϕ) = Bet(θ) +Bet(ϕ) (5)
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– Bet(θ) is not defined on each θ ∈ SL \ (E(w) ∪ F(w) ∪ I(w)).

The conditions in (4) capture the (obvious) formalisation of the intuitive re-
marks put forward at the end of Section 2 which we now generalise to possibly
incomplete frames, i.e. such that for some w ∈ W , I(w) �= ∅. The condition
expressed by (5) clearly captures the additivity of the betting functions.

In order to characterise inaccessible sentences, we will be working with the
corresponding partial valuations and we will identify, for the sake of notational
simplicity, states with (partial) valuations.

Definition 8. Let w,w′ be partial valuations. We say that w and w′ are incom-
patible (and we will write w⊥w′) if ∃p such that w�p, w′�p, and w(p) �= w′(p).

For a fixed w and Γ ⊆ SL let V ar(Γ ) be the set of propositional variables
occurring in Γ , we define S(Γ,w) to be the set of worlds w′ ∈ W such that:

(1) (w,w′) ∈ R
(2) for all p �∈ V ar(Γ ), w′(p) = u
(3) there exists a total valuation v such that ∀θ ∈ Γ , v(θ) = w′(θ)

We call the set S(Γ,w) the w-decisive set for Γ . The idea is that S(Γ,w) captures
the minimal set of accessible worlds from w where all sentences of Γ are decided,
and no other sentences except for those that necessarily follow from Γ . States
belonging to the w-decisive set for Γ are logically independent in the following
sense: for any set of formulas Γ , and for every w ∈ W , either S(Γ,w) is empty,
or w′⊥w′′ for each w′, w′′ ∈ S(Γ,w), i.e., by Definition 8, w′ ∪ w′′ ) ⊥.5

The following easily proved proposition sums up interesting properties of w-
decisive sets.

Proposition 3. Let 〈W,R〉 be a monotone information frame, w ∈W , Γ ⊆ SL.
Then the following hold:

1. If Γ ∩ I(w) �= ∅, then S(Γ,w) = ∅;
2. If Γ ⊆ E(w), then S(Γ,w) �= ∅;

Let 〈W,R〉 be an information frame, w ∈ W , and Γ ⊆ E(w) ∪ F(w) ∪ I(w).
Further, let Γ ′ = Γ ∩ (E(w) ∪ F(w)). Finally, let π : S(Γ ′, w) → [0, 1] satisfy∑

w′∈S(Γ ′,w) π(w
′) = 1, and define Bet′π(·) : Γ ′ ⊆ SL→ [0, 1] by

Bet′π(θ) =
∑

w′∈S(Γ ′,w)

π(w′) · w′(θ),

for all θ ∈ Γ ′.

5 Note that if I(w) �= ∅, w-bets cannot be characterised as distributions on ATL. As
pointed out in Section 2 above, in fact, the formulas in ATL correspond to total
valuations. But by Proposition 2, whenever I(w) �= ∅, each w′ corresponding to a
total valuation must be such that (w,w′) �∈ R.
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The map Bet′π is extended to a partial map Betπ over Γ by the coherence
criterion we proved in Theorem 2. Hence, for each θ ∈ Γ ,

Betπ(θ) =

{
Bet′π(θ) if θ ∈ Γ ′,
0 if θ ∈ I(w). (6)

The following is then easily proved.

Theorem 3. Let Γ , w and π be as above, and let Betπ be defined by (6). Then
Betπ is a w-bet function.

Proof: Betπ restricted to w-events and w-facts of Γ is clearly normalised and
additive in the sense of Definition 7. In addition, for θ ∈ F(w), w(θ) = w′(θ)
for each w′ ∈ S(Γ,w), and hence we have: (i) if w(θ) = 1, then Betπ(θ) =∑

w′∈S(Γ,w) π(w
′) · w′(θ) =

∑
w′∈S(Γ,w) π(w

′) = 1; (ii) if w(θ) = 0, Betπ(θ) =∑
w′∈S(Γ,w) π(w

′) · 0 = 0. Therefore in any case, Betπ(θ) = w(θ) for each θ ∈
F(w), and hence Betπ(') = 1 holds. �

We close the section by stating two easily proved results which illustrate how
the notion of w-coherence arises from w-bets. The notion of w-coherence will be
the focus of future work.

Theorem 4. Let Γ be any set of formulas, and let B : Γ → [0, 1] be a book.
Then the following are equivalent:

(1) B is w-coherent,
(2) There exists a w-bet function Bet on SL extending B.
(3) There exists a probability measure P on on the Lindenbaum algebra generated

by Γ ∩ (E(w) ∪ F(w)) extending B on Γ ∩ (E(w) ∪ F(w)).

Proof: We are going to sketch the proof of (1)⇔ (2).
(1)⇒ (2). If B is w-coherent, then so is the book B− obtained by restricting

B to the formulas in Γ ′ = Γ ∩ (E(w) ∪ F(w)). Since Γ ′ does not contain w-
inaccessible formulas, B− is coherent and hence a standard argument (see for
instance [8, Theorem 2]) shows that B′ is coherent iff one can find a probability
distribution π on S(Γ ′, w). Then the map Betπ defined through (6) satisfies (2).
(2) ⇒ (1). Let Bet′ the partial mapping on SL defined by restricting Bet on
E(w). Then the claim easily follows from Theorem 2. �

The above theorem shows that the usual characterization of coherence can be
recovered asking for the information frame to be monotone and complete.

Corollary 1. Let 〈W,R〉 be monotone and complete, with w ∈W . Let Γ ⊆ SL,
and let B : Γ → [0, 1]. Then the following are equivalent:

(1) B is w-coherent,
(2) B is coherent,
(3) There exists a w-bet function Bet on SL extending B,
(4) There exists a probability P on SL extending B.
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6 Conclusions and Future Work

We have introduced a logical framework capable of making explicit the implicit
epistemic structure that lies at the very heart of the Bayesian representation
of uncertainty. As a central step towards achieving this we distinguished facts,
events and inaccessible sentences with the understanding that the betting frame-
work underlying the subjective interpretation of probability demands that gen-
uine uncertainty be expressed only on events. The ensuing logical framework
leads to a significant refinement of the classical (logical) representation of prob-
ability functions recalled in Section 1. In this spirit, Theorem 3 shows that
consistent subjective degrees of belief are the subset of probability values which
arise from what we call betting functions.

In further work we will tackle the question at a higher level of generality,
namely by showing how Theorem 1 can be in fact derived within our framework
as a special case of a more general result which involves defining bet functions
over suitable quotient algebras. The idea, roughly speaking, is to capture the
requirement that a specific set of sentences (events) should be given all the unit
mass by factoring a Lindenbaum algebra over the ideal generated by the set of
w-facts, for some w ∈ W . This will provide a suitable basis for giving a pure
measure-theoretic account of subjective probability with its underlying epistemic
structure. One obstacle to achieving this full generality is currently represented
by our unsuccessful attempts to provide natural conditions under which SL is
partitioned by facts, events and inaccessible formulas.
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Abstract. We consider conditional random quantities (c.r.q.’s) in the
setting of coherence. Given a numerical r.q. X and a non impossible
event H , based on betting scheme we represent the c.r.q. X|H as the un-
conditional r.q. XH + μHc, where μ is the prevision assessed for X|H .
We develop some elements for an algebra of c.r.q.’s, by giving a condition
under which two c.r.q.’s X|H and Y |K coincide. We show that X|HK
coincides with a suitable c.r.q. Y |K and we apply this representation to
Bayesian updating of probabilities, by also deepening some aspects of
Bayes’ formula. Then, we introduce a notion of iterated c.r.q. (X|H)|K,
by analyzing its relationship with X|HK. Our notion of iterated condi-
tional cannot formalize Bayesian updating but has an economic rationale.
Finally, we define the coherence for prevision assessments on iterated
c.r.q.’s and we give an illustrative example.

Keywords: Coherence, betting scheme, conditional random quantities,
conditional previsions, Bayesian updating, iterated conditioning.

1 Introduction

Probabilistic reasoning under coherence allows a consistent treatment of un-
certainty in many applications of statistical analysis, economy, decision theory,
fuzzy set theory, psychology and artificial intelligence. This probabilistic ap-
proach allows to manage incomplete probabilistic assignments in a situation of
vague or partial knowledge, see e.g. [9, 11, 13–15, 32]; see also [18, 21, 22, 24–
28, 36] where a flexible probabilistic approach to inference rules in nonmonotonic
reasoning and to the psychology of uncertain reasoning is developed. Based on
coherence, we can develop a numerical approach to conditional events consis-
tent with the three-valued logic proposed in the pioneering paper [16] by de
Finetti; in this work we extend the approach to conditional random quantities
(c.r.q.’s). Based on the betting scheme ([17], see also [31]), if for a numerical r.q.
X we evaluate μ its prevision P(X), then we agree to pay (resp., to receive) an
amount μ and to receive (resp., to pay) the random amount X . Analogously,
given any non impossible event H , if we assess P(X |H) = μ for the prevision
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of X conditional onH , then we agree to pay (resp., to receive) μ and to receive
(resp., to pay) an amount, denoted X |H , which coincides with X , or μ, accord-
ing to whether H is true, or false, i.e. H = 1, or H = 0 (in terms of indicators);
then, operatively, X |H = XH + μ(1 − H). Thus, one of the values of X |H is
the prevision P(X |H) = μ, which is subjectively evaluated. In particular, if for
a conditional event A|H we assess P (A|H) = p, then (the indicator of) A|H
is the r.q. AH + p(1 −H), with set of possible values {1, 0, p}. The problem of
suitably defining the third value for (the indicators of) conditional events has
been studied in some works by Coletti and Scozzafava (see, e.g., [13]).

We point out that, differently from other authors (see, e.g., ([37]; see also [34]),
in our approach a c.r.q. X |H is explicitly managed as an ’unconditional object’
which among its possible values admits (the conditional prevision) μ. We also
observe that the generalization of our results to imprecise conditional prevision
assessments is out of the scope of the paper.

By exploiting this representation of c.r.q.’s, we obtain some basic results which
concern an algebra of c.r.q.’s. Among other things, given any events H,K and
any r.q.’s X,Y , we examine the condition under which X |H and Y |K coin-
cide; in particular, we show that X |HK can be represented as a suitable c.r.q.
Y |K. Then, we use this representation in the context of Bayesian updating of
probabilities and we deepen some aspects of Bayes’ formula in the setting of
coherence. As a natural consequence, we introduce the iterated c.r.q. (X |H)|K,
which is defined as a suitable c.r.q. Y |K; then, we analyze its relationship with
X |HK. However, the Bayesian updating for the probability of any hypothesis H
cannot be formalized by our notion of iterated conditioning. Finally, we define
the coherence for prevision assessments on iterated c.r.q.’s and we illustrate this
notion by an example.

2 Preliminary Notions and Results

In our approach an event A represents an uncertain fact described by a (non
ambiguous) logical proposition; hence we look at A as a two-valued logical entity
which can be true (T ), or false (F ). The indicator of A, denoted by the same
symbol, is a two-valued numerical quantity which is 1, or 0, according to whether
A is true, or false. The sure event is denoted by Ω and the impossible event is
denoted by ∅. Moreover, we denote by A∧B (resp., A∨B) the logical conjunction
(resp., logical disjunction). In many cases we simply denote the conjunction
between A and B as the product AB. By the symbolAc we denote the negation of
A. Given any events A and B, we simply write A ⊆ B to denote that A logically
implies B, i.e. ABc = ∅. We recall that n events are logically independent when
the number of atoms, or constituents, generated by them is 2n. In case of some
logical dependencies among the events, the number of atoms is less than 2n.
Given any events A and B, with A �= ∅, the conditional event B|A is looked
at as a three-valued logical entity which is true (T), or false (F), or void (V),
according to whether AB is true, or ABc is true, or Ac is true.
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Given an event H �= ∅ and a r.q. X , we denote by VH , the set of possible
values of X restricted to H and, if X is finite, we set VH = {x1, x2, . . . , xr}.
In the setting of coherence, agreeing to the betting metaphor the prevision of
′′X conditional on H ′′ (also named ′′X given H ′′), P(X |H), is defined as the
amount μ you agree to pay (resp., to receive), by knowing that you will receive
(resp., to pay) the amount X if H is true, or you will receive back (resp.,
to pay back) the amount μ if H is false (bet called off). Agreeing with the
operational subjective approach given in [31], we denote by X |H the amount
that you receive when a conditional bet is stipulated on ′′X given H ′′. Then,
it holds that X |H = XH + μHc, where μ = P(X |H), so that operatively we
can look at the c.r.q. X |H as the unconditional r.q. XH + μHc. If X is finite
and μ /∈ VH , then X |H ∈ {x1, x2, . . . , xr , μ}. Moreover, denoting by Ai the
event (X = xi), i ∈ Jr, the family {A1H, . . . , ArH,Hc} is a partition of Ω and
we have X |H = XH + μHc = x1A1H + · · · + xrArH + μHc. In particular,
when X is an event A, the prevision of X |H is the probability of A|H and,
if you assess P (A|H) = p, then for the indicator of A|H , denoted by the
same symbol, we have A|H = AH + pHc ∈ {1, 0, p}. The choice of p as the
third value ofA|H has been proposed in some previous works, see e.g. [13, 19, 31].

Coherence for Conditional Prevision Assessments
Given a prevision function P defined on an arbitrary family K of c.r.q.’s, let
Fn = {Xi|Hi, i ∈ Jn} be any finite subfamily of K; we set Mn = (μi, i ∈ Jn),
where μi = P(Xi|Hi). With the pair (Fn,Mn) we associate the random gain
G =

∑
i∈Jn

siHi(Xi − μi); moreover, we set Hn = H1 ∨ · · · ∨ Hn and we
denote by GHn the set of values of G restricted to the disjunction Hn of the
conditioning events H1, . . . , Hn. Then, by de Finetti’s betting scheme, we have

Definition 1. The function P defined on a finite family K is coherent if and only
if, ∀n ≥ 1, ∀Fn ⊆ K, ∀ s1, . . . , sn ∈ R, it holds that: inf GHn ≤ 0 ≤ supGHn .
When K is infinite, we say that P is coherent if its restriction Mn on Fn is
coherent, for every Fn ⊂ K.

Remark 1. Given a finite c.r.q. X |H , with P(X |H) = μ and VH = {x1, . . . , xr},
we have that μ is coherent if and only if minVH ≤ μ ≤ maxVH . In particular,
if VH = {c}, then X |H = cH + μHc; in this case μ is coherent if and only if
μ = c. Of course, for X = H (resp. X = Hc) it holds that μ = 1 (resp. μ = 0)
and hence H |H = 1, Hc|H = 0.

Checking of Coherence for Conditional Prevision Assessments
Given a family of n finite c.r.q.’s Fn = {X1|H1, . . . , Xn|Hn}, for each i ∈ Jn we
denote by {xi1, . . . , xiri} the set of possible values for the restriction of Xi to
Hi; then, for each i ∈ Jn and j = 1, . . . , ri, we set Aij = (Xi = xij). Of course,
for each i ∈ Jn, the family {Hc

i , AijHi , j = 1, . . . , ri} is a partition of the sure
event Ω. Then, the constituents generated by the family Fn are (the elements
of the partition of Ω) obtained by expanding the expression

∧
i∈Jn

(Ai1Hi ∨
· · · ∨ AiriHi ∨ Hc

i ). We set C0 = Hc
1 · · ·Hc

n (it may be C0 = ∅); moreover, we
denote by C1, . . . , Cm the constituents contained in Hn = H1 ∨ · · · ∨Hn. Hence
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i∈Jn

(Ai1Hi∨· · ·∨AiriHi∨Hc
i ) =

∨m
h=0Ch. With each Ch, h ∈ Jm, we associate

a vector Qh = (qh1, . . . , qhn), where

qhi = xij , if Ch ⊆ AijHi , j = 1, . . . , ri; qhi = μi, if Ch ⊆ Hc
i .

In more explicit terms, for each j ∈ {1, . . . , ri} the condition Ch ⊆ AijHi

amounts to Ch ⊆ Ac
i1 · · ·Ac

i,j−1AijA
c
i,j+1 · · ·Ac

irA
c
iri

Hi. We observe that the vec-
tor Qh = (qh1, . . . , qhn) is the value of the random vector (X1|H1, . . . , Xn|Hn)
when Ch is true; moreover, if C0 is true, then the value of such a random
vector is Mn = (μ1, . . . , μn). Denoting by In the convex hull of Q1, . . . , Qm,
the condition Mn ∈ In amounts to the existence of a vector (λ1, . . . , λm) such
that:

∑
h∈Jm

λhQh = Mn ,
∑

h∈Jm
λh = 1 , λh ≥ 0 , ∀h; in other words,

Mn ∈ In is equivalent to solvability of the following system Σ associated with
the pair (Fn,Mn), in the nonnegative unknowns λ1, . . . , λm,

Σ :
∑

h∈Jm
λhqhi = μi , i ∈ Jn ;

∑
h∈Jm

λh = 1 ; λh ≥ 0 , h ∈ Jm . (1)

Given a subset J ⊆ Jn, we set FJ = {Xi|Hi , i ∈ J} , MJ = (μi , i ∈ J) ; then,
we denote by ΣJ , where ΣJn = Σ, the system like (1) associated with the pair
(FJ ,MJ). Then, it can be proved the following ([7])

Theorem 1. [Characterization of coherence]. Given a family of n finite c.r.q.’s
Fn = {X1|H1, . . . , Xn|Hn} and a vector Mn = (μ1, . . . , μn), the conditional
prevision assessment P(X1|H1) = μ1, . . ., P(Xn|Hn) = μn is coherent if and only
if, for every subset J ⊆ Jn, defining FJ = {Xi|Hi , i ∈ J}, MJ = (μi , i ∈ J),
the system ΣJ associated with the pair (FJ ,MJ) is solvable.

A characterization of coherence of conditional prevision assessments by non dom-
inance with respect to proper scoring rules has been given in [8].

3 Deepenings on Conditional Random Quantities and
Bayes Theorem

In this section, by exploiting the representation X |H = XH + μHc, where
μ = P(X |H), we develop some elements of an algebra of c.r.q.’s. In particular,
we recall a result which also concerns the general compound prevision theorem;
then, we give some comments on the Bayesian updating of probabilities. We have

Theorem 2. Given any real quantities a1, . . . , an, any event H �= ∅, any
random quantities X1, . . . , Xn and any coherent assessment (μ1, . . . , μn, ν) on
{X1|H, . . . , Xn|H , (

∑n
i=1 aiXi)|H}, we have:

∑n
i=1 ai(Xi|H) = (

∑n
i=1 aiXi)|H .

Proof. We have (
∑n

i=1 aiXi)|H = (
∑n

i=1 aiXi)H+ νHc; moreover, it holds that
P[(
∑n

i=1 aiXi)|H ] =
∑n

i=1 aiP(Xi|H); that is ν =
∑n

i=1 aiμi. Then

n∑
i=1

ai(Xi|H) =

n∑
i=1

ai(XiH + μiH
c) =

( n∑
i=1

aiXi

)
H + νHc =

( n∑
i=1

aiXi

)
|H .

In particular: a(X |H) = (aX)|H = aX |H .
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Theorem 3. Given any c.r.q.’s X1|H1, . . . , Xn|Hn, with P(Xi|Hi) = μi, ∀ i,
and with (μ1, . . . , μn) coherent, we have: P(

∑n
i=1 Xi|Hi) =

∑n
i=1 P(Xi|Hi).

Proof. By linearity of prevision, we have

P
( n∑

i=1

Xi|Hi

)
= P

[ n∑
i=1

(XiHi+μiH
c
i )
]
=

n∑
i=1

P
(
XiHi+μiH

c
i

)
=

n∑
i=1

P(Xi|Hi) .

We now consider the following questions:
(a) given two r.q. X |H,Y |K, with H �= K, may it happen that X |H = Y |K ?
(b) given any events H,K, with HK �= ∅, and any r.q. X, with P(X |HK) = μ,
does there exist a r.q. Y such that X |HK = Y |K ?
We recall two results ([23, Theorems 7 and 9]) which show that the answers to
both questions are positive. Concerning question (a) we have

Theorem 4. Given two c.r.q.’s X |H,Y |K, let (μ, ν) be a coherent prevision
assessment on {X |H,Y |K}, with P(X |H) = μ, P(Y |K) = ν. Moreover, assume
that X |H = Y |K when the disjunction H ∨K is true. Then X |H = Y |K.

The answer to question (b) is given in condition (i) of the result below, where
(by Theorem 4) it is shown that X |HK = Y |K, where Y = XH + yHc and
y = P(X |HK). The condition (ii), i.e. the general compound prevision theorem,
is directly obtained by condition (i), by exploiting the linearity of prevision.

Theorem 5. Given two events H �= ∅,K �= ∅ and a r.q. X , let (x, y, z) be a
coherent prevision assessment on {H |K,X |HK,XH |K}. Then:
(i) X |HK = (XH + yHc)|K;
(ii) z = xy; that is: P(XH |K) = P (H |K)P(X |HK).

In the next subsection, condition (i) of Theorem 5 will be applied to Bayesian
updating of conditional probabilities.

3.1 An Application to Bayesian Inference

Given a hypothesis H , with P (H) = p0, and a sequence of evidences E1, . . . , En,
we set: E1 · · ·Ek = Ak , P (H |Ak) = pk , Yk = HAk−1 + pkA

c
k−1 , k = 1, . . . , n.

By applying condition (i) of Theorem 5, with X,H , K replaced respectively by
H,Ak−1, and Ek, we obtain

H |E1 · · ·Ek = H |Ak−1Ek = Yk|Ek = (HAk−1 + pkA
c
k−1)|Ek , k = 1, . . . , n .

We can verify that, in the previous equality, the prevision on the right-hand
side coincides with that one on the left-hand side, which is the probability
P (H |E1 · · ·Ek) = pk. Indeed, we have

P(Yk|Ek) = P[(HAk−1 + pkA
c
k−1)|Ek] = P (HAk−1|Ek) + pkP (Ac

k−1|Ek) =
= pkP (Ak−1|Ek) + pkP (Ac

k−1|Ek) = pk , k = 1, . . . , n .

As we can see, the updating of the probability of H , on the basis of evidences
E1, . . . , En, consists at each step in replacing a probability by the next one in the
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following sequence: P (H) , P (H |E1) , P (H |E1E2) , · · · , P (H |E1 · · ·Ek) , · · ·;
that is, using the Bayesian mechanism, at each step we replace P (H |Ak−1) =
pk−1 by P (H |Ak) = pk when the new evidence Ek is obtained. Of course, in
order to compute pk by Bayes’ formula

pk = P (H |Ak) = P (H |Ak−1Ek) =
P (Ek|Ak−1H)P (H |Ak−1)

P (Ek|Ak−1)
,

all the needed probabilities must be assigned and P (Ek|Ak−1) must be positive.
If P (Ek|Ak−1) = 0, by the methods of coherence, e.g. by using the Algorithm 1
in [2], or the zero-layers procedure in [13], it easily follows pk ∈ [0, 1]. More in
general, if some of the values in Bayes’ formula are not specified, then pk is not
uniquely determined and for its lower and upper bounds, l, u, there are different
cases considered in the next subsection.

3.2 Lower/Upper Bounds on the Probability of H|Ak

We assume H,Ak−1, Ek logically independent and we set Ak−1 = A,Ek = E;
then {H |Ak−1, Ek|Ak−1, Ek|Ak−1H,H |Ak−1Ek} = {H |A,E|A,E|AH,H |AE}.
As a preliminary remark we note that, given any sub-family Γ = {E1|H1, E2|H2}
of the family {H |A,E|A,E|AH,H |AE}, it can be verified that the set of coher-
ent assessments (x, y) on Γ coincides with the unit square [0, 1]2. Then, if we
assign only one of the quantities P (E|A), or P (E|AH), or P (H |A), and we want
to propagate it to H |AE, it holds that each value z = P (H |AE) ∈ [0, 1] is a
coherent extension of the given assignment; that is l = 0, u = 1.
We now consider the cases where we assign only two of the quantities P (E|A),
P (E|AH), P (H |A), by giving the lower/upper bounds on P (H |AE). We have
three cases (which, due to the lack of space, are discussed without proof):
(i) only x = P (E|A) and y = P (E|AH) are assigned; then, the assessment
P = (x, y, z) on F = {E|A,E|AH,H |AE} is coherent if and only if z ∈ [0, u],

with u = y(1−x)
x(1−y) , or u = 1, according to whether y < x, or y ≥ x.

(ii) only x = P (H |A) and y = P (E|AH) are assigned; then, the assessment
P = (x, y, z) on F = {H |A,E|AH,H |AE} is coherent if and only if z ∈ [l, 1],
with l = 0, or l = xy

1−x+xy , according to whether (x, y) = (1, 0), or (x, y) �= (1, 0).

(iii) only x = P (H |A) and y = P (E|A) are assigned; then, based on the prob-
abilistic analysis of the CM rule given in [20], the assessment P = (x, y, z) on
F = {H |A,E|A,H |AE} is coherent if and only if l ≤ z ≤ u, with

l =

{ x+y−1
y , if x+ y > 1 ,

0 , if x+ y ≤ 1 ,
u =

{ x
y , if x < y ,

1 , if x ≥ y .

Remark 2. Given n logically independent events E1, . . . , En−1, H , and any as-
sessment P = (x1, . . . , xn−1, p0) on the family F = {E1, . . . , En−1, H}, the ex-
tension pn−1 = P (H |E1 · · ·En−1) is coherent if and only if: l ≤ pn−1 ≤ u, where

l =

{
max

{
0, x1+···+xn−1+p0−(n−1)

x1+···+xn−1−(n−2)

}
, if x1 + · · ·+ xn−1 > n− 2 ,

0 , if x1 + · · ·+ xn−1 ≤ n− 2 ;
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u =

{
min

{
1, p0

x1+···+xn−1−(n−2)

}
, if x1 + · · ·+ xn−1 > n− 2 ,

1 , if x1 + · · ·+ xn−1 ≤ n− 2 .

The previous formulas are obtained from (and better represent) the lower and
upper bounds, l and u, given for the generalized Cautious Monotonicity rule in
[21]; indeed, the representation of the probability bounds given in [21, Theorem
11] only concerns the case where the condition x1+ · · ·+xn−1 > n−2 is satisfied.
A similar comment applies to [21, Theorem 10].

Other aspects of Bayes’ theorem have been analyzed in [13] and [39]. The-
oretical aspects and algorithms concerning the set of probability assessments
which are compatible with given initial ones have been studied in several fields,
such as probabilistic reasoning under coherence, model-theoretic probabilis-
tic logic, probabilistic satisfiability, credal networks, and others; see, e.g., [2–
6, 9, 10, 13, 29, 35, 38]. In the next section we give some results on iterated
conditioning and we make a critical comparison with Bayesian updating.

4 Iterated Conditioning

The notion of iterated conditioning for c.r.q.’s was introduced in [23] and is
consistent with that one given for conditional events in [26]. The basic intuition
for our notion of iterated c.r.q. follows by the representation X |H = XH+μHc,
where μ = P(X |H). After the definition we briefly discuss the meaning of the
’new object’ (X |H)|K; then we give some results.

Definition 2. Given any events H,K, with H �= ∅,K �= ∅, and a finite r.q. X ,
with P(X |H) = μ, we define (X |H)|K = (XH + μHc)|K.

From the previous definition, as Hc|H = 0, it follows:
(X |H)|H = (XH + μHc)|H = XH |H + μHc|H = XH |H = X |H ; then, if we
set Y = X |H = XH + μHc, from (X |H)|H = X |H it follows Y |H = Y .

Remark 3. Does there exist a reasonable justification for Definition 2 ?
We can provide a rationale for Definition 2, by imagining a decision problem
involving two prevision assessments:

1) an agent evaluates P(X |H) = μ, by accepting then any transaction where, by
paying an amount μ, one receives the uncertain amount Y = X |H = XH+μHc;
2) the same agent evaluates P(Y |K) = ν, with Y = X |H , by accepting then a
transaction where, by paying ν, one receives the uncertain amount Y |K.
Then, operatively: ν = P(Y |K) = P[(XH + μHc)|K] = P[(X |H)|K]; that is,
to evaluate the prevision of Y |K amounts to evaluate the prevision of the iter-
ated c.r.q. (X |H)|K. We point out that our notion of iterated conditioning does
not concern those situations, typical of Bayesian updating, where a collection of
pieces of evidence is synthesized by their conjunction and managed in a coherent
way. Clearly, coherence plays a basic role also in our approach; for instance, con-
cerning the discussion above, the agent must check coherence of the assessment
(μ, ν) on {X |H, (X |H)|K}. This aspect will be considered in Section 5.

In the next result we show that (X |H)|K may coincide with X |H , or X |K.
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Proposition 1. Given any r.q. X and any nonimpossible events H,K, we have:
(i) (X |H)|K �= (X |K)|H ; (ii) (X |H)|K �= X |HK; (iii) if H ⊆ K, or K ⊆ H ,
then (X |K)|H = (X |H)|K = X |HK.

Proof. (i) The assertion follows by Definition 2.
(ii) Defining P(X |H) = μ,P(X |HK) = η, in general it holds that μ �= η; thus,
by condition (i) of Theorem 5, we have

X |HK = (XH + ηHc)|K �= (XH + μHc)|K = (X |H)|K .

(iii.a) If H ⊆ K, defining P(X |H) = μ,P(X |K) = z,P(X |HK) = η, we have
X |HK = X |H and η = μ; then (by condition (i) of Theorem 5) we obtain
(X |H)|K = (XH + μHc)|K = (XH + ηHc)|K = X |HK = X |H . Moreover,
H ⊆ K implies XKc|H = zKc|H = 0; hence XK|H = X(K +Kc)|H = X |H .
Then (X |K)|H = (XK + zKc)|H = XK|H = X |H = X |HK.
(iii.b) If K ⊆ H , the assertion follows by a symmetric reasoning .

Remark 4. Note that, by condition (iii) in Proposition 1,X |H = (X |H)|(H∨K);
then P(X |H) = P[(X |H)|(H ∨ K)]. Indeed, defining P(X |H) = μ, we have
P[(X |H)|(H∨K)] = P[(XH+μHc)|(H∨K)] = P(XH |H∨K)+P(μHc|H∨K) =
= P(X |H)P (H |H ∨K) + μP (Hc|H ∨K) = μ.

The next result shows that the sum X |H + Y |K of two c.r.q.’s, with different
conditioning events H,K, can be represented as a suitable c.r.q. Z|(H ∨K).

Proposition 2. Given a coherent prevision assessment (μ, η) on {X |H,Y |K},
it holds that: X |H + Y |K = Z|(H ∨K), where Z = XH + μHc + Y K + ηKc

and P[Z|(H ∨K)] = μ+ η.

Proof. We observe that H ⊆ (H ∨K),K ⊆ (H ∨K); then, from condition (iii)
in Proposition 1, we have X |H = (X |H)|(H ∨ K) = (XH + μHc)|(H ∨ K),
Y |K = (Y |K)|(H ∨K) = (Y K+ηKc)|(H ∨K). Then, by Theorem 2, we obtain
X |H + Y |K = (XH + μHc + Y K + ηKc)|(H ∨K) = Z|(H ∨K). Moreover,
by Theorem 3 (see also Remark 4), P[Z|(H ∨K)] = μ+ η.

We observe that, given any events A,H,K, if H ⊆ K, or K ⊆ H , then
(A|K)|H = (A|H)|K = A|HK, and the Import-Export Principle ([33]) would
be valid. But, in general we have (A|H)|K �= (A|K)|H , (A|H)|K �= A|HK,
(A|K)|H �= A|HK; that is, in agreement with other authors (see, e.g., [1, 30]),
the Import-Export Principle does not hold, as illustrated by the example below.

Example 1. Given any events A,H,K, with HK = ∅, we denote by p the prob-
ability of A|H , P (A|H), and by α the prevision of (A|H)|K, P[(A|H)|K]. By
Definition 2, (A|H)|K = (AH + pHc)|K = AHK + pHcK +αKc = pK +αKc;
moreover, conditionally on K being true the r.q. AH+pHc is constant and equal
to p; then, by Remark 1, α = P[(AH + pHc)|K] = p. Therefore, from HK = ∅
it follows: (A|H)|K = p (more in general, given any r.q. X , with P(X |H) = μ,
if HK = ∅, then (X |H)|K = μ). If the Import-Export Principle were valid, we
would have (A|H)|K = A|HK = A|∅, which makes no sense; indeed, in Bayesian
updating it is absurd to consider two logically incompatible evidences H,K.
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In the framework of Bayesian inference, given any uncertain hypothesis H and
any evidences E1, E2, . . . , En, we iteratively compute P (H |E1), P (H |E1E2), · · ·,
P (H |E1 · · ·En); this amounts to synthesizing the sequence E1, . . . , En by the
conjunction E1 · · ·En. If iterated conditioning were defined in agreement with
the Import-Export Principle, it would be H |E1E2 = (H |E1)|E2, and so on; then

P (H |E1E2) = P [(H |E1)|E2] , P (H |E1E2E3) = P [((H |E1)|E2)|E3] , . . . .

But, in our approach we have (H |E1)|E2 �= H |E1E2, and so on; thus, Bayesian
updating cannot be formalized by our iterated conditioning. For instance, we
cannot look at the prevision P[(H |E1)|E2] as the probability P (H |E1E2). In-
deed, defining P (H |E1) = p1, P (H |E1E2) = p2, by condition (i) of Theorem 5
we have H |E1E2 = (HE1 + p2E

c
1)|E2 �= (HE1 + p1E

c
1)|E2 = (H |E1)|E2.

As discussed in Remark 3, our notion of iterated conditioning is useful for ap-
plications different from Bayesian updating.

5 Coherent Prevision Assessments for Iterated
Conditional Random Quantities

In this section we introduce the notion of coherent prevision assessments on
iterated c.r.q.’s, like

P[(X1|H1)|K1] = ν1 , P[(X2|H2)|K2] = ν2 , · · · , P[(Xn|Hn)|Kn] = νn ;

then, we will discuss a simple example. We observe that the iterated condi-
tional random quantities (X1|H1)|K1, · · · , (Xn|Hn)|Kn involve the assessment
(μ1, . . . , μn) on {X1|H1, . . . , Xn|Hn}; then, in the definition of coherence we
must consider the global assessment (μ1, . . . , μn, ν1, . . . , νn). We have

Definition 3. Given any random quantities X1, . . . , Xn and any events H1, . . .,
Hn,K1, . . . ,Kn, with Hi �= ∅,Ki �= ∅, i = 1, . . . , n, the prevision assessment
(μ1, . . . , μn, ν1, . . . , νn) on F = {X1|H1, . . . , Xn|Hn, Y1|K1, · · · , Yn|Kn}, where
Y1 = X1|H1, . . . , Yn = Xn|Hn, is coherent if and only if, for every subfamily
S ⊆ F , defining H =

∨
i:Xi|Hi∈S Hi, K =

∨
i:Yi|Ki∈S Ki, and denoting by GH∨K

the set of possible values of the random gain

G =
∑

i:Xi|Hi∈S siHi(Xi − μi) +
∑

i:Yi|Ki∈S τiKi(XiHi + μiH
c
i − νi)

restricted to H ∨ K, with si, τi arbitrary real numbers for every i, it holds that
inf GH∨K ≤ 0 ≤ supGH∨K.

We observe that Definition 3 is nothing but Definition 1 applied to the family
{Xi|Hi, Yi|Ki, i = 1, . . . , n}, where Yi = Xi|Hi = XiHi + μiH

c
i , ∀ i; hence the

value g0 = 0 of the random gain G, associated with the atom Hc
1 · · ·Hc

nK
c
1 · · ·Kc

n

(all the bets on Xi|Hi, (Xi|Hi)|Ki, i = 1, . . . , n, called off), is discarded
when defining coherence of the prevision assessment (μ1, . . . , μn, ν1, . . . , νn) on
the family {X1|H1, . . . , Xn|Hn, (X1|H1)|K1, · · · , (Xn|Hn)|Kn}. Moreover, the
checking for coherence can be made by the usual methods already existing in
literature (see, e.g., [7, 12, 13]). Based on the geometrical approach related to
Theorem 1, we illustrate Definition 3 by the example below.
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Example 2. Given a r.q. X ∈ {1, 2, . . . , 10}, we set K = (X ∈ {2, 4, . . . , 10}),
H = (X ≤ 6), P(X |H) = μ, P[(X |H)|K] = ν, M1 = (μ), S1 = {X |H},
M2 = (ν), S2 = {Y |K}, M3 = (μ, ν), S3 = {X |H,Y |K}, where Y = X |H =
XH + μHc.

As shown below, the set Π of coherent assessments (μ, ν) on {X |H, (X |H)|K}
is the (non convex) polygon whose boundary is the closed polygonal with vertices
the points (1, 1), (2, 2), (5, 2), (5, 5), (6, 6), (1, 6). We observe that Π is the union
of the triangle T1, with vertices the points (1, 1), (6, 6), (1, 6), and the triangle
T2, with vertices the points (2, 2), (5, 2), (5, 5).

We denote by Ij the convex hull associated with the pair (Sj ,Mj), j = 1, 2, 3.
From a geometrical point of view, the coherence of (μ, ν) amounts to conditions
Mj ∈ Ij , j = 1, 2, 3. Of course, M1 ∈ I1 if and only if 1 ≤ μ ≤ 6. If 2 ≤ μ ≤ 6,
then M2 ∈ I2 is satisfied for every ν ∈ [2, 6]; if μ < 2, then M2 ∈ I2 for every
ν ∈ [μ, 6]. To check ifM3 ∈ I3, we determine the set of constituents contained in
H∨K, i.e. different fromHcKc, which are obtained by expanding the expression
(HK ∨HKc∨HcK)∧ (A1 ∨· · ·∨A10), where Ai = (X = i), i = 1, . . . , 10. These
constituents are A2, A4, A6, A1, A3, A5, A8, A10; the associated points Qh’s,
for the pair (S3,M3), are (2, 2), (4, 4), (6, 6), (1, ν), (3, ν), (5, ν), (μ, μ), where
with A8 and A10 it is associated the same point (μ, μ).

We distinguish two cases: (i) μ ≥ 2; (ii) μ < 2.

Case (i). For the convex hull it is enough to consider the points (2, 2), (6, 6), (1, ν),
(5, ν). If μ ≤ 5 then (μ, ν) belongs to the segment with vertices (1, ν), (5, ν), so
that the condition M3 ∈ I3 is satisfied and we have to continue by considering
the condition M2 ∈ I2. If K is true, then Y |K ∈ {2, 4, 6, μ}; hence, it must
be ν ∈ [2, 6]. If μ > 5, then (μ, ν) belongs to the convex hull if and only if
μ ≤ ν ≤ 6. In fact in this case (μ, ν) belongs to the triangle with vertices the
points (2, 2), (6, 6), (1, ν). Of course, the condition ν ∈ [2, 6] is satisfied too.

Case (ii). For the convex hull it is enough to consider the points (μ, μ),
(6, 6), (1, ν), (5, ν). Condition M3 ∈ I3 is satisfied because (μ, ν) belongs to
the segment with vertices (1, ν), (5, ν). Condition M1 ∈ I1 is satisfied because
1 ≤ μ < 2; finally, the condition M2 ∈ I2 is satisfied for every ν ∈ [μ, 6].

6 Conclusions

Based on betting scheme of de Finetti, we represented a c.r.q. as a suitable
unconditional r.q., for which the assessed conditional prevision is one of the
possible values. We obtained some results on basic operations among c.r.q.’s,
by examining in particular a condition for the equality of two c.r.q.’s X |H and
Y |K. Then, we represented a c.r.q. X |HK as a suitable c.r.q. Y |K and we
considered an application to Bayesian updating, by also deepening some aspects
of Bayes’ formula. We introduced a notion of iterated c.r.q. (X |H)|K, defined
as a suitable c.r.q. Y |K, and we analyzed the relationship between (X |H)|K
and X |HK. Even if Bayesian updating cannot be formalized in our approach,
we showed that our notion of iterated conditioning has an economic rationale.
We discussed Bayesian updating in terms of iterated conditioning under the
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Import-Export Principle. But, such a principle is not valid in general and does
not work in applications where our iterated conditioning does. Finally, we defined
the notion of coherence for prevision assessments on iterated c.r.q.’s, by also
giving an example. Future work should concern the extension of our results to
the case of imprecise conditional prevision assessments.

Acknowledgments. The authors are grateful to the anonymous referees for
they valuable criticisms and suggestions.
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Abstract. There have been a number of proposals for measuring incon-
sistency in a knowledgebase (i.e. a set of logical formulae). These include
measures that consider the minimally inconsistent subsets of the knowl-
edgebase, and measures that consider the paraconsistent models (3 or 4
valued models) of the knowledgebase. In this paper, we present a new
approach that considers the amount each formula has to be weakened
in order for the knowledgebase to be consistent. This approach is based
on ideas of knowledge merging by Konienczny and Pino-Perez. We show
that this approach gives us measures that are different from existing
measures, that have desirable properties, and that can take the signifi-
cance of inconsistencies into account. The latter is useful when we want
to differentiate between inconsistencies that have minor significance from
inconsistencies that have major significance. We also show how our mea-
sures are potentially useful in applications such as evaluating violations
of integrity constraints in databases.

1 Introduction

Understanding the nature of inconsistency is an important topic if we are to
develop autonomous systems that are able to behave intelligently with conflicting
information. Although the early work of Grant in [1] showed more than 30 years
ago that it is possible to compare inconsistent sets of formulae, the great amount
of research on measuring inconsistency occurred in the past decade. It turns out
that there are different reasonable ways of measuring the inconsistency of a
knowledgebase; these measures tend to be incompatible with one another in the
sense that one measure assigns a larger inconsistency value to knowledgebase Δ
than to Δ′ while another does not.

The purpose of this paper is to introduce several inconsistency measures based
on model distance. We work in propositional logic and assume that a knowl-
edgebase contains only consistent formulae. This is a reasonable assumption as
portions of conflicting information are typically consistent. However, we note
that every inconsistent formula (other than the special case ⊥) requires a con-
junction; such a formula can always be split into consistent fragments. Every
consistent formula has at least one model. We think of each model as a point
in Euclidean space. The models of a knowledgebase are exactly the intersection
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of the set of models for each formula. When the knowledgebase is inconsistent,
this intersection is empty.

In our method we use distance measures to measure the distances between
models (points in space). The idea of our method is to dilate the points repre-
senting the models to regions of space in a minimal way so that the intersection
of these regions is no longer empty. Our various proposals count different as-
pects of these dilations to come up with measures of inconsistency. Furthermore,
this approach lends itself to assigning weights to atoms thereby capturing better
the significance of inconsistencies and provides new insight into the nature of
inconsistency. For applications, it offers a better account for distances in the sig-
nificance of parts of the knowledge that may be inconsistent. We illustrate how
the new measures are potentially valuable tools for applications by considering
violations of integrity constraints in databases.

2 Preliminaries

We assume a propositional language L of formulae composed from a set of atoms
A and the logical connectives ∧, ∨, ¬. We use φ and ψ for arbitrary formulae
and α and β for atoms. All formulae are assumed to be in conjunctive normal
form. Hence every formula φ has the form ψ1∧. . .∧ψn, where each ψi, 1 ≤ i ≤ n,
has the form βi1 ∨ . . . ∨ βim, where each βik, 1 ≤ k ≤ m is a literal (an atom or
negated atom). A knowledgebase Δ is a finite set of formulae. We let ) denote
the classical consequence relation. Logical equivalence is defined in the usual
way: Δ ≡ Δ′ iff Δ ) Δ′ and Δ′ ) Δ. We find it useful to define also a stronger
notion of equivalence we call b(ijection)-equivalence as follows. Knowledgebase
Δ is b(ijection)-equivalent to knowledgebase Δ′, denoted Δ ≡b Δ′ iff there is
a bijection f : Δ → Δ′ such that for all φ ∈ Δ, φ is logically equivalent to
f(φ). For example, {a, b} is logically equivalent but not b(ijection)-equivalent to
{a∧ b}. We write R≥0 for the set of nonnegative real numbers and K for the set
of all knowledgebases (where K = {Δ | Δ ⊆ L}).

Given a language L, the set of models (i.e. interpretations) of the language is
denoted ML. Each model in L is an assignment of true or false to the atoms
of the language from which an assignment is generated for all formulae of the
language defined in the usual way for classical logic. For φ ∈ L, Models(φ)
denotes the set of models of φ (i.e. Models(φ) = {m ∈ ML | m |= φ}), and for
Δ ⊆ L, Models(Δ) denotes the set of models of Δ (i.e. if Δ = {φ1, ..., φn}, then
Models(Δ) = Models(φ1) ∩ .. ∩Models(φn)).

To represent modelsML of the language L, we declare a signature, denoted
SL, which is the atoms of the language L given in a sequence (a1, ..., an), and
then each model is given as a binary number b1, ..., bn where for each digit bi, if
bi = 1, then ai is true in the model, otherwise bi = 0 and ai is false in the model.

Example 1. Let the atoms of L be {a, b, c}, and so L contains the usual propo-
sitional formulae that can be formed from these three atoms. Let the signature
SL be (a, b, c), and so the modelsML are {111, 110, 101, 100, 011, 010, 001, 000}.
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Consider m = 101 which means that a is true, b is false, and c is true. This can
equivalently be represented by the formula a ∧ ¬b ∧ c.

We introduce a couple of subsidiary functions to analyse models. For a model
m, let Digiti(m) return the ith digit of the model m (e.g. for the model 1010,
Digit2(1010) = 0), and let Atomi(m) return the atom corresponding to the ith
digit of the model m (e.g. for the signature SL = (a,b,c,d), Atom2(1010) = b).

Next, we define the concept of an inconsistency measure for knowledgebases.
We use the terminology that for a knowledgebase Δ, Free(Δ) is the set of for-
mulae not in any minimal inconsistent subset of Δ.

Definition 1. An inconsistency measure I assigns a nonnegative real value to
every knowledgebase Δ. We assume three requirements for inconsistency mea-
sures as proposed in [2] where (1) is called consistency, (2) is called monotony,
and (3) is called free formula independence.

1. I(Δ) = 0 iff Δ is consistent.
2. If Δ ⊆ Δ′, then I(Δ) ≤ I(Δ′).
3. For all α ∈ Free(Δ), (I(Δ) = I(Δ\{α}).

The constraints 1 to 3 ensure that all and only consistent knowledgebases get
measure 0, the measure is monotonic for subsets, and the removal of a formula
that does not participate in an inconsistency leaves the measure unchanged.

3 Distance Measures

Given a set of models for a language ML, a distance measure, as defined next,
is an assignment of a real number to each pair of models in ML. This is a very
general notion that we will constrain in various ways in this paper.

Definition 2. For a set of models ML, a distance measure, denoted d, is a
function d :ML ×ML → R+ satisfiying the following conditions.

1. d(m,m′) = 0 iff m = m′

2. d(m,m′) = d(m′,m)
3. d(m,m′) + d(m′,m′′) ≥ d(m,m′′)

For example, the function that assigns distance 1 between any two distinct mod-
els is a distance measure.

Definition 3. For a set of modelsML, a distance measure d is a drastic mea-
sure iff d(m,m′) = 1 if m �= m′ and d(m,m′) = 0 if m = m′.

We introduce the contrary function to define the Dalal (Hamming) measure.

Definition 4. The contrary function, denoted Contrary : {0, 1} × {0, 1} →
{0, 1}, is defined as follows: Contrary(1, 1) = 0;Contrary(1, 0) = 1;Contrary(0, 1) =
1; and Contrary(0, 0) = 0.
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Definition 5. Let L be composed from n atoms, and so ML contains models
with n digits. A distance measure d is a Dalal measure iff

d(m,m′) =
n∑

i=1

Contrary(Digiti(m),Digiti(m
′))

A distance measure d is a Dalal measure [3] when d(m,m′) is the number of
digits that differ between m and m′. For a fixed n the Dalal measure is unique.

Example 2. Consider the following measure which is a Dalal measure

d(11, 11) = 0 d(11, 10) = 1 d(11, 01) = 1 d(11, 00) = 2
d(10, 11) = 1 d(10, 10) = 0 d(10, 01) = 2 d(10, 00) = 1
d(01, 11) = 1 d(01, 10) = 2 d(01, 01) = 0 d(01, 00) = 1
d(00, 11) = 2 d(00, 10) = 1 d(00, 01) = 1 d(00, 00) = 0

We use the following notion of a weighting function to assign a weight to each
atom in a model. We write w(i) for the weight of the ith atom. The idea is that
the weight represents the significance of the atom.

Definition 6. Given an n digit model, a weighting function is function w :
{1, ...., n} → R+. Special cases of weighting function w : {1, ...., n} → R+ in-
clude:

– w is uniform iff for all i ∈ {1, ...., n}, w(i) = r for some r ∈ R+

– w is positive iff for all i ∈ {1, ...., n}, w(i) > 0
– w is discounting iff there exists i ∈ {1, ...., n}, w(i) < 1
– w is binary iff for all i ∈ {1, ...., n}, w(i) = 1 or w(i) = 0

Example 3. LetML = {11, 10, 01, 00}. So w(1) = 0.5 and w(2) = 3 is a positive
weighting function.

Definition 7. A distance measure is a weighted measure when there is a
weighting function that weights each atom in the model.

Next we will define two types of weighted measures: Manhattan measure and
Euclidean measure.

Definition 8. Let L be composed from n atoms, so that ML contains models
with n digits. A distance measure d is a Manhattan measure iff there is a
weighting function w such that

d(m,m′) =
n∑

i=1

w(i)× Contrary(Digiti(m),Digiti(m
′))

Example 4. Consider the following measure which is a Manhattan measure with
the positive weighting function w where w(1) = 3 and w(2) = 2.

d(11, 11) = 0 d(11, 10) = 2 d(11, 01) = 3 d(11, 00) = 5
d(10, 11) = 2 d(10, 10) = 0 d(10, 01) = 5 d(10, 00) = 3
d(01, 11) = 3 d(01, 10) = 5 d(01, 01) = 0 d(01, 00) = 2
d(00, 11) = 5 d(00, 10) = 3 d(00, 01) = 2 d(00, 00) = 0
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So a Dalal measure is a Manhattan measure with a uniform weighting function
w where w(i) = 1 for each i. Another type of distance measure is the Euclidean
distance, which treats space geometrically, as follows.

Definition 9. Let L be composed from n atoms, and so ML contains models
with n digits. A distance measure d is a Euclidean measure iff there is a
weighting function w such that

d(m,m′) =

√√√√ n∑
i=1

[w(i)× Contrary(Digiti(m),Digiti(m
′))]2

Example 5. Consider the following Euclidean measure where w(1) = 3 and
w(2) = 2.

d(11, 11) = 0.0 d(11, 10) = 2.0 d(11, 01) = 3.0 d(11, 00) =
√
13

d(10, 11) = 2.0 d(10, 10) = 0.0 d(10, 01) =
√
13 d(10, 00) = 3.0

d(01, 11) = 3.0 d(01, 10) =
√
13 d(01, 01) = 0.0 d(01, 00) = 2.0

d(00, 11) =
√
13 d(00, 10) = 3.0 d(00, 01) = 2.0 d(00, 00) = 0.0

Suppose we represent our n-digit models as points in n-dimensional space, then
we can see that the Manhattan distance (which involves following the edges of
the hypercube) gives a greater distance between two points than the Euclidean
distance (which takes the direct line between the two points). The Manhattan
distance treats each side of the hypercube equally and adds the traversal of all
of them. This means that each atom of the model has to be taken additively. In
contrast, the Euclidean distance discounts the distance with each further atom
under consideration. Consider the models 11 and 10. The Manhattan distance
and Euclidean distance is the same. Now consider the models 11 and 00. The
Euclidean distance in effect “discounts” the effect of the second digit being dif-
ferent between the models. In other words, let dd be the Manhattan distance
(i.e. the Dalal distance), and let de be the Euclidean distance, then

dd(11, 11) = de(11, 11) < dd(11, 10) = de(11, 10) < de(11, 00) < dd(11, 00)

We note that the Manhattan distance and the Euclidean distance are compatible
with one another in the sense that dd(m1,m2) < dd(m3,m4) iff de(m1,m2) <
de(m3,m4) and dd(m1,m2) = dd(m3,m4) iff de(m1,m2) = de(m3,m4).

4 Dilation of a Formula

In order to define our new class of inconsistency measures we turn to the notion of
dilation. Bloch and Lang, in [4], explore how some operations from mathematical
morphology translate into a logical framework. One of the most basic operations
is the dilation of a set, which translates into the dilation of a formula (or its
set of models). Essentially, for a formula φ, and a distance measure d, a dilation
returns the models (or equivalently the formula specified by those models) that
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are at most a certain distance from φ. The Dalal measure is a simple choice of
distance measure to illustrate the idea. Suppose that φ is a ∧ b, and so the set
of models is {11}. Using the Dalal distance, the set of dilations of distance 1
would be {11, 01, 01}, and so the resulting formula would be a∨ b. Then, the set
of dilations of distance 2 would be {11, 01, 01, 00}, and so the resulting formula
would be '. Note how each dilation possibly weakens the previous formula in
the sense that if φ is dilated to φ′ then φ ) φ′.

Definition 10. Let φ ∈ L be a propositional formula, let k ∈ R, and let d be
a distance measure. The set of k-dilations of φ with respect to d is Mk

d (φ) as
follows: Mk

d (φ) = {m ∈ML | ∃m′ ∈M(φ) such that d(m′,m) ≤ k}.
Hence, Mk

d (φ) is the set of models whose distance (using d) is not more than
k from some model of φ. Next, we extend Definition 10 to apply to sets of for-
mulae. For this purpose it will be convenient to assume an arbitrary ordering,
called the standard ordering, over the formulae in L. This could be, for in-
stance, alphabetical ordering, but the ordering has no significance. It just gives a
standard way to put formulae into a sequence. For any Δ ⊆ L, we can then rep-
resent Δ as a tuple (φ1, . . . , φn), which we call the standard form of Δ, where
Δ = {φ1, . . . , φn} and < is the standard ordering, and for each i, if 1 ≤ i < n,
then φi < φi+1.

Definition 11. Let (φ1, . . . , φn) be the standard form of Δ, where each φi ∈ Δ
is consistent, and let d be a distance measure. The set of k-dilation profiles
with respect to d is Pd(Δ) = {(k1, ..., kn) |Mk1

d (φ1) ∩ ... ∩Mkn

d (φn) �= ∅}.
Here is what happens. We start with the sequence (φ1, . . . , φn) of formulae,
or equivalently, the sequence of their sets of models. Pd(Δ) is a sequence of
numbers (k1, . . . , kn) such that the ki-dilations of all the φi for 1 ≤ i ≤ n have a
nonempty intersection. If we think of each ki-dilation as the formula represented
by the models, say ψi, then the nonempty intersection means that {ψ1, . . . , ψn}
is consistent. We minimize Pd(Δ) and use it to measure inconsistency.

Example 6. For Δ = {a ∧ b,¬a ∧ b}, and using the Dalal measure d,

Pd(Δ) = {(x, y) | x+ y ≥ 1}

Proposition 1. Let Δ = {φ1, ..., φn} ⊆ L be a set of propositional formulae
where each φi ∈ Δ is consistent, and (φ1, . . . , φn) is the standard form of Δ. Let
d be a weighted measure with weighting w.

(a) If w is positive, then (0, ..., 0) ∈ Pd(Δ) iff Δ is consistent.
(b) If Δ′ = {φ′

1, ..., φ
′
n}, and (φ′

1, . . . , φ
′
n) is the standard form of Δ′, and φ1 ≡

φ′
1, and ... and φn ≡ φ′

n, then Pd(Δ) = Pd(Δ
′)

The following result shows that the drastic measure is not sufficiently discrim-
inating for our purposes since just a dilation of 1 will return all the models.

Proposition 2. Let φ ∈ L be a consistent propositional formula and let d be
the drastic measure. For k ≥ 1, Mk

d (φ) = ML.
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In the next section, we will see examples of using dilation with the weighted
measure. We will use minimal dilations defined next.

Definition 12. A k-dilation (k1, . . . , kn) ∈ Pd(Δ) is called minimal if and only
if there is no k-dilation (k′1, . . . , k

′
n) ∈ Pd(Δ) such that (k1, . . . , kn) �= (k′1, . . . , k

′
n)

and k′i ≤ ki for all i, 1 ≤ i ≤ n. We write Pmin
d (Δ) for the set of minimal

dilations.

So in Example 6, Pmin
d (Δ) = {(0, 1), (1, 0)}.

5 Using Dilation to Measure Inconsistency

Now we can use the set of k-dilation profiles of a knowledgebase to assign it a
measure of inconsistency. We define three measures. The first one sums a minimal
sequence; the second picks the maximum value of a minimal sequence; while the
third counts the number of nonzero values in a minimal sequence.

Definition 13. Let Δ ⊆ L be a set of propositional formulae where each φi ∈
Δ is consistent, and let d be a distance measure. The d-sum inconsistency
measure is Isumd (Δ) = Min{x | (k1, ..., kn) ∈ Pd(Δ) and k1 + ...+ kn = x}.

Definition 14. Let Δ ⊆ L be a set of propositional formulae where each φi ∈
Δ is consistent, and let d be a distance measure. The d-max inconsistency
measure is Imax

d (Δ) = Min{x | (k1, ..., kn) ∈ Pd(Δ) and Max{k1, ..., kn} = x}.

It is clear from the definitions that for all Δ, Imax
d (Δ) ≤ Isumd (Δ).

The third measure is somewhat different from the first two as it takes into
account the number of formulae that need to be dilated (hit) in order to make
the set consistent. Intuitively, the more hits, the more inconsistency there is in
the set of formulae. Note, for this definition, the only information used for the
calculation is whether the distance measure is zero or greater than zero. Hence,
the magnitude of the distance measure is not taken into account.

Definition 15. Let Δ ⊆ L be a set of propositional formulae where each φi ∈
Δ is consistent, and let d be a distance measure. The d-hit inconsistency
measure is defined as follows.

Ihitd (Δ) = Min{x | (k1, ..., kn) ∈ Pd(Δ) and Hit(k1, . . . , kn) = x}

where Hit(k1, . . . , kn) = Σn
i=1z(ki) where z(ki) = 1 if ki > 0 and z(ki) = 0 if

ki = 0.

Before showing that these three definitions really define inconsistency measures,
we give four examples. In these examples we use the Dalal measure.

Example 7. Let Δ1 = {a ∧ b,¬a ∧ ¬b}. Pd(Δ1) includes (1, 1), (2, 0), and (0, 2).
Hence, Isumd (Δ1) = 2, Imax

d (Δ1) = 1, and Ihitd (Δ1) = 1.
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k a ∧ b ¬a ∧ ¬b
0 { 11 } { 00 }
1 { 11,10,01 } { 10,01,00 }
2 { 11,10,01,00 } { 11,10,01,00 }

Example 8. Let Δ2 = {a,¬a ∨ ¬b, b}. Pd(Δ2) includes (1, 0, 0), (0, 1, 0), and
(0, 0, 1). Hence, Isumd (Δ2) = 1, Imax

d (Δ2) = 1, and Ihitd (Δ2) = 1.

k a ¬a ∨ ¬b b
0 { 11,10 } { 01,10,00 } { 11,01 }
1 { 11,10,01,00 } { 11,10,01,00 } { 11,10,01,00 }

Example 9. Let Δ3 = {a ∧ b ∧ c,¬a ∧ ¬b ∧ ¬c}. Pd(Δ3) includes (1, 2), (2, 1),
(3, 0), and (0, 3). Hence, Isumd (Δ3) = 3, Imax

d (Δ3) = 2, and Ihitd (Δ3) = 1.

k a ∧ b ∧ c ¬a ∧ ¬b ∧ ¬c
0 { 111 } { 000 }
1 { 111,110,101,011 } { 010,001,100, 000 }
2 { 111,110,101,011,100,010,001 } { 110,101,011,010,001,100, 000 }
3 { 111,110,101,011,100,010,001,000 } { 111,110,101,011,010,001,100, 000 }

Example 10. Let Δ4 = {a, b, c,¬a,¬b,¬c}. Pd(Δ) contains profiles including
(1, 1, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1), (1, 0, 0, 0, 1, 1), etc. Hence, Isumd (Δ) = 3, Imax

d

(Δ) = 1, and Ihitd (Δ) = 3. We omit the table here because the second of the two
rows is too long to include.

Next, we show that the three inconsistency measures defined above satisfy the
consistency, monotony, and free formula independence properties.

Proposition 3. The d-sum inconsistency measure, the d-max inconsis-
tency measure, and the d-hit inconsistency measure, each satisfy condi-
tions 1 to 3 of Definition 1, and therefore all three are inconsistency measures.

The d-sum inconsistencymeasure and the d-max inconsistencymeasure have been
influenced by the definition for model-based merging operators by Konieczny and
Pino Perez [5], and the dilation-based reformalization of them [6].

Next we show that a useful property for inconsistency measures, called dom-
inance, holds for all of these measures.

Proposition 4. If {α} ) β, and α is consistent, then

1. Isumd (Δ ∪ {α}) ≥ Isumd (Δ ∪ {β})
2. Imax

d (Δ ∪ {α}) ≥ Imax
d (Δ ∪ {β})

3. Ihitd (Δ ∪ {α}) ≥ Ihitd (Δ ∪ {β})

In order to compare two inconsistency measures, we define Ix and Iy to be order-
compatible if for all knowledgebases Δ1 and Δ2, Ix(Δ1) < Ix(Δ2) iff Iy(Δ1) <
Iy(Δ2) and order-incompatible otherwise.
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Proposition 5. The d-sum inconsistency measure, the d-max inconsis-
tency measure, and the d-hit inconsistency measure are pairwise order-
incompatible.

In [7], we reviewed the main proposals in the literature for measuring incon-
sistency, such as measures based on 3 or 4 valued models and measures based
on minimal inconsistent subsets of knowledge, and we showed that they were
pairwise order-incomparable. We can also show that these three new measures
are pairwise incomparable with the existing proposals. This means we cannot
use existing measures to substitute for these new proposals. Hence, these new
measures offer new tools for analysing inconsistency.

We can use a geometric interpretation of dilation using Euclidean distance
in n-dimensional space. So take the case with n atoms and weighting function
w. For model b1...bn assign the point (b1 · w(1), ...bn · w(n)). For example, let
n = 3 and weight function w(1) = 2, w(2) = 5, w(3) = 4. Then the model
101 is mapped to the point (2,0,4) and the model 110 is mapped to the point
(2,5,0) (all points are in 3-dimensional space). For the distance between points
(the models) we are using the Manhattan distance of moving along the edges
of a hypercube, whereas the Euclidean distance is the “straight line” distance
between the points. Looking at the models this way as points in n-dimensional
space using Euclidean distance, the k-dilation of a model is the set of points
that represent models in a hypersphere of radius k with center at that point.
As the k-dilation of a formula is the k-dilations of its models, geometrically,
the k-dilation of a formula becomes the set of points that represent models in
a union of hyperspheres. For the Manhattan distance substitute “hypercube”
for “hypersphere”. It is possible for two such hypersheres or hypercubes to have
a nonempty intersection that does not contain any models. Suppose that in
the given example (1, 4, 2) is a point in the intersection. Such a point does not
represent a model for the given weights. However, if we were using fractional
truth values, the point would represent a model, namely with fractional truth
values .5, .8, and .5 respectively for the atoms. We do not pursue this matter
further in this paper.

6 Significance

There are two reasons for presenting the distance-based measures of inconsis-
tency in this paper. The first is to extend our understanding of the nature of
inconsistency and how it can be measured. The second is to develop techniques
for taking the significance of inconsistency into account.

A simple way of taking significance into account is to assume a weighting
function, and use a distance measure that can take this weight into account such
as the Manhattan distance or the Euclidean distance, as illustrated next.

Example 11. Consider the atoms a = “rain in my city” and b = “rain in a city
100Km from my city”. Consider the set of 2-digit models with the signature
(a, b) (i.e. the first digit refers to a, the second digit to b). Let w(1) = 1 and
w(2) = 0.1 be the weighting function, and let d be the Manhattan distance.
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Δ {a ∧ b,¬a ∧ ¬b} {a ∧ b,¬a ∧ b} {a ∧ b, a ∧ ¬b} {¬a ∧ b,¬a ∧ ¬b}
Isumd (Δ) 1.1 1 0.1 0.1
Imax
d (Δ) 1 1 0.1 0.1
Ihitd (Δ) 1 1 1 1

Using weights allows us to reduce inconsistency by applying a resolution function
(see [7]) that has maximal impact. For example, ifΔ = {a,¬a, b,¬b} and w(1)=1,
w(2) = 10, then deleting b or ¬b reduces the inconsistency far better than deleting
a or ¬a.

Whilst Example 11 shows how we can have different degrees of inconsistency
based on significance, it does not take the context of the inconsistency into
account. To illustrate what we mean by this, consider the following example
where the measure is not a weighted measure.

Example 12. Consider the atoms a = “earthquake” and b = “electricity fails”.
In this situation, some assumptions we may have about the significance of in-
consistency is as follows.

– if we have an inconsistency about whether or not there is an earthquake,
then we have a very significant inconsistency.

– if we have an inconsistency about whether or not the electricity fails, then
we have a moderate inconsistency.

– however, if we know that there is an earthquake, and there is an inconsistency
about the electricity failing, then the significance of the inconsistency is low.

Consider the set of 2-digit models with the signature (a, b) (i.e. the first digit
refers to a, the second digit to b). We can capture this significance using the
following distance measure.

d(11, 11) = 0 d(11, 10) = 1 d(11, 01) = 9 d(11, 00) = 9
d(10, 11) = 1 d(10, 10) = 0 d(10, 01) = 9 d(10, 00) = 9
d(01, 11) = 9 d(01, 10) = 9 d(01, 01) = 0 d(01, 00) = 2
d(00, 11) = 9 d(00, 10) = 9 d(00, 01) = 2 d(00, 00) = 0

We illustrate the use of this distance measure with the following examples of
knowledgebases.

Δ {a ∧ b,¬a ∧ ¬b} {a ∧ b,¬a ∧ b} {a ∧ b, a ∧ ¬b} {¬a ∧ b,¬a ∧ ¬b}
Isumd (Δ) 9 9 1 2
Imax
d (Δ) 9 9 1 2
Ihitd (Δ) 1 1 1 1

The difference between a weighted measure and a non-weighted measure is that
for a weighted measure the atoms are independent of one another. That is not the
case for non-weighted measures. So in Example 12 we can think of the 4 models
as being in 2 groups: the group {11, 10} and the group {00, 01}. Models within
a group are close to one another but models in different groups have a larger
distance. In that example the first atom is more important than the second atom;
however the second atom does not have a unique weight: its weight depends on
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the truth value of the first atom. However, if the groups are {11, 00} and {01, 10}
then they are based on the sameness of the truth values of the atoms. With more
atoms more groups can be formed.

7 Measuring Violations of Integrity Constraints

In this section we consider measuring violations of integrity constraints in knowl-
edgebases. As integrity constraints must be satisfied, we slightly revise our def-
initions so that only the data is dilated and not the integrity constraints. We
assume that relational data is represented by a set of ground predicates Δ, and a
set of integrity constraints Γ . We treat both Δ and Γ as propositional formulae.

Definition 16. Let Δ ⊆ L be a set of ground predicates (atomic formulae), and
(φ1, . . . , φn) be the standard form of Δ. Let Γ ⊆ L be a consistent set of ground
formulae, and let d be a distance measure. The set of k-dilation profiles with
respect to d is Pd(Δ) as follows.

Pd(Δ,Γ ) = {(k1, ..., kn) |Mk1

d (φ1) ∩ ... ∩Mkn

d (φn) ∩M(Γ ) �= ∅}

The weights could be chosen so that the significance of the inconsistency rises
as the difference in the values taken by the data deviate. In order to assign the
weights, we may choose to use an equation, as we illustrate in the following ex-
ample where we consider weight to be a linear function of the difference between
the value and the median value.

Example 13. Let Δ be the six literals in the following table and Γ the integrity
constraints obtained from the axiom scheme salary(bob,X1)→ ¬salary(bob,X2),
where X1 �= X2. Here we assume that the weight is dependent on the range of
values for the salary for Bob. So the most extreme values for the salary (i.e.
1000 and 2000) have highest significance, whereas the least extreme value (i.e.
1400 and 1600) have the lowest significance. We capture this by the following
equation where X∗ is the mid-point between the minimum and maximum value
for the salary.

w(salary(bob,X)) =
| X −X∗ |

100
+ 1

Using this equation, we get the following weight for the example.

w
salary(bob,1000) 6
salary(bob,1100) 5

w
salary(bob,1400) 2
salary(bob,1600) 2

w
salary(bob,1900) 5
salary(bob,2000) 6

Here the inconsistency measures are Isumd (Δ) = 20, Imax
d (Δ) = 6, and Ihitd (Δ) =

5 using the Manhattan distance with the above weights.

Taking significance into account using these measures means that we consider
how “incorrect” or how extreme the literals are. Smaller ranges of values in the
data have lower weights than wider ranges of values in the data. So we can define
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these weights in the form of any kind of equation that is appropriate for the
application. Furthermore, it is straightforward to define equations for obtaining
the weights that consider multiple dimensions of inconsistency in the data. For
instance, the tuple salary(bob,1000,45) might be inconsistent with regard to any
combination of name, or salary, or age.

8 Discussion

In future work, we plan to further develop the application features of this frame-
work in context-sensitive approaches to dealing with inconsistency (e.g. [8]). We
also plan to address some of the shortcomings of using the Hamming distance,
as discussed by Lafage and Lang [9], by using distances based on Choquet in-
tegrals. These can avoid the assumption of independence between propositional
variables, and ameliorate problems of syntax sensitivity. Finally, we plan to es-
tablish connections with measures of inconsistency for probabilistic knowledge
[10] and fuzzy knowledge [11].
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Abstract. Updating probabilities by conditioning can lead to bad pre-
dictions, unless one explicitly takes into account the mechanisms that
determine (1) what is observed and (2) what has to be predicted. Analo-
gous to the observation-CAR (coarsening at random) condition, used in
existing analyses of (1), we propose a new prediction task-CAR condition
to analyze (2). We redefine conditioning so that it remains valid if the
mechanisms (1) and (2) are unknown. This will often update a singleton
distribution to an imprecise set of probabilities, leading to dilation, but
we show how to mitigate this problem by marginalization. We illustrate
our notions using the Monty Hall Puzzle.

1 Introduction

Let P be a probability distribution on some space Y. Suppose we are given
information in the form of an event B ⊂ Y. We are then asked to give the
probability of another event A ⊂ Y, given information B. Many people would
be inclined to say “this probability is equal to P (A|B), defined as P (A,B)/P (B);
this is just the standard definition of conditional probability”. In this paper, we
boldly propose a little extension of probability theory, in which we always have
to make an additional calculation, to check whether predicting with P (A|B) is
valid, or at least safe. If it is unsafe, we should not use P (A|B); we then risk
getting answers that are wrong under any reasonable operational interpretation
of probability. We explain this in Section 2, right after Example 3, and give
formal definitions of safety and validity in Section 4.1, Definition 1; for now,
we just note that unsafety implies there are other ways of updating P based
on B that provably lead to better predictions. Indeed, we identify realistic
situations in which updating by a “predictive distribution” P̃ different from
standard conditioning is “safe”, whereas standard conditioning is “unsafe”.

All this may sound worrisome, especially to Bayesian readers: isn’t there a
plethora of evidence (by e.g. Savage (1954) and many, many others), axiomatic
and otherwise, implying that conditioning is the only reasonable way to update
probabilities? The answer is: yes, there is, and all our ‘safe’ updates are in fact
compatible with conditioning if we were to work in a larger sample space Z that
takes explicitly into account the observation selection mechanism (OSM) and the
task selection mechanism (TSM). Here a ‘task’ can be any decision, prediction, or

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 242–253, 2013.
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inference problem. Earlier work on OSM has been done within the CAR (coars-
ening at random) literature (Heitjan and Rubin, 1991, Grünwald and Halpern,
2003, De Cooman and Zaffalon, 2004). We generalize CAR-based OSM’s and
connect them to TSM’s, which, to the best of our knowledge, have not been
studied before. In practice such selection mechanisms, while relevant, may often
be unknown, so we do not know the appropriate distribution P ∗ on Z. We only
know that P ∗ must be a member of some set of distributions P∗, consisting of
all distributions on Z that satisfy some known constraints. The ‘safe’ predictive
distributions P̃ that we advocate typically coincide with a marginal distribution
corresponding to some specific, special distribution in the set P∗.

In the remainder of this introduction, we describe two well-known probability
puzzles that motivate our research. Section 2 summarizes relevant insights from
the CAR literature. Our original contributions are in Section 3 and beyond, in
which we develop two notions of safety: the strong guaranteed-validity notion
and a weaker notion which we just call safety. In the final section we return
to the two puzzles to see what safe probability implies for them. Mathematical
proofs and further discussion will be provided in the full paper of which this
submission is an extended abstract.

Example 1. [Monty Hall Puzzle] (vos Savant, 1994, Gill, 2011) Suppose that
you’re on a game show and given a choice of three doors, named a, b and c. Behind
one is a car; behind the others are goats. You pick door a. Before opening door
a, Monty Hall, the quiz master (who knows what is behind each door) opens
one of the other doors (say, door c), which has a goat. He then asks you if you
still want to take what’s behind door a, or to take what’s behind the closed door
(door b, in our case) instead. Should you switch? You may assume that, initially,
the car was equally likely to be behind each of the doors, so it seems natural to
define a sample space Y = {a, b, c} where Y = y indicates that the car is behind
door a, and P (a) = P (b) = P (c) = 1/3. You observe that the car is not behind
door c, i.e. the remaining possibilities are {a, b}, Conditioning now gives that
P (b | {a, b}) = (1/3)/(2/3) = 1/2, which suggests that the car is now equally
likely to be behind door a and door b. Thus, there seems no reason to switch.

Now, 23 years after this problem was popularized, almost everybody agrees
that this simple answer is wrong: as vos Savant pointed out, it is strongly in your
interest to switch. However, initially, most people who heard about the puzzle,
including some professors of probability theory (see (vos Savant, 1994)), were
very hard to convince of this. It is here that safe probability can be useful: from
the definition of safety in Section 3, one immediately sees that conditioning as
we did above is ‘unsafe’, implying it will lead to suboptimal decisions. Briefly,
for general spaces Y, if the set of events X on which you can condition is not a
partition of Y, then conditioning on any of these events is unsafe. In the present
case, the set of events is X = {{a, b}, {a, c}} (the latter would be observed if the
quiz master had opened door b). The two events overlap (a is a member of both),
hence do not form a partition, and hence you should not update by conditioning.
This part is only of limited novelty — it has been argued before by many authors
(perhaps most notably Shafer (1985)) that updating by conditioning only makes
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sense if a protocol is specified (corresponding to what we call an ‘observation
selection mechanism’ below). Shafer (1996) formalizes this in terms of event trees
which implicitly require conditioning events to form a partition. The only novelty
here is our insight that, in practical cases in which the ‘correct’ event tree may
be hard to construct, checking for overlap provides a very simple sanity check
which immediately indicates that a problem is represented in a space in which
conditioning makes no sense.

The real novelty of safe probability relates to the question whether, if the
quiz master opens door c, the probability that the car is behind a remains 1/3.
If one assumes that, in those cases in which the car is actually behind door a,
the quiz master tosses a fair coin to decide whether to open door b or c, then
the answer that P (a) remains 1/3 is valid. However, it is unclear whether in the
game as it was actually played on TV, Monty Hall really tossed a fair coin; for
all we know he might have followed a very different rule, for example, open door
c whenever you can. Previous analyses such as by Grünwald and Halpern (2003)
that take into account that Monty’s protocol is unknown, conclude that after
the quiz master opened door b or c, a precise probability of the car being behind
door a cannot be given any more: it can be anything between 0 and 1/2. In other
words, the probability has dilated (Seidenfeld and Wasserman, 1993): it seems
that, by observing additional information, one knows less than before (this will
be explained in Example 2). But this does not seem satisfactory either: many
people would reason that, since the quiz master in fact has to open door b or c,
he gives no information about a, so the probability should remain 1/3. Using safe
probability we can partially vindicate this intuition: we show that 1/3 does have
a special status, even if the quiz master’s protocol is unknown — the reasoning
is, to some extent, correct after all, if our goal is just to asses whether the car
is behind door a: let Y ′ = 1 iff a obtains, Y ′ = 0 otherwise. In Section 4 we
show that P̃ defined by P̃ (Y ′ = 1 | {a, b}) = P̃ (Y ′ = 1 | {a, c}) = 1/3 is a sort
of marginal distribution, and we show that predictions based on P̃ will behave
exactly as they would if P̃ were actually the correct conditional distribution.
Hence it is safe to act as if the probability remains 1/3.

2 The Problem with Overlapping Sets

Notation. All sets we introduce below are finite. All probability distributions
mentioned below are defined on Z, our generic symbol for the sample space. A
random variable (RV) is any function from Z to some arbitrary finite set. For a
given RV we denote its range in calligraphic script. For example, a RV X maps
z ∈ Z to X . For RV Y with range {y1, . . . , ym}, when we write P (Y ) we really
mean the vector (P (y1), . . . , P (ym)), where P (y) abbreviates P (Y = y).

Example 2. [Dice] This example is really just Monty Hall, without any mislead-
ing aspects. Suppose you and me play the following game: I roll a die, which we
both know to be fair, i.e. Z = Y = {1, . . . , 6}. I get to see the outcome, but
you don’t. I only tell you whether the outcome is below 3 or not, i.e. whether
Y ∈ {1, 2} or Y ∈ {3, 4, 5, 6}. Given this information, you are asked to give
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the probability that Y = 3. We agreed beforehand that, after throwing the
die, I will tell you exactly one of the two statements, and that I won’t lie. If
I tell you {1, 2}, you would probably answer ‘the probability of 3 is now 0’,
and if I tell you {3, 4, 5, 6}, you would say ‘the probability of 3 is now 1/4’.
This is the answer you get by conditioning: P (Y = 3 | Y ∈ {1, 2}) = 0 and
P (Y = 3 | Y ∈ {3, 4, 5, 6}) = 1/4, and here it is obviously valid.

But now let’s slightly change the game: we now agree beforehand that, after
throwing the die, I will tell you either “Y ∈ {1, 2, 3, 4}” or “Y ∈ {3, 4, 5, 6}”.
Suppose that, when we actually play, I tell you Y ∈ {3, 4, 5, 6}. Given this
observation, what is now the probability of 3? Many people would still say 1/4
but this answer is wrong. To see this, note that if, after throwing the die, I observe
outcome 3 or 4, then I have a choice in what to tell you, and you do not know how
I choose. For example, I may decide to always say {1, 2, 3, 4} whenever I observe
3 or 4. In that case, if I say Y ∈ {3, 4, 5, 6}, the actual probability that Y = 3 is
0 rather than 1/4! (for if I had observed 3, I had certainly told you {1, 2, 3, 4}).
Even if I am ‘fair’, i.e., when I observe 3 or 4, I flip a fair coin to decide whether
to tell you {1, 2, 3, 4} or {3, 4, 5, 6}, the answer 1/4 is still wrong: as we calculate
below in (2), the probability of Y = 3 given {3, 4, 5, 6} then becomes 1/6. Note
that when we write ‘1/4 is invalid’ we do not refer to the mathematical definition
of conditional probability (the statement P (Y = 6 | {3, 4, 5, 6}) = 1/4 is after
all a correct application of the definition of conditional probability). We explain
what ‘invalid’ means here right after Example 3.

As explained by e.g. Grünwald and Halpern (2003) (GH from now on), to for-
malize problems such as this correctly, we need to move to a larger sample space
in which we can explicitly represent the fact that I sometimes have a choice in
what to tell you. This can be done by representing the problem in the space
Z := X × Y, where Y is the outcome space as before, and X is the observation
space, with associated RVs Y and X , respectively. Z was called the “sophisti-
cated space” by GH. We assume (uncontroversially, see e.g. (Heitjan and Rubin,
1991)) that in this larger space, conditioning is the valid thing to do. In our case,
Y = {1, . . . , 6} as before, and X = {{1, 2, 3, 4}, {3, 4, 5, 6}}. We know that the
distribution P on Z must be compatible with the distribution on Y, and we also
agreed that I don’t lie, so in our case this means that P (Y = y) = 1/6 for all
y ∈ Y, and P (Y ∈ x | X = x) = 1 for both x ∈ X . This is not sufficient to spec-
ify P ((x, y)) for all (x, y) ∈ Z. For this, we would need two more probabilities p
and q in [0, 1], defined by setting

P (X = {3, 4, 5, 6} | Y = 3) = p, P (X = {3, 4, 5, 6} | Y = 4) = q. (1)

Once we specify p and q, we can determine P (x, y), and, more importantly for
us, P (y | x), for each (x, y) ∈ Z.The interpretation is that when e.g. Y = 3, I flip
a coin with bias p. If it lands heads I say {3, 4, 5, 6}, otherwise I say {1, 2, 3, 4}.

Example 3. We can now calculate the actual probability that Y = 6 given that
I say {3, 4, 5, 6} as
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P (Y = 6 | X = {3, 4, 5, 6}) = P (Y=6,X={3,4,5,6})
P (X={3,4,5,6})

= P (6)
P (3,X={3,4,5,6})+P (4,X={3,4,5,6})+P (5)+P (6)

= P (6)
P (3)P (X=3..6|3)+P (4)P (X=3..6|4)+P (5)+P (6) =

1
6

1
6 ·(p+q+2)

= 1
p+q+2 ,

(2)

where in the third line we abbreviated all occcurrences of Y = y to y, for
y ∈ {3, . . . , 6}. Suppose that we make no assumptions on p and q. This includes
the deterministic cases (if p = q = 1 or p = q = 0) in which, when I have
a choice, I’ll always say the same thing. By varying p and q in (2), we find
that P (Y = 6 | X = {3, 4, 5, 6}) can take on any value between 1/4 and 1/2,
depending on the value of p and q.

All this shows that conditioning cannot always be valid. The meaning of ‘valid’
can be understood in three ways: (I) frequentist: conditioning is not calibrated
, i.e. if we were to repeat the game of Example 2 independently many times,
each time casting the die anew, then conditional relative frequencies will not
converge to the corresponding conditional probabilities. For example, if I follow
the strategy with p = q = 0, and we play, say, 6000 times, then each time I
say {3, 4, 5, 6}, you will say that the probability of 3 is now 1/4; but of all the
(approximately 2000) times that I will say {3, 4, 5, 6}, the actual outcome will
be 5 or 6, so the conditional frequency of 3 is 0 rather than 1/4. (II) (perhaps
more appealing to a Bayesian): decision-theoretic: not surprisingly, in the light
of (I), using the conditional distributions to make predictions about Y can be
suboptimal; we will see several examples of this in the next sections. (III) As
we just saw, even if we do assume that conditioning is valid if the problem
is modelled in the large space X × Y, which takes into account the protocol,
then, even if the protocol is ‘fair’, conditioning in the small space, omitting the
protocol, can be invalid.

The original space Y was called the ‘naive space’ by GH. We may now ask
when conditioning in the naive space is valid. The answer is given by the coars-
ening at random (CAR) condition (Heitjan and Rubin, 1991). For us, only a
partial characterization is important: let X be a collection of subsets of Y and
P ∗ be a distribution on Y, and suppose that there is ‘no lying’. If X partitions
Y, then naive conditioning is valid, i.e. conditioning in the naive space must
coincide with conditioning in the sophisticated space. If X does not partition Y,
then naive condititioning can always be invalid: there exist distributions P on
X × Y with marginal on Y equal to P ∗ and x ∈ X such that P ∗(X = x) > 0,
P ∗(Y | Y ∈ x) �= P (Y | X = x); see Prop. 4.1 and Theorem 4.4(b) of GH.

3 Towards Safe Probability

First Attempt to restrict Conditioning The partition result above suggests a
very simple definition of ‘validity’: we say conditional probability P (A | B) is
undefined unless a set B with B ∈ B is specified; we then write P (A | B) as
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PB(A | B). B is the set of alternative events that might have been observed
instead of B. We could then simply define conditioning PB(A | B) to be ‘valid’
iff B is a partition, and restrict conditioning to valid cases: if B is not a partition,
then it is undefined. This would already take care of the sanity check for the
Monty Hall problem (Example 1), but it falls short of dealing with the second
issue in Example 1 (how to assess the probability P̃ (Y ′ | {a, b})), as well as
the more general type of prediction task selection problems we will encounter
below. We found these issues a lot more amenable to a random-variable based
treatment, so that is the direction we take below.

Random Variables and Partitions. The main advantage of a RV treatment is
that the problem of invalid conditioning goes away — to some extent — auto-
matically, since for every arbitrary random variables X , there is a partition Π
such that conditioning on the value of X is equivalent to conditioning on the
element of the partition that obtains (trivial proof provided in full paper). Thus,
by our preliminary definition of validity based on event-conditioning as above,
conditioning on a fixed RV X must always be valid. Thus, we could define con-
ditional probability as P (Y | X) for fixed RVs Y and X , and leave probabilities
of the sort P (event A | event B) undefined. One might argue that under such
a definition of conditional probability, our problem of invalid conditioning goes
away automatically. But it is more complicated than that: the problem goes
away automatically only if it is implicitly understood that the distribution P for
which P (Y | X) is specified, will only be used to make predictions or decisions
about Y given the value of X , irrespective of the value of X that is actually
observed. Thus, for example, if Y = (Y1, Y2), it is not valid in general to make
a prediction about just Y1 if X = a is observed, and a prediction about just
Y2 if X = b is observed (see Example 5 below). Yet if the prediction problem
at hand satisfies the implicit fixed X, fixed Y—requirement, then conditioning
on a fixed RV is indeed valid. This requirement often holds in signal processing,
information-theoretic and machine learning applications such as classification
and regression with i.i.d. random design.

Beyond Fixed RVs. However, in many other standard applications of probabil-
ity, we routinely make predictions about various RVs Y1, Y2, . . . conditioned on
various RVs X1, X2, . . ., and it is not precisely specified on what grounds a spe-
cific Xs or Yt is chosen. For example, the Monty Hall and dice example can be
interpreted in this way, as we show in Example 7. As a practically more relevant
example, Bayes nets are often used to compute, e.g., how the probability that
a patient has a certain disease would change counterfactually if (a) we were to
observe that X1 = x1, or (b) we were to observe that X2 = x2; the result is then
used to determine whether we should, in fact, observe RV X1 or RV X2 — both
X1 and X2 may correspond to costly medical tests, and we may want to avoid
doing two tests rather than one.

We only get away with such applications of probability if particular additional
independence assumptions hold, which are usually left implicit. Rather than
relying on such tacitly made assumptions to hold, as is usually done, it seems
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safer to use probability in a way which forces us to explicitly represent the
task selection mechanism TSM (which determines what Yj is observed) and the
observation selection mechanism OSM (which determines what Xi is observed),
so that we cannot violate our assumptions by mistake (which happens in the
invalid P (b | {a, b}) answer to the Monty Hall problem, Ex. 1) or unnecessarily
dilate a distribution (as happens in the Monty Hall problem when the probability
P (Y ′ = 1 | {a, b}) is merely assessed to be in [0, 1/2] instead of 1/3). We now
develop such an explicit representation of OSMs and TSMs.

4 Observation and Task Selection Mechanisms

We start with two examples that motivate the general definitions further below.
Example 4 concerns OSMs: we show that event-based conditioning with over-
lap in the conditioning events (as in our three examples) can be rephrased as
conditioning on a RV XS selected from a set of RV {Xs | s ∈ S}, where S is
itself random. S then represents the OSM. Example 5 then concerns TSMs that
determine what random variable YT has to be predicted.

Additional Notation in This Section. For an event E ⊂ Z, we define the indicator
random variable IE to be 1 if E holds and 0 otherwise. For distribution P on
Z and RV U we define supportP (U) = {u ∈ U : P (U = u) > 0}. For a set
of distributions P∗ on Z and RVs U, V,W on Z we write U ⊥P∗ V | W iff U
and V are conditionally independent given W , that is, if for all P ∈ P∗, for all
(u, v, w) ∈ supportP (U, V,W ), it holds P (U = u | V = v,W = w) = P (U =
u | W = w). We say that P, P ′ ∈ P∗ agree on an event E if P (E) = P ′(E).
We write P∗(E) to denote the set {P (E) : P ∈ P∗}. If all P ∈ P∗ agree on E ,
the probability of E is known relative to P∗ and we write P ∗(E) rather than
P∗(E). For two RVs U, V on Z, we write U � V (“U determines V ” or “U is a
coarsening of V ”) if there is a function f such that for all z ∈ Z, V (z) = f(U(z)).

Example 4. [Observation Selection] We define S = {a, b} and set RV Xa :=
{1, 2, 3, 4} if Y ∈ {1, 2, 3, 4} and RV Xa = {5, 6} otherwise. We set Xb :=
{3, 4, 5, 6} if Y ∈ {3, 4, 5, 6} and Xb = {1, 2} otherwise. Example 2 is equivalent
to a scenario in which you observe XS, where S is set to a if Y ∈ {1, 2}; S is set
to b if Y ∈ {5, 6}, and if Y ∈ {3, 4}, then whether you observe Xa or Xb depends
on my protocol. To this end, we define the extended sample space Z = Y × S.
We then set P ∗(S = a | Y = 1) = P ∗(S = a | Y = 2) = P ∗(S = b | Y = 5) =
P ∗(S = b | Y = 6) = 1, and P ∗(S = b | Y = 3) = p, P ∗(S = b | Y = 4) = q.
S — which in this case is just my protocol — is an example of what we call
an observation-selection mechanism. We set P∗ to be the set of all distributions
on Z of the form above. The fact that we now have a set, rather than a single
distribution reflects our ignorance of the precise protocol. The resulting setting
is equivalent to Example 3: for example, if Y = 3, we will, with probability
1 − p, observe {1, 2, 3, 4}. Note that S = a iff RV X in Example 3 is equal to
{1, 2, 3, 4}, and S = b iff X = {3, 4, 5, 6}. Thus, observing S is equivalent to
observing X and we see that Z = Y × S as here has equivalent representative
power as Z = X × Y as defined above Example 3.
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Example 5. [Task Selection] Let X ∈ {0, 1} and Y ∈ {a, b, c}. Imagine your
goal is to predict aspects of Y given X , where an ‘aspect’ is a function that is
determined by Y — for example, you might want to either predict Y1 = IY =a or
Y2 = IY =b — and ‘predicting Yj ’ means coming up with a distribution P̃ for Yj

(P̃ may then be used as the basis for making decisions about Y under various loss
function in the standard way, i.e. you choose the act that minimizes expected
loss under P̃ ). Some external process determines whether Y1 or Y2 should be
predicted. This process is modelled by an additional RV T ∈ T = {1, 2}. T is
what we call a (prediction) task selection mechanism. The idea is that, in any
realization of the system, YT (rather than the full Y ) has to be predicted. Suppose
you represent your uncertainty on (X,Y, T ) by a set of distributions P∗, all of
which agree on (X,Y ); hence the marginal distribution P ∗(X,Y ) is known but
the dependencies between (X,Y ) and T may not be known. For concreteness,
let’s take some P ∗(X,Y ) such that P ∗(Y = a | X = 1) = 0.8, P ∗(Y = b | X =
0) = 0.9, P ∗(Y = a) = 0.6. If you think that T is determined independently of
Y (for example, I ask you to predict either Y1 or Y2, and you know that I make
my choice on external grounds, without knowing X or Y or P ∗(X,Y ) myself),
then P∗ would be the set of all distributions P on Z with P (X,Y ) = P ∗(X,Y )
and with (X,Y ) ⊥P T . Yet, if you don’t know how I determine what RV I ask
you to predict, you may want to choose for P∗ the set of all distributions P on
(X,Y, T ) with P (X,Y ) = P ∗(X,Y ).

In standard uses of probability, the process T is rarely modelled explicitly, and
upon observingX = x and being asked to predict Yt, you may be tempted to pre-
dict Yt with the conditional distributionP

∗(Yt | X = x). But in fact, this standard
procedure is only valid if you are indeed in the situation with Y ⊥P∗ T , i.e. the
process determining what you are asked is independent of Y itself. For otherwise,
it would, for example, be possible to ask you about Y1 whenever Y = a and to ask
about Y2 whenever Y �= a. Then, when observingX = 1, you will predict Y1 with
distribution P ∗(Y1 = 1 | X = 1) = 0.8, whereas the probability of Y1 = 1 given
that you are asked about it is really 1. Clearly standard conditioning is once again
invalid, unless some independences involving (T,X, Y ) hold. It seems we implic-
itly must assume, when we condition, that ‘something like’ T ⊥P∗ Y | X is the
casee (this includes the case that T is constant, fixed in advance); see Definition 3
below for a sharper formulation. Indeed, consider a scenario B in which I always
ask you to predict Y1 whenever X = 1 and Y2 whenever X = 0, i.e. T = f(X)
with f(1) = 1 and f(0) = 2. Then T still depends on (X,Y ) but now T ⊥ Y | X
and indeed T can now be safely ignored: the answers P (Y1 = 1 | X = 1) = 0.8
and P (Y2 = 1 | X = 0) = 0.9 are now valid.

But now, suppose that X is hidden from you yet you are still asked to predict
Yt; I still play scenario B but you don’t know this. It is then standard practice
for you to use the marginal distribution of Yt, P

∗(Yt) :=
∑

x P
∗(Yt, X = x).

In this case, when you predict Y1, you will say that P (Y1 = 1) = 0.6 (the
marginal) whereas in fact, because I asked you for Y1, it is 0.8 in this case. The
problem is that, since you don’t condition on X , Y still depends on T and hence
you cannot ignore T when predicting Y . Thus, standard marginalization can be
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invalid when T is not independent of Y — just as we saw that conditioning on
X could be invalid when T is not conditionally independent of Y given X . Now
a sufficient (not necessary, see Def. 3 below) condition for valid prediction is
that T ⊥P∗ Y (since we marginalize, there is no conditioning on X any more).
Whenever we marginalize a probability in a practical application, we implicitly
make an assumption like this!

4.1 Main Definitions and Main Result

As in the examples, in our definition of a predictive system below, we represent a
situation by a set P∗ rather than a single P ∗ to reflect our ignorance: we believe
that one P ∗ ∈ P∗ is true (in a more Bayesian interpretation, it is the appropriate
representation of our uncertainty), but we do not know which one.

Definition 1. Let P∗ be a set of distributions on Z, and let X, Y be RVs on Z
with ranges X ,Y such that (∗) all P ∗ ∈ P∗ agree on (X,Y ). Let S, T be finite
sets, let {Xs | s ∈ S} be a collection of RVs on Z such that for all s ∈ S,
Xs � X; let {Yt | t ∈ T } be a collection of RVs on Z such that for all t ∈ T ,
Yt � Y . We call the collection PS = (P∗,Z,S, T , {Xs | s ∈ S}, {Yt | t ∈ T })
a predictive system. We call any RV (typically denoted S) that maps Z to S an
OSM for PS ; and any RV (denoted T ) that maps Z to T a TSM for PS .

Thus, we consider a setting in which, by (∗), the distribution P ∗(X,Y ) is known
to the DM (decision-maker). Since (X,Y ) determine all variablesXs that we may
observe and all variables Yt to be predicted, the distribution of these RVs is known
as well. The DM observes XS = x, i.e. Xs = x is observed for some Xs; but the
Xs whose value is presented, is itself determined, perhaps randomly, by OSM S.
Given this observation, DM has to predict RV YT , i.e. specify a distribution on Yt

for a t which itself determined, perhaps randomly, by TSM T . Since we specifically
do not require that all P ∗ ∈ P∗ agree on (S, T ), DM may be ignorant on the actual
details of the distribution of (S, T ). Our goal is to find out whether it makes sense
for DM to predict YT given XS , S, T based on distributions that ignore S and/or
T — this is what actual DMs (people) usually do and we want to see when they
can get away with it. In many cases S and/or T are not observed, so DM cannot
even condition on them; also their distribution may be unknown (not all P ∗ ∈ P∗

may agree on them), so in such cases DM cannot even marginalize them out; he
can just ignore them by acting as if the randomly determined (S, T ) are actually
not random but fixed in advance. The standard predictive distribution used by
such a DM upon observing x is thus given by

P̃standard(y | x, s, t) := P ∗(Yt = y | Xs = x), (3)

the conditional distribution of YT that would arise if T were fixed in advance
to t and S were fixed in advance to s. Yet the ‘correct’ conditional distribution
is a member of the set {P (Yt = y | Xs = x, S = s, T = t) : P ∈ P∗}, and
P̃standard(y | x, s, t) may not be equal to it. We want to find out when it can be
safely used any way — this is determined in Definition 2 and Theorem 1 below.
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Note that P̃standard can be calculated without knowing the distribution of T or
S and in some cases even without knowing the realized value s (CAR settings,
Example 6 below). Note also that P̃standard does not ‘marginalize out’ S or T ;
it just pretends they are not random at all.

As seen in Example 5, a DM sometimes likes to predict Y or YT based on
the marginal distribution of Y , with X marginalized out. In our setting, if X is
marginalized out and S and T are ignored, this marginal distribution becomes

P̃marginal(y | x, s, t) := P ∗(Yt = y) = EXs∼P∗ [P ∗(Yt = y | Xs)] (4)

Note that this distribution can be calculated without knowing either x or s or
the distribution of S or T , but the treatment is asymmetrical: S and T are just
ignored, X is marginalized out. Below we will see that it is sometimes smart to
use P̃marginal rather than P̃standard even in situations in which x is observable.

The following definition can be applied to more general predictive distribu-
tions P̃φ defined as P̃φ(y | x, s, t) := P ∗(Yt = y | φ(Xs) = φ(x)), for some
function φ :

⋃
s∈S Xs → Φ (the special case with S ≡ T ≡ 0 and X0 ≡ X ,

Y0 ≡ Y , so that the TSM and OSM play no role, corresponds to the notion of “C-
conditioning” from Grünwald and Halpern (2011) with φ(x) = C(x)). P̃marginal

and P̃standard are the special cases that use φ(x) ≡ 1 and φ(x) = x respectively;
for overall notational consistency we always include argument x in P̃φ(y | x, s, t),
even for P̃marginal which doesn’t really depend on x.

Definition 2. We say that a predictive distribution P̃ is guaranteed-to-be-valid
(GTBV) for YT | XS relative to a predictive system PS if for all P ∈ P∗, all
s, t, x, y ∈ supportP (S, T,Xs, Y ),

P̃ (y | x, s, t) = P (Yt = y | Xs = x, S = s, T = t). (5)

We say that P̃φ is safe for YT | XS if for all (s, t) ∈ supportP∗(S, T ), for all
P ∈ P∗, all x, y with (s, t, x, y) ∈ supportP (S, T,Xs, Y ),

P̃φ(y | x, s, t) = P (Yt = y | φ(Xs) = φ(x), S = s, T = t). (6)

In the full paper we extend the definition of safety to general P̃ , but below we
only use it for P̃ equal to P̃φ for some φ as above. Intuitively, when observing

XS and having to predict YT , we would ideally like to use a P̃ that is GTBV.
However, when the distributions of S and/or T are unknown, we cannot always
determine this P̃ . In some cases, we may still have that P̃standard is GTBV;
but this will in general only be the case if the OSM S and TSM T play no
crucial role, as formalized in Theorem 1 below. If S cannot be ignored, then we
cannot determine a GTBV P̃ any more; but, as also shown in Theorem 1, if S
cannot but T can be ignored, we can resort to predicting by P̃marginal and our
predictions will still be ‘safe’. ‘Safety’ is the condition that we always implicitly
have to assume any way whenever we want to use a marginal distribution. In a
frequentist view, if we use a ‘safe’ P̃φ to repeatedly predict YT given XS , where
the (XS , YT ) pairs are sampled i.i.d. from some P ∗ ∈ P∗ (hence P∗ is ‘true’),
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then the data will behave exactly as if P̃φ were the true conditional distribution.

The only way to find out whether data behave differently than predicted by P̃φ

would be to test P̃φ (use it to make predictions) in situations in which Yt depends
on (S, T ) given φ(Xs), yet does not depend on (S, T ) given Xs (as in the final
example in Ex. 5, where φ(Xs) ≡ 0). Yet, since for P̃φ the left-hand-side in (6)
is equal to P ∗(Yt = y | φ(Xs) = φ(x)), the definition of ‘safe’ rules out exactly
such T . In a Bayesian interpretation, no Dutch book can be made against P̃φ

by an adversary, unless that adversary has information about X that gets lost
under the coarsening φ(X).

Definition 3. We say that T represents an ignorable TSM for YT | XS if for
all t ∈ supportP∗(T ), Yt ⊥P∗ IT=t | XS. We say that S represents an ignorable
OSM for YT | XS if for all s ∈ supportP∗(S), YT ⊥P∗ IS=s | Xs.

We encountered ignorable TSMs in Example 5, where we had XS ≡ X (so the
OSM plays no role), and we suggested the simpler but unnecessarily strong con-
dition Y ⊥P∗ T | X , which implies that for all supported t, P ∗(Yt | T = t,X) =
P ∗(Yt | X), which coincides with the form in Definition 3. The analogously de-
fined ignorable OSMs are related to CAR (Example 6). In normal, day-to-day
probability uses, if X is not observed, we would like to use the marginal distri-
bution P̃marginal = P̃φ for φ ≡ 0, but if the TSM is not ignorable for YT , i.e. for
YT | φ(X), then the resulting predictions can be disastrous, as shown at the end
of Ex. 5; marginalization if X is unobserved can only be justified if T is ignor-
able for YT | φ(X). Now we turn the argument on its head: if T is ignorable for
YT | φ(X) and X is observed, but the set of conditional distributions P∗(Y | X)
may lead to bad predictions because it is too widely dilated, then it is preferable
to use P̃marginal — since it is safe and the testing process is ignorable, data will

behave exactly as if P̃marginal were fully valid, as shown in Theorem 1, part 2:

Theorem 1. Let PS be a predictive system. (1) Suppose that T is an ignorable
TSM for YT | XS and that S is an ignorable OSM for Y | XS. Then P̃standard

is safe for YT | XS. (2) Suppose that T is ignorable for YT | φ(XS) for some
function φ. Then (even if S is not ignorable for Y | XS), P̃φ is safe for YT | XS.

Example 6. [Embedding Event-Based Conditioning] We can extend the
idea of Example 4 to represent general overlapping event-based conditioning
scenarios to our predictive systems. Given any collection X of nonempty subsets
of Y, we may simply set S = X , set Z = Y × S and define, for each s ∈ S,
the RV Xs by Xs((y, s

′)) = s if y ∈ s and Xs((y, s
′)) = Y \ s otherwise —

thus Xs = s iff Y ∈ s. Assuming a trivial task selection mechanism (T = {1},
Y1 = Y , only the fixed RV Y has to be predicted), this re-represents event-based
conditioning in terms of RVs. Observing set y translates to observing XS = y;
P̃standard corresponds to naive conditioning, since now P̃standard(y | x, s, t) =
P ∗(Y1 = y | Xs = x) = P ∗(Y = y | Xs = s) = P ∗(Y = y | y ∈ s). The
CAR condition (end of Section 2) expresses under what conditions on P∗ naive
conditioning is valid, i.e., in our new language, when P̃standard coincides with the
true conditional distribution P ∗(Y = y | XS = x, S = s) (we assumed T ≡ 1 so
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T can be ignored). By Definition 2 and Theorem 1 we see that CAR is implied
if S is an ignorable OSM. With a little more work one shows that, for every
event-based conditioning problem, one can construct an S as above, leading to
the conclusion that ‘ignorable S’ generalizes standard CAR; similarly, we can
think of ‘ignorable T ’ as a kind of general ‘prediction-task CAR’.

Example 7. [Conclusion: Monty Hall, revisited] We can model Monty Hall
as a predictive system as in Definition 1 in complete analogy to the dice example:
Y ∈ {a, b, c}; we observe XS , with S ∈ {1, 2}, X1 = {a, b} and S = 1 if door c is
opene; and X2 = {a, c} and S = 2 otherwise. We set T ≡ 1, i.e. the prediction
task is independent of (X,Y ). We want to find the distribution of Y1 = IY =a.
Checking Def. 2 we find that P̃standard (naive conditioning, see above) is unsafe
for Y1 | XS . Yet, by Theorem 1, P̃marginal is safe for Y1 | XS . Hence, P̃standard

should be avoided; yet if the goal is to predict Y1 = IY =a, we advocate the use
of P̃marginal: if all uncertainty can be represented by a single distribution P ∗ and

X is observable, then it is always preferable to predict with P̃φ with φ(X) ≡ X
and not marginalize, since our predictions will be sharper. Yet if uncertainty is
represented by a set P∗, as here, then the set of true conditional distributions
given XS may be dilated; and then, as long as it is safe, updating by P̃φ for
coarser φ may be preferable. This is the case here, where P∗(Y1 = 1 | {a, b}) =
[0, 1/2] whereas P̃marginal(Y1 = 1 | {a, b}) = 1/3 is precise, undilated and safe —
so let’s use it!

But now let Y2 = IY =b. Can we also say that P̃ (Y2 | {a, b}) = 2/3? It turns
out that this is still ‘safe’, but in a weaker sense than before; this will be treated
in the full paper.
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Abstract. We present a new decision rule, maximin safety, that seeks
to maintain a large margin from the worst outcome, in much the same
way minimax regret seeks to minimize distance from the best. We argue
that maximin safety is valuable both descriptively and normatively. De-
scriptively, maximin safety explains the well-known decoy effect, in which
the introduction of a dominated option changes preferences among the
other options. Normatively, we provide an axiomatization that charac-
terizes preferences induced by maximin safety, and show that maximin
safety shares much of the same behavioral basis with minimax regret.

1 Introduction

Representing uncertainty using a probability distribution, and making decisions
by maximizing expected utility, is widely accepted, founded on formal math-
ematical principles, and satisfies intuitive notions of rationality such as inde-
pendence of irrelevant alternatives and the sure thing principle [20]. However,
enforcing seemingly appealing concepts of rationality can ultimately lead to de-
cisions inconsistent with what real humans consider reasonable. For example,
observed behavior under unquantified (Knightian [14]/ strict [15]) uncertainty,
such as that in the Ellsberg paradox [8], demonstrates how appealing concepts
of rationality can lead to inconsistency with human choices. Alternative decision
rules, such as maximin utility [25] and minimax regret [20,17] provide rationally
plausible decisions in ambiguous situations and can be used to resolve such para-
doxes, but still fail to explain some human behavioral patterns. A particularly
illustrative example of such behavior is called the decoy effect [13], in which
the introduction of a dominated option changes the preference among the un-
dominated ones. While the decoy effect has been investigated in the psychology
[6,26] and economics literature [3,22], we are unaware of any axiomatic treat-
ment of it. To address this, we introduce a criterion called safety as the basis for
a maximin safety decision rule. 1 Safety serves as a dual to regret that quantifies
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1 This decision rule has been mentioned in passing, inside a proof by Hayashi [11],
where it was referred to as ‘maximin joy’. We use the term ‘safety’ rather than ‘joy’
to avoid confusion with the concept called ‘joy of winning’ in [11].
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distance from a worst outcome, much as regret quantifies proximity to a best
outcome. Maximin safety also satisfies familiar properties common to maximin
utility and minimax regret, and hence also resolves the Ellsberg paradox. More-
over, maximin safety accommodates observed preferences that are incompatible
with minimax regret and maximin utility. We demonstrate how safety-seeking
behavior can produce the decoy effect, and show how maximin safety can ex-
plain it. We also extend Stoye’s [24] axiomatizations of standard decision rules
to include maximin safety, thus allowing a comparison between maximin safety
and state-of-the-art decision rules.

1.1 Relative Preferences and Regret

It is not hard to imagine situations in which performance relative to other pos-
sible outcomes is more important than absolute performance. Consider, for ex-
ample, a group of duck hunters surprised by a hungry bear [5,4]. The hunters
all attempt to escape by running in the same direction while the slowest one
despairs: “this is hopeless, we can never outrun the bear.” The hunter in front
of him snickers, “I don’t need to outrun the bear, I just need to outrun you.”
Whether the prospect is being picked from a group of peers for a date [2], win-
ning a gold medal, or obtaining an ‘A’ in a class, success is often measured by
relative performance, rather than by an absolute standard. One such preference
for relative performance is embodied in the well-known decision theoretical con-
cept of regret [20,17]. While psychological literature on regret focuses on the
bad feelings that occur after a choice leads to an inferior outcome, some also
considers that anticipation of such negative emotions may influence the choice
itself [22,16,19].

In this paper, we assume that uncertainty is captured by a set of possible
worlds, one of which is the true state of the world. Regret is a measure of
distance between the value of a considered outcome and the value of the best
possible outcome, under a given state. This leads to an important property
that is always true for regret – the introduction of a dominated option does
not change the regrets of the existing options. We will refer to this property
as independence of dominated alternatives (IDA). Those who believe in regret
avoidance may think that this property is perfectly reasonable. For example,
suppose you have a $10 bill and you can either buy a $10 lottery ticket, or two
$5 lottery tickets. Most would agree that your choice should not be affected
by a dominated third option, “burning the $10 bill”. Other standard decision
rules, such as expected utility maximization, have even stronger independence
guarantees. The ranking of two choices under expected utility maximization is
menu-independent, i.e., completely independent of the set of feasible choices (the
menu). Menu-independence implies IDA. In contrast, regret-based preferences
are menu-dependent, but since they conform to IDA, they are not compati-
ble with observed biases sensitive to dominated options [2]. While IDA seems
intuitively appealing, there is a great deal of empirical evidence that human pref-
erences are indeed affected by dominated options in measurable and sometimes
profound ways.
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1.2 The Decoy Effect in Decision Theory

Suppose you are offered $6 in cash, and the option of trading it for a Cross pen.
The pen is nice, but you have plenty of pens, so decide to keep the cash. Right
before you walk away, you are offered an alternative pen in exchange for the $6.
You see the new pen and find it hideous. A smile comes to your face as you turn
around and say, “you know, I’ll take that original Cross pen after all.”

This story dramatizes an actual experiment [13]. When the first choice was
offered to 106 people, 64% took the cash, 36% took the pen. When the second
pen was added to the offer to 115 other subjects, 52% took the cash, 46% took
the Cross pen, and 2% took the decoy. Generally, a decoy is an option that is
designed to be inferior to another option in every way (i.e., it is a dominated
option). Despite the intuitive appeal of IDA, the presence of a dominated option
drove selection of the Cross pen from 36% to 46%. In this paper, we focus on
a particular class of decoy effect, called asymmetric dominance, which occurs
when the decoy is dominated by one existing alternative, but not by another.
Empirical studies show that the decoy is rarely chosen, but its addition to a set
of choices consistently drives decision makers toward the dominating choice.

Numerous empirical studies have also shown decoy effects in class action settle-
ments [27], recreational land management [3], choice of healthcare plans and po-
litical candidates [12], purchase of consumer goods such as cameras and personal
computers [22], restaurant choices [13], and even romantic attraction [2]. Surpris-
ingly, a decoy effect can occur even if the decoy is not actually an option, butmerely
a recent memory of an option (a phantom decoy [9,6]). Furthermore, the decoy ef-
fect is not limited to humans, but is also observed in honeybees and grey jays [21].

In an attempt to explain the decoy effect, experts in the behavioral sciences
have offered a variety of domain-specific analyses, including “perceptual fram-
ing” [13], “value-shift” [26], “extremeness aversion” [22], and “contrast bias”
[22,27]. All of these explanations focus on valuing the discrepancy between the
decoy and the dominating alternative. Intuitively, this provides a compelling ex-
ample of preferring the margin of safety from the worst outcome. As we are not
aware of any formalization in decision theory that is consistent with the intuitive
preference for “margin of safety”, we offer one here.

Table 1. Hunters
running from a bear

Wet
Road

Dry
Road

Sprint 1 9
Hustle 3 6
Jog 2 2

To illustrate our new decision rule, recall the example
of the unfortunate duck hunters. As they run from the
bear, they approach a blind curve and have no idea what
is around it: it could be wet or dry. If it is dry they will
cover the most ground if they try to run faster, however if
it is wet (thus slippery) they will be better off if they slow
down and maintain balance. The options and the distance
traveled under each circumstance are summarized in Ta-
ble 1. In general, exerting excessive effort on a wet road
leads to slipping and less distance covered; exerting effort
on a dry road leads to more distance covered.

If the probability of the road conditions is unknown, and only the first two
options are available (sprint and hustle), there is no intuitively preferred choice
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and we may assume there are enough hunters such that at least one will pick each
option. However, if we add a new option, jog, something interesting happens. As
jog is dominated by hustle, IDA requires that its availability should not change
the preferences among the other options. However, regardless of whether the
road is wet or dry, hustle is never the worst alternative: if the road is wet, hustle
(3) is faster than sprint (1), and if the road is dry, hustle (6) is faster than jog
(2). In either case, selecting hustle prevents the hunter from being the slowest
and getting caught by the bear.

While it may be callous, it seems perfectly reasonable for a hunter to decide
to run just fast enough to make sure there is someone behind him. In other
words, the most sensible decision might be to run just fast enough to guarantee
the maximum possible margin between himself and the slowest runner, in the
worst scenario. This margin between the hunter and his slowest compatriot can
be considered a measure of safety , which is at the heart of our paper.

The rest of the paper proceeds as follows. Section 2 provides a formalization of
the decoy paradox along with basic decision-theoretical notation. Section 3 de-
scribes the relationship between minimax regret and maximin safety and shows
how maximin safety resolves the decoy paradox. Section 4 provide an axiomatic
characterization of maximin safety. Section 5 suggests a unification of utility,
regret, and safety using anchoring functions, and also considers a generalization
to qualitative relative preferences.

2 The Formal Framework

Given a set S of states and a set X of outcomes, an act a (over S and X) is a
function mapping S to X . The set of all acts is thus XS, which we will denote
by A. For simplicity in this paper, we take S to be finite. Associated with each
outcome x ∈ X is a utility: U(x) is the utility of outcome x. For convenience,
we will omit the explicit representation of the outcome, and denote U(a(s)) by
U(a, s) for each state s ∈ S. We call a tuple (S,X,U) a (non-probabilistic)
decision problem. To define regret and safety, we need to assume that we are
also given a set M ⊆ A of feasible acts, called the menu. The reason for the
menu is that, as we have shown, regret and safety can depend on the menu. We
will only consider finite menus, from which randomized strategies can be chosen.

Table 2. Utilities in the camera
purchase example

s1
Safari

s2
World Cup

a1: Travel 4 4
a2: Sports 2 6
a3: Decoy 3 3

Consider the problem of a decision maker
(DM) contemplating a camera purchase,
summarized in Table 2. The DM has a choice
between buying a rugged travel camera (a1)
that takes decent pictures in a wide variety of
circumstances, and buying a delicate sports
camera with higher speed and image quality
(a2). Each state characterizes the possible sit-
uations that a purchaser may experience dur-
ing the useful life of the camera (Will the DM
experience harsh conditions? Or win tickets
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Table 3. Standard decision rules and most valued acts in the camera example

Decision Rule Value of an act a Decision rule description Best

maximax utility V (a) = maxs∈S U(a, s) Optimize the best-case outcome. a2

maximin utility V (a) = mins∈S U(a, s) Optimize the worst-case outcome. a1

minimax regret V (a,M) = −regM (a) Pick an act to minimize the worst-case
distance from the best outcome.

a1, a2

to the World Cup?) The utility U(a, s) of act a under state s represents an
abstract net value to the DM if the true world is state s.

If the DM ends up going on a safari (s1), then act a1 results in moderate
quality pictures of exciting wildlife (U(a1, s1) = 4), but act a2 results in a few
exquisite shots and many missed opportunities (U(a2, s1) = 2). On the other
hand, if the DM goes to the World Cup (s2), then act a2 results in many great
pictures in a safe environment (U(a2, s2) = 6), while act a1 provides only mod-
erate quality pictures (U(a1, s2) = 4).

If the DM can assign probabilities P (s1) and P (s2) to the states, she can
calculate an expected utility E[U(ai)] =

∑
s∈S P (s)U(ai, s), and simply select

the act that maximizes expected utility. However, if the state probabilities are
unavailable, we have unquantified uncertainty. In such cases, the DM must find
another method for aggregating the utility of each act across states in order to
assign a value to each camera. Here we will focus on the methods of maximax
utility, minimax utility, and minimax regret. To understand minimax regret, we
need to define the notion of regret. For a menu M and act a ∈M , the regret of
a with respect to M and decision problem (S,X,U) is

max
s∈S

(max
a′∈M

U(a′, s)− U(a, s)).

We denote this as reg
(S,X,U)
M (a), and usually omit the superscript (S,X,U).

When comparing decision rules, it is often convenient to define a value function
that assigns a numeric value to each act, for the purpose of ranking the acts.
Formally, for a decision problem (S,X,U), a value function is a function

V (S,X,U)(a,M) : XS × 2A → R.

We will usually omit the superscript (S,X,U) and just write V (a,M), or V (a)
if the value function is menu-independent.

We say that the value function V represents the family of preference relations
+V,M , if for all menus M and all a, a′ ∈M ,

a +V,M a′ ⇔ V (a,M) > V (a′,M).

In other words, act a is (strictly) preferred to act a′ with respect to menu M if
and only if V (a,M) > V (a′,M). The value functions and preferences of several
standard decision rules are given in Table 3.

Now, perhaps the camera vendor would like to sell more travel cameras, so
the vender puts an obsolete travel camera a3 next to a1 as a decoy. Camera
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a3 has the same price as a1, but fewer features and lower picture quality. The
vendor hopes to make a1 more appealing by contrast with a3. Table 2 illustrates
the decision problem when a3 is added to the menu. The ranking between a1
and a2 according to each of the decision rules in Table 3 is unaffected by the
introduction of a3 to the menu. The addition of a3 also illustrates the concept of
dominance. We say that an act a dominates a′, if for all s ∈ S, U(a, s) > U(a′, s).

3 Maximin Safety

While minimax regret seeks to minimize separation from best outcomes,maximin
safety is a conceptual dual that seeks to maximize separation from the worst
outcomes. For a menu M and act a ∈M , the safety of a in state s is defined as:

safety
(S,X,U)
M (a, s) = U(a, s)− min

a′∈M
(U(a′, s)),

and in keeping with the convention for regret, the safety of an act is defined as:

safety
(S,X,U)
M (a) = min

s∈S
(safety

(S,X,U)
M (a, s)).

We will often omit the superscript (S,X,U).
The family of maximin safety preferences +saf ,M represented by the safety

value function satisfies, for all M and a, a′ ∈M ,

a +saf ,M a′ ⇔ safetyM (a) > safetyM (a′).

Table 4. Camera purchase with and with-
out decoy

Utility Safety
(no decoy)

Safety
(w. decoy)

s1 s2 s1 s2 s1 s2
a1: travel 4 4 2 0 2 1

a2: sports 2 6 0 2 0 3

a3: decoy 3 3 1 0

Table 5. Different decision rules select dif-
ferent acts for the same problem

Utility Regret Safety Optimal for

s1 s2 s1 s2 s1 s2
a1 1 9 3 0 0 5 maximax utility

a2 3 6 1 3 2 2 maximin safety

a3 2 7 2 2 1 3 minimax regret

a4 4 4 0 5 3 0 maximin utility

Now we reconsider the camera example using safety (Table 4). Without the
decoy, both acts have the same safety of 0, since each act has the lowest utility
in some state; so there is no clear safety preference. However, when the decoy is
present, the act a1 never has the lowest utility at any state, and thus it has a
strictly positive safety. In this case, safety{a1,a2,a3}(a1) is the unique maximum
among the acts {a1, a2, a3}, and therefore a1 is the preferred choice. The relative
increase in the safety of an act due to the addition of the dominated act is an
essential element in solving the decoy paradox. Intuitively, this may correspond
to a sense that even if a particular act gets low utility in the realized state, the
DM may think that “I’m better off than the fools who bought the worse camera”,
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or in a more positive light, “I must be getting a steal with this better camera
for the same price”. In competitive survival games (such as the reality game
show Survivor), the notion of maximizing safety may also embody a preference
to maintain a maximal distance from the lowest performer, which reduces the
chance of elimination. Table 5 compactly demonstrates how choices based on
maximin safety differs from the other standard decision rules.

Table 6. Without a4, M =
{a1, a2, a3}, and a2 �saf ,M a3.
Adding a4 (dominated by a3) re-
verses the maximin safety preference
between a2 and a3.

Utility
Safety(no
decoy)

Safety (w.
decoy a4)

s1 s2 s3 s1 s2 s3 s1 s2 s3
a1 9 2 6 5 0 0 8 0 0
a2 5 3 7 1 1 1 4 1 1
a3 4 8 8 0 6 2 3 6 2
a4 1 5 6 0 3 0

In the camera example, the addition of
a decoy created a strict preference between
two acts that were initially tied. The in-
troduction of a dominated act can actu-
ally reverse preferences between acts. Ta-
ble 6 shows a menu of three acts: M =
{a1, a2, a3}. Act a2 has a minimum safety
of 1, while both a1 and a3 have the lowest
utility for some state, so each has minimum
safety of 0. Consequently, a2 is the most pre-
ferred choice under the safety preference.
When a new choice a4 is added, act a4 is
dominated by a3, but it has higher utility
than the other acts in some states. This sit-
uation is known as asymmetric dominance,
which is typically associated with decoy effects. In this example, asymmetric
dominance guarantees that a3 is never one of the worst choices, and thus has
a strictly positive safety value. In other words, the addition of a4 to the menu
M does not affect the safety of a1 or a2, but increases the safety of a3 to make
a3 +saf ,M∪{a4} a2.

4 Axiomatic Analysis

To provide an axiomatic characterization of maximin safety, we employ the stan-
dard Anscombe-Aumann (AA) framework [1], where outcomes are restricted to
lotteries. Maximin safety is characterized by modifying one of the axioms in an
existing characterization of minimax regret provided by Stoye [24].

Given a set Y of prizes, a lottery over Y is just a probability with finite
support on Y . As in the AA framework, we let the set of outcomes be Δ(Y ),
the set of all lotteries over Y . Thus, acts are functions from S to Δ(Y ). We can
think of a lottery as modeling objective, quantified uncertainty, while the states
model unquantified uncertainty. The technical advantage of considering such a
set of outcomes is that we can consider convex combinations of acts. If f and g
are acts, define the act αf + (1 − α)g to be the act that maps a state s to the
lottery αf(s) + (1 − α)g(s). For simplicity, we follow Stoye [24] and restrict to
menus that are the convex hull of a finite number of acts, so that if f and g are
acts in M , then so is pf + (1− p)g for all p ∈ [0, 1].

In this setting, we assume that there is a utility function U on prizes in Y , and
that there are at least two prizes y1 and y2 in Y , with different utilities. Note that
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l(y) is the probability of getting prize y if lottery l is played. We will use l∗ to
denote a constant act that maps all states to l. The utility of a lottery l is just the
expected utility of the prizes obtained, that is, u(l) =

∑
{y∈Y : l(y)>0} l(y)U(y).

The expected utility of an act f with respect to a probability Pr is then just
u(f) =

∑
s∈S Pr(s)u(f(s)), as usual. Given a set Y of prizes, a utility U on the

prizes, and a state space S, we have a family *S,Δ(Y ),u
saf ,M of preference orders on

acts determined by maximin safety, where u is the utility function on lotteries as
determined by U .2 For convenience, from here on we will write*S,Y,U

M rather than

*S,Δ(Y ),u
saf ,M . We will state the axioms in a way such that they can be compared to

standard axioms and those for minimax regret in [24]. The axioms are universally
quantified over acts f , g, and h, menus M and M ′, and p ∈ (0, 1). Whenever we
write f *M g we assume that f, g ∈M .

Axiom 1. (Monotonicity) f *M g if (f(s))∗ *{(f(s))∗,(g(s))∗} (g(s))∗, ∀s ∈ S .

Axiom 2. (Completeness) f *M g or g *M f .

Axiom 3. (Nontriviality) f +M g for some acts f and g and menu M .

Axiom 4. (Mixture Continuity) If f +M g +M h, then there exists q, r ∈ (0, 1)
such that qf + (1− q)h +M g +M rf + (1− r)h.

Axiom 5. (Transitivity) f *M g *M h⇒ f *M h.

Menu-independent versions of Axioms 1 to 5 are standard in other axioma-
tizations, and in particular hold for maximin utility. Axiom 3 is used in the
standard axiomatizations to get a nonconstant utility function in the represen-
tation. While maximin safety does not satisfy menu-independence, it does satisfy
menu-independence when restricted to menus consisting of only constant acts.
This property is captured by the following axiom.

Axiom 6. (Menu independence for constant acts) If l∗ and (l′)∗ are constant
acts, then l∗ *M (l′)∗ iff l∗ *M ′ (l′)∗.

We also have a menu-dependent version of the von Neumann-Morgenstern (VNM)
Independence axiom. Like the VNM Independence axiom, Axiom 7 says that
ranking between two acts does not change when both acts are mixed with a
third act; but unlike VNM Independence, the menu used to compare the origi-
nal acts in Axiom 7 is different from that used to compare the mixtures. Axiom 7
holds for minimax regret and maximin safety, but not for maximin utility.

Axiom 7. (Independence) f *M g ⇔ pf + (1− p)h *pM+(1−p)h pg + (1− p)h.

Axiom 8. (Symmetry) For a menu M , suppose that E,F ∈ 2S\{∅} are disjoint
events such that for all f ∈M , f is constant on E and on F . Define f ′ by

f ′(s) =

⎧⎪⎨⎪⎩
f(s′) for some s′ ∈ E, if s ∈ F

f(s′) for some s′ ∈ F , if s ∈ E

f(s) otherwise

2 We let f �S,Δ(Y ),u
saf ,M g iff g ��S,Δ(Y ),u

saf ,M f , and f ∼M g iff f �M g and g �M f .
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Let M ′ be the menu generated by replacing every act f ∈M with f ′. Then

f *M g ⇔ f ′ *M ′ g′

Symmetry, which is one of the characterizing axioms for minimax regret in [24],
captures the intuition that no state can be considered more or less likely than
another. Therefore Symmetry helps distinguish the probability-free decision rules
maximin utility, minimax regret, and maximin safety, from their probabilistic
counterparts [10,23].

Axiom 9. (Ambiguity Aversion) f ∼M g ⇒ pf + (1 − p)g *M g.

Axiom 9 says that the decision maker weakly prefers to hedge her bets. Axioms
1-9 are all part of the characterization in [24] of minimax regret (which consists
of Axioms 1-9 and Symmetry). Axioms 1-5 and 9 are also sound for the maximin
decision rule [24].

In [24], one of the axioms characterizing minimax regret is Independence of
Never Strictly Optimal alternatives (INA), which states that adding or removing
acts that are not strictly potentially optimal in the menu does not affect the
ordering of acts. 3 By varying this INA axiom, we obtain a characterization for
maximin safety. We say that an act a is never strictly worst relative to M if, for
all states s ∈ S, there is some a′ ∈M such that a(s) * a′(s).

Axiom 10. (Independence of Never Strictly Worst Alternatives (INWA)) If an
act a is never strictly worst relative to M , then f *M g iff f *M∪{a} g.

Although adding acts to the menu, in general, can affect minimax regret prefer-
ences, INA implies the Independence of Dominated Alternatives property that
we used earlier when discussing the decoy effect. Thus, INA guarantees that
minimax regret can never be compatible with the decoy effect.

Theorem 1. For all Y, U, S, the family of maximin safety preference orders
*S,Y,U

saf ,M induced by a decision problem (S,Δ(Y ), u) satisfies Axioms 1–10. Con-

versely, if the family of preference orders *M on the acts in Δ(Y )S satisfies
Axioms 1–10, then there exists a utility function U on Y that determines a
utility u on Δ(Y ) such that *M=*S,Y,u

saf ,M . Moreover, U is unique up to affine
transformations.

Proof. The soundness of the axioms are straightforwardly verified, so we show
only the completeness of the axioms. We will use the same general sequence
of arguments that Stoye uses in [24]. First, we establish a nonconstant utility
function U , where constant acts are ranked by their expected utilities. Since we
have the standard axioms (1− 5), we get U from standard arguments, and it is
unique up to affine transformations. Next, we observe the following lemma:

Lemma 1. Suppose the family *M satisfies Axioms 1-10, and *M+ is repre-
sentable by maximin safety, where M+ is the menu of all acts with nonnegative
utilities. Then the family *M is representable by maximin safety.

3 An act h is never strictly optimal relative to M if, for all states s ∈ S, there is some
f ∈ M such that (f(s))∗ � (h(s))∗.
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Lemma 1 follows from an argument analogous to that for regret in [24]. The next
step is to establish that the axioms on *M restrict *M+ to satisfy the axioms of
ambiguity aversion, monotonicity, completeness, transitivity, non-triviality, and
symmetry. It is a straightforward verification that will not be reproduced here.
Theorem 1 (iii) of [24] then implies that *M+ is the maximin utility ordering.
Next, let gM be an act such that u ◦ gM (s) = −minh∈M u(h, s), so that we have

f *M g ⇔ 1
2f + 1

2gM *M+
1
2g +

1
2gM

⇔ mins∈S u(12f + 1
2gM , s) ≥ mins∈S u(12g +

1
2gM , s)

⇔ min
s∈S

(12 (u(f, s)− min
h∈M

u(h, s))) ≥ min
s∈S

(12 (u(g, s)− min
h∈M

u(h, s))).

��
The characterizing axioms serve as a justification for maximin safety in the sense
that behaving as a safety maximizer is equivalent to accepting the axioms. Ax-
ioms 1-7 are standard and broadly accepted to be reasonable, while symmetry
and ambiguity aversion are implied by both maximin utility and minimax regret.
Whether the INA axiom (for regret) or the INWA axiom (for safety) is more rea-
sonable would depend on the individual and the nature of the decision problem.
Thus, we believe that the reasonableness of the maximin safety decision rule is
comparable to that of minimax regret.

Individual necessity of the axioms can be established, as is commonly done
[11,24], by giving examples of preferences that satisfy all the axioms except for
the one whose necessity is being shown. For the axioms shared with minimax
regret, the same examples found in [24] shows their individual necessity. For the
INWA axiom, the required example is minimax regret. Indeed, a decision rule
equivalent to maximin safety was used by Hayashi [11] as an example to justify
minimax regret’s entailment of INA.

Clearly, just as minimax regret is readily generalized to minimax expected re-
gret when uncertainty is represented by a set of probability distributions over the
state space, maximin safety can be readily extended to maximin expected safety
in the same manner. As one would expect, given an axiomatization of minimax
expected regret [23], the modification of the INA axiom to INWA results in an
axiomatization for maximin expected safety.

5 Discussion, Generalizations, and Future Work

Both minimax regret and maximin safety embody preferences based on relative,
rather than absolute utility. In Table 5, the act preferred by safety has a lower
minimum utility than the act preferred by maximin utility, just as the act picked
by minimax regret neglects a higher maximum utility in order to minimize the
margin to each state’s maximum utility. The shared preference for relative over
absolute performance is reflected in a striking similarity in the structure of the
value functions for regret and safety. In comparison, minimax regret can be
expressed for all acts a, b as:

a +reg,M b iff min
s∈S

(U(a, s)− max
a′∈M

U(a′, s)) > min
s∈S

(U(b, s)− max
a′∈M

U(a′, s)).
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Similarly, maximin safety is represented for all acts a, b as

a +saf ,M b iff min
s∈S

(U(a, s)− min
a′∈M

U(a′, s)) > min
s∈S

(U(b, s)− min
a′∈M

U(a′, s)).

The structural resemblance suggests a common form for the value function. By
defining a menu-dependent anchoring function t : S× 2A → R, we can represent
several previously discussed value functions as:

Vt(a,M) = mins∈S U ′(a, s,M, t),

where U ′(a, s,M, t) = U(a, s) − t(s,M) can be viewed as an anchored effective
utility. One can see that Vt represents maximin utility if t(s,M) = 0; min-
imax regret if t(s,M) = maxa′∈M U(a′, s); and maximin safety if t(s,M) =
mina′∈M U(a′, s). Note that by varying just the anchoring function t, we can ob-
tain all the mentioned decision rules, and more. While we focus only on maximin
safety in this paper, other forms for t(s,M) maximize the positive margin from
a state-dependent average, median, or some other characteristic of interest to a
DM. For example, college students might seek to conservatively maximize their
margin above a desired quantile, in order to achieve a particular grade.

The present work is motivated by behavioral observations of the decoy effect
that are typically described in empirical quantities such as distance, price and
volume, and thus is most intuitive in a quantitative framework. However, the key
observation is that safety, like regret, is a notion of relative performance with
respect to a set of outcomes, rather than absolute performance. As absolute
quantitative utility U : X → R can be generalized to a qualitative framework
by replacing the U with a mapping X → L for some ordered set L, relative
utility may be made qualitative by considering the mapping with 2X ×X → L.
In the case of safety and regret, the particular element of 2X is the set of all
possible outcomes in a state, given a menu of acts. Aggregation ofN state-specific
orderings into an ordering over acts can be accomplished by an aggregation
function M : LN → L [18]. This generalization can be readily applied to various
characterizations of uncertainty, including probability, plausibility, and the strict
uncertainty used in this paper [15]. While the authors expect that the present
quantitative axiomatization can be adapted to a qualitative framework (see, e.g.
[7]), it is beyond the scope of the current paper.
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Abstract. Recently, Halpern and Leung [8] suggested representing un-
certainty by a weighted set of probability measures, and suggested a way
of making decisions based on this representation of uncertainty:maximiz-
ing weighted regret. Their paper does not answer an apparently simpler
question: what it means, according to this representation of uncertainty,
for an event E to be more likely than an event E′. In this paper, a notion
of comparative likelihood when uncertainty is represented by a weighted
set of probability measures is defined. It generalizes the ordering defined
by probability (and by lower probability) in a natural way; a general-
ization of upper probability can also be defined. A complete axiomatic
characterization of this notion of regret-based likelihood is given.

1 Introduction

Recently, Samantha Leung and I [8] suggested representing uncertainty by a
weighted set of probability measures, and suggested a way of making decisions
based on this representation of uncertainty: maximizing weighted regret. How-
ever, we did not answer an apparently simpler question: given this representation
of uncertainty, what does it mean for an event E to be more likely than an event
E′? This is what I do in this paper. To explain the issues, I start by reviewing
the Halpern-Leung approach.

It has frequently been observed that there are many situations where an
agent’s uncertainty is not adequately described by a single probability measure.
For example, there seems to be a big difference between a coin known to be fair
and a coin whose bias an agent does not know, yet if the agent were to use a
single measure to represent her uncertainty, in both of these cases it would seem
that the measure that assigns heads probability 1/2 would be used.

One approach for representing ignorance is to use a set P of probability mea-
sures [7]. That approach has the benefit of representing uncertainty in general,
not by a single number, but by a range of numbers. This allows us to distin-
guish the certainty that a coin is fair (in which case the uncertainty of heads is
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represented by a single number, 1/2) from knowing only that the probability of
heads could be anywhere between, say, 1/3 and 2/3.

But this approach also has its problems. For example, consider an agent who
believes that a coin may have a slight bias. Thus, although it is unlikely to
be completely fair, it is close to fair. How should we represent this with a set
of probability measures? Suppose that the agent is quite sure that the bias is
between 1/3 and 2/3. We could, of course, take P to consist of all the measures
that give heads probability between 1/3 and 2/3. But how does the agent know
that the possible biases are exactly between 1/3 and 2/3. Does she not consider
2/3 + ε possible for some small ε? And even if she is confident that the bias is
between 1/3 and 2/3, this representation cannot take into account the possibility
that she views biases closer to 1/2 as more likely than biases further from 1/2.

There is also a second well-known concern: learning. Suppose that the agent
initially considers possible all the measures that gives heads probability between
1/3 and 2/3. She then starts tossing the coin, and sees that, of the first 20 tosses,
12 are heads. It seems that the agent should then consider a bias of greater than
1/2 more likely than a bias of less than 1/2. But if we use the standard approach
to updating with sets of probability measures (see [7]), and condition each of the
measures on the observation, since the coin tosses are viewed as independent,
the agent will continue to believe that the probability of the next coin toss is
between 1/3 and 2/3. The observation has no impact as far as learning to predict
better. The set P stays the same, no matter what observation is made.

There is a well-known solution to these problems: using a second-order mea-
sure on these measures to express how likely the agent considers each of them
to be. (See [6] for a discussion of this approach and further references.) For ex-
ample, an agent can express the fact that the bias of a coin is more likely to be
close to 1/2 than far from 1/2. In addition, the problem of learning can be dealt
with by straightforward conditioning. But this approach leads to other problems.
Essentially, it seems that the ambiguity that an agent might feel about the out-
come of the coin toss seems to have disappeared. For example, suppose that the
agent has no idea what the bias is. The obvious second-order probability to use
is the uniform probability on possible biases. While we cannot talk about the
probability that the coin is heads, the expected probability of heads is 1/2. Why
should an agent that has no idea of the bias of the coin know or believe that
the expected probability of heads is 1/2? Moreover, if our interest is in making
decisions, then maximizing the expected utility using the expected probability
again does not take the agent’s ignorance into account. Kyburg [12] and Pearl
[16] have even argued that there is no need for a second-order probability on
probabilities; whatever can be done with a second-order probability can already
be done with a basic probability.

Nevertheless, when it comes to decision-making, it does seem useful to use an
approach that represents ambiguity, while still maintaining some of the features
of having a second-order probability on probabilities. One suggestion, made by
Walley [18], is to put a second-order possibility measure on probability measures;
see also [2,3]. Leung and I similarly suggested putting weights on each probability
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measure in P . Since we assumed that the weights are normalized so that the
supremum of the weights is 1, these weights can also be viewed as a possibility
measure. If the set P is finite, we can also normalize so as to view the weights as
being second-order probabilities. As with second-order probabilities, the weights
can vary over time, as more information is acquired, and can be used to represent
the fact that some probabilities in the set P are more likely than others.

What makes this approach different from just using a second-order probability
on P lies in how decisions are made. Leung and I used regret, a standard approach
to decision-making that goes back to Niehans [15] and Savage [17]. If uncertainty
is represented by a set P of probability measures, then regret works as follows:
for each act a and each measure Pr ∈ P , we can compute the expected regret of a
with respect to Pr; this is the difference between the expected utility of a and the
expected utility of the act that gives the highest expected utility with respect to
Pr. We can then associate with an act a its worst-case expected regret of a, over
all measures Pr ∈ P , and compare acts with respect to their worst-case expected
regret. With weights in the picture, we modify the procedure by multiplying the
expected regret associated with measure Pr by the weight of Pr, and compare
acts according to their worst-case weighted expected regret. This approach to
making decisions is very different from that suggested by Walley [18]. Moreover,
using the weights in the way means that we cannot simply replace a set of
weighted probability measures by a single probability measure; the objections of
Kyburg [12] and Pearl [16] do not apply.

Leung and I [8] show that this approach seems to do reasonable things in
a number of examples of interest, and provide an elegant axiomatization of
decision-making. So how can we represent relative likelihood using this ap-
proach? This is something not considered in earlier papers using sets of weighted
probabilities. If uncertainty is represented by a single probability measure, the
answer is immediate: E is more likely than E′ exactly if the probability of E is
greater than the probability of E′. When using sets of probability measures, var-
ious approaches have been considered in the literature. The most common takes
E to be more likely than E′ if the lower probability of E is greater than the lower
probability of E′, where the lower probability of E is its worst-case probability,
taken over the measures in P (see Section 3). We could also compare E and E′

with respect to their upper probabilities (the best-case probability with respect
to the measures in P). Another possibility is to take E to be more likely than
E′ if Pr(E) ≥ Pr(E′) for all measures Pr ∈ P ; this gives a partial order on
likelihood.

In this paper, I define a notion of relative likelihood when uncertainty is rep-
resented by a weighted set of probability measures that generalizes the ordering
defined by lower probability in a natural way; I also define a generalization of
upper probability. We can then associate with an event E two numbers that
are analogues of lower and upper probability. If uncertainty is represented by a
single measure, then these two numbers coincide; in general, they do not. The
interval can be thought of as representing the degree of ambiguity in the likeli-
hood of E. Indeed, in the special case when all the weights are 1, the numbers



Weighted Regret-Based Likelihood 269

are essentially just the lower and upper probability (technically, they are 1 minus
the lower and upper probability, respectively). Interestingly, the approach to as-
signing likelihood is based on the approach to decision-making. Essentially, what
I am doing is the analogue of defining probability in terms of expected utility,
rather than the other way around. The approach can be viewed as generalizing
both probability and lower probability.

Why we should be interested in such a representation. If all that we ever did
with probability was to use it to make decisions, then arguably this wouldn’t be
of much interest; Halpern and Leung’s work already shows how weighted sets
of probabilities can be used in decision-making. The results of this paper add
nothing further to that question. However, we often talk about the likelihood
of events quite independent of their use in decision-making (think of the use of
probability in physics, to take just one example). Thus, having an analogue of
probability seems important and useful in its own right.

2 Weighted Expected Regret: A Review

Consider the standard setup in decision theory. We have a state space S and an
outcome space O. An act is a function from S to O; it describes an outcome for
each state. Suppose that we have a utility function u on outcomes and a set P+ of
weighted probability measures. That is, P+ consists of pairs (Pr, αPr), where αPr

is a weight in [0, 1] and Pr is a probability on S. Let P = {Pr : ∃α((Pr, α) ∈ P+)}.
For each Pr ∈ P there is assumed to be exactly one α, denoted αPr, such
that (Pr, α) ∈ P+. It is further assumed that weights have been normalized
so that there is at least one measure Pr ∈ P such that αPr = 1.1 Finally, P+

is assumed to be weakly closed, so that if (Prn, αn) ∈ Pr+ for n = 1, 2, 3, . . .,
(Prn, αn)→ (Pr, αPr), and αPr > 0, then (Pr, αPr) ∈ P+. (I discuss below why
I require P+ to be just weakly closed, rather than closed.)

Where are the weights in P+ coming from? In general, they can be viewed
them as subjective, just like the probability measures. However, as observed in
[8], there is an important special case where the weights can be given a natural
interpretation. Suppose that, as in the case of the biased coin in the Introduc-
tion, we make observations in a situation where the probability of making a
given observation is determined by some objective source. Then we can start
by giving all probability measures a weight of 1. Given an observation ob (e.g.,
sequence of coin tosses in the example in the Introduction), we can compute

1 The assumption that at least one probability measure has a weight of 1 is convenient
for comparison to other approaches; see below. However, making this assumption has
no impact on the results of this paper; as long as we restrict to sets where the weight
is bounded, all the results hold without change. Note that the assumption that
the weights are probabilities runs into difficulties if we have an infinite number of
measures in P ; for example, if P includes all measures on heads from 1/3 to 2/3,
as discussed in the Introduction, using a uniform probability, we would be forced to
assign each individual probability measure a weight of 0, which would not work well
for our later definitions.
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Pr(ob) for each measure Pr ∈ P ; we can then update the weight of Pr to be
Pr(ob)/ supPr′∈P Pr′(ob). Thus, the more likely the observation is according to
Pr, the higher the updated weight of Pr.2 (The denominator is just a normaliza-
tion to ensure that some measure has weight 1.) With this approach to updating,
if there is a true underlying measure generating the data, then as an agent makes
more observations, almost surely, the weight of the true measure approaches 1,
while the weight of all other measures approaches 0.3

I now review the definition of weighted regret, and introduce the notion of
absolute (weighted) regret. I start with regret. The regret of an act a in a state
s ∈ S is the difference between the utility of the best act at state s and the
utility of a at s. Typically, the act a is not compared to all acts, but to the
acts in a set M , called a menu. Thus, the regret of a in state s relative to menu
M , denoted regM (a, s), is supa′∈M u(a′(s))− u(a(s)). There are typically some
constraints put on M to ensure that supa′∈M u(a′(s)) is finite—this is certainly
the case if M is finite, or the convex closure of a finite set of acts, or if there is a
best possible outcome in the outcome space O. The latter assumption holds in
this paper, so I assume throughout that supa′∈M u(a′(s)) is finite.

For simplicity, I assume that the state space S is finite. Given a probability
measure Pr on S, the expected regret of an act a with respect to Pr relative
to menu M is just regMPr(a) =

∑
s∈S regM (a, s) Pr(s). The (expected) regret of a

with respect to P and a menu M is just the worst-case regret, that is,

regMP (a) = sup
Pr∈P

regMPr(a).

Similarly, the weighted (expected) regret of a with respect to P+ and a menu M
is just the worst-case weighted regret, that is,

wrMP+(a) = sup
Pr∈P

αPrreg
M
Pr(a).

Thus, regret is just a special case of weighted regret, where all weights are 1.
Note that, as far weighted regret goes, it does not hurt to augment a set P+

of weighted probability measures by adding pairs of the form (Pr, 0) for Pr /∈ P .
But if we start with an unweighted set P of probability measures, the weighted
set P+ = {(Pr, 1) : Pr ∈ P}∪{(Pr, 0) : Pr /∈ P} is not closed in general, although
it is weakly closed. There may well be a sequence Prn → Pr, where Prn /∈ P
for all n, but Pr ∈ P . But then we would have have (Prn, 0) ∈ P+ converging
to (Pr, 0) /∈ P+. This is exactly why I required only weak closedness. Note for

2 The idea of putting a possibility on probabilities in P that is determined by likelihood
also appears in the work of Moral [14], although he does not consider a general
approach to dealing with sets of weighted probability measures.

3 The “almost surely” is due to the fact that, with probability approaching 0, as more
and more observations are made, it is possible that an agent will make a misleading
observations, that are not representative of the true measure. This also depends on
the set of possible observations being rich enough to allow the agent to ultimately
discover the true measure generating the observations. Since learning is not a focus
of this paper, I do not make this notion of “rich enough” precise here.
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future reference that, since P+ is assumed to be weakly closed, if wrMP+(a) > 0,
then there is some element (Pr, αPr) ∈ P+ such that wrMP+(a) = αPrreg

M
Pr(a).

Weighted regret induces an obvious preference order on acts: act a is at least
as good as a′ with respect to P+ and M , written a *reg

P+,M a′, if wrMP+(a) ≤
wrMP+(a′). As usual, I write a +reg

P+,M a′ if a *reg
P+,M a′ but it is not the case that

a′ *reg
P+,M a. The standard notion of regret is the special case of weighted regret

where all weights are 1. I sometimes write a *reg
P,M a′ to denote the unweighted

case (i.e., where all the weights in P+ are 1).
In this setting, using weighted regret gives an approach that allows an agent

to transition smoothly from regret to expected utility. It is well known that
regret generalizes expected utility in the sense that if P is a singleton {Pr},
then wrMP (a) ≤ wrMP (a′) iff EUPr(a) ≥ EUPr(a

′) (where EUPr(a) denotes the
expected utility of act a with respect to probability Pr).4 (In particular, this
means that if P is a singleton, regret is menu independent.) If we start with
all the weights being 1, then, as observed above, the weighted regret is just
the standard notion of regret. As the agent makes observations, if there is a
measure Pr generating the uncertainty, the weights will get closer and closer
to a situation where Pr gets weight 1, with the weights of all other measures
dropping off quickly to 0, so the ordering of acts will converge to the ordering
given by expected utility with respect to Pr.

There is another approach with some similar properties, that again starts with
uncertainty being represented by a set P of (unweighted) probability measures.
Define wcP(a) = infPr∈P EUPr(a)). Thus wcP (a) is the worst-case expected
utility of a, taken over all Pr ∈ P . Then define a *mm

P a′ if wcP(a) ≥ wcP(a
′).

This is the maxmin expected utility rule, quite often used in economics [5]. There
are difficulties in getting a weighted version of maxmin expected utility [8] (see
Section 3); however, Epstein and Schneider [4] propose another approach that
can be combined with maxmin expected utility. They fix a parameter α ∈ (0, 1),
and update P after an observation ob by retaining only those measures Pr such
that Pr(ob) ≥ α. For any choice of α < 1, we again end up converging almost
surely to a single measure, so again this approach converges almost surely to
expected utility.

I conclude this section with a discussion of menu dependence. Maxmin ex-
pected utility is not menu dependent; the preference ordering on acts induced
by regret can be, as the following example illustrates.

Example 1. Take the outcome space to be {0, 1}, and the utility function to
be the identity, so that u(1) = 1 and u(0) = 0. As usual, if E ⊆ S, 1E
denotes the indicator function on E, where, for each state s ∈ S, we have
1E(s) = 1 if s ∈ E, and 1E(s) = 0 if s /∈ E. Let S = {s1, s2, s3, s4}, E1 =
{s1}, E2 = {s2}, E3 = {s2, s3}, M1 = {1E1, 1E2}, M2 = {1E1, 1E2 , 1E3}, and
P = {Pr1,Pr2}, where Pr1(s1) = Pr1(s3) = Pr1(s4) = 1/3, Pr2(s2) = 1/4,
and Pr2(s3) = 3/4. A straightforward calculation shows that regM1

Pr1
(1E1) = 0,

4 This follows from the observation that, given a menu M , there is a constant cM such
that, for all acts a ∈ M , wrM{Pr}(a) = cM − EUPr(a).
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regM1

Pr1
(1E2) = 1/3, regM1

Pr2
(1E1) = 1/4, regM1

Pr2
(1E2) = 0, regM2

Pr1
(1E1) = 1/3,

regM2

Pr1
(1E2) = 2/3, regM2

Pr2
(1E1) = 1, and regM2

Pr2
(1E2) = 3/4. Thus, 1/4 =

regM1

P (1E1) < regM1

P (1E2) = 1/3, while 1 = regM2

P (1E1) > regM2

P (1E2) = 3/4.
The preference on 1E1 and 1E2 depends on whether we consider the menu M1

or the menu M2.

Suppose that there is an outcome o∗ ∈ O that gives the maximum utility; that
is, u(o∗) ≥ u(o) for all o ∈ O. If ō∗ is the constant act that gives outcomes o∗

in all states, then ō∗ is clearly the best act in all states. If there is such a best
act, an “absolute”, menu-independent notion of weighted expected regret can be
defined by always comparing to ō∗. That is, define

reg(s, a) = u(o∗)− u(a(s));
regPr(a) =

∑
s∈S(u(o

∗)− u(a(s)) Pr(s) = u(o∗)− EUPr(a);
regP(a) = supPr∈P

∑
s∈S(u(o

∗)− u(a(s)) Pr(s)
= u(o∗)− infPr∈P(EUPr(a);

wrP+(a) = supPr∈P αPr

∑
s∈S(u(o

∗)− u(a(s)) Pr(s)
= supPr∈P αPr(u(o

∗)− EUPr(a)).

If there is a best act, then I write a *P+ a′ if wrP+(a) ≤ wrP+(a′); similarly in
the unweighted case, I write a *P a′ if wrP(a) ≤ wrP(a

′).
Conceptually, we can think of the agent as always being aware of the best

outcome o∗, and comparing his actual utility with a to u(o∗). Equivalently, the
absolute notion of regret is equivalent to a menu-based notion with respect to
a menu M that includes ō∗ (since if the menu includes ō∗, it is the best act
in every state). As we shall see, in our setting, we can always reduce menu-
dependent regret to this absolute, menu-independent notion, since there is in
fact a best act: 1S .

3 Relative Ordering of Events Using Weighted Regret

In this section, I consider how a notion of comparative likelihood can be defined
using sets of weighted probability measures.

As in Example 1, take the outcome space to be {0, 1}, the utility function to be
the identity, and consider indicator functions. It is easy to see that EUPr(1E) =
Pr(E), so that with this setup, we can recover probability from expected utility.
Thus, if uncertainty is represented by a single probability measure Pr and we
make decisions by preferring those acts that maximize expected utility, then we
have 1E * 1E′ iff Pr(E) ≥ Pr(E′).

Consider what happens if we apply this approach to maxmin expected util-
ity. Now we have that 1E *mm

P 1E′ iff infPr∈P Pr(E) ≥ infPr∈P Pr(E′). In the
literature, infPr∈P Pr(E), denoted P∗(E), is called the lower probability of E,
and is a standard approach to describing likelihood. The dual upper probabil-
ity, supPr∈P Pr(E), is denoted P∗(E). An easy calculation shows that P∗(E) =
1 − P∗(E) (where, as usual, E denotes the complement of E). The interval
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[P∗(E),P∗(E)] can be thought of as describing the uncertainty of E; the larger
the interval, the greater the ambiguity.

What happens if we apply this approach to regret? First consider unweighted
regret. If we restrict to acts of the form 1E, then the best act is clearly 1S ,
which is just the constant function 1. Thus, we can (and do) use the absolute
notion of regret here, and for the remainder of this paper. We then get that
1E *reg

P 1E′ iff supPr∈P(1 − Pr(E)) ≤ supPr∈P(1− Pr(E′)) iff supPr∈P Pr(E) ≤
supPr∈P Pr(E

′
); that is, P∗(E) ≤ P∗(E

′
). Moreover, easy manipulation shows

that supPr∈P(1 − Pr(E)) = 1 − infPr∈P Pr(E) = 1 − P∗(E). It follows that
1E *reg

P 1E′ iff (1 − P∗(E)) ≤ (1 − P∗(E
′)) iff P∗(E) ≥ P∗(E

′) iff 1E *mm
P 1E′ ;

both regret and maxmin expected utility put the same ordering on events.
The extension to weighted regret is immediate. Let P+

reg(E), the (weighted)

regret-based likelihood of E, be defined as supPr∈P αPr Pr(E). If P+ is unweighted,
so that all the weights are 1, I write Preg(E) to denote supPr∈P Pr(E). Note that
Preg(E) = 1 − P∗(E), so Preg(E) ≤ Preg(E

′) iff P∗(E) ≥ P∗(E
′). That is, the

ordering induced by Preg is the opposite of that induced by P∗. So, for example,
Preg(∅) = 1 and Preg(S) = 0; smaller sets have a larger regret-based likelihood.5

Regret-based likelihood provides a way of associating a number with each
event, just as probability and lower probability do. Moreover, just as lower prob-
ability gives a lower bound on uncertainty, we can think of P+

reg(E) as giving
an upper bound on the uncertainty. (It is an upper bound rather than a lower
bound because larger regret means less likely, just as smaller lower probability
does.) The naive corresponding lower bound is given by infPr∈P αPr Pr(E). This
lower bound is not terribly interesting; if there are probability measures Pr′ ∈ P
such that αPr′ is close to 0, then this lower bound will be close to 0, independent
of the agent’s actual feeling about the likelihood of E. A more reasonable lower
bound is given by the expression P+

reg(E) = 1− P+
reg(E) (recall that the analo-

gous expression relates upper probability and lower probability). The intuition
for this choice is the following. If nature were conspiring against us, she would
try to prove us wrong by making αPr Pr(E) as large as possible—that is, make
the weighted probability of being wrong as large as possible. On the other hand,
if nature were conspiring with us, she would try to make αPr Pr(E) as large as
possible, or, equivalently, make 1 − αPr Pr(E) as small as possible. Note that
this is different from making αPr Pr(E) as large as possible, unless αPr = 1 for
all Pr ∈ P . An easy calculation shows that

1− P+
reg(E) = 1− supPr∈P αPr Pr(E)

= infPr∈P(1− αPr Pr(E)).

This motivates the definition of P+
reg .

The following lemma clarifies the relationship between these expressions, and
shows that [P+

reg(E),P+
reg(E)] really does give an interval of ambiguity.

5 Since an act with smaller regret is viewed as better, the ordering on acts of the form
1E induced by regret is the same as that induced by maxmin expected utility.
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Lemma 1. infPr∈P αPr Pr(E) ≤ 1− P+
reg(E) ≤ P+

reg(E).6

In general, equality does not hold in Lemma 1, as shown by the following ex-
ample. The example also illustrates how the “ambiguity interval” can decrease
with weighted regret, if the weights are updated as suggested in [8].

Example 2. Suppose that the state space consists of {h, t} (for heads and tails);
let Prβ be the measure that puts probability β on h. Let P+

0 = {(Prβ , 1) :
1/3 ≤ β ≤ 2/3}. That is, we initially consider all the measures that put prob-
ability between 1/3 and 2/3 on heads. We toss the coin and observe it land
heads. Intuitively, we should now consider it more likely that the probability of
heads is greater than 1/2. Indeed, applying likelihood updating, we get the set
P+
1 = {(Prβ , 3β/2) : 1/3 ≤ β ≤ 2/3};7 the probability measures that give h

higher probability get higher weight. In particular, the weight of Pr2/3 is still
1, but the weight of Pr1/3 is only 1/2. If the coin is tossed again and this time

tails is observed, we update further to get P+
2 = {(Prβ , 4β(1 − β)) : 1/3 ≤

β ≤ 2/3}. An easy calculation shows that [P+
0,reg(h),P+

0,reg(h)] = [1/3, 2/3],

[P+
1,regret(h),P+

1,reg(h)] = [1/3, 3/8], and [P+
2,reg(h),P+

2,reg(h)] = [11/27, 16/27].
It is also easy to see that infPr 4β(1 − β) Prβ(t) = 8/27, so infPr∈P2 4β(1 −

β) Prβ(t) < 1−P+
2,reg(t) < P+

2,reg(h). Thus, for P+
2 , we get strict inequalities for

the expressions in Lemma 1.

The width of the interval [P+
reg(E),P+

reg(E)] can be viewed as a measure of the
ambiguity the agent feels about E, just as the interval [P∗(E),P∗(E)]. Indeed,
if all the weights are 1, the two intervals have the same width, since P∗(E) =
1− P+

reg(E) and P∗(E) = 1− P+
reg(E) in this case.

However, weighted regret has a significant advantage over upper and lower
probability here. If the true bias of the coin is, say 5/8, then if the set P+

k

represents the uncertainty after k steps, as k increases, almost surely, [P+
k,reg(h),

P+
k,reg(h)] will be a smaller and smaller interval containing 1− 5/8 = 3/8. More

generally, using likelihood updated combined with weighted regret provides a
natural way to model the reduction of ambiguity via learning.

One concern with the use of regret has been the dependence of regret on the
menu. It is also worth noting that, in this context, there is a sense in which we
can work with the absolute notion of weighted regret without loss of generality:
if we restrict to indicator functions, then a preference relative to a menu can
always be reduced to an absolute preference. Given a menu M consisting of
indicator functions, let EM = ∪{E : 1E ∈ M}. that is, EM is the union of the
events for which the corresponding indicator function is in M .

Proposition 1. If M is a menu consisting of indicator functions, and 1E1 , 1E2 ∈
M , then 1E1 *

reg
P+,M 1E2 iff 1E1 + 1EM

*reg
P+ 1E2 + 1EM

.

6 The proof of this result and all others can be found in the full paper, available at
http://www.cs.cornell.edu/home/halpern/papers/wregret.pdf.

7 The weight of Prβ is the likelihood of observing heads according to Prβ , which is
just β, normalized by the likelihood of observing heads according to the measure
that gives heads the highest probability, namely 2/3.

http://www.cs.cornell.edu/home/halpern/papers/wregret.pdf.
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4 Characterizing Weighted Regret Likelihood

The goal of this section is to characterize weighted regret likelihood axiomati-
cally. In order to do so, it is helpful to review the characterizations of probability
and lower probability.

A probability measure on a finite set S maps subsets of S to [0, 1] in a way
that satisfies the following three properties:8

Pr1. Pr(S) = 1.
Pr2. Pr(∅) = 0.9

Pr3. Pr(E ∪ E′) = Pr(E) + Pr(E′) if E ∩E′ = ∅.

These three properties characterize probability in the sense that any function
f : 2S → [0, 1] that satisfies these properties is a probability measure.

Lower probabilities satisfy analogues of these properties:

LP1. P∗(S) = 1.
LP2. P∗(∅) = 0.
LP3′. P∗(E ∪ E′) ≥ P∗(E) + P∗(E

′) if E ∩E′ = ∅.

However, these properties do not characterize lower probability. There are func-
tions that satisfy LP1, LP2, and LP3′ that are not the lower probability corre-
sponding to some set of probability measures. (See [9, Proposition 2.2] for an
example showing that analogous properties do not characterize P∗; the same
example also shows that they do not characterize P∗.)

Various characterizations of P∗ (and P∗) have been proposed in the literature
[1,10,11,13,19,20], all similar in spirit. I discuss one due to Anger and Lembcke
[1] here, since it makes the contrast between lower probability and regret partic-
ularly clear. The characterization is based on the notion of set cover: a set E is
said to be covered n times by a multiset M of sets if every element of E appears
at least n times in M . It is important to note here that M is a multiset, not a
set; its elements are not necessarily distinct. (Of course, a set is a special case of
a multiset.) Let � denote multiset union; thus, if M1 and M2 are multisets, then
M1�M2 consists of all the elements in M1 or M2, which appear with multiplicity
that is the sum of the multiplicities in M1 and M2. For example, using the {{. . .}}
notation to denote a multiset, then {{1, 1, 2}} � {{1, 2, 3}} = {{1, 1, 1, 2, 2, 3}}.

If E ⊆ S, then an (n, k)-cover of (E, S) is a multiset M that covers S k times
and covers E n+ k times. Multiset M is an n-cover of E if M covers E n times.
For example, if S = {1, 2, 3}, then {{1, 1, 1, 2, 2, 3}} is a (2, 1)-cover of ({1}, S), a
(1, 1)-cover of ({1, 2}, S), and a 3-cover of {1}. Consider the following property:

LP3. For all integers m,n, k and all subsets E1, . . . , Em of S, if E1 � . . . � Em

is an (n, k)-cover of (E, S), then k + nP∗(E) ≥
∑m

i=1 P∗(Ei).
10

8 Since I assume that S is finite here, I assume that all probability measures have
domain 2S , and ignore measurability issues.

9 This property actually follows from the other two, using the observation that Pr(S∪
∅) = Pr(S) + Pr(∅); I include it here to ease the comparison to other approaches.

10 Note that LP3 implies LP2, using the fact that ∅ � ∅ is a (1,0)-cover of (∅, S).
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There is an analogous property for upper probability, where ≥ is replaced by ≤.
It is easy to see that LP3 implies LP3′ (since E �E′ is a (1, 0) cover of E ∪ F ).

Theorem 1. [1] If f : 2S → [0, 1], then there exists a set P of probability
measures with f = P∗ if and only if f satisfies LP1, LP2, and LP3.

Moving to regret-based likelihood, clearly we have

REG1. P+
reg(S) = 0.

REG2. P+
reg(∅) = 1.

The whole space S has the least regret; the empty set has the greatest regret. In
the unweighted case, since Preg(E) = P∗(E), REG1, REG2, and the following
analogue of LP3 (appropriately modified for P∗) clearly characterize Preg :

REG3′. For all integers m,n, k and all subsets E1, . . . , Em of S, if E1� . . .�Em

is an (n, k)-cover of (E, S), then k + nPreg(E) ≤
∑m

i=1 Preg(Ei).

Note that complements of sets (E1, . . . , Em, E) are used here, since regret is
minimized if the probability of the complement is maximized. This need to work
with the complement makes the statement of the properties (and the proofs of
the theorems) slightly less elegant, but seems necessary.

It is not hard to see that REG3′ does not hold for weighted regret-based like-
lihood. For example, suppose that S = {a, b, c} and P+ = ((Pr1, 2/3), (Pr2, 2/3),
(Pr3, 1)), where, identifying the probability Pr with the tuple (Pr(a),Pr(b),Pr(c)),
we have Pr1 = (2/3, 0, 1/3), Pr2 = (1/3, 0, 2/3), and Pr3 = (1/3, 1/3, 1/3). Then
P+
reg({a, b}) = P+

reg({b, c}) = 4/9, while P+
reg({b}) = 2/3. Since {a, b} � {b, c} is

a (1,1)-cover of ({b}, {a, b, c}), REG3′ would require that

P+
reg({a, b}) + P+

reg({b, c}) ≥ 1 + P+
reg({b}),

which is clearly not the case.
We must thus weaken REG3′ to capture weighted regret-based likelihood. It

turns out that the appropriate weakening is the following:

REG3. For all integers m,n and all subsets E1, . . . , Em of S, if E1 � . . . � Em

is an n-cover of E, then nP+
reg(E) ≤

∑m
i=1 P+

reg(Ei).

Although REG3 is weaker than REG3′, it still has some nontrivial conse-
quences. For example, it follows from REG3 that P+

reg is anti-monotonic. If

E ⊆ E′, then E is a 1-cover of E
′
, so by REG3, we must have P+

reg(E) ≥
P+
reg(E

′). Since E � E′ is trivially a 1-cover of E ∪ E′, it also follows that

P+
reg(E) + P+

reg(E
′
) ≥ P+

reg(E ∪ E′). REG3 also implies REG1, since ∅ (= S)
is an n-cover of itself for all n.

I can now state the representation theorem. It says that a representation
of uncertainty satisfies REG1, REG2, and REG3 iff it is the weighted regret
likelihood determined by some set P+. The set P+ is not unique, but it can
be taken to be maximal, in the sense that if weighted likelihood regret with
respect to some other set (P ′)+ gives the same representation, then for all pairs
(Pr, α′) ∈ (P ′)+, there exists α ≥ α′ such that (Pr, α) ∈ P+. This (unique)
maximal set P+ can be viewed as the canonical representation of uncertainty.
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Theorem 2. If f : 2S → [0, 1], then there exists a weakly closed set P+ of
weighted probability measures with f = P+

reg if and only if f satisfies REG1,
REG2, and REG3; moreover, P+ can be taken to be maximal.

Acknowledgments. I thank Samantha Leung and the reviewers of ECSQARU
for many useful comments on the paper.

References

1. Anger, B., Lembcke, J.: Infinitely subadditive capacities as upper envelopes of
measures. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 68,
403–414 (1985)

2. Chateauneuf, A., Faro, J.: Ambiguity through confidence functions. Journal of
Mathematical Economics 45, 535–558 (2009)

3. de Cooman, G.: A behavioral model for vague probability assessments. Fuzzy Sets
and Systems 154(3), 305–358 (2005)

4. Epstein, L., Schneider, M.: Learning under ambiguity. Review of Economic Stud-
ies 74(4), 1275–1303 (2007)

5. Gilboa, I., Schmeidler, D.: Maxmin expected utility with a non-unique prior. Jour-
nal of Mathematical Economics 18, 141–153 (1989)

6. Good, I.J.: Some history of the hierarchical Bayesian methodology, pp. 489–504
(1980)

7. Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge (2003)
8. Halpern, J.Y., Leung, S.: Weighted sets of probabilities and minimax weighted

expected regret: new approaches for representing uncertainty and making decisions.
In: Proc. 29th Conf. on Uncertainty in Artificial Intelligence, pp. 336–345 (2012)

9. Halpern, J.Y., Pucella, R.: A logic for reasoning about upper probabilities. Journal
of A.I. Research 17, 57–81 (2002)
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Abstract. There have been a number of proposals for using deductive
arguments for instantiating abstract argumentation. These take a set of
formulae as a knowledgebase, and generate a graph where each node is
a logical argument and each arc is a logical attack. This then raises the
question of whether for a specific logical argument system S, and for
any graph G, there is a knowledgebase such that S generates G. If it
holds, then it can be described as a kind of “structural” property of the
system. If it fails then, it means that there are situations that cannot be
captured by the system. In this paper, we explore some features, and the
significance, of such structural properties.

1 Introduction

Abstract argumentation provides a clear and precise approach to formalizing
aspects of argumentation. However, in the approach, arguments are treated as
atomic. If we want to understand individual arguments, we need to provide con-
tent for them. This leads to the idea of “instantiating” abstract argumentation
with logical arguments, such as proposed by Cayrol [1].

There are various ways that logical arguments can be defined. A simple kind
is a deductive argument which is a tuple 〈Φ, α〉 where Φ is a set of premises,
and α is a claim such that for a consequence relation )i, Φ )i α holds. Further
constraints include consistency (i.e. Φ �)i ⊥) and minimality (there is no Ψ ⊂ Φ
s.t. Ψ )i α). Pollock was perhaps the first proponent of deductive arguments [2].
Subsequently, deductive arguments for classical logic [1, 3–5], description logic
[6], and defeasible logic [7, 8] have been proposed.

In this paper, we consider how deductive argument systems generate constel-
lations of arguments and counterarguments, and in particular, we are interested
in the class of argument graphs they can induce. As we will see, some deductive
argument systems only generate certain subclasses of graph. This is, however,
not necessarily bad news. In fact, it is known that the computational complexity
of evaluating argumentation frameworks (when considered as abstract frame-
works following Dung [9]) can be decreased if the class of graphs is restricted,
for instance to acyclic, bipartite or symmetric graphs or to graphs which have
certain parameters (like treewidth) fixed (see e.g. [10–13]).

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 278–289, 2013.
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2 Preliminaries

In this section we review some established definitions for graph theory, for logical
languages and inference, and for logical argumentation.

A graph G is a tuple of the form (N,E) where N is a set of nodes and E
is a set of edges. If a graph has no nodes and no edges, then it is the empty
graph, denoted G∅. We consider various graph types including the following:
A graph (N,E) is weakly connected iff for all nodes n, n′ ∈ N there is an
undirected path (i.e. ignoring the direction of the arrows) in E from n to n′; A
graph (N ′, E′) is a component of a graph (N,E) iff (N ′, E′) is the maximum
subgraph of (N,E) that is weakly connected; A graph (N,E) is a self-loop
graph iff there is a node n ∈ N such that there is an edge (n, n) ∈ E; A
graph (N,E) is a rooted graph iff (N,E) is acyclic and there is a node n
in N , called the root, such that for all other nodes m in N , there is a path
from m to n; A graph (N,E) is a tree iff (N,E) is a rooted graph and for
each non-root node n in N , there is a unique path from n to the root; A graph
(N,E) is complete bipartite iff there is a partition N1 and N2 of N such
that E = {(n1, n2), (n2, n2) | n1 ∈ N1 and n2 ∈ N2}. And a graph (N,E) is a
rational graph iff (N,E) is a component and (N,E) is not a self-loop graph.
The set of all graphs is denoted Graphs, with various subsets including the
following: Componentswhich is the set of all connected graphs; Treeswhich is the
set of all trees; AcyclicGraphswhich is the set of all acyclic graphs; Bipartites
which is the set of all complete bipartite graphs; RootedGraphs which is the set
of rooted graphs; and RationalGraphs which is the set of rational graphs.

In general, we use Formulae to denote the set of formulae of a language. In
this paper, we focus on two languages. The language of defeasible formulae,
denoted DefFormulae, is the set of literals and the set of rules of the form
α1∧· · ·∧αn → β where α1, . . . , αn are literals, and β is a literal. The language
of propositional formulae, denoted PropFormulae, is the usual language for
classical propositional logic that can formed from the logical connectives of ∨, ∧,
¬ and →. We consider the classical consequence relation, denoted ), which
is defined as usual, and the defeasible consequence relation, denoted )d,
which is defined as follows: For Δ ⊆ DefFormulae, if α1 ∧ · · · ∧ αn → β ∈ Δ,
and for each αi ∈ {α1, . . . , αn}, either αi ∈ Δ or Δ )d αi, then Δ )d β.

We consider two types of deductive argument. For Φ ⊆ DefFormulae, and a
literal α ∈ DefFormulae, 〈Φ, α〉 is a defeasible argument iff Φ )d α and there
is no proper subset Φ′ of Φ such that Φ′ )d α. For Φ ⊆ PropFormulae, and a
formula α ∈ PropFormulae, 〈Φ, α〉 is a classical argument iff Φ ) α, Φ �) ⊥ and
there is no proper subset Φ′ of Φ such that Φ′ ) α. For an argument A = 〈Φ, α〉,
the function Support(A) returns Φ and the function Claim(A) returns α.

For defeasible arguments A and B, we consider the following type of defeasi-
ble attack: A is a defeasible undercut of B if (1) there is a rule α1∧· · ·∧αn →
β in Support(B) and Claim(A) is the complement of β (i.e. if Claim(A) is an atom
ψ, then β is ¬ψ, and if β is an atom ψ, then Claim(A) is ¬ψ); Or (2) Claim(A)
is the complement of a literal in Support(B). We have a wider range of options
for defining attack for classical logic, such as rebuttals [2, 14], direct undercuts
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[1, 15, 16], and canonical undercuts [3]. For classical arguments A and B, we
consider the following type of classical attack in this paper: A is a classical
direct undercut of B if ∃φ ∈ Support(B) s.t. Claim(A) ≡ ¬φ; A is a classical
canonical undercut of B if Claim(A) ≡ ¬

∧
Support(B); And A is a classi-

cal rebuttal of B if Claim(A) ≡ ¬Claim(B). We give some examples of logical
attack in the following.

〈{e, e→ ¬b},¬b〉 is a defeasible undercut of 〈{c, d, c→ b, b ∧ d→ a}, a〉
〈{¬a ∧ ¬b},¬a〉 is a classical direct undercut of 〈{a, b, c}, a ∧ b ∧ c〉
〈{¬a ∧ ¬b},¬(a ∧ b ∧ c)〉 is a classical canonical undercut of 〈{a, b, c}, a∧ b ∧ c〉
〈{a, a→ b}, b ∨ c〉 is a classical rebuttal of 〈{¬b,¬c},¬(b ∨ c)〉

3 Logical Argument Systems

In this paper, we consider a variety of logical argument systems based on deduc-
tive arguments using either defeasible logic or classical logic.

Definition 1. A logical argument system is a tuple 〈Kbs, Arg, Att, Con〉,
denoted Sys, where for some language of formulae Formulae, we have Kbs =
℘(Formulae), Arguments = {〈Φ, ψ〉 | Φ ∈ Kbs and ψ ∈ Formulae}, and Attacks

= Arguments× Arguments and

Arg : ℘(Formulae)→ ℘(Arguments)
Att : ℘(Formulae)→ ℘(Attacks)
Con : ℘(Formulae)× Arguments→ Graphs

This is a general definition that can be instantiated by a wide variety of logical
argument systems. We give examples in Section 3.1. The sets Arguments and
Attacks are given as types for the functions Arg, Att, and Con. We explain
the parameters 〈Kbs, Arg, Att, Con〉 of the definition as follows. The Kbs set is
the set of knowledgebases that can be used by the system. In this paper, we
focus on the knowledgebases given by the languages of defeasible formulae and
classical formulae. The Arg function gives the set of arguments that can be
generated from a knowledgebase. In this paper, we focus on defeasible arguments
and classical arguments. The Att function gives the set of attacks that can be
generated from a knowledgebase, and so (A,B) ∈ Att(Δ) means that A attacks
B (e.g. defeasible undercut or classical rebuttal). The Con function (called the
constructor function) that, given a knowledgebaseΔ and a specified argument
A, called the focal argument, returns a graph s.t. if A ∈ Arg(Δ), then the
construction starts with A as a node in the graph and then builds the graph
using a subset of the attacks relation (i.e. a subset of Att(Δ)) as the edges, and
if A �∈ Arg(Δ), then the graph is the empty graph G∅.

The constructor function encodes the method by which we generate an ar-
gument graph from a set of logical arguments and attacks between those argu-
ments. In this paper, we consider the four constructor functions that we define
and illustrate in the rest of this subsection.
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Definition 2. Let 〈Kbs, Arg, Att, Con〉 be a logical argument system.

– Con is a trivial constructor iff for any knowledgebase Δ, and for any
argument A ∈ Arg(Δ), Con(Δ,A) is the graph (Arg(Δ), Att(Δ)).

– Con is a simple constructor iff for any knowledgebase Δ, and for any argu-
ment A ∈ Arg(Δ), Con(Δ,A) is the component in the graph (Arg(Δ), Att(Δ))
containing A.

We can regard the simple constructor as starting with the focal argument A,
and adding all the arguments that attack the argument (by adding the node and
arc(s) for each of these counterarguments). Then it repeats this step iteratively
until no more arguments can be added.

Example 1. For Δ = {a, b, c, d, e, a → ¬a, b → ¬a, a → ¬b, d ∧ e → ¬c, c ∧ e →
¬d}, let Arg(Δ) = { A1, A2, A3, A4, A5 }, where A1 is 〈{a, a→ ¬a},¬a〉, A2 is
〈{a, a→ ¬b},¬b〉, A3 is 〈{b, b→ ¬a},¬a〉, A4 is 〈{c, e, c∧ e→ ¬d},¬d〉, and A5

is 〈{d, e, d∧e→ ¬c},¬c〉, and Att(Δ) = { (A1, A1), (A1, A2), (A2, A3), (A3, A1),
(A3, A2), (A4, A5), (A5, A4) }. For this, the trivial constructor Con(Δ,A) returns
the following graph, where any of A1 to A5 is the focal argument A. Furthermore,
the simple constructor Con(Δ,A) returns the component below containing A1

to A3, where any of A1 to A3 is the focal argument A. Likewise, if the focal
argument A would be A4 or A5, the simple constructor would return the other
component.

〈{a, a→ ¬a},¬a〉 〈{a, a→ ¬b},¬b〉 〈{b, b→ ¬a},¬a〉

〈{c, e, c ∧ e→ ¬d},¬d〉 〈{d, e, d ∧ e→ ¬c},¬c〉

The recursive constructor (defined next) is related to proposals for constructing
trees in classical logic [3] and in defeasible logic programming [7]. For the follow-
ing definition, the constructor starts with the focal argument as the root, and
all attackers are added as children. Then by recursion, for each argument in the
graph, all the attackers of the argument are added as children. The only restric-
tion to this is the so called “no recycle” condition, which says that when adding
an attacker to the graph, it should contain at least one formula in the support
that has not been used as a premise in any ancestor argument (i.e. an argu-
ment that is on the branch to the root). Consequently, the recursive constructor
always yields a (directed) acyclic graph.

Definition 3. Let 〈Kbs, Arg, Att, Con〉 be a logical argument system. Let Δ be a
knowledgebase, and let A be an argument. Con is a recursive constructor iff
for any knowledgebase Δ, and for any argument A ∈ Arg(Δ), Con(Δ,A) is the
directed graph G constructed by adding exactly the arguments as follows:

1. A is the root of G
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2. if (B,A) ∈ Att, then B is a child of A in G
3. by recursion, for each node C in G, if (D,C) ∈ Att, and the support of

D contains at least one premise that does not appear in the support of any
argument on the branch from C to A, then D is a child of C in G.

Example 2. For Δ = {b, b → a, c, c → ¬b, d, d → ¬b, e, e → ¬c, f, f → ¬c},
let (Arg(Δ) = {A1, A2, A3, A4, A5}, where A1 is 〈{b, b → a}, a〉, A2 is 〈{c, c →
¬b},¬b〉, A3 is 〈{d, d→ ¬b},¬b〉, A4 is 〈{e, e→ ¬c},¬c〉, A5 is 〈{f, f → ¬c},¬c〉,
A6 is 〈{b, c→ ¬b},¬c〉, A7 is 〈{c, e→ ¬c},¬e〉, A8 is 〈{c, f → ¬c},¬f〉, and A9

is 〈{b, d → ¬b},¬d〉, and Att(Δ)) = { (A2, A1), (A2, A6), (A3, A1), (A3, A9),
(A4, A2), (A4, A7), (A4, A8), (A5, A2), (A5, A8), (A6, A2), (A6, A7), (A6, A8),
(A7, A4), (A8, A5), (A9, A3) }. For this, the recursive constructor returns the
following graph containing arguments A1 . . . A5, where A1 is the focal argument.
Note that arguments A6 . . . A9 do not appear in the graph, due to the third
condition of Definition 3.

〈{b, b→ a}, a〉

〈{c, c→ ¬b},¬b〉 〈{d, d→ ¬b},¬b〉

〈{e, e→ ¬c},¬c〉 〈{f, f → ¬c},¬c〉

The rebuttal constructor (defined next) is similar to proposals for reasoning with
pros and cons. Given the focal argument, all arguments with a logically equiva-
lent claim or with a contradictory claim are included. The rebuttal constructor
always yields a complete bipartite graph.

Definition 4. Let 〈Kbs, Arg, Att, Con〉 be a logical argument system. Let Δ be
a knowledgebase, and let A be an argument. Con is a rebuttal constructor iff
for any knowledgebase Δ, and for any argument A ∈ Arg(Δ), Con(Δ,A) is the
graph obtained by taking the nodes to be the arguments that either have a claim
that is logically equivalent to Claim(A) or a claim that is logically equivalent to
¬Claim(A) and by taking the edges to be the rebuttals between these nodes.

Example 3. For Δ = {a, a → b, c, c → b, d, d → ¬b, d, d → ¬c, c, c → ¬d}, let
(Arg(Δ) = { A1, A2, A3, A4, A5 }, where A1 is 〈{a, a → b}, b〉, A2 is 〈{c, c →
b}, b〉, A3 is 〈{d, d → ¬b},¬b〉, A4 is 〈{d, d → ¬c},¬c〉, and A5 is 〈{c, c →
¬d},¬d〉, and Att(Δ)) = { (A1, A3), (A2, A3), (A3, A1), (A3, A2) }. For this, the
rebuttal constructor returns the following graph, where any of A1 to A3 is the
focal argument.

〈{a, a→ b}, b〉 〈{c, c→ b}, b〉〈{d, d→ ¬b},¬b〉

In general, we do not impose constraints on a logical argument system. In this
paper, we only consider instances of Arg, Att, and Con that are monotonic. How-
ever, it would be reasonable to consider non-monotonic versions of the functions,
but we leave that to future work.
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3.1 Examples of Logical Argument Systems

To illustrate the idea of logical argument systems, we present some instances,
denoted System 1 to System 5, next, and then in the following section, we will
consider properties of these systems.

System 1. The tuple 〈Kbs, Arg, Att, Con〉 is a system based on defeasible logic
where Kbs is ℘(DefFormulae), Arg(Δ) is the set of defeasible arguments from
Δ such that if B ∈ Arg(Δ), then Support(B) ⊆ Δ, Att(Δ) is {(B,C) | B,C ∈
Arg(Δ) and B is a defeasible undercut of C}, and Con(Δ,A) is the simple con-
structor.

Example 4. Consider System 1 with Δ = {a, b, a → ¬a, b → ¬a, a → ¬b, d →
¬c, c → ¬d}. For the focal argument 〈{a, a → ¬a},¬a〉, Con(Δ,A) gives the
constructed graph that is the component with three arguments in Example 1.

From the directed graph obtained by the next system, it is simple to obtain the
argument tree of Besnard and Hunter1 [3].

System 2. The tuple 〈Kbs, Arg, Att, Con〉 is a system based on classical logic
where Kbs is ℘(PropFormulae), Arg(Δ) is the set of classical arguments such
that if B ∈ Arg(Δ), then Support(B) ⊆ Δ, Att(Δ) is {(B,C) | B,C ∈ Arg(Δ)
and B is a canonical undercut of C}, and Con(Δ,A) is the recursive constructor.

So the constructor function returns the smallest graph obtained by starting
with A, adding all the canonical undercuts to A, and by recursion adding all the
canonical undercuts An to each of the canonical undercuts An−1 subject to the
condition that each canonical undercut An has a premise that does not appear
in any support on the path of arguments An−1, ..., A1 where A1 is A.

Example 5. Consider System 2 with Δ = {b, c, a∧¬b, a∧¬c,¬a∧f,¬f∧e, b∧c →
d}. For the focal argument 〈{b, c, b ∧ c → d}, d〉, Con(Δ,A) gives the following
constructed graph which is an example of a rooted graph.

〈{¬f ∧ e},¬(¬a ∧ f)〉

〈{¬a ∧ f},¬(a ∧ ¬b)〉 〈{¬a ∧ f},¬(a ∧ ¬c)〉

〈{a ∧ ¬b},¬(b ∧ c ∧ (b ∧ c→ d))〉 〈{a ∧ ¬c},¬(b ∧ c ∧ (b ∧ c→ d))〉

〈{b, c, b ∧ c→ d}, d〉

1 A rooted graph is translated to an argument tree of Besnard and Hunter as follows:
Start from the bottom of the graph working upwards. For each node with multiple
parents, a copy is made of the node and its offspring for each of its parent, so that
each copy has exactly one parent. For Example 5, the bottom node is copied so the
argument occurs in two leaf nodes



284 A. Hunter and S. Woltran

The next system is based on the idea of exhaustively generating all arguments
from a knowledgebase and all attacks (according to a particular definition of
attack) and using the resulting graph without restriction (as first proposed in
[1], and further explored in [5]).

System 3. The tuple 〈Kbs, Arg, Att, Con〉 is a system based on classical logic
where Kbs is ℘(PropFormulae), Arg(Δ) is the set of classical arguments such
that if B ∈ Arg(Δ), then Support(B) ⊆ Δ, Att(Δ) is {(B,C) | B,C ∈ Arg(Δ)
and B is a direct undercut of C}, and Con(Δ,A) is the simple constructor.

Note, here we use the classical direct undercut. But, we could use the classical
defeater, classical direct defeater, classical undercut, classical canonical under-
cut, or classical literal undercut, as an alternative (see definitions in [5]). Hence,
we have a range of systems based on the choice of attack.

Example 6. Consider System 3 with Δ = {a,¬a∨¬b, b}. For the focal argument
A = 〈{b}, b〉, Con(Δ,A) gives the following constructed graph. For this, each
argument with a claim with an asterisk, i.e. a claim of the form α∗, denotes any
argument with the same premises and a claim that it is implied by α.

〈{a}, a∗〉 〈{b,¬a ∨ ¬b},¬a〉

〈{¬a ∨ ¬b}, (¬a ∨ ¬b)∗〉 〈{a, b},¬(¬a ∨ ¬b)〉

〈{a,¬a ∨ ¬b},¬b〉〈{b}, b∗〉

The following system is the same as the previous system but restricts considera-
tion to classical rebuttals rather than direct undercuts [5]. As an alternative we
could consider classical direct defeating rebuttals (see definition in [3]).

System 4. The tuple 〈Kbs, Arg, Att, Con〉 is a system based on classical logic
where Kbs is ℘(PropFormulae), Arg(Δ) is the set of classical arguments such
that if A ∈ Arg(Δ), then Support(B) ⊆ Δ, Att(Δ) is {(B,C) | B,C ∈ Arg(Δ)
and B is a rebuttal of C}, and Con(Δ,A) is the rebuttal constructor.

Example 7. Consider System 4 with Δ = {a,¬a ∨ ¬b, b, c,¬b → ¬c,¬(e ∨ b)}.
For argument A = 〈{b}, b〉, Con(Δ,A) gives the following constructed graph.

〈{b}, b〉 〈{a,¬a ∨ ¬b},¬b〉

〈{c,¬b→ ¬c}, b〉〈{¬(e ∨ b)},¬b〉

Finally, we give an example of a new logical argument system that is very con-
strained with respect to the kinds of arguments that are allowed. Essentially,
this system allows us to avoid the symmetrical relationships that usually hold
for attack for a classical argument system.
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System 5. The tuple 〈Kbs, Arg, Att, Con〉 is a system based on classical logic
where ConForm = { α∧β1∧ ...∧βn | α is a positive literal and β1, ..., βn are neg-
ative literals }, Kbs is ℘(ConForm), Arg(Δ) is the set of tuples of the form 〈{φ}, ψ〉
where φ ∈ Δ and {φ} ) ψ and ψ is the conjunction of negative literals occurring
in φ, Att(Δ) is {(B,C) | B,C ∈ Arg(Δ) and B is a classical undercut of C},
and Con(Δ,A) is the simple constructor.

Example 8. Consider System 5 with Δ = {a ∧ ¬b ∧ ¬c, b ∧ ¬c, c ∧ ¬a}. For the
focal argument A = 〈{a ∧ ¬b},¬b〉, Con(Δ,A) gives the following graph.

〈{a ∧ ¬b ∧ ¬c},¬b ∧ ¬c〉 〈{b ∧ ¬c},¬c〉 〈{c ∧ ¬a},¬a〉

In this section, we have presented a non-exhaustive range of logical argument
systems. Most are based on well-known approaches. The last system is a new
proposal for studying structural properties rather than being useful in its own
right.

4 Induced Graphs

The following definition captures the relationships that we will consider between
a logical argument system and a class of graphs. The more general the class
of graphs that a logical argument system can cover, the wider the range of
argumentation situations the logical argument systems can capture.

Definition 5. Let Sys = 〈Kbs, Arg, Att, Con〉 be a logical argument system and
let X be a graph type.

– Sys constructively covers X iff for all G ∈ X, there is a Δ ∈ Kbs, and
there is an A ∈ Arg(Δ), such that Con(Δ,A) = G.

– Sys is constructively covered by X iff for all Δ ∈ Kbs, and for all A ∈
Arguments, if Con(Δ,A) = G, then G ∈ X.

– Sys is constructively complete for X iff Sys constructively covers X and
Sys is constructively covered by X.

Since the constructor function returns a graph, by definition, any logical ar-
gument system is constructively covered by Graphs. We now consider in more
detail the systems from the previous section starting with System 1. Note, if we
use the trivial constructor instead of the simple constructor, it is straightforward
to show it is constructively complete for Graphs.

Proposition 1. System 1 is constructively complete for Components.

Turning to System 2, Example 5 illustrates that it is not constructively complete
for Trees.
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Proposition 2. System 2 is constructively complete for RootedGraphs.

System 3 does not correspond to any of the classes of graphs presented earlier.
In particular, it does not constructively cover RootedGraphs, AcyclicGraphs,
RationalGraphs, Bipartites, or Components. Furthermore, it is not covered
by RootedGraphs, AcyclicGraphs, and Bipartites. However, we do show next
that as System 3 does not allow inconsistent premises, it excludes self-cycles,
and so it is covered by RationalGraphs.

Proposition 3. System 3 is constructively covered by RationalGraphs.

To illustrate the difficulty in identifying a tighter bound on the set of graphs that
System 3 is covered by, we consider the problem of constructing a component
with two arguments attacking each other. We indicate by the following example
that this is not possible. Note, this is not a pathological example as there are
many simple graphs that cannot be generated by System 3.

Example 9. For System 3, let Δ = {a,¬a}. Hence, there are two classical ar-
guments 〈{a}, a〉 and 〈{¬a},¬a〉 that are direct undercuts of each other. Plus,
there are two further kinds of argument, 〈{a}, a∗〉 and 〈{¬a}, (¬a)∗〉, where a∗ is
strictly weaker than a (i.e. {a} ) a∗ and {a∗} �) a). and (¬a)∗ is strictly weaker
than ¬a.

〈{a}, a〉 〈{¬a},¬a〉〈{¬a}, (¬a)∗〉 〈{a}, a∗〉

For System 4, the definition of the rebuttal constructor renders it straightforward
to show that the system is constructively complete for Bipartites.

Proposition 4. System 4 is constructively complete for Bipartites.

The restrictions on the form of the arguments arising in System 5 allow us to
show that even with classical logic, we can get almost the same completeness
results as with defeasible logic. What are missing are the self-loop components.

Proposition 5. System 5 is constructively complete for RationalGraphs.

In this section, we have shown how restricted systems such as those based on
defeasible logic (e.g. System 1), or those based on very restricted arguments (e.g.
System 5) are constructively complete for rational graphs, or even components,
whereas unrestricted use of classical logic means these properties do not hold.

5 Local and Global Constructors

To get completeness results for components, graphs, or rational graphs, the log-
ical argument system needs to be restricted in some way. For example, the proof
theory of System 1, for generating arguments is weak (it is modus ponens) and
for System 5, the arguments are restricted to having a single premise and the
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claim being a conjunction of negative literals. From the systems we have consid-
ered so far, we see a trade-off with regard to how restricted the system is and the
completeness results that hold for it. We investigate this issue in this section by
classifying constructors. For this we need the subsidiary notion of a characteristic
function Test which is a function from sets of attacks to {“yes”, “no”}.

Definition 6. A constructor function Con is local iff there is a characteristic
function Test s.t. for all Δ, A, if Con(Δ,A) = (N,E), and (N,E) is a compo-
nent, and Bi ∈ N , and (Bj , Bi) ∈ Att(Δ), and Test((Bj , Bi)) = “yes”, then
(Bj , Bi) ∈ E and Bj ∈ N . A constructor function Con is global iff Con is not
local.

A local constructor function thus constructs a component by adding nodes and
arcs incrementally starting with A. The local constructor makes a local decision
on whether to add a node or arc based on the nature of the attack. It does not
take into account any other aspect of the graph. In other words, no global view
is taken into account when constructing the graph.

Proposition 6. The trivial constructor function, simple constructor function
and the rebuttal constructor function are local, whereas the recursive constructor
function is global.

The following results show that unless a system is highly restricted, it is not
possible to generate every graph with a local constructor function. In order to
directly compare defeasible and classical logics, we have used a restricted version
of the defeasible logic system considered earlier.

Theorem 1. Let Sys = 〈Kbs, Arg, Att, Con〉 be a logical argument system such
that Kbs is the set of defeasible knowledgebases, Arg is the set of non-self attack-
ing defeasible arguments from Δ (i.e. for each argument A ∈ Arg(Δ), A does
not attack A), and Att is defeasible undercut. There is a constructor Con such
that Con is local and Sys is constructively complete for RationalGraphs.

Theorem 2. Let Sys = 〈Kbs, Arg, Att, Con〉 be a logical argument system such
that Kbs is the set of classical knowledgebases, Arg is the set of classical argu-
ments from Δ, and Att is classical defeater, classical direct defeater, classical
undercut, classical canonical undercut, or classical direct undercut. If Sys is con-
structively complete for RationalGraphs, then Con is global.

The main ramification of the above result is that if we want to use richer logics
such as classical logic, then we need to use global constructors. In other words,
to reflect any abstract argument graph in a logical argument system based on a
richer logic, we need to be selective in the choice of arguments taken from Arg(Δ)
and the choice of attacks taken from Att(Δ) for any given Δ and A. Therefore,
these results in a sense justify the need to better understand the notion of global
constructors.

Furthermore, this is not just for theoretical interest. Practical argumenta-
tion often seems to use richer logics such as classical logic, and often the pre-
sentation of arguments and counterarguments is not exhaustive. Therefore, we
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need to better understand how the arguments presented are selected. For ex-
ample, suppose agent 1 posits A1 = 〈{b, b → a}, a〉, and agent 2 then posits
A2 = 〈{c, c → ¬b},¬b〉. It would be reasonable for this dialogue to stop at this
point even though there are further arguments that can be constructed from the
public knowledge such as A3 = 〈{b, c → ¬b},¬c〉. So in terms of constructing
the constellation of arguments and counterarguments from the knowledge, we
need to know what the underlying principle is for ascertaining that just the two
arguments are sufficient given the public knowledge, and that this means we
need to know more about the global constructor function. It may also mean that
we need to better understand how meta-knowledge (about the premises and/or
about the participants) is used to select arguments and counterarguments.

6 Discussion

In this paper we have provided: (1) A general framework for describing diverse
logical argument systems; (2) A classification scheme for logical argument sys-
tems in terms of the class of graphs that they induce; (3) An analysis of local and
global methods of constructing argument graphs from a knowledgebase which
has ramifications for using richer logics in argumentation.

There are further options that we may consider for logical argument systems
by for instance changing the definition of attack or changing the choice of base
logic: (i) defeasible logic with annotations for truth values (such as for Belnap’s
four-valued logic) [17] and for possibility theory [18], (ii) temporal reasoning
calculi [19, 20], (iii) minimal logic [21], and (iv) modal logic [22]. Indeed, any
logic could be potentially used as a base logic [8].

Whilst, the focus of the paper has been on deductive arguments, the issues
raised may also have ramifications for further argumentation systems such as
ASPIC+ [23] and ABA [24]. We leave investigation of this to future work.
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Abstract. Measuring the degree of inconsistency of a knowledge base
provides important context information for making easier inconsistency
handling. In this paper, we propose a new fine-grained measure to quan-
tify the degree of inconsistency of propositional formulae. Our inconsis-
tency measure uses in an original way the minimal proofs to characterize
the responsibility of each formula in the global inconsistency. We give
an extension of such measure to quantify the inconsistency of the whole
base. Furthermore, we show that our measure satisfies the important
properties characterizing an intuitive inconsistency measure. Finally, we
address the problem of restoring consistency using an inconsistency mea-
sure.

Introduction

Inconsistencies are well-known and essential concept in several research areas.
They occur when working with logic knowledge bases; for example, when revising
or merging several bases due to not fully reliable sources. Measuring such incon-
sistencies have received a growing interest recently because it has been shown
to be very helpful in various fields including e-commerce protocols [1], software
specifications [2], belief merging [3], news reports [4], requirements engineer-
ing [5], integrity constraints [6], databases [7], ontologies [8], semantic web [8],
and network intrusion detection [9]. In Artificial Intelligence, and particularly in
knowledge representation and reasoning, there have been a growing interest on
how to design relevant measures to quantify the inconsistency of a given knowl-
edge base. Such analysis have been shown to be very helpful for deciding on
how to act on such inconsistency [4]. In other words, such analysis might help
to decide if such inconsistency needs to be resolved or simply ignored.

In order to analyze and to measure the amount of inconsistency of a knowl-
edge, several logic-based approaches have been proposed. Among them, there are
the maximal η-consistency measures based on variables [10] or via multi-valued
models [11–13, 4, 14–17], the η-consistency and η-probability measures [18], the
measures based on minimal inconsistent subsets [19–22], and the Shapley in-
consistency value proposed in [5]. A comparative study of all these measures is
clearly a challenging task. However, they can be roughly divided into two main
categories. The first one computes the proportion of the formulae affected by
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the inconsistency. In this category, most of the inconsistency measures are often
based on some paraconsistent semantics. The second category involves syntactic
measures based on the minimal inconsistent subsets of formulae. It considers
minimal inconsistent subsets of formulae as the best and relevant reason of in-
consistency. However, to derive relevant inconsistency handling methods, one
needs to first identify the inconsistency or the inconsistent parts of the knowl-
edge base before restoring the consistency. Limiting the first step to a simple
consistency checking is not sufficient, and doesn’t tell us much on the different
inconsistencies and their interactions.

In this paper, we deal with two kind of measures. The first one commonly
called ”degree of inconsistency” aims to evaluate the contribution of each for-
mula in the inconsistency of the knowledge base. The second measure, designed
by ”inconsistency measure”, allows to evaluate the inconsistency of the whole
base. We propose a new fine-grained measure to quantify the inconsistency of
propositional knowledge base. Our measure is based on the so called ”minimal
proofs”. We show its relationship with the minimal inconsistent subsets. Our
first characterization allows to give the contribution/responsibility of each for-
mula of the knowledge base in the inconsistency and we extend it to compute
the inconsistency of the whole base. Finally, we address the second important
step of inconsistency handling, and then we show how inconsistency measures
can be used to restore the consistency of the knowledge base.

The paper is organized as follows: after stating some preliminary definitions
and notations, we briefly review different approaches to measuring the degree
of inconsistency in the literature based on minimal inconsistent subsets. In the
second section, we study how to use minimal proofs in order to define incon-
sistency values. In section three, we discuss some logical properties satisfied by
our measure. Then, we address the problem of restoring consistency in an in-
consistent knowledge base using inconsistency measures. In the last section we
conclude and give some perspectives for future works.

1 Preliminaries

1.1 Propositional Logic and Satisfiability

In this paper, we consider the propositional fragment of classical logic. Let L be
a propositional language built from a finite set of propositional symbols P under
logical connectives {¬,∧,∨,→,↔}. We will use a, b, c, . . . to denote propositional
variables. A literal is a positive (p) or negative (¬p) propositional variable and a
clause is a disjunction of literals. A formula is defined recursively under the set
of propositional symbols and literals. We use greek letters α, β, γ, . . . to denote
propositional formulae. We denote by V ar(α) the set of propositional variables
occurring in α and by Lit(α) = {x,¬x | x ∈ V ar(α)} the set of literals oc-
curring in α. A propositional knowledge base K is a finite set of propositional
formulae. We denote by |K| the cardinality of the knowledge base K. A knowl-
edge base K is inconsistent if there is a formula α such that K ) α and K ) ¬α,
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where ) is the consequence relation in propositional logic. We write K ) ⊥ to
denote that K is inconsistent.

Let us firstly introduce the notion of minimal inconsistent subsets of a given
knowledge base K. These subsets can be considered as the most relevant way to
characterize syntactically the inconsistency.

Definition 1 (MUS). Let K be a knowledge base. Then, M is a minimal un-
satisfiable (inconsistent) subset (MUS) of K iff:

1. M⊆ K

2. M ) ⊥

3. ∀M′ ⊂M, M′ � ⊥

If a knowledge base is inconsistent, then it contains at least one MUS. We
denote by MUSes(K) the set of all minimal inconsistent subsets of K, i.e.
MUSes(K) = {M | M is a MUS of K}.

We call a formula α of K a free formula of K if α doesn’t belongs to any
minimal inconsistent subset of K. That is, α is not concerned with the minimal
inconsistent subsets of K.

1.2 Inconsistency Measures

In this section, we describe some inconsistency measures based on minimal in-
consistent subsets and the properties usually used for their characterization. We
limit our presentation to the most important and related measures to the one
proposed in this paper.

Several important inconsistency measures have been defined through minimal
inconsistent subsets theories. In [23], the authors introduce a scoring function
allowing to measure the contribution of each subset of a knowledge base to the
inconsistency. For each subset K ′ of the knowledge base K, the scoring function
is defined as the decrease of the number of minimal inconsistent subsets while K ′

is removed (|MUSes(K)| − |MUSes(K−K ′)|). The higher the variation is, the
better the scoring assigned to K ′ gets. By extending the scoring function, the
authors introduce an inconsistency measure IMI of the whole base [24]. IMI(K)
is defined as the number of minimal inconsistent subsets of K, i.e. IMI(K) =
|MUSes(K)|. In [19], the authors present another family ”MinInc inconsistency
values MIV ” based on minimal inconsistent subsets. For instance, MIVD(K,α)
is a simple measure that is worth 1 if α belongs to a minimal inconsistent subset
and 0 otherwise. While MIV# is defined similarly to the scoring function, i.e.
MIV#(K,α) = |{M ∈ MUSes(K) | α ∈ M}|. A third MIV value takes into
account the size of each minimal inconsistent subset in addition to the number of
minimal inconsistent subsets of K, i.e. MIVC(K,α) =

∑
α∈M|M∈MUSes(K)

1
|M| .

Unlike the semantic measures, the approaches based on minimal inconsis-
tent subsets have some gaps. Indeed, such syntactic approaches do not make a
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distinction between two different knowledge bases with exactly the same size
and the same number of minimal inconsistent subsets, what motivated the new
approach introduced in [25]. This approach combines both the minimal inconsis-
tent subsets and the maximal consistent subsets in order to give an inconsistency
measure of a given knowledge base. Another approach that combine semantic
and syntax based approaches have been introduced in [22]. It is based on count-
ing the variables of MUSes and the minimal correction subsets [26].

2 A Minimal Proof-Based Approach for Measuring
Inconsistency

The most syntactic measures of the degree of inconsistency does not differentiate
rigorously between the formulae of an inconsistent knowledge base. To illustrate,
let us consider the following set of clauses K = {a ∨ b ∨ c,¬a ∨ ¬b ∨ ¬c,¬a ∨
b,¬b ∨ c,¬c ∨ a}. K is a minimal inconsistent base. Now, if we consider the
MIV# or MIVC measures, then all formulae in K possess the same degree on
inconsistency. In particular, ∀α ∈ K, MIV#(K,α) = 1 and MIVC(K,α) = 1/5.

Clearly, this means that the degree of inconsistency is uniformly distributed
between all the formulae of K, and their responsibilities in the inconsistency are
consequently shared equally. However, by analyzing the proof of inconsistency
of K, one can easily notice that the formulae α1 = ¬a ∨ b, α2 = ¬b ∨ c, and
α3 = ¬c ∨ a are used twice in the resolution scheme [27], whereas a ∨ b ∨ c
and ¬a ∨ ¬b ∨ ¬c are used only once. Therefore, the formulae {α1, α2, α3} are
more involved in the inconsistency of K. This simple example shows clearly
that we need to analyze deeply the knowledge base in order to exhibit the real
contribution/responsibility of each formula in the inconsistency. As the formulae
of a knowledge base are not necessarily clauses, one needs to take into account
the proof system considered to assess the involvement of each formula in the
inconsistency of the base.

Otherwise, one can reason differently to evaluate the participation of the for-
mulae in the inconsistency using what so calledminimal proofs defined as follows.

Definition 2 (Minimal Proof). Let K be a knowledge base and π a subset of
K. π is a minimal proof of x, iff:

1. x ∈ Lit(π)

2. π ) x

3. ∀π′ ⊂ π, π′ � x

Note that, the item 2 of Definition 2 shows that x is a logical consequence of
π. This means that it can be represented differently as π ∪ {¬x} ) ⊥. The set
of all minimal proofs of a given literal x can be obtained using the MUSes of
K ∪ {¬x} and, also, the MUSes of K containing only one formula.
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Proposition 1. Let K be a knowledge base and π a subset of K. π is a minimal
proof of a literal x, iff x ∈ Lit(π) and

– π ∪ {¬x} ∈MUSes(K ∪ {¬x}), or

– π ) ⊥ such that |π| = 1

Proof. The items 1 and 2 traduce exactly the meaning of Definition 2.

In the sequel, we denote by πx a minimal proof of x in K.

Example 1. Let K1 = {a ∨ b ∨ c,¬a ∨ b,¬b ∨ c,¬c ∨ a, d ∧ ¬d, a ∧ e,¬a}. Then,
π1
a = {a ∧ e} π1

¬a = {¬a ∨ ¬b ∨ ¬c,¬a ∨ b,¬b ∨ c}
π2
a = {a ∨ b ∨ c,¬b ∨ c,¬c ∨ a} π2

¬a = {¬a}
πb = {a ∨ b ∨ c,¬a ∨ b,¬c ∨ a} π¬b = {¬a ∨ ¬b ∨ ¬c,¬b ∨ c,¬c ∨ a}
πc = {a ∨ b ∨ c,¬a ∨ b,¬b ∨ c} π¬c = {¬a ∨ ¬b ∨ ¬c,¬a ∨ b,¬c ∨ a}
πd = {d ∧ ¬d}, π¬d = {d ∧ ¬d}
πe = {a ∧ e} π¬e = ∅

Proposition 2. Let K be a knowledge base. K is inconsistent if and only if there
exists two minimal proofs πx and π¬x such that x ∈ V ar(K) and πx ∪π¬x ⊆ K.

Proof. (−→) K is inconsistent, then there exists x ∈ V ar(K) such that K ) x
and K ) ¬x. As consequently, there exists πx ⊆ K and π¬x ⊆ K where πx ) x
and π¬x ) ¬x. Then, πx ∪ π¬x ⊆ K.
(←−) Let πx and π¬x be two minimal proofs such that πx ∪ π¬x ⊆ K. Using
Definition 2, one can deduce that πx ) x and π¬x ) ¬x. Then, {πx ∪ π¬x} )
x ∧ ¬x. As consequently, {πx ∪ π¬x} ) ⊥. Thus, K ) ⊥.

Proposition 3. Let K be a knowledge base. Then,

{M | M ∈MUSes(K)} ⊆
⋃
{{πx ∪ π¬x} | x ∈ V ar(K)}.

Proof. A direct consequence of Proposition 2.

Example 2. The following knowledge base K = {a ∧ ¬a, a} has one MUS M =
{a ∧ ¬a}, whereas when considering minimal proofs, K has two minimal proofs
π1
a = {a ∧ ¬a} and π2

a = {a} for a and one minimal proof π¬a = {a ∧ ¬a} for
¬a. Thus, π1

a ∪ π¬a = {a ∧ ¬a} and π2
a ∪ π¬a = {a, a ∧ ¬a}.

The Proposotions 2 and 3 show the relationship between MUSes and minimal
proofs in general case. While considering a knowledge base as a set of clauses,
the following result holds.

Proposition 4. Let K be a knowledge base andM a MUS of K. If the formulae
of K are restricted to clauses, we have:

1. for all x ∈ Lit(M), there exists a unique minimal proof πx in M, and
M = πx ∪ π¬x

2. {M | M ∈MUSes(K)} =
⋃
{{πx ∪ π¬x} | x ∈ V ar(K)}



Measuring Inconsistency through Minimal Proofs 295

Proof. We know that for each literal x ∈ Lit(M), there exists a clause α in M
such that ¬x ∈ Lit(α), since M is a MUS. Moreover, we know that M\ {α} is
consistent and M\ {α} ) ¬α. Therefore, we haveM\ {α} ) x. Now, it suffices
to extract a minimal proof of x from M\ {α}.

Let us now show that there exists exactly one minimal proof of x in M.
Suppose that there exist two minimal proofs π1

x and π2
x of x such that π1

x �= π2
x.

Let π¬x be a minimal proof of ¬x. Then, it is easy to find out that π1
x ∪π¬x ) ⊥

and π2
x ∪ π¬x ) ⊥. As M is a MUS, then π1

x ∪ π¬x = π2
x ∪ π¬x = M.

Subsequently, π1
x = π2

x =M\ π¬x, which is contradicted to the assumption.
As for item 2 is a direct consequence of item 1.

Proposition 5. Let K be a set of clauses and M a MUS of K. Then, there
exists exactly |Lit(M)| minimal proofs in M.

Proof. A direct consequence of Proposition 4.

Example 3. Let K2 = {a,¬a, a ∨ b,¬b,¬b ∨ c} be a set of clauses. K2 has two
MUSesM1 = {a,¬a} andM2 = {¬a, a∨b,¬b}. Then,M1 contains two minimal
proofs πa = {a} and π¬a = {¬a} as |Lit(M1)| = 2. M2 contains four minimal
proofs π¬a = {¬a}, πa = {a ∨ b,¬b}, πb = {¬a, a ∨ b} and π¬b = {¬b} as
|Lit(M2)| = 4.

In the sequel, we denote by Pm the set of all minimal proofs in K, i.e. Pm =
{πx | x ∈ Lit(K)}. The subset of Pm restricted to the minimal proofs of a given
literal x ∈ K, is defined as Pm(x) = {π ∈ Pm | π ) x}.

Example 4. Let us consider again the knowledge base K1 of Example 1.

Pm(a) = {π1
a, π

2
a} Pm(b) = {πb} Pm(c) = {πc}

Pm(¬a) = {π1
¬a, π

2
¬a} Pm(¬b) = {π¬b} Pm(¬c) = {π¬c}

Pm(d) = {πd} Pm(¬d) = {π¬d}
Pm(e) = {πe}

Note that in general case, a MUS can involve literals that are not concerned
with inconsistency e.g. {a ∧ b,¬a}. However if the formulae are restricted to
clauses, each variable is necessarily involved in the inconsistency. Thus, we have
the following result.

Proposition 6. Let K be a set of clauses and x a literal of K. Then,

|{M ∈MUSes(K) | x ∈ Lit(M)}| = |Pm(x)| = |Pm(¬x)|.

Proof. Using Proposition 4, each MUSM involves one minimal proofs for each x
and ¬x of K. Moreover, each minimal proof is included in a minimal inconsistent
subset. Thus, |Pm(x)| = |{M ∈MUSes(K) | x ∈ Lit(M)}| holds.

Note that while the formulae of a knowledge base are not necessarily clauses,
the Proposition 6 becomes |{M ∈ MUSes(K) | x ∈ Lit(M)}| ≤ |Pm(x)|.
For instance, let us consider the knowledge base K = {a ∧ ¬a, a}. The literal a
has two minimal proofs, while K contains one MUS M = {a ∧ ¬a}.
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Proposition 7. Let K be a knowledge base and α ∈ K such that α � ⊥.
If {x | ∃ πx, π¬x, α ∈ πx ∩ π¬x} = ∅, then α is a free formula in K.

Proof. Let α be a consistent formula in K. Assume that α is a free formula and
there exists a variable x such that α ∈ πx ∩ π¬x, then πx �= ∅ and π¬x �= ∅
and consequently, πx ∪ π¬x ) ⊥. From πx ∪ π¬x we can extract a MUS M that
contains α which is contradictory with the assumption.

As explained in the beginning of this section, we plan to define an inconsistency
measure that captures better the structure of the knowledge base. Our aim is
to quantify the contribution/responsibility of a formula in the different minimal
proofs. Indeed, to measure the degree of inconsistency of a subset of formula
K ′ ⊆ K, our approach will increase this degree each time K ′ is involved in the
minimal proofs of a literal x and its negation ¬x.

Since a given literal can have several minimal proofs, we need to take into
account such occurrences to assess the inconsistency measure of a set of formulae
in a knowledge base. The following definition introduces two inconsistency values
of a set of formulae K ′ ⊆ K with respect to a given variable x.

Definition 3. Let K be a knowledge base, K ′ a subset of K and x ∈ V ar(K).
The inconsistency value of K ′ with respect to x is:

IPm(x,K ′) = |{(πx, π¬x) ∈ Pm(x)× Pm(¬x) | πx ∩K ′ �= ∅, π¬x ∩K ′ �= ∅}|.

Example 5. Let us consider the knowledge baseK1. Using IPm value, we have the
following results: IPm(a, {a∨b∨c,¬a∨b}) = 1, IPm(a, {a∨b∨c,¬a∨b, a∧e,¬a}) =
4, and IPm(d, {d ∧ ¬d}) = 1.

An alternative definition of IPm(x,K ′) can be introduced using only MUSes of
K as follows:

I ′Pm
(x,K ′) = |{M | M ∈Muses(K), ∃ (πx, π¬x) ∈ M×M, πx ∩K ′ �=

∅, π¬x ∩K ′ �= ∅}|.

Proposition 8. Let K be a knowledge base and K ′ a subset of K. If IPm(K ′) �=
0, then there exists M ∈MUSes(K) such that K ′ ∩M �= ∅.

Proof. Assume that IPm(x,K ′) �= 0. Then, there exists x ∈ V ar(K) such that
Pm(x) �= ∅ and Pm(¬x) �= ∅. By Definition 3, there exists two minimal proofs
π1
x ∈ Pm(x) and π1

¬x ∈ Pm(¬x) such that K ′ ∩ π1
x �= ∅ and K ′ ∩ π1

¬x �= ∅. As
π1
x ) x and π1

¬x ) ¬x, {π1
x ∪ π1

¬x} ) ⊥. Then, there exists a MUS M such that
M⊆ {π1

x ∪ π1
¬x}. Thus, K ′ ∩M �= ∅ holds, since K ′ ∩ {π1

x ∪ π1
¬x} �= ∅.

Now, we define the degree of inconsistency of a subset K ′ of K as follows:

Definition 4. Let K be a knowledge base and K ′ a subset of K. We define
IPm(K ′) the degree of inconsistency of K ′ as:

IPm(K ′) =
∑

x∈V ar(K) IPm(x,K ′).
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The definition 4 can be extended to compute the degree of inconsistency of each
formula α in K by considering a single formula instead a subset of formulae.
Formally, let α be a formula in K, then:

IPm(α) =
∑

x∈V ar(K) IPm(x, α).

Example 6. Let us consider the knowledge baseK1 = {a∨b∨c,¬a∨b,¬b∨c,¬c∨
a, d ∧ ¬d, a ∧ e,¬a}. Using our measure of inconsistency, we have the following
results:

IPm({a ∧ e}) = 0 IPm({d ∧ ¬d}) = 1
IPm({¬a ∨ b,¬b ∨ c,¬c ∨ a}) = 3 IPm({¬a}) = 0
IPm({a ∨ b ∨ c,¬a ∨ ¬b ∨ ¬c}) = 3 IPm({¬c}) = 0
IPm({¬a ∨ b,¬b ∨ c,¬c ∨ a,¬a, a ∧ e}) = 6

Note that for the knowledge base K1, the maximum degree of inconsistency
based on minimal proofs can not exceed the value 6 since each minimal proof of
Pm(K1) contains at least one formula from {¬a ∨ b,¬b ∨ c,¬c ∨ a,¬a, a ∧ e}.
Up to now, we proposed a measure of the degree of inconsistency of a subset
K ′ of K, i.e. IPm(K ′). This measure tried to catch the implication of K ′ in the
overall inconsistency ofK. To define the inconsistency measure of the whole base
K, it is just to consider K ′ = K.

Definition 5. Let K be a knowledge base. We define IPm the degree of incon-
sistency of K as:

IPm(K) =
∑

x∈V ar(K) IPm(x,K).

Proposition 9. IPm(K) =
∑

x∈V ar(K) |Pm(x) × Pm(¬x)|.

Proof. According to Definition 3, IPm(x,K) = |{(πx, π¬x) ∈ Pm(x) × Pm(¬x) |
πx ∩ K ′ �= ∅, π¬x ∩ K ′ �= ∅}| = |{(πx, π¬x) ∈ Pm(x) × Pm(¬x)}| = |Pm(x) ×
Pm(¬x)|. Thus, IPm(K) =

∑
x∈V ar(K) |Pm(x)× Pm(¬x)|.

The measure IPm provides a more fine-grained way for measuring inconsistency.
It aims at taking into account the structure of the knowledge base in terms of
minimal proofs and the occurring variables in each minimal proof. While the
formulae of K are clauses, IPm(K) can be rewritten as follows:

Proposition 10. Let K be a knowledge base where each formula of K is a
clause. Then,

IPm(K) =
∑

M∈MUSes(K) |V ar(M)|.
Proof. Let K be a set of clauses. Each literal of a given MUS M in K has a
minimal proof and this minimal proof is unique as proven previously. So from
each minimal proof πx and π¬x we can build a MUS M = {πx ∪ π¬x}. Also,
as proved before, |{Pm(x)× Pm(¬x)}| = |M | M ∈MUSes(K), x ∈ V ar(M)|.
Thus, we conclude that IPm(K) =

∑
M∈MUSes(K) |V ar(M)|.

Example 7. Again, let us consider Example 3. MUSes(K2) = {{a,¬a}, {¬a, a∨
b,¬b}}. Then, we have IPm(K2) = 2.
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3 Logical Properties

In [19], the authors define some required properties that a basic inconsistency
measure should satisfy (see Definition 6). For example, the property (3) states
that the set of formulae not involved in any minimal inconsistent subset are not
considered in the inconsistency measure. The monotony property (2) shows that
the inconsistency value of a knowledge base has to be increased while adding
new formulae. Finally the dominance property (4) shows that if we substitute a
consistent formula by a logical consequence one, the inconsistency measure can
not be increased.

Definition 6 ([19]). Let K and K ′ be two knowledge bases and α and β two
formulae in L. A basic inconsistency measure IM is an inconsistency measure
satisfying the following properties.

(1) Consistency: IM (K) = 0 if K is consistent
(2) Monotony: IM (K) ≤ IM (K ∪K ′)
(3) Free Formula Independence: if α is a free formula in K ∪ {α}, then IM (K ∪

{α}) = IM (K)
(4) Dominance: if α ) β and α � ⊥, then IM (K ∪ {β}) ≤ IM (K ∪ {α})

Note that IPm inconsistency measure satisfies the two first properties in Defini-
tion 6. In particular, if K is consistent, then IPm(K) = 0 (∀x,Pm(x)×Pm(¬x) =
0). Concerning the monotony property, adding new formulae to the knowledge
base increases the number of minimal proofs in the base, and consequently
IPm(K) ≤ IPm(K ∪ K ′). Nevertheless, adding free formulae to a knowledge
base can enlarge the set of minimal proofs in K (e.g. K = {a ∧ ¬a}, α = a),
hence the free formula independence is not satisfied.

Recently in [25], the authors have discussed the limitations of some properties
like dominance and free formula independence, especially while dealing with
syntactic inconsistency measures. For instance, they prove that IMI measure
doesn’t satisfy the dominance property. As the minimal proofs and minimal
unsatisfiable subsets are correlated, IPm doesn’t satisfy the dominance property.

4 Restoring Consistency through Inconsistency Measures

As mentioned in the introduction, the second important step in the inconsistency
handling process concerns how to restore consistency. To this end, inconsistency
measures can be used to guide the process of resolving inconsistency. We often
encounter several alternative solutions to restore consistency [28]. In the absence
of specific and explicit additional information about the origin of each formula,
one of the easiest way to restore consistency is based on formula deletion. It
based on removing as less information as possible i.e. removing one formula
from each MUS of the given knowledge base. The smallest subset to remove in
order to establish consistency is called a minimal hitting set (see Definition 7) of
the hypergraph representing the set of MUSes as defined in [26]. The number of
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such hitting sets is known to be exponential in the worst case. Then, selecting a
”best” hitting set is a challenging task since we lack enough information about
the original knowledge base. For instance, one can select minimal hitting sets
involving the smallest subset of variables. Other criterions can be introduced to
pick up the best ones as we discuss below.

Definition 7. H is a hitting set of a set of sets S iff ∀H ′ ∈ S, H ∩ H ′ �= ∅. A
hitting set H is minimal if there is no other hitting set H ′′ such that H ′′ ⊂ H.

In order to use the inconsistency measure to restore consistency, we select the
consistent subsets K ′ of K that are maximal in terms of the measure of in-
consistency I and in terms of size at a time. To define formally the restoration
procedure, we denote, at first, by CS(K) the set of all consistent subsets of K:
CS(K) = {K ′ | K ′ ⊆ K and K ′ �) ⊥}.

Definition 8. Let K be a knowledge base and I a degree of inconsistency mea-
sure. The knowledge bases resulting from the restoration of consistency of K, are
the subsets K ′ of K which verify the following conditions:

1. K ′ ∈ CS(K)

2. ∀K ′′ ⊆ K \K ′, if I(K ′,K) < I(K ′ ∪K ′′,K), then K ′ ∪K ′′ ) ⊥

3. ∀K ′′ ∈ CS(K), |K ′′| ≤ |K ′|

In the rest of the paper, we denote the subset of K verifying items 1, 2, and
3 by CmS (I,K). Let us now give a characterization of CmS (I,K) through some
inconsistency measures. For instance, we show that the set CmS (MIV#,K) is
closed with respect to the minimal hitting sets.

Proposition 11. Let K be a knowledge base and {H1, . . . , Hn} the set of min-
imal hitting sets of MUSes(K). Then,

CmS (MIV#,K) = {K \H1,K \H2, . . ., K \Hn}.

Proof. Each subsetK\Hi corresponds to the so called maximal consistent subset
(MCS) of K. In [29], the authors show that a subset C of K is an MCS if and
only if C is a minimal hitting set of MUSes(K). Furthermore, MIV#(K \Hi) =
|MUSes(K)| which is the maximal value possible for MIV# measure. Thus,
CmS (MIV#,K) = {K \H1,K \H2, . . ., K \Hn}.

In the sequel, we illustrate, through an example, the resulting set CmS using
MIV# and IPm .

Example 8. Let us consider the knowledge base K3 = {a∨b,¬a∨c, a∨¬b,¬c, d∨
e,¬d∨c, d∨¬e}. The minimal inconsistent subsets of K3 are:M1 = {a∨ b,¬a∨
c, a ∨ ¬b,¬c} and M2 = {¬c, d ∨ e,¬d ∨ c, d ∨ ¬e}. These two MUSes share
one only common formula ¬c. Hence, the only minimal hitting set H1 is equal
to {¬c}. According to Definition 8, restoring the consistency of K3 leads to
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CmS (MIV#,K3) = K3 \ {¬c} = {a ∨ b,¬a ∨ c, a ∨ ¬b, d ∨ e,¬d ∨ c, d ∨ ¬e}.
Using our IPm measure, a consistent subset of K3 satisfying Definition 8 is
CmS (IPm ,K3) = {¬a ∨ c, a ∨ ¬b,¬c,¬d ∨ c, d ∨ ¬e}. This example shows that
restoring consistency using CmS (MIV#,K) and CmS (IPm ,K) leads to different
sets.

Note that, from Example 8 and using minimal hitting sets, we obtain a new
knowledge base where a, c, and d are logical consequences but not b and e;
whereas with the proposed measure IPm , the literals ¬a, b, ¬c, ¬d, and e are
logically deduced. As our approach is minimal proofs based, restoring consistency
using IPm aims to maximize the number of literals that are logical consequences.

5 Conclusion

In this paper, on the one hand, we present a new fine-grained inconsistency
measure to quantify the degree of inconsistency of a propositional knowledge
base using minimal proofs. It allows us to consider minimal proofs as the purest
form of inconsistency instead of minimal inconsistent subsets. The proposed
measure overcomes the limitations raised by the minimal inconsistent subsets
by taking into account the structure of the knowledge base. Also, we discuss
both the satisfied logical properties and those which are not. On the other hand,
we introduce some logical properties in order to define a restoring approach
based inconsistency measure. Then, we compare the resulting consistent subsets
using our measure and an existing one.

In future works, we plan to analyze the computational complexity of using
minimal proofs to measure the degree of inconsistency of a knowledge base,
develop algorithms and implementations, and undertake case studies of applica-
tions of our measure.
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Abstract. Preference-based argumentation frameworks are instantiation of
Dung’s framework in which the defeat relation (in the sense of Dung) is computed
from an attack relation and a preference relation over the set of arguments. Value-
based argumentation framework is a preference-based argumentation framework
where the preference relation over arguments is derived from a preference rela-
tion over values they promote. We extend value-based argumentation framework
with collective defeats and arguments promoting values with various strengths. In
the extended framework, we define a function which computes the strength of a
collective defeat. We define desired properties for the proposed function. Surpris-
ingly, we show that this function obeying the corresponding properties is Choquet
integral, a well-known aggregation function at work in multiple criteria decision.

1 Introduction

Argumentation is a reasoning framework which consists first in constructing the argu-
ments, then identifying the acceptable ones and finally drawing conclusions. Dung has
proposed an abstract argumentation framework that is composed of a set of arguments
and a binary relation which is interpreted as a defeat relation between the arguments
[8]. Two basic properties are used: conflict-freeness and defense. These two concepts
define the output of an argumentation framework which is a set of sets of arguments
that can be accepted together.

Dung’s argumentation framework is said abstract as arguments and defeat relation
are abstract, i.e. their origin is not known. This had the advantage to see this framework
instantiated or extended in different ways. For example a noticeable extension consists
of combined defeats: Several arguments may interact and entail a stronger defeat than
each can do individually [21]. Dung’s framework has also been instantiated with pref-
erences. It is commonly acknowledged that preferences play an important role to solve
conflicts between arguments. Preference-based argumentation frameworks are instanti-
ation of Dung’s framework in which the defeat relation is derived from an attack relation
between arguments and a preference relation over the arguments [24, 1–3, 14, 12]. An
attack succeeds (thus called a defeat) if the attacked argument is not strictly preferred to
the attacking one. Different ways have been proposed to compute a preference relation
over the arguments. For example, the latter may promote different values which may
be decisions, point of views, actions, etc. From the audience’s preference relation over
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the values, one can derive a preference relation over the arguments. This framework is
called value-based argumentation framework [3].

Why should several arguments interact? The basic idea of the paper is that interac-
tion may actually arise from synergy among values supported by arguments. Synergies
among values as felt by the audience are easier to elicit than directly interaction among
arguments. Hence we extend value-based argumentation framework with collective de-
feats with varied strengths. Consider the following example.

Example 1 (Humanitarian action in Africa). In a small village, there is no well so that
inhabitants have to go quite far away to get water. In order to help inhabitants, a human-
itarian association decided to construct a well inside the village. Actually this action
has turned the population against the association for the following reasons:

– There was a local economy around the transportation of water from the remote
well. The construction of the well has turned this economy into bankruptcy. These
people become hostile to the association.

– As water became an easily accessible resource, people started to waste it. Yet in
an area that suffers from severe drought, water is a scarce resource and its waste
endangers the equilibrium of the whole area.

– The decision from the association has been seen as interference because local au-
thority has not been sufficiently consulted.

There are several values involved here: V = {health, eco, env , pol}, where health , eco,
env and pol respectively stand for health, economy, environment and political stability.
We assume that the values in the previous list are ordered from the most preferred one
to the least preferred one. The following arguments can be defined:

– a: Construct the well to help the village solve the water problem. It promotes value
health .

– b: Do not construct the well in order to avoid turning local economy into bankruptcy.
It promotes value eco.

– c: Do not construct the well in order to avoid water waste. It promotes value env .
– d: Do not construct the well in order to avoid interference. The fact that the local

authority has not been sufficiently consulted might weaken a little bit its stability.
But this will by no mean deeply undermine political stability. Hence argument d
promotes only partly value pol .

Argument a is in conflict with any argument b, c and d. In this example, argument a
is stronger than any other argument b, c, d as it promotes the most important value.
Hence the single attacks of b, c and d on a are not sufficient to undermine a, whereas a
defeats any of the three arguments b, c, d. However, arguments b, c, d together promote
three values that (considered together) may be stronger than value health . Hence the
combined attack of b, c and d on a may convince the audience. In this paper, we propose
an argumentation framework which handles such considerations. The basic ingredient
will be the concept of capacity to represent the potential interaction among values.

The rest of the paper is structured as follows. In the next two sections we recall
Dung’s argumentation framework and its main instantiations/extensions. Subsection 3.2
is however novel. It extends collective argumentation framework (in which the defeat
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relation is defined between sets of arguments) with a varied strength defeat relation. In
Section 4 we extend value-based argumentation framework with collective and varied
strength defeat relations. The new framework is based on a function to model interac-
tion among values. Surprisingly, we show that this function obeying some properties
is the Choquet integral, a well-known multiple criteria aggregation function. Lastly we
conclude.

2 Argumentation Theory

2.1 Dung’s Argumentation Framework

Argumentation is a reasoning model based on constructing arguments, determining
potential conflicts between arguments and selecting acceptable arguments. In Dung’s
framework, arguments are supposed to be given. Conflicts between arguments are rep-
resented by a binary defeat relation.

Definition 1. [8] An argumentation framework (AF) is a tuple 〈A,⇀〉 where A is a
finite set of arguments and ⇀⊆ A×A is a binary defeat relation.

The outcome of Dung’s argumentation framework is sets of arguments, called exten-
sions, that are robust against defeats. We say that A ⊆ A defends a if ∀b ∈ A s.t. b ⇀
a, ∃c ∈ A such that c ⇀ b. We say that A ⊆ A is conflict-free if there are no a, b ∈ A
such that a ⇀ b. A subset A ⊆ A of arguments is an admissible extension iff it is
conflict-free and it defends all elements in A. Other acceptability semantics exist [8].

2.2 Preference-Based Argumentation Framework

Preference-based argumentation framework is an instantiation of Dung’s framework. It
is based on a binary attack relation between arguments and a preference relation over
the set of arguments.

Definition 2. [1] A preference-based argumentation framework (PAF) is a 3-tuple
〈A,�,*〉 where A is a set of arguments, �⊆ A × A is a binary attack relation
and * is a preorder overA.

* is called a Boolean preference relation. A PAF 〈A,�,*〉 represents 〈A,⇀〉 iff

∀a, b ∈ A : a ⇀ b iff (a � b and not(b + a)), (1)

where b + a is true if and only if b * a holds but a * b does not.
The extensions of a PAF are simply the extensions of the AF it represents.
Different ways have been proposed in the literature to compute the preference rela-

tion * overA. For example, a weight function w : A → [0, 1] can be defined. Then

∀a, b ∈ A : a * b iff w(a) ≥ w(b).

In some applications, the arguments need to be compared not on the basis of their in-
ternal structure but with respect to the viewpoints or decisions they promote [3]. This
may be due to the fact that the internal structure of the arguments is not available or
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because the values must be considered. This is particularly true in persuasion dialogs
when the preference over values induces the preference over arguments promoting the
values [3]. Thus, if two arguments are conflicting then the argument promoting a pre-
ferred value is accepted. Bench-Capon developed an argumentation framework which
models the above considerations [3]. Like Dung’s framework, he considers abstract ar-
guments. Moreover, he considers (i) a set of values promoted by the arguments and (ii)
a set of audiences where an audience corresponds to a preference relation over values.

Definition 3. [3] A value-based argumentation framework is a five-tuple, VAF =
〈A,�,V , val , Δ〉, where A is a finite set of arguments, � is an attack relation over
A×A, V is a nonempty set of values, val : A → 2V returns the set of values promoted
by each argument, and Δ is the set of possible audiences. An audience specific argu-
mentation framework is a five-tuple, VAF δ = 〈A,�,V , val ,+δ〉, where δ ∈ Δ is an
audience and +δ is a partial order over V .

In this paper we consider audience specific argumentation framework and denote it
〈A,�,V , val ,+V〉. We suppose that an argument promotes at least one value. Different
ways have been proposed to compute a preference relation over A given +V . We refer
the reader to [3, 14]. One may for instance use the following definition:

∀a, b ∈ A, a + b iff ∃v ∈ val (a) ∀v′ ∈ val (b) v +V v′. (2)

2.3 Argumentation Framework with Varied-Strength Defeats

Strength of defeat relations has been incorporated in argumentation framework in two
ways: a qualitative relative way by means of a partial preorder [19, 20] and a quantitative
way by means of a numerical function [9]. As far as the present paper is concerned, we
follow the second modeling.

Definition 4. [9] An argumentation framework with varied-strength defeats (AFV) is a
3-tuple 〈A,⇀,VDef 〉 where 〈A,⇀〉 is a Dung’s argumentation framework and VDef
is a function defined from ⇀ to (0, 1].

For simplicity, we consider the interval (0, 1] but any bipolar linearly ordered scale
with top, bottom and neutral elements can be used as well. VDef (a, b) is the degree
of the statement “a defeats b” being true. Values 0, 1

2 and 1 for VDef (a, b) mean that
the validity of the previous statement is certainly false, unknown and certainly true
respectively. We say that a defeats b w.r.t. 〈A,⇀,VDef 〉 iff a ⇀ b.

Extensions are also defined from the conflict-freeness and defense. Conflict-freeness
is defined as for 〈A,⇀〉. Defense is however extended to the valued case. When b ⇀
a and c ⇀ b, the strength of defeats should play a role in the definition of the defense
since c is considered as a “serious” defender of a if the defeat of c on b is at least as
strong as the defeat of b on a. The set A ⊆ A defends a ∈ A w.r.t. 〈A,⇀,VDef 〉 iff
for all b ∈ A such that b ⇀ a, there exists c ∈ A with [19]:

c ⇀ b and VDef (c, b) ≥ VDef (b, a).

Let us now describe an instantiation of this framework where the valued defeat relation
is derived from a valued preference relation P : A×A → [0, 1]. P (a, b) is the degree
of the statement “a is strictly preferred to b” being true.
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Definition 5. [13] A valued preference-based argumentation framework (VPAF)1 is a
3-tuple 〈A,�, P 〉 where A is the set of arguments, �⊆ A × A is a binary attack
relation and P is a function defined from A×A to [0, 1].

A VPAF 〈A,�, P 〉 represents an argumentation framework with varied-strength de-
feats 〈A,⇀,VDef 〉 iff a ⇀ b if a � b and P (b, a) < 1, VDef (a, b) = 1 − P (b, a)
if a ⇀ b. Lastly, VDef (a, b) = 0 otherwise. An interesting case is when P is de-
rived from a valuation function w over the arguments. A suitable expression of P is
P (a, b) = w(a) − w(b) if w(a) > w(b) and P (a, b) = 0 else [13]. This gives

a ⇀ b if a � b and [w(a) > 0 or w(b) < 1], (3)

VDef (a, b) = min(1 + w(a) − w(b), 1) if a ⇀ b. (4)

3 Arguing with Collective Defeat Relations

3.1 Collective Argumentation Framework

Dung’s framework has been extended with a defeat relation between sets of arguments.

Definition 6. [21] A collective argumentation framework is a pair 〈A,⇒〉 where A
is a set of arguments and ⇒⊆ 2A × 2A is the defeat relation, with, for A ⊆ A and
B ⊆ A, notation A ⇒ B means that the arguments in A jointly defeat B.

The authors of [21] argue that there is no need to define defeat of a subset of arguments
on another subset of arguments. In fact, they interpret A ⇒ B as A ⇒ {b} for every
b ∈ B. Hence it is sufficient to see ⇒ as a subset of 2A ×A. This definition implicitly
means that if A ⇒ {b} for every b ∈ B then A ⇒ B. However this interpretation may
not be sufficient in many situations.

Example 2 (Example 1 cont.). a defeats b as the value promoted by a is more important
than that promoted by b. Likewise, a defeats arguments c and d. On the other hand,
one may conceive that a does not defeat the set of arguments {b, c, d} since the values
promoted by these arguments are collectively stronger than the value promoted by a.

The previous example indicates that defining defeats among subsets of arguments is im-
portant since the fact that a defeats b, c and d considered separately does not necessarily
imply that a defeats b, c and d as a whole.

We don’t define the meaning of A “jointly” defeats B at this stage. We borrowed
collective argumentation framework from [21] as it nicely models our needs. However
our interpretation of joint defeat differs from that proposed in [21], as we will see later.
In [21] A jointly defeats B is interpreted as “arguments in A do not separately defeat
arguments in B but considered together they do”.

1 Valued preference-based argumentation framework must not be confused with value-based
argumentation framework [3]. In the latter, arguments promote values which may be point of
views, decisions, opinions, etc. Then a preference relation over the set of arguments is derived
from a preference relation over the values. In the former, the preference relation over the set
of arguments is valued, i.e. it expresses preferences with varied strength, as we will see later.
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A set A of arguments is conflict-free if there is no subsets A′, A′′ ⊆ A such that
A′ ⇒ A′′. Let A,B,C ⊆ A. We say that C ⊆ A defends A ⊆ A if ∀B ⊆ A with
B ⇒ A we have C ⇒ B. The semantics of acceptability can be defined from the
concepts of conflict-freeness and defense as usual.

Relation ⇒ shall satisfy some monotonicity conditions: for all A,B ⊆ A

∀B′ ⊆ B, if A ⇒ B then A ⇒ B′. (5)

Therefore we recover the interpretation of A ⇒ B given in [21]. However we do not
necessarily have that A ⇒ B if A ⇒ B′, ∀B′ ⊆ B, B′ �= B.

3.2 Arguing with Collective Varied Defeats

In this section we extend the collective argumentation framework defined in the previ-
ous subsection with a varied defeat relation.

Definition 7. A collective argumentation framework with varied defeats is a triplet
〈A,⇒,VDef 〉 whereA is a set of arguments and ⇒⊆ 2A×2A is a defeat relation and
VDef is a function from ⇒ to (0, 1].

VDef (A,B) is the degree of credibility of statement “A defeats B”.
A set A of arguments is conflict-free if there is no A′, A′′ ⊆ A such that A′ ⇒ A′′.

We say that C ⊆ A defends A ⊆ A if for all B ⊆ A such that B ⇒ A, there exists
C′ ⊆ C such that C′ ⇒ B and VDef (C′, B) ≥ VDef (B,A). The semantics of
acceptability can be defined from the concepts of conflict-freeness and defense as usual.

VDef shall satisfy some monotonicity condition. For all A,B,A′, B′ ⊆ A

if A′ ⊆ A, B′ ⊇ B, A ⇒ B and A′ ⇒ B′ then VDef (A′, B′) ≤ VDef (A,B). (6)

Indeed the more arguments we add to A the stronger the defeat, and the more arguments
we add to B the weaker the defeat.

4 Extended Value-Based Argumentation Framework

In standard value-based argumentation framework arguments fully promote a subset of
values in V [3]. In many applications however, arguments support values with various
strengths. In Example 1, argument d promotes only partly value pol . Hence function
val is refined in the following way.

Definition 8. For a ∈ A, we define f : A× V → [0, 1] such that f(a, v) is the degree
to which argument a ∈ A supports value v ∈ V .

The aim of this section is to extend single defeats (i.e., an argument defeats an argument)
to collective defeats (i.e., a set of arguments defeats a set of arguments). These defeats
will hold with degrees that will be derived from f .
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4.1 Construction

The main question we face to define VDef is to what extent different arguments can
produce a stronger defeat than each argument can do individually. In some sense, they
have some complementarity among themselves. The key idea is that each argument
may support a different value and that the audience is much more convinced by a set of
relevant values than by only one of them.

Example 3 (Example 1 cont.). The audience may say that value health is more impor-
tant than any other value eco, env or pol . Hence a defeats b, c, d and none of b, c, d
defeats a. On the other hand, arguments b, c, d promote three different values and, one
may conceive that b, c, d together defeat a.

In order to define VDef (A,B), we need to extend the boolean preference relation +V
over V to a valued preference relation over 2V . We represent this preference relation by
a numerical function μ : 2V → IR+. For V ⊆ V , μ(V ) is the strength of the preference
if all values in V are completely promoted and the remaining values are not promoted
at all. This set function, called a capacity, shall satisfy some properties [6].

Definition 9. A capacity on V is a set function μ : 2V → IR+ satisfying two properties:

– (monotonicity) μ(V ) ≤ μ(V ′) for all V, V ′ ⊆ V with V ⊆ V ′,
– (boundary condition) μ(∅) = 0 and μ(V) = 1.

The monotonicity condition will serve in the definition of a strength of defeats: the more
values a set of arguments supports, the stronger the defeat. The boundary condition
essentially says that the audience is not convinced by a set of arguments if they do not
support any value2. Hence the values represent all possible stakes and points of view
the audience may believe in. Normalization condition μ(V) = 1 comes from the fact
that the strength of defeat is bounded by 1.

Note that capacity μ is a refinement of order+V :

∀v, v′ ∈ V , if v +V v′ then ∀V ⊆ V \ {v, v′} μ(V ∪ {v}) > μ(V ∪ {v′}).

This property is similar to responsiveness defined by Roth [23] (see also [4]).
On the basis of the above definitions, we define an extended value-based argumenta-

tion framework in the following way:

Definition 10. An extended value-based argumentation framework is a five-tuple,
〈A,�,V , f, μ〉, where A is a finite set of arguments, �⊆ A × A is an attack rela-
tion, V is a nonempty set of values, f is a function from A × V to [0, 1], and μ is a
capacity over V .

We are going to derive a collective argumentation framework with varied defeats 〈A,⇒
,VDef 〉 (see Definition 7). We extend w and relations (3) and (4). To this end, we define
a valuation G : 2A → [0, 1] of subsets of arguments. More precisely, it evaluates the

2 Arguments in A are supposed to promote at least one value, but one may imagine other argu-
ments promoting no value in V .
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strength of a set of arguments. This strength will be used to evaluate the degree of
defeat between two subsets of arguments. G(A) (with A ⊆ A) depends on the values
promoted by arguments in A (see function f ) and the strength of these values (see
function μ). First of all, extending (3), the defeat relation ⇒ is defined as follows:

A ⇒ B if (G(A) > 0 or G(B) < 1) and

[∀b ∈ B ∃a ∈ A a � b] and [∀a ∈ A ∃b ∈ B a � b] (7)

where Following (4), the intensity of the defeat is given by

VDef (A,B) = min(1 +G(A)−G(B), 1) if A ⇒ B (8)

According to these definitions, if A ⇒ B then VDef (A,B) > 0, as required by Defi-
nition 7. The next two subsections are devoted to the definition of the function G.

4.2 Computing G(A): Case When A Is a Singleton

Consider in this section the case where A = {a}. G({a}) depends only on the degree to
which values are supported by a (i.e. on {f(a, v)|v ∈ V}) as well as on the strength μ
of values. Hence there exists a function denoted by Fμ : IRV

+ → IR+ (to be determined)
such that:

G({a}) = Fμ({f(a, v)|v ∈ V}). (9)

We will use an axiomatic approach to get Fμ from a set of wished properties on Fμ.

– Properties of the Function Fµ We already justified monotonicity condition on the
capacity (see Definition 9). This condition can be extended to Fμ. If the degree to which
an argument supports a value increases, Fμ shall not decrease.

Increasingness (In): ∀x, y ∈ IRV , if xv ≤ yv ∀v ∈ V then Fμ(x) ≤ Fμ(y).

Element xv (resp. yv) represents the degree to which an argument a (resp. another
argument b) promote values v in V . As argument b promotes every value at least as well
as a (xv ≤ yv for every v ∈ V), the valuation of b should not be lower. Fμ(x) ≤ Fμ(y)
derives from G({a}) ≤ G({b}).

In the previous subsection, we have interpreted μ(V ) as the strength of preference if
all values in V are completely promoted and the remaining ones are not. Formally, we
write:

Properly Weighted (PW): Fμ(1, · · · , 1︸ ︷︷ ︸
v∈V

, 0, · · · , 0︸ ︷︷ ︸
v �∈V

) = μ(V ), ∀V ⊆ V .

From (PW), if μ is multiplied by a number then the resulting strength is also multi-
plied by the same factor: Fγμ(x) = γFμ(x) for any γ ∈ IR. As a capacity μ may be
provided by an expert, if another expert provides μ′ then one may combine μ and μ′

with a linear transformation γμ+ δμ′ (γ, δ ∈ IR). Then it is reasonable that the overall
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aggregation function equals the same linear transformation of the aggregation for the
two decision makers:

Linearity w.r.t. the Measure (LM): For all x ∈ IRV and γ, δ ∈ IR,

Fγμ+δμ′(x) = γFμ(x) + δFμ′(x) . (10)

The numerical values of f(a, .) correspond to an interval scale in the sense of measure-
ment theory [16]. An interval scale is given up to an affine transformation. Hence Fμ

shall be invariant under any affine transformation. However, as all degrees f(a, v) for
all v correspond to the same scale, the same transformation shall be applied to all values
in V . Starting from (PW), we impose this invariance property only on situation where
each value is either completely supported or not supported at all.

Stability for the admissible Positive Linear transformations (weak SPL):
For all V ⊂ V , α > 0, and β ∈ IR,

Fμ((α+ β), · · · , (α+ β)︸ ︷︷ ︸
v∈V

, β, · · · , β︸ ︷︷ ︸
v �∈V

) = αFμ(1, · · · , 1︸ ︷︷ ︸
v∈V

, 0, · · · , 0︸ ︷︷ ︸
v �∈V

) + β.

This axiom is a weak version of the axiom (SPL) introduced by Marichal [18] : For all
x ∈ IRV , α > 0, and β ∈ IR, Fμ (αx+ β) = αFμ (x) + β.

Example 4 (Example 1 cont.). The following values of μ are supposed given:

μ(∅) = 0 μ({health}) = 0.6 μ({eco}) = 0.2
μ({env}) = 0.1 μ({pol}) = 0.05 μ({eco, env}) = 0.5
μ({eco, pol}) = 0.3 μ({env , pol}) = 0.2 μ({eco, env , pol}) = 0.9
μ({health, eco, env , pol}) = 1

We note that there is a strong positive synergy among values eco, env , pol as

μ({eco, env , pol}) > μ({eco}) + μ({env}) + μ({pol}).

These three values together are more important than value health alone.

– Function Fµ vs Choquet Integral. Now that we have given properties of Fμ, we
show that this function is already at work in multiple criteria decision and known as
Choquet integral [6]. The Choquet integral is a generalization of the commonly used
weighted sum.

Definition 11. Let μ be a capacity on V , with |V| = n. Let x = (x1, · · · , xn) ∈ IRV .
The discrete Choquet integral of x with respect to μ is defined by

Cμ(x) =
∑n

i=1(x(i) − x(i−1))μ({(i), · · · , (n)}),
with x(0) = 0, and where (1), . . . , (n) indicate that the indices have been permuted so
that 0 ≤ x(1) ≤ · · · ≤ x(n).

Example 5. Let us illustrate Def. 11 on x = (0, 0.6, 1, 0.1). The worse score of x is its
first component (i.e. (1) = 1), the second worse score of x is its last component (i.e.
(2) = 4), the third worse score of x is its second component (i.e. (3) = 2) and the best
score of x is its third component (i.e. (4) = 3). HenceCμ(x) = (x1−0)μ({1, 2, 3, 4})+
(x4 − x1)μ({2, 3, 4}) + (x2 − x4)μ({2, 3}) + (x3 − x2)μ({3}).
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Besides, the Choquet integral can model typical human behavior such as the veto. This
operator is also able to model the importance of values and the interaction between
values. Conversely, the Choquet integral can be interpreted in terms of the importance
of values, the interaction between values, and veto [10, 11].

Proposition 1 ([17]). Fμ satisfies (LM), (In), (PW) and (weak SPL) if and only if
Fμ ≡ Cμ in IRV .

The proof of this proposition can be found in [17]. Proposition 1 shows that if one
agrees on properties (LM), (In), (PW) and (weak SPL), then he shall use the Choquet
integral w.r.t. μ, namely G({a}) = Cμ({f(a, v)|v ∈ V}) (see (9)).

4.3 Computing G(A): Case Where A Is Composed of Several Arguments

When A is not reduced to a singleton, we generalize the construction given in Subsec-
tion 4.2. Function Fμ can still be used to compute G(A). We denote by xf,A(v) the
degree to which all arguments in A promote together value v, with xf,A ∈ [0, 1]V .
Hence (9) is generalized as follows:

G(A) = Fμ(xf,A). (11)

For v ∈ V , xf,A is derived from {f(a, v)|a ∈ A}. A maximum function could work:
xf,A(v) = maxa∈A f(a, v). However, for the same maximal number of the individual
f(a, v), this maximal number could be reinforced if f(a, v′) is also large for another
value v′. A t-conorm3 denoted by ⊕ could be used to express this reinforcement prop-
erty. Note that α⊕ 0 = α for all α ∈ [0, 1]. Hence

∀v ∈ V xf,A(v) = ⊕{f(a, v)|a ∈ A} (12)

Example 6 (Example 3 continued). Assume the values of f are: f(a, health) = 1,
f(b, eco) = 1, f(c, env) = 1 and f(d, pol) = .5. All other values of f(., .) are equal to
0. Let us compute the value of G for several subsets of arguments

G({a}) = Cμ(1, 0, 0, 0) = μ(health) = 0.6

G({b}) = Cμ(0, 1, 0, 0) = μ(eco) = 0.2

G({b, c}) = Cμ(0, 1, 1, 0) = μ({eco, env}) = 0.5

G({b, c, d}) = Cμ(0, 1, 1, 0.5) = 0.5 μ({eco, env}) + 0.5 μ({eco, env , pol}) = 0.7.

Let us now consider the following subsets of arguments

– Set {b, c} is conflict-free but does not defend itself. Indeed for the attack by a, we
have {a}⇒ {b, c}, {b, c}⇒ {a} but (see (8))

VDef ({b, c}, {a}) = 0.9 < VDef ({a}, {b, c}) = 1

3 A function ⊕ : [0, 1] × [0, 1] → [0, 1] is called a t-conorm (triangular conorm) if it satisfies
⊕(0, x) = x for all x ∈ [0, 1] (neutral element), ⊕(x, y) = ⊕(y, x) for all x, y ∈ [0, 1] (com-
mutativity), ⊕(x, y) ≤ ⊕(u, v) for all 0 ≤ x ≤ u ≤ 1 and 0 ≤ y ≤ v ≤ 1 (monotonicity),
and ⊕(x,⊕(y, z)) = ⊕(⊕(x, y), z) for all x, y, z ∈ [0, 1] (associativity) [15].
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– Set {a} is conflict-free but does not defend itself. Indeed for the attack by b, c, d,
we have {b, c, d}⇒ {a}, {a}⇒ {b, c, d} but (see (8))

VDef ({a}, {b, c, d}) = 0.9 < VDef ({b, c, d}, {a}) = 1

– Set {b, c, d} is conflict-free and defends itself. Indeed for the attack by a, we have
{a}⇒ {b, c, d}, {b, c, d}⇒ {a} and (see (8))

VDef ({b, c, d}, {a}) = 1 > VDef ({a}, {b, c, d}) = 0.9.

Hence {b, c, d} is the unique set of admissible arguments.

Assume now that argument d is removed from A, so A = {a, b, c}. In this case, {a} is
an extension as it defends itself from the attack of {b, c} (since {b, c} ⇒ {a}, {a} ⇒
{b, c} and VDef ({a}, {b, c}) = 1 > VDef ({b, c}, {a}) = 0.9). Thus a becomes
acceptable as b, c are not sufficiently strong compared to a.

4.4 Particular Case: No Interaction among Values

Let us see how relation (2) can be satisfied in our framework. Condition (2) considers
the case where f takes only values 0 or 1. Hence one can define val from f by: val (a) =
{v ∈ V , f(a, v) = 1} for every a ∈ A. Then by (PW), we have for every a ∈ A,
G({a}) = μ(val (a)). Intuitively one feels that relation (2) can be translated in terms of
capacity μ in the following way: for all V, V ′ ⊆ V

μ(V ) > μ(V ′) iff ∃v ∈ V ∀v′ ∈ V ′ μ({v}) > μ({v′}). (13)

There is no possible cumulative effect (synergy) among the values in this case. This
condition is satisfied for instance when μ(V ) = maxv∈V μ({v}), which corresponds
to a possibility measure. The next result shows that under (13), collective defeats will
not bring added-value to single defeats.

Proposition 2. Assume that values are either completely promoted or not all by argu-
ments. Assume furthermore that relation (13) holds. Under (8), we have

– ∀A,B ⊆ A, if A ⇒ B (i.e. VDef (A,B) > 0), then there exists a ∈ A such that
{a}⇒ B (i.e. VDef ({a}, B) > 0);

– ∀A ⊆ A, b1, . . . , bp ∈ A, if A ⇒ b1 (i.e. VDef (A, {b1}) > 0), . . . , A ⇒ bp (i.e.
VDef (A, {bp}) > 0), then A ⇒ {b1, . . . , bp} (i.e. VDef (A, {b1, . . . , bp}) > 0).

The proof of this proposition is omitted due to the lack of space. This proposition shows
that our framework is general and can encompass the standard case of relation (2). More
precisely, condition (2) is translated into (13). Proposition 2 shows that under (13), there
exists an argument in the attacking set that defeat the attacked set, and if the attacking
set defeats each argument in a set, it defeats the set collectively. This corresponds well
to the idea behind (2).
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5 Conclusion

In some argument-based applications, arguments need to collectively interact. More
precisely, defeat relation is defined among sets of arguments. Moreover this relation has
varied strengths due to the fact that arguments promote some values (decision, point of
view, etc) with varied strengths. In this paper we developed an argumentation frame-
work extending value-based argumentation framework [3] in order to cope with the
above considerations. The strength of defeat VDef (A,B) of a subset A of arguments
over another subset B depends of the values promoted by A and B. The synergy among
the values is encoded in a capacity μ defined on the set of values. As arguments may
promote only partly the values, the strength of all arguments in A collectively consid-
ered is obtained by using an aggregation function depending on capacity μ. We define
desired properties for the aggregation function. We show that this function obeying the
corresponding properties is Choquet integral.

Our framework may be applicable to model coalition-based problems where sets
of arguments correspond to coalitions [5]. For future work we intend to compare our
approach with the accrual of arguments proposed in [22]. We also intend to consider
other definitions of defense as suggested in [7]. Lastly, qualitative aggregation functions
such as the Sugeno integral will be also considered.
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CRIL - CNRS, UMR 8188
Université d’Artois
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Abstract. In this paper we show how to build a reasoning platform
using an inconsistency value. The idea is to use an inconsistency value
for evaluating how much each formula of the belief base is responsible of
the inconsistency of the base. Then this evaluation allows us to obtain
a stratification (total pre-order) of the base, that can be used as the
preferential input for different reasoning tasks, such as inference, belief
revision, or conciliation. We show that the obtained operators are inter-
esting and have good logical properties. We use as inconsistency value,
the MI Shapley inconsistency value, that is known to have good proper-
ties, and that can be computed from minimal inconsistent subsets. We
developed a java-based platform, that use the Sat4j library for comput-
ing the minimal inconsistent subsets, and that allows to have an effective
way to compute the MI Shapley inconsistent subsets. We implemented
also several inference, revision and conciliation methods, that use this in-
consistency value. So this provides a complete reasoning platform, that
can be used for instance for academic purposes.

1 Introduction

Belief change and reasoning under inconsistency are two topics that have re-
ceived considerable attention. There are a lot of theoretical results on these rea-
soning methods, such as logical characterizations for non-monotonic inference
[1,2], belief revision [3,4,5], belief merging [6,7,8], etc. There are also numerous
particular methods that have been proposed for belief revision [9], belief merging
[8], inference under inconsistency [10], etc.

In contrast, there are very few proposed implemented approaches. Although
these implementations can be useful to test the proposed operators, to experi-
ment the different reasoning method, and to disseminate these operators more
widely in the AI community. In fact we are aware of only two1 reasoning plat-
forms, that implement several reasoning methods. The first one is the saten

platform [12,13], developed by Williams and Sims, that allows to perform the-
ory extraction, iterated belief revision, non-monotonic reasoning, possibilistic
reasoning and hypothetical reasoning. This platform is written in Java 1.1 and

1 We can mention also the quip project [11], but there is not yet, as far as we know,
a corresponding available platform.

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 315–327, 2013.
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is based on a theorem prover. It basically uses the Spohnian representation of
epistemic states [14]. The second one is the coba platform [15,16], developed by
Delgrande, Liu, Schaub and Thiele, that performs belief revisions and contrac-
tions, based on the langage projection approaches developed in [17]. coba is a
Java applet that uses a SAT-solver.

In this work we propose such a reasoning platform. The whole platform is
based on the effective computation of a given inconsistency value, namely the
MI Shapley inconsistency value SIMI [18], that can be computed easily from
the minimal inconsistent subsets of a belief base. In addition to the measure of
inconsistency of the formulae of the base and of the whole base given directly
by this computation, we use the obtained stratification of the base (a total pre-
order) as the preferential input for different reasoning tasks, such as inference,
belief revision, or conciliation.

The paper is organized as follows. Section 2 presents preliminary definitions
and inconsistency measures and values. In sections 3, 4 and 5, we formally study
three reasoning operations that are respectively inference, revision and concilia-
tion. Section 6 is dedicated to the platform description. We finally conclude on
future works in section 7.

2 Preliminaries - Inconsistency Measures and Values

We consider a propositional language L built from a finite set of propositional
symbols P . A belief base K is a finite set of propositional formulae. Let us note
KL the set of belief bases definable from formulae of the language L. If a belief
base K is not consistent, then one can define the minimal inconsistent subsets 2

of K as: MI(K) = {K ′ ⊆ K | K ′ ) ⊥ and ∀K ′′ ⊂ K ′,K ′′ � ⊥}.
The notion of maximal consistent subset3 is the dual of that of minimal incon-

sistent subset. Each maximal consistent subset represents a maximal (regarding
set inclusion) subset of the base that is consistent:

MC(K) = {K ′ ⊆ K | K ′ � ⊥ and ∀K ′′ s. t. K ′ ⊂ K ′′,K ′′ ) ⊥}
A profile Ψ is a vector of belief bases 〈K1, . . . ,Kn〉. The set of all profiles is

denoted E .
∧

Ψ denotes the conjunction of the elements of Ψ .
Recently some works have started to study how to measure the inconsistency

in a propositional belief base (see e.g. [19]). There are several sensible ways to
do that. This is not surprising since it parallels the fact that there are several
sensible ways to define non-trivial inference relations from inconsistent bases.

In [18] a distinction has been made between inconsistency measures, that
measure the inconsistency of a belief base, and inconsistency values, that measure
the (responsibility for) inconsistency of each formula of a belief base.

Of course the inconsistency values, which work formula-by-formula, can be
used to define corresponding inconsistency measures, just by aggregating the
obtained inconsistency values.

Let us recall the definition of the Shapley Inconsistency Values (SIV) [18]:

2 Also called Minimally Unsatisfiable Subsets - MUS.
3 Also called Maximally Satisfiable Subsets - MSS.
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Definition 1 ([18]). An inconsistency measure I is called a basic inconsistency
measure if it satisfies the following properties4, ∀K,K ′ ∈ KL, ∀α, β ∈ L:

• I(K) = 0 iff K is consistent (Consistency)

• I(K ∪K ′) ≥ I(K) (Monotony)

• If α is a free formula of K, then I(K) = I(K \ {α})
(Free Formula Independence)

Now we are able to define the Shapley inconsistency value.

Definition 2 ([18]). Let I be a basic inconsistency measure. We define the
corresponding Shapley Inconsistency Value (SIV), noted SI , as the Shapley value
of the coalitional game defined by the function I, i.e. let α ∈ K :

SI
α(K) =

∑
C⊆K

(c− 1)!(n− c)!

n!
(I(C)− I(C \ {α}))

where n is the cardinality of K and c is the cardinality of C.

From this value, one can define an inconsistency value for the whole belief base
as in the next definition which essentially says that a base is as bad as its worst
element.

Definition 3 ([18]). Let K be a belief base, ŜI(K) = max
α∈K

SI
α(K)

As examples of simple basic inconsistency measures, one can consider the drastic
inconsistency value5, that is the simplest inconsistency measure one can define,
and that is not really interesting by itself. But the corresponding SIV is inter-
esting.

Another example of basic inconsistency measures is the one that counts the
conflicts of a base using the number of minimal inconsistent subsets: IMI(K) =
|MI(K)|.

The corresponding SIV is interesting, and has been logically characterized [18].
Let us first define these properties on inconsistency values: assume a given basic
inconsistency measure I, and the corresponding Shapley inconsistency value SI :

•
∑

α∈K SI
α(K) = I(K) (Distribution)

• If α, β ∈ K are such that for all K ′ ⊆ K s.t. α, β /∈ K ′,
I(K ′ ∪ {α}) = I(K ′ ∪ {β}), then SI

α(K) = SI
β(K) (Symmetry)

• If α is a free formula of K, then SI
α(K) = 0 (Minimality)

• If |MI(K1 ∪ . . . ∪Kn)| = |MI(K1)|+ . . .+ |MI(Kn)|,
then SI

α(K1 ∪ . . . ∪Kn) = SI
α(K1) + . . .+ SI

α(Kn) (Decomposability)

• If M ∈ MI(K), then I(M) = 1 (MinInc)

4 In [18] an additional Dominance property is also asked.
5 Id(K) = 0 if K is consistent, and Id(K) = 1 otherwise.
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Proposition 1 ([18]). An inconsistency value satisfies Distribution, Symme-
try, Minimality, Decomposability and MinInc if and only if it is the MI Shapley
Inconsistency Value SIMI

α .

Second, this value is equivalent to the following one:

Definition 4 ([18]). MIVC is defined as follows:

MIVC(K,α) =
∑

M∈MI(K)s.t.α∈M

1

|M |

Proposition 2 ([18]). SIMI
α (K) = MIVC(K,α)

This alternative definition shows that this value can be computed directly if one
knows the minimal inconsistent subsets of a belief base.

Example 1. Consider the base K = {ϕ1, . . . , ϕ7} with the following formulae
ϕ1 = a ∧ b, ϕ2 = a ∧ (c ∨ d), ϕ3 = a ∧ ¬d, ϕ4 = a ∧ ¬c ∧ e, ϕ5 = ¬a ∧ ¬b,
ϕ6 = a ∧ (¬c→ ¬e), ϕ7 = a ∧ ¬c ∧ f . We have SIMI

ϕ1
= 1

2 , S
IMI
ϕ2

= 7
6 , S

IMI
ϕ3

= 7
6 ,

SIMI
ϕ4

= 4
3 , S

IMI
ϕ5

= 3, SIMI
ϕ6

= 1, SIMI
ϕ2

= 5
6 .

Our reasoning platform is based on this computation of the SIMI
α Shapley value.

We use this value for defining new inference relations, revision operators, and
conciliation operators.

3 Inference Relations

When one wants to draw non-trivial inferences from an inconsistent propositional
belief base then it has either to leave classical logic for choosing a paraconsistent
logic, or to reason from the maximal consistent subsets of the base. We will focus
on this last class of methods.

Unfortunately, there are not a lot of possibilities when the input is a sim-
ple propositional belief base. Let K = {ϕ1, . . . , ϕn} be a belief base, and let
MC(K) = {M1, . . .Mk} be the set of maximal consistent subsets of K. Then the
three main possibilities are [10]:

– Skeptical: K )s ϕ if ∀M ∈ MC(K) M ) ϕ
– Credulous: K )s ϕ if ∃M ∈ MC(K) M ) ϕ
– Argumentative: K )a ϕ if ∃M ∈ MC(K) M ) ϕ and �M ∈ MC(K) M ) ¬ϕ

The credulous inference is not that interesting, in particular it does not guarantee
to obtain a consistent inference relation, in the sense that it is possible to obtain
both ϕ and ¬ϕ as result. So this leaves only two different possible inference
relations: skeptical and argumentative.

Let us now show how to obtain a whole family of inference relation for each
given inconsistency measure. The idea is to use the inconsistency measure to
order the base, from the least inconsistent formulae to the most inconsistent
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one. This means that we use the inconsistency measure to transform this flat
propositional belief base into a stratified one. Then we can use any of the defined
inference relations on stratified bases. We recall just the definition of the possi-
bilisitic, linear and preferred inference relations here, see [10] for other ones and
explanations. Consider a stratified belief base K̂ = 〈K1, . . . ,Km〉, where formu-
lae in the stratum Ki are considered as more important/reliable/prioritary than
the formulae in strata Kj with j > i.

– possibilistic. Define π(K̂) as π(K̂) = K1 ∪ . . . ∪ Ki with K1 ∪ . . . ∪ Ki

consistent and K1 ∪ . . . ∪Ki ∪Ki+1 inconsistent. K̂ )π ϕ if π(K̂) ) ϕ
– linear.Define λ(K̂) inductively as: λ(K1) = K1 ifK1 is consistent, otherwise

λ(K1) = ∅. For i from 2 to m: if λ({K1, . . . ,Ki−1}) ∪Ki is consistent then
λ({K1, . . . ,Ki}) = λ({K1, . . . ,Ki−1}) ∪ Ki, otherwise λ({K1, . . . ,Ki}) =
λ({K1, . . . ,Ki−1}). K̂ )l ϕ if λ(K̂) ) ϕ

– preferred. Define SMC(K̂) as the set of sets A = A1 ∪ . . . ∪ Am where
∀i ∈ 1...m A1∪. . .∪Ai ∈ MC(K1∪. . .∪Ki). K̂ )p ϕ if ∀X ∈ SMC(K̂) X ) ϕ

So, let us now define formally our inference relations. First let us use an incon-
sistency value to stratify the base:

Definition 5. Let K = {ϕ1, . . . , ϕn} be a belief base, and V be an inconsistency
value, then the stratification of K under V is the set of bases KV = 〈K1, . . . ,Km〉
where –

⋃
Ki = K

– Ki ∩Kj = ∅ ∀i, j
– ∀ϕ ∈ Ki, ϕ

′ ∈ Kj, V (ϕ) ≤ V (ϕ′) iff i ≤ j

Definition 6. Let V be an inconsistency value, and )A be an inference relation
on stratified bases. The (V,A)-inference relation )VA is defined as K )VA ϕ if
KV )A ϕ.

So, if the stratified inference relation that is used has good logical properties, it
straightforwardly gives good properties to our (V,A)-inference relation. So as a
consequence of results shown in [10] we know that:

Proposition 3. Let V be any inconsistency value, then the (V, π)-inference re-
lation, the (V, l)-inference relation, and the (V, p)-inference relation are prefer-
ential inference relations [2].

Example 2. Consider the base of Example 1. The induced stratification of the

base is KSIMI = 〈{ϕ1}, {ϕ7}, {ϕ6}, {ϕ2, ϕ3}, {ϕ4}, {ϕ5}, 〉. And for instance we
have K )VA a and K )VA ¬c∧¬e, whereas none of them can be inferred from the
skeptical or the argumentative inference.

4 Revision Operators

Belief revision [3,4,9] aims at incorporating a new piece of information into the
belief base of an agent. Often, this new piece of information conflicts with some
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formulae of the belief base, so some of these formulae have to be removed from
the base. One usually uses some preferential information for identifying priorities
between formulae that can be preferably preserved. This can be encoded by a
pre-order on formulae (such as in epistemic entrenchments [3]), by a pre-order
between maximal consistent subsets (such as partial meet contraction functions
[4]), by a pre-order between interpretations (such as in faithful assignments [9]),
etc.

We propose to define this preferential information from an inconsistency mea-
sure. This measure is used to rank the maximal consistent subsets, and to select
the best of them.

Definition 7. Let K = {ϕ1, . . . , ϕn} be a belief base, and ϕ be a formula. The
set K⊥ϕ is the set of sets X such that:

– X ⊆ K
– X � ϕ
– There is no X ′ such that X ⊂ X ′ ⊆ K ∪ {ϕ} and X ′ � ϕ

Let us now define the score of a maximal consistent subset, given by the incon-
sistency values of its formulae.

Definition 8. Let K = {ϕ1, . . . , ϕn} be a belief base and ϕ be a formula. Let I be
an inconsistency value. Then define the score of a formula ϕi as its inconsistency
value for the base K ∪ {ϕ}: sI(ϕi) = Iϕi(K ∪ {ϕ}).

And the score of a maximal consistent subset X ∈ K⊥ϕ is the aggregated
score of its formula: let g be an aggregation function, sI,g(X) = gα∈X(sI(α)).

Definition 9. Let S = K⊥ϕ = {X1, . . . , Xk}, a selection function for S is a
function γ such that:

– If X⊥ϕ is a non-empty set, then γ(S) is a non-empty subset of S.
– If X⊥ϕ is empty, then γ(X⊥ϕ) is empty

A score-based selection function γI,g,f , generated by the inconsistency measure I,
the aggregation function g and the selection function f is such that γI,g,f (S) =
argminXi∈Sf(sI,g(Xi)).

min should be usually chosen for f , in order to select only the best results,
but one could for instance want to obtain not only the MC with best (minimal)
scores, but also close-to-the best ones, as for instance the 50% best ones. This is
why we define f as an additional parameter.

Let A = {A1, . . . Am} be a set, then A⊕α denotes the set {A1∪{α}, . . . Am∪
{α}}.

Definition 10. The MC operator �MC is defined as K �MC ϕ = γ(K⊥¬ϕ)⊕ ϕ.
The score-based MC operator �I,g,f is defined as K �I,g,f ϕ = γI,g,f (K⊥¬ϕ)⊕

ϕ.

This defines the result of a revision as a set of belief bases. Then one has to
choose an inference policy from this set. In the following we will focus on skeptical
inference, but other policies can be used:
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Definition 11. K �MC ϕ ) α if ∀B ∈ γ(K⊥¬ϕ)⊕ ϕ, B ) α.

For belief base revision (i.e. when the base is not closed deductively, as opposed
to belief sets), Hansson [5] defines the result of the revision as the conjunction
of the intersection of all the selected remainder sets with the new piece of infor-
mation (∩γ(K⊥¬ϕ) ∪ ϕ), but this conjunction removes too much information,
as illustrated in the next example, so we prefer to keep the full set of possible
results as defined above.

Example 3. Consider the base K = {a ∧ c, b ∧ c} and the formula ϕ = ¬a ∨ ¬b.
So K⊥ϕ = {{a ∧ c}, {b ∧ c}}. Suppose that γ = id, so ∩γ(K⊥¬ϕ) = ∅, so it is
not possible to infer c from K �ϕ, whereas from the set K �MC ϕ = {{a∧ c,¬a∨
¬b}, {b ∧ c,¬a ∨ ¬b}} it is possible to infer c.

So this gives a little more complicated definition, but it allows to obtain more
inferences.

We will focus on the �SIMI ,max,min operator using the MI Shapley inconsis-
tency value, the max as aggregation function g, and the min as selection function
f .

Let us illustrate the behavior of this operator on the following:

Example 4. Consider the baseK = {a∧c, b∧c, b∧d} and the formula ϕ = ¬a∨¬b.
SoK⊥ϕ = {{a∧c}, {b∧c, b∧d}}. As sSIMI ,max({a∧c}) = 1, and sSIMI ,max({b∧

c, b ∧ d}) = 0.5, with f = min only {b ∧ c, b ∧ d} is selected, so the result is a
singleton set: K �SIMI ,max,min ϕ = {b ∧ c, b ∧ d,¬a ∨ ¬b}.

Let us now translate usual AGM belief revision basic properties [4,3] in this
framework:

(K*1) K ∗ α is a theory
(K*2) K ∗ α ) α
(K*3) K ∗ α ⊆ K ∪ {α}
(K*4) Si ¬α /∈ K, alors K ∪ {α} ⊆ K ∗ α
(K*5) K ∗ α = K⊥ iff ) ¬α
(K*6) Si ) α↔ β, alors K ∗ α = K ∗ β

Of course we work in a syntactic (not deductively closed) approach, so (K*1)
should not be satisfied. But all other basic revision properties are satisfied:

Proposition 4. The MC operators �MC satisfy (K*2), (K*3), (K*4), (K*5),
(K*6).

5 Conciliation Operators

Conciliation operators allow to solve the conflicts between a set of belief bases.
The idea is to select the most problematic bases, to weaken them, and to iterate
this process until there is no conflict left. We first define belief game models [20],
that allow to obtain a conflict-free profile. Then the corresponding conciliation
operator is just the conjunction of the obtained profile.
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Definition 12 ([20]). A choice function is a function g : E → E such that:

– g(Ψ) � Ψ
– If

∧
Ψ �≡ ', then ∃ϕ ∈ g(Ψ) s.t. ϕ �≡ '

– If Ψ ≡ Ψ ′, then g(Ψ) ≡ g(Ψ ′)

Definition 13 ([20]). A weakening function is a function 
 : L → L such that:

– ϕ ) 
(ϕ)
– If ϕ ≡ 
(ϕ), then ϕ ≡ '
– If ϕ ≡ ϕ′, then 
(ϕ) ≡ 
(ϕ′)

Definition 14 ([20]). The solution to a belief profile Ψ for a Belief Game
Model N = 〈g,
〉 under the integrity constraints μ, is the belief profile Ψμ

N
defined as:

– Ψ0 = Ψ
– Ψi+1 = 
g(Ψi)(Ψi)
– Ψμ

N is the first Ψi that is consistent with μ

The conciliation operator �N is defined as Ψ�Nμ =
∧

Ψμ
N

Definition 15 ([20]). Let ϕ be a belief base.

– The drastic weakening function forgets all the information about that agent,
i.e. : ∀ϕ 
�(ϕ) = '.

– The dilation weakening function is defined as :

mod(
δ(ϕ)) = {ω ∈ W | ∃ω′ |= ϕ dH(ω, ω′) ≤ 1}

where dH is the Hamming distance between interpretations6.

In this work we use the inconsistency value for defining the most conflicting
agents (i.e. the selection function).

Definition 16. A Shapley Belief Game Model is a Belief Game Model N =
〈SI ,
〉, where SI is a Shapley Inconsistency Value.

The solution to a belief profile Ψ for a Shapley Belief Game Model N = 〈SI ,
〉
under the integrity constraints μ, is the belief profile Ψμ

N defined as:

– Ψ0 = Ψ
– Ψi+1 = 
argmaxϕj∈Ψi

(SIϕj
(Ψi))(Ψi)

– Ψμ
N is the first Ψi that is consistent with μ

Example 5. Consider the Shapley Belief Game Model N = 〈SILPm
,
δ〉. There

are seven agents Ψ = {ϕ1, . . . , ϕ7} with the following belief bases ϕ1 = a ∧ b,
ϕ2 = a∧ (c∨d), ϕ3 = a∧¬d, ϕ4 = a∧¬c∧e, ϕ5 = ¬a∧¬b, ϕ6 = a∧ (¬c→ ¬e),
ϕ7 = a∧¬c∧ f . There are no integrity constraints (μ = '). We have SIMI

ϕ1
= 1

2 ,

6 Let ω and ω′ be two interpretations, then dH(ω,ω′) = #({a ∈ P | ω(a) �= ω′(a)}).
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SIMI
ϕ2

= 7
6 , S

IMI
ϕ3

= 7
6 , S

IMI
ϕ4

= 4
3 , S

IMI
ϕ5

= 3, SIMI
ϕ6

= 1, SIMI
ϕ2

= 5
6 . The maximal

value is 3, meaning that ϕ5 is the agent that brings the most conflicts, and so it
is selected by the choice function for weakening. So ϕ5 is replaced by '. We have
not yet reached a consistent profile, so we must do a further round. Then the new
computations of inconsistency values give ϕ4 as the most conflictual agent, and
it is weakened to '. The profile is still not consistent, so a third round is needed.
In this third round ϕ2, ϕ3 and ϕ7 are weakened. The resulting (consistent) profile
for the whole process is then: Ψ�

N = {{a ∧ b},',',',', a∧ (¬c → ¬e),'}. So
Ψ�N' ≡ a ∧ b ∧ (¬c→ ¬e).

6 Platform Description

In this section, we describe the PRISM (Platform for Reasoning with Incon-
sistency Shapley Measure) platform, that we have built in order to test the
different operators presented in the previous section. One can use this platform
to build a base and perform the different reasoning tasks such as inference,
revision and conciliation. PRISM can be downloaded from the following page
: http://www.cril.univ-artois.fr/prism. This page also contains pieces of
information and detailed documentation about the platform. In the following,
we present features and details about the implementation.

6.1 Features

The platform is available as a Java application. The user interface is divided into
5 main tabs:

1. Base - allows the user to create a base of formulae
2. Shapley - computes the Shapley value of each formulae of the base
3. Inference - allows to reason given some inference relation
4. Revision - allows to reason on the base revised by a new formula
5. Conciliation - computes a consistent base from a set of (conflicting) bases

All tabs are structured in the same way. The top-left part of the panel represents
the belief base currently used. Depending on the task that has to be performed,
the top-right part displays the operators options. The bottom part displays the
result of the computations.

Base Tab. The belief base is composed of several formulae. These formulae can
either be loaded from a file or be directly written by the user. Accepted formulae
have the following syntax :

ϕ := ( ϕ ) ; ϕ & ϕ ; ϕ | ϕ ; ϕ -> ϕ ; ϕ <-> ϕ ; lit
lit := v ; ∼ v where v is a variable name

Each formula must end with a semicolon “;”. Almost all alphanumeric strings
are accepted for variable names7.

7 The exceptions are the symbols in the following list : ′, −, &, |, ∼, (, ), <, > and ;.
Strings “ nv#i” where i is an integer are also reserved.

http://www.cril.univ-artois.fr/prism
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Bases can be saved and loaded into the platform. Formulae can be viewed in
CNF and can be added, modified or removed from the base.

It is also possible to group formulae. Groups can for instance represent agents
to which the formulae belong. In practice, a group is represented by an integer.
We distinguish a specific group that is identified by 0 : the constraints group.
Formulae belonging to this group are constraints, i.e. formulae that cannot be
falsified. These specific formulae can encode background knowledge for inference
or revision, and integrity constraints for conciliation. The user can choose to
take the groups into account or not.

In the following, we detail tabs of the platform. Each tab includes default
operators but it is possible to define its own operator (see table 1).

Shapley Tab. Once a base is available, Shapley values of the formulae compos-
ing it can be computed. Details of this computation are available on the Shapley
tab. More precisely, the MI are displayed at the bottom left panel. Shapley val-
ues are displayed at the bottom right panel. If group classification is taken into
account, then the Shapley measures for each group is also displayed. Note that
the operator for aggregating an inconsistency measure for a group of formulae
can be chosen at the top right panel. By default, two operators are available :
Mean and Max.

Inference Tab. Shapley values can be used to stratify belief bases: the lower
the value, the higher in the layers of the base. The belief base stratification is dis-
played on the inference tab. The user can choose an inference operator from the
list and ask whether a formula can be entailed from the base and the chosen oper-
ator.
The formula must follow the same syntax as presented previously for the base.
The default inference operators are named Possibilistic and Linear and corre-
spond to the ones presented in section 3.

Revision Tab. This tab allows to revise the belief base by some formula. The
formula must be given in the field just under the table representing the base. The
syntax must be the same as the one described previously for new formulae of
the base. As presented in section 4, revision operator is compounded of different
sub-operators : an aggregation function, a selection function and an inference
policy. The default aggregation functions are Max, Min and Sum. See table 1
for classes details. The platform proposes three selection functions: No Selection,
All Min Selection and One of the min selection. The last one arbitrary takes one
MC into account. Finally, the last option is the inference policy. The user can
initially choose between Skeptical and Credulous inferences but, once again, it
is possible to implement its own inference policy. All MC are displayed in the
bottom left panel, along with their respective score. The table in the bottom
right panel shows selected MC. And, as in the revision tab, it is possible to ask
whether a formula can be entailed according to the chosen type of inference.
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Conciliation Tab. This tab allows to test the conciliation (belief game model)
as it has been presented in section 5. This game is based on two operators: a
choice operator and a weakening operator. The first choice operator is named
Shapley Choice and corresponds to SIMI . The second operator, Weak Shapley
Choice, selects randomly one formula amongst the ones selected by the Shapley
operator. This allows to reduce the number of weakened formulae. The default
weakening operator is named Drastic and corresponds to operator 
� defined
in section 5.

6.2 Implementation Details

PRISM is an evolutive platform, i.e. for all the reasoning tasks, one can add its
own implementation. Main conditions are to create a class that extends a specific
one and to add this class to the classpath8. The following table indicates for each
operator the abstract class to extend and the main method to implement.

Table 1. Classes and methods to implement in order to add new operators

Tab Abstract Class Method

Shapley ShapleyValueSet computeShapleyValue(List<Formula> l) : double

Inference InferenceOperator isAFormulaEntailed(List<Formula> b, Formula f): boolean

Revision MssScoreAggregation computeMSScore(MSS m) : double

MssSelectionOperator selectMss(List<MSS> l) : List<MSS>

InferenceFromMSSOperator isAFormulaEntailed(List<MSS> l, Formula f) : boolean

Conciliation ChoiceOperator chooseFormulae(List<Formula> l) : List<Formula>

WeakOperator weakFormula(Formula f) : Formula

Assigning a Shapley value to a formula of a base necessitates the computation
of all the MI that can be derived from the belief base. In the general case,
computing MI is intractable. First, the number of MI can be exponential: a n-

clauses SAT instance can exhibit C
n/2
n MI in the worst case. Then, checking

whether a formula belongs to the set of MI is in Σp
2 [21]. Our problem is even

more difficult since we want to compute all MI and check whether formulae
belong to them.

Many approaches have been proposed to extract one MI from a set of clauses
([22,23,24] and many others) or to compute MI covers ([25]). We need here a
complete approach, i.e. one that extracts all MI. Candidate tools are thus less
numerous: CAMUS [26], HYCAM [27].

We choose here to perform the MI extraction with the Sat4j SAT solver [28].
The main reason for this choice is our willingness to develop a platform indepen-
dent tool. Using Java based technology is a way to preserve this property, even
if we don’t get the benefit of the last advances in the extraction af all MI (all
dedicated tools cited previously are developed in C or C++). In further versions

8 Details on how to add a new operator can be found on the online documentation of
the platform: http://www.cril.univ-artois.fr/prism .

http://www.cril.univ-artois.fr/prism
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of PRISM, a detection of the running platform will be made in order to allow
the use of CAMUS or HYCAM.

This Sat4j solver (2.3.3 release) extracts all MI in a two steps method [29]:
all MC of the base are first computed, then MI are obtained through a second
pass.

For all the MI extractors cited previously, the input is a CNF formula. Our
platform allows the user to populate the belief base with general formulae. This
means that we have to transform given formulae into equisatisfiable CNF for-
mulae. To perform this transformation, we use the Tseitin encoding ([30]). This
encoding results in a formula with a linear size increase in expense of the addition
of new variables9.

For a given formula, clauses composing its CNF form are grouped when given
to the solver. This allows us to maintain equivalence between CNF and formulae.

In order to model general formulae, we have used a domain specific language
(dsl) written in Scala. This allows us to have a very efficient parsing and CNF
transformation. Moreover, since scala is built on top of the JVM, we preserve
the platform independency.

7 Conclusion and Future Works

In this paper, we propose an evolutive platform that uses the MI Shapley in-
consistency value to perform different reasoning tasks such as inference, revision
and conciliation. Although operators are already implemented for each of these
operations, one can write its own implementation and add it dynamically to the
platform to test it. The platform is Java-based, which brings us full operating
system independency.

In future works, on top of developing more operators, we plan to propose
part of this platform as a Java library. Such a library would provide methods to
use the MI Shapley inconsistency value and its associated operators for various
applications.
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Abstract. The problems of generating candidate hypotheses and infer-
ring the best hypothesis out of this set are typically seen as two distinct
aspects of the more general problem of non-demonstrative inference or
abduction. In the context of Bayesian networks the latter problem (com-
puting most probable explanations) is well understood, while the former
problem is typically left as an exercise to the modeler. In other words,
the candidate hypotheses are pre-selected and hard-coded. In reality,
however, non-demonstrative inference is rather an interactive process,
switching between hypothesis generation, inference to the best expla-
nation, evidence gathering and deciding which information is relevant.
In this paper we will discuss a possible computational formalization of
finding an explanation which is both probable and as informative as
possible, thereby combining (at least some aspects of) both the
‘hypotheses-generating’ and ‘inference’ steps of the abduction process.
The computational complexity of this formal problem, denoted Most

Inforbable Explanation, is then established and some problem pa-
rameters are investigated in order to get a deeper understanding of
what makes this problem intractable in general, and under which cir-
cumstances the problem becomes tractable.

1 Introduction

Inference to the best explanation is a well-known and well-studied computational
problem in Bayesian networks. When “best” is operationalized as “most proba-
ble” (as is typically the case in the Bayesian network community, but see, e.g.,
[11] for alternative notions) it is commonly known as MAP1: given a partition of
a Bayesian network into an evidence set with observed variables, a set of explana-
tion variables which together constitute candidate hypotheses, and a set of inter-
mediate variables that fall in neither category, compute the most probable joint

1 Also Partial or Marginal MAP to distinguish the problem from the more constrained
MPE problem, in which the variables of the graph are bi-partitioned in evidence
variables and hypothesis variables and no marginalization over other variables is
needed.

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 328–339, 2013.
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Decide upon
hypotheses

Decide what
is relevant

Gather
evidence

Inference
to the MPE

Fig. 1. In everyday problem solving the selection of hypotheses, determining upon rel-
evant information, gathering evidence, and inference to the most probable explanation
are concurrent (rather than sequential) and highly connected sub-tasks of the broader
abduction problem

value assignment to the explanation variables. This computational problem has
been studied from an engineering [17] and computational complexity [5,14,22]
point of view, and exact and approximate algorithms for MAP are available
in abundance [3,6,7,20,21,22,25]. However, the abduction or non-demonstrative
inference problem is broader and more complex than ‘merely’ solving a MAP
problem. It is a heavily intertwined combination of deciding which are the rel-
evant variables, deciding upon candidate hypotheses, evidence gathering, and
inference to the most probable explanation (Fig. 1).

Clinical examination (i.e., diagnosing the patient) is an excellent example of
such an abduction process, consisting of hypothesis generation, obtaining evi-
dence, evaluating hypotheses, and determining throughout this process what of
all the available information is relevant to diagnosing (and preferably curing) the
patient; see, e.g., [19] and in particular the highly illustrative case study on page
26-27. Some observations and findings may not be relevant to the diagnosis. The
clinician needs to decide which are to be taken into account and which are not.
Often, symptoms and signs come in patterns; for example, polyuria, polydipsia,
and polyphagia are well known symptoms for diabetes mellitus. Clustering or
lumping such observations may benefit hypothesis generation towards a diagno-
sis. On the other hand, the clinician may miss important aspects in doing so:
There is a high probability that orthostatic hypotension is caused by vomiting
and diarrhea. Thus, they could be lumped together as cause and effect. In so
doing, however, the clinician is at risk of excluding a completely separate and
important problem, namely, extracellular volume depletion.

During this process, initial hypotheses are generated and evidence is gathered
and judged. Based on the evidence and the posterior probabilities of these ini-
tial hypotheses, additional evidence may be gathered and the hypotheses may
be further refined, eventually leading to a diagnosis and possibly a treatment
procedure. These “real world” aspects of abduction problems, as illustrated in
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H
I E

Fig. 2. Partitioning the domain model into hypotheses variables H, evidence variables
E, intermediate variables I, and irrelevant or “outside” variables that are not part of
the model can be graphically depicted as establishing boundaries (“drawing boxes”)
within a knowledge structure

the above example, are typically not part of the computational problem: they
are ‘left to the modeler’. Instinctively, this modeling process can be seen as es-
tablishing boundaries in a knowledge structure such as a Bayesian network (Fig.
2). In this process, numerous decisions need to be made, such as which nodes
in the knowledge structure can be dismissed as being irrelevant to the goal or
how detailed the explanation should be. These choices are driven by the goal of
the abduction process: what counts as a candidate hypotheses or as a relevant
variables is determined by what we seek to explain; see for example [8] and [18,
Ch. 3, and the references therein].

1.1 Granularity of Explanations

A correct, but hardly informative, explanation of the signs “shortness of breath,
coughing with phlegm, and pain while breathing” will be “patient-X is ill”.
This explanation has (by definition) a higher probability (say 0.95) than the
much more informative explanation “patient-X has pneumonia” (say 0.8). The
latter explanation of course has more explanatory power at the cost of little
probability mass, and thus will, in general, be preferred over the former although
this explanation has a higher probability.

This trade off between information and probability is known as the Inverse
Relationship Principe [1]: the more specific an explanation is, the lower its prob-
ability will be. From a mathematical point of view, this may be trivial: surely,
Pr(A) ≤ Pr(B) if A ⊆ B. However, in practical situations, there can be many
situation-specific circumstances that may determine whether a more specific
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explanation is needed. While a general practitioner will need an explanation
that is specific enough to successfully describe medication, a project manager
needs only a general explanation why one of her team members won’t be at his
desk for some time. Sometimes it might be costly or impractical to determine
more specific explanations. The impact of making the wrong decision may be
crucial in determining the probability threshold; what risks are we willing to
accept?

In this paper, we seek to combine two aspects of the abduction problem into
one computational formalism: choosing what to explain (and at which granular-
ity) and inference to the most probable explanation. This computational problem
of seeking an explanation which is both informative enough for our means and
has a high enough probability is denoted as the Most Inforbable Explana-

tion problem to emphasize the trade off between informativeness and probabil-
ity. The remainder of this paper is structured as follows. In the next section we
will offer some needed preliminaries on Bayesian networks and computational
complexity theory. In Section 3 we formally define Most Inforbable Expla-

nation. We discuss the computational complexity of a decision variant of Most

Inforbable Explanation in Section 4. In Section 5 we conclude the paper.

2 Preliminaries

In this section, we give a short overview of a number of concepts from Bayesian
networks, graph theory, and complexity theory, in particular definitions of prob-
abilistic networks and treewidth, some background on complexity classes defined
by Probabilistic Turing Machines and oracles, and fixed-parameter tractability.
For a more thorough discussion of these concepts, the reader is referred to text-
books like [9,10,12,23].

2.1 Bayesian Networks

A Bayesian or probabilistic network B = (GB,Pr) is a graphical structure that
models a set of stochastic variables, the conditional independences among these
variables, and a joint probability distribution over these variables. B includes a
directed acyclic graph GB = (V,A), modeling the variables and conditional in-
dependences in the network, and a set of parameter probabilities Pr in the form
of conditional probability tables (CPTs), capturing the strengths of the relation-
ships between the variables. The network models a joint probability distribution
Pr(V) =

∏n
i=1 Pr(Vi | π(Vi)) over its variables, where π(Vi) denotes the parents

of Vi in GB. We will use upper case letters to denote individual nodes in the
network, upper case bold letters to denote sets of nodes, lower case letters to
denote value assignments to nodes, and lower case bold letters to denote joint
value assignments to sets of nodes.

One of the key computational problems in Bayesian networks is the problem to
find the most probable explanation for a set of observations, i.e., the joint value
assignment to a designated set of variables that has highest posterior probability
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given the observed variables in the network. If the network is bi-partitioned into
explanation variables and evidence variables this problem is known as Most

Probable Explanation, however, in practice there will often be variables that
are neither observed nor to be explained; for example, variables that influence
the posterior probability distribution but whose value is impractical or even
impossible to observe. In that case, the problem is denoted (Partial) MAP (or
Marginal MAP, to emphasize that we need to marginalize over the unobserved
variables); the decision variant of this problem is defined as follows:

MAP

Instance: A probabilistic network B = (GB,Pr), where V is partitioned into a
set of evidence nodes E with a joint value assignment e, a set of intermediate
nodes I, and an explanation set H; a rational number 0 ≤ q < 1.
Question: Is there a joint value assignment h to H such that Pr(h, e) > q?

MAP is NP-hard under a wide range of constraints, both to compute exact and
to approximate [22,14,5,15].

An important structural property of a probabilistic network is its treewidth.
Treewidth is a graph-theoretical concept, which can be loosely described as a
measure on the ‘localness’ of the dependencies in the network: when the vari-
ables tend to be clustered in small groups with few connections between groups,
treewidth is typically low, whereas treewidth tends to be high if the connections
between variables are scattered all over the network. Formally, the treewidth of a
Bayesian network B is defined as the minimum width over all tree-decompositions
of triangulations of the moralizationGM

B of the network [24]. Treewidth plays an
important role in the complexity analysis of Bayesian networks, as many other-
wise intractable computational problems become tractable when the treewidth
of the network is bounded.

2.2 Computational Complexity Theory

In the remainder, we assume that the reader is familiar with basic concepts
of computational complexity theory, such as Turing Machines, the complexity
classes P and NP, and NP-completeness proofs. In addition to these basic con-
cepts, to describe the complexity of various problems we will use the probabilistic
class PP, oracles, and some aspects from parameterized complexity theory.

The class PP contains languages L accepted in polynomial time by a Prob-
abilistic Turing Machine. Such a machine augments the more traditional non-
deterministic Turing Machine with a probability distribution associated with
each state transition. Acceptance of an input x is defined as follows: the probabil-
ity of arriving in an accept state is strictly larger than 1

2 if and only if x ∈ L. This
probability of acceptance, however, is not fixed and may (exponentially) depend
on the input, e.g., a problem in PP may accept ‘yes’-instances with size |x| with
probability 1

2 +
1

2|x| . PP-complete problems are considered to be intractable. The
canonical PP-complete problem isMajSAT: given a Boolean formula φ, does the
majority of the truth assignments satisfy φ? In Bayesian networks, the canonical
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problem of determining whether the probability Pr(H = h | E = e) > q for a
given rational q (known as the Inference problem) is PP-complete [4,13].

A Turing Machine M has oracle access to languages in the class C, denoted
as MC, if it can “query the oracle” in one state transition, i.e., in O(1). We
can regard the oracle as a ‘black box’ that can answer membership queries in
constant time. For example, NPPP is defined as the class of languages which are
decidable in polynomial time on a non-deterministic Turing Machine with access
to an oracle deciding problems in PP.

Sometimes problems are intractable (i.e., NP-hard) in general, but become
tractable if some parameters of the problem can be assumed to be small. Infor-
mally, a problem is called fixed-parameter tractable for a parameter k (or a set
{k1, . . . , kn} of parameters) if it can be solved in time, exponential only in k and
polynomial in the input size |x|, i.e., in time O(f(k) · |x|c) for a constant c and
an arbitrary function f . In practice, this means that problem instances can be
solved efficiently, even when the problem is NP-hard in general, if k is known to
be small.

3 Most Inforbable Explanations

In the MAP problem, one seeks to find the joint value assignment to a set of
variables that has maximum posterior probability. Here the candidate solutions
consist of joint value assignments to exactly that set of variables, i.e., a con-
junction of value assignments {(H1 = h1) ∧ . . . ∧ (Hn = hn)} to the individual
variables of the explanation set. This assumes that both the candidate hypothe-
ses and the granularity of the explanation are set beforehand.

In real life, however, candidate hypotheses are formed and considered dur-
ing the inference process, and the granularity of the explanation varies. Let
us assume there is evidence that a patient suffers from a lung disease. On
examination, when further evidence becomes available, the diagnosis may be
refined to an obstructive lung disease, and later on, even further refined to
the more specfic COPD and finally chronic bronchitis (Fig. 3). Preferably, we
would like to find an explanation that has high probability and is specific, like
{(CB = true)∧ (EM = false)∧ . . .∧ (LP = false)}, denoting that the patient
has chronic bronchitis and no other lung disease is present. But what if there
is not enough evidence to clearly distuinguish between chronic bronchitis and
emphysema? Would it be wise to ignore the possibility of other lung diseases
being present (maybe altering the advised medication) if the probability of their
presense is maybe not convincing, but still non-neglectable?

Let us consider the three cases as presented in Table 1. In case a), the expla-
nation is as specific as possible and has a high probability: the patient suffers
from chronic bronchitis and no other lung disease is present. Case b) reflects that
no clear distinction between chronic bronchitis and emphysema could be made.
Note, however, that the probability of the three joint value assignments that
correspond with {((CB = true)∨ (EM = true))∧ . . .∧ (LP = false)} is high.
Here, it seems best to restrict the diagnosis to “COPD”, rather than to refine it
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Fig. 3. Example of part of a classification of lung diseases

further. In case c) the patient definately suffers from chronic bronchitis, but in
addition, some form of pneumonia may be present. Here, it would be wise (if no
further evidence can be gathered) to settle for the diagnosis “chronic bronchitis,
and maybe also pneumonia” and describe medication that covers both.

Table 1. Joint value assignments and their probabilities in the lung disease example

case BP LP CB EM AS IN prob.

a false false true false false false 0.87
false false false true false false 0.04
false false true true false false 0.02

other 0.07

b false false true false false false 0.48
false false false true false false 0.37
false false true true false false 0.10

other 0.05

c false false true false false false 0.48
true false true false false false 0.21
false true true false false false 0.17
true true true false false false 0.08

other 0.06

What we did in case a) corresponds to ‘plain’ MAP. In case b) and c), how-
ever, we choose as explanation a set of joint value assignments rather than
a singleton joint value assignment, namely the set that corresponds to the
(informal) diagnoses “COPD” (case b), respectively “chronic bronchitis, and
maybe also pneumonia” (case c). Or to put it more formally, the sets of joint
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value assignments that correspond to the sentences {((CB = true) ∨ (EM =
true))∧ (AS = false)∧ (IN = false)∧ (BP = false)∧ (LP = false)}, respec-
tively {(CB = true) ∧ (EM = false) ∧ (AS = false) ∧ (IN = false)}. Thus,
we extended MAP to deal with sets of joint value assignments, each consisting
of a conjunction of value assignments to the variables in the explanation set2.

We can also use a possible world semantics to describe these explanations. In
case a) the explanation corresponds to the world where CB is true and all other
variables are false. In case b) the explanation corresponds to the worlds where
either CB or EM or both are set to true, and all other variables are false.
In case c) the set of possible worlds are those where CB is true, BP and LP
are either true or false, and the other variables are false. If we count these
worlds in the three cases, we see that there is a single world in case a) with
probability 0.87, there are three worlds in case b) whose probabilities add up
to 0.95, and there are four worlds in case c) with total probability 0.94. Thus,
in order to gain probabibility mass, in case b) and c) we needed to trade off
informativeness, where we define explanation H to be more informative than H ′

if H corresponds to fewer possible worlds than H ′.

3.1 Succinct Encodings

We saw that the formal definition of “chronic bronchitis, and maybe also pneu-
monia”, which corresponds to four possible worlds in the lung disease example,
can be quite succinctly described as {(CB = true) ∧ (EM = false) ∧ (AS =
false) ∧ (IN = false)} because the values of BP and LP are “don’t cares”.
Surely, not every combination of four possible worlds can be described so easily,
and we may need to resort to a full enumeration of four joint value assignments
to describe that explanation.

That feels quite unnatural and unsatisfactory, in the sense that such an ex-
planation (that consists of an arbitrarily complex sentence over the values of
the variables) does not appear to be very informative at first sight. The sen-
tence (AS = true) corresponds to 32 possible worlds in which the patient has
asthma (without committing to a particular value of the other variables), yet
this is far more comprehensible and informative than a plain enumeration of, say,
11 possible worlds, so despite being “less informative” given the possible worlds
semantics, we would like to enforce some reasonable encoding that makes the ex-
planation easy to understand and to reason with. But there are also complexity-
theoretic reason to constrain how the explanation should be encoded: if we allow
the explanation to be encoded as an arbitrary set of w possible worlds, where
w is given as a binary number, we may need an exponential (in w) number of
bits to describe that explanation. Therefore, apart from high probability and
a low number of possible worlds, we also require that the sentence describing

2 Observe that we assume binary variables here for ease of exposition, but we
might also include variables with a higher cardinality, like TEMP with values
{low, normal,high}, stating, e.g., {((TEMP = low) ∨ (TEMP = normal)) ∧ . . .}.
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these possible worlds is short, i.e., we also demand succinct encodings. To be
precise, we require that the explanation can be encoded by the addition of at
most ŵ = O(/log2(w + 1)0) partial joint value assignments to subsets of the
explanation set.

We finish this section with an informal problem definition of Most In-

forbable Explanation, combining these three requirements:

Most Inforbable Explanation (informal)

Instance: A Bayesian network, partitioned into evidence nodes, explanation
nodes, and intermediate variables.
Output: An explanation that has high probability, corresponds to few possible
worlds, and is succinctly encodable.

4 Computational Complexity

To investigate the computational complexity of Most Inforbable Explana-

tion, we will formally define a decision variant of this problem as follows.

Most Inforbable Explanation

Instance: A Bayesian network B = (G,Pr), where V is partitioned into a set
of evidence nodes E with a joint value assignment e, an explanation set H, and
intermediate variables I; a rational number 0 ≤ q < 1 and a natural number w.
Question: Is there a set {h1, . . . ,hw} of w distinct joint value assignments
h1, . . . ,hw to H, encodable by the addition of at most ŵ = O(/log2(w + 1)0)
joint value assignments h′ to subsets of H, such that∑w

i=1 Pr(hi, e) =
∑ŵ

j=1 Pr(h
′
j, e) > q?

Theorem 1. Most Inforbable Explanation is NPPP-complete.

Proof. We prove membership in NP#P, membership in NPPP follows as P#P =
PPP. Membership can be shown by non-deterministically guessing a certificate,
consisting of a set of at most ŵ joint value assignments h′ to subsets of H; check-
ing that this certificate yields at most w distinct joint value assignments to H;
computing, using the #P oracle,

∑ŵ
j=1 Pr(h

′
j, e) (note that #P is closed under

addition), and finally deciding whether
∑ŵ

j=1 Pr(h
′
j, e) > q. Note that the num-

ber of joint value assignments w may grow exponentially in the input size, as w is
encoded in binary notation, but that all three steps of the verification algorithm
can be done in polynomial time given the constraint that {h1, . . . ,hw} must be
succinctly (i.e., logarithmically in w) encodable. Note that NPPP-hardness fol-
lows since Most Inforbable Explanation has MAP as a special case: take
w = 1. ��

If w = 0 then Most Inforbable Explanation degenerates to Inference. If
w = 1 thenMost InforbableExplanationdegenerates toMAP.Furthermore,



Abduction Proper 337
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b1b2 b1b2 b1b2 b1b2

a1a2 a1a2 a1m2 m1a2. . . m1m2

b1b2 b1b2 b1b2 b1b2

Fig. 4. The fp-tractable MAP algorithm branches on each value assignment to the
variables in H, computing marginal distributions over the variables not in H; in the
left subfigure the example H = {A,B}, c = 2 is illustrated. The size of the branching
tree is bounded by the probability of the most probable joint value assignment. Here,
we extend this algorithm by branching over all possible value assignments in all possible
worlds: part of the branching tree for w = 2 is drawn in the middle subtree. In the
right subtree part of the branching tree for ŵ = 2 is drawn. Here, for each choice of ŵ,
a variable can take any of its values, or it can take no value at all, denoted with m to
illustrate that we marginalize over that variable rather than assign it a value

Most Inforbable Explanation inherits the inapproximability results of MAP
[22]. MAP is fixed parameter tractable (fp-tractable) for {c, 1− p, tw}, i.e., MAP
can be solved fast when the treewidth tw of the restricted junction tree and car-
dinality c of the variables are small and the most probable explanation has a high
probability3 (1−p is low) [2,14].However, thismaynot hold forMost Inforbable

Explanation since we need to choosew joint value assignments out of maximally
c|H| which by itself is a source of complexity. However, the {c, 1 − p, tw}-fixed-
parameter tractable algorithm4 for MAP can be adjusted by branching on each
of the (at most) cw combinations of values for each variable, rather than on each of
the (at most) c values (see Fig. 4). Therefore,Most Inforbable Explanation

is fp-tractable for {c, 1 − p, tw, w}. Since Most Inforbable Explanation is a
generalization of bothMAP (forw = 1) and Inference (forw = 0) it follows that
Most Inforbable Explanation remains intractable for the set of parameters
{c, 1− p, w} and {c, tw, w} [16,5].

It can be shown that Most Inforbable Explanation is also fp-tractable
for {c, 1 − p, tw, ŵ}, i.e., instead of bounding the number of possible worlds,
we bound the size of the encoding. This can be done by further augment-
ing the above-mentioned algorithm, allowing it to branch on the (at most)
cŵ + cŵ−1 + . . . + 1 combinations of values and non-assigned variables (that
are marginalized over) — see again Fig. 4. Thus, from a computational point
of view, Most Inforbable Explanation is not harder than ‘plain’ MAP,
as both are NPPP-complete. However, to render Most Inforbable Explana-

tion fixed-parameter tractable, an additional constraint needs to be imposed on
wither the number of possible worlds w or the number of (partial) joint value
assignments ŵ encoding these worlds.

3 Technically speaking, 1− p is not a parameter as it is not a natural number; however,
it can be mapped one-to-one to a suitable natural parameter [14].

4 See [2] for the original algorithm for Most Probable Explanation, and [14] for the
augmented algorithm for MAP.



338 J. Kwisthout

5 Conclusion

In this paper, we introduced Most Inforbable Explanation as an extention
to MAP, in order to combine both inference to the best explanation and (some
aspects of) selecting candidate hypotheses and determining the granularity of
the explanations. In human reasoning, the sets hi are not likely to be arbitrarily
chosen, but may correspond to common phrases as “either A or B, or both”,
“maybe A, but definitely not B”, or “likely A, and possibly also B”; simple
heuristics may exist that favor such phrases in practice and penalizing more
complex structures, thus enforcing the formal logarithmic bound introduced in
the formal definition and the fpt-result for ŵ. A succint encoding of “Asthma,
but also at least one other disease” (spanning 31 possible worlds in the example)
may be {(AS = true)} \ {(BP = false) ∧ (LP = false) ∧ (CB = false) ∧
(EM = false) ∧ (IN = false)}. We did not include such encodings (allowing
for substraction, as well as addition, of partial joint value assignments) as it is
not obvious that the above mentioned algorithm is fp-tractable in this case.

A particularly interesting aspect of informativeness of explanations lies in
the often contrasting nature of explanations: often, we do not simply want to
explain: ‘Why this?’, but ‘Why this, rather than that?’ [18]. For example, to
explain why Alice got tenure, referring to her quality teaching is unsufficient
when Bob is an excellent teacher as well, but happend to be denied tenure: a
better explanation would (also) refer to her many high-rated publications that
Bob lacked. We leave a formal study of how such aspects may be implemented
in a computational problem for future work.

Acknowledgments. The author wishes to thank Iris van Rooij, Linda van der
Gaag, and Pim Haselager for helpful discussions and literature suggestions.
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Abstract. Typically, when one discusses approximation algorithms for
(NP-hard) problems (like Traveling Salesperson, Vertex Cover,
Knapsack), one refers to algorithms that return a solution whose value
is (at least ideally) close to optimal; e.g., a tour with almost minimal
length, a vertex cover of size just above minimal, or a collection of ob-
jects that has close to maximal value. In contrast, one might also be
interested in approximation algorithms that return solutions that re-
semble the optimal solutions, i.e., whose structure is akin to the optimal
solution, like a tour that is almost similar to the optimal tour, a vertex
cover that differs in only a few vertices from the optimal cover, or a col-
lection that is similar to the optimal collection. In this paper, we discuss
structure-approximation of the problem of finding the most probable ex-
planation of observations in Bayesian networks, i.e., finding a joint value
assignment that looks like the most probable one, rather than has an
almost as high value. We show that it is NP-hard to obtain the value of
just a single variable of the most probable explanation. However, when
partial orders on the values of the variables are available, we can improve
on these results.

1 Introduction

A key computational problem in Bayesian networks [17] is the computation
of the most probable explanation (MPE) of a set of observed phenomena; i.e.,
given a Bayesian network whose variables are partitioned into an evidence set
E with observed joint value assignment e and an explanation set M, determine
the joint value assignment m to the explanation set M such that Pr(M =
m,E = e) is maximal. This problem, also called Bayesian abduction, is a key
component in many decision support systems like [15,21], in many Bayesian
models of cognition, for example intention recognition [2] or recipient design
[22], as well as in various models of sociological [19] or economical [8] processes.

Unfortunately, computing the MPE is in general NP-hard [12,3,18] and re-
mains NP-hard when the most probable explanation is to be approximated rather
than exactly computed. In particular, it is NP-hard to find a joint value assign-
ment whose probability is within a fixed ratio of the most probable joint value
assignment [1] and it is even NP-hard to find a joint value assignment that has a

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 340–351, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



MPE Structure Approximation 341

non-zero probability [12]. However, these formal notions of approximation focus
on the value of the explanation, i.e., the goal is to find an explanation whose prob-
ability is ‘close’ to the probability of the most probable explanation. Sometimes
we may not be primarily interested in finding explanations with an almost-as-
high probability, but rather in explanations that are quite similar to the most
probable explanation, that is, they look like the most probable explanation. For
example, in cognitive science, one’s goal is to describe, model, and predict hu-
man cognition. In such applications it is conceivable that we are most interested
in approximating structure, rather than value [16]; we will refer to this notion of
approximation as structure approximation (note that the term ‘structure’ does
not refer to the graphical structure (i.e., the arcs) of the network, but to the
structure of the joint value assignments).

Preferably, of course, in many domains we would like to have an approximation
that both resembles the optimal solution and have an almost-as-high probability
[4]. While it may well be the case that ‘good’ value approximations sometimes
have a similar structure as the optimal solution, this need not be the case, as we
will show in Subsection 2.3.

Structure approximation has its roots in computational complexity theory
[11,6]. The relevance of structure approximation, in particular in the context
of the so-called Coherence Problem, was first suggested by Millgram [16] and
extensively studied in Hamilton et al. [9] and Van Rooij et al. [23]. In this paper
we further build on this work and discuss structure approximations of MPE.
In the remainder of this paper, we will discuss some relevant preliminaries and
definitions in Bayesian networks and structure approximation in Section 2. In
Section 3 we focus on structure-approximating MPE. We discuss the computa-
tional complexity of structure approximation of MPE in general in Subsection
3.1, and the effect of having an ordering of the variables in Subsection 3.2. In
Section 4 we conclude this paper.

2 Preliminaries

In this section we introduce Bayesian networks and, more in particular, the
problem of finding the most probable explanation (MPE) for a subset of variables
in the network, given observations for the other variables. For more background,
the reader is referred to textbooks as [17,10] and overview papers as [14,12].
Furthermore, we introduce a formal definition of structure approximation, as
presented in [9]. We assume that the reader is familiar with basic notions in
complexity theory, such as the classes P and NP and NP-hardness proofs; for
more background, we refer to [7].

2.1 Bayesian Networks and the MPE Problem

A Bayesian or probabilistic network B is a graphical structure that models a set
of stochastic variables, the conditional independencies among these variables,
and a joint probability distribution over these variables. B includes a directed
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acyclic graph GB = (V,A), modeling the variables and conditional indepen-
dencies in the network, and a set of parameter probabilities Pr in the form of
conditional probability tables (CPTs), capturing the strengths of the relation-
ships between the variables. The network models a joint probability distribution
Pr(V) =

∏n
i=1 Pr(Vi | π(Vi)) over its variables, where π(Vi) denotes the parents

of Vi in GB. We will use upper case letters to denote individual nodes in the
network, upper case bold letters to denote sets of nodes, lower case letters to
denote value assignments to nodes, and lower case bold letters to denote joint
value assignments to sets of nodes. We will use E to denote a set of evidence
nodes, i.e., a set of nodes for which a particular joint value assignment e is ob-
served; likewise, we will use M to denote a set of nodes for which the explanation
is sought. We will sometimes write Pr(x) as a shorthand for Pr(X = x) if no
ambiguity can occur. We denote with Ω(X) the set of all values that X can take;
Ω(X) is defined analogously for sets of variables.

Among other computational problems defined on Bayesian networks, one par-
ticularly interesting problem for many applications is the problem of determining
the most probable explanation for some observations, i.e., the most probable joint
value assignment to a subset of variables in the network, given evidence for the
other variables1. This problem is formally defined as follows [12].

MPE

Instance: A probabilistic network B = (GB,Pr), where V is partitioned into a
set of evidence nodes E with a joint value assignment e, and an explanation set
M.
Output: argmaxmPr(m, e), i.e., the most probable joint value assignment m
to the nodes in M and evidence e, or the designated symbol ⊥ if Pr(m, e) = 0
for every joint value assignment m to M.

MPE is intractable in general; to be precise, the problem is FPNP-complete and
has an NP-complete decision variant [12,18].

2.2 Structure Approximation

The notion of a structure approximation is typically captured using a solution
distance function, a metric associated with each optimization problem relating
candidate solutions with the optimal solution [9]. Let Π be a optimization prob-
lem with instance x, let cansol (x) denote a function returning candidate solutions
to x, with optsol (x) denoting a function returning the optimal solution2 to x.
For any y, y′ ∈ cansol(x), let d(y, y′) be the distance between y and y′ as defined
by d. As d is a metric, the following properties hold for all a, b, c ∈ cansol(x):

1 If we have only partial evidence, i.e., the network is partitioned into variables for
which the explanation is sought, evidence variables, and other variables that consti-
tute neither evidence nor explanation, then the problem generalized to a Partial (or
Marginal) MAP problem. The intractability results presented here generalize also to
Partial MAP.

2 Or, in case of a draw, one of the optimal solutions.
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1. d(a, a) = 0
2. if a �= b, d(a, b) > 0
3. d(a, b) = d(b, a)
4. d(a, b) + d(b, c) ≥ d(a, c)

Typically, for many problemsΠ , dmight correspond to the Hamming distance or
edit distance between two candidate solutions: the number of elements in which
the candidate solutions differ, or the number of operations needed to transform
one candidate solution into another. We define a h/d-structure approximation
of Π as follows:

Definition 1 ([9]). Given an optimization problem Π, a solution-distance func-
tion d, and a non-decreasing function h : IN→ IN, an algorithm A is a polynomial-
time h/d-structure approximation algorithm if for every instance x of Π, d(A(x),
optsol(x)) ≤ h(|x|), and A runs in time polynomial in |x|.

Similarly, we define an expected h/d-structure approximation of Π as follows:

Definition 2. Given an optimization problem Π, a solution-distance function
d, and a non-decreasing function h : IN → IN, an algorithm A is a polynomial-
time expected h/d-structure approximation algorithm if, for a random instance x
of Π, the expected distance E(d(A(x), optsol (x))) ≤ h(|x|), and A runs in time
polynomial in |x|.

2.3 Value versus Structure Approximation

Possibly counter to intuition, a “good” value approximation is not necessarily
a “good” structure approximation and vice versa. As an example, consider the
Bayesian network in Figure 1 with binary variables V,X1, . . . , Xn, a uniform
probability distribution for the variables X1 to Xn, and the following condi-
tional probability distribution for V :

Pr(V = true | X1, . . . , Xn) =

⎧⎨⎩
1 if ∀iXi = true

1− ε if ∀iXi = false

0 otherwise

Note that the most probable explanation for the observation V = true would
be the explanation where all variables Xi are set to true, and the second most
probable explanation where all variables Xi are set to false. Any non-zero value
approximation thus would yield an explanation with a completely different struc-
ture than the most probable explanation. On the other hand, any explanation
that has a similar structure (i.e., differ in only few variables) would have a prob-
ability of zero.

3 Structure Approximation of MPE

Let cansol(B, e) denote the set of explanations (i.e., joint value assignments to
M) of a Bayesian network B with observed evidence e, with optsol (B, e) as the
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X1 X2

V

Xn. . .

Fig. 1. Example network with distinct structure and value approximations

most probable explanation, i.e., the joint value assignment to M with the highest
joint probability. We define the structure distance function dH(m, optsol(B, e))
as the Hamming distance between explanation m ∈ cansol(B, e) and the most
probable explanation.

In the remainder of this paper, we consider h to be a function taking an
MPE instance x = {B, e} and returning a distance. With h(x)/dH -structure-
approximate-MPE, we define the problem of finding a structure approxima-
tion that differs in at most h(x) variables from the most probable explanation
optsol(B, e). With E(h(x))/dH -structure-approximate-MPE we define the prob-
lem of finding a joint value assignment that has an expected Hamming distance
h(x) to optsol(B, e), i.e., a structure approximation is sought that differs on
average in at most h(x) variables from the MPE.

3.1 Computational Complexity

In this section we will discuss the computational complexity of structure approxi-
mations of MPE. Note that a random guess of the values of variables would return

a value assignment which gives an expected Hamming distance h(x) = |M|− |M|
c ,

with c as the cardinality of the (unobserved) variables. In particular, when all
unobserved variables are binary, we can expect to guess half of them correctly.

Corollary 1. MPE is E(h(x))/dH -structure approximable for h(x) = |M| −
|M|
c .

We cannot expect to do better than chance: given that it is NP-hard to n
2 −ε/dH-

structure approximate 3Sat [6] and we can reduce 3Sat to MPE in polynomial
time while preserving the structure of the certificates (by a simple variant of
the proof used in [12, p.1457], which is omitted here for reasons of space), any

polynomial-time |M| − |M|
c − ε/dH -structure approximation algorithm for MPE

could be used to find a n
2 − ε/dH-structure approximation of any 3Sat instance

in polynomial time.

Lemma 1. MPE is h(x)/dH-structure inapproximable for h(x) = |M|− |M|
c −ε,

unless P = NP.
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C1 C2 C3

U4U3U2U1

Fig. 2. Construction of Bφex from φex

This result holds for binary variables with indegree at most three3. Here, we allow
the approximation algorithm to select the h(x) variables. If we are allowed to
designate the variables for which the value is sought, then it is easy to see that we
cannot have a polynomial-time structure approximation algorithm A for MPE,
even for a single variable, unless P = NP, as we could use A consecutively for all
|M| unobserved variables of B and thus obtain a polynomial-time exact algorithm
for MPE; as MPE is NP-hard, the result follows as a corollary. However, we can
prove a much stronger result for networks with three values per variable and
indegree at most six: There cannot exist an algorithm that tells4 us the value of
an arbitrary single variable, unless P = NP:

Theorem 1. No algorithm can calculate the value of one of the variables in the
most probable explanation in polynomial time, unless P = NP.

We will prove Theorem 1 with a reduction from 3Sat, defined as follows.

3-CNF Satisfiability (3Sat)

Instance: A Boolean formula φ = (U,C) in 3-CNF form, with variables
U = u1, . . . , un and literals C = c1, . . . , cm.
Question: Does there exist a truth assignment to the variables U such that all
clauses C are satisfied?

As a running example, we will construct a network for the following (satisfiable)
3Sat instance [5]:

Example 1. φex = (U,C), where U = {u1, u2, u3, u4}, and C = {(u1 ∨ u2 ∨ u3),
(¬u1 ∨ ¬u2 ∨ u3), (u2 ∨ ¬u3 ∨ u4)}.

We construct a Bayesian network Bφ from a 3Sat instance φ = (U,C) as fol-
lows. For each variable ui in φ we add a ternary stochastic variable Ui in Bφ

with values {true, false,#} and uniform prior probability; the set of all Ui

3 As each clause has three variables, the corresponding MPE instance has indegree at
most three.

4 Note that here we require that the algorithm not only returns a joint value assign-
ment cansol (x), but also tells us which subset of cansol (x) matches optsol(x).
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is denoted U. For each clause cj in φ we add a binary stochastic variable Cj

in Bφ with values true and false; the set of all Cj is denoted C. Cj is to be
conditioned on the variables Uj = {U1

j , U
2
j , U

3
j } that correspond to the variables

that occur in cj , and (for j > 1) on the variables Uj−1 = {U1
j−1, U

2
j−1, U

3
j−1}

that correspond to the variables that occur in cj−1. To improve readability, we
define the following shorthands for joint value assignments to Uj and Uj−1: let
u# denote a joint value assignment where all variables have the value #, and
let uTF denote a joint value assignment where none of the variables have the
value #, i.e., all are true or false. For Cj(j > 1) the following conditional
probability distribution is defined.

Pr(Cj = true | Uj,Uj−1) =

⎧⎪⎪⎨⎪⎪⎩
1 if Uj = u, where u makes clause Cj true,
and Uj−1 = uTF

ε if Uj = u# and Uj−1 = u#

0 otherwise

Here, ε is defined to be a sufficiently small (i.e., ε < 1
2n ), yet polynomial-time

computable, value. Likewise, C1 is defined as follows.

Pr(C1 = true | U1) =

⎧⎨⎩
1 if U1 = u, where u makes clause C1 true
ε if U1 = u#

0 otherwise

As an example of this construction, Figure 2 shows the network as constructed
from φex. We set the evidence variables E = C with e = ∧m

j=1Cj = true. We
claim that φ is satisfiable if and only if none of the variables in the most probable
joint value assignment u to U has the value #, and unsatisfiable if and only if
all of the variables in u have the value #. Thus, if an approximation algorithm
tells us the value of any variable of the most probable explanation of B, we can
use that algorithm to solve the corresponding 3Sat instance in polynomial-time.

Proof (of Theorem 1). Assume there exists a polynomial-time structure approx-
imation algorithm A that, when given an MPE instance, returns for one of the
variables in the explanation set M a value that corresponds to the value of that
variable in the most probable explanation. We will show that A can be used to
decide 3Sat in polynomial time; hence, from the existence of such an algorithm
it would follow that P = NP. Let φ be an arbitrary instance of 3Sat and let
(Bφ,E, e) be the MPE instance as constructed above. Note that we can construct
Bφ from φ in polynomial time, as every literal and clause in φ corresponds to
a single variable in Bφ and the size of the conditional probability tables of each
variable is bounded by a constant.

Let u be a joint value assignment to the variables of U of Bφ. We will distin-
guish between three possible scenarios:

1. u ∈ {#}n, i.e., all variables are set to #
2. u ∈ {true, false}n, i.e., none of the variables are set to #
3. u ∈ {true, false,#}n, u �∈ {#}n, and u �∈ {true, false}n
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Note that in case 3) Pr(u, e) = 0 due to the constraints in the joint probability
distributions of Cj . In case 2), if u does not satisfy φ, then also Pr(u, e) = 0. If on
the other hand u does satisfy φ, then the probability Pr(u, e) equals 1

Nsat(1+ε) ,

where 1 ≤ Nsat ≤ 2n denotes the number of satisfying truth assignments to φ.
In case 1), if φ is satisfiable, then Pr(u, e) = ε

1+ε ; as ε was chosen to be strictly

less than 1
2n , this probability is lower than the probability of any satisfying joint

value assignment. However, when φ is not satisfiable, then Pr(u, e) = 1.
Thus, the most probable explanation for evidence e = ∧m

j=1Cj = true is
either u ∈ {true, false}n if φ is satisfiable, or u ∈ {#}n if φ is not satisfiable.
Now assume that, when given (Bφ,E, e) as input, A outputs the value assignment
of one of the unobserved variables in Bφ, that correspond to the value in the most
probable explanation of Bφ. In case A outputs true or false, φ is satisfiable;
in case A outputs #, φ is not satisfiable. Hence, we can use A to solve 3Sat in
polynomial time, concluding the proof.

3.2 Ordered Variables

We saw in the previous section that it is NP-hard to structure-approximate even a
single variable of the most probable explanation in a Bayesian network. However,
we assumed that the values of the variables in the network were unordered.
In this section we assume a particular order on the values and investigate the
consequences for the computational complexity of structure approximation.

Typically, in a Bayesian network some variables might have a ‘natural’ order-
ing, like a variable Height with values Tall, Normal and Small; these values
are ordered Small  Normal  Tall. Other variables, like BloodType or
EthnicGroup lack such an ordering. When a variable is ordered, it makes sense
to redefine the distance measure: when Height is assigned the value Tall in
the most probable explanation, Normal would be a better approximation than
Small.

In the remainder we assume that all variables are ordered, and we introduce
a partial ordered lattice [20] and a corresponding lattice distance function. The
lattice includes all joint value assignments to the observable variables in the
network and it captures the partial order between the assignments. The bottom
of the lattice encodes the joint value assignment m such that m  m′ for all
m′ ∈ Ω(M). Likewise, the top of the lattice encodes the joint value assignment
m′′ such that m′  m′′ for all m′ ∈ Ω(M). In general, a lattice element L(m)
encoding a joint value assignment m precedes another lattice element L(m′) if
and only if m m′. In Figure 3 an example (from [20]) is shown for two ternary
variables X and Y .

A natural distance function comparing two joint value assignments m and m′

would be the distance in the lattice between these assignments, i.e., the length
of the shortest path from L(m) to L(m′). For example, the distance between
x2y1 and x1y3 would be three. Note that this distance function, denoted by dL,
is a metric as the properties of Section 2.2 also hold for dL. Using this distance
function, we can find a trivial guaranteed h(x)/dL-structure approximation with
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x1y1

x2y1

x3y1

x1y2

x2y2 x1y3

x3y2 x2y3

x3y3

Fig. 3. A lattice describing the partial order of the joint value assignments to the
variables X and Y

ordering for h(x) = |M| · 1 c22, rather than the expected E(h(x)) = |M| − |M|
c

without ordering, by always picking the ‘middle’ value in the order. We can,
however, not expect to do better than h(x) = |M| for c ≥ 5, unless P = NP:

Theorem 2. MPE is h(x)/dL-structure inapproximable for h(x) = |M| − 1,
unless P = NP.

Proof. Similar as in the proof of Theorem 1, and using the same construction,
we show that the existence of a polynomial-time algorithm A that can h(x)/dL-
structure-approximate MPE for h(x) = |M|−1 implies that we can decide 3Sat
in polynomial time. We augment the construction used to prove Theorem 1 as
follows: let all variables Ui have five values Ω(Ui) = {false,true,#, d1, d2} in
which d1 and d2 act as dummy variables. Ui is uniformly distributed, and the
order of Ω(Ui) is false  d1  #  d2  true. The conditional probability
distribution of Cj is similar as in Theorem 1; in particular, any joint value assign-
ment U that includes a dummy variable has probability Pr(Cj = true | U) = 0.
We claim that, for any h(x)/dL-structure approximation with h(x) ≤ |M|−1, the
majority of the variables that contain non-dummy values can be used to decide
satisfiability of φ: if the (strict) majority of these variables has true or false

as value, then the instance is satisfiable, otherwise the instance is unsatisfiable.
Observe that an approximation with h(x) = |M|− 1 has at least one ‘correct’

variable, as any deviation from the MPE would increase h(x) by at least one,
i.e., every variable that has a value that is not equal to the MPE contributes a
distance of 1 to h(x). In particular, when one of the variables is correctly labeled
with either # (for an unsatisfying instance) or true or false (for a satisfying
instance), and the other variables have dummy values that are closest to the
MPE value of that variable (i.e., d1 for false, d2 for true, and either d1 or
d2 for #), then h(x) = |M| − 1; clearly here a majority of the (non-dummy)
variables correctly reflects the satisfiability of the instance.
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Now we show that this property holds for every alteration to this joint value
assignment that maintains that h(x) = |M| − 1. We will demonstrate the case
that φ is satisfiable; for unsatisfiable φ, the proof goes analogously.

– If we replace a dummy value with a # value, then h(x) increases by one.
We must also change another dummy value to true or false (whichever is
closest) to maintain that h(x) = |M|−1, so still the majority of non-dummy
variables has as value true or false.

– If we replace a true or false value to a # value, then h(x) increases by
two, and so two dummy variables need to be changed into true or false.

Thus, if A returns a h(x)/dL-structure approximation with h(x) ≤ |M| − 1,
then we can use the output to decide 3Sat: count the number true or false

values and the number of #-values. If the first number is higher than the second,
answer yes, else answer no. As A runs in polynomial time, this algorithm can
decide 3Sat in polynomial time, hence P = NP.

4 Conclusion

In this paper we discussed structure approximations of MPE. In general, we
cannot do better than just randomly guess the joint value assignment: we then
would on average expect to guess 1

c of the variables correctly, where c is the
cardinality of the variables. As it is NP-hard to determine the value of more
than 1

c of the variables in the MPE, there is little room for improvement. We
hypothesize (but could not prove) that it is even NP-hard to get an expected

structure approximation that is strictly better than |M| − |M|
c .

Furthermore, we showed that it is NP-hard in general to obtain an approxima-
tion that determines even a single variable in the MPE. So, without information
on the ordering of the values or restrictions on the network structure or prob-
ability distribution, if we want information on the structure of the MPE (in
polynomial time), there are little alternatives than to compute it exactly.

However, if we do have information on the ordering of the values, we can do
a bit better5 than that. We showed that the simple strategy ‘always stay in the
middle’ guarantees a h(x)/dL-structure approximation for h(x) = |M| · 1 c22 in
the worst case, which is better than the expected value if we would randomly
guess the values. We showed that it is NP-hard to h(x)/dL-structure approximate
MPE for h(x) = |M| − 1 and c ≥ 5.

The gap between these two results (for c = 5, h(x) = 2 · |M|) might leave some
room for improvement. There may be constrained situations where solving MPE
exactly remains intractable, whereas a good structure approximation might be
found in polynomial time. One suggestion, that we leave for future work, is to
investigate whether it could help to use monotonicity properties in the network

5 As one reviewer carefully pointed out, the Hamming and edit distances are not quite
comparable for c > 2 as the edit distance will be on average larger with larger c,
while the Hamming distance remains 1 whenever a mismatch occurs.
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to get a better structure approximation; the NP-hardness proofs in this paper
critically depend on non-monotone relations between the clause-nodes and the
literal-nodes in the network. However, note that even when the hypothesis space
is monotone in the evidence, obtaining evidence need not tell us anything about
the most probable hypothesis. As an example, in the following conditional de-
pendencies for H1 and H2, the most probable hypothesis given evidence e differs,
even though both H1 and H2 are monotone in E:

Pr(H1 = true | E) =

{
0.2 if E = true

0.1 if E = false

Pr(H2 = true | E) =

{
0.7 if E = true

0.6 if E = false

Note, that argmaxH1
Pr(H1, e = true) = false, while argmaxH2

Pr(H2, e =
true) = false.
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Abstract. An important aspect of decision making is that a decision is not made
at a time assuming that the decision maker (DM) has all relevant information at
hand at the same time. On the contrary making a decision results from a pro-
cess during which (non) relevant and possibly conflicting information come at
different instant. Multi-criteria decision making (MCDM) is a typical case of a
dynamic process. We show in this paper how argumentation can help to represent
this dynamics.

1 Introduction

Multiple Decision Making (MCDM) consists for a Decision Maker (DM) in selecting
one option among several on the basis of several criteria. In this setting, the set of cri-
teria is assumed to be known and fixed. In contrast to the normative, descriptive and
prescriptive approaches to decision aid, constructive approaches correspond to situa-
tions where the set of criteria and the MCDM model are evolving over time [13,3,14].
Decision is not instantaneous, assuming that the DM has all relevant information at
hand at the same time. On the contrary making a decision results from a process dur-
ing which possibly conflicting information becomes available at different instants. In
common language, the decision is the impact point of a sequence of highlights and
milestones during which the options are being constructed, partial decisions are taken,
a new actor provides information or advice, and the decision problem is reshaped, a
new criterion appears useful, and so on. This constitutes the decision process. There are
often big differences between the initial convictions of the DM and the final decision.

What is at the origin of this evolution? At the epistemic (knowledge) level, the eval-
uation of the options on the various criteria might be mistaken or new options might be
considered. At the practical (preferences) level, as the DM’s preferences are by nature
subjective, one may say that no individual can provide arguments against the use of a
particular decision model for the DM. Now, consider the example of a DM who wishes
to buy an electronic device. The choice of the relevant criteria the DM shall use depends
mostly on the usage he intends to make of the device. We interpret these usages as goals
the DM has to pursue. Then the shift between the initial convictions of the DM and the
final decision arises from (1) a mismatch between the usage/goal and the preference
model he defined (e.g. the criteria that appear in the decision model are not representa-
tive of the usage), or (2) a mismatch between the preference model defined by the DM
and the available options (in which case, there is no satisfactory option according to the
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preference model). In both cases, the DM has to revise his preference model. In partic-
ular, the DM probably needs to make concessions on the level of achievement he wants
on some goals. The mechanism under which the DM makes concession is similar to
the concessions agents make during a negotiation protocol [6,10,12]. The DM becomes
aware of these mismatches by getting new information from experts (e.g. reading expert
reviews on the electronic devise or discussing with experts). The DM will discover new
usages relevant for him, importance of criteria given some usages, etc.

We propose to use argumentation to handle this dynamic process. Argumentation is
useful as several experts are expected to give rise to conflicting arguments. The existing
works combining multi-criteria approaches to argumentation [2,5,9,15] do not address
our concern properly. In particular, they do not make a distinction between the goals
and the criteria. Moreover, they do not address the concessions the DM needs to make
during the dynamic decision process.

The paper is organized as follows. Section 2 develop the abstract general modelling
of the decision process. The next section justifies our approach with the help of a de-
tailed example on the purchase of a digital camera. Section 4 explains our (argumen-
tation) model to represent the decision process. Section 5 illustrate this model on the
motivating example. Lastly, we compare ourselves to related works and we conclude.

2 General Modeling of the Whole Decision Process

2.1 Abstract General Modeling of the Decision Process: Acceptability and Goals

The DM shall make a choice among a setD of potential decisions (options). The choice
of the DM will be based on a set C = {c1, . . . , cn} of fundamental points of view (cri-
teria), which permit to meet the concerns of the DM. Each criterion c ∈ C is associated
to a descriptor (attribute), that is a set Xc describing the plausible impacts of options
with respect to c. The DM will only base his decision on the value of options on the n
attributes. The value of option d on attribute Xc is denoted by xc(d).

The decision model is characterized by some parameters p (e.g. weights on criteria)
At this point, the decision model is only represented by a condition acceptabilityp(d)
indicating whether d ∈ D is acceptable given parameters values p.

Our point is that the choice of parameters p We will develop in Section 3 an illus-
trative example on an individual willing to buy a digital camera. Criteria are not the
same if the user wants to make sport or portrait pictures. These usages can be seen as
goals that the DM wishes to pursue. Unlike traditional AI works [1,2], we make a clear
distinction between goals and criteria. Goals correspond to usages the DM intends to
make; these criteria are derived from these goals and the decision is made on the basis
of criteria.

We denote by G the set of all potential goals for the DM. All possible usages will
be potential goals. One may have other goals such as the will to minimize cost. An
importance in scale Limp is defined for each g ∈ G – depicting how important it is
to fulfil the goal. Apart from that, we denote by eg the level of achievement of goal
g expressed in a scale LG composed of values “null”, “low”, “medium” and “high”.
We have e ∈ LG

G . As previously said, parameters p are derived from e by a function
T : LG

G → P such that T (e) = p.
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2.2 Abstract General Modeling of the Decision Process: Concession

Given e ∈ LG
G , the acceptable options are the options d ∈ D such that condition

acceptabilityT (e)(d) holds. This set might be empty. We interpret this as some conflicts
that arise during the decision process, between the input data and the decision model.

Negotiation is a standard means during which a set of agents having conflicting
points of view try to reach an agreement. The alternating offer protocol is very popular
one in AI and Game Theory [8]. Let us consider a buyer-seller situation. Both agents
define the ranges of price values that they find acceptable: the most preferable price
initP an agent will start with in the negotiation, and the limit price limitP below/above
which the agent will refuse to accept offers. When an agent has a negotiation deadline
T , he will make offer initP at time t = 0 and offer limitP just before t = T . The of-
fers he will make for intermediate times depend on his tactic concerning time [6,10,12]:
boulware (the agent keeps his initial offer almost until the deadline, and makes conces-
sion only at the end), conceder (the agent concedes very rapidly and then offers limitP
till the deadline), linear (the agent makes concession linearly with time).

When there is no acceptable option at a given iteration of the decision process, the
DM needs to make concessions on the expected level of achievement of some goals. As
in a negotiation, the DM starts with some initial preferences, artifacts on which he is
ready to give up, artifacts on which he will by no mean give up. Then the DM can define
two levels of achievement for each goal g: the initial one initPg ∈ LG the DM will start
with in the decision process, and the limit threshold limitPg ∈ LG below/above which
the DM will refuse to concede. For goal g ∈ G, we define a concession function

Concg : N× LG × LG → LG . (1)

More precisely, Concg(k, initPg, limitPg) is the value of the required achievement
level the DM is ready to accept at step k. The tactics boulware, conceder and linear
provide examples of functions Conc. We assume that Concg(1, initPg, limitPg) =
initPg and Concg(T, initPg, limitP g) = limitPg, where T is the deadline. We define

C : N× LG
G × LG

G → 2LGG
by

C(k, initP , limitP ) = ×g∈G
[
initPg,Concg(T, initPg, limitPg)

]
(2)

where [a, b] (with a, b ∈ LG) is the set of elements of LG between a and b, and
C(k, initP , limitP ) ⊆ LG

G is the set of possible concessions at iteration k of the
decision process. The acceptable options after a concession has been made are:

accD(k) = {d ∈ D , ∃g ∈ C(k, initP , limitP) s.t. acceptabilityT (g)(d) holds}. (3)

The decision process may stop whenever accD(k) �= ∅. The preferred option in accD(k)
is determined by (i) minimizing the importance of the goals on which a concession is
made, and (ii) maximizing the certainty of the information used for each option.

This general model of the decision process will be instantiated in the rest of the pa-
per. We propose to use logic and argumentation rather than simply applying functions
C, accD, . . ., because (i) there are often conflicting information coming from several
sources (which cannot be readily handled with standard MCDM), (ii) an argument con-
tains its warrant, i.e. the explanation of its statement (which is not the case in MCDM).
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2.3 Instantiation of the Abstract General Modeling: Case of the Weighted Sum

The aim of this paper is to emphasize on the synergy between MCDM and argumen-
tation to represent a realistic dynamic decision process. To keep the paper simple for
non-specialists in MCDM, we choose the simplest and most widely used MCDM model
– namely the weighted sum – but our model can be used on any MCDM model.

The DM has a preference represented by the binary relation �Xc on attribute Xc:
a �Xc b if the DM finds that a ∈ Xc is at least as good as b ∈ Xc. Criteria are supposed
to be either not satisfied at all or completely satisfied. More precisely, criterion c is
completely met iff xc �Xc 1lc, where 1lc ∈ Xc is a threshold. In order to synthesize
the evaluations on all criteria, a scale Limp expressing the relative importance of each
criterion is also introduced. Scale Limp is composed of values 0 (no importance), 1
(weak importance), 2 (medium importance), 3 (large importance) and 4 (very large
importance). In the weighted sum model, an overall utility U is assigned to each option
d ∈ D:

U(d) =
∑

c∈C , xc(d)�Xc1lc

wc (4)

where wc ∈ Limp is the relative importance of criterion c. The parameters p of this
model are composed of wc and 1lc for all c ∈ C: p = (wc, 1lc)c∈C .

An option is preferred to another one if its overall utility is larger. Finally, the DM
cannot accept a decision if most of the criteria are not met. In this paper, condition
acceptabilityp(d) is true (d is acceptable for the DM) if

U(d) > λ
∑
c∈C

wc (with 1
2 < λ < 1). (5)

3 Motivating Example

We consider here a typical example coming from daily life: John (the DM) wants to buy
a digital camera. We take λ = 3

4 in equation (5).

3.1 Step 1: Initialisation Phase – Definition of Usages and Criteria

John first defines his goals for the camera. His main usage will be for “landscape”
photography as he likes trekking and climbing. He associates achievement level “high”
to this usage. The second goal is “affordability” as John has limited budget. Then John
defines the following three criteria according to his goals:

– c1: sharpness of images. Attribute Xc1 is the number of pixels in Mega pixels
(Mpx). John sets 1lc1 = 10Mpx and its importance to 2 (medium).

– c2: speed of camera. AttributeXc2 is the number of images that the camera can take
in a second (im/s). John sets 1lc2 = 1 im/s and its importance to 1 (weak).

– c3: price. Attribute Xc2 is the price of the camera in Euros. John sets 1lc3 = 200
Euros and its importance to 2 (medium). John also says that his limit price he
cannot go beyond is 400Euros.

John assesses four options d1, d2, d3, d4. Acceptability condition equation (5) gives:
U(d) > 15

4 (see Table 1). Option d1 completely meets the criteria and expectations of
John. He wants to have advices from different experts to confirm his choice.
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3.2 Step 2: Expertise on Sharpness

– Capture of the Expertise. John learns from an expert that “If expectation is high
on landscape, then threshold 1lc1 should be 16Mpx”, and “If expectation is medium
on landscape, then threshold 1lc1 should be 14Mpx”. The expert also says that “If
expectation is medium or high on landscape, then criterion speed is not important”.

From this, John updates 1lc1 = 16Mpx and importance of c2 to 0. Acceptability
condition equation (5) gives: U(d) > 3. There is no acceptable option:

U(d1) = 2 , U(d2) = 2 , U(d3) = 0 , U(d4) = 2.

– Choice on the Concession. John realizes that his expectations yield no accept-
able solution. He thinks of making a concession either on usage (give-up on “high
on landscape” and consider “medium on landscape” instead) or on price (give-up on
1lc3 = 200Euros and consider 1lc3 = 300Euros instead). In the first case, he updates
1lc1 = 14Mpx. We obtain:

For concession on usage: U(d1) = 2 , U(d2) = 2 , U(d3) = 2 , U(d4) = 2

For concession on price: U(d1) = 2 , U(d2) = 2 , U(d3) = 2 , U(d4) = 2

For concession on both: U(d1) = 2 , U(d2) = 2 , U(d3) = 4 , U(d4) = 2

John understands that making only one of these two concessions does not solve the
problem as there is no admissible option in both situations. Hence he decides to make
both concessions. Option d3 appears then as a suitable camera.

3.3 Step 3: Need for “Adventure-Proof” Camera

– Capture of the Expertise. John discusses with a new expert that warns him that
he needs a rugged (tough) camera: “If you like climbing, you need to add adventure
with expectation high as usage”. Moreover, the experts says: “If expectation is high
on adventure, criterion adventure-proofness is very important”. The new criterion c4
(adventure-proofness) is associated to attribute Xc4 representing the height in meter
(m) up to which the camera is shockproof. Finally, the expert says: “If expectation is
high on adventure, then the camera should be shockproof up to 1.5m”.

Accordingly, John adds c4 in C, with importance 4 and 1lc4 = 1.5m. Acceptability
condition equation (5) gives: U(d) > 6. John considers two new cameras (d5 and d6).

Options d5 and d6 are just below the acceptability threshold (see Table 1).

Table 1. Values of the options on the criteria and utility U at steps 1 and 3. In columns with U ,
Yes/No in bracket tells whether option is acceptable

Options c1 (Mpx) c2 (im/s) c3 (Euros) U (acc) at step 1 c4 (m) U (acc) at step 3
d1 10 1 200 5 (Yes) 0.5 2 (No)
d2 8 3 200 3 (No) 0.5 2 (No)
d3 14 1 300 3 (No) 0.5 4 (No)
d4 16 1 400 3 (No) 0.5 2 (No)
d5 12 1 300 1.5 6 (No)
d6 14 1 400 1.5 6 (No)
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– Final Concession. John thinks of making a last concession either on usage (give-up
on “medium on landscape” and consider “low on landscape” instead) or on price (give-
up on 1lc3 = 300Euros and consider 1lc3 = 400Euros instead). John does not want to
give-up on “medium on landscape” since it was his first motivation for buying a camera.
Hence he accepts to make concession on price (1lc3 = 400Euros) as 400Euros does
not exceed his limit price. We obtain:

U(d1) = 2 , U(d2) = 2 , U(d3) = 4 , U(d4) = 4 , U(d5) = 6 , U(d6) = 8.

Only d6 is acceptable. Finally, as John thinks he gets sufficient advices, he decides to
buy the acceptable option d6.

4 Argumentation Framework for the Decision Process

4.1 Knowledge and Goal Bases

In Argumentation frameworks applied to decision problems, two separate knowledge
bases are usually constructed: one at the epistemic layer depicting the beliefs of the
agent, and the other one at the practical layer representing the preferences of the agent
[11]. Decision models are described as propositional formula.

In our case, the belief and preference layers are heterogeneous (the first one is sym-
bolic and the second one is numeric). We propose to represent the multi-criteria prefer-
ence model under the formalism of propositional logic in order to have a unique sym-
bolic formalism to encompass both beliefs and preferences. Argumentation will then be
used on all rules (both from the belief and preference layers).

The decision process is composed of different steps from step 1 to step T (the dead-
line). The current step number is k. Let L be a propositional language among which the
propositional variables are:

– Goal (g, α) with g ∈ G and α ∈ LG , which is true if goal g has level of achievement
α at current step k;

– initAchievGoal (g, α) with g ∈ G and α ∈ LG , which is true if goal g has initial
required achievement level α;

– limitAchievGoal (g, α) with g ∈ G and α ∈ LG , which is true if goal g has limit
required achievement level α;

– Concession(g, k) with g ∈ G, which is true if a concession on goal g is done at
step k;

– Attc(d, α) with c ∈ C, d ∈ D and α ∈ Xc, which is true if the value of option d on
attribute Xc is α (i.e. xc(d) = α);

– Impc(α) with c ∈ C and α ∈ Limp, which is true if the importance of crit. c is α;
– 1lc(α) with c ∈ C and α ∈ Xc, which is true if the value of threshold 1lc is α;
– U(d, α) with d ∈ D and α ∈ R+, which is true if the utility U(d) of option d is α;
– Acc(d) with d ∈ D, which is true if option d is acceptable according to the prefer-

ence model of the DM;
– Acc(D), which is true if there is at least one option in D that is acceptable.
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Let us now give examples of rules at the belief and practical levels (taken from the
illustrative example) based on the previous primitives. Function T : LG

G → P (see
Section 2.1) is described as rules. The first two rules are examples of such rules.

Goal (landscape, high) → 1lc1(16)

Goal (landscape, high) ∨Goal(landscape,medium) → Impc2(0)

climbing → Goal(adventure, high)

Let us now describe the rules at the preference level. First of all, if a criterion has
importance 0, the DM is not obliged to define threshold 1l and we can set any value to 1l

Impc(0) → 1lc(0) (6)

According to equation (4), the rule specifying U is:

Attc1(d, x1) ∧ . . . ∧ Attcn(d, xn) ∧ 1lc1(α1) ∧ . . . ∧ 1lcn(αn)∧

∧ Impc1(w1) ∧ . . . ∧ Impcn(wn) → U
(
d,

∑
i∈{1,...,n} , xi�Xcαi

wn

)
(7)

According to equation (5), the rule specifying Acc(d) is:

Attc1(d, x1) ∧ . . . ∧Attcn(d, xn) ∧ 1lc1(α1) ∧ . . . ∧ 1lcn(αn)∧
∧ Impc1(w1) ∧ . . . ∧ Impcn(wn)∧

∧
( ∑

i∈{1,...,n} , xi�Xcαi

wn > λ
∑

i∈{1,...,n}
wn

)
→ Acc(d) (8)

Finally predicate Acc(D) is obtained by the following rule:

∨d∈D Acc(d) → Acc(D) (9)

4.2 Concession Management

During the decision process, the DM may adopt different concession tactics (boulware,
conceder, linear) depending on the goals. He may for instance be boulware on one goal
and conceder on another goal. Note that there is some relationship between the choice
of these tactics for each goal, and the relative priority assigned to them. For instance,
one might expect that the DM is not ready to concede rapidly for an important goal.

The next rule determines the step where the last concession occurred for goal g

Concession(g, k′) ∧ ¬Concession(g, k′ + 1) ∧ · · · ∧ ¬Concession(g, k)
∧ (k′ ≤ k)→ LastConcession(g, k′) (10)

If the latest concession occurred at step k′, then the required achievement level at step
k for goal g is equal to Concg(k

′, initP , limitP ) (i.e. the concession made at step k′):

LastConcession(g, k′) ∧ initAchievGoal (g, initPg) ∧ limitAchievGoal (g, limitPg)

→ Goal(g,Concg(k
′, initPg, limitPg)) (11)

where Concg is defined in (1). In order to trigger rule (11) for all k ≥ 1, we add the
literal Concession(g, 1) for all goals in the knowledge base, since making a concession
at step 1 means taking the initial value initPg at this step.
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4.3 Dynamics

At each step k ≥ 2, the DM gets new information from a new expert and updates
his bases accordingly. In the motivating example, the DM found an acceptable option
at steps 1 and 2 (options d1 and d3 respectively). Hence, why did not he select the
acceptable option and stop the decision process at one of these steps? At the beginning
of the decision process, the DM sets a deadline T for the decision process. He did not
stop before the deadline since, he feels that he is not expert in the field and he wants to
get advices from a minimum number (denoted by threshold later) of experts to confront
his conviction and become confident in his decision. In our motivating example, the
DM prefers to see at least two experts in different specialties before taking the final
decision. The decision process stops when an acceptable option is obtained and the DM
is confident in the model, or when the maximal number of steps is reached:

(k ≥ T ) ∨ ((k ≥ threshold) ∧ Acc(D))→ stop. (12)

At step k of the decision process, the DM has two bases:

– BK(k) = {(s, ρ)} where s ∈ Wff (L) (well-formed formulas of language L), is a
knowledge base (including criteria and goals), and ρ is the certainty level associated
to s. We assume ρ can take only two values: 1 (low certainty) or 2 (high certainty).

– BG(k) = {(g, p)} where g ∈ G, is a set of goals, and p is the importance on g in
scale Limp.

We denote byB∗
K(k) andB∗

G(k) the corresponding sets of propositions in which weights
are ignored. We assume that B∗

G(k) = G so that BG(k) contains each goal exactly once.
BK(k) contain rules (6) – (11) with certainty 2. BK(1) contains the initial convictions of
the DM with certainty either 1 or 2. The DM assigns certainty 1 to the initial convictions
for which he is not confident. At step k, the DM adds the rules provided by the experts
with certainty 2.

4.4 Arguments

We derive the importance wc and the threshold 1lc for criteria from the required level of
achievement of goals. According to equation (5), option d is acceptable if most of the
criteria are met, and thus if most of the goals are fulfilled, thanks to the rules between
goals and criteria artifacts. If the DM is more drastic and wants all his goals to be
fulfilled, equation (5) shall be replaced by the condition U(d) =

∑
c∈C wc.

Once knowledge and goal bases are defined, we are looking for the subsets of these
bases that entail the acceptability of a decision [1,2]. These are arguments.

Definition 1. An argument supporting a decision d ∈ D is a pair a = 〈K, d〉 where

(i) K ⊆ B∗
K(k),

(ii) K is consistent,
(iii) K ) Acc(d),
(iv) K is minimal (w.r.t. ⊆) among the sets satisfying (i), (ii) and (iii).

K is called the support of the argument and d its conclusion. Arguments correspond to
elements in accD(k) (see (3)).
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The importance of criteria is used to weigh up pros and cons for each option in (7) and
(8). By contrast, importance of goals allows to select the most appropriate concession:
we prefer to concede on a less important goal.

Definition 2. Given an argument a = 〈K, d〉, we define (cert(a), achiev (a)) (the cer-
tainty and achievement levels of argument a respectively) by

cert(a) =|{(r, 1) ∈ BK(k) : r ∈ K}| (# of beliefs in K of certainty 1)

achiev (a) =
∑

(g,p)∈BG(k) : LastConcession(g,k)∈K

p

For function achiev , we consider all goals for which a concession has been made at
current iteration k. The importance of these goals are summed as there is a cumulative
effect to make concessions on several goals at the same time. We want to minimize
the value of both achiev and cert functions. We add predicates Concession(g, k) and
¬Concession(g, k) in the knowledge base BK(k) at step k. As we know after each
iteration whether a concession has been made, we enter in BK(k) the correct value of
these predicates for the previous steps (either Concession(g, j) or ¬Concession(g, j)
for every j < k). In order to minimize achiev , we need to keep as few concessions at
iteration k as possible in arguments.

We define the following order � over arguments:

a� b if either cert(a) < cert(b) or [cert(a) = cert(b) and achiev (a) < achiev (b)].

It is the lexicographic ordering, where we order first on the certainty levels and secondly
on the achievement of goals (concessions made). We indeed prefer first to use as much
certain knowledge as possible.

5 Application on the Motivating Example

5.1 Step 1: Initialisation Phase – Definition of Usages and Criteria

We assume that T = 3. Base BK(1) contains in particular the following knowledge

(initAchievGoal (landscape, high), 2) , (limitAchievGoal (landscape, low), 2)

(initAchievGoal (affordability, high), 2) , (limitAchievGoal (affordability, low), 2)

(Goal (affordability, high)→ 1lc3(200), 2) , (Concession(g, 1), 2) ∀g ∈ G
(Goal (affordability,medium)→ 1lc3(300), 2) , (Impc1(2), 2)

(Goal (affordability, low)→ 1lc3(400), 2) , (Impc2(1), 1)

(Impc3(2), 2) , (Impc4(0), 1) , (1lc1(10), 1) , (1lc2(1), 1)

John is not sure about the thresholds for criteria c1 and c2 and the importance of cri-
teria c2 and c4, and assigns certainty 1 to these beliefs. There is only one argument
a1 = 〈K1, d1〉, where cert(a1) = 4, K1 ) U(d1, 5) and K1 ) Acc(d1). Hence d1 is
acceptable.
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5.2 Step 2: Expertise on Sharpness

Base BK(2) contains in particular the following rules

(Goal (landscape, high)→ 1lc1(16), 2) , (Goal (landscape,medium)→ 1lc1(14), 2)

(Goal (landscape, low)→ 1lc1(12), 2)

(Goal (landscape, high) ∨Goal(landscape,medium) → Impc2(0), 2)

(Concession(g, 2), 2) ∀g ∈ G , (¬Concession(g, 2), 2) ∀g ∈ G

The argument with minimum certainty has cert equal to 1. There is no acceptable de-
cision with cert equal to 1, when the DM does not make any concession. Then a2 =
〈K2, d3〉, with {Concession(landscape, 2), Concession(affordability, 2)} ⊆ K2 and
cert(a2) = 1, is an argument, where we assume (under the linear tactic – see Section
2.2):

Conc landscape(2, high, low) = medium

Concaffordability(2, high, low) = medium

Hence the DM needs to make a concession on both landscape and affordability. More-
over, K2 ) U(d3, 4). Hence we recover that d3 is acceptable.

5.3 Step 3: Need for “Adventure-Proof” Camera

BG(3) is composed of (adventure, 3), (landscape, 2) and (affordibility, 1). BaseBK(3)
contains in particular the following rules

(initAchievGoal (adventure, high), 2) , (limitAchievGoal (adventure, low), 2)

(Goal (adventure, high)→ 1lc4(1.5), 2) , (Goal (adventure, low)→ 1lc4(0.5), 2)

(Concession(affordability, 2), 2) , (Concession(landscape, 2), 2)

(¬Concession(adventure, 2), 2)
(Concession(g, 3), 2) ∀g ∈ G , (¬Concession(g, 3), 2) ∀g ∈ G

There are seven arguments with cert equal to 0. At least one concession must be made
at step 3 with these arguments. Considering the four arguments making the least con-
cessions, we obtain the arguments a3 = 〈K3, d6〉, a′3 = 〈K ′

3, d3〉, a′′3 = 〈K ′′
3 , d5〉,

a′′′3 = 〈K ′′′
3 , d6〉, with cert(a3) = cert(a′3) = cert(a′′3 ) = cert(a′′′3 ) = 0 and

Concession(affordability, 3) ∈ K3

Concession(adventure, 3) ∈ K ′
3

Concession(landscape, 3) ∈ K ′′
3

{Concession(affordability, 3),Concession(landscape, 3)} ⊆ K ′′′
3

with achiev (a3) = 1, achiev (a′3) = 3, achiev (a′′3 ) = 2, achiev (a′′′3 ) = 3. Hence a3 is
the most preferred argument according to � and thus option d6 is selected. The process
stops according to condition (12).
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6 Related Work

Combination of MCDM and argumentation has an increased interest in AI in recent
years. The first work on using argumentation for decision making is [7]. Even though
this work uses a simple mechanism of pros and cons, it has been successfully applied to
medicine applications [4]. A multi-criteria decision approach to decide among options
is presented in [2], where criteria are fed with acceptable arguments pros and cons
each option. Decision models are then applied to these sets of arguments. In [15], a
logical language for represented a qualitative multi-criteria model is described. Some
predicates are defined for each component/parameter of a decision model. Arguments
can then be constructed.

Reference [9] is the first attempt to apply argumentation to assist the decision pro-
cess. The main focus of this paper is on the relationship between the Decision Ana-
lyst (expert in decision techniques) and the Decision Maker (the client of the decision
analyst). Moreover, the framework proposed by the authors allows specifying context-
dependent multi-criteria decision frameworks (combining both the problem description
and its formulation). A virtual selling agent helps a customer to choose an electronic
devise that meets his needs in [5]. Firstly the profile of the customer is identified among
a set of predefined profiles. The profile includes the intended usage by the customer of
the electronic device. Then recommendations are generated until the customer accepts
one or there is no recommendation left. A very simple multi-attribute decision model
is used to compute the overall utility of each option from predefined scores allotted to
each predefined profile on each attribute.

Compare to the previous works, our model focuses on the dynamics of decision
process, and in particular the appearance of new individuals (experts) providing advices
in order to help the decision maker to construct a decision model. We also consider the
concessions the decision maker has to make during this dynamic process. In our view,
decision aid is thus close to a negotiation process, except that the final decision is made
only by one individual.

7 Conclusion and Perspectives

We have proposed an argumentation framework to represent a dynamic multi-criteria
decision process. We aim at helping a DM who gathers information from different
sources (expert review on Internet, . . .) in order to increase his convictions and con-
fidence in the best decision to take. At each iteration of the process, the DM integrates
information from a new source, confronts it to his own knowledge base and makes par-
tial decisions. The DM has some goals he wants to pursue (e.g. target price or usages
on the electronic devise). The DM also defines intensity on the usage and more gener-
ally the required level of achievement on each goal. The experts basically explain what
are the relevant criteria (with their importance and threshold value) given the goals and
their associated level of achievement. Often, a DM starts with high expectations on
many goals. Then he realizes that there is no suitable option. To go further, he needs to
make concessions on his expectations. We have proposed a mechanism to suggest the
less demanding concessions that yield acceptable options, in the spirit of what is done
in negotiation protocols.



Argumentation Based Dynamic Multiple Criteria Decision Making 363

The current work can be improved in different ways. First of all, one can extent
our framework to use more general models than the weighted sum. One only needs to
define the acceptability function. For outranking models, this can be done in the spirit of
ELECTRE TRI method (using a reference profile). Next, more refined argumentation
frameworks could be used, for instance based on Dung like paradigm and computation
of extensions. From an applicative side, our model is closer to human decision process.
It allows representing the dynamics of decision making and in particular the evolution
of the DM’s convictions. We feel an implementation in the spirit of [7,4] could be
possible.
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Abstract. A framework for quantifying lower and upper bipolar belief
is introduced, which incorporates aspects of stochastic and of semantic
uncertainty as well as an indeterministic truth-model allowing for inher-
ent linguistic vagueness at the propositional level. This is then extended
to include lower and upper measures of conditional belief given infor-
mation in the form of lower and upper truth-valuations. The properties
of these measures are explored and their relationship with conditional
belief in other uncertainty theories is highlighted.

1 Introduction

A defining feature of vague concepts is that they admit borderline cases which
neither definitely satisfy the concept nor its negation. For example, there are
some height values which would neither be classified as being absolutely short
nor absolutely not short. For propositions involving vague concepts this naturally
results in truth-gaps. In other words, there are cases in which a proposition is
neither absolutely true nor absolutely false suggesting that a non-Tarskian notion
of truth may be required to capture this aspect of vagueness. A model of this kind
with distinct, although related, valuations for absolute truth and absolute falsity
exhibits, what Dubois and Prade [1], refer to as symmetric bivariate unipolarity,
whereby judgments are made according to two distinct evaluations on unipolar
scales i.e. distinct evaluations about the truth value of a sentence and that of its
negation. In the current context, we have a strong and a weak evaluation criterion
where the former corresponds to absolute truth and the latter not absolute falsity.
As with many examples of this type of bipolarity there is then a natural duality
between the two evaluation criteria in that a proposition is absolutely true if
and only if its negation is absolutely false.

The development of formal models incorporating truth-gaps has potentially
important applications in artificial intelligence systems. For example, allowing
for borderline cases can help to mitigate the risks associated with making fore-
casts [15]. In this context, a bipolar framework can form the basis of a decision
theoretic model to enable natural language generation systems, such as auto-
matic weather forecasters, to decide between different assertions with different
levels of semantic precision, so as to minimize risk and maximize performance [5].
In multi-agent systems where agents need to reach consensus concerning a set of
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propositions, the use of borderline cases can allow agents to adapt their beliefs so
as to reach a compromise with others, whilst maintaining a certain level of inter-
nal consistency [6]. Furthermore, in multi-agent dialogues a bipolar approach can
help to distinguish between strong and weak viewpoints in opinion formation [8].
Another application area of growing importance is in the representation of so-
called flexible specifications for adaptive autonomous systems. The deployment
of autonomous systems in complex dynamic environments tends to naturally re-
sult in a tension between the requirement that the system’s behaviour conforms
to a predefined specification, and the need for it to be sufficiently flexible so as
to cope with severe uncertainty and unexpected scenarios. For example, it might
find itself in situations not envisaged by its designers, where all available actions
result in some violation of its specification. In such cases, a more flexible form
of specification may allow for some constraints to be only borderline satisfied in
certain conditions. Furthermore, the blurring of concept boundaries in the in-
terpretation would then permit some aspect of gradedness, potentially allowing
the system to choose between different suboptimal possibilities.

In all of the above application areas the adequate representation of epistemic
uncertainty combined with bipolarity is also of central importance. Typically
we think of uncertainty as arising because of insufficient information about the
state of the world. However, in the presence of vagueness there may also be se-
mantic uncertainty due to partial knowledge of language conventions resulting in
agents being unsure about conceptual boundaries. Here we extend bipolar belief
measures, recently proposed in [7], which combine probabilistic uncertainty with
truth-gaps as represented in Kleene’s strong three-valued logic [4]. More specifi-
cally, the main contribution of this paper is the introduction of natural measures
of conditional belief within this framework. We then discuss their properties and
relate and contrast these measures to existing definitions of conditional belief in
the literature such as in Dempster-Shafer theory and fuzzy logic.

An outline of the paper is as follows: Section 2 introduces valuation pairs as
a bipolar truth-model based on Kleene’s three-valued logic. Section 3 defines
bipolar belief pairs in terms of probability distributions over the set of valuation
pairs and shows their relationship to lower and upper membership functions in
interval-valued fuzzy logic. Extending this idea, section 4 proposed definitions
for conditional belief pairs and investigates their properties. Finally, in section
5 we have conclusions and further discussion of potential applications of the
framework.

2 Valuation Pairs

In this section, we introduce valuation pairs as a bipolar model of truth which
allows for the explicit representation of borderline cases. Typical examples are
declarative sentences containing vague adjectives e.g. low, tall, fast etc, although
truth-gaps can of course result from other sources of vagueness such as from verbs
and nouns. We now propose to model truth-gaps by replacing a single binary,
true or false, valuation on propositions with distinct lower and upper valuations
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representing absolutely true and not absolutely false respectively. Borderline
cases then correspond to those sentences in which the lower and upper valuation
differ.

Let L be a language of propositional logic with connectives ∧, ∨ and ¬ and
propositional variables P = {p1, . . . , pn}, and let SL denote the sentences of L
as generated recursively from P by application of the connectives. A valuation
pair on SL consists of two binary functions v and v representing lower and
upper truth-values. The underlying idea is that v represents the strong criterion
of absolutely true while v represents the weaker criteria of not absolutely false.
In accordance with [11], we might think of a sentence being absolutely true as
meaning that it can be uncontroversially asserted without any risk of censure,
while being not absolutely false only means that it is acceptable to assert i.e.
one can get away with such an assertion. For example, consider a witness in
a court of law describing a suspect as being short. Depending on the actual
height of the suspect this statement may be deemed as clearly true or clearly
false, in which latter case the witness could be accused of perjury. However,
there will also be an intermediate height range for which, while there may be
doubt and differing opinions concerning the use of the description short, it would
not be deemed as definitely inappropriate and hence the witness would not be
viewed as committing perjury. In other words, for certain height values of the
suspect, it may be acceptable to assert the statement p=‘the suspect was short’,
even though this statement would not be viewed as being absolutely true. One
possible bipolar model of the concept short exhibiting such truth-gaps could be
as follows: Let h be the height of the suspect and suppose that short is defined in
terms of lower and upper thresholds h ≤ h on heights. In this case p is absolutely
true if h ≤ h, absolutely false if h > h and borderline if h < h ≤ h (see figure 1).

Fig. 1. A bipolar interpretation of the concept short

It is important to note that in this model truth-gaps corresponding to different
lower and upper truth valuations are not the result of epistemic uncertainty
concerning the state of the world but rather due to inherent flexibility in the
underlying language conventions. In other words, a truth-gap (or middle truth-
value in three-valued logic) does not represent an uncertain epistemic state.
For example, given absolute certainty about suspect’s height the proposition
p may then be known to be borderline because of the inherent flexibility (or
vagueness) in the definition of the concept short i.e. because h < h ≤ h. The
potential confusion resulting from applying many-valued logic to model epistemic
uncertainty is highlighted by Dubois in [2]. In the sequel we shall emphasize the
truth-value status of the intermediate case by using the term borderline rather
than ‘uncertain’ or ‘unknown’ as originally suggested by Kleene [4].
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Definition 1. Kleene Valuation Pairs
A Kleene valuation pair on L is a pair of functions v = (v, v) where v : SL →
{0, 1} and v : SL → {0, 1} such that v ≤ v and where ∀θ, ϕ ∈ SL the following
hold:

– v(¬θ) = 1− v(θ) and v(¬θ) = 1− v(θ)
– v(θ ∧ ϕ) = min(v(θ), v(ϕ)) and v(θ ∧ ϕ) = min(v(θ), v(ϕ))
– v(θ ∨ ϕ) = max(v(θ), v(ϕ)) and v(θ ∨ ϕ) = max(v(θ), v(ϕ))

We use V to denote the set of all Kleene valuation pairs on L.

The link to three-valued logic is clear when we view the three possible values
of a valuation pair for a sentence as truth values i.e. t = (1, 1) as absolutely
true, b = (0, 1) as borderline and f = (0, 0) as absolutely false. From definition
1 we can then determine truth-tables for the connectives ∧, ∨ and ¬ in terms of
the truth-values {t,b, f} identical to those of Kleene’s logic [4]. Shapiro [14] has
recently proposed the use of Kleene’s three-valued logic to model truth-gaps in
vague predicates, arguing that Kleene’s truth tables ‘reflect the open-texture of
vague predicates’. For example, if instead we were to adopt Lukasiewicz logic [10]
this would mean that for two borderline propositional variables their conjunction
would be absolutely false, even though neither conjunct was absolutely false.
This would seem to be a totally unwarranted elimination of vagueness. One
might of course consider a non-functional calculus for valuation pairs based,
for example, on supervaluationist principles as explored in Lawry and Tang
[5]. Another possibility would be to introduce many-valued logics with more
than three truth-values. From the current perspective this would correspond to
propositions being borderline to differing degrees. However, the representational
utility of making such distinctions between borderline cases is not entirely clear,
as is discussed in more details in [5].

Definition 2. For θ, ϕ ∈ SL, θ and ϕ are equivalent, denoted θ ≡ ϕ, if and
only if ∀v ∈ V v(θ) = v(ϕ).

The following theorem identifies a number of well known equivalences from
Kleene three-valued logic.

Theorem 1. Important Equivalences [7]
∀θ, ϕ, ψ ∈ SL the following sentences are equivalent:

– De Morgan’s Laws: ¬(θ ∧ ϕ) ≡ ¬θ ∨ ¬ϕ and ¬(θ ∨ ϕ) ≡ ¬θ ∧ ¬ϕ
– Double Negation: ¬(¬θ) ≡ θ
– Idempotence: θ ∧ θ ≡ θ and θ ∨ θ ≡ θ
– Commutativity: θ ∨ ϕ ≡ ϕ ∨ θ and θ ∧ ϕ ≡ ϕ ∧ θ
– Associativity: θ ∨ (ϕ ∨ ψ) ≡ (θ ∨ ϕ) ∨ ψ and θ ∧ (ϕ ∧ ψ) ≡ (θ ∧ ϕ) ∧ ψ
– Distributivity: θ∨(ϕ∧ψ) ≡ (θ∨ϕ)∧(θ∨ψ) and θ∧(ϕ∨ψ) ≡ (θ∧ϕ)∨(θ∧ψ)

Kleene valuation pairs do not completely satisfy the laws of non-contradiction
and excluded middle in borderline cases. While it is the case that for any sentence
ϕ ∈ SL, v(ϕ∧¬ϕ) = 0 and v(ϕ∧¬ϕ) = 1 the same equalities do not necessarily



368 J. Lawry and T. Martin

hold for the corresponding upper and lower valuations respectively. In fact, any
such partial failure of the laws of non-contradiction and excluded middle exactly
correspond with ϕ being a borderline case, as the following result shows.

Theorem 2. v ∈ V, v(ϕ) = b if and only if v(ϕ ∧ ¬ϕ) = 1 if and only if
v(ϕ ∨ ¬ϕ) = 0.

Proof. (⇒) Suppose v(ϕ) = b then v(ϕ) = 0 ⇒ v(¬ϕ) = 1 and since also
v(ϕ) = 1⇒ v(ϕ∧¬ϕ) = 1. (⇐) v(ϕ∧¬ϕ) = 1⇒ v(ϕ) = 1 and also ⇒ v(¬ϕ) =
1 ⇒ v(ϕ) = 0. Furthermore, by duality and de Morgan’s law (theorem 2) it
follows that v(ϕ ∨ ¬ϕ) = 0 if and only if v(ϕ ∧ ¬ϕ) = 1 as required.

We now define semantic precision as a natural partial ordering on V. This con-
cerns the situation in which one valuation pair admits more borderline cases
than another but where otherwise their truth-valuations agree. More formally,
valuation pair v1 is less semantically precise than v2 if they disagree only for
some subset of sentences of L, which being identified as either absolutely true
or absolutely false by v2, are classified as borderline by v1.

Definition 3. Semantic Precision
v1  v2 iff ∀θ ∈ SL v1(θ) ≤ v2(θ) and v1(θ) ≥ v2(θ).

Shapiro [14] proposed essentially the same ordering of interpretations which he
refers to as sharpening i.e. v1  v2 means that v2 extends or sharpens v1. Here
we shall refer to  as the semantic precision ordering on valuation pairs whereby,
if v1  v2 then v1 tends to classify more sentences of L as borderline than v2.
In other words, one might think of  as ordering valuation pairs according to
their relative vagueness.

3 Belief Pairs

Within the proposed bipolar framework, uncertainty concerning the sentences
of L effectively corresponds to uncertainty as to which is the correct Kleene
valuation pair for L. In practice, there are likely to be many different sources of
this uncertainty, however one natural division of uncertainty types is as follows:

– Semantic uncertainty about the linguistic conventions defining concepts rel-
evant to the sentences of L. For example, an agent may be uncertain as
to whether or not a proposition such as ‘the suspect is short’ is absolutely
true or not absolutely false even if the suspect’s height h is known precisely.
For instance, this might manifest itself in terms of uncertainty about the
exact values of the thresholds h and h (see figure 1). This uncertainty natu-
rally arises from the distributed manner in which language is learnt through
communications with other agents across a population of interacting agents.

– Stochastic uncertainty arising from a lack of knowledge concerning the state
of the world. For example, being uncertain about the suspect’s height h in
the proposition ‘the suspect is short’.



Bipolar Conditionals 369

In general we view uncertainty as being epistemic in nature, resulting from a
lack of knowledge concerning either, the state of the world to which propositions
refer, or the linguistic conventions governing the assertability of propositions
as part of communications. Viewing semantic uncertainty as being epistemic in
nature requires that agents make the assumption that there is a correct under-
lying interpretation of the language L, but about which they may be uncertain.
This is a weaker version of the epistemic theory of vagueness as expounded by
Timothy Williamson [16] referred to as the epistemic stance [9]. Williamson’s
theory assumes that for the extension of a vague concept there is a precise but
unknown boundary between it and the extension of its negation. In contrast the
epistemic stance corresponds to the more pragmatic view that individuals, when
faced with decision problems about what to assert, find it useful as part of a
decision making strategy to simply assume that there is an underlying correct
interpretation of L. In other words, when deciding what to assert agents behave
as is the epistemic theory is correct. Another difference between the epistemic
theory and our current approach is that the former assumes that the underlying
truth model is classical while here we assume a bipolar model which can exhibit
truth-gaps.

In the following definition we assume that uncertainty is quantified by a prob-
ability measure w on the set of Kleene valuation pairs V.

Definition 4. Kleene Belief Pairs [7]
Let V be the set of all Kleene valuation pairs on L and let w be a probability
distribution defined on V so that w(v) is the agent’s subjective belief that v is the
true valuation pair for L. Then μ = (μ, μ) is a Kleene belief pair where ∀θ ∈ SL,
μ(θ) = w({v ∈ V : v(θ) = 1}) and μ(θ) = w({v ∈ V : v(θ) = 1}).
There is a clear rationality argument for defining belief measures in this manner
when Kleene valuation pairs are the underlying truth model for L. From a general
result due to Paris [12], it follows that an agent can only avoid Dutch books where
the outcomes of bets are dependent on lower (upper) Kleene valuations if their
belief measures on SL correspond to lower (upper) belief measures as given in
definition 4. This idea is explored in more detail in Lawry and Tang [5] in the
context of lower and upper bets. The following theorem highlights a number
of properties of Kleene belief pairs, including additivity. The latter property
in particular distinguishes Kleene Belief pairs from Dempster-Shafer belief and
plausibility measures [13] on SL which are not, in general, additive.

Theorem 3. For all θ, ϕ ∈ SL, the following hold:

– μ(θ) ≤ μ(θ)
– μ(¬θ) = 1− μ(θ) and μ(¬θ) = 1− μ(θ).
– μ(θ ∨ ϕ) = μ(θ) + μ(ϕ)− μ(θ ∧ ϕ) and μ(θ ∨ ϕ) = μ(θ) + μ(ϕ)− μ(θ ∧ ϕ)

It is also interesting to note that a special case of Kleene belief pairs has the
same calculus as the interval (or type 2) fuzzy membership functions proposed
by Zadeh [17]. This is the case of Kleene belief pairs in which there is only
uncertainty about the level of semantic precision of the valuation pair. More
formally we have the following result:
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Theorem 4. [7] Let w be a probability distribution on V for which {v ∈ V :
w(v) > 0} = {v1, . . . ,vk} can be ordered such that v1  v2 . . .  vk. In this
case μ satisfies the following properties; ∀θ, ϕ ∈ SL,

μ(θ ∧ ϕ) = min(μ(θ), μ(ϕ)) and μ(θ ∧ ϕ) = min(μ(θ), μ(ϕ))

μ(θ ∨ ϕ) = max(μ(θ), μ(ϕ)) and μ(θ ∨ ϕ) = max(μ(θ), μ(ϕ))

Example 1. Recall the example from section 2 concerning the proposition p =‘the
suspect is short’, where the concept short is defined by two thresholds on height
0 ≤ h ≤ h, so that an individual is absolutely short if their height is less than or
equal to h and absolutely not short if their height is greater than h. Hence, if the
suspect’s height is known to be h then an agent’s beliefs about the interpretation
of L can be modelled by a valuation pair v such that:

v(p) = 1 if and only if h ≤ h and v(p) = 1 if and only if h ≤ h

We might further assume, perhaps reasonably in this case, that the agent’s se-
mantic uncertainty with regard to p is limited to uncertainty about the actual
values of the thresholds h and h. Further suppose that the agent’s beliefs about
these thresholds is represented by a joint probability density function f on (h, h)
satisfying:∫ ∞

0

∫ ∞

h

f(h, h) dh dh = 1

Based on this the agent can define a lower measure of their belief in p, μ(p),
corresponding to the probability that the lower threshold h ≥ h and similarly and
upper measure, μ(p), corresponding to the probability that the upper threshold
h ≥ h i.e.

μ(p) =

∫ ∞

h

∫ ∞

h

f(h, h) dh dh and μ(p) =

∫ ∞

h

∫ h

0

f(h, h) dh dh

Now suppose that in this case the agent believes that h and h are independent
variables both with triangular distributions centered around 130cm and 150cm
respectively. More specifically; f(h, h) = f1(h)× f2(h) where

f1(h) =

⎧⎪⎨⎪⎩
h−120
100 : h ∈ [120, 130)

140−h
100 : h ∈ [130, 140]

0 : otherwise

and f2(h) =

⎧⎪⎨⎪⎩
h−140
100 : h ∈ [140, 150)

160−h
100 : h ∈ [150, 160]

0 : otherwise

In this case the resulting values for μ(p) and μ(p) are shown in figure 2 as
height h varies. Similarly, figure 3 shows the agent’s belief that p is a borderline
proposition, as quantified by μ(p)− μ(p), for different values of h.

We can also consider the possibility that the agent is uncertain about the value
of suspect’s height. Suppose that the agent’s knowledge about h is characterised
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proposition p as the suspect’s height h
varies

 
110 120 130 140 150 160 170

 

0.0

0.2

0.4

0.6

0.8

1.0

h

Fig. 3. Belief that p is a borderline
proposition, given by μ(p) − μ(p), as h
varies

by a probability density function g and further suppose that h is taken to be
independent of the thresholds h and h. This additional uncertainty can then be
included in the calculation of the lower and upper belief measures as follows:

μ(p) =

∫ ∞

0

∫ ∞

h

∫ ∞

h

f(h, h)g(h) dh dh dh and

μ(p) =

∫ ∞

0

∫ ∞

h

∫ h

0

f(h, h)g(h) dh dh dh

For example, if g is a normal distribution with mean 140 and standard deviation
7 then μ(p) = 0.1092 and μ(p) = 0.8908.

4 Conditional Belief Pairs

In this section we propose a conditioning model by which agents can update their
subjective belief pairs on the basis of new information concerning the absolute
truth and absolute falsity of sentences in L. In view of the inherently probabilistic
nature of belief pairs, one obvious method is based on conditional probabilities.
For this approach we assume that new knowledge takes the form of lower and
upper valuation constraints, which it is then assumed that the correct valuation
for L must satisfy. From the perspective of the above discussion on uncertainty in
a bipolar context, we can think of such constraints as providing new information
both about the state of the world and about the underlying interpretation of L.
This knowledge allows us to define conditional lower and upper belief measures
by determining a posterior distribution on valuation pairs from the prior w,
according to the standard definition of conditional probability
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Definition 5. Conditional Belief Pairs
Suppose an agent obtains new knowledge regarding the assertability of sentences
in SL in the form of a set K of constraints on lower and upper valuations of the
following form:

K = {v(θ1) = 1, . . . , v(θt) = 1, v(ϕ1) = 1, . . . , v(ϕs) = 1}

Then we define lower and upper conditional belief measures conditional on K as
follows:

μ(θ|K) =
w({v ∈ V(K) : v(θ) = 1})

w(V(K))
and μ(θ|K) =

w({v ∈ V(K) : v(θ) = 1})
w(V(K))

where V(K) ⊆ V denotes the set of Kleene valuation pairs on L which satisfy
the constraints K.

A possible source of knowledge constraints of the form given in definition 5, is
from strong and weak assertion in agent dialogues [8]. For example, a witness
might describe the suspect as ‘absolutely short’ or ‘definitely short’. Alterna-
tively, they might only be prepared to say that the suspect was ‘possibly short’
or ‘short-ish’. The former might be regarded as strong assertions concerning
the proposition p =‘the suspect is tall’ corresponding to the knowledge that
v(p) = t. In contrast, the latter are weak assertions corresponding to v(p) �= f
and v(p) = b respectively. One can then envisage a knowledge base K as in
definition 5, being derived from a dialogue with other agents consisting of such
strong and weak assertions.

We now consider the special cases where K = {v(ϕ) = 1}, K = {v(ϕ) = 1}
and K = {v(ϕ) = 0, v(ϕ) = 1} for some sentence ϕ ∈ SL. Notice, that these
correspond to the knowledge that v(ϕ) = t, v(ϕ) �= f and v(ϕ) = b respectively.

Theorem 5

μ(θ|v(ϕ) = 1) =
μ(θ ∧ ϕ)

μ(ϕ)
and μ(θ|v(ϕ) = 1) =

μ(θ ∨ ¬ϕ)− μ(¬ϕ)
1− μ(¬ϕ)

Proof

∀θ, ϕ ∈ SL, μ(θ|v(ϕ) = 1) =
w({v ∈ V : v(θ) = 1, v(ϕ) = 1})

w({v ∈ V : v(ϕ) = 1})

=
w({v ∈ V : v(θ ∧ ϕ) = 1})
w({v ∈ V : v(ϕ) = 1}) by definition 1 =

μ(θ ∧ ϕ)

μ(ϕ)
by definition 4.

In addition, by duality we have that:

μ(θ|v(ϕ) = 1) = 1− μ(¬θ|ϕ = 1)by the above = 1−
μ(¬θ ∧ ϕ)

μ(ϕ)

=
μ(ϕ) − μ(¬θ ∧ ϕ)

μ(ϕ)
=

1− μ(¬ϕ) − 1 + μ(¬(¬θ ∧ ϕ))

1− μ(¬ϕ)

=
μ(θ ∨ ¬ϕ) − μ(¬ϕ)

1− μ(¬ϕ) by de Morgan’s law (theorem 1)
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Theorem 6

μ(θ|v(ϕ) = 1) =
μ(θ ∨ ¬ϕ)− μ(¬ϕ)

1− μ(¬ϕ) and μ(θ|v(ϕ) = 1) =
μ(θ ∧ ϕ)

μ(ϕ)

Proof. Similar to theorem 5.

Notice that the lower and upper conditions in theorem 6 have the same definition
relative to the underlying belief measures as conditional belief and plausibility
in Dempster-Shafer theory [13]. However, recall that Kleene belief pairs are not
Dempster Shafer measures since, for example, they satisfy additivity (see theo-
rem 3).

Theorem 7

μ(θ|v(ϕ) = b) =
μ(θ ∨ ϕ ∨ ¬ϕ) − μ(ϕ ∨ ¬ϕ)

1− μ(ϕ ∨ ¬ϕ) and μ(θ|v(ϕ) = b) =
μ(θ ∧ ϕ ∧ ¬ϕ)
μ(ϕ ∧ ¬ϕ)

Proof

μ(θ|v(ϕ) = b) =
w({v : v(ϕ) = b, v(θ) = 1})

w({v : v(ϕ) = (0, 1)}) =
w({v : v(ϕ ∧ ¬ϕ) = 1, v(θ) = 1})

w({v : v(ϕ) = (0, 1)})

by theorem 2 =
w({v : v(θ ∧ ϕ ∧ ¬ϕ) = 1})
w({v : v(ϕ ∧ ¬ϕ) = 1}) =

μ(θ ∧ ϕ ∧ ¬ϕ)
μ(ϕ ∧ ¬ϕ)

Also we have that,

μ(θ|v(ϕ) = b) =
w({v : v(θ) = 1, v(ϕ) = b})

w({v : v = b}) =
w({v : v(θ) = 1, v(ϕ ∨ ¬ϕ) = 0})

w({v : v(ϕ ∨ ¬ϕ) = 0})

by theorem 2 =
w({v : v(ϕ ∨ ¬ϕ) = 0}) −w({v : v(θ) = 0, v(ϕ ∨ ¬ϕ) = 0})

w({v : v(ϕ ∨ ¬ϕ) = 0})

=
w({v : v(ϕ ∨ ¬ϕ) = 0})− w({v : v(θ ∨ ϕ ∨ ¬ϕ) = 0})

w({v : v(ϕ ∨ ¬ϕ) = 0})

=
1− μ(ϕ ∨ ¬ϕ)− (1− μ(θ ∨ ϕ ∨ ¬ϕ))

1− μ(ϕ ∨ ¬ϕ) =
μ(θ ∨ ϕ ∨ ¬ϕ) − μ(ϕ ∨ ¬ϕ)

1− μ(ϕ ∨ ¬ϕ)

Corollary 1. Let w be a probability distribution on V for which {v ∈ V : w(v) >
0} = {v1, . . . ,vk} can be ordered such that v1  v2 . . .  vk. Then for θ, ϕ ∈ SL
it holds that:

μ(θ|v(ϕ) = 1) =

{
μ(θ)

μ(ϕ) : μ(θ) ≤ μ(ϕ)

1 : otherwise
and

μ(θ|v(ϕ) = 1) =

{
μ(θ)+μ(ϕ)−1

μ(ϕ) : μ(θ) + μ(ϕ) ≥ 1

0 : otherwise

μ(θ|v(ϕ) = 1) =

{
μ(θ)+μ(ϕ)−1

μ(ϕ) : μ(θ) + μ(ϕ) ≥ 1

0 : otherwise
and

μ(θ|v(ϕ) = 1) =

{
μ(θ)
μ(ϕ) : μ(θ) ≤ μ(ϕ)

1 : otherwise
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Proof. Follows immediately from theorem 4 and theorems 5 and 6.

Notice that in corollary 1 μ(θ|v(ϕ) = 1) and μ(θ|v(ϕ) = 1) correspond to the
Goguen implication operator [3] applied to the lower and upper belief values of
θ and ϕ respectively.

Example 2. Recall the proposition p =‘the suspect is short’ as described in ex-
ample 1. Now consider an additional proposition q =‘the suspect is very short’
where the concept very short is defined by lower and upper height thresholds

h′ and h
′
. Further suppose that these thresholds are dependent on the thresh-

olds of short, according to h′ = 0.9h and h
′
= 0.9h. Further suppose that, as

in example 1, the semantic and stochastic uncertainty is modelled by the joint
distribution f on the threshold h and h, and the distribution g on h respectively.
Now suppose that the agent learns that the suspect is borderline very short. How
does this change their level of belief that the suspect is short? In other words,
what are the values of the conditional beliefs μ(p|v(q) = b) and μ(p|v(q) = b)?

Notice that given the above definition of h
′
then it follows that h ≤ h

′
implies

that h ≤ h and hence μ(p|v(q) = b) = 1. Now in this example w({v : v(q) = b})
corresponds to the probability that h′ ≤ h ≤ h

′
or alternatively that h ≥ h

0.9

and h ≤ h
0.9 . Hence, we have that:

w({v : v(q) = b}) =
∫ ∞

0

∫ h
0.9

0

∫ ∞

h
0.9

f(h, h)g(h) dh dh dh = 0.2625

Similarly we have that:

w({v : v(p) = 1,v(q) = b}) =
∫ ∞

0

∫ h
0.9

h

∫ ∞

h
0.9

f(h, h)g(h) dh dh dh = 0.0888

Hence,

μ(p|v(q) = b) =
0.0888

0.2625
= 0.3383

In comparison with the values obtained in example 1 we see that both
μ(p|v(q) = b) > μ(p) and μ(p|v(q) = b) > μ(p). Clearly then, learning that q is
a borderline case is informative when trying to determine the truth value of p.
This emphasises the difference in terms of conditioning between the two distinct
interpretations of truth-gaps (or middle truth-values) either as being borderline
cases due to inherent vagueness or as representing epistemic ignorance. Indeed,
if all we were to learn was that the truth value of q was unknown then this would
tell us nothing about the truth-value of p, and therefore conditioning would not
result in any change to belief values.

5 Conclusion and Discussion

In this paper we have proposed definitions for lower and upper conditional belief
pairs, extending the framework introduced in [7]. The properties of these mea-
sures has been investigated and the relationship to conditional belief in existing
uncertainty theories has been highlighted.
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The belief pairs framework, incorporating the conditional measures proposed
in this paper, is sufficiently rich to capture aspects of both stochastic and seman-
tic uncertainty together with indeterminism in the underlying truth model. This
can permit the definition of more flexible rules and specifications for intelligent
autonomous systems, as well as providing an enhanced model of decision making
in the presence of both uncertainty and conceptual vagueness. For example, one
can envisage flexible requirements concerning the relationship between a pair of
propositions p and q which include the requirement that p must be absolutely
true in those circumstances in which q is only borderline true. Furthermore, in
the presence of significant uncertainty probabilistic requirements may be more
appropriate in the form of constraints on lower and upper condition beliefs e.g.
μ(p|v(q) = b) ≥ α for a suitable confidence level α. Future work will aim to ex-
plore the application of the belief pairs framework to the formal representation
of flexible specifications and their verification.
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Abstract. Consider data given as a sequence of events, where each event has a
timestamp and is of a specific type. We introduce a test for detecting marginal
independence between events of two given types and for conditional indepen-
dence when conditioned on one type. The independence test is based on compar-
ing the delays between two successive events of the given types with the delays
that would occur in the independent situation. We define a Causal Event Model
(CEM) for modeling the event-generating mechanisms. The model is based on
the assumption that events are either spontaneous or caused by others and that
the causal mechanisms depend on the event type. The causal structure is defined
by a directed graph which may contain cycles. Based on the independence test, an
algorithm is designed to uncover the causal structure. The results show many sim-
ilarities with Bayesian network theory, except that the order of events has to be
taken into account. Experiments on simulated data show the accuracy of the test
and the correctness of the learning algorithm when assumed that the spontaneous
events are generated by a Poisson process.

1 Introduction

In this paper we consider the following problem. The data is a sequence of events E =
〈(E1, t1), (E2, t2), . . .〉where Ei represents an event type and ti, the time of occurrence
(also called timestamp) of the ith event, is a real value ∈ [0, T ], with T the end time of
the sequence. Ei take values from a finite set of event types, the event domainD. Fig. 1
shows an example event sequence withD = {A,B,C,D}. When there is no confusion
possible we denote events (Ei, ti) with lower case ei. Event types are denoted with
upper case and sets with boldface letters. The question is to infer (1) independencies
and (2) causal relations between the events.

If events of type A can cause events of type B, which we write as A → B, then se-
quences 〈tA1 , tA2 . . . tAk

〉 and 〈tB1 , tB2 . . . tBl
〉 are correlated, where tAi and tBj are

the timestamps of the A and B events respectively. We want a test to identify such cor-
relation. We also want a test to identify conditional independencies. For causal model

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 376–387, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Example event sequence

A → C → B, A is independent from B when conditioned on C, which we write as
A⊥⊥B|C.

The problem has extensively been studied for series of continuous-valued dynamic
variables, see for instance Granger causality [1]. Methods for analyzing sequences of
events, on the other hand, have been studied in the data mining community. The main
technique is episode mining where an episode is defined as an ordered tuple of events.
Occurrences of episodes are counted and highly-frequent episodes are considered as
relevant.

The independence test we propose here is based on the information given by the in-
tervals between successive events of a given episode. The intervals measured from the
data will be compared with the intervals in the case in which the events would be ge-
nerated independently. If both interval arrays appear as being generated from different
distributions, the events are correlated.

Our approach for learning the causal structure is similar to the approach as used
in causal model theory in which a causal model is represented by a Bayesian network
[2,3]. In Bayesian network theory, conditional independencies are defined over the joint
probability distribution and a link is drawn between causality and dependencies through
the causal Markov condition. The conditional independencies following from the causal
structure can then be used to learn the causal structure from data.

In the next section we define a Causal Event Model for reflecting the event-generating
mechanisms. We show that it is more general than current settings. In Section 3 we de-
fine marginal and conditional independence between events. Section 4 draws the link
between causation and correlation in our framework. Section 5 defines the conditional
independence tests. Section 6 gives a causal structure learning algorithm and Section 7
provides experiments with simulated data.

2 Causal Event Model

The model for the event-generating mechanisms is based on the following assumptions.
(a) Events have exogenous causes (called spontaneous events) or are caused by other
(effect events). (b) The causal mechanisms depend on the type of event. This does not
mean that event c literally causes event e. It is possible that the mechanism responsible
for generating event c (e.g. when a variable passes a certain threshold) affects another
mechanism which triggers event e. In such case, the event related to the cause can
happen after the effect event. Here, (c) we will assume that cause events happen before
their effects. (d) The causal mechanism only generates one event (or none) of a specific
type.

The effect event counterfactually depends on the cause events; if one of the causes
would not have happened, the effect event would not have happened. The event se-
quence E can then be split up into two sequences: the spontaneous events Es and the
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effect events Ee. Instantiations of events belong to either Es or Ee, however events of
a certain type can occur in both. Each non-spontaneous event has one or more causes:
an effect event is linked to one or more events. ∀ei ∈ Ee, ∃c ⊂ E : c → ei. This is
indicated in Fig. 2. We call it the Causal Event Sequence Graph (CESG). It constitutes
a Directed Acyclic Graph (DAG).

Fig. 2. Example event sequence with the causal relations between the events

On the other hand, a graph describing the mechanisms responsible for generating the
effect events should not be cyclic. We only assumed that the mechanism depend on the
event types, in the sense that events from a certain type are responsible for generating
events from another type in the future. So, A → B means that some events of type B
are caused by events of type A. If an A event, say ei, causes a B event, say ej , then tj
depends on ti. This is represented by P (3∗tB|A), a probability distribution over3∗tB
which is defined as the time interval between cause and effect, tj − ti in the case of ei
causing ej . The asterisk denotes that it is an interval between causally-connected events.
The probability distribution can often be described by a Weibull distribution. It should
be noted that the sum Ptotal =

∫
t P (3∗tB = t|A)dt can be smaller than 1, indicating

that A in some cases does not generate B. By defining P over the time difference, time
invariance is incorporated into our system.

The causal structure can be represented by a directed graph which can be cyclic,
and can have bidirected edges or loops. Fig. 3 shows the causal structure responsible
for the event sequence of Fig. 2. The parameterization is that for each node X and for
all parents Pa of X , there is P (3∗tX |Pa) which specifies a distribution of the time
delay. These distributions represent the generation of X by Pa. This is shown in Fig. 4.
If X has multiple parents, they can all independently generate X or the generation of
X happens by a mutual occurrence of multiple parent events. Pa1 . . . Pak → X is
described by P (3∗tX |Pa1,3tPa2 , . . . ,3tPak

). The distribution gives the time to X
after the occurrence of Pa1 and occurrence of Pai (i = 2 . . . k) with a time difference
of3tPai .

The directed graph together we the parameterization we call a Causal Event Model
(CEM). The CEM can be considered as a generic template to produce the CESG, which
is often called the ‘rollout’.

2.1 Related Work

Temporal Nodes Bayesian Networks (TNBNs) [4] are a special kind of Bayesian
network which are parameterized considering delays (relative times). When an initial
(spontaneous) event occurs, its occurrence gives the reference time. The nodes represent
variables. Events occur when variables pass a certain threshold. This is indeed often the
case, but we do not want to make any assumption about the ‘meaning’ of the events and
use event variables as nodes.

Networks of Probabilistic Events in Discrete Time (NPEDTs) [5] are also defined
over event variables with a parameterization similar to ours. NPEDTs are, however,
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Fig. 3. Causal structure used for the experiments

Fig. 4. Parameterization for some families of the causal structure of Fig. 3

more restrictive: each event can happen at most once and no self-references or cycles
are allowed in the graph. By this restriction, NPEDTs are genuine Bayesian networks,
while a CEM is not.

[6] uses a dynamic Bayesian network to model the relations between the event va-
riables. The limitation of a dynamic Bayesian network is that you need to draw a link
between a node and another node in the future. This fixes the time interval between
cause and effect. [6] use the dynamic Bayesian network in combination with episode
mining, but because of this limitation, they limit themselves to fixed-delay episodes. In
our case we make no assumption about the time interval between the cause and effect
event. We even allow continuous time intervals.

Finally, it must be noted that all 3 models here discussed discretize the time.

3 Independence Relationships

We define marginal and conditional independence on the distributions over the time in-
tervals between successive events. This is motivated by the following. Events generate
new events that will happen in the future. The causal mechanism defines the time inter-
val between cause C and effect E, which we denoted by 3∗tE . The knowledge of an
event happening at time t contains information on the occurrence of the causally-related
future events. We therefore consider the time to the first future occurrence of an event
of a specific type. We denote this time delay as31tE .

3.1 Interval to First Occurrence (�1)

We denote by Pab(31tB |A) the probability that the first event of type B after a random
time t happens at time t +31tB given that an event of type A occurred at time t. The
subscript ab indicates that event b must happen after a. The definitions for indepen-
dency will be based on this distribution instead of causal distributions 3∗t, because it
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is measurable from data. Before that, two important consequences of the model have to
be discussed.

It must be noted that if A→ B, this does not necessarily mean that P (3∗tB|A) and
Pab(31tB|A) are the same, since the first event B after event A might be a spontaneous
event or caused by other events, and accidently occurring right after A. The relation
between P (3∗tB|A) and Pab(31tB|A) is calculated as follows. The probability for
having the first occurrence of a B event at relative time t is the probability that B
occurs at time t multiplied with the probability that no B occurred before that. This is
expressed by the following equation. With P (3tB = t|A) we denote the probability
that a B event happens at time t after an A event.

P (31tB = t|A) = P (3tB = t|A).(1 − P (31tB < t|A)) (1)

= (
∑
i

Pi(3∗tB = t|A)).(1 −
∫ t′=t

t′=0

P (31tB = t′|A)dt′) (2)

The first probability of the right hand side of Eq. 1 is determined by all possible direct
causes of B (denoted by index i), the second is an integral adding all previous probabil-
ities. It results in a recursive formula, given by Eq. 2. If the probability P (3tB = t|A)
is a constant, the result is an exponential distribution.

Next, assume the causal model is A → B and A is spontaneously generated by a
Poisson process with rate λ. The first event B after an event A can then be (1) the
event caused by that A or (2) a B event caused by another A event. For the latter holds
that P2(3tB = t|A) = P (tB = t) = λ since it is unrelated to A. P (31tB = t|A)
is a combination of both given by above equation. The resulting distribution mainly
depends on which distribution ‘comes first’. The distribution with most of its weight
for small delays greatly determines P (31tB = t|A).

3.2 Marginal Independence

Marginal independence is defined as follows:

A⊥⊥
ab
B ⇔ Pab(31tB|A) = P (31tB) (3)

where P (31tB) is the probability that the first event of type B after time t happens at
time t+31tB given a random time t.

An important difference with statistical independence defined over a joint probability
distribution is that the order should be taken into account: A⊥⊥

ab
B means that knowledge

about an A event has no information on the next B event, while⊥⊥
ba

is about information

of an B event over the next A event. Hence:

A⊥⊥
ab
B �⇔ A⊥⊥

ba
B. (4)

While it can be shown that symmetry holds for a given order:

A⊥⊥
ab
B ⇔ B⊥⊥

ab
A (5)
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A special case is autocorrelation. P (31tB|B) is the probability that the first event of
type B after a random time t happens at time t+31tB given that another event of type
B occurred at time t. To check for autocorrelation we check whether P (31tB |B) =

P (31tB). We denote B autocorrelated as
�

B.

3.3 Conditional Independence

Conditional independence is also defined for a specific event ordering over its argu-
ments. The order is described by an episode.

A ⊥⊥
ep(A,B,S)

B|S ⇔

Pe=ep(A,B,S)(31tB |s∗,31(S \ s∗),31tA)
= Pe\A(31tB |s∗,31(S \ s∗)) (6)

with ep(A,B, S) an episode over A, B and S, and s∗ the first element of S in the
episode, all 3s are defined with respect of s∗. e \ A denotes the episode e from which
A is removed. Note that the distributions do not depend on the choice of s∗ among S; it
only sets the reference time.

4 Causation Implies Correlation and Vice Versa

In this section we draw the relation between causation and correlation as defined in the
previous sections. The relation is grounded by the assumption that causally unrelated
events are independent.

This assumption is also expressed by Reichenbach’s principle: if A and B are corre-
lated, then either A causes B, either B causes A or either there is a common cause of
A and B.

In the following we will also assume that there are no unknown (latent) common
causes. Together with the independence assumption this implies that there is no cor-
relation if no causal relation in the model. Except that the spontaneous events from a
specific type will be autocorrelated when their occurrence is not random.

4.1 Correlation and the Causal Event Sequence Graph

Consider I(cem) the conditional independencies of a causal event model, consider
CEM(G) all causal event models compatible with graph G. We are interested in the
conditional independencies that hold for all CEMs compatible with G (the intersec-
tion): I(G) = ∩CEM(G)I(cem). These independencies follow from the causal struc-
ture, independent from the parameterization. Specific parameterizations may lead to
additional independencies.

The following theorem proves that the conditional independence statements from
I(G) can be extracted from the Causal Event Sequence Graphs (CESG) compatible
with G by d-separation. We recall the definition. X and Y are d-separated by Z if every
path between X and Y is blocked by Z. An (undirected) path is said to be blocked by Z
if it contains a collider→ · ← whose descendants are not in Z or a non-collider→ · →
or← · → or← · ← that is in Z [2].
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Theorem 1. A ⊥⊥
ep(A,B,S)

B|S is not in I(G) if and only if there is a subset of nodes in

a Causal Event Sequence Graph compatible with G which forms an occurrence of the
episode ep(A,B, S) in the event sequence such that a �b|s.

Proof. If there is an active path between a and b in the sequence graph, we prove that
ta and tb are bounded by the causal delay distributions of the network. Then there
exists at least one parameterization which bounds the occurrence of b to the time of
occurrence of a, such that the independence does not hold. For any triple x → y → z
along the path, tz is bounded by ty and also by tx. The same applies for x ← y ← z.
For any triple x ← y → z along the path, both tz and tx are bounded by ty which
makes them also depend on each other. For any triple x → y ← z, ty is bounded
by tx and tz but this does not imply that tx and tz are dependent unless y or one of
its descendants is conditioned on. In that case, ty is known and together with tx this
gives information about tz . Combining these bounds proves that an active path implies
a conditional dependency. If, on the other hand, there is no path, then a and b events are
assumed to be independent. If there is a path, but blocked by an event, say c, then tc
constrains tb, but ta does not further bounds tc.

4.2 Correlation and the Causal Event Model

d-separation is not readily usable to identify conditional independencies from the Causal
Event Model. A related criterion will be established here.

Definition 1 (d-separation in CEM). A path p between two nodes A and B is said to be
blocked by a set S = {S1, S2, S3}, with S1, S3 ⊂ E and S2 ⊂ E\{A,B}, corresponding
to an ordered episode (s1, a, s2, b, s3) if:

– on p there is a fork X ← Y → Z and Y ∈ S1

– on p there is a chain X → Y → Z and Y ∈ S2

and

– on p there is no collider X → Y ← Z for which either Y or any of its descendants
∈ S3

When all paths between A and B are blocked by S = {S1, S2, S3} we say that A is
d-separated from B given S denoted as A ⊥

s1as2bs3
B|S1S2S3, otherwise we call them d-

connected denoted as A �

s1as2bs3
B|S1S2S3.

Theorem 2. A ⊥⊥
s1as2bs3

B|S1S2S3 ⇔ A ⊥
s1as2bs3

B|S1S2S3, with S1, S2, S3 ⊂ E.

Proof. ⇐
Assume A ⊥

s1as2bs3
B|S1S2S3. Conditioning on events in S3 cannot block a path between

A and B in the CEM. For each e ∈ S1, in the corresponding CESG e will appear before
a and b. If in the CESG there is a causally directed path from e to both a and b then
conditioning on e closes the path a ← . . . ← e → . . . → b. If there is no directed
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Algorithm 1. . Marginal independence test for A⊥⊥
ab
B

Given: Set of possible event types D and event sequence E = 〈(E1, t1), . . . , (En, tn)〉

1. Count the number of occurrences of B in S = n.
2. Generate a new sequence S′ with the same A events as in S, and add n events of type B

with random timestamp ∈ [0, T ]. If A and B are the same (self-correlation test), sequence
S′ should only contain the randomly generated events.

3. For both sequences S and S′, generate the sequence of intervals I and I ′ between each
occurrence of A and the first occurrence of B after that of A.

4. If the Kolmogorov-Smirnov test applied on I and I ′ returns ‘equal’, the test returns true
(meaning independence).

path from e to both a and b in the CESG then a is trivially d-separated from b. Similar
observations can be made for e ∈ S2, where there either is a causally directed path
a→ . . .→ e→ . . .→ b or a is again trivially d-separated from b in the corresponding
CESG. Therefore⇐ follows from Theorem 1.
⇒
Assume A ⊥⊥

s1as2bs3
B|S1S2S3 and A �

s1as2bs3
B|S1S2S3. This implies that A ⊥

s1as2bs3
B|

S1S2S3 in the corresponding CESG (Theorem 1). Conditioning on events in S1 and
S2 cannot d-connect A and B in the CEM, so A �

abs3
B|S3. This means that there is a

E ∈ S3 such that there is a causally directed path from both A and B to E, or an edge
A → B in the CEM. This however is contradicted by the lack of such paths in the
corresponding CESG.

5 Independence Test

The goal is to define a test which identifies .⊥⊥
ep
.|. such that in the generic case:⊥ ⇔ ⊥⊥

ep
.

For testing X⊥⊥
..
Y |Z, we have to compare the distribution Pep(Y,Z)(31tY |Z) reflect-

ing the independence situation, with the actual distribution Pep(X,Y,Z)(31tY |Z, X) esti-
mated from the data. We will use the Kolmogorov-Smirnov test which works on the data
directly. The test identifies whether two samples are drawn from the same distribution,
without making any assumption about the distribution of data. The exact significance
probability is calculated using the method of [7].

Note that all tests have linear complexity with respect to the sequence size.

5.1 Marginal Independence

The algorithm is described by Alg. 1. The algorithm measures the distribution over31,
which is different from that of 3∗ but as discussed in Sec. 3.1, 3∗ comes close to 31 if
the average delta is smaller than that of the other causes.
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Algorithm 2. . Conditional independence test for A ⊥⊥
ep(abc)

B|C

Given: Set of possible event types D and event sequence E = 〈(E1, t1), . . . , (En, tn)〉

1. For each occurrence of episode ep(abc), add interval tb − ta to sequence I , add interval
tc − ta to sequence I1 and tb − tc to I2.

2. Now shuffle sequence I1 randomly such that the order of the elements gets completely
different from that of I2.

3. Construct sequence I ′ by adding the elements of I1 to those of I2 (interval i of I1 is
summed with interval i of I2 ).

4. If the Kolmogorov-Smirnov test applied on I and I ′ returns ‘equal’, the test returns true
(meaning conditional independence).

5.2 Conditional Independence

Next, we give an algorithm to test for independence when conditioned on one variable.
The test is based on randomization of the intervals with respect to the time of occurrence
of the conditioning variable. This creates the reference distribution. Alg. 2 describes
the test procedure. If the occurrence of an A event is irrelevant for the occurrence of B
when C is known, the time interval between A and B is irrelevant with respect of C.
The distribution for the null hypothesis is then constructed by randomizing (swapping)
the intervals between A and B.

6 Causal Structure Learning

Here we present a modified version of the PC algorithm to detect the causal structure
called EPC: Algorithm 3. We define a complete directed CEM as a complete graph with
all bi-directed edges and self-references for each variable. The description of the algo-
rithm simplifies as each bi-directed edge A ↔ B is considered as two edges A → B
and A ← B. Since we can directly make a difference between these edges by look-
ing at ab and ba episodes (through the asymmetry, see Section 2), we do not have to
add an orientation phase or end up with a class of equivalent models under the given
independencies such as the PC algorithm.

All CIs discovered in the data are following from the causal structure.

Theorem 3. Under faithfulness, the EPC algorithm returns the correct CEM given an
oracle for the independence tests.

Proof. By faithfulness, no adjacent nodes can become independent when conditioned
on any subset of other nodes. Non-adjacent nodes are either marginally independent or
become independent when conditioned on one of the nodes along each path.

7 Experiments and Evaluation

In this section we experimentally analyze the accuracy of the independence test and the
learning algorithm. It is then compared with the results obtained by episode mining.
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Algorithm 3. . EPC
Given: Set of possible event types D and event sequence E = 〈(E1, t1), . . . , (En, tn)〉

1. Initialization with complete directed CEM G over D
2. For each edge A → B in G (including

�

A, i.e. B=A),
(Consider each bi-directed edge A ↔ B as two edges A → B and A ← B)
∀S1 ⊂ D and ∀S2 ⊂ D\{B}:
If A ⊥⊥

s1as2b
B|S1, S2, remove A → B from G

7.1 Influence of Causal Delay and Sample Size

As discussed in Sec. 3.1, the delay between cause and effect plays an important role
in identifying 3∗ from 31. We experimentally studied this with data generated from
model X → Y → Z with the following parameterization. X is generated by a Poisson
process with rate 0.01 (meaning that on average every 100 time units an event occurs).
The parameterization of both causal relations, X → Y and Y → Z , is given by a Gaus-
sian distribution with given mean and the standard deviation is set to the square root of
the mean (a mean of 100 thus gives the same average delay as that of the Poisson pro-
cesses). There is a probability of 0.2 that no effect event is generated. Table 1 shows the
minimum episode occurrences necessary to correctly identify the given dependencies
in 10 experiments. A dash means that the minimum count exceeded 4000.

Fig. 5. Causal structure of the example event sequence

Secondly, data was generated from the model of Fig. 5. The parameterization was
set as follow. Spontaneous events are generated for A, B and D by a Poisson process
with rate 0.01. The parameterization of each causal relation (each edge), P (3∗E|C), is
given by a Gaussian distribution with given mean and the standard deviation set to be
the square root of the mean. For all causal relations there is a probability of 0.2 that no
effect event is generated, except for A → A and D → C for which the probability of
no effect is set to 0.8 to avoid cascading effects due to the cycles. The results are also
shown in Table 1.

The results show clearly that the detection of dependencies is accurate for small
sample sizes for simple models but becomes harder when multiple causes are into play,
such as for detecting the dependency between A and D. The self-correlation of A is also
hard to detect since the causal relation is only fired with low probability (0.2). Finally, it
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must be noted that the test rarely makes errors on detecting conditional independencies.
For model X → Y → Z and over all experiments, testing X⊥⊥

xyz
Z|Y gave an accuracy

of 99.3%. The same accuracy was obtained when testing A⊥⊥
acd

D|C in the second model.

Table 1. Number of episodes necessary to correctly identify the following (in)dependencies that
hold for the given models with varying Gaussian mean. The lowest row shows the minimal se-
quence size to correctly learn model X → Y → Z.

mean 20 40 60 80 100 120
X �

xy
Y 19 20 58 59 56 138

X �

xz
Z 59 135 137 297 303 1242

X �

xyz
Y |Z 185 186 185 89 90 87

A �

ac
C 25 75 378 790 3181 -

A �

ad
D 53 941 2341 - - -

A �

abc
B|C 127 159 126 129 128 121

A �

acd
C|D 583 565 267 260 263 257

A �

aa
A 375 1223 3695 - - -

learning 3068 686 685 677 668 690

7.2 Causal Structure Learning

The lowest row of Table 1 shows the minimal sequence size (number of events) to
correctly learn model X → Y → Z with the parameterization specified in the previous
section. It shows that only a relatively small sample size is needed to learn simple
models. The high sample size needed to learn the model with mean 20 is needed since
the delays come close to being deterministic (small standard deviation) which results in
violations of faithfulness.

The accuracy of the learning algorithm depends on the correctness of the indepen-
dence test and the validity of faithfulness. This was confirmed by our experiments with
randomly-generated models and different sample sizes. The following causes of failure
were detected:

1. Large causal delays and small sample sizes increase the number of test errors, as
discussed in the previous section. When for a single event multiple causes come
into play, it’s harder to detect the dependencies.

2. Exact violations of faithfulness or near-to-unfaithful situations. For example, when
the causal delay is nearly deterministic. These cases are similar to the problems in
learning causally-interpreted Bayesian networks. See for instance [8] for discussion
of the problems and modifications of the PC algorithm to handle such violations.

3. Finally, our conditional independence test is limited to one conditioning variable.
This means that if two variables are related by two difference causal paths, they
are dependent and will not become independent when conditioned on only one
variable. It introduces a false positive edge.
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8 Conclusions

We created a procedure with linear complexity for testing marginal and conditional in-
dependence between events in event sequences. The test is accurate in detecting depen-
dencies coming from causal relations if the average interval between cause and effects
is smaller than that of spontaneous events or other causes. We defined a very general
model, the Causal Event Model (CEM), to describe the underlying event-generating
mechanisms. As opposed to other event models, it is not a Bayesian network since it al-
lows cycles. Based on the conditional independencies an algorithm could be constructed
to learn the correct causal structure under faithfulness and causal sufficiency.
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Abstract. Knowledge base metrics provide a useful way to analyze and compare
knowledge bases. For example, inconsistency measurements have been proposed
to distinguish different inconsistent knowledge bases. Whilst inconsistency de-
grees have been widely developed, the incompleteness of a knowledge base is
rarely studied due to the difficulty of formalizing incompleteness. For this, we
propose an incompleteness degree based on multi-valued semantics and show
that it satisfies some desired properties. Moreover, we develop an algorithm to
compute the proposed metric by reducing the problem to an instance of par-
tial MaxSAT problem such that we can benefit from highly optimized partial
MaxSAT solvers. We finally examine the approach over a set of knowledge bases
from real applications, which experimentally shows that the proposed incom-
pleteness metric can be computed practically.

1 Introduction

In knowledge engineering, it is often helpful to have metrics for measuring some as-
pects of a knowledge base [1–3]. Such metrics can convey the state of a knowledge
base, thus enabling the comparison of the quality of different knowledge bases [1] or
ranking ontologies in the Semantic Web [3]. Among often and widely studied metrics is
the inconsistency degree [4–6, 1, 5, 7–9, 3, 10, 11] which can reflect how much conflic-
tion an inconsistent knowledge base has. While inconsistency degrees are to measure
conflicting information caused by redundant information, there is rare metric that can
measure how incomplete a knowledge base is, which is an interesting aspect specially
for knowledge construction process [12].

To motivate the necessity for defining an incompleteness degree, consider the fol-
lowing three simple knowledge bases constructed by three propositional letters: K1 =
{p, q, r}, K2 = {p ∨ q, r}, and K3 = {p ∨ q ∨ r}. Intuitively, the information that K1

conveys is complete because we know that all the letters should be true, but K2 is less
complete since we are not sure about the certainty of p and q, though r is certainly true;
And K3 seems even less complete because there is no certain information about any of
the three letters. In this paper, we are interested in defining an incompleteness metric
that can distinguish different degrees of completeness of knowledge bases.

It seems that an information measure [13–16] is the right solution to our question.
However, there is still no consensus about the meaning of “degree of information” [15].

� We acknowledge financial support by the DFG Research Unit FOR 1513, project B1.

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 388–399, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Unlike [6, 1, 5, 7–9, 3, 10] where inconsistency is the target feature, our focus in this
paper is on estimating the amount of uncertain information contained in a knowledge
base, no matter it is consistent or inconsistent. In this line, [15] has proposed the “degree
of ignorance” based on the the minimal effort necessary to disambiguate a knowledge
base. Such a degree is defined in an “active” way based on action plans that can gain
information during disambiguation. However it can be the case that there is no action
plan, which leads to a degree of ignorance +∞. Different from [15], in this paper we
use a static way based on Belnap’s four-valued semantics to get an incompleteness mea-
surement which is always a normalized value between 0 and 1. Belnap’s four-valued se-
mantics [17, 18] has been frequently used in inconsistency degrees [1, 8–10]. However,
these work together with the LPm semantics used in the degree of ignorance in [15] all
depend on the truth value both and ignore the truth value unknown of Belnap’s four-
valued semantics. But unknown is of a key importance to define the incompleteness
degree in this paper since it allows to express undefined status of a letter.

Once a metric is defined, it is expected that we can have an efficient way to compute
such a metric [10, 11, 19]. So besides the analysis of the theoretical properties of the
proposed incompleteness degree, we also give an algorithm for the computation, which
is based on a linear reduction to a partial Max-Sat problem. Therefore, the computation
of the defined incompleteness degree can benefit from cutting edge Max-Sat solvers.

The remainder of this paper is structured as follows: In Section 2, we recall Belnap’s
four-valued semantics and some satisfiability problems. Section 3 gives the definition
of the proposed incompleteness degree and its properties. Section 4 gives the encod-
ing based novel algorithm. Section 5 describes the implementation and evaluation. We
conclude this paper and outlook our future work in Section 6.

2 Preliminaries

In this paper, we consider a propositional language LA with a finite set of propositional
variables A = {p1, . . . , pn}. A literal is a variable p or its negation ¬p. A knowledge
base is a set of propositional formulas built fromA. Var(K) denotes the set of variables
occurring in K and |S| denotes the cardinality of a set S.

A clause γ = l1∨l2∨. . .∨lk is a disjunction of literals. A CNF formula is a conjunc-
tion of clauses, which is usually represented as a set of clauses K = {γ1, γ2, . . . , γm}.
In this paper, we consider knowledge bases in CNF format. Note that each propositional
formula can be translated into CNF formula without loss of generality in the sense that
satisfiability keeps unchanged.

Four-Valued Semantics. In this paper, we consider Belnap’s logic that is shown of
a particular importance among the family of many-valued logical systems [18]. Com-
pared to two truth values used by classical semantics, the set of truth values for 4-valued
semantics [17, 18] contains four elements: true, false, unknown and both, written by
t, f,N,B, respectively. The value B thus can be understood to stand for both true and
false, while N stands for neither true nor false, i.e. for the absence of any informa-
tion about truth or falsity. The four truth values together with two orderingst and k

defined below form a bilattice FOUR = ({t, f, B,N},t,k):
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f t N t t, f t B t t, N and B are incomparable with respect to t .

N k t k B,N k f k B, t and f are incomparable with respect to k .

In Belnap’s logic, the four-valued semantics of connectives ∨,∧ are defined according
to the upper and lower bounds of two elements based on the ordering t, respectively,
and the operator ¬ is defined as ¬t = f,¬f = t,¬B = B, and ¬N = N . By this
definition, the following proposition holds:

Proposition 1. The connectives ∨,∧,¬ are monotonic with respect to k. That is, for
x, y ∈ {t, f, B,N} satisfying x k y, ¬x k ¬y; For x1, x2, y1, y2 ∈ {t, f, B,N}
satisfying x1 k x2, y1 k y2, (x1 ◦ y1) k (x2 ◦ y2) for ◦ ∈ {∧,∨}.

The designated set of FOUR is {t, B}. So a 4-valued interpretation I is a 4-model
of a knowledge base K denoted I |=4 K if and only if for each formula φ ∈ K ,
φI ∈ {t, B}. A knowledge base which has a 4-model is called 4-valued satisfiable.
A knowledge base K 4-valued entails a formula ϕ, written K |=4 ϕ, if and only if
each 4-model of K is a 4-model of ϕ. For simplicity, we call K |=4 ϕ the 4-valued
reasoning and call K |= ϕ under the classical semantics 2-valued reasoning. We denote
Mod4(K) the set of 4-models of a knowledge base K .

Example 1. Given a propositional knowledge base K = {p,¬p ∨ q,¬q ∨ r,¬r, s ∨ u}.
Then the following three 4-valued models I1, I2 and I3 satisfy K:

pI1 = t, qI1 = B, rI1 = f, sI1 = t, uI1 = N ;

pI2 = B, qI2 = f, rI2 = B, sI2 = t, uI2 = N ;

pI3 = B, qI3 = B, rI3 = B, sI3 = t, uI3 = N.

Satisfiability Problems. Deciding if a knowledge base in CNF is satisfiable is called a
satisfiability (SAT) problem which is NP -complete. Even though the SAT problem is
intractable, the state of the art SAT solvers are highly optimized and can deal with large
size inputs.

As an extension of SAT, partial Max-SAT (the partial maximum satisfiability prob-
lem) has gotten deep study recently. Formally, a partial MaxSAT problem is of the form
P = (H,S), where H is a set of clauses, called the hard part; And S is the other set
of clauses, called the soft part. The objective is to ask for a classical variable assign-
ment that satisfies all hard clauses in H together with the maximum number of the
soft ones in S. That is, an answer should be a two-valued interpretation Î such that
Î = argmaxI |{γ | γ ∈ S, I |= γ, I |= H}|.

The state of the art partial MaxSAT solvers such as SAT4j MaxSAT [20], MSUnCore
[21] and Clone [22] are highly optimized and scalable as shown in the third1 and fourth2

MaxSAT Evaluations. Moreover, they are free to download and to use for academic
research purpose.

1 http://www.maxsat.udl.cat/08/
2 http://www.maxsat.udl.cat/09/

http://www.maxsat.udl.cat/08/
http://www.maxsat.udl.cat/09/
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3 Incompleteness Degree by Multi-valued Semantics

In this section, we give the definition of incompleteness degree based on four-valued
semantics. Moreover, some logical properties of the proposed incompleteness degree
are discussed. Then we give a reduction from incompleteness degree to Partial Max-
Sat problem such that incompleteness degrees can be computed via cutting-edge Partial
Max-Sat solvers.

3.1 Definition

The definition of incompleteness degree is based on the intuition that the truth value
N from the Belnap’s four-valued semantics characterizes the lack of information. As a
degree, we consider the ratio of undefined information with respect to the whole infor-
mation, formally defined as follows

Definition 1. Suppose I is a four-valued interpretation. The incompleteness degree of
a knowledge base K with respect to I , written IncomDegree(K, I), is a value in [0, 1]
defined as

IncomDegree(K, I) =
|{p ∈ Var(K) | pI = N}|

|Var(K)| ,

where the numerator {p ∈ Var(K) | pI = N} is called the incomplete set of I with
respect to K , written Incomplete(K, I).

The above definition is interpretation dependent. Based on this definition, for a given
knowledge base K , we can get an order among models of K as follows:

Definition 2. Let I, I ′ be two 4-models of K , then we say I is preferred than I ′ for
measuring incompleteness, written I ≥prfd I ′, if and only if

IncomDegree(K, I) ≥ IncomDegree(K, I ′).

That is, the preferred model gives a larger incompleteness degree than a less preferred
model. Obviously,≥prfd is a total order and we denote the most preferred model of K
as MostPrfd(K) = {I | I ≥prfd I ′ for I ′ ∈ Mod4(K)}. The most preferred model
is of a particular interest according to the following proposition:

Proposition 2. Let K be a knowledge base and I ∈ MostPrfd(K). Then for any
4-valued interpretation I ′ such that I ≤k I ′, we have I ′ is a 4-valued model of K .

Proof. By Proposition 1, we know that for each formula α and any two interpretations
I1 ≤k I2, if I1 four-valued satisfies α, so does I2. By the definition of MostPrfd(K),
we have I satisfies all formulae in K , so the conclusion follows.

Example 1. Suppose K = {p, p ∨ q ∨ r,¬p}. Then among all possibilities, we have
the following 4-models for K:

pI1 = B, qI1 = f, rI1 = f ;

pI2 = B, qI2 = N, rI2 = f ;

pI3 = B, qI3 = N, rI3 = N ;
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It is easy to see that I3 ≥prfd I2 ≥prfd I1. Since 2 over 3 propositional letters are
assigned to be N and p cannot be valued N because p is in K , we can see that I3 ∈
MostPrfd(K).

To get rid of the interpretation dependence as in Definition 1, we define the incom-
pleteness degree as the maximized incompleteness degree over 4-valued models of a
knowledge base as follows:

Definition 3. Given a knowledge base K and its most preferred four-valued model set
MostPrfd(K), the incompleteness degree of K is defined as following:

IncomDegree(K) = IncomDegree(K, I) for I ∈MostPrfd(K).

It is obvious that this is a well-defined definition by the definition of MostPrfd(K).

Example 2. (Example 1 continued)
Since I3 ∈MostPrfd(K), we have IncomDegree(K) = 2/3.

Note that K in Example 1 is inconsistent because it contains both p and ¬p, but under
Definition 1, it does not imply that its incompleteness degree is 0. Intuitively, this is be-
cause the confliction only occurs in one propositional letter, but the information about
other letters is still unknown which indeed contributes the nonzero incompleteness de-
gree.

Moreover, we can see that such defined incompleteness degree is to maximize the
number of propositional letters assigned to N as shown by the following corollary:

Corollary 1. Let K be a knowledge base. Then we have

IncomDegree(K) = max
I|=4K

{IncomDegree(K, I)}.

This captures the intuition that more preferred models contain less redundant fake in-
formation for measuring incompleteness degree. For example, in Example 1, I3 is more
preferred than other two interpretations I1 and I2 which over-optimistically assign com-
plete information (i.e. non N value) to letters. By Proposition 2, we know that once I3
is a four-valued model of K , so are I1 and I2. So I3 is of interest to be used to calculate
the incompleteness degree of K .

Example 3. Consider the three knowledge bases K1,K2,K3 defined in the introduc-
tion. We have the following three most preferred models for each as follows (Ii for Ki):

pI1 = t, qI1 = t, rI1 = t

pI1 = N, qI1 = t, rI1 = t

pI1 = N, qI1 = N, rI1 = t

So we have IncomDegree(K1) = 0, IncomDegree(K2) = 1/3, IncomDegree(K3)
= 2/3, which coincides with the intuition given in the introduction.
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3.2 Properties of Incompleteness Degree

Next we give some properties of the defined incompleteness degree. Assume that a set
of propositional letters is given, namely Σ, and two knowledge bases K,K ′ are given
and satisfy Var(K) = Var(K ′) = Σ.

Proposition 1. If K |=4 K ′, then IncomDegree(K) ≤ IncomDegree(K ′).

Proof. By K |=4 K ′, we have Mod4(K) ⊆ Mod4(K ′). Thus, for any given 4-model
I ∈MostPrfd(K), I ∈Mod4(K ′) holds. For any 4-model I ′ ∈MostPrfd(K ′), by
the definition of the most preferred model, Incomplete(K, I ′) ≥ Incomplete(K, I).
The conclusion follows.

This proposition means that a logically weaker (under 4-valued semantics) knowledge
base is more incomplete than a stronger one.

Proposition 3. If K |=4 K ′, then IncomDegree(K) = IncomDegree(K ∪K ′).

Proof. By K |=4 K ′, we have K |=4 K ∪ K ′ and K ∪ k′ |=4 K . By Proposition 1,
we have both IncomDegree(K) ≤ IncomDegree(K∪K ′) and IncomDegree(K∪
K ′) ≤ IncomDegree(K) hold. So IncomDegree(K) = IncomDegree(K ∪K ′).

This proposition shows that enhanced with inferred knowledge (under 4-valued seman-
tics) does not decrease the incompleteness degree of a knowledge base.

Obviously, Proposition 1 can have the following corollary hold, which shows that
the proposed incomplete degree is semantics based, instead of syntax based.

Corollary 2. If K |=4 K ′ and K ′ |=4 K , IncomDegree(K) = IncomDegree(K ′).

We have the following proposition which characterizes a set of knowledge bases whose
incompleteness degrees are zero.

Proposition 4. Given a knowledge base K , if p ∈ K and/or ¬p ∈ K for all p ∈
Var(K), then IncomDegree(K) = 0.

Proof. If the conclusion does not hold, there exists a 4-interpretation I ∈MostPrfd(K)
and a variable p ∈ Var(K) such that pI = N , which contradicts the definition of I and
the assumption that either p or ¬p appears in K .

4 Algorithm for Incompleteness Degree

To compute the proposed incompleteness degree, we propose a novel algorithm which
encodes the problem to the partial Max-SAT problem, which is linear in the size of
input knowledge bases.

Given a knowledge base K = {γi | i = 1, . . . , n} over variables set A, it is well-
known that the 4-valued reasoning on K can be simulated by the 2-valued reasoning
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on 4(K), where 4(·) is the transformation function from (a set of) clauses to (a set of)
clauses defined as follows [23]:

4({γ1, γ2, . . . , γn}) = {4(γ1), 4(γ2), . . . , 4(γn)} ;
4(l1 ∨ . . . ∨ lk) = 4(l1) ∨ . . . ∨ 4(lk) ;

4(p) = +p ;

4(¬p) = −p .

That is, 4(K) is a knowledge base over variables A+
− = {+p,−p | p ∈ V ar(K)}.

Obviously, computing 4(K) from K can be done in linear time.
A 4-valued interpretation I on A can also be seen as a 2-valued interpretation on

variablesA+
−. The corresponding relation can be described as follows:

pI = B iff +pI = t and −pI = t;

pI = f iff +pI = f and −pI = t;

pI = t iff +pI = t and −pI = f ;

pI = N iff +pI = f and −pI = f.

In the rest, we will refer to either of these two views without explicit explanation.

Theorem 1. [23] Given a propositional knowledge base K and a 4-valued interpreta-
tion I , we have I |=4 K iff I |= 4(K).

Example 2. Let K = {¬p, p ∨ q,¬q, r}. We have 4(K) = {−p,+p ∨ +q,−q,+r}.
Consider the interpretation I1 = {+p,−p,−q,+r}. I1 can be seen as a 4-interpretation
on {p, q, r} with pI1 = B, qI1 = f, rI1 = t. I1 can also be viewed as a 2-interpretation
on {+p,−p,+q,−q,+r,−r} which assigns variables in I1 true and other variables
false, i.e. in the following way:

+pI1 = t,−pI1 = t,+qI1 = f,

−qI1 = t,+rI1 = t,−rI1 = f.

It is easy to check that I1 |=4 K and I1 |= 4(K).

Proposition 5. Let K be a knowledge base over A and I be a 4-valued model of K .
Denote b(K, I) = {p ∈ Var(K) | +pI = f and − pI = f}. Then the incompleteness
degree of K under 4-valued semantics can be computed by 2-valued semantics over
A+

− as follows:

IncomDegree(K, I) =
|b(K, I)|
|Var(K)| ;

IncomDegree(K) = max
I|=4(K)

IncompleteDegree(K, I) =

max
I|=4(K)

|b(K, I)|

|Var(K)| .

Proof. By Definition 3 and the fact that pI = N iff +pI = f and − pI = f , this
corollary holds obviously.
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Based on Proposition 5, we can see that the computation of max
I|=4(K)

|b(K, I)| is the

key to compute the incompleteness degree. We have

max
I|=4(K)

|b(K, I)| = max
I|=4(K)

|{p | p ∈ Var(K),+pI = f and − pI = f}|

= max
I|=4(K)

|{p | p ∈ Var(K),¬+ pI = t and ¬ − pI = t}|

= max
I|=4(K)

|{p | p ∈ Var(K), (¬+ p ∧ ¬ − p)I = t}|. (1)

Note that the conditional part in Equation 1 above (i.e. (¬ + p ∧ ¬ − p)I = t) is not a
clause yet thus not acceptable by MaxSet solvers. For this, we need to introduce some
auxiliary fresh propositional letters as following:

Auxp = ¬+ p ∧ ¬ − p

Then we have

max
I|=4(K)

|{p | p ∈ Var(K), (¬+ p ∧ ¬ − p)I = t}|

= max
I|=4(K)

|{Auxp | p ∈ Var(K), (Auxp)
I = t}|

Now we are ready to compute incomplete degrees by using partial Max-SAT problem
solvers. This is based on the following reduction to a partial Max-SAT instance:

Definition 4. Given a propositional knowledge base K = {γ1, . . . , γn}, Var(K) =
{p1, . . . , pm}, the corresponding partial Max-SAT problem for the 4-semantics based
incompleteness degree IncompleteDegree, written P (K) = (H(K), S(K)), is de-
fined as follows:

H(K) =H1(K) ∪H2(K) ∪H3(K) ∪H4(K), where ;

H1(K) = {4(γ) | γ ∈ K};
H2(K) = {¬Auxp ∨ ¬+ p | p ∈ Var(K)};
H3(K) = {¬Auxp ∨ ¬ − p | p ∈ Var(K)};
H4(K) = {+p ∨ −p ∨ Auxp | p ∈ Var(K)}.
S(K) = {Auxp | p ∈ Var(K)}.

Then we have the following theorem.

Theorem 2. Given a knowledge base K , suppose I is a solution to the partial Max-SAT
problem P (K). Let b(I,K) = |{Auxp | p ∈ Var(K) and AuxI

p = t}| and m(K) =
|Var(K)|. Then we have that IncompleteDegree(K) = b(I,K)/m(K).

Proof. By the definition of P (K), I satisfies that for any other J, b(I,K) ≤ b(J,K).
By Proposition 5, the conclusion follows.

Theorem 2 can be described by the following algorithm. The algorithm first generates
P (K) in line 4 to line 13, then computes a solution of P (K) by calling a partial Max-
SAT solver in line 14, and computes the value of incompleteness degree by Theorem 2
in line 15 to 16.
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Algorithm 1. . Computing IncompleteDegree by Partial Max-SAT Solver
1: procedure IncompleteDegree(K)
2: P ← {}
3: m ← |Var(K)|
4: for all Clause γ ∈ K do
5: P.addHardClause(4(γ))
6: end for
7: for all Variable p ∈ Var(K) do
8: Create a fresh variable Auxp

9: P.addHardClause(¬Auxp ∨ ¬+ p)
10: P.addHardClause(¬Auxp ∨ ¬ − p)
11: P.addHardClause(¬+ p ∨ −p ∨Auxp)
12: P.addSoftClause(Auxp)
13: end for
14: I ← PartialMaxSATSolver(P )
15: b = |{Auxp | Auxp

I = t}|
16: return b/m
17: end procedure

Corollary 1 (Correctness of Algorithm 1). For any given knowledge base K , Algo-
rithm 1 is sound and complete for computing the incompleteness degree of K under
Belnap’s four-valued semantics. That is, Algorithm1(K) = IncompleteDegree(K),
where Algorithm1(K) is the value returned by Algorithm 1 with K as the input.

Proof. This conclusion easily follows from Theorem 2.

Next example gives a further illustration of Algorithm 1.

Example 3. (Example 1 continued)
We have 4(K) = {+p,+p ∨+q ∨+r,−p}. Then, by Definition 4, the hard clause set
of P (K) is {+p,+p ∨+q ∨ +r,−p} ∪ {¬Auxp ∨ ¬+ p,¬Auxq ∨ ¬+ q,¬Auxr ∨
¬ + r} ∪ {¬Auxp ∨ ¬ − p,¬Auxq ∨ ¬ − q,¬Auxr ∨ ¬ − r} ∪ {¬ + p ∨ −p ∨
Auxp,¬ + q ∨ −q ∨ Auxq,¬ + r ∨ −r ∨ Auxr}, and the soft clause set of P (K) is
{Auxp, Auxq, Auxr}. For P (K), we have the following one optimized solution I0 by
a partial Max-SAT solver:

+ pI0 = t,−pI0 = t,+qI0 = f,

− qI0 = f,+rI0 = f,−rI0 = f.

AuxI0
p = f,AuxI0

q = t, AuxI0
r = t.

The corresponding 4-model of K is pI0 = B, qI0 = N, rI0 = N , from which we
have that IncompleteDegree(K) = 2/3 by Algorithm 1, thus coinciding with its
theoretical value.

5 Evaluation

This section describes the experimental results to show the efficiency of our encoding al-
gorithm. To this end, we used three state of the art partial Max-SAT solvers, namely SAT4j
MaxSAT [20], MsUncore [21] and Clone [22], to implement our encoding algorithms.
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Table 1. Results of Algorithm 4 on Different Types of Instances

Instance Encoding Algorithm
Instance Name #V #C IncomDegree n(N) sat4j msuncore clone

small0 3 4 0 0 2.085125 0.262398 0.622703
small1 4 6 0.25 1 0.476389 0.202738 0.644446
small2 1 1 0 0 0.462012 0.203198 0.640497
small3 2 3 0 0 0.454506 0.195095 0.628428
small4 2 1 0.5 1 0.48092 0.207973 0.656463
small5 3 6 0.33 1 0.568903 0.267385 0.650628
small6 2 4 0.5 1 0.521615 0.206352 0.640252
small7 3 4 0 0 0.450428 0.197144 0.605292
small8 3 5 0 0 0.471399 0.196071 0.630425
small9 3 5 0.33 1 0.462075 0.201086 0.644681

small10 2 4 0 0 0.474247 0.197673 0..623865
small11 3 6 0 0 0.460687 0.201238 0.613063

K010 20 120 0 0 0.688807 0.40357 0.989557
K020 40 440 0 0 1.013349 0.656627 1.647413
K050 100 2600 0 0 2.419134 1.790165 3.45362
K100 200 10200 0 0 4.707065 2.53466 6.982243
K200 400 40400 0 0 11.496605 4.953519 18.681155

C168 FW SZ 41 1698 5387 0.25795053 438 * 18.98164 *
C168 FW SZ 66 1698 5401 0.25795053 438 * 21.328969 *
C168 FW SZ 75 1698 5422 0.25795053 438 * 27.438378 *
C168 FW SZ 107 1698 6599 0.2585394582 439 * 25.461582 *
C168 FW UT 714 1909 7487 0.3305395495 631 * 21.587304s *
C168 FW UT 851 1909 7491 0.3305395495 631 * 23.083428 *
C168 FW UT 854 1909 7486 0.3305395495 631 * 39.160652 *
C168 FW UT 855 1909 7485 0.33053954 631 * 22.047771 *

C168 FW UT 2469 1909 7500 0.3305395495 631 * 24.34484 *
C170 FR RZ 32 1659 4956 0.2085593731 346 * 18.517225 *
C170 FR SZ 58 1659 5001 0.2079566004 345 * 18.740518 *
C202 FS RZ 44 1750 6199 0.2714285714 475 * 24.049521 *
C202 FS SZ 121 1750 6181 0.2714285714 475 * 19.589966 *
C202 FS SZ 74 1750 6355 0.2714285714 475 19.929274 * *

The experiments were performed on an Intel Pentium(R) Dual-Core (2.10GHz) ma-
chine with 2G Memory running Ubuntu and the results were shown in Tables 1. We
ran every instance against each solver with a timeout of 120 seconds and “*” is used to
indicate the occurrence of a timeout. We use three different types of instances for the
evaluation, as shown in Table 1:

Type 1 (names starting with “small”). Manually constructed instances of a small size
of clauses and variables.

Type 2 (names starting with “K”). The data set that is used in [24], that is, inputs are
KN = {pi, qj ,¬pi ∨ ¬qj | 1 ≤ i, j ≤ N} for N = 10, 20, 50, 100. Obviously,
|V ar(KN )| = 2N and |KN | = N2 + 2N .

Type 3 (names starting with “C”). A large set of unsatisfiable CNF benchmarks from
automotive product configuration [25], each of which encodes a set of available
configurations for a product, along with constraints enforcing a specific property
to be checked. Due to space limitations, only part of the results of this dataset are
shown in this paper.

The meaning of each column of Table 1 is given as follows:

– “name”: the name of the instance used as test datum;
– “#V” and “#C”: the number of variables and clauses in the instance;
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– “IncomDegree”: the values of incompleteness degrees ;
– “n(N)”: the cardinality of the incomplete set of the most preferred models
– “Encoding Algorithm”: time consumed in seconds by encoding algorithms based

on each partial Max-SAT solver.

From Table 1, we have the following observations:

1. For the small instances of Type 1 and instances of Type 2, all the solvers can handle
them in a short time, though msuncore was faster than the other two for all these
instances. But note that sat4j can be slow due to its java implementation.

2. The instances from [24] are inconsistent, but this is not the reason that their in-
completeness degrees are all zero. Instead, they are zero because of Proposition 4.
Indeed, Proposition 4 gives us a pre-processing way to detect such zero incomplete-
ness degree cases, an extension that can be easily added into Algorithm 4.

3. The instances from real applications can be handled by the solvers. In particular,
msuncore worked better than sat4j and clone for most of the instances except that
sat4j outperformed than others for the instance C202 FS SZ 74.

6 Conclusion and Future Work

In this paper, we have proposed a novel metric that can measure the degree of incom-
pleteness of a propositional knowledge base, no matter if it is inconsistent or not. Based
on the Belnap’s four-valued semantics, this metric is semantic dependent which can al-
lows for syntax variance. Some desired properties of this metric are shown. To compute
it in practice, we have constructed a linear reduction from the computation of incom-
pleteness degree to a Partial MaxSAT problem, thus state-of-the-art MaxSAT solvers
can be used. Experiments on some manfully made and real data from industry applica-
tions have been performed, which shows that such an algorithm can be expected useful
in practice.

In the future, we will study the computational complexity of the proposed metric.
Since it seems not tractable in general case, we will try to study approximating algo-
rithms to compute the incompleteness degree such that any knowledge bases of large
sizes can be dealt with. Meanwhile, we will investigate other possible ways for measur-
ing incompleteness because very few exist. We will apply such incompleteness degrees
to the applications such as to guide the process of ontology generation, for which such
metrics may be necessarily extended to Description Logics.
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Abstract. Lazy Propagation (LP) is a propagation scheme for belief
update in Bayesian networks based upon Shenoy-Shafer propagation. So
far the secondary computational structure has been a junction tree (or
strong junction tree). This paper describes and shows how different tree
structures can be used for LP. This includes the use of different junction
trees and the maximal prime subgraph decomposition organised as a
tree. The paper reports on the results of an empirical evaluation on a
set of real-world Bayesian networks of the performance impact of using
different tree structures in LP. The results indicate that the tree structure
can have a significant impact on both time and space performance of
belief update.

Keywords: Bayesian networks, inference, tree structure.

1 Introduction

A Bayesian network (BN) is an efficient knowledge base for representing un-
certain knowledge [22, 3, 8, 9]. It consists of a graph specifying dependence and
independence relations over a set of variables and a set of conditional probability
distributions (CPDs) encoding the strengths of the dependence relations effec-
tively combining elements of probability and graph theory. Due to the intuitive
graphical nature of BNs, they have and are being used for handling uncertainty
in a wide range of domains.

The key element in handling uncertainty with BNs is to perform probabilistic
inference or belief update, i.e., to compute posterior probabilities given (partial
or incomplete) information about the state of the domain. As both exact and
approximate probabilistic inference in BNs are NP-hard [2, 4], methods that in
the worst case have exponential complexity are justified (unless P=NP). Methods
such as Variable Elimination (VE) [29] (equivalent to Fusion [27] and Bucket
elimination [5]), Symbolic Probabilistic Inference (SPI) [24, 11] and Arc-Reversal
(AR) [20, 25] are often referred to as direct methods as they focus on computing
a single posterior marginal by manipulating the set of CPDs directly. On the
other hand, methods such as Lauritzen-Spiegelhalter propagation [10], HUGIN
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propagation [7] and Shenoy-Shafer propagation [28] are referred to as indirect
methods as they focus on computing all posterior marginals by passing messages
in a secondary computational structure.

A number of hybrid algorithms combining direct and indirect methods have
been proposed such as, for instance, factor trees [1] and LP [18]. LP is based on a
Shenoy-Shafer propagation scheme using a direct method for message computa-
tion [12–14]. In [19] an algorithm for decomposing a BN into its maximal prime
subgraphs is presented. The work reported in this paper was motivated by the
potential use of the maximal prime subgraph decomposition (MPD) organised
into a tree as a computational structure of LP. We evaluate the use of different
tree structures in LP. This includes evaluating the potential use of the MPD
organised into a tree, using a (near-) optimal junction tree versus a non-optimal
junction tree and a junction tree with a single node as the tree structure. The
results of an extensive empirical evaluation indicate that the tree structure can
have a significant impact on both time and space performance of belief update.

The rest of the paper is organised as follows. Section 2 contains preliminaries.
Section 3 presents the VE and LP algorithms as used in this paper and Section 4
describes the use of LP on different tree structures. Section 5 describes the
design of the empirical evaluation and the results. Section 6 discusses the findings
presented in this paper. Our conclusions are contained in Section 7.

2 Preliminaries

A (discrete) BN N = (X , G,P) consists of a set of random variables X , an
acyclic, directed graph (DAG) G = (V,E) where V ∼ X is the set of vertices
and E is the set of edges and a set of CPDs P . It represents a factorization of a
joint probability distribution into a set of conditionals:

P (X ) =
∏
X∈X

P (X |pa(X)), (1)

where pa(X) denotes the parents of X in G and fa(X) = pa(X) ∪ {X}.
Belief update is defined as the task of computing the posterior marginal distri-

bution P (X |ε) for each non-observed variable X ∈ X given a set of evidence ε.
An evidence function f(X) is used to force an evidence variable X to its ob-
served state x by assigning the value 1 to x and 0 otherwise. The set of observed
variables is denoted Xε. Barren variables are variables that are neither evidence
nor target variables and have only barren descendants, if any [25].

A probability potential on domain dom(φ) = Y is a function φ such that
φ(y) ≥ 0, for each configuration y ∈ Y and at least one φ(y) > 0 [26]. A
conditional probability potential φ of H given T is a probability potential of H
when T is known where dom(φ) = H∪T is divided into head variablesH denoted
head(φ) and tail variable T denoted tail(φ). That is, head(φ) and tail(φ) are the
conditioned and conditioning variables of dom(φ), respectively

The domain graph representation G(φ) = (V,E) of a potential φ has vertices
V = dom(φ) and edges E = {(H1, H2), (H2, H1) |H1, H2 ∈ head(φ)} ∪ {(T,H) |
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H ∈ head(φ), T ∈ tail(φ)}. The notion of barren variables can be extended to
domain graphs [13].

Let G be an undirected graph. A clique C is a maximal, complete subgraph
of G. If the vertices V of a undirected graph G can be partitioned into a triple
(V ′, S, V ′′) of nonempty sets where S is a complete separator of V ′ and V ′′ in G
such that every path from a vertex in V ′ to a vertex in V ′′ includes a vertex in
S, then G is decomposable; otherwise G is prime. A subgraph G(U) of a graph
G = (V,E) is a maximal prime subgraph of G, if G(U) is prime and G(W )
is decomposable for all W with U ⊂ W ⊆ V [19]. The set of maximal prime
subgraphs of a Bayesian network N = (X , G,P) are defined with respect to GM .

A junction tree representation T = (C,S) of N with cliques C and separators
S is constructed from a triangulated graph GT produced by triangulating the
moral graph GM of G. The size s(C) of a clique (separator) C ∈ C (S ∈ S)
is defined as the combined state space size of C (S), i.e., s(C) =

∏
X∈C ||X ||.

The size of a junction tree T is defined as s(T ) =
∑

C∈C s(C) and T over N is
optimal if s(T ) ≤ s(T ′) for any T ′ over N . We denote an optimal junction as
T̂ . The number of cliques in C is denoted |C|. A junction tree with |C| = 1 is
denoted T1.

The algorithm of [19] produces a cluster tree from a junction tree T by recur-
sively aggregating cliques connected by incomplete separators (in GM ) to larger
clusters where T should be minimal. The resulting cluster tree is referred to as
the MPD tree T ′ = (C′,S ′) with clusters C′ and (complete) separators S ′.

A junction tree T = (C,S) is initialised by associating each CPD P ∈ P with
the smallest clique A ∈ C such that dom(P ) ⊆ A. The set of CPDs associated
with a cluster C′ is defined by the aggregated cliques producing it.

For example, consider Asia [10] with BN N = (X , G,P). Figure 1 shows G
(i), GM (ii), an optimal junction tree (not showing separators) T̂ = (Ĉ, Ŝ) with
|Ĉ| = 6, s(T̂ ) = 40 and max s(C) = 8 (iii) and the MPD tree T ′ = (C′,S ′) with
|C′| = 5, s(T ′) = 40 and max s(C′) = 16 (iv). Each P ∈ P is associated with a
clique C ∈ C that can hold it and BEL is the only clique with no P associated.
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AT EX
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Fig. 1. (i) Asia (ii) GM (iii) an optimal junction tree (iv) the MPD

In Asia only two cliques (BLS and BEL) are aggregated to form a single
cluster (BELS) in C′. The other cliques Ĉ \ {BLS,BEL} remain clusters in C′
as their adjacent separators are complete in GM .
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3 Belief Update

There exists a number of different approaches to exploiting the decomposition
of P (X ) in (1) to perform belief update (efficiently). As mentioned above, this
paper considers VE and LP.

3.1 Variable Elimination

In VE, a posterior marginal probability distribution P (X |ε) for a non-observed
variable X is, in principle, computed by normalising:

P (X, ε) =
∑
Y �=X

∏
P∈P

P
∏

Z∈Xε

f(Z), (2)

where f(Z) is an evidence potential reflecting the instantiation of Z.
Barren variables are removed before variable elimination is performed. Barren

variables have the property that when eliminated they produce a uniform like-
lihood over the conditioning variables and can therefore be eliminated without
performing any computations. Also, we will assume that in (2) distributions are
instantiated to reflect the evidence ε (as opposed to summing out Xε).

The order ρ = (Y1, . . . , Y|X\{X}|) in which the variable eliminations are per-
formed is the elimination order. The elimination order can be identified using a
range of different algorithms. Since optimal triangulation is NP-hard, heuristics
are often used. The fill-in-weight (fiw) heuristic [6], for instance, aims to min-
imise the sum of the weights of the fill-in edges produced by a node elimination
operation, i.e., sfiw(X) =

∑
(Yi,Yj)∈F ||Yi|| · ||Yj ||, where F is the set of fill-ins

added by the elimination of X .

3.2 Lazy Propagation

LP [12–14] is based on a Shenoy-Shafer scheme where messages are passed in
two phases over a junction tree representation T of the BN N = (X , G,P)
to propagate the evidence ε. After initialisation and prior to message passing,
each P ∈ P such that dom(φ)∩Xε �= ∅ is instantiated to reflect ε. Each clique C
holds an initial clique potential ΦC = {Pi1 , . . . , Pin} which is a set of instantiated
CPDs. Propagation of evidence is the process of collecting and distributing mes-
sages to and from a chosen root of T . When VE is used for message (marginal)
computation, the message passed from clique A to clique B is computed as

ΦA→B =
∑
A\B

(ΦA ∪
⋃

C∈adj(A)\{B}
ΦC→A), (3)

where adj(A) are the cliques adjacent to A in T . Prior to computing (3) barren
variables and potentials corresponding to domain graphs over variables all sep-
arated from B given ε are removed. Notice that the result is a set of potentials.
Notice also that the moralization step of the junction tree compilation in effect
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ignores a lot of the information contained in a DAG. A key element in LP is to
use information from the DAG to improve efficiency of inference. After message
passing has terminated, P (X | ε) can be computed from any C ∈ C or S ∈ S
such that X ∈ C or X ∈ S. This version of LP is referred to as LPVE.

4 Tree Structure

In previous work on LP, the secondary computational tree structure of LP has
been a junction tree (or in some cases a strong junction tree [17, 13]). In [19],
the authors suggest using the MPD of N as the computational tree structure
of LP. This paper evaluates the impact on performance of using different tree
structures in LP. This includes different junction trees and MPD trees. The tree
structure of LP is, in principle, a structure for caching intermediate results.

4.1 Junction Tree

There exists a number of different heuristics for generating a junction tree rep-
resentation T of N = (X , G,P). Some algorithms such as, for instance, fiw are
based on node elimination where the next node elimination operation is based
on the node with lowest scores, some are based on decomposing the graph G
into its minimal separators and others are based on exhaustive search [21].

A special case is when the junction tree has only a single clique. LP over a
single clique is, in principle, equivalent to VE. In a junction tree T1 = ({X}, ∅)
there is no caching of intermediate results. Each marginal P (X |ε) is computed
from P given ε after removing barren variables and potentials corresponding to
variables separated from X given ε. The computations corresponds to (2).

Proposition 1. Let A = X be the single cluster in a junction tree T = (C =
{X}, ∅). We have

P (A, ε) =
∏

φ∈ΦA

φ
n∏

i=1

fi, (4)

where ΦA = P is the set of potentials associated with A.

Proof. (4) is (1) now with evidence functions. ��

4.2 Maximal Prime Subgraph Decomposition Tree

The nodes of the MPD tree T ′ represent maximal prime subgraphs in GM

whereas the nodes of a junction tree represent maximal complete subgraphs
in GT . As mentioned in Section 2, a MPD tree T ′ can be constructed from a
junction tree T representing any minimal triangulation GT of G by iteratively
aggregating adjacent cliques connected by an incomplete separator in GM . By
construction the structure of T ′ is equivalent to T up to complete separators in
GM . Each cluster C′ ∈ C′ represents a connected set of cliques in C.
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Propagation of evidence in a MPD tree T ′ is similar to propagation of evidence
in a junction tree as described in Section 3.2. Messages are collected to and
distributed from a chosen root of T ′ where messages are computed as in (3).

Proposition 2. Let A be a cluster in a MPD tree, let S be a neighboring sep-
arator and let ε = {ε1, . . . , εn} be the evidence. After a full round of message
passing, we have

P (A, ε) =
∏

φ∈ΦA

φ

n∏
i=1

fi
∏

C∈adj(A)

∏
φ′∈ΦC→A

φ′,

P (S, ε) =
∏

φ∈ΦS→A

φ
∏

φ′∈ΦS←A

φ′,

where ΦA is the set of potentials associated with A, ΦC→A is the set of potentials
passed to A, and ΦS→A and ΦS←A are the sets of potentials passed over S.

Proof. The MPD tree T ′ corresponds to a triangulated graph GT of GM , where
each maximal prime subgraph is made complete and its set of nodes is equivalent
to the cliques of the junction tree created from GT . ��

The maximal prime subgraph can be independently triangulated to produce an
optimal triangulation if each maximal prime subgraph is optimally triangulated.
This does, however, not take into account the independence and barren variable
properties induced by a specific set of evidence. Hence, an optimal junction tree
may not be the best tree structure for belief update using LP given a specific
set of evidence.

4.3 Example

In Asia of Figure 1 (i), consider the calculation of P (D) and P (E) using three
different structures, namely, a single cluster tree, an optimal tree T̂ in Figure 1
(iii), and the MPD tree in Figure 1 (iv). Using a single cluster with all variables
to guide the computation will identify X as barren relative to P (D) and elim-
inate the remaining variables, for example, in the order ρD = (A, T, L, S,E,B)
and identify {D,B,X} as barren relative to P (E) and eliminate the remaining
variables, for instance, in the order ρE = (A, T, L, S). Notice the amount of re-
peated computations. In an optimal tree T̂ , P (E) and P (D) can be computed
from clique BDE after a collect to it (even though this may not be the optimal
choice as P (E) can be computed more efficiently from EX). Variables A and X
are identified as barren relative to the message passed to BDE while B is not
identified as barren as the elimination of S creates the potential φ(B,L). Note
that the elimination of A and T is cached at BEL eliminating the repeated com-
putations. Lastly, in the MPD tree T ′, the situation is the same as for T̂ except
that in the cluster BELS there are more degrees of freedom to determine ρ than
in the clique BEL as the latter case corresponds to restricting ρ (in BELS) to
have S as the first variable. This may in some cases be suboptimal.
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5 Experimental Analysis

We give an empirical evaluation of the performance impact of using different
secondary computational structures in LP based upon a set of real-world BNs.

5.1 Setup

Table 11 shows statistics on the BNs used in the evaluation and their optimal
(or believed to be near-optimal) junction tree (T̂ ), a junction tree generated
using sfiw (Tfiw) and the MPD tree (T ′), respectively. In the table |Y| is the
cardinality of Y and sizes are on a log-scale in base 10. The junction trees have
been generated using the total weight and fill-in-weight heuristics as implemented
in the HUGIN tool [6, 16]. The test set consists of networks of different size and
complexity in terms of the size of the tree structure.

For each network, one hundred sets of evidence have been generated at ran-
dom. For each evidence set, LPVE computes the posterior marginal distribution
of each non-evidence variable. The same set of evidence sets is used to evaluate
each tree structure for a specific network. In the experiments, the fiw heuristic
is applied to determine the online elimination order when computing messages
and posterior marginals [15].

The experiments were performed using a Java implementation (Java (TM)
SE Runtime Environment, Standard Edition (build 1.7.0 10-b18)) running on a
Linux Ubuntu 12.10 (kernel 3.5.0-21-generic) PC with an Intel Core i7(TM) 920
Processor (2.67GHz) and 12 GB RAM.

5.2 Results

Table 2 presents the time performance results of the evaluation for T̂ , Tfiw, T1

and T ′, respectively. Table 2 shows the sample average run-time in seconds and
the sample variance for propagating one hundred sets of evidence generated at
random, for each network and each type of secondary computational structure.

Table 3 shows size of the largest potential created during belief update using
tree structures T̂ , Tfiw, T1 and T ′, respectively. The table shows the sample
average and variance when propagating one hundred sets of randomly generated
evidence, for each network and each type of secondary computational structure.
The time performance measurements include time for finding the on-line trian-
gulation orders and do not include time used to generate the secondary compu-
tational structure. It is expected that on-line triangulation is more expensive for
T1 and T ′ than for T̂ and Tfiw.

Notice that two different implementations of the fill-in-weight heuristic have
been used. The junction trees have been generated using the HUGIN tool while
the online triangulation have been generated using our own implementation.
This may in part explain why T1 produces a larger average largest potential size
than the largest clique in Tfiw. The total cost of online triangulation is expected

1 The size of the largest cluster for Diabetes cannot be represented using a Java double.
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Table 1. Description of test BNs, T̂ , Tfiw and T ′ where * means that the triangulation
is optimal, ** means that the triangulation has been created using a maximum of
200,000 separators and no * means that the best known triangulation is used

max max max

N |X | |Ĉ| |Cfiw| |C′| s(Ĉ) s(Cfiw) s(C′) s(T̂ ) s(Tfiw) s(T ′)
3nt* 58 41 41 22 3.5 3.7 16.8 4.1 4.4 16.8
Barley* 48 36 36 14 6.9 6.9 29.5 7.2 7.3 29.5
Diabetes 413 337 337 77 4.9 5.5 - 7.0 7.1 -
Hepar II* 70 58 58 55 2.6 2.6 2.9 3.4 3.4 3.5
KK* 50 38 38 15 6.8 6.8 30.2 7.1 7.2 30.2
Mildew* 35 29 28 15 6.1 6.6 20.6 6.5 7.0 20.6
Munin1 189 162 160 70 7.6 7.9 69.2 7.9 8.3 69.2
Munin2 1,003 854 860 48 5.2 5.7 189.6 6.3 6.7 189.6
Munin3 1,044 904 904 53 5.2 5.2 174.5 6.5 6.5 174.5
Munin4 1,041 877 875 49 5.7 5.9 221.9 6.9 7.1 221.9
Water* 32 21 19 9 5.8 6.2 13.3 6.5 6.6 13.3
andes** 223 180 175 79 4.8 5.4 40.0 5.3 5.6 40.0
cc145* 145 140 140 13 3.0 3.0 3.0 3.6 3.6 3.6
cc245* 245 235 235 23 5.4 5.4 6.0 5.8 5.8 6.3
hailfinder* 56 43 43 29 3.5 3.5 11.6 4.0 4.0 11.6
medianus* 56 44 44 15 5.7 5.7 28.4 6.1 6.2 28.4
oow* 33 22 22 6 6.3 6.8 21.7 6.8 7.3 21.7
oow bas* 33 19 19 8 5.7 6.2 18.4 6.3 6.6 18.4
oow solo* 40 29 28 9 6.2 7.2 24.2 6.7 7.5 6.3
pathfinder* 109 91 91 86 4.5 4.5 6.8 5.3 5.3 6.8
sacso** 2,371 1,229 1,175 98 5.2 6.4 107.5 6.0 6.8 107.5
ship* 50 35 35 10 6.6 8.1 35.6 7.4 8.4 35.6
system v57* 85 75 72 26 4.8 6.7 57.9 6.1 6.8 57.9
win95pts* 76 50 50 33 2.7 2.7 9.3 3.4 3.4 9.3

to be higher for T1 as elimination orders on average are expected to be longer for
this structure in the following sense. For T1 all variables are in a single clique.
This means that to compute any posterior marginal P (X |ε) all variables X \{X}
have to be eliminated (in principle) and the elimination order has length |X |−1.
Using Tfiw, on the other hand, each marginal P (X | ε) is computed from any
clique or separator containing X . Since the number of variables in the largest
clique is usually much smaller than |X |, the elimination orders are usually much
shorter for Tfiw. The implementation of the online triangulation has not been
optimised to cope with large domain graphs.

Observe that for a few networks average time performance on T1 and T ′ is
much worst than Tfiw and T̂ with a high variance. For a few evidence sets the
time performance is significantly worse for these structures. For instance, the
average run-time performance on Diabetes is high with a high variance.

T1 seems to have the worst time performance except for a few instances, while
time performance of T ′ in one case is much worse than T1 (as well as Tfiw and

T̂ ) and in a number of cases is comparable with the performance of Tfiw and T̂ .

In almost all cases time performance of Tfiw is similar to the performance of T̂ ,
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Table 2. Run-time in seconds (mean ± standard deviation)

N T̂ Tfiw T1 T ′

3nt* 0.03±0.00 0.03±0.00 0.05±0.04 0.04±0.00
Barley* 0.13±0.18 0.15±0.21 0.34±0.64 0.33±0.61
Diabetes 0.45±0.39 0.47±0.41 27.69±72.84 93.83±282.90
Hepar II* 0.05±0.00 0.05±0.03 0.1±0.07 0.05±0.00
KK* 0.12±0.15 0.14±0.18 0.38±0.63 0.22±0.32
Mildew* 0.06±0.06 0.08±0.10 0.22±0.67 0.17±0.50
Munin1 0.84±1.99 1.49±4.40 4.49±19.47 3.98±18.53
Munin2 0.6±0.25 0.61±0.26 8.37±11.50 1.6±1.90
Munin3 0.81±0.41 0.81±0.41 25.14±46.30 8.06±17.20
Munin4 0.75±0.38 0.76±0.41 15.25±22.70 3.96±6.13
Water* 0.08±0.08 0.07±0.06 0.09±0.11 0.09±0.11
andes** 0.19±0.09 0.18±0.09 0.69±0.69 0.51±0.39
cc145* 0.12±0.06 0.12±0.06 0.14±0.10 0.11±0.06
cc245* 0.27±0.12 0.26±0.12 0.35±0.30 0.26±0.12
hailfinder* 0.04±0.00 0.04±0.00 0.09±0.07 0.04±0.00
medianus* 0.05±0.03 0.06±0.04 0.1±0.14 0.09±0.13
oow* 0.1±0.12 0.14±0.22 0.17±0.44 0.13±0.24
oow bas* 0.05±0.04 0.07±0.08 0.08±0.10 0.06±0.06
oow solo* 0.1±0.12 0.29±0.61 0.79±3.29 0.55±2.14
pathfinder* 0.15±0.11 0.15±0.11 0.15±0.13 0.14±0.11
sacso** 0.66±0.25 0.67±0.26 44.51±76.62 1.85±2.20
ship* 0.25±0.46 1.4 ±4.90 1.42±5.13 0.88±3.76
system v57* 0.09±0.05 0.12±0.14 0.71±1.56 0.6±1.35
win95pts* 0.05±0.00 0.05±0.00 0.12±0.07 0.08±0.04

while T̂ is better than Tfiw in a few cases. On the other hand, in many cases the
space performance of T1 and T ′ is better than the space performance of Tfiw

and T̂ . There are a few significant exceptions though, which is surprising.

6 Discussion and Analysis

Traditionally, LP has been based on message passing in a junction tree repre-
sentation of a BN. This paper has described and evaluated how different tree
structures can be used for LP. This includes different junction trees, MPD trees
and junction trees with a single clique.

The identification of the MPD tree can be relatively efficient compared to
finding the optimal junction tree, which can be a relatively expensive operation.
The MPD is identified using a minimal triangulation and a linear search guided
by the junction tree. The classical triangulation algorithm LEX M [23] can be
used to determine a minimal triangulation with time complexity O(ne), where
n is the number of vertices and e is the number of edges in the graph [23].
The complexity of constructing the MPD tree from a minimal junction tree is
O(n2) [19]. In the evaluation, we have generated MPD trees from the junction
trees generated using total-weight.
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Table 3. Size of largest potential (mean ± standard deviation)

N T̂ Tfiw T1 T ′

3nt* 2.9±3.0 2.9±3.1 2.6±2.7 2.6±2.7
Barley* 5.7±6.2 5.7±6.2 5.2±5.6 5.3±5.7
Diabetes 4.6±4.5 5.0±5.1 6.3±7.0 7.2±7.9
Hepar II* 2.0±2.1 2.0±2.1 2.0±2.1 2.0±2.1
KK* 5.7±6.1 5.7±6.1 5.3±5.7 5.3±5.7
Mildew* 5.3±5.6 5.6±6.0 5.4±5.9 5.4±5.9
Munin1 6.3±6.8 6.6±7.0 6.0±6.7 6.1±6.8
Munin2 4.3±4.5 4.6±5.0 3.6±3.9 3.6±3.9
Munin3 4.6±4.8 4.6±4.8 5.1±5.5 5.1±5.5
Munin4 5.0±5.2 5.2±5.4 4.9±5.3 4.9±5.3
Water* 4.9±5.2 4.9±5.2 4.6±5.0 4.6±5.0
andes** 3.5±3.9 3.5±3.9 2.8±3.1 2.8±3.1
cc145* 2.2±2.3 2.2±2.3 2.2±2.3 2.2±2.3
cc245* 4.0±4.2 4.0±4.2 3.9±4.2 3.9±4.2
hailfinder* 3.0±3.1 3.0±3.1 2.8±3.0 2.8±3.0
medianus* 4.6±5.0 4.7±5.1 4.4±5.3 4.4±5.3
oow* 5.4±5.7 5.9±6.3 5.8±6.5 5.5±6.2
oow bas* 4.9±5.2 5.4±5.7 5.1±5.6 5.1±5.6
oow solo* 5.5±5.7 6.1±6.5 5.8±6.3 5.9±6.6
pathfinder* 3.8±4.0 3.8±4.0 3.8±4.0 3.8±4.0
sacso** 3.8±4.1 4.3±4.7 3.4±3.9 3.4±3.8
ship* 5.9±6.1 6.9±7.5 6.5±7.3 5.7±6.2
system v57* 4.5±4.4 5.5±6.0 5.8±6.4 5.9±6.5
win95pts* 2.1±2.2 2.1±2.2 1.9±2.0 1.9±2.0

A junction tree is a caching structure. It caches in the separator potentials
the results of intermediate variable elimination operations. This may give T̂ an
advantage over T1 which has to identify an complete elimination order for each
posterior marginal. On the other hand, T̂ is wide enough to accommodate any set
of evidence. This may be a disadvantage compared to T1, which can exploit all
information in the structure of the evidence. The results reported in this paper
indicates that for only a few networks the time performance is insensitive to
the tree structure, e.g., for pathfinder and Water the four structures considered
produce almost equal time performance. In some cases the time performance
is almost the same for T̂ , T ′ and Tfiw. This is the case, e.g., for Hepar II and

hailfinder. In other cases, the time performances of T̂ and Tfiw are similar,
whereas the time performances of T ′ and T1 are much worse. This is the case,
e.g., for Barley, Munin4 and Mildew. In some cases the time performance of T1

or/and T ′ is poor compared to the other algorithms. In these cases, the time
performance variance is very high. This indicates that the time performance is
poor on a few sets of evidence producing a high average time performance. The
poor time performance is due to large potentials created during belief update
and the large potentials are created due to a poor elimination order. It should
be noted that in some cases T̂ is not known to be optimal (finding the optimal
triangulation is infeasible as the number of minimum separators in GM is large).
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In general, the evaluation illustrates that the tree structure can have a signifi-
cant impact on performance. In most cases, T̂ and Tfiw produce the best results.
In almost all cases (except one) T1 produced the worst results. Notice that in
some cases T1 produces a larger largest potential than Tfiw.

7 Conclusion

This paper has considered the impact of the secondary computational structure
used by LP in belief update. The results of the empirical evaluation indicate
that the tree structure can have a significant impact on both time and space
performance of belief update. The structures T̂ and Tfiw most often produced
the best performance on the networks considered in the evaluation.

Future work includes assessing the impact of using a binary tree structure such
as the binary join tree [27] as well as evaluating different variants of LP such
as LP using AR or SPI as the message computation algorithm. In addition, the
option to consider almost complete separators as complete should be considered
in order to divide large maximal prime subgraphs into smaller clusters, i.e., to
increase the level of caching in the tree structure.

Acknowledgments. We would like to thank the reviewers for their insightful
comments, which have improved the quality of the paper.

References

1. Bloemeke, M., Valtorta, M.: A Hybrid Algorithm to compute Marginal and Joint
Beliefs in Bayesian Networks and Its Complexity. In: Proc. of the UAI, pp. 16–23
(1998)

2. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence 42(2-3), 393–405 (1990)

3. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Net-
works and Expert Systems. Springer (1999)

4. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief
netwoks is NP-hard. Artificial Intelligence 60, 141–153 (1993)

5. Dechter, R.: Bucket elimination: A unifying framework for probabilistic inference.
Artificial Intelligence 113(1-2), 41–85 (1999)

6. Jensen, F.V.: HUGIN API Reference Manual. HUGIN EXPERT A/S, Reference
Manual for the HUGIN version 7.7 (2012), http://www.hugin.com

7. Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in causal prob-
abilistic networks by local computations. Computational Statistics Quarterly 4,
269–282 (1990)

8. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn.
Springer (2007)

9. Kjærulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis, 2nd edn. Springer (2012)

10. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, B 50(2), 157–224 (1988)

http://www.hugin.com


On the Tree Structure Used by LP for Inference in BNs 411

11. Li, Z., D’Ambrosio, B.: Efficient Inference in Bayes Networks as a Combina torial
Optimization Problem. Int. J. of Approximate Reasoning 11(1), 55–81 (1994)

12. Madsen, A.L.: An empirical evaluation of possible variations of lazy propagation.
In: Proc. of the UAI, pp. 366–373 (2004)

13. Madsen, A.L.: Variations Over the Message Computation Algorithm of Lazy Prop-
agation. IEEE TSMC Part B 36(3), 636–648 (2006)

14. Madsen, A.L.: Improvements to Message Computation in Lazy Propagation. Int.
J. of Approximate Reasoning 51(5), 499–514 (2010)

15. Madsen, A.L., Butz, C.J.: On the Importance of Elimination Heuristics in Lazy
Propagation. In: Sixth European Workshop on Probabilistic Graphical Models, pp.
227–234 (2012)

16. Madsen, A.L., Jensen, F.V., Kjærulff, U.B., Lang, M.: Hugin - the tool for bayesian
networks and influence diagrams. International Journal on Artificial Intelligence
Tools 14(3), 507–543 (2005)

17. Madsen, A.L., Jensen, F.V.: Lazy Evaluation of Symmetric Bayesian Decision
Problems. In: Proc. of the UAI, pp. 382–390 (1999)

18. Madsen, A.L., Jensen, F.V.: Lazy propagation: A junction tree inference algorithm
based on lazy evaluation. Artificial Intelligence 113(1-2), 203–245 (1999)

19. Olesen, K.G., Madsen, A.L.: Maximal Prime Subgraph Decomposition of Bayesian
Networks. IEEE TSMC Part B 32(1), 21–31 (2002)

20. Olmsted, S.M.: On representing and solving decision problems. PhD thesis, De-
partment of Engineering-Economic Systems, Stanford University, CA (1983)

21. Ottosen, T.J., Vomlel, J.: All roads lead to Rome - New search methods for the
optimal triangulation problem. Int. J. of Approximate Reasoning 53(9), 1350–1366
(2012)

22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Series in Representation and Reasoning. Morgan Kaufmann Publishers,
San Mateo (1988)

23. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM Journal of Computing 5(2), 266–283 (1976)

24. Shachter, R., D’Ambrosio, B., DelFavero, B.: Symbolic probabilistic inference in
belief networks. In: Proc. Eighth National Conference on AI, pp. 126–131 (1990)

25. Shachter, R.D.: Evaluating influence diagrams. Operations Research 34(6),
871–882 (1986)

26. Shafer, G.R.: Probabilistic Expert Systems. SIAM (1996)
27. Shenoy, P.P.: Binary join trees for computing marginals in the Shenoy-Shafer ar-

chitecture. Int. J. of Approximate Reasoning 17(2-3), 239–263 (1997)
28. Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function propagation.

In: Proc. of the UAI, pp. 169–198 (1990)
29. Zhang, N.L., Poole, D.: A simple approach to bayesian network computations. In:

Proc. of the Canadian Conference on AI, pp. 171–178 (1994)



Hierarchical Model

for Rank Discrimination Measures

Christophe Marsala1 and Davide Petturiti2
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Abstract. In this paper we focus on rank discrimination measures, i.e.,
functions able to quantify the discrimination power of an attribute w.r.t.
the class, taking into account the monotonicity of the class w.r.t. the
attribute. These measures are used in decision tree induction in order to
enforce a local form of monotonicity of the class w.r.t. the splitting at-
tribute and are characterized by a noticeable robustness to non-monotone
noise present in the data. More precisely, here we present a hierarchical
model in order to single out which properties a function must satisfy to
be a rank discrimination measure, providing in this way a framework for
the construction of new measures.

Keywords: Rank Discrimination Measure, Monotone Classification, De-
cision Tree Induction.

1 Introduction

Monotone classification is a relatively recent topic in machine learning found-
ing its roots on problems deriving from economy, social sciences and medicine.
Indeed, in these domains it is quite common to consider a set of objects Ω =
{ω1, . . . , ωn} described by attributes aj’s each ranging in a totally ordered set Xj

and labelled by a function λ ranging itself in a totally ordered set of classes C.
This is motivated by the fact that the introduction of order structures increases
the expressive power of the decision model, allowing the representation of se-
mantic concepts such as preference, priority, importance and so on. Moreover, it
enables the decision model to highlight gradual dependencies between attributes
and the set of classes.

It is easily seen that the just described problem has a deep analogy with
the standard classification problem [17,3], anyway, in this context an additional
monotonicity constraint on the classifier is imposed, in a way to express the
intuitive idea that objects with better attribute values should not be labelled with
a worse class.

More formally, denoting with X the description space generated by the Xj ’s,
the monotone classification problem (see, e.g., [16]) consists in determining a
monotone extension λ′ : X → C, of a monotone consistent labelling function

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 412–423, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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λ : E → C defined on a set of examples E ⊆ X . Nevertheless, real data do not
guarantee in general any form of consistence, that is, λ could not be monotone
on E or, even worse, λ could be just a relation on E × C.

Hence, proceeding in a strict sense, a solution to the problem requires to
assume that the dataset is monotone consistent: thus, a preprocessing of the
data could be necessary with ensuing loss of information [16,5]. Previous remark
suggests that the monotone consistency assumption is quite strong for real ap-
plications. For this, methods not imposing any restriction on the dataset have
been proposed in the relevant literature but they have as primary goal the mono-
tonicity of the classifier not considering the classification accuracy as a primary
objective. Moreover, in [2] it is shown that the existing monotone classifiers
[1,4,6] are deeply affected by the presence of non-monotone noise in the data.

It is our opinion that a “monotone” classifier should not require any particular
assumption on the data but it should be able to work on the original dataset as
it is; at the same time we think that such a classifier should be able to exploit
the possible monotonicity present in the data in a way to increase its prediction
power and reach a better understanding of the data structure.

In this work we consider decision tree classifiers, whose construction is usually
carried on using an inductive algorithm which builds the tree from the root to
the leaves by a recursive partitioning of the dataset. It is well-known that the
existing algorithms are essentially distinguished by the discrimination measure
[14,13] they use for the data splitting and that the measures typically used for
this task are not sensitive to monotonicity [15,10]. More precisely, our objective
is to build a decision tree able to exploit “somehow” the possible monotonicity
present in the data, but, since no monotonicity hypothesis is asked on the input
dataset, we need to relax the requirements. Indeed, the “global” monotonicity
constraint acts on the final classifier λ′ and so it is particularly difficult to enforce
during an inductive procedure, since at each step a single attribute can be taken
into account.

Here we adopt a completely greedy approach: at each step of the construction
we choose the attribute aj enforcing the most the local monotonicity constraint,
that is for every ωi, ωh ∈ Ω,

aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh),

where aj(ωi) and λ(ωi) are the values of the attribute aj and the labelling
function λ on the object ωi. As a consequence, we cannot expect a globally
monotone classifier at the end of the procedure. Moreover, to accomplish such a
construction, we need discrimination measures able to quantify the monotonicity
of λ with respect to aj which are, at the same time, robust to non-monotone
noise in the data.

In [15] we applied the same generalization procedure proposed in [10] for the
case of Shannon entropy, to other two well-known discrimination measures, such
as the Gini dispersion index [3] and the Yuan and Shaw ambiguity measure
[18], moreover we directly introduced a third measure that we called pessimistic.
In the same paper we showed that only the first and the last among the new
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functions behave as proper rank discrimination measures, i.e., they are sensitive
to monotonicity and robust to non-monotone noise. To prove the effectiveness of
the new measures we created the binary tree classifier RDMT(H∗) [15], which is
parametrized by a rank discrimination measureH∗ among the studied ones. Such
classifier is implemented in Java using the WEKA framework and is essentially
inspired to the REMT classifier described in [10]. An experimental analysis on
artificial and real data showed that our classifier is able to exploit the possible
monotonicity in the dataset: it can compete with non-monotone classifiers in
accuracy [17,3] and it is much more robust to noise than monotone classifiers
[1,4,6].

In this paper we present a hierarchical model in the spirit of [14,13,12] in a
way to highlight which properties a function must satisfy to be called a rank
discrimination measure. This model constitutes also a basis for the introduction
of further new measures as we show by two examples.

The paper is organized as follows. In Section 2 we recall the rank discrim-
ination measures introduced in [15], while in Section 3 we present the hierar-
chical model characterizing the functional structure of such measures. Finally,
in Section 4 we present two new rank discrimination measures that we use in
RDMT(H∗) to perform a comparative analysis with other well-known monotone
classifiers on artificial data.

2 Rank Discrimination Measures

Consider a set of objectsΩ = {ω1, . . . , ωn} described by a familyA = {a1, . . . , am}
of attributes ranging in a finite totally ordered set (also called true criteria in
[4]), that is for every j = 1, . . . ,m, aj is a function on Ω ranging in Xj =
{xj1 , . . . , xjtj

} with tj > 1 and (Xj ,≤) totally ordered. Assume also a labelling

function λ : Ω → C is given, where C = {c1, . . . , ck} is a set of classes with
k > 1 and (C,≤) also totally ordered.

Let us stress that, for i = 1, . . . , n, every ωi can be represented by a (m +
1)-tuple (a1(ωi), . . . , am(ωi), λ(ωi)), obtaining a set of examples, moreover the
description space X = X1 × · · · × Xm forms a lattive (X,≤) where for every
x, y ∈ X ,

x ≤ y ⇔ xj ≤ yj, for j = 1, . . . ,m. (1)

Remark 1. To avoid cumbersome notation we use the same symbol ≤ for all the
orders: the context will clarify which relation we refer to.

We stress that every attribute aj ∈ A as well as the labelling function λ deter-
mine a partition of Ω whose elements are denoted, respectively, as

{aj = xjs} = {ωh ∈ Ω : aj(ωh) = xjs}, s = 1, . . . , tj ,

{λ = cq} = {ωh ∈ Ω : λ(ωh) = cq}, q = 1, . . . , k,
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moreover, the same partitions can be object-wise written, denoting for every
ωi ∈ Ω

[ωi]aj = {ωh ∈ Ω : aj(ωi) = aj(ωh)},
[ωi]λ = {ωh ∈ Ω : λ(ωi) = λ(ωh)},

where for every ωh ∈ [ωi]aj it holds [ωh]aj = [ωi]aj and, analogously, for every
ωh ∈ [ωi]λ it holds [ωh]λ = [ωi]λ.

Following the procedure showed in [10], in [15] we provided the following
object-wise writing of the Shannon and Gini discrimination measures, respec-
tively.

Proposition 1. Let ps =
|{aj=xjs}|

|Ω| and pq,s =
|{λ=cq}∩{aj=xjs}|

|Ω| :

HS(λ|aj) =

tj∑
s=1

ps

(
−

k∑
q=1

(
pq,s
ps

)
log2

(
pq,s
ps

))

=

|Ω|∑
i=1

1

|Ω|

(
− log2

( |[ωi]λ ∩ [ωi]aj |
|[ωi]aj |

))
;

HG(λ|aj) =

tj∑
s=1

ps

(
1−

k∑
q=1

(
pq,s
ps

)2
)

=

|Ω|∑
i=1

1

|Ω|

(
1−

|[ωi]λ ∩ [ωi]aj |
|[ωi]aj |

)
.

Now the generalization procedure proposed in [10] refers to the concept of domi-
nance originally introduced in the context of rough sets (see [7,8]) by the notion
of dominant set generated, respectively, by aj and λ. For every ωi ∈ Ω, define

[ωi]
≤
aj

= {ωh ∈ Ω : aj(ωi) ≤ aj(ωh)}, (2)

[ωi]
≤
λ = {ωh ∈ Ω : λ(ωi) ≤ λ(ωh)}. (3)

At this point the rank versions of the previously introduced discrimination mea-
sures is simply obtained substituting in the object-wise writing, the equivalence
classes [ωi]λ ∩ [ωi]aj and [ωi]aj with the corresponding dominant sets. Defini-
tion 1 reports the rank version of Shannon and Gini discrimination measures,
respectively (we keep conditional notation just for uniformity).

Definition 1

H∗
S(λ|aj) =

|Ω|∑
i=1

1

|Ω|

(
− log2

(
|[ωi]

≤
λ ∩ [ωi]

≤
aj
|

|[ωi]
≤
aj |

))
;

H∗
G(λ|aj) =

|Ω|∑
i=1

1

|Ω|

(
1−

|[ωi]
≤
λ ∩ [ωi]

≤
aj
|

|[ωi]
≤
aj |

)
.
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In Definition 1, the ratio
|[ωi]

≤
λ
∩[ωi]

≤
aj

|

|[ωi]
≤
aj

|
is a satisfaction measure of the local mono-

tonicity constraint for a fixed ωi ∈ Ω, which quantifies the validity of

aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh),

for every ωh ∈ Ω. Indeed, it is easy to show that such ratio is 1 if and only if
the local monotonicity constraint for a fixed ωi is completely satisfied.

In the rest of the paper, to simplify notation, for a fixed aj ∈ A and λ denote:

dsr(ωi) =
|[ωi]

≤
λ ∩ [ωi]

≤
aj
|

|[ωi]
≤
aj |

, (4)

mindsr(ωi) =

min
ωh∈[ωi]aj

|[ωh]
≤
λ ∩ [ωh]

≤
aj
|

|[ωi]
≤
aj |

, (5)

maxdsr(ωi) =

max
ωh∈[ωi]aj

|[ωh]
≤
λ ∩ [ωh]

≤
aj
|

|[ωi]
≤
aj |

, (6)

avgdsr(ωi) =

∑
ωh∈[ωi]aj

|[ωh]
≤
λ ∩[ωh]

≤
aj

|
|[ωi]aj

|

|[ωi]
≤
aj |

. (7)

Notice that the function dsr considers only the object ωi, while the functions
mindsr, maxdsr and avgdsr consider all the objects “in the same conditions” for
what concerns the attribute aj , that is those belonging to the equivalence class
[ωi]aj . In particular, it holds for every ωh ∈ [ωi]aj , mindsr(ωh) = mindsr(ωi),
maxdsr(ωh) = maxdsr(ωi) and avgdsr(ωh) = avgdsr(ωi).

Remark 2. In [15] we provided also the rank generalization of the Yuan and
Shaw measure but since the obtained function is not a good rank discrimination
measure we will not present it here.

Finally, in [15] we directly introduced the following measure that, due to its
conservative nature, has been called pessimistic.

Definition 2

H∗
P (λ|aj) =

|Ω|∑
i=1

1

|Ω|

(
− log2 (mindsr(ωi))

mindsr(ωi)

)
.

3 Hierarchical Model for Rank Discrimination Measures

In the spirit of [14,13,12] we aim to develop a hierarchical model for rank dis-
crimination measures, with the goal of isolating which properties a function
must satisfy to be a measure of this type. As a side effect, the definition of a



Hierarchical Model for Rank Discrimination Measures 417

hierarchical model is also important since it provides a base for creating new
measures.

Indeed, after a careful look all the measures presented so far share a common
functional structure, in which we can distinguish three functions F ∗, G∗ and H∗,
composed hierarchically. In particular, for fixed λ and aj , the H

∗-layer considers
all the objects in Ω, while both the G∗-layer and the F ∗-layer take into account
a single object ωi. Table 1 lists the different layers for the measures introduced
so far. We will use subscripts S, G and P to refer to layers F ∗, G∗ and H∗ of
each measure.

Table 1. Hierarchical model for measures H∗
S, H

∗
G and H∗

P

Layer Shannon Gini Pessimistic

F ∗ dsr(ωi) mindsr(ωi)

G∗ − log2 F
∗(ωi) 1− F ∗(ωi) − log2 F∗(ωi)

F∗(ωi)

H∗
|Ω|∑
i=1

1
|Ω|G

∗(F ∗(ωi))

The F ∗-layer is a function quantifying the validity of the local monotonicity
constraint of λ with respect to aj for a fixed ωi ∈ Ω, i.e., it measures the
satisfaction of aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh), for every ωh ∈ Ω. F ∗ must
satisfy the following conditions for every ωi ∈ Ω:

(F1) mindsr(ωi) ≤ F ∗(ωi) ≤ maxdsr(ωi);
(F2) if F ∗(ωi) = 1, then aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh), for every ωh ∈ Ω;

(F3) if [ωi]
≤
λ ∩[ωi]

≤
aj
⊆ [ωh]

≤
λ ∩[ωh]

≤
aj

and [ωi]aj = [ωh]aj , then F ∗(ωi) ≤ F ∗(ωh).

Notice that condition (F1) implies F ∗(ωi) ∈ (0, 1]. From a semantic point of
view, condition (F1) imposes two natural boundaries to F ∗(ωi) which are de-
termined by objects belonging to [ωi]aj ; condition (F2) requires that F ∗(ωi) is
equal to 1 only in the case of complete satisfaction of the local monotonicity
constraint for ωi; finally, condition (F3) is a monotonicity requirement related
to other objects in [ωi]aj . It is immediate to verify that dsr, mindsr and avgdsr
satisfy conditions (F1)–(F3), and so F ∗

S , F
∗
G and F ∗

P . On the contrary, maxdsr
can fail to satisfy (F2). From previous discussion, we have that for every ωi ∈ Ω

1

|Ω| ≤ F ∗
P (ωi) ≤ F ∗

G(ωi) = F ∗
S(ωi) ≤ 1. (8)

Going on, the G∗-layer is a strictly decreasing transformation of the F ∗-layer,
and it is a real function defined on (0, 1]. Putting fi = F ∗(ωi), G

∗ must satisfy
the following conditions:

(G1) G∗(fi) ∈ [0,+∞);
(G2) G∗ is a strictly decreasing function of fi;
(G3) G∗(1) = 0;
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Notice that G∗
G, G

∗
S and G∗

P satisfy conditions (G1)–(G3), moreover on the
interval (0, 1], G∗

P dominates G∗
S which, in turn, dominates G∗

G. Considering
(8), for every ωi ∈ Ω we also have

G∗
G(F

∗
G(ωi)) ≤ G∗

S(F
∗
S(ωi)) ≤ G∗

P (F
∗
P (ωi)). (9)

Finally, the H∗-layer is an aggregation operator of the G∗-layers corresponding
to objects in Ω, and thus it is a real function defined on [0,∞)n. Putting gi =
G∗(F ∗(ωi)) for i = 1, . . . , n, H∗ must satisfy the following conditions:

(H1) H∗(g1, . . . , gn) ∈ [0,+∞);
(H2) H∗(g1, . . . , gn) = H∗(gσ(1), . . . , gσ(n)) for every permutation σ;
(H3) if gi ≤ g′i, then H∗(g1, . . . , gi, . . . , gn) ≤ H∗(g1, . . . , g

′
i, . . . , gn);

(H4) H∗(g1, . . . , gn) = 0 if and only if gi = 0 for i = 1, . . . , n.

Again, it is easily seen that the arithmetic mean satisfies conditions (H1)–(H4),
nevertheless, it is not the only possible choice, indeed, also the maximum oper-
ator and the quadratic mean satisfy such conditions.

Next proposition summarizes some properties of H∗
G, H

∗
S and H∗

P .

Proposition 2. The following statements hold:

(i) H∗
G(λ|aj) ≤ H∗

S(λ|aj) ≤ H∗
P (λ|aj);

(ii) 0 ≤ H∗
G(λ|aj) <

|Ω|−1
|Ω| ;

(iii) 0 ≤ H∗
S(λ|aj) < log2(|Ω|);

(iv) 0 ≤ H∗
P (λ|aj) < |Ω| log2(|Ω|).

Proof. All the properties follow by inequalities (8) and (9). In particular, for
properties (ii)–(iv) the upper bound cannot be reached since the F ∗-layers of
objects in Ω cannot be simultaneously all equal to 1

|Ω| .

The layered decomposition we just presented suggests the following definition of
a general rank discrimination measure.

Definition 3. Let F ∗, G∗ and H∗ be functions satisfying conditions (F1)–
(F3), (G1)–(G3) and (H1)–(H4), respectively, then we call rank discrimi-
nation measure

H∗(λ|aj) = H∗(G∗(F ∗(ω1)), . . . , G
∗(F ∗(ωn))).

In next theorem we prove that a rank discrimination measure defined as in
Definition 3 reaches its minimum value 0 if and only if λ is monotonic w.r.t. aj .

Theorem 1. Let F ∗, G∗ and H∗ be functions satisfying conditions (F1)–(F3),
(G1)–(G3) and (H1)–(H4), respectively, then H∗(λ|aj) = 0 if and only if λ is
monotone with respect to aj, that is for every ωi, ωh ∈ Ω,

aj(ωi) ≤ aj(ωh) ⇒ λ(ωi) ≤ λ(ωh).

Proof. Condition (H4) implies that the H∗-layer is 0 if and only if the G∗-layer
related to each ωi ∈ Ω is equal 0 and by virtue of conditions (G2) and (G3)
this can happen if and only if the corresponding F ∗-layer is equal to 1. Finally,
by conditions (F1) and (F2) the F ∗-layer is equal to 1 for every ωi if and only
if the local monotonicity constraint of λ w.r.t. aj is satisfied for every ωi.
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4 New Rank Discrimination Measures

Definition 3 enables us to introduce new rank discrimination measures, as the
two proposed in next definition.

Definition 4

H∗
M (λ|aj) = max

i=1,...,|Ω|

{
1− dsr(ωi)

2
}
;

H∗
Q(λ|aj) =

√√√√ |Ω|∑
i=1

1

|Ω| (1− avgdsr(ωi))
2
.

It is easily verified that functions H∗
M and H∗

Q respect all the conditions in Def-
inition 1. Table 2 lists the hierarchical decomposition of the two new measures.

Table 2. Hierarchical model for measures H∗
M and H∗

Q

Layer M Q

F ∗ dsr(ωi) avgdsr(ωi)

G∗ 1− F ∗(ωi)
2 1− F ∗(ωi)

H∗ max
i=1,...,|Ω|

{G∗(F ∗(ωi))}

√
|Ω|∑
i=1

1
|Ω|G

∗(F ∗(ωi))2

4.1 Induced Order Structures

Keeping in mind the use of a rank discrimination measure, once new measures
are introduced, it is extremely important to investigate the order structure they
induce on the family of attributes A. In particular, the new measures have an
individual meaning only in the case they are not a monotone transformation of
other existing measures. In [15] we showed that this does not hold for H∗

S , H
∗
G

and H∗
P . Example 1 shows that this is not true neither for H∗

M and H∗
Q, indeed

all the presented measures induce a different total preorder ≤H∗ on A (where
H∗ stands for a rank discrimination measure) and so they determine decision
trees with different shapes.

Example 1. Consider the set of objects Ω = {ω1, . . . , ω5} together with at-
tributes a1 ranging in {0, 1, 2, 3} and a2 ranging in {0, 1}, and the labelling
function λ ranging in {0, 1, 2, 3}.

If a1,a2 and λ are defined as in Table 3 (a) then we have H∗
S(λ|a1) = 0.86,

H∗
S(λ|a2) = 0.96,H∗

G(λ|a1) = 0.37,H∗
G(λ|a2) = 0.44,H∗

P (λ|a1) = 3.86,H∗
P (λ|a2)

= 4.17, H∗
M (λ|a1) = 0.93, H∗

M (λ|a2) = 0.88, H∗
Q(λ|a1) = 0.71 and H∗

Q(λ|a2) =
0.81. Hence a1 <H∗ a2 for H∗ ∈ {H∗

S, H
∗
G, H

∗
P , H

∗
Q} while a1 >H∗

M
a2.
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Table 3. Definition of a1, a2 and λ

(a)

a1 a2 λ

ω1 3 1 1
ω2 0 0 3
ω3 2 1 0
ω4 1 1 2
ω5 1 0 3

(b)

a1 a2 λ

ω1 1 0 0
ω2 0 0 2
ω3 0 1 3
ω4 3 1 1
ω5 2 0 0

On the other hand, if a1,a2 and λ are defined as in Table 3 (b) then we
have H∗

S(λ|a1) = 0.72, H∗
S(λ|a2) = 0.46, H∗

G(λ|a1) = 0.28, H∗
G(λ|a2) = 0.22,

H∗
P (λ|a1) = 4.64, H∗

P (λ|a2) = 2.78, H∗
M (λ|a1) = 0.96, H∗

M (λ|a2) = 0.84,
H∗

Q(λ|a1) = 0.60 and H∗
Q(λ|a2) = 0.62. Hence a1 <H∗

Q
a2, while a1 >H∗ a2

for H∗ ∈ {H∗
S , H

∗
G, H

∗
P , H

∗
M}.

It is important to notice that since a rank discrimination measure is used at
each step of an inductive algorithm, it has only a partial view on the input
dataset so the classifier obtained at the end of the construction is not globally
monotone, in general. Nevertheless, no form of monotonicity (neither the local
one) is guaranteed by standard discrimination measures.

Next example shows the inductive construction of a decision tree starting from
a monotone consistent dataset. Both the classical measures HS and HG and the
new measures H∗

M and H∗
Q are used, stressing that the first two are completely

insensitive to monotonicity while the last two (as well as H∗
S , H

∗
G and H∗

P ) give
rise to a globally monotone classifier in this specific case.

Example 2. Consider the set of objects Ω = {ω1, ω2, ω3, ω4} described by a1, a2
and a3 ranging in {0, 1}, and labelled by λ ranging in {0, 1, 2}, defined as in
Table 4.

Table 4. Definition of a1, a2, a3 and λ

a1 a2 a3 λ

ω1 0 0 1 0
ω2 0 1 0 1
ω3 0 1 1 1
ω4 1 0 1 2

Considering measures HG and HS we compute HG(λ|a1) = 0.33, HG(λ|a2) =
0.25, HG(λ|a3) = 0.5, HS(λ|a1) = 0.68, HS(λ|a2) = 0.5 and HS(λ|a3) = 1.18.
Hence, both measures select a2 for splitting. For the next step, a leaf with la-
bel λ = 1 is added in the right branch, while for the left branch we compute
HG(λ|a1) = HS(λ|a1) = 0,HG(λ|a3) = 0.5 andHS(λ|a3) = 1, so also in this case
both measures select a1 for splitting and the procedure stops with the tree shown
in Figure 1 (a). It is easily verified that the resulting classifier λ′ : X → C is not
globally monotone, since (1, 0, 1) ≤ (1, 1, 1) and 2 = λ′(1, 0, 1) > λ′(1, 1, 1) = 1.
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(a) Non-globally monotone (b) Globally monotone

Fig. 1. Trees obtained using HG, HS or H∗
M , H∗

Q, respectively

On the other hand, with H∗
M and H∗

Q we get H∗
M (λ|a1) = 0.43, H∗

M (λ|a2) =
0.93, H∗

M (λ|a3) = 0.88, H∗
Q(λ|a1) = 0.47, H∗

Q(λ|a2) = 0.55 and H∗
Q(λ|a3) =

0.72. This implies the selection of a1 for splitting, by both measures. Now a leaf
with label λ = 2 is added in the right branch, while for the left branch we have
H∗

M (λ|a2) = H∗
Q(λ|a2) = 0, H∗

M (λ|a3) = 0.75 and H∗
M (λ|a3) = 0.60. Also in this

case both measures select a2 for splitting and the procedure stops with the tree
shown in Figure 1 (b), which coincides with the one obtained using H∗

G, H
∗
S and

H∗
P . In this case the resulting classifier is globally monotone.

4.2 Experimental Analysis

To have a first idea of the effectiveness of the two new measures we tested
our binary tree classifier RDMT(H∗) [15] with H∗ ∈ {H∗

G, H
∗
S , H

∗
P , H

∗
M , H∗

Q},
comparing it with other monotone classifiers having a WEKA1 (version 3-6-
0) implementation: we used the Ordinal Learning Model (OLM) [3], the Ordi-
nal Stochastic Dominance Learner (OSDL) [3] and the Ordinal Class Classifier
(OCC) [6] (this last classifier is a monotone meta-classifier for which we used
C4.5 [17] as basic classifier).

We executed tests on artificial data, producing datasets with an increasing
number of monotone attributes. For k = 1, . . . , 10, we generated a dataset of 1000
examples on 10 attributes, where aj is a uniform random variable on {1, . . . , 10},
j = 1, . . . , 10, and the labelling function is defined as λ = max

j=1,...,k
aj . Clearly, for

k = 10 the corresponding dataset is monotone consistent due to monotonicity
of maximum operator. Each test has been executed performing a stratified 10-
folds cross-validation with the same seed for the pseudo-casual number generator
and using default WEKA settings for OLM, OSDL and OCC. Figure 2 displays
graphics of correctly classified instances, or CCI for short.

Figure 2 highlights that RDMT(H∗), for every H∗, performs generally better
than OLM, OSDL, OCC: there is only a slightly better behaviour of OCC with
respect to RDMT(H∗

M ). In particular, the best results are always obtained with

1 http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 2. CCI results of RDMT(H∗), OLM, OSDL, OCC

H∗
G, while the worst with H∗

M , moreover, for this experiment there is an evident
overtaking of measures H∗

G, H
∗
S and H∗

Q with respect to H∗
P and H∗

M .

5 Conclusions

In this paper we presented a hierarchical model for the validation of rank discrim-
ination measures used in the inductive construction of decision tree classifiers,
in a way to impose a local form of monotonicity. The properties a function must
satisfy to be a rank discrimination measure have been singled out, allowing in
this way the creation of two new rank discrimination measures. In future work,
we aim at using those new measures to build decision trees in applications where
monotonicity of the class related to the attributes is important, such as in med-
ical applications [12]. A deeper experimental study, like the one done in [15], as
well as the fuzzification of these measures are also envisaged.
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Abstract. When using convex probability sets (or, equivalently, lower previ-
sions) as models of uncertainty, identifying extreme points can be useful to per-
form various computations or to use some algorithms. In general, sets induced
by specific models such as possibility distributions, linear vacuous mixtures or
2-monotone measures may have extreme points easier to compute than generic
convex sets. In this paper, we study extreme points of another specific model:
comparative probability orderings between the elements of a finite space. We use
these extreme points to study the properties of the lower probability induced by
this set, and connect comparative probabilities with other uncertainty models.

Keywords: Comparative probabilities, credal sets, 2-monotone capacities, belief
functions, regular extension, imprecise mass functions.

1 Introduction

In the last decades, there has been a growing interest on imprecise probability models as
alternative models to probability in situations where the available information is vague
or scarce. This type of models includes for instance belief functions [1], possibility
measures [2], 2- and n-monotone capacities [3] or probability boxes [4]. All the above
examples can be seen as instances of coherent lower and upper previsions [5].

The adequacy of each of these models for a particular problem depends, among other
things, on the interpretation we are giving to our uncertainty. In this paper, we consider
a robust Bayesian interpretation [6]: we assume the existence of a precise, but unknown,
probability model, and work with the set of probability measures that are compatible with
the available information. This gives rise to a credal set, as considered by Levi in [7].

Here, we consider the case where the information is expressed by means of a com-
parative probability model [8]: we consider a finite probability space Ω and assume
that we are given judgements of the type “the probability of A is at least as great as
that of B”. Comparative probabilities have been deemed of particular interest within the
context of subjective probability theory [9,10,11]; see also [5, Section 4.5] for a study
from the point of view of coherent lower previsions. One of their advantages is that they
seem well suited for modelling qualitative judgements.

In spite of this, there are only few works dealing with the numerical and practical
aspects of comparative probabilities [12]. One reason for this is that it is not easy to

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 424–435, 2013.
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summarize the set of probabilities associated to the comparative assessments, for in-
stance by means of a lower and an upper probability, and this renders it difficult to
summarize the information about the probability of an event of interest. In this paper,
we solve this problem by characterizing the comparative probability models by means
of the extreme points of their associated credal sets. This is a problem that has been
studied for other types of imprecise probability models, such as 2-monotone capacities
[13], possibility measures [14], probability intervals [15] and belief functions [16]. In
this paper, we focus on probability sets generated by comparisons between singletons.
Focusing on this particular case allows us to derive nice graphical characterizations,
and we provide some practical examples where this special case may be useful. There
is only one partial result for this type of assessments [17], and we generalize it in this
paper.

After giving some preliminary results in Section 2, we shall see in Section 3 that,
when the comparison judgements are made on the probabilities of the singletons, a
graphical representation of these judgements makes it easy to derive the extreme points
of the associated credal sets. In Section 4, we use this result to discuss some practi-
cal aspects of these models: we establish tight lower and upper bounds on the number
of extreme points; investigate their relationship with other imprecise probability mod-
els; provide algorithms for the computation of these extreme points; and discuss the
computation of conditional lower probabilities and the merging of multiple comparison
judgements. Some additional remarks related to the practical use of these models and
their extensions are provided in Section 5.

2 Preliminaries

Consider a finite space X = {x1, . . . ,xn}, modelling the set of outcomes of some ex-
periment. In this paper, we assume that our information about these outcomes can be
modelled by means of comparative probability orderings of the states, i.e., statements
of the type “the probability of xi is at least as great as that of x j”. Hence, we shall
represent the available information by means of a subset L of {1, . . . ,n}×{1, . . . ,n}.

The set of probability measures compatible with this information is given by

P(L ) = {p ∈ PX : ∀(i, j) ∈L , p(xi)≥ p(x j)}, (1)

where PX denotes the set of all probabilities on the power set of X .
For the purposes of this paper, it shall be useful to represent these assessments by

means of a graph G = (X ,L ) where the nodes are the elements of X and we draw
an edge between xi and x j when (i, j) ∈L .

Example 1. Consider the space X = {x1, . . . ,x5} and the set of assessments L =
{(1,3),(1,4),(2,5),(4,5)}. Its associated graph G is given by Figure 1. 

Note that the set P(L ) determined by Eq. (1) is always non-empty, because it includes
for instance the uniform probability distribution. It is interesting to compare it with the
set

P(K ) = {p ∈ PX : ∀(i, j) ∈L , p(xi)> p(x j)},
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x1

x3 x4

x2

x5

Fig. 1. Graph G of Example 1

i.e., with the credal set associated by strict elementary probability comparisons, which
appear also sometimes in the literature. Since P(L ) is a closed convex polytope in Rn,
it follows from basic convex analysis that P(L ) corresponds to the closure of P(K )
when the latter set is non-empty, and that P(K ) is the topological interior of P(L ).
The non-emptiness of P(K ) is easy to characterise.

Proposition 1. P(K ) �= /0 if and only if G is acyclic.

Hence, our results in this paper will also allow us to characterize the set P(K ). As
we shall see in Remark 1, we can also deal with assessments of equality between the
probabilities, which correspond to a cycle in G .

3 Extreme Points of P(L )

Consider a finite space X = {x1, . . . ,xn} and a subset L of {1, . . . ,n}×{1, . . . ,n}, and
let P(L ) be the set it determines by means of Eq. (1). Any of the probability measures
in P(L ) is completely determined by its mass function, and as a consequence it can be
seen as an element of the n-th dimensional Euclidean space. Then, P(L ) is a closed
convex subset of Rn in the Euclidean topology, that corresponds thus to the closed
convex hull of its set of extreme points. We shall determine these extreme points by
means of the graphical representation we have established in Section 2.

We shall make two assumptions on the graph G associated to L :

(G1) The first one is that G is acyclic, meaning that there are no assumptions of equality
between the probability of two different states.

(G2) The second is that G is connected, so for every i �= j there is an undirected path
in G that connects the nodes xi and x j.

Remark 1. The results we obtain can be used to characterise the general case. On the
one hand, when G has cycles, we have some assumptions of equality P(xi) = P(x j)
between the probabilities of two elements xi,x j in our possibility space. It is not difficult
to determine the structure of the set P(L ) in that case: for each of the assumptions
of equality, we consider one of the elements xi in the corresponding set and store the
number of elements ni in X that are assumed to have the same probability as xi; from
this we derive the simplified space X

′ ⊂X for which the graph G
′

satisfies (G1).
By this, we can establish a one-to-one correspondence between the sets P(L ) ⊆

PX and P(L
′
)⊆ PX

′ : any probability P := (p1, . . . , pn) in P(L ) induces the prob-

ability P′ on P(L
′
), with P′(xi) = P(xi) ·ni. Then, once we determine the distributions
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of the extreme points associated to the graph G
′
, we just have to ‘expand’ this graph by

reversing the above correspondence between the probabilities.
On the other hand, if G does not satisfy (G2), we can decompose it as a union of

its weakly connected components G1, . . . ,Gk. For each of these components we can
characterise their associated extreme points in the form we shall give below, and then
the extreme points associated to G will be the union of the sets of extreme points in
each of these subgraphs. 

In order to characterise the extreme points of P(L ), we are going to consider a number
of lemmas:

Lemma 1. Any extreme point p of P(L ) corresponds to a uniform probability mea-
sure over some subset A⊆X .

For every subset A of X , we shall denote by PA the uniform probability measure on A,
that is associated to the mass function

PA(xi) =

{
1
|A| if xi ∈ A

0 otherwise

for any i∈ {1, . . . ,n}. Using the acyclic graph G , we can now characterize those subsets
A⊆X for which PA is an extreme point of P(L ). For every x j ∈X , we shall denote
by H(x j) the set of ancestors of x j, i.e., those nodes xi such that there is a directed path
from xi to x j in G . By an abuse of notation, we shall also consider that x j is an ancestor
of itself, i.e., we shall assume that x j ∈ H(x j) for all j. Finally, for every A ⊆X , we
shall denote H(A) := ∪x∈AH(x).

The following lemma gives further insight onto which uniform probabilities may be
extreme points of the credal set P(L ).

Lemma 2. 1. If A �= H(A), then PA is not an extreme point of P(L ).
2. If there are C1,C2 ⊆ A such that H(C1)∩H(C2) = /0 and H(C1)∪H(C2) = H(A),

then PH(A) is not an extreme point on P(L ).

Next, if B is a subset of A and H(B) = H(A), both A and B give rise to the same
probability measure PH(B) = PH(A). This is related to the notion of strongly connected
nodes:

Definition 1. Two nodes xi,x j in the graph G are said to be strongly connected when
there is a directed path from xi to x j, or viceversa, and are called strongly disconnected
otherwise.

Equivalently, xi,x j are strongly connected when either xi ∈ H(x j) or x j ∈ H(xi). This
allows us to establish the following result:

Theorem 1. If PH(A) is an extreme point of P(L ), then there is some B ⊆ A with
H(B) = H(A) and such that any two nodes in B are strongly disconnected. Thus, the set
of extreme points coincide with the set of probabilities PH(A) generated by sets A



428 E. Miranda and S. Destercke

(EXT1) composed of strongly disconnected nodes of G and
(EXT2) that cannot be decomposed as in Lemma 2.

Remark 2. An interesting related result has been established in [17], in the context of
credal classification. The author considers the credal set determined by the comparisons
of the probabilities of the states, and computes the lower probability of the set A of
elements with no predecessor in G . In order to do this, she provides results analogous
to our Lemmas 1 and 2, and then in [17, Theorem B.2.2] she establishes which of the
elements in P(L ) attain the lower probability of A.

Theorem 1 subsumes these results, in the sense that we give the explicit form of the
extreme points (from which we may determine also the lower probability of any other
set, as well as the lower prevision induced by a comparative probability model). Note
moreover that we have showed that not all the uniform probability distributions PH(A)
determine an extreme point of P(L ). 

Example 2. The extreme points generated by Example 1 are summarised in Table 1.

Table 1. Extreme points of Example 1

p
A H(A) x1 x2 x3 x4 x5
{x1} {x1} 1 0 0 0 0
{x2} {x2} 0 1 0 0 0
{x3} {x1,x3} 1/2 0 1/2 0 0
{x4} {x1,x4} 1/2 0 0 1/2 0
{x5} {x1,x2,x4,x5} 1/4 1/4 0 1/4 1/4

{x1,x2} {x1,x2} 1/2 1/2 0 0 0
{x2,x3} {x1,x2,x3} 1/3 1/3 1/3 0 0
{x2,x4} {x1,x2,x4} 1/3 1/3 0 1/3 0
{x3,x4} {x1,x3,x4} 1/3 0 1/3 1/3 0
{x3,x5} {x1,x2,x3,x4,x5} 1/5 1/5 1/5 1/5 1/5

{x2,x3,x4} {x1,x2,x3,x4} 1/4 1/4 1/4 1/4 0

4 Practical Aspects

4.1 Number of Extreme Points

Since extreme points correspond to uniform distributions over certain subsets A⊆X ,
we immediately see that an upper bound of the number of extreme points is 2|X |. Note
that this is significantly lower than the maximal number of extreme points generated by
lower coherent probabilities, known to be |X |! [18]. We next show that this number of
extreme points can be reduced even further (recall that we are assuming throughout that
the graph G associated with L satisfies (G1) and (G2)):

Theorem 2. The maximum number of extreme points of P(L ) is 2(|X |−1), and the
minimum number is |X |. Each of these bounds can be attained.
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x1

x2 x3 x4 x5

Fig. 2. Graph G for x1 =modal value

To see that the upper bound given by the above theorem can indeed be reached, consider
the case where a single modal value is provided. Figure 2 illustrates the situation.

Interestingly, the upper bound given in Theorem 2 is the same as the number of
extreme points of the credal set associated to a possibility measure, as showed in [14,
Section 5]. Our intuition for this is that possibility measures also determine an order
between the singletons, by means of their associated possibility distributions. On the
other hand, an example where the lower bound is reached is the case where L forms a
complete ordering of singletons {x1, . . . ,xn} (this is the case considered in [5, P. 195];
note that the result there is now a particular case of Theorem 1).

4.2 Extraction Algorithm

Using the results of Section 3, we can propose a pseudo-algorithm to extract extreme
points, summarised in Algorithm 1.

Algorithm 1. Extreme point search
Input: Set L of comparisons
Output: Extreme points of P(L )

1 List← /0;
2 for i = 1, . . . ,n do
3 Build extreme points corresponding to H(xi);
4 List← {xi};
5 Candidate set ← List ;
6 for i = 2, . . . ,n do
7 List← /0 ;
8 foreach set B in Candidate set do
9 for i = 1, . . . ,n do

10 if xi is strongly disconnected from the elements B and H(B∪{xi}) is a new
extreme point then

11 Add H(B∪{xi}) to extreme points ;
12 List← B∪{xi} ;

13 Candidate set← List ;

Implementing this algorithm mainly requires to be able, for a given set B, to check
whether elements of B are strongly disconnected and to compute H(B). An instrumental
tool to do this is the matrix M corresponding to the transitive closure C (L )⊆X ×X
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of L , with M(i, j) = 1 iff (i, j) ∈ C (L ). M can be efficiently computed by applying
Warshall algorithm (see [19]) to matrix L with L(i, j) = 1 iff (i, j) ∈L .

Once this is done, checking whether two elements xi,x j are strongly disconnected
can be done in linear time. Checking that B is made of strongly disconnected elements
is equivalent to check whether all pairs of elements xi,x j ∈ B are strongly disconnected,
hence at most in quadratic time. As H(B) = ∪x∈BH(x), computing H(B) is also linear.
This means that the complexity of the loop going from Line 10 to 13 in Algorithm 1 is
quadratic.

Algorithm 1 also tries to minimize the number of sets of nodes to check by reducing
the search to sets that are not known to be sets containing connected nodes, rather than
making a naı̈ve search among all subsets B ⊆X . Summarizing, the whole algorithm
complexity depends on the number of extreme points to extract, hence is at worst NP-
hard (see Theorem 2), at best quadratic (as loop 10-13 is).

4.3 n-Monotonicity

Next, we investigate in more detail the set of probabilities P(L ) from the point of
view of the theory of coherent lower previsions developed in [5]. Since the set P(L )
is a closed convex set of probabilities, its lower envelope P, given by

P(A) = min{P(A) : P ∈P(L )} ∀A⊆X (2)

is a coherent lower probability. As such, it can be given a behavioural interpretation in
terms of acceptable betting rates.

Coherent lower probabilities include as particular cases most of the imprecise prob-
ability models that we can find in the literature, such as 2-monotone capacities, belief
functions, or necessity measures; see [20] for more details. In particular, a coherent
lower probability is 2-monotone when for any A,B⊆X we have

P(A∪B)+P(A∩B)≥ P(A)+P(B). (3)

These are also called convex functions on Choquet capacities of order 2 [3,21]. When
|X | ≤ 3, a coherent lower probability on P(X ) is always 2-monotone [22], and as
consequence this is also true for the comparative probability models we consider in this
paper. On the other hand, when |X | ≥ 4, there exist coherent lower probabilities on
P(X ) which are not 2-monotone. We next show that, in general, the coherent lower
probabilities induced by comparative probability models will not be 2-monotone.

Example 3. Consider X = {x1,x2,x3,x4} and L = {(1,2),(1,3),(2,4),(3,4)}. From
Theorem 1, the extreme points of P(L ) are associated to the mass functions{

(
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,
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,

1
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1
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,0,0),(
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1
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3
,

1
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,

1
3
,0),(1,0,0,0)

}
;

as a consequence, if we consider the events A = {x1,x3} and B = {x1,x4}, we see that

P(A∪B)+P(A∩B) = 1/2+ 1/4 < P(A)+P(B) = 1/2+ 1/3.

Hence, P violates the 2-monotonicity condition. 
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From this, we can deduce that belief functions, that are in particular 2-monotone, are
not expressive enough to represent comparative probability models.

On the other hand, from a convex set of probability measures we can also determine
lower and upper expectation functionals. Similarly to Eq. (2), the real-valued functional
P given by

P( f ) = min{P( f ) : P ∈P(L )} (4)

for any function f : X → R is called a coherent lower prevision. Here, we are also
using P to denote the expectation functional associated to the probability measure P,
given by P( f ) = ∑x∈X f (x)p(x).

Similarly to Eq. (3), a coherent lower prevision is called 2-monotone when

P( f ∨g)+P( f ∧g)≤ P( f )+P(g)

for any f ,g : X → R, where ∨ denotes the point-wise maximum and ∧ denotes the
point-wise minimum. This type of lower previsions has been studied in detail in [22,23].
They are interesting, because, unlike coherent lower previsions, they can be computed
as the Choquet integral with respect to the lower probability that is their restriction
to events. Moreover, 2-monotonicity has been showed to be equivalent to comonotone
additivity [23, Theorem 15]. However, we can prove that the coherent lower prevision
associated to a one-to-one comparison model is not 2-monotone as soon as X has more
than two elements:

Theorem 3. Consider a space X with |X | ≥ 3, and let L be a number of probability
comparisons on the elements of X whose associated graph satisfies (G1) and (G2). Let
P be the coherent lower prevision determined by (4). Then P is not 2-monotone.

Although it is an open problem at this stage, we think that with similar arguments
to those in the proof it can be showed that a comparative probability model on the
singletons never determines a 2-monotone lower prevision even when the associated
graph G violates (G1) or (G2).

4.4 Conditioning

A classical operation when dealing with uncertainty is that of conditioning. Here we
will study the problem of computing lower conditional probabilities P(A|B) from the
credal set P(L ). Out of the many possible notions we can consider in this case, we
think that the most intuitive under the robust Bayesian interpretation we are considering
in this paper is that of regular extension [5, Appendix J], that produces

P(A|B) = inf
P∈P(L )

{P(A|B) : P(B)> 0}, (5)

where P(A|B) is obtained from P through Bayes Rule of conditioning.
Note that in order to apply this rule, we need that there is some probability measure

P in P(L ) such that P(B) > 0 (or, in other words, that the upper probability P(B)
is positive); but this is no restriction in the case of comparative probabilities, because
there will always be an extreme point P of P(L ) for which P(B) > 0: it suffices to
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consider PH(xi) with xi ∈ B. On the contrary, the lower probability P(B) will be positive
if and only if for any xi ∈X it holds that B∩H(xi) �= /0, i.e., if and only if B contains
all the nodes without a predecessor.

To attain the conditional lower probability P(A|B) given by Eq. (5), we need to find
the extreme point for which P(B) is positive and the fraction P(A∩B)/P(B) minimal. This
can be done easily by the procedure described in Algorithm 2. Note that it is sufficient to
concentrate on extreme points generated by subsets C of B\A, as we want to minimise
the ratio |H(C)∩B∩A|/|H(C)∩B|. From this, we easily derive the following algorithm:

Algorithm 2. Conditional Probability computation
Input: Set L of comparisons
Output: Lower conditional probability P(A|B) with A⊂ B

1 Cond ← 1 ;
2 foreach Set C ⊆ B\A do
3 Value← |H(C)∩(A∩B)|/|H(C)∩B| ;
4 if Value < Cond then Cond← Value

5 Return Cond ;

4.5 Multiple Source Merging

When multiple sources provide different comparisons, for instance when two differ-
ent experts provide assessments L1 and L2, it becomes necessary to merge them
in a single representation. The two most common rules to do so are the conjunc-
tion and disjunction, that respectively come down to computing P(L1)∩P(L2) and
CH(P(L1)∪P(L2)), where CH denotes the convex hull (the disjunction usually pro-
ducing non-convex probability sets). Our next result shows that simple operations on
L1 and L2 can provide exact or approximated results of these operations.

Proposition 2. 1. The disjunctively merged set CH(P(L1)∪P(L2)) is such that
CH(P(L1)∪P(L2))⊆P(L1∩L2), and the inclusion can be strict.

2. The conjunctively merged set satisfies P(L1)∩P(L2) = P(L1∪L2).

5 Practical Examples and Extensions

In this section, we propose some particular examples of situations where elementary
comparative probability models can be used, and discuss some possible extensions.

5.1 Imprecise Mass Functions

Elementary comparative probability models can be related to the work on imprecise
mass functions discussed by Augustin [24] and Denoeux [25]. Recall that a belief func-
tion P on the power set of X is uniquely determined by its associated basic probability
assignment m, by means of the formula [1]

P(A) = ∑
E⊆A

m(E). (6)
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The basic probability assignment m(E) of a set E represents the weight of the avail-
able evidence supporting that the outcome of the experiment belongs to E . It holds that
∑E⊆X m(E) = 1, so we may regard m as the probability mass function of some proba-
bility measure on P(P(X )). This arises for instance in the context of finite random
sets.

We can then use our results to build imprecise mass functions. If we have assessments
of the type m(Ai) ≥ m(A j), we may consider the set of the mass functions compatible
with these assessments. This is a convex set of probability measures whose extreme
points can be determined by means of Theorem 1. Note that, by means of Eq. (6),
each of these mass functions determines a belief function, that in turn is equivalent to a
convex set of probability measures on P(X ). Hence, a convex set of mass functions
also induces a convex set of probabilities on P(X ) [24]; however, its lower probability
will not be, in general, a belief function (nor, as we can deduce from Example 3, 2-
monotone).

This can be useful for instance in the context of inner/outer measures [26]. We may
think of an infinite space X that is partitioned into n sets A1, . . . ,An, and where a
probability measure P(Ai) is associated to each set Ai. Such an assessment induces on
the power set of X a set of probabilities that can be described by m(Ai) = P(Ai). In
this situation, comparative statements between the probabilities P(Ai) are equivalent to
comparative statements between the masses m(Ai), and the set of extreme masses can
then be derived using our results.

5.2 Extension to General Comparative Probability Models: Some Comments

The most important extension of our work would be to consider arbitrary comparative
probability models, where we allow for comparisons between any pair of events (the
case of partitions is treated in Section 5.1), that is to allow any comparison P(A)≥ P(B)
with A,B⊆X . These are the models studied extensively in [8,10,11], amongst others.

Note that, when considering comparative probability models, we can assume that
the sets A,B we compare are disjoint, since the assessments P(A) ≥ P(B) and P(A \
B) ≥ P(B \A) are equivalent. However, the existence of a probability compatible with
the assessments is no longer trivial, and therefore the associated set P(L ) may be
empty: think for instance of the case of X = {x1,x2,x3} and the assessments P({x1})≥
P({x2,x3}),P({x2})≥ P({x1,x3}) and P({x3})≥ P({x1,x2}). These are equivalent to
P({x1}) ≥ 0.5,P({x2}) ≥ 0.5 and P({x3}) ≥ 0.5, and there is no probability measure
satisfying all these conditions simultaneously.

When P(L ) is non-empty, then it is a closed convex set which is characterized by
its finite number of extreme points. However, as the next example shows, we cannot ex-
pect the extreme points of such assessments to be as simple as the extreme points gener-
ated by the comparison of the probabilities of the states. In particular, the extreme points
of the associated credal sets will not be necessarily associated with uniform probabil-
ity distributions over some subsets, and finding an easy graphical representation from
which they could be extracted seems hard.
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Example 4. Consider X = {x1,x2,x3} and the assessments P({x2}) ≥ P({x1}) and
P({x1,x2}) ≥ P({x3}), and let P be the credal set determined by these assessments.
The extreme points of P are given by the mass functions

{(0,1,0),(1/2,1/2,0),(1/4,1/4,1/2),(0,1/2,1/2)}. 

6 Conclusions

Comparative probability models constitute a useful approach to modelling uncertain
information about a probability model, especially when the available information is
of a qualitative nature. However, most of the works in the literature about these mod-
els have focused on axiomatizing those comparative probability models that can be
associated to a set of probability measures. In this paper, we have deepened on the
link between elementary comparative probability models and imprecise probabilities,
by: (a) characterizing the structure of the set of probability measures associated to a
comparative probability model, and (b) studying the properties of the lower probabil-
ity induced by this set. Interestingly, we have showed that this lower probability may
not be 2-monotone, from which it follows that 2-monotone capacities (and in particular
belief functions, or possibility measures) are not expressive enough to be able to deal
with this type of qualitative information. Moreover, we have showed that the maximum
number of extreme points is similar to the maximal number of extreme points of credal
sets induced by possibility measures, and smaller than those induced by 2-monotone
capacities or belief functions.

We have also suggested some practical situations where this model can be useful,
such as the elicitation of modal or least probable values or imprecise mass functions.
However, this model remains quite simple and of limited expressiveness; it would be de-
sirable to determine to which extent the results presented in this paper can be extended
to the case of general comparisons between disjoint events, discussed in Section 5.2.
Another important open problem would be to provide algorithms for the computation
of the lower prevision induced by a comparative probability model, and to study in
detail the applications of these results in fields such as qualitative decision making.
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MCMC Estimation of Conditional Probabilities

in Probabilistic Programming Languages
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Abstract. Probabilistic logic programming languages are powerful for-
malisms that can model complex problems where it is necessary to rep-
resent both structure and uncertainty. Using exact inference methods to
compute conditional probabilities in these languages is often intractable
so approximate inference techniques are necessary. This paper proposes a
Markov Chain Monte Carlo algorithm for estimating conditional
probabilities based on sampling from an AND/OR tree for ProbLog, a
general-purpose probabilistic logic programming language. We propose
a parameterizable proposal distribution that generates the next sample
in the Markov chain by probabilistically traversing the AND/OR tree
from its root, which holds the evidence, to the leaves. An empirical eval-
uation on several different applications illustrates the advantages of our
algorithm.

1 Introduction

Probabilistic programing languages (PPLs) embed probabilistic concepts into
programming languages. They provide high-level constructs for specifying mod-
els that can capture both uncertainty and structure. Examples of PPLs include
ProbLog [12,2], PRISM [22], BLOG [15], Church [6], and IBAL [17].

This paper focuses on ProbLog, a probabilistic extension of the logic program-
ming language Prolog, based on Sato’s distribution semantics [20]. A ProbLog
program represents a distribution over possible worlds. Consequently, unlike in
Prolog, the success or failure of a query is not deterministic. A central infer-
ence problem is computing the probability that a query succeeds conditioned
on some given evidence. Unfortunately, computing such probabilities exactly for
high dimensional realistic problems is unfeasible, only approximation techniques
providing a polynomial time solution [1]. One of the most popular sampling tech-
niques used by many PPLs [21,6,15] is Markov chain Monte Carlo (MCMC) [1].

We present an MCMC approach tailored to computing the conditional prob-
ability of a ProbLog query. Computing conditional probabilities in PPLs has,
with a few exceptions [3], not yet received much attention in the literature.

Several challenges arise when designing a ProbLog MCMC algorithm. First, as
ProbLog is a programming language, the possible worlds can be infinite, making
it impossible to sample complete worlds. Our MCMC approach samples partial
possible worlds (i.e., assignments to subsets of the random variables in model)
which correspond to proofs. Second, ProbLog explicitly deals with the disjoint
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sum problem in contrast to other PPLs (e.g., Prism) that make the mutually ex-
clusiveness assumption to avoid this NP-hard problem. The disjoint sum problem
arises when two proofs overlap. We solve this using the Karp and Luby algorithm
[9]. By not making the mutually exclusiveness assumption, a user can write a
ProbLog program that more easily models a richer problem setting. Third, only
those possible worlds that agree with the evidence are relevant for approximating
the conditional probability. We employ an AND/OR tree rooted at the evidence,
representing all such possible worlds, and probabilistically traverse the tree to
generate only those samples where the evidence holds. The AND/OR tree is
needed to deal with ProbLog’s underlying non-deterministic nature, also distin-
guishing our approach from those applied to functional programming languages.
Finally, in contrast to some other languages, we also provide support for numeric
random variables and discrete distributions.

2 Background

We first review some basic concepts of logic programming:An atom pred(t1, ..., tn)
consists of a predicate pred/n of arity n and ti terms. A term is either a (lowercase)
constant, a (uppercase) variable, or a functor func/napplied onn terms.A definite
clause is an expression of the form h← b1, ..., bn, where h and the bi are atoms. It
states that h is true whenever all bi are true. If n is 0, we have a fact f ←, which
expresses that f is true. A substitution θ = {X1 = t1, ..., Xn = tn} maps each
variableXi to a term ti. Applying a substitution θ to an atom a yields aθ, in which
each occurrence of Xi in a is replaced with ti.

A ProbLog [12,2] program consists of a set of labeled facts pi :: ci, where pi
is a probability value and ci a fact, and a set of definite clauses. Each ground
instance of such a fact represents a random variable that is true with probability
pi. We use the following ProbLog program as a running example in the paper:

0.05 :: burglary.

0.01 :: earthquake.

0.7 :: hears_alarm(john).

0.6 :: hears_alarm(mary).

alarm :- burglary.

alarm :- earthquake.

calls(Pers) :- alarm, hears_alarm(Pers).

It has the random variables: burglary, earthquake, hears alarm(john) and
hears alarm(mary), and states that there is an alarm whenever there is bur-
glary or an earthquake. The last clause states that if there is an alarm and a
person hears the alarm, that person will call.

To model univariate discrete distributions (e.g., uniform, Poisson), we also
allow for discrete distribution probabilistic facts X ∼ φ :: f . X is a logical
variable appearing in atom f and φ a probability density function. Currently
only the uniform and Poisson distributions are implemented. For example, X ∼
uniform(7) :: apples(X) specifies that apples(X) is true with X sampled from
the set of integers between 1 and 7 with equal probability. Only for the sampled
value of X will apples(X) be true. Each grounding of all the variables (except
X) in f denotes a random variable. In ProbLog, all random variables (discrete
distributions or probabilistic facts) are assumed marginally independent.
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The semantics of the ProbLog program is then given by probability distri-
butions over subsets of the facts fi (called subprograms) and sample values for
the numeric variables in the uniform and Poisson distributions. Each ground
probabilistic fact p :: f specifies an atomic choice, i.e., we can choose to include
f as a fact (with probability p) or its negation f (with probability 1− p), where
f is the predicate denoting the explicit negation of f . These negated predicates
may also occur in the background knowledge, allowing us to deal with explicit
negation on probabilistic facts. For a uniform distribution, X will be sampled
from the discrete uniform distribution and f(x) will be included as a fact, where
x is the sampled value for X . Poisson distributions are treated similarly.

The resulting set of facts is called a total choice [18] when we have included
a fact for all random variables, and a partial choice otherwise. To each total
or partial choice we can associate a probability. This is simply the product
of the probabilities of the atoms chosen for inclusion in the total or partial
choice, as these random variables are marginally independent. For example, the
probability of the total choice T1 = {burglary, earthquake, hears alarm(john),
hears alarm(mary)} is 0.05× .99× .7× .4.

The distribution over total choices induces a probability distribution P over
possible worlds, which also defines the (success) probability Ps(q) of a query q
(conjunction of atoms) as Ps(q) = P ({w|q is true in the possible world w}).
Continuing our example, the probability of alarm is equal to the probability
that it is true in the 24 possible worlds. Rather than enumerating these worlds
explicitly, one would compute the proofs of the query and observe that alarm
is true exactly when earthquake or burglary is true. The partial choices corre-
sponding to the two proofs are sometimes called explanations. So:
Ps(alarm) = Ps(burglary ∨ earthquake)

= Ps(burglary ∨ (burglary ∧ earthquake)) = 0.05 + (.95× .01)
This derivation also illustrates the disjoint sum problem, as we have to make
the two arguments of the disjunction mutually exclusive before we can correctly
compute the probability of the query. This is a #P complete problem [23].

3 AND/OR Trees

Our MCMC algorithm relies on the notion of an AND/OR tree for definite
programs [10]. Let T be a definite clause program and ?− e an evidence query.
The AND/OR tree for ProbLog pT ree(e) of the given query is a tree with root
e whose nodes are divided into two disjunctive sets, the set of AND nodes and
the set of atomic choice nodes. Each node contains a query. Leafs of pT ree(e)
are either an empty clause (�) or a failure (for leaf ?−aleaf no clause head in T
unifies with aleaf ). The nodes ?−a1, ..., ?−an constitute the children of an AND
node ?− a1, ..., an. An atomic choice node can be of three types: exclusive OR-
nodes, probabilistic atoms and discrete distribution atoms. An OR node ? − a
has a child ?− (a1, ..., an)θ if and only if there is a definite clause a← a1, ..., an
in T and a substitution θ such that a′θ = a. An atomic choice node ? − a (or
? − a) for a probabilistic atom p :: a′ adds a′θ (or a′θ) with aθ = a′θ as a
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fact to T , and imposes the constraint that a′θ (or a′θ) will never be added to T .
Similarly, an atomic choice node ?−a for a discrete distribution atom X ∼ φ :: f
adds aθ{X = v} as a fact to T for one possible value v in the distribution φ
with aθ{X = v} = fθ{X = v}, and imposes the contraint that facts will not
be added for any other value than v. Since these facts are now added to T ,
they prove the node containing these probabilistic atomic choices, thus the child
of this node is �. Figure 1a illustrates pT ree(e) on our running example for
e = calls(mary). An AND/OR tree is obtained by starting with the root e and
recursively expanding each node for the definite clause program.

(a) A solution tree (solid line arrows) (b) Highlighted solution tree for x(i).

Fig. 1. Example AND/OR tree for the evidence: calls(mary)

A solution tree S in the AND/OR tree pT ree(e) is a subtree such that 1) e is
the root of S, 2) the children of all AND nodes that are in S are also in S, 3) all
OR nodes that are in S have exactly one child that is also in S, and 4) all the
leaves are �. A solution tree is consistent with regard to random variables and
atomic choices (e.g., it will not contain two atoms a and a and there cannot be
two different values assigned to the same discrete distribution atom). A solution
tree represents one particular proof of e. Since e is true with respect to every
solution tree in pT ree(e), every solution tree implies a model of the evidence e.
Figure 1a highlights with solid line arrows the solution tree corresponding to the
partial possible world {earthquake = true, hears alarm(mary) = true}.

4 MCMC Algorithm Overview

Computing the conditional probability of a query in ProbLog is defined as:

Given: a ProbLog program T , a set of observed (evidence) atoms e, a query q
Do: Calculate P (q|e)
As it is often intractable to compute P (q|e) exactly, we propose anMCMC [1,8,14]
approach. Each state in the Markov Chain is a (partial) possible world. The esti-
mate of P (q|e) is obtained by dividing the number of partial possible worlds where
e is true and q is entailed by the number of partial possible worlds where e is true.
Two key challenges arise when designing the MCMC algorithm.
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The first challenge is designing a proposal distribution that, as often as possi-
ble, constructs states that agree with e, as only these are relevant for estimating
P (q|e). We exploit the fact that each partial possible world meeting this criteria
corresponds to a solution tree in pT ree(e). Given the previous solution tree, our
proposal distribution builds a new one to propose as the candidate next state.

Secondly, two partial possible worlds can overlap, i.e., sampling their unas-
signed variables can lead to the same full possible world. If two such overlapping
partial worlds are counted as distinct then that full possible world would be
overcounted, skewing the probability estimate. We adapt ideas from the Karp
and Luby algorithm [9] to identify overlapping worlds.

Our algorithm is similar to the standard MCMC algorithm in [1]. Until a stop
criteria is met, each iteration proposes a candidate state, which is checked for
overlap with previously seen states. If there is no overlap, or it can be resolved, we
calculate the acceptance probability, and advance to the next state accordingly.

4.1 Proposing a New State

Our Markov chain samples solution trees from pT ree(e). We exploit the intuition
that small changes in the solution tree are more likely to lead to another solution
than a big jump by probabilistically favouring reusing parts of the current proof
for e. Each proof requires making decisions at OR and atomic choice nodes. We
stay close to the previous state by (1) following the same branch at an OR node
with probability P1, and (2) making the same atomic choice with probability P2.

P1 and P2 are user defined parameters; higher values encourage more reuse
between consecutive solution trees. Parameter choice depends on the problem. If
pT ree(e) contains many solution trees with few shared branches, lower parame-
ter values are better to encourage faster solution space exploration. If pT ree(e)
contains only few solution trees or they share many branches, higher values are
better to favour reuse. If solution trees are more evenly spead out in pT ree(e), pa-
rameters have smaller impact. Any non-zero values lead to eventual exploration
of all solution trees in pT ree(e). Only these are relevant to estimate P (q|e).

Algorithm 1 outlines the recursive procedure prove for proposing a new so-
lution. Its parameters are: N (current node), Sold (previous solution tree), and
Snew (tree under construction). It begins at the root node e and, depending on
the type of the current node N , it recursively traverses pT ree(e) as follows:

AND node: Recursively call prove on each of the node’s children because prov-
ing e requires proving each child. Return the conjunction of the results.

OR node: (At least) one of the children c1, . . . , cn of N needs to be proved in
order for e to be true. To favour reuse, if N occurs in Sold, then pick the
same child c as in Sold with probability P1 and return prove(c). Otherwise,
pick ci uniformly at random between c1, . . . , cn and return prove(ci).

Atomic choice node: To favour reuse, if N occurs in Sold, then with proba-
bility P2 pick the same value for the random variable as in Sold. Otherwise
pick a value for it from its probability distribution. For probabilistic atoms,
only one value (either true or false) makes e true, so we are forced to pick
this value for the proof to succeed. Add the atom in N to T and return true.
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Empty clause: Return true.
Failure: No clause head in T unifies with the atom in the node. Return false.

Function prove returns true if it finds a solution tree, and false otherwise. If prove
returns true, the partial possible world associated with Snew is the candidate next
state. Otherwise, the candidate next state is identical to the current state: x∗ =
x(i), where we know e is entailed. Subsection 4.3 shows why this is advantageous.

Algorithm 1. bool prove(N,Sold, var Snew)

Require: Global vars: pTree(e)
1 Add node N to Snew

2 if N is AND node ?− a1, ..., an then return
∧

i prove(ai, Sold, Snew)
3 else if N is OR node with n children then
4 if N is in Sold then
5 cold = child of N in Sold

6 with prob. P1: return prove(cold, Sold, Snew)

7 let c1, ..., cn be the children of N in pTree(e)
8 pick i uniformly from [1...n]
9 return prove(ci, Sold, Snew)

10 else if N is atomic choice then
11 if N is in Sold then
12 with prob. P2: pick same value for random variable as in Sold

13 else pick value randomly from its prob distribution
14 add atom N to ProbLog program
15 return true

16 else if � then return true
17 else return false

4.2 Handling Overlapping Partial Worlds

Snew represents one proof or explanation for e. Two different explanations for e
are not necessarily mutually exclusive (i.e., they overlap). This occurs if, in both
explanations, there exists a setting to the unassigned variables that produces the
same full possible world. This is known as the disjoint sums of product problem.

We illustrate this problem on our example with e={alarm=true}. There are
two solution trees corresponding to the partial possible worlds {burglary=true}
and {earthquake=true}. Each partial possible world represents a set of full pos-
sible worlds. The partial world {burglary=true} represents the two full worlds:
{burglary=true, earthquake=false} and {burglary=true, earthquake=true}.
Similarly, the partial world {earthquake=true} represents the two full worlds:
{burglary=false, earthquake=true} and {burglary=true, earthquake=true}.
The full world {burglary=true, earthquake=true} is represented by both these
two partial worlds. Two partial worlds overlap if they both can represent the
same full world. Treating them as distinct (i.e., non-overlapping) will cause this
full world to be counted twice, leading to an incorrect probability estimate.

To solve the disjoint sums problem we use the idea from the Karp and Luby
algorithm [9]. Each possible world is assigned to exactly one of its explanations.
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This assignment is defined as positive, leading to the world being accepted.
We then use sampling of the unassigned variables in a partial world to resolve
overlap. When a candidate sample is proposed, we assign it to its explanation
represented by Snew, obtaining a pair of a possible world and an explanation. For
each possible world, only one such pair is positive. As samples are obtained, we
build a list of unique positive pairs, and check new candidate samples against
this. If the sample overlaps with a previous one from the list assigned to a
different explanation, we attempt to remove overlap as follows. We pick a variable
from the previous possible world which is unassigned in the proposed world. Then
we extend the proposed world by setting this variable to a value drawn from its
distribution. We repeat this procedure until (1) we arrive at a world with no
overlap which we save in the list and propose as the candidate state, or (2) no
variable in the previous world is unassigned in our proposed world and there is
still overlap. In the second case, we reject the sample and propose the current
state instead. Intuitively, we reject sample contributions from the overlapping
world. It was shown [9] that this results in an accurate estimate for P (e).

Assume {earthquake=true} is the first sampled possible world, assigned to
the same explanation. If {burglary=true} is the next sample, we identify an
overlap and draw a value for earthquake. If earthquake=true, the full world
overlaps with the first sample and we reject it. If earthquake=false, the overlap
is eliminated. We then propose {burglary=true, earthquake=false} and assign
the world to the explanation {burglary=true}.

4.3 Computing the Acceptance Probability

The Markov chain advances by accepting a candidate state x∗ with probability

A = min{1, P (x∗)Q(x(i)|x∗)
P (x(i))Q(x∗|x(i))

}, and otherwise remains in the same state (x(i+1) =

x(i)) [1]. P (·) is the probability of a state (i.e., partial possible world), and Q(·|·)
is the probability of transitioning from one state to another. We illustrate these
calculations using the example in Figure 1b, where each choice branch is labeled
with its probability of being selected in x∗ given x(i).

Computing P (·): The probability of a partial world w = {c1 = v1, . . . , cn = vn}
is: Pworld(w) =

∏n
i=1 Psi , where Psi is probability that fact ci takes on value vi.

Thus P ({burglary = true, hears alarm(mary) = true}) = 0.05× 0.6 = 0.03.

Computing Q(·|·): Q(x∗|x(i)) is the product of the probabilities of all the
choices made when constructing Snew from Sold since the choices at each node
type are made independently. Algorithm 2 shows computeQ, a recursive algo-
rithm similar in structure to Algorithm 1, with Sold (previous solution tree)
and Snew (proposed solution tree) as parameters. To compute Q(x(i)|x∗) we call
computeQ and swap the order of the parameters. In our example in Figure 1b,
at the top OR node the probability of the choice is 1 (node has only one child).
Next, at the AND node, we multiply the probabilities obtained by recursively
calling computeQ on each child. The atomic choice hears alarm(mary) must be
true for the proof to succeed, so there is no choice and we return 1. At the OR
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Algorithm 2. float computeQ(N,Sold, Snew)

1 if N is AND node ?− a1, ..., an then return
∏

i computeQ(ai, Sold, Snew)
2 else if N is OR node with n children then
3 cnew = child of N in Snew

4 if N and cnew are in Sold then

5 return (P1 +
1−P1

n
) ∗ computeQ(cnew, Sold, Snew)

6 else if N is in Sold but cnew is not in Sold then

7 return ( 1−P1
n

) ∗ computeQ(cnew, Sold, Snew)
8 else return ( 1

n
) ∗ computeQ(cnew, Sold, Snew); // none in Sold

9 else if N is atomic choice then
10 Let Pnew be the prob of the value of random variable in Snew

11 if N is in Sold with same sampled value then
12 return P2 + (1− P2) ∗ Pnew

13 else if N is in Sold with different sampled value then
14 return (1− P2) ∗ Pnew

15 else return Pnew ; // N is not in Sold

16 else return 1; // if �

node alarm, given parameter P1 = 0.6, the probability of picking the child bur-
glary is 1−0.6

2 = 0.2. We reach the atomic choice burglary, and we return 1. The

product of all the choices made is: Q(x∗|x(i)) = 1× ((1)× (0.2× 1)) = 0.2.

Computing A: In our running example, the acceptance probability will be:
A = min{1, 0.03×0.2

0.006×0.2} = 1 and the proposed sample will be accepted.
If a traversal does not reach a solution, or if overlap cannot be resolved, the

proposed state is the current state. This greatly simplifies the algorithm. In this
case, computing Q(x∗|x(i)) would have needed to sum over the probabilities of

all paths in pT ree(e) where e is not entailed. However, the ratio Q(x(i)|x∗)
Q(x∗|x(i))

= 1

(since x∗ = x(i)). Thus A = 1 and the MCMC chain advances with x(i+1) = x(i).

5 Related Work

The use of MCMC techniques is popular in the literature on PPLs and statistical
relational learning. Many languages (e.g., Blog [15], Church [6], Alchemy [13],
Prism [22]) offer an inference algorithm based on MCMC. Our MCMC approach
has the important difference that it needs to deal with the disjoint sum problem.
The above mentioned techniques assume that the probability of a function or
predicate call can be approximated by counting/weighting the number of suc-
cesful execution traces of the program. Doing this in the ProbLog context will
lead to overcounting of partial worlds and possibly incorrect probability values
larger than one. In Blog or Church this is a valid assumption as the underlying
programming language is functional (i.e., deterministic). In Prism, one assumes
mutually exclusive explanations so the problem does not arise. We solve this us-
ing the Karp and Luby algorithm [9], previously used in the ProbLog context in
DNF sampling [11], but not with an MCMC approach. Aditionally, by proposing
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states probabilistically, we eventually fully explore the state space and can tackle
a bigger set of problems, while Alchemy and MLNs [13,19] combine MCMC with
satisfiability testing to have an MC-SAT algorithm that can also tackle problem
domains with deterministic or near-deterministic dependencies [19].

Wingate [24] proposed a general MCMC technique for obtaining a probability
distribution over program execution traces, together with a general method of
transforming arbitrary programming languages into PPLs. To compute a condi-
tional probability, one would need to do rejection sampling on all these execution
traces sampled from the unconditioned program. By comparison, our AND/OR
tree based approach for estimating conditional probabilities attempts to guide
the Markov chain towards the solution space of the conditioning query.

We want to stress that the use of AND/OR trees here is completely different
than in the work by Dechter & probabilistic theorem proving (PTP) [4,5], in
that, we employ the traditional trees used in theorem proving, whereas Dechter &
PTP employ the special data structures used in a knowledge compilation setting.
These data structures impose different requirements than the AND/OR trees and
are aimed at optimizing some operations (e.g., weighted model counting).

6 Empirical Evaluation

The goal of the experimental evaluation is to explore how our MCMC approach:

Goal 1: compares to existing ProbLog inference techniques
Goal 2: compares to other PPLs when faced with hard constraints
Goal 3: copes with Poisson and uniform distributions
Implementation was in Yap-6 Prolog. Experiments were run on computers with
Intel Core i7 − 2600 3.4GHz processors, 8MB cache, and 16GB memory. Pa-
rameters were set to P1 = 0.6, P2 = 0.4, but varying them had minimal impact
on performance on the three considered problem domains.

Goal 1: Comparison to the Following Existing ProbLog Inference Algorithms:

ProbLog Exact is the current exact inference implementation for ProbLog,
which can scale to tens of thousands of proofs [12].

ProbLog MC is a naive Monte-Carlo method that samples possible worlds for
a ProbLog program[12]. We reject the ones where the evidence does not hold.

ProbLog MC-SAT is the state-of-the-art approach to approximate inference
in ProbLog [3]. It converts a ProbLog program to a CNF theory and then
runs the MC-SAT inference algorithm [16].

We use WebKB1, a large data set about university webpages. The knowledge
base (KB) contains deterministic knoweldge about the set of words present on the
pages and links between pages. We only consider the overall 20 most commonly
occuring words in all documents, not including stem words (e.g., the, of, a). The
query is a ground wordclass/3 atom. For each setting we randomly generate 20
KBs and average results. Timeout is 1 hour, and this value is used in case of

1 http://www.cs.cmu.edu/~webkb/

http://www.cs.cmu.edu/~webkb/
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a timeout when computing average runtime. The lines in the graphs stop when
more than half the runs time out. We run MCMC and MC-SAT for 100, 000
samples. ProbLog MC is setup with a 95% confidence interval width of 0.01.

We first compare how run time varies with the number of pages in the domain.
We vary the number of pages from 20 to 200. For each page, with 20% probability,
we include its true class (e.g. course, staff, etc.) in the evidence. Figure 2a(left)
shows the results, where ProbLog MC is not included as it cannot solve any
task. ProbLog Exact cannot solve domains with more than 100 pages. MCMC
and MC-SAT can solve any WebKB graph size, MC-SAT being faster.

In a second task, we compare how run time varies with the amount of evidence.
We keep the number of pages constant at 100, but vary the probability that
page’s class is included in e from 10% to 50%. ProbLog MC cannot solve this
task either, ProbLog exact can only solve settings with a smaller amount of
evidence, while MCMC and MC-SAT can consistently solve any setting, as shown
in Figure 2a(right). MC-SAT is also faster on this setting.

(a) Runtime comparisons (b) Error comparisons

Fig. 2. WebKB: MCMC is continuous line, Exact dotted, MC-SAT dashed

Since MC-SAT is faster than MCMC in producing the same number of sam-
ples, we investigate their accuracy next. We use the first task for the largest
subset of pages (100) where we can obtain Exact probabilities. We run both
methods for the same amount of time (i.e., MC-SAT produces more samples)
and compare the errors in the predicted probabilities, as shown in Figure 2b.
After the burn-in period, MCMC average error is about the same as MC-SAT,
but its average relative error with respect to the exact probability is smaller.

Goal 2: Comparison with other inference engines: the Bher implementation of
Church [6] and the Alchemy [13] implementation of Markov logic [19].

As a test domain, we use Hamming codes, a family of linear error-correcting
codes [7] containing data and parity bits. Instead of considering error correction
or detection, we predict the values of certain bits given other bits as evidence.
This is intended as an illustration of how algorithms cope with hard constraints
(PPLs are not necessarily the best way to infer missing bit values). Hard con-
straints are important in PPLs, yet many approaches struggle.

We vary the number of bits in randomly produced Hamming codes from 10 to
100, and the percentage of bits included in the evidence from 10% to 80%. The
query is one of the data bits. We run all sampling algorithms for 100, 000 samples.
Figure 3 shows a runtime comparison against the inference engines mentioned
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above, also including ProbLog Exact and MC. White means the method is the
fastest, striped that it solves the problem but is not the fastest, and black means
timeout (1 hour) or invalid answer. For smaller domains MCMC run time versus
Exact is overestimated as we converge faster than 100, 000 samples.

Bher’s MCMC algorithm has difficulty with the hard constraints in this prob-
lem and cannot switch between the two non-zero probability states, returning a
probability of either 0 or 1. Solving this problem requires running inference mul-
tiple times and averaging results (100 times 1, 000 samples). For Alchemy with
the MC-SAT inference algorithm, the CNF conversion times out for any domain
with more than 9 bits. MCMC can solve more problems than any of the other
four approaches. In this task, we outperform them because we propose states
probabilistically which eventually allows full exploration of the state space.

(a) MCMC (b) Bher (c) Church (d) Exact (e) MC

Fig. 3. Runtime: White=fastest, Striped=solves problem, Black=timeout/error

Goal 3: Poisson and Uniform Distributions We model a single server queue,
showing a practical problem using these distributions. We assume that (1) the
expected number of customer arrivals is 4 (i.e., Poisson distribution with λ = 4),
and (2) the number of customers served is uniformly distributed between 1 and
8. At time t0 the number of customers in the queue is 10. At t5 = t0 + 5, we
observe (i.e., e) 12 customers. We want to find the posterior distributions of the
number of customers in the queue at t2 and number of customers served at t3.

We ran our MCMC algorithm 20 times, each with 500, 000 samples. The aver-
age runtime was 12 minutes. Figure 4 shows the prior and posterior distributions
for the two queries. The posterior puts more weight on a higher number of cus-
tomers in the queue at t2 and a smaller number of customers served at t3.

Fig. 4. Different Probability Distributions: at t2 (left), at t3 (right)
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7 Conclusion

We presented an MCMC algorithm for estimating the conditional probability of a
query given evidence in ProbLog. Our proposal distribution proposes candidate
states by sampling solution trees from an AND/OR tree. Handling potential
overlap between partial worlds is solved by employing ideas from the Karp and
Luby algorithm. We provide support for Poisson and uniform distributions. We
outperform existing ProbLog inference techniques on the considered tasks.
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Abstract. Pareto dominance is often used in decision making to com-
pare decisions that have multiple preference values – however it can pro-
duce an unmanageably large number of Pareto optimal decisions. When
preference value scales can be made commensurate, then the Sorted-
Pareto relation produces a smaller, more manageable set of decisions
that are still Pareto optimal. Sorted-Pareto relies only on qualitative or
ordinal preference information, which can be easier to obtain than quan-
titative information. This leads to a partial order on the decisions, and
in such partially-ordered settings, there can be many different natural
notions of optimality. In this paper, we look at these natural notions of
optimality, applied to the Sorted-Pareto and min-sum of weights case; the
Sorted-Pareto ordering has a semantics in decision making under uncer-
tainty, being consistent with any possible order-preserving function that
maps an ordinal scale to a numerical one. We show that these optimality
classes and the relationships between them provide a meaningful way to
categorise optimal decisions for presenting to a decision maker.

1 Introduction

In a decision-making task, it is often the case that the basis for comparing
decisions involves more than one preference value (e.g., evaluations of multiple
criteria in multi-criteria decision making, evaluations by more than one agent
in multi-agent decision making, or considerations of different states in decision
making under uncertainty), and therefore we have a preference vector for each
decision. In these cases, Pareto dominance is an often used preference relation,
where a decision Pareto dominates another if it is at least as good as the other
in every component (comparing the preference vectors component-wise), and a
decision is Pareto optimal if it is not Pareto dominated by any other [18, Ch. 2].
For example, for minimising costs, where costs are on an ordered scale T =
(low ,med , hi), and we have three decisions with preference vectors: a = (low , hi),
b = (med , low ) and c = (med , hi), we can see that both a and b Pareto dominate
c, and also, since a and b do not Pareto dominate each other, they are both
Pareto optimal. This relation is not very discerning though, and often the set of
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Pareto optimal decisions is very large. However, if the preference scales used in
each component are commensurate (or can be normalised as such), then we can
compare decisions by sorting the preference vectors first and then performing
the component-wise comparison – which leads to a more discerning relation.
For example, if a and b are sorted in non-descending order, i.e., (low , hi) and
(low ,med) respectively, the second vector now dominates the first, and therefore
we now have only one undominated decision w.r.t. this new relation, which we
call the Sorted-Pareto relation. This leads to a smaller, more manageable set of
Sorted-Pareto optimal solutions, that are still Pareto optimal, as shown in [13].

If the scale T is quantitative, or we have information that gives a quantitative
mapping for T , e.g., we have a mapping f : T → IR+, then the decisions could be
compared by summing the preference vector values and seeing which decisions
have the smallest sum of costs, i.e., the min-sum of weights. However, often the
preference information available is only of an ordinal or qualitative nature, as
it can be easier to obtain such information, e.g., there may be uncertainty over
exact values, or it may be easier to elicit qualitative preference information from
a decision maker [12]. Sorted-Pareto relies only on ordinal or qualitative informa-
tion, and therefore can be used in these qualitative decision making situations.
In addition, for any mapping f : T → IR+, where f is order-preserving w.r.t.
scale T , we show that Sorted-Pareto is compatible with any such mapping.

In a partially ordered setting, such as in the situation just described, there can
be different natural notions of optimality. The framework in [21] describes some of
these notions, for qualitative decision making under uncertainty, where there are
different possible scenarios in a given problem. This gives us classes of decisions
that are not dominated by any other decision, decisions that are possibly optimal
or possibly strictly optimal, (i.e., optimal in some scenario), and decisions that are
optimal in all scenarios. Sorted-Pareto connects to Weighted Constraints Satis-
faction Problems (WCSP) [17, Ch. 9] and Bayesian Networks [15] where we only
have ordinal information, and in these frameworks the possibly optimal decisions
are those that are min-sum optimal for some compatible WCSP, or are the com-
plete assignments that are most probable in some compatible Bayesian Network.
In this paper, we look at the relationship between Sorted-Pareto and min-sum of
weights in Section 3, and in Section 4 we then examine these different natural no-
tions of optimality from [21] and apply them to the Sorted-Pareto and min-sum
of weights case. In Section 5, we show how to generate these optimality classes for
Sorted-Pareto, and in Section 6 we present some experimental results.

2 Preliminaries

We assume a minimising context, where lower preference values are preferred.
A preference relation  on a set A is a binary relation that gives an ordering
over A, i.e., given any α, β ∈ A, if α  β, then α is preferred to β according
to . Relation  is a preorder, if it is reflexive (α  α, for all α ∈ A) and
transitive (i.e., if α  β and β  γ, then α  γ). Relation  is a total preorder,
if it is complete (i.e., either α  β, or β  α, or both, for all α, β ∈ A) and
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transitive. For a preorder  on A, we have a corresponding strict relation ≺,
and a corresponding equivalence relation ≡, defined respectively as: α ≺ β if and
only if α  β and β � α; and α ≡ β if and only if α  β and β  α.

We consider situations where the following preference information is available
for some finite set of decisions A. Let S = {1, . . . ,m} be a finite set, where each
i ∈ S labels some aspect of the decisions in A for which a preference can be
expressed. Let T be a scale, totally ordered by relation ≤. Let αi ∈ T represent
a preference value for decision α ∈ A in aspect i. Let α = (α1, . . . , αm) be the
preference vector of m preference values (to ease notation, we interchangeably
use “α” as meaning a decision α ∈ A, or as meaning the evaluation vector
α = (α1, . . . , αm)). Let α↑ = (α(1), . . . , α(m)) be the sorted preference vector
such that α(1) ≤ . . . ≤ α(m), i.e., the values are ordered w.r.t. the scale T .
For any two preference vectors α and β: α ≤ β if and only if αi ≤ βi for all
i ∈ {1, . . . ,m}; and α < β if and only if αi ≤ βi for all i ∈ {1, . . . ,m}, and there
exists j ∈ {i, . . . ,m} such that αj < βj .

3 Sorted-Pareto and Min-Sum of Weights

In this section, we recall definitions for Sorted-Pareto dominance from [13], and
show how this ordering relates to min-sum of weights. For all α, β ∈ A, decision
α Weak Sorted-Pareto dominates β, written as α �sp β, if and only if α↑ ≤ β↑.
Decision α Sorted-Pareto dominates β, written as α ≺sp β, if and only if α↑ < β↑,
or in terms of �sp, if and only if α �sp β and β ��sp α. Decision α is Sorted-
Pareto equivalent to β, written as α ≡sp β, if and only if α↑ = β↑, or in terms
of �sp, if and only if α �sp β and β �sp α. Let [α]sp denote the sp-equivalence
class of α ∈ A, where [α]sp = {β ∈ A : α ≡sp β} Decision α is Sorted-Pareto
optimal (or undominated) if and only if there is no β ∈ A such that β ≺sp α.

Min-Sum of Weights. We consider situations in which there is additional
quantitative preference information available, i.e., we have a function f : T →
IR+. In such cases, we can order the set of decisions by using the min-sum of
weights, defined as follows.

For some f : T → IR+, for all α, β ∈ A, decision α is min-sum preferred to
β, written as α ≤f β, if and only if

∑m
i=1 f(αi) ≤

∑m
i=1 f(βi). Decision α is

strictly min-sum preferred to β, written as α <f β, if and only if
∑m

i=1 f(αi) <∑m
i=1 f(βi). Decision α is min-sum equivalent to β, written as α ≡f β, if and

only if
∑m

i=1 f(αi) =
∑m

i=1 f(βi). The relation ≤f forms a total preorder on a
set of decisions A. Decision α is min-sum-optimal for f if and only if for all
β ∈ A, α ≤f β.

3.1 Relating Sorted-Pareto and Min-Sum of Weights

Let F be the set of all possible weight functions f : T → R+ such that f ∈ F if
and only if f is monotonic w.r.t. T , i.e., u ≤ v ⇔ f(u) ≤ f(v) for all u, v ∈ T .
Define the order relation ≤F on A as, for all α, β ∈ A, α ≤F β ⇔ α ≤f β, for
all f monotonic w.r.t. T . From Theorem 1 in [13], we have that ≤F = �sp.
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Now, let F ′ be the set of all possible weight functions such that f ∈ F ′ if and
only if f is strictly monotonic w.r.t. T , i.e., u < v ⇔ f(u) < f(v) for all u, v ∈ T .
Define the order relation ≤F ′ as, for all α, β ∈ A, α ≤F ′ β ⇔ α ≤f β, for all f
strictly monotonic w.r.t. T . Define <∩F ′ as the intersection of all <f such that
f ∈ F ′, i.e., <∩F ′ =

⋂
f∈F ′ <f so for all α, β ∈ A, α <∩F ′ β if and only if for all

f ∈ F ′, α <f β. We have the following results (proofs are in an extended version
of the paper [14]).

Theorem 1. �sp = ≤F = ≤F ′

Corollary 1. ≺sp = <∩F ′

4 Qualitative Notions of Optimality

In this section, we look at the different notions of optimality from the qualitative
decision making framework in [21], which we use to describe the relationship
between Sorted-Pareto and min-sum of weights. A Multiple Ordering Decision
Structure (MODS) is a tuple G = 〈A,P , {�p : p ∈ P}〉, where A is a set of
decisions, P is a set of possible scenarios, and for each p ∈ P , relation �p is a
total preorder on A, with corresponding strict and equivalence relations ≺p and
≡p respectively.

For any instance of this framework, we have the following relations that always
hold in general. Decision α necessarily dominates β, written α �N β, if and
only if α �p β, for all p ∈ P . Relation �N is the intersection of �p over all
p ∈ P . Relation �N has corresponding strict and equivalence relations ≺N and
≡N respectively. Let [α]N denote the N -equivalence class of α ∈ A, where
[α]N = {β ∈ A : α ≡N β}. Decision α necessarily strictly dominates β, written
α ≺NS β, if and only if α ≺p β for all p ∈ P . Relation ≺NS is the intersection of
≺p over all p ∈ P .

Optimality Classes. We now look at different notions of optimality for the
general case. Decision α is necessarily optimal if and only if α �N β for all β ∈ A.
The set of these decisions is denoted by NO(G). Decision α is necessarily strictly
optimal if and only if α ≺NS β for all β ∈ A \ [α]N. The set of these decisions
is denoted by NSO(G). Decision α is possibly optimal if and only if there exists
p ∈ P such that α �p β for all β ∈ A. The set of these decisions is denoted by
PO(G). Decision α is possibly strictly optimal if and only if there exists p ∈ P
such that α ≺p β for all β ∈ A \ [α]N. The set of these decisions is denoted by
PSO(G). A decision α is in CD(G), if and only if for all β ∈ A, there exists p ∈ P
such that α �p β. CD(G) are the decisions that are undominated w.r.t. ≺NS. A
decision α is in CSD(G) if and only if for all β ∈ A \ [α]N, there exists p ∈ P
such that α ≺p β. CSD(G) are the decisions that are undominated w.r.t. ≺N.
We also have the following optimality classes, which are intersections between
existing classes. NOPSO(G) is the intersection of NO(G) and PSO(G). PO′(G)
is the intersection of PO(G) and CSD(G).
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Figure 1 shows precisely the subclass relationships between these optimality
classes that always hold in the general case, as given by Theorem 1 in [21].
[21] also gives an example of strict subclass relationships between each of the
optimality classes.

Fig. 1. Subclass relationships (⊆) between classes that always hold in general

4.1 Sorted-Pareto MODS

Recall from Section 3, where we define F be the set of all possible weight func-
tions f : T → IR+ such that f is monotonic w.r.t. T . We also have that for all
α, β,∈ A, α �sp β ⇔ α ≤f β for all f ∈ F , i.e., α Weak Sorted-Pareto domi-
nates β if and only if α is min-sum-preferred to β for all f ∈ F . This gives us
the Sorted Pareto MODS S = 〈A, F, {≤f : f ∈ F}〉, where the set of scenarios
is the set F of possible order-preserving weight functions f : T → IR+, and the
set of possible orderings is that given by the min-sum of weights orderings for
all possible weight functions, i.e., the set {≤f : f ∈ F}.

For the Sorted-Pareto MODS S, we have the following relations. Decision α
necessarily dominates β if and only if α ≤f β for all f ∈ F . Since α ≤f β, for
all f ∈ F ⇔ α �sp β, this gives us the result in Proposition 1.

Proposition 1. For MODS S, �N = �sp

Since we have that α ≺sp β if and only if α �sp β and β ��sp α, then we also
have that ≺N = ≺sp. Decision α necessarily strictly dominates β if and only if
α <f β for all f ∈ F . Since from Corollary 1, <∩F ′ = ≺sp, and <∩F ′ is defined
as the intersection of all <f such that f ∈ F ′ (and F ′ ⊆ F ), then we have the
result in Proposition 2.

Proposition 2. For MODS S, ≺NS = ≺N = ≺sp

We have an equivalence relation for each f ∈ F , i.e., α ≡f β if and only if∑m
i=1 f(αi) =

∑m
i=1 f(βi). We also have an equivalence relation ≡F , which is

the intersection of ≡f over all f ∈ F , i.e., ≡F is equal to
⋂

f∈F ≡f , so α ≡F β if
and only if they are equivalent over all possible choice of f . Let [α]F denote the
F -equivalence class of α ∈ A, where [α]F = {β ∈ A : α ≡F β}. Since we have
from Theorem 1 in [13] that ≤F is equal to �sp, i.e., �sp=

⋂
f∈F ≤f , then we

have that ≡F is equal to ≡sp, i.e., ≡sp is the intersection of ≡f over all f ∈ F ,
which gives us the result in Proposition 3.

Proposition 3. For MODS S, ≡N = ≡sp
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Sorted-Pareto Optimality Classes. We now look at the notions of optimality
that are applicable for the Sorted-Pareto MODS S. Decision α is in NO(S) if
and only if for all β ∈ A, for all f ∈ F , α ≤f β, i.e., if and only if α �sp β for all
β ∈ A. Decision α is in NSO(S) if and only if for all β ∈ A \ [α]F , for all f ∈ F ,
α <f β, i.e., if and only if α ≺sp β for all β ∈ A \ [α]sp.

These definitions and Proposition 2 give us the result in Proposition 4.

Proposition 4. For MODS S, NSO(S) = NOPSO = NO(S)

Decision α is in CD(S) if and only if for all β ∈ A, there exists f ∈ F such that
α ≤f β. Decision α is in CSD(S) if and only if for all β ∈ A \ [α]F , there exists
f ∈ F such that α <f β.

Since in the general case CD(G) are the decisions that are undominated w.r.t.
≺NS and CSD(G) are the decisions that are undominated w.r.t.≺N, and also from
Proposition 1 we have ≺NS = ≺N, then this gives us the result in Proposition 5.

Proposition 5. For MODS S, CSD(S) = CD(S)

Decision α is in PO(S) if and only if there exists f ∈ F such that for all β ∈ A,
α ≤f β. Decision α is in PSO(S) if and only if there exists f ∈ F such that
for all β ∈ A \ [α], α ≤f β. Let PO′(S) = PO(S) ∩ CSD(S) and NOPSO(S) =
NO(S) ∩ PSO(S).

Since in the general case PO(G) ⊆ CD(G), and since we have from Proposition
5 that CSD(S) = CD(S), this gives us the result in Proposition 6.

Proposition 6. For MODS S, PO(S) ⊆ CSD(S).

Given these results, we now look at the subclass relationship between the opti-
mality classes for the Sorted-Pareto instance of the MODS framework. Propo-
sitions 1-6 and definitions give us that (NSO(S) = NOPSO(S) = NO(S)) ⊆
PSO(S) ⊆ (PO(S) = PO′(S)) ⊆ (CSD(S) = CD(S)), as shown in Figure 2.

Fig. 2. Subclass relationships (⊆) between classes for MODS S

Now we consider the case where there exists a decision that is necessarily opti-
mal, i.e., when NO(S) �= ∅. Proposition 5 in [21] gives us that if NO(S) �= ∅, then
we have NO(S) = CSD(S), and therefore we have a single sp-equivalence class,
where the decisions are all equivalent. This gives us the result in Proposition 7.

Proposition 7. For MODS S, if NO(S) �= ∅, then NSO(S) = NO(S) =
PSO(S) = PO(S) = CSD(S) = CD(S) ⊆ A
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5 Computing Optimality Classes for MODS S

In this section, we look at methods for generating the different optimality classes
for Sorted-Pareto MODS S. Here we assume that there is some procedure to
generate CSD(S), i.e., that calculates the preference vectors for each decision
and compares them using Sorted-Pareto dominance to generate the set of deci-
sions that are non-dominated. For example, the branch and bound search algo-
rithms detailed in [13] do exactly this; however other search procedures can be
used. From CSD(S), NO(S) can be calculated by comparing all the solutions
in CSD(S) with one another to see if any Sorted-Pareto dominate all others. In
our experimental results in Section 6, we use the procedure outlined in [13] to
calculate CSD(S), where the algorithm has been modified to maintain the set
of currently non-dominated preference vectors, each preference vector mapping
to the corresponding equivalence class of decisions. This leads to a substantial
improvement in computation times as it results in a reduction in the number of
dominance checks performed by the algorithm.

Calculating PO(S) and PSO(S). We want to determine if some decision
α in CSD(S) is possibly optimal, i.e., there exists some weight function f ∈ F
such that α ≤f β for all β ∈ CSD(S). We can formulate this problem as a linear
program P , as follows. Only certain elements on the scale T appear in any of
the preference vectors for the decisions in CSD(S); let T ′ denote this set, i.e.,
T ′ = {i ∈ β : β ∈ CSD(S)}. For each of these elements i ∈ T ′ we have a linear
program variable wi, representing an unknown weight. Since the scale T is totally
ordered, then on these weights we have constraints of the form wi < wj , where
i < j. For all β ∈ CSD(S), we have a linear expression ω(β) as a sum in terms
of the unknown weight variables, i.e., ω(β) =

∑
i∈β wi. For α to be possibly

optimal, we require, for each β ∈ CSD(S), that ω(α) ≤ ω(β). Therefore we have
a set P of linear inequalities, which consists of, (i) wi < wj , for all i, j ∈ T ′,
where i < j, and (ii) ω(α) ≤ ω(β), for all β ∈ CSD(S). If P has a feasible
solution, then there exists some weights that make α ≤ β for all β ∈ CSD(S),
i.e., α is possibly optimal.

In order to check this using a standard linear program solver, we need to con-
vert to an equivalent problem which only has non-strict inequalities. Therefore,
we create a linear program P ′ as follows, where c > 0 is some arbitrary strictly
positive real number, for example, let us choose c = 1. Then, for any constraint
in P of the form wi < wj , we have a constraint in P ′ with the form wj −wi ≥ c,
and for any constraint in P of the form ω(α) ≤ ω(β), we have a constraint of
the form ω(β)− ω(α) ≥ 0. We then solve the linear program P ′, and this has a
solution if and only if P has a solution, and α is possibly optimal.

We can also determine if some solution is possibly strictly optimal, i.e., there
exists f such that for all β ∈ CSD(S) \ [α], α <f β. We have a set Q of linear
inequalities for this problem, which consists of, (i) wi < wj , for all i, j ∈ T ′, where
i < j and, (ii) ω(α) < ω(β), for all β ∈ CSD(S). We again create a modified
linear program Q′ as follows: for any constraint in Q of the form wi < wj , we
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have a constraint in Q′ with the form wj−wi ≥ c, and for any constraint in Q of
the form ω(α) < ω(β), we have a constraint in Q′ of the form ω(β)− ω(α) ≥ c.
We then solve the linear program Q′, and this has a solution if and only if Q
has a solution, and α is possibly strictly optimal.

Proposition 8. The set of linear inequalities P has a solution if and only if
linear program P ′ has a solution. The set of linear inequalities Q has a solution
if and only if linear program Q′ has a solution.

6 Experimental Results

In this section, we calculate the optimality classes CSD(S), PO(S), PSO(S),
and NO(S) for some randomly generated and benchmark instances (details of
the generation process are in the extended version of the paper [14]). As de-
tailed in Section 5, we use the branch and bound algorithm from [13] to gen-
erate CSD(S) and NO(S), and we solve linear programs to generate PO(S)
and PSO(S). The instances used are Weighted Constraint Satisfaction problems
(WCSP) [17, Ch.9], where, for a set of problem variables, each variable can be
assigned a value from its domain, and a complete assignment to all of the vari-
ables is a solution to the problem (which corresponds to a decision). There is
also a set of weighted constraints which associate weights to these assignments,
and these correspond to the preference levels of the solutions.

Table 1. Average size of optimality sets over 50 random instances, n denotes problem
size, sc denotes size of preference vector (increasing), |T | denotes size of scale

CSD(S) PO(S)

n sc |T | = 3 |T | = 5 |T | = 7 |T | = 3 |T | = 5 |T | = 7

20 48 9.12 (2.90) 9.48 (6.78) 21.68 (19.28) 7.60 (2.62) 8.22 (5.88) 17.44 (15.70)
24 69 9.94 (3.70) 11.76 (10.18) 55.18 (51.30) 8.90 (3.46) 9.72 (8.36) 36.88 (34.50)
28 95 10.12 (4.52) 15.96 (14.04) 67.54 (63.88) 8.32 (3.86) 11.54 (10.32) 40.30 (38.44)
32 124 9.56 (5.00) 21.44 (19.28) 114.58 (110.96) 6.76 (3.86) 13.44 (12.42) 58.38 (56.82)
36 158 10.60 (5.68) 30.42 (27.04) 145.36 (143.02) 8.22 (4.64) 18.24 (16.58) 68.16 (67.06)
40 195 10.20 (5.38) 24.12 (23.00) 135.14 (134.44) 8.50 (4.62) 15.94 (15.38) 63.96 (63.84)

PSO(S) NO(S)

n sc |T | = 3 |T | = 5 |T | = 7 |T | = 3 |T | = 5 |T | = 7

20 48 6.52 (2.30) 8.02 (5.78) 17.42 (15.68) 0.20 (0.10) 0.00 (0.00) 0.00 (0.00)
24 69 6.58 (2.92) 9.44 (8.18) 36.80 (34.46) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
28 95 6.14 (3.24) 11.36 (10.14) 40.24 (38.40) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
32 124 5.60 (3.36) 13.12 (12.16) 58.14 (56.68) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
36 158 5.44 (3.72) 17.88 (16.26) 67.96 (66.92) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
40 195 6.18 (3.78) 15.32 (14.92) 63.86 (63.76) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Random Instances. For these random instances: n denotes problem size, i.e.,
the number of variables; sc denotes the size of the preference vector for each
solution, i.e., the number of weighted constraints; and |T | denotes the size of the
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ordinal scale used. Each set of problems was generated with 3 different scales,
with |T | = 3, 5 and 7.

Table 1 shows the average size of the optimality classes (and the average num-
ber of equivalence classes in parentheses) for 50 random instances for problem
size n = 20, 24, . . . , 40. The size of the preference vector sc (i.e., the number of
weighted constraints) is varied as a parameter of the problem size. It can be ob-
served that PO(S) is usually smaller than CSD(S), with PSO(S) smaller again,
and in nearly all cases NO(S) is empty.

Table 2 shows the average size of the optimality classes (and the average num-
ber of equivalence classes in parentheses) for 50 random instances for problem
size n = 20, 24, . . . , 40. The size of the preference vector sc is fixed at 10 for all
instances. In these problems, the size of the CSD(S) sets are much larger than
in Table 1, and often the same size as the PO(S) set. However the equivalence
classes are much smaller, indicating that for these problems there are a large
number of equivalent optimal solutions in each optimality class. Often NO(S) is
non-empty, indicating a single equivalence class of necessarily optimal solutions,
and in these cases we have CSD(S) = PO(S) = PSO(S) = NO(S).

Table 2. Average size of optimality sets over 50 random instances, n denotes problem
size, sc denotes size of preference vector (fixed), |T | denotes size of scale

CSD(S) PO(S)

n sc |T | = 3 |T | = 5 |T | = 7 |T | = 3 |T | = 5 |T | = 7

20 10 190.16 (1.44) 121.38 (2.12) 116.84 (3.56) 190.16 (1.44) 118.50 (2.06) 115.12 (3.42)
24 10 330.88 (1.66) 191.08 (2.36) 242.48 (3.98) 330.88 (1.66) 190.84 (2.32) 227.26 (3.78)
28 10 379.14 (1.52) 196.32 (1.96) 201.68 (3.14) 373.86 (1.50) 186.06 (1.86) 191.22 (3.00)
32 10 642.56 (1.62) 393.72 (2.32) 354.36 (3.72) 642.56 (1.62) 393.72 (2.32) 344.16 (3.54)
36 10 925.92 (1.48) 709.56 (2.08) 663.32 (3.20) 925.92 (1.48) 697.56 (2.02) 652.30 (3.14)
40 10 1177.10 (1.54) 904.24 (2.18) 779.72 (3.06) 1177.10 (1.54) 904.24 (2.18) 779.72 (3.06)

PSO(S) NO(S)

n sc |T | = 3 |T | = 5 |T | = 7 |T | = 3 |T | = 5 |T | = 7

20 10 167.54 (1.38) 118.50 (2.06) 114.02 (3.40) 86.94 (0.62) 36.40 (0.38) 15.36 (0.14)
24 10 275.30 (1.58) 190.84 (2.32) 227.26 (3.78) 96.10 (0.44) 15.50 (0.22) 3.88 (0.12)
28 10 373.06 (1.48) 186.06 (1.86) 191.22 (3.00) 164.94 (0.52) 80.56 (0.38) 18.14 (0.22)
32 10 638.78 (1.60) 392.76 (2.30) 344.04 (3.52) 183.22 (0.42) 11.42 (0.18) 5.92 (0.08)
36 10 925.92 (1.48) 697.56 (2.02) 652.30 (3.14) 150.98 (0.52) 78.00 (0.32) 18.32 (0.12)
40 10 1166.54 (1.52) 904.24 (2.18) 779.72 (3.06) 383.24 (0.50) 265.18 (0.32) 96.92 (0.14)

Benchmark Instances. Table 3 shows the size of the optimality classes (and
the number of equivalence classes in parentheses), when applied to some modi-
fied WCSP instances from the Celar Radio-Link Frequency Assignment problem
benchmark, where again problem size is denoted by n, sc denotes the size of the
preference vector, and T denotes the size of the scale. These instances have been
modified by adding random binary hard constraints to the problem, to limit the
expected number of solutions to around 10, 000. PO(S) is usually smaller than
CSD(S), but PSO(S) is only very seldom smaller than PO(S). In all of these
instances, NO(S) is empty.
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Table 3. Size of optimality sets for modified CELAR benchmark instances, n denotes
problem size, sc denotes size of preference vector, |T | denotes size of scale

Instance n sc |T | CSD(S) PO(S) PSO(S) NO(S)

CELAR6-SUB0* 16 207 5 17 (16) 12 (11) 12 (11) 0 (0)

CELAR6-SUB1* 14 300 5 24 (20) 13 (11) 11 (9) 0 (0)

CELAR6-SUB2* 16 353 5 20 (12) 19 (11) 19 (11) 0 (0)

CELAR6-SUB3* 18 421 5 4 (3) 4 (3) 4 (3) 0 (0)

CELAR6-SUB4* 22 477 5 6 (6) 6 (6) 6 (6) 0 (0)

CELAR7-SUB0* 16 188 5 10 (10) 8 (8) 8 (8) 0 (0)

CELAR7-SUB1* 14 300 5 15 (11) 14 (10) 14 (10) 0 (0)

CELAR7-SUB2* 16 353 5 10 (8) 7 (5) 7 (5) 0 (0)

CELAR7-SUB3* 18 421 5 19 (15) 13 (9) 13 (9) 0 (0)

CELAR7-SUB4* 22 477 5 8 (8) 5 (5) 5 (5) 0 (0)

Discussion. One possible approach to choosing which decisions to present to
a decision maker is to calculate CSD(S) first, and from this set, NO(S) can be
easily derived. If NO(S) is not empty, then there are one or more equivalent
decisions which are preferred to all other decisions for any choice of f , and these
are prime candidates for presenting to a decisions maker. However, if NO(S)
is empty, then PO(S) or PSO(S) can be computed and presented, these sets
are often much smaller than CSD(S). PO(S) is the set of decisions that are
min-sum optimal for some possible f , and thus are good candidates to present
to a decision maker. If the PO(S) set is large, and there is a small number of
equivalence classes, then a representative solution for each equivalence class could
be chosen to present to a decision maker, since this would give a decision maker
a choice between non-equivalent solutions that are possibly min-sum-optimal.

7 Related Work

As well as our own work [13,21], on which this work builds, Larichev and
Moshkovich [11] use Sorted-Pareto in the context of normalising different cri-
teria scales, and Kaci and Prade [10] use it in preference handling using pos-
sibilistic logic. Both Perny and Spanjaard [16] and Bossong and Schweigert [4]
look at preference based search for generating sets of optimal solutions for short-
est path problems, which is related to Sorted-Pareto as previously outlined in
[13]. The Sorted Pareto relation extends the Pareto dominance relation [18], and
computing the Sorted-Pareto optimal set is viable when preference level scales
are commensurate, since calculating the Pareto optimal set can be prohibitive.
Some works that approximate the Pareto optimal set in constraints problems
include Torrens and Faltings [20], however this requires quantitative informa-
tion as it performs a sum of weights on the preference vector, and Gavanelli
[8] uses a branch and bound algorithm similar to what is used in [13]. Sorted-
Pareto is reminiscent of Lorenz dominance [19], and is extended by preference
relations that perform a lexicographic comparison on reordered vectors of pref-
erence levels, such as Lexicographic Min-Max [7] in multicriteria optimisation,
and Leximin [6]. These lexicographic orderings place excessive emphasis on the
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worse preference values, since they ignore better values when comparing two de-
cisions, whereas Sorted-Pareto compares over all values. Bouveret and Lemâıtre
[5] looks at depth first branch and bound algorithms for the computation of Lex-
imin optimal solutions. The notions of optimality in the MODS framework are
partly inspired by Gelain et al. [9], who investigate optimality for interval-valued
constraints, however we assume only qualitative or ordinal information. Also,
the MODS framework relates to decision making under complete uncertainty
or ignorance (such as in Arrow [1]), since there is no quantitative information
assumed on the importance or likelihood of scenarios.

8 Conclusion

In this paper, we looked at Sorted-Pareto dominance, a preference relation that
assumes only qualitative information, and based on the correspondence between
Sorted-Pareto and decision making under uncertainty, we argue that there are
other natural notions of optimal decision. Specifically, we look at decisions that
are undominated, i.e, CSD(S), the solutions that are optimal and strictly opti-
mal in one (or more) scenarios, i.e., PO(S) and PSO(S) respectively, and the
solutions that are optimal in all scenarios, i.e., NO(S). We explore the relations
between these notions of optimality and show how to compute them for the
Sorted-Pareto ordering and the min-sum of weights case. The experimental re-
sults show, that in some cases, NO(S) is non-empty, and these are the decisions
that would be of most interest to a decision maker. However, in other cases,
no such decisions exist, and then PO(S) and PSO(S) are of interest to a deci-
sion maker since these are the decisions that are optimal or strictly optimal in
some scenario. The Sorted-Pareto ordering connects with Weighted Constraint
Satisfaction problems (WCSP) [17, Ch. 9] (or similarly, with Generalised Addi-
tive Independence decompositions [2]), where a problem has only weights on an
ordinal scale T ; each such problem has a set of compatible proper weighted con-
straints problems, based on mapping the ordinal scale T → IR+. Sorted-Pareto
is also connected to Bayesian Networks [15], where in a given network we only
have ordinal probabilistic information and therefore we have an associated set
of compatible Bayesian Networks. In a Weighted CSP with ordinal weights, the
decisions that are possibly optimal are those that are min-sum optimal in some
compatible weighted constraints problem, and in a Bayesian Network with ordi-
nal probabilities, the possibly optimal decisions are those assignments that are
most probable in some compatible Bayesian Network. In the context of decision
making under uncertainty, we argue that these decisions would certainly be of
interest to a decision maker.
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Abstract. We introduce a Hilbert-style first-order dynamic probability
logic and prove the strong completeness theorem for the class of rigid
measurable models.

1 Introduction

First-order dynamic probability logic can be understood as a reasoning tool that
involves classical logic enriched with dynamic and probability operators. The
subject itself has naturally emerged from development and extensive application
of probabilistic algorithms in late seventies and early eighties of the twentieth
century. Due to the modal nature of dynamic and probability operators, a first-
order dynamic logic is deeply rooted and closely related to first-order modal logic
and its “derivatives”: first-order dynamic logic, first-order probability logic and,
to some extent, to a branching time first-order temporal probability logic.

The main purpose of this work is to present a Hilbert-style formalization of
first-order dynamic probability logic. Developed syntax enables expressions such
as “if α is possible after termination of the program a, then probability that
α will be true after the termination is positive”, which we formally code by
〈a〉α→ P a

>0α.
In order to achieve the strong completeness, we have introduced infinitary in-

ference rules with countably many premises, primarily in order to syntactically
express the real valued probabilities and the connection between the modal op-
erator [a] and its reflexive and transitive closure [a∗]. The necessity of such
approach is discussed below in the following subsection.

1.1 Axiomatization Issues

The standard modal basis for dynamic logics is the K modal logic (substitutional
instances of tautologies plus the K-axiom [a](α → β) → ([a]α → [a]β)). The
natural approaches for the introduction of probabilities that we have adopted is
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to define a local probability space (probability space associated to a particular
world w and a particular label a) on subsets of worlds that are accessible from
the underlying world. As a consequence, for every world w the set of all accessible
worlds from w must be nonempty. In modal terms, all models must be serial.
Hence, the modal core must be extended to the modal logic D, i.e. K plus
the D-axiom [a]α → 〈a〉α. The more serious issue lies in the problem of the
axiomatization of the reflexive and transitive closure of the accessability relation
R(a), i.e. in the formal description of the connection between the operators [a]
and [a∗]. This connection is precisely expressed by

[a∗]α⇔
∞∧
n=0

[a]nα.

Hence, some form of infinity seems to be natural for the complete axiomatization.
Similarly as in the cases of probability and temporal logics (see [1, 6–9]), we
have adopted the approach to work in the very tame fragment of Lω1,ω-logic:
the formulas are finite sequences of symbols, and we use certain type of infinitary
inference rules with countably many premises. It turns out that the adequate
form of the rule to satisfy the above semantic requirement and to prove T ) α⇒
[a]T ) [a]α, where [a]T = {[a]β | β ∈ T } is

θ([a]nα), n ∈ ω

θ([a∗]α)
,

where θ is such that θ (
∧∞

n=0[a]
nα)⇔

∧∞
n=0 θ([a]

nα).
Somewhat similar axiomatization issue is induced by the requirement that

probability functions are real valued. In order to explain this, we will need a bit
more information about the notation: our probability operators are of the form
P a
�r, where r ∈ [0, 1]∩Q and P a

�rα reads “the probability of the set of all worlds
satisfying α that are accessible by a is at least r”, or more compactly as ”the
a-probability of α is at least r”. Now it is easy to construct finitely satisfiable
theories that propagates non-Archimedean probabilities. One such theory is

{P a
�= 1

2
α} ∪ {P a

� 1
2+

1
n
α ∧ P a

� 1
2+

1
n
α | n ∈ ω and n � 2},

which says that the a-probability of the formula α is not equal, but infinitely
close to 1

2 . In order to render such theories inconsistent, i.e. to “destroy” all
finitely satisfiable theories that propagate existence of proper infinitesimals, we
need a rule of the following form: “ if a-probability of α is infinitely close to the
rational number r ∈ [0, 1], then it must be equal to r”. The exact form of this so
called Archimedean rule (preserves the Archimedean structure of the ordering)
is given in the section devoted to axiomatization.

Another consequence of finitary form of formulas is the fact that the σ-
additivity cannot be formally expressed. Thus, by probability we actually mean
finitely additive probability. Besides the real valued codomain, we do not impose
any other restriction on probability functions.
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Finally, due to the presence of infinitary inference rules, the standard comple-
tion technique (Lindenbaum’s theorem) has to be modified in the following way:
if the current theory is inconsistent with the current formula and that formula
can be derived by one of infinitary inference rules, than at least one premise
should be blocked.

1.2 Related Work

The body of the work relevant for the study of dynamic and probability logic is
quite staggering, so we will just mention the very few among the closely related
ones. We start with the excellent overview of modal, temporal and dynamic logics
presented by Colin Stirling in [12], where he has quite accurately emphasize one
of the central problems in the axiomatization of the dynamic logics: the second
order nature of the operator of the reflexive and transitive closure.

A complete axiomatization of propositional dynamic logic with a qualitative
probability operator was given by D. P. Guelev in [3]. Another very interesting
complete axiomatization of propositional dynamic logic presented as infinitary
Gentzen system was proposed recently by G. Renardel de Lavalette, B. Kooi and
R. Verburge in [10]. Though independently constructed, their completion tech-
nique is essentially the same as the one presented in our papers [1, 6–9] and it is a
natural generalization of the classical techniques of Lindenbaum (maximization
of a theory) and Henkin (construction of the canonical model).

In [11] J. Sack considers extensions of probabilistic dynamic epistemic logic.
In spite the fact that there are no theorems presented in this paper, it offers
important insights.

In [5] B. P. Kooi presented a propositional propositional dynamic probability
logic and proved the corresponding simple completeness theorem (a formula is
a theorem iff it is valid). The formal system presented in [5] is incomplete in
the sense that there exist consistent unsatisfiable theories. One such example is
T = {Pa(q) > 0} ∪ {Pa(q) < 2−n : n = 1, 2, 3, . . .} (here q is any propositional
variable). Moreover, the axiomatization of the reflexive and transitive closure [a∗]
of the modal operator [a] is not carried out in [5]. The formalization presented
here resolves mentioned issues.

Up to our knowledge, the first Hilbert-style formalization of a first order dy-
namic probability logic was due to Y. A. Feldman and D. Harel presented in
[2], where the authors have developed a rich and quite expressive syntax and
proved the completeness theorem. The only “flaw” of the approach proposed
by Feldman and Harel is in the self duality of dynamic operators (the formula
¬[a]α ↔ [a]¬α is a theorem of logic constructed in [2]), which is counterintu-
itive. As a consequence of the self duality, dynamic operators behave like the
next operator in discrete linear time temporal logic.

The rest of the paper is structured as follows: in Section 2 syntax and se-
mantics of our logic is introduced. Section 3 contains an axiomatization. logic.
Strong completeness theorem is proved in Section 4, using Henkin-like construc-
tion. Concluding remarks are given in Section 5.
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2 Syntax and Semantics

Let Π be a nonempty countable set of atomic programs. The set of labels (pro-
grams) a ∈ L is the smallest set containing atomic programs which is closed
under the following formation rules: if a and b are labels, then a; b, a ∪ b, and
a∗ are also labels. Intuitively, 〈L, ; ,∪,∗ 〉 is interpreted as a countable Kleene
algebra, where ; and ∪ are binary operations on L, called sequential composition
and choice, respectively, while ∗ is an unary operation on L, called iteration. We
will denote labels by a, b and c, indexed if necessary.

2.1 Syntax

Let Q be the set of rational numbers. A first order language for probabilistic
dynamic logic PrDLfo of the sort L is any language which contains:

– the set of variables V ar = {x, y, z, . . .};
– for every integer k ≥ 0, k-ary relation symbols P k

0 , P
k
1 , . . ., and k-ary function

symbols F k
0 , F

k
1 , . . .;

– Boolean connectives ¬ and ∧, (∀), comma and parentheses,

– for each a ∈ L, modal operator [a], and

– for each a ∈ L and r ∈ [0, 1] ∩ Q, probabilistic operator P a
≥r.

The sets of terms and atomic formulas are defined in a usual way. The set of
formulas is the smallest set that contains all atomic formulas, closed under the
formation rules: if α and β are formulas and a ∈ L, then ¬α, α ∧ β, (∀x)α, [a]α
and P a

≥rα are also formulas. The intended meaning of the formula P a
≥rα is “the

probability that α will be true after termination of the program a is at least r”.
We will denote the set of all formulas by For(PrDLfo). Sentences are formulas
without free variables.

In order to simplify notation, we use the classical abbreviations for the Boolean
connectives ∨, → and ↔, and for quantifier ∃. Also, we introduce the usual
convention: ' and ⊥ are abbreviations for α ∨ ¬α and α ∧ ¬α, respectively.
Moreover, for each a ∈ L, the dual of [a] is the modal operator 〈a〉, defined as
〈a〉α ≡ ¬[a]¬α. The other probabilistic operators are defined as follows: P a

<rα is
¬P a

≥rα, P
a
≤rα is P a

≥1−r¬α, P a
>rα is ¬P a

≤rα, and P a
=rα is P a

≥rα ∧ P a
≤rα.

For a set of formulas T and a ∈ L, we will denote the set {[a]α | α ∈ T }
by [a]T . Also, if a ∈ L and k ∈ ω, we define [a]kα as follows: [a]0α ≡ α and
[a]k+1α ≡ [a]([a]kα).

Let K be any symbol not belonging to the language of PrDLfo. In the axiom-
atization of the logic PrDLfo, we will use a special class of formulas For(K),
defined as the smallest set with the following properties:

– K ∈ For(K),

– if ϕ ∈ For(K), α ∈ For(PrDLfo) and a ∈ L, then (α ∧ ϕ), (α ∨ ϕ), (α →
ϕ), [a]ϕ ∈ For(K).
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We will denote the formulas from For(K) by ϕ, ψ and θ, possibly with indices.
Note that For(K) ∩For(PrDLfo) = ∅. Every formula ϕ ∈ For(K) has exactly
one appearance of K. We will denote the formula obtained from ϕ by replacing
K with a PrDLfo-formula α by ϕ(α). Obviously, ϕ(α) ∈ For(PrDLfo).

2.2 Semantics

The logic PrDLfo uses possible world semantics. Namely, a PrDLfo-model M
as a special kind of Kripke model 〈S,R,D, I, Pr〉 where:

– S is a non-empty set of possible worlds,
– R assigns to each atomic program a a so called serial binary relation R(a)

on S (for all s ∈ S there is t ∈ S such that sR(a) t);
– D is a non empty domain;
– I associates an interpretation I(s) to every s ∈ S, such that for all j and k:

1. I(s)(F k
j ) is a function from Dk to D;

2. for every s′ ∈ S, I(s)(F k
j ) = I(s′)(F k

j ), and

3. I(s)(P k
j ) is a k-ary relation on D;

– Pr associates to every s ∈ S end every a ∈ L a probability space Pr(s, a) =
〈H(s, a), μ(s, a)〉 such that:
• H(s, a) is an algebra of subsets of W (s, a) = {s′ ∈ S | sR(a)s′}, (i.e., it

contains W (s, a) and it is closed under complements and finite union);
• μ(s, a) : H(s, a) −→ [0, 1] is a finitely additive probability measure:

∗ μ(s, a)(W (s, a)) = 1,
∗ μ(s, a)(A ∪B) = μ(s, a)(A) + μ(s, a)(B), if A ∩B = ∅.

Note that we use fixed domain models with rigid terms. This assumption actu-
ally the objectual interpretation for first order modal logics, and it is necessary
restriction if want to preserve validity of all first-order axioms [4].

2.3 Satisfiability Relation

A variable valuation v assigns a function v(s) : V ar −→ D to every possible
world s, i.e., v(s)(x) ∈ D. If s ∈ S, and d ∈ D, then v[d/x]s is the valuation
identical to the valuation v, with the exception that v[d/x]s(s)(x) = d. The
value of a term t in a world s with respect to v (denoted by I(s)(t)v) is defined
recursively:

– if t is a variable x, then I(s)(x)v = v(s)(x),
– if t = F k

j (t1, . . . , tk), then I(s)(t)v = I(s)(F k
j )(I(s)(t1)v, . . . , I(s)(tk)v).

The satisfiability of a formula α in a world s of a modelM under a valuation v,
denoted by (M, s, v) |= α, is defined as follows:

– (M, s, v) |= P k
j (t1, . . . , tk) iff 〈I(s)(t1)v, . . . , I(s)(tk)v〉 ∈ I(s)(P k

j ),
– (M, s, v) |= α ∧ β iff (M, s, v) |= α and (M, s, v) |= β,
– (M, s, v) |= ¬α iff (M, s, v) �|= α,
– (M, s, v) |= (∀x)α iff (M, s, v[d/x]s) |= α, for every d ∈ D,
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– For any atomic label (atomic program) a ∈ Π we say that (M, s, v) |= [a]α
iff (M, s′, v) |= α for all s′ such that sR(a) s′;

– (M, s, v) |= [a; b]α iff (M, s, v) |= [a][b]α;
– (M, s, v) |= [a ∪ b]α iff (M, s, v) |= [a]α and (M, s, v) |= [b]α;
– (M, s, v)[a∗]α iff (M, s, v) |= [a]nα for all n ∈ ω;
– (M, s, v) |= P a

≥rα iff μ(s, a)({s′ ∈W (s, a) | (M, s′, v) |= α}) ≥ r.

If (M, s, v) |= α holds for every valuation v, we write (M, s) |= α. Also, we say
that a sentence α is satisfiable if there is a world s in a model M such that
(M, s) |= α. A set T of sentences is satisfiable if there is a world s in a model
M such that (M, s) |= α holds for every α ∈ T .

The possible problem is that for the set {s′ ∈ W (s, a) | (M, s′, v) |= α} might
not belong to H(s, a). To overcome this problem, we will consider only so-called
measurable models, i.e., models with the following property:

{s′ ∈W (s, a) | (M, s′, v) |= α} ∈ H(s, a), for every α ∈ For(PrDLfo).

Remark 1. Though it may seem that the introduced semantics deviates from the
standard one, it faithfully follows it. Namely, if R(a) and R(b) are serial, then
trivially R(b) ◦R(a), R(a)∪R(b) and

⋃
n∈ω R(a)

n
are also serial. Also, it is well

known that for the standard semantics of dynamic logics the following holds

– (M, s, v) |= [a; b]α iff (M, s, v) |= [a][b]α;
– (M, s, v) |= [a ∪ b]α iff (M, s, v) |= [a]α and (M, s, v) |= [b]α;
– (M, s, v)[a∗]α iff (M, s, v) |= [a]nα for all n ∈ ω.

Hence, relations R(a) and the corresponding satisfiability of [a]-formulas for the
non atomic labels are uniquely determined by the atomic relations R(b) (b ∈ Π
is an atomic label) and the corresponding satisfiability of [b]-formulas.

Consequently, our semantics coincides with the standard semantics for dy-
namic logics.

2.4 Tests

Dynamic logics are usually presented with an additional set of labels of the form
α?, called tests. Then models has the additional restriction for R:

[R? ] R(α?) = {(s, s) ∈ S | (M, s) |= α}).

The corresponding axiomatization contains the axiom

[Ax? ] [α?]β ↔ (α→ β).

By [Ax?], this extension of the language is obviously extension by definition.
Thus, our paper will not deal with those labels. The results of the paper would
hold (without any changes in the proofs), if we include those formulas in the
language, [R?] as a semantical clause and [Ax?] in the axiomatization.
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3 The Axiomatization of PrDLfo

Axiom schemas

A1. the instantiations of the propositional tautologies
A2. (∀x)(α → β)→ (α→ (∀x)β), where x is not free in α
A3. (∀x)α(x) → α(t/x), where α(t/x) is obtained by substituting all free oc-

currences of x in α(x) by the term t which is free for x in α(x)
A4. [a](α→ β)→ ([a]α→ [a]β)
A5. [a; b]α↔ [a][b]α
A6. [a ∪ b]α↔ ([a]α ∧ [b]α)
A7 . [a∗]α→ [a]nα, n ∈ ω,
A8. [a]α→ 〈a〉α
A9. P a

≥0α
A10. [a]α→ P a

≥1α
A11. P a

≤sα→ P a
<tα, t > s

A12. P a
<sα→ P a

≤sα
A13. (P a

≥sα ∧ P a
≥rβ ∧ P a

≥1(¬α ∨ ¬β))→ P a
≥min(1,s+r)(α ∨ β)

A14. (P a
≤sα ∧ P a

<rβ)→ P a
<s+r(α ∨ β), s+ r ≤ 1

A15. (∀x)[a]α(x)→ [a](∀x)α(x)

Inference rules

R1. from {α, α→ β} infer β
R2. from α infer (∀x)α
R3. from a theorem α infer [a]α
R4. from the set of premises

{β → ϕ(P a
≥r− 1

n
α) | n ∈ ω, r − 1

n
≥ 0}

infer β → ϕ(P a
≥rα)

R5. from the set of premises

{β → ϕ([a]nα) | n ∈ ω}
infer β → ϕ([a∗]α)

Let us briefly discuss the above axioms and inference rules. The axiom system can
be divided into three parts. The first part characterizes the classical first-order
logic (the axioms A1–A3, together with the rules R1 and R2). The axioms A4–
A6 are the usual axioms for dynamic logic [12]. The first one is modal K-axiom,
while the other two axioms characterize sequential composition and choice. A7
captures the property thatR(a) is serial. The axioms A9, A11–A14 are a-variants
of the axioms for probabilistic reasoning, used in our previous research [8, 9]. The
axioms A10 connects probabilistic and dynamic operators. Finally, the axiom
A15 is the well known Barcan formula.

The rule R1 is Modus Ponens, and the rule R2 is Goedel’s Generalization. The
rule R3 is the restricted of local modal Necessitation. The rules R4 and R5 are
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infinitary inference rules. The first one is a modification of so called Archimedean
rule presented in [8, 9]. Its purpose is to forbid nonstandard probabilistic values
of the formulas. The second one, together with the axiom A7, characterizes
iteration operator. The infinitary rules are of the form presented above because
of the three reasons:

– the rules generalize the following two rules which are syntactical counterparts
of important semantical properties of our logic:

{P a
≥r− 1

n

α | n ∈ ω, r − 1
n ≥ 0}

P a
≥rα

,

{[a]nα | n ∈ ω}
[a∗]α

.

They can be obtained from R4 and R5, respectively, by setting β = ' and
ϕ = K.

– The implicative form of the rules is standard trick that allows easy proof of
Deduction theorem for infinitary logic.

– Generalization to all implicative formulas obtained by For(K) allows the
proof of Theorem 4, which is essential for the proof of Completeness theorem.

We say that α is a theorem of the logic PrDLfo, and write )PrDLfo α, if there
is an at most countable sequence of formulas α0, α1, . . . , α, such that every αi

is an axiom, or it is derived from the preceding formulas by an inference rule.
A formula α is deducible from a set T of formulas (T )PrDLfo α) if there is
an at most countable sequence of formulas α0, α1, . . . , α, such that every αi is
an axiom or a formula from T , or it is derived from the preceding formulas by
an inference rule, with exception that the inference rule R3 can be applied to
theorems only. The corresponding sequence of formulas α0, α1, . . . , α is the proof
of T )PrDLfo α. A set T of sentences is consistent if there is at least one formula
which is not deducible from T . T is inconsistent iff it is not consistent. In the rest
of the paper, we will omit PrDLfo in )PrDLfo because it’s clear from context.
Note that the length of inference may be any successor ordinal lesser than the
first uncountable ordinal ω1.

In the proof of Completeness theorem, we will use the special class of sen-
tences, called saturated theories. A set T of sentences is maximal if for every
sentence α, either α ∈ T or ¬α ∈ T . A set T of sentences is saturated if it is
consistent, maximal and satisfies the condition: if ¬(∀x)α(x) ∈ T , then for some
term t, ¬α(t) ∈ T .

As it is usually the case in logic, the soundness part of the completeness
theorem (every syntactical consequence is also a semantical consequence of any
given theory) can be verified by the straightforward induction on the length
of inference. The same is true for the deduction theorem, so we will omit the
corresponding proofs.

Theorem 2 (Soundness). If T is a set of sentences and α is a sentence, then
T ) α implies T |= α.
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Theorem 3 (Deduction theorem). Let T be a set of sentences and let α be
a sentence. Then T ∪ {α} ) β implies T ) α→ β.

The following theorem will play the essential role in the proof of Completeness
theorem.

Theorem 4. Let T be a set of sentences and let T ) α. Then [a]T ) [a]α.

Proof. We will use the induction on the depth of the derivation of α from T . The
cases when we apply the inference rule R1 is trivial, as well as the case when
we use the rule R2, because it can be applied to theorems only. Suppose that
T ) (∀x)α is obtained from T ) α by the inference rule R2. Then we have

T ) α (by the assumption),
[a]T ) [a]α (by the induction hypothesis),
[a]T ) (∀x)[a]α (by R2),
[a]T ) [a](∀x)α (by A15).

Assume that T ) β → ϕ([a∗]α) is obtained by R5. Then we have
T ) β → ϕ([a]nα) (by the assumption),
[a]T ) [a](β → ϕ([a]nα)) (by the induction hypothesis),
[a]T ) [a](β → ϕ([a∗]α)) (by R5, applied on ψ(K) = ' → [a](β → ϕ(K))).
The case when we apply R4 can be solved in a similar way. �

Theorem 5.

1. ) [a∗]α→ (α ∧ [a][a∗]α)
2. ) [a∗](α→ [a]α)→ (α→ [a∗]α)

Proof. (M, s) |= [b]ψ([a]nα)

1. [a∗]α ) [a]nα for all n ∈ ω, so [a∗]α ) α and [a∗]α ) [a][a]nα for all n ∈ ω.
By R5 (ϕ = ' → [a]K) we obtain [a∗]α ) [a][a∗]α. Now result follows from
Theorem 3.

2. [a∗](α→ [a]α)∧α ) [a]nα for all n ∈ ω (by A4), so [a∗](α→ [a]α)∧α ) [a∗]α
(by R4). By Theorem 3 we have [a∗](α→ [a]α) ) α→ [a∗]α and ) [a∗](α→
[a]α)→ (α→ [a∗]α). �

The formulas in 1. and 2. from the previous theorem are axioms in standard
axiomatizations of dynamic logic [12]. Thus, all theorems of standard dynamic
logic are also theorem of (dynamic part of) PrDLfo.

4 Completeness

Completeness is proved in three steps. First we extend any consistent set of
sentences T to a saturated set T ∗. Then we use T ∗ we construct the canonical
model M∗. Finally, we show that M∗ is a model of T .

Let T be a consistent set of PrDLfo-sentences. Let {αi | i ∈ ω} be an enu-
meration of all sentences of PrDLfo and C a countably infinite set of constants
symbols not belonging to the language of PrDLfo. We define a completion T ∗

of T in the extended language recursively:
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1. T0 = T .

2. For every i ∈ ω,

(a) If Ti ∪ {αi} is consistent, then Ti+1 = Ti ∪ {αi}.
(b) Otherwise, if αi is of the form β → ϕ(P a

≥rα), then Ti+1 = Ti ∪ {β →
¬ϕ(P a

≥r− 1
k

α)} for some k such that Ti+1 is consistent.

(c) Otherwise, if αi is of the form β → ϕ([a∗]α), then Ti+1 = Ti ∪ {β →
¬ϕ([a]mα)} for some m such that Ti+1 is consistent.

(d) Otherwise, if αi is of the form ¬(∀x)β(x), then Ti+1 = Ti ∪ {¬β(c)} for
some c ∈ C such that Ti+1 is consistent.

(e) Otherwise, Ti+1 = Ti.

3. T ∗ =
⋃∞

i=0 Ti.

Lemma 6. T ∗ is well defined.

Proof. We must show that m, k and c introduced in step 2 exist. Suppose that
there is no such an m. Then Ti ∪ {β → ¬ϕ([a]mα)} is inconsistent for all m, so,
by Theorem 3 Ti ) ¬β → ¬ϕ([a]mα) for all m. Then, by propositional reasoning,
Ti ) β → ϕ([a]mα) for all m. Thus, by R5, Ti ) β → ϕ([a∗]α), which contradicts
the assumption. Similarly, if Ti∪{β → ¬ϕ(P a

≥r− 1
k

α)} ) ⊥ for all k, by Theorem

3 and propositional reasoning we obtain Ti ) β → ϕ(P a
≥r− 1

k

α) for all k. From

R4 we obtain Ti ) β → ϕ(P a
≥rα); a contradiction. The proof of existence of c is

standard. �

Theorem 7. Let T be a consistent set of sentences in the language of PrDLfo

and C a countably infinite set of new constant symbols. Then T can be extended
to a saturated set T ∗ in the extended language.

Proof. Each Ti is consistent. Suppose that there is a sentence α such that both
α /∈ T ∗ and ¬α /∈ T ∗. If α = αi and ¬α = αj ., by construction of T ∗ we obtain
Ti ) ¬α and Tj ) α. Then Tmax{i,j} ) α ∧ ¬α, so Tmax{i,j} is inconsistent; a
contradiction. So, T ∗ is maximal. We will prove that T ∗ is deductively closed,
i.e., that T ∗ ) α implies α ∈ T ∗. Any axiom is consistent with any consistent
set, so it is enough to prove that T ∗ is closed under the inference rules. The only
possible problem is with the infinitary rules.

In order to prove closeness under R4, we must show that whenever {β →
ϕ(P a

≥r− 1
n

α) | n ∈ ω, r− 1
n ≥ 0} ⊆ T ∗, also β → ϕ(P a

≥rα) ∈ T ∗. Suppose not. By

maximality of T ∗ we have ¬(β → ϕ(P a
≥rα)) ∈ T ∗, so β ∈ T ∗ and ¬ϕ(P a

≥rα) ∈
T ∗. Consequently, {ϕ(P a

≥r− 1
n

α) | n ∈ ω, r − 1
n ≥ 0} ⊆ T ∗. Also, if αi = β →

ϕ(P a
≥rα), then there is k such that β → ¬ϕ(P a

≥r− 1
k

α) ∈ Ti+1. If β = αj

then Tmax{i+1,j} ) ¬ϕ(P a
≥r− 1

k

α). Let αl = ϕ(P a
≥r− 1

k

α). Then Tmax{i+1,j,l+1} )
¬ϕ(P a

≥r− 1
k

α) ∧ ϕ(P a
≥r− 1

k

α); a contradiction.

Now we will prove the closeness under R5. Suppose that {β → ϕ([a]nα) | n ∈
ω} ⊆ T ∗ and β → ϕ([a∗]α) �∈ T ∗. By maximality of T ∗ we have ¬(β →
ϕ([a∗]α)) ∈ T ∗. By the construction of T ∗ there are i and m so that ¬(β →
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ϕ([a∗]α)), (β → ¬ϕ([a]mα)) ∈ Ti. Note that Ti ) β and Ti ) ¬ϕ([a]mα)). If
αj = β → ϕ([a]mα), then Tmax{i,j+1} ) ϕ([a]mα) ∧ ¬ϕ([a]mα), a contradiction.

Thus, T ∗ is deductively closed. If it is inconsistent, then there is α such that
T ∗ ) α ∧ ¬α. Then there is i such that α ∧ ¬α ∈ Ti, a contradiction. The step
2(d) of the construction guarantees that T ∗ is saturated. �

A canonical model M∗ = 〈S,R,D, I, Pr〉 is defined in the following way:

– S is the set of all saturated theories;
– For the atomic label a let sR(a) t iff {α | [a]α ∈ s} ⊆ t;
– D is the set of all variable-free PrDLfo-terms;
– I(s) is an interpretation such that:

• for every function symbol F k
j , I(s)(F

k
j ) is a function from Dk to D such

that for all variable-free PrDLfo-terms t1, . . . , tk, I(s)(F
k
j ) : 〈t1, . . . , tk〉

,→ F k
j (t1, . . . , tk);

• for every relation symbol P k
j , I(s)(P

k
j ) = {〈t1, . . . , tk〉 : t1, . . . , tk are

variable-free PrDLfo-terms in P k
j (t1, . . . , tk) ∈ s};

– the probability space Pr(s, a) = 〈H(s, a), μ(s, a)〉 is defined as follows:

• H(s, a) = {[α]as | α ∈ For(PrDLfo)}, [α]as = {s′ ∈ W (s, a) | s′ ) α};
• μ(s, a)([α]as ) = sup{r ∈ Q ∩ [0, 1] | s ) P a

≥rα}.

The following theorem is a rather straightforward modification of the corre-
sponding theorem presented in [8], so we will omit its proof.

Theorem 8. M∗ is a model.

Theorem 9 (Strong completeness theorem). Every consistent set T of sen-
tences is satisfiable.

Proof. Let M∗ be the model constructed above We can show that for every
sentence α, (M∗, s) |= α iff α ∈ s, using the induction on the complexity of α.
If α is an atomic sentence,it follows from the definition of I. The cases when
formulas are negations and conjunctions can be proved as usual. For the proof
when α is of the forms (∀x)β or P a

≥rβ, we refer the reader to [1] and [9].
Let α = [a]β. Suppose that [a]β ∈ s. Then β ∈ s′ for each s′ such that

sR(a)s′. By the induction hypothesis we obtain (M∗, s′) |= β for each s′ such
that sR(a)s′, so (M∗, s) |= [a]β.

Conversely, let (M∗, s) |= [a]β and [a]β /∈ s. Let A = {α | [a]α ∈ s}. Suppose
that A ∪ {¬β} is inconsistent. By Theorem 3, A ) β, and by Theorem 4 [a]A )
[a]β. Since [a]A ⊆ s, we have s ) [a]β, so [a]β ∈ s (by maximality of s), a
contradiction. Thus, A ∪ {¬β} is consistent. By Theorem 7 there exist t ∈ S
such that A ∪ {¬β} ⊆ t. Note that sR(a)t. Moreover, ¬β ∈ t, and by the
induction hypothesis we obtain (M∗, t) |= β, which contradicts the assumption
that (M∗, s) |= [a]β.

By Theorem 7, the consistent set T can be extended to a saturated set T ∗ ∈ S.
Since T ∗ is satisfied in M, T is satisfiable. �
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5 Summary and Conclusions

As it is the case for the classical first-order logic, our formalization of the first-
order dynamic probability logic is undecidable. Investigation of decidable frag-
ments can be of particular importance for various applications.

If we weaken the connection between the [a∗] and [a] by the statement “R(a∗)
is a reflexive and transitive relation that extends R(a)”, then the corresponding
pseudo-dynamic part would be finitely axiomatizable. In addition, if all proba-
bility function are restricted to some fixed finite range, than such logic can be
completely axiomatized by finitary system.

Acknowledgements. This work is partially supported by Serbian Ministry of
Education, Science and Technological Development through grants III044006,
ON174026, III041013 and TR36001.
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1. Doder, D., Ognjanović, Z., Marković, Z.: An Axiomatization of a First-order
Branching Time Temporal Logic. Journal of Universal Computer Science 16(11),
1439–1451 (2010)

2. Feldman, Y.A., Harel, D.: A Probabilistic Dynamic Logic. Journal of Computer
and System Sciences 28, 193–215 (1984)

3. Guelev, D.P.: A Propositional Dynamic Logic with Qualitative Probabilities. Jour-
nal of Philosophical Logic 28, 575–605 (1999)

4. Halpern, J.Y.: An Analysis of First-order Logics of Probability. Artificial Intelli-
gence 46, 311–350 (1990)

5. Kooi, B.P.: Probabilistic Dynamic Epistemic Logic. Journal of Logic, Language
and Information 12, 381–408 (2003)

6. Ognjanović, Z., Rašković, M.: Some First-order Probability Logics. Theoretical
Computer Science 247(1-2), 191–212 (2000)
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Abstract. Combining pieces of information provided by several sources
without prior knowledge about the behavior of the sources is an old yet
still important and rather open problem in belief function theory. In this
paper, we propose a general approach to select the behavior of sources,
based on two cornerstones of information fusion that are the notions of
specificity and consistency. This approach is framed in a recently intro-
duced and general fusion scheme that allows a wide range of assumptions
on the sources. In the process, we are also led to generalize a recently
introduced measure of conflict to all Boolean connectives. Eventually, we
show that our approach generalizes some important existing information
fusion strategies.

Keywords: Dempster-Shafer theory, Information fusion, Consistency,
Specificity, Conflict.

1 Introduction

Determining the actual value taken by a variable of interest from information
provided by several sources is a central problem in many information systems
and has received much attention in belief function theory [16,19]. As argued
in [18,14,3], such a task involves necessarily to make some (possibly uncertain)
assumptions about the dependence and the behavior, e.g., the relevance and
truthfulness [14], of the sources of information. A main concern in information
fusion is thus to find what assumption to make about the sources. In this paper,
we focus on the problem of finding appropriate source behaviors and assume
sources to be independent.

When some training data are available, one may resort to some learning pro-
cedures to estimate the behavior of the sources (see, e.g., [7,11,6]). When there
is no previous experience with the sources (the case in the present paper), then
the selection of an appropriate assumption about source behaviors needs to be
based on other considerations.

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 473–484, 2013.
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A first interesting criterion for that choice is the consistency of the knowledge
induced on the variable of interest by a given assumption, as suggested by the
large body of literature on conflict management (see, e.g., [18,9]). Indeed, it is
common in the theory of belief functions to question the behavioral assumptions
of the (unnormalized) Dempster’s rule [1,16], i.e., that the sources are truth-
ful and relevant [14], when the conflict or inconsistency [2] resulting from its
application is too high.

A second natural criterion is the specificity of the induced knowledge. Indeed,
there exist assumptions on the sources that, despite their ensuring consistency,
are not so often made because they yield poorly informative conclusions. This
is the case for instance of the assumption of truthful sources, of which at least
one is relevant (the disjunctive rule [4,17] corresponds to this assumption [14]).

There might be other relevant criteria to compare assumptions on sources,
such as considering a kind of minimal change principle (see, for example [10])
where an assumption could be chosen on the basis of the closeness (in the sense
of some distance [8]) of the induced knowledge with respect to the knowledge
induced by some reference assumption (e.g., truthful and relevant).

In this paper, we propose an approach to select the behavior of sources based
on the notions of specificity and consistency (as they are the most classical goals
to be reached by a fusion process). This approach is framed in the scheme of
Pichon et al. [14], a very general fusion framework that allows making a wide
range of assumptions on the sources. In the process, we are led to extend some
results presented by Destercke and Burger [2] on conflict measurement. We also
show that our approach generalizes some important existing information fusion
strategies. We follow a step-wise presentation, first expressing the notions of
consistency and specificity in Pichon et al. framework in the case of a single
source (Section 3), and then in the case of multiple sources (Section 4). We
then describe our approach, and provide some important examples of its appli-
cation (Section 5). Background material is presented in Section 2. Due to space
limitation, proofs are omitted.

2 Preliminaries

In this section, we provide first the necessary concepts about belief function
theory and then we recall the formal setting of Pichon et al. [14].

2.1 Necessary Concepts of Belief Function Theory

In this paper, we assume the beliefs held by an agent about the actual value
taken by a given variable x defined on a finite domain X , to be modeled using
belief functions [16,19] and to be represented using associated mass functions.
Formally, a mass function mX on X is a probability distribution on the power
set 2X , hence

∑
A⊆X mX (A) = 1. The probability allocation mX (A) may be

understood as the weight given to the assumption that the agent knows that
the value of the variable of interest lies somewhere in set A, and nothing more
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specific [5], or as the probability that the agent supplies information item x ∈ A
[14]. Each A ⊆ X such that mX (A) > 0 is called a focal set of the mass function.
F denotes the set of focal sets of mX .

From the mass function are usually defined two uncertainty measures, the
belief and plausibility measures, which respectively reads for an event A ⊆ X :

Bel(A) =
∑

∅�=B⊆A

mX (B) and Pl(A) =
∑

B∩A �=∅
mX (B).

That is, Bel is the sum of masses of sets that implies A, Pl the sum of masses
of sets that are consistent with A. The contour function [16] plX : X → [0, 1]
associated to a mass function mX is defined by plX (x) = PlX ({x}).

There exist several ways to compare the informational contents of belief func-
tions (see, e.g., [5]). In particular, the specialization ordering (the most natural
extension of set inclusion) compares belief functions in terms of specificity: mX

1

is a specialization of mX
2 , which we denote by mX

1 � mX
2 , if and only if mX

1 can
be obtained from mX

2 by transferring each mass mX
2 (A) to subsets of A.

Many combination rules have been proposed for belief functions [18]: the most
common is the unnormalized Dempster’s rule (or conjunctive rule), denoted by
∩©. The mass function mX

1 ∩©2 resulting from its application on mX
1 and mX

2 is:

mX
1 ∩©2 (A) =

∑
B∩C=A

mX
1 (B)mX

2 (C) , ∀A ⊆ X . (1)

The disjunctive rule ∪© [4,17] is obtained by simply replacing ∩ with ∪ in (1).

2.2 Source Behavioral States

The setting considered by Pichon et al. [14] is the following. Assume an agent
wants to know the actual value taken by x based on testimonies provided by
several sources of information identified as si, 1 ≤ i ≤ K. These testimonies
can be of several forms: a value xi ∈ X , a set Ai ∈ X , a probability distribution
pi on X , or in the most general form a mass function mX

i on X . In order to
be able to interpret those testimonies, the agent must have some knowledge
about the behavioral state (referred to as meta-knowledge in [14]) of the sources.
In the approach of Pichon et al., the possible elementary behavioral states of
a source si are formalized as a set Hi = {hi

1, . . . , h
i
N}. The set of elementary

joint states on sources is therefore the Cartesian product H1:K := ×K
i=1Hi.

The state space Hi can be very general [14] and may include being unreliable,
lying, being approximatively informed, etc. Two common assumptions for which
we will use specific notations are the assumptions that a source si is relevant
(Ri) or not (¬Ri), and truthful (T i) or not (¬T i). Together, they form the
space of possible states Hi = {(T i, Ri), (T i,¬Ri), (¬T i, Ri), (¬T i,¬Ri)}. Like
the testimonies provided by the sources, the meta-knowledge of the agent can
be of several form, the most general one being a mass function defined overH1:K .

In the following, we detail how consistency and specificity can be characterized
when using this setting, and how such characterizations can be used to select a
particular piece of meta-knowledge.
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3 Consistency and Specificity: Single Source

We start by characterizing consistency and specificity in the simple case where
a single source provides information.

3.1 Crisp Testimony and Sure Meta-knowledge

The simplest situation is a source s delivering a testimony of the form x ∈ A
with A ⊆ X , and being known to be in a state h ∈ H, with H the state
space of the source. The testimony x ∈ A should then be modified accord-
ing to this state [14]. This transformation can be encoded by a multivalued
mapping ΓA : H → X , where ΓA(h) indicates how to interpret the piece of
information x ∈ A for each possible state h of the source. For instance, if
H = {(T,R), (T,¬R), (¬T,R), (¬T,¬R)} are the possible states of the source,
we have for all A ⊆ X

ΓA(R, T ) = A,ΓA(¬R, T ) = X , ΓA(R,¬T ) = Ac, ΓA(¬R,¬T ) = X , (2)

with Ac the complement of A. Eqs. (2) translate that if s is considered not
relevant, it does not bring any information, while if it is considered not truthful,
it declares the opposite of what it knows to be true – this corresponds to the
crudest form of non-truthfulness, other forms are discussed in Pichon [12]. If the
knowledge about the source state is imprecise and given by H ⊆ H, then the
transformation is the image ΓA(H) :=

⋃
h∈H ΓA(h) of H by ΓA.

Destercke and Burger [2] consider that any piece of knowledge x ∈ A about a
variable x is consistent if A �= ∅, and inconsistent otherwise. This extends easily
to the current framework, a transformed testimony yielding a consistent piece
of knowledge on X when ΓA(H) �= ∅, in which case x ∈ A is said H-consistent,
and an inconsistent piece of knowledge when ΓA(H) = ∅. We may then adapt
the measure of consistency introduced in [2] to measure H-consistency as the
degree φH : 2X → {0, 1} such that

φH(A) =

{
1 if ΓA(H) �= ∅,
0 if ΓA(H) = ∅.

In some way, this consistency measure evaluates whether H is a valid assumption
on the source when it provides the testimony x ∈ A. Consider, for instance, the
assumption h = (R,¬T ) corresponding to a relevant and lying source. This as-
sumption will be considered invalid only when the source provides the testimony
x ∈ X as ΓX (h) = ∅ and φh(X ) = 0.

Meta-knowledge can also be characterized in terms of specificity: namely a
piece of meta-knowledge H1 ⊆ H will be said at least as meta-specific as another
piece of meta-knowledge H2 ⊆ H when ΓA(H1) ⊆ ΓA(H2) for any A ⊆ X , and
we will denote it H1 �H H2. For example, the assumption (R, T ) is at least
as meta-specific as the assumption (¬R, T ). Note that we have the relations
H1 � H2 ⇒ H1 �H H2 and H1 �H H2 ⇒ φH1 (A) ≥ φH2(A), the latter relation
being of particular interest in the context of this paper as it shows that reaching
both consistency and specificity are somewhat opposite goals.
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3.2 Uncertain Testimony and Meta-knowledge

More generally, both the testimony and the meta-knowledge of the agent may
be uncertain. Let mX be the uncertain testimony and mH the uncertain meta-
knowledge. The knowledge of the agent on X can then be represented by the
mass function m[mH]X defined for all B ⊆ X as [14]

m[mH]X (B) =
∑
H⊆H

mH(H)
∑

A:ΓA(H)=B

mX (A). (3)

This definition is rather general. In particular, the discounting rule proposed by
Shafer [16] is retrieved by mH(R) = p and mH(¬R) = 1− p [14].

The results of the previous section can be extended to this general setting:
following [2], the mass function modeling the empty set (m[mH]X (∅) = 1) can be
associated to a complete inconsistent knowledge and a mass function m[mH]X

whose focal sets have a non-empty intersection can be associated to a totally
consistent knowledge. That is, the testimony mX is totally consistent under
meta-knowledge mH if and only if⋂

A∈F
H∈FH

ΓA(H) �= ∅, (4)

where F and FH denote the sets of focal sets of mX and mH, respectively. A
mass function mX is then said mH-consistent if and only if (4) holds. Lemma 1
characterizes mH-consistent testimonies in terms of the contour function.

Lemma 1.
⋂

A∈F
H∈FH

ΓA(H) �= ∅ ⇔ ∃x ∈ X such that pl[mH]X (x) = 1, where

pl[mH]X is the contour function associated to the mass function m[mH]X ob-
tained from (3).

A source is thus mH-consistent if it allows us to conclude that at least one
value of x is totally plausible under meta-knowledge mH. Following [2], this
characterization of mH-consistency suggests the following definition:

Definition 1 (mH-consistency measure). The measure φmH : MX → [0, 1]
of mH-consistency, whereMX denotes the set of all mass functions on X , reads:

φmH(mX ) = max
x∈X

pl[mH]X (x).

The notion of meta-specificity may also be extended to this general setting.

Definition 2 (Meta-specificity). An uncertain piece of meta-knowledge mH
1

is said to be at least as meta-specific as another uncertain piece mH
2 when

m[mH
1 ]X � m[mH

2 ]X for any mX ∈MX . This is denoted by mH
1 �H mH

2 .

We may then show that in the general case, consistency and specificity are also
at odds:

Proposition 1. If mH
1 �H mH

2 , then φmH
1
(mX ) ≤ φmH

2
(mX ) ∀ mX ∈MX .
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Example 1 (Inspired from Example 1 of [14]). Let X = {x1, x2, x3, x4, x5} be
an ordered space and consider the mass function such that mX ({x1, x2}) = 0.3,
mX ({x4, x5}) = 0.3 and mX ({x3}) = 0.4. Now consider the assumptions h1

“informed” such that ΓA(h1) = A, h2 “approximately informed” such that if
A = {xi, xi+1, . . . , xj} then ΓA(h2) = {xi−1} ∪ A ∪ {xj+1} with x0 = x6 = ∅,
and h3 “unreliable” such that ΓA(h3) = X . Then we have

φh1(m
X ) = 0.4, φh2(m

X ) = 1, φh3(m
X ) = 1,

h1 �H h2 �H h3.

This example allows us to lay bare some preliminary ideas on the selection of
source behavior based on consistency and specificity. As can be seen, assumptions
h2 and h3 are the most desirable in terms of consistency, since they both yield
a totally consistent state of knowledge on X . However, the state of knowledge
obtained under h2 is more specific, or informative, than the one obtained under
h3, hence h2 may appear preferable. Those ideas will be developed at length in
Section 5.

4 Consistency and Specificity: Multiple Sources

We now consider multiple sources si, i = 1, . . . ,K where each can be in states
Hi =

{
hi
1, ..., h

i
N

}
and deliver testimonies mX

i , i = 1, . . . ,K. We define for any
state h = (h1, . . . , hk) ∈ H1:K a mapping [14] for any A = (A1, . . . , AK) ⊆ XK

as ΓA(h) =
⋂K

i=1 ΓAi(h
i). ΓA(h) is the information on X deduced from testi-

monies (A1, . . . , AK) of sources s1, . . . , sK when they are in states (h1, . . . , hK).
We keep the notation ΓA(H) := ∪h∈HΓA(h) for all H ⊆ H1:K and all A ⊆ XK .

4.1 General Case

If we have a joint meta-knowledge mH1:K

over ×K
i=1Hi and if sources s1, . . . , sK

are independent, then the combined mass function m[mH1:K

]X defined by (5)
represents what can be inferred about x from mX = (mX

1 , ...,mX
K) [14]:

m[mH1:K

]X (B) =
∑

H⊆H1:K

mH1:K

(H)
∑

A⊆XK

ΓA(H)=B

[
K∏
i=1

mX
i (Ai)

]
. (5)

We note that this approach has a computational complexity that increases ex-
ponentially in the number of sources.

Keeping the same definition of complete inconsistent and consistent knowledge
as in Section 3.2, the counterpart of Lemma 1 suggests to use the following

equation as a degree of mH1:K

-consistency for the collection mX

φmH1:K (mX ) = max
x∈X

pl[mH1:K

]X (x), (6)



Selecting Source Behavior in Information Fusion 479

where pl[mH1:K

] is the contour function of (5). Again, if mH1:K

1 �H mH1:K

2 , then
φ
mH1:K

1
(mX ) ≤ φ

mH1:K
2

(mX ) for anymX . We will make heavy use of this duality

between specificity and consistency in Section 5.
An interesting feature of the approach [14] is that all Boolean operators on

sets A = (A1, . . . , AK) ⊆ XK can be obtained through particular assumptions
on the behavior of the sources. As a result, Equation (5) covers all combination
rules based on Boolean operators. For instance, consider the assumption HK

r on
H1:K meaning the sources are truthful and “r-out-of-K” of them are relevant.
This amounts to

ΓA(HK
r ) =

⋃
A⊂{A1,...,AK},|A|=r

(∩A∈AA) , (7)

and when applying HK
r to Eq. (5), the conjunctive and disjunctive rules ∩© and

∪© are retrieved when r = K and r = 1, respectively.

Remark 1 (Extension of conflict to all Boolean operators). This feature, once
coupled with Equation (6), is fruitful: it provides a natural extension of the mea-
sure of conflict defined in [2] as the inconsistency resulting from the conjunctive
combination, to all other combination rules based on Boolean operators.

4.2 Separable Meta-knowledge

Computing (5) can be resource demanding, however there are cases where it is

easier. In particular, when all focal elements of mH1:K

are separable.

Definition 3 (Separability). A subset H ⊆ H1:K is said separable if and only
if H = H↓1 × . . .×H↓K , where H↓i denotes the projection of H ⊆ H1:K on Hi.

Proposition 2. When each focal set of mH1:K

is separable1, Equation (5) can
be rewritten as:

m[mH1:K

]X (B) =
∑

H⊆H1:K

mH1:K

(H) ·
[
∩©K

i=1m[H↓i]X
]
(B), (8)

where m[H↓i]X denotes mass function mX
i transformed according to H↓i.

That is, we first transform eachmX
i according toH↓i, apply unnormalized Demp-

ster’s rule to them and compute the weighted sum according to mH1:K

. We can
therefore make use of efficient algorithms to compute Dempster’s rule result [20].

This property also simplifies the computation of the consistency measure (6).

Indeed, consider the meta-knowledge mH1:K

(H) = 1 with H separable and let
pl[H ]X be the corresponding contour function. Then if pl[H↓i]X is the contour

1 This happens, e.g., when mH1:K

satisfies the property of meta-independence [14],

which basically means that mH1:K

is the result of independent pieces of meta-
knowledge concerning each source.
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function obtained by transforming mX
i according to meta-knowledge H↓i, we

have pl[H ]X (x) =
∏K

i=1 pl[H
↓i]X (x). As Equation (8) is a convex mixture of

such mass functions, and as the plausibility measure of a convex mixture is
the convex mixture of plausibility measures, computing consistency measure (6)
only requires to compute contour functions and to take their weighted averaged
products (hence not necessitating any combination).

5 Source Behavior Selection Approach

Selecting which assumption to make on the sources when one has no previous
experience with them, basically amounts to defining a set of candidate pieces
of meta-knowledge, and a selection criterion allowing one to choose a particular
element in this set. Based on the results of the previous sections, this section
provides some guidelines to define such a set, as well as a selection criterion
that can be used on any set satisfying those guidelines, leading to a general, yet
practical and sensible, approach to select the behavior of the sources. Important
examples of the application of this approach are also presented.

5.1 Initial Meta-knowledge

In absence of any particular information on the behavior of the sources, we

propose to consider first an assumption mH1:K

1 such that mH1:K

1 (h) = 1, with
h ∈ H1:K and ΓA(h

↓i) = A, ∀A ⊆ X , i = 1, ...,K, i.e., an assumption that
induces no transformation of the testimonies provided by the sources. This as-
sumption corresponds to an agent that does not want to alter in any way the
information he has received: it amounts to accepting the testimonies as they are.
Most importantly, the assumption that the sources are all relevant and truthful,
i.e., the most classical assumption in information fusion in general and in be-

lief function theory in particular, is formally an instance of mH1:K

1 . Our proposal
corresponds indeed to combining the sources using the unnormalized Dempster’s
rule – the first rule usually considered to combine pieces of information. Hence,

mH1:K

1 is a natural default meta-knowledge.

Equation (6) provides us with an assessment of whether the assumptionmH1:K

1

applies to the current testimonies. In particular, and as is classically advocated
in belief function theory, we propose that if the consistency induced by this
assumption is high enough, that is if it is above some threshold τ , then this
assumption should be used to combine the testimonies, and if the consistency is

too low, i.e., below τ , then the assumption mH1:K

1 should not be used and other
assumptions leading to higher consistency should be sought.

5.2 A Specificity Ordering Approach

To search for other assumptions with better consistency, the counterpart of
Proposition 1 in the multiple source case can be instrumental: choosing a
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meta-knowledge mH1:K

2 such that mH1:K

1 �H mH1:K

2 will indeed ensure that the
consistency increases. This leads us to propose the following strategy to select
the meta-knowledge to be used:

– define a collection of meta-knowledge mH1:K

= (mH1:K

1 , ...,mH1:K

M ) such that

for any 1 ≤ j < M , mH1:K

j �H mH1:K

j+1 , and with mH1:K

1 as defined above;

– test each mH1:K

j iteratively with j = 1, . . . ,M , until φ
mH1:K

j
(mX ) ≥ τ .

In other words, this strategy gradually decreases specificity until a satisfactory
consistency level is reached. It comes down to considering a set of pieces of meta-

knowledge that are comparable according to �H, with mH1:K

1 being the most
meta-specific element of this set, and to select in this set the most meta-specific

element mH1:K

j such that φ
mH1:K

j
(mX ) ≥ τ .

Remark 2. The construction of mH1:K

should also follow some sensible rules:
pieces of meta-knowledge mH1:K

j should have a clear semantic and the spaces Hi

should be of reduced size, e.g., Hi = {(T i, Ri), (T i,¬Ri), (¬T i, Ri), (¬T i,¬Ri)}.

5.3 Examples

As shown below, our approach subsumes important classical fusion strategies
dedicated to conflict management in belief function theory. These strategies fol-
low the same pattern: they first combine the testimonies using the unnormalized
Dempster’s rule, and if the consistency resulting from its application is too low,
other assumptions on the sources yielding higher consistency are considered. Let
us remark that the first fusion strategy discussed below is based on imprecise
pieces of meta-knowledge, whereas the second one is based on probabilistic ones.

r-out-of-K Relevant Sources. We can implement the above methodology by

choosing mH1:K

j (HK
K−j+1) = 1, with HK

K−j+1 the assumption that the sources
are truthful and r = K − j + 1 out of them are relevant (see Eq. (7)), as the
following proposition indicates:

Proposition 3. If mH1:K

j (HK
K−j+1) = 1, then mH1:K

j �H mH1:K

j+1 for 1 ≤ j < K.

Example 2. Consider the mass functions mX
1 , mX

2 and mX
3 on X = {x1, x2, x3}

in the left part of Table 1. Assume they were received from three independent

sources. Let mH1:K

= (mH1:K

1 ,mH1:K

2 ,mH1:K

3 ) = (H3
3 , H

3
2 , H

3
1 ) be three pieces of

meta-knowledge we want to test on these sources. mH1:K

1 corresponds to the use

of the unnormalized Dempster’s rule, while mH1:K

3 corresponds to the use of the

disjunctive rule. mH1:K

2 corresponds to the assumption H3
2 that the three sources

are truthful and that two of them are relevant, but we do not know which ones,
i.e., to the following subset of H1:K :

{(R1, T1, R2, T2,¬R3, T3) , (R1, T1,¬R2, T2, R3, T3) , (¬R1, T1, R2, T2, R3, T3)} .
(9)
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Table 1. Mass functions resulting from the three different assumptions

A mX
1 mX

2 mX
3 m[H3

1 ]
X m[H3

2 ]
X m[H3

3 ]
X

∅ 0 0 0 0 0 0.36
{x1} 0.5 0 0 0 0.06 0.2
{x2} 0 0 0 0 0 0

{x1, x2} 0 0.2 0 0 0.04 0.04
{x3} 0 0 0.6 0 0 0.24

{x1, x3} 0 0 0 0 0.24 0
{x2, x3} 0 0 0 0 0 0

X 0.5 0.8 0.4 1 0.66 0.16

The right part of Table 1 presents the mass functions on X resulting from
the three different assumptions. We have φH3

1
(mX ) = 1, φH3

2
(mX ) = 1 and

φH3
3
(mX ) = 0.4, hence our approach suggests to use H3

2 to combine the pieces
of information in this example.

Note that the assumption “r-out-of-K” is not separable in general. For instance,
the subset (9) is not the product of each of its projection. However, we may
remark that this assumption treats all sources in the same way, which seems
interesting in absence of meta-knowledge about each individual source.

Vectors of Reliabilities. Another interesting case is when we consider Hi =
{Ri,¬Ri} (relevant or not) and a vector p = (p1, . . . , pK) such that mHi

(Ri) =

pi, m
Hi

(¬Ri) = 1−pi and wheremH1:K

is obtained by considering the stochastic

product of probabilities p1, . . . , pk. In such case, the assumption mH1:K

amounts
to discounting each source si according to reliability rate 1 − pi and then com-
bining the discounted sources using unnormalized Dempster’s rule [14]. If we
define a set p1, . . . ,pM of such vectors with pji > pj+1

i , we get corresponding

meta-knowledges mH1:K

1 , . . . ,mH1:K

M with the following property.

Proposition 4. Let mH1:K

j , j = 1, . . . ,M, be the mass functions defined using

p1, . . . ,pM . We have mH1:K

j �H mH1:K

j+1 , for 1 ≤ j < M .

A useful feature of such mH1:K

is that each meta-knowledge mH1:K

j satisfies the

meta-independence property [14] and therefore φ
mH1:K

j
(mX ) can be computed

efficiently using the results of Section 4.2.

Remark 3. If we associate pji with the product of one minus the degrees of falsity
of mass function i up to step j in Schubert’s recent work on sequential discount-

ing [15], then m[mH1:K

j ]X is nothing else but the mass function on X obtained
at step j in Schubert’s scheme. Hence Schubert’s method [15] is included in the
present approach.
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6 Conclusion

In this paper, we have proposed a practical and sensible methodology to select
the behavior of sources in information fusion, based on the fundamental notions
of specificity and consistency. Our approach is based on recent frameworks that
measure inconsistency [2] and model source behaviors [14] in simple yet powerful
ways. In particular, we have introduced measures of consistency and a partial
ordering for the source behavior assumptions allowed by Pichon et al. framework
[14], which are used in the behavior selection process. This also led notably to a
natural extension of the measure of conflict defined in [2], to all combination rules
based on Boolean operators. In addition, an interesting feature of our approach
is that it subsumes important classical fusion strategies dedicated to conflict
management in belief function theory.

We may mention a few research paths that were left unexplored in this paper:

– as in [2], it would be interesting to study the alternative consistency measure
based on mX (∅), or what happens in the current framework when we relax
the assumption of source independence;

– variations of our approach could be investigated, both from formal and prac-
tical point of views, and in particular using other criteria than specificity and
consistency, for instance the idea of minimal change evoked in Section 1;

– besides the families of assumptions on the sources that are studied in Section
5.3, it may be interesting to identify other families of assumptions that are
ordered according to the relation of meta-specificity and that include the
unnormalized Dempster’s rule as most meta-specific element;

– if several collections mX of testimonies are available, then one could try to
learn the best meta-knowledge to be used in general to combine the testi-
monies. In particular, we may think of obtaining a probability distribution

over mH1:K

and exploit it for selecting the best meta-knowledge. This infor-
mation could be coupled with other methods that learns reliability indices
[7,11,6].

– one could try to integrate in the current framework some related works, such
as Smets expert system [18] or Mercier et al. [11] contextual discounting;

– the idea of using consistency and specificity as rule selection methods could
be extended to rules that have no clear interpretation in terms of meta-
knowledge, such as weight-based ones [13].
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Abstract. By using the principle of maximum entropy incomplete probabilistic
knowledge can be completed to a full joint distribution. This inductive knowl-
edge representation method can be reversed to extract probabilistic rules from an
empirical probability distribution. Based on this idea propositional learning ap-
proach has been developed. Recently, an extension to a relational language has
been presented, where, however, a central aspect, finding and resolving algebraic
equations needed for the solution, has been treated as a black box. Here, we in-
vestigate both problems in more detail. We explain how equations for relational
knowledge bases can be resolved, and give a comprehensive example of comput-
ing a relational knowledge base from a probability distribution. Furthermore, we
describe how propositional mechanisms for finding equations can be refined to
focus on more interesting equations and to reduce the number of candidates.

1 Introduction

Given data collected in some domain, one is often interested in learning a knowledge
base reflecting the most important dependencies in this dataset. Different fields like
classical Data Mining [4] or Statistical Relational Learning [3] provide different learn-
ing techniques. In [5] an alternative way of learning is suggested. One supposes the
empirical probability distribution that is induced by the observations in the dataset is
originally generated by certain laws that can be represented by a conditional knowledge
base. Applying the principle of maximum entropy (ME) the distribution will respect
the laws, but will be as uniform as possible otherwise. This process of inductive knowl-
edge completion by generating the ME-distribution from a set of conditionals can be
reversed to construct a conditional knowledge base from the empirical probability dis-
tribution (cf. Fig. 1). To this end, one starts with a complete knowledge base reflecting
each possible dependency and successively shortens it. Each shortening can be justified
by an algebraic theory [5]. CondorCKD [6] is an algorithm that implements this idea,
but it is restricted to propositional languages. Yet in some domains it is more appropriate
to use relational languages to emphasize relations between individuals.

Example 1. Suppose we want to find out about the social behavior of a population of
monkeys. At feeding time, we assume that hungry monkeys will eat their food, oth-
erwise they might allow another monkey to eat it. For each monkey c we introduce a
binary random variable h(c) (hungry) and a variable al (c, d) (allows eating) for each
two different monkeys c, d. Even though the representation is effectively propositional,

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 485–496, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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R P∗

inductive knowledge completion

conditional knowledge discovery

Fig. 1. Conditional knowledge discovery as inverse to inductive knowledge representation

we are interested in the underlying relational structure. We are interested in ’relational
conditionals’ like (al(X,Y ) | h(X))[0.9] expressing that a monkey X that is not hun-
gry probably allows another monkey Y to eat its food.

In [8] an approach is sketched how the approach followed in CondorCKD can be trans-
ferred to the relational language FO-PCL [2]. Starting with an extensive set of relational
conditionals that most likely capture all possible dependencies, the set is successively
shortened by deleting and combining conditionals appropriately. Again, each shorten-
ing operations is justified by algebraic equations. Finally the remaining conditionals
are evaluated with respect to the empirical probability distribution to identify excep-
tional individuals. For example, the conditional (al(c,X) | h(c))[0.2] might identify an
egoistic monkey that prefers hoarding its food rather than sharing it.

In [8] finding and resolving of interesting equations is treated like a black box. We
close this gap, by explaining how fundamental ideas [5] underlying CondorCKD can
be adapted to the relational structure of FO-PCL knowledge bases. Another issue is
the way interesting equations are searched. Applying CondorCKD’s search algorithm
naively can result in many uninteresting equations. By taking the relational structure
into account, we can concentrate on more promising equations and at the same time
reduce the computational complexity of finding equations.

In Section 2 we give a quick overview of the FO-PCL and the maximum entropy
framework. Afterwards we give a closer overview of the learning problem, the core
concepts underlying CondorCKD and recapture the core ideas of extending it to FO-
PCL from [8]. In Section 3 we deal with resolving relational equations. We explain the
’conditional structure’ of FO-PCL knowledge bases. Subsequently we sketch how the
propositional shortening operations transfer to FO-PCL and give a comprehensive com-
putation example. In Section 4 we explain how the ’neighborhood graph’ used in Con-
dorCKD can be decomposed to focus on promising relational equations. Afterwards,
we explain how the search in the obtained subgraphs can be simplified by exploiting
similarity of their connected components.

2 Basics

FO-PCL: FO-PCL [2] is a restricted many-sorted first-order logic built up over sig-
natures of the form Σ = (S ,Const ,Pred). S is a set of sorts, Const a set of sorted
constants, and Pred a set of sorted predicate symbols. Formulas are built up over a sig-
nature Σ and a set of sorted variables V in the usual way using conjunction, disjunction
and negation, but no quantifiers. We abbreviate conjunctions ψ ∧ φ by ψφ and nega-
tions ¬ψ by ψ. Variables are interpreted by means of a grounding operator gnd. For this
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purpose additionally constraint formulas are considered. They are built over the same
set of constants Const , variables V and a new sorted equality-symbol =. An FO-PCL
conditional R = 〈(φ | ψ)[ξ],C 〉 consists of two formulas over Σ, the consequence φ
and the antecedence ψ, a probability ξ ∈ [0, 1] and a constraint formula C . A set R
of such conditionals is called an FO-PCL knowledge base. In the following, we will
consider only single-elementary conditionals, i.e., conditionals whose consequence is a
single atom and whose antecedence is a conjunction of positive or negated atoms.

An instance of an FO-PCL conditional R is obtained by applying a ground substitu-
tion over the variables appearing in R to the antecedence, consequence and constraint
formula of R. An instance is called admissible if its constraint formula evaluates to true,
where = is interpreted by syntactical equality. The grounding operator gnd maps each
FO-PCL conditional R to the set of its admissible ground instances gnd(R).

Example 2. Consider an FO-PCL signature Σ = (S ,Const ,Pred) with a single sort
S = {Monkey}, two constants Const = {a, b} of sort Monkey and two predicate
symbols Pred = {h(Monkey), al (Monkey ,Monkey)} indicating a hungry monkey
and a monkey allowing another monkey to eat its food.

Then 〈(al (a, a) | h(a))[0.9], a �= a〉 is an instance of 〈(al(X,Y ) | h(X))[0.9], X �=
Y 〉. It is not admissible, since a �= a does not hold. 〈(al (a, b) | h(a))[0.9], a �= b〉
is an admissible ground instance. The constraint formula is usually left out for admis-
sible ground instances. Hence the admissible instances are (al (a, b) | h(a))[0.9] and
(al(b, a) | h(b))[0.9].
In the following, we will refer to the admissible ground instances of a conditional R
by just instances of R. The Herbrand base H(R) of a knowledge base R includes all
ground atoms appearing in instances ofR. For instance, in the example above we have
H(R) = {al(a, b), al(b, a), h(a), h(b)}. To each R there is a corresponding set of
possible worlds. A possible world ω is a truth function ω : H(R)→ {0, 1} assigning a
truth value to each ground atom inH(R). ω satisfies a ground atom a ∈ H(R), ω |= a,
iff ω(a) = 1. The satisfaction relation |= is extended to complex formulas in the usual
way. |= is undefined for formulas containing variables, but such formulas are never
considered in our framework. For each ground formula φ its set of models is denoted
by Mod(φ) := {ω ∈ Ω | ω |= φ}.

Conditionals are interpreted by probability distributions P : Ω → [0, 1] assigning a
degree of belief to worlds. For ground formulas φ we define P(φ) :=

∑
ω∈Modφ P(ω).

We say a probability distribution P satisfies an FO-PCL conditional R iff for each in-
stance (φgnd | ψgnd)[ξ] ∈ gnd(R) it holds P(φgndψgnd) = ξ · P(ψgnd). A knowledge
base R is satisfied by P iff each conditional in R is satisfied by P . Usually, there are
infinitely many satisfying distributions. Following the principle of maximum entropy,
we select the unique distribution P∗ = ME(R) := argmaxP|=RH(P) having max-
imum entropy [7]. H(P) := −

∑
ω∈Ω P(ω) logP(ω) denotes the entropy of P . This

process is usually called ME-inference.
If we regard the ground atoms in H(R) as propositional variables, we can regard

FO-PCL conditionals as templates for propositional conditionals. We will use this con-
nection in the following, when using results for propositional languages for FO-PCL.
In the following, we will abbreviate an FO-PCL conditional R = 〈(φ | ψ)[ξ],C 〉 by
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(φ | ψ)[ξ] or (φ | ψ) if its constraint formula or its probability is not needed in the
given context. The former is called a quantitative conditional, the latter a qualitative
conditional.

Reversing Inductive Knowledge Representation: We briefly sketch the most impor-
tant theoretical concepts underlying CondorCKD as they are needed in the following.
Let R be a knowledge base consisting of n propositional conditionals (φi | ψi)[ξi].
One can show that the entropy-maximal probability distribution satisfying R can be
written as a product of n + 1 non-negative real values ai in the following way:
P(ω) = a0

∏n
i=1(

∏
ω|=φiψi

a1−ξi
i

∏
ω|=φiψi

a−ξi
i ) [5].

a0 is a normalizing constant and for i ≥ 1 the factor ai corresponds to the i-th condi-
tional. Taking into account the exponents, there are basically three effects a conditional
can have on the probability of a world. If the antecedence is not satisfied the effect is
1 = a0i . Otherwise, the effect is a1−ξi

i if the consequence is also satisfied, resp. a−ξi
i if it

is not. The effects are called neutral, positive and negative [1]. In [5] for each conditional
abstract symbols α+, α− are introduced to define the conditional structure of worlds
with respect to the knowledge base R: σR(ω) =

∏n
i=1(

∏
ω|=φiψi

α+
i

∏
ω|=φiψi

α−
i ).

This is just an abstraction of the numerical representation above. If two worlds ω1, ω2

have the same conditional structure, i.e. σR(ω1) = σR(ω2), they necessarily have the
same probability, i.e. P(ω1) = P(ω2), since their probabilities are constituted by the
same product of factors. If conversely the same probability implies the same structure,
P is called a faithful representation of R. For faithful representations, one can con-
struct a knowledge base R′ that represents most informative conditional relationships
in P and can be looked upon as an approximation toR. This is the fundamental idea of
inverse knowledge representation [5] underlying CondorCKD [6].

CondorCKD is called with an empirical probability distribution P . It starts with
single-elementary conditionals of maximal length and shortens these conditionals by
resolving algebraical equations over the effects of the current conditional set. Finally, it
returns a knowledge baseR′ consisting of the remaining shortened conditionals.

RCondorCKD: In [8] an approach is sketched how CondorCKD can be transferred
to FO-PCL. Whereas the basic idea of learning follows [5], CondorCKD is refined by
taking the relational structure into account. Algorithm 1 from [8] shows the skeleton
of our relational version. Instead of considering each single-elementary conditional of

Algorithm 1. RCondorCKD
1: procedure RCKD( P , Bias)
2: R ← createBasicConditionals (Bias)
3: E ← findEquations(P)
4: while e ∈ E can be resolved do
5: Resolve e and decrease R
6: end while
7: R ← postprocess(R)
8: return R
9: end procedure
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maximal length, we define our basic conditionals with respect to a language bias. Then
equations are searched and resolved similar to CondorCKD but by taking the relational
structure into account. In the postprocessing step probabilities for ground instances
of the learned free conditionals are computed and outliers are identified by statistical
means [8]. After splitting off exceptional rules the knowledge base is returned.

Our basic conditional set is defined by means of template conditonals inspired by
the template language DLAB [9]. In particular, we mainly consider free conditionals
in the learning phase containing only variables and a wildcard symbol ∗ instead of a
probability. In the postprocessing phase we compute the probabilities of their ground
instances and split off exceptional rules [8]. A template conditional has the form T =
template((A|A1A2 . . . Ak),C ). A is a single atom, the Ai are atoms different from A,
and C is a constraint formula. R(T ) := {〈(A | L1L2 . . . Lk)[∗],C 〉 | Li ∈ {Ai, Ai}}
is the set of basic conditionals induced by T .

Example 3. For the template template((al (X,Y )|h(X) h(Y )), X �= Y ) we obtain the
following basic conditionals:

〈(al (X,Y )|h(X) h(Y ))[∗], X �=Y 〉, 〈(al (X,Y )|h(X) h(Y ))[∗], X �=Y 〉
〈(al (X,Y )|h(X) h(Y ))[∗], X �=Y 〉, 〈(al (X,Y )|h(X) h(Y ))[∗], X �=Y 〉.

Given a set of template conditionals T , our initial basic conditional set is R :=⋃
T∈T R(T ). Compared to a complete basic conditional set, template conditionals can

decrease the number of basic conditionals significantly. On the other hand, if the tem-
plate conditionals do not include all conditionals of maximal length, it is not guaranteed
that each possible dependency can be captured by the algorithm. Therefore, one has to
trade efficiency off for completeness.

3 Resolving Equations

Conditional Structure of FO-PCL Knowledge Bases: As explained before, each
FO-PCL conditional can be regarded as a template for several propositional condi-
tionals. Hence, whereas in the propositional case there is one positive and negative
effect corresponding to each conditional, FO-PCL conditionals induce several effects,
one for each instance. Let R be an FO-PCL knowledge base consisting of n FO-PCL
conditionals (φi | ψi)[ξi]. Let the i-th conditional have ki ground instances, and let
(φi,j | ψi,j)[ξi] denote the j-th ground instance of the i-th conditional, 1 ≤ j ≤ ki.
Then the entropy-maximal probability distribution satisfying R factorizes as follows
[2]: P(ω) = a0

∏n
i=1

∏ki

j=1(
∏

ω|=φi,jψi,j
a1−ξi
i,j

∏
ω|=φi,jψi,j

a−ξi
i,j ). Hence for the i-

th conditional there are ki numerical effects. Now just like in the propositional case, we
introduce abstract effects α+

i,j for numerical effects a1−ξi
i,j and abstract effects α−

i,j for

numerical effects a−ξi
i,j . Then we define the conditional structure of ω with respect to

our FO-PCL knowledge baseR to be:

σR(ω) =
n∏

i=1

ki∏
j=1

(
∏

ω|=φi,jψi,j

α+
i,j

∏
ω|=φi,jψi,j

α−
i,j). (1)



490 N. Potyka, C. Beierle, and G. Kern-Isberner

Again, if two worldsω1, ω2 have the same conditional structure, i.e. σR(ω1) = σR(ω2),
they necessarily have the same probability, i.e. P(ω1) = P(ω2), since their probabil-
ities are constituted by the same product of factors. However, assuming that the same
probability implies the same structure is not reasonable for FO-PCL knowledge bases
in general. The reason is that different instances (φi,j | ψi,j)[ξi] of the same conditional
(φi | ψi)[ξi] often (but not always) have the same numerical factors [2]. This has to be
taken into account in the relational case.

Resolving Equations: When facing a learning problem, we only know the empirical
probability distributionP , but do not know about its conditional structure that is induced
by an unknown conditional knowledge base R∗. However, we assume that the condi-
tionals in R∗, which we call solution conditionals in the following, are generalizations
of our basic conditionals. Some basic conditionals might be specializations that have to
be generalized. For instance, the qualitative conditionals (al (X,Y ) | h(X) h(Y )) and
(al(X,Y ) | h(X) h(Y )) are specializations of (al (X,Y ) | h(X)). Other conditionals
might be redundant, i.e., they are not related to conditionals in R∗ and do not affect
P . Then we want to delete these conditionals. To learn about the nature of our basic
conditionals, we consider the conditional structure with respect to our current basic
conditional set R. We are interested in equations over their conditional effects that un-
veil dependencies between conditionals or redundancies. We give a thorough example
later on, but describe the abstract idea here.

Given two equal world probabilities P(ω1) = P(ω2), we can consider the corre-
sponding conditional structure σR(ω1) = σR(ω2) with respect to our current basic
conditional set R. The latter equation is an equation over conditional effects of our ba-
sic conditional set. We can resolve such equations into subequations over ’independent’
effects [5]. To unveil more complex dependencies between conditionals, we consider
products of probabilities like

∏n−1
i=0 P(ω2i) =

∏n−1
i=0 P(ω2i+1) yielding more complex

equations
∏n−1

i=0 σR(ω2i) =
∏n−1

i=0 σR(ω2i+1). However, if two basic conditionals are
specializations of the same solution conditional, their effects are equal and therefore
they are not independent. But we can assume that effects of basic conditionals with
different consequence literals are independent, as they cannot be specializations of one
solution conditional. In this way we obtain two kinds of shortening operations.

We denote the effects of our basic conditionals by αL,i,j , where L denotes the con-
sequence literal, i is an index over basic conditionals with consequence literal L, and
j is an index over the ground instances of the i-th basic conditional with consequence
literal L. In general we obtain equations of the following form:∏

L

∏
i

∏
j

(α+
L,i,j)

rL,i,j (α−
L,i,j)

sL,i,j =
∏
L

∏
i

∏
j

(α+
L,i,j)

r′L,i,j (α−
L,i,j)

s′L,i,j ,

where rL,i,j , sL,i,j, r
′
L,i,j , s

′
L,i,j ∈ N0. We can resolve these equations for independent

effects of different consequence literals, yielding equations of the form∏
i

∏
j

(α+
L,i,j)

rL,i,j (α−
L,i,j)

sL,i,j =
∏
i

∏
j

(α+
L,i,j)

r′L,i,j (α−
L,i,j)

s′L,i,j
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for each consequence literal L. Furthermore, we can resolve these equations for positive
and negative effects. In this way we obtain for each L two equations∏

i

∏
j

(α+
L,i,j)

rL,i,j =
∏
i

∏
j

(α+
L,i,j)

r′L,i,j and

∏
i

∏
j

(α−
L,i,j)

sL,i,j =
∏
i

∏
j

(α−
L,i,j)

s′L,i,j .

Note that from a propositional perspective al(a, b) and al (b, a) are different conse-
quence literals. However, we cannot resolve their effects, because, as we explained
above, the corresponding numerical effects can be equal in general.

There are two types of resolved equations we are in particular interested in. The first
type has the form ai,j = 1. It states that the effect of the j-th ground instance of the
i-th conditional is equal to the neutral element. Therefore, it has no effect at all and can
be deleted. The second type has the form a+i,j = a+ι,l, where the j-th ground instance of
the i-th and the l-th ground instance of the ι-th conditional have the same consequence
literal. The equation states that both conditionals have the same effect on the probabil-
ity distribution. Therefore, these conditionals can be combined to a single conditional
by connecting their antecedences by disjunction. When shortening conditionals their
effects are shortened in the same way, i.e., they are deleted or combined to a single ef-
fect. In this way further equations can be resolved. We illustrate both cases in Example
4. For a more technical discussion and thorough proofs verifying that equations over
independent effects can be resolved and correspondingly conditionals can be shortened
as described above, we refer to [5], Chapter 8.

Example 4. The complete probability distribution P induced by the knowledge base
R∗ = {〈(al(X,Y ) | h(X))[0.9], X �= Y 〉} is shown in Table 1. Assume we observed
this distribution and want to learn a knowledge base without knowing about the con-
ditionals that generated it. We could start with the basic conditional set R defined in
Example 3. As we observed two monkeys a, b, there are eight instances of our basic
conditionals. They are listed in Table 2 along with an identifier and their corresponding
conditional effects.

Now we start searching for equations. We represent worlds by bit sequences like
in Table 1. We find P(0010) = 0.0121 = P(1010). By mapping to the conditional

Table 1. ME-optimal probability distribution

al(a, b) al(b, a) h(a) h(b) P∗(ω) al(a, b) al(b, a) h(a) h(b) P∗(ω)
0 0 0 0 0.0017 1 0 0 0 0.0151
0 0 0 1 0.0121 1 0 0 1 0.1088
0 0 1 0 0.0121 1 0 1 0 0.0121
0 0 1 1 0.0873 1 0 1 1 0.0873
0 1 0 0 0.0151 1 1 0 0 0.1355
0 1 0 1 0.0121 1 1 0 1 0.1088
0 1 1 0 0.1088 1 1 1 0 0.1088
0 1 1 1 0.0873 1 1 1 1 0.0873
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Table 2. Grounded basic conditionals and corresponding conditional effects

Identifier Instance X = a, Y = b Effects Identifier Instance X = b, Y = a Effects
c0,0 (al(a, b) | h(a) h(b)) α+

0,0, α
−
0,0 c0,1 (al(b, a) | h(b) h(a)) α+

0,1, α
−
0,1

c1,0 (al(a, b) | h(a) h(b)) α+
1,0, α

−
1,0 c1,1 (al(b, a) | h(b) h(a)) α+

1,1, α
−
1,1

c2,0 (al(a, b) | h(a) h(b)) α+
2,0, α

−
2,0 c2,1 (al(b, a) | h(b) h(a)) α+

2,1, α
−
2,1

c3,0 (al(a, b) | h(a) h(b)) α+
3,0, α

−
3,0 c3,1 (al(b, a) | h(b) h(a)) α+

3,1, α
−
3,1

structure with respect to our basic conditionals we obtain α−
2,0α

−
1,1 = σR(0010) =

σR(1010) = α+
2,0α

−
1,1. As α−

1,1 appears on both sides of the equation it cancels out. We
obtain α−

2,0 = α+
2,0. As explained before, we can resolve such equations for positive

and negative effects and hence obtain α−
2,0 = 1 and α+

2,0 = 1. Hence, the effect of
the conditional c2,0 is the neutral element and cannot affect the probability distribution.
Therefore, it is redundant and can be deleted. We update R via R := R \ {c2,0}.
Hence in particular the effects α−

2,0 and α+
2,0 are not longer contained in the conditional

structure σR.
In a similar way the equations P(0001) = 0.0121 = P(0101), P(0011) =

0.0873 = P(1011) and P(0011) = 0.0873 = P(0111) can be used to delete the
conditionals c2,1, c3,0 and c3,1 respectively. The corresponding effects are also deleted
and do no longer appear in equations.

We also find the more complex equation P(0000)P(1001) = 0.0017 · 0.1088 ≈
0.00018 ≈ 0.0121 · 0.0151 = P(0001)P(1000). As the only remaining condition-
als in R are c0,0, c1,0, c0,1, c1,1, we obtain (α−

0,0α
−
0,1)(α

+
1,0) = σR(0000)σR(1001) =

σR(0001)σR(1000) = (α−
1,0)(α

+
0,0α

−
0,1). α

−
0,1 appears on both sides of the equation

and hence cancels out. We obtain α−
0,0α

+
1,0 = α−

1,0α
+
0,0. We resolve for positive and

negative effects and obtain α−
0,0 = α−

1,0 and α+
1,0 = α+

0,0. Hence the conditionals
c0,0 and c1,0 have the same conditional effects. That is, they affect the probability
distribution in exactly the same way and therefore can be combined to a single con-
ditional by connecting their antecedences by disjunction . We obtain a new condi-
tional c0 = (al(a, b) | h(a) h(b) ∨ h(a) h(b)) = (al (a, b) | h(a)). We update R via
R := (R \ {c0,0, c1,0}) ∪ {c0}. In the conditional structure σR the corresponding ef-
fects α±

0,0, α
±
0,1 are replaced by α±

0 .
In the same way the equation P(0000)P(0110) = 0.0017 · 0.1088 ≈ 0.00018 ≈

0.0121 · 0.0151 = P(0010)P(0100) can be resolved to combine c0,1 and c1,1 to c1 =

(al(b, a) | h(b)).
We find no more resolvable equations and end up with two conditionals

(al(a, b) | h(a)) and (al (b, a) | h(b)). Except for the probabilities, these are indeed
the instances ofR∗ that induced P . As explained before, the probabilities of the condi-
tionals are not needed to resolve equations and are computed in a postprocessing step.

Equations between effects of ground instances of the same FO-PCL conditional point
to important connections between these ground instances and can justify consolidation
of the knowledge base, as we demonstrate in the following example.

Example 5. For the two remaining conditionals from Example 4 we have factorsα+
0 , α

−
0

for (al(a, b) | h(a)) and factors α+
1 , α

−
1 for (al (b, a) | h(b)). Furthermore P(1000) =
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0.0151 = P(0100) holds. Mapping to the conditional structure yields α+
0 α

−
1 = α+

1 α
−
0 .

Resolving for positive and negative effects yields α+
0 = α+

1 and α−
0 = α−

1 . Indeed,
both conditionals are ground instances of (al (X,Y ) | h(X)) and have equal numerical
effects. This is reflected algebraically by finding α0 = α1, showing us that we can use
(al(X,Y ) | h(X)) to represent both ground instances in the knowledge base.

In our algorithm, we do not shorten each ground instance separately. Instead, we save
only free conditionals. In Example 4 these are the four conditionals listed in Example
3. When computing the conditional structure one effect for each ground instance has
to be regarded just like in Example 4. But instead of shortening each ground instance
separately, we regard each resolved equation for a ground instance as an indicator for
the general effect of the conditional. That is, we define a treshold τ , say τ = 70%, and
shorten a free conditional if τ% of its ground instances can be shortened. Otherwise,
due to incomplete or noisy data we might end up with a knowledge base where each
ground instance of the original basic conditional is shortened in a different way, such
that there is no generalization possible, see [8] for details.

4 Finding Equations

Considering each possible world product to find equations is infeasible and often un-
necessary. A rule of thumb to generate interesting equations is to begin with an arbitrary
world on the left-hand side of the equation. Then the interpretation of a single atom is
’flipped’ to obtain another world on the right hand side. For instance, in Example 4 the
equations P(0010) = P(1010) and P(0011) = P(1011) are obtained by flipping the
first bit, which corresponds to the interpretation of al(a, b). In this way only conditional
effects of few conditionals are changed and in the corresponding equation of the con-
ditional structure many effects just cancel out, so that often dependencies between the
remaining conditional effects are unveiled. If there are many overlapping effects, it is
necessary to consider several ’flips’. Such equations can be found in a neighborhood
graph [6]. Two worlds are neighbors iff they differ in the interpretation of exactly one
atom. In this way, equations correspond to cycles in the graph. If we regard worlds as
bit sequences like in Example 4, each edge corresponds to a bit flip.

We compare two worlds using the Hamming distance that is defined byΔ(ω1, ω2) :=∑
a∈H(R)(ω1(a)⊕ω2(a)), where⊕ denotes addition modulo 2. Δ(ω1, ω2) corresponds

to the number of ground atoms that are verified by one and falsified by the other world.
Two worlds are neighbors iff Δ(ω1, ω2) = 1. The nodes of the neighborhood graph
G = (V,E) are the worlds appearing in the dataset, i.e., V := {ω ∈ Ω | P(ω) > 0},
and its edges are E := {(ω1, ω2) | Δ(ω1, ω2) = 1}. If P is strictly positive and there
are g ground atoms, G is a g-regular graph, because for each ground atom there is an
edge corresponding to a bit flip of the atom. When considering many individuals and
many different predicates, there will be a huge number of circles in G and enumerating
each circle becomes infeasible even for a restricted circle length. Therefore, it is rea-
sonable to consider subsets of edges that induce subgraphs that still contain interesting
circles.

To unveil dependencies for a certain ground instance of a conditional, it is reason-
able to flip bits only that correspond to ground atoms included in the ground instance.
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For convenience, suppose there is another unary predicate i(X) indicating that a mon-
key was inactive all day, and there is a conditional (h(X) | i(X))[0.3]. When flipping
the bit for i(a), we change the conditional effect of the instance (h(a) | i(a))[0.3]. Ef-
fects of other instances like (h(b) | i(b))[0.3] remain unchanged and therefore cancel out
in the corresponding equation. Hence, in the best case only the effect of (h(a) | i(a))[0.3]
remains in a shortened equation and possibly unveils a dependency. To do not miss in-
teresting equations, we consider edge sets of increasing size. Each edge set regarding
only ground atoms containing certain constants. It is likely that we have to regard only
small sets, because instances of FO-PCL conditionals usually contain only few con-
stants, even though the set of all constants can be be quite large. For example, instances
of (al(X,Y ) | h(X)) cannot contain more than two constants.

To begin with, we define a function H mapping sets of constants C to the set of
ground atoms in H(R) that contain a constant from C. More strictly speaking, let H :
2Const → 2H(R), C ,→ {a ∈ H(R) | a contains a constant in C} for each C ⊆ Const .
Let Δ |C(ω1, ω2) :=

∑
a∈H(C)(ω1(a)⊕ω2(a)) denote the Hamming distance restricted

to atoms in H(C). For each C ⊆ Const we define a subset of neighborhood edges
EC := {(ω1, ω2) ∈ E | Δ |C(ω1, ω2) = 1} containing only those edges that change
the interpretation of a ground atom containing a constant in C. We start with subgraphs
G{c} = (V,E{c}) for each c ∈ Const . The resulting graphs can be significantly smaller
in terms of the number of edges and circles.

Example 6. Consider a signature like in Example 2 but with predicate symbols
Pred := {h(Monkey), i(Monkey)} as described before. Regarding the order
h(a), h(b), i(a), i(b) for bit sequences we obtain the graph G{a} sketched in Fig. 2.
It decomposes into four isomorphic components, of those, however, we show only two.
The third graph on the right-hand side can be regarded as a template for the components.

All equations used in Ex. 4 can indeed be found in the corresponding subgraphs G{a}
and G{b}. However, in general it might be necessary to consider more than one constant.
We built up more complex graphs inductively. Starting with G{c} = (V,E{c}) for all
c ∈ Const we combine them to more complex graphs. Given the graph G{c1,...,ck} =
(V,E{c1,...,ck}) for k constants {c1, . . . , ck}, we can construct G{c1,...,ck,ck+1} for a
new constant ck+1 by adding the edge set of Gck+1

. That is, we have G{c1,...,ck,ck+1} =
(V,E{c1,...,ck} ∪ Eck+1

). As k grows, the graphs become more complex. Therefore we
consider more complex graphs only if more equations are needed. That is, we start
building up G{c} for all c ∈ Const , search for cycles and try to build up and resolve

0010 1010

0000 1000

0011 1011

0001 1001

0 ∗ 1∗ 1 ∗ 1∗

0 ∗ 0∗ 1 ∗ 0∗

Fig. 2. Connected components of the neighborhood graph G{a}
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equations. If an abortion criterion is met, we stop. Otherwise, we proceed in the same
way for the graphs containing one more constant. Appropriate abortion criteria are for
example the number of conditionals in the learned knowledge base or the average num-
ber of literals in the antecedence.

In Example 6, G{a} decomposes into several isomorphic components. Generally,
we can capture these components by a single graph over certain equivalence classes as
we show in the following. For C ⊆ Const we define ω1 ≡C ω2 iff ω1|C = ω2|C ,
where ω|C : H(C) → {0, 1}, a ,→ ω(a) for all a ∈ H(C), denotes the restric-
tion of ω to atoms in H(C). Note that ≡C is indeed an equivalence relation. The
equivalence classes [ω]C = {ω′ ∈ V | ω ≡C ω′} provide the nodes for what we
call the collapsed graph. We can identify each equivalence class [ω]C with the rep-
resentative ω|C . We connect two equivalence classes [ω1]C , [ω2]C by an edge in the
graph iff their representatives ω1|C , ω2|C differ in the interpretation of a single atom in
H(C). More strictly speaking, we define the collapsed graph with respect to GC to be
G≡C = (V≡C , E≡C ) := ({[ω]C | ω ∈ V }, {([ω1]C , [ω2]C) | Δ |C(ω1|C , ω2|C) = 1}).

The following proposition states that each edge in GC is captured by an edge in
G≡C . In particular, nodes in each connected component are equivalent with respect to
C = Const\C. If V = Ω, i.e., if all possible worlds are contained in the neighbordhood
graph, the converse also holds. In this case, in particular, each component in GC is
isomorphic to G≡C as observed in Example 6.

Proposition 1. (Connection between GC and G≡C )

1. If (ω1, ω2) ∈ EC then ([ω1]C , [ω2]C) ∈ E≡C .
2. If ω, ω′ ∈ V are connected in GC then ω′ ≡C ω.
3. If V = Ω and ω′ ≡C ω then ω and ω′ are connected in GC

4. If V = Ω then each connected component in GC is isomorphic to G≡C .

Proof. 1. It holds Δ |C(ω1, ω2) = 1 by definition of EC . As Δ |C is restricted to C it
also holds Δ |C(ω1|C , ω2|C) = 1. Hence ([ω1]C , [ω2]C) ∈ E≡C .

2. The claim follows by contraposition. If ω′ �≡C ω then ω and ω′ differ in the
interpretation of an atom a that contains no constant in C. Hence each path between
them contains an edge that flips the interpretation of a. But this edge is not contained in
EC . Hence ω and ω′ are not connected in GC .

3. As ω′ ≡C ω, they differ only in the interpretation of atoms At containing constants
in C. As V = Ω we can construct a path in GC between them by flipping successively
the interpretation of the atoms in At.

4. Consider an arbitrary connected component Compω in GC containing a world
ω ∈ V . According to 2 and 3 Compω contains exactly those ω′ ∈ V that satisfy ω′ ≡C

ω. We define a mapping from nodes in Compω to nodes in G≡C via f(ω′) = [ω′]C .
f(ω′

1) = f(ω′
2) implies ω′

1 ≡C ω′
2. According to 2 also ω′

1 ≡C ω′
2 holds, hence

ω′
1 = ω′

2, i.e., f is injective. A node [ω′′]C in G≡C is image of the world ω′ that is
obtained from the representativeω′′|C by complementing it to a complete interpretation
ofH(R) by ω|C . Hence f is surjective, i.e., bijective.

Consider two arbitrary worlds ω1, ω2 in Compω. If (ω1, ω2) ∈ EC then
(f(ω1), f(ω2)) = ([ω1]C , [ω2]C) ∈ E≡C according to 1. Conversely, suppose
([ω1]C , [ω2]C) ∈ E≡C . Then Δ |C(ω1|C , ω2|C) = 1. As Δ |C is restricted to C it
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also holds Δ |C(ω1, ω2) = 1. Hence (ω1, ω2) ∈ EC . Hence f is a graph isomorphism
between Compω and G≡C , i.e., they are isomorphic.

Usually V = Ω does not hold, instead V is a proper subset of Ω. Then some compo-
nents will contain less circles than we found in G≡C . However, as each edge in GC

is captured by an edge in G≡C , each circle in GC is an ’instance’ of a circle in G≡C .
Therefore, we can search for circles in G≡C and map these circles to the corresponding
circles in the connected components in GC .

5 Discussion

Based on ideas from [5], [6] and [8], we investigated the problem of reversing relational
inductive knowledge representation in more detail and explained how finding and re-
solving of algebraic equations can be implemented. Based on the conditional structure
of FO-PCL knowledge bases, we defined shortening operations that can be justified
by the algebraic theory developed in [5]. To find equations, justifying these shortening
operations, we often do not have to consider the whole neighborhood graph from [6],
but can consider subgraphs of increasing complexity. As we saw, these subgraphs de-
compose into connected components that can be captured by a single ’collapsed graph’.
In future work, we will investigate interactions between FO-PCL conditionals in more
detail to provide more solid theoretical foundation for our heuristical search approach.
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Abstract. Recently, a propositional logic modeling of analogical pro-
portions, i.e., statements of the form “A is to B as C is to D”, has been
proposed, and has then led to introduce new related proportions in a
general setting. This framework is well-suited for analogical reasoning
and classification tasks about situations described by means of Boolean
properties. There is a clear need for extending this approach to deal with
the cases where i) properties are gradual ; ii) properties may not apply
to some situations ; iii) the truth status of a property is unknown. The
paper investigates the appropriate extension in each of these three cases.

Keywords: analogical proportion, multiple-valued logic, three-valued
logics.

1 Introduction

Analogy is not a mere question of similarity between two objects (or situations),
but rather a matter of proportion or relation between objects. This view dates
back to Aristotle and was enforced by Scholastic philosophy. An analogical pro-
portion equates a relation between two objects with the relation between two
other objects. These relations can be considered as a symbolic counterpart to
the case where the ratio or the difference between two similar things is a matter
of degree or number. As such, an analogical proportion of the form “A is to B
as C is to D” poses an analogy of proportionality by (implicitly) stating that
the way the two objects A and B, otherwise similar, differ is the same way as
the two objects C and D, which are similar in some respects, differ.

A propositional logic modeling of analogical proportions viewed as a quater-
nary connective between the Boolean values of some property pertaining to A,
B, C, and D has been proposed in [6]. This logical modeling amounts to pre-
cisely state that the difference between A and B is the same as the one between
C and D, and that the difference between B and A is the same as the one be-
tween D and C. This view can then be proved to be equivalent to state that the
considered Boolean property is true for A and D (resp. A or D) each time it
is true for B and C (resp. B or C). This latter point shows that a counterpart
of a characteristic behavior of numerical geometrical proportions (ab = c

d), or of
numerical arithmetic proportions (a − b = c − d), namely that the product, or
in the second case that the sum, of the extremes is equal to the product (or, in
the second case, the sum) of the means, is still observed here.

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 497–509, 2013.
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The statement of the equality of numerical ratios, or of numerical differences,
is useful for extrapolating a fourth value knowing three others that are linked
by such a proportionality relation with it. Similarly, the solving of analogical
proportion equations is at the basis of an analogical inference process which is of
interest for solving non trivial reasoning tasks (e.g., such as IQ tests [2]), or for
dealing with classification problems [5,10]. The underlying inference mechanism
considers four Boolean vectors that describe four situations in terms of n binary
properties. When an analogical proportion holds for a large number of properties
between the four situations, then one makes the plausible inference that an
analogical proportion should also hold for a (n + 1)th property whose truth
value is known for 3 of the situations, and unknown for the fourth one, which
can thus be obtained as a solution of an analogical proportion equation. But,
situations may be more generally described in terms of properties that are not
always Boolean. This is the case if the properties are gradual, or if they are
binary but may not apply. It may also happen that for some situations it is not
known if a property holds or not. In these three types of cases (gradual property,
property non applicable, and missing information about a property), it is thus
of interest to be still able to evaluate in each case if one may consider that
an analogical proportion holds. The paper investigates these three cases where
different multiple-valued logical calculi are involved.

The paper is organized as follows. After a short background on Boolean ana-
logical proportions (and two related proportions that play a role in the analysis
of the problems encountered) in Section 2, the cases of gradual properties, of
non-applicable properties and of unknown properties are successively discussed
and contrasted in Sections 3, 4, and 5.

2 Background on Analogical and Related Proportions

A logical proportion [8] T (a, b, c, d) is a particular type of Boolean expression
involving 4 variables a, b, c, d, with truth values in B = {0, 1}. It is made of the
conjunction of 2 distinct equivalences, involving a conjunction of variables a, b
on one side, and a conjunction of variables c, d on the other side of ≡, where
each variable may be negated or not. Both a ∧ ¬b and ¬a ∧ b capture the idea
of dissimilarity between a and b, while a ∧ b and ¬a ∧ ¬b capture the idea of
similarity, positively and negatively. For instance, (ab ≡ cd) ∧ (ab ≡ cd)1 is the
expression of the analogical proportion [6]. As can be seen, analogical proportion
uses only dissimilarities and could be informally read as what is true for a and
not for b is exactly what is true for c and not for d, and vice versa. When a
logical proportion does not mix similarities and dissimilarities in its definition, we
call it homogeneous: For instance, analogical proportion is homogeneous. More
generally, it has been proved that there are 120 semantically distinct logical
proportions that can be built. Moreover, each logical proportion has exactly 6
lines leading to 1 in its truth table (and the 10 remaining lines lead to 0).

1 For sake of brevity, a is a compact notation for ¬a and ab for a ∧ ¬b, when useful.
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Two properties seem essential for defining the logical proportions that could
be considered as the best counterparts to numerical proportions:

– When all the items are identical, the logical proportion should hold true,
i.e., the postulate T (a, a, a, a) should be satisfied.

– The validity of a numerical proportion does not depend on the representation
of the numbers in a particular basis. In the same spirit, logical proportions
should satisfy the so-called code independency property: T (a, b, c, d) =⇒
T (a, b, c, d) insuring that the proportion T holds whether we encode falsity
as 0 (resp. truth as 1) or vice versa.

Only 3 among the 120 proportions satisfy the two previous properties [9]. They
are shown in Table 1. They are all homogeneous.

Table 1. 3 remarkable logical proportions: A,R, P

A R P

ab ≡ cd ∧ ab ≡ cd ab ≡ cd ∧ ab ≡ cd ab ≡ cd ∧ ab ≡ cd

Their truth tables (restricted to the 6 valuations leading to truth value 1),
are derived from their Boolean expressions, and shown in Table 2.

Table 2. A, R, P: Boolean truth tables

A R P
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0

A(a, b, c, d) is the analogical proportion, which expresses that a (resp. b) differs
from b (resp. a) as c (resp. d) differs from d (resp. c). R(a, b, c, d) is the reverse
analogical proportion, where R(a, b, c, d) = A(a, b, d, c) (a is to b as d is to c).
P (a, b, c, d) has been named paralogy [8] and expresses that what a and b have
in common, c and d have it also. Most of the semantical properties of these 3
proportions can be easily checked from their truth tables, and may be viewed as
counterparts of properties of the numerical (geometrical) proportion a

b = c
d . For

instance, the property a
b =

1
b
1
a

parallels the property T (a, b, b, a) (called exchange

mirroring) for a logical proportion T where the negation operator plays the role
of the inverse. Table 3 summarizes the results: the third column enumerates
the proportions among A,R, P satisfying the property respectively named and
described in the 1st and 2nd columns. Note that A,R and P satisfy the symmetry
property T (a, b, c, d) = T (c, d, a, b): the pairs (a, b) and (c, d) play symmetrical
roles. The 2 last lines of Table 3 highlight the strong link between A,R, P .
Indeed, there also exists an equivalent expression for A that does not involve
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Table 3. Boolean properties of A,R, P

Property name Formal definition Proportion

full identity T (a, a, a, a) A,R,P

1-full identity T (1, 1, 1, 1) ∧ ¬T (0, 0, 0, 0) none

0-full identity T (0, 0, 0, 0) ∧ ¬T (1, 1, 1, 1) none

reflexivity T (a, b, a, b) A,P

reverse reflexivity T (a, b, b, a) R,P

sameness T (a, a, b, b) A,R

symmetry T (a, b, c, d) → T (c, d, a, b) A,R,P

permutation of means T (a, b, c, d) → T (a, c, b, d) A

permutation of extremes T (a, b, c, d) → T (d, b, c, a) A

all permutations of 2 terms ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) none

transitivity T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f) A,P

semi-mirroring T (a, b, a, b) R

exchange mirroring T (a, b, b, a) A

negation compatib. T (a, a, b, b) P

link A R A(a, b, c, d) ≡ R(a, b, d, c)

link A P A(a, b, c, d) ≡ P (a, d, c, b)

any negation, namely A(a, b, c, d) = (a∧d ≡ b∧ c) ∧ (a∨d ≡ b∨ c). It looks like
the counterpart of the equality of the product of the extremes and of the product
of the means for geometrical numerical proportions. As can be seen from this
table, the three proportions A,R, P , and in particular the analogical proportion
A, enjoy properties that parallel properties of numerical proportions.

The idea of proportion is closely related to the idea of extrapolation, i.e. to
guess / compute a new value on the ground of existing values. In other words, if
for some reason, it is believed or known that a proportion should hold between
4 binary items, 3 of them being known, then one may try to infer the value of
the 4th one, at least in the case this extrapolation leads to a unique value. For
a proportion T , there are exactly 6 distinct valuations for (a, b, c, d) such that
T (a, b, c, d) = 12. In our context, the problem can be stated as follows. Given
a logical proportion T and a 3-tuple (a, b, c), does it exist a Boolean value x
such that T (a, b, c, x) = 1, and in that case, is this value unique? It is easy to
see that there are always cases where the equation has no solution, since the
triple a, b, c may take 23 = 8 values, while any proportion T is true only for 6
distinct valuations. For instance, when we deal with analogy A, the equations
A(1, 0, 0, x) and A(0, 1, 1, x) have no solution. And it can be checked that the
analogical equation A(a, b, c, x) is solvable iff (a ≡ b) ∨ (a ≡ c) holds. In that
case, the unique solution is x = a ≡ (b ≡ c). Similar results hold for R and P .

A,R, P proportions lead to successful applications when applied to reason-
ing and classification tasks. To cope with real world applications where objects
cannot be simply encoded with a unique Boolean value, we need to extend to
Boolean vectors what has been done for a single Boolean value. For a given
proportion T , the extension to vectors in Bn is done componentwise as follows:

2 By abuse of notation, we use the same symbol for a variable and its valuation.
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T (−→a ,
−→
b ,−→c ,−→d ) iff ∀i ∈ [1, n], T (ai, bi, ci, di)

where −→a = (a1, · · · , an) and so on. All the previous properties still hold for
A,R, P extensions and the equation solving process, when successful, provides
a complete Boolean vector instead of a unique Boolean value. In practice, the
analogical inference machinery is then based on the idea that if the same logical

proportion holds for a number of components of −→a ,
−→
b ,−→c ,−→d , then it may still

hold for a new component known for −→a ,
−→
b ,−→c , but not for −→d , which can then

be extrapolated (see e.g., [8]).
However, this vectorial extension may not still be enough for handling prac-

tical problems where we have to deal with missing information or properties
whose satisfaction is a matter of levels. To cover such situations, extensions of
the Boolean interpretation to multiple-valued logics (3-valued at least) is neces-
sary. At this stage, two questions arise:

1) in a given model, what are the valuations that correspond to a “perfect”
proportion of a given type (i.e., having 1 as truth value)? For instance, does
T (a, a, a, a) postulate still have to be satisfied by A,R, P or can we consider
models where A(u, u, u, u) = u, u being a truth value distinct from 0 and 1?

2) are there valuations that could be regarded as “approximate” proportions
(i.e. with a truth value distinct from 0 and 1) of a given type and in that case,
what is their truth value?

In order to properly answer these two types of questions, we should carefully
distinguish between three cases:

– when property satisfaction is a matter of levels or degrees instead of being
binary, i.e. the truth value of a given property may be an intermediary value
between 0 and 1.

– when property satisfaction does not make sense for a given item, i.e., the
property is non applicable to it.

– when information about some properties is missing, i.e., we have no clue
about the truth value of some properties for some items.

These are the questions we investigate in the following sections keeping in mind
an essential principle: the Boolean model should be the limit case of our models
when restricted to Boolean valuations.

3 Gradual Properties

When the satisfaction of properties may be a matter of degree, we have to
consider that the truth values belong to a linearly ordered scale L. The simplest
case is when L = {0, α, 1}, with the ordering 0 < α < 1, which can be generalized
into a finite chain L = {α0 = 0, α1, · · · , αn = 1} or ordered grades 0 < α1 <
· · · < 1, or to an infinite chain using the real interval [0, 1]. A proposal for
extending A in such cases has been advocated in [7]. It takes its source in the
expression A(a, b, c, d) = (a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d), where now



502 H. Prade and G. Richard

– i) the central ∧ is taken as equal to min;
– ii) s ≡ t is taken as min(s →L t, t →L s) where →L is �Lukasiewicz implica-

tion, defined by s →L t = min(1, 1 − s + t), for L = [0, 1] (in the discrete
cases, we take α = 1/2 and αi = i/n), and thus s ≡ t = 1− |s− t| ;

– iii) s∧¬t = max(0, s− t) = 1− (s→L t), i.e. ∧¬ is understood as expressing
a bounded difference.

The resulting expression for A(a, b, c, d) is given in Table 4. Then, we understand
the truth value of A(a, b, c, d) as the extent to which the truth values a, b, c, d
make an analogical proportion. For instance, in such a graded model, the truth
value of A(0.9, 1, 1, 1) = 0.9, which fits the intuition. It can be checked that the
semantics of A(a, b, c, d) thus defined in the graded case, reduces to the previous
definition when restricted to the Boolean case. It is interesting to study in what
cases A(a, b, c, d) = 1 and in what cases A(a, b, c, d) = 0. Then it is clear that
A(a, b, c, d) = 1 when a − b = c − d. When a, b, c, d ∈ {0, α, 1} with α = 1/2,
it yields the 19 following patterns (1, 1, 1, 1); (0, 0, 0, 0); (α, α, α, α); (1, 0, 1, 0);
(0, 1, 0, 1); (1, α, 1, α); (α, 1, α, 1); (0, α, 0, α); (α, 0, α, 0); (1, 1, 0, 0); (0, 0, 1, 1);
(1, 1, α, α); (α, α, 1, 1); (α, α, 0, 0); (0, 0, α, α); (1, α, α, 0); (0, α, α, 1); (α, 1, 0, α);
(α, 0, 1, α).

This means that A(a, b, c, d) = 1 when the change from a to b has the same
direction and the same intensity as the change from c to d. However, the last
4 patterns show that there is no need to have a = b and a = c while these
conditions hold for the 15 first patterns, which are all of the form (x, y, x, y),
(x, x, y, y), or (x, x, x, x). In contrast, note that the last 4 patterns exhibit 3
distinct values.

Table 4. Graded definitions for A,R, P proposed in [7]

A(a, b, c, d) =
1− | (a− b)− (c− d) | if a ≥ b and c≥ d, or a ≤ b and c ≤ d
1−max(|a− b |,|c− d |) if a ≤ b and c≥ d, or a ≥ b and c ≤ d

R(a, b, c, d) = A(a, b, d, c)

P (a, b, c, d) =
min(1− |max(a, b)−max(c, d)|, 1− |min(a, b)−min(c, d)|)

A(a, b, c, d) = 0 when a−b = 1 and c ≤ d, or b−a = 1 and d ≤ c, or a ≤ b and
c−d = 1, or b ≤ a and d−c = 1. It means the 22 following patterns in the 3-valued
case: (1, 1, 1, 0); (1, 1, 0, 1); (1, 0, 1, 1); (0, 1, 1, 1); (0, 0, 0, 1); (0, 0, 1, 0); (0, 1, 0, 0);
(1, 0, 0, 0); (1, 0, 0, 1); (0, 1, 1, 0); (1, 0, α, α); (0, 1, α, α); (α, α, 1, 0); (α, α, 0, 1);
(1, 0, 0, α); (0, 1, 1, α); (1, 0, α, 1); (α, 0, 0, 1); (0, α, 1, 0); (1, α, 0, 1); (0, 1, α, 0);
(α, 1, 1, 0). Thus,A(a, b, c, d) = 0 when the change inside the pairs (a, b) and (c, d)
is maximal, while the other pair shows no change or a change in the opposite
direction. Thus, A(a, b, c, d) = α for 81 - 19 - 22 = 40 distinct patterns when we
use L = {0, α, 1}.

In [7], R(a, b, c, d) is defined by permuting c and d in the definition of A,
but P is no longer obtained by permuting b and d in the definition of A. In
fact, P (a, b, c, d) is defined directly from its definition given in Table 1, changing
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¬a ∧ ¬b ≡ ¬c ∧ ¬d into a ∨ b ≡ c ∨ d, and taking ∧ = min, ∨ = max, and
s ≡ t = 1 − |s− t|, we obtain the definition in Table 4. If we exchange b and d
in this definition, we obtain an alternative definition for the graded analogical
proportion, namely

A∗(a, b, c, d) = min(1− |max(a, d)−max(b, c)|, 1− |min(a, d)−min(b, c)|)
This is the direct counterpart of the definition without negation of the analogical
proportion in the Boolean case. It can checked that A∗(a, b, c, d) = 1 only for
the 15 patterns with at most two distinct values for which A(a, b, c, d) = 1, while
A∗(a, b, c, d) = α for the 4 other patterns for which A(a, b, c, d) = 1, namely for
(1, α, α, 0); (0, α, α, 1); (α, 1, 0, α); (α, 0, 1, α). Besides, A∗(a, b, c, d) = 0 for only
18 among the 22 patterns that make A(a, b, c, d) = 0. The 4 patterns for which
A∗(a, b, c, d) = α (instead of 0) are (1, 0, α, α); (0, 1, α, α); (α, α, 1, 0); (α, α, 0, 1).
Thus, A∗(a, b, c, d) = α for 81 - 15 - 18 = 48 distinct patterns when we use
L = {0, α, 1}.

Thus, it appears that A∗(a, b, c, d) does not acknowledge as perfect the ana-
logical proportion patterns where the amount of change between a and b is the
same as between c and d and has the same direction, but where this change ap-
plies in different areas of the truth scale. Still, A∗(a, b, c, d) remains half-true
in these cases, for L = {0, α, 1}. When L = [0, 1], it can be checked that
A∗(a, b, c, d) ≥ 1/2 when a − b = c − d; in particular, ∀a, b, A∗(a, b, a, b) = 1,
which corresponds to the case where a = c and b = d. In the same spirit, if
L = {0, α, 1} as well as for L = [0, 1], A∗(a, b, c, d) = 0 when a change inside
the pairs (a,b) and (c,d) is maximal, while the other pair shows a change in the
opposite direction starting from 0 or 1. However, A∗(1, 0, c, c) = min(c, 1 − c)
and A∗ takes the same value for the 7 other permutations of (1, 0, c, c) obtained
by applying symmetry and/or central permutation.

As can be seen in Table 5, A∗ and A also coincide on some patterns hav-
ing intermediary truth values, but diverge on others. Generally speaking, A∗ is
smoother than A in the sense that more patterns have intermediary truth values
with A∗ than with A. A∗ also maintains the link with P , which is no longer true
with A. However, it would be possible to define another, maybe less natural,
graded paralogy as P ∗(a, b, c, d) = A(a, d, c, b). In practice, the graded version A
has been used, apparently in a rather successful way, for classification [10], while
A∗, which is considered here for the first time, has not been experienced yet. It
is still unclear if A∗ may be more suitable for classification purposes.

Table 5. The two graded definitions of the analogical proportion in [0, 1]

A A∗

A(1, 1, u, v) = 1− |u− v| A∗(1, 1, u, v) = 1− |u− v|
A(1, 0, u, v) = u− v if u ≥ v A∗(1, 0, u, v) = min(u, 1− v)

= 0 if u ≤ v
A(0, 1, u, v) = v − u if u ≤ v A∗(0, 1, u, v) = min(v, 1− u)

= 0 if u ≥ v
A(0, 0, u, v) = A(1, 1, u, v) A∗(0, 0, u, v) = A∗(1, 1, u, v)
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Both A and A∗ continue to satisfy the symmetry property (as P,R, and P ∗, R∗

with R∗(a, b, c, d) = A∗(a, b, d, c) = P ∗(a, c, d, b)). However, only A∗ still en-
joys the means permutation properties and the extremes permutation properties.
This is no longer the case with A, as shown by the following counter-example.
A(0.8, 0.6, 1, 0.3) = 1− | (0.8 − 0.6) − (1 − 0.3) |= 1− | 0.2 − 0.7 |= 0.5 since
0.8≥0.6 and 1≥0.3, and A(0.8, 1, 0.6, 0.3) = 1−max(| 0.8− 1 |, | 0.6− 0.3 |) =
1−max(0.2, 0.3) = 0.7 since 0.8 ≤ 1 and 0.6≥ 0.3.

But, both A and A∗ continue to satisfy the code independency property with
respect to a = 1 − a. Some more Boolean properties which remain valid in the
multiple-valued case are summarized in Table 6.

Table 6. Graded properties of A,A∗, R, P

Property name Formal definition Proportion

full identity T (a, a, a, a) A∗, A,R, P

reflexivity T (a, b, a, b) A∗, A, P

reverse reflexivity T (a, b, b, a) R,P

sameness T (a, a, b, b) A∗, A,R

symmetry T (a, b, c, d) → T (c, d, a, b) A∗, A,R, P

permutation of means T (a, b, c, d) → T (a, c, b, d) A∗

permutation of extremes T (a, b, c, d) → T (d, b, c, a) A∗

all permutations ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) none

semi-mirroring T (a, b, a, b) R

exchange mirroring T (a, b, b, a) A

negation compatib. T (a, a, b, b) none

link A R A(a, b, c, d) ≡ R(a, b, d, c)

link A P A(a, b, c, d) �≡ P (a, d, c, b)

link A∗ P A∗(a, b, c, d) ≡ P (a, d, c, b)

4 Non-applicable Properties

The abbreviation ‘n/a’ is currently used in data tables when an attribute does not
apply, when a property does not make sense or is not applicable for a particular
item. However, the extensive use of ‘n/a’ may be often ambiguous when it also
appears in the same tables when information is not available for some attribute
values of some items. Indeed one has to carefully distinguish the case where the
property does apply to the item, but it is not known if the property is true or
is false for the item, from the case where the property is neither true nor false
for the item since the property does not apply to it. The case of unknown truth
values is discussed in the next section, while we now address the problem of
dealing with genuinely non applicable properties.

The idea of introducing a third truth value for ‘not applicable’ (na for short
in the following) in the context of analogy can be already found in the pioneer-
ing work of Sheldon Klein [3,4] who was the first to propose to solve analogical
proportion equations A(a, b, c, x) = 1, where x is unknown, as x = c ≡ (a ≡ b)
(without providing an explicit definition for A(a, b, c, d)). However, his handling
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of na is based on (na ≡ na) = na, which suggests that the evaluation of an ana-
logical proportion where na appears may receive the truth value na, which seems
to be more in the spirit of understanding na as ‘not available’, or ‘unknown’.

Indeed, although a property may be ‘true’, ‘false’, or ‘not applicable’ for an
item, it seems natural to expect that A(a, b, c, d) can only be ‘true’ or ‘false’,
since (1, na, 1, na) looks intuitively satisfactory as an analogical proportion, while
(1, na, 0, 0) is not. More precisely, the acceptable 4-tuples of valuations that
make an analogical proportion true are of the form (x, x, x, x), (x, y, x, y), and
(x, x, y, y), where x, y ∈ {0, 1, na}, where any other 4-tuple should make it false,
since 0, 1 and na play the same role. This leads to acknowledge as true the 15
following patterns (1, 1, 1, 1); (0, 0, 0, 0); (na, na, na, na); (1, 0, 1, 0); (0, 1, 0, 1);
(1, na, 1, na); (na, 1, na, 1); (0, na, 0, na); (na, 0, na, 0); (1, 1, 0, 0); (0, 0, 1, 1);
(1, 1, na, na); (na, na, 1, 1); (na, na, 0, 0); (0, 0, na, na), all the others being false.

In other words, we are in a situation somewhat similar to the one encountered
in the previous section in the case of a unique intermediary truth-value α between
true and false, meaning ‘half-true’ (or equivalently ‘half-false’), when we refuse
the four patterns (1, α, α, 0), (0, α, α, 1), (α, 0, 1, α) and (α, 1, 0, α) as being true,
except that now no pattern has the third truth value. It is possible to find logical
definitions of the analogical proportion having the expected behavior for the
truth values {0, 1, na}. First, it can be checked that this is obtained with the
following expression

A(a, b, c, d) = (a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c)

where the {0, 1, na} are ordered as the chain 1 > na > 0 (i.e. ∧ is Kleene
conjunction, see, e.g., [1], and x ≡ y = 1 if and only if x = y, and x ≡ y = 0
otherwise.

A counterpart to A(a, b, c, d) = (a \ b ≡ c \ d) ∧ (b \ a ≡ d \ c) where \ here
denotes the Boolean logical connective corresponding to set difference, can also
be found. However, since we do not want to have (1, na, na, 0) true, the difference
between 1 and na and the difference between na and 0 should not be the same,
neither the same as between 1 and 0, nor 1 between 1 for sure. Thus we need
4 distinct values for the difference. This is impossible with 3 truth values! This
contrasts with the Boolean case where there are only two possible difference
values needed. The solution is then to use 2 connectives for differences:
x \1 y=1 if x=1 and y=0; x \1 y=na if x=1 and y=na; x \1 y=0 otherwise;
x \2 y=1 if x=1 and y=0; x \2 y=na if x=na and y=0; x \2 y=0 otherwise.
Then the definition of A(a, b, c, d) becomes

(a \1 b ≡ c \1 d) ∧ (b \2 a ≡ d \2 c) ∧ (a \2 b ≡ c \2 d) ∧ (b \1 a ≡ d \1 c)
where x ≡ y = 1 iff x = y; x ≡ y = 0 otherwise; and ∧ is any conjunction
connective that coincides with classical conjunction on {0, 1}. This definition
yields 1 for the 15 expected patterns and is 0 otherwise for the 81 − 15 = 66
remaining patterns.

It is even possible to find an expression for A(a, b, c, d) where \1 and \2 are
expressed in terms of a conjunction and negations, i.e. where x\1 y is replaced
by x ∧∗ ¬1(y) and x \2 y is replaced by x ∧∗ ¬2(y). We obtain a definition for
A(a, b, c, d) under the form
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(a∧∗¬1b ≡ c∧∗¬1d)∧∗(b∧∗¬2a ≡ d∧∗¬2c)∧∗(a∧∗¬2b ≡ c∧∗¬2d)∧∗(b∧∗¬1a ≡ d∧∗¬1c)

where the two negations are Post-like negations defined through a circular or-
dering of the three truth-values, where the negation of a value is the succes-
sor value in the ordering, namely ¬1(0) = na;¬1(na) = 1;¬1(1) = 0 and
¬2(0) = 1;¬2(na) = 0;¬2(1) = na. This acknowledges the fact that in some
sense these three truth-values play similar roles. The non-standard three-valued
conjunction ∧∗, which is defined by

x ∧∗ y = 1 if x = 1 and y = 1
x ∧∗ y = na if x = na and y = na
x ∧∗ y = 0 otherwise

also agrees with this view, while coinciding with classical conjunction in the
binary case. As in the previous section, we summarize in Table 7 the properties
of the Boolean case that remain valid in this 3-valued model where na, standing
for non applicable, is the third truth value.

Table 7. Properties of A,R, P with truth value na (as non applicable)

Property name Formal definition Proportion

full identity T (a, a, a, a) A,R,P

reflexivity T (a, b, a, b) A,P

reverse reflexivity T (a, b, b, a) R,P

sameness T (a, a, b, b) A,R

symmetry T (a, b, c, d) → T (c, d, a, b) A,R,P

permutation of means T (a, b, c, d) → T (a, c, b, d) A

permutation of extremes T (a, b, c, d) → T (d, b, c, a) A

all permutations ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) none

link A R A(a, b, c, d) ≡ R(a, b, d, c)

link A P A(a, b, c, d) ≡ P (a, d, c, b)

5 Unknown Properties

In this section, we briefly consider a situation that is quite different from the
ones studied in the two previous sections. We assume now that the features
used for describing situations are all binary (i.e., they can be only true or false),
but their truth value may be unknown. Thus, the possible states of information
regarding a Boolean variable x pertaining to a given feature may be represented
by one of the 3 truth value subsets {0}, {1} or {0, 1}, corresponding respectively
to the case where the truth value of x is false, true or unknown. We denote this
state of information by x̃, which is a subset of {0, 1}. The evaluation of a logical
proportion T (a, b, c, d) amounts to compute the state of information denoted
T (ã, b̃, c̃, d̃) about its truth value, knowing ã, b̃, c̃, d̃. It is given by the standard
set extension where v denotes a Boolean valuation:

T (ã, b̃, c̃, d̃) = {v(T (a, b, c, d)) | v(a) ∈ ã, v(b) ∈ b̃, v(c) ∈ c̃, v(d) ∈ d̃}
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From now on, we focus on analogical proportion A only, but R,P and I could be
handled in a similar manner. For instance, let us take the example A(a, b, c, d)
where ã = {1}, b̃ = {0}, c̃ = d̃ = {0, 1}. Applying the previous formula leads to

A(ã, b̃, c̃, d̃) = {0, 1}

since the truth value of A(a, b, c, d) may be 0 for the valuations 1001, 1000,
1011, and 1 for 1010. If we consider the following expression A(a, b, a, b) when
ã = b̃ = {0, 1}, a similar computation leads to

A(ã, b̃, ã, b̃) = {1}

since the truth value of A(a, b, a, b) is 1 for any of the valuations 1010, 1111, 0101,
or 0000. Similarly, the truth value of A(a, a, a, a) is 1, even when ã = {0, 1}.
But, the set of possible truth values for A(a, b, c, d) is {0, 1} when ã = {0, 1}, b̃ =
{0, 1}, c̃ = {0, 1}, d̃ = {0, 1}, i.e. we have the same state of information for all
of them. This expresses that the full identity property does not hold any longer
at the information level for analogical proportion. And this illustrates the fact
that the logic of uncertainty is no longer truth functional, since the state of
information about the truth value of A(a, b, c, d) does not only depend on the
state of information about the truth values of a, b, c, and d, but is also constrained
by the existence of possible logical dependencies between these variables.

Nevertheless, some key properties of homogeneous proportions remain valid
at the information level such as symmetry, or central and extreme permutations.
Indeed it can be checked that, for instance, for symmetry:

A(ã, b̃, c̃, d̃) = A(c̃, d̃, ã, b̃)
Using the set extension evaluation of logical proportions in presence of incom-
plete information, we can compute the set of possible truth values of the analog-
ical proportion for the different 4-tuples of states of information. We now denote
by u the state {0, 1}, and respectively by 0 and 1, the states of information {0}
and {1}. A 4-tuple of states of information will be called information pattern,
or pattern for short, and denoted by a 4-tuple of elements of {0, 1, u} without
blank space. For instance, 01u1 is such a pattern and should be understood as
the 4-tuple of states of information ({0}, {1}, {0, 1}, {1}).

Then, the 6 patterns 0000, 1111, 0011, 1100, 1010, 0101 that makes A true in
the Boolean case, and where u does not appear, are the only ones that are still
true with the above view (for which we get the singleton {1} as information
state for A(a, b, c, d)). As soon as at least one state of information is u in the
pattern, the state of information for A(a, b, c, d) is u or 0. Indeed, for instance,
01u0 leads to 0 since whatever the truth value of the 3rd variable, the analogical
proportion does not hold. Thus, despite the lack of knowledge regarding the 3rd
variable, we know the exact truth value of the proportion in this case, namely
it is false. It appears that there are 18 patterns that lead to 0. They are the 10
patterns of the Boolean case and the 8 following ones: 01u0, 0u10, u001, 100u,
10u1, 1u01, u110, 011u. Thus, in the 81− 6− 18 = 57 remaining cases, the state
of information for A(a, b, c, d) is u.
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It can be checked that these results can be retrieved both with the initial
definition of A or with A∗ where complete ignorance u is handled with ,̄ ∧,∨
as the strong Kleene connectives (see [1]) and ≡ as Bochvar connective, where
u is an absorbing element. The corresponding truth tables are recalled in Table
8. This provides a way to extend the definition of the analogical proportion in

Table 8. Truth tables for u as lack of knowledge

¯ ∧ 0 1 u ∨ 0 1 u ≡ 0 1 u

0 1 0 0 0 0 0 0 1 u 0 1 0 u
1 0 1 0 1 u 1 1 1 1 1 0 1 u
u u u 0 u u u u 1 u u u u u

case of lack of knowledge when no dependencies between the variables exist. As
in the Boolean case, the definitions A (resp. R,P, I) and A∗ (resp. R∗, P ∗, I∗)
are equivalent. Nevertheless, this truth-functional calculus provides only a de-
scription of the evaluation of the patterns at the information level. Namely, it
enables us to retrieve the tri-partition of the patterns in respectively 6, 18 and
57 patterns leading respectively to 1, 0 and u, but it does not account for the full
calculus of the extended definition of logical proportions in presence of incom-
plete information, when dependencies take place between variables, for instance
it can be checked that A(a, b, a, b) and A∗(a, b, a, b), when a and b are unknown,
does not yield 1 as expected, but u (this is just due to the fact that constraints
a = c and b = d are ignored).

6 Concluding Remarks

This paper has discussed three extensions of the notion of analogical propor-
tions (and related logical proportions) by carefully distinguishing the problems
of handling graded truth values, of dealing with non applicable properties, and
of coping with unknown truth values. In each case, a different modeling has been
obtained with a different repartition of the patterns found to be true, false, or
having another value, and where the set of properties preserved for the analogical
proportion is not the same. More generally, it would be of interest of developing
an approach where the three types of problem can be handled together.
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Abstract. This paper deals with different chain graph interpretations
and the relations between them in terms of representable independence
models. Specifically, we study the Lauritzen-Wermuth-Frydenberg,

Andersson-Madigan-Pearlman and multivariate regression interpreta-
tions and present the necessary and sufficient conditions for when a chain
graph of one interpretation can be perfectly translated into a chain graph
of another interpretation. Moreover we also present a feasible split for
the Andersson-Madigan-Pearlman interpretation with similar features as
the feasible splits presented for the other two interpretations.

Keywords: Chain Graphs, Lauritzen-Wermuth-Frydenberg interpreta-
tion, Andersson-Madigan-Pearlman interpretation, multivariate regres-
sion interpretation.

1 Introduction

Today there exist mainly three interpretations of chain graphs (CGs). These
are the Lauritzen-Wermuth-Frydenberg (LWF) interpretation presented by Lau-
ritzen, Wermuth and Frydenberg in the late eighties [6,7], the Andersson-
Madigan-Pearlman (AMP) interpretation presented by Anderson, Madigan and
Pearlman in 2001 [2] and the multivariate regression (MVR) interpretation pre-
sented by Cox and Wermuth in the nineties [3,4]. A fourth interpretation of CGs
can also be found in a study by Drton [5] but this interpretation has not been
further studied and will not be discussed in this paper.

Each interpretation has a different separation criterion and do therefore rep-
resent different independence models. So far most papers have studied the dif-
ferent interpretations independently with a few exceptions such as the study of
discrete CG models by Drton [5] and the study of CGs representing Gaussian
distributions by Wermuth et al. [12]. Therefore it has not really been studied
what differences and similarities that exist between the different interpretations
in terms of representable independence models. Andersson et al. made a small
study of this when they presented their new (AMP) interpretation and managed
to show when the independence model of a CG of the AMP interpretation could
be represented perfectly by a CG of the LWF interpretation. They did however
not show when the opposite held and did no comparison with CGs of the MVR
interpretation. Wermuth and Sadeghi did on the other hand present conditions
for when a CG of the MVR interpretation could be translated into a CG of
the LWF or AMP interpretation when they introduced regression graphs [11].

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 510–521, 2013.
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The conditions were however only necessary and sufficient if the two CGs con-
tained the same connectivity components and not the more general case where
the CGs could take any form.

In this paper we hope to fill this gap and hence the main contribution of this
paper is a table where we show the necessary and sufficient conditions for when
a CG of one interpretation can be perfectly translated into a CG of another
interpretation. First we do however define a feasible split for the AMP inter-
pretation, with similar features as the feasible splits shown for the LWF [10]
and MVR [9] interpretation, that are used in these conditions. Hence this is our
second contribution. Finally we also show that there for all three CG interpre-
tations exists a minimal set of non-directed edges for each Markov equivalence
class and that the CG containing these, and only these, non-directed edges can
be reached through repeated feasible splits from any member of the class.

The remainder of the article is organized as follows. In the next section we
present the notation we will use throughout the article. This is followed by the
definitions of the feasible splits for each interpretation as well as the proof that
the feasible split for CGs of the AMP interpretation is sound. In section 4 we
start by presenting the conditions of when a CG of one interpretation can be
perfectly represented by a CG of another interpretation. This is then followed
by the proofs that these conditions are sound.

2 Notation

All graphs are defined over a finite set of variables V .
If a graph G contains an edge between two nodes V1 and V2, we denote

with V1→V2 a directed edge, with V1←→V2 a bidirected edge and with V1−V2 an
undirected edge. By V1 ←�V2 we mean that either V1→V2 or V1←→V2 is in G. By
V1�V2 we mean that either V1→V2 or V1−V2 is in G. By V1 ��V2 we mean that
there exists an edge between V1 and V2 in G while we with V1

. . . .V2 mean that
there might or might not exist an edge between V1 and V2. By a non-directed
edge we mean either a bidirected edge or an undirected edge. A set of nodes is
said to be complete if there exist edges between all pairs of nodes in the set.

The parents of a set of nodes X of G is the set paG(X) = {V1|V1→V2 is in G,
V1 /∈ X and V2 ∈ X}. The children of X is the set chG(X) = {V1|V2→V1 is in
G, V1 /∈ X and V2 ∈ X}. The spouses of X is the set spG(X) = {V1|V1←→V2 is in
G, V1 /∈ X and V2 ∈ X}. The neighbours of X is the set nbG(X) = {V1|V1−V2

is in G, V1 /∈ X and V2 ∈ X}. The boundary of X is the set bdG(X) = paG(X)∪
nbG(X) ∪ spG(X). The adjacents of X is the set adG(X) = {V1|V1→V2,V1←V2,
V1←→V2 or V1−V2 is in G, V1 /∈ X and V2 ∈ X}.

A route from a node V1 to a node Vn inG is a sequence of nodes V1, . . . , Vn such
that Vi ∈ adG(Vi+1) for all 1 ≤ i < n. A path is a route containing only distinct
nodes. The length of a path is the number of edges in the path. A path is called a
cycle if Vn = V1. A path is descending if Vi ∈ paG(Vi+1)∪spG(Vi+1)∪nbG(Vi+1)
for all 1 ≤ i < n. A path π = V1, . . . , Vn is minimal if there exists no other
path π2 between V1 and Vn st π2 ⊂ π holds. The descendants of a set of nodes
X of G is the set deG(X) = {Vn| there is a descending path from V1 to Vn
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in G, V1 ∈ X and Vn /∈ X}. A path is strictly descending if Vi ∈ paG(Vi+1)
for all 1 ≤ i < n. The strict descendants of a set of nodes X of G is the
set sdeG(X) = {Vn| there is a strict descending path from V1 to Vn in G,
V1 ∈ X and Vn /∈ X}. The ancestors (resp. strict ancestors) of X is the set
anG(X) = {V1|Vn ∈ deG(V1), V1 /∈ X,Vn ∈ X} (resp. sanG(X) = {V1|Vn ∈
sdeG(V1), V1 /∈ X,Vn ∈ X}). A cycle is called a semi-directed cycle if it is
descending and Vi→Vi+1 is in G for some 1 ≤ i < n. A CG under the Lauritzen-
Wermuth-Frydenberg (LWF) interpretation, denoted LWF CG, contains only
directed and undirected edges but no semi-directed cycles. Likewise a CG under
the Andersson-Madigan-Perlman (AMP) interpretation, denoted AMP CG, is
a graph containing only directed and undirected edges but no semi-directed
cycles. A CG under the multivariate regression (MVR) interpretation, denoted
MVR CG, is a graph containing only directed and bidirected edges but no semi-
directed cycles. A connectivity component C of a LWF CG or an AMP CG (resp.
MVR CG) is a maximal (wrt set inclusion) set of nodes such that there exists a
path between every pair of nodes in C containing only undirected edges (resp.
bidirected edges). We denote the set of all connectivity components in a CG G
by cc(G) and the component to which a set of nodes X belong in G by coG(X).
A subgraph of G is a subset of nodes and edges in G. A subgraph of G induced
by a set of its nodes X is the graph over X that has all and only the edges in
G whose both ends are in X . A bidirected flag is an induced subgraph of the
form X←→Y←→Z in a MVR CG. With the moral closure graph of a component
C in a LWF CG G, denoted (Gcl(C))

m, we mean the subgraph of G induced
by C ∪ paG(C) where every edge have been made undirected and every pair of
nodes in paG(C) have been made adjacent with undirected edges.

Let X , Y and Z denote three disjoint subsets of V . We say that X separated
from Y given Z denoted as X ⊥ GY |Z if the following criteria is met: If G
is a LWF CG then X and Y are separated given Z iff there exists no route
between X and Y such that every node in a non-collider section on the route
is not in Z and some node in every collider section on the route is in Z. A
section of a route is a maximal non-empty set of nodes B1...Bn such that the
route contains the subpath B1−B2− . . .−Bn. It is called a collider section if
B1 . . . Bn together with the two neighbouring nodes in the route, A and C, form
the subpath A→B1−B2− . . .−Bn←C. For any other configuration the section
is a non-collider section. If G is an AMP CG then X and Y is separated given
Z iff there exists no S-open path between X and Y . A path is said to be S-open
iff every non-head-no-tail node on the path is not in Z and every head-no-tail
node on the path is in Z or sanG(Z). A node B is said to be a head-no-tail in
an AMP CG G between two nodes A and C on a path if one of the following
configurations exists in G: A→B←C, A→B−C or A−B←C. Moreover G is also
said to contain a triplex ({A,C}, B) iff one such configuration exists in G and
A and C are not adjacent in G. For any other configuration the node B is a
non-collider. If G is a MVR CG then X and Y are separated given Z iff there
exists no d-connecting path between X and Y . A path is said to be d-connecting
iff every non-collider on the path is not in Z and every collider on the path is
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in Z or sanG(Z). A node B is said to be a collider in a MVR CG G between
two nodes A and C on a path if one of the following configurations exists in G:
A→B←C, A→B←→C,A←→B←C or A←→B←→C. For any other configuration the
node B is a non-collider.

The independence model M induced by a graph G, denoted as I(G) or
IPGM−class(G), is the set of separation statements X⊥GY |Z that hold in G ac-
cording to the interpretation to which G belongs or the subscripted PGM-class.
We say that two graphs G and H are Markov equivalent (under the same inter-
pretation) or that they are in the sameMarkov equivalence class iff I(G) = I(H).

3 Feasible Splits

For the LWF and MVR interpretation, operations for altering a CG structure
without changing its Markov equivalence class have been presented [9,10]. One
such operation is called feasible split and is in this article used to prove certain
theorems. Hence we repeat the definitions here. Moreover, we also present the
corresponding operation, called feasible split for AMP CGs, for the AMP CG
interpretation and prove that it is sound. Note that this is not the inverse op-
eration to a legal merging presented in the deflagging procedure for AMP CGs
by Roverto and Studený [8]. Their operation was applied to so called strong
equivalence classes, not the more general Markov equivalence classes used here.

Definition 1. Feasible split for LWF CGs [10]
A connectivity component C of CG G under the LWF interpretation can be
feasibly split into two disjoint sets U and L st U ∪ L = C by replacing every
undirected edge between U and L with a directed edge orientated towards L iff:
1. ∀A ∈ neG(L) ∩ U, paG(L) ⊆ paG(A)
2. neG(L) ∩ U is complete

Definition 2. Feasible split for AMP CGs
A connectivity component C of CG G under the AMP interpretation can be
feasibly split into two disjoint sets U and L st U ∪ L = C by replacing every
undirected edge between U and L with a directed edge orientated towards L iff:
1. ∀A ∈ neG(L) ∩ U,L ⊆ neG(A)
2. neG(L) ∩ U is complete
3. ∀B ∈ L, paG(neG(L) ∩ U) ⊆ paG(B)

Definition 3. Feasible split for MVR CGs [9]
A connectivity component C of CG G under the MVR interpretation can be
feasible split into two disjoint sets U and L st U ∪ L = C by replacing every
bidirected edge between U and L with a directed edge orientated towards L iff:
1. ∀A ∈ spG(U) ∩ L, U ⊆ spG(A) holds
2. ∀A ∈ spG(U) ∩ L, paG(U) ⊆ paG(A) holds
3. ∀B ∈ spG(L) ∩ U , spG(B) ∩ L is a complete set
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Definition 4. Maximally orientated CG
A CG G (under any interpretation) is maximally orientated iff no feasible splits
can be performed on G.

Lemma 1. A CG G of the AMP interpretation is in the same Markov equiva-
lence class before and after a feasible split.

Proof. Assume the contrary. Let G be a CG under the AMP interpretations
and G′ a graph st G′ is G with a feasible split performed upon it. G and G′

are in different Markov equivalence classes or G′ is not a CG under the AMP
interpretation iff (1) G and G′ does not have the same adjacencies, (2) G and
G′ does not have the same triplexes or (3) G′ contains semi-directed cycles.

First it is clear that G and G′ contains the same adjacencies since a feasible
split does not change the adjacencies of any node in G. Secondly let us assume G
and G′ does not have the same triplexes. First let us assume that G′ contains a
triplex ({X,Y }, Z that does not exist in G. It is clear that such a triplex can only
occur if Z ∈ L since the only difference between G and G′ is that G′ contains
some directed edges orientated towards L where G contains undirected edges. It
is clear that if the triplex is a flag then the one of the node X or Y , let’s say X ,
must be in U and the other one, let’s say Y , must be in L. However, according to
condition 1 Y must be adjacent to X which causes a contradiction. If the triplex
is not a flag both X and Y must be in U . They also have to be in neG(L), which,
together with condition 2, contradicts that they are not adjacent. Hence we have
a contradiction for that G′ contains a triplex that does not exist in G.

Secondly assume G contains a triplex ({X,Y }, Z) that does not exist in G′. It
is clear that this new triplex can not be over a node in L since these nodes only
have edges orientated towards them. Instead assume Z ∈ U . This gives that one
of the nodes X or Y , let’s say X , must be a parent of Z and the other, let’s say
Y , must be in L. This does however contradict condition 3, since every parent
of Z also must be a parent of Y , and hence X and Y must be adjacent. This
gives us a contradiction.

Finally assume G′ contain a semi-directed cycle. This means there exists two
nodes X and Y st X ∈ paG′(Y ) but X ∈ deG′(Y ) ∪ coG′(Y ). It is clear that
∀A ∈ V deG′(A) ⊆ deG(A) and coG′(A) ⊆ coG(A) hold. Hence we must have
that X ∈ deG(Y )∪coG(Y ) also hold which, together with ∀B ∈ V \L paG′(B) =
paG(B), means that Y is in L and since ∀D ∈ L paG′(D) = paG(D) ∪ U holds
X must be in U . However, at the same time coG′(Y ) = coGY \U and deG′(Y ) ⊆
deGY must hold and hence we have a contradiction.

A maximally orientated CG can be obtained from any member of its Markov
equivalence class by performing feasible splits until no more feasible splits can
be performed.

Theorem 1. A CG (under any interpretation) has the minimal set of non-
directed edges for its Markov equivalence class if no feasible split is possible.

The following theorem shows that there may exist several maximally orientated
CGs in a given Markov equivalence class but all of them share the same non-
directed edges.
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Theorem 2. For any Markov equivalence class of CGs (under any interpreta-
tion), there exists a unique minimal (wrt inclusion) set of non-directed edges
that is shared by all members of the class.

The proofs of the Theorem 1 and 2 for the MVR interpretation can be found in
the article by Sonntag and Peña [9]. These proofs can easily be adapted for the
LWF and AMP interpretations.

4 Translations between Interpretations

In this section the main result of this paper is presented, namely what the
conditions are for a CG of one interpretation to be possible to translate into a CG
of another interpretation.With translate we mean that the induced independence
model of a CG of one interpretation can be represented perfectly by a CG of
another interpretation. A summary of these results is presented in Table 1.

Table 1. Given a CG G of the interpretation denoted in the row, and a maximally
oriented CG G′ in the Markov equivalence class of G, there exists a CG H of the
interpretation denoted in the column stG andH are Markov equivalent iff the condition
in the intersecting cell is fulfilled

LWF AMP MVR

LWF - Unidentified
(Gcl(K))

m is chordal for
all K ∈ cc(G).

AMP
G contains no k-biflag

where k ≥ 2 [2]
-

G′ does not contain any
induced subgraph of the

form X−Y−Z

MVR
G′ contains no
bidirected edge

G′ contains no
bidirected flag

-

From the table two things can be noted. First that the conditions given in
the table may include a maximally oriented CG G′ in the same equivalence
class as G. This is done for several reasons. First, such a graph is easy and
computationally simple to find. Secondly this allows the proofs to be based on
the idea that no feasible split is possible for the interpretation in mind. Third
and last the search space of CGs is smaller and more assumptions can be made
on the CG. This in turn allows for more efficient algorithms when calculating
if the condition holds for some CG. The second note that can be made is that
there still does not exist any necessary and sufficient condition for when a perfect
translation of a LWF CG G into an AMP CG H is possible. Andersson et al.
gave a necessary condition but also showed that this condition was not sufficient
[2]. We have managed to prove the necessity of more elaborate conditions but
still been unable to prove sufficiency for these. Hence this condition is left for
future work.



516 D. Sonntag and J.M. Peña

The rest of this section contains the theorems stating the conditions shown
in Table 1 together with their proofs. Some of the proofs (Lemmas 6 and 7) are
rather technical and we omit these due to page limitations. These proofs can be
found at www.ida.liu.se/∼jospe/ecsqaru13extended.pdf.

4.1 Translation of MVR CGs to AMP CGs

Theorem 3. Given a MVR CG G, and a maximally oriented MVR CG G′ in
the Markov equivalence class of G, there exists an AMP CG H st IMV R(G) =
IAMP (H) iff G′ contains no bidirected flag.

Proof. Sufficiency follows from from Lemmas 4 and 5 and necessity follows from
Lemma 2.

Lemma 2. A MVR CG G and an AMP CG H with the same structure, except
that every bidirected edge in G is replaced by a undirected edge in H and where
G contains no bidirected flag, represent the same independence model.

Proof. Assume to contrary that there exists two CGs, G under the MVR in-
terpretation and H under the AMP interpretation, st G does not contain any
bidirected flag, i.e induced subgraph of the formX←→Y←→Z,G andH contain the
same directed edges, and for every bidirected edge in GH has an undirected edge
instead (and only contains those undirected edges) but IMV R(G) �= IAMP (H).
Clearly we must have VG = VH and that adjG(X) = adjH(X), paG(X) =
paH(X) and coG(X) = coH(X) holds for all X ∈ VG. Given the definition
of strict descendants sanG(X) = sanH(X) must also hold. Moreover note that
H can not contain any induced subgraph of the form X−Y−Z. Finally note
that both G and H contains the same paths between X and Y .

For I(G) �= I(H) to hold there has to exist a path π in G (resp. H) that is
d-connecting (resp. S-open) st there exist no path in H (resp. G) that is S-open
(resp. d-connecting). Let π be a minimal d-connecting (resp. S-open) path in
G (resp. H). Note that π can not contain any contain any subpath of the form
V1←→V2←→V3 (resp. V1−V2−V3) since the edge V1←→V3 (resp. V1−V3) must exist
in G (resp. H) or G contains a bidirected flag or semi-directed cycle. This in
turn would mean that π is not minimal since the path π \ V2 also must be d-
connecting and shorter than π. For π to be both d-connecting and S-open for
any set of nodes Z it must contain the same colliders and head-no-tail nodes. A
node W ∈ π is a collider if it is part of the following configurations of edges in π
(1)→W←, (2)←→W←, (3)→W←→ and (4)←→W←→. Clearly the fourth case can
not occur. Case 1-3 would be translated into (1) →W←, (2) −W←, (3)→W−
in H which are all (and the only) head-no-tail configurations. Hence π must be
d-connecting in G iff π is S-open in H which contradicts the assumption.

Lemma 3. If a maximally oriented CG G of the MVR interpretation contains a
bidirected flag X←→Y←→Z then G also contains an induced subgraph of the form
shown in (1) Figure 1a or (2) 1b or (3) P ←�Q←→Y←→Z or (4) P ←�Q←→W←→Z
st bdG(Q) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(Q) hold.
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Proof. Assume the contrary, that no such induced subgraph exists in G even
though G contains a bidirected flag and G is maximally orientated. Let C be
the component of which X,Y and Z belongs. Let A be the set of nodes Ak st
Ak ∈ spG(Y ) but Ak /∈ spG(Z). We know that X fulfills these criteria and hence
|A| ≥ 1.

First note that if there exists a node Ak ∈ A st bdG(Ak) �⊆ bdG(Y ) ∪ Y
then there exists an induced subgraph P ←�Ak←→Y←→Z . . . .P in G for some node
P ∈ bdG(Ak)\bdG(Y )\Y . Hence we have a contradiction since G either contains
an induced subgraph of the form shown in Figure 1b (P ∈ bdG(Z)) or of the
form P ←�Q←→Y←→Z (P /∈ bdG(Z)). Therefore we must have that bdG(Ak) ⊆
Y ∪ bdG(Y ) holds for all Ak ∈ A, i.e. that bdG(A) ⊆ Y ∪ bdG(Y ) holds.

Secondly note that we can let B be a subset of A st B consists of the nodes
in one connected subgraph in the subgraph of G induced by A (any connected
subgraph will do). Let D be the set of nodes st D = spG(Y )∩ spG(Z)∩ spG(B).
With these sets we know that the spouses of Y can be either adjacent of Z or
not, hence spG(Y ) = D ∪A must hold. This in turn gives that spG(A) = D ∪ Y
and bdG(A) ⊆ D ∪ Y ∪ paG(Y ) since ∀Ak ∈ A bdG(Ak) ⊆ Y ∪ bdG(Y ) holds.
Moreover spG(B) = D∪Y and bdG(B) ⊆ D∪Y ∪paG(Y ) must also hold. Hence,
if D is empty then spG(B) = {Y } and bdG(B) ⊆ Y ∪ paG(Y ) must hold. This
does however lead to a contradiction because a split then is possible st U consists
of B and L consists of C \ U . Hence there has to exists at least one node in D.

Thirdly note that D ∪ Y must be complete or the induced subpath Bk←→DYi

←→Z←→DYj←→B1←→...←→Bl←→Bk, l ≥ 0, exists inG for some nodesBk, B1, ..., Bl ∈
B and DYi, DYj ∈ D ∪ Y . This means that G contains an induced subgraph of
the form shown in either Figure 1a (l > 0) or 1b (l = 0).

Fourth and finally note that there must exist a node P st P ∈ bdG(B) ∪
B but P /∈ bdG(Dj) for some Dj ∈ D ∪ Y or a split is feasible where U
consists of B and L consists of C \ U . Note that Dj �= Y must hold since
bdG(B) ∪B ⊆ bdG(Y ) ∪ Y . This means that there must exist 2 nodes Bi, Dj st
P ∈ bdG(Bi), P /∈ bdG(Dj), Bi ∈ B, Bi ∈ sp(Dj) and Dj ∈ D st the induced
subgraph P ←�Bi←→Dj←→Z . . . .P exist in G. This is a contradiction either because
G contains an induced subgraph of the form shown in Figure 1b (P ∈ bdG(Z)) or
P ←�Bi←→Dj←→Z (P /∈ bdG(Z)) where bdG(Bi) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(Bi)
holds.

α β γ

δ λ

α β γ

δ

γ

β α

μ

λ

δ

(a) (b) (c)

Fig. 1. MVR subgraph forms
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Lemma 4. If a maximally oriented CG G of the MVR interpretation contains
a bidirected flag then G at least one of the induced subgraphs shown in Figure 1
exists in G.

Proof. Assume the contrary, that no such induced subgraph exists in G even
though G contains a bidirected flag and G is maximally orientated. Since G con-
tains a bidirected flag we do with Lemma 3 get that G must contain an induced
subgraph X←→Y←→Z←�W or a contradiction directly follows. If we now apply
Lemma 3 to X←→Y←→Z we get that, since for G to contain any induced subgraph
of the form shown in Figure 1a or 1b is a contradiction, there exist a set of nodes
(that can be renamed to) c1, c2, c3 st the induced subgraph c1 ←�c2←→c3←→Z ex-
ists in G and c3 = Y holds or bdG(c2) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(c2) hold. If
c3 = Y , G must contain the subgraph c1 ←�c2←→Y←→Z←�W where c1 /∈ adjG(Y )
andW /∈ adjG(Y ) must hold and c1 = W might hold. Clearly this subgraph takes
the form of either Figure 1a (c1 �= W ) or 1b (c1 = W ) which is a contradiction.
Hence c3 �= Y , bdG(c2) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(c2) must hold.

Since W /∈ adjG(Y ) holds and bdG(c2) ⊆ bdG(Y ) ∪ Y it is clear that c1, c3 ∈
bdG(Y ) must hold. Hence W �= c2 holds since W /∈ adjG(Y ) ∪ Y . This in
turn means that W /∈ bdG(c2) holds since bdG(c2) ⊆ bdG(Y ) ∪ Y and W /∈
bdG(Y ) ∪ Y . Finally we can see that W ∈ bdG(c3) holds or the induced sub-
graph c1 ←�c2←→c3←→Z ←�W takes the form shown in Figure 1a (c1 �= W ) or 1b
(c1 = W ). However, if W ∈ bdG(c3) holds G contains an induced subgraph of
the form shown in Figure 1c (where δ = W , λ = c1, μ = c3, γ = c2, β = Y and
α = Z) and we have a a contradiction.

Lemma 5. The independence model of a CG G of the MVR interpretation
which contains an induced subgraph of one of the forms shown in Figure 1 cannot
be perfectly represented as a CG H of the AMP interpretation.

Proof. Assume the contrary, that there exists a CG H under the AMP interpre-
tation that can represent these independence models.

First assume that the independence model of the graph shown in Figure 1a
can be represented in a CG H of the AMP interpretation. It is clear that H
must have the same skeleton, or clearly some separations or non-separations
that hold in G would not hold in H . The following independence statements
holds in G: δ⊥Gβ|paG(β), α⊥Gγ|paG(α) and β⊥Gλ|paG(β). δ⊥Gβ|paG(β)
gives us that a triplex ({δ, β}, α) must exist in H , since α /∈ paG(β) i.e. that (1)
δ→α−β, (2) δ−α←β or (3) δ→α←β exists in H . α⊥Gγ|paG(α) does however
also state that a triplex ({α, γ}, β) must exist in H , since β /∈ paG(α). For this
to happen the edge between α and β can not be orientated towards α hence the
subgraph δ→α−β←γ must exist in H . The orientation of the edge between β
and γ does however contradict the third independence statement β⊥Gλ|paG(β)
which implies that the triplex ({β, λ}, γ) must exist in H , since γ /∈ paG(β).
Hence we have a contradiction if G contains the induced subgraph shown in
Figure 1a.

Secondly assume that the independence model of the graph shown in Figure 1b
can be represented in a CG H of the AMP interpretation. It is clear that H must
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have the same skeleton, or clearly some separations or non-separations that hold
inG would not hold inH . The following independence statements must then hold
in G: δ⊥Gβ|paG(β) and α⊥Gγ|paG(α). δ⊥Gβ|paG(β) gives us that two triplexes
must exist in H , first ({δ, β}, α) and secondly ({δ, β}, γ), since α, γ /∈ paG(β).
({δ, β}, α) gives that one of the following configurations must occure in H : (1)
δ−α←β, (2) δ→α−β or (3) δ→α←β. However, the independence statement α⊥
Gγ|paG(α) implies that the triplex ({α, γ}, β) must exist in H since β /∈ paG(α).
If the triplex ({α, γ}, β) should hold in H the edge between α and β can not
be orientated towards α hence the subgraph δ→α−β←γ must exist in H . The
orientation of the edge between β and γ does however contradict the triplex
({δ, β}, γ) and hence we have a contradiction for the G shown in Figure 1b.

Third and last assume that the independence model of the graph shown in
Figure 1c can be represented in a CG H of the AMP interpretation. From
the Figure we can read the following independence statements: λ⊥Gμ|paG(μ),
α⊥ Gγ|paG(α), β ⊥ Gδ|paG(β). It is clear that H must have the same skele-
ton, or clearly some separations or non-separations that hold in G would not
hold in H . λ⊥Gμ|paG(μ) and α⊥Gγ|paG(α) gives that the triplexes ({λ, μ}, β)
and ({α, γ}, μ) must exists in H since β /∈ paG(μ) and μ /∈ paG(α). As seen
above this gives that λ→γ−μ←α must exist in H . Similarly β⊥Gδ|paG(β) and
λ⊥Gμ|paG(μ) gives that λ→β−μ←δ must exist in H . Finally α⊥Gγ|paG(α) and
β⊥Gδ|paG(β) gives that the triplexes ({α, γ}, β) and ({β, δ}, α) must hold in H ,
since β /∈ paG(α) and α /∈ paG(β), which in turn gives that γ→β−α←δ must
exist in H . This does however contradict that H is a CG since the semi-directed
cycle γ→β−μ−γ exists in H . Hence we have a contradiction.

4.2 Translation of AMP CGs to MVR CGs

Theorem 4. Given an AMP CG G, and a maximally oriented AMP CG G′ in
the Markov equivalence class of G, there exists a CG H st IAMP (G) = IMV R(H)
iff G′ does not contain any induced subgraph of the form X−Y−Z.

Proof. Sufficiency follows from Lemma 2 while necessity follows from 6.

Lemma 6. If a maximally orientated CG G of the AMP interpretation contains
an induced subgraph of the form X−Y−Z then G there exists no CG H of the
MVR interpretation st IAMP (G) = IMV R(H).

4.3 Translation of MVR CGs to LWF CGs

Theorem 5. Given a MVR CG G, and a maximally oriented MVR CG G′

that is in the same Markov equivalence class as G, there exist a LWF CG H st
IMV R(G) = ILWF (H) iff G′ contains no bidirected edge, i.e. can be represented
as a BN.

Proof. From Lemma 7 it follows that a maximally oriented CG G′ of the MVR
interpretation with a bidirected edge must have a subgraph of the form shown



520 D. Sonntag and J.M. Peña

in Figure 2. If it does not contain any bidirected edge in the maximally oriented
model it trivially follows that it is a BN (and hence it can be represented as a
CG of the LWF interpretation). From Lemma 8 it then follows that no CG G of
the MVR interpretation which contains a subgraph of the form shown in Figure
2 can be represented as a CG of the LWF interpretation.

Lemma 7. If a bidirected edge exists in a maximally oriented CG G of the MVR
interpretation then G must contain an induced subgraph of the form shown in
Figure 2.

A B

C D

Fig. 2. Included subgraph in Lemma 7 and 8

Lemma 8. If a CG G of the MVR interpretation contains an induced subgraph
of the form shown in Figure 2 then G can not be translated into a CG H of the
LWF interpretation.

Proof. Assume to the contrary that there exists a CG H , of the LWF interpre-
tation, with the same independence model as G while G contains an induced
subgraph of the form shown in Figure 2. Clearly H and G must contain the
same nodes and adjacencies or some separations or non-separations must exist
in G but not in H .

From Figure 2 we can read that A⊥GD|paG(D) and C⊥GB|paG(C) hold.
For A⊥GD|paG(D) to hold in H C must be a collider between A and D and
henceH must contain the induced subgraph A→C←D. Similarly C⊥GB|paG(C)
gives that H must contain the induced subgraph C→D←B and hence we have
a contradiction.

4.4 Translation of LWF CGs to MVR CGs

Theorem 6. Given a LWF CG G there exists a CG H st ILWF (G) = IMV R(H)
iff (Gcl(K))

m is chordal for all K ∈ cc(G).

Proof. To prove the “if” part, note that if (Gcl(K))
m is chordal for all K ∈ cc(G),

then there is a DAG D st ILWF (G) = IBN (D) [1, Proposition 4.2] and, thus, it
suffices to take H = D.

To prove the “only if” part, assume to the contrary that V1− . . .−Vn is a
chordless undirected cycle in (Gcl(K))

m for some K ∈ cc(G). Note that H has
the same adjacencies as G. Therefore, Vi−1←Vi and/or Vi→Vi+1 must be in H
because, otherwise, Vi−1⊥GVi+1|Z ∈ ILWF (G) for some Z st Vi ∈ Z whereas
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Vi−1⊥HVi+1|Z /∈ IMV R(H), which contradicts that ILWF (G) = IMV R(H). As-
sume without loss of generality that Vi→Vi+1 is in H . Then, Vi+1→Vi+2 must
be in H too, by an argument similar to the previous one. Repeated application
of this reasoning implies that H has a semi-directed cycle, which contradicts the
definition of CG.
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On the Plausibility of Abstract Arguments

Emil Weydert

ILIAS-CSC, University of Luxembourg

Abstract. We propose and investigate a plausibility-based extension
semantics for abstract argumentation frameworks based on their generic
instantiation by default knowledge bases and the ranking construction
paradigm for default reasoning.

1 Prologue

The past decade has seen a flourishing of abstract argumentation theory, a
coarse-grained high-level form of defeasible reasoning introduced by Dung [4]. It
is characterized by a top-down perspective which ignores the logical fine struc-
ture of arguments and focuses instead on logical or extra-logical relations - like
conflicts or preferences - between given arguments to identify reasonable ar-
gumentative positions. The complexity of enriched argument structures with
interacting relations, the competing proposals for evaluating even Dung’s simple
attack frameworks, all this calls for unifying semantic foundations to compare,
judge, and improve existing approaches.

A major issue is whether an abstract account adequately models concrete ar-
gumentative reasoning in the context of a sufficiently expressive, often defeasible
logic. The instantiation of abstract frameworks by more fine-grained logic-based
argument configurations is therefore an important tool for justifying or criticis-
ing abstract argumentation theories. Most of this work is however based on the
first generation of default formalisms, like Reiter’s default logic or logic program-
ming. While these are closer to classical logic and the original spirit of Dung’s
approach, it is well known that they are haunted by counterintuitive behaviour
and fail to satisfy major desiderata for default reasoning encoded in benchmark
examples and rationality postulates [9].

The goal of the present work is therefore to supplement existing interpre-
tation efforts with a simple ranking-based semantic instantiation model which
interprets arguments and attacks with conditional knowledge bases. The well-
behaved ranking construction semantics for default reasoning [15,16] is exploited
to specify a new extension semantics for Dung frameworks which allows to di-
rectly evaluate the plausibility of argument collections. Its partly unorthodox
behaviour sheds a new light on basic argumentation-theoretic concepts.

We start with an introduction to default reasoning based on the ranking
construction paradigm. After a short look at abstract argumentation theory, we
indicate how to interpret argumentation frameworks semantically and instantiate
abstract arguments and the attacks between them with sets of conditionals.

L.C. van der Gaag (Ed.): ECSQARU 2013, LNAI 7958, pp. 522–533, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Based on the concept of generic instantiations, we then specify a ranking-based
extension semantics. We conclude with a simple algorithm, some instructive
examples, and an analysis of important properties.

2 Ranking-Based Default Reasoning

First, we assume a basic language L closed under the usual propositional connec-
tives, with a classical satisfaction relation |= inducing a monotonic entailment re-
lation ). Its model sets are denoted by [[ϕ]] = {m | m |= ϕ}, resp. [[Σ]] = ∩ϕ∈Σ [[ϕ]]
for Σ ⊆ L. BL is the boolean propositional algebra over BL = {[[ϕ]] | ϕ ∈ L}.

Default inference is an important instance of nonmonotonic reasoning con-
cerned with drawing reasonable but potentially defeasible conclusions from
knowledge bases of the form Σ ∪Δ, where Σ is a set of assumptions or facts,
e.g. describing a specific state of affairs in some domain language, and Δ is a
collection of conditionals expressing strict or exception-tolerant implicational in-
formation and guiding the defeasible inference process. In the following we will
focus on finite Σ ⊆ L and finite Δ ⊆ L(�,�). L(�,�) is a flat conditional
language on top of L with L(�,�) = {ϕ � ψ | ϕ, ψ ∈ L}∪{ϕ � ψ | ϕ, ψ ∈ L}.

The strict implication ϕ � ψ states that ϕ necessarily implies ψ, forcing us
to accept ψ given ϕ. The default implication ϕ � ψ tells us that ϕ plausibly/by
default implies ψ, only recommending the acceptance of ψ. The actual impact
of a default depends of course on the whole context Σ ∪ Δ and the chosen
nonmonotonic inference concept |∼, which we will discuss later on.

We can distinguish two perspectives in default reasoning: the autoepistemic,
context-based, and the plausibilistic, quasi-probabilistic one. The former is exem-
plified by Reiter’s default logic, where defaults can be modeled by normal default
rules ϕ : ψ/ψ. The alternative is to use default conditionals interpreted by some
preferential or valuational semantics, like System Z [10], or ME-accounts [5] (ME
= maximum-entropy). For historical reasons and technical convenience, the first
approach has received most attention, in particular in the context of argumen-
tation. However, this ignores the fact that the conditional semantic paradigm
has a much better record when it comes to the natural handling of benchmark
examples and the satisfaction of rationality postulates. It therefore seems promis-
ing to investigate whether semantic-based accounts can help to instantiate and
evaluate abstract argumentation frameworks.

Our default conditional semantics for interpreting argumentation frameworks
is based on the simplest plausibility measure concept able to reasonably handle
independence and conditionalization, namely ranking measures [11,12]. These
are quasi-probabilistic belief valuations expressing the order of magnitude (intu-
itively: R(A) = r ∼ P (A) = εr) or degree of surprise of propositions. They gen-
eralize Spohn’s original integer-valued κ-ranking functions introduced to model
the iterated revision of graded plain belief, and also standard possibility mea-
sures (log-link) [3].

Definition 2.1 (Ranking measures). A map R : BL → ([0,∞], 0,∞,+,≥) is
called a rational/real-valued ranking measure iff R(') = 0, R(⊥) = R(∅) = ∞,
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and for all A,B ∈ BL, R(A ∪ B) = min≤{R(A), R(B)}. R(.|.) is the associated
conditional ranking measure defined by R(B|A) = R(A∩B)−R(A) if R(A) �=∞,
else R(B|A) =∞. We use the abbreviation R(ϕ) := R([[ϕ]]).

For several major default formalisms, e.g. rk-ME, JZ (see below), rational rank-
ing values are actually necessary (and sufficient in finite contexts). Note that
lower values indicate less surprise/more plausibility. R0 is the uniform ranking
measure, i.e. R0(A) = 0 for A �= ∅. A suitable truth condition for defaults is

R |=rk ϕ � ψ iff R(ϕ ∧ ψ) + 1 ≤ R(ϕ ∧ ¬ψ).

Because all the r ∈]0,∞[ can be exchanged by automorphisms, w.l.o.g., we may
focus on the threshold 1. We use ≤ because this guarantees the existence of
minima for relevant ranking construction procedures, and there is also a priori
no reason to privilege the weakest truth condition (... < ...) for interpreting
defaults. ϕ � ψ can be expressed by ϕ ∧ ¬ψ � F (ϕ ∧ ¬ψ is doxastically
impossible). For Δ ∪ {δ} ⊆ L(�,�), we set [[Δ]]rk = {R | R |=rk Δ}, and
Δ )rk δ iff [[Δ]]rk ⊆ [[δ]]rk. )rk is monotonic and verifies the axioms and rules of
preferential conditional logic and disjunctive rationality (the threshold reading
blocks rational monotony) for � [8].

It is important to understand that the central concept in default reasoning is
not some monotonic conditional logic for L(�,�), but a nonmonotonic meta-
level inference relation |∼ over L∪L(�,�) specifying which conclusions ψ ∈ L
can be plausibly inferred from usually finite Σ ∪ Δ ⊆ L ∪ L(�,�). We write

Σ ∪Δ |∼ ψ, or alternatively Σ |∼Δ ψ, and set C
|∼
Δ (Σ) = {ψ | Σ |∼Δ ψ}.

The ranking semantics for plausibilistic default reasoning is based on non-
monotonic ranking choice operators I which map each finite Δ ⊆ L(�,�) to a
collection I(Δ) ⊆ [[Δ]]rk of preferred ranking models of Δ over BL. The corre-
sponding rational default inference notion |∼I is then specified by

Σ |∼I
Δ ψ iff for all R ∈ I(Δ), R(¬ψ | ∧Σ) > 0.

For instance, if we compare the rankings pointwisely, I(Δ) = {Min≤pt[[Δ]]rk}
essentially characterizes System Z [10]. The construction paradigm for default
reasoning developed in [14,15,16] is another well-motivated strategy for getting
reasonable I based on Spohn’s Jeffrey-conditionalization for ranking measures.
Here defaults do not only specify ranking constraints, but also admissible ranking
construction steps. It offers powerful default inference notions with nice inheri-
tance features.

Definition 2.2 (Constructibility). Let Δ = {ϕi � ψi | i ≤ n} ⊆ L(�). A
ranking measure R′ is constructible from R over Δ, written R′ ∈ Constr(Δ,R),
iff there are ranking values r0, . . . , rn ∈ [0,∞] s.t. R′ = R + Σi≤nri[ϕi ∧ ¬ψi],
with (R+ r[ϕ])(ψ) = min{R(ψ∧ϕ)+ r, R(ψ ∧¬ϕ)} (uniformly shifting ϕ by r).

For instance, we can obtain a well-behaved robust default inference relation,
System J [14], just by setting IJ (Δ) = Constr(Δ,R0)∩[[Δ]]rk. It can be strength-
ened to System JJ [14] by focusing on what we call justifiably constructible rank-
ing models. Here proper shifting is only allowed to realize ranking constraints



Plausible Arguments 525

interpreting defaults as equalities, so as to prevent oversatisfaction. R |=rk Δ is
called a justifiably constructible model of Δ iff R = R0 +Σi≤nai[ϕi ∧ ¬ψi] and
for each aj > 0, R(ϕi ∧ ψi) + 1 = R(ϕi ∧ ¬ψi). If Δ � )rk F, Ijj(Δ) �= ∅.1

For minimal core default sets [5], i.e. where no [[ϕi ∧ ¬ψi]] �= ∅ is covered
by ∪j �=i[[ϕj ∧ ¬ψj ]], |∼jj offers the same results as maximum-entropy-based ap-
proaches. The asymptotic order-of-magnitude translation of entropy maximiza-
tion to the ranking level (rk-ME) [13,16] always produces a unique justifiably
constructible ranking model, i.e. |∼jj⊂|∼me. Similarly for the well-behaved Sys-
tem JZ, which is based on a natural canonical hierarchical ranking construction
in the tradition of System Z [15,16] and also implements the minimal informa-
tion philosophy. But |∼jj , |∼jz , |∼me are equivalent for the generic default sets
we will use to interpret abstract argumentation frameworks.

3 Abstract Argumentation

The idea of abstract argumentation theory has been to replace the traditional
bottom-up strategy, which models and exploits the logical fine structure of
arguments, by a top-down perspective, where arguments become black boxes
evaluated only according to specific logical or extra-logical relationships link-
ing them. Such a coarse-grained relational analysis may often be enough to
determine which collections of arguments are reasonable. In addition to possi-
ble conceptual and computational gains, the abstract approach also provides a
powerful methodological tool for general argumentation-theoretic investigations.
Launched by Dung [4], abstract argumentation theory has evolved in the last
ten years into a powerhouse of nonmonotonic reasoning light.

An abstract argumentation framework in the original sense of Dung is a
structure of the form A = (A,�), where A is a collection of abstract entities
representing arguments, and � is a binary, possibly asymmetric attack relation
modeling conflicts between arguments. To grasp the complexity of real-world ar-
gumentation, many authors have extended this basic account to include further
inferential/epistemic relations, like support, preferences, valuations, or collective
attacks. On the most general level, an abstract argumentation framework is just
a structure A = (A, C, (Pi)i∈I) where A is the domain of possible arguments, C
is the collection of conflict sets (closed under supersets), and the Pi are relevant
relations over A (or even 2A). A Dung framework (A,�) can be rewritten as
(A, C,�) where C = {B ⊆ A | � ∩B ×B �= ∅}.

A general inferential task in abstract argumentation is to find reasonable eval-
uations of the arguments described by A, e.g. which sets of arguments to adopt
(extensions). In Dung’s scenario, the extensions are just conflict-free E ⊆ A
satisfying suitable acceptability conditions in the context of A. For instance,
assuming conflict-freeness, E is admissible iff each attacker of an a ∈ E is at-
tacked by some b ∈ E. E is grounded iff it is minimally admissible, it is stage iff
E ∪�′′E is maximal, and stable iff A− E ⊆ �′′E.

1 For other constructibility-flavoured accounts: [3,6].
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In concrete decision contexts, we may however also seek finer-grained assess-
ments of arguments, like labelings or prioritizations. This suggests more general
semantics which associate with each A a set E(A) of so-called hyperextensions
[17], which are distinguished evaluation structures (A, InA, (Qj)j∈J ) over A.
InA (�∈ C) is here just a classical extension, whereas the Qj (j ∈ J) are rela-
tions expressing more sophisticated evaluations of arguments (e.g. a posteriori
plausibility). If J = ∅, we are back to Dung. So far for the general landscape.

4 Concrete Instantiations

To evaluate and apply abstract argumentation techniques, the argumentation
frameworks have to be instantiated. That is, we have to interpret their ab-
stract elements by concrete logical entities representing actual arguments, and
their abstract structure by specific inferential or epistemic relationships fitting
the conceptual intentions at the abstract level. The minimal requirement for
an instantiation I is to identify from each instantiated argument I(a) the cor-
responding explicit claim or conclusion, expressed by a sentence ψa from the
chosen base logic (L,)). If two arguments a and b generate inconsistent claims,
i.e. if ψa, ψb ) F, then they are clearly not jointly acceptable. On the other
hand, in argumentation the incompatibility of claims is not a necessary prereq-
uisite for the existence of an attack. The claims and their logical connections
are just the tip of the iceberg and far from characterizing all the relevant rela-
tionships between arguments. We will now investigate how to instantiate a pure
Dung framework A = (A,�) over a nonmonotonic logic L = (L ∪ L(�,�), |∼)
with base logic (L,)). Let us first interpret the abstract arguments.

On the syntactic level, because we are primarily interested in the logical con-
tent, it may be enough to consider flat – not tree – instantiations Isyn, which
associate with each a ∈ A a correct finite inference pair Isyn(a) = (Σa∪Δa, ψa),
with Σa ⊆ L, Δa ⊆ L(�,�), ψa ∈ L, and Σa ∪Δa |∼ ψa. We emphasize that
here we do neither impose premise consistency, nor premise minimality. While
minimality is a standard assumption in monotonic argumentation, it is question-
able in the context of nonmonotonic reasoning. In fact, by adding premises, a
conclusion may successively get accepted, rejected, and accepted again, so that
the character of the inferential support may change between different levels of
specifity, calling for a discrimination between the corresponding inference pairs.

On the semantic level, lack of space prevents us to provide a semantic account
of the full inferential relationship expressed by Isyn(a), so we will focus on the
inferential link between L-formulas. First, we may observe that the L-content of
Σa ∪Δa is determined not only by Σa but also by the necessities Δa supports:

Δ�
a = {ϕ ∈ L | {¬ϕ} ∪Δa |∼ F}.

The strict propositional content of a, determined by the premises, is therefore

[[Σa]] ∩ [[Δ�
a ]]. Its defeasible propositional content, fixed by |∼, is [[C

|∼
Δa

(Σa)]] ⊆
[[Σa]]∩[[Δ�

a ]]∩[[ψa]] (by inferential correctness). The shallow semantic instantiation
of a w.r.t. Isyn is then given by
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Isem(a) = ([[Σa]] ∩ [[Δ�
a ]], [[C

|∼
Δa

(Σa)]]).

In a finitary context, the strict resp. defeasible content of a can be represented by

the L-propositions [[ϕa]] = [[Σa]]∩ [[Δ�
a ]] resp. [[ψa]] = [[C

|∼
Δa

(Σa)]]. We sloppily use
(ϕa, ψa) to denote Isem(a) = ([[ϕa]], [[ψa]]). Note that [[ψa]] ⊆ [[ϕa]]. We emphasize
that these semantic profiles of arguments are not intended to grasp their full
nature, but only to reflect certain characteristics exploitable by suitable argu-
mentation semantics. We observe that each proposition pair (ϕ, ψ) with ψ ) ϕ
and ψ � ) F can become a shallow instantiation. In fact, because the defeasi-
ble modus ponens is valid, we may set Isyn(a) = ({ϕ, ϕ � ψ}, ψ) and obtain
Isem(a) = (ϕ, ψ). The above handling of necessities implies that the only other
possibility for Isem(a) is here (F,F).

The next step is to interpret the abstract framework structure A by suitable
relations over the instantiated arguments. While our semantic tools have a much
broader scope, here we will consider only attack links a � b. To simplify the
discussion, we focus on minimal syntactic instantiations of the form I(a) =
Isyn(a) = ({ϕa, ϕa � ψa}, ψa) with ψa ) ϕa, hence Isem(a) = (ϕa, ψa). Let
ΔI = {ϕa � ψa | a ∈ A}. Each a ∈ A therefore induces a ranking constraint
R(ϕa∧ψa)+1 ≤ R(ϕa∧¬ψa). To create a uniform semantic perspective we may
therefore try to exploit the ranking semantics also to interpret the attack graph.
That is, given I, the idea is to map the full attack structure A to a suitable
collection of ranking measures verifying ΔI .

So, let a, b be two arguments with a � b and Isem(a) = (ϕa, ψa), Isem =
(ϕb, ψb). On the semantic level, if there are no explicit priorities, the attack
should indicate an actual conflict between the defeasible contents of a and b.
Hence we have to impose at leastR(ψa∧ψb) =∞. Now there are two possibilities.
If the strict contents are incompatible as well, i.e. if R(ϕa∧ϕb) =∞, the conflict
becomes symmetric. If R(ϕa ∧ ϕb) �= ∞, it follows from R(ψa ∧ ψb) = ∞ that
R(ψa∧¬ψb|ϕa∧ϕb) = R(ψa|ϕa∧ϕb) and R(¬ψa∧ψb|ϕa∧ϕb) = R(ψb|ϕa∧ϕb).
These two conditional ranking values state the degree of surprise, relative to the
common context ϕa ∧ ϕb, of exclusively concluding ψa, resp. ψb. If ψa is here
less surprising than ψb, we may interpret this as a one-sided attack from a on b,
similarly for the converse. If on the other hand their ranks turn out to be equal,
we get a balanced mutual attack.

Definition 4.1 (Ranking instantiation models). Let A = (A,�) be a Dung
framework, I a shallow semantic instantiation over A with I(a) = (ϕa, ψa), and
R a ranking measure over BL. For a, b ∈ A, we set a�R

I b iff R(ψa∧ψb) =∞ and
R(ψa|ϕa ∧ ϕb) ≤ R(ψb|ϕa ∧ ϕb). Then we call (R, I) a ranking (instantiation)
model for A iff R |=rk ΔI = {ϕa � ψa | a ∈ A} and for all a, b ∈ A, a � b iff
a�R

I b. Let RA be the collection of ranking models for A.

That is, the semantic-based attack relation �R
I specified by (R, I) has to cor-

respond exactly to the abstract attack relation �. Each A = (A,�) obviously
admits many ranking models (R, I), obtained by varying the ranking values or
the proposition pairs associated with the abstract arguments. Note that for each
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1-loop a � a, R(ψa ∧ ψa) = ∞ = R(ϕa ∧ ψa) + 1 ≤ R(ϕa ∧ ¬ψa) = ∞, hence
R(ϕa) = ∞. That is, the collection of ranking models doesn’t change if we add
or drop attack links between a self-reflective and another argument because the
details are absorbed by the impossible joint context. If A and A′ share the same
1-loops and the same attack structure over the other arguments, RA = RA′

.
What about classical types of attack? If we focus on the actual semantic

content, rebuttal is characterized by incompatible defeasible consequents, and
undermining by a defeasible consequent conflicting with a strict antecedent. In
the ranking context, these two types of attacks may be modeled by constraints
expressing necessities. The straightforward definitions are as follows. Recall that
ψa ) ϕa, ψb ) ϕb.

a rebuts b: R(ψa ∧ ψb) =∞, e.g. if ψa ) ¬ψb.
a undermines b: R(ψa ∧ ϕb) =∞, e.g. if ψa ) ¬ϕb.

In our simple semantic reading, undermining entails rebuttal because ψb ) ϕb.
There are four qualitative attack configurations involving two arguments: ϕa ∧
ϕb being compatible with neither, one, or both of ψa, ψb. If a asymmetrically
undermines b, we have R(ψa ∧ ϕb) =∞ and R(ψb ∧ ϕa), R(ϕa ∧ ϕb) �=∞. This
implies R(ψb|ϕa ∧ ϕb) < R(ψa|ϕa ∧ ϕb) = ∞, i.e. b �R

I a and a ��R
I b according

to our attack semantics. It follows that undermining has no obvious ranking
semantic justification if the defeasible claim entails the antecedent. Also note
that rebuttal is compatible with, and entailed by, symmetric and asymmetric
attacks.

5 Ranking Extensions

Ranking (instantiation) models offer new possibilities to identify reasonable ar-
gumentative positions. Let (R, I) be a ranking model for the framework A =
(A,�). In the context of (R, I), a minimal requirement for aceptable argument
sets S ⊆ A are coherent premises, i.e. the doxastic possibility of the joint an-
tecedents ϕS = ∧a∈Sϕa w.r.t. R, or R(ϕS) �=∞. This excludes self-attacks, but
not conflicts within S. Because evidence should not be rejected without good
reasons, the maximal coherent S ⊆ A are of particular interest and constitute
suitable background contexts when looking for extensions. Each E ⊆ S then
specifies a proposition given by

ψS,E := ϕS ∧ ∧a∈Eψa ∧ ∧a∈A−E¬ψa.

ψS,E characterizes those worlds verifying the strict content of the a ∈ S and
exactly the defeasible content of the a ∈ E. Because a �R

I b implies R(ψa ∧
ψb) = ∞, any conflict a � b in E makes ψS,E impossible. Note however that
R(ψS,E) = ∞ may also result from non-binary conflicts, or a specific choice of
logically dependent ϕa, ψa.

What are the most reasonable extension candidates E ⊆ S ⊆ A according to
(R, I)? One idea is to focus on those E which induce the most plausible ψS,E

for all their maximal coherent supersets S.
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Definition 5.1 (Ranking extensions). Let (R, I) be a ranking model for
A = (A,�). E ⊆ A is called a ranking-extension of A w.r.t. (R, I) iff there are
maximal coherent S ⊆ A with E ⊆ S, and for all such S, and for all E′ ⊆ S,
R(ψS,E) ≤ R(ψS,E′).

While this specification looks rather decent, a cause of concern may be the
great diversity of ranking models (R, I) available for any given A. Consider for
instance A = ({p, q, r}, {(p, q), (q, r)}), i.e. p� q � r. A together with a shallow
instantiation I then induces ranking constraints described by the conditionals in

ΔA,I = {ψp ∧ ψq � F, ψq ∧ ψr � F, ϕp ∧ ϕq � ψp,
ϕq ∧ ϕr � ψq, ϕp � ψp, ϕq � ψq, ϕr � ψr}.

If we assume that the ϕx, ψx are logically independent, ΔA,I admits a unique
justifiably constructible model, which is also the JZ and ME-model: RA,I

jz

RA,I
jz = R0 +∞[ψp ∧ ψq] +∞[ψq ∧ ψr] + 1[ϕp ∧ ϕq ∧ ¬ψp] + 1[ϕq ∧ ϕr ∧ ¬ψq] +

1[ϕp ∧ ¬ψp] + 1[ϕq ∧ ¬ψq] + 1[ϕr ∧ ¬ψr].

Because S = A is coherent, there are eight extension candidates and we have
RA,I

jz (ψA,{p,r}) = 2 < 3 = RA,I
jz (ψA,{p}) = RA,I

jz (ψA,{q}) < 4 = RA,I
jz (ψA,{r}) <

5 = RA,I
jz (ψA,∅) < ∞ for the doxastically possible alternatives. Hence, the re-

sulting ranking extension is {p, r}, which is also the standard Dung solution.
However, if the choice of the extension generating ranking model (R, I) only

presupposed the validation of ΔA,I , we could pick up R = RA,I
jz +∞[ψp∧ψr∧ϕq]

such that R(ψp ∧ ψr ∧ ϕq) = ∞, resp. I so that ψp ∧ ψr ∧ ϕq ) F . But under
both conditions, the minima would then become R(ψA,{p}) = R(ψA,{q}) = 3,
imposing the ranking extensions {p}, {q}. Because of R(ψA,{p,r}) =∞, the stan-
dard extension {p, r} would necessarily be rejected. But this violates a hallmark
of abstract argumentation, namely the support of unattacked arguments like p.
From this it follows that we have to prioritize the choice of ranking models to
implement a reasonable ranking extension semantics.

The idea is now to choose on one hand a well-justified canonical ranking
measure model of the default base ΔA,I as our doxastic background, e.g. the
JZ-model RA,I

jz , and to focus on the other hand on the most generic instan-
tiations of a given framework A. In particular, we stipulate by default that
the syntactic instantiations of individual arguments are logically independent,
modulo possible constraints imposed by the framework structure (e.g. loops).
Furthermore, Ockham’s razor suggests to choose the simplest possible instan-
tiations. We can implement this by using disjoint vocabularies for instantiat-
ing different abstract arguments, and by relying on elementary instances of
the defeasible modus ponens for the corresponding inference pairs. That is,
we introduce for each a ∈ A independent propositional atoms Xa, Ya and set
Isyn(a) = ({Xa} ∪ {Xa � Ya}, Ya). The corresponding generic semantic in-
stantiation is then I(a) = (ϕa, ψa) = (Xa, Xa ∧ Ya). Note that up to boolean
isomorphy, such a generic I is completely characterized by the cardinality of A.

Thus, if we fix a generic instantiation I, A specifies a default base ΔA de-
scribing the relevant ranking constraints.
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ΔA = {ϕa � ψa | a ∈ A} ∪ {ψa ∧ ψb � F | a� b or b� a}
∪{ϕa ∧ ϕb � ψa | a� b, b �� a}.

If the indices a� b and a�/� b indicate one-sided resp. any-sided attacks, the
unique justifiably constructible ranking measure model of ΔA is

RA
jz = R0 +Σa ��a1[ϕa ∧ ¬ψa] +Σa�a∞[ϕa ∧ ¬ψa] +Σa�b1[ϕa ∧ ϕb ∧ ¬ψa] +

Σa�/�b∞[ψa ∧ ψb].

Because the {Xa, Ya} are logically independent for distinct a, and the defaults
expressing an attack a � b just concern ϕa ∧ ϕb, only those ϕa with a � a be-
come impossible. In fact, {ϕa � ψa, ψa ∧ ψa � F} )rk ϕa � F . Hence, in line
with intuition, (RA

jz , I) trivializes exactly the self-defeating arguments. Assum-
ing genericity, A− = {a ∈ A | a �� a} is therefore the only maximal coherent
subset of A. Note that (RA

jz , I) doesn’t necessarily characterize A. For instance,
A = ({a, b}, {(b, a), (a, a)}) and A′ = ({a, b}, {(b, a), (a, b), (a, a)}) both produce
the same RA

jz = RA′
jz = R0 +∞[ϕa] + 1[ϕb ∧ ¬ψb]. We are now ready to specify

our JZ-evaluation semantics. Note that all the generic I are equivalent.

JZ-evaluation semantics:
Ejz = {E ⊆ A | E is a ranking extension w.r.t. (RA,I

jz , I) for any/all generic I}.

There is a simple way to identify the JZ-extensions through extension weights.

Definition 5.2 (Extension weight). For each argumentation framework A =
(A,�), the extension weight function rA : 2A → [0,∞] is defined as follows:
If E is conflict-free, rA(E) = |A−−E|+ |{a ∈ A−−E | ∃b ∈ A−(a�b∧b ��a)}|,
if not, rA(E) =∞.

It is not too difficult to see that rA(E) = RA,I
jz (ψA−,E). Hence, E ∈ Ejz(A) iff

rA(E) = min{rA(X) | X ⊆ A}. That is, the JZ-extensions are those where the
sum of the number of non-reflective non-extension arguments and the number
of one-sided attacks starting from them is minimal.

6 Examples and Properties

To get a better understanding of the ranking extension semantics and its position
in the space of extension concepts, let us first take a look at how it handles some
basic examples. Because of its uncommon semantic perspective and its partly
quantitative character, we will see some unorthodox behaviour. Under instanti-
ation genericity, it is enough to compare RA(ψA−,E) for E ⊆ A−, or to focus on
1-loop-free frameworks. For each instance, we specify the domain A and the full
attack relation �. ψA−,{x1...xn} is abbreviated by ψx1,...,xn resp. ψ∅.

Simple reinstatement: {a, b, c} with a� b� c.

The grounded extension {a, c} is the canonical result put forward by any stan-
dard acceptability semantics. The unique JJ-model, i.e. the JZ-model R of ΔA,I ,
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satisfies R(ψa) = R(ψb) = 3, R(ψc) = 4, R(ψa,c) = 2, and R(ψ∅) = 5. The other
candidates all get rank ∞. Because R(ψa,c) is minimal, {a, c} is the only JZ-
ranking extension, i.e. Ejz(A) = {{a, c}}.

3-loop: {a, b, c} with a� b� c� a.

Semantics under the admissibility dogm reject {a}, {b}, {c}, only ∅ is admissible.
But the JZ-model R verifies R(ψa) = R(ψb) = R(ψc) = 4 < 5 = R(ψ∅). Be-
cause all the alternatives are set to ∞, our ranking extensions are the maximal
conflict-free sets {a}, {b}, {c}, i.e., Ejz clearly violates admissibility.

Attack on 2-loop: {a, b, c} with a� b� c� b.

We have R(ψ∅) = 4, R(ψa) = 2, R(ψb) = R(ψc) = 3, R(ψa,c) = 1, but ∞ for the
others. Here Ejz(A) = {{a, c}} picks up the canonical stable extension.

Attack from 2-loop: {a, b, c} with b� a� b� c.

We get R(ψ∅) = 4, R(ψa) = 3, R(ψb) = 2, R(ψc) = 3, R(ψa,b) = R(ψb,c) = ∞,
and R(ψa,c) = 2. Thus, Ejz(A) = {{b}, {a, c}} collects the stable extensions.

3,1-loop: {a, b, c} with a� a� b� c� a.

E = ∅ is here the only admissible extension. The maximal coherent set is
A− = {b, c}, and we get R(ψb) = 1, R(ψc) = 2, as well as R(ψ∅) = 3. It fol-
lows that Ejz(A) = {{b}}, rejecting the stage extension {c}.

3,2-loop: {a, b, c} with b� a� b� c� a.

We have R(ψ∅) = 5, R(ψa) = 4, R(ψb) = 3, and R(ψc) = 3, i.e. Ejz(A) =
{{b}, {c}}. The stable extension {b} is the only admissible ranking extension.

The previous examples show that the ranking extension semantics Ejz diverges
from all the other major proposals found in the literature. It may look as if the
main difference is its more liberal attitude towards some non-admissible, but still
justifiable extensions. However, the semantics is more exotic than this. Consider
the following examples, where we indicate the minimal extension weights rA(E).

2-loop chain: {a, b, c}, b� a� b� c� b : r({a, c}) = 1 < 2 = r({b}).

Splitted 3-chain: {a, b, c, d}, a� b� c, a� d� c : r({a, c}) = r({b, d}) = 4.

Spoon: {a, b, c, d}, a� b� c� d� c : r({a, d}) = r({a, c}) = r({b, d}) = 3.

The first example documents the rejection of a stable extension, namely {b}.
The second one shows the impact of quantitative considerations when dealing
with a splitted variant of simple reinstatement. The third instances illustrates
the coexistence of two stable extension with a non-admissible one. This shows
that even attack-free a can be questioned. Thus, the above ranking semantic in-
terpretation of argumentation frameworks deviates considerably from standard
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accounts and expectations. Let us now see how Ejz handles some common prin-
ciples for extension semantics.

Isomorphy. f : A ∼= A′ implies E(A′) = f ′′E(A).

Conflict-freedom. If a, b ∈ E ∈ E(A), then a �� b.

CF-maximality. If E ∈ E(A), then E is a maximal conflict-free subset of A.

Inclusion-maximality. If E,E′ ∈ E(A) and E ⊆ E′, then E = E′.

Reinstatement. If E ∈ E(A), a ∈ A, and for each b � a, there is an a′ ∈ E
with a′ � b, then a ∈ E.

Directionality. Let A1 = (A1,�1),A2 = (A2,�2) be such that A1 ∩ A2 = ∅,
�0 ⊆ A1×A2, A = (A1∪A2,�1∪�0∪�2). Then E(A1) = {E∩A1 | E ∈ E(A)}.

Theorem 6.1 (Basic properties).
Ejz = Ejj verifies isomorphy, conflict-freedom, inclusion maximality, and CF-
maximality. It falsifies reinstatement and directionality.

The first four features are easy consequences of the Ejz-specification. The viola-
tion of reinstatement directly follows from how the semantics handles 3-loops.
The spoon example documents the failure of directionality if we set A1 = {a, b}.
But this property also fails for other prominent approaches, like the semi-stable
semantics. Note however that it can be indirectly enforced by using Ejz as the
base function for an SCC-recursive semantics [2].

The following properties are inspired by the cumulativity principle for non-
monotonic reasoning. They state that if we drop an argument rejected by every
extension, then this shouldn’t add or erase skeptically supported arguments.

Rejection cumulativity: (A|B here means A restricted to B.)
– Rej-CUT : If a �∈ ∪E(A), then ∩E(A|A− {a}) ⊆ ∩E(A).
– Rej-CM : If a �∈ ∪E(A), then ∩E(A) ⊆ ∩E(A|A− {a}).

Although our semantics relies on default inference notions verifying cumulativity
at the level of L, it nevertheless fails to validate these postulates.

Theorem 6.2 (No rejection cumulativity). Ejz violates Rej-CUT, Rej-CM.

The counterexample for Rej-CUT is provided by b� c�a� b�a, because {b} �⊆
{b}∩{c}. The one for Rej-CM is obtained by adding c� b. Here {c} �⊆ {b}∩{c}.

Another idea for combining plausibilistic default reasoning and argumentation
theory has been presented in [7]. It combines defeasible logic programming with
a prioritization criterion based on System Z. While it handles some benchmarks
better than the individual systems do, its heterogeneous character makes it hard
to assess. It doesn’t share our goal to seek a plausibilistic semantics for abstract
argumentation and also seems to produce different results even in the generic
context. It is unclear whether replacing system Z could help.

We have shown how the ranking construction paradigm for default reasoning
can be exploited to interpret abstract argumentation frameworks and to specify
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corresponding extension semantics if we focus on generic R and I. We have in-
vestigated the simplest semantic instantiations, where arguments are essentially
interpreted as pairs of strict and defeasible content. Our basic ranking exten-
sion semantics Ejz has interesting properties, but it also exhibits a non-orthodox
behaviour which needs further exploration. However, our new semantic perspec-
tive appears to be a good starting point for more sophisticated proposals, able
to meet further demands.
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