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Abstract. Workflows in modern healthcare systems are becoming in-
creasingly complex and their execution involves concurrency and sharing
of resources. The definition, analysis and management of collaborative
healthcare workflows requires abstract model notations with a precisely
defined semantics and a support for compositional reasoning. We use the
formalism of component-based timed-arc Petri Nets (CTAPN) for modu-
lar modelling of collaborative healthcare workflows and demonstrate how
the model checker TAPAAL supports the verification of their functional
and non-functional requirements. To this end, we use CTAPN to define
the semantics of the healthcare domain specific graphical notation Little-
JIL, extended with timing constrains, and apply it to the case study of
blood transfusion. The value added in general, and to Little-JIL in par-
ticular, is the formal support for modelling, analysis and verification with
the explicit treatment of the timing aspects.

1 Introduction

It is now a global quest to solve the pressing problems of the constantly grow-
ing demand with limited resources in providing people with safer, more ef-
fective, more patient centered, and more timely, efficient and equitable health
systems. The advances in computing and communication technologies provide
the potential for solutions by developing integrated health information systems
(IHIS) aimed at providing effective support to secure sharing of information and
resources across different healthcare settings and collaborative healthcare work-
flows among different care providers. However, the workflows to provide health-
care within an integrated system become more complex than the traditional
sequential processes with standalone systems. Their execution involves concur-
rency and sharing of resources through synchronization and interaction. They are
obviously safety critical, with several non-functional performance prerequisites
including timing requirements on top of the functional requirements. Workflow
definitions, analysis and management need abstract model notations that have a
precisely defined semantics and we need to develop techniques for compositional
design and verification in order to ensure their correctness.

Due to the business models and practice of health organizations and health-
care professionals, hospitals and doctors in particular, a rigorous validation and
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automation of the healthcare processes and workflows are often lacking behind.
While formal modelling, validation and automation of general workflows have
been an active area of research (see e.g. [6, 22, 25–28]), there has been less work
done in the area for healthcare workflows [4,14,18,19,21]. In particular, there is so
far only limited effort in the development of healthcare domain specific modelling
notations with tool support for workflows. Such a generally accepted notation
would form an important step towards the application of formal techniques and
tools for modelling and validation in the area of healthcare. According to our
knowledge, one of the few established healthcare-domain modelling notations is
Little-JIL [29]. It is based on a graphical notation jointly developed by experts
in software engineering and healthcare professionals.

There is no formal abstract semantics defined for Little-JIL. Instead, a com-
piler is developed to translate a Little-JIL model into a finite-state machine
(FSM). Simulation of a workflow is done by executing the finite state machine.
and properties of a workflow are specified as a property of the state machine,
instead of its direct formulation in Little-JIL notation, and FSM-based model
checkers can be used for the verification of requirements. The main drawback of
Little-JIL semantics (via its associated FMS formalism) is the lack of hierarchy,
thus there is no support for modular (compositional) modelling and verification.
Furthermore, there is only a limited support for timing in Little-JIL (expressed
via durations) and the timing aspects are not reflected in the FSM semantics.

We propose a new semantical approach for Little-JIL workflows based on
Component Timed-Arc Petri Nets (CTAPNs), a component-based version of
Petri nets where timing information is attached to tokens. A CTAPN sup-
ports modular specification and verification in general and has an efficient model
checker called TAPAAL [9] implementing all the necessary modelling features.
In order to demonstrate the suitability of CTAPN for modelling healthcare
workflows, we relate it to Little-JIL by showing how to translate the Little-JIL
flow primitives into CTAPNs. Our main focus is on the representation of non-
functional requirements, mainly the timing; we deliberately stay on a semi-formal
level in our translations instead of the fully formal technical treatment that has
been already developed for untimed workflows (see e.g. [24] for an overview). We
believe that our presentation style will help to highlight the intuition behind the
translation, focusing mainly on the timing aspects.

The translation that we present reflects the graphical similarity of CTAPN
and Little-JIL notations. CTAPN is a natural choice of our modelling notation
also because Petri nets are among the most popular models of workflows in
general [11] and because of the available tool support. Compared to the tradi-
tional Petri net models of workflows, CTAPNs support a simple and intuitive
representation of continuous timing, that is yet expressive enough for describing
advanced timing constraints used in workflows. We use the workflow of blood
transfusion [8], the benchmarking case study of Little-JIL extended with timing,
to illustrate the applicability of our approach.

Related Work. Modelling of workflows using workflow nets is a classical topic (see
e.g. [24–27]), however, as timing is becoming a safety critical aspect of healthcare
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workflows (e.g. blood unit expiration time), extensions of the existing approaches
should be studied. For example in [10, 17] the authors study time constrained
workflow modelling in the formalism of Time Petri Nets (TPN) [20], a different
model than CTAPNs. However, some time requirements like global deadlines, a
feature that can be easily modelled in CTAPNs, have to be precomputed [10] due
to the missing modelling primitives in the TPN model. Other approaches [19,21]
translate timed YAWL workflows into untimed model checkers via the explicit-
time method (clocks are encoded as integers). As advocated by Lamport [16],
such methods can compete with real-time model checkers as long as the constants
used in the models are small. However, this is not always the case for healthcare
workflows—in our case study we used constants of sizes up to 90 and deadlines
above 200 minutes with the average size of nonzero constants being 28 (for
the model with single patient). The advantage of the CTAPN model and its
model checker TAPAAL is that they support real-time verification using the
data structure DBM that is less sensitive to the sizes of the constants [16].

Our earlier work [4] proposes to apply the rCOS model-driven method [7,15]
for modelling healthcare workflows, including the blood transfusion case study
modelled in CSP. No analysis techniques or tool support are studied in [4]. In the
present paper we take the framework one step forward and focus on the modelling
of the process view of the workflow with CTAPN and assess the applicability of
the verification techniques for CTAPN. Another related work [18,23] presents a
different formal approach for modelling and verification of workflows, including
case studies in healthcare. The method and tool is called NOVA. It supports
graphical modelling and implements a translation to DiVinE model checker,
including timing aspects in the form of delays and durations. The approach
considers only discrete time (indirectly simulated in DiVinE) and as remarked
in [18], the required verification time is often unacceptable. State-space reduction
techniques that include timing aspects are currently under investigation.

Finally, we relate our modelling approach to the domain specific language
Little-JIL that already contains a translation into finite-state machines, however,
still without the possibility to verify timing aspects. Citing [8]: “Properties B.9
and B.11 involve real time (e.g. an event needs to happen 15 minutes after
another event). The current version of FLAVERS and PROPEL does not support
real time properties and, thus, we were not able to specify B.9 and B.11 in
PROPEL nor check them with FLAVERS.” To the best of our knowledge, there
is no further published work on tool-supported verification of Little-JIL timing
aspects.

2 Blood Transfusion Case Study and Little-JIL

This section gives an informal introduction to the graphical modelling notation
of Little-JIL. We will use the blood transfusion workflow for illustration and we
start by introducing this case study.
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2.1 Blood Transfusion Case Study

We consider the blood transfusion case study from the Little-JIL benchmark [1].
This medical workflow involves a nurse, a doctor, a blood bank and a patient; we
call them the resources [4]. The patient is required to provide his/her personal
details to the nurse. The nurse then carries out the transfusion procedure: (1)
the nurse checks the patient’s consent with the transfusion; (2) the nurse waits
for a doctor to complete the order; (3) the nurse checks the patient’s blood type
and availability of the blood type in the blood bank; at the same time she books
the transfusion room; (4) the blood product is picked up and the transfusion
starts; (5) the nurse monitors every 15 minutes the patient and checks for any
reaction; (5a) if a reaction occurs, the nurse can try to adjust the IV access; (5b)
if there is still a reaction, the nurse must immediately stop the transfusion and
informs the doctor; (6) when the transfusion is finished, the transfusion room is
released and sterilized and (7) the nurse checks out the patient.

These are only the main steps of the workflow; compensations, exception han-
dling and other details including the timing intervals for all tasks are described
in the Little-JIL notation that we shall now introduce.

2.2 Little-JIL

Little-JIL [29] is a visual language used to describe the order and communi-
cation between its steps with a particular focus on healthcare workflows. The
basic building constructs of Little-JIL are shown in Figure 1. The small circles
represent the interface of each activity together with its name and the subactiv-
ities are to be interpreted from left to right. In this short overview we represent
all Little-JIL primitives in their binary form only1 and we focus mainly on the
flow primitives. Full treatment of the syntax can be found in Little-JIL 1.5 lan-
guage report [29]. We equip the Little-JIL constructs with more refined timing
aspects so that the activities have an execution interval, expressing the uncer-
tainty in the exact duration of the activity, and constructs like iteration allow
for time-guarded executions.

A Little-JIL model consists of a finite set of rooted diagrams. Each diagram
is either an atomic activity (see Figure 1(a)) together with a time interval [L,U]
where L is the shortest and U the longest execution time of the activity. Activ-
ities can be also exported (calling subactivities specified in separate Little-JIL
diagrams) as indicated by the arrow on the external activity presented in Fig-
ure 1(b). An activity step can also raise exceptions. In this case a label E:
<exception name> is displayed below the step box like in Figure 1(c). If the
present activity cannot be successfully finished, an exception is raised, the con-
trol flow is interrupted, and the exception is passed to the corresponding excep-
tion handler. The remaining flow primitives are as follows. Figure 1(d) shows
the choice constructor. When the choice is activated only one of the sub-steps is
executed. Figure 1(e) shows the parallel constructor of two steps. In this case all

1 The syntax can be in a straightforward manner extended to multiple subactivites.
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A
[L,U ]

(a) Atomic activity

A ↗

(b) External activity

A
[L, U ]

E:name

(c) Exception raising

A
−◦−

A1 A2

(d) Choice activity

A
=

A1 A2

(e) Parallel activity

A
→

A1 A2

(f) Sequential activity

A
×→

A1 A2

(g) Try activity

A

frequency F
time-bound B

+

(h) Iteration activity

A
×

A1 A2

E:name

E:name

(i) Exception handling

Fig. 1. Little-JIL workflow primitives

sub-steps are executed concurrently and the parallel activity terminates as soon
as all its subactivities terminated. Figure 1(f) shows the sequential constructor
of two steps that are executed sequentially from left to right. Figure 1(g) shows
the try constructor that allows to try the sub-steps from left to right until one of
them succeeds and then the try activity terminates too. Figure 1(h) shows the
iteration constructor where the activity A is repeatedly executed every F time
units until its overall duration reaches the bound B. Then the iteration activity
terminates. Figure 1(i) shows the exception constructor. The exception handler
is also a sub-step but it is specified on the right of the step bar and its scope is
for all subactivities, including the exported ones. This is an important feature
of Little-JIL since workflows in general handle many exceptions.

3 Modelling of Little-JIL Workflow in TAPN

We shall now introduce component timed-arc Petri nets (CTAPN) and present
a compositional translation of Little-JIL constructs into the timed nets.

3.1 Introduction to Component Timed-Arc Petri Nets

Petri nets are a graphical formalism for conceptual modelling of distributed
systems. We use a particular real-time extension of Petri nets called Timed-Arc
Petri Nets (TAPN) [5,12] where an age (nonnegative real number) is associated
to every token in the net and input arcs carry time intervals that restrict the
ages of tokens suitable for transition firing.
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P0

0

P1

inv: ≤ 5

P2

P3 P4

P5

T1

T2 T3 T4

T5

[0, 5]:1

:1

[5,∞):1

:1

[0, 10]:1

:1

[1, 3] [2, 4]

[3, 5]

Fig. 2. A TAPN Model of a Simple Workflow

We shall first informally introduce the model. A fully formal treatment of
this model can be found e.g. in [13]. Figure 2 shows a simple TAPN model
of a workflow process. The net consists of six places drawn as circles and five
transitions drawn as rectangles. The arrows depict different types of arcs that
connect either places to transitions (input arcs) or transitions to places (output
arcs). The dynamics of the net is described by markings, i.e. distributions of
tokens, each with its own time-stamp (age), in the places of the net. In our
example there is one token of age 0 in place P0. If tokens of suitable ages are
present in all places connected by input arcs to a given transition, the transition
gets enabled and it can fire with the effect of consuming one token of appropriate
age from every input place and producing tokens to all places connected with
the transition via output arcs. Alternatively, the net can perform a delay where
all tokens in the net grow older by a given time delay (real number).

In the extended TAPN model we can identify three types of arcs: normal arcs,
transport arcs and inhibitor arcs. Normal arcs are drawn using a simple arrow
tip. Moreover, normal arcs from places to transitions, like the one from place P2
to transition T 4, carry time intervals restricting the ages of tokens that can be
consumed by these arcs. Output arcs do not have any associated time interval
as the newly produced tokens are by default of age 0. A pair of transitions
with diamond-shaped arrow tips, like e.g. from P0 to T 1 and further to P1,
represent transport arcs where the symbol :1 indicates the pairing of input and
output transport arcs (in principle there may be several pairs of transport arcs
associated with the same transition). The intuition is that once a token is moved
along a pair of transport arcs, its age is preserved and not reset. As the whole
left-side path from P0 to P5 consists of only transport arcs, this allows us to
measure the total running time of the net since its initialization. Finally, the arc
with a circle tip between P3 and T 3 represents an inhibitor arc. A presence of
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at least one token in P3 disables the firing of the transition T 3 but if the place
P3 is empty then T 3 is enabled (provided that P2 has at least one token of age
between 1 and 3) and then the inhibitor arc has no effect on its firing. Notice
also that the place P1 contains the age invariant ≤ 5, meaning that only tokens
of age at most 5 are allowed in this place. If there is at least one token of age 5
in P1 then no further delay transitions are possible and the net is forced to fire
some of its currently enabled transitions.

The workflow net can be executed for example as follows. The first task repre-
sented by the transition T 1 can be performed within the first five time units. If
its deadline is missed (which is a valid behaviour of the net) then only time delay
transitions are possible and the token in place P0 is then called dead. Assume that
the first task is executed at say 4.5 time units. Then the token of age 4.5 is moved
from P0 to P1 and a new token of age 0 is produced into P2. Clearly, none of the
transitions is enabled but if we wait 0.5 time units (the maximum allowed time
delay due to the age invariant in P1) then the transition T 2 can fire (simulating
the execution of the second task) and move the token of age 5 from P1 to P3. In
this particular scenario, the age of the token in P2 is now 0.5 and hence no further
transitions are currently enabled. However, after say 1.5 time units, T 4 can fire,
leaving us with one token of age 0 in P4 and one token of age 6.5 in P3. Note that
the workflow has in principle a choice between executing the third or fourth task
(represented by transitions T 3 and T 4), however, in this concrete execution T 3 is
disabled due to the presence of a token in P3. After the delay of another 3 time
units, the last task represented by T 5 can be finally executed, producing a token
of age 9.5 into the final place P5, and the workflow successfully terminates.

During the modelling of larger systems it is often the case that the net becomes
too large to provide an effective overview of the structure of the model. In order
to overcome this problem, we consider a simple component-based extension of
the model. Here we divide the design into a number of smaller components
(essentially workflow patterns) with a clearly defined interface in terms of shared
places and transitions. An example of a Petri net consisting of three components
is given in Figure 3. Here the transition T is shared between the components
C1 and C2 and the place P is shared between C2 and C3. Before the actual
analysis of the component-based model, we create a single net by merging the
shared places and transitions. This is demonstrated in the lower part of Figure 3.

3.2 Translation of Little-JIL Primitives to CTAPN

We shall now present a translation of Little-JIL workflow constructs extended
with explicit timing information into CTAPN. For each Little-JIL activity A
we construct a timed workflow net (see e.g. [10, 17, 24–27]), a special form of a
timed-arc Petri net, where

– there is exactly one input place called startA that has no input arcs, and
– a number of output places including endA and optionally also other places2

for modelling failed executions and exceptions such that all output places
have no outgoing arcs.

2 An extension to the standard workflow nets that only contain one output place.
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[2, 10]
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[4, 9]

[1, 3]

C1 C2 C3

⇓ net composition

0

T
[1, 3]

0

P
[2, 5]

[2, 10]

0

[4, 9]
[1, 3]

Fig. 3. Components C1, C2 and C3 and the Composed Net

For the external activity call (Figure 1(b)) the input and output places are shared
and the activity is modelled in a separate component. In this way the whole net
is decomposed into several components that are manageable (usually fit on one
screen) and they are composed automatically before the verification of workflow
properties is initiated.

We say that a net is statically sound if all places and transitions are on a path
from the input place to some of the output places. A net is dynamically sound if
during any execution starting with a marking having a token in the input place,
we eventually reach a marking where one of the output places is marked. Note
that a statically sound net is not necessarily dynamically sound. We show how
to automatically verify dynamical soundness in Section 4. Statical soundness is
guaranteed by the compositional construction of the workflow nets.

We say that [L,U ], where L ≤ U , is the execution interval of a timed workflow
net if L is the shortest and U the longest time needed to move a single token
from the input place to some of the output places. Note that if a net is not
dynamically sound, the execution interval is not well defined.

We shall now provide the details of the translation for building statically
sound workflow nets for the Little-JIL constructs.

Atomic Activity. A timed workflow net corresponding to the atomic activ-
ity (Figure 1(a)) is depicted in Figure 4. The presence of the invariant ≤ U
guarantees that the activity is executed no later than U time units since its ini-
tialization and the interval on the arc ensures that this does not happen earlier
than at time L. Hence we get the following property.



Verification of Timed Healthcare Workflows Using CTAPNs 27

startA

inv: ≤ U

endAexecute A
[L,U ]

Fig. 4. Atomic activity

startA

inv: ≤ 0

endA

fork1

fork2

join1

join2

duration

startA1
endA1

inv: ≤ 0

startA2 endA2

inv: ≤ 0

[0, 0]

[0, 0]

[0, 0]

[0,∞)

[0, 0]

[0,∞)

Fig. 5. Alternative activities

Property 1. The execution interval of the net for atomic activity A is [L,U ].

Note that the input and output places are shared so that they can be composed
with other coordinating activities.

Alternative Activities. Figure 5 describes the choice between two alternatives
of the Little-JIL diagram in Figure 1(d). The place duration is used to measure
the current execution time (represented by the age of a token in this place) of the
choice activity. A monitor (see Subsection 3.3) connected to the place duration
can be used to detect a possible deadline violation.

Property 2. Let [L1, U1] and [L2, U2] be the execution intervals of the activ-
ities A1 and A2, respectively. The execution interval of the net for alternative
activities is [min{L1, L2},max{U1, U2}].
Proof. From the initial marking that contains one token in place startA we have
to, without any further delay due to the invariant ≤ 0, fire either the transition
fork1 or fork2. This initiates the subnets for the activity A1 or A2. When these
are finished, again due to the invariants ≤ 0 in places endA1 and endA2 we have
to without any delay fire the transition join1 or join2. The lower and upper
bounds of the execution interval are clearly the minimum and the maximum of
the corresponding bounds for the activities A1 and A2. ��

Parallel Activities. Parallel Little-JIL activities (Figure 1(e)) are modelled by
the net in Figure 6. Here the subnets for the activities A1 and A2 are initiated
concurrently by firing the transition fork. A duration place is added as before for
the monitoring of the total duration of the parallel activities. There is added a
mechanism that ensures that the place endA is marked as soon as both parallel
subtasks terminate.
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startA

inv: ≤ 0

endA

fork
finish1

finish2 done1

done2

join1

join2

startA1
endA1

inv: ≤ 0
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inv: ≤ 0

duration
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[0, 0]

[0, 0]
[0, 0] [0,∞)

[0, 0]

[0,∞)
[0,∞)

[0,∞)

Fig. 6. Parallel activities

Property 3. Let [L1, U1] and [L2, U2] be the execution intervals of the activities
A1 and A2, respectively. The execution interval of the net for parallel activities
is [max{L1, L2},max{U1, U2}].
Proof. Notice that due to the age invariant ≤ 0 at place startA the two parallel
activities are initiated without any delay. The construction connected to the end
states for the two parallel activities ensures that a join happens as soon as both
parallel activities mark their output places. Assume w.l.o.g. that the first subnet
terminates first and marks the place endA1 . Without further delay (imposed
by the invariant ≤ 0 at place endA1) the transition finish1 must be fired; note
that the transition join1 is not enabled. No other transitions are enabled until
the subnet for A2 terminates by placing a token into the place endA2 . In this
case the transition finish2 is not enabled due the the inhibitor arc and the fact
that done1 already contains a token. Hence, without any further delay, the only
option is to fire the transition join2 and mark the output place of the activity
net for A (and at the same time consume the token from the place duration). ��

Sequential Activities. Figure 7 shows how a diagram A consisting of two
sequential Little-JIL activities A1 and A2 (described in Figure 1(f)) can be
modelled as a timed workflow net. The point is that the first activity is activated
immediately and the age of the token in the place duration1 can be used to
measure the duration of the first activity. When the first activity is finished, the
second activity is initiated without any delay. At the same time the token from
duration1 is moved using the transport arcs to the place duration1+2 and its
age in this place corresponds to the total duration of the first activity plus the
current duration of the second activity. As mentioned before, a monitor can be
attached to this place in order to check for the violation of deadlines.

Property 4. Let [L1, U1] and [L2, U2] be the execution intervals of the activities
A1 and A2, respectively. The execution interval of the net for sequential activities
is [L1 + L2, U1 + U2].

Proof. Due to the presence of the invariant ≤ 0 in the place startA, the first
activity is initiated without any delay. When it is finished, thanks to the invariant
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startA

inv: ≤ 0

start A1 duration1 start A2 duration1+2 finish A2
endA

startA1 endA1

inv: ≤ 0

startA2 endA2

inv: ≤ 0

[0, 0] [0,∞):1 :1

[0, 0]

[0,∞)

[0, 0]

Fig. 7. Sequential activities

startA

inv: ≤ 0

start A1 duration finish A1
endA

finish A2

startA1
endA1

inv: ≤ 0

startA2
endA2

inv: ≤ 0

failA1

inv: ≤ 0

try A2

[0, 0] [0,∞):1 :1

[0, 0] [0, 0]

[0, 0]

[0,∞)

Fig. 8. Try A1 else execute A2

≤ 0 in place endA1 , the second activity is initiated without any delay and because
of the last invariant ≤ 0 at the place endA2 , the whole workflow finishes in the
time corresponding to the sum of the durations of the two activities. ��

Try Activity. In the translation of the try construct (Figure 1(g)) presented
in Figure 8, we first start with the execution of the first activity and if it ends
successfully the whole try activity ends. If the first activity fails, we execute
without any delay the second activity as an alternative. We assume that the net
for the first activity A1 contains a special output place failA1

that gets marked
whenever its execution fails.

Property 5. Let [L1, U1] and [L2, U2] be the execution intervals of the activities
A1 and A2, respectively. The execution interval of the net for try activity is
[L1, U1 + U2].

Proof. Clearly the first activity is called without any delay due to the invariant
≤ 0 at the place startA and within the interval [L1, U1] the first subnet marks
either endA1 or failA1

. In the first case, again without any delay, the place endA

will be marked; in the second case the second activity is initiated without any
delay and the execution of try stops as soon as this activity is finished. Then
clearly the shortest execution time is L1, assuming that the try activity succeeds
on the first subactivity, and the longest one is U1 + U2. ��
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startA

inv: ≤ 0

done

initialize

inv: ≤ B
ready

init A1

wait endA

done A1

finish1

finish2

timer

inv: ≤ F

startA1

endA1

inv: ≤ 0

[0, 0]

[0, B]:1 :1

[0, B]:1:1

[F, F ]

[0, 0]

[0, 0]

[B,∞)

[B,B]

[F, F ]

Fig. 9. Time-bounded iteration activity with frequency F and time-bound B

Time-Bounded Iteration. Figure 9 shows a net modelling the time-bounded
iteration Little-JIL primitive from Figure 1(h). The iteration is parameterized
by a frequency F > 0 and a time-bound B ≥ F . This construct is typically
used in healthcare workflows for repeated monitoring of a patient in a precisely
given interval. The net enforces that the activity A1 is initiated every F units
of time (due to the invariant in the place timer) and that the last activation of
A1 happens no later then B time units from the activation of the iteration net.

After initializing the net and placing a token into the place ready and into
the timer, we delay F time units and start the subactivity A1. The token from
the place ready is moved to the place wait while its age is being preserved; at the
same time the age of the token in the timer is reset to zero. Once the activity A1

is finished, we have to fire (with no delay) the transition done A1 and move the
token from wait to ready (unless the iteration is ended by firing finish1). Thanks
to the transport arcs, the age of the token in ready measures the total execution
time of the iteration activity.

The reader may observe that if the duration of the activity A1 is longer than
the frequency F then the token in the place timer will be removed by firing the
transition done and once the place ready gets marked by firing the transition
done A1, the activation of A1 at the frequency F is broken. We can detect such
a situation via monitors.

Property 6. Let [L1, U1] be the execution interval of the activity A1. The exe-
cution interval of the net for iteration activity is [B,max{B, kF +U1}] where k
is the largest integer such that kF ≤ B.

Proof. The lower bound of B time units is easy to prove as the age of the
token that it moved by the transport arcs between the places ready and wait
corresponds to the total duration of the iteration activity. The workflow can be
terminated by firing either the transition finish1 or finish2 and both of them
require a token of age at least B.
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For the upper bound, we consider two cases. If U1 > F then during the slowest
execution of A1, the token in the place timer will be consumed and once the place
ready gets marked, we can only wait until the total time reaches B and then fire
the transition finish2. Hence the upper bound in this case is B.

If U1 ≤ F then the transition init A1 will be fired regularly after each F
time units until the age of the token in the places ready or wait reaches the age
B. This means that the last time the transition init A1 can be fired is at the
moment kF where k is the largest integer such that kF ≤ B. After that we wait
for the termination of the execution of A1. In the worst scenario this takes U1

time units, so the total execution time is kF +U1 and if this exceeds the bound
B then we are forced to fire immediately the transition finish1 and the longest
execution time is kF + U1. ��

3.3 Additional Workflow Modelling Features

Exception Handling. We handle the exceptions (Figure 1(i)) in a similar way
as the try construct presented in Figure 8. An atomic subactivity of A1 (here
not necessarily only a part of the sequential composition) can raise an exception
E:name by placing a token into a new output place exceptionname. The exception
should be now caught by the first exception handler that covers its scope. As
the nesting of exceptions in Little-JIL is always finite, we can create more copies
of the place exceptionname, one for each scope of the exception handler. The
scopes are then updated dynamically during the computation of the net. As the
scope information is finite, it is not surprising that we can remember its scope in
this way. Nevertheless it is technically challenging to manually model multiple
nested exceptions. In the case study we therefore used only a single nesting of
exceptions that is easily manageable for a human modeller.

Shared Resources with Timing. Little-JIL provides also a mechanism for ac-
quiring and releasing resources. Resources with exclusive access can be modelled
in Petri nets in the standard way; we add here the additional option to measure
the recovery time that has to pass from the time a resource was released until it
can be acquired by another process. For example in our case study two nurses
need to acquire a room for a transfusion and we have to guarantee exclusive
access to the room. Moreover, after the room is released, some other activity
(e.g. sterilization) must be performed before the room is ready for another pa-
tient. We can model this situation as depicted in Figure 10 via shared transitions
acquire1 and release1 used by the first nurse and acquire2 and release2 used by
the second one. It takes at least minReady and at most maxReady time units to
prepare the room for another patient.

Monitors. We use different types of monitors (small nets attached to the work-
flow) in order to observe executions of events and their temporal dependencies.
Figure 11(a) shows how the execution of the event checkID and beginInfusionOf-
BloodProduce can be registered by adding a component that will via shared
transitions add a token to the place IDchecked resp. infusionStarted each time
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room-ready

0

inv: ≤ maxReady

room-not-ready

sterilize

acquire1

release1

acquire2

release2

[0,∞) [0,∞)

[minReady,maxReady]

Fig. 10. Sharing of a resource (transfusion room example)

checkID

IDchecked

beginInfusionOfBloodProduct

infusionStarted

(a) Event registration

duration

inv: ≤ D

timeout

deadlineMissed
[D,D]

(b) Single-activity execution deadline

timer

inv: ≤ D

timeout lateInjection

releaseBloodProduct

beginInfusionOfBloodProduct

[D,D]

[0, D]

(c) Time-bounded response

Fig. 11. Monitors

the corresponding event is executed. Regarding temporal dependencies, observe
that the nets for different Little-JIL primitives have a place (or several places)
called duration. The duration place is marked by a token during the initialization
of the activity and hence the age of the token represents the current execution
time of the activity. We can add a monitor to such a duration place in order
to check for the violation of the execution deadline D. The monitor is depicted
in Figure 11(b) and it is clear that once the execution deadline D is reached,
we are forced to mark the place deadlineMissed. Another type of monitor is
given in Figure 11(c) where we can measure the response time between the
events releaseBloodProduct and beginInfusionOfBloodProduct. Whenever the
event releaseBloodProduct is not within D time units followed by the beginning
of the transfusion, the place lateInjection gets marked.

4 Verification of the Blood Transfusion Case Study

Following the general algorithm presented in Section 3, we translated the blood
transfusion case study described via Little-JIL diagrams into a component timed-
arc Petri net and set up monitors for checking the crucial timing aspects of the
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workflow. The full set of Little-JIL diagrams and the manually created CTAPN
models are available at the URL http://www.tapaal.net in the download sec-
tion. For example, for the single-patient model, the composed net consists of 140
places, 98 transitions and 243 arcs.

We used the model checker TAPAAL [9] for the actual editing and verification
of the CTAPN model. The tool offers a user-friendly GUI with the support for
a fully automatic verification of a subset of TCTL that includes the temporal
operators EF ϕ (a marking satisfying the proposition ϕ is reachable), AG ϕ (the
proposition ϕ is satisfied in any reachable marking), EG ϕ (there is a maximal
computation invariantly satisfying ϕ) and AF ϕ (on every maximal computation
ϕ eventually holds). The formula ϕ consists of a boolean combination of atomic
propositions of the form P ≤ n and P ≥ n where P is a place and n is nonneg-
ative integer, expressing the requirement that the number of tokens present in
the place P is at most, resp. at least n.

We shall now present a selection of the verified queries for the blood transfu-
sion case study; a full list of the queries is available within the TAPAAL model.
Here workflow END is the output place of the main workflow net and the other
places are given in Figure 11. The place called duration corresponds to the
overall duration of the whole workflow.

1. AG (infusionStarted=0 or IDchecked>=1) — ID is always checked at
least once before the transfusion starts.

2. EF (workflow END=1 and deadlineMissed=0)— The workflow can termi-
nate within the deadline D (shortest execution time).

3. AG (workflow END=1 or deadlineMissed=0)— In any scenario the work-
flow terminates within the deadline D (longest execution time).

4. AG lateInjection=0—Late injection never happens (the time from picking
up the blood product until the transfusion starts is not more that D time
units; if D = 30 then this is exactly the B.9 property from the benchmark).

5. AF workflow END=1—Any maximal execution eventually reaches a marking
where the whole workflow terminates (dynamical soundness).

Dynamical soundness implies that there are e.g. no deadlocks, no missing ex-
ception handlers and no improper use of the iteration activity. The temporal
operator AF is a liveness operator and its verification is in general more de-
manding than the reachability and safety properties. We were able to positively
verify this property for the whole workflow net in less than 10 second on a stan-
dard laptop; the other queries were positively verified in less than 1 second.3 By
varying the deadline D (declared as a constant in the net) we found out that the
shortest execution time is 6 minutes (if patient disagrees with the transfusion),
the longest execution time is 153 minutes and the longest time from picking up
the blood product until its injection is 22 minutes (and hence the 30 minute
expiration time imposed by B.9 property is met). Among the other properties

3 All experiments were carried out by the native TAPAAL engines without using
translations to UPPAAL timed automata that are also available in the tool.

http://www.tapaal.net
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we verified, we can e.g. mention that the shortest time of a successful transfu-
sion is 118 minutes and we also successfully verified the property B.11 of the
benchmark (patient is monitored during the transfusion every 15 minutes).

For two patients that share the same transfusion room, we confirmed in less
than 40 seconds its dynamical soundness and verified that the longest execution
time is 286 minutes. However, we found out that the B.9 property is broken.
The tool provided an error trace showing a concrete execution of the workflow
where the time from picking up the blood product until its injection exceeded 30
minutes. By examining the trace, we could easily find the reason: the pre-infusion
activities allow in parallel to book the transfusion room and pick up the blood
from the blood bank; as we might have to wait for the release of the transfusion
room and its sterilization, the blood product can expire. This hints at the fact
that, for more patients, these two activities have to be ordered sequentially.

A detailed comparison of the explicit state-space (discrete) verification meth-
ods and the DBM-based ones is beyond the scope of this paper but on the blood
transfusion case study we can report that for the reachability properties the
DBM-based methods were faster due to the higher constant sizes, whereas for
liveness properties (dynamic soundness) the explicit methods were in this case
considerably faster. A detailed comparison of the different verification methods
is available in [3].

5 Conclusion

We have presented a general translation of medical healthcare workflows de-
scribed in Little-JIL into component timed-arc Petri nets. As for any other
workflow language, Little-JIL semantics can be conveniently given as a work-
flow Petri net via different constructions already described in the literature or
via a direct translation into finite-state machines. The main contribution of our
work is that we systematically model the real-time aspects of Little-JIL work-
flows and this allows us to use the tool TAPAAL for automatic verification of
not only functional but also non-functional requirements as demonstrated on the
blood transfusion case study.

The translation of the blood transfusion case study was performed manually
but we are currently working on an automated tool for importing Little-JIL
diagrams directly into TAPAAL. Another future research will focus on extending
the property specification language and exploring how the technique will handle
even larger case studies, including the possibility of direct code generation for
automatic workflow coordination. On a different note, integrating human-specific
aspects and ethical issues including security policies (like e.g. in OrBac [2]) into
our approach is another challenge for the future work.
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vol. 7721, pp. 69–81. Springer, Heidelberg (2013)
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