
Towards Generic MDE Support for Extracting
Purpose-Specific Healthcare Models from

Annotated, Unstructured Texts

Pieter Van Gorp1, Irene Vanderfeesten1, Willem Dalinghaus1,
Josh Mengerink1, Bram van der Sanden1, and Pieter Kubben2

1 School of Industrial Engineering, Eindhoven University of Technology
{p.m.e.v.gorp,i.t.p.vanderfeesten}@tue.nl

2 Department of Neurosurgery, Maastricht University Medical Center
pieter@kubben.nl

Abstract. Once healthcare-specific models have been captured formally
(i.e., in a metamodel-based language), the application of model
transformation, analysis and code generation techniques is rather straight-
forward. Unfortunately, in many healthcare settings valuable domain
knowledge is hidden in unstructured text (e.g., in a research paper or a
national report on clinical guidelines). This motivates the need for tools
to annotate such texts with metadata. Such tools can be prototyped eas-
ily for one type of healthcare artifacts (e.g., for clinical guidelines or care
pathways) and one purpose (e.g., for workflow management or decision
support) but it is a research challenge to build a robust and generic (i.e.,
metamodel-independent) tool for this important type of model extrac-
tion support. This paper desribes our ongoing work to building such a
tool on top of a state-of-the-art MDE platform.

1 Introduction

Governments, insurance organizations, hospital boards, physicians and patient
organizations support the relevance of rigorous engineering methods for the de-
velopment and certification of information systems in healthcare. Model-Driven
Engineering (MDE) techniques are particularly strong at separating medical and
organizational concepts from system implementation details. This is important
since information system architectures vary significantly within and between care
institutions while at the conceptual level patients cross the institutional and sys-
tem boundaries. As in most other engineering disciplines, models in MDE are
simplified representations that enable one to reason more easily about complex
issues. The distinguishing factor is that MDE techniques can combine multiple
modeling languages (and formalisms).

MDE leverages explicit modeling language definitions (called metamodels)
and model transformation definitions to break down complex modeling prob-
lems in more manageable subproblems. We have recently demonstrated that
MDE technology is particularly mature in support for generating powerful model

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 213–221, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



214 P. Van Gorp et al.

editors from annotated metamodels [1]. This short paper focuses on providing
novel support for extracting models from unstructured texts.

The remainder of this paper is structured as follows: Section 2 presents a
typical example of a clinical decision support (CDS) system. Section 3 presents
our solution in two steps (first specific to the CDS example and then more
generally). Section 4 describes related and future work and Section 5 concludes.

2 Example Clinical Decision Support System

Fig. 1 shows a clinical guideline (CG) supported by the Congress of Neurological
Surgeons and the American Association of Neurological Surgeons. The selected
guideline is that for surgical management of depressed cranial fractures.

Fig. 1. Example of a Clinical Guideline recommendation (summary based on [2])

As a concrete example of a CDS system derived from such a guideline, con-
sider Fig. 2. That figure shows screenshots of an app that enables specialists to
(1) lookup a guideline from a catalogue and (2) retrieve recommendations by
entering patient-specific information. Fig. 2(a) shows the app after selecting our
example guideline. In our example scenario, the user answers respectively “yes”,
“no”, “yes” (cfr., the “on”, “off”, “on” buttons) on the series of questions shown
on Fig. 2(a) to 2(c). According to the guideline, this leads to the suggestion
that there is evidence in favor of performing an early operation (Fig. 2(d)). The
underlying decision algorithm is not directly visible in the guideline text. Some
medical papers do provide flowcharts to make the proposed decision making pro-
cess more explicit. However, specialists in a concrete care facility typically still
have to adapt such flowcharts to their specific situation. This paper starts from
our collaboration with a Dutch academic hospital.



Towards Generic MDE Support for Extracting Purpose-Specific Healthcare 215

(a) Q&A 1 (b) Q&A 2

(c) Q&A 3 (d) Suggestion

Fig. 2. Example execution of the generated app running on an Android smartphone

In this hospital, one of the neurosurgeons maintains a set of flowcharts to
formalize a set of specialized guidelines. The neurosurgeon also programs CDS
support in apps such as the one from Fig. 2. These apps are quite popular in both
the Android and iOS app stores [3]. Remarkably, the flowcharts are just informal
documentation for these apps. We observed that by using MDE techniques, the
apps could be generated automatically. That could reduce the development effort
and the risk for inconsistencies. It would require however the use of a flowchart
editor with a custom metamodel (e.g., with support for modeling CDS questions
and links back to medical evidence).

This paper focuses on a key limitation of MDE and our suggested way to over-
come it. Our extended experience report also clarifies to Health IT practitioners
what existing MDE tools can offer them in the first place [1].

3 Deriving Models from Annotated, Unstructured Text

Fig. 3 sketches our proposed tool-chain from an end-user perspective: first, med-
ical specialists annotate scientific CGs. This can happen in the context of their



216 P. Van Gorp et al.

Fig. 3. Model-driven, evidence-based, development of CDS apps

personal continuous learning process or in the context of regularly planned liter-
ature review cycles within a hospital. In this step, annotations should be stored
in a computer-interpretable form. Second, the guideline annotations are trans-
formed automatically into a flowchart skeleton model. Third, the flowchart is
manually refined. Finally, the flowchart is transformed automatically into a CDS
app. Configuration files for a more heavyweight CDS system could be generated
too but this is not implemented at the time of writing. In the following, we first
demonstrate a metamodel-specific tool-chain that we have used to better under-
stand the above workflow in the context of CG-based CDS. Then, we describe
our ongoing efforts to derive similar tool-chains more efficiently in the large.

3.1 Ad-Hoc Support: Extracting Flow-Charts from CGs

Fig. 5 shows the text from Fig. 1 within the annotation tool. The title annotation
is shown in green. The parts of the text that are considered observations have
been annotated in yellow, the actions/treatments are shown in red, and the
explanatory elements are shown in blue. The bottom left of Fig. 1 shows controls
for creating new annotations while the top left shows a tree preview of the
guideline model that is under construction. By clicking the compile button, this
representation is translated into a metamodel-based flowchart model (step 2
from Fig. 3), which can be refined manually (step 3 from Fig. 3). Fig. 4 shows
a screenshot of an example use of this editor. The left pane shows the editor
palette, which enables the instantiation of the concepts from the syntax defintion.
The middle pane shows an example flowchart diagram. In the screenshot, the
“Hematoma” node from the upper left is selected and its details are shown in
the rightmost editor pane. The pane enables a.o. associating reference papers
(i.e., evidence) to the node. The editor instantiates models in such a format that
they can be seemlessly processed by other special purpose MDE tools (e.g., for
transformation and verification, see http://www.eclipse.org/modeling/).

We have also developed a prototypical code generator for realizing step 4
from Fig. 3. The complete tool-chain prototype was implemented by two junior
programmers with basic Java programming skills. Students did receive guidance
by one MDE expert, primarily in the use of the Epsilon framework [4]. Epsilon’s
Eugenia component has saved valuable time during the development of the CDS-
specific flowchart model editor (shown in Fig. 4). The annotation editor (shown
in Fig. 5) as well as its simple “annotation to model compiler" have been hand-
crafted.

http://www.eclipse.org/modeling/


Towards Generic MDE Support for Extracting Purpose-Specific Healthcare 217

Fig. 4. Example Use of the MDE-based Clinical Guideline Editor Prototype

Fig. 5. Demonstration of support for elicitating model elements using text annotations



218 P. Van Gorp et al.

The need for custom model editors as well as annotation-based model extrac-
tors goes far beyond CGs and CDS, as discussed further in our related and future
work section. Therefore, instead of replicating functionality in hand-crafted com-
ponents for other metamodels, we investigated how the annotation and compila-
tion support could be provided using modeling and transformation techniques.

3.2 Robust Support: Generating the Toolsuite from a Metamodel

Our aim is to provide MDE support across CDS and workflow applications for
CGs, care pathways, reference pathways, etc. This section clarifies how we are
tackling the lack of generic annotation-based model extraction tools by means
of a small extension to the aforementioned Eugenia tool.

Eugenia is the MDE tool that we have used to transform the definition of the
custom flowchart metamodel (the upper part of Fig 6) into a custom visual model
editor. That existing Eugenia functionality is visualized by the bold arrow in the
right part of Fig 6. The bold arrow in the left part of the figure represents the
proposed new functionality for the Epsilon platform. That arrow visualizes how
we intend to generate a custom (i.e., metamodel-specific) annotation tool from
a metamodel definition. Coming back to the functionality of such a generated
annotation tool: the left part of Fig. 6’s "Generated Annotation Editor" contains
a palette with buttons for creating specific annotations in the text that is shown
in the right part of the box. From these annotations, the custom annotation
editor (the generated tool at the bottom left of Fig. 6) would then create a
model that could be further refined by the custom model editor (the generated
tool at the bottom right of Fig. 6).

The following examples demonstrate the feasibility of implementing the pro-
posed Eugenia extensions: the palette contains a button labeled "Action/Treat-
ment" and a button labeled "Title". The annotations for these buttons map
directly to element attributes of the corresponding model. Therefore, it becomes
possible to annotate the metamodel definition shown at the top of Fig. 6 in such a
way that the buttons and their behavior is generated automatically by Eugenia.
The two diagonal arcs on the figure illustrate which lines from the metamodel
definition relate to which button in the annotation editor: for example, line 5
relates to the button labeled "Title".

Note that a plain Eugenia metamodel definition (as shown at the top of
Fig. 6) does not yet contain sufficient information to generate the metamodel-
specific annotation editor. First of all, each line related to an annotation ele-
ment would have to be supplemented with a label for the button (e.g., "Title"
for line 5). Secondly, the line should be supplemented with a color for the text
highlights (e.g., green for line 5 shown at the top of Fig. 6). Given these pro-
posed extensions, line 5 could therefore be preceded by a line such as: "@anno-
tation.element(button.name=‘Title’,text.color=‘green’)".

Further implementation details are outside the scope of this paper. We there-
fore leave it open whether the annotation editor and model editor shown at the
bottom of Fig. 6 are separate tools or one integrated component. Regardless,
generic model transformation languages/tools could be used to automatically



Towards Generic MDE Support for Extracting Purpose-Specific Healthcare 219

Fig. 6. Generating annotation tools from an extended Eugenia metamodel

produce and optimize output models. For the sake of persistence and consis-
tency, we propose that the complete texts as well as the begin and end indices
of annotations are stored also inside the metamodel-based output model.

4 Related and Future Work

We evaluated tool support for systematically deriving clinical guideline models
from medical literature. We focussed on MDE tools since these are known to
excel in the linkage of models with different purposes and at various levels of
abstraction. MDE tools are also known to support the co-evolution of conceptual
models with derived software systems. To the best of our knowledge, there are no
experience reports on the linkage of MDE artifacts with unstructured documents.

Some isolated engineering efforts have been published outside the MDE con-
text. For example, Lobach et al. [5] describe a conceptual process for translat-
ing informal guidelines into computer-interpretable representations. Concerning
tool support, the Yale Center for Medical Informatics has developed and eval-
uated GEM Cutter II [6]. From the evaluation perspective, the Yale group has
demonstrated that an annotation-based approach to guideline model extraction
is promising, but also that additional analysis is needed to determine the feasi-
bility of offering “GEM-cut” recommendations nationally (in the US). From the
tooling point of view, we observe that GEM Cutter (1) is based directly on XML
technologies rather than on formal metamodels, (2) does not provide support for
visual models and (3) implicitly imposes one particular metamodel. We aim at
tool support that excels on these three points: (1) we aim at an annotation-
based model extraction infrastructure based on Eclipse ECore and EMF, which
are the industry-standards for metamodeling in MDE; (2) we aim at supporting
visual models, especially since medical papers often include flowchart based sum-
maries; and (3) we aim at adaptable metamodels. We consider the last point of



220 P. Van Gorp et al.

particular relevance, since besides clinical guidelines there are various medical
texts for which annotation-based model extraction is promising.

Terminology for candidate models is used rather confusingly both in medical
and in information systems literature: different terms are used interchangeably,
and the same term may have different meanings. Therefore, we have surveyed
and classified the related literature. This has resulted in the following list of arti-
facts for which metamodels, editors, and extraction tools, need to be developed:
Clinical Guidelines (CGs, e.g., [2]), Clinical Protocols (CPRs, e.g., [7]), Care
Pathways (CPAs, e.g., [8]), Individual Care Pathways (ICPs, e.g., [9]), Assigned
Pathways (APs) and Reference Pathways (RPAs). Our summarized definitions
can be found in our previous work [1]. All these candidate models can be classi-
fied along two dimensions:

D1 (Patient Scope). The first dimension involves the scope of the description
from the patient perspective: the most coarse grained descriptions aim at any
type of patient, regardless of care groups. Other descriptions aim at multiple
patients but within one specific care group. Finally, some descriptions are
specific to an individual patient.

D2 (Provider Scope). In the provider aggregation dimension, some descrip-
tions aim at multiple organizations while others are oriented at only one
specific care organization.

Fig. 7. 2D Classification of Process Oriented Care Descriptions

Fig. 7 shows that the classification of the aforementioned care descriptions in the
proposed 2-dimensional space: when referring to the concrete goals and activi-
ties for one patient within one organization (=1, =1), one is considering ICPs
and APs. When referring to the process descriptions for a group of patients
within one organization (> 1in group, =1), one is considering CPAs. When for
such a group of patients one is referring to an abstract process description that is
shared by multiple organizations (> 1in group, >1) then one is considering RPAs.
In the context of decision support for patients regardless of groups, CPRs are
descriptions used within organizational boundaries (> 1in general, =1) while CGs
are used beyond these boundaries (> 1in general, >1). All these artifacts are se-
mantically related and since they can also evolve over time, our classification
opens interesting opportunities for applying MDE techniques for co-evolution
(e.g., those from Cichetti et al. [10]) in a challenging healthcare setting. In com-
bination with our various metamodel-specific annotation tools, the traceability
to related textual artifacts becomes manageable too. The practical integration
of these techniques is the subject of our future work.



Towards Generic MDE Support for Extracting Purpose-Specific Healthcare 221

5 Conclusions

This short paper focuses on a specific MDE contribution: the development of
a CDS based on the extraction of models from unstructured clinical guideline
texts. However, our line of work is at the interface between Health Informatics
and MDE research. Within the paradigm of using light-weight, custom editors in-
stead of using heavyweight "one size fits all" editors (e.g., editors based on GEM,
GLIF or SAGE), we have identified the lack of tools to extract purpose-specific
models from unstructured texts. Besides presenting an exploratory, ad-hoc im-
plementation of such a CDS-specific model extraction tool, we have discussed
how a state-of-the-art MDE toolsuite can be extended for generating similar
extraction tools in the large. Generating such tools is important since they are
needed for a variety of healthcare and purpose-specific metamodels.

References

1. Van Gorp, P., Vanderfeesten, I., Dalinghaus, W., Mengerink, J., van der Sanden,
B., Kubben, P.: MDE support for process-oriented health information systems:
from theory to practice. In: Pre-proceedings of FHIES 2012 (August 2012)

2. Ross Bullock, M., et al.: Surgical management of depressed cranial fractures. Neu-
rosurgery 58(suppl. 3), S56–S60, discussion Si–iv (2006)

3. Kubben, P.: Neuromind (December 2012),
http://apps.digitalneurosurgeon.com/neuromind

4. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck,
G.: Taming EMF and GMF using model transformation. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 211–225.
Springer, Heidelberg (2010)

5. Lobach, D.F., Kerner, N.: A systematic process for converting text-based guidelines
into a linear algorithm for electronic implementation. In: Proc. AMIA Symp., pp.
507–511 (2000)

6. Haskell, L.T., Monteforte, P.M.J., Shiffman, R.N., Coates, V.H., Nix, M.P.: S92 –
applying the Guideline Elements Model (GEM) cutter II tool to guidelines repre-
sented in the national guideline clearinghouse (www.guideline.gov). Otolaryngol.
Head Neck Surg. 143(suppl. 60-61) (July 2010)

7. Lorne Community Hospital: Anaphylaxis (2007),
http://www.health.vic.gov.au/qum/downloads/anaphylaxis.pdf

8. South East Wales Cardiac Network: Integrated care pathway cardiac reha-
bilitation (May 2005), http://www.wales.nhs.uk/sitesplus/documents/986/
ICPCardiacRehabPathwayJan2006.pdf

9. Elm Mount Units: Individual recovery/care plan review elm mount units (August
2012), http://www.mhcirl.ie/Inspectorate_of_Mental_Health_Services/ICPT/
Elm%20Mount_CPT.pdf

10. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: Proceedings of the 2008 12th International IEEE
Enterprise Distributed Object Computing Conference, EDOC 2008, pp. 222–231.
IEEE Computer Society, Washington, DC (2008)

http://apps.digitalneurosurgeon.com/neuromind
http://www.health.vic.gov.au/qum/downloads/anaphylaxis.pdf
http://www.wales.nhs.uk/sitesplus/documents/986/ICPCardiacRehabPathwayJan2006.pdf
http://www.wales.nhs.uk/sitesplus/documents/986/ICPCardiacRehabPathwayJan2006.pdf
http://www.mhcirl.ie/Inspectorate_of_Mental_Health_Services/ICPT/Elm%20Mount_CPT.pdf
http://www.mhcirl.ie/Inspectorate_of_Mental_Health_Services/ICPT/Elm%20Mount_CPT.pdf

	Towards Generic MDE Support for ExtractingPurpose-Specific Healthcare Models from Annotated, Unstructured Texts
	1Introduction
	2Example Clinical Decision Support System 
	3 Deriving Models from Annotated, Unstructured Text
	3.1Ad-Hoc Support: Extracting Flow-Charts from CGs
	3.2Robust Support: Generating the Toolsuite from a Metamodel

	4Related and Future Work 
	5Conclusions
	References




