
Automated Reviewing of Healthcare
Security Policies

Nafees Qamar1, Johannes Faber1, Yves Ledru2, and Zhiming Liu1

1 United Nations University
International Institute for Software Technology

{nqamar,jfaber,lzm}@iist.unu.edu
2 UJF-Grenoble 1/Grenoble-INP/UPMF-Grenoble2/CNRS, LIG

yves.ledru@imag.fr

Abstract. We present a new formal validation method for healthcare
security policies in the form of feedback-based queries to ensure an an-
swer to the question of Who is accessing What in Electronic Health
Records. To this end, we consider Role-based Access Control (RBAC)
that offers the flexibility to specify the users, roles, permissions, actions,
and the objects to secure. We use the Z notation both for formal spec-
ification of RBAC security policies and for queries aimed at reviewing
these security policies. To ease the effort in creating the correct speci-
fication of the security policies, RBAC-based graphical models (such as
SecureUML) are used and automatically translated into the correspond-
ing Z specifications. These specifications are then animated using the
Jaza tool to execute queries against the specification of security policies.
Through this process, it is automatically detected who will gain access to
the medical record of the patient and which information will be exposed
to that system user.

1 Introduction

Security and privacy in information systems generally concern questions such
as Who accesses What. An Electronic Health Record (EHR) is a longitudinal
electronic record of health information for a patient generated by one or more
encounters in any care delivery setting. Security mechanisms are supposed to be
applied to protect such EHRs to shield against external threats from outside the
system, such as attacking or running malicious applications, as well as internal
threats from inside the system, e.g., a valid system user illegitimately accesses
private data of a patient. It was, however, reported that major threats to patient
privacy actually stemmed mostly from internal factors [Jou09]. For this reason,
it is essential to investigate who is doing what in a system besides ensuring
smooth data availability. For example, what are the operations a user such as a
nurse can perform, and what resources are accessible by a user? The system also
needs to be flexible enough to allow exceptional access to system resources, espe-
cially in medical emergency cases. Due to these exceptions, the large number of
stakeholders, end users, and interaction components, the specification of policies

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 176–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automated Reviewing of Healthcare Security Policies 177

on security and privacy and their correct implementation in EHR systems are
particularly challenging. Not surprisingly, medical data disclosure is the second
highest reported breach [HY06]. To address this issue, legal regulations, such
as USA’s Health Care Insurance Portability and Accountability Act (HIPAA),
are in place as safeguards to confidentiality, integrity, and availability of these
systems.

To guarantee that application-specific security objectives are enforced by the
enacted security policies based on regulations like HIPAA, the rules that define
the security policies need to be justified using validation techniques. To this
end, we propose using the Z notation [Spi92, DW96] to represent the security
rules as well as to specify queries for revealing internal threats to EHRs. The
execution of the queries animates the security policies to generate feedbacks on
authorized and unauthorized states of an EHR system. Additionally, these also
help in analyzing over- or under-designed security policies, which otherwise can
block desirable operations or permit undesirable ones, respectively.

To ease the effort in model construction and understanding, we propose to
use a graphical notation, such as SecureUML [LBD02] or UMLsec [Jür05], to
model security policies. The graphical models are automatically translated into
specifications in the formal Z notation, which is amenable to formal analysis. In
this way, the proposed formal approach can be integrated with graphical model-
ing and transformation techniques – the so-called model-driven techniques. For
specifying security policies, we apply the standardized Role-based Access Con-
trol (RBAC) mechanism [FSG+01]. RBAC offers roles, which are permanent
organizational positions whilst users can arbitrarily be changed. Based on this,
we introduce formalized review functions in terms of Z specifications. These re-
view functions can be animated using, e.g., the Jaza tool to get feedback on
which actions are available to which role, on access to specific resources, and on
duplicate permissions. To further reflect the complex situation in the healthcare
domain, we additionally introduce Separation of Duties (SoD) constraints to an-
alyze conflicts of interest between different stakeholders in the system. This is
done statically, by ensuring that a user cannot have two conflicting roles at all,
as well as dynamically, by ensuring that a user cannot have two conflicting roles
in a single session. We exemplary demonstrate that this approach is suitable to
deal with emergency situations, where immediate access to information might
be needed and report on the types of information one needs to collect before de-
ploying a security policy. We prefer RBAC to Mandatory Access Control [BL75]
and Discretionary Access Control [DOD85], because it builds on a generic prin-
ciple of access control that makes it adaptable to any organizational structure
and flexible with respect to the application implementation.

To summarize, we present a new formal validation method for healthcare secu-
rity policies with two main contributions. First, we introduce formally specified
queries for automatically reviewing security policies and analyze what informa-
tion of an EHR is exposed to a system user. Second, we introduce SoD constraints
to cope with the complex security policies usually found in EHR systems. We
use an example from the healthcare domain for demonstration.

178 N. Qamar et al.

The paper is structured as follows: Section 2 discusses state-of-the-art formal
techniques on security policies. Section 3 states RBAC and gives a scenario,
which is used as a running example throughout the paper. Section 4 demonstrates
the formalization of security policies in Z notation, whereas Sect. 5 presents
formally specified queries for reviewing security policies. Section 6 formalizes
SoD constraints, and finally, Sect. 7 concludes and shares some perspectives.

2 Related Work

Healthcare privacy and security techniques are intended to cope with a number
of issues such as authorized data disclosure, integrity of information, regula-
tory implication for healthcare, and information security risk management. The
survey [AJ10] also considers a multitude of such techniques and provides a clas-
sification. The authors conclude that existing techniques are inadequate to meet
security and privacy challenges in EHRs. It also shows that healthcare security
and privacy issues have not been treated in a deserved manner. Our findings
complement this survey concerning these issues, which also have not been dealt
with formal languages such as the Z notation, generally known for their preci-
sion and unambiguity. For example, [TMB06] uses formal methods to improve
medical protocols, but such techniques are missing in general.

The standardized Z notation [Spi92] has been successfully applied to various
industrial projects for formal modeling and development [Bow03]. Our past work
presents an RBAC-based security kernel using Z [QLI11, LQI+11], which shows
that Z can be effectively used to verify or validate security policies. The work
in this paper builds on these preliminary results with an extended set of formal
queries for validation of security policies and formal SoD constraints. The use of
Z in our previous work is motivated by the support of authorization constraints,
which do not appear in this paper. When there are authorization constraints, one
needs to consider the evolution of the state of the functional model [LIM+11].
Currently, only our tool takes this evolution in the animation of the complete
model into account.

Alloy has the potential to do similar work as Z, but currently no tool is
available covering both functional security models and authorization constraints.
Regarding B, a similar tool is currently under development in the Selkis project
[MIL+11]. The tool will allow using the ProB tool both for animation and model
checking.

ISO-standardized RBAC has widely been described by researchers using Z
such as [Hal94, AK06, YHHZ06]. However, the work there offers only generic for-
mal representation of RBAC. There are other techniques for validation and verifi-
cation of security properties [MSGC07, Bos95, AK06]. In particular, [MSGC07]
proposes a process to verify Z specifications by the Z/EVES theorem prover.
In parallel, OCL expressions are also meant to specify restrictions on a sys-
tem model but do not support feedback queries. For example, SecureMOVA
[BCDE09] offers a set of queries to analyze security policies expressed as formu-
las in UML’s Object Constraint Language.

Automated Reviewing of Healthcare Security Policies 179

Fig. 1. Role Based Access Control [FSG+01]

The work [ZWCJ02] proposes to verify algebraic characteristics of RBAC
schemas using Alloy. Alloy is used as a constraint analyzer to check the in-
consistencies among roles and Static Separation of Duty (SSD) constraints and
to generate a counter-example when inconsistencies are found. However, the
work addresses SSD constraints only. [SM02, AH07] also discuss SoD constraints.
The former discusses decentralized administration of RBAC and allows arbitrary
changes to an initially stated model that may result in conflicting policies over
time with respect to SoD constraints. They argue that SoD constraints may in-
troduce implicit security policy flaws because of role hierarchies. In [TRA+09], a
translation from UML to Alloy is given for verification of the UML models. The
work is mainly focused on analysis of contextual information such as location
and time for access decisions.

3 Role-Based Access Control

In this section, we introduce the preliminaries of Role-based Access Control
(RBAC). We will use a running example to illustrate the basic concepts and
properties.

3.1 Data Model of RBAC

The data model of RBAC [FSG+01] as shown in Fig. 1 is based on five data
types: users (USERS), roles (ROLES), objects (OBS), permissions (PRMS) and
executable operations (OPS) by users on objects. A sixth data type for sessions
(SESSIONS) is used to associate roles temporarily to users. Sessions correspond
to the dynamic aspect of RBAC that actually includes session management.

RBAC differentiates between users and roles. A role is considered as a per-
manent position in an organization whereas a given user might be switched with
another user for that role. Thus, rights are offered to roles instead of users.
Roles are assigned to permissions that can later be exercised by users playing

180 N. Qamar et al.

these roles. Modeled objects (OBS) in RBAC are potential resources to protect.
Operations (OPS) are viewed as application-specific user functions. Other con-
structs included in the model are user assignment, hierarchy, and permission
assignment, which are designated as UA, RH, and PA, respectively. Here, we
very briefly outline all the aforementioned RBAC constructs:

– User is a person who uses a system or an automated agent.
– Role is an organization entity or a permanent position in an enterprise. Each

role may have an allowable set of actions according to the access control
policy. In this way, access to computational resources is realized via roles.

– UA ⊆ USERS × ROLES is a many-to-many mapping between users and
roles; UA specifies which roles can be taken by a given user.

– PA ⊆ PRMS × ROLES is a many-to-many mapping permission-to-role; PA
expresses which roles may be granted a given permission.

– user sessions(u : USERS) → 2SESSIONS is a mapping of user u onto a set
of sessions; it lists the current sessions of a given user.

– session roles(s : SESSIONS) → 2ROLES is a mapping of session s onto a set
of roles; it lists the current roles of a given user in a given session.

– RH ⊆ ROLES × ROLES is a partially ordered role hierarchy; a senior role
may inherit the permissions from its junior roles.

– PRMS : 2OPS×OBS is a set of permissions. Permissions are regarded as an
approval to perform operations on RBAC-protected objects. An executable
image of a program is considered as an operation, which executes some func-
tion for the user. For example, within medical records, operations might
include insert, delete, append, and update medical instructions.

3.2 Example: RBAC-Based Security Management for EHRs

Healthcare security policies are ideally modeled using RBAC, because permanent
positions such as doctors, nurses, and other healthcare staff can be mapped to
the roles as set in the policy. Figure 2 represents a small healthcare security
policy management, which attempts to secure medical records by the use of
roles associated to permissions given as stereotypes, while permissions are on
the class i.e., MedicalRecords. For instance, a patient, which corresponds to a
particular role in an EHR system, has the ability to read his/her own medical
record. A doctor inherits permissions from the patient, besides holding another
permission given as UserCredentials, on which the doctor could exercise a write
operation. The role EmergencyOfficer is assigned with a permission such as read,
which is intended for emergency access. Using our toolset [LQI+11] one can
translate such diagram into a Z model. Here we confine ourselves to explain the
needed part to allow reviewing of such formal translations.

Access Control Violations. Access control rules specified as graphical models
are hard to validate because of their ambiguous semantics. This in turn leads
to information integrity and confidentiality problems in general. In the example

Automated Reviewing of Healthcare Security Policies 181

Fig. 2. Design of a medical application using SecureUML

above, a patient could change his/her own medical record if the security policy
is not correctly realized in the system. Similarly, a doctor being also a patient
can forge his/her own medical record if not avoided by a corresponding SoD con-
straint. To address these inadequate security policies, we introduce a technique
for automatically reviewing such deficiencies in Sect. 5 after the next section’s
discussion on the formalization of policies.

4 Formalized Healthcare Security Policies

This section gives an overview of the formalization of security policies, which
has been introduced in our previous work [QLI11].

4.1 The Z Notation and the Jaza Tool

The ISO-standardized Z language [Spi92] offers an extensive set of concepts
and constructs from first-order logic and set theory to specify software systems.
Schemas are the major structuring primitives in Z. Each schema is further di-
vided into two components: the signature part, which includes variables and
types, and the predicate part, for imposing constraints upon these variables.

182 N. Qamar et al.

[PERMISSION ,SESSION ,USER]

ROLE ::= Patient | Doctor |
EmergencyOfficer

RESOURCE ::= MedicalRecords
ATOMIC ACTION ::=

Read | Write | Delete | Create

Sets
role : FROLE
user : FUSER
session : F SESSION
resource : FRESOURCE
permission : FPERMISSION
atm action : FATOMIC ACTION

Fig. 3. Z types for security policies

A schema represents an operation, and it may reference further schemas by
means of their names. We will use the running example to explain the Z con-
structs used here.

Jaza (http://www.cs.waikato.ac.nz/~marku/jaza/) can animate a large
subset of constructs of the Z language. It uses a combination of rewriting and
constraint solving to find final states for a given initial state. If the initial state
does not satisfy the precondition of the operation, the tool returns “No Solu-
tions”. The tool can be further queried to find out which constraint could not be
satisfied.

4.2 Z Models for Security Policies

We explain our formalization of security policies with the Z notation following
the example from Sect. 3.2. This approach from [QLI11] can be used to formalize
security policies following the RBAC data model as given in Sect. 3.1.

Z Schemas. Using Z, six types are introduced in Fig. 3 as basic type definitions
(PERMISSION, SESSION, USER) or enumerated types on the left. The value of
these types is based on the security model presented in Fig. 2. The schema Sets
on the right side declares corresponding finite sets (F) for each of these types.

Jaza Representation. The following Jaza expressions initialize some of these
sets according to the values of the running example from Sect. 3.2.

atm_action’ == {Read, Write, Delete, Create},
permission’ == {"PatientRecord", "UserCredentials", "EmergencyRights"},
resource’ == {MedicalRecords},
role’ == {Patient, Doctor, EmergencyOfficer},
user’ == {"Alice", "Bob", "Mark"},

The schema Perm Assignment reminds of the underlying translation from
graphical SecureUML models to Z notation. It is used to compute the table

http://www.cs.waikato.ac.nz/~marku/jaza/

Automated Reviewing of Healthcare Security Policies 183

perm Assignment in Fig. 4. In [QLI11] this schema as well as the translation
of SecureUML models in general are explained. One can also find there the
corresponding rules to automatically generate other RBAC structures such as
PA, UA, sessions, and role hierarchy. For this work, it is sufficient to understand
the type of the resulting permission assignment as shown in the following schema:
users with assigned roles are related to a set of permissions for specific resources.

Perm Assignment
. . .

perm Assignment : (USERID × USER × ROLE) ↔
(PERMISSION × ATOMIC ACTION × RESOURCE)

. . .

The table perm Assignment, pictured in Fig. 4 in Jaza syntax, results from the
translation process. It creates a link between a user’s ID, users and their assigned
roles to the permissions, the operations, and the resources. The set for user
IDs (USERID) is not available in RBAC, but we believe it will be useful when
implementing a real system. This generated table assigns the initial permission
values for the use with a Z-based formal model animator such as Jaza.

This sums up the formalization of the access control information for the
running example, which can be interpreted by a tool. In the following, we
present formal queries allowing us to analyze suchlike formal models for security
rules.

5 Formal Queries for Healthcare Security Policies

The RBAC model provides mainly three types of functions to operate on se-
curity policies: administrative, supporting system, and review. Administrative
functions involve creation and maintenance of basic sets of elements. These sets
are USERS, ROLES, OPS and OBS. Additionally, constructing relations among
the sets is also supported by administrative functions (UA and PA assignments).
This has already been covered in an earlier paper [QLI11].

Review Functions, on the other hand, help in querying the data structures
such as those of UA and PA assignments. The administrator may view the
contents of specified relations through review functions. By this means, we can
perform queries to request the users assigned to a role, permissions of a role,
and allowed roles in a session. In the RBAC standard, the review functions are
either mandatory, like querying the assigned users and assigned roles, or optional,
like querying permissions of a role. Therefore, not all RBAC implementations
provide all review functions. In the following, we present a set of formalized and
extended review functions, which provide feedback on the contents of the security
policies.

184 N. Qamar et al.

5.1 Authorized Roles for an Atomic Action

The first operation schema EvaluateRoleAuthorizedAtomicAction computes the
set of atomic actions for a given role. This query is helpful when one needs to
evaluate who can perform a particular operation in a given security policy.

EvaluateRoleAuthorizedAtomicAction
ΞSets ; ΞComputeAssignment
role? : ROLE
atomicActions! : ROLE ↔

(PERMISSION × ATOMIC ACTION × RESOURCE)

role? ∈ dom concrete Assignment
atomicActions! = {prm : ran concrete Assignment |

(role?, prm) ∈ concrete Assignment • (role? �→ prm)}

The declaration part of a Z schema is notated above the horizontal line,
whereas the predicate part below the horizontal line defines constraints on the de-
clared variables. The declaration part of the schema EvaluateRoleAuthorizedAtom-
icAction includes the state schema Sets (the symbol Ξ basically indicates that
its elements are not changed in this schema) and an input variable role? of type
ROLE. The output set being computed, atomicActions! (i.e., operations from a
modeled system), is a relation that is a cross product of a role with associated
permissions, atomic actions, and resources. The predicate part of the schema
checks that the input role (role?) is actually from the domain of the relation
concrete Assignment. The output (atomicActions!) is the set of all possible values
associated with a particular role (i.e., role?). Note that concrete Assignment is
actually defined in a further schema ComputeAssignment, which is not shown
here in full detail due to space reasons, but can be found in [QLI11].

ComputeAssignment
. . .
concrete Assignment : ROLE ↔

(PERMISSION × ATOMIC ACTION × RESOURCE)

. . .

The set construction in schema EvaluateRoleAuthorizedAtomicAction

{prm : ran concrete Assignment |
(role?, prm) ∈ concrete Assignment • (role? �→ prm)}

first declares a local variable prm to be in the range of concrete Assignment. The
predicate part, (role?, prm) ∈ concrete Assignment, selects tuples of the shape
(role?, prm) occurring in concrete Assignment. Finally, the expression behind

Automated Reviewing of Healthcare Security Policies 185

perm_Assignment ==
{

(("ABC001", "Alice", Patient, ("PatientRecord", Read, MedicalRecords)),
(("ABC002", "Bob", Doctor, ("PatientRecord", Read, MedicalRecords)),
(("ABC003", "Bob", Doctor, ("UserCredentials", Write, MedicalRecords)),
(("ABC004", " Mark", EmergencyOfficer,

("EmergencyRights", Read, MedicalRecords)),
},

Fig. 4. Permission assignment in Jaza syntax

the • symbol collects the maplets for all of these permissions in the set. By this
the result relation is built. Below we show an example of executing this schema
against an input role EmergencyOfficer from the running example (cf. Fig. 4).
Jaza lists the operations that the emergency officer is permitted to perform.

JAZA> ;EvaluateRoleAuthorizedAtomicAction
Input role? = EmergencyOfficer
atomicActions!==
{(EmergencyOfficer, ("EmergencyRights", Read, MedicalRecords))}

5.2 Actions Available for a Role

The operation schema EvaluateActionsAgainstRoles works exactly opposite to the
operation schema EvaluateRoleAuthorizedAtomicAction, which, for a given atomic
action, returns the list of all associated roles (along with a resource and a per-
mission) to perform that action.

EvaluateActionsAgainstRoles
ΞSets ; ΞComputeAssignment
atm action? : ATOMIC ACTION
roleAction! : ROLE ↔

(PERMISSION × ATOMIC ACTION × RESOURCE)

roleAction! = {r : dom comp Assignment; p : permission; rsrc : resource |
(r �→ (p, atm action?, rsrc)) ∈ concrete Assignment •

(r �→ (p, atm action?, rsrc))}

The input (atm action?) is of the set type ATOMIC ACTION. The output role-
Action! has the same type as given in the previous schema. The set roleAction!
retrieves the allowed roles to perform an atomic action. Note that we also re-
trieve the associated permissions and resources with each obtained role since
this appears more comprehensible from a security engineer’s point of view. In
the following example of this schema query, we provide an atomic action named
Read, and the corresponding information is returned.

186 N. Qamar et al.

JAZA> ;EvaluateActionsAgainstRoles
Input atm_action? = Read
atomicActions!=={(Patient, ("PatientRecord", Read, MedicalRecords)),
(Doctor, ("PatientRecord", Read, MedicalRecords)), (EmergencyOfficer,
("EmergencyRights", Read, MedicalRecords))}

5.3 Analyzing Access to a Resource

It is equally important to know the resources within the system that can be
accessed by some roles. EvaluateResourcesAccess is used to this end. For a given
resource resource?, it returns the pairs of atomic actions associated with that
particular resource.

EvaluateResourcesAccess
ΞSets ; ΞComputeAssignment
resource? : RESOURCE
resourcesAccess! : ROLE ↔

(PERMISSION × (ATOMIC ACTION × RESOURCE))

action resource set! : F(ATOMIC ACTION × RESOURCE)

resourcesAccess! = {r : dom comp Assignment; p : permission;
atm : atm action | (r �→ (p, atm, resource?))

∈ concrete Assignment • (r �→ (p, (atm, resource?)))}
action resource set! = {x : ran resourcesAccess! • second(x)}

This operation also takes an input resource? of the type RESOURCE and com-
putes the related roles and atomic actions of that resource; action resource set!
ensures that only the atomic actions corresponding to the resources are retrieved.
This schema is exemplified below: the input is resource MedicalRecords, and the
result produced by Jaza is printed1.

JAZA> ;EvaluateResourcesAccess
Input resource? = MedicalRecords
action_resource_set!=={(Read, MedicalRecords),(Write,
MedicalRecords), (Delete, MedicalRecords),(Create, MedicalRecords)}

5.4 Permissions for Atomic Action and Role

The operation schema FindPermissions is intended to query the permissions for
both a given atomic action and a role. This schema has two input parameters
i.e., atm action? and role? of the types ATOMIC ACTION and ROLE, respectively.
The predicate computes the set of permissions for the input role and the atomic
action. As a result, perms! will return the set of all associated permissions for
the input values. We need to give the atomic action along with the role as input,
and it will return the permissions linked to them.
1 Here and in the following we only show the relevant outputs.

Automated Reviewing of Healthcare Security Policies 187

FindPermissions
ΞSets ; ΞComputeAssignment
atm action? : ATOMIC ACTION
role? : ROLE
perms! : ROLE ↔

(PERMISSION × ATOMIC ACTION × RESOURCE)

perms! = {p : permission; rsrc : resource |
(role? �→ (p, atm action?, rsrc)) ∈ concrete Assignment •
(role? �→ (p, atm action?, rsrc))}

The following query is a result for the provided action Read and the role Doctor.
Jaza tells us that there is one read permission associated to a doctor, named
PatientRecord.

JAZA> ;FindPermissions
Input atm_action? = Read
Input role? = Doctor
perms!== {(Doctor, ("PatientRecord", Read, MedicalRecords))}

5.5 Finding Duplicate Roles

The schema FindDuplicateRoles allows us to search for duplicate roles. This query
is useful to determine whether two roles have the same privileges in a secure
system. This schema returns two roles, which are different but are associated
with the same sets of atomic actions.

FindDuplicateRoles
ΞSets ; ΞComputeAssignment
role1!, role2! : ROLE
aSet1!, aSet2! : FATOMIC ACTION

role1! ∈ role ∧ role2! ∈ role
role1! �= role2!
aSet1! = {p : permission; a : ATOMIC ACTION ; rsrc : resource |

(role1! �→ (p, a, rsrc)) ∈ concrete Assignment • a}
aSet2! = {p : permission; a : ATOMIC ACTION ; rsrc : resource |

(role2! �→ (p, a, rsrc)) ∈ concrete Assignment • a}
aSet1! = aSet2!

The following query reports that Patient and EmergencyOfficer are duplicate
roles, more precisely they have the permissions to perform the same actions.

Jaza ; FindDuplicateRoles
role1!==Patient, role2!==EmergencyOfficer

188 N. Qamar et al.

Availability of Data. Utilization of a particular service is handled by avail-
ability properties, which are particularly relevant in emergency situations. The
availability properties offered by RBAC deal with granting permissions, which
will ensure that a resource is available to a user. RBAC aims at avoiding un-
desirable states in which a user who is entitled to an access permission does
not get it. To this end, we propose formal queries, which can be used to review
RBAC-based policies. For example, it is significant to determine the minimum
information about a patient that can be accessed by everyone. Thus, the avail-
ability of operations in our designed policy that could be used in such cases has
to be checked.

5.6 Atomic Action Accessed by All

The operation schema AccessAll returns the atomic operations accessible by all
roles of a system. The declaration part includes an output variable action!. The
given predicate returns the atomic actions accessible by all roles.

AccessAll
ΞSets ; ΞComputeAssignment
action! : ATOMIC ACTION

∀ r : role • (∃ p : permission; rsrc : resource •
(r �→ (p, action!, rsrc)) ∈ concrete Assignment)

Jaza ;AccessAll
action!==Read

5.7 Atomic Action Access by Nobody

The operation schema AccessNobody returns the atomic action, which is com-
pletely inaccessible by all roles.

AccessNobody
ΞSets ; ΞComputeAssignment
action! : ATOMIC ACTION

∀ r : role • (∀ p : permission; rsrc : resource •
(r �→ (p, action!, rsrc)) �∈ concrete Assignment)

It includes an output variable action!, which has the type of an atomic action.
The predicate part checks for the inaccessible atomic actions.

JAZA> ;AccessNobody
action!==Create

Automated Reviewing of Healthcare Security Policies 189

6 Separation of Duty Constraints

Separation of Duty (SoD) constraints are an optional construct of RBAC and are
used to address conflicts of interest among roles, which consist of two categories,
Static Separation of Duty (SSD) and Dynamic Separation of Duty (DSD).

The SSD takes care of conflicts of interest and ensures that a user does not take
some conflicting roles even in different sessions. These constraints are specified
over UA assignments as pairs of roles. UA is restricted during sessions. This
ensures that if a user is assigned to a role, the user can never take the prohibited
role. SSD can be applied not only to colluding users but also to groups, which are
collections of users. Permissions can be associated with both users and groups.

DSD is the second kind of constraint offered by RBAC (Fig. 1). These con-
straints are intended to limit the permissions that are available to a user, whilst
SSD constraints reduce the number of potential permissions that can be made
available to a user. This is realized by placing constraints on the users that can be
assigned to a set of roles. The main difference between SSD and DSD constraints
lies in the context in which they are used. SSD are imposed on user’s total per-
mission space, but DSD restricts the users to activate the roles within or across
a user’s sessions. For example, a user Bob may have been assigned with two roles
i.e., Doctor and Patient, but he may not exercise the permissions of both roles in
the same session. In the RBAC model, a session is a traditional way of commu-
nicating information between a user and a system during a given time interval.
Session management in RBAC deals with functions such as session creation for
users including role activation/deactivation, enforcing constraints (e.g., DSD) on
role activation. An obligatory part of DSD constraints is the use of sessions. In
the following, we formally specify SoD constraints using the Z notation.

RoleAssignment
Sets
conflicting Roles : ROLE ↔ ROLE
role Assignment : USER ↔ ROLE

dom conflicting Roles ⊆ role
ran conflicting Roles ⊆ role
dom role Assignment ⊆ user
ran role Assignment ⊆ role
∀ u : user • (∀ i , j : role

| ((u �→ i) ∈ role Assignment) ∧ ((u �→ j) ∈ role Assignment)
• ((i , j) �∈ conflicting Roles)))

The declaration in RoleAssignment contains relations describing conflicting roles
(conflicting Roles) and for assigning roles to users (role Assignment). They are
defined as part of the security policy of a system. The first four constraints en-
sure that the relations to which the schema is applied are actually defined on

190 N. Qamar et al.

the roles and users from Sets (cf. Sect. 4.2). The last predicate specifies that any
two roles assigned to a user are not from the conflicting roles set.

The subsequent schema SessionRoles formalizes DSD constraints. The schema
includes one partial function session User, because the users of a session have
to be considered when checking the role assignment. The relation session Role
assigns roles to sessions, and like in the previous schema, conflicting Roles DSD
describes the conflicting pairs of roles.

In the predicate part, the constraints for restricting domain and range (sim-
ilarly to RoleAssignment) have been omitted. The first listed constraint states
that whenever a user is assigned to a session with specific roles, the user should
have these as pre-assigned roles. The last constraint specifies that the roles taken
in one session should not be contained in the set of conflicting roles.

SessionRoles
Sets; RoleAssignment
session User : SESSION �→ USER
session Role : ROLE ↔ SESSION
conflicting Roles DSD : ROLE ↔ ROLE

...
∀ r : role • (∀ s : session

• (r , s) ∈ session Role ⇒ (session User(s), r) ∈ role Assignment)
∀ s : session • (∀ i , j : role | ((i , s) ∈ session Role) ∧ ((j , s) ∈ session Role)

• ((i , j) �∈ conflicting Roles DSD))

In the security policy of Fig. 2 let us assume that a doctor is permitted to
exercise two roles, i.e., a patient and a doctor. This can be regarded as a serious
threat to the medical records where a patient, actually a doctor, compromises
the information integrity, because a doctor may perform operations which a
patient is not supposed to perform. However, such scenarios are avoidable by
introducing an SSD constraint such that a doctor and a patient are specified
as conflicting roles. However, this restricts the doctor who might be a patient
at some point. In turn, as a solution, we can employ a DSD constraint, which
enables exercising both roles but not in one session. Similarly, the role hierarchy
(see Fig. 1) can be combined with SSD or DSD to avoid conflicting roles within
the hierarchy.

7 Conclusions and Perspectives

This paper presents a formal approach to reviewing healthcare security policies.
The proposed approach integrates the Z notation with security design models
in order to assess access control rules of an EHR system. The applied idea fol-
lows the security-by-design principle and hence exhibits a strategy to cope with
internal threats by investigating security properties such as integrity and confi-
dentiality. The Jaza tool is applied to validate formal specifications. Note that

Automated Reviewing of Healthcare Security Policies 191

in our approach, the formally translated model (the initial state space) does not
grow, and it avoids any further complex computations except using the queries
to validate the model.

Abundant research literature can be found on how to translate graphical
models to formal notations. Nonetheless, to reap out benefits from such for-
mal translations, it is necessary to apply tools and techniques that facilitates
easy validation and verification of formal models. Inspired by this, our approach
takes such gaps into account. Also, the approach does not require mathemati-
cally skilled validation engineers for the following reasons: 1) working with only
graphical models of security policies, and 2) automated translation of graphical
models besides the reviewing queries. The approach is generic in a sense that it
can be used to design and validate other secure information systems irrespective
of a particular domain. The paper has only addressed the internal threats (i.e.,
from the system users). However, UML profiles such as UMLsec [Jür05] can be
applied to model and verify systems against external threats.

Currently, the SoD constraints of RBAC are inherently restricted: For in-
stance, a hospital may require an emergency officer to have four roles out of
six, but SoD constraints can only be applied over a pair of roles. Our future
work includes extending this toolset by overcoming such deficiencies as well as
automating the query generation process to help building quality models in the
healthcare domain. The tool’s performance will also be evaluated using larger
models with an extended and complete set of queries.

Acknowledgments. This work has been supported by the projects SAFEHR
and GAVES funded by Macao Science and Technology Development Fund, and
partly supported by the ANR Selkis Project under grant ANR-08-SEGI-018.

References

[AH07] Ahn, G.-J., Hu, H.: Towards realizing a formal RBAC model in real sys-
tems. In: Lotz, V., Thuraisingham, B.M. (eds.) Proceedings of the 12th
ACM Symposium on Access Control Models and Technologies, SACMAT
2007, Sophia Antipolis, France, June 20-22, pp. 215–224. ACM (2007)

[AJ10] Appari, A., Johnson, M.E.: Information security and privacy in health-
care: current state of research. Int. J. of Internet and Enterprise Manage-
ment 6(4), 279–314 (2010)

[AK06] Abdallah, A.E., Khayat, E.J.: Formal Z specifications of several flat role-
based access control models. In: 30th Annual IEEE/NASA Software En-
gineering Workshop (SEW), pp. 282–292. IEEE CS (2006)

[BCDE09] Basin, D.A., Clavel, M., Doser, J., Egea, M.: Automated analysis of
security-design models. Information & Software Technology 51(5), 815–
831 (2009)

[BL75] Bell, D., LaPadula, L.: Secure computer system: Unified exposition and
multics interpretation. Technical report, MITRE Corp, Bedford (1975)

[Bos95] Boswell, A.: Specification and validation of a security policy model. IEEE
Trans. Software Eng. 21(2), 63–68 (1995)

192 N. Qamar et al.

[Bow03] Bowen, J.: Formal Specification and Documentation using Z: A Case Study
Approach. Thomson Publishing (2003)

[DOD85] DOD 5200.28-STD. Trusted computer system evaluation criteria. Techni-
cal report, United States Department of Defense (1985)

[DW96] Davies, J., Woodcock, J.: Using Z: Specification, Refinement, and Proof.
Prentice Hall (1996) ISBN 0-13-948472-8

[FSG+01] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.:
Proposed NIST standard for role-based access control. ACM Trans. Inf.
Syst. Secur. 4(3), 224–274 (2001)

[Hal94] Hall, A.: Specifying and interpreting class hierarchies in Z. In: Bowen, J.P.,
Hall, J.A. (eds.) Z User Workshop, pp. 120–138. Springer (1994)

[HY06] Hasan, R., Yurcik, W.: A statistical analysis of disclosed storage security
breaches. In: Proceedings of the 2006 ACM Workshop on Storage Security
and Survivability, StorageSS 2006, Alexandria, VA, USA, October 30, pp.
1–8. ACM (2006)

[Jou09] Rubenstein, S.: Are your medical records at risk? Wall Street Journal
(2009)

[Jür05] Jürjens, J.: Secure systems development with UML. Springer (2005)
[LBD02] Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based mod-

eling language for model-driven security. In: Jézéquel, J.-M., Hussmann,
H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 426–441. Springer,
Heidelberg (2002)

[LIM+11] Ledru, Y., Idani, A., Milhau, J., Qamar, N., Laleau, R., Richier, J.-L.,
Labiadh, M.-A.: Taking into account functional models in the validation
of IS security policies. In: Salinesi, C., Pastor, O. (eds.) CAiSE Workshops
2011. LNBIP, vol. 83, pp. 592–606. Springer, Heidelberg (2011)

[LQI+11] Ledru, Y., Qamar, N., Idani, A., Richier, J.-L., Labiadh, M.-A.: Validation
of security policies by the animation of Z specifications. In: Breu, R.,
Crampton, J., Lobo, J. (eds.) Proceedings of the 16th ACM Symposium
on Access Control Models and Technologies, SACMAT 2011, Innsbruck,
Austria, June 15-17, pp. 155–164. ACM (2011)

[MIL+11] Milhau, J., Idani, A., Laleau, R., Labiadh, M.-A., Ledru, Y., Frappier, M.:
Combining UML, ASTD and B for the formal specification of an access
control filter. Innov. Syst. Softw. Eng. 7, 303–313 (2011)

[MSGC07] Morimoto, S., Shigematsu, S., Goto, Y., Cheng, J.: Formal verification of
security specifications with common criteria. In: Proceedings of the 2007
ACM Symposium on Applied Computing (SAC), Seoul, Korea, March 11-
15, pp. 1506–1512. ACM (2007)

[QLI11] Qamar, N., Ledru, Y., Idani, A.: Validation of security-design models using
Z. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 259–274.
Springer, Heidelberg (2011)

[SM02] Schaad, A., Moffett, J.D.: A lightweight approach to specification and
analysis of role-based access control extensions. In: Proceedings of the
Seventh ACM Symposium on Access Control Models and Technologies,
pp. 13–22. ACM (2002)

[Spi92] Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall
International Series in Computer Science (1992)

[TMB06] Teije, A., Marcos, M., Balser, M., et al.: Improving medical protocols by
formal methods. Artif. Intell. Med. 36(3), 193–209 (2006)

Automated Reviewing of Healthcare Security Policies 193

[TRA+09] Toahchoodee, M., Ray, I., Anastasakis, K., Georg, G., Bordbar, B.: En-
suring spatio-temporal access control for real-world applications. In: Pro-
ceedings of the 14th ACM Symposium on Access Control Models and
Technologies, pp. 13–22. ACM, New York (2009)

[YHHZ06] Yuan, C., He, Y., He, J., Zhou, Z.: A verifiable formal specification for
RBAC model with constraints of separation of duty. In: Lipmaa, H., Yung,
M., Lin, D. (eds.) Inscrypt 2006. LNCS, vol. 4318, pp. 196–210. Springer,
Heidelberg (2006)

[ZWCJ02] Zao, J., Wee, H., Chu, J., Jackson, D.: RBAC schema verification using
lightweight formal model and constraint analysis. Technical report, MIT,
Cambridge (2002)

	Automated Reviewing of Healthcare
Security Policies
	Introduction
	Related Work
	Role-Based Access Control
	Data Model of RBAC
	Example: RBAC-Based Security Management for EHRs

	Formalized Healthcare Security Policies
	The Z Notation and the Jaza Tool
	Z Models for Security Policies

	Formal Queries for Healthcare Security Policies
	Authorized Roles for an Atomic Action
	Actions Available for a Role
	Analyzing Access to a Resource
	Permissions for Atomic Action and Role
	Finding Duplicate Roles
	Atomic Action Accessed by All
	Atomic Action Access by Nobody

	Separation of Duty Constraints
	Conclusions and Perspectives

